## NEC Electronics Inc.

> Memory
> Products
> Data Book

1989


■


# MEMORY PRODUCTS DATA BOOK 

## 1989

NECEL-000154
Stock No. 600100
Document No. UIS-UP60000
©1988 NEC Electronics Inc./Printed in the U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

$$
\therefore \quad \vdots \quad+\quad+
$$

GENERAL INFORMATION

QUALITY AND RELIABILITY

APPLICATION-SPECIFIC DEVICES

DYNAMIC RAM MODULES

DYNAMIC RAMs

STATIC RAMs

ECL RAMs<br>EPROMs and EEPROMs

Section 1
General Information
Introduction ..... 1-1
Part Number Guides
Monolithic Part Number Guide ..... 1-2
Module Part Number Guide ..... 1-3
Product Line Overview ..... 1-4
Selection Guides
Application-Specific Devices ..... 1-5
Dynamic RAM Modules ..... 1-6
Dynamic RAMs ..... 1-7
Static RAMs ..... 1-8
ECL RAMs ..... 1-9
EPROMs and EEPROMs ..... 1-10
Mask-Programmable ROMs ..... 1-11
Alternate Source Index ..... 1-12
Section 2
Quality and Reliability
Introduction ..... 2-1
Reliability Testing ..... 2-1
Failure Rate Calculation and Prediction ..... 2-4
Reliability Test Results ..... 2-5
NEC's Goals on Failure Rates ..... 2-5
Infant Mortality Failure Screening ..... 2-6
Life Tests ..... 2-6
Built-in Quality and Reliability ..... 2-8
Approaches to Total Quality Control ..... 2-8
Summary and Conclusion ..... 2-10

| Section 3 Application-Specific Devices |  |
| :---: | :---: |
| $\mu$ PD41101 <br> $910 \times 8$-Bit Line Buffer for NTSC TV | 3-1 |
| $\mu$ PD41102 <br> $1135 \times 8$-Bit Line Buffer for PAL TV | 3-15 |
| $\mu$ PD41264 <br> 65,536 x 4-Bit Dual-Port Graphics Buffer | 3-29 |
| $\mu$ PD42101 <br> $910 \times 8$-Bit Line Buffer for NTSC TV | 3-47 |
| $\mu$ PD42102 <br> $1135 \times 8$-Bit Line Buffer for PAL TV | 3-61 |
| $\mu$ PD42232 <br> 32,768 x 8-Bit Triple-Port Graphics Buffer | 3-75 |
| $\mu$ PD42270 <br> NTSC Field Buffer | 3-81 |
| $\mu$ PD42273 <br> 262,144 x 4-Bit Dual-Port Graphics Buffer | 3-107 |
| $\mu$ PD42274 <br> 262,144 x 4-Bit Dual-Port Graphics Buffer with Flash Write | 3-131 |
| $\mu$ PD42505 <br> 5,048 x 8-Bit CMOS Line Buffer for Communications Systems | 3-157 |
| $\mu$ PD42532 <br> 32,768 x 8-Bit Bidirectional Data Buffer | 3-169 |
| $\mu$ PD42601 <br> 1,048,576 x 1-Bit Silicon File | 3-189 |
| $\mu$ PD43501 <br> 1,024-Channel Time Division Switch | 3-201 |
| $\mu$ PD43608 <br> Single-Chip Cache Subsystem | 3-207 |
| $\mu$ PD71641 <br> Cache Controller | 3-213 |
| $\mu$ PD7220A <br> Graphics Display Controller | 3-215 |
| $\mu$ PD72120 <br> Advanced Graphics Display Controller | 3-219 |
| $\mu$ PD72185 <br> Advanced Compression/Expansion Processor | 3-221 |

Section 3Application-Specific Devices (cont)
APPLICATION NOTE 54 ..... 3-223$\mu$ PD42505 Line Buffer for Communications Systems
APPLICATION NOTE 55 ..... 3-233
$\mu$ PD41101/ $\mu$ PD41102 High-Speed Line Buffers
APPLICATION NOTE 56 ..... 3-249
$\mu$ PD42601 Silicon File
APPLICATION NOTE 57 ..... 3-257
$\mu$ PD41101/ $\mu$ PD41102/ $\mu$ PD42505 High-Speed Line Buffers
APPLICATION NOTE 58 ..... 3-267
Interlaced to Noninterlaced Video Scanning Using the $\mu$ PD41101 High-Speed Line Buffer
Section 4
Dynamic RAM Modules
MC-41256A8 ..... 4-1
262,144 x 8-Bit Dynamic NMOS RAM Module (Page)
MC-41256A9 ..... 4-13
262,144 x 9-Bit Dynamic NMOS RAM Module (Page)
MC-421000A8
$1,048,576 \times 8$-Bit CMOS Dynamic RAM Module (Fast Page)
MC-421000A9 ..... 4-41
1,048,576 x 9-Bit CMOS Dynamic RAM Module (Fast Page)
MC-421000B8
1,048,576 $\times 8$-Bit CMOS Dynamic RAM Module (Nibble)
MC-421000B9 ..... 4-71
1,048,576 $\times$ 9-Bit CMOS Dynamic RAM Module (Nibble)
MC-421000C8 ..... 4-87
1,048,576 x 8-Bit CMOS Dynamic RAM Module (Static Column)
1,048,576 x 9-Bit CMOS Dynamic RAM Module (Static Column)
Section 5 Dynamic RAMs
$\mu$ PD41256 ..... 5-1
262,144 x 1-Bit Dynamic NMOS RAM (Page)
$\mu$ PD41257 ..... 5-17
262,144 x 1-Bit Dynamic NMOS RAM (Nibble)
$\mu$ PD41464 ..... 5-33
65,536 x 4-Bit Dynamic NMOS RAM (Page)

| Section 5 <br> Dynamic RAMs (cont) |  |
| :---: | :---: |
| $\begin{aligned} & \mu \text { PD421000 } \\ & 1,048,576 \times 1 \text {-Bit Dynamic CMOS RAM (Fast Page) } \end{aligned}$ | 5-53 |
| $\mu$ PD421001 <br> 1,048,576 x 1-Bit Dynamic CMOS RAM (Nibble) | 5-67 |
| $\mu$ PD421002 <br> 1,048,576 $\times 1$-Bit Dynamic CMOS RAM (Static Column) | 5-81 |
| $\mu$ PD424256 <br> 262,144 x 4-Bit Dynamic CMOS RAM (Fast Page) | 5-95 |
| $\mu$ PD 424258 <br> 262,144 x 4-Bit Dynamic CMOS RAM (Static Column) | 5-111 |
| APPLICATION NOTE 53 $\mu$ PD421000-Series Dynamic RAMs | 5-127 |
| Section 6 Static RAMs |  |
| $\mu$ PD4311 <br> $16,384 \times 1$-Bit Static CMOS RAM | 6-1 |
| $\begin{aligned} & \mu \text { PD } 4314 \\ & 4,096 \times 4 \text {-Bit Static CMOS RAM } \end{aligned}$ | 6-5 |
| $\mu$ PD4361 <br> 65,536 $\times 1$-Bit Static CMOS RAM | 6-9 |
| $\mu$ PD4362 <br> $16,384 \times 4$-Bit Static CMOS RAM | 6-15 |
| $\mu$ PD4363 <br> 16,384 x 4-Bit Static CMOS RAM | 6-21 |
| $\mu$ PD4364 <br> 8,192 $\times 8$-Bit Static CMOS RAM | 6-27 |
| $\mu$ PD4464 <br> 8,192 $\times 8$-Bit Static CMOS RAM | 6-33 |
| $\mu$ PD43254 <br> 65,536 x 4-Bit Static CMOS RAM | 6-39 |
| $\mu$ PD43256A <br> $32,768 \times 8$-Bit Static CMOS RAM | 6-45 |
| APPLICATION NOTE 50 <br> Battery Backup Circuits for SRAMs | 6-51 |

Section 7
ECL RAMs
$\mu$ PB10422 ..... 7-1
$256 \times 4$-Bit 10K ECL RAM
$\mu$ PB10470 ..... 7-5
4,096 x 1-Bit 10K ECL RAM
$\mu$ PB10474 ..... 7-11
1,024 x 4-Bit 10K ECL RAM
$\mu$ PB10474A ..... 7-15
1,024 x 4-Bit 10K ECL RAM
$\mu$ PB10480 ..... 7-19
16,384 x 1-Bit 10K ECL RAM
$\mu$ PB10484 ..... 7-23
4,096 x 4-Bit 10K ECL RAM
$\mu$ PB100422 ..... 7-29
$256 \times 4$-Bit 100K ECL RAM
$\mu$ PB100470 ..... 7-33
4,096 $\times 1$-Bit 100K ECL RAM
$\mu$ PB100474 ..... 7-37
1,024 x 4-Bit 100K ECL RAM $\mu$ PB100474A ..... 7-41
1,024 x 4-Bit 100K ECL RAM $\mu$ PB100480 ..... 7-45
16,384 x 1-Bit 100K ECL RAM
$\mu$ PB100484 ..... 7-49
4,096 $\times 4$-Bit 100 K ECL RAM
Section 8
EPROMs and EEPROMs
$\mu$ PD27C256A ..... 8-1
32,768 x 8-Bit CMOS UV EPROM
$\mu$ PD27C512 ..... 8-5
65,536 x 8-Bit CMOS UV EPROM
$\mu$ PD27C1000A ..... 8-11
131,072 x 8-Bit CMOS UV EPROM $\mu$ PD27C1001A ..... 8-21
131,072 x 8-Bit CMOS UV EPROM
$\mu$ PD27C1024 ..... 8-31$65,536 \times 16$-Bit CMOS UV EPROM
Section 8EPROMs and EEPROMs (cont)
$\mu$ PD27C2001 ..... 8-39
262,144 x 8-Bit CMOS UV EPROM$\mu$ PD28C048-49
$512 \times 8$-Bit CMOS EEPROM
$\mu$ PD28C64 ..... 8-57
8,192 $\times 8$-Bit CMOS EEPROM
Section 9
Mask-Programmable ROMs
$\mu$ PD23C1000A ..... 9-1
131,072 x 8-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C1000EA ..... 9-3
131,072 $\times 8$-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C1001E ..... 9-7
131,072 $\times 8$-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C1010A ..... 9-11
131,072 $\times 8$-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C2000 ..... 9-13
2,097,152-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C2001 ..... 9-17
262,144 x 8-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C4000 ..... 9-21
4,194,304-Bit Mask-Programmable CMOS ROM
$\mu$ PD23C4001E ..... 9-25524,288 x 8-Bit Mask-Programmable CMOS ROM

TABLE OF CONTENTS
Section 10
Packaging Information
Device/Package Cross Reference ..... 10-1
16-Pin Plastic DIP ( 300 mil ) ..... 10-5
18-Pin Packages ..... 10-6
20-Pin Packages ..... 10-8
22-Pin Packages ..... 10-11
24-Pin Packages ..... 10-12
26/20-Pin Plastic SOJ ..... 10-17
28-Pin Packages ..... 10-18
30-Pin SIMMs ..... 10-23
32-Pin Packages ..... 10-26
40-Pin Packages ..... 10-28
52-Pin Plastic Miniflat ..... 10-29
64-Pin Plastic Quad Flatpack ..... 10-30

## TABLE OF CONTENTS

ALPHANUMERIC INDEX

## Alphanumeric Index

| Part Number | Page |
| :---: | :---: |
| MC-41256A8 | 4-1 |
| MC-41256A9 | 4-13 |
| MC-421000A8 | 4-27 |
| MC-421000A9 | 4-41 |
| MC-421000B8 | 4-57 |
| MC-421000B9 | 4-71 |
| MC-421000C8 | 4-87 |
| MC-421000C9 | 4-101 |
| $\mu \mathrm{PB} 100422$ | 7-29 |
| $\mu \mathrm{PB} 100470$ | 7-33 |
| $\mu \mathrm{PB} 100474$ | 7-37 |
| $\mu \mathrm{PB} 100474 \mathrm{~A}$ | 7-41 |
| $\mu \mathrm{PB} 100480$ | 7-45 |
| $\mu \mathrm{PB} 100484$ | 7-49 |
| $\mu$ PB10422 | 7-1 |
| $\mu \mathrm{PB} 10470$ | 7-5 |
| $\mu$ PB10474 | 7-11 |
| $\mu$ PB10474A | 7-15 |
| $\mu \mathrm{PB} 10480$ | 7-19 |
| $\mu$ PB10484 | 7-23 |
| $\mu$ PD23C1000A | 9-1 |
| $\mu$ PD23C1000EA | 9-3 |
| $\mu \mathrm{PD} 23 \mathrm{C} 1001 \mathrm{E}$ | 9-7 |
| $\mu$ PD23C1010A | 9-11 |
| $\mu \mathrm{PD} 23 \mathrm{C} 2000$ | 9-13 |
| $\mu \mathrm{PD} 23 \mathrm{C} 2001$ | 9-17 |
| $\mu \mathrm{PD} 23 \mathrm{C} 4000$ | 9-21 |
| $\mu \mathrm{PD} 23 \mathrm{C4001E}$ | 9-25 |
| $\mu$ PD27C1000A | 8-11 |
| $\mu \mathrm{PD} 27 \mathrm{C1001} \mathrm{~A}$ | 8-21 |
| $\mu \mathrm{PD} 27 \mathrm{C1024}$ | 8-31 |
| $\mu \mathrm{PD} 27 \mathrm{C} 2001$ | 8-39 |
| $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ | 8-1 |
| $\mu \mathrm{PD} 27 \mathrm{C} 512$ | 8-5 |
| $\mu \mathrm{PD} 28 \mathrm{C04}$ | 8-49 |
| $\mu \mathrm{PD} 28 \mathrm{C64}$ | 8-57 |

Part Number ..... Page
$\mu$ PD41101 ..... 3-1
$\mu$ PD41102 ..... 3-15
$\mu$ PD41256 ..... 5-1
$\mu$ PD41257 ..... 5-17
$\mu$ PD41264 ..... 3-29
$\mu$ PD41464 ..... 5-33
$\mu$ PD421000 ..... 5-53
$\mu$ PD421001 ..... 5-67
$\mu$ PD421002 ..... 5-81
$\mu$ PD42101 ..... 3-47
$\mu$ PD42102 ..... 3-61
$\mu$ PD42232 ..... 3-75
$\mu$ PD42270 ..... 3-81
$\mu$ PD42273 ..... 3-107
$\mu$ PD42274 ..... 3-131
$\mu$ PD424256 ..... 5-95
$\mu$ PD424258 ..... 5-111
$\mu$ PD42505 ..... 3-157
$\mu$ PD42532 ..... 3-169
$\mu$ PD42601 ..... 3-189
$\mu$ PD4311 ..... 6-1
$\mu$ PD4314 ..... 6-5
$\mu$ PD43254 ..... 6-39
$\mu$ PD43256A ..... 6-45
$\mu$ PD43501 ..... 3-201
$\mu$ PD43608 ..... 3-207
$\mu$ PD4361 ..... 6-9
$\mu$ PD4362 ..... 6-15
$\mu$ PD4363 ..... 6-21
$\mu$ PD4364 ..... 6-27
$\mu$ PD4464 ..... 6-33
$\mu$ PD71641 ..... 3-213
$\mu$ PD72120 ..... 3-219
$\mu$ PD72185 ..... 3-221
$\mu$ PD7220A ..... 3-215

## ALPHANUMERIC INDEX

Section 1 General Information
Introduction ..... 1-1
Part Number Guides

| Monolithic Part Number Guide | $1-2$ |
| :--- | :--- |
| Module Part Number Guide | $1-3$ |
| Product Line Overview | $1-4$ |

Selection Guides
Application-Specific Devices ..... 1-5
Dynamic RAM Modules ..... 1-6
Dynamic RAMs ..... 1-7
Static RAMs ..... 1-8
ECL RAMs ..... 1-9
EPROMs and EEPROMs ..... 1-10
Mask-Programmable ROMs ..... 1-11
Alternate Source Index ..... 1-12

## Introduction

This 1989 edition of the MEMORY PRODUCTS DATA BOOK contains the most current information available at the time of printing. Please contact your local representative of NEC Electronics Inc. to stay informed of upcoming releases. Additional products in development but not yet announced are referred to below. The addition of these products to our total memory line, already the broadest in the industry (and briefly described in this section), means an even greater selection of device types, configurations, and packaging options in each of the major memory groups.

Among our new application-specific products are high-performance devices for graphics, video/TV, communications, image processing, data processing, and other specialized applications. The $\mu$ PD42274, for example, is able to store 1 M bits of data and continues our leadership in the design of dual-port graphics buffers. The $\mu$ PD43501 is the world's first VLSI device to integrate 1024 channels for time division switching in digital PBX applications. The $\mu$ PD43608 is the world's first cache subsystem on a chip. Designed with a general-purpose interface to many microprocessors and fabricated with $1.3-\mu \mathrm{m}$ CMOS technology, it combines all cache functions, peripheral circuitry, and 8 K bytes of data storage on a single 132 -pin chipproviding a high cache hit ratio in compact packaging. Other new products in this category include a tripleport graphics buffer, a line buffer for communications systems, a $910 \times 263 \times 4$ field buffer for NTSC TV systems, and a 1 M -bit silicon file for semiconductor disk storage.
In building on our position as an industry leader in the production of latest-generation DRAMs, we have focused our attention on developing products with higher density, lower power consumption, and faster access times. Five recently released 1M-bit CMOS DRAMs-the $\mu$ PD421000, $\mu$ PD421001, $\mu$ PD421002, $\mu$ PD424256, and $\mu$ PD424258-reflect this trend toward higher integration and represent substantial improvements in both access speed and power consumption over our popular 256K-bit NMOS DRAMs. Furthermore, a family of modules based on these 1M-bit DRAMs is being offered with 8 - or 9 -bit organization and either leaded or socketable mounting options. Packaged in Single Inline Memory Modules (SIMMs ${ }^{\text {™ }}$ ) to enhance reliability and reduce the size, weight and cost of a system, they provide the same high perfor-
mance at the module level as at the device level. This product family will be extended in 1989 to include five versions of the 4M-bit DRAM-the $\mu$ PD424100, $\mu$ PD424101, $\mu$ PD424102, $\mu$ PD424400, and $\mu$ PD424402.
An increasing demand for enlarged program and data memory in applications ranging from point-of-sale systems and numerically controlled machining systems to hand-held computers and portable terminals/ word processors has led to our development of lowpower CMOS SRAMs, all of which feature advanced circuitry, a short-channel, silicon-gate fabrication process, fast access times, and fully static operation (with no clock or refreshing required). Density will increase to 1 M -bit and beyond in our byte-wide SRAMs. Other products with increasing density and improved access times are also planned in this family.
NEC has continued to develop more efficient, super high-speed products for use as cache memory and control storage memory in mainframe computers and IC testers, as evidenced by our announcement of four new bipolar ECL RAMs. These devices have 10K or 100 K interfaces and are organized by 1 or 4 bits for compatibility with the memory size and word width of the application system. Additional products, through 256 K bits, are in development.
Our family of EPROMs has also been expanded to include EEPROMs and higher-density products offering greater integrity, improved programming features, and a considerable savings in both operating and standby power. Our fast 1 M - and 2 M -bit EPROMs are in production now, while samples of the 4M-bit EPROM will be available soon after this book is in print.
Five new mask-programmable ROMs featuring very large capacity (as high as 4 M bits) and either 8 - or 16-bit organization have been developed in response to the growing demand for storing greater quantities of data on one chip, e.g., dictionary and thesaurus data, embedded application routines in portable systems, and large-size character sets/fonts. Future efforts in this area will concentrate on producing denser and faster speed versions for these applications.
This 1989 MEMORY PRODUCTS DATA BOOK is for your reference. If you need further assistance, please contact one of the sales offices listed elsewhere in this book. Our field applications engineers or personnel in the technology centers will be glad to assist you.

[^0]Monolithic Part Number Guide


## Module Part Number Guide



## Product Line Overview

| Density | Application Specific | RAM |  |  |  | EPROM | EEPROM | ROM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Module | Dynamic | MOS Static | ECL |  |  |  |
| 1 K |  |  |  |  | $\begin{aligned} & \mu \mathrm{PB} 10422 \\ & \mu \mathrm{~PB} 100422 \end{aligned}$ |  |  |  |
| 4K |  |  |  |  | $\mu$ PB10470 $\mu$ PB10474 $\mu$ PB10474A $\mu$ PB100470 $\mu \mathrm{PB} 100474$ $\mu$ PB100474A |  | $\mu \mathrm{PD28C04}$ |  |
| 8K | $\begin{aligned} & \mu \text { PD41101 } \\ & \mu \text { PD4102 } \\ & \mu \text { PD42101 } \\ & \mu \text { PD42102 } \end{aligned}$ |  |  |  |  |  |  |  |
| 16K | $\mu \mathrm{PD} 43501$ |  |  | $\mu$ PD4311 $\mu$ PD4314 | $\begin{aligned} & \mu \mathrm{PB} 10480 \\ & \mu \mathrm{~PB} 10484 \\ & \mu \mathrm{~PB} 100480 \\ & \mu \mathrm{~PB} 100484 \end{aligned}$ |  |  |  |
| 40K | $\mu$ PD42505 |  |  |  |  |  |  |  |
| 64K | $\mu \mathrm{PD} 43608$ |  |  | $\mu$ PD4361 <br> $\mu$ PD4362 <br> $\mu$ PD4363 <br> $\mu$ PD4364 <br> $\mu$ PD4464 |  |  | $\mu$ PD28C64 |  |
| 256 K | $\mu$ P041264 <br> $\mu$ PD 42232 <br> $\mu$ PD42532 |  | $\mu$ PD41256 <br> $\mu$ PD41257 <br> $\mu$ PD41464 | $\begin{gathered} \mu \mathrm{PD} \text { D33254 } \\ \mu \mathrm{PD} 43256 \mathrm{~A} \end{gathered}$ |  | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |  |  |
| 512 K |  |  |  |  |  | $\mu$ PD27C512 |  |  |
| 1M | $\begin{aligned} & \mu \text { PD42270 } \\ & \mu \text { PD42601 } \\ & \mu \text { PD42273 } \\ & \mu \text { PD42274 } \end{aligned}$ |  | $\mu$ PD421000 <br> $\mu$ PD421001 <br> $\mu$ PD421002 <br> $\mu$ PD424256 <br> $\mu$ PD424258 |  |  | $\begin{gathered} \mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A} \\ \mu \mathrm{PD} 27 \mathrm{C} 1001 \mathrm{~A} \\ \mu \mathrm{PD} 27 \mathrm{C} 1024 \end{gathered}$ |  | $\begin{gathered} \mu \mathrm{PD} 23 \mathrm{C} 1000 \mathrm{~A} \\ \mu \mathrm{PD} 23 \mathrm{C} 1000 \mathrm{EA} \\ \mu \mathrm{PD} 23 \mathrm{C} 1001 \mathrm{E} \\ \mu \mathrm{PD} 23 \mathrm{C} 1010 \mathrm{~A} \end{gathered}$ |
| 2M |  | $\begin{aligned} & \text { MC-41256A8 } \\ & \text { MC-41256A9 } \end{aligned}$ |  |  |  | $\mu \mathrm{PD27C2001}$ |  | $\begin{aligned} & \mu \text { PD23C2000 } \\ & \mu \text { PD23C2001 } \end{aligned}$ |
| 4M |  |  |  |  |  |  |  | $\mu$ PD23C4000 $\mu$ PD23C4001E |
| 8M |  | MC-421000A8 <br> MC-421000B8 <br> MC-421000C8 <br> MC-421000A9 <br> MC-421000B9 <br> MC-421000C9 |  |  |  |  |  |  |

## Application-Specific Devices

| Device | Organization | Process | Access <br> Time (ns) | Cycle Time (ns) | Supply Voltage | Maximum Power Dissipation (mW) |  | Package [Note 1] | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\mu$ PD41101-3 | $910 \times 8$ | NMOS | 27 | $\begin{gathered} 34 \\ 34(\mathrm{R}) / 69(\mathrm{~W}) \\ 69 \end{gathered}$ | +5 | - | 495 | C/G | 24 |
| $\mu$ PD41101-2 |  |  | 27 |  |  |  |  |  |  |
| $\mu$ PD41101-1 |  |  | 49 |  |  |  |  |  |  |
| $\mu$ PD41102-3 | $1135 \times 8$ | NMOS | 21 | $\begin{gathered} 28 \\ 28(\mathrm{R}) / 56(\mathrm{~W}) \\ 34 \\ 56 \end{gathered}$ | +5 | - | 495 | C/G | 24 |
| $\mu$ PD41102-2 |  |  | 21 |  |  |  |  |  |  |
| $\mu$ PD41102-1S |  |  | 27 |  |  |  |  |  |  |
| $\mu \mathrm{PD} 41102-1$ |  |  | 40 |  |  |  |  |  |  |
| $\mu$ PD41264-12 | 64K $\times 4$ | NMOS | 120 Port A | 220 Port A | +5 | 66 | 853 | C/V | 24 |
|  | with |  | 40 Port B | 40 Port B |  |  |  |  |  |
| $\mu \mathrm{PD} 41264-15$ | dual |  | 150 Port A | 270 Port A |  |  | 715 |  |  |
|  | ports |  | 60 Port B | 60 Port B |  |  |  |  |  |
| $\mu$ PD42101-3 | $910 \times 8$ | CMOS | 27 | 34 | +5 | - | 385 | C/G | 24 |
| $\mu$ PD42101-2 |  |  | 27 | 34(R)/69(W) |  |  | 330 |  |  |
| $\mu$ PD42101-1 |  |  | 49 | 69 |  |  | 193 |  |  |
| $\mu$ PD42102-3 | $1135 \times 8$ | CMOS | 21 | 28 | +5 | - | 440 | C/G | 24 |
| $\mu$ PD42102-2 |  |  | 21 | 28(R)/56(W) |  |  | 385 |  |  |
| $\mu$ PD42102-1 |  |  | 40 | 56 |  |  | 220 |  |  |
| $\mu$ PD42232-12 | $32 \mathrm{~K} \times 8$ | CMOS | 120 Port A | 220 Port A | +5 | 82.5 | 468 | CU | 40 |
|  | with |  | 40 Port B | 40 Port B |  |  |  |  |  |
| $\mu$ PD42232-15 | triple |  | 150 Port A | 260 Port A |  |  | 385 |  |  |
|  | ports |  | 60 Port B | 60 Port B |  |  |  |  |  |
| $\mu$ PD42270 | $910 \times 263 \times 4$ | CMOS | 40 | 60 | +5 | - | 440 | C | 28 |
| $\mu$ PD42273-10 | $256 \mathrm{~K} \times 4$ | CMOS | 100 Port A | 190 Port A | +5 | 17.5 | 550 | LE/V | 28 |
|  |  |  | 30 Port B | 30 Port B |  |  |  |  |  |
| $\mu$ PD42273-12 |  |  | 120 Port A | 220 Port A |  | 17.5 | 495 |  |  |
|  |  |  | 40 Port B | 40 Port B |  |  |  |  |  |
| $\mu \mathrm{PD} 42274-10$ | $256 \mathrm{~K} \times 4$ | CMOS | 100 Port A | 190 Port A | +5 | 17.5 | 550 | LE/V | 28 |
|  |  |  | 30 Port B | 30 Port B |  |  |  |  |  |
| $\mu$ PD42274-12 |  |  | 120 Port A | 220 Port A |  | 17.5 | 495 |  |  |
|  |  |  | 40 Port B | 40 Port B |  |  |  |  |  |
| $\mu$ PD42505-50 | $5048 \times 8$ | CMOS | 40 | 50 | +5 | - | 330 | C | 24 |
| $\mu$ PD42505-75 |  |  | 55 | 75 |  |  |  |  |  |
| $\mu$ PD42532 | $32 \mathrm{~K} \times 8$ | CMOS | 50 | 100 | +5 | 110 | 440 | C | 40 |
| $\mu \mathrm{PD} 42601-60$ | $1 \mathrm{M} \times 1$ | CMOS | $\begin{gathered} 600 \text { (Single) } \\ 100 \text { (Page) } \end{gathered}$ | $\begin{aligned} & 1000 \text { (Single) } \\ & 200 \text { (Page) } \end{aligned}$ | +5 | 0.660 | 66 | C/LA/V | $\begin{gathered} C=18 \\ L A=26 / 20 \\ V=20 \end{gathered}$ |
|  |  |  |  |  |  |  |  |  |  |
| $\mu$ PD42601-60L |  |  |  |  |  | 0.165 | 66 |  |  |
| $\mu$ PD43501 | $2 \times 1 \mathrm{~K} \times 8$ | CMOS | 60 | 61 | +5 | - | 1485 | R | 132 |
| $\mu$ PD43608-3 | $\begin{gathered} 512 \times 32 \times 4 \\ \text { or } \\ 1 \mathrm{~K} \times 16 \times 4 \end{gathered}$ | CMOS | 64 | 100 | +5 | - | 1485 | R | 132 |
|  |  |  |  |  |  |  |  |  |  |
| $\mu \mathrm{PD} 43608$-2 |  |  | 85 | 125 |  |  |  |  |  |

## Note:

(1) $C=$ plastic DIP; CU = plastic shrink DIP; $G=$ plastic miniflat;

LA or LE = plastic SOJ; R = ceramic PGA; $V=$ plastic ZIP.

## Dynamic RAM Modules

| Device | Organization | Process | $\begin{aligned} & \text { Access } \\ & \text { Time (ns) } \end{aligned}$ | Cycle Time (ns) | Supply Voltage | Maximum Power Dissipation (mW) |  | Package [Note 1] | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| MC-41256A8-10 | $\begin{gathered} 256 \mathrm{~K} \times 8 \\ \text { (page) } \end{gathered}$ | NMOS | 100 | 200 | +5 | 220 | 3652 | A/B | 30 |
| MC-41256A8-12 |  |  | 120 | 220 |  |  | 3080 |  |  |
| MC-41256A8-15 |  |  | 150 | 260 |  |  | 2640 |  |  |
| MC-41256A9-10 | $\begin{gathered} 256 \mathrm{~K} \times 9 \\ \text { (page) } \end{gathered}$ | NMOS | 100 | 200 | +5 | 248 | 4109 | A/B | 30 |
| MC-41256Ag-12 |  |  | 120 | 220 |  |  | 3465 |  |  |
| MC-41256A9-15 |  |  | 150 | 260 |  |  | 2970 |  |  |
| MC-421000A8-80 | $\begin{gathered} 1 \mathrm{M} \times 8 \\ \text { (fast page) } \end{gathered}$ | CMOS | 80 | 160 | +5 | 44 | 3080 | A/B | 30 |
| MC-421000A8-10 |  |  | 100 | 190 |  |  | 2640 |  |  |
| MC-421000A8-12 |  |  | 120 | 220 |  |  | 2200 |  |  |
| MC-42100088-80 | $\begin{gathered} \hline 1 \mathrm{M} \times 8 \\ \text { (nibble) } \end{gathered}$ | CMOS | 80 | 160 | +5 | 44 | 3080 | A/B | 30 |
| MC-42100088-10 |  |  | 100 | 190 |  |  | 2640 |  |  |
| MC-421000B8-12 |  |  | 120 | 220 |  |  | 2200 |  |  |
| MC-421000C8-80 | $1 \mathrm{M} \times 8$ (static column) | CMOS | 80 | 160 | +5 | 44 | 3080 | A/B | 30 |
| MC-421000C8-10 |  |  | 100 | 190 |  |  | 2640 |  |  |
| MC-421000C8-12 |  |  | 120 | 220 |  |  | 2200 |  |  |
| MC-421000A9-80 | $\begin{gathered} 1 \mathrm{M} \times 9 \\ \text { (fast page) } \end{gathered}$ | CMOS | 80 | 160 | +5 | 49.5 | 3465 | A/B | 30 |
| MC-421000A9-10 |  |  | 100 | 190 |  |  | 2970 |  |  |
| MC-421000A9-12 |  |  | 120 | 220 |  |  | 2475 |  |  |
| MC-42100089-80 | $\begin{gathered} 1 \mathrm{M} \times 9 \\ \text { (nibble) } \end{gathered}$ | CMOS | 80 | 160 | +5 | 49.5 | 3465 | A/B | 30 |
| MC-421000B9-10 |  |  | 100 | 190 |  |  | 2970 |  |  |
| MC-42100089-12 |  |  | 120 | 220 |  |  | 2475 |  |  |
| MC-421000C9-80 | $1 \mathrm{M} \times 9$ (static column) | CMOS | 80 | 160 | +5 | 49.5 | 3465 | A/B | 30 |
| MC-421000C9-10 |  |  | 100 | 190 |  |  | 2970 |  |  |
| MC-421000C9-12 |  |  | 120 | 220 |  |  | 2475 |  |  |

## Note:

(1) $A=$ leaded SIMM; B = socket-mountable SIMM.

## Dynamic RAMs

| Device | Organization | Process | Access <br> Time (ns) | Cycle Time [ns] | Supply Voltage | Maximum Power Dissipation (mW) |  | Package <br> (Note 1) | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\mu$ PD41256-10 | $\begin{gathered} 256 \mathrm{~K} \times 1 \\ \text { (page) } \end{gathered}$ | NMOS | 100 | 200 | +5 | 28 | 440 | C/L | $C=16$ |
| $\mu$ PD41256-12 |  |  | 120 | 220 |  |  | 385 |  | $\mathrm{L}=18$ |
| $\mu$ PD41256-15 |  |  | 150 | 260 |  |  | 330 |  |  |
| $\mu$ PD41257-12 | $\begin{aligned} & 256 \mathrm{~K} \times 1 \\ & \text { (nibble) } \end{aligned}$ | NMOS | 120 | 220 | +5 | 28 | 413 | C/L | $C=16$ |
| $\mu$ PD41257-15 |  |  | 150 | 260 |  |  | 385 |  | $L=18$ |
| $\mu$ PD41257-20 |  |  | 200 | 330 |  |  | 330 |  |  |
| $\mu$ PD41464-10 | $64 \mathrm{~K} \times 4$ | NMOS | 100 | 200 | +5 | 28 | 440 | C/L.V | $C=18$ |
| $\mu$ PD41464-12 |  |  | 120 | 220 |  |  | 413 |  | $\mathrm{L}=18$ |
| $\mu$ PD41464-15 |  |  | 150 | 260 |  |  | 385 |  | $V=20$ |
| $\mu$ PD421000-80 | $\begin{gathered} 1 \mathrm{M} \times 1 \\ \text { (fast page) } \end{gathered}$ | CMOS | 80 | 160 | +5 | 5.5 | 385 | C/LA/V | $\mathrm{C}=18$ |
| $\mu \mathrm{PD} 421000-10$ |  |  | 100 | 190 |  |  | 330 |  | $L A=26 / 20$ |
| $\mu$ PD421000-12 |  |  | 120 | 220 |  |  | 275 |  | $V=20$ |
| $\mu$ PD421001-80 | $1 \mathrm{M} \times 1$ (nibble) | CMOS | 80 | 160 | +5 | 5.5 | 385 | C/LA/V | $\mathrm{C}=18$ |
| $\mu \mathrm{PD} 421001-10$ |  |  | 100 | 190 |  |  | 330 |  | $L A=26 / 20$ |
| $\mu \mathrm{PD} 421001-12$ |  |  | 120 | 220 |  |  | 275 |  | $V=20$ |
| $\mu$ PD421002-80 | $1 \mathrm{M} \times 1$ (static column) | CMOS | 80 | 160 | +5 | 5.5 | 385 | C/LA/V | $\mathrm{C}=18$ |
| $\mu \mathrm{PD} 421002-10$ |  |  | 100 | 190 |  |  | 330 |  | $L A=26 / 20$ |
| $\mu$ PD421002-12 |  |  | 120 | 220 |  |  | 275 |  | $V=20$ |
| $\mu$ PD424256-80 | $\begin{gathered} 256 \mathrm{~K} \times 4 \\ \text { (fast page) } \end{gathered}$ | CM0S | 80 | 160 | +5 | 5.5 | 385 | C/LA/V | $\mathrm{C}=20$ |
| $\mu \mathrm{PD} 424256$-10 |  |  | 100 | 190 |  |  | 330 |  | $L A=26 / 20$ |
| $\mu \mathrm{PD} 425256$-12 |  |  | 120 | 220 |  |  | 275 |  | $V=20$ |
| $\mu$ PD424258-80 | $256 \mathrm{~K} \times 4$ <br> (static column) | CMOS | 80 | 160 | +5 | 5.5 | 385 | C/LA/V | $\mathrm{C}=20$ |
| $\mu \mathrm{PD} 424258$-10 |  |  | 100 | 190 |  |  | 330 |  | $L A=26 / 20$ |
| $\mu$ PD425258-12 |  |  | 120 | 220 |  |  | 275 |  | $V=20$ |

## Notes:

(1) $C=$ plastic DIP; $L=P L C C ; L A=$ plastic SOJ; $V=$ plastic ZIP.

## Static RAMs

| Device | Organization | Process | $\begin{aligned} & \text { Access } \\ & \text { TIme (ns) } \end{aligned}$ | $\begin{gathered} \text { Cycle } \\ \text { Time (ns) } \end{gathered}$ | Supply Voltage | Maximum Power Dissipation (mW) |  | Package (Note 1] | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\mu \mathrm{PD} 3311-35$ | $16 \mathrm{~K} \times 1$ | CMOS | 35 | 35 | +5 | 11 | 440 | C | 20 |
| $\mu \mathrm{PD} 4311-45$ |  |  | 45 | 45 |  |  |  |  |  |
| $\mu \mathrm{PD} 4311-55$ |  |  | 55 | 55 |  |  |  |  |  |
| $\mu$ PD4314-35 | $4 \mathrm{~K} \times 4$ | CMOS | 35 | 35 | +5 | 11 | 440 | C | 20 |
| $\mu \mathrm{PD} 4314-45$ |  |  | 45 | 45 |  |  |  |  |  |
| $\mu \mathrm{PD} 4314-55$ |  |  | 55 | 55 |  |  |  |  |  |
| $\mu \mathrm{PD} 4361-40$ | $64 \mathrm{~K} \times 1$ | CMOS | 40 | 40 | +5 | 11 | 660 | K | 22 |
| $\mu \mathrm{PD} 4361-45$ |  |  | 45 | 45 |  |  |  | C/K |  |
| $\mu \mathrm{PD} 4361-55$ |  |  | 55 | 55 |  |  |  | C/K |  |
| $\mu \mathrm{PD} 436170$ |  |  | 70 | 70 |  |  |  | C |  |
| $\mu$ PD4362-45 | $16 \mathrm{~K} \times 4$ | CMOS | 45 | 45 | +5 | 11 | 495 | C | 22 |
| $\mu$ PD4362-55 | (CS only) |  | 55 | 55 |  |  |  |  |  |
| $\mu$ PD4362-70 |  |  | 70 | 70 |  |  |  |  |  |
| $\mu$ PD4363-45 | 16K $\times 4$ | CMOS | 45 | 45 | +5 | 11 | 495 | C | 24 |
| $\mu \mathrm{PD} 4363-55$ | ( $\overline{\mathrm{CS}}, \overline{\mathrm{OE}}$ ) |  | 55 | 55 |  |  |  |  |  |
| $\mu \mathrm{PD} 4363-70$ |  |  | 70 | 70 |  |  |  |  |  |
| $\mu$ PD4364-10 | $8 \mathrm{~K} \times 8$ | CMOS | 100 | 100 | +5 | 11/0.55/0.28 | 248 | C/CX/G | 28 |
| $\mu$ PD4364-12 |  |  | 120 | 120 |  |  | 220 | C/CX/G |  |
| $\mu$ PD4364-15 |  |  | 150 | 150 |  |  | 220 | C/CX/G |  |
| $\mu$ PD4364-20 |  |  | 200 | 200 |  |  | 193 | C/G |  |
| $\mu$ PD4464-12 | $8 \mathrm{~K} \times 8$ | CMOS | 120 | 120 | +5 | 0.055 | 220 | C/G | 28 |
| $\mu$ PD4464-15 |  | (6-T cell) | 150 | 150 |  | (Note 2) | 220 |  |  |
| $\mu$ PD4464-20 |  |  | 200 | 200 |  |  | 193 |  |  |
| $\mu$ PD43254-35 | $64 \mathrm{~K} \times 4$ | CMOS | 35 | 35 | +5 | 11 | 660 | C | 24 |
| $\mu$ PD43254-45 |  |  | 45 | 45 |  |  |  |  |  |
| $\mu$ PD43254-55 |  |  | 55 | 55 |  |  |  |  |  |
| $\mu \mathrm{PD} 43256 \mathrm{~A}-85$ | $32 \mathrm{~K} \times 8$ | CMOS | 85 | 85 | +5 | 0.55 | 248 | C/GU | 28 |
| $\mu \mathrm{PD} 43256 \mathrm{~A}-10$ |  |  | 100 | 100 |  |  | 220 |  |  |
| $\mu \mathrm{PD} 43256 \mathrm{~A}-12$ |  |  | 120 | 120 |  |  | 220 |  |  |
| $\mu \mathrm{PD} 43256 \mathrm{~A}-15$ |  |  | 150 | 150 |  |  | 193 |  |  |

## Notes:

(1) $\mathrm{C}=$ plastic DIP; CX = plastic slim DIP; G or GU = plastic miniflat;
$K=$ ceramic LCC.
(2) Lower power version available; refer to the data sheet for more detail.

GENERAL INFORMATION

## ECL RAMs

| Device | Organization | Process | Address Access Time (ns) | Chip Select Access Time (ns) | Supply Voltage | Maximum Power Dissipation (mW) | Package <br> (Note I) | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PB10422-7 <br> $\mu$ PB10422-10 | $256 \times 4$ | 10K | $\begin{gathered} 7 \\ 10 \end{gathered}$ | $\begin{aligned} & 5 \text { (Note 2) } \\ & 5 \text { (Note 2) } \end{aligned}$ | -5.2 | 1144 | D | 24 |
| $\begin{aligned} & \mu \text { PB10470-10 } \\ & \mu \text { PB10470-15 } \end{aligned}$ | $4 \mathrm{~K} \times 1$ | 10K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 6 \\ & 8 \end{aligned}$ | -5.2 | 1144 | D | 18 |
| $\mu$ PB10474-8 <br> $\mu$ PB10474-10 <br> $\mu$ PB10474-15 | 1K x 4 | 10K | $\begin{gathered} 8 \\ 10 \\ 15 \end{gathered}$ | $\begin{aligned} & 5 \\ & 6 \\ & 8 \end{aligned}$ | $-5.2$ | 1144 | D | 24 |
| $\mu$ PB10474A-5 <br> $\mu$ PB10474A-7 | $1 \mathrm{~K} \times 4$ | 10K | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | $\begin{aligned} & 3 \\ & 5 \end{aligned}$ | -5.2 | 1300 | D | 24 |
| $\mu$ PB10480-10 $\mu$ PB10480-15 | $16 \mathrm{~K} \times 1$ | 10K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | -5.2 | $\begin{aligned} & 1352 \\ & 1248 \end{aligned}$ | B/D | 20 |
| $\begin{aligned} & \mu \text { PB10484-10 } \\ & \mu \text { PB10484-15 } \end{aligned}$ | 4 K x 4 | 10K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | -5.2 | $\begin{aligned} & 1352 \\ & 1248 \end{aligned}$ | B/D | 28 |
| $\mu$ PB100422-7 $\mu$ PB100422-10 | $256 \times 4$ | 100K | $\begin{gathered} 7 \\ 10 \end{gathered}$ | $\begin{aligned} & 5 \text { (Note 2) } \\ & 5 \text { (Note 2) } \end{aligned}$ | -4.5 | 990 | B/D | 24 |
| $\mu$ PB100470-10 $\mu$ PB100470-15 | $4 \mathrm{~K} \times 1$ | 100K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 6 \\ & 8 \end{aligned}$ | -4.5 | 990 | D | 18 |
| $\mu$ PB100474-4.5 <br> $\mu$ PB100474-6 <br> $\mu$ PB100474-8 <br> $\mu$ PB100474-10 <br> $\mu$ PB100474-15 | $1 \mathrm{~K} \times 4$ | 100 K | $\begin{gathered} \hline 4.5 \\ 6 \\ 8 \\ 10 \\ 15 \end{gathered}$ | $\begin{aligned} & \hline 4 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$ | -4.5 | $\begin{gathered} 2025 \\ 2025 \\ 990 \\ 990 \\ 990 \end{gathered}$ | $\begin{gathered} K \\ B / K \\ B / D \\ B / D \\ B / D \end{gathered}$ | 24 |
| $\mu$ PB100474A-5 <br> $\mu$ PB100474A-7 | $1 \mathrm{~K} \times 4$ | 100K | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | $\begin{aligned} & 3 \\ & 5 \\ & \hline \end{aligned}$ | -4.5 | 1125 | $B / D$ | 24 |
| $\mu$ PB100480-10 $\mu$ PB100480-15 | $16 \mathrm{~K} \times 1$ | 100K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | -4.5 | $\begin{aligned} & 1170 \\ & 1080 \end{aligned}$ | B/D | 20 |
| $\begin{aligned} & \mu \mathrm{PB} 100484-10 \\ & \mu \mathrm{~PB} 100484-15 \\ & \hline \end{aligned}$ | $4 \mathrm{~K} \times 4$ | 100K | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | -4.5 | $\begin{aligned} & 1170 \\ & 1080 \end{aligned}$ | B/D | 28 |

## Notes:

(1) $B=$ ceramic flatpack; $D=$ ceramic DIP and cerdip; $K=$ ceramic LCC.
(2) Block select access time (ns).

## EPROMs

| Device | Organization | Process | Access <br> Time (ns) | Programming Option | Supply Voltage | Maximum Power Dissipation (mW) |  | Package (Note 1) | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\begin{aligned} & \mu \text { PD27C256A-15 } \\ & \mu \text { PD27C256A-20 } \end{aligned}$ | $32 \mathrm{~K} \times 8$ | CMOS | $\begin{aligned} & 150 \\ & 200 \end{aligned}$ | UV | $\begin{gathered} +5 \\ (\text { Note } 2) \end{gathered}$ | 0.55 | 165 | D | 28 |
| $\mu$ PD27C512-15 $\mu$ PD27C512-20 $\mu$ PD27C512-25 | $64 \mathrm{~K} \times 8$ | CMOS | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ | UV | $\begin{gathered} +5 \\ \text { (Note 2) } \end{gathered}$ | 0.55 | 165 | D | 28 |
| $\mu$ PD27C1000A-12 $\mu$ PD27C1000A-15 $\mu$ PD27C1000A-20 | $128 \mathrm{~K} \times 8$ <br> (ROM Comp.) | CMOS | $\begin{aligned} & 120 \\ & 150 \\ & 200 \end{aligned}$ | UV | $\begin{gathered} +5 \\ \text { (Note 2) } \end{gathered}$ | 0.55 | $\begin{aligned} & 220 \\ & 165 \\ & 138 \end{aligned}$ | D | 32 |
| $\begin{aligned} & \mu \text { PD27C1001A-12 } \\ & \mu \text { PD27C1001A-15 } \\ & \mu \text { PD27C1001A-20 } \end{aligned}$ | $\begin{aligned} & 128 \mathrm{~K} \times 8 \\ & \text { (JEDEC) } \end{aligned}$ | CMOS | $\begin{aligned} & 120 \\ & 150 \\ & 200 \end{aligned}$ | UV | $\begin{gathered} +5 \\ \text { (Note 2) } \end{gathered}$ | 0.55 | $\begin{aligned} & 220 \\ & 165 \\ & 138 \end{aligned}$ | D | 32 |
| $\begin{aligned} & \mu \text { PD27C1024-15 } \\ & \mu \text { PD27C1024-20 } \\ & \mu \text { PD27C1024-25 } \end{aligned}$ | $64 \mathrm{~K} \times 16$ | CMOS | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ | UV | $\begin{gathered} +5 \\ (\text { Note } 2) \end{gathered}$ | 0.55 | 275 | D | 40 |
| $\mu$ PD27C2001-15 $\mu$ PD27C2001-17 $\mu$ PD27C2001-20 | $256 \mathrm{~K} \times 8$ | CMOS | $\begin{aligned} & 150 \\ & 170 \\ & 200 \end{aligned}$ | UV | $\begin{gathered} +5 \\ \text { (Note 2) } \end{gathered}$ | 0.55 | 165 | D | 32 |

## Notes:

(1) $\mathrm{D}=$ ceramic DIP with quartz window.
(2) Programming voltage $=12.5 \mathrm{~V} \pm 0.3$.

## EEPROMs

| Device | Organization | Process | Access <br> Time [ns] | Cycle Time [ns) | Supply Voltage | Maximum Power Dissipation (mW) |  | Package (Note 1) | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\begin{aligned} & \mu \mathrm{PD28C04-20} \\ & \mu \mathrm{PD} 28 \mathrm{C} 04-25 \end{aligned}$ | $512 \times 8$ | CM0S | $\begin{aligned} & 200 \\ & 250 \end{aligned}$ | $\begin{aligned} & 200 \\ & 250 \end{aligned}$ | +5 | 0.55 | 94 | C/G | 24 |
| $\begin{aligned} & \mu \text { PD28C64-20 } \\ & \mu \text { PD28C64-25 } \end{aligned}$ | $8 \mathrm{~K} \times 8$ | CMOS | $\begin{aligned} & 200 \\ & 250 \end{aligned}$ | $\begin{aligned} & 200 \\ & 250 \end{aligned}$ | +5 | 0.55 | 275 | C | 28 |

## Notes:

(1) $C=$ plastic DIP; G = plastic miniflat.

## Mask-Programmable ROMs

| Device | Organization | Process | Access <br> Time [ns] | Cycle Time [ns] | Supply Voltage | Maximum Power Dissipation (mW) |  | Package [Note 1] | Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Standby | Active |  |  |
| $\mu \mathrm{PD} 23 \mathrm{Cl} 1000 \mathrm{~A}$ | $128 \mathrm{~K} \times 8$ ( $\overline{\mathrm{CE}})$ | CMOS | 200 | 200 | +5 | 0.55 | 220 | C/G | 28 |
| $\mu$ PD23C1000EA | $128 \mathrm{~K} \times 8$ ( $\overline{\mathrm{CE}} / \overline{\mathrm{OE}})$ | CMOS | 200 | 200 | +5 | 0.55 | 220 | C | 32 |
| $\mu$ PD23C1001E | $128 \mathrm{~K} \times 8$ | CMOS | 200 | 200 | +5 | 0.55 | 220 | C | 32 |
| $\mu \mathrm{PD23C1010A}$ | $128 \mathrm{~K} \times 8$ ( $\overline{\mathrm{E}}$ ) | CMOS | 200 | 200 | +5 | N/A | 220 | C | 28 |
| $\mu \mathrm{PD23C2000}$ | $\begin{gathered} 128 \mathrm{~K} \times 16 \text { or } \\ 256 \mathrm{~K} \times 8 \end{gathered}$ | CMOS | 250 | 250 | +5 | 0.55 | 220 | C/G | 40/52 |
| $\mu$ PD23C2001 | $256 \mathrm{~K} \times 8$ | CMOS | 250 | 250 | +5 | 0.55 | 220 | C | 32 |
| $\mu \mathrm{PD23C4000}$ | $\begin{aligned} & 256 \mathrm{~K} \times 16 \text { or } \\ & 512 \mathrm{~K} \times 8 \end{aligned}$ | CMOS | 250 | 250 | +5 | 0.55 | 220 | C/GF | 40/64 |
| $\mu$ PD23C4001E | $512 \mathrm{~K} \times 8$ | CMOS | 250 | 250 | +5 | 0.55 | 220 | C | 32 |

## Notes:

(1) $\mathrm{C}=$ plastic DIP; G or GF = plastic miniflat.

## Alternate Source Index

| AMD | NEC |
| :--- | :--- |
| Am2167 | $\mu$ PD4311 |
| Am2168 | $\mu$ PD4314 |
| Am99C88 | $\mu$ PD4364 |
| Am99C164 | $\mu$ PD4362 |
| Am99C328 | $\mu$ PD43256A |
| Am99C641 | $\mu$ PD4361 |
| Am27C1024 | $\mu$ PD27C1024 |
| Am2864A | $\mu$ PD28C64 |


| CYPRESS | NEC |
| :--- | :--- |
| CY7C164 | $\mu$ PD4362 |
| CY7C167 | $\mu$ PD4311 |
| CY7C187 | $\mu$ PD4361 |
| CY7C185 | $\mu$ PD4364 |
| CY7C186 | $\mu$ PD4364 |
| CY7C194 | $\mu$ PD43254 |
| CY7C198 | $\mu$ PD43256A |


| EXEL | NEC |
| :--- | :--- |
| XLS2864A | $\mu$ PD28C64 |
|  |  |
| FAIRCHILD | NEC |
| F10422 | $\mu$ PB10422 |
| F10470 | $\mu$ PB10470 |
| F10474 | $\mu$ PB10474 |
| F100422 | $\mu$ PB100422 |
| F100470 | $\mu$ PB100470 |
| F100474 | $\mu$ PB100474 |
| F100480 | $\mu$ PB100480 |


| FUJITSU | NEC |
| :--- | :--- |
| MB81256 | $\mu$ PD41256 |
| MB81257 | $\mu$ PD41257 |
| MB81464 | $\mu$ PD41464 |


| FUJITSU | NEC |
| :---: | :---: |
| MB81C1000 | $\mu \mathrm{PD} 421000$ |
| MB81C1001 | $\mu$ PD421001 |
| MB81C1002 | $\mu \mathrm{PD} 421002$ |
| MB81C4256 | $\mu$ PD424256 |
| MB81C67 | $\mu$ PD4311 |
| MB81C68 | $\mu$ PD4314 |
| MB81C71 | $\mu \mathrm{PD} 4361$ |
| MB81C74 | $\mu \mathrm{PD} 4362$ |
| MB8184 | $\mu$ PD43254 |
| MB8464 | $\mu \mathrm{PD} 4464$ |
| MB84256 | $\mu \mathrm{PD} 43256 \mathrm{~A}$ |
| MB85225 | MC-41256A8 |
| MB85227 | MC-41256A9 |
| MBM10422 | $\mu$ PB10422 |
| MBM10470 | $\mu$ PB10470 |
| MBM10474 | $\mu$ PB10474 |
| MBM100422 | $\mu$ PB100422 |
| MBM100470 | $\mu \mathrm{PB} 100470$ |
| MBM100474 | $\mu$ PB100474 |
| MBM100480 | $\mu \mathrm{PB} 100480$ |
| MBM100484 | $\mu$ PB100484 |
| MBM27C256 | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |
| MBM27C512 | $\mu \mathrm{PD} 27 \mathrm{C} 512$ |
| MBM27C1000 | $\mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A}$ |
| MBM27C1024 | $\mu$ PD27C1024 |
| MB61461 | $\mu$ PD41264 |
| MBM28C64 | $\mu \mathrm{PD} 28 \mathrm{C64}$ |
| MB831000 | $\mu$ PD23C1000A |
| MB831124 | $\mu \mathrm{PD} 23 \mathrm{C} 1000 \mathrm{~A}$ |
| HITACHI | NEC |
| HM50256 | $\mu$ PD41256 |
| HM50257 | $\mu$ PD41257 |
| HM50464 | $\mu$ PD41464 |
| HM511000 | $\mu$ PD421000 |
| HM511001 | $\mu$ PD421001 |
| HM511002 | $\mu$ PD421002 |
| HM514256 | $\mu \mathrm{PD} 424256$ |


| HITACHI | NEC |
| :---: | :---: |
| HM6168 | $\mu$ PD4314 |
| HM6264 | $\mu \mathrm{PD} 4364$ |
| HM6267 | $\mu$ PD4311 |
| HM6287 | $\mu$ PD4361 |
| HM6208 | $\mu \mathrm{PD} 43254$ |
| HM62256 | $\mu$ PD43256A |
| HB561003 | MC-41256A9 |
| HB56A18 | MC-421000A8 |
| HB58A19 | MC-421000A9 |
| HM10422 | $\mu$ PB10422 |
| HM10470 | $\mu \mathrm{PB} 10470$ |
| HM10474 | $\mu$ PB10474 |
| HM100422 | $\mu \mathrm{PB} 100422$ |
| HM100470 | $\mu \mathrm{PB} 100470$ |
| HM100474 | $\mu$ PB100474 |
| HN27C256 | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |
| HN27301 | $\mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A}$ |
| HN27C1024 | $\mu \mathrm{PD} 27 \mathrm{C} 1024$ |
| HM53461 | $\mu$ PD41264 |
| HM534253 | $\mu$ PD42274 |
| HN58C65 | $\mu \mathrm{PD} 28 \mathrm{C} 64$ |
| HN62301 | $\mu$ PD23C1000A |
| HYUNDAI | NEC |
| HY62C64 | $\mu \mathrm{PD} 28 \mathrm{C64}$ |
| IDT | NEC |
| IDT6167 | $\mu$ PD4311 |
| IDT7164 | $\mu \mathrm{PD} 4364$ |
| IDT7187 | $\mu \mathrm{PD} 4361$ |
| IDT7188 | $\mu$ PD4362 |
| IDT71C65 | $\mu \mathrm{PD} 4464$ |
| IDT71258 | $\mu$ PD43254 |
| IDT71256 | $\mu \mathrm{PD} 43256 \mathrm{~A}$ |
| IDT78C64A | $\mu \mathrm{PD} 28 \mathrm{C} 64$ |

GENERAL INFORMATION

## Alternate Source Index (cont)

| INMOS | NEC |
| :---: | :---: |
| IMS1420 | $\mu$ PD4314 |
| IMS1600 | $\mu \mathrm{PD} 4361$ |
| IMS1620 | $\mu \mathrm{PD} 4362$ |
| IMS1630 | $\mu \mathrm{PD} 4364$ |
| IMS1820 | $\mu \mathrm{PD} 43254$ |
| IMS1830 | $\mu \mathrm{PD} 43256 \mathrm{~A}$ |
| INTEL | NEC |
| 51 C 67 | $\mu$ PD4311 |
| 51 C 68 | $\mu$ PD4314 |
| 27010 | $\mu$ PD27C1001A |
| 27210 | $\mu$ PD27C1024 |
| 27 C 256 | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |
| 2864A | $\mu \mathrm{PD} 28 \mathrm{C64}$ |
| LATTICE | NEC |
| SR64K1 | $\mu$ PD4361 |
| SR64K4 | $\mu \mathrm{PD} 4362$ |
| SR64K8 | $\mu \mathrm{PD} 4364$ |
| SR256K4 | $\mu \mathrm{PD} 43254$ |
| SR256K8 | $\mu \mathrm{PD} 43256 \mathrm{~A}$ |
| MITSUBISHI | NEC |
| M5M4256 | $\mu$ PD41256 |
| M5M4257 | $\mu$ PD41257 |
| M5M4464 | $\mu$ PD41464 |
| M5M4C1000 | $\mu \mathrm{PD} 421000$ |
| M5M4C1001 | $\mu$ PD421001 |
| M5M4C1002 | $\mu$ PD421002 |
| M5M4C256 | $\mu$ PD424256 |
| M5M21C67 | $\mu$ PD4311 |
| M5M21C68 | $\mu$ PD4314 |
| M5M5164 | $\mu \mathrm{PD} 4464$ |
| M5M5165 | $\mu$ PD4364 |
| M5M5256 | $\mu \mathrm{PD} 43256 \mathrm{~A}$ |
| M5M5258 | $\mu$ PD43254 |
| M5M27C256 | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |
| M5M27512 | $\mu \mathrm{PD} 27 \mathrm{C} 512$ |


| MITSUBISHI | NEC |
| :---: | :---: |
| M5M4C264 | $\mu$ PD41264 |
| M5M442256 | $\mu$ PD42274 |
| MOTOROLA | NEC |
| MCM6168 | $\mu \mathrm{PD} 4314$ |
| MCM6187 | $\mu$ PD4361 |
| MCM6188 | $\mu$ PD4362 |
| MCM10422 | $\mu$ PB10422 |
| MCM10470 | $\mu$ PB10470 |
| MCM10474 | $\mu$ PB10474 |
| MCM100422 | $\mu \mathrm{PB} 100422$ |
| MCM100470 | $\mu \mathrm{PB} 100470$ |
| MCM100474 | $\mu \mathrm{PB} 100474$ |
| NATIONAL | NEC |
| DM10422 | $\mu$ PB10422 |
| DM10470 | $\mu$ PB10470 |
| DM10474 | $\mu$ PB10474 |
| DM100422 | $\mu \mathrm{PB100422}$ |
| DM100470 | $\mu \mathrm{PB100470}$ |
| DM100474 | $\mu$ PB100474 |
| OKI | NEC |
| MSM27C256 | $\mu$ PD41256 |
| MSM41257 | $\mu$ PD41257 |
| MSM514252 | $\mu$ PD42274 |
| PERFORMANCE | NEC |
| P4C164 | $\mu \mathrm{PD} 4364$ |
| P4C187 | $\mu \mathrm{PD} 4361$ |
| P4C188 | $\mu \mathrm{PD} 4362$ |
| SEEQ | NEC |
| 27C256 | $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ |
| 28C64 | $\mu \mathrm{PD} 28 \mathrm{C64}$ |
| 2804A | $\mu \mathrm{PD} 28 \mathrm{C04}$ |


| TI | NEC |
| :--- | :--- |
| TMS4256 | $\mu$ PD41256 |
| TMS4257 | $\mu$ PD41257 |
| TMS4464 | $\mu$ PD41464 |
| TMS4C1024 | $\mu$ PD421000 |
| TMS4C1025 | $\mu$ PD421001 |
| TMS4C1027 | $\mu$ PD421002 |
| TMS44C256 | $\mu$ PD424256 |
| TMS27C256 | $\mu$ PD27C256A |
| TMS4461 | $\mu$ PD41264 |
| TMS44C251 | $\mu$ PD42274 |
|  |  |
| TOSHIBA | NEC |
| TMM41256 | $\mu$ PD41256 |
| TMM41257 | $\mu$ PD41257 |
| TMM41464 | $\mu$ PD41464 |
| TC511000 | $\mu$ PD421000 |
| TC511001 | $\mu$ PD421001 |
| TC511002 | $\mu$ PD421002 |
| TC514256 | $\mu$ PD424256 |
| TC5561 | $\mu$ PD4361 |
| TC5564 | $\mu$ PD4464 |
| TC5565 | $\mu$ PD4364 |
| TC55257 | $\mu$ PD43256A |
| THM81000 | $\mu$ MC-421000A8 |
| THM91000 | $\mu$ MC-421000A9 |
| TC57256 | $\mu$ PD27C256A |
| TC571000 | $\mu$ PD27C1000A |
| TC571024 | $\mu$ PD27C1024 |
| TC524256 | $\mu$ PD42274 |
| TC531000 | $\mu$ PD23C1000A |
|  |  |


| XICOR | NEC |
| :--- | :--- |
| X24C04 | $\mu$ PD28C04 |
| X28C64 | $\mu$ PD28C64 |


| Section 2 <br> Quality and Reliability | $\mathbf{2 - 1}$ |
| :--- | ---: |
| Introduction | $2-1$ |
| Reliability Testing | $\mathbf{2 - 4}$ |
| Failure Rate Calculation and Prediction | $2-5$ |
| Reliability Test Results | $\mathbf{2 - 5}$ |
| NEC's Goals on Failure Rates | $\mathbf{2 - 6}$ |
| Infant Mortality Failure Screening | $2-6$ |
| Life Tests | $2-8$ |
| Built-in Quality and Reliability | $2-8$ |
| Approaches to Total Quality Control | $\mathbf{2 - 1 0}$ |
| Summary and Conclusion |  |

## Introduction

As large-scale integration reaches a higher level of density, reliability of devices imposes a profound impact on system reliability. And as device reliability becomes a major factor, test methods to assure acceptable reliability become more complicated. Simply performing a reliability test according to a conventional method cannot satisfy the demanding requirements for higher reliability. At these new, higher levels of LSI density, it is increasingly difficult to activate all the elements in the internal circuits. A different philosophy and methodology is needed for reliability assurance. Moreover, as integration density increases, the degradation of internal elements in an LSI device is seldom detected by measuring characteristics across external terminals.

In order to improve and guarantee a certain level of reliability for large-scale integrated circuits, it is essential to build quality and reliability into the product. Then, the conventional reliability tests are followed to ensure that the product demonstrates an acceptable level of reliability.

NEC has introduced the concept of total quality control (TQC) across its entire semiconductor product line. By adopting TQC, NEC can build quality into the product and thus assure higher reliability. The concept and methodology of total quality control are companywide activities involving workers, engineers, quality control staffs, and all levels of management.

NEC has also introduced a prescreening method into the production line that helps eliminate potentially defective units. The combination of building quality in and screening projected early failures out has resulted in superior quality and excellent reliability.
Most large-scale integrated circuits utilize high-density, MOS technology. State-of-the-art high performance has been achieved by introducing fine-line generation techniques. By reducing physical parameters, circuit density and performance increase while active circuit power dissipation decreases. The data presented here shows that this advanced technology yields products as reliable as those from previous technologies.

## Reliability Testing

Reliability is defined as the characteristics of an item expressed by the probability that it will perform a required function under stated conditions for a stated period of time. This involves the concept of probability, definition of required function(s), and the critical time used in defining the reliability.

Definition of a required function, by implication, treats the definition of a failure. Failure is defined as the termination of the ability of a device to perform its required function. Furthermore, a device is said to have failed if it shows inability to perform within quaranteed parameters as given in an electrical specification.

Discussion of reliability and failure can be approached in two ways: with respect to systems or to individual devices. The accumulation of normal device failure rates constitutes the expected failure rate of the system hardware. Important considerations here are the constant failure period, the early failure (infant mortality) period, and overall reliability level. With regard to individual devices, areas of prime interest include specific failure mechanisms, failures in accelerated tests, and screening tests.
Some of these failure considerations pertain to both systems and devices. The probability of no failures in a system is the product of the probability of no failure in each of its components. The failure rate of system hardware is then the sum of the failure rates of the components used to construct the system.

Figure 1. Rellabillty Life (Bathtub) Curve


## Life Distribution

The fundamental principles of reliability engineering predict that the failure rate of a group of devices will. follow the well-known bathtub curve in figure 1. The curve is divided into three regions: infant mortality, random failures, and wearout failures.

Infant mortality, as the name implies, represents the early-life failures of devices. These failures are usually associated with one or more manufacturing defects.
After some period of time, the failure rate reaches a low value. This is the random failure portion of the curve, representing the useful portion of the life of a device. During this random failure period, there is a decline in the failure rate due to the depletion of potential random failures from the general population.
The wearout failures occur at the end of the device's useful life. They are characterized by a rapidly rising failure rate over time as devices wear out both physically and electrically.
Thus, for devices that have very-long life expectancies compared to those of systems, the areas of concern will be the infant mortality and the random failure portions of the population.
The system failure rates are related to the collective device failure rates. In a given system, after elimination of the early failures, the system will be left to the failure rate of its components. In order to make proper projections of the failure rate in the operating environment, time-to-failure must be accelerated in tests in a predictable way.

## Failure Distribution at NEC

Integrated circuits returned to NEC from the field underwent extensive failure analysis at NEC's Integrated Circuit Division.

First, approximately 50 percent of the field returns were found to be damaged either from improper handling or misuse of the devices. These units were eliminated from the analysis. The remaining failed units were classified by their failure mechanisms as depicted in figure 2. These failures were then related to the major integrated circuit failure mechanisms and to their origins in a particular manufacturing step.
As shown in figure 2, the first four failure mechanisms accounted for more than 90 percent of total failures. As a result, NEC improved processes and material to reduce these failures. Additionally, NEC introduced screening procedures to detect and eliminate defective devices.

Temperature, humidity, and bias tests are used for testing the moisture resistance of plastic encapsulated integrated circuits. NEC developed a special process to improve the plastic encapsulation material. As a result, moisture-related-thus packaging-related-failures have been drastically reduced.
As a preventive measure, NEC has introduced a special screening procedure embedded in the production line. A burn-in at an elevated temperature is performed for 100 percent of the lots. This burn-in effectively removes the potentially defective units. In addition, improvement of the plastic encapsulation material has lowered the failures in a high-temperature and high-humidity environment.

Figure 2. Failure Distribution of MOS Integrated Clircuits


## Accelerated Reliability Testing

As an example, assume that an electronic system contains 1000 integrated circuits and can tolerate 1 percent system failures per month. The failure rate per component is:

$$
\frac{0.01 \text { Failures }}{\text { 720K Device Hours }}=\begin{gathered}
13.888 \times 10^{-9} \text { Failures } / \text { Hour } \\
\text { or } 13.8888 \text { FITs }
\end{gathered}
$$

where FIT $=$ Failure units per 109 device hours
To demonstrate this failure rate, note that 13.8888 FITs corresponds to one failure in about 7000 devices during an operating test of 10,000 hours. It is quickly apparent that a test condition is required to accelerate the time-to-failure in a predictable and understandable way. The implicit requirement for the accelerated stress test is that the relationship between the accelerated stress testing condition and the condition of actual use be known.

A most common time-to-failure relationship involves the effect of temperature, which accelerates many physiochemical reactions leading to device failure. Other environmental conditions are voltage, current, humidity, vibration, or some combination of these. Table 1 lists the reliability assurance tests performed at NEC for integrated circuits.

Table 1. Monthly NEC Reliability Tests

| Test | MIL-STD-883 Method | Test Conditions |
| :---: | :---: | :---: |
| Life Test High-temperature, operating | 1005 | $\begin{aligned} & T_{A}=100 \text { to } 125^{\circ} \mathrm{C} \\ & \text { for } 1000 \text { hours } \end{aligned}$ |
| High-temperature, storage | 1008 | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ for 1000 hours |
| High-temperature, high-humidity test | - | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { at } 85 \% \mathrm{RH} \\ & \text { for } 1000 \text { hours } \end{aligned}$ |
| Pressure cooker test | - | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \text { at } 2.3 \mathrm{~atm}$ for 168 hours |
| Environmental Test Soldering heat test | $\begin{aligned} & 2031 \\ & \text { (MIL-STD-750) } \end{aligned}$ | $\begin{aligned} & \mathrm{T}=260^{\circ} \mathrm{C} \text { for } 10 \mathrm{~s} \\ & \text { without flux } \end{aligned}$ |
| Temperature cycle | 1010 | $T=-65 \text { to }+150^{\circ} \mathrm{C} \text { for }$ $10 \text { cycles }$ |
| Thermal shock | 1011 | $\begin{aligned} & T=0 \text { to } 100^{\circ} \mathrm{C} \text { for } \\ & 15 \text { cycles } \end{aligned}$ |
| Lead fatigue | 2004 | at 250 gm : 3 leads, 3 bends |
| Solderability | 2003 | $\mathrm{T}=230^{\circ} \mathrm{C}$ for 5 s with flux |

Temperature Effect. The effect of temperature that concerns us is that which responds to the Arrhenius relationship. This relates the reaction rate to temperature.

$$
R=R_{o} \exp \left(-E_{a} / k T\right)
$$

where $\quad R_{0}=$ Constant

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =\text { Activation energy in eV } \\
\mathrm{k} & =\text { Boltzmann's constant } \\
& =8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\
\mathrm{~T} & =\text { Absolute temperature in kelvin (K) }
\end{aligned}
$$

The significance of this relationship is that the failure mechanisms of semiconductor devices are directly applicable to it. A linear relationship between failure mechanism and time is assumed.

Activation Energy. Associated with each failure mechanism is an activation energy value. Table 2 lists some of the more common failure mechanisms and the associated activation energy of each.

## Table 2. Activation Energy and Detection of Fallure Mechanisms

| Failure Mechanism | Activation Energy | Detection |
| :---: | :---: | :---: |
| Oxide defect | 0.3 eV | High-temperature operating life test |
| Silicon defect | 0.3 eV |  |
| Ionic contamination | 1.0-1.35 eV |  |
| Electromigration | $0.4-0.8 \mathrm{eV}$ |  |
| Charge injection | 1.3 eV |  |
| Goid-aluminum interface | 0.8 eV |  |
| Metal corrosion | 0.7 eV | High-humidity operating life test |

High-Temperature Operating Life Test. This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature of $125^{\circ} \mathrm{C}$. The data obtained is translated to a lower temperature by using the Arrhenius relationship.

High-Temperature and High-Humidity Test. Semiconductor integrated circuits are highly sensitive to the general accelerating effect of humidity in causing electrolytic corrosion between biased lines. The hightemperature and high-humidity test is performed to detect failure mechanisms that are accelerated by these conditions. This test is effective in accelerating leakage-related failures and drifts in device parameters due to process instability.

High-Temperature Storage Test. Another common test is the high-temperature storage test in which devices are subjected to elevated temperatures with no applied bias. This test is used to detect mechanical problems and process instability.
Environmental Test. Other environmental tests are performed to detect problems related to the package, material, susceptibility to extremes in environment, and problems related to usage of the devices.

## Failure Rate Calculation and Prediction

Analysis of integrated circuit failure rates can serve many useful purposes. For example, the early-life failure rate helps establish a warranty period, while the mature-life failure rate aids in estimating repair costs, spare parts stock requirements, or product downtime. Accurate prediction of failure rates can also be used for process control.

The following sections describe the failure rate calculation and prediction methods used by NEC's Integrated Circuit Division.

## The Arrhenius Model

Most integrated circuit failure mechanisms depend to some degree on temperature. This relationship can be represented by the Arrhenius model, which includes the effects of temperature and activation energy of the failure mechanisms.
As applied to accelerated life testing of integrated circuits, the Arrhenius model assumes that degradation of a performance parameter is linear with time. Temperature dependence is taken to be the exponential function that defines the probability of occurrence. The relationship of failure rate to temperature is expressed as:

$$
F_{1}=F_{2} \exp \left[\left(E_{a} / k\right) \times\left(1 / T_{1}-1 / T_{2}\right)\right]
$$

Where: $F_{2}=$ Failure rate at $T_{2}$
$\mathrm{F}_{1}=$ Failure rate at $\mathrm{T}_{1}$
$\mathrm{E}_{\mathrm{a}}=$ Activation energy in eV
k = Boltzmann's constant
$\mathrm{T}=$ Operating junction temperature in kelvin (K)
The equation explains the thermal dependence of integrated circuit failure rates and is used for derating the resulting failure rate to a more realistic temperature.

## Acceleration Factor

The acceleration factor is the factor by which the failure rate can be accelerated by increased temperature. This factor is derived from the Arrhenius failure rate expression, resulting in the following form.

$$
A=F_{1} / F_{2}=\exp \left[\left(E_{a} / k\right) \times\left(1 / T_{1}-1 / T_{2}\right)\right]
$$

where $\quad A=$ Acceleration factor

$$
\mathrm{F}_{2}=\text { Failure rate at } \mathrm{T}_{2}
$$

$$
F_{1}=\text { Failure rate at } T_{1}
$$

In calculating the field reliability of an integrated circuit, it is necessary to calculate the junction temperature. In general, the junction temperature will depend on the ambient temperature, cooling, package type, operating cycle time, and power dissipation of the circuit itself. In these terms, the junction temperature ( $T_{J}$ ) is expressed as:

$$
T_{J}=T_{A}+P_{d} A_{f} \theta_{J A}
$$

where $T_{J}=$ Junction temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
$\mathrm{P}_{\mathrm{d}}=$ Power dissipation
$A_{f}=$ Air flow factor
$\theta_{\mathrm{JA}}=$ Package thermal resistance
Table 3 lists derating factors of various failure mechanisms. This table is generated assuming that an accelerated test is performed at a junction temperature of $125^{\circ} \mathrm{C}$. The result is then derated to $55^{\circ} \mathrm{C}$ junction temperature. The acceleration factor may then be obtained by taking the inverse of the derating factor.

Table 3. Derating Factors of Fallure Mechanisms

| Failure Mechanisms | Activation <br> Energy, eV | Derating Factor |
| :--- | :--- | :--- |
| Oxide defect | 0.3 | 0.1546 |
| Silicon defect | 0.3 | 0.1546 |
| Ionic contamination | 1.0 | 0.001984 |
| Electromigration | 0.4 | 0.08307 |
| Charge injection | 1.3 | 0.0003067 |
| Metal corrosion | 0.7 | 0.01315 |
| Gold-aluminum interface | 0.8 | 0.006886 |

The acceleration of failure mechanisms in a highhumidity and high-temperature environment must be expressed as a function not only of temperature but also of humidity.

According to the reliability test statistics, the acceleration factor in such an environment can best be approximated with Peck's model as follows.

$$
A=\exp \left[\left(E_{a} / k\right) \times\left(1 / T_{1}-1 / T_{2}\right)\right] \times\left(H_{2} / H_{1}\right)^{4.5}
$$

where $\quad \mathrm{E}_{\mathrm{a}}=$ Activation energy
k = Boltzmann's constant
T = Junction temperature
H = Relative humidity
For example, the acceleration factor for high-humidity and high-temperature or pressure cooker tests ranges from 100 to 1000 times that of the normal operating environment.

## Failure Rate Calculation

As an example, suppose that product samples are submitted to a 1000 -hour life test at $125^{\circ} \mathrm{C}$ junction temperature and two failures are encountered: one oxide and one metalization defect. The sample size is 885 units.

Thus, the oxide failure rate is 0.11 percent per 1000 hours and the metalization failure rate is 0.11 percent per 1000 hours. Therefore, the total failure rate at $125^{\circ} \mathrm{C}$ sums to 0.22 percent per 1000 hours at 1 K hours.

## Failure Rate Prediction

To derate these failure rates to a normal operating environment, use the derating factors listed in table 3.

$$
\begin{aligned}
\text { Oxide failures }= & 0.11 \times 0.1546=0.01701 \% \text { per } 1 \mathrm{~K} \mathrm{hrs} \\
\text { Metal failures }= & 0.11 \times 0.01315=0.00145 \% \\
& \text { per } 1 \mathrm{~K} \mathrm{hrs} \\
\text { Total failures }= & 0.01846 \% \text { per } 1 \mathrm{~K} \mathrm{hrs}
\end{aligned}
$$

Note that the example above is a snapshot of the hightemperature life test performed on a particular lot. It is not accumulated data that can be used to represent overall reliability. This conservative illustration, however, shows that the failure rate in a normal operating environment is approximately one-twelfth the failure rate in a higher-temperature environment.
The failure rate prediction takes different activation energies into account whenever the causes of failures are known through performing failure analysis. In some cases, however, an activation energy is assumed in order to accomplish a quick first-order approximation. To yield a conservative estimate of failure rates, NEC assumes an average activation energy of 0.7 eV whenever the exact failure mechanism is not known.

## Reliability Test Results

Before introducing new technologies or products, NEC's internal reliability goals must be attained. Several categories of testing are used in the internal qualification program to assure that product reliability meets NEC's reliability goals. Once the product is qualified, its reliability level is regularly monitored in a monthly reliability test.

## NEC's Goals on Failure Rates

NEC's approach to achieving high reliability is to build quality into the product, as opposed to merely screening out defective units. The use of distributed control methods embedded in the production line, in conjunction with conventional screening methods, results in the highest reliability at the lowest cost.

NEC's maximum failure rate goals for infant mortality and long-term device operation are listed in table 4.

Table 4. Infant Mortality and Long-Term Failure Rates

| Type | Failure Rate <br> Percent/1000 Hours |
| :--- | :---: |
| Infant mortality | 0.10 max |
| Long-term |  |
| 1.2 M device hours average | 0.02 max |
| 3.0 M device hours average | 0.01 max |

## Infant Mortality Failure Rate

The infant mortality goal for each product group is set at 0.10 percent maximum. When a failure rate exceeds this level, there is prompt remedial action.

## Long-Term Failure Rate

The long-term failure rate goal is based on the following conditions:

- A minimum of 1.2 million device hours at $125^{\circ} \mathrm{C}$ is accumulated to resolve 0.02 percent per 1000 hours at $55^{\circ} \mathrm{C}$ with a 60 -percent confidence level.
- A minimum of 3 million device hours at $125^{\circ} \mathrm{C}$ is accumulated to resolve 0.01 percent per 1000 hours at $55^{\circ} \mathrm{C}$ with a 60 -percent confidence level.


## Infant Mortality Failure Screening

It is logical to assume the integrated circuit that fails at one temperature would also fail at another temperature, except it would fail sooner at a higher temperature. As can be expected, the failure rate is a function of activation energy. Establishing infant mortality screening, therefore, requires knowledge of the likely failure mechanisms and their associated activation energy.

The most likely mechanisms associated with infant mortality failures are generally manufacturing defects and process anomalies. These generally consist of contamination, cracked chips, wire bond shorts, or bad wire bonds. Since these describe a number of possible mechanisms, any one of which might predominate at a given time, the activation energy for infant mortality might be expected to vary considerably.
The effectiveness of a screening condition, preferably at some stress level in order to shorten the time, varies greatly with the failure mechanism being screened for. Another factor is the economics of the screening process introduced into the production line. Optimal conditions and duration of a screening process will be a compromise of these two factors.
For example, failures due to ionic contamination have an activation energy of approximately 1.0 eV . Therefore, a 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately 90 days of operation at a junction temperature of $55^{\circ} \mathrm{C}$. On the other hand, failures due to oxide defects have an activation energy of approximately 0.3 eV , and a 15hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately one week's operation at $55^{\circ} \mathrm{C}$ junction temperature. As indicated by this, the condition and duration of infant mortality screening would be a strong function of the allowable component failures, hence the system failure, in the field.

Empirical data, gathered over more than a year at NEC, indicates that early failure does occur after less than 4 hours of stress at $125^{\circ} \mathrm{C}$ ambient temperature. This fact is supported by the life test of the same lot, where the failure rate shows random distribution, as opposed to a decreasing failure rate that then runs into the random failure region.

NEC has adopted the initial infant mortality burn-in at $125^{\circ} \mathrm{C}$ as a standard production screening procedure. As a result, the field reliability of NEC devices is an order of magnitude higher than the goals set for NEC's integrated circuit products.

## Life Tests

The most significant difference between NEC's products and those of other integrated circuit manufacturers is that NEC's have been prescreened for their infant mortality defects. The products delivered to customers are operating at the beginning of the random failure region of the life curve. The life test data also reflects this fact, as will be shown.
The failure mechanism distribution from field failures, as previously shown in figure 2, also contains a very low percentage due to infant mortality. The majority of failures are long-term life failures, and these can be eliminated by stringent process control. Usually, these failure mechanisms have low activation energy associated with them.

Another significant improvement devised by NEC is plastic encapsulation and passivation. As a result, NEC products show excellent reliability in both highhumidity and high-temperature environments. Following is life test data accumulated over more than a year for large-scale integrated circuits.

## High-Temperature Operating Life Test

This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature. For large-scale integrated circuits, the failure rate is 0.242 percent per 1000 hours at $125^{\circ} \mathrm{C}$. This is equivalent to 0.0071 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$ (table 5).

Table 5. High-Temperature Operating Life Test

| Number of Samples | Number of Failures at |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 48 hrs 96 hrs | 168 hrs | 500 hrs 1 K hrs |  |
| 3317 | 00 | 1 | 4 | 3 |
| $\begin{array}{ll}\text { Total number of failures at } 1 \mathrm{~K} \mathrm{hrs} & =8 \\ \text { Failure rate at } 1 \mathrm{~K} \text { hrs at } 125^{\circ} \mathrm{C} & =0.242 \% \text { per } 1 \mathrm{~K} \mathrm{hrs} \\ \text { Projected failure rate at } 1 \mathrm{~K} \text { hrs at } 55^{\circ} \mathrm{C} & =0.007 \% \text { per } 1 \mathrm{~K} \text { hrs }\end{array}$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## High-Temperature and High-Humidity Life Test

This test is used to accelerate failure mechanisms by operating the devices at high temperature and high humidity. Leakage-related failures and device parameter drift are accelerated by this test. For these large-scale integrated circuits, the failure rate is 0.091 percent per 1000 hours. This is equivalent to 0.0027 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$. The test conditions are $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ and relative humidity $(\mathrm{RH})=80 \%$ (table 6 ).

Table 6. High-Temperature and High-Humidity Life Test

| Number of | Numb | er of Fail | lures a |  |
| :---: | :---: | :---: | :---: | :---: |
| Samples | 48 hrs 96 hrs | 168 hrs | 500 h | K hrs |
| 2190 | 0 | 0 | 0 | 2 |
| Total number of failures at 1 K hrs Failure rate at 1 K hrs at $85^{\circ} \mathrm{C} / 80 \% \mathrm{RH}$ Projected failure rate at 1 K hrs at $55^{\circ} \mathrm{C} / 60 \%$ RH | $=2$ |  |  |  |
|  | $=0.091 \%$ per 1 K hrs |  |  |  |
|  | $=0.003$ | $=0.003 \%$ per 1 K hrs |  |  |

## High-Temperature Storage Life Test

This test is effective in accelerating the failure mechanisms related to mechanical reliability problems and process instability. For these LSI devices, the failure rate is 0.207 percent per 1000 hours at $125^{\circ} \mathrm{C}$. This is equivalent to 0.0061 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$ (table 7).

Table 7. High-Temperature Storage Life Test

| Number of Samples | Number of Failures at |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 48 hrs 96 hrs 168 hrs 500 hrs 1 K hrs |  |  |  |  |
| 2410 | 0 | 0 | 0 | 1 | 4 |
| Total number of failures at 1 K hrs | $=5$ |  |  |  |  |
| Failure rate at 1 K hrs at $125^{\circ} \mathrm{C}$ | $=0.207 \%$ per 1 K hrs |  |  |  |  |
| Projected failure rate at 1 K hrs at $55^{\circ} \mathrm{C}$ | $=0.006 \%$ per 1 K hrs |  |  |  |  |

## Pressure Cooker Test

This test is effective in accelerating failure mechanisms related to metalization corrosion due to moisture. The failure rate is 0.52 percent per 1000 hours at $T_{A}=$ $125^{\circ} \mathrm{C}$ and 2.3 atm at 100 percent humidity. This is equivalent to 0.0013 percent per 1000 hours at $55^{\circ} \mathrm{C}$ and an environment of 60 percent humidity (table 8).

## Table 8. Pressure Cooker Test



## Life Test Data Summary

Table 9 summarizes the life test results and projected failure rates in the normal operating environment. The failure rate shows random distribution as opposed to a decreasing failure rate. This is a result of infant mortality screening.

Table 9. Life Test Data

|  | $\begin{array}{c}\text { Number of } \\ \text { Samples }\end{array}$ | Number of Failures at |  |  | $\begin{array}{c}\text { Totai } \\ \text { Test Time }\end{array}$ | $\begin{array}{c}\text { Number of }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{l}\text { Nigh-temperature } \\ \text { life test }\end{array}$ | 3317 | 0 | 1 | 4 | 3 | 8 |
| Failures |  |  |  |  |  |  |$]$

The projected failure rate in the normal operating environment is calculated assuming that the average activation energy is 0.7 eV .

Figure 3 shows the life distribution of NEC integrated circuits as a form of the bathtub curve.

This life test data shows improvements of approximately an order of magnitude better than NEC's goal. The hours of operation are equivalent to the normal operating environment. Wear-out failures, which had been the main target for reliability improvement, have also been significantly reduced. This result comes mainly from process improvements and stringent manufacturing process control.

NEC's main goal has been to improve reliability with respect to infant mortality and long-term life failures. This can be achieved by introducing an effective screening method for infant mortality and building quality into the product.

Figure 3. Plot of Life Test Results


## Thermal Stress Tests

Temperature cycling and thermal shock test the thermal compatibility of material and metal used to make integrated circuits. Table 10 lists the reliability test results of thermal stress tests.

Table 10. Thermal Stress Tests

| Test Item | Number of <br> Samples | Number of <br> Fallures |
| :--- | :---: | :---: |
| Soldering heat test <br> $T_{A}=260^{\circ} \mathrm{C}$ for 10 seconds | 1891 | 0 |
| Temperature cycle <br> $T_{A}=-65$ to $+150^{\circ} \mathrm{C}, 10$ cycles | 1891 | 0 |
| Thermal shock test <br> $T_{A}=0$ to $+100^{\circ} \mathrm{C}, 15$ cycles | 1891 | 0 |

## Mechanical Stress Tests

In addition to the device life test, NEC performs mechanical stress tests to detect reliability problems related to the package, material, and device susceptibility to an extreme environment. Table 11 lists mechanical stress test results.

Table 11. Mechanical Stress Tests

| Test ltem | Number of <br> Samples | Number of <br> Failures |
| :--- | :---: | :---: |
| Mechanical shock test <br> at $15 \mathrm{~kg}, 3$ axis | 315 | 0 |
| Vibration test <br> at 100 Hz to $2 \mathrm{kHz}, 20 \mathrm{~g}$ | 315 | 0 |
| Constant acceleration <br> at $20 \mathrm{~kg}, 3$ axis | 315 | 0 |
| Lead fatigue test <br> at 240 grams | 538 | 0 |
| Solderability test <br> at $230^{\circ} \mathrm{C}$ for 5 seconds | 638 | 0 |

## Built-In Quality and Reliability

As large-scale integration reaches even higher levels of density, simple quality inspections cannot assure adequate levels of product quality and reliability. In order to ensure the reliability of state-of-the-art VLSI, NEC has adopted another approach. Highest reliability and superior quality of a device can only be achieved by building these characteristics into the product at each process step. NEC, therefore, has introduced the notion of total quality control (TQC) into its entire semiconductor production line. Quality control is distributed into each process step and then summed to form a consolidated system.

## Approaches to Total Quality Control

First, the quality control function is embedded into each process. This method enables early detection of possible causes of failure and immediate feedback.
Second, the reliability and quality assurance policy is an integral part of the entire organization. This enables a companywide quality control activity. At NEC, everyone in the company is involved with the concept and methodology of total quality control.

Third, there is an ongoing research and development effort to set even higher standards of device quality and reliability.
Fourth, extensive failure analysis is performed periodically and corrective actions are taken as preventive measures. Process control is based on statistical data gathered from this analysis.

The goal is to maintain the superior product quality and reliability that has become synonymous with the NEC name. The new standard is continuously upgraded and the iterative process continues.

## Implementation of Distributed Quality Control

Building quality into a product requires early detection of possible causes of failure at each process step. Then, immediate feedback to remove the causes is a must. A fixed station quality inspection is often lacking in immediate feedback. It is, therefore, necessary to distribute quality control functions to each process step, including the conceptual stage. NEC has implemented a distributed quality control function at each step of the process. Following is a breakdown of the significant steps:

- Product development phase
- Wafer processing
- Chip mounting and packaging
- Electrical testing and thermal aging
- Incoming material inspection

Product Development Phase. The product development phase includes conception of a product, review of the device proposal, organization and physical element design, engineering evaluation, and finally, transfer of the product to manufacturing. Quality and reliability are considered at every step. More significantly, at the design review stage and prior to product transfer, the quality and reliability requirements have to be examined and determined to be satisfactory. This often adds 2 to 3 months to the product development cycle. Building in high reliability, however, cannot be sacrificed.

Wafer Processing Stage Inspection. The in-process quality inspections that occur at the wafer fabrication stage are listed in table 12.

Table 12. Wafer Processing Inspection

| Process | Inspection Item |
| :--- | :--- |
| Wafer | Resistivity, dimension, and appearance, <br> (lot sampling inspection) |
| Mask | Alignment and etching (100\% inspection) |
| Photolithography | 0xide thickness, sheet resistivity (lot <br> sampling inspection) |
| Cleaning | Diffusion and oxidation <br> sampling) |
| Metalization and passivationThickness $\mathrm{V}_{\text {th }}$ C-V characteristics (lot <br> Wafer sort and scribeDc parameters (100\% inspection)  <br> Die sort $100 \%$ visual inspection |  |

Chip Mounting and Packaging. The in-process quality inspections done at the chip mounting and packaging stage are listed in table 13.

Table 13. Chip Mounting and Packaging Inspection

| Process | Inspection Item |
| :--- | :--- |
| Die | Incoming material Inspection |
| Die attach | Appearance (lot sampling inspection) |
| Wire bonding | Bond strength, appearance (lot sampling) |
| Packaging | $100 \%$ appearance inspection |
| Fine leak |  |
| Gross leak $^{*}$ | Lot sampling |

*For ceramic package devices only.
Electrical Testing and Screening. Electrical testing and infant mortality screening are performed at this stage. A flowchart of the process is depicted in figure 4.

At the first electrical test, dc parameters are tested according to the electrical specifications on $100 \%$ of each lot. This is a prescreening prior to the infant mortality test. At the second electrical test, ac functional tests as well as dc parameter tests are performed on $100 \%$ of the subjected lot. If the percentage of defective units exceeds the limit, the lot is subjected to an additional burn-in. During this time, the defective units are undergoing a failure analysis, the results of which are then fed back into the process for corrective action.

Figure 4. Electrical Testing and Screening


2

Incoming Material Inspection. Prior to warehouse storage, lots are subjected to an incoming inspection according to the following sampling plan.

| - Electrical test: | Dc parameters | LTPD | $3 \%$ |
| :--- | :--- | :--- | :--- |
|  | Functional test | LTPD | $3 \%$ |
| - Appearance |  | LTPD | $3 \%$ |

## Reliability Assurance Test

Samples are continually taken from the warehouse and subjected to monthly reliability tests as discussed previously. They are taken from similar process groups so that it can be assumed that any device is representative of the reliability of the group.

## In-Process Screening

Perhaps the most significant preventive measure that NEC has implemented is the introduction of $100 \%$ burn-in as an integral part of the standard production process. Most of the potential infant failures are effectively screened from every lot, thereby improving reliability. Assuming average activation energy of 0.7 eV , burn-in at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ for 4 hours is equivalent to a week's operation in a normal operating environment. This appears to be ample time for accelerating the time-to-failure mechanisms for early failures.

Process automation, as previously mentioned, has also contributed a great deal toward improving reliability. Since its introduction, assembly related failure mechanisms have been substantially reduced. And, in combination with in-process screening and materials improvement, it has helped establish quality and reliability above NEC's initial goals.

## Summary and Conclusion

As has been discussed, building quality and reliability into products is the most efficient way to ensure product reliability. NEC's approach of distributing quality control functions to process steps, then forming a consolidated quality control system, has produced superior quality and excellent reliability.

Prescreening, introduced as an integral part of largescale integrated circuit protection, has been a major factor in improving reliability. The most recent year's production clearly demonstrates continuation of NEC's high reliability and the effectiveness of this method.
Reliability assurance tests (RATs), performed monthly, have ensured high outgoing quality levels. The combination of building quality into products, effective prescreening of potential failures, and the reliability assurance test has established a singularly high standard of quality and reliability for NEC's large-scale integrated circuits.
With a companywide quality control program, NEC is committed to building superior quality and highest reliability into all its products. Through continuous research and development activities, extensive failure analysis, and process improvements, a higher standard of quality and reliability will continuously be set and maintained.

## APPLICATION-SPECIFIC DEVICES

| Section 3 Application-Specific Devices |  |
| :---: | :---: |
| $\mu$ PD41101 <br> $910 \times 8$-Bit Line Buffer for NTSC TV | 3-1 |
| $\mu$ PD41102 <br> $1135 \times 8$-Bit Line Buffer for PAL TV | 3-15 |
| $\mu$ PD41264 <br> 65,536 x 4-Bit Dual-Port Graphics Buffer | 3-29 |
| $\mu$ PD42101 <br> $910 \times 8$-Bit Line Buffer for NTSC TV | 3-47 |
| $\mu$ PD42102 <br> $1135 \times 8$-Bit Line Buffer for PAL TV | 3-61 |
| $\mu$ PD42232 <br> 32,768 $\times 8$-Bit Triple-Port Graphics Buffer | 3-75 |
| $\mu \text { PD42270 }$ <br> NTSC Field Buffer | 3-81 |
| $\mu$ PD42273 <br> 262,144 x 4-Bit Dual-Port Graphics Buffer | 3-107 |
| $\mu$ PD 42274 <br> 262,144 x 4-Bit Dual-Port Graphics Buffer with Flash Write | 3-131 |
| MPD42505 <br> 5,048 $\times 8$-Bit CMOS Line Buffer for Communications Systems | 3-157 |
| $\mu$ PD42532 <br> 32,768 x 8-Bit Bidirectional Data Buffer | 3-169 |
| $\begin{aligned} & \mu \text { PD42601 } \\ & 1,048,576 \times 1 \text {-Bit Silicon File } \end{aligned}$ | 3-189 |


| $\mu$ PD43501 |
| :--- | :---: |
| 1,024-Channel Time Division Switch |$\quad$ 3-201

## Description

The $\mu$ PD41101 is a 910 -word by 8 -bit line buffer fabricated with the N -channel silicon-gate process. The device helps to create an NTSC flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.
The $\mu$ PD41101 can also be used as a digital delay line. The delay length is variable from 10 bits (at maximum clock speed) to 910 bits.

## Features

$\square 910$-word $\times 8$-bit organization
$\square$ Line buffer for NTSC, $4 \mathrm{f}_{\text {SC }}$ digital television systems
$\square$ Asynchronous and simultaneous read/write operation
$\square 1 \mathrm{H}$ (910-bit) delay line capability
$\square$ TTL-compatible inputs and outputs
$\square$ Three-state outputs
$\square$ Single 5 -volt $\pm 10 \%$ power supply300 -mil, 24 -pin plastic DIP and $450-\mathrm{mil}, 24$-pin plastic miniflat packaging

## Ordering Information

| Part Number | Read Cycle <br> Time [min) | Write Cycle <br> Time [min) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PD41101C-3 | 34 ns | 34 ns | 24-pin plastic DIP |
| $\mathrm{C}-2$ 34 ns 69 ns <br> $\mathrm{C}-1$ 69 ns 69 ns <br> $\mu$ PD41101G-3 34 ns 34 ns <br> $\mathrm{G}-2$ 34 ns 69 ns <br> $\mathrm{G}-1$ 69 ns 69 ns | 24-pin plastic <br> miniflat |  |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\bar{D}_{\text {INO }-D_{\text {IN7 }}}$ | Write data inputs |
| $D_{\text {OUTO }}-D_{\text {OUT7 }}$ | Read data outputs |
| $\overline{\text { RSTW }}$ | Write address reset input |
| $\overline{\overline{\text { SSTR }}}$ | Read address reset input |
| $\overline{\overline{W E}}$ | Write enable input |
| $\overline{\overline{\text { EE }}}$ | Read enable input |
| WCK | Write clock input |
| RCK | Read clock input |
| GND | Ground |
| VCC | +5 -volt power supply |

## Pin Configuration

## 24-Pin Plastic DIP or Miniflat



## Pin Functions

## Dino- $_{\text {IN7 }}$ [Data Inputs]

In a digital television application, the digital composite signal, luminance, chrominance, etc., information is written into these inputs.

## Douto-Dout7 [Data Outputs]

These tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

## $\overline{\text { RSTW }}$ [Write Address Reset Input]

Bringing this signal to a low level resets the internal write address to 0 if $\overline{W E}$ is also at a low level. If $\overline{W E}$ is at a high level when the RSTW input is brought low, the internal write address is set to 909. The state of this input is strobed by the rising edge of WCK.

## $\overline{\text { RSTR }}$ [Read Address Reset Input]

Strobed by the rising edge of RCK, this signal resets the internal read address to 0 if $\overline{R E}$ is also at a low level. If $\overline{R E}$ is at a high level when the $\overline{\operatorname{RSTR}}$ input is brought low, the internal read address is set to 909 .

## $\overline{W E}$ [Write Enable Input]

This input controls write operation. If $\overline{\mathrm{WE}}$ is at a low level, all write cycles proceed. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

## $\overline{\operatorname{RE}}$ [Read Enable Input]

This signal is similar to $\overline{W E}$ but controls read operation. If $\overline{R E}$ is at a high level, the data outputs become high impedance and the internal read address stops increasing. The state of $\overline{\mathrm{RE}}$ is strobed by the rising edge of RCK.

## WCK [Write Clock Input]

All write cycles are executed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{W E}$, the internal write address will automatically wrap around from 909 to 0 and begin increasing again.

## RCK [Read Clock Input]

All read cycles are executed synchronously with RCK. The states of both $\overline{\operatorname{RSTR}}$ and $\overline{\mathrm{RE}}$ are strobed by the
rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 909 to 0 and begin increasing again.

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Voltage on any input pin, $\mathrm{V}_{1}$ | -1.5 to +7.0 V |
| Voltage on any output pin, $\mathrm{V}_{0}$ | -1.5 to +7.0 V |
| Short-circuit output current,OS <br> perating temperature, $\mathrm{T}_{\mathrm{OPR}}$$\quad 20 \mathrm{~mA}$ |  |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -20 to $+70^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



Figure 1. Connection for Noninterlaced Scan Conversion


## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$; GND $=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | 5.5 | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.5 | 0.8 | V |  |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| input capacitance | $\mathrm{Cl}_{1}$ |  |  | 5 | pF | $\overline{\mathrm{WE}}, \overline{\mathrm{RE}}, \mathrm{WCK}$, RCK, RSTW, RSTR, $\mathrm{D}_{\text {INO }} \mathrm{D}_{\text {IN7 }}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  |  | 7 | pF | $\mathrm{D}_{\text {OUT0-D }}$ - ${ }_{\text {OUT7 }}$ |

## Notes:

DC Characteristics
$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Write/read cycle operating current | ICC |  |  | 90 | mA |  |
| Input leakage current | 1 | -10 |  | 10 | $\mu \mathrm{A}$ | $V_{1}=0 \text { to } V_{C C} ; \text { all }$ <br> other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $I_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{0}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, low | $V_{0 L}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |

## Notes:

(1) All voltages are referenced to ground.
(1) These parameters are sampled and not $100 \%$ tested.

## AC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41101-3 |  | $\mu \mathrm{PD} 41101-2$ |  | $\mu \mathrm{PD} 41101 \mathrm{l}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write clock cycle time | twCK | 34 | 1090 | 69 | 1090 | 69 | 1090 | ns |  |
| WCK pulse width | twCW | 14 |  | 25 |  | 25 |  | ns |  |
| WCK precharge time | ${ }_{\text {twCP }}$ | 14 |  | 25 |  | 25 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\mathrm{RCK}}$ | 34 | 1090 | 34 | 1090 | 69 | 1090 | ns |  |
| RCK pulse width | $t_{\text {RCW }}$ | 14 |  | 14 |  | 25 |  | ns |  |
| RCK precharge time | $\mathrm{tr}_{\text {R }}$ | 14 |  | 14 |  | 25 |  | ns |  |
| Access time | $t_{A C}$ |  | 27 |  | 27 |  | 49 | ns | Figure 5 |
| Access time after a reset cycle | ${ }_{\text {taCR }}$ |  | 27 |  | 27 |  | 49 | ns |  |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output hold time after a reset cycle | $\mathrm{t}_{0} \mathrm{HR}$ | 5 |  | 5 |  | 5 |  | ns | Figure 5 (Note 7) |
| Output active time | tLZ | 5 | 27 | 5 | 27 | 5 | 49 | ns | (Note 4) |
| Output disable time | $\mathrm{t}_{\mathrm{Hz}}$ | 5 | 27 | 5 | 27 | 5 | 49 | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 14 |  | 18 |  | 18 |  | ns |  |
| Data-in hold time | $t_{\text {dH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset active setup time | $\mathrm{t}_{\text {RS }}$ | 14 |  | 14 |  | 20 |  | ns | (Note 8) |
| Reset active hold time | $\mathrm{t}_{\mathrm{RH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset inactive hold time | $\mathrm{t}_{\mathrm{RN} 1}$ | 5 |  | 5 |  | 5 |  | ns | (Note 9) |
| Reset inactive setup time | $\mathrm{t}_{\text {RN2 }}$ | 14 |  | 14 |  | 20 |  | ns |  |
| Write enable setup time | twES | 14 |  | 20 |  | 20 |  | ns | (Note 10) |
| Write enable hold time | tWEH | 5 |  | 5 |  | 5 |  | ns |  |
| Write enable high delay from WCK | tWEN1 | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Write enable low delay to WCK | twen2 | 14 |  | 20 |  | 20 |  | ns |  |
| Read enable setup time | tres | 14 |  | 14 |  | 20 |  | ns | (Note 10) |
| Read enable hold time | $\mathrm{t}_{\text {REH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Read enable high delay from RCK | tren1 | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Read enable low delay to RCK | tren2 | 14 |  | 14 |  | 20 |  | ns |  |
| Write disable pulse width | twew | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read disable pulse width | $t_{\text {REW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Write reset time | $t_{\text {RSTW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read reset time | $\mathrm{t}_{\text {RSTR }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Transition time | ${ }_{T}$ | 3 | 35 | 3 | 35 | 3 | 35 | ns |  |

## Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\boldsymbol{t}_{\boldsymbol{T}}=5 \mathrm{~ns}$. Input pulse levels $=\mathrm{GND}$ to 3 V . Transition times are measured between 3 V and V . See figure 3.
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 6 . Under any conditions, $t_{L Z} \geq$ $t_{\mathrm{Hz}}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.
(3) Output timing reference levels are 0.8 and 2.0 volts. See figure 4 .

## AC Characteristics (cont)

Notes [cont]:
(6) twEW (max) and trew (max) must be satisfied by the following equations in 1 line cycle operation: $\mathrm{t}_{\text {WEW }}+\mathrm{t}_{\text {RSTW }}+910\left(\mathrm{t}_{\text {WCK }}\right) \leq 1 \mathrm{~ms}$ $t_{\text {REW }}+t_{\text {RSTR }}+910\left(t_{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(7) This parameter has meaning when $t_{R C K} \geq t_{A C R}$ (max).
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $\mathrm{t}_{\mathrm{RN} 1}$ or $\mathrm{t}_{\mathrm{RN} 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.

Figure 2. Connection for 1H (910-Bit) Delay Line


Figure 3. AC Input Timing Reference Waveform


Figure 4. AC Output Timing Reference Waveform

(10) If either twes or tweH ( $t_{\text {RES }}$ or $t_{\text {REH }}$ ) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either tWEN1 or $t_{\text {WEN2 }}$ ( $t_{\text {REN } 1}$ or $t_{\text {REN2 }}$ ) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 5. Output Load for $t_{A C}, t_{A C R}, t_{O H}$, and $t_{O H R}$


Figure 6. Output Load for $t_{L Z}$ and $t_{H Z}$


## Timing Waveforms

Read or Write Reset


Note:
[1] $\overline{\mathrm{WE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{IL}}$.
[2] $\mathbf{V}=$ Valid Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the irst cycle in a group of reset cycles, the read access time is defined as tacr. In all other cycles $t_{A C}$ defines the read access time.
[4] $H=910$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

## Write Disable



Note:
[1] $V=$ Valid Data.

## Timing Waveforms (cont)

Read Disable


Note:
[1] $V=$ Valid Data.
(910-m)-Bit Delay Line, No. 1


## Timing Waveforms (cont)

(910-m)-Bit Delay Line, No. 2


## Timing Waveforms (cont)

## 910-Bit Delay Line


$\overline{W E}, \overline{R E}$
vil

Note:
[1] $\mathbf{V}=$ Valid Data.
[2] $1 \mathrm{H}=$ the first group of 910 bits. $\mathbf{2 H}=$ the second group of 910 bits. See figure 2.

## Timing Waveforms (cont)

## n-Bit Delay Line



Note:
1] $V=$ Valid Data.
[2] $\mathbf{1 H}=$ the first group of $\mathbf{n}$ bits. $\mathbf{2 H}=$ the second group of n'bits.

## Re-Read Operation



## Timing Waveforms (cont)

Basic Timing for Noninterlaced Scan Conversion


Note:
[1] $\overline{W E}=V_{\text {IL }}$.
[2] $V=$ Valld Data.
[3] For compatibility with NTSC standards the WCK frequency is approximately 14.3 MHz . RCK cycles at twice this frequency, 28.6 MHz .

## Timing Waveforms (cont)

## Application Timing for Noninterlaced Scan Conversion



## 

 $\overline{3 x}$



## Description

The $\mu$ PD41102 is a 1135 -word by 8 -bit line buffer fabricated with the N -channel silicon-gate process. The device helps to create a PAL flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.
The $\mu$ PD41102 can also be used as a digital delay line. The delay length is variable from 12 bits (at maximum clock speed) to 1135 bits.

## Features

1135-word x 8-bit organizationLine buffer for PAL, 4fsc digital television systemsAsynchronous and simultaneous read/write operation1H (1135-bit) delay lineTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt $\pm 10 \%$ power supply300 -mil, 24 -pin plastic DIP and $450-\mathrm{mil}, 24$-pin plastic miniflat packaging
## Ordering Information

| Part Number | Read Cycle Time (min) | Write Cycle Time (min) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PD41102C-3 | 28 ns | 28 ns | 24-pin plastic DIP |
| C-2 | 28 ns | 56 ns |  |
| C-1S | 34 ns | 34 ns |  |
| C-1 | 56 ns | 56 ns |  |
| $\mu \mathrm{PD} 41102 \mathrm{G}-3$ | 28 ns | 28 ns | 24-pin plastic miniflat |
| G-2 | 28 ns | 56 ns |  |
| G-1S | 34 ns | 34 ns |  |
| G-1 | 56 ns | 56 ns |  |

## Pin Configuration

## 24-Pin Plastic DIP or Miniflat



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{D}_{\text {INO }-D_{\text {IN7 }}}$ | Write data inputs |
| $\mathrm{D}_{\text {OUT0 }}-\mathrm{D}_{\text {OUT7 }}$ | Read data outputs |
| $\overline{\mathrm{RSTW}}$ | Write address reset input |
| $\overline{\mathrm{RSTR}}$ | Read address reset input |
| $\overline{\overline{W W}}$ | Write enable input |
| $\overline{\mathrm{RE}}$ | Read enable input |
| WCK | Write clock input |
| RCK | Read clock input |
| GND | Ground |
| VCC | +5 -volt power supply |

## Pin Functions

## $D_{\text {IN0 }}$ - DIN $_{\text {[ }}$ [Data Inputs]

In a digital television application, the digital composite signal, luminance, chrominance, etc., information is written into these inputs.

## Douto-Dout7 [Data Outputs]

These tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

## $\overline{\text { RSTW }}$ [Write Address Reset Input]

Bringing this signal to a low level resets the internal write address to 0 if $\overline{W E}$ is also at a low level. If $\overline{W E}$ is at a high level when the $\overline{\text { SSTW }}$ input is brought low, the internal write address is set to 1134. The state of this input is strobed by the rising edge of WCK.

## $\overline{R S T R}$ [Read Address Reset Input]

Strobed by the rising edge of RCK, this signal resets the internal read address to 0 if $\overline{\text { RE }}$ is also at a low level. If $\overline{R E}$ is at a high level when the $\overline{\operatorname{RSTR}}$ input is brought low, the internal read address is set to 1134.

## $\overline{W E}$ [Write Enable Input]

This input controls write operation. If $\overline{\mathrm{WE}}$ is at a low level, all write cycles proceed. If WE is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

## $\overline{\mathbf{R E}}$ [Read Enable Input]

This signal is similar to $\overline{W E}$ but controls read operation. If $\overline{R E}$ is at a high level, the data outputs become high impedance and the internal read address stops increasing. The state of $\overline{\mathrm{RE}}$ is strobed by the rising edge of RCK.

## WCK [Write Clock Input]

All write cycles are executed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{\mathrm{WE}}$, the internal write address will automatically wrap around from 1134 to 0 and begin increasing again.

## RCK [Read Clock Input]

All read cycles are executed synchronously with RCK. The states of both RSTR and $\overline{\text { RE }}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 1134 to 0 and begin increasing again.

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\text {c }}$ | -1.5 to +7.0 V |
| :---: | :---: |
| Voltage on any input pin, $\mathrm{V}_{1}$ | -1.5 to +7.0 V |
| Voltage on any output pin, $\mathrm{V}_{0}$ | -1.5 to +7.0 V |
| Short-circuit output current, los | 20 mA |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | -20 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, TSTG | -55 to $+125^{\circ} \mathrm{C}$ |
| Comment: Exposure to Absol periods may affect device rel cause permanent damage. The limits specified under DC and | s for extended ratings could rated within the |

## Block Diagram



Figure 1. Connection for Noninterlaced Scan Conversion


## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$; GND $=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 |  | 5.5 | V |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.5 | 0.8 | V |  |

## Capacitance

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{1}$ |  |  | 5 | pF | $\overline{W E}, \overline{R E}, W C K$, RCK, RSTW, RSTR, $\mathrm{D}_{\text {INO } 0}-\mathrm{D}_{\text {IN7 }}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  |  | 7 | pF | $\mathrm{D}_{\text {OUT0-D }}$ |

## Notes: <br> Notes

(1) These parameters are sampled and not $100 \%$ tested.

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Write/read cycle operating current | ${ }^{\text {ICC }}$ |  |  | 90 | mA |  |
| input leakage current | 1 | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}=0 \text { to } V_{c c} ; \text { all } \\ & \text { other pins not } \\ & \text { under test }=0 \mathrm{~V} \end{aligned}$ |
| Output leakage current | $\mathrm{I}_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{0}=0$ to 5.5 V |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |

(1) All voltages are referenced to ground.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41102-3 |  | $\mu$ PD41102-2 |  | $\mu$ PD41102-1S |  | $\mu$ PD41102-1 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| Write clock cycle time | twck | 28 | 880 | 56 | 880 | 34 | 880 | 56 | 880 | ns |  |
| WCK pulse width | twCW | 12 |  | 20 |  | 14 |  | 20 |  | ns |  |
| WCK precharge time | ${ }^{\text {twCP }}$ | 12 |  | 20 |  | 14 |  | 20 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\text {RCK }}$ | 28 | 880 | 28 | 880 | 34 | 880 | 56 | 880 | ns |  |
| RCK pulse width | $\mathrm{t}_{\text {RCW }}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns |  |
| RCK precharge time | $\mathrm{t}_{\mathrm{RCP}}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns |  |
| Access time | $\mathrm{t}_{\mathrm{AC}}$ |  | 21 |  | 21 |  | 27 |  | 40 | ns | Figure 5 |
| Access time after a reset cycle | $t_{\text {ACR }}$ |  | 21 |  | 21 |  | 27 |  | 40 | ns |  |
| Output hold time | $\mathrm{t}_{0 \mathrm{H}}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Output hold time after a reset cycle | $\mathrm{t}_{\text {OHR }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | Figure 5 (Note 7) |
| Output active time | $\mathrm{t}_{12}$ | 5 | 21 | 5 | 21 | 5 | 27 | 5 | 40 | ns | (Note 4) |
| Output disable time | $\mathrm{t}_{\mathrm{HZ}}$ | 5 | 21 | 5 | 21 | 5 | 27 | 5 | 40 | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 12 |  | 15 |  | 14 |  | 15 |  | ns |  |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Reset active setup time | $\mathrm{t}_{\text {RS }}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns | (Note 8) |
| Reset active hold time | $t_{\text {RH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Reset inactive hold time | $\mathrm{t}_{\text {RN1 }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 9) |
| Reset inactive setup time | $\mathrm{t}_{\text {RN2 }}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns |  |
| Write enable setup time | ${ }^{\text {twES }}$ | 12 |  | 20 |  | 14 |  | 20 |  | ns | (Note 10) |
| Write enable hold time | ${ }_{\text {tWEH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write enable high delay from WCK | twen1 | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Write enable low delay to WCK | twen2 | 12 |  | 20 |  | 14 |  | 20 |  | ns |  |
| Read enable setup time | $t_{\text {RES }}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns | (Note 10) |
| Read enable hold time | $\mathrm{t}_{\text {REH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Read enable high delay from RCK | tren1 | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Read enable low delay to RCK | $t_{\text {REN2 }}$ | 12 |  | 12 |  | 14 |  | 20 |  | ns |  |
| Write disable pulse width | twew | 0 | (Note 6) | ms |  |
| Read disable pulse width | $t_{\text {REW }}$ | 0 | (Note 6) | ms |  |
| Write reset time | $t_{\text {RSTW }}$ | 0 | (Note 6) | ms |  |
| Read reset time | $t_{\text {RSTR }}$ | 0 | (Note 6) | ms |  |
| Transition time | $t_{T}$ | 3 | 35 | 3 | 35 | 3 | 35 | 3 | 35 | ns |  |

## Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume ${ }_{T}=5 \mathrm{~ns}$. Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and 0 V . See figure 3.
(3) Output timing reference levels are 0.8 and 2.0 volts. See figure 4.
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 6 . Under any conditions, $t_{L Z} \geq$ $\mathrm{t}_{\mathrm{HZ}}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.

## AC Characteristics (cont)

Notes [cont]:
(6) twEW (max) and $t_{\text {REW }}$ (max) must be satisfied by the following equations in 1 line cycle operation:
$\mathrm{t}_{\text {WEW }}+\mathrm{t}_{\text {RSTW }}+910\left(\mathrm{t}_{\text {WCK }}\right) \leq 1 \mathrm{~ms}$ $\mathrm{t}_{\text {REW }}+\mathrm{t}_{\text {RSTR }}+910\left(\mathrm{t}_{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(7) This parameter has meaning when $t_{R C K} \geq t_{A C R}$ (max).
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $t_{\text {RN1 }}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.

Figure 2. Connection for a 1H (1135-BIt) Delay Line


83-003639A

Figure 3. AC Input Timing Reference Waveform


Figure 4. AC Output Timing Reference Waveform

(10) If either $t_{\text {WES }}$ or $t_{\text {WEH }}$ (tres or $t_{\text {REH }}$ ) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either twEN1 or $\mathrm{t}_{\text {WEN2 }}$ ( $\mathrm{t}_{\text {REN1 }}$ or $\mathrm{t}_{\text {REN2 }}$ ) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 5. Output Load for $t_{A C}, t_{A C R}, t_{O H}$, and $t_{O H R}$


Figure 6. Output Load for $t_{L Z}$ and $t_{H Z}$


## Timing Waveforms

Read or Write Reset


## Note:

[1] $\overline{W E}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathbf{I L}}$
[2] $V=$ Valid Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as $t_{A C R}$. In all other cycles, $t_{A C}$ defines the read access time.
[4] $H=1135$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

## Write Disable



Note:
[1] $\mathbf{V}=$ Valid Data.

## Timing Waveforms (cont)

## Read Dlsable



Note:
[1] $\mathbf{V}=$ Valid Data.
(1135-m)-Bit Delay Line, No. 1


## Timing Waveforms (cont)

(1135-m)-Bit Delay Line, No. 2


1135-Bit Delay Line

$\overline{W E}, \overline{R E}$
$\mathrm{V}_{\mathrm{IL}}$

Note:
[1] $V=$ Valid Data.
[2] $\mathbf{1 H}=$ the first group of 1135 bits. $2 \mathrm{H}=$ the second group of 1135 bits. See figure 2.

## Timing Waveforms (cont)

## n-Bit Delay Line



Note:
[1] $\mathrm{V}=$ Valid Data.
[2] $\mathbf{1 H}=$ the first group of $\boldsymbol{n}$ bits. $\mathbf{2 H}=$ the second group of $\mathbf{n}$ bits.

Re-Read Operation


## Timing Waveforms (cont)

Basic Timing for Noninterlaced Scan Conversion


## Timing Waveforms (cont)

## Appllcation Timing For Noninterlaced Scan Conversion




## Description

The $\mu$ PD41264 is a dual-port graphics buffer equipped with a $64 \mathrm{~K} \times 4$-bit random access port and a $256 \times 4$-bit serial read port. The random access port is used by the host CPU to read or write data addressed in any desired order. The serial read port is connected to an internal 1024-bit data register through a $256 \times 4$-bit serial read output circuit. In addition to its conventional features, the random access port also has a write-perbit capability that allows each of the four data bits to be individually selected or masked for a write cycle.

The $\mu$ PD41264 features fully asynchronous dual access, except when transferring stored graphics data from a selected row of the storage array to the data register. During a data transfer, the random access port requires a special timing cycle using a transfer clock; the serial read port, however, continues to operate normally. Following the clock transition of a data transfer, the serial read output data changes from an old line to a new line and the starting location on the new line is addressable in the data transfer cycle.

The $\mu$ PD41264 is fabricated with a double polylayer, N -channel, silicon-gate process that provides high storage cell density, high performance, and high reliability.

Refreshing is accomplished by means of $\overline{\text { RAS }}$-only refresh cycles or by normal read or write cycles on the 256 address combinations of $A_{0}$ through $A_{7}$ during a $4-\mathrm{ms}$ period. Automatic internal refreshing, by means of either hidden refreshing or the CAS before RAS timing and on-chip internal refresh circuitry, is also available. The transfer of a row of data from the storage array to the data register also refreshes that row automatically.

All inputs and outputs, including clocks, are TTLcompatible. All address and data-in signals are latched on-chip to simplify system design. Data-out is unlatched to allow greater system flexibility.
The $\mu$ PD41264 is available in a 24 -pin plastic ZIP or a $400-\mathrm{mil}, 24$-pin plastic DIP and is guaranteed for operation at 0 to $+70^{\circ} \mathrm{C}$.

## Features

$\square$ Three functional blocks
$-64 \mathrm{~K} \times 4$-bit random access storage array

- 1024-bit data register
- $256 \times 4$-bit serial read output circuit

Two data ports: random access and serial read
Dual-port accessibility except during data transfer
Addressable start of serial read operation
Real-time data transfer
Single +5 -volt $\pm 10 \%$ power supply
On-chip substrate bias generator
Random access port

- Two main clocks: $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$
- Multiplexed address inputs
- Direct connection of I/O and address lines allowed by $\overline{O E}$ to simplify system design
-Refresh interval: 256 cycles $/ 4 \mathrm{~ms}$
- Read, early write, late write, read-write/read-modify-write, $\overline{\text { RAS-only }}$ refresh, and page mode capabilities
- Automatic internal refreshing by means of the CAS before $\overline{\text { RAS }}$ on-chip address counter
- Hidden refreshing by means of $\overline{\mathrm{CAS}}$-controlled output
- Write-per-bit capability regarding four I/O bits
- Write bit selection multiplexed on $\mathrm{IO}_{0}-\mathrm{IO}_{3}$
$\overline{\text { RAS }}$-activated data transfer
- Same cycle time as for random access
- Row data transferred to data register as specified by row address inputs
-Starting location of following serial read operation specified by column address inputs
- Transfer of 1024 bits of data on one row to the data register, and the starting location of the serial read circuit, activated by a low-to-high transition of DT
- Data transfer during real-time or standby operation of serial port
Fast serial read operation by means of serial control pins
- Serial data presented on $\mathrm{SO}_{0}-\mathrm{SO}_{3}$
- Direct connection of multiple serial outputs for extension of data length
Fully TTL-compatible inputs, outputs, and clocks
Three-state outputs for random and serial access
Double polylayer, N -channel, silicon-gate process
400 -mil, 24 -pin plastic DIP or 24 -pin plastic ZIP packaging


## Ordering Information

| Part Number | Row Access Time (max) | Serial Access Time (max) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PD41264C-12 | 120 ns | 40 ns | 24-pin plastic DIP |
| C-15 | 150 ns | 60 ns |  |
| $\mu$ PD41264V-12 | 120 ns | 40 ns | 24-pin plastic ZIP |
| V-15 | 150 ns | 60 ns |  |

## Pin Identification

| Symbol | Funclion |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Address inputs |
| $\mathrm{W}_{0} / 10_{0}-\mathrm{W}_{3} / / 0_{3}$ | Write selects in write-per-bit/data inputs and outputs |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\overline{W B} / \overline{\mathrm{WE}}}$ | Write-per-bit/write enable |
| $\overline{\overline{\mathrm{T}} / \overline{0 E}}$ | Data transfer/output enable |
| $\mathrm{SO} 0_{0}-\mathrm{SO}_{3}$ | Serial read outputs |
| SC | Serial control |
| $\overline{\overline{S O E}}$ | Serial output enable |
| GND | Ground |
| $\mathrm{V}_{\mathrm{CC}}$ | +5-volt $\pm 10 \%$ power supply |

## Pin Configurations

## 24-PIn Plastic DIP



## 24-Pin Plastic ZIP


$\mu$ PD41264

## Block Diagram



## Device Operation

## Overall Description

The $\mu$ PD41264 consists of a random access port and a serial read port. The random access port performs standard read and write operation as well as the data transfer operation, all of which are based on the conventional $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ timing cycle. In a data transfer cycle, data in each storage cell on the selected row is transferred simultaneously through a transfer gate to the corresponding register location. The serial read port shows the contents of the data register in serial order. The random access port and the serial read port can operate asynchronously, except when the transfer gate is turned on during the data transfer period.

## Addressing

The graphics storage array is arranged in a 256 -row by 1024-column matrix. Each of 4 data bits in the random access port corresponds to 65,536 storage cells. Therefore, 16 address bits are required to decode one cell location. Eight row address bits are set up on pins $\mathrm{A}_{0}$ through $\mathrm{A}_{7}$ and latched onto the chip by $\overline{\mathrm{RAS}}$. Eight column address bits then are set up on pins $\mathrm{A}_{0}$ through $\mathrm{A}_{7}$ and latched onto the chip by CAS. All addresses must be stable, on or before the falling edges of RAS and $\overline{\mathrm{CAS}} . \overline{\mathrm{RAS}}$ is similar to a chip enable signal; whenever it is activated, 1024 cells on the selected row are sensed simultaneously and the sense amplifiers automatically restore the data. $\overline{\mathrm{CAS}}$ serves as a chip selection signal to activate the column decoder and the input and output buffers.

Through 1 of 256 column decoders, 4 storage cells on the row are connected to 4 data buses, respectively. In the data transfer cycle, 8 row address bits are used to select 1 of the 256 possible rows involved in the transfer of data to the data register. Eight column address bits are then used to select the 1 of 256 possible serial decoders that corresponds to the starting location of the next serial read cycle.
In the serial read port, when SC is activated, 4 data bits in the 1024-bit data register are transferred to 4 serial data buses and read out. By activating SC repeatedly, the serial read operation (starting from the location specified in the data transfer cycle) is executed within the 1024 bits in the data register.

## Random Access Port Operation

An operation in the random access port begins with a negative transition of $\overline{R A S}$. Both $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ have minimum pulse widths, as specified in the timing table, which must be maintained for proper device operation and data integrity. Once begun, a cycle must meet all specifications, including minimum cycle time. To reduce the number of pins, the following functions are multiplexed in the random access port.

- $\overline{D T} / \overline{O E}$
- $\overline{W B} / \overline{W E}$
- $\mathrm{W}_{\mathrm{i}} / 1 \mathrm{O}_{\mathrm{i}}(\mathrm{i}=0,1,2,3)$

The $\overline{O E}, \overline{W E}$ and $I O_{i}$ functions represent standard operations. The $\overline{\mathrm{DT}}, \overline{\mathrm{WB}}$, and $\mathrm{W}_{\mathrm{i}}$ functions are special inputs to be applied in the same way as row address inputs, with setup and hold times referenced to the negative transition of $\overline{R A S}$. The $\overline{D T}$ level determines whether a cycle is a random access operation or a data transfer operation. WB affects only write cycles and determines whether or not the write-per-bit capability is used. $W_{i}$ defines data bits to be written with the write-per-bit capability. In the following discussions, these multiplexed pins are designated as $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$, for example, depending on the function being described.
To use the $\mu$ PD41264 for random access, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be high as RAS falls. Holding $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ high disconnects the 1024-bit data register from the corresponding 1024-digit lines of the storage array. Conversely, to execute a data transfer, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be low as $\overline{\mathrm{RAS}}$ falls to open the 1024 data transfer gates and transfer data from one of the rows to the data register.
Read Cycle. A read cycle is executed by activating $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{OE}}$ and maintaining a high ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ during an active $\overline{\mathrm{CAS}}$. The $\left.\left(\mathrm{W}_{\mathrm{i}}\right)\right) \mathrm{O}_{\mathrm{i}}$ data pin $(\mathrm{i}=0,1$,

2,3) remains in a state of high impedance until valid data appears at the output at access time. Device access time, $t_{A C C}$, will be the longest of the following three calculated intervals:

- $t_{\text {Rac }}$
- $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay $\left(\mathrm{t}_{\mathrm{RCD}}\right)+\mathrm{t}_{\mathrm{CAC}}$
- $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{OE}}$ delay $+\mathrm{t}_{\text {OEA }}$

Access times from $\overline{\mathrm{RAS}}$ ( $\mathrm{t}_{\mathrm{RAC}}$ ), from $\overline{\mathrm{CAS}}$ ( $\mathrm{t}_{\mathrm{CAC}}$ ), and from $\overline{\mathrm{OE}}\left(\mathrm{t}_{\mathrm{OEA}}\right)$ are device parameters. The $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ and $\overline{R A S}$ to $\overline{O E}$ delays are system-dependent timing parameters.
Output becomes valid after the access time has elapsed and it remains valid while both $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ are low. A high $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ returns the output to a high impedance condition.
Write Cycle. A write cycle is executed by bringing $(\overline{W B} /) \overline{W E}$ low during the $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycle. The falling edge of $\overline{\mathrm{CAS}}$ or ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ strobes the data on $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ into the on-chip data latch. To make use of the write-per-bit capability, $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ must be low as $\overline{\mathrm{RAS}}$ falls. In this case, data bits to which the write operation is applied can be specified by keeping $\mathrm{W}_{\mathrm{i}}\left(/ \mathrm{I}_{\mathrm{i}}\right)$ high, with setup and hold times referenced to the negative transition of $\overline{\text { RAS. }}$
For those data bits of $\mathrm{W}_{\mathrm{i}}\left(/ I \mathrm{O}_{\mathrm{i}}\right)$ that are kept low as $\overline{\text { RAS }}$ falls, write operation is inhibited on the chip. If $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ is high as $\overline{\mathrm{RAS}}$ falls, the write-per-bit capability is not used and a write cycle is executed for all four data bits.
Early Write Cycle. An early write cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ low before $\overline{\mathrm{CAS}}$. Data is strobed by $\overline{\mathrm{CAS}}$, with setup and hold times referenced to this signal, and the output remains in a state of high impedance for the entire cycle. As $\overline{\text { RAS }}$ falls, ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$ must meet the setup and hold times of a high $\overline{\mathrm{DT}}$; but otherwise ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$ does not affect any circuit operation during an active CAS.
Read-Write/Read-Modify-Write [RW/RMW] Cycle. An RW/RMW cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\text { WE }}$ low with the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals low. $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{O}_{\mathrm{i}}$ shows read data at access time. Afterward, in preparation for the upcoming write cycle, $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{IO}_{\mathrm{i}}$ is returned to a highimpedance condition by a high ( $\overline{\mathrm{DT}}$ ) $\overline{\mathrm{OE}}$. The data to be written is strobed by ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$, with setup and hold times referenced to this signal.
Late Write Cycle. This cycle shows the timing flexibility of ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$, which can be activated just after ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ falls, even when $(\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ is brought low after $\overline{\mathrm{CAS}}$.

Refresh Cycle. A cycle at each of the 256 row addresses ( $\mathrm{A}_{0}$ through $\mathrm{A}_{7}$ ) will refresh all storage cells. Any operation performed in the random access port (i.e., read, write, refresh, or data transfer) refreshes the 1024 bits selected by the $\overline{R A S}$ addresses or by the on-chip refresh address counter.
$\overline{\text { RAS }}$-only Refresh. A cycle having only $\overline{\text { RAS }}$ active refreshes one row of the storage array. A high $\overline{\mathrm{CAS}}$ is maintained during an active $\overline{\text { RAS }}$ to keep $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{IO}_{\mathrm{i}}$ in a state of high impedance. This mode is preferred for refreshing, especially when the host system consists of multiple rows of random access devices. The data outputs may be OR-tied with no bus contention when $\overline{\text { RAS-only refresh cycles are executed. }}$
$\overline{\mathbf{C A S}}$ before $\overline{\mathbf{R A S}}$ Refresh. This cycle executes internal refreshing using the on-chip control circuitry. Whenever $\overline{\text { CAS }}$ is low as $\overline{\text { RAS }}$ falls, this circuitry automatically performs refreshing for row addresses specified by the internal refresh address counter. In this cycle, the circuit operation based on $\overline{\mathrm{CAS}}$ is maintained in a reset state. When internal refreshing is complete, the address counter automatically increments in preparation for the next $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycle.

Hidden Refresh. This function performs hidden refreshing after a read cycle, without disturbing the read data output. Once valid, the data output is controlled by $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$. After the read cycle, $\overline{\mathrm{CAS}}$ is held low while $\overline{R A S}$ goes high for precharge. A $\overline{R A S}$-only cycle is then executed (except that CAS is held at a low level instead of a high level) and the data output remains valid. Since hidden refreshing is the same as CAS before $\overline{R A S}$ refreshing, the data output remains valid during either operation.

Page Cycle. This feature allows effectively faster data access by keeping the same row address and strobing successive column addresses onto the chip. By maintaining a low $\overline{R A S}$ while successive $\overline{C A S}$ cycles are executed, data is transferred at a faster rate because $\overline{R A S}$ addresses are maintained internally and do not have to be reapplied. During this operation, read, write and RW/RMW cycles are possible. Additionally, the write-per-bit control specified in the entry write cycle is maintained through the following page write cycle.
Data Transfer Cycle. A data transfer cycle is executed by bringing $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ low as $\overline{\mathrm{RAS}}$ falls. As described previously, the specified 1 of the possible 256 rows involved in the data transfer, as well as the starting location of the following serial read cycle in the serial read port, are defined by address inputs. DT (/ठE) must
be low for a specified time, measured from RAS and $\overline{\mathrm{CAS}}$, so that the data transfer condition may be satisfied. The low-to-high transition of DT causes two transfer operations through the data transfer gates: column address buffer outputs are transferred to the serial address counters, and storage cell data amplified on digit lines is transferred to the data register. At least one SC cycle is required to hold the data in the register. Otherwise, the beginning of the next transfer cycle destroys the newly transferred data. $\overline{\text { RAS }}$ and CAS must be low during these operations to keep the transferred data in the random access port.

## Serial Read Port Operation

The serial read port is used only to read serially the contents of the data register starting from a specified location. The entire operation, therefore, follows the data transfer cycle. Data stored in the serial register remains valid for a minimum of 4 ms after the transfer cycle. The only condition under which the serial read port must synchronize with the random access port is when the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must occur within a specified period in an SC cycle. Except for this SC cycle, the serial read port can operate asynchronously with the random access port. The output data appears at $\mathrm{SO}_{\mathrm{i}}$ after an access time of $\mathrm{t}_{\mathrm{sca}}$, measured from a high SC, only when a low $\overline{S O E}$ is maintained. The SC cycle that includes the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ shows old data in the data register; subsequent SC cycles show new data transferred to the data register serially and in a looped manner. The serial output is maintained until the next SC signal is activated. $\overline{\text { SOE }}$ controls the impedance of the serial output to allow multiplexing of more than one bank of $\mu$ PD41264 graphics buffers into the same external circuitry. When $\overline{S O E}$ is at a low logic level, $\mathrm{SO}_{i}$ is enabled and the proper data is read. When SOE is at a high logic level, $\mathrm{SO}_{\mathrm{i}}$ is disabled and in a state of high impedance.

## Absolute Maximum Ratings

| Voltage on any pin except $V_{\text {CC }}$ relative to $G N D, V_{R 1}$ | -1.0 to +7.0 V |
| :--- | ---: |
| Voltage on $V_{\text {CC }}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 2}$ | -1.0 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.5 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended DC Operating Conditions
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 |  | 5.5 | V |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V |  |

DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | IIL | -10 |  | 10 | $\mu \mathrm{A}$ | $V_{I N}=0 \text { to } 5.5 \mathrm{~V} ;$ <br> all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | 10 L | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{D}_{\text {OUT }}\left(1 \mathrm{IO}_{\mathrm{i}}, \mathrm{SO}_{\mathrm{j}}\right) \\ & \text { disabled; } \mathrm{V}_{\mathrm{iUT}} \\ & =0 \text { to } 5.5 \mathrm{~V} \end{aligned}$ |
| Random access port output voltage, high | $\mathrm{V}_{0 \mathrm{H}(\mathrm{R})}$ | 2.4 |  | $V_{C C}$ | V | $\mathrm{I}_{\mathrm{OH}(\mathrm{R})}=-2 \mathrm{~mA}$ |
| Random access port output voltage, low | $\mathrm{V}_{0 \mathrm{~L} \text { (R) }}$ | 0 |  | 0.4 | V | $\mathrm{I}_{0 L(\mathrm{R})}=4.2 \mathrm{~mA}$ |
| Serial read port output voltage, high | $\mathrm{V}_{\mathrm{OH}(\mathrm{S})}$ | 2.4 |  | $V_{C C}$ | V | $\mathrm{I}_{\mathrm{OH}(\mathrm{S})}=-2 \mathrm{~mA}$ |
| Serial read port output voltage, low | $\mathrm{V}_{0 \mathrm{~L} \text { (S) }}$ | 0 |  | 0.4 | V | $\mathrm{I}_{0 L(\mathrm{~S})}=4.2 \mathrm{~mA}$ |

## Power Supply Current Definitions

| Port | Operation | Symbol | Operating Conditions |
| :---: | :---: | :---: | :---: |
| Random Access | Read/write | RW | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Standby | STB | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\text {IH; }} ; \\ & \mathrm{D}_{\text {OUT }}=\text { high impedance } \end{aligned}$ |
|  | $\overline{\overline{\mathrm{RAS}}-o n l y}$ refresh | ROR | $\begin{aligned} & \overline{\mathrm{RAS}} \text { cycling; } \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}} ; \\ & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) \end{aligned}$ |
|  | Page mode | PAGE | $\begin{aligned} & \overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{PC}}=\mathrm{tPC}^{(\mathrm{min})} \end{aligned}$ |
|  | $\overline{\overline{\mathrm{CAS}}}$ before RAS refresh | CBR | $\overline{\mathrm{CAS}}$ low as $\overline{\mathrm{RAS}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ ( min ) |
|  | Data transfer | DTR | $\overline{\mathrm{D}} \mathrm{I}$ low as $\overline{\mathrm{R}} \overline{\mathrm{A}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
| Serial Read | Standby | STB | $\mathrm{SC}=\overline{\mathrm{SOE}}=\mathrm{V}_{\mathrm{IH}}$ |
|  | Serial read | ACT | $\begin{aligned} & \overline{\mathrm{SOE}}=V_{\mathrm{IL}} ; \text { SC cycling; } \\ & \mathrm{t}_{\mathrm{SCC}}=\mathrm{t}_{\mathrm{SCC}}(\mathrm{~min}) \end{aligned}$ |

Power Supply Current
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Port |  | Symbol | Limits$\mu$ PD41264 |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41264 |  |  |
| Random | Serial |  | -12 | -15 |  |  |
| Access | Read |  | Max | Max |  |  |
| RW | STB |  | ${ }^{\text {CC1 }}$ | 95 | 85 | mA | (Note 1) |
| STB | STB | ${ }^{\text {CCO2 }}$ | 12 | 12 | mA |  |
| ROR | STB | ${ }_{\text {cca }}$ | 75 | 65 | mA |  |
| PAGE | STB | $\mathrm{I}_{\text {CC4 }}$ | 65 | 55 | mA | (Note 1) |
| CBR | STB | $\mathrm{I}_{\mathrm{CC} 5}$ | 75 | 65 | mA | (Note 1) |
| DTR | STB | ICC6 | 120 | 100 | mA |  |
| RW | ACT | ${ }^{\text {c C7 }}$ | 155 | 130 | mA | (Note 1) |
| STB | ACT | $\mathrm{I}_{\text {CC8 }}$ | 60 | 45 | mA | (Note 1) |
| ROR | ACT | ICC9 | 135 | 110 | mA | (Note 1) |
| PAGE | ACT | $\mathrm{I}_{\text {CC10 }}$ | 125 | 100 | mA | (Note 1) |
| CBR | ACT | ${ }_{\text {ICC11 }}$ | 135 | 110 | mA | (Note 1) |
| DTR | ACT | ${ }_{\text {ICC12 }}$ | 180 | 145 | mA | (Note 1) |

(1) Noload on $\mathrm{IO}_{\mathrm{i}}$ or $\mathrm{SO}_{\mathrm{i}}$. Except for $\mathrm{I}_{\mathrm{CC}}$, $\mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC} 6}$, real values depend on output loading and cycle rates.

## Capacitance

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: |
| Input capacitance | $\mathrm{C}_{(1,}$ ) | 5 | pF | $\mathrm{A}_{0}$ to $\mathrm{A}_{7}$ |
| Input capacitance | $\mathrm{C}_{1}(\overline{\mathrm{DT}} / / \overline{\mathrm{E}})$ | 6 | pF | $\overline{\mathrm{T}} / \overline{0 \mathrm{E}}$ |
| Input/output capacitance | $\mathrm{Cl}_{10 \text { (W/IO) }}$ | 7 | pF | $\begin{aligned} & \mathrm{W}_{0} / 10_{0} \text { to } \\ & \mathrm{W}_{3} / 0_{3} \end{aligned}$ |
| Input capacitance | $\mathrm{C}_{(1 / \overline{W B} / \overline{\mathrm{WE}})}$ | 8 | pF | $\overline{\text { WB } / \text { WE }}$ |
|  | $\mathrm{C}_{1(\overline{\mathrm{RAS}})}$ | 8 | pF | $\overline{\text { RAS }}$ |
|  | $\mathrm{C}_{1(\overline{\mathrm{CAS}})}$ | 8 | pF | CAS |
|  | $\mathrm{C}_{\text {( }}^{\text {(SOE) }}$ ) | 6 | pF | $\overline{S O E}$ |
| Output capacitance | $\mathrm{C}_{0(\mathrm{SO})}$ | 7 | pF | $\mathrm{SO}_{0}$ to $\mathrm{SO}_{3}$ |
| Input capacitance | $\mathrm{Cl}_{1(\mathrm{SC})}$ | 8 | pF | SC |

## AC Input/Output Timing Waveforms



Figure 1. Random Access Port: Output Loading


Figure 2. Serial Read Port: Output Loading


AC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ P141264-12 |  | $\mu$ PD41264-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Switching Characterlstlcs |  |  |  |  |  |  |  |
| Access time from $\overline{R A S}$ | $\mathrm{t}_{\text {RAC }}$ |  | 120 |  | 150 |  | (Notes 2, 4) |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }_{\text {t }}^{\text {cac }}$ |  | 60 |  | 75 |  | (Notes 2, 5) |
| Access time from $\overline{0} \mathrm{E}$ | $\mathrm{t}_{\text {OEA }}$ |  | 30 |  | 40 |  | (Note 2) |
| Serial output access time from SC | $s \text { tsce }$ |  | 40 |  | 60 |  | (Notes 2, 7) |
| Serial output access time from SOE | $s \mathrm{t}_{\mathrm{S} O \mathrm{~A}}$ |  | 35 |  | 50 |  | (Notes 2, 7) |
| Output disable time from CAS high | $t_{0 F F}$ | 0 | 30 | 0 | 40 |  | (Note 6) |
| Output disable time from $\overline{0 E}$ high | $t_{0 E Z}$ | 0 | 30 | 0 | 40 | ns | (Note 6) |
| Serial output disable time from SOE high | ${ }^{\text {tsoz }}$ | 0 | 30 | 0 | 40 | ns | (Note 6) |
| Timing Requirements |  |  |  |  |  |  |  |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{R}} \mathrm{C}$ | 220 |  | 270 |  | ns |  |
| Read-write/read-modify-write cycle | $t_{\text {tw }}$ | 300 |  | 355 |  | ns |  |
| Page mode cycle time | $t_{\text {PC }}$ | 120 |  | 145 |  | ns |  |
| Transition time (rise and fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | ns |  |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 90 |  | 100 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ pulse width | tras | 120 | 10000 | 150 | 10000 | ns |  |
| $\overline{\overline{\mathrm{RAS}} \text { hold time }}$ | $\mathrm{t}_{\text {RSH }}$ | 60 |  | 75 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (nonpage mode) | ${ }^{\text {t }}$ CPN | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (page mode only) | $\mathrm{t}_{\mathrm{CP}}$ | 50 |  | 60 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}} \text { pulse width }}$ | $\mathrm{t}_{\text {CAS }}$ | 60 | 10000 | 75 | 10000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }_{\text {t CSH }}$ | 120 |  | 150 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to $\overline{\mathrm{CAS}}$ delay time | $t_{\text {RCD }}$ | 25 | 60 | 30 | 75 | ns | (Note 4) |
| $\overline{\overline{\mathrm{CAS}}}$ high to $\overline{\mathrm{RAS}}$ low precharge time | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | ns |  |
| Row address setup time | $t_{\text {ASR }}$ | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 15 |  | 20 |  | ns |  |
| Column address setup time | ${ }_{\text {tasc }}$ | 0 |  | 0 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41264-12 |  | $\mu \mathrm{P}$ (41264-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 25 |  | ns |  |
| Column address hold time after RAS low | ${ }_{\text {t }}$ AR | 80 |  | 100 |  | ns |  |
| Read command setup time | $t_{\text {RCS }}$ | 0 |  | 0 |  | ns |  |
| Read command hold time after $\overline{\text { RAS high }}$ | $t_{\text {RRH }}$ | 20 |  | 20 |  | ns | (Note 9) |
| Read command hold time after $\overline{\mathrm{CAS}}$ high | $\mathrm{t}_{\mathrm{RCH}}$ | 0 |  | 0 |  | ns | (Note 9) |
| Write command setup time | twCs | 0 |  | 0 |  | ns | (Note 10) |
| Write command hold time | ${ }^{\text {twCH }}$ | 35 |  | 45 |  | ns |  |
| Write command hold time after RAS low | twCR | 95 |  | 120 |  | ns |  |
| Write command pulse width | twp | 35 |  | 45 |  | ns |  |
| Write command to RAS lead time | trwL | 40 |  | 45 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }_{\text {t }}^{\text {c }}$ L | 40 |  | 45 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | ns | (Note 11) |
| Data-in hold time | $t_{\text {dH }}$ | 35 |  | 45 |  | ns | (Note 11) |
| Data-in hold time after RAS low | $t_{\text {DHR }}$ | 95 |  | 120 |  | ns |  |
| $\overline{\overline{C A S}}$ to $\overline{\text { WE }}$ delay | ${ }^{\text {t }}$ CWD | 100 |  | 120 |  | ns | (Note 10) |
| $\overline{\overline{R A S}}$ to $\overline{W E}$ delay | trwD | 160 |  | 195 |  | ns | (Note 10) |
| $\overline{\mathrm{OE}}$ high to data-in setup delay | $\mathrm{t}_{\text {OED }}$ | 35 |  | 40 |  | ns |  |
| $\overline{\overline{0 E}}$ high hold time after WE low | ${ }^{\text {OEFH }}$ | 30 |  | 40 |  | ns |  |
| $\overline{\overline{\mathrm{AS}} \text { before } \overline{\mathrm{RAS}}}$ refresh setup time | ${ }^{\text {t CSR }}$ | 10 |  | 10 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}} \text { before } \overline{\mathrm{RAS}}}$ refresh hold time | ${ }^{\text {t }}$ CHR | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ high to $\overline{\mathrm{CAS}}$ low precharge time | ${ }_{\text {trPC }}$ | 0 |  | 0 |  | ns |  |
| Refresh time interval | tref |  | 4 |  | 4 | ms |  |
| $\overline{\overline{D T}}$ low setup time | ${ }^{\text {t DLS }}$ | 0 |  | 0 |  | ns |  |


| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41264-12 |  | $\mu$ PD41264-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| $\overline{\mathrm{DT}}$ low hold time after $\overline{\text { RAS }}$ low | $t_{\text {RDH }}$ | 100 |  | 130 |  | ns |  |
| $\overline{\overline{D T}}$ low hold time after CAS low | ${ }^{\text {CODH }}$ | 40 |  | 55 |  | ns |  |
| SC high to $\overline{\mathrm{DT}}$ high delay | ${ }^{\text {t SDD }}$ | 10 |  | 20 |  | ns |  |
| SC low hold time after DT high | ${ }^{\text {tSDH }}$ | 10 |  | 20 |  | ns |  |
| $\overline{\overline{0 E} \text { pulse width }}$ | $\mathrm{t}_{0 \mathrm{E}}$ | 35 |  | 40 |  | ns |  |
| Serial clock cycle time | ${ }_{\text {tscc }}$ | 40 | 50000 | 60 | 50000 | ns |  |
| SC pulse width | tsch | 10 |  | 20 |  | ns |  |
| SC precharge time | ${ }_{\text {t }}$ SL | 10 |  | 20 |  | ns |  |
| $\overline{\text { SOE low to serial }}$ output setup delay | ${ }^{\text {t }} 00$ | 5 |  | 5 |  | ns |  |
| Serial output hold time after SC high | ${ }^{\text {t }} \mathrm{OH}$ | 10 |  | 10 |  | ns |  |
| $\overline{\overline{\text { DT }} \text { high setup time }}$ | tDHS | 0 |  | 0 |  | ns |  |
| DT high hold time | $\mathrm{t}_{\text {DHH }}$ | 20 |  | 25 |  | ns |  |
| $\overline{\overline{D T}}$ high to $\overline{\mathrm{RAS}}$ high delay | $t_{\text {DTR }}$ | 10 |  | 10 |  | ns |  |
| $\overline{\overline{D T}}$ high to $\overline{\mathrm{CAS}}$ high delay | $t_{\text {DTC }}$ | 10 |  | 10 |  | ns |  |
| $\overline{\overline{0 E}}$ to $\overline{\mathrm{RAS}}$ inactive setup time | $\mathrm{t}_{\text {OES }}$ | 10 |  | 10 |  | ns |  |
| Write-per-bit setup time | tWBS | 0 |  | 0 |  | ns |  |
| Write-per-bit hold time | ${ }_{\text {twBH }}$ | 20 |  | 25 |  | ns |  |
| Write bit selection setup time | tws | 0 |  | 0 |  | ns |  |
| Write bit selection hold time | twh | 20 |  | 25 |  | ns |  |
| $\overline{\overline{S O E}}$ pulse width | tsoe | 15 |  | 20 |  | ns |  |
| $\overline{\overline{\text { SOE }} \text { precharge time }}$ | $\mathrm{t}_{\text {SOP }}$ | 15 |  | 20 |  | ns |  |
| $\overline{\overline{D T}}$ high hold time after RAS high | toth | 20 |  | 25 |  | ns |  |

## Notes:

(1) See input/output timing waveforms for timing reference voltages.
(2) See figures 1 and 2 for output loads.
(3) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{\mathrm{RAS}}$ cycles (except $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ cycles), before proper device operation is achieved. Also, SOE must be held high or SC must be held low until completion of the first data transfer cycle.

## Notes [cont]:

(4) Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. The $t_{R C D}$ (max) limit is specified as a reference point only. If $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
(5) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(6) An output disable time defines the time at which the output achieves the open-circuit condition and is not referenced to output voltage levels.
(7) Data in the serial output register remains valid for 4 ms (min) after a data transfer cycle.
(8) $\quad V_{I H}$ (min) and $V_{I L}$ (max) are reference levels for measuring the timing of input signals. Additionally, transition times are measured between $\mathrm{V}_{\mathrm{HH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(9) Either $t_{\text {RRH }}$ or $t_{R C H}$ must be satisfied for a read cycle.
(10) $t_{\text {WCS }}, t_{\text {CWD }}$, and $t_{\text {RWD }}$ are restrictive operating parameters in read-write and read-modify-write cycles only. If twCS $\geq$ twCS ( min ), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ $(\min )$ and $t_{R W D} \geq t_{\text {RWD }}(\min )$, the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data out (at access time and until $\overline{\text { CAS }}$ returns to $V_{\text {IH }}$ ) is indeterminate.
(11) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ in early write cycles and to the falling edge of (WB/) $\overline{W E}$ in delayed write or read-modify-write cycles.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

Early Write Cycle


## Timing Waveforms (cont)

Late Write Cycle


## Timing Waveforms (cont)

## Read-Write/Read-Modify-Write Cycles



## Timing Waveforms (cont)

## $\overline{\boldsymbol{R A S}}$-Only Refresh



Hidden Refresh


## CAS Before $\overline{\operatorname{RAS}}$ Refresh Cycle



## Timing Waveforms (cont)

Page Mode Read Cycle


## Timing Waveforms (cont)

## Page Mode Write Cycle



## $\mu$ PD41264

## Timing Waveforms (cont)

Data Transfer Cycle (Port B Standby)


## Timing Waveforms (cont)

Data Transfer Cycle (Port B Active)


## Timing Waveforms (cont)

Serial Read Cycle


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42101 is a 910 -word by 8 -bit line buffer fabricated with a CMOS silicon-gate process. The device helps to create an NTSC flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.

The $\mu$ PD42101 can also be used as a digital delay line. The delay length is variable from 10 bits (at maximum clock speed) to 910 bits.

## Features

910-word x 8-bit organizationLine buffer for NTSC, $4 \mathrm{f}_{\mathrm{SC}}$ digital television systemsAsynchronous and simultaneous read/write operation1H (910-bit) delay line capabilityTTL-compatible inputs and outputsThree-state outputsSingle 5 -volt $\pm 10 \%$ power supply$300-\mathrm{mil}, 24-$ pin plastic DIP and $450-\mathrm{mil}, 24$-pin plastic miniflat packaging

## Ordering Information

| Part Number | Read Cycle <br> Time [min) | Write Cycle <br> Time [min) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PD42101C-3 | 34 ns | 34 ns | 24-pin plastic DIP |
| $\mathrm{C}-2$ | 34 ns | 69 ns |  |
| $\mathrm{C}-1$ | 69 ns | 69 ns |  |
| $\mu$ PD42101G-3 | 34 ns | 34 ns | 24-pin plastic <br> miniflat |
| $\mathrm{G}-2$ | 34 ns | 69 ns |  |
| $\mathrm{G}-1$ | 69 ns | 69 ns |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $D_{\text {INO }}-D_{\text {INT }}$ | Write data inputs |
| $D_{\text {OUTO }}-D_{\text {OUTT }}$ | Read data outputs |
| $\overline{\text { RSTW }}$ | Write address reset input |
| $\overline{\overline{R S T R}}$ | Read address reset input |
| $\overline{\overline{W E}}$ | Write enable input |
| $\overline{\overline{\text { E }}}$ | Read enable input |
| WCK | Write clock input |
| RCK | Read clock input |
| GND | Ground |
| VCC | +5 -volt power supply |

## Pin Configuration

## 24-Pin Plastic DIP or Miniflat



## Pin Functions

## $\mathrm{D}_{\text {IN0 }}$ - $\mathrm{D}_{\text {IN7 }}$ [Data Inputs]

In a digital television application, the digital composite signal, luminance, chrominance, etc., information is written into these inputs.

## Douto-Dout7 [Data Outputs]

These tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

## $\overline{\text { RSTW }}$ [Write Address Reset Input]

Bringing this signal to a low level resets the internal write address to 0 if $\overline{W E}$ is also at a low level. If $\overline{W E}$ is at a high level when the RSTW input is brought low, the internal write address is set to 909 . The state of this input is strobed by the rising edge of WCK.

## $\overline{R S T R}$ [Read Address Reset Input]

Strobed by the rising edge of RCK, this signal resets the internal read address to 0 if $\overline{R E}$ is also at a low level. If $\overline{R E}$ is at a high level when the $\overline{R S T R}$ input is brought low, the internal read address is set to 909.

## WE [Write Enable Input]

This input controls write operation. If $\overline{W E}$ is at a low level, all write cycles proceed. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

## $\overline{\operatorname{RE}}$ [Read Enable Input]

This signal is similar to $\overline{W E}$ but controls read operation. If $\overline{\mathrm{RE}}$ is at a high level, the data outputs become high impedance and the internal read address stops increasing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.

## WCK [Write Clock Input]

All write cycles are executed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle unless WE is at a high level to hold the write address constant. Unless inhibited by $\overline{W E}$, the internal write address will automatically wrap around from 909 to 0 and begin increasing again.

## RCK [Read Clock Input]

All read cycles are executed synchronously with RCK. The states of both RSTR and $\overline{\operatorname{RE}}$ are strobed by the
rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{\mathrm{RE}}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{R E}$, the internal read address will automatically wrap around from 909 to 0 and begin increasing again.

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Voltage on any input pin, $\mathrm{V}_{1}$ | -1.5 to +7.0 V |
| Voltage on any output pin, $\mathrm{V}_{0}$ | -1.5 to +7.0 V |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 20 mA |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -20 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



Figure 1. Connection for Noninterlaced Scan Conversion


## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 | 5.5 | V |  |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.5 | 0.8 | V |  |

## Capacitance

| Parameter | Symbol | Limits |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Input capacitance | $\mathrm{Cl}_{1}$ |  | 5 | pF | $\overline{W E}, \overline{R E}$, WCK, RCK, RSTW, $\overline{R S T R}, \mathrm{D}_{\operatorname{IN} 0-D_{I N} 7}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  | 7 | pF | Douto-D ${ }_{\text {Out7 }}$ |

## Notes:

(1) These parameters are sampled and not 100\% tested.

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | 1 | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}=0 \text { to } V_{C C} \text { all } \\ & \text { other pins not } \\ & \text { under test }=0 \mathrm{~V} \end{aligned}$ |
| Output leakage current | $I_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{0}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, low | $V_{0 L}$ |  |  | 0.4 | V | $\mathrm{t}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |

## Notes:

(1) All voltages are referenced to ground.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD42101-3 |  | $\mu \mathrm{PD42101-2}$ |  | $\mu$ P142101-1 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write/read cycle operating current | ${ }^{\text {c }}$ C |  | 70 |  | 60 |  | 35 | mA |  |
| Write clock cycle time | ${ }^{\text {twCK }}$ | 34 | 1090 | 69 | 1090 | 69 | 1090 | ns |  |
| WCK pulse width | $\mathrm{t}_{\text {WCW }}$ | 14 |  | 25 |  | 25 |  | ns |  |
| WCK precharge time | ${ }_{\text {t }}$ WCP | 14 |  | 25 |  | 25 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\text {RCK }}$ | 34 | 1090 | 34 | 1090 | 69 | 1090 | ns |  |
| RCK pulse width | $\mathrm{t}_{\text {RCW }}$ | 14 |  | 14 |  | 25 |  | ns |  |
| RCK precharge time | $\mathrm{t}_{\text {RCP }}$ | 14 |  | 14 |  | 25 |  | ns |  |
| Access time | $\mathrm{t}_{\mathrm{AC}}$ |  | 27 |  | 27 |  | 49 | ns | Figure 5 |
| Access time after a reset cycle | $\mathrm{t}_{\text {ACR }}$ |  | 27 |  | 27 |  | 49 | ns |  |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output hold time after a reset cycle | $\mathrm{t}_{0 \mathrm{HR}}$ | 5 |  | 5 |  | 5 |  | ns | Figure 5 (Note 7) |
| Output active time | $\mathrm{t}_{\mathrm{Lz}}$ | 5 | 27 | 5 | 27 | 5 | 49 | ns | (Note 4) |
| Output disable time | $t_{H z}$ | 5 | 27 | 5 | 27 | 5 | 49 | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 14 |  | 18 |  | 18 |  | ns |  |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset active setup time | $\mathrm{t}_{\text {RS }}$ | 14 |  | 14 |  | 20 |  | ns | (Note 8) |
| Reset active hold time | $\mathrm{t}_{\mathrm{RH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset inactive hold time | $\mathrm{t}_{\text {RN1 }}$ | 5 |  | 5 |  | 5 |  | ns | (Note 9) |
| Reset inactive setup time | $\mathrm{t}_{\mathrm{RN} 2}$ | 14 |  | 14 |  | 20 |  | ns |  |
| Write enable setup time | twES | 14 |  | 20 |  | 20 |  | ns | (Note 10) |
| Write enable hold time | ${ }_{\text {twEH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Write enable high delay from WCK | t Wen 11 | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Write enable low delay to WCK | $\mathrm{t}_{\text {WEN2 }}$ | 14 |  | 20 |  | 20 |  | ns |  |
| Read enable setup time | $\mathrm{t}_{\text {RES }}$ | 14 |  | 14 |  | 20 |  | ns | (Note 10) |
| Read enable hold time | $\mathrm{t}_{\text {REH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Read enable high delay from RCK | $t_{\text {REN } 1}$ | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Read enable low delay to RCK | $\mathrm{t}_{\text {REN2 }}$ | 14 |  | 14 |  | 20 |  | ns |  |
| Write disable pulse width | $\mathrm{t}_{\text {WEW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read disable pulse width | $\mathrm{t}_{\text {REW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Write reset time | $\mathrm{t}_{\text {RSTW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read reset time | $t_{\text {RSTR }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Transition time | ${ }_{\dagger}$ | 3 | 35 | 3 | 35 | 3 | 35 | ns |  |

## Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$. Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and 0 V . See figure 3.
(3) Output timing reference levels are 0.8 and 2.0 volts. See figure 4.
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 6 . Under any conditions, $t_{L Z} \geq$ $\mathrm{t}_{\mathrm{HZ}}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.

## AC Characteristics (cont)

Notes [cont]:
(6) twEW (max) and $t_{\text {REW }}$ (max) must be satisfied by the following equations in 1 line cycle operation:
$\mathrm{t}_{\text {WEW }}+\mathrm{t}_{\text {RSTW }}+910\left(\mathrm{t}_{\text {WCK }}\right) \leq 1 \mathrm{~ms}$
$\mathrm{t}_{\text {REW }}+\mathrm{t}_{\text {RSTR }}+910\left(\mathrm{t}_{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(7) This parameter has meaning when $t_{\mathrm{RCK}} \geq \mathrm{t}_{\mathrm{ACR}}$ (max).
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.

Figure 2. Connection for 1H (910-Bit) Delay Line


Figure 3. AC Input Timing Reference


Figure 4. AC Output Timing Reference

(10) If either $t_{\text {WES }}$ or $t_{\text {WEH }}$ ( $t_{\text {RES }}$ or $t_{\text {REH }}$ ) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either $t_{\text {WEN } 1}$ or $t_{\text {WEN2 }}$ ( $t_{\text {REN } 1}$ or $t_{\text {REN } 2}$ ) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 5. Output Load for $t_{A C}, t_{A C R}, t_{O H}$, and $t_{O H R}$


Figure 6. Output Load for $t_{L Z}$ and $t_{H Z}$


## Timing Waveforms

Read or Write Reset


Note:
[1] $\overline{W E}=\overline{R E}=V_{I L}$.
[2] $\mathbf{V}=$ Valld Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as taCR. In all other cycles, $t_{A C}$ defines the read access time.
[4] $\mathrm{H}=910$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

Write Disable


Note:
[1] $V=$ Valid Data.

## Timing Waveforms (cont)

## Read Disable



Note:
(1) $\mathbf{v}=$ Valid Data.
(910-m)-Bit Delay Line, No. 1


## Timing Waveforms (cont)

(910-m)-BIt Delay Line, No. 2


Timing Waveforms (cont)
910-Bit Delay Line

$\overline{W E}, \overline{R E}$
vil

Note:
[1] $\mathbf{V}=$ Valid Data.
[2] $\mathbf{1 H}$ = the first group of 910 bits. $\mathbf{2 H}=$ the second group of 910 bits.

## Timing Waveforms (cont)

n-Bit Delay Line

$\mathrm{V}_{\mathrm{IL}}$

Note:
[1] $\mathbf{V}=$ Valid Data.
[2] $\mathbf{1 H}=$ the first group of n bits. $\mathbf{2 H}=$ the second group of n'bits.

## Re-Read Operation



## Timing Waveforms (cont)

Basic Timing for Noninterlaced Scan Conversion


## Timing Waveforms (cont)

## Application Timing for Noninterlaced Scan Conversion




## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42102 is a 1135 -word by 8 -bit line buffer fabricated with a CMOS silicon-gate process. The device helps to create a PAL flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.

The $\mu$ PD42102 can also be used as a digital delay line. The delay length is variable from 12 bits (at maximum clock speed) to 1135 bits.

## Features

- 1135-word x 8-bit organization
$\square$ Line buffer for PAL, $4 \mathrm{f}_{\mathrm{SC}}$ digital television systemsAsynchronous and simultaneous read/write operation1H (1135-bit) delay lineTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt $\pm 10 \%$ power supply$300-\mathrm{mil}, 24$-pin plastic DIP and $450-\mathrm{mil}, 24$-pin plastic miniflat packaging


## Ordering Information

| Part Number | Read Cycle <br> Time (min) | Write Cycle <br> Time (min) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PD42102C-3 | 28 ns | 28 ns | 24-pin plastic DIP |
| $\mathrm{C}-2$ | 28 ns | 56 ns |  |
| C-1 | 56 ns | 56 ns |  |
| $\mu$ PD42102G-3 | 28 ns | 28 ns | 24-pin plastic <br> miniflat |
| $\mathrm{G}-2$ | 28 ns | 56 ns |  |
| $\mathrm{G}-1$ | 56 ns | 56 ns |  |

## Pin Configuration

## 24-Pin Plastic DIP or Miniflat

| Douto ${ }^{1}$ | 24 | Dino |
| :---: | :---: | :---: |
| Douti ${ }^{2}$ | 23 | $\mathrm{DIN1}^{\text {din }}$ |
| Doute 3 | 22 | $\mathrm{DIN}_{1}$ |
| Dout3 54 | 21 | $\mathrm{D}_{\text {IN3 }}$ |
| $\overline{\text { RE }} \square^{5}$ |  | WWE |
| RSTE 6 |  | - $\overline{\text { ASTW }}$ |
| GND [ ${ }^{7}$ | \% 18 | -vac |
| RCK 8 | , 17 | wck |
| Douta 9 | 16 | DIN4 |
| Douts 10 | 15 | $\square \mathrm{Din}^{\text {a }}$ |
| DOUT6 ${ }^{11}$ | 14 | Din6 |
| Dout7 12 | 13 | $\square \mathrm{DIN7}^{\text {l }}$ |
|  |  |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $D_{\text {INO }-D_{\text {IN7 }}}$ | Write data inputs |
| $D_{\text {OUTO }-D_{\text {OUT7 }}}$ | Read data outputs |
| $\overline{\overline{R S T W}}$ | Write address reset input |
| $\overline{\overline{R S T R}}$ | Read address reset input |
| $\overline{\overline{W E}}$ | Write enable input |
| $\overline{\overline{R E}}$ | Read enable input |
| $\overline{W C K}$ | Write clock input |
| RCK | Read clock input |
| GND | Ground |
| VCC | +5 -volt power supply |

## Pin Functions

## $D_{\text {INO-D }}$ IN [Data Inputs]

In a digital television application, the digital composite signal, luminance, chrominance, etc., information is written into these inputs.

## Douto-Dout7 [Data Outputs]

These tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

## $\overline{\text { RSTW }}$ [Write Address Reset Input]

Bringing this signal to a low level resets the internal write address to 0 if $\overline{W E}$ is also at a low level. If $\overline{W E}$ is at a high level when the RSTW input is brought low, the internal write address is set to 1134. The state of this input is strobed by the rising edge of WCK.

## RSTR [Read Address Reset Input]

Strobed by the rising edge of RCK, this signal resets the internal read address to 0 if $\overline{R E}$ is also at a low level. If $\overline{\operatorname{RE}}$ is at a high level when the $\overline{\operatorname{RSTR}}$ input is brought low, the internal read address is set to 1134.

## $\overline{W E}$ [Write Enable Input]

This input controls write operation. If $\overline{W E}$ is at a low level, all write cycles proceed. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

## $\overline{R E}$ [Read Enable Input]

This signal is similar to $\overline{\mathrm{WE}}$ but controls read operation. If $\overline{R E}$ is at a high level, the data outputs become high impedance and the internal read address stops increasing. The state of $\overline{\mathrm{RE}}$ is strobed by the rising edge of RCK.

## WCK [Write Clock Input]

All write cycles are executed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle unless WE is at a high level to hold the write address constant. Unless inhibited by $\overline{W E}$, the internal write address will automatically wrap around from 1134 to 0 and begin increasing again.

## RCK [Read Clock Input]

All read cycles are executed synchronously with RCK. The states of both $\overline{\text { RSTR }}$ and $\overline{\mathrm{RE}}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{\text { RE }}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 1134 to 0 and begin increasing again.

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Voltage on any input pin, $\mathrm{V}_{1}$ | -1.5 to +7.0 V |
| Voltage on any output pin, $\mathrm{V}_{0}$ | -1.5 to +7.0 V |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 20 mA |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -20 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Block Diagram


3

Figure 1. Connectlon for Noninterlaced Scan Conversion


## Recommended DC Operating Conditions

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 |  | 5.5 | V |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.5 | 0.8 | V |  |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{Cl}_{1}$ |  |  | 5 | pF | $\overline{\mathrm{WE}}, \overline{\mathrm{RE}}, \mathrm{WCK}$, RCK, RSTW, RSTR, $D_{\text {INO }}-D_{\text {IN } 7}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  |  | 7 | pF | $\mathrm{D}_{\text {OUT0-D }}$ D0ut7 |

## Notes:

(1) These parameters are sampled and not $100 \%$ tested.

## DC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | 1 | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I}=0 \text { to } V_{C c} ; \text { all } \\ & \text { other pins not } \\ & \text { under test }=0 \mathrm{~V} \end{aligned}$ |
| Output leakage current | 10 | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $\mathrm{V}_{0}=0$ to 5.5 V |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |

(1) All voltages are referenced to ground.

## AC Characteristics

$\underline{T_{A}=-20 \text { to }+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%}$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42102-3$ |  | $\mu \mathrm{PD} 42102-2$ |  | $\mu \mathrm{PO42102-1}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write/read cycle operating current | ${ }^{\text {c }}$ C |  | 80 |  | 70 |  | 40 | mA |  |
| Write clock cycle time | ${ }^{\text {twCK }}$ | 28 | 880 | 56 | 880 | 56 | 880 | ns |  |
| WCK pulse width | twCW | 12 |  | 20 |  | 20 |  | ns |  |
| WCK precharge time | ${ }_{\text {t }}$ WCP | 12 |  | 20 |  | 20 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\text {RCK }}$ | 28 | 880 | 28 | 880 | 56 | 880 | ns |  |
| RCK pulse width | $\mathrm{t}_{\mathrm{RCW}}$ | 12 |  | 12 |  | 20 |  | ns |  |
| RCK precharge time | $\mathrm{t}_{\text {RCP }}$ | 12 |  | 12 |  | 20 |  | ns |  |
| Access time | $t_{A C}$ |  | 21 |  | 21 |  | 40 | ns | Figure 5 |
| Access time after a reset cycle | $\mathrm{t}_{\text {ACR }}$ |  | 21 |  | 21 |  | 40 | ns |  |
| Output hold time | $\mathrm{t}_{0 \mathrm{H}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output hold time after a reset cycle | $\mathrm{t}_{\text {OHR }}$ | 5 |  | 5 |  | 5 |  | ns | Figure 5 (Note 7) |
| Output active time | tLZ | 5 | 21 | 5 | 21 | 5 | 40 | ns | (Note 4) |
| Output disable time | $\mathrm{thz}^{\text {l }}$ | 5 | 21 | 5 | 21 | 5 | 40 | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 12 |  | 15 |  | 15 |  | ns |  |
| Data-in hold time | $\mathrm{t}_{\text {DH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset active setup time | $\mathrm{t}_{\text {RS }}$ | 12 |  | 12 |  | 20 |  | ns | (Note 8) |
| Reset active hold time | $\mathrm{t}_{\mathrm{RH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Reset inactive hold time | trN1 | 5 |  | 5 |  | 5 |  | ns | (Note 9) |
| Reset inactive setup time | $\mathrm{t}_{\mathrm{RN} 2}$ | 12 |  | 12 |  | 20 |  | ns |  |
| Write enable setup time | twes | 12 |  | 20 |  | 20 |  | ns | ( Note 10) |
| Write enable hold time | ${ }_{\text {t }}^{\text {WEH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Write enable high delay from WCK | ${ }^{\text {W WEN }} 1$ | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Write enable low delay to WCK | $t_{\text {WEN2 }}$ | 12 |  | 20 |  | 20 |  | ns |  |
| Read enable setup time | $\mathrm{t}_{\text {RES }}$ | 12 |  | 12 |  | 20 |  | ns | (Note 10) |
| Read enable hold time | $t_{\text {REH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Read enable high delay from RCK | $t_{\text {REN }}$ | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Read enable low delay to RCK | $t_{\text {REN2 }}$ | 12 |  | 12 |  | 20 |  | ns |  |
| Write disable pulse width | tWEW | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read disable pulse width | $t_{\text {REW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Write reset time | $\mathrm{t}_{\text {RSTW }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Read reset time | $t_{\text {RSTR }}$ | 0 | (Note 6) | 0 | (Note 6) | 0 | (Note 6) | ms |  |
| Transition time | ${ }_{\text {t }}$ | 3 | 35 | 3 | 35 | 3 | 35 | ns |  |

## Notes:

(1) All voltages are referenced to ground.
(2) Input puise rise and fall times assume ${ }_{T}=5 \mathrm{~ns}$. Input puise levels $=$ GND to 3 V . Transition times are measured between 3 V and 0 V . See figure 3.
(3) Output timing reference levels are 0.8 and 2.0 volts. See figure 4.
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 6. Under any conditions, $t_{L Z} \geq$ $t_{\mathrm{HZ}}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.

## AC Characteristics (cont)

Notes [cont]:
(6) tWEW (max) and trew (max) must be satisfied by the following equations in 1 line cycle operation:
$t_{\text {WEW }}+\mathrm{t}_{\text {RSTW }}+910\left(\mathrm{t}_{\text {WCK }}\right) \leq 1 \mathrm{~ms}$
$\mathrm{t}_{\text {REW }}+\mathrm{t}_{\text {RSTR }}+910\left(\mathrm{t}_{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(7) This parameter has meaning when $t_{R C K} \geq t_{A C R}$ (max).
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.

Figure 2. Connectlon for a 1H (1135-Bit) Delay Line


83-003639A
Figure 3. AC Input Timing Reference


Figure 4. AC Output Timing Reference

(10) If either $t_{\text {WES }}$ or $t_{\text {WEH }}$ ( $\mathrm{t}_{\text {Res }}$ or $\mathrm{t}_{\text {REH }}$ ) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either $t_{\text {WEN1 }}$ or $t_{\text {WEN2 }}$ ( $t_{\text {REN }}$ or $t_{\text {REN2 }}$ ) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 5. Output Load for $t_{A C}, t_{A C R}, t_{O H}$, and $t_{O H R}$


83-003652A
Figure 6. Output Load for $t_{L Z}$ and $t_{H Z}$


## Timing Waveforms

## Read or Write Reset



Note:
[1] $\overline{W E}=\overline{R E}=V_{1 L}$.
[2] $\mathbf{V}=$ Valid Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as tACR. In all other cycles, first cycle in a group of reset cycles
$t_{A C}$ defines the read access time
[4] $H=1135$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

## Write Disable



Note:
[1] $V=$ Valid Data.

## Timing Waveforms (cont)

Read Disable


Note:
[1] $V=$ Valid Data.
(1135-m)-Bit Delay Line, No. 1


## Timing Waveforms (cont)

(1135-m)-Bit Delay Line, No. 2


## 1135-Bit Delay Line


$\overline{W E}, \overline{\operatorname{AE}}$
$\mathrm{V}_{\mathrm{IL}}$
Note:
[1] $\mathbf{V}=$ Valid Data.
[2] $1 \mathrm{H}=$ the first group of $\mathbf{1 1 3 5}$ bits. $\mathbf{2 H}=$ the second group of 1135 bits.

## $\mu$ PD42102

## Timing Waveforms (cont)

n-Bit Delay Line

$\overline{W E}, \mathbf{R E}$
$\qquad$

Note:
[1] $\mathbf{V}=$ Valid Data .
[2] $\mathbf{1 H}=$ the first group of $\boldsymbol{n}$ bits. $\mathbf{2 H}=$ the second group of n'bits.

## Re-Read Operation



## Timing Waveforms (cont)

Basic Timing for Noninterlaced Scan Conversion


## Note:

[1] $\overline{W E}=V_{1 L}$.
[2] $\mathbf{V}=$ Valid Data.
[3] For compatibility with PAL standards the WCK frequency is approximately 17.7 MHz . RCK cycles at twice this frequency, 35.5 MHz .

## Timing Waveforms (cont)

Application TIming for Noninterlaced Scan Conversion



## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42232 is a highly integrated triple-port graphics buffer specifically designed for graphics and image processing applications. The device is configured as 32 K words by 8 bits with a serial input/output port and a dual port for random access. Asynchronous operation of the serial port allows the random access port to draw graphics while data is output serially. Serial input and output ports may be configured by 8,4 , 2, or 1 bit(s).
The random access port can be used to form a matrix frame buffer with coexistent 8-bit plane and 1-bit pixel operation. In plane operation, data across the screen in one plane ( $x$ and $y$ dimension) is accessed. In pixel operation, data in multiple planes ( $z$ dimension) is accessed. In the matrix frame buffer architecture, selection of plane or pixel access is made in a special command cycle. Furthermore, a selectable open-drain connection allows the outputs to be wire-ORed.

The $\mu$ PD42232 supports 256 trinomial raster operations, as well as bit, chip or plane writing and reading. Refreshing is accomplished by means of RAS-only, $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$, and hidden refresh cycles. The device is packaged in a $600-\mathrm{mil}, 40$-pin plastic shrink DIP and a $400-\mathrm{mil}, 40-\mathrm{pin}$ plastic SOJ.

## Features

$\square$ Triple-port organization

- $32 \mathrm{~K} \times 8$-bit random access port
- 8-bit input/output port for plane access
- 1-bit input/output port for pixel access
- $128 \times 8$-bit serial input/output port

Ten built-in registers

- 256 types of raster operations
- Random access of bit, chip, or plane data
- Compare functionEach of 8 serial data registers configured as a split buffer, allowing for relaxed data transfer timingBidirectional data transfer between random access storage array and serial data registers
$\overline{R A S}-o n l y, \overline{C A S}-b e f o r e-\overline{R A S}$, and hidden refreshing Serial port configuration by $8,4,2$, or 1 bit(s)Selectable open-drain or three-state random access outputsFully TTL-compatible inputs and outputs
$\square$ Standard 40-pin plastic shrink DIP and 40-pin plastic SOJ packaging


## Pin Configurations

## 40-Pin Plastic DIP



40-Pin Plastic SOJ


## Ordering Information

| Part Number | Random Write/Read Cycle Time (min) | Serial Write/Read Cycle Time (max] | $\overline{\text { RAS }}$ Access Time (max) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 42232 \mathrm{CU}-12$ | 220 ns | 40 ns | 120 ns | 40-pin plastic shrink DIP |
| CU-15 | 260 ns | 60 ns | 150 ns |  |
| $\mu$ PD42232LA-12 | 220 ns | 40 ns | 120 ns | 40-pin plastic SOJ |
| LA-15 | 260 ns | 60 ns | 150 ns |  |

## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{A}_{0} / \mathrm{C}_{0}-\mathrm{A}_{7} / \mathrm{C}_{7}$ | Address inputs/command code inputs |
| $\mathrm{BM}_{0} / 10_{0}-\mathrm{BM}_{7} / 10_{7}$ | Bit mask inputs/plane data inputs and outputs |
| $\overline{\text { CAS }}$ | Column address strobe |
| CSp/IOp | Chip select mask inputs/pixel data inputs and outputs |
| $\overline{\overline{C S}}{ }_{\text {W }}$ | Chip select for random access port |
| DBP | Data bus precharge (selects open-drain output) |
| $\overline{\overline{\mathrm{D}} / \mathrm{O} \overline{\mathrm{E}}}$ | Data transfer control/output enable |
| $\widehat{\overline{\text { RAS }}}$ | Row address strobe |
| SC | Serial clock |
| SEN | Serial port enable |
| $\mathrm{SiO}_{0}-\mathrm{SIO}_{7}$ | Serial data inputs and outputs |
| $\overline{\overline{S O E}}$ | Serial output enable |
| SRO | Serial runout output |
| $\overline{\overline{W E} / / \overline{M E} / \overline{M C}}$ | Write enable/mask enable/memory command |
| $\mathrm{V}_{\text {S } 1} / \mathrm{V}_{\text {SS2 }}$ | Ground |
| $\mathrm{V}_{\mathrm{CC} 1} / \mathrm{V}_{\mathrm{CC} 2}$ | +5 -volt power supply |
| NC | No connection |

## Block Diagram



## Example of Matrix Frame Buffer Architecture

The following describes the configuration for an 8 -plane, $512 \times 512$ dot matrix frame buffer using one $\mu$ PD42232 per plane and an 8 -bit CPU interface bus. As can be seen in figure 1 , the $1 \mathrm{O}_{0}$ through $1 \mathrm{O}_{7}$ plane access ports on each $\mu \mathrm{PD} 42232$ are connected to $\mathrm{DB}_{0}$ through $\mathrm{DB}_{7}$ of the CPU interface bus. Pixel access port IOp on the first $\mu$ PD42232 is connected to $\mathrm{DB}_{0}$. $1 \mathrm{O}_{\mathrm{p}}$ on the second $\mu \mathrm{PD} 42232$ is connected to $\mathrm{DB}_{1}$ and so on.

This configuration supports two types of operation, either of which can be selected in a special command cycle:

- Plane-where 8 bits in the same plane are accessed
- Pixel-where 8 bits of the same pixel, 8 planes deep, are accessed

In plane operation, one plane is selected by means of the chip select or plane-mask function, causing the 8 bits of data specified by $1 \mathrm{O}_{0}$ through $1 \mathrm{O}_{7}$ to be accessed. In pixel operation, one pixel ( 8 bits) of data from the $1 O_{\mathrm{P}}$ pin of each chip is accessed using the bit-mask function to select only one of the 8 bits at the specified address.

The example shown in figure 1, where one bit from each chip (plane) in a diagonal line is accessed ( $1 \mathrm{O}_{\mathrm{O}}$ through $\mathrm{IO}_{7}$ ), was chosen for the ease of explaining the pixel access function, which was developed to quickly change the color or shade of each pixel. In most applications, a single pixel at the same IOX bit is updated. Since all eight chips are accessed simultaneously, a pixel update can be accomplished in one write cycle.

## Split Buffer Configuration

A split buffer configuration is useful because it greatly relaxes the synchronization of timing between the random access and serial ports during data transfers, making it possible to design a video system where the serial port can be loaded at any time during the display
or horizontal retrace period. Furthermore, the ability to perform serial register updates from the random access port during any part of the display time allows the size of the frame buffer to match CRT resolution, reducing the number of data transfers required and making more efficient use of video storage.

Item 1 of figure 2 shows the initial loading of both the lower (L) and upper (U) halves of the split buffer, which is required as part of the initialization sequence. Item 2 indicates that serial read cycles begin executing at location k and continue through location 63. The SRO serial runout pin goes high after locations 63 and 127. Items 3 and 4 show the beginning of serial reading in the right buffer $(\mathrm{U})$, while the left $(\mathrm{L})$ is being reloaded. Full asynchronous operation is provided by the simultaneous reading of one serial buffer while the opposite side is reloaded.

## Logic Operation

The $\mu$ PD42232 is equipped with a function that performs trinomial logic operation for each bit using the internal pattern and destination registers and write data input from the random access port as source data. To select this function, the raster operation code must be set by means of a special command cycle. Once set, it is retained until changed by another special command cycle. In a mask write cycle, this logic operation can be performed in 256 ways using the 8 -bit raster operation code register.

The setup and execution of this logic operation takes five cycles (figure 3):

- Loading of pattern or destination register (1 cycle)
- Setting of raster operation code during memory command cycle
- Lower 4 bits ( 1 cycle)
- Upper 4 bits ( 1 cycle)
- Setting of raster operation enable function (1 cycle)
- Execution of raster operation by writing in the mask write cycle ( 1 cycle)


Figure 2. Serial Port Operation in Split Buffer Configuration

1. Initial Loading

storage cell array

2. Serial Read Operation Starts at Location $K$


Serlal Read
Data Transfer to the Lower Buffer (L)


Figure 3. Logic Operation


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42270 is a field buffer designed for NTSC TV applications and for other applications where serial data is needed. Equipped with four planes of 263-line by 910 -bit storage, the $\mu$ PD42270 can execute serial write and read cycles on any of the 263 lines. Within a line, four planes of 910 bits each may be written or read at the NTSC sampling rate of 4 f SC.

Each of the four planes in the $\mu$ PD42270 is equipped with two ports, one each for the write and read data registers. Each of the registers is split into two 455-bit segments, but functions as if it were organized as one scan line of 910 bits. Independent control of write and read operation makes it possible for the device to operate synchronously or asynchronously at a clock frequency of 14.3 MHz or higher.

The synchronous option simplifies interframe luminance $(Y)$ and chrominance ( $C$ ) separation and interfield noise reduction and makes it easy to obtain a one-field delay line for digital TV and VCR applications requiring NTSC $4 \mathrm{f}_{\mathrm{SC}}$ sampling. To obtain a very long delay, field length can be configured from 260 to 263 lines and line length of the last line from 896 to 910 bits.

The asynchronous option is useful in applications such as frame synchronization and time base correction, where line jump, line hold, line reset and pointer clear functions are required to support special effects in TV field processing.

Regular refreshing of the device's dynamic storage cells is performed automatically by an internal arbitration circuit. All inputs and outputs, including clocks, are TTL-compatible. The $\mu$ PD42270 is packaged in a $400-\mathrm{mil}, 28-\mathrm{pin}$ plastic DIP and is guaranteed for operation at -20 to $+70^{\circ} \mathrm{C}$.

## Ordering Information

| Part Number | Access Time <br> (max] | Cycle Time <br> (min) | Package |
| :--- | :---: | :---: | :--- |
| $\mu$ PD42270C-60 | 40 ns | 60 ns | 28-pin plastic DIP |

## Features

$\square$ Three functional blocks

- Four 263-line x 910-bit storage planes
-910-bit write register for each plane
- 910-bit read register for each plane
$\square$ Two data ports: serial write and serial read
Asynchronous operation
- Dual-port accessibility
- Carry-out capability to indicate position of scan line
- Line jump, line hold, line reset, and pointer clear functionsSynchronous operation
- Variable field length: 260 to 263 lines
- Variable last line length: 896 to 910 bits

Automatic refreshing
CMOS technologyFully TTL-compatible inputs, outputs, and clocks
Three-state outputs
Single +5 -volt $\pm 10 \%$ power supply
On-chip substrate bias generator
Standard 400-mil, 28-pin plastic DIP packaging

## Pin Configuration

## 28-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{D}_{\text {INO }-\mathrm{D}_{\text {IN3 }}}$ | Write data inputs |
| $\mathrm{D}_{\text {OUT0- }}$ - ${ }_{\text {OUT3 }}$ | Read data outputs |
| $\bar{W}$ | Write enable |
| $\overline{\overline{O E}}$ | Output enable |
| WCK | Write clock input |
| RCK | Read clock input |
| WCLR | Write pointer clear |
| $\overline{\text { RCLR }}$ | Read pointer clear |
| WLRST | Write line reset |
| RLRST | Read line reset |
| WLJ | Write line jump |
| RLJ | Read line jump |
| WLH | Write line hold |
| RLH | Read line hold |
| WCO | Write data register carry output |
| RCO | Read data register carry output |
| $\underline{L_{0}-L^{\prime}}$ | Line select inputs |
| $\underline{\mathrm{BS}_{0}-\mathrm{BS}_{3}}$ | Bit select inputs |
| MODE | Mode control |
| GND | Ground |
| $V_{\text {CC }}$ | +5-volt power supply |
| TEST | Test pin (connect to GND in system) |

## Pin Functions

$\mathrm{D}_{\text {INO- }} \mathrm{D}_{\text {IN3 }}$. These pins function as write data inputs, e.g., for 4fsc composite color or brightness signals.

Douto-Douts. These pins are three-state read data outputs.
$\bar{W}$. A low level on $\bar{W}$ enables write operation. $\bar{W}$ must be kept low throughout the entire scan line to ensure that data is stored serially; if $\bar{W}$ goes high any time during the WCK clock sequencing for a line, write operation will be disabled for the half of the line ( 455 bits) being written. The write address pointer increments in synchronization with WCK, regardless of $\bar{W}$.
$\overline{\mathrm{OE}}$. This signal controls read data output. When $\overline{\mathrm{OE}}$ is low, read data is output on $D_{\text {OUto- }}$-DOUT3. When $\overline{O E}$ is high, $D_{\text {оuto }}$-D ${ }_{\text {Out3 }}$ are in a state of high impedance. The read address pointer is incremented by RCK, regardless of the signal level of $\overline{\mathrm{OE}}$.

WCK. The rising edge of WCK latches write data from $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN3 }}$. Each time this signal is activated, the write bit pointer increments sequentially and 4 bits of data are sampled and loaded into the write register. Although the register functions as one scan line of 910 bits, data is moved into and out of it in blocks of $455 \times 4$ bits. While 455 serial write cycles are being executed in one-half of the register, the 455 addresses previously written to the other half are simultaneously transferred to storage. Writing continues in this manner, alternating between the two halves of the register. Automatic refreshing and data transfer timing decisions are made by the internal arbitration circuit after each block of 455 addresses has been written.

RCK. The rising edge of RCK initiates read operation. Each time this signal is activated, the bit pointer increments by 1 and serial read cycles are executed in the read register. Although the register functions as one scan line of 910 bits, data is moved into and out of it in blocks of $455 \times 4$ bits. While 455 serial read cycles are being executed in one-half of the register, the 455 addresses previously read out of the other half are replaced by data from the storage array. Reading continues in this manner, alternating between the two halves of the register. Automatic refreshing and data transfer timing decisions are made by the arbitration circuit after each block of 455 addresses has been read. In synchronous operation, WCK controls read cycles and RCK is not used.
$\overline{\text { WCLR. When }} \overline{\text { WLRST }}$ is high, $\overline{\text { WCLR }}$ can be brought low to clear the write pointers to address 0 of the data register and scan line 0 of the storage array. At least one rising edge of WCK must occur while $\overline{W C L R}$ is held low for a minimum of $3 \mu$ s to ensure clearing of both pointers. The clear function ends when WCLR goes high. If WLRST is still high, the next rising edge of WCK writes the data on $\mathrm{D}_{\mathrm{IN} 0^{-}} \mathrm{D}_{\text {IN3 }}$ into address 0 of the write register.
$\overline{\text { RCLR }}$. When $\overline{\text { RLRST }}$ is high, $\overline{\operatorname{RCLR}}$ can be brought low to clear the read pointers to address 0 of the data register and scan line 0 of the storage array (asynchronous operation only). At least one rising edge of RCK must occur while RCLR is held low for a minimum of $3 \mu \mathrm{~s}$ to ensure clearing of both pointers. The clear function ends when RCLR goes high. If RLRST is still high, the data from address 0 is read out on Douto ${ }^{-}$ Dout3 and the next rising edge of RCK initiates data access from address 1.

WLRST. This pin is used in synchronous or asynchronous operation to reset the bit pointer to address 0 of the line following the one to which the signal is applied. In standard write operation, the scan line pointer increments by 1 whenever the bit pointer reaches the last address of a line. If $\overline{W C L R}$ is high, $\overline{\text { WLRST }}$ can be brought low for a minimum of $3 \mu \mathrm{~s}$ to force an end-of-
line condition, whereby write cycles begin executing from address 0 of the next sequential scan line. When used in conjunction with WLH, WLRST resets the current scan line; when combined with WLJ, WLRST begins writing from address 0 of the line to which the scan line pointer is jumped.
RLRST. This pin is valid in asynchronous operation and can be used to reset the bit pointer to address 0 of the read line following the one to which the signal is applied. In standard read operation, the scan line pointer increments by 1 whenever the bit pointer reaches the last address of a line. If $\overline{R C L R}$ is high, RLRST can be brought low for a minimum of $3 \mu \mathrm{~s}$ to force an end-of-line condition, whereby read cycles begin executing from address 0 of the next sequential scan line. When used in conjunction with RLH, RLRST resets the current scan line; when combined with RLJ, RLRST begins reading from address 0 of the line to which the scan line pointer is jumped.

WLJ. Each positive pulse of this signal increments the write scan line pointer by one line (asynchronous operation only). WLJ is sampled at the rising edge of WCK. If WLJ is high, a single jump is executed. If WLJ remains high, no further jumps occur. To jump again, WLJ must go low for at least one rising edge of WCK before going high again. It takes a minimum of two WCK cycles to complete a line jump. The first cycle senses the high level of WLJ and increments the scan line pointer. An additional WCK cycle with WLJ low is required to complete the function. If more than one line jump is needed, then the sequence must be repeated.
A line jump occurs either when the current line has been completely filled or after WLRST has reset the write address. The new scan line can be calculated by $n+1+x$ (where " $n$ " is the current line and " $x$ " equals the number of positive WLJ pulses).
Changes in the level of WLJ must be made when the bit pointer is between locations 229 and 909 of the current line and when WCLR and WLRST are high and WLH is low.

RLJ. Each positive pulse of this signal increments the read scan line pointer by one line (asynchronous operation only). RLJ is sampled at the rising edge of RCK. If RLJ remains high, a single line jump is executed. To jump again, RLJ must go low for at least one rising edge of RCK before going high again. It takes a minimum of two RCK cycles to complete a line jump. The first cycle senses the high level of RLJ and increments the scan line pointer. An additional RCK cycle with RLJ low is required to complete the function. If more than one line jump is needed, then this sequence must be repeated.

A line jump occurs either when the current line has been completely read or after RLRST has reset the read address. The new scan line can be calculated by $n+1+x$ (where " $n$ " is the current line and " $x$ " equals the number of positive RLJ pulses).

Changes in the level of RLJ must be made when the bit pointer is between locations 682 and 909 of the previous line, or between 0 and 452 of the current line, and when $\overline{R C L R}$ and $\overline{R L R S T}$ are high and RLH is low.
WLH. Once this input is applied, the write scan line pointer will hold its position even if successive write clocks are applied. The level of WLH is sampled at the rising edge of WCK and must be applied between locations 229 and 909 of the line to be held. The held line is released after 910 addresses have been rewritten or after WLRST resets the write line address. WLH is multiplexed with $\mathrm{BS}_{2}$ and is valid in asynchronous operation only. WLH (high) must be input only when $\overline{W C L R}$ and $\overline{W L R S T}$ are high and WLJ is low.

RLH. Once this input is applied, the read scan line pointer will hold its position even if successive read clocks are applied. The level of RLH is sampled at the rising edge of RCK and must be clocked between locations 682 and 909 of the line preceding the line to hold, or between locations 0 and 452 of the line to hold.

The held line is released after 910 addresses have been read or after RLRST resets the read line address. RLH (high) must be input only when $\overline{\text { RCLR }}$ and $\overline{\text { RLRST }}$ are high and RLJ is low. RLH is multiplexed with $\mathrm{BS}_{3}$ and is valid in asynchronous operation only.

WCO. When the bit pointer reaches address 909 of the write data register, this signal goes high for one WCK cycle. WCO is multiplexed with $\mathrm{BS}_{0}$ and is valid in asynchronous operation only.

RCO. When the bit pointer reaches address 909 of the read data register, this signal goes high for one RCK cycle. RCO is multiplexed with $\mathrm{BS}_{1}$ and is valid in asynchronous operation only.
$\mathbf{B S}_{\mathbf{0}}-\mathbf{B S}_{\mathbf{3}}$. These pins input control signals to change the number of bits in the last line of the field. The combined signals of $\mathrm{BS}_{0}-\mathrm{BS}_{3}$ set the line length from 896 to 910 bits in one-bit steps (table 1). The length of the last line can change for each field, but all four pins should not be set low. $\mathrm{BS}_{0}, \mathrm{BS}_{1}, \mathrm{BS}_{2}$ and $\mathrm{BS}_{3}$ are multiplexed with WCO, RCO, WLH and RLH, respectively, and are valid in synchronous operation only. In asynchronous operation, the line length is fixed at 910 bits.
$\mathbf{L S} \mathbf{S}_{\mathbf{0}}-\mathbf{L S} \mathbf{S}_{\mathbf{1}}$. These pins input control signals to change the number of lines for one field in either synchronous or asynchronous operation. The combined signals of $L S_{0}$ and $L S_{1}$ set the number of lines to $260,261,262$, or 263 (table 2). The number of lines can be changed for each field.
MODE. This pin selects the operating mode. A low signal selects synchronous operation and a high signal selects asynchronous operation. If MODE is changed after power has been applied to the $\mu$ PD42270, it is necessary to clear the address pointers by bringing $\overline{W C L R}$ and $\overline{R C L R}$ low. MODE can be changed at any time; however, data input in one mode may be unreliable in the other (see table 3 for valid pin functions).

Table 1. Line Length Adjustment

| BS $_{\mathbf{3}}$ | BS $_{\mathbf{2}}$ | BS $_{\mathbf{1}}$ | BS $_{\mathbf{0}}$ | Number oi Bits <br> in the Last Line |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | Prohibited |
| L | L | L | H | 896 |
| L | L | H | L | 897 |
| L | L | H | H | 898 |
| L | H | L | L | 899 |
| L | H | L | H | 900 |
| L | H | H | L | 901 |
| L | H | H | H | 902 |
| H | L | L | L | 903 |
| H | L | L | H | 904 |
| H | L | H | L | 905 |
| H | L | H | H | 906 |
| H | H | L | L | 907 |
| H | H | L | H | 908 |
| H | H | H | L | 909 |
| H | H | H | H | 910 |

## Notes:

(1) $\mathrm{LS}_{0}-\mathrm{LS} \mathrm{S}_{1}$ and $\mathrm{BS}_{0}-\mathrm{BS}_{3}$ must be held at a stable high or low level to maintain the number of bits per scan line and the number of scan lines per field while the line pointer indicates the position between lines 258 and 262.

Table 2. Line Number Adjustment

| S $_{\mathbf{1}}$ | LS $_{\mathbf{0}}$ | Number of Lines |
| :---: | :---: | :---: |
| L | L | 260 |
| L | $H$ | 261 |
| $H$ | L | 262 |
| $H$ | $H$ | 263 |

## Notes:

(1) $\mathrm{LS}_{0}-\mathrm{LS} \mathrm{S}_{1}$ and $\mathrm{BS}_{0}-\mathrm{BS} \mathrm{S}_{3}$ must be held at a stable high or low level to maintain the number of bits per scan line and the number of scan lines per field while the line pointer indicates a position between lines 258 and 262.

Table 3. Valid Pin Functlons AccordIng to Mode

| Pin Name | Synchronous Mode [Note 1] | Asynchronous Mode [Note 2] |
| :---: | :---: | :---: |
| MODE | 0 | 1 |
| $\mathrm{BS}_{0} / \mathrm{WCO}$ | $\mathrm{BS}_{0}$ | WC0 |
| $\mathrm{BS}_{1} /$ RC0 | $\mathrm{BS}_{1}$ | RCO |
| $\mathrm{BS}_{2} /$ WLH | $\mathrm{BS}_{2}$ | WLH |
| $\mathrm{BS}_{3} / \mathrm{RLH}$ | $\mathrm{BS}_{3}$ | RLH |
| $\overline{\overline{\text { RCLR }}}$ | invalid | valid |
| RCK | invalid | valid |
| ELRST | invalid | valid |
| $\overline{\text { WCLR }}$ | valid | valid |
| WCK | valid | valid |
| WLRST | valid | valid |
| WLJ | invalid | valid |
| RLJ | invalid | valid |

## Notes:

(1) Write and read cycles are controlled by $\overline{\text { WCLR }}$, WCK, and WLRST in synchronous operation.
(2). In asynchronous operation, write and read cycles are controlled independently.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; G N D=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{1}$ |  | 5 | pF | $\mathrm{D}_{\mathrm{INO} O}-\mathrm{D}_{\mathrm{IN}}, \overline{\mathrm{W}}, \overline{\mathrm{OE}}$, <br> WCK, RCK, WCLR, <br> $\overline{\text { RCLR }}, \overline{W L R S T}$, <br> RLRST, WLJ, RLJ, <br> $\mathrm{LS}_{0}-\mathrm{LS}_{1}, \mathrm{BS}_{2} / \mathrm{WLH}$, <br> $\mathrm{BS}_{3} /$ RLH, MODE |
| 1/0 capacitance | $\mathrm{C}_{1 / 0}$ |  | 8 | pF | $\mathrm{BS}_{0} / \mathrm{WCO}, \mathrm{BS}_{1} / \mathrm{RCO}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  | 7 | pF | $\mathrm{D}_{\text {OUT0 }}$ - $\mathrm{D}_{\text {OUT3 }}$ |

## Device Operation

The $\mu$ PD42270 supports two operating modes to accommodate various NTSC TV applications. Depending on the logic level of the MODE pin, the device will execute either synchronous or asynchronous write and read cycles on the addresses specified by the internal address pointers. When selecting the mode after power-on, it is necessary to reset these pointers to starting address 0 using $\overline{W C L R}$ and $\overline{\text { RCLR }}$. The leve! of MODE may be changed at any time.

## Synchronous Mode

In synchronous mode, write and read cycles are executed simultaneously by WCLR, $\overline{\text { WLRST, WCK, }}$ W and $\overline{O E}$ to create a delay line, which means that write and read addresses always coincide. After all lines within a field have been written, they then are read out as the device begins overwriting new data to the same addresses again. Field length may be configured from 260 to 263 lines and last line length from 896 to 910 bits by means of the LS and BS pins, respectively. Synchronous operation is useful in applications where a very long delay line is required and may be selected by setting MODE low.

## Asynchronous Mode

In asynchronous mode, $\overline{\text { WCLR }}, \overline{\text { WLRST, }}$ WCK and $\bar{W}$ control write cycles, while read cycles are controlled independently by $\overline{\text { RCLR }}, \overline{\text { RLRST, RCK and }} \overline{\mathrm{OE}}$. Field length may be configured from 260 to 263 lines using $\mathrm{LS}_{0}-\mathrm{LS} \mathrm{S}_{1}$. Line length remains fixed at 910 bits and $\mathrm{BS}_{0}-\mathrm{BS}_{3}$ are disabled to provide for the register carry out, line hold, and line jump functions. Asynchronous
operation is useful for frame synchronization or timebase correction and may be selected by setting MODE high.
Address Clear. Setting $\overline{\mathrm{WCLR}}$ and $\overline{\mathrm{RCLR}}$ low for a minimum of $3 \mu$ during successive WCK and RCK cycles initializes the internal pointers to starting address 0 of the first scan line ( $\overline{\operatorname{RCLR}}$ is disabled in synchronous mode). Although address clear signals must meet the specifications for setup and hold times as measured from the rising edges of WCK and RCK, they are not dependent on the status of $\bar{W}$ or $\overline{O E}$. An address clear cycle cannot occur in conjunction with WLRST or RLRST line reset cycles.

Write Operation. Write cycles are executed in synchronization with WCK as $\bar{W}$ is held low. Bits are input sequentially into one of the two halves of the data register before being transferred to the storage array. Since data is transferred into the array in blocks of 455 $\times 4$ bits, no data transfer occurs if $\bar{W}$ goes high to disable write operation before all 455 bits are written. Despite write operation being disabled, the internal bit pointer continues to increment with each successive write clock.

Read Operation. Read cycles are executed in synchronization with RCK (asynchronous operation only) or WCK (synchronous operation only) as $\overline{O E}$ is held low. If $\overline{O E}$ goes high any time during a cycle, the outputs are in a state of high impedance until $\overline{\mathrm{OE}}$ returns low. Since the internal bit pointer increments by 1 in spite of read operation being disabled, it is always important to reset the write and read pointers using $\overline{\mathrm{WCLR}}$ and $\widehat{\mathrm{RCLR}}$ prior to beginning or resuming operation at the first address location in the array.

## Block Diagram



## Special Functions

Line Reset. A line reset is similar to an address clear cycle, except that it only affects the bit pointers within a current line. While $\overline{W C L R}$ and $\overline{\operatorname{RCLR}}$ are held high, $\overline{\text { WLRST }}$ or RLRST can be brought low for a minimum of $3 \mu$ s during successive WCK or RCK cycles to reset the bit pointer to address 0 of the current scan line. $\overline{\text { WCLR }}$ and $\overline{\text { WLRST (or } \overline{R C L R} \text { and } \overline{R L R S T} \text { ) must be }}$ separated by at least one serial WCK (or RCK) cycle (figure 1). After data in the first address of the current line is rewritten or reread at the rising edge of WCK or RCK, the bit pointer increments by 1 and the cycle repeats for the next address (see timing waveform for line reset cycles). In asynchronous operation, WLRST and RLRST independently reset the write and read bit pointers. During synchronous operation, WLRST resets both pointers.

Line Jump. With the line jump function, it is possible to advance the current write or read line position according to the number of positive WLJ or RLJ pulses applied (see descriptions for the WLJ and RLJ pins). In this cycle, which is valid in asynchronous mode only, the scan line pointer resets to address 0 if the number of positive pulses causes the resulting line number ( $n+1+x$, where " $n$ " is the current line number and " $x$ " is the number of positive WLJ or RLJ pulses) to exceed the maximum line number (number of lines minus 1) specified by the $L S_{0}$ and $L S_{1}$ pins (table 2).
Line Hold. The line hold feature is available in asynchronous mode only and can be used to prevent the internal scan line pointers from incrementing to the next sequential address. The read and write line pointers may be held independently; however, restrictions pertaining to when this function can be initiated, detailed in the descriptions for the WLH and RLH pins, should be carefully followed.

Figure 1. Separation of Clear and Reset Signals


## Absolute Maximum Ratings

| Supply voltage on any pin except $\mathrm{V}_{\mathrm{CC}}$ <br> relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 1}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Supply voltage on $\mathrm{V}_{\mathrm{CC}}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 2}$ | -1.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -20 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.5 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Recommended Operating Conditions

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.5 | 0.8 | V |  |
| Ambient temperature | $\mathrm{T}_{\mathrm{A}}$ | -20 | 70 | ${ }^{\circ} \mathrm{C}$ |  |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Тур | Max |  |  |
| Input leakage current | IIL | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | 10 L | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, Iow | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{l}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |
| Standby current | ${ }^{\text {c CC1 }}$ |  | 6 | 20 | mA | WCK, $\mathrm{RCK}=\mathrm{V}_{\text {IL }}$ |
| Operating current | ${ }^{\text {c CC2 }}$ |  | 40 | 80 | mA | $\mathrm{t}_{\text {WCK }}=\mathrm{t}_{\text {WCK }}(\mathrm{min}) ; \mathrm{t}_{\text {RCK }}=\mathrm{t}_{\text {RCK }}(\mathrm{min})$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Access time from RCK | $\mathrm{t}_{\text {AC }}$ |  | 40 | ns |  |
| Write clock cycle time | $t_{\text {wCK }}$ | 60 |  | ns | (Note 5) |
| Write clock active pulse width | twCW | 20 |  | ns |  |
| Write clock precharge time | ${ }_{\text {twCP }}$ | 20 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\text {RCK }}$ | 60 |  | ns | (Note 5) |
| Read clock active pulse width | $t_{\text {RCW }}$ | 20 |  | ns |  |
| Read clock precharge time | $\mathrm{t}_{\text {RCP }}$ | 20 |  | ns |  |
| Output hold time | ${ }_{\text {tor }}$ | 5 |  | ns |  |
| Output low impedance delay | tLZ | 5 | 40 | ns | (Note 6) |
| Data output buffer high impedance delay | $t_{\text {Hz }}$ | 5 | 40 | ns | (Note 7) |
| Input data setup time | ${ }^{\text {t }}$ S | 18 |  | ns |  |
| Input data hold time | $\mathrm{t}_{\text {DH }}$ | 3 |  | ns |  |
| $\overline{\overline{W C L R}}(\overline{\mathrm{RCLR}})$ setup time before the rising edge of WCK (RCK) | $\mathrm{t}_{\mathrm{CS}}$ | 20 |  | ns | (Note 8) |
| $\overline{\overline{W C L R}}(\overline{\mathrm{RCLR}})$ hold time after the rising edge of WCK (RCK) | $\mathrm{t}_{\mathrm{CH}}$ | 3 |  | ns | (Note 8) |
| $\overline{\text { WCLR }}(\overline{\mathrm{RCLR}})$ invalid hold time after the rising edge of WCK (RCK) | ${ }^{\text {t }}$ CN1 | 5 |  | ns | (Note 8) |
| $\overline{\text { WCLR }}$ ( $\overline{\text { CLLR }}$ ) invalid setup time before the rising edge of WCK (RCK) | $\mathrm{t}_{\text {CN2 }}$ | 20 |  | ns | (Note 8) |
| $\overline{\overline{W C L R}}$ ( $\overline{\mathrm{RCLR}}$ ) low level valid time | $\mathrm{t}_{\text {CLR }}$ | 3 |  | $\mu \mathrm{S}$ |  |

Figure 2. Input Timing


Figure 3. Output Timing


## AC Characteristics (cont)

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\overline{\text { WLRST }}$ (RLRST) setup time before the rising edge of WCK (RCK) | tLRS | 20 |  | ns | (Note 8) |
| $\overline{\overline{W L R S T}}$ ( $\overline{\mathrm{LLRST}}$ ) hold time after the rising edge of WCK (RCK) | tıRH | 3 |  | ns | (Note 8) |
| $\overline{\text { WLRST }}$ (RLRST) invalid hold time after the rising edge of WCK (RCK) | tLRN1 | 5 |  | ns | (Note 8) |
| $\overline{\text { WLRST }}$ ( $\overline{\operatorname{LLRST}}$ ) invalid setup time before the rising edge of WCK (RCK) | tLRN2 | 20 |  | ns | (Note 8) |
| WLRST (RLRST) low level valid time | t LRST | 3 |  | $\mu \mathrm{S}$ |  |
| $\bar{W}$ setup time before the rising edge of WCK | tws | 20 |  | ns | (Note 9) |
| $\overline{\bar{W}}$ hold time after the rising edge of WCK | ${ }^{\text {twh }}$ | 3 |  | ns | (Note 9) |
| $\overline{\bar{W}}$ valid hold time after subline (1/2) switch | ${ }^{\text {twn }} 1$ | 5 |  | ns | (Note 9) |
| $\overline{\text { W }}$ valid setup time before subline (1/2) switch | ${ }^{\text {twn2 }}$ | 20 |  | ns | (Note 9) |
| WLH (RLH) setup time before the rising edge of WCK (RCK) | ${ }_{\text {t }}^{\text {LHS }}$ | 20 |  | ns |  |
| WLH (RLH) hold time after the rising edge of WCK (RCK) | timh | 3 |  | ns |  |
| WLH invalid hold time measured from the end of write cycle 227 | $\mathrm{t}_{\text {WHN1 }}$ | 5 |  | ns |  |
| WLH invalid setup time measured before write cycle 0 | $t_{\text {WHN2 }}$ | 20 |  | ns |  |
| RLH invalid hold time measured from the end of read cycle 681 | $\mathrm{t}_{\text {RHN1 }}$ | 5 |  | ns |  |
| RLH invalid setup time measured before read cycle 453 | $\mathrm{t}_{\text {RHN2 }}$ | 20 |  | ns |  |
| WLJ (RLJ) setup time before the rising edge of WCK (RCK) | $t_{\text {LJS }}$ | 20 |  | ns |  |
| WLJ (RLJ) hold time after the rising edge of WCK (RCK) | $\mathrm{t}_{\text {LJH }}$ | 3 |  | ns |  |
| WLJ hold time measured from the end of write cycle 227 | twJN1 | 5 |  | ns |  |
| WLJ setup time measured before write cycle 0 | twJN2 | 20 |  | ns |  |
| RLJ hold time measured from the end of read cycle 681 | $\mathrm{t}_{\text {RJN1 }}$ | 5 |  | ns |  |
| RLJ setup time measured before read cycle 453 | $\mathrm{t}_{\text {RJN2 }}$ | 20 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\overline{\overline{\mathrm{OE}}}$ setup time before the rising edge of RCK (WCK) | ${ }_{\text {toES }}$ | 20 |  | ns | (Note 9) |
| $\overline{\overline{O E}}$ hold time after the rising edge of RCK (WCK) | $\mathrm{t}_{\text {OEH }}$ | 3 |  | ns | (Note 9) |
| $\overline{O E}$ valid hold time after the rising edge of RCK (WCK) | $\mathrm{t}_{0}$ EN1 | 5 |  | ns | (Note 9) |
| $\overline{\overline{0 E}}$ valid setup time before the rising edge of RCK (WCK) | toen2 | 20 |  | ns | (Note 9) |
| LS, BS setup time before WCK (RCK), line 258 | $\mathrm{t}_{\text {FSS }}$ | 0 |  | ns |  |
| LS, BS hold time after WCK (RCK), line 0 | $t_{\text {FSH }}$ | 3 |  | $\mu \mathrm{S}$ |  |
| Write carry output high level delay | twCLH |  | 40 | ns |  |
| Write carry output low level delay | ${ }^{\text {twCHL }}$ |  | 40 | ns |  |
| Read carry output high level delay | $t_{\text {RCLH }}$ |  | 40 | ns |  |
| Read carry output low level delay | $\mathrm{t}_{\mathrm{RCHL}}$ |  | 40 | ns |  |
| Transition time | ${ }_{\dagger}$ | 3 | 35 | ns | (Note 4) |

## Notes:

(1) All voltages are referenced to GND.
(2) Ac measurements assume $t_{T}=5 \mathrm{~ns}$.
(3) Input timing reference levels $=1.5 \mathrm{~V}$; input levels are measured between GND and 3.0 V ; output levels are measured between 0.8 and 2.0 V . See figures 2 and 3.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $T_{A}=-20$ to $70^{\circ} \mathrm{C}$ ) is assured.
(6) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 5.
(7) This delay is measured at the maximum steady-state output high voltage -200 mV or the minimum steady-state output low voltage +200 mV with the load specified in figure 5 .
(8) For proper execution of the pointer clear and line reset functions, specifications for $\mathrm{t}_{\mathrm{CS}}, \mathrm{t}_{\mathrm{CH}}, \mathrm{t}_{\mathrm{CN} 1}, \mathrm{t}_{\mathrm{CN} 2}, \mathrm{t}_{\mathrm{LRS}}, \mathrm{t}_{\mathrm{LRH}}, \mathrm{t}_{\mathrm{LRN} 1}$ and $t_{\text {LRN2 }}$ must be met; otherwise, these functions may not affect the desired cycles or may affect adjacent cycles erroneously.

Figure 4. Output Loading for $t_{A C}, t_{O H}, t_{W C L H}$, $t_{\text {WCHL }}, t_{\text {RCLH }}, t_{\text {RCHL }}$

(9) If a $\bar{W}$ (or $\overline{O E}$ ) pulse does not satisfy the specifications for tws, $\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\mathrm{WN} 1}$ and $\mathrm{t}_{\mathrm{WN} 2}$ (or $\mathrm{t}_{\mathrm{OES}}, \mathrm{t}_{\mathrm{OEH}}, \mathrm{t}_{\text {OEN } 1}$ and $\mathrm{t}_{\mathrm{OEN} 2}$ ), the write disable function (output high impedance) being executed may not affect the desired cycles or may affect adjacent cycles erroneously.
(10) For the $\mu$ PD42270 to read new data, read operation must be delayed from write operation by at least 920 cycles. In those cases where the delay is less than 920 cycles, read data will vary as shown below:

| Source of Read Data | Delay Between Write <br> and Read Operation |
| :--- | :--- |
| Old data | 0 to 450 cycles |
| Indeterminate (either old <br> or new data) | 451 to 919 cycles |
| New data | 920 or more cycles |

Figure 5. Output Loading for $t_{L Z}, t_{H Z}$


## Timing Waveforms

## Synchronous Write/Read Cycle



## Notes:

[1] In synchronous mode, output data is delayed by one field from the input data.
[2] $\overline{\text { WLRST }}=\overline{W C L R}=V_{I H} \cdot M O D E=V_{I L} . L_{S}$ and $L_{S}=V_{I H}$ or VIL. $\overline{\text { RLRST, }}$ $\overline{\operatorname{HCL}}$, and RCK are "don't care" inputs.
[3] $\mathrm{BS}_{0}-\mathrm{BS}_{3}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.
[4] Data is transferred into and out of the data registers in blocks of $455 \times 4$ blts. When $\mathbf{W}$ goes high before all 455 words are input, write operation is disabled and none of the words are transferred to the storage array.

## Timing Waveforms (cont)

## Asynchronous Write and Read Cycles



Notes:
[1] $\overline{\text { WCLR }}=\overline{\text { RCLR }}=V_{I H} \cdot \overline{\text { WLRST }}=\overline{\text { RLRST }}=V_{I H}$. MODE $=V_{I H}$.
[2] RLJ, WLJ, WLH, and RLH $=V_{I H}$ or $V_{I L}$ LS $S_{0}$ and $L S_{1}=V_{I H}$ or $V_{I L}$.
[3] Data is transferred into and out of the data registers in blocks of $455 \times 4$ bits. When $\bar{W}$ goes high before all 455 words are input, write operation is disabled and none of the words are transferred to the storage array.

## Timing Waveforms (cont)

Write Control TIming


## Notes:

[1] $\overline{\text { WLRST }}$ and $\overline{\text { WCLR }}=\mathrm{V}_{\mathrm{IH}}$.
[2] $\mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{1 \mathrm{H}}$ or $\mathrm{V}_{\mathrm{IL}}$
[3] WLJ, RLJ, WLH, RLH, RCK, $\overline{O E}, \overline{\text { RCLR }}$, and MODE $=$ "don't care".
4] W timing for writing only to locations 0 through 454 of a scan line.
5] W timing for writing only to locations 455 through 909 of a scan line.
[6] If W goes high, then write operation is Inhibited for that half-line.

## Synchronous Polnter Clear Cycle



## Notes:

[1] $\overline{\mathbf{W}}=\overline{\mathbf{O}}=\mathrm{V}_{\mathrm{IL}}$. MODE $=\mathrm{V}_{\mathrm{IL}}$.
[2] $L S_{0}$ and $L S_{1}=V_{I H}$ or $V_{I L} . B S_{0}, B S_{1}, B S_{2}$, and $B S_{3}=V_{I H}$ or $V_{I L}$.
[3] RLRST, RCLR, and RCK = don't care.
[4] $\overline{\text { WLRST }}=V_{I H}$ during the clear cycle.

## Timing Waveforms (cont)

Asynchronous Pointer Clear Cycle


Notes:
[1] $\overline{\mathrm{W}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$. MODE $=\mathrm{V}_{\mathrm{IH}}$. $\overline{\text { WLRST }}$ and $\overline{\text { RLRST }}=\mathrm{V}_{\mathrm{IH}}$ during clear pulse.
[2] $\mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.
[3] WLH, RLH, WLJ, and RLJ $=V_{\text {IL }}$ during clear pulse.

## Timing Waveforms (cont)

Synchronous LIne Reset Cycle


## Timing Waveforms (cont)

## Asynchronous Line Reset Cycle



## Timing Waveforms (cont)

## Write Line Jump Cycle



WLH
VIL
wco

$V_{\text {IH }}$
MODE
Notes:
[1] $\overline{\operatorname{RCLR}}, \overline{\mathrm{RLRST}}, \mathrm{RCK}, \mathrm{RLH}, \mathrm{RLJ}, \overline{\mathrm{W}}$, and $\overline{\mathrm{OE}}=$ don't care.
[2] $K$ and $K^{\prime}=\mathbf{2 2 9}$ to $\mathbf{9 0 9}$ of line $n$.
[3] $\overline{\text { WLRST }}$ and $\overline{\text { WCLR }}=V_{I H}$.
[4] $L S_{0}$ and $L S_{1}=V_{\text {IH }}$ or $V_{I L}$.

## Read Line Jump Cycle


${ }^{\text {RLH }} \mathbf{V}_{\text {IL }}$

$V_{I H}$
MODE
Notes:
[1] $\overline{W C L R}, \overline{W L R S T}, W C K, W L H, W L J, \bar{W}$, and $\overline{O E}=$ don't care.
[2] J and J' $=0$ to 452 of line $n$ or 682 to 909 of line $n-1$.
[3] $\overline{\operatorname{RLRST}}$ and $\overline{\text { RCLR }}=\mathrm{V}_{\mathrm{IH}}$.
[4] $\mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.

## Timing Waveforms (cont)

## Write Line Hold Cycle



## Read Line Hold Cycle



## Timing Waveforms (cont)

## Synchronous Field Buffer Size Adjustment



## Asynchronous Field Buffer Size Adjustment



## Timing Waveforms (cont)

Write Register Carry Out


Notes:
[1] MODE, $\overline{\text { WCLR }}, \overline{\text { RCLR }}, \overline{\text { WLRST }}, \overline{\text { RLRST }}=V_{I H}$.
[2] $\mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.
[3] $\overline{O E}, \bar{W}$, WLH, RLH, WLJ, RLJ = don't care.

Read Register Carry Out


Notes:
[1] MODE, $\overline{\text { WCLR }}, \overline{\text { RCLR }}, \overline{\text { WLRST, }} \overline{\text { RLRST }}=V_{I H}$.
[2] $\mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.


## Application Examples

## Delay Line

The synchronous mode may be used to create a full-field delay line with a fixed length (figures 6 and 7 ). Useful video applications include field interpolation, interframe noise reduction, and separation of luminance $(Y)$ and chrominance ( $C$ ) signals. In these applications, field buffer size is determined by the logic levels applied to pins $L S_{0}-L S_{1}$ and $B S_{0}-B_{3}$. The former allows variation of the number of lines from 260 to 263 , while the latter controls the actual line length at 896 to 910 bits for the last line. The actual delay between data being written into $\mathrm{D}_{\text {IN }}$ and read on DOUT is controlled by the WCK clock period and the configured size of the buffer.

## Frame Synchronization or Time Base Correction

The $\mu$ PD42270 has the capability of executing asynchronous write and read cycles by independently clocking WCK and RCK, respectively. The feature is useful in applications requiring frame synchronization,
time base correction or buffering, where WCK, RCK, $\overline{W C L R}$ and $\overline{R C L R}$ may all have variable time periods. In addition, the write carry out (WCO) and read carry out (RCO) options give a positive indication when the bit pointer reaches the end of the line.

## Vertical or Horizontal Image Compression and Expansion

Vertical compression and expansion of the video image may be accomplished by means of the line jump or line hold functions. Compression occurs when WLJ or RLJ are used to jump over lines that are not to be displayed. Expansion occurs when the WLH or RLH line hold signals are used to display a line multiple times.

Horizontal compression and expansion can be achieved by modifying the cycle time of the WCK and RCK clocks, and by using the WLRST and RLRST line reset signals.

Figure 6. Example of Delay Line


Notes:
[1] $\bar{W}, \overline{O E}, M O D E, W L J$, and RLJ $=$ VIL.
[2] $\mathrm{BS}_{0}-\mathrm{BS}_{3}, \mathrm{LS}_{0}-\mathrm{LS}_{1}, \overline{\mathrm{WCLR}}$, and $\overline{\mathrm{WLRST}}=\mathrm{V}_{\mathbf{I H}}$.
[3] RCK, $\overline{\text { RCLR }}$, and $\overline{\mathrm{RLRST}}=$ don't care.

Figure 7. Delay Line Timing


Figure 8. Example of Frame Synchronization/Time Base Correction


Notes:
[1] $\overline{\mathrm{W}}, \overline{\mathrm{OE}}, \mathrm{WLJ}$, RLJ, WLH, and $\mathrm{RLH}=\mathrm{V}_{\mathrm{IL}}$.
[2] LS $_{0}-$ LS $_{1}$, MODE, $\overline{\text { WLRST }}$, and $\overline{\text { RLRST }}=V_{I H}$.

Figure 9. Asynchronous Read/Write Timing for Frame Synchronization or Time Base Correction


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42273 is a dual-port graphics buffer equipped with a $256 \mathrm{~K} \times 4$-bit random access port and a $512 \times 4$-bit serial read port. The random access port is used by the host CPU to read or write data addressed in any desired order. The serial read port is connected to an internal 2048 -bit data register through a $512 \times 4$-bit serial read output circuit. In addition to its conventional features, the random access port also has a write-perbit capability that allows each of the four data bits to be individually selected or masked for a write cycle.
The $\mu$ PD42273 features fully asynchronous dual access, except when transferring stored graphics data from a selected row of the storage array to the data register. During a data transfer, the random access port requires a special timing cycle using a transfer clock; the serial read port, however, continues to operate normally. Following the clock transition of a data transfer, the serial read output data changes from an old line to a new line and the starting location on the new line is addressable in the data transfer cycle.

The $\mu$ PD42273 is fabricated with an advanced CMOS silicon-gate process using polycide technology and trench capacitors. The process provides high storage cell density, high performance, and high reliability.
Refreshing is accomplished by means of $\overline{\text { ASS}}-$ only refresh cycles or by normal read or write cycles on the 512 address combinations of $A_{0}$ through $A_{8}$ during an 8 -ms period. Automatic internal refreshing, by means of either hidden refreshing or the CAS before RAS timing and on-chip internal refresh circuitry, is also available. The transfer of a row of data from the storage array to the data register also refreshes that row automatically.
All inputs and outputs, including clocks, are TTLcompatible. All address and data-in signals are latched on-chip to simplify system design. Data-out is unlatched to allow greater system flexibility.

The $\mu$ PD42273 is available in a 28 -pin plastic ZIP or 28 -pin plastic SOJ and is guaranteed for operation at 0 to $+70^{\circ} \mathrm{C}$.

## Features

- Three functional blocks
$-256 \mathrm{~K} \times 4$-bit random access storage array
- 2048-bit data register
- $512 \times 4$-bit serial read output circuitTwo data ports: random access and serial read
Dual-port accessibility except during data transfer
Addressable start of serial read operation
$\square$ Real-time data transfer
Single +5 -volt $\pm 10 \%$ power supply
On-chip substrate bias generator
Random access port
- Two main clocks: $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$
- Multiplexed address inputs
-Direct connection of I/O and address lines allowed by $\overline{O E}$ to simplify system design
-Refresh interval: 512 cycles/8 ms
- Read, early write, late write, read-write/read-modify-write, $\overline{R A S}$-only refresh, and fast page capabilities
- Automatic internal refreshing by means of the $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ on-chip address counter
- Hidden refreshing by means of $\overline{\mathrm{CAS}}$-controlled output
- Write-per-bit capability regarding four I/O bits
- Write bit selection multiplexed on $\mathrm{IO}_{0}-\mathrm{O}_{3}$
$\overline{\text { RAS}}$-activated data transfer
- Same cycle time as for random access
- Row data transferred to data register as specified by row address inputs
-Starting location of following serial read operation specified by column address inputs
- Transfer of 2048 bits of data on one row to the data register, and the starting location of the serial read circuit, activated by a low-to-high transition of $\overline{\text { DT }}$
- Data transfer during real-time or standby operation of serial port
Fast serial read operation by means of serial control pins
- Serial data presented on $\mathrm{SO}_{0}-\mathrm{SO}_{3}$
- Direct connection of multiple serial outputs for extension of data lengthFully TTL-compatible inputs, outputs, and clocks
Three-state outputs for random and serial access
CMOS silicon-gate process with trench capacitors
$400-\mathrm{mil}, 28$-pin plastic SOJ and 28 -pin plastic ZIP packaging


## Ordering Information

| Part Number | Row Access Time (max] | Serial Access Time (max) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PD42273LE-10 | 100 ns | 30 ns | 28-pin plastic SOJ |
| LE-12 | 120 ns | 40 ns |  |
| $\mu$ PD42273V-10 | 100 ns | 30 ns | 28-pin plastic ZIP |
| V-12 | 120 ns | 40 ns |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{8}$ | Address inputs |
| $\mathrm{W}_{0} / 10_{0}-\mathrm{W}_{3} / \mathrm{IO}_{3}$ | Write selects in write-per-bit/data inputs and outputs |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\overline{\mathrm{WB}} / \overline{\mathrm{WE}}}$ | Write-per-bit/write enable |
| $\overline{\overline{\mathrm{DT}} / \overline{\overline{O E}}}$ | Data transfer/output enable |
| $\mathrm{SO} 0_{0}-\mathrm{SO}_{3}$ | Serial read outputs |
| SC | Serial control |
| $\overline{\mathrm{SOE}}$ | Serial output enable |
| GND | Ground |
| VCC | +5 -volt $\pm 10 \%$ power supply |
| NC | No connection |

Absolute Maximum Ratings

| Voltage on any pin except $\mathrm{V}_{\text {CC }}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 1}$ | -1.0 to +7.0 V |
| :--- | ---: |
| Voltage on $\mathrm{V}_{\mathrm{CC}}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 2}$ | -1.0 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{l}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.5 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configurations

## 28-Pin Plastic SOJ

| sc 1 | 28 | $\square \mathrm{GND}$ |
| :---: | :---: | :---: |
| $\mathrm{SO}_{0} \square^{2}$ | 27 | $\square \mathrm{SO}_{3}$ |
| SO1 ${ }^{3}$ | 26 | $\square \mathrm{SO}_{2}$ |
| DT/OE $\square^{4}$ | 25 | $\square \overline{\text { SOE }}$ |
| $\mathrm{w}_{0} / 10_{0} \square 5$ | 24 | $\square \mathrm{W}_{3} / 1 \mathrm{O}_{3}$ |
| $\mathrm{w}_{1} / 10_{1} \square^{6}$ | $\bigcirc \quad 23$ | $\square \mathrm{w}_{2} / 1 \mathrm{O}_{2}$ |
| $\overline{W B} / \overline{W E} \square^{7}$ | N 22 | $\square \mathrm{Nc}$ |
| NC $\square_{8}$ | O 21 | $\square \mathrm{CAS}$ |
| $\overline{\text { RAS }} \square^{9}$ | ¢ 20 | $\square \mathrm{NC}$ |
| $\mathrm{As}_{8}-10$ | 19 | $\square A_{0}$ |
| $A_{6} \square 11$ | 18 | ص $A_{1}$ |
| $A_{5} \square 12$ | 17 | $ص A_{2}$ |
| $\mathrm{A}_{4} \square 13$ | 16 | $\mathrm{A}_{3}$ |
| vcc 14 | 15 | $\square^{A_{7}}$ |

## 28-Pin Plastic ZIP

|  |  |
| :---: | :---: |
|  | 83-004902A |

## Pin Functions

$\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{\mathbf{8}}$ [Address Inputs]. These pins are multiplexed as row address inputs and column address inputs. Since each of four data bits in the random access port corresponds to 262,144 storage cells, nine row addresses and nine column addresses are required to decode one cell location. Nine row addresses are used to select one of the 512 possible rows for a read, write, data transfer, or refresh operation. Nine column addresses are then used to select the one of 512 possible column decoders for a read or write cycle or the one of 512 possible starting locations for the next serial read cycle. (Column addresses are not required in $\overline{\text { RAS }}$-only refresh cycles.)
$\mathrm{W}_{0} / \mathrm{lO}_{0}-\mathrm{W}_{3} / \mathrm{IO}_{3}$ [Write-Per-Bit Inputs/Common Data Inputs and Outputs]. Each of the four data bits can be individually latched by these inputs at the falling edge of $\overline{\text { RAS }}$ in a write cycle, and then updated at the next falling edge of $\overline{\text { RAS. }}$

In a read cycle, these pins function as outputs for the selected storage cells. In a write cycle, input data on these pins is latched by the falling edge of $\overline{C A S}$ or $\overline{W E}$.
$\overline{\text { RAS }}$ [Row Address Strobe]. This pin is functionally equivalent to a chip enable signal in that whenever it is activated, the 2,048 storage cells of a selected row are sensed simultaneously and the sense amplifiers restore all data. The nine row address bits are latched by this signal and must be stable on or before its falling edge. $\overline{\mathrm{CAS}}, \overline{\mathrm{DT}} / \overline{\mathrm{OE}}$, and $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ are simultaneously latched to determine device operation.
$\overline{\text { CAS }}$ [Column Address Strobe]. This pin serves as a chip selection signal to activate the column decoder and the input/output buffers. The nine column address bits are latched at the falling edge of $\overline{C A S}$.
$\overline{W B} / \overline{W E}$ [Write-Per-Bit Control/Write Enable]. At the falling edge of $\overline{\mathrm{RAS}}$, the input $\overline{W B} / \overline{\mathrm{WE}}$ must be low and $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ high to enable the write-per-bit capability. A high $\overline{W B} / \overline{W E}$ can be used at the beginning of a standard write or read cycle.
$\overline{\mathrm{DT}} / \overline{\mathbf{O E}}$ [Data Transfer/Output Enable]. At the falling edge of $\overline{\mathrm{RAS}}$, a high-level $\overline{\mathrm{CAS}}$ and a low $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ initiate a data transfer, regardless of the level of $\overline{W B} / \overline{W E}$. A high $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ initiates conventional read or write cycles and controls the output buffer in the random access port.
$\mathrm{SO}_{\mathbf{0}}-\mathrm{SO}_{3}$ [Serial Data Output]. Four-bit data is read from these pins. Data remains valid until the next SC signal is activated.
SC [Serial Control]. By activating this signal repeatedly the serial read operation (starting from the location specified in the data transfer cycle) is performed within the 2,048 bits in the data register. The rising edge of SC activates the serial read operation, in which four of the 2,048 data bits are transferred to four serial data buses, respectively, and read out. Whenever SC is low, the serial port is in standby.
$\overline{\mathbf{S O E}}$ [Serial Output Enable]. This signal controls the serial data output buffer.

## Block Diagram



## Device Operation

## Overall Description

The $\mu$ PD42273 consists of a random access port and a serial read port. The random access port performs standard read and write operation as well as the data transfer operation, all of which are based on the conventional $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ timing cycle. In a data transfer cycle, data in each storage cell on the selected row is transferred simultaneously through a transfer gate to the corresponding register location. The serial read port shows the contents of the data register in serial order. The random access port and the serial read port can operate asynchronously, except when the transfer gate is turned on during the data transfer period.

## Addressing

The graphics storage array is arranged in a 512 -row by 2048-column matrix. Each of 4 data bits in the random access port corresponds to 262,144 storage cells. Therefore, 18 address bits are required to decode one cell location. Nine row address bits are set up on pins $\mathrm{A}_{0}$ through $\mathrm{A}_{8}$ and latched onto the chip by $\overline{\text { RAS. }}$. Nine column address bits then are set up on pins $A_{0}$ through $\mathrm{A}_{8}$ and latched onto the chip by CAS. All addresses must be stable, on or before the falling edges of RAS and $\overline{C A S} . \overline{R A S}$ is similar to a chip enable signal; whenever it is activated, 2048 cells on the selected row are sensed simultaneously and the sense amplifiers automatically restore the data. $\overline{\text { CAS }}$ serves as a chip selection signal to activate the column decoder and the input and output buffers.

Through 1 of 512 column decoders, 4 storage cells on the row are connected to 4 data buses, respectively. In the data transfer cycle, 9 row address bits are used to select 1 of the 512 possible rows involved in the transfer of data to the data register. Nine column address bits are then used to select the 1 of 512 possible serial decoders that corresponds to the starting location of the next serial read cycle.

In the serial read port, when SC is activated, 4 data bits in the 2048-bit data register are transferred to 4 serial data buses and read out. By activating SC repeatedly, the serial read operation (starting from the location specified in the data transfer cycle) is executed within the 2048 bits in the data register.

## Random Access Port Operation

An operation in the random access port begins with a negative transition of $\overline{\text { RAS. Both } \overline{\text { RAS }} \text { and } \overline{\mathrm{CAS}} \text { have }}$ minimum pulse widths, as specified in the timing table, which must be maintained for proper device operation and data integrity. Once begun, a cycle must meet all specifications, including minimum cycle time. To reduce the number of pins, the following functions are multiplexed in the random access port.

- $\overline{D T} / \overline{O E}$
- $\overline{W B} / \overline{W E}$
- $\mathrm{W}_{\mathrm{i}} / \mathrm{IO}_{\mathrm{i}}(\mathrm{i}=0,1,2,3)$

The $\overline{O E}, \overline{W E}$ and $1 O_{i}$ functions represent standard operations. The $\overline{\mathrm{DT}}, \overline{\mathrm{WB}}$, and $\mathrm{W}_{\mathrm{i}}$ functions are special inputs to be applied in the same way as row address inputs, with setup and hold times referenced to the negative transition of RAS. The DT level determines whether a cycle is a random access operation or a data transfer operation. $\overline{\mathrm{WB}}$ affects only write cycles and determines whether or not the write-per-bit capability is used. $\mathrm{W}_{\mathrm{i}}$ defines data bits to be written with the write-per-bit capability. In the following discussions, these multiplexed pins are designated as $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$, for example, depending on the function being described.

To use the $\mu \mathrm{PD} 42273$ for random access, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be high as $\overline{\mathrm{RAS}}$ falls. Holding $\overline{\mathrm{DT}}$ (/OE) high disconnects the 2048-bit register from the corresponding 2048-digit lines of the storage array. Conversely, to execute a data transfer, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be low as $\overline{\text { RAS }}$ falls to open the 2048 transfer gates and transfer data from one of the rows to the register.

Read Cycle. A read cycle is executed by activating $\overline{R A S}, \overline{C A S}$, and $\overline{O E}$ and maintaining a high ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ during an active CAS. The $\left(\mathrm{W}_{\mathrm{i}}\right) \mathrm{IO}_{\mathrm{i}}$ data pin $(\mathrm{i}=0,1$,

2,3) remains in a state of high impedance until valid data appears at the output at access time. Device access time, $\mathrm{t}_{\mathrm{ACC}}$, will be the longest of the following four calculated intervals:

- $t_{R A C}$
- $\frac{\mathrm{RAS}}{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay ( $\mathrm{t}_{\mathrm{RCD}}$ ) $+\mathrm{t}_{\mathrm{CAC}}$
- RAS to column address delay ( $\mathrm{t}_{\text {RAD }}$ ) $+\mathrm{t}_{\mathrm{AA}}$
- $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{OE}}$ delay + toen $^{\text {a }}$

Access times from $\overline{\mathrm{RAS}}\left(\mathrm{t}_{\mathrm{RAC}}\right)$, from $\overline{\mathrm{CAS}}\left(\mathrm{t}_{\mathrm{CAC}}\right)$, from the column addresses ( $t_{A A}$ ), and from $\overline{O E}$ ( $t_{O E A}$ ) are device parameters. The $\overline{R A S}$ to $\overline{\mathrm{CAS}}, \overline{\mathrm{RAS}}$ to column address, and $\overline{R A S}$ to $\overline{O E}$ delays are system-dependent timing parameters.
Output becomes valid after the access time has elapsed and it remains valid while both $\overline{C A S}$ and $\overline{O E}$ are low. $A$ high $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ returns the output to high impedance.

Truth Table (Random Access Port)

| $\overline{\mathrm{RAS}}$ | $\overline{\mathrm{CAS}}$ | $\overline{\mathrm{DT}} / \overline{0 \mathrm{EE}}$ | $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ | Function |
| :---: | :---: | :---: | :---: | :--- |
| $\downarrow$ | H | H | H | Read/write |
| $\downarrow$ | H | H | L | Write-per-bit |
| $\downarrow$ | H | L | X | Data transfer |
| $\downarrow$ | L | X | X | $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh |

Notes:
(1) $\mathrm{X}=$ "don't care"

Write Cycle. A write cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ low during the $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycle. The falling edge of $\overline{\mathrm{CAS}}$ or ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ strobes the data on $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ into the on-chip data latch. To make use of the write-per-bit capability, $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ must be low as $\overline{\mathrm{RAS}}$ falls. In this case, data bits to which the write operation is applied can be specified by keeping $\mathrm{W}_{\mathrm{i}}\left(/ / \mathrm{O}_{\mathrm{i}}\right)$ high, with setup and hold times referenced to the negative transition of $\overline{R A S}$.
For those data bits of $W_{i}\left(/ 1 O_{i}\right)$ that are kept low as $\overline{\text { RAS }}$ falls, write operation is inhibited on the chip. If $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ is high as $\overline{\mathrm{RAS}}$ falls, the write-per-bit capability is not used and a write cycle is executed for all four data bits.
Early Write Cycle. An early write cycle is executed by bringing ( $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ low before $\overline{\mathrm{CAS}}$ falls. Data is strobed by CAS, with setup and hold times referenced to this signal, and the output remains in a state of high impedance for the entire cycle. As $\overline{\mathrm{RAS}}$ falls, ( $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ must meet the setup and hold times of a high $\overline{\mathrm{DT}}$; but otherwise ( $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ does not affect any circuit operation during an active $\overline{\mathrm{CAS}}$.

Read-Write/Read-Modify-Write [RW/RMW] Cycle. An RW/RMW cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ low with the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals low. $\left(\mathrm{W}_{\mathrm{i}}\right)$ ) $\mathrm{O}_{\mathrm{i}}$ shows read data at access time. Afterward, in preparation for the upcoming write cycle, $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{I} \mathrm{O}_{\mathrm{i}}$ is returned to a highimpedance condition by a high ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$. The data to be written is strobed by ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$, with setup and hold times referenced to this signal.
Late Write Cycle. This cycle shows the timing flexibility of ( $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$, which can be activated just after ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ falls, even when ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ is brought low after $\overline{\mathrm{CAS}}$.
Refresh Cycle. A cycle at each of the 512 row addresses ( $A_{0}$ through $A_{8}$ ) will refresh all storage cells. Any operation performed in the random access port (i.e., read, write, refresh, or data transfer) refreshes the 2048 bits selected by the $\overline{\text { RAS }}$ addresses or by the on-chip refresh address counter.
$\overline{R A S}-o n l y$ Refresh Cycle. A cycle having only $\overline{R A S}$ active refreshes all of the storage cells in one row of the graphics storage array. A high $\overline{\mathrm{CAS}}$ is maintained during an active $\overline{R A S}$ to keep $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ in a state of high impedance. This mode is preferred for refreshing, especially when the host system consists of multiple rows of random access devices. The data outputs may be OR-tied with no bus contention when RAS-only refresh cycles are executed.
$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ Refresh Cycle. This cycle executes internal refreshing using the on-chip control circuitry. Whenever CAS is low as $\overline{\text { RAS }}$ falls, this circuitry automatically performs refreshing for row addresses specified by the internal refresh address counter. In this cycle, the circuit operation based on $\overline{C A S}$ is maintained in a reset state. When internal refreshing is complete, the address counter automatically increments in preparation for the next CAS before $\overline{\text { RAS }}$ cycle.
Hidden Refresh Cycle. This function performs hidden refreshing after a read cycle, without disturbing the read data output. Once valid, the data output is controlled by $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$. After the read cycle, $\overline{\mathrm{CAS}}$ is held low while $\overline{R A S}$ goes high for precharge. A $\overline{\text { RAS-only cycle is then executed (except that CAS }}$ is held at a low level instead of a high level) and the data output remains valid. Since hidden refreshing is the same as $\overline{C A S}$ before $\overline{\mathrm{RAS}}$ refreshing, the data output remains valid during either operation.
Fast-Page Cycle. This feature allows effectively faster data access by keeping the same row address and strobing successive column addresses onto the chip. By maintaining a low $\overline{\mathrm{RAS}}$ while successive $\overline{\mathrm{CAS}}$ cycles
are executed, data is transferred at a faster rate because row addresses are maintained internally and do not have to be reapplied. During this operation, read, write and RW/RMW cycles are possible. Additionally, the write-per-bit control specified in the entry write cycle is maintained through the following fastpage write cycle.
During a fast-page read cycle, the $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ data pin ( $i=0,1,2$, or 3 ) remains in a state of high impedance until valid data appears at the output pin at access time. Device access time in this cycle will be one of the following calculated intervals:

```
- \(\mathrm{t}_{\mathrm{ACP}}\), when \(\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}\) and \(\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}(\max )\)
- \(t_{A A}\), when \(t_{A S C} \leq t_{A S C}\) (max) and \(t_{C P} \geq t_{C P}\) (max) or
    when \(\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}\) and \(\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}\) (max)
- \(t_{C A C}\), when \(t_{A S C} \geq t_{A S C}\) (max) and \(t_{C P} \geq t_{C P}\) (max)
```

Data Transfer Cycle. A data transfer cycle is executed by bringing $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ low as RAS falls. As described previously, the specified 1 of the possible 512 rows involved in the data transfer, as well as the starting location of the following serial read cycle in the serial read port, are defined by address inputs. $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be low for a specified time, measured from RAS and $\overline{\mathrm{CAS}}$, so that the data transfer condition may be satisfied. The low-to-high transition of $\overline{D T}$ causes two transfer operations through the data transfer gates: column address buffer outputs are transferred to the serial address counters, and storage cell data amplified on digit lines is transferred to the data register. $\overline{\text { RAS }}$ and CAS must be low during these operations to keep the data in the random access port.

## Serial Read Port Operation

The serial read port is used only to read serially the contents of the data register starting from a specified location. The entire operation, therefore, follows the data transfer cycle. The only condition under which the serial read port must synchronize with the random access port is when the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must occur within a specified period in an SC cycle. Except for this SC cycle, the serial read port can operate asynchronously with the random access port. The output data appears at $\mathrm{SO}_{\mathrm{i}}$ after an access time of $t_{S C A}$, measured from a high SC, only when a low SOE is maintained. The SC cycle which includes the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ shows old data in the data register; subsequent SC cycles show new data transferred to the data register serially and in a looped manner. The serial output is maintained until the next SC signal is activated. SOE controls the impedance of the serial output to allow multiplexing of more than one bank of $\mu$ PD42273 graphics buffers into the same
external circuitry. When $\overline{\text { SOE }}$ is at a low logic level, $\mathrm{SO}_{i}$ is enabled and the proper data is read. When $\overline{S O E}$ is at a high logic level, $\mathrm{SO}_{\mathrm{i}}$ is disabled and in a state of high impedance.

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | 5.5 | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V |  |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |  |

## Power Supply Current Definitions

| Port | Operation | Symbol | Operating Conditions |
| :---: | :---: | :---: | :---: |
| Random Access | Read/write | RW | $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Standby | STB | $\overline{\mathrm{CAS}}=\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IH}}$ |
|  | RAS-only refresh | ROR | $\begin{aligned} & \overline{\mathrm{RAS}} \text { cycling; } \overline{\mathrm{CAS}}=V_{I H} ; \\ & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) \end{aligned}$ |
|  | Fast page | PAGE | $\begin{aligned} & \hline \overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{LL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \text { tpC }=\operatorname{tpC}(\mathrm{min}) \end{aligned}$ |
|  | $\overline{\overline{C A S}}$ before RAS refresh | CBR | $\overline{\mathrm{CAS}}$ low as $\overline{\mathrm{RAS}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Data transfer | DTR | $\overline{\mathrm{DT}}$ low as $\overline{\mathrm{RAS}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
| Serial <br> Read | Standby | STB | $\overline{S O E}=V_{\text {IH }} ; S C=V_{\text {IH }}$ or $\cdot V_{\text {IL }}$ |
|  | Serial read | ACT | $\begin{aligned} & \overline{\mathrm{SOE}}=V_{\mathrm{IL}} ; \text { SC cycling; } \\ & \mathrm{t}_{\mathrm{SCC}}=\mathrm{t}_{\mathrm{SCC}}(\mathrm{~min}) \end{aligned}$ |

## Power Supply Current

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Port |  | Symbol | $\frac{\text { Limits }}{\mu \mathrm{PD} 42273}$ |  | Unit | Test Conditions [Note 1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42273$ |  |  |
| Random | Serial |  | -10 | -12 |  |  |
| Access | Read |  | Max | Max |  |  |
| RW | STB |  | ${ }^{\text {CCC1 }}$ | 70 | 60 | mA |  |
| STB | STB | ${ }_{\text {ICC2 }}$ | 3 | 3 | mA |  |
| ROR | STB | $\mathrm{I}_{\mathrm{CC3}}$ | 70 | 60 | mA | (Note 2) |
| PAGE | STB | ${ }^{\text {c.C4 }}$ | 60 | 50 | mA | (Note 3) |
| CBR | STB | $I_{\text {cc5 }}$ | 70 | 60 | mA |  |
| DTR | STB | $\mathrm{I}_{\text {CC6 }}$ | 70 | 60 | mA |  |
| RW | ACT | ${ }^{\text {CCC7 }}$ | 100 | 90 | mA |  |
| STB | ACT | ICC8 | 35 | 30 | mA |  |
| ROR | ACT | ICC9 | 100 | 90 | mA | (Note 2) |
| PAGE | ACT | $\mathrm{I}_{\mathrm{CCH}}$ | 85 | 75 | mA | (Note 3) |
| CBR | ACT | $\mathrm{I}_{\text {CC11 }}$ | 100 | 90 | mA |  |
| DTR | ACT | $\mathrm{I}_{\mathrm{CC12}}$ | 100 | 90 | mA |  |

## Notes:

(1) No load on $\mathrm{IO}_{i}$ or $\mathrm{SO}_{\mathrm{i}}$. Except for $\mathrm{ICC}^{2}$, $\mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC} 6}$, real values depend on output loading and cycle rates.
(2) $\overline{C A S}$ is not clocked, but is kept at a stable high or low level. The column addresses are also assumed to be kept at a stable high or low level.
(3) A change in column addresses must not occur more than once in a fast-page cycle.

## Capacitance

| Parameter | Symbol | Limit (max) | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: |
| Input capacitance | $\mathrm{C}_{1(\mathrm{~A})}$ | 5 | pF | $\mathrm{A}_{0}$ to $\mathrm{A}_{8}$ |
|  | $\mathrm{C}_{1(\overline{D T} / \overline{0 E})}$ | 8 | pF | $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ |
|  | $\mathrm{C}_{1(\overline{W B} / \overline{\mathrm{WE}})}$ | 8 | pF | $\overline{W B} / \overline{W E}$ |
|  | $\mathrm{C}_{1(\overline{\mathrm{RAS}})}$ | 8 | pF | $\overline{\mathrm{RAS}}$ |
|  | $\mathrm{C}_{1(\overline{\mathrm{CAS}})}$ | 8 | pF | $\overline{\text { CAS }}$ |
|  | $\mathrm{C}_{\text {l }}^{\text {(SOE) }}$ | 8 | pF | $\overline{\text { SOE }}$ |
|  | $\mathrm{Cl}_{\text {(SC) }}$ | 8 | pF | SC |
| Input/output capacitance | $\mathrm{Cl}_{10 \text { (W/10) }}$ | 7 | pF | $\begin{aligned} & W_{0} / 10_{0} \text { to } \\ & W_{3} / 10_{3} \end{aligned}$ |
| Output capacitance | $\mathrm{Co}_{\text {(SO) }}$ | 7 | pF. | $\mathrm{SO}_{0}$ to $\mathrm{SO}_{3}$ |

AC Characteristics

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions | Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{\mu \text { P042273-10 }}$ |  | $\mu$ PD42273-12 |  |  |  |  |  | $\mu \mathrm{PD4}$ | 273-10 | $\mu \mathrm{PD} 42$ | 273-12 |  |  |
|  |  | Min | Max | Min | Max |  |  |  |  | Min | Max | Min | Max |  |  |
| Switching Characteristics |  |  |  |  |  |  |  | Timing Requirements (cont) |  |  |  |  |  |  |  |
| Access time from RAS | $\mathrm{t}_{\text {RAC }}$ |  | 100 |  | 120 | ns | (Notes 3, 4 and 12) | Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | ns | $\begin{gathered} \text { (Notes 3, } 10 \\ \text { and 18) } \end{gathered}$ |
| Access time from falling edge of CAS | $t_{C A C}$ |  | 25 |  | 30 | ns | (Notes 3, 4, 13, 14 and 15) | $\overline{\overline{\mathrm{RAS}}}$ precharge time | trP | 80 |  | 90 |  | ns |  |
|  |  |  |  |  |  |  |  | $\overline{\overline{\text { RAS }} \text { pulse }}$ | $t_{\text {RAS }}$ | 100 | 10000 | 120 | 10000 | ns |  |
| Access time from column address | $t_{\text {AA }}$ |  | 55 |  | 65 | ns | (Notes 3, 4, | width |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Fast-page <br> RAS pulse width | $t_{\text {RASP }}$ | 100 | 100000 | 120 | 100000 | ns |  |
| Access time from rising edge of CAS | $t_{\text {ACP }}$ |  | 55 |  | 65 | ns | (Notes 3 and 15) | $\overline{\overline{\mathrm{RAS}}}$ hold time | $t_{\text {RSH }}$ | 25 |  | 30 |  | ns |  |
|  |  |  |  |  |  |  |  | $\overline{\mathrm{CAS}}$ precharge | $\mathrm{t}_{\text {CPN }}$ | 10 |  | 15 |  | ns |  |
| Access time from $\overline{O E}$ | $t_{0 E A}$ |  | 25 |  | 30 | ns | (Notes 3 and 4) | time (nonpage mode) |  |  |  |  |  |  |  |
| Serial output access time from SC | ${ }^{\text {tsCA }}$ |  | 30 |  | 40 | ns | (Note 3) | Fast-page CAS precharge time | ${ }_{\text {t }}^{\text {cP }}$ | 10 | 25 | 15 | 30 | ns |  |
| Serial output access time from $\overline{S O E}$ | ${ }^{\text {t }}$ OA |  | 25 |  | 30 | ns | (Note 3) | $\overline{\mathrm{CAS}}$ pulse width | ${ }^{\text {t }}$ AS | 25 | 10000 | 30 | 10000 | ns |  |
|  |  |  |  |  |  |  |  | C-AS hold time | ${ }_{\text {t }}$ | 100 |  | 120 |  | ns |  |
| Output disable time from $\overline{\text { CAS high }}$ | $\mathrm{t}_{\text {OFF }}$ | 0 | 25 | 0 | 30 | ns | (Note 5) | $\begin{aligned} & \overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CAS}}} \\ & \text { delay } \end{aligned}$ | $\mathrm{t}_{\text {RCD }}$ | 25 | 75 | 25 | 90 | ns | (Note 4) |
|  |  |  |  |  |  |  |  | $\overline{\overline{\mathrm{CAS}} \text { high to }}$ | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | ns | (Note 16) |
| Output disable time from $\overline{0 E}$ high | $\mathrm{t}_{0 \times 2}$ | 0 | 25 | 0 | 30 | ns | (Note 5) | RAS low precharge time |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Row address | $t_{\text {ASR }}$ | 0 |  | 0 |  | ns |  |
| Serial output disable time from $\overline{S O E}$ high | $\mathrm{t}_{\text {SOZ }}$ | 0 | 15 | 0 | 20 | ns | (Note 5) | setup time |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 15 |  | ns |  |
| $\begin{aligned} & \text { high } \\ & \hline \overline{\overline{S O E}} \text { low to } \\ & \text { serial output } \\ & \text { setup delay } \end{aligned}$ | ${ }^{\text {t }}$ S00 | 5 |  | 5 |  | ns |  | Column address setup time | $t_{\text {ASC }}$ | 0 | 25 | 0 | 30 | ns | (Note 15) |
| Serial output hold time after SC high | ${ }^{\text {tSOH}}$ | 5 |  | 10 |  | ns |  | Column address hold time | $\mathrm{t}_{\text {cah }}$ | 15 |  | 20 |  | ns |  |
| Timing Requirements |  |  |  |  |  |  |  | $\overline{\mathrm{RAS}}$ to column address delay | $t_{\text {RAD }}$ | 17 | 45 | 20 | 55 | ns | (Notes 9 <br> and 14) |
| Random read or write cycle time | $t_{R C}$ | 190 |  | 220 |  | ns | (Note 11) | time |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Column address to $\overline{\text { RAS lead }}$ |  | 55 |  | 65 |  | ns |  |
| Read-write/ read-modifywrite cycle | $\mathrm{t}_{\text {RWC }}$ | 255 |  | 295 |  | ns | (Note 11) |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | ns |  |
| Fast-page cycle time | ${ }_{\text {tpC }}$ | 60 |  | 70 |  | ns | (Note 11) | Read command hold time after | $t_{\text {RRH }}$ | 10 |  | 10 |  | ns | (Note 6) |
| Fast-page read-write/ read-modify write cycle time | tPRWC | 125 |  | 145 |  | ns | (Note 11) | RAS high |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Read command hold time after $\overline{\mathrm{CAS}}$ high | $t_{\mathrm{RCH}}$ | 0 |  | 0 |  | ns | (Note 6) |

$\mu$ PD42273

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42273$-10 $\mu$ PD42273-12 |  |  |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| Write command setup time | twCs | 0 |  | 0 |  | ns | (Note 7) |
| Write command hold time | $t_{\text {WCH }}$ | 20 |  | 30 |  | ns |  |
| Write command pulse width |  | 20 |  | 25 |  | ns | (Note 17) |
| Write command to $\overline{\text { RAS }}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | tcwi | 30 |  | 35 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | ns | (Note 8) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 25 |  | ns | (Note 8) |
| Column address to WE delay | $t_{\text {AWD }}$ | 85 |  | 100 |  | ns | (Note 7) |
| $\begin{aligned} & \overline{\overline{\mathrm{CAS}} \text { to } \overline{\mathrm{WE}}} \\ & \text { delay } \end{aligned}$ | tcwo | 55 |  | 65 |  | ns | (Note 7) |
| $\begin{aligned} & \overline{\overline{\operatorname{ASS}} \text { to } \overline{\mathrm{WE}}} \\ & \text { delay } \end{aligned}$ | $t_{\text {RWD }}$ | 130 |  | 155 |  | ns | (Note 7) |
| $\overline{\overline{O E}}$ high to data-in setup delay | toEd | 30 |  | 35 |  | ns |  |
| $\overline{0 E}$ high hold time after WE low | toen | 25 |  | 30 |  | ns |  |
| $\overline{\overline{C A S}}$ before $\overline{\text { RAS }}$ refresh setup time | ${ }_{\text {t CSR }}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ before RAS refresh hold time | ${ }^{\text {t }}$ CHR | 15 |  | 20 |  | ns |  |
| $\overline{\text { RAS }}$ high to CAS low precharge time | $t_{\text {RPC }}$ | 0 |  | 0 |  | ns |  |
| Refresh time interval | $t_{\text {REF }}$ |  | 8 |  | 8 | ms | $\begin{gathered} \text { Addresses } \\ \mathrm{A}_{0}-\mathrm{A}_{8} \\ \hline \end{gathered}$ |
| $\overline{\overline{D T}}$ low setup time | $t_{\text {DLS }}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{D T}}$ low hold time after RAS low | ${ }_{\text {triH }}$ | 90 |  | 120 |  | ns |  |


| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42273$-10 |  | $\mu \mathrm{P042273-12}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| $\overline{\text { DT low hold }}$ time after $\overline{\text { CAS }}$ low | ${ }^{\text {c }}$ CDH | 30 |  | 35 |  | ns |  |
| SC high to $\overline{\mathrm{DT}}$ high delay | ${ }^{\text {t }}$ SD | 10 |  | 15 |  | ns |  |
| SC low hold time after $\overline{\text { DT }}$ high | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | ns |  |
| Serial clock cycle time | tscc | 30 |  | 40 |  | ns | (Note 11) |
| SC pulse width | ${ }^{\text {tSCH}}$ | 10 |  | 15 |  | ns |  |
| SC precharge time | ${ }^{\text {t }} \mathrm{CL}$ | 10 |  | 15 |  | ns |  |
| $\overline{\overline{D T}}$ high setup time | $\mathrm{t}_{\mathrm{DHS}}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{D T}}$ high hold time | $\mathrm{t}_{\text {DHH }}$ | 15 |  | 20 |  | ns |  |
| $\overline{\bar{T}}$ high to $\overline{\mathrm{RAS}}$ high delay | $t_{\text {DTR }}$ | 10 |  | 10 |  | ns |  |
| $\overline{\overline{T T}}$ high to CAS high delay | $\mathrm{t}_{\text {DTC }}$ | 5 |  | 5 |  | ns |  |
| $\overline{\overline{0 E}}$ to $\overline{\mathrm{RAS}}$ inactive setup time | ${ }^{1} 0 \mathrm{ES}$ | 10 |  | 10 |  | ns |  |
| Write-perbit setup time | ${ }^{\text {twBS }}$ | 0 |  | 0 |  | ns |  |
| Write-perbit hold time | ${ }^{\text {t }}$ WBH | 15 |  | 20 |  | ns |  |
| Write bit selection setup time | tws | 0 |  | 0 |  | ns |  |
| Write bit selection hold time | $\mathrm{t}_{\text {WH }}$ | 15 |  | 20 |  | ns |  |
| $\overline{\overline{S O E}}$ pulse width | $\mathrm{t}_{\text {SOE }}$ | 10 |  | 15 |  | ns |  |
| $\overline{\overline{S O E}}$ precharge time | $\mathrm{t}_{\text {SOP }}$ | 10 |  | 15 |  | ns |  |
| $\overline{\overline{D T}}$ high hold time after $\overline{\text { RAS }}$ high | $\mathrm{t}_{\text {DTH }}$ | 15 |  | 20 |  | ns |  |

Notes:
(1) All voltages are referenced to GND.

## Notes [cont]:

(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved. Also, $\overline{\text { SOE must be held high or SC must be held low }}$ until completion of the first data transfer cycle.
(3) See input/output timing waveforms for timing reference voltages. See figures 3 and 4 for output loads.
(4) Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. The $t_{R C D}$ (max) limit is specified as a reference point only. If $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, access time is controlled exclusively by $t_{C A C}, t_{\text {OEA }}$, or $t_{A A}$.
(5) An output disable time defines the time at which the output achieves the open-circuit condition and is not referenced to output voltage levels.
(6) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(7) $t_{W C S}, t_{A W D}, t_{C W D}$, and $t_{\text {RWD }}$ are restrictive operating parameters in read-write and read-modify-write cycles only. If twCS $\geq$ $t_{\text {WCS }}$ ( min ), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{AWD}} \geq$ $\mathrm{t}_{\mathrm{AWD}}(\mathrm{min}), \mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\text {RWD }}$ (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data out (at access time and until $\overline{\mathrm{CAS}}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(8) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ in early write cycles and to the falling edge of ( $\overline{W B} /$ ) $\overline{W E}$ in delayed write or read-modify-write cycles.
(9) Assumes that $\mathrm{t}_{\text {RAD }}(\mathrm{min})=\mathrm{t}_{\text {RAH }}(\mathrm{min})+$ typical $\mathrm{t}_{\mathrm{T}}$ of 5 ns .
(10) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Additionally, transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(11) The minimum specifications are used only to indicate the cycle time at which proper operation over the fuil temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(12) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(13) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max).
(14) If $t_{R A D} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(15) For fast-page read operation, the definition of access time is as follows.

| $\overline{\overline{\mathrm{CAS}}}$and Column Address <br> Input Conditions | Access Time Definition |
| :--- | :---: |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}(\max )$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{ASC}}(\max )$ | $\mathrm{t}_{\mathrm{CAC}}$ |

(16) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(17) Parameter $t_{\text {Wp }}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both $\mathrm{t}_{\text {WCS }}$ and $\mathrm{t}_{\mathrm{WCH}}$ must be met.
(18) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.

Figure 1. Input TIming


Figure 2. Output Timing


83-004878A

Figure 3. Random Access Port: Output Loading


Figure 4. Serial Read Port: Output Loading


83-004880A

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Early Write Cycle



## Timing Waveforms (cont)

## Late Write Cycle



## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycles


## Timing Waveforms (cont)

$\overline{R A S}$-Only Refresh


## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Cycle


## Timing Waveforms (cont)

Hidden Refresh


## Timing Waveforms (cont)

Fast-Page Read Cycle


## Timing Waveforms (cont)

Fast-Page Write Cycle


## Timing Waveforms (cont)

Fast-Page Read-Modity-Write Cycle


## Timing Waveforms (cont)

Data Transfer Cycle (Serlal Port Standby)


## Timing Waveforms (cont)

## Data Transfer Cycle (Serial Port Active)



## Timing Waveforms (cont)

## Serial Read Cycle



## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42274 is a dual-port graphics buffer equipped with a $256 \mathrm{~K} \times 4$-bit random access port and a $512 \times 4$-bit serial read port. The random access port is used by the host CPU to read or write data addressed in any desired order. The serial read port is connected to an internal 2048-bit data register through a $512 \times 4$-bit serial read output circuit.
In addition to its conventional features, the random access port also has a write-per-bit capability that allows each of the four data bits to be individually selected or masked for a write cycle. Furthermore, a flash write option with write-per-bit control is provided by the FWE pin and enables data in the color register to be written to a selected row in the random access port.
The $\mu$ PD42274 features fully asynchronous dual access, except when transferring stored graphics data from a selected row of the storage array to the data register. During a data transfer, the random access port requires a special timing cycle using a transfer clock; the serial read port, however, continues to operate normally. Following the clock transition of a data transfer, the serial read output data changes from an old line to a new line and the starting location on the new line is addressable in the data transfer cycle.
The $\mu$ PD42274 is fabricated with an advanced CMOS silicon-gate process using polycide technology and trench capacitors. The process provides high storage cell density, high performance, and high reliability.
Refreshing is accomplished by means of $\overline{\text { RAS-only }}$ refresh cycles or by normal read or write cycles on the 512 address combinations of $A_{0}$ through $A_{8}$ during an 8 -ms period. Automatic internal refreshing, by means of either hidden refreshing or the CAS before $\overline{\text { RAS }}$ timing and on-chip internal refresh circuitry, is also available. The transfer of a row of data from the storage array to the data register also refreshes that row automatically.

All inputs and outputs, including clocks, are TTLcompatible. All address and data-in signals are latched on-chip to simplify system design. Data-out is unlatched to allow greater system flexibility.
The $\mu$ PD42274 is available in a 28 -pin plastic ZIP or 28 -pin plastic SOJ and is guaranteed for operation at 0 to $+70^{\circ} \mathrm{C}$.

## Features

Three functional blocks

- 256K $\times 4$-bit random access storage array
- 2048-bit data register
$-512 \times 4$-bit serial read output circuit
Two data ports: random access and serial read
Dual-port accessibility except during data transfer
Addressable start of serial read operation
Real-time data transfer
Single +5 -volt $\pm 10 \%$ power supply
On-chip substrate bias generator
Random access port
- Two main clocks: $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$
- Multiplexed address inputs
-Direct connection of I/O and address lines allowed by $\overline{\mathrm{OE}}$ to simplify system design
-Refresh interval: 512 cycles/8 ms
- Read, early write, late write, read-write/read-modify-write, $\overline{R A S}-$ only refresh, and fast-page capabilities
- Automatic internal refreshing by means of the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ on-chip address counter
- Hidden refreshing by means of $\overline{\mathrm{CAS}}$-controlled output
- Write-per-bit capability regarding four I/O bits
- Write bit selection multiplexed on $\mathrm{IO}_{0}-\mathrm{IO}_{3}$

Flash write option with write-per-bit control
RAS-activated data transfer

- Same cycle time as for random access
- Row data transferred to data register as specified by row address inputs
- Starting location of following serial read operation specified by column address inputs
- Transfer of 2048 bits of data on one row to the data register, and the starting location of the serial read circuit, activated by a low-to-high transition of $\overline{D T}$
- Data transfer during real-time or standby operation of serial port
Fast serial read operation by means of serial control pins
- Serial data presented on $\mathrm{SO}_{0}-\mathrm{SO}_{3}$
- Direct connection of multiple serial outputs for extension of data length
Fully TTL-compatible inputs, outputs, and clocks Three-state outputs for random and serial access CMOS silicon-gate process with trench capacitors 400 -mil, 28-pin plastic SOJ and 28 -pin plastic ZIP packaging


## Ordering Information

| Part Number | Row Access <br> Time [max] | Serial Access Time (max) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PD42274LE-10 | 100 ns | 30 ns | 28-pin plastic S0J |
| LE-12 | 120 ns | 40 ns |  |
| $\mu$ PD42274V-10 | 100 ns | 30 ns | 28-pin plastic ZIP |
| V-12 | 120 ns | 40 ns |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{8}$ | Address inputs |
| $\mathrm{W}_{0} / 10_{0}-\mathrm{W}_{3} / 10_{3}$ | Write selects in write-per-bit/data inputs and outputs |
| $\overline{\mathrm{KAS}}$ | Row address strobe |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\overline{W B} / \overline{\mathrm{WE}}}$ | Write-per-bit/write enable |
| $\overline{\overline{\mathrm{T}} / \overline{0 E}}$ | Data transfer/output enable |
| FWE | Flash write enable |
| $\mathrm{SO}-\mathrm{SO}_{3}$ | Serial read outputs |
| SC | Serial control |
| $\overline{\mathrm{SOE}}$ | Serial output enable |
| GND | Ground |
| VCC | +5 -volt $\pm 10 \%$ power supply |
| NC | No connection |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Voltage on any pin except $V_{C C}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 1}$ | -1.0 to +7.0 V |
| Voltage on $\mathrm{V}_{\mathrm{CC}}$ relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 2}$ | -1.0 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.5 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configurations

## 28-Pin Plastic SOJ



## 28-Pin Plastic Zip



## Pin Functions

$\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{\mathbf{8}}$ [Address Inputs]. These pins are multiplexed as row address inputs and column address inputs. Since each of four data bits in the random access port corresponds to 262,144 storage cells, nine row addresses and nine column addresses are required to decode one cell location. Nine row addresses are used to select one of the 512 possible rows for a read, write, data transfer, or refresh operation. Nine column addresses are then used to select the one of 512 possible column decoders for a read or write cycle or the one of 512 possible starting locations for the next serial read cycle. (Column addresses are not required in $\overline{\text { RAS-only refresh or flash write cycles.) }}$
$\mathrm{W}_{0} / \mathrm{IO}_{0}-\mathrm{W}_{3} / \mathrm{IO}_{3}$ [Write-Per-Bit Inputs/Common Data Inputs and Outputs]. Each of the four data bits can be individually latched by these inputs at the falling edge of $\overline{\text { RAS }}$ in a write or flash write cycle, and then updated at the next falling edge of $\overline{\text { RAS. }}$
In a read cycle, these pins function as outputs for the selected storage cells. In a write cycle, input data on these pins is latched by the falling edge of CAS or WE.
RAS [Row Address Strobe]. This pin is functionally equivalent to a chip enable signal in that whenever it is activated, the 2,048 storage cells of a selected row are sensed simultaneously and the sense amplifiers restore all data. The nine row address bits are latched by this signal and must be stable on or before its falling edge. $\overline{\mathrm{CAS}}, \overline{\mathrm{DT}} / \overline{\mathrm{OE}}, \overline{\mathrm{WB}} / \overline{\mathrm{WE}}$, and FWE are simultaneously latched to determine device operation.
$\overline{C A S}$ [Column Address Strobe]. This pin serves as a chip selection signal to activate the column decoder and the input/output buffers. The nine column address bits are latched at the falling edge of $\overline{C A S}$.
$\overline{\text { WB }} / \overline{\text { WE }}$ [Write-Per-Bit Control/Write Enable]. At the falling edge of $\overline{\mathrm{RAS}}$, the inputs $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ and FWE must be low and $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ high to enable the write-per-bit capability. When $\overline{\mathrm{CAS}}, \overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ and FWE are high at the falling edge of RAS, the level of this signal indicates either a color register set cycle or flash write cycle. A high $\overline{W B} / \overline{W E}$ can be used at the beginning of a standard write or read cycle.
$\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ [Data Transfer/Output Enable]. At the falling edge of $\overline{\text { RAS }}$, a high-level CAS, a low FWE and a low $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ initiate a data transfer, regardless of the level of $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$. A high $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ initiates conventional read or write cycles and controls the output buffer in the random access port.
FWE [Flash Write Enable]. If this signal is low and $\overline{\text { CAS }}$ and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ are high at the falling edge of $\overline{\mathrm{RAS}}$, a read or write cycle is initiated. If FWE, CAS and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ are high at the falling edge of $\overline{\mathrm{RAS}}$, either a color register set cycle or flash write cycle is initiated depending on the level of $\overline{W B} / \overline{W E}$.
$\mathrm{SO}_{0}-\mathrm{SO}_{3}$ [Serial Data Output]. Four-bit data is read from these pins. Data remains valid until the next SC signal is activated.

SC [Serial Control]. By activating this signal repeatedly, the serial read operation (starting from the location specified in the data transfer cycle) is performed within the 2,048 bits in the data register. The rising edge of SC activates the serial read operation, in which four of the 2,048 data bits are transferred to four serial data buses, respectively, and read out. Whenever SC is low, the serial port is in standby.
$\overline{\text { SOE [Serial Output Enable]. This signal controls the }}$ serial data output buffer.

## Block Diagram



83-004873B

## Device Operation

## Overall Description

The $\mu$ PD42274 consists of a random access port and a serial read port. The random access port performs standard read and write operation as well as the data transfer and flash write operations, all of which are based on a conventional RAS/CAS timing cycle. In a data transfer, data in each storage cell on the selected row is transferred simultaneously through a transfer gate to the corresponding register location. Flash write is used to write an entire row of data to predetermined values. The serial read port shows the contents of the data register in serial order. The random access port and the serial read port can operate asynchronously, except when the transfer gate is turned on during the data transfer period.

## Addressing

The graphics storage array is arranged in a 512-row by 2048 -column matrix. Each of 4 data bits in the random access port corresponds to 262,144 storage cells. Therefore, 18 address bits are required to decode one cell location. Nine row address bits are set up on pins $A_{0}$ through $A_{8}$ and latched onto the chip by RAS. Nine column address bits then are set up on pins $\mathrm{A}_{0}$ through $A_{8}$ and latched onto the chip by CAS. All addresses must be stable, on or before the falling edges of RAS and CAS. $\overline{R A S}$ is similar to a chip enable signal; whenever it is activated, 2048 cells on the selected row are sensed simultaneously and the sense amplifiers automatically restore the data. $\overline{\text { CAS }}$ serves as a chip selection signal to activate the column decoder and the input and output buffers.

Through 1 of 512 column decoders, 4 storage cells on the row are connected to 4 data buses, respectively. In the data transfer cycle, 9 row address bits are used to select 1 of the 512 possible rows involved in the transfer of data to the data register. Nine column address bits are then used to select the 1 of 512 possible serial decoders that corresponds to the starting location of the next serial read cycle.
In the serial read port, when SC is activated, 4 data bits in the 2048-bit data register are transferred to 4 serial data buses and read out. By activating SC repeatedly, the serial read operation (starting from the location specified in the data transfer cycle) is executed within the 2048 bits in the data register.

## Random Access Port Operation

An operation in the random access port begins with a negative transition of $\overline{\text { RAS }}$. Both $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ have minimum pulse widths, as specified in the timing table, which must be maintained for proper device operation and data integrity. Once begun, a cycle must meet all specifications, including minimum cycle time. To reduce the number of pins, the following functions are multiplexed in the random access port.

- $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$
- WB/WE
- $\mathrm{W}_{\mathrm{i}} / \mathrm{IO}_{\mathrm{i}}(\mathrm{i}=0,1,2,3)$

The $\overline{O E}, \overline{W E}$ and $1 \mathrm{O}_{\mathrm{i}}$ functions represent standard operations. The $\overline{\mathrm{DT}}, \overline{\mathrm{WB}}$, and $\mathrm{W}_{\mathrm{i}}$ functions are special inputs to be applied in the same way as row address inputs, with setup and hold times referenced to the negative transition of $\overline{R A S}$. The $\overline{D T}$ level determines whether a cycle is a random access operation or a data transfer operation. WB affects only write cycles and determines whether or not the write-per-bit capability is used. $W_{i}$ defines data bits to be written with the write-per-bit capability. In the following discussions, these multiplexed pins are designated as $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$, for example, depending on the function being described.
To use the $\mu$ PD42274 for random access, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be high as $\overline{R A S}$ falls. Holding $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ high disconnects the 2048-bit register from the corresponding 2048-digit lines of the storage array. Conversely, to execute a data transfer, $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be low as $\overline{\mathrm{RAS}}$ falls to open the 2048 transfer gates and transfer data from one of the rows to the register.

## Truth Table (Random Access Port)

| $\overline{\mathrm{CAS}}$ | $\overline{\mathrm{BT}} / \overline{0 \mathrm{EE}}$ | $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ | FWE | Funciion |
| :---: | :---: | :---: | :---: | :--- |
| H | H | H | L | Read or write cycle (Note 1) |
| H | H | L | L | Mask write cycle (Note 2) |
| H | L | X | L | Read data transfer cycle (Note 3) |
| H | L | H | H |  |
| L | X | X | X | $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh cycle (Note 4) |
| H | H | H | H | Color register set cycle (Note 5) |
| H | H | L | H | Flash write cycle (write-per-bit) (Note 6) |

Notes:
(1) Initiates a normal read or write cycle and disables the write-perbit capability.
(2) Enables the write-per-bit capability. Individual bits can be selected or masked for a write cycle. Four-bit masked data is latched at the falling edge of $\overline{\text { RAS }}$ and reset at the rising edge of $\overline{\text { RAS }}$
(3) Initiates a read data transfer cycle.
(4) Initiates a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle. As $\overline{\mathrm{RAS}}$ falls, $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ and $\mathrm{FWE}=$ don't care.
(5) Defines a color register set cycle, where data in the register can be accessed in a read or write cycle.
(6) Initiates a flash write cycle, where the storage cells on an entire selected row can be set to the same data stored in the color register with write-per-bit control. As $\overline{\mathrm{RAS}}$ falls, the input level of $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}=$ don't care.
(7) $X=$ don't care.

Read Cycle. A read cycle is executed by activating $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{OE}}$ and maintaining a high ( $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ during an active $\overline{C A S}$. The $\left(\mathrm{W}_{\mathrm{i}}\right) / \mathrm{O}_{\mathrm{i}}$ data pin $(\mathrm{i}=0,1$, 2,3) remains in a state of high impedance until valid data appears at the output at access time. Device access time, $\mathrm{t}_{\mathrm{ACC}}$, will be the longest of the following four calculated intervals:

## - $t_{\text {RAC }}$

- RAS to $\overline{\text { CAS }}$ delay ( $t_{\text {RCD }}$ ) $+t_{\text {CAC }}$
- $\overline{\text { RAS }}$ to column address delay ( $\mathrm{t}_{\mathrm{RAD}}$ ) $+\mathrm{t}_{\mathrm{AA}}$
- $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{OE}}$ delay $+\mathrm{t}_{\text {OEA }}$

Access times from $\overline{\mathrm{RAS}}\left(\mathrm{t}_{\mathrm{RAC}}\right)$, from $\overline{\mathrm{CAS}}$ ( $\mathrm{t}_{\mathrm{CAC}}$ ), from the column addresses ( $\mathrm{t}_{\mathrm{AA}}$ ), and from $\overline{\mathrm{OE}}$ ( $\mathrm{t}_{\mathrm{OEA}}$ ) are device parameters. The $\overline{R A S}$ to $\overline{C A S}, \overline{R A S}$ to column address, and $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{OE}}$ delays are system-dependent timing parameters.
Output becomes valid after the access time has elapsed and it remains valid while both $\overline{C A S}$ and $\overline{O E}$ are low. A high $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ returns the output pins to high impedance.

Write Cycle. A write cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ low during the $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycle. The falling edge of CAS or (WB/)WE strobes the data on $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{IO}_{\mathrm{i}}$ into the on-chip data latch. To make use of the write-per-bit capability, $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ must be low as $\overline{\mathrm{RAS}}$ falls. In this case, data bits to which the write operation is applied can be specified by keeping $\mathrm{W}_{\mathrm{i}}\left(/ / \mathrm{I}_{\mathrm{i}}\right)$ high, with setup and hold times referenced to the negative transition of $\overline{\text { RAS. }}$
For those data bits of $\mathrm{W}_{\mathrm{i}}\left(/ / \mathrm{O}_{\mathrm{i}}\right)$ that are kept low as $\overline{\text { RAS }}$ falls, write operation is inhibited on the chip. If $\overline{\mathrm{WB}}(/ \overline{\mathrm{WE}})$ is high as $\overline{\mathrm{RAS}}$ falls, the write-per-bit capability is not used and a write cycle is executed for all four data bits.
Early Write Cycle. An early write cycle is executed by bringing ( $\overline{\mathrm{WB}} / \overline{\mathrm{WE}}$ low before $\overline{\mathrm{CAS}}$ falls. Data is strobed by CAS, with setup and hold times referenced to this signal, and the output remains in a state of high impedance for the entire cycle. As $\overline{\mathrm{RAS}}$ falls, ( $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ must meet the setup and hold times of a high $\overline{\mathrm{DT}}$; but otherwise ( $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ does not affect any circuit operation during an active $\overline{\text { CAS }}$.
Read-Write/Read-Modify-Write [RW/RMW] Cycle. An RW/RMW cycle is executed by bringing ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ low with the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals low. $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{O}_{\mathrm{i}}$ shows read data at access time. Afterward, in preparation for the upcoming write cycle, $\left(\mathrm{W}_{\mathrm{i}} /\right) \mathrm{IO}$ is returned to a highimpedance condition by a high ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$. The data to be written is strobed by ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$, with setup and hold times referenced to this signal.

Late Write Cycle. This cycle shows the timing flexibility of ( $\overline{\mathrm{DT}} /$ ) $\overline{\mathrm{OE}}$, which can be activated just after ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ falls, even when ( $\overline{W B} /$ ) $\overline{W E}$ is brought low after $\overline{\mathrm{CAS}}$.
Refresh Cycle. A cycle at each of the 512 row addresses ( $A_{0}$ through $A_{8}$ ) will refresh all storage cells. Any operation performed in the random access port (i.e., read, write, refresh, data transfer, color register set, or flash write) refreshes the 2048 bits selected by the $\overline{\text { RAS }}$ addresses or by the on-chip refresh address counter.
RAS-only Refresh Cycle. A cycle having only RAS active refreshes all of the storage cells in one row of the graphics storage array. A high $\overline{\mathrm{CAS}}$ is maintained during an active $\overline{\mathrm{RAS}}$ to keep $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ in a state of high impedance. This mode is preferred for refreshing, especially when the host system consists of multiple rows of random access devices. The data outputs may be OR-tied with no bus contention when RAS-only refresh cycles are executed.
$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ Refresh Cycle. This cycle executes internal refreshing using the on-chip control circuitry. Whenever $\overline{\mathrm{CAS}}$ is low as $\overline{\mathrm{RAS}}$ falls, this circuitry automatically performs refreshing for row addresses specified by the internal refresh address counter. In this cycle, the circuit operation based on $\overline{\mathrm{CAS}}$ is maintained in a reset state. When internal refreshing is complete, the address counter automatically increments in preparation for the next $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycle.
Hidden Refresh Cycle. This function performs hidden refreshing after a read cycle, without disturbing the read data output. Once valid, the data output is controlled by $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$. After the read cycle, $\overline{\mathrm{CAS}}$ is held low while $\overline{R A S}$ goes high for precharge. A RAS-only cycle is then executed (except that CAS is held at a low level instead of a high level) and the data output remains valid. Since hidden refreshing is the same as $\overline{C A S}$ before $\overline{R A S}$ refreshing, the data output remains valid during either operation.
Fast-Page Cycle. This feature allows effectively faster data access by keeping the same row address and strobing successive column addresses onto the chip. By maintaining a low $\overline{\mathrm{RAS}}$ while successive $\overline{\mathrm{CAS}}$ cycles are executed, data is transferred at a faster rate because row addresses are maintained internally and do not have to be reapplied. During this operation, read, write and RW/RMW cycles are possible. Additionally, the write-per-bit control specified in the entry write cycle is maintained through the following fastpage write cycle.
During a fast-page read cycle, the $\left(\mathrm{W}_{\mathrm{i}} /\right) \mid \mathrm{O}_{\mathrm{i}}$ data pin ( $i=0,1,2$, or 3 ) remains in a state of high impedance until valid data appears at the output pin at access time. Device access time in this cycle will be one of the following calculated intervals:

- $t_{A C P}$, when $t_{A S C} \geq t_{C P}$ and $t_{C P} \leq t_{C P}(\max )$
- $t_{A A}$, when $t_{A S C} \leq t_{A S C}$ (max) and $t_{C P} \geq t_{C P}$ (max) or when $t_{A S C} \leq t_{C P}$ and $t_{C P} \leq t_{C P}$ (max)
- $t_{C A C}$, when $t_{A S C} \geq t_{A S C}$ (max) and $t_{C P} \geq t_{C P}$ (max)

Data Transfer Cycle. A data transfer cycle is executed by bringing $\overline{\mathrm{DT}}(\overline{\mathrm{OE}})$ and FWE low as $\overline{\mathrm{RAS}}$ falls. As described previously, the specified 1 of the possible 512 rows involved in the data transfer, as well as the starting location of the following serial read cycle in the serial read port, are defined by address inputs. $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must be low for a specified time, measured from RAS and $\overline{\mathrm{CAS}}$, so that the data transfer condition may be satisfied. The low-to-high transition of DT causes two transfer operations through the data transfer gates:
column address buffer outputs are transferred to the serial address counters, and storage cell data amplified on digit lines is transferred to the data register. $\overline{\mathrm{RAS}}$ and $\overline{C A S}$ must be low during these operations to keep the data in the random access port.
Color Register Set Cycle. A color register set cycle is executed in the same fashion as a conventional read or write cycle, with the level of FWE high as $\overline{\text { RAS }}$ falls. In this cycle, read or write operation is available to the color register under the control of $\overline{W E}$. In read operation, color register data is read out on the common $\mathrm{IO}_{\mathrm{i}}$ pins. In write operation, common $1 O_{i}$ data can be written into the color register. $\overline{\mathrm{RAS}}$-only refreshing is internally performed on the row selected by $A_{0}$ through $\mathrm{A}_{8}$ in this cycle.
Flash Write Cycle. A flash write cycle can clear or set each of the four 512-bit data sets on the selected one of 512 possible rows according to data stored in the color register. Bit mask inputs are latched as $\overline{\text { RAS }}$ falls. This cycle is useful in graphics processing applications when the screen should be cleared or set to some uniform value as quickly as possible.

## Serial Read Port Operation

The serial read port is used only to read serially the contents of the data register starting from a specified location. The entire operation, therefore, follows the data transfer cycle. The only condition under which the serial read port must synchronize with the random access port is when the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ must occur within a specified period in an SC cycle. Except for this SC cycle, the serial read port can operate asynchronously with the random access port. The output data appears at $\mathrm{SO}_{i}$ after an access time of $t_{\text {SCA }}$, measured from a high SC, only when a low $\overline{S O E}$ is maintained. The SC cycle which includes the positive transition of $\overline{\mathrm{DT}}(/ \overline{\mathrm{OE}})$ shows old data in the data register; subsequent SC cycles show new data transferred to the data register serially and in a looped manner. The serial output is maintained until the next

SC signal is activated. $\overline{\text { SOE }}$ controls the impedance of the serial output to allow multiplexing of more than one bank of $\mu$ PD42274 graphics buffers into the same external circuitry. When $\overline{\mathrm{SOE}}$ is at a low logic level, $\mathrm{SO}_{i}$ is enabled and the proper data is read. When $\overline{\operatorname{SOE}}$ is at a high logic level, $\mathrm{SO}_{i}$ is disabled and in a state of high impedance.

## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | 5.5 | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V |  |

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | IIL | -10 |  | 10 | $\mu \mathrm{A}$ | $V_{I N}=0 \text { to } 5.5 \mathrm{~V} \text {; }$ <br> all other pins <br> not under $\text { test }=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{l}_{\mathrm{OL}}$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Dout }^{\left(\mathrm{IO}_{i}, \mathrm{SO}_{i}\right)} \\ & \text { disabled; } \mathrm{V}_{\mathrm{OUT}} \\ & =0 \text { to } 5.5 \mathrm{~V} \end{aligned}$ |
| Random access port output voltage, high | $\mathrm{V}_{\mathrm{OH}(\mathrm{R})}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}(\mathrm{R})}=-2 \mathrm{~mA}$ |
| Random access port output voltage, low | $\mathrm{V}_{0 \mathrm{~L}(\mathrm{R})}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}(\mathrm{R})}=4.2 \mathrm{~mA}$ |
| Serial read port output voltage, high | $\mathrm{V}_{\mathrm{OH}(\mathrm{S})}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{HH}(\mathrm{S})}=-1 \mathrm{~mA}$ |
| Serial read port output voltage, low | $V_{0 L(S)}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}(\mathrm{~S})}=2.1 \mathrm{~mA}$ |

Power Supply Current Definitions

| Port | Operation | Symbol | Operating Conditions |
| :---: | :---: | :---: | :---: |
| Random Access | Read/write | RW | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; FWE low as RAS falls; $t_{R C}=t_{R C}(\min )$ |
|  | Standby | STB | $\overline{\mathrm{CAS}}=\overline{\mathrm{RAS}}=\mathrm{V}_{1 \mathrm{H}}$ |
|  | $\overline{\overline{\text { RAS }}}$-only refresh | ROR | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$; FWE low as RAS falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Fast page | PAGE | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{I L} ; \overline{\mathrm{CAS}} \\ & \text { cycling; } \\ & \text { tPC }(\mathrm{min}) \end{aligned}$ |
|  | $\overline{\overline{\mathrm{CAS}}}$ before RAS refresh | CBR | $\overline{\mathrm{CAS}}$ low as $\overline{\mathrm{RAS}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min})$ |
|  | Data transfer | DTR | $\overline{\mathrm{DT}}$ low as $\overline{\mathrm{RAS}}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Color register set cycle | CRS | FWE and $\overline{W B} / \overline{W E}$ high as $\overline{\text { RAS }}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ |
|  | Flash write | FW | FWE high and $\overline{W B} / \overline{W E}$ low as $\overline{\text { RAS }}$ falls; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ (min) |
| Serial Read | Standby | STB | $\begin{aligned} & \overline{\mathrm{SOE}}=V_{I H} ; \\ & S C=V_{I H} \text { or } V_{I L} \end{aligned}$ |
|  | Serial read | ACT | $\begin{aligned} & \overline{\mathrm{SOE}}=V_{\mathrm{IL}} ; \text { SC cycling; } \\ & \mathrm{t}_{\mathrm{SCC}}=\mathrm{t}_{\mathrm{SCC}}(\mathrm{~min}) \end{aligned}$ |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limit (max) | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: |
| Input capacitance | $\mathrm{C}_{(1)}$ | 5 | pF | $\mathrm{A}_{0}$ to $\mathrm{A}_{8}$ |
|  | $\mathrm{C}_{1(\overline{D T} / \bar{O} \mathrm{E})}$ | 8 | pF | $\overline{\mathrm{DT}} / \overline{\mathrm{O}} \mathrm{E}$ |
|  | $\mathrm{C}_{1(\overline{W B} / \overline{W E})}$ | 8 | pF | $\overline{W B} / \overline{W E}$ |
|  | $\mathrm{C}_{\text {(IFWE) }}$ | 8 | pF | FWE |
|  | $\mathrm{C}_{1(\overline{\mathrm{RAS}})}$ | 8 | pF | $\overline{\text { RAS }}$ |
|  | $\mathrm{C}_{1(\overline{\mathrm{CAS}})}$ | 8 | pF | $\overline{\mathrm{CAS}}$ |
|  | $\mathrm{C}_{1(\overline{\text { SOEE }})}$ | 8 | pF | $\overline{\text { SOE }}$ |
|  | $\mathrm{C}_{\text {(ISC) }}$ | 8 | pF | SC |
| Input/output capacitance | $\mathrm{C}_{10 \text { (W/10) }}$ | 7 | pF | $\begin{aligned} & W_{0} / 10_{0} \text { to } \\ & W_{3} / 10_{3} \end{aligned}$ |
| Output capacitance | $\mathrm{C}_{0(\mathrm{SO})}$ | 7 | pF | $\mathrm{SO}_{0}$ to $\mathrm{SO}_{3}$ |

Power Supply Current
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Port |  | Symbol |  |  | Unit | Test Conditions (Note 1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42274$ |  |  |
| Random Access | Serial Read |  | -10 | -12 |  |  |
|  |  |  | Max | Max |  |  |
| RW | STB |  | ICCl | 70 | 60 | mA |  |
| STB | STB | ${ }^{1} \mathrm{CC} 2$ | 3 | 3 | mA |  |
| ROR | STB | ICC3 | 70 | 60 | mA | (Note 2) |
| PAGE | STB | ICC4 | 60 | 50 | mA | (Note 3) |
| CBR | STB | ICC5 | 70 | 60 | mA |  |
| DTR | STB | ICC6 | 70 | 60 | mA |  |
| RW | ACT | ICC7 | 100 | 90 | mA |  |
| STB | ACT | ICC8 | 35 | 30 | mA |  |
| ROR | ACT | ICC9 | 100 | 90 | mA | (Note 2) |
| PAGE | ACT | ICC10 | 85 | 75 | mA | (Note 3) |
| CBR | ACT | $\mathrm{I}_{\text {CC11 }}$ | 100 | 90 | mA |  |
| DTR | ACT | $\mathrm{ICC12}$ | 100 | 90 | mA |  |
| CRS | STB | ${ }^{\text {CCl3 }}$ | 65 | 55 | mA |  |
| FW | STB | $\mathrm{ICC14}$ | 65 | 55 | mA |  |
| CRS | ACT | ${ }_{\text {ICC15 }}$ | 100 | 90 | mA |  |
| FW | ACT | ${ }_{\text {ICC16 }}$ | 100 | 90 | mA |  |

Notes:
(1) No load on $\mathrm{IO}_{i}$ or $\mathrm{SO}_{i}$. Except for $\mathrm{I}_{\mathrm{CC} 2}, \mathrm{I}_{\mathrm{CC}}$, $\mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC} 14}$, real values depend on output loading in addition to cycle rates.
(2) $\overline{\mathrm{CAS}}$ is not clocked, but is kept at a stable high level. The column addresses are also assumed to be kept stable, at a high or low level.
(3) A change in column addresses must not occur more than once in a fast-page cycle.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ;$ GND $=0 \mathrm{~V}$,

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions | Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42274$-10 |  | $\mu \mathrm{PD} 42274-12$ |  |  |  |  |  | $\mu \mathrm{PD} 42$ | 2274-10 | $\mu \mathrm{PD} 4$ | 274-12 |  |  |
|  |  | Min | Max | Min | Max |  |  |  |  | Min | Max | Min | Max |  |  |
| Switching Characteristics |  |  |  |  |  |  |  | Timing Requirements (cont) |  |  |  |  |  |  |  |
| Access time from RAS | $\mathrm{t}_{\text {RAC }}$ |  | 100 |  | 120 | ns | $\begin{gathered} \text { (Notes 3, } 4 \\ \text { and 12) } \end{gathered}$ | Transition time (rise and fall) | ${ }_{T}$ | 3 | 50 | 3 | 50 | ns | (Notes 3, 10 and 18) |
| Access time from falling | ${ }_{\text {t }}^{\text {caC }}$ |  | 25 |  | 30 | ns | (Notes 3, 4, 13, 14 and 15) | RAS precharge time | $t_{\text {RP }}$ | 80 |  | 90 |  | ns |  |
| edge of CAS |  |  |  |  |  |  |  | $\overline{\overline{\text { RAS }} \text { pulse }}$ | $\mathrm{t}_{\text {RAS }}$ | 100 | 10000 | 120 | 10000 | ns |  |
| Access time from column address | $t_{\text {AA }}$ |  | 55 |  | 65 | ns | (Notes 3, 4, |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 14 and 15) | Fast-page $\overline{\text { RAS }}$ pulse width | $t_{\text {RASP }}$ | 100 | 100000 | 120 | 100000 | ns |  |
| Access time from rising edge of CAS | $\mathrm{t}_{\text {ACP }}$ |  | 55 |  | 65 | ns | (Notes 3 and 15) | RAS hold time | $t_{\text {RSH }}$ | 25 |  | 30 |  | ns |  |
|  |  |  |  |  |  |  |  | $\overline{\overline{\text { CAS }} \text { precharge }}$ | ${ }^{\text {c/PN }}$ | 10 |  | 15 |  | ns |  |
| Access time from $\overline{0 E}$ | $\mathrm{t}_{\text {OEA }}$ |  | 25 |  | 30 | ns | (Notes 3 and 4) | time (nonpage mode) |  |  |  |  |  |  |  |
| Serial output access time from SC | ${ }_{\text {tsCA }}$ |  | 30 |  | 40 | ns | (Note 3) | Fast-page CAS precharge time | ${ }_{\text {t }}^{\text {cP }}$ | 10 | 25 | 15 | 30 | ns |  |
| Serial output access time from $\overline{S O E}$ | ${ }^{\text {t }}$ SOA |  | 25 |  | 30 | ns | (Note 3) | CAS pulse width | ${ }_{\text {t }}^{\text {CAS }}$ | 25 | 10000 | 30 | 10000 | ns |  |
|  |  |  |  |  |  |  |  | $\overline{\text { CAS }}$ hold time | $\mathrm{t}_{\mathrm{CSH}}$ | 100 |  | 120 |  | ns |  |
| Output disable toff time from CAS high |  | 0 | 25 | 0 | 30 | ns | (Note 5) | $\begin{aligned} & \overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CAS}} \\ & \text { delay } \end{aligned}$ | $\mathrm{t}_{\text {RCD }}$ | 25 | 75 | 25 | 90 | ns | (Note 4) |
|  |  |  |  |  |  |  |  | $\overline{\overline{\text { CAS }} \text { high to }}$ | ${ }_{\text {t }}^{\text {CRP }}$ | 10 |  | 10 |  | ns | (Note 16) |
| Output disable $t_{0 E Z}$ time from $\overline{0}$ E high |  | 0 | 25 | 0 | 30 | ns | (Note 5) | RAS low precharge time |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Row address | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | ns |  |
| Serial output disable time from $\overline{\text { SOE }}$ high | ${ }^{\text {t }}$ OZ | 0 | 15 | 0 | 20 | ns | (Note 5) | setup time |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 15 |  | ns |  |
| $\overline{\mathrm{SOE}}$ low to serial output setup delay | ${ }^{\text {t }}$ 00 | 5 |  | 5 |  | ns |  | Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 25 | 0 | 30 | ns | (Note 15) |
| Serial output hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 10 |  | ns |  | Column address hold time | $\mathrm{t}_{\text {CAH }}$ | 15 |  | 20 |  | ns |  |
| Timing Requirements |  |  |  |  |  |  |  | $\overline{\mathrm{RAS}}$ to column | $\mathrm{t}_{\text {RA }}$ | 17 | 45 | 20 | 55 | ns | (Notes 9 |
| Random read or write cycle time | $t_{\text {RC }}$ | 190 |  | 220 |  | ns | (Note 11) | address delay time |  |  |  |  |  |  | and 14) |
|  |  |  |  |  |  |  |  | Column address | $\mathrm{t}_{\text {RAL }}$ | 55 |  | 65 |  | ns |  |
| RW/RMW cycle time | $t_{\text {RWC }}$ | 255 |  | 295 |  | ns | (Note 11) | to $\widehat{\text { RAS lead }}$ time |  |  |  |  |  |  |  |
| Fast-page cycle time | tpc | 60 |  | 70 |  | ns | (Note 11) | Read command setup time | $\mathrm{tras}^{\text {che }}$ | 0 |  | 0 |  | ns |  |
| Fast-page RW/RMW cycle time | tpraw | 125 |  | 145 |  | ns | (Note 11) | Read command hold time after RAS high | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | ns | (Note 6) |
|  |  |  |  |  |  |  |  | Read command hold time after $\overline{\text { CAS high }}$ | trCH | 0 |  | 0 |  | ns | (Note 6) |

AC Characteristics (cont)

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD42274-10 |  | $\mu$ PD42274-12 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| Write command setup time | ${ }_{\text {twCS }}$ | 0 |  | 0 |  | ns | (Note 7) |
| Write command hold time | ${ }^{\text {twCH }}$ | 20 |  | 30 |  | ns |  |
| Write command pulse width |  | 20 |  | 25 |  | ns | (Note 17) |
| Write command to RAS lead time | $\mathrm{t}_{\text {RWL }}$ | 30 |  | 35 |  | ns |  |
| Write command to CAS lead time | tcw | 30 |  | 35 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | ns | (Note 8) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 25 |  | ns | (Note 8) |
| Column address to WE delay | $t_{\text {AWD }}$ | 85 |  | 100 |  | ns | (Note 7) |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay | tcwo | 55 |  | 65 |  | ns | (Note 7) |
| $\overline{\overline{\mathrm{RAS}}}$ to $\overline{\mathrm{WE}}$ delay | trwo | 130 |  | 155 |  | ns | (Note 7) |
| $\overline{\overline{0} E}$ high to data-in setup delay | $\mathrm{t}_{\text {OED }}$ | 30 |  | 35 |  | ns |  |
| $\overline{0} \mathrm{E}$ high hold time after WE low | $\mathrm{t}_{\text {OEH }}$ | 25 |  | 30 |  | ns |  |
| $\overline{\overline{C A S}}$ before RAS refresh setup time | $\mathrm{t}_{\text {CSR }}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{C A S}}$ before $\widehat{\text { RAS }}$ refresh hold time | $\mathrm{t}_{\text {CHR }}$ | 15 |  | 20 |  | ns |  |
| $\begin{aligned} & \overline{\text { RAS }} \text { high to } \\ & \text { CAS low } \\ & \text { precharge time } \end{aligned}$ | $\mathrm{t}_{\text {RPC }}$ | 0 |  | 0 |  | ns |  |
| Refresh time interval | tref |  | 8 |  | 8 | ms | $\begin{aligned} & \text { Addresses } \\ & \mathrm{A}_{0}-\mathrm{A}_{8} \\ & \hline \end{aligned}$ |
| $\overline{\overline{D T}}$ low setup time | $\mathrm{t}_{\mathrm{DLS}}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{D T}}$ low hold time after RAS low | $\mathrm{t}_{\text {ROH }}$ | 90 |  | 120 |  | ns |  |


| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ P042274-10 |  | $\mu$ PD42274-12 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| $\overline{\mathrm{DT}}$ low hold time after $\overline{C A S}$ low | ${ }^{\text {t }}$ COH | 30 |  | 35 |  | ns |  |
| $\overline{S C}$ high to $\overline{\mathrm{DT}}$ high delay | ${ }_{\text {tSD }}$ | 10 |  | 15 |  | ns |  |
| SC low hold time after $\overline{\text { DT }}$ high | ${ }^{\text {t }}$ SH | 10 |  | 15 |  | ns |  |
| Serial clock cycle time | $\mathrm{t}_{\text {Scc }}$ | 30 |  | 40 |  | ns | (Note 11) |
| SC pulse width | ${ }_{\text {tSCH }}$ | 10 |  | 15 |  | ns |  |
| SC precharge time | ${ }_{\text {t }}^{\text {SCL }}$ | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{DT}} \text { high }}$ setup time | $\mathrm{t}_{\text {DHS }}$ | 0 |  | 0 |  | ns |  |
| $\overline{\overline{D T}}$ high hold time | $\mathrm{t}_{\text {DHH }}$ | 15 |  | 20 |  | ns |  |
| $\overline{\overline{T T}}$ high to RAS high delay | $t_{\text {DTR }}$ | 10 |  | 10 |  | ns |  |
| $\overline{\bar{T} T}$ high to $\overline{\text { CAS high }}$ delay | $t_{\text {DTC }}$ | 5 |  | 5 |  | ns |  |
| $\overline{\overline{0 E}}$ to $\overline{\mathrm{RAS}}$ inactive setup time | $\mathrm{t}_{\text {OES }}$ | 10 |  | 10 |  | ns |  |
| Write-perbit setup time | ${ }^{\text {twBS }}$ | 0 |  | 0 |  | ns |  |
| Write-perbit hold time | ${ }_{\text {t }}$ WBH | 15 |  | 20 |  | ns |  |
| Flash write enable setup time | $t_{\text {fws }}$ | 0 |  | 0 |  | ns |  |
| Flash write enable hold time | $\mathrm{t}_{\text {FWH }}$ | 15 |  | 20 |  | ns |  |
| Write bit selection setup time | ${ }^{\text {tws }}$ | 0 |  | 0 |  | ns |  |
| Write bit selection hold time | ${ }^{\text {twh }}$ | 15 |  | 20 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42274$-10 $\mu \mathrm{PD} 42274.12$ |  |  |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Timing Requirements (cont) |  |  |  |  |  |  |  |
| $\overline{\text { SOE pulse }}$ width | ${ }^{\text {tSOE}}$ | 10 |  | 15 |  | ns |  |
| $\overline{\overline{S O E}}$ precharge time | tsop | 10 |  | 15 |  | ns |  |
| $\overline{\text { DT }}$ high hold time after $\overline{\text { RAS high }}$ | ${ }_{\text {t }}$ TH | 15 |  | 20 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved. Also, $\overline{\mathrm{SOE}}$ must be held high or SC must be held low until completion of the first data transfer cycle.
(3) See input/output timing waveforms for timing reference voltages. See figures 3 and 4 for output loads.
(4) Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. The $t_{R C D}(\max )$ limit is specified as a reference point only. If $t_{R C D}$ is greater than the specified $t_{R C D}(\max )$ limit, access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}, \mathrm{t}_{\mathrm{OEA}}$, or $\mathrm{t}_{\mathrm{AA}}$.
(5) An output disable time defines the time at which the output achieves the open-circuit condition and is not referenced to output voltage levels.
(6) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(7) $t_{W C S}, t_{A W D}, t_{C W D}$, and $t_{R W D}$ are restrictive operating parameters in read-write and read-modify-write cycles only. If twCs $\geq$ $t_{\text {WCS }}$ (min), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{AWD}} \geq$ $t_{A W D}(\min ), \mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\min )$, and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}$ (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data out (at access time and until CAS returns to $\mathrm{V}_{(\mathrm{H}}$ ) is indeterminate.
(8) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ in early write cycles and to the falling edge of ( $\overline{\mathrm{WB}} /$ ) $\overline{\mathrm{WE}}$ in delayed write or read-modify-write cycles.
(9) Assumes that $t_{\text {RAD }}(\min )=t_{\text {RAH }}(\min )+$ typical $t_{T}$ of 5 ns .
(10) $\mathrm{V}_{I H}(\min )$ and $\mathrm{V}_{I L}$ (max) are reference levels for measuring the timing of input signals. Additionally, transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(11) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(12) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{\text {RAD }}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(13) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max).
(14) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(15) For fast-page read operation, the definition of access time is as follows.

| $\overline{\overline{C A S}}$and Column Address <br> Input Conditions | Access Time Definition |
| :--- | :---: |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}$ (max) | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{ASC}}$ (max) | $\mathrm{t}_{\mathrm{CAC}}$ |

(16) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(17) Parameter $t_{W P}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both twcs and twCH must be met.
(18) Ac measurements assume $t_{\top}=5 \mathrm{~ns}$.

Figure 1. Input Timing

Figure 2. Output Timing


Figure 3. Random Access Port: Output Loading


Figure 4. Serlal Read Port: Output Loading


## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Early Write Cycle



## Timing Waveforms (cont)

Late Write Cycle


## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycles


## Timing Waveforms (cont)

## RAS-Only Refresh



## Timing Waveforms (cont)

## $\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle

## wiw $\overline{\text { w }}$. <br> 

$\mathrm{Wo}_{0} / \mathrm{HO}_{0}-\mathrm{W}_{3} / \mathrm{IO}_{3}$ $\qquad$


## Timing Waveforms (cont)

Hidden Refresh


## Timing Waveforms (cont)

Fast-Page Read Cycle


## Timing Waveforms (cont)

Fast-Page Write Cycle


## Timing Waveforms (cont)

Fast-Page Read-Modify-Write Cycle


## Timing Waveforms (cont)

## Color Register Set Cycle



## Timing Waveforms (cont)

Flash Write Cycle


## Timing Waveforms (cont)

Data Transfer Cycle (Serial Port Active)


## Timing Waveforms (cont)

Data Transfer Cycle (Serial Port Standby)


## Timing Waveforms (cont)

## Serial Read Cycle



## Description

The $\mu$ PD42505 is a 5048 -word by 8 -bit dual-port line buffer fabricated with a silicon-gate CMOS process. The device is capable of asynchronous read and write operation at high speed, and can be used as a time axis converter or a digital delay line of up to 5048 bits (at maximum frequency, the minimum delay line length is 10 bits).

Applications include image processing in facsimile machines, plain paper copiers, video systems, and other optical scanners; time base correction in video playback systems; and data communication buffering in multiprocessor systems and local area networks.

## Features

5048-word x 8 -bit organizationDual-port operationImage processing and data communications systems applicationsAsynchronous and simultaneous read/write operation1H (5048-bit) delay line capabilityTTL-compatible inputs and outputsThree-state outputs
$\square$ Single +5 -volt $\pm 10 \%$ power supply$300-\mathrm{mil}, 24$-pin plastic DIP and $400-\mathrm{mil}, 28$-pin plastic ZIP packaging

## Ordering Information

| Device | $\begin{gathered} \text { Cycle } \\ \text { Time (min) } \end{gathered}$ | Read Access Time (max) | Hold Time (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 42505 \mathrm{C}$-50 | 50 ns | 40 ns | 5 ms | 24-pin plasticDIP |
| C-75 | 75 ns | 55 ns | 5 ms |  |
| $\mathrm{C}-5 \mathrm{OH}$ | 50 ns | 40 ns | 20 ms |  |
| $\mathrm{C}-75 \mathrm{H}$ | 75 ns | 55 ns | 20 ms |  |
| $\mu \mathrm{PD} 42505 \mathrm{~V}-50$ | 50 ns | 40 ns | 5 ms | 28-pin plastic$\mathrm{ZIP}$ |
| V-75 | 75 ns | 55 ns | 5 ms |  |
| V-50H | 50 ns | 40 ns | 20 ms |  |
| V -75H | 75 ns | 55 ns | 20 ms |  |

## Pin Configurations

24-Pin Plastic DIP


83-004023A

## 28-Pin Plastic ZIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $D_{\text {INO }}-D_{\text {IN7 }}$ | Write data inputs |
| $D_{\text {OUT0 }}-D_{\text {OUT7 }}$ | Read data outputs |
| RCK | Read clock input |
| $\overline{\overline{\text { RE }}}$ | Read enable input |
| $\overline{\overline{\text { RSTR }}}$ | Read address reset input |
| WCK | Write clock input |
| $\overline{\overline{W E}}$ | Write enable input |
| $\overline{\text { RSTW }}$ | Write address reset input |
| GND | Ground |
| $\overline{V_{\text {CC }}}$ | +5 -volt power supply |

## Pin Functions

## DIN0-DIN7 [Data Inputs]

New data is entered on these pins.

## Douto-Dout7 [Data Outputs]

These tri-state outputs are used to access the stored information. In a simple digital delay line application, a minimum delay of 10 clock cycles is required to move data from the data inputs to the data outputs.

## RCK [Read Clock Input]

All read operations are performed synchronously with RCK. The states of both RSTR and $\overline{\operatorname{RE}}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts the internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle, unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 5047 to 0 and begin increasing again.

## $\overline{R E}$ [Read Enable Input]

This signal controls read operation. If $\overline{R E}$ is at a low level, all read cycles proceed. If $\overline{R E}$ is at a high level, the data outputs become high impedance and the internal read address stops increasing. The state of $\overline{\mathrm{RE}}$ is strobed by the rising edge of RCK.

## $\overline{\text { RSTR }}$ [Read Address Reset Input]

Strobed by the rising edge of RCK, this signal resets the internal read address to 0 .

## $\overline{\text { RSTW }}$ [Write Address Reset Input]

Bringing this signal to a low level resets the internal write address to 0 . The state of this input is strobed by the rising edge of WCK.

## WCK [Write Clock Input]

All write operations are performed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle, unless $\bar{W}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{W E}$, the internal write address will automatically wrap around from 5047 to 0 and begin increasing again.

## $\overline{W E}$ [Write Enable Input]

This input is similar to $\overline{R E}$ but controls write operation. If $\bar{W} E$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Voltage on any input pin, $\mathrm{V}_{1}$ | -1.5 to +7.0 V |
| Voltage on any output pin, $\mathrm{V}_{0}$ | -1.5 to +7.0 V |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 20 mA |
| Operating temperature, $\mathrm{T}_{0 P R}$ | -20 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



## Operation

## Reset Cycle

The $\mu$ PD42505 requires the initialization of internal circuits using the $\overline{\text { RSTW }} / \overline{\text { RSTR }}$ reset signals before starting operation as a time axis converter or a digital delay line.

A reset cycle can be executed at any time and does not depend on the state of $\overline{\text { RE }}$ or WE. However, $\overline{\text { RSTW }}$ and RSTR must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.

## Write/Read Cycles

Write and read cycles are synchronized to their respective WCK/RCK inputs and executed individually when WCK or RCK is high and WE or $\overline{\text { RE }}$ is low. Write data must satisfy the setup and hold times as specified from the rising edge of WCK. New data written to a particular address is available for reading after $1 / 2$ write cycle +500 ns (maximum).
The access time of the read operation is measured from the rising edge of RCK, either by $t_{A C R}$ for an access during the first cycle directly after a reset begins, or by $t_{A C}$ for an access under other conditions. Stored data is read nondestructively; data can be repeatedly read within a prescribed time of 5 ms maximum ( 20 ms maximum for H versions).

## Time Axis Conversion

In order to use the $\mu$ PD42505 as a time axis converter, write and read cycles must be controlled independently. First, write/read ports are initialized separately using the reset signais. Then, write cycles are executed in synchronization with WCK and write data is stored sequentially from address 0 of this device. Afterward, when a read cycle is executed in synchronization with RCK, stored data can be read sequentially from address 0 .

Since write and read cycles can be executed independently, data loaded at one arbitrary drive frequency can be read at another arbitrary drive frequency. In this sense, the $\mu$ PD42505 functions as a time axis converter.

## Digital Delay Line

The $\mu$ PD42505 can easily be used as a digital delay line of 5,048 bits or less.
After initializing the internal circuits using simultaneous $\overline{\text { RSTW/RSTR }}$ signals, write/read cycles are executed simultaneously by supplying the same pulse to the write clock (WCK) and read clock (RCK). The write data is always read after the full 5,048 -bit delay if neither write nor read operation has been inhibited. This is the essential delay line function.
If either $\overline{W E}$ or $\overline{R E}$ is set at a nonselected (high) level for several cycles while the other is maintained in a selected (low) level, the delay line length can differ from 5,048 bits.
For example, if only $\overline{\mathrm{WE}}$ is a set to a high level (write disable) for a small number of cycles, the read operation is performed continuously and the delay line length is large [see "( 5048 -m)-Bit Delay Line, No. 2" timing]. Alternatively, if only $\overline{R E}$ is set to a high level (read disable) for a small number of cycles, the write operation is performed continuously and the delay line length is small. Note that the minimum delay line length is 10 bits (for maximum frequency operation) and the maximum is 5,048 bits.

A data delay of 5,048 bits or less can also be obtained by applying the $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ signals at different times. For example, data is loaded for " $m$ " cycles after $\overline{\text { RSTW }}$ and then this data is read after supplying RSTR. In this case, since write data can be read from the beginning after a delay of " $m$ " cycles, the device can be used as an " $m$-bit" digital delay line.

The RSTW/ $\overline{\text { RSTR }}$ reset signals can also be simultaneously loaded at every 1H (horizontal line) period. In this case, write data loaded in the previous line cycle is read out from the beginning as read data after the reset. Therefore, a delay line length ranging from 10 to 5,048 bits can be obtained according to the length of the reset signals supplied. Refer to the timing diagram for an " $n$-Bit Delay Line."

## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit Test Conditions |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, <br> high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| Input voltage, <br> low | $\mathrm{V}_{\mathrm{IL}}$ | -1.5 | 0.8 | V |  |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions |
| Input <br> capacitance | $\mathrm{C}_{1}$ |  |  | 5 | pF | $\overline{\mathrm{WE},} \overline{\mathrm{RE}}$, WCK, |
| Output <br> capacitance | $\mathrm{C}_{0}$ |  |  |  |  | $\overline{\text { RCK, }} \overline{\text { RSTW }}$, |

## Notes:

(1) These parameters are sampled and not $100 \%$ tested.

DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Write/read cycle operating current | ${ }^{\text {ICC }}$ |  |  | 60 | mA |  |
| Input leakage current | 1 | -10 |  | 10 | $\mu \mathrm{A}$ | $V_{1}=0 \text { to } V_{C C} ; \text { all }$ <br> other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{I}_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{0}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2 \mathrm{~mA}$ |

## Notes:

(1) All voltages are referenced to GND.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 42505-50$ |  | $\mu \mathrm{PD} 42505.75$ |  | $\mu \mathrm{PD} 42505-50 \mathrm{H}$ |  | $\mu$ PD42505-75 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| Write clock cycle time | twCk | 50 | 990 | 75 | 990 | 50 | 3960 | 75 | 3960 | ns |  |
| WCK pulse width | twCw | 20 |  | 30 |  | 20 |  | 30 |  | ns |  |
| WCK precharge time | ${ }_{\text {twCP }}$ | 20 |  | 30 |  | 20 |  | 30 |  | ns |  |
| Read clock cycle time | $\mathrm{t}_{\text {RCK }}$ | 50 | 990 | 75 | 990 | 50 | 3960 | 75 | 3960 | ns |  |
| RCK pulse width | $\mathrm{t}_{\text {RCW }}$ | 20 |  | 30 |  | 20 |  | 30 |  | ns |  |
| RCK precharge time | $t_{\text {RCP }}$ | 20 |  | 30 |  | 20 |  | 30 |  | ns |  |
| Access time | ${ }_{\text {t }}{ }_{\text {c }}$ |  | 40 |  | 55 |  | 40 |  | 55 | ns |  |
| Access time after a reset cycle | ${ }^{\text {A }}$ ACR |  | 40 |  | 55 |  | 40 |  | 55 | ns |  |
| Output hold time | ${ }^{\text {toH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Output hold time after a reset cycle | $\mathrm{t}_{\text {OHR }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 7) |
| Output active time | tLz | 5 | 40 | 5 | 55 | 5 | 40 | 5 | 55 | ns | (Note 4) |
| Output disable time | $\mathrm{t}_{\mathrm{Hz}}$ | 5 | 40 | 5 | 55 | 5 | 40 | 5 | 55 | ns | (Note 4) |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 15 |  | 20 |  | 15 |  | 20 |  | ns |  |
| Data-in hold time | $t_{\text {DH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Reset active setup time | $t_{\text {RS }}$ | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 8) |
| Reset active hold time | $\mathrm{t}_{\mathrm{RH}}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 8) |
| Reset inactive hold time | $\mathrm{t}_{\mathrm{RN} 1}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 9) |
| Reset inactive setup time | $\mathrm{t}_{\text {RN2 }}$ | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 9) |
| Write enable setup time | twES | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 10) |
| Write enable hold time | TWEH | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 10) |
| Write enable high delay from WCK | twen1 | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Write enable low delay to WCK | tWEN2 | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 11) |
| Read enable setup time | $\mathrm{t}_{\text {RES }}$ | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 10) |
| Read enable hold time | $\mathrm{t}_{\text {REH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 10) |
| Read enable high delay from RCK | $t_{\text {REN } 1}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 11) |
| Read enable low delay to RCK | tren2 | 15 |  | 20 |  | 15 |  | 20 |  | ns | (Note 11) |
| Write disable pulse width | twew | 0 |  | 0 |  | 0 |  | 0 |  | ms | (Note 6) |
| Read disable pulse width | $t_{\text {REW }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ms | (Note 6) |
| Write reset time | $t_{\text {RSTW }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ms | (Note 6) |
| $\underline{\text { Read reset time }}$ | $t_{\text {RSTR }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ms | (Note 6) |
| Transition time | ${ }_{\text {t }}$ | 3 | 35 | 3 | 35 | 3 | 35 | 3 | 35 | ns |  |

## AC Characteristics (cont)

## Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(3) Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and V .
(4) This delay is measured at $\pm 200 \mathrm{mv}$ from the steady state voltage with the load specified in figure 2 . Under any conditions, $t_{L Z} \geq t_{H Z}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.
(6) $t_{\text {WEW ( }}$ (max) and $t_{\text {REW }}$ (max) must be satisfied by the next equations in one line cycle operation:
$t_{\text {WEW }}+\mathrm{t}_{\text {RSTW }}+5048 \mathrm{t}_{\text {WCK }} \leq 5 \mathrm{~ms}$ ( 20 ms for H versions)
$t_{\text {REW }}+t_{\text {RSTR }}+5048 \mathrm{t}_{\text {RCK }} \leq 5 \mathrm{~ms}$ ( 20 ms for H versions)

Figure 1. Output Load for $t_{A C}, t_{A C R}, t_{O H}$, and $t_{O H R}$


Figure 2. Output Load for $t_{L Z}$ and $t_{H Z}$


$$
00-000
$$

(7) This parameter applies when $t_{R C K} \geq t_{A C R}$ (max).
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $\mathrm{t}_{\mathrm{RN} 1}$ or $\mathrm{t}_{\mathrm{RN} 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(10) If either $t_{\text {WES }}$ or $t_{\text {WEH }}$ ( $t_{\text {RES }}$ or $t_{\text {REH }}$ ) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either $t_{\text {WEN } 1}$ or twEN2 ( $t_{\text {REN } 1}$ or $t_{\text {REN2 }}$ ) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

AC Input Timing Reference Waveform


AC Output Timing Reference Waveform


83-003651A

## Timing Waveforms

Time Axis Conversion


Notes:
(1) $\overline{\mathrm{WE}}=\overline{\mathrm{RE}}=\mathrm{VIL}$.
[2] $\mathbf{V}=$ valid data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as tACR. In all other cycles, tAC defines the read access time.
[4] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

5048-Bit Delay Line

$\overline{W E}, \overline{\text { RE }}$
$V_{\text {IL }}$

## Notes:

[1] $V=$ valid data
[2] $1 \mathrm{H}=$ the first group of 5048 bits.
$2 \mathrm{H}=$ the second group of 5048 bits.

## Timing Waveforms (cont)

n-Bit Delay Line


## Re-Read Operation


$\overline{W E}$


## Notes:

(1) $\overline{\mathrm{RE}}=\mathrm{VIL}$.

2] $\mathbf{V}=$ valid data.
[3] The data stored in any location can be re-read as many times as desired within a period of 5 ms following the writing of data into that location, provided that a second write operation has not re-written new data into that location.

## Timing Waveforms (cont)

## Read or Write Reset



Notes:
[1] $\overline{\mathrm{WE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{IL}}$ above to show the relationship of reset cycles to the reading and writing of data [DOUT and DIN]. If reading and writing are not needed during reset, then $\overline{W E}=\overline{\mathbf{R E}}=$ don't care.
[2] $\mathbf{V}=$ valid data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as $t_{A C R}$. In all other cycles, $t_{A C}$ defines the read access time.
[4] $H=5048$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

## Write Disable



Notes:
[1] $\mathbf{V}=$ valld data.

## Timing Waveforms (cont)

Read Disable

(5048-m)-Bit Delay Line, No. 1


## Timing Waveforms (cont)

(5048-m)-Bit Delay Line, No. 2

$\mu$ PD42532 32,768 x 8-BIT
NEC Electronics Inc. BIDIRECTIONAL DATA BUFFER PRELIMINARY INFORMATION

## Description

The $\mu$ PD42532 bidirectional data buffer features 32,768-word by 8-bit organization and CMOS dynamic circuitry that provides for high-speed, asynchronous, simultaneous write and read operation at a minimum cycle time of 100 ns. Two sets of write and read registers between the I/O pins and the storage cells enable all data to be parallel-transmitted as a single register group when the registers are either full or empty. The device's main application is data transmission between devices having different processing speeds, such as between a central processor and a disk.

Automatic refreshing by means of an internal capability is performed regularly for the $\mu$ PD 42532 -without any influence on write and read operation. A built-in arbitration circuit performs each required read, write, or refresh operation sequentially (even if transparent refreshing overlaps with the transmission of data) to simplify the device's external timing requirements.

The $\mu$ PD42532 operates from a single +5 -volt power supply and is packaged in a 600 -mil, 40 -pin plastic DIP. Four FLAG pins, plus FULL and EMPTY pins, are provided to monitor the amount of data accumulated in storage.

The $\mu$ PD42532 is capable of bidirectional input/output by means of a port select function. Input and output pins are also supplied for cascade connection. Cascade connection allows any number of $\mu \mathrm{PD} 42532$ s to be linked together so as to expand word width and length without limit.

## Features

$\square 32,768$-word by 8-bit organizationCMOS technologySingle +5 -volt power supplyIndependent, asynchronous write/read operationBidirectional transmission of input and output data (exchange of port functions)Automatic, regular refreshingInternal addressingFlag pin monitoring of accumulated dataUnlimited expansion of word width and depth (cascade connection)Retransmit (re-read) functionHigh-speed operation

- Access time: 50 ns maximum
- Cycle time: 100 ns minimum

600-mil, 40-pin plastic DIP packaging

## Pin Configuration

## 40-Pin Plastic DIP



## Ordering Information

| Part Number | Access Time <br> (max) | Cycle Time <br> (min) | Package |
| :--- | :---: | :---: | :--- |
| $\mu$ PD42532C-10 | 50 ns | 100 ns | 40 -pin plastic DIP |

## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{DB}_{0} \mathrm{~A}-\mathrm{DB}_{7} \mathrm{~A}$ | Port A input/output data buses |
| $\mathrm{DB}_{0} \mathrm{~B}-\mathrm{DB}_{7} \mathrm{~B}$ | Port B input/output data buses |
| RESET | Reset input |
| REQUEST A/ $\overline{\text { EEQUEST }} \mathrm{B}$ | Port $\mathrm{A} /$ Port B request input |
| READY A/READY B | Port $A /$ Port $B$ ready output |
| EMPTY | Empty output |
| $\mathrm{FLAG}_{1}-\mathrm{FLAG}_{4}$ | Flag outputs |
| FULL | Full output |
| PS | Write/read port select input |
| IR | Interrupt read request input |
| FL/RT | First load/retransmit input |
| $\mathrm{C}_{\text {IN }}$ | Cascade connection input |
| $\mathrm{Cout}^{\text {O }}$ | Cascade connection output |
| TEST | Test pin (connect to GND in system) |
| GND | Ground |
| $\mathrm{V}_{\text {CC }}$ | +5-volt power supply |
| NC | No connection |

## Pin Functions

$\mathrm{DB}_{0} \mathrm{~A}-\mathrm{DB}_{7} \mathrm{~A} / \mathrm{DB}_{0} \mathrm{~B}-\mathrm{DB}_{7} \mathrm{~B}$. These pins function as 8 bit data buses for write input or read output depending on the status of the PS pin. The output drivers are three-state outputs.

RESET. This pin initializes the internal counters and pointers.
$\overline{\text { REQUEST }} \mathbf{A / R E Q U E S T} B$. Depending on the status of PS, one pin corresponds to the read port and the other to the write port. To initiate a write or read cycle, the signal goes low for the respective port (if READY A or READY $B$ is low, the corresponding REQUEST input is ignored internally). These pins can be connected to the WR and RD pins of a CPU.

READY A/READY B. Depending on the status of PS, one pin corresponds to the read port and the other to the write port. When a write or read cycle is possible, the READY signal is high for the respective port. These
pins can be connected to the READY pins of a CPU or DMA controller.

EMPTY. The signal from this pin is low whenever the amount of data accumulated is exactly 0 bytes, and high in all other cases.

FLAG $_{1}-$ FLAG $_{4}$. These pins reflect the amount of data accumulated in the storage array. By combining the output signals, it is possible to monitor (in 2 K byte steps) data quantities of up to 32 K bytes.
FULL. The signal from this pin is low when the storage cells are full of accumulated data, and high in all other cases.

PS. This pin is used to specify the direction of data transfer. When PS is high, Port A serves as the write port and Port B as the read port. When PS is low, the functions of the two ports are reversed.
IR. If the data accumulated in storage is less than 64 bytes (i.e., one register's capacity), the READY signal for the read port goes low to inhibit reading. However, forcing IR high makes it possible to read all stored data.

Read cycles are normally executed so as to maintain the stored data volume at levels above 2 K bytes. If the data volume drops below 2 K bytes for devices with process code K , all remaining data must be read using the interrupt read option.
FL/ $\overline{\mathbf{R T}}$. This pin designates the lead device when multiple devices are cascade connected. It is high only for that device and low for all others. If the device is not cascaded, a low FL/RT controls the retransmit (reread) function; other than during retransmission, FL/RT must be high.
$\mathrm{C}_{\mathrm{IN}}$. This pin is used to expand word depth and is connected to the Cout pin of the device preceding it in cascade connections. If word depth is not expanded, $\mathrm{C}_{\text {IN }}$ is connected to $\mathrm{C}_{\text {OUT }}$ of the same device.

Cout. This pin is used to expand word depth and is connected to the $\mathrm{C}_{\text {IN }}$ pin of the device following it in cascade connections. If word depth is not expanded, $\mathrm{C}_{\text {OUt }}$ is connected to $\mathrm{C}_{\text {IN }}$ of the same device.

## Block Diagram



## Operation

## Reset Cycle

After power is applied to the $\mu$ PD42532, it is necessary to clear the internal counters and initialize the write and read address pointers by executing a reset cycle. A reset cycle can be executed at any time by setting the RESET pin to a high logic level. However, once this cycle is initiated, RESET, REQUEST, and FL/RT must be kept high for a minimum time of $\mathrm{t}_{\mathrm{sw}}$ before the RESET signal goes low again (see waveform for "Reset Cycle"). The RESET, $\overline{R E Q U E S T}$, and FL/RT signals are all high at the start of a reset, except in cascade connections, in which case a high FL/RT is required only in the first stage.
After a reset, the READY signal for the write port, READY (W), is driven high to prepare for a write cycle. Subsequently, the REQUEST signal for the write port, REQUEST (W), can be set low to commence writing.

A standard read cycle can be executed once data written to one of the 64-byte registers has filled that register and been transferred to the storage cells. The READY signal for the read port, READY (R), goes high to prepare for the cycle. Subsequently, the REQUEST signal for the read port, REQUEST (R), can be set low to commence reading.

## Write Cycle

In a write cycle, data is written to one of two 64-byte write registers before being transferred to the storage cells. Whenever 64 bytes have been written into one register, write operation automatically shifts to the other and the contents of the first are transferred to storage. High-speed write cycles are thus executed continuously by alternating registers repeatedly. Write data must satisfy the requirements for setup and hold times as measured against the rising edge of REQUEST (W) [see waveform for "Write Cycle"].

A write cycle can be initiated any time READY (W) is high by setting REQUEST (W) low. To allow a write cycle to be executed in one port even while the other port may be executing a read cycle, READY (W) is always high after a reset, except in the following cases:

- Whenever the storage cells are full of accumulated data
- While the device is executing a forced read cycle (see Interrupt Read Cycle)
- When a retransmit operation is being performed (see Retransmit Cycle)

While READY (W) is off, the REQUEST (W) signal is ignored internally and no write cycle is executed.

Figure 1. Write Register Operation


Figure 2. Read Register Operation


## Read Cycle

In a read cycle, data is not read directly from the storage cells but rather from one of two 64-byte read registers. After 64 bytes of data have been read from one register, read operation automatically shifts to the other and the contents of the first are subsequently replaced by data from the storage cells. High-speed read cycles are thus executed continuously by alternating registers repeatedly.

Data is output after a maximum access time of $t_{A C}$, measured from the falling edge of $\overline{R E Q U E S T}$ (R). When $\overline{\text { REQUEST }}(R)$ is high or READY (R) is low, the outputs are in a state of high impedance (see waveform for "Read Cycle").

A standard read cycle can be initiated any time READY $(R)$ is high by setting REQUEST ( $R$ ) low. To allow a read cycle to be executed in one port even while the other port may be executing a write cycle, the READY (R) signal is always high, except in the following cases:

- Whenever the data accumulated is less than 64 bytes
- While a retransmit operation is being performed (see Retransmit Cycle).
While READY (R) is low, REQUEST (R) is ignored internally and no read cycle is executed.


## Flags

The $\mu$ PD42532 supplies signals from the EMPTY pin, the FULL pin, and the four FLAG pins to indicate the amount of stored data in units of approximately 2 K bytes. Accumulated data is reflected as the difference between the write address counter and the read address counter. Thus, if a total of 16 K bytes have been read while 32 K bytes have been written since the most recent reset, the amount of data in storage is 16 K bytes.

The FULL and EMPTY pins are used to prevent overwriting and overreading. To control write operation on data units of register length ( 64 bytes), the FULL pin outputs a low signal when stored data reaches the 32,705- to 32,768 -byte range. Whenever write cycles are executed continuously and the storage cells become full, REQUEST (W) is ignored and the signals of FULL and READY (W) are driven low to inhibit writing. Meanwhile if read cycles are executed and the data decreases to 32,704 bytes or less, READY (W) goes high again to enable write operation.
$\mu$ PD42532

The EMPTY pin goes low whenever stored data is exactly 0 bytes. Since standard read cycles cannot be executed if the quantity of data drops below 64 bytes, READY (R) goes low to inhibit read operation. Whenever write cycles are executed and stored data increases to 64 bytes or more, READY (R) goes high again to enable read operation.
The status of the FLAG pins depends on the internal status of the write and read address counters. These counters are incremented as data is transferred to or from the storage array. Since the logic levels of the FLAG pins reflect movement of blocks of data on a 64-byte-register basis rather than on a single-byte basis, the status indicated by these pins can be in error by a maximum of 255 bytes with respect to the actual amount of data accumulated [i.e., the sum of the write register ( 63 bytes), the read registers ( 128 bytes), and the 64 bytes currently being transferred]. This discrepancy means that two adjacent ranges of stored data, as indicated by the FLAGs, can overlap by up to 191 bytes.

The following table shows the combination of signals output from these pins.

Table 1. Stored Data as Indicated by Flag Pins

| Amount of Stored Data (bytes) | $\overline{\text { FULL }}$ | $\overline{\text { EMPTY }}$ | FLAG |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |
| 32705 to 32768 | 0 | 1 | 1 | 1 | 1 | 1 |
| 30721 to 32767 | 1 | 1 | 1 | 1 | 1 | 1 |
| 28673 to 30911 | 1 | 1 | 0 | 1 | 1 | 1 |
| 26625 to 28863 | 1 | 1 | 1 | 0 | 1 | 1 |
| 24577 to 26815 | 1 | 1 | 0 | 0 | 1 | 1 |
| 22529 to 24767 | 1 | 1 | 1 | 1 | 0 | 1 |
| 20481 to 22719 | 1 | 1 | 0 | 1 | 0 | 1 |
| 18433 to 20671 | 1 | 1 | 1 | 0 | 0 | 1 |
| 16385 to 18623 | 1 | 1 | 0 | 0 | 0 | 1 |
| 14337 to 16575 | 1 | 1 | 1 | 1 | 1 | 0 |
| 12289 to 14527 | 1 | 1 | 0 | 1 | 1 | 0 |
| 10241 to 12479 | 1 | 1 | 1 | 0 | 1 | 0 |
| 8193 to 10431 | 1 | 1 | 0 | 0 | 1 | 0 |
| 6145 to 8383 | 1 | 1 | 1 | 1 | 0 | 0 |
| 4097 to 6335 | 1 | 1 | 0 | 1 | 0 | 0 |
| 2049 to 4287 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 to 2239 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |

## Notes:

(1) $1=$ high level
(2) $0=$ low level

## Interrupt Read Cycle

Whenever the amount of stored data drops below 64 bytes (i.e., one register's capacity), or 2 K bytes for devices with process code K, READY (R) is driven low to inhibit reading. Any data remaining in a write register can only be read by means of an interrupt (or forced) read cycle.

An interrupt read cycle can be executed by forcing the IR pin high. At this point, data is transferred from the write register to one of the read registers via the storage array, and write operation is disabled until all stored data has been read. If this cycle is initiated after READY ( $R$ ) goes low, read operation will be delayed until all data has been transferred to one of the read registers.

Once the device completes reading of its last address, the EMPTY and READY (R) signals are driven low and READY (W) goes high to enable write operation again (unless a retransmit cycle has been requested). Read cycles will be executed only after 64 bytes or more have been written and transferred to storage.

## Retransmit Cycle

The $\mu$ PD42532 will execute a retransmit cycle whenever a low-level pulse is applied to $\overline{R T}$. A retransmit cycle initializes the read address counter to starting address 0 . Although retransmission can be executed at any time, $\overline{\text { REQUEST }}(\mathrm{W})$ and REQUEST (R) must be high before and after the low $\overline{R T}$ signal is applied.

During this cycle, the READY signals are pulsed low to temporarily inhibit writing and reading, and the FLAG and EMPTY signals vary in accordance with the amount of data in storage. After READY (W) goes high again, the retransmit preparation cycle is complete. Write operation can resume after an extra delay to ensure stability of the FLAG and EMPTY pins. If an interrupt read signal is applied during retransmission, the interrupt read cycle is executed after termination of the retransmit cycle.
The retransmit function is only useful in systems where less than 32 K bytes of data are written between resets. If a retransmit cycle is executed after more than 32 K bytes are written, old data cannot be retransmitted.

Since the $\overline{R T}$ pin is multiplexed as the first load (FL) pin in cascade connections, cascaded devices cannot be used for retransmission. In single-device configuration, this pin is always high except during a retransmit cycle.

## Port Select Function

The $\mu$ PD42532 is able to change the direction of data transfer according to the logical level of the signal applied to the PS pin. When a high-level input is applied to PS, Port A becomes the write port and Port B the read port. When PS is low, the functions of the two ports are reversed. While port functions are being assigned, the REQUEST signals must be kept high.

Since register and storage cell data are preserved during port selection, data written to a particular port can also be read from that same port.

## Cascade Connection

The $\mu$ PD42532 can be used in a single-device, 32 K by 8-bit configuration or it can be cascade connected by means of the $\mathrm{C}_{\mathrm{IN}}$ and $\mathrm{C}_{\text {OUT }}$ pins to allow unlimited expansion of word width and length.

Single-Device Configuration. When using the $\mu$ PD42532 as a single 32 K by 8-bit data buffer, connect $\mathrm{C}_{\text {OUT }}$ to $\mathrm{C}_{\text {IN }}$ and set the FL pin to a high logic level (see figure 3).
Expanded Word Width. When using multiple devices to expand word width, connect RESET, $\overline{R E Q U E S T}, \mathrm{PS}$, and IR to the corresponding pins of each $\mu$ PD42532 in parallel and apply common control signals. Each $\mathrm{C}_{\text {OUT }}$ pin should be connected to its own $\mathrm{C}_{\operatorname{IN}}$ pin (as in the single-device configuration) and a high-level input applied to each FL. The flag pins of a single $\mu$ PD42532 can be used to represent the entire system (see figure 4).
Expanded Word Length. When using multiple devices to expand word length, set a high-level input to FL of the lead $\mu$ PD42532 and a low-level input to FL of all the others. Each $\mathrm{C}_{\text {OUT }}$ pin should be connected to $\mathrm{C}_{\mathbb{I}}$ of the device following it; Cout on the last device should be connected to $C_{I N}$ of the lead device. Connect RESET, $\overline{R E Q U E S T}, \mathrm{PS}$, and IR to the corresponding pins of each $\mu$ PD42532 in parallel and apply common control signals.

The EMPTY, FULL, and READY pins of each device, respectively, can be ORed together by external logic. 'OR' outputs are composite EMPTY, FULL, and READY signals for all data buffers (see figure 5).

Operation. To enable operation of $\mu$ PD42532s in cascade connection, set the RESET signal(s) high to clear the internal counters and initialize the write and read address pointers. When the reset is complete, start
writing to the lead device. While data is being written to the first, all other devices output low READY signals and ignore the REQUEST signals. When write operation in the first $\mu$ PD42532 ( n ) reaches the last address, its $C_{\text {OUt }}$ pin outputs a high-level signal and forces $\mathrm{C}_{\mathrm{IN}}$ of the next device high. Write operation shifts to the next device in succession ( $n+1$ ). The READY (W) signal of the first device ( $n$ ) is driven low, and the READY (W) signal of the succeeding device $(n+1)$ goes high.

If only write cycles are being executed, each data buffer outputs a low FULL signal as writing is completed for that device. At the point where the last device finishes writing to its last address, all $\mu$ PD42532s output low-level FULL and READY (W) signals. The ORed composite of these signals should be used to inhibit write operation.

If write and read cycles are being executed simultaneously, and the storage cells in the lead device are not full of accumulated data when the last device completes writing to its last address, write operation shifts to the lead $\mu$ PD42532 again. Writing continues in this manner until every data buffer is full.

Read cycles also begin with the lead device ( $n$ ) and shift to the next ( $n+1$ ) once the last address has been read. When all devices have been completely emptied of data, the ORed composite of the EMPTY signals is low. If the expanded word length configuration has less than 64 bytes of data in a write register, EMPTY will not be at a low level; READY (R) will be low to indicate that standard read operation may not proceed. Forced read or dummy write cycles will be required to continue reading any accumulated data of less than 64 bytes.

Figure 3. Single-Device Configuration Block Dlagram


Figure 4. Expanded Word Width Block Diagram


Figure 5. Expanded Word Length Block Diagram


## Absolute Maximum Ratings

| Terminal voltage, $\mathrm{V}_{\mathrm{T}}$ | -1.5 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Output current, $\mathrm{l}_{0}$ | 50 mA |
| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.5 to +7.0 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V |  |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |  |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Pins Under Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{Cl}_{1}$ |  |  | 10 | pF | $\overline{\text { REQUEST, }}$ RESET, PS, $\mathrm{C}_{\mathrm{IN}}, \mathrm{IR}, \mathrm{FL} / \overline{R T}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  |  | 10 | pF | READY, FLAG ${ }_{1-}$ $\mathrm{FLAG}_{4}, \mathrm{C}_{\text {OUT }}$, FULL, EMPTY |
| Input/output capacitance | $\mathrm{C}_{1 / 0}$ |  |  | 10 | pF | $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ |

## AC Characteristics

| Parameier | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 100 |  | ns |  |
| REQUEST (R) pulse width | $t_{\text {RaW }}$ | 50 | 10000 | ns | (Note 5) |
| REQUEST (R) precharge time | $\mathrm{t}_{\text {RaP }}$ | 30 |  | ns |  |
| REQUEST ( R ) low hold time after READY ( R ) high | $\mathrm{t}_{\text {RON }}$ | 50 | 10000 | ns | (Note 6) |
| READY (R) low output time | $\mathrm{t}_{\text {RRF }}$ |  | 30 | ns | (Note 14) |
| Access time | $t_{\text {AC }}$ |  | 50 | ns |  |
| Access time after READY ( $R$ ) high | ${ }_{\text {t }}^{\text {ACR }}$ |  | 50 | ns |  |
| Output data hold time | $\mathrm{t}_{\mathrm{OH}}$ | 10 |  | ns |  |
| Output data off time | $\mathrm{t}_{\text {OFF }}$ |  | 40 | ns |  |
| Low-impedance output delay | $t_{L Z}$ | 5 |  | ns |  |
| Low-impedance output delay after READY (R) high | t LzR | 0 |  | ns |  |
| READY (R) low time when empty | $\mathrm{t}_{\text {SRR }}$ |  | $4800+64$ twC | ns | (Note 8) |
| READY (R) low time when almost empty | temR | 0 | $4800+63$ twC | ns | (Note 8) |
| Write cycle time | $t_{\text {w }}$ | 100 |  | ns |  |
| REQUEST (W) pulse width | twaw | 50 | 10000 | ns | (Note 5) |
| REQUEST (W) precharge time | $\mathrm{t}_{\text {WQP }}$ | 30 |  | ns |  |
| REQUEST ( $W$ ) low hold time after READY ( $W$ ) high | ${ }_{\text {t }}$ WQN | 50 | 10000 | ns | (Note 6) |
| READY (W) low output time | $t_{\text {WRF }}$ |  | 30 | ns |  |
| Write data setup time | $t_{\text {DW }}$ | 30 |  | ns |  |
| Write data hold time | $\mathrm{t}_{\text {DH }}$ | 10 |  | ns |  |
| REQUEST high setup time | $\mathrm{t}_{\text {QRP }}$ | $\mathrm{t}_{\mathrm{T}}+30$ |  | ns | (Note 6) |
| READY (W) low time when full | $\mathrm{t}_{\mathrm{FLW}}$ | 0 | $3200+64$ trC | ns |  |
| FLAG ${ }_{1}$ - $\mathrm{FLAG}_{4}$ output times | $\mathrm{t}_{\text {FLO }}$ |  | 4800 | ns |  |
| EMPTY and FULL output valid times | $\mathrm{t}_{\text {EFO }}$ |  | 40 | ns |  |
| $\overline{\overline{\text { EMPTY }} \text { and FULL }}$ output hold times | $\mathrm{t}_{\text {EFH }}$ | 0 |  | ns |  |
| $\overline{\text { FULL }}$ output off time | $\mathrm{t}_{\text {for }}$ |  | 3200 | ns | (Note 9) |
| Cout output off time when read request is executed | $\mathrm{t}_{\mathrm{COR}}$ |  | 40 | ns |  |
| Cout output on time when write request is executed | tcow |  | 40 | ns |  |
| $\mathrm{C}_{\text {IN }}$ setup time for $\overline{\text { REQUEST }}$ ( R ) | $\mathrm{t}_{\text {CIR }}$ | 10 |  | ns |  |
| C ${ }_{\text {N }}$ setup time for REQUEST (W) | talw | 10 |  | ns |  |
| Reset pulse width | ${ }_{\text {t }}$ W | 100 |  | ns |  |
| READY, FULL, and EMPTY output times after reset | ${ }_{\text {t }}^{\text {SWR }}$ |  | 80 | ns |  |
| $\mathrm{FLAG}_{1}-\mathrm{FLAG}_{4}$ output times after reset | ${ }_{\text {tSSF }}$ |  | 100 | ns |  |
| EREQUEST precharge hold time after reset | $\mathrm{t}_{\text {SWQ }}$ | 30 |  | ns |  |
| $\overline{\overline{\mathrm{RT}} \text { disable hold time after reset }}$ | ${ }_{\text {t }}$ ST | 800 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Cout output low time after reset | ${ }_{\text {t }}$ WC |  | 100 | ns |  |
| READY ( R ) on time after interrupt read is executed | $\mathrm{t}_{\text {FRR }}$ | 0 | 6400 | ns | (Note 7) |
| READY (W) off time after interrupt read is executed | $\mathrm{t}_{\text {FWR }}$ |  | 50 | ns | (Note 7) |
| READY (W) on time after interrupt read | tirw |  | 100 | ns | (Note 11) |
| REQUEST (W) hold time after IR input | $t_{\text {faA }}$ | 60 |  | ns | (Note 13) |
| FREQUEST ( W ) setup time before IR input | $\mathrm{t}_{\text {FQB }}$ | 60 |  | ns |  |
| IR pulse width | $\mathrm{t}_{\text {FW }}$ | 50 | 2000 | ns | (Notes 4, 12, 13) |
| REQUEST hold time after PS input | $t_{\text {PAQ }}$ | 100 |  | ns |  |
| REQUEST setup time before PS input | tPBQ | 100 |  | ns |  |
| READY output time after port selection | tpSR |  | 50 | ns |  |
| $\overline{\overline{R T}}$ pulse width | $t_{\text {RTW }}$ | 50 | 2000 | ns | (Note 4) |
| REQUEST setup time before $\overline{\mathrm{RT}}$ input | $\mathrm{t}_{\text {BRT }}$ | 60 |  | ns | (Note 10) |
| REQUEST hold time after $\overline{\mathrm{RT}}$ input | $\mathrm{t}_{\text {RTQ }}$ | 60 |  | ns |  |
| READY (R) on time after retransmit is executed | $\mathrm{t}_{\text {RTR }}$ |  | 6400 | ns | (Note 7) |
| READY (W) on time after retransmit is executed | $t_{\text {WRT }}$ |  | 4800 | ns | (Note 7) |
| READY off time after retransmit is executed | $t_{\text {RRT }}$ |  | 50 | ns |  |
| $\overline{\overline{E M P T Y}}$ and $\overline{\text { FULL }}$ output hold times after retransmit is executed | $\mathrm{t}_{\text {FSRT }}$ | 0 |  | ns |  |
| EMPTY reset time after retransmit is executed | trite |  | 3200 | ns |  |
| FLAG $_{1}-$ FLAG $_{4}$ output valid times after retransmit is executed | $\mathrm{t}_{\text {RTF }}$ |  | 8000 | ns |  |
| Input transition time | ${ }_{T}$ | 5 | 50 | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) All ac measurements assume input pulse rise and fall times of 5 ns.
(3) The input voitage reference levels for timing ratings are $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max). Transition time $\mathrm{t}_{\mathrm{T}}$ is defined between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(4) IR and $\overline{\mathrm{RT}}$ inputs cannot be applied simultaneously. A timing delay of at least 100 ns is required. See figures 6 and 7 for acceptable input methods.
(5) The maximum pulse width of $10,000 \mathrm{~ns}$ applies only when the READY signal is on.
(6) $\overline{\text { REQUEST }}$ cannot be raised to a high level during the $\mathrm{t}_{\text {QRP }}+$ $\mathrm{t}_{\text {RQN }}$ (or $\mathrm{t}_{\text {WQN }}$ ) interval.

Figure 6. Input Timing for IR and $\overline{R T}$ : Method 1
(7) If an $\overline{\mathrm{RT}}$ (IR) pulse is applied during IR ( $\overline{\mathrm{RT}}$ ) operation, the $\overline{\mathrm{RT}}$ (IR) operation is delayed until IR ( $\overline{\mathrm{RT}}$ ) operation is released.
(8) "Empty" is defined as the state where the amount of stored data is zero, and "almost empty" is defined as the state where the amount of data is 1 to 63 bytes.
(9) $\mathrm{t}_{\text {FOF }}$ is defined from the rising edge of the $\overline{\text { REQUEST }}$ (R) signal when the amount of stored data reaches the prescribed value (that is, the value at which the FULL signal changes from a low level to a high level as defined in Table 1).
(10) $t_{B R T}=4800 \mathrm{~ns}$ minimum for the devices with process code K .
IR

Figure 7. Input timing for IR and $\overline{\operatorname{RT}}$ : Method 2


## AC Characteristics (cont)

Notes [cont]:
(11) After all data has been read in an IR cycle for devices with process code K, always input a RESET signal to initialize the internal circuitry before proceeding to the next operation. See figure 8.
(12) The IR signal is invalid whenever the $\overline{\text { EMPTY }}$ signal is low on devices with process code K.
(13) If an IR input signal is applied in a cascade connection for devices with process code K, the REQUEST (W) signal must stay at a high level until all data has been read.
(14) Read cycles are normally executed so as to maintain the stored data volume at levels above 2 K bytes. If the data volume drops below 2K bytes for devices with process code K, read all of the remaining data using the interrupt read option.

Figure 8. Reset Pulse After IR Operation


Figure 9. Input Timing


Figure 10. Output Timing


Figure 11. Output Loads


## Timing Waveforms

## Reset Cycle



Notes:
(1) IR = low
(2) $\mathrm{PS}=$ high or low

## Timing Waveforms (cont)

## Write Cycle



## Timing Waveforms (cont)

Read Cycle


## Timing Waveforms (cont)

Interrupt Read Cycle


## Timing Waveforms (cont)

Retransmit Cycle


## Timing Waveforms (cont)

Port Select Cycle


## Timing Waveforms (cont)

## Cascade Cycle



## $\mu$ PD42532

## PRELIMINARY INFORMATION

## Description

The $\mu$ PD42601 silicon file is an economical mass storage device specifically designed to replace magnetic disk drives in silicon disk, solid-state recording, and system backup applications in a variety of computer systems. Organized as $1,048,576$ words by 1 bit, the $\mu$ PD42601 provides a battery backup feature for enhanced system performance and a substantial savings in power consumption.
The device is capable of executing standard access or page-mode write and read cycles. Refreshing is accomplished by means of $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh cycles, RAS-only refresh cycles, self-refresh cycles, or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}$ through $\mathrm{A}_{8}$ during a 32-ms period.
The $\mu$ PD42601 is uniquely suitable for battery backup systems because it requires a very low power supply current for extended periods of self-refresh operation. If ambient temperature is limited to $50^{\circ} \mathrm{C}$ (max), as little as $30 \mu \mathrm{~A}$ (max) is required to maintain all data.

The $\mu$ PD42601 is available in high-density 18 -pin plastic DIP, 20-pin plastic ZIP, or 26/20-pin plastic SOJ packaging.

## Features

$\square 1,048,576$-word by 1 -bit organization
Single +5 -volt $\pm 10 \%$ power supply
CMOS technology
Low operating power: 12 mA maximum$30 \mu \mathrm{~A}$ maximum self-refresh current at 0 to $50^{\circ} \mathrm{C}$Read or write cycle time: 1000 ns minimumPage-mode cycle time: 200 ns minimumCAS before $\overline{\text { RAS }}$ refreshing 512 refresh cycles during $32-\mathrm{ms}$ periodAutomatic self-refreshing by $\overline{\text { RAS }}$ input cycling

## Ordering Information

| Part Number | Page-Mode Cycle (min) | Self-Refresh Current $\left(\max , 50^{\circ} \mathrm{C}\right.$ ) | Package |
| :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 42601 \mathrm{C}$-60 | 200 ns | $120 \mu \mathrm{~A}$ | 18-pin plastic DIP |
| C-60L | 200 ns | $30 \mu \mathrm{~A}$ |  |
| $\mu$ PD42601LA-60 | 200 ns | $120 \mu \mathrm{~A}$ | 26/20-pin plastic SOJ |
| LA-60L. | 200 ns | $30 \mu \mathrm{~A}$ |  |
| $\mu \mathrm{PD} 42601 \mathrm{~V}-60$ | 200 ns | $120 \mu \mathrm{~A}$ | 20-pin plastic ZIP |
| V-60L | 200 ns | $30 \mu \mathrm{~A}$ |  |

## Pin Configurations

## 18-Pin Plastic DIP



## 26/20-Pin Plastic SOJ



83-004632A
20-Pin Plastic ZIP

$$
\begin{array}{rl}
\text { A9 } & 1 \\
\text { DOUT } & 3 \\
\text { DIN } & 5 \\
\overline{\text { RAS }} & 7 \\
\hline \text { RFSH } & 9 \\
\text { A0 } & 11 \\
A_{2} & 13 \\
\text { VCC } & 15 \\
\text { A5 } & 17 \\
\text { A7 } & 19 \\
4 & \text { GND } \\
6 & \overline{\text { WE }} \\
8 & \text { NC } \\
10 & \text { NC } \\
12 & A_{1} \\
14 & A_{3} \\
16 & A_{4} \\
18 & A_{6} \\
20 & A_{8}
\end{array}
$$

83-004634A


## Pin Identification

| Name | Function |
| :--- | :--- |
| $A_{0}-A_{9}$ | Address inputs |
| $D_{\text {IN }}$ | Data input |
| $D_{O U T}$ | Data output |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{C A S}}$ | Column address strobe |
| $\overline{\text { WE }}$ | Write enable |
| $\overline{\text { RFSH }}$ | Self-refresh control |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |
| NC | No connection |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND, $\mathrm{V}_{\mathrm{T}}$ | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.0 to +7.0 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



## Operation

## Write and Read Operation

The $\mu$ PD42601 is capable of standard write and read operation as well as page-mode operation. The ten row address bits are set up on pins $A_{0}$ through $A_{9}$ and latched onto the chip by $\overline{R A S}$. Subsequently, ten column address bits are set up on pins $A_{0}$ through $A_{9}$ and latched onto the chip by $\overline{\mathrm{CAS}}$. An appropriate write or read cycle is executed according to the logical level of $\overline{W E}$ : a high $\overline{W E}$ initiates a read cycle and low $\overline{W E}$ initiates a write cycle.
Page-mode operation may be executed by pulsing $\overline{\text { CAS }}$ repeatedly while maintaining a low $\overline{\text { RAS. }}$. The first word is accessed in the same manner as in standard write and read operation, with row addresses latched onto the chip by $\overline{R A S}$ and column addresses latched by $\overline{\text { CAS }}$. Subsequent column addresses are accessed for each CAS cycle, repeated during a period up to the maximum $\overline{R A S}$ pulse width.

## Refresh Operation

$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ Refreshing. This cycle may be initiated by bringing $\overline{\mathrm{CAS}}$ low before $\overline{\mathrm{RAS}}$ and holding it low after RAS falls. A built-in address counter makes external addressing unnecessary.
$\overline{\text { RAS }}$-Only Refreshing. $\overline{\text { RAS-only refreshing is exe- }}$ cuted by holding CAS high as the row addresses are latched onto the chip by $\overline{\mathrm{RAS}}$. Using this cycle, all storage cells are refreshed by the 512 address combinations of $A_{0}$ through $A_{8}$ during a $32-\mathrm{ms}$ period.

Self-Refreshing. A self-refresh cycle is initiated for the addresses generated by the internal counter whenever $\overline{\text { RFSH }}$ is active low and the $\overline{\text { RAS }}$ input is cycling (see figure 1). Since the minimum required $\overline{\text { RAS }}$ cycling frequency depends on ambient temperature, power consumption will also vary with temperature as shown in the AC and DC Characteristics. For extended periods of self-refresh operation, a low supply current is required; e.g., if ambient temperature is limited to $50^{\circ} \mathrm{C}$ (max), as little as $30 \mu \mathrm{~A}$ (max) is required to maintain all data.

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}+1.0$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 |  | 0.8 | V |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{\mid 1}$ | 5 | pF | Address, $\mathrm{D}_{\mathrm{IN}}$ |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}}$ |
| Output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $\mathrm{D}_{0 U T}$ |

## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Operating current, average | ${ }^{\text {c Col }}$ |  | 12 |  | $\begin{aligned} & \hline \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{I}_{0}=0 \mathrm{~mA} ; \\ & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) \end{aligned}$ |
| Standby current | ${ }_{\text {ICC2 }}$ |  | 2.0 |  | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\overline{\mathrm{RFSH}} \\ & =V_{\mathrm{IH}} \end{aligned}$ |
|  |  |  | 0.5 |  | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\overline{\mathrm{RFSH}} \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.4 ; \mathrm{A}_{0}-\mathrm{Ag}, \\ & \mathrm{D}_{\text {IN }} \text { and } \overline{\mathrm{WE}} \geq \mathrm{V}_{\mathrm{CC}} \\ & -0.4 \text { or } \leq 0.4 \mathrm{~V} \end{aligned}$ |
| Operating current, RAS-only refresh, average | ICC3 |  | 10 | mA | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \end{aligned}$ |
| Operating current, $\overline{\mathrm{CAS}}$ before RAS refresh, average | ${ }^{\text {CCC4 }}$ |  | 10 |  | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \end{aligned}$ |
| Operating current, self-refresh mode, average | $I_{\text {cc5 }}$ |  | 30 | $\mu \mathrm{A}$ | $\overline{\text { RAS }}$ cycling at 50 kHz (Notes 1, 2, 3, 4) |
|  |  |  | 60 | $\mu \mathrm{A}$ | $\overline{\mathrm{RAS}}$ cycling at 100 kHz (Notes $1,2,3,4$ ) |
|  |  |  | 120 | $\mu \mathrm{A}$ | $\overline{\mathrm{RAS}}$ cycling at 200 kHz (Notes 1, 2, 3) |
| Operating current, page mode, average | $\mathrm{I}_{\mathrm{C} 6}$ |  | 12 | mA | $\begin{aligned} & { }^{\mathrm{tPC}}=\mathrm{tpC}(\mathrm{~min}) ; \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \end{aligned}$ |
| Input leakage current | IIL | -1 | 1 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0$ to $V_{C C}$; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | ${ }_{10 L}$ | -1 | 1 | $\mu \mathrm{A}$ | DOUT disabled; $V_{\text {OUT }}=0$ to $V_{\text {CC }}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.4 | V | $\mathrm{I}_{0}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{0 \mathrm{H} 1}$ | 2.4 |  | V | $10=-5 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $0.7 \mathrm{~V}_{\text {CC }}$ |  | V | $\mathrm{l}_{0}=-0.5 \mathrm{~mA}$ |

## Notes:

(1) When $t_{\text {FAS }} \leq 2.5 \mathrm{~ms}$, I $\mathrm{CC5}$ does not depend on the $\overline{\mathrm{RAS}}$ clock; $I_{C C 5}(\max )=500 \mu \mathrm{~A}$. When $\mathrm{t}_{\text {FAS }} \geq 2.5 \mathrm{~ms}, \mathrm{I}_{\mathrm{CC}}(\max )=500 \mu \mathrm{~A}$ in the first 2.5 ms after $\overline{\text { RFSH }}$ falls (it does not depend on the RAS clock). Subsequently, $\mathrm{I}_{\mathrm{CC} 5}$ is $120 \mu \mathrm{~A}$ for the $\mu \mathrm{PD} 42601$ or is as shown in the following table for the $\mu \mathrm{PD} 42601-\mathrm{L}$.

| Operating <br> Temperature [TA] | Clock <br> Frequency $[\mathrm{min}]$ | Self-Refresh <br> Current [max] |
| :---: | :---: | :---: |
| 0 to $50^{\circ} \mathrm{C}$ | 50 kHz | $30 \mu \mathrm{~A}$ at 50 kHz |
| 0 to $60^{\circ} \mathrm{C}$ | 100 kHz | $60 \mu \mathrm{~A}$ at 100 kHz |
| 0 to $70^{\circ} \mathrm{C}$ | 200 kHz | $120 \mu \mathrm{~A}$ at 200 kHz |

(2) $t_{\text {RCF }}$ depends on operating temperature as reflected in the table below (see figures 2 and 3 ).

| Operating <br> Temperature $\left[T_{A}\right]$ | $\mu \mathrm{PD42601-L}$ | $\mu \mathrm{PD42601}$ |
| :---: | :---: | :---: |
|  |  |  |
| 0 to $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| 0 to $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| 0 to $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

(3) Average power supply current required for self refreshing is measured according to the following conditions: $\overline{\mathrm{RAS}}$ is cycling at 50,100 or $200 \mathrm{kHz} ; \mathrm{V}_{\text {IH }} \geq \mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V} ; \mathrm{V}_{\text {IL }} \leq 0.4 \mathrm{~V}$; $\mathrm{t}_{\mathrm{T}} \leq 50 \mathrm{~ns} ; \mathrm{A}_{0}$ to $A_{9}, D_{\text {IN }}, \overline{W E}$ and $\overline{C A S}=V_{C C}$ to $G N D ; R F S H=V_{I L}$. When $\overline{R F S H}$ $=V_{I L}(\leq 0.4 \mathrm{~V})$, the $\overline{\mathrm{RAS}}$ input must be cycled at or exceeding the minimum frequency requirements.
(4) This specification applies to the $\mu$ PD42601-L only. For the non-L version, $\mathrm{I}_{\mathrm{CC} 5}$ is $120 \mu \mathrm{~A}$, maximum, at all $\mathrm{T}_{\mathrm{A}}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Random read or write cycle time | $t_{\text {RC }}$ | 1000 |  | ns | (Note 5) |
| Page-mode cycle time | tpC | 200 |  | ns | (Notes 5, 15) |
| Access time from $\overline{\text { RAS }}$ | $t_{\text {RAC }}$ |  | 600 | ns | (Notes 6, 7) |
| Access time from $\overline{\text { CAS }}$ (falling edge) | ${ }^{\text {t }}$ cac |  | 100 | ns | (Notes 6, 8) |
| Output buffer turnoff delay | $\mathrm{t}_{0 \text { FF }}$ | 0 | - 100 | ns | (Note 9) |
| Transition time (rise and fall) | ${ }^{+}$ | 3 | 50 | ns | (Notes 3, 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $t_{R P}$ | 390 |  | ns |  |
| $\overline{\text { RAS }}$ pulse width | $t_{\text {RAS }}$ | 600 | 100000 | ns |  |
| $\overline{\overline{R A S}}$ hold time | $t_{\text {RSH }}$ | 100 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width | $\mathrm{t}_{\mathrm{CAS}}$ | 100 | 10000 | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ hold time | ${ }_{\text {t CSH }}$ | 600 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | $t_{\text {RCD }}$ | 150 | 500 | ns | (Note 10) |
| $\overline{\overline{C A S}}$ to $\overline{\text { RAS }}$ precharge time | $t_{\text {CRP }}$ | 30 |  | ns | (Note 11) |
| $\overline{\overline{\text { CAS }}}$ precharge time (non-page cycle) | ${ }^{\text {t CPN }}$ | 90 |  | ns |  |
| $\overline{\overline{C A S}}$ precharge time (page cycle) | $t_{C P}$ | 90 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 90 |  | ns |  |
| Column address setup time |  | 0 |  | ns |  |
| Column address hold time | $\mathrm{t}_{\mathrm{CAH}}$ | 90 |  | ns |  |
| Column address hold time referenced to $\overline{R A S}$ | $t_{\text {AR }}$ | 590 |  | ns |  |
| Read command setup time | trcs | 0 |  | ns |  |
| Read command hold time referenced to $\overline{R A S}$ | $\mathrm{t}_{\text {RRH }}$ | 75 |  | ns | (Note 12) |
| Read command hold time referenced to $\overline{\text { CAS }}$ | trCH | 0 |  | ns | (Note 12) |
| Write command hold time | ${ }^{\text {WWCH }}$ | 90 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | twCR | 590 |  | ns |  |
| Write command pulse width | ${ }^{\text {twp }}$ | 90 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | ns | (Note 14) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 90 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {DHR }}$ | 590 |  | ns |  |
| Write command setup time | twCs | 0 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh | ${ }^{\mathrm{t}} \mathrm{CSR}$ | 30 |  | ns |  |
| $\overline{\mathrm{CAS}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refresh | $\mathrm{t}_{\mathrm{CHR}}$ | 105 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 32 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Self-Refresh Cycle |  |  |  |  |  |
| $\overline{\overline{\mathrm{RFSH}} \text { pulse width }}$ | $\mathrm{t}_{\text {FAS }}$ | 810 |  | ns | (Note 13) |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{RFSH}}$ delay time | $t_{\text {RFD }}$ | 100 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ setup time to $\overline{\mathrm{RFSH}}$ | $t_{\text {fr }}$ | 200 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ cycle time in selfrefresh mode | $t_{R C F}$ | 1000 |  | ns | (Note 16) |
| $\overline{\mathrm{RAS}}$ precharge time in self-refresh mode | $t_{\text {RPF }}$ | 390 |  | ns |  |


|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Symbol | Min | Max | Unit | | Parameter Conditions |
| :--- | :--- | :--- | :--- |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up ( $\mathrm{V}_{\mathrm{CC}}=$ $+5.0 \mathrm{~V} \pm 10 \%$ ), followed by any eight RAS cycles, before proper device operation is achieved. $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, and $\overline{\text { RFSH }}$ must equal $\mathrm{V}_{\mathrm{IH}}$ during the initial pause.
(3) Ac measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(6) Load $=2 \mathrm{TTL}$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$.
(7) Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ exceeds the value shown.
(8) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(9) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(10) Operation within the $t_{\text {RCD }}$ ( $\max$ ) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
(11) The $t_{C R P}$ requirement should be applicable for $\overline{R A S} / \overline{C A S}$ cycles preceded by any cycle.
(12) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(13) When $\mathrm{t}_{\text {FAS }} \leq 2.5 \mathrm{~ms}$, ICC5 does not depend on the $\overline{\mathrm{RAS}}$ clock; $I_{C C 5}(\max )=500 \mu \mathrm{~A}$. When $\mathrm{t}_{\text {FAS }} \geq 2.5 \mathrm{~ms}, \mathrm{I}_{\mathrm{CC}}(\max )=500 \mu \mathrm{~A}$ for the first 2.5 ms after RFSH falls (it does not depend on the $\overline{\text { RAS }}$ clock). Subsequently, ICC5 is $120 \mu \mathrm{~A}$ for the $\mu \mathrm{PD} 42601$ or is as shown in the following table for the $\mu$ PD42601-L.

| Operating <br> Temperature $\left[T_{A}\right]$ | Clock <br> Frequency $[$ min $]$ | Self-Refresh <br> Current [max] |
| :---: | :---: | :---: |
| 0 to $50^{\circ} \mathrm{C}$ | 50 kHz | $30 \mu \mathrm{~A}$ at 50 kHz |
| 0 to $60^{\circ} \mathrm{C}$ | 100 kHz | $60 \mu \mathrm{~A}$ at 100 kHz |
| 0 to $70^{\circ} \mathrm{C}$ | 200 kHz | $120 \mu \mathrm{~A}$ at 200 kHz |

Notes [cont]:
(14) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles.
(15) This parameter is applicable to page-mode operation.
(16) $t_{\text {RCF }}$ depends on operating temperature as reflected in the table below (see figures 2 and 3 ).

| Operating <br> Temperature $\left[\mathrm{T}_{\mathrm{A}}\right]$ | $\mathrm{t}_{\mathrm{RCF}}[\mathrm{max}]$ |  |
| :---: | :---: | :---: |
|  | $\mu \mathrm{PD42601}$ |  |
| 0 to $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| 0 to $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| 0 to $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

Figure 1. Internal Address Generation in Self-Refresh Operation


Figure 2. Special Requirement for $\boldsymbol{t}_{\text {RcF }}$ Near Periods of Limited Standard Refresh Cycles


Notes:
[1] The value for tRCF [ $\min$ ] is specified in AC Characteristics. The value for tRCF [max] is dependent upon temperature and shown in the table below.

|  | tRCF [max] |  |
| :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}$ | $\mu \mathrm{PD42601-L}$ | $\mu \mathrm{PD42601}$ |
| $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

[2]. When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
[3] In this period of normal read/write operation, there are no CBR refresh cycles or less than $512 \overline{\mathbf{R A S}}$-only refresh cycles.
[4] The time delay between the last self-refresh pulse in one selfrefresh cycle, and the first selt-refresh pulse in the next cycle, is defined by trCF [max] when the intervening period of read and write operation meets the conditions in Note 3.
[5] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycies. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

Figure 3. Timing Restrictions for Entering and Exiting Self-Refresh Operation


Notes:
[1] The value for $\mathrm{t}_{\mathrm{RCF}}$ [ $\mathbf{m i n}$ ] is specified in AC Characteristics. The value for tRCF [max] is dependent upon temperature and shown in the table below.

|  | tRCF [max] |  |
| :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}$ | $\mu \mathrm{PD42601-L}$ | $\mu \mathrm{PD42601}$ |
| $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-retresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
(3] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

## Page-Mode Read Cycle



## Timing Waveforms (cont)

## Page-Mode Write Cycle (Early Write)



Note:
(1) $\overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IH}}$.

## Timing Waveforms (cont)

$\overline{R A S}$-Only Refresh Cycle


Notes:
(1) $\overline{\text { RFSH }}=V_{I H}$.
(2) $\overline{W E}$ and DIN $=$ don't care.

## $\overline{C A S}$ Before $\overline{R A S}$ Refresh Cycle



Self-Refresh Cycle


Note:
(1) $\overline{C A S}, \overline{W E}$, DIN, Address $=$ don't care.

## PRELIMINARY INFORMATION

## Description

The $\mu$ PD43501 is a time-switch device designed for use in a high-performance digital communications network. Features include a time-switch function by which up to 1,024 channels can be exchanged using a 16-bit data width, and a tone output function by which an 8 -bit tone signal can be output to an arbitrary channel.

Two planes of 1 -kword by 8 -bit storage area and one plane of 1 -kword by 10 -bit control storage area for the time-switch function enable the $\mu$ PD43501 to realize switching modes in which arbitrary 1,024 or 512 input channels can be connected to arbitrary 1,024 or 512 output channels. The configuration of the tone signal output section, one plane of 64 -word by 8 -bit tone storage area and one plane of 1 -kword by 8 -bit tone control storage area, allows the device to output up to 64 different tone signals to an arbitrary output channel as 8 -bit voice/tone data.

## Ordering Information

| Part Number | Data Transfer Rate (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD43501R | 8.192 Mbps | 132-pin ceramic pin grid <br> array (PGA) |

## Features

Separate switch storage and control storage to allow construction with one VLSI device of a nonblocking switching network having a maximum capacity of 1,024 channelsSelectable operation

- 1,024 by 1,024 serial input and output
- 1,024 by 1,024 parallel input and output
- 16.384 MHz operating frequency
- 8.192 Mbps data transfer rate
- 512 by 512 parallel input and output
- 8.192 MHz operating frequency
- 4.096 Mbps data transfer rateSwitching flexibility
- 8- or 16-bit data width
- $n$ by 64 kbps connectionTone signal output function8 by 8 space switch for an 8.192 Mbps, 128-channel multiplexed lineCPU interfaces for the control storage and tone control storageLow power consumption: 1000 mW (typ)TTL-compatible inputs and outputs132-pin ceramic pin grid array packaging


## Block Diagram



## Switching Functions

## Mode 0

In this mode, the $\mu$ PD43501 inputs eight 128-channel multiplexed lines from ports $\mathrm{SI}_{00}$ through $\mathrm{SI}_{07}$ (or from $\mathrm{Cl}_{00}$ through $\mathrm{Cl}_{07}$ ) and outputs eight 128-channel multiplexed lines to ports $\mathrm{SO}_{00}$ through $\mathrm{SO}_{07}$ (or $\mathrm{CO}_{00}$ through $\mathrm{CO}_{07}$ ). Refer to figure 1 for a functional pin diagram.

Serial input data from the input ports first is converted to parallel data by the serial-to-parallel converters in the receive section, and then multiplexed and sent to the input section of the switch storage area. Since the write address counter is synchronized with input data, the write address of the switch storage area corresponds to the time slot number of the input signal. Writing multiplexed data to the switch address specified by the write address counter causes input data in the time slot corresponding to the switch address always to be stored at that address (figure 2).
Conversely, a control storage address corresponds to an output-side time slot number, and the data in control storage indicates the switch storage address, i.e., the input-side time slot number is stored at the control storage address corresponding to the output-side time slot to which the input-side is transferred.

The address signal is sent from the read address counter to control storage in synchronization with each output-side time slot. Data read out by this operation is then sent to the switch storage area as the address signal, and the data in the specified address (input-side time slot) is then read out on the output side and switched. Switched data is sent to the parallel-to-
serial converters in the transmission section, where it is converted to serial data and then output to the appropriate output ports.
With this switching function, the data in an arbitrary time slot on the input side can be output as data in an arbitrary time slot on the output side. Furthermore, in addition to the time division switch function, a space switch function enables switching time slots on any of the eight input ports to be output on any of the eight output ports. This means that a nonblocking $8 \times 8$ space switch for 128-channel multiplexed lines can be realized.

## Mode 1

Mode 1 makes it possible for the $\mu$ PD43501 to input 512 -channel multiplexed lines ( 4.096 Mbps by 8 bits), 8 bits in parallel, and output 512-channel multiplexed lines, 8 bits in parallel. The input signals received on the input ports are sent to the switch storage area in parallel, after which the same switching functions described in Mode 0 are then performed.

## Mode 2

In Mode 2, the $\mu$ PD43501 inputs 1,024 -channel multiplexed lines ( 8.192 Mbps by 8 bits), 8 bits in parallel, and outputs 1,024-channel multiplexed lines, 8 bits in parallel. The input signals received on the input ports are sent to the switch storage area in parallel, after which the same switching functions described in Mode 0 are performed.

Figure 1. Functional Pin Diagram


Figure 2. Time Slot Versus Frame Configuration


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD43608 is an integrated cache subsystem that provides the microprocessor system designer with a high-performance, single-chip, general-purpose cache solution. The $\mu$ PD43608 consists of a CPU interface, directory storage (including address tag and validity bit storage), 8 K bytes of on-chip data storage, 128 x 6 -bit least recently used (LRU) replacement storage, internal address and data paths for cache bypass operations, an asynchronous 32-bit system bus interface, and several features optimizing cache write and miss operations. The $\mu \mathrm{PD} 43608$ is also able to interface with a number of 16 - and 32-bit general-purpose microprocessors operating at 16 or 20 MHz .

## Features

$\square$ High-performance $16-$ and $20-\mathrm{MHz}$ operation16- and 32-bit microprocessor interface capabilityIntegrated cache architecture

- 8K bytes of on-chip data storage
- 16-byte cache block size
- 4-way set associative placement algorithmBus monitoring circuitLRU replacement algorithmPrefetch on miss-one block lookahead
Fetch bypass and wraparound loadAsynchronous 32-bit system bus interfaceMultichip configuration increases cache sizeWrite-through storage update policy with one-level write buffer132-pin ceramic pin grid array packagingCMOS circuit technology


## Ordering Information

| Part Number | Ready Output <br> Time [max] | Cycle Time <br> [min] | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PD43608R-2 | 70 ns | 125 ns | 132-pin ceramic pin <br> grid array |
| R-3 | 50 ns | 100 ns | gran |

## Organization

The $\mu$ PD43608 is organized as a 4-way set associative cache, with 8 K bytes of on-chip data storage organized as 128 sets by four 16 -byte data blocks. When the CPU executes a read cycle, the address tag field of the physical CPU address is compared to the address tag in the cache directory. If a hit occurs, the selected data is sent to the CPU. Otherwise, the $\mu$ PD43608 initiates a miss cycle to access main storage and update the cache with the replacement block. This architecture ensures a high hit ratio of $95 \%$ in most microprocessor applications.

## Optimizing the Miss Cycle

The hit rate is an important parameter for measuring performance. Since a high hit rate of $95 \%$ requires that the $\mu$ PD43608 access the main storage array for $5 \%$ of all read cycles, the penalty in system performance incurred during a miss cycle may be significant. The $\mu$ PD43608 provides a number of on-chip features that optimize system performance during a miss cycle.

## Data Transfer Cycles

The $\mu$ PD43608 cache subsystem provides two data transfer modes for accessing main storage during a miss cycle: (1) burst data transfer mode uses the nibble access feature of a DRAM in main storage to optimize system bus bandwidth; (2) in single data transfer mode, an address is transmitted with each read cycle to main storage for systems that don't use nibble access DRAMs.

## Block Load and Fetch Bypass Buffers

Once the replacement block has been read from main storage, the block load buffer is used to reduce the replacement block transfer time by providing a temporary buffer for storing the replacement block while the cache data storage is being updated.

Concurrently, the CPU throughput is optimized by loading the missed word into the fetch bypass buffer as soon as it is read from main storage. The CPU directly accesses the fetch bypass buffer and can fetch the missed word without having to wait for the replacement block to be stored in cache data storage. If the CPU attempts to read the next word in the replacement block, the cache searches the directory and the block load buffer to determine whether or not a hit has occurred. Once the entire replacement block is loaded into the block load buffer, the data is wraparoundloaded into cache data storage.

## Prefetch on Miss

On cache miss cycles, the $\mu$ PD43608 implements a one-block lookahead algorithm that prefetches the next sequential cache data block, thus increasing the cache hit rate. Although prefetching can improve cache performance, a check must be made to determine that the block is not currently stored in the cache. The $\mu$ PD43608 performs this check during each prefetch cycle, searching the cache directory for the desired prefetch block. If a hit occurs, the prefetch
logic aborts the cycle. This function, which ensures that the cache is not polluted with duplicate data, can be enabled or disabled by controlling the cache status code signals during each read cycle.

## Replacement Algorithm

The $\mu$ PD43608 uses a least recently used (LRU) replacement algorithm to determine which data block should be overwritten during a cache miss cycle. This algorithm improves cache performance by choosing the data block with the least usage to optimize the hit rate.

## Main Storage Update Policies

To maintain data consistency in the storage hierarchy during each cache write cycle, the $\mu$ PD43608 uses a write-through method that updates the main storage as soon as the CPU writes data to cache storage. CPU throughput is optimized by means of a one-level write buffer, which temporarily stores write data and initiates the write cycle to main storage, allowing the CPU to concurrently execute the next instruction.

## Pin Configuration

## 132-Pin Ceramic Pin Grid Array



| Pin Number | Function |
| :--- | :--- |
| $A_{1}$ | $D_{15}$ |
| $A_{2}$ | $D_{12}$ |
| $A_{3}$ | $D_{10}$ |
| $A_{4}$ | $D_{9}$ |
| $A_{5}$ | $D_{7}$ |
| $A_{6}$ | $D_{5}$ |
| $A_{7}$ | $D_{3}$ |
| $A_{8}$ | $D_{2}$ |
| $A_{9}$ | $A_{1}$ |
| $A_{10}$ | $A_{2}$ |
| $A_{11}$ | $A_{5}$ |
| $A_{12}$ | $A_{7}$ |
| $A_{13}$ | $A_{10}$ |
| $A_{14}$ | $A_{12}$ |
| $B_{1}$ | $D_{20}$ |
| $B_{2}$ | $D_{17}$ |
| $B_{3}$ | $D_{13}$ |
| $B_{4}$ | $D_{11}$ |
| $B_{5}$ | $D_{8}$ |
| $B_{6}$ | $D_{6}$ |
| $B_{7}$ | $D_{4}$ |
| $B_{8}$ | $D_{1}$ |
| $B_{9}$ | $D_{0}$ |
| $B_{10}$ | $A_{3}$ |
| $B_{11}$ | $A_{6}$ |
| $B_{12}$ | $A_{9}$ |
| $B_{13}$ | $A_{13}$ |
| $B_{14}$ | $A_{17}$ |
| $C_{1}$ | $D_{22}$ |
| $C_{2}$ | $D_{19}$ |
| $C_{4}$ | $D_{16}$ |


| Pin Number | Function |
| :--- | :--- |
| $C_{6}$ | $V_{C C}$ |
| $C_{7}$ | $G_{N D}$ |
| $C_{8}$ | $V_{C C}$ |
| $C_{9}$ | $A_{4}$ |
| $C_{10}$ | $A_{8}$ |
| $C_{11}$ | $A_{11}$ |
| $C_{12}$ | $A_{14}$ |
| $C_{13}$ | $A_{16}$ |
| $C_{14}$ | $A_{20}$ |
| $D_{1}$ | $D_{24}$ |
| $D_{2}$ | $D_{21}$ |
| $D_{3}$ | $D_{18}$ |
| $D_{12}$ | $A_{15}$ |
| $D_{13}$ | $A_{19}$ |
| $D_{14}$ | $A_{21}$ |
| $E_{1}$ | $D_{25}$ |
| $E_{2}$ | $D_{23}$ |
| $E_{3}$ | $V_{C C}$ |
| $E_{12}$ | $A_{18}$ |
| $E_{13}$ | $A_{22}$ |
| $E_{14}$ | $A_{24}$ |
| $F_{1}$ | $D_{27}$ |
| $F_{2}$ | $D_{26}$ |
| $F_{3}$ | $G_{N D}$ |
| $F_{12}$ | $A_{23}$ |
| $F_{13}$ | $A_{25}$ |
| $F_{14}$ | $A_{26}$ |
| $G_{1}$ | $D_{29}$ |
| $G_{2}$ | $D_{28}$ |
| $G_{3}$ | $G N D$ |
| $G_{12}$ | $G N D$ |
| $G_{13}$ | $A D_{0}$ |
|  | $A_{27}$ |


| Pin Mumber | Function |
| :---: | :---: |
| $\mathrm{H}_{1}$ | $\mathrm{D}_{30}$ |
| $\mathrm{H}_{2}$ | $\mathrm{D}_{31}$ |
| $\mathrm{H}_{3}$ | GND |
| $\mathrm{H}_{12}$ | GND |
| $\mathrm{H}_{13}$ | $\mathrm{AD}_{2}$ |
| $\mathrm{H}_{14}$ | $\mathrm{AD}_{1}$ |
| ${ }^{\prime}$ | $\overline{\text { PRDY }}$ |
| $\mathrm{J}_{2}$ | $\overline{\text { PAS }}$ |
| $J_{3}$ | $\overline{\text { PCS }}$ |
| $J_{12}$ | $\mathrm{AD}_{7}$ |
| ${ }^{1} 1$ | $\mathrm{AD}_{4}$ |
| ${ }^{1} 1$ | $\mathrm{AD}_{3}$ |
| $K_{1}$ | PRD/PWT |
| $\mathrm{K}_{2}$ | $\overline{\text { CAEN }}$ |
| $K_{3}$ | $\mathrm{ST}_{2}$ |
| $\mathrm{K}_{12}$ | $\mathrm{AD}_{11}$ |
| $\mathrm{K}_{13}$ | $\mathrm{AD}_{6}$ |
| $\mathrm{K}_{14}$ | $\mathrm{AD}_{5}$ |
| $L_{1}$ | $\mathrm{ST}_{1}$ |
| $\underline{L_{2}}$ | $\mathrm{ST}_{0}$ |
| $\underline{L}$ | $\mathrm{PBE}_{0}$ |
| $\mathrm{L}_{12}$ | $\mathrm{AD}_{14}$ |
| $\underline{L_{13}}$ | $\mathrm{AD}_{10}$ |
| $\underline{L_{14}}$ | $\mathrm{AD}_{8}$ |
| $M_{1}$ | $\overline{P B E}_{3}$ |
| $\mathrm{M}_{2}$ | $\overline{P B E E}_{1}$ |
| $\mathrm{M}_{3}$ | PCLK |
| $\mathrm{M}_{4}$ | $\overline{R S T}$ |
| $M_{5}$ | BCLK |
| $M_{6}$ | $\overline{\text { MDS }}$ |
| $\mathrm{M}_{7}$ | $V_{\text {CC }}$ |
| $\mathrm{M}_{8}$ | GND |
| M9 | $V_{C C}$ |


| Pin Number | Function |
| :---: | :---: |
| $\mathrm{M}_{10}$ | $\mathrm{AD}_{21}$ |
| $M_{11}$ | $\mathrm{AD}_{17}$ |
| $\mathrm{M}_{12}$ | $\mathrm{AD}_{15}$ |
| $\mathrm{M}_{13}$ | $\mathrm{AD}_{13}$ |
| $\mathrm{M}_{14}$ | $\mathrm{AD}_{9}$ |
| $\mathrm{N}_{1}$ | $\overline{\mathrm{PBE}}_{2}$ |
| $\mathrm{N}_{2}$ | $\overline{\text { SMC }}$ |
| $\mathrm{N}_{3}$ | $\overline{\mathrm{AMC}}$ |
| $\mathrm{N}_{4}$ | $\overline{\text { BRQ }}$ |
| $\mathrm{N}_{5}$ | BACK |
| $\mathrm{N}_{6}$ | $\overline{\mathrm{MBE}}_{2} / \overline{\mathrm{WAIT}}$ |
| $\mathrm{N}_{7}$ | $\mathrm{AD}_{31}$ |
| $\mathrm{N}_{8}$ | $\mathrm{AD}_{29}$ |
| Ng | $\mathrm{AD}_{27}$ |
| $\mathrm{N}_{10}$ | $\mathrm{AD}_{24}$ |
| $\mathrm{N}_{11}$ | $\mathrm{AD}_{22}$ |
| $\mathrm{N}_{12}$ | $\mathrm{AD}_{19}$ |
| $\mathrm{N}_{13}$ | $A D_{16}$ |
| $\mathrm{N}_{14}$ | $\mathrm{AD}_{12}$ |
| $\mathrm{P}_{1}$ | $\overline{\text { ERR }}$ |
| $\mathrm{P}_{2}$ | WBSY |
| $\mathrm{P}_{3}$ | MAS/ $/ \overline{\text { MBS }}$ |
| $\mathrm{P}_{4}$ | $\overline{\overline{M B E}_{0} / \overline{\mathrm{E}} \overline{\mathrm{C}}}$ |
| $P_{5}$ | $\overline{\mathrm{MBE}}_{1} / \overline{\mathrm{UERR}}$ |
| $\mathrm{P}_{6}$ | $\overline{\mathrm{MBE}_{3} / \overline{\mathrm{CERR}}}$ |
| $\mathrm{P}_{7}$ | MWA |
| $\mathrm{P}_{8}$ | $\mathrm{AD}_{30}$ |
| $\mathrm{P}_{9}$ | $\mathrm{AD}_{28}$ |
| $\mathrm{P}_{10}$ | $\mathrm{AD}_{26}$ |
| ${ }^{\mathrm{P}_{11}}$ | $\mathrm{AD}_{25}$ |
| $\mathrm{P}_{12}$ | $\mathrm{AD}_{23}$ |
| $\mathrm{P}_{13}$ | $\mathrm{AD}_{20}$ |
| $\mathrm{P}_{14}$ | $\mathrm{AD}_{18}$ |

## Block Diagram



## System Bus Interface

The integrated system bus interface provides an interface to contemporary microprocessor system bus architectures. The interface circuit consists of a 32-bit multiplexed address and data bus, asynchronous bus control signals, a bus lock signal, a wait signal, a correctable error function, two data transfer modesburst and single, and a system bus clock signal. The size of the cache can be increased by connecting additional $\mu$ PD43608 devices in parallel. A write buffer busy signal is daisy-chained between the parallel devices and automatically controls data transfers in multichip configurations.

## Bus Monitoring

In multiprocessor system applications, maintaining data consistency is a major concern. In such a system architecture, an integrated circuit is required to monitor the system bus for any updates to main storage. When a bus master updates a location in its cache storage and writes that change to main storage, all slave processors must invalidate any stale cache data. The monitoring circuit latches all write addresses on the system bus and invalidates any cache data blocks that are not consistent with main storage.

## Functional Pin Diagram

## Signal Summary

| CPU Interface |  |  |
| :---: | :---: | :---: |
| Signal Name | Input/ Output | Signal Function |
| PCLK | 1 | Processor clock |
| $\mathrm{A}_{1}-\mathrm{A}_{27}$ | 1 | Address bus |
| $D_{0}-D_{31}$ | 1/0 | Data bus |
| $\overline{\text { PAS }}$ | 1 | Address strobe |
| $\overline{\text { PCS }}$ | 1 | Command strobe |
| $\overline{\text { CAEN }}$ | 1 | Cache output enable |
| PRD/ $\overline{\text { PWT }}$ | 1 | Read/write |
| ${\overline{P B E} E_{3}-\overline{P B E}_{0}}^{\text {a }}$ | 1 | Byte enable |
| $\mathrm{ST}_{2}-\mathrm{ST}_{0}$ | 1 | Status |
| $\overline{\text { PRDY }}$ | 0 | Ready |
| $\overline{\text { ERR }}$ | 0 | Error |
| Control |  |  |
| $\overline{\text { RST }}$ | 1 | Reset |
| $\overline{\text { WBSY }}$ | 1/0 | Write buffer busy |
| $\overline{\overline{\text { AMC }}}$ | 1 | Test pin |
| $\overline{\overline{S M C}}$ | 1 | Scan path mode |


| Memory Interface |  |  |
| :---: | :---: | :---: |
| Signal Name | Input/ Output | Signal Function |
| $\mathrm{AD}_{0}-\mathrm{AD}_{31}$ | 1/0 | Address/data bus |
| $\begin{aligned} & \mathrm{AD}_{31}=\mathrm{MEM} / \overline{\mathrm{DO}} \\ & \mathrm{AD}_{30}=\mathrm{MRD} / \overline{\mathrm{MWT}} \\ & \mathrm{AD}_{29}=\mathrm{LOCK} \\ & \mathrm{AD}_{28}=\mathrm{PRF} \end{aligned}$ | 0 | $\left.\left.\begin{array}{l}\text { Memory/10 } \\ \text { Read/write } \\ \text { Bus lock } \\ \text { Prefetch }\end{array}\right\} \quad \begin{array}{l}\text { During an } \\ \text { address cycle }\end{array}\right]$ |
| $\overline{\mathrm{MAS} / \overline{\mathrm{MBS}}}$ | 0 | Address strobe/bus strobe |
| $\overline{\mathrm{MDS}}$ | 0 | Data strobe |
| $\overline{\overline{M B E}_{0} / \overline{\mathrm{EOC}}}$ | 0 | Byte enable 0/end of cycle |
| $\overline{\overline{M B E}}_{1} / \overline{\text { UERR }}$ | 1/0 | Byte enable 1/uncorrectable error |
| $\overline{\overline{M B E}}_{2} / \overline{\text { WAIT }}^{\text {M }}$ | 1/0 | Byte enable 2/wait |
| $\overline{\text { MBE }} 3 / \overline{\text { CERR }}^{\text {M }}$ | 1/0 | Byte enable 3/correctable error |
| $\overline{\text { MWA }}$ | 1 | Main memory write check address |
| $\overline{\mathrm{BRQ}}$ | 0 | Bus request |
| BACK | 1 | Bus acknowledge |
| BCLK | 1 | Bus clock |

## Description

The $\mu$ PD71641 cache controller is an LSI chip whose advanced features, unequalled flexibility, and built-in reliability make the use of sophisticated caches in microprocessor-based systems practical and economical. Configurable as direct mapping, or two- or fourway, set-associative mapping, the $\mu$ PD71641 supports up to 128 Kbytes of cache storage, as well as sub-block and burst mode features for efficient execution of cache updates. Implementation of the cache controller is transparent to the application program.

The $\mu$ PD71641 can be easily interfaced to many general-purpose, high-performance 16- or 32-bit microprocessors. Bus monitoring and dual-comparator techniques ensure data consistency, and a writethrough strategy to update main memory guarantees the best cache consistency in multiprocessor and multimaster systems. External data storage which is flexible in size and organization also means that the $\mu$ PD71641 can operate with any word width. Other unique features such as multiple reliability checking, address tag parity checking, multiple hit detection, and self-diagnosis of directories greatly facilitate the implementation of a highly reliable cache subsystem. If an erroneous condition is detected, the cache controller can be degraded or disabled.

Ordering Information

| Part Number | Package |
| :--- | :--- |
| $\mu$ PD71641R | 132-pin ceramic grid array |

## Features

$\square$ General-purpose interface compatibility to many high-performance 16 - and 32 -bit microprocessorsTransparent implementationFlexible placement algorithm: direct 2- or 4-way set-associativeLarge tag storage
-1024 sets $\times 1$ way $\times 2$ sub-blocks
-512 sets $\times 2$ ways $\times 2$ sub-blocks
-256 sets $\times 4$ ways $\times 2$ sub-blocksProgrammable sub-block size

- Up to 64 bytes (max)
- From 1 to 16 words
$\square$ Up to 128 Kbytes of cache storageUp to 4 Gbytes of main storageLeast recently used (LRU) replacement algorithmWrite-through strategyData consistency check by means of bus monitoringExternal PURGE input to flush tag storageInternal error detection
- Parity checking on tag storage
- Incorrect match checking
- Multiple hit checking
- LRU output checkingLevel degradation to maximize cache system up time$16-$ and $20-\mathrm{MHz}$ operation
132-pin ceramic pin grid array packaging



## Description

The $\mu$ PD7220A high-performance graphics display controller (HGDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the HGDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the HGDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the HGDC can be configured in any number of formats and sizes up to 256 K 16 -bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the HGDC is ideal for advanced computer graphics applications.
For a more detailed description of the HGDC's operation, please refer to the 7220/7220A design manuals.

## System Considerations

The HGDC is designed to work with a general purpose microprocessor to implement a high-performance computer graphics system. Through the division of labor established by the HGDC's design, each of the system components is used to the maximum extent through a six-level hierarchy of simultaneous tasks. At the lowest level, the HGDC generates the basic video raster timing, including sync and blanking signals. Partitioning areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the HGDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the HGDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the HGDC takes care of the highspeed and repetitive tasks required to implement a graphics system.

## Features

Microprocessor interface

- DMA transfers with 8257- or 8237-type controllers
- FIFO command buffering
$\square$ Display memory interface
- Up to 256 K words of 16 -bits
- Read-modify-write (RMW) display memory cycles as fast as 500 ns
- Dynamic RAM refresh cycles for nonaccessed memory
Light pen inputDrawing hold inputExternal video synchronization modeGraphic mode
- Four megabit, bit-mapped display memory
$\square$ Character mode
- 8 K character code and attributes display memoryMixed graphics and character mode
- 64 K if all characters
- 1 megapixel if all graphics

Graphics capabilities

- Figure drawing of lines, arc/circles, rectangles, and graphics characters in 500 ns per pixel
- Display 1024-by-1024 pixels with 4 planes of color or grayscale
- Two independently scrollable areas

Character capabilities

- Auto cursor advanced
- Four independently scrollable areas
- Programmable cursor height
- Characters per row: up to 256
- Character rows per screen: up to 100

Video display format

- Zoom magnification factors of 1 to 16
- Panning
- Command-settable video raster parametersNMOS technologySingle +5 V power supplyDMA capability
- Bytes or word transfers
- 4 clock periods per byte transferred

On-chip pull-up resistor for VSYNC/EXT, HSYNC and DACK, and a pull-down resistor for LPEN/DH

## Ordering Information

| Part <br> Number | Package <br> Type | Max Frequency <br> of Operation |
| :--- | :---: | :---: |
| $\mu$ PD7220AD | 40 -pin ceramic DIP | 6 MHz |
| $\mu$ PD7220AD-1 | 40 -pin ceramic DIP | 7 MHz |
| $\mu$ PD7220AD-2 | 40 -pin ceramic DIP | 8 MHz |

## Pin Configuration



## Character Mode Pin Utilization

| Pin |  |  |
| :--- | :--- | :--- |
| No. | Symbol | Function |
| $35-37$ | $\mathrm{AD}_{13}-\mathrm{AD}_{15}$ | Line counter bits 0 to 2 outputs |
| 38 | $\mathrm{AD}_{16}$ | Line counter bit 3 output |
| 39 | $\mathrm{AD}_{17}$ | Cursor output and line counter bit 4 |

## Mixed Mode Pin Utilization

| Pin |  |  |
| :--- | :--- | :--- |
| No. Symbol Function <br> $35-37$ $\mathrm{AD}_{13}-\mathrm{AD}_{15}$ Address and data bits 13 to 15 <br> 38 $\mathrm{~A}_{16}$ Attribute blink and clear line counter <br> output <br> 39 $\mathrm{~A}_{17}$ Cursor and bit-map area flag output |  |  |

## Pin Identification

| Pin |  | Function |
| :---: | :---: | :---: |
| No. | Symbol |  |
| 1 | 2xWCLK | Clock input |
| 2 | $\overline{\text { DBIN }}$ | Display memory read input flag |
| 3 | HSYNC | Horizontal video sync output |
| 4 | V/EXT SYNC | Vertical video sync output or external VSYNC input |
| 5 | BLANK | CRT blanking output |
| 6 | ALE | Address latch enable output |
| 7 | DRQ | DMA request output |
| 8 | $\overline{\text { DACK }}$ | DMA acknowledge input |
| 9 | $\overline{\mathrm{RD}}$ | Read strobe input for microprocessor interface |
| 10 | $\overline{\text { WR }}$ | Write stobe input for microprocessor interface |
| 11 | $A_{0}$ | Address select input for microprocessor interface |
| 12-19 | $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ | Bidirectional data bus to host microprocessor |
| 20 | GND | Ground |
| 21 | LPEN/DH | Light pen detect input drawing hold input |
| 22-34 | $A D_{0}-\mathrm{AD}_{12}$ | Address data lines to display memory |
| 35-37 | $\mathrm{AD}_{13}-\mathrm{AD}_{15}$ | Utilization varies with mode of operation |
| 38 | $\mathrm{A}_{16}$ | Utilization varies with mode of operation |
| 39 | $\mathrm{A}_{17}$ | Utilization varies with mode of operation |
| 40 | $V_{\text {CC }}$ | $+5 \mathrm{~V} \pm 10 \%$ power supply |

## Graphics Mode Pin Utilization

| Pin |  |  |
| :--- | :--- | :--- |
| No. | Symbol |  |
| $35-37$ | $\mathrm{AD}_{13}-\mathrm{AD}_{15}$ | Address and data bits 13 to 15 |
| 38 | $\mathrm{~A}_{16}$ | Address bit 16 output |
| 39 | $\mathrm{~A}_{17}$ | Address bit 17 output |

## Block Diagram



## Description

The $\mu$ PD72120 advanced graphics display controller displays characters and graphics on a raster scan device from commands and parameters received from a host processor or CPU. Features of the $\mu$ PD72120 include high-speed graphic drawing capabilities, video timing signal generation, large-capacity display storage control (including video buffers), and a versatile CPU interface. The features allow the $\mu$ PD72120 to control graphics drawing and display of bit-mapped systems.

## Features

$\square$ High-speed graphics drawing functions

- Dot, straight line, rectangle, circle, arc, sector, and segment
- Ellipse, ellipse arc, ellipse sector, and ellipse segmentFilling
- Area filling (high-speed processing in word units) of triangle, trapezoid, circle, ellipse, and rectangle
- Painting of any arbitrary enclosed area (bit boundary retrieval)Data transfer in display storage
- Multiplane transfers
- Data transformation $\left(90^{\circ}, 180^{\circ}, 270^{\circ}\right.$ rotation and reversal)
- Multiwindow transfers
- Maximum word transfer speed of 500 nsImage processing
- Slant
- Arbitrary angle rotation
- $16 / n$ enlargement and $n / 16$ shrinkage (where $n$ is any integer from 1 through 16)Position specification by X-Y coordinatesLogical operations between planes

Video timing signal generation

- Display clock for video synchronizing signal generation
- Graphics drawing clock for high-speed processing
- External synchronization capability

Large-capacity display memory

- Display memory bus interface with 24-bit address and 16 -bit data bus for addressing up to 16 Mwords at 16 bits per word
- Video buffer control
- Display memory bus arbitrationHost processor (CPU) interface
- System bus interface with 20-bit address bus and 8- or 16-bit data bus
- Data transfer with external DMA controller - From system memory to display memory (PUT)
- From display memory to system memory (GET)
- High-speed pipeline processing with preprocessor before drawing processor
- CPU memory or I/O mapping of internal registers and display memory for efficient system interface


## $8-\mathrm{MHz}$ system clock

CMOS technology
Single +5 -volt power supply
84-pin PLCC, 94 -pin plastic quad flatpack, and 132-pin ceramic PGA packaging

## Ordering Information

| Part Number | Package |
| :--- | :--- |
| $\mu$ PD72120L | 84-pin plastic leaded chip carrier (PLCC) |
| $\mu$ PD72120J-5BG | 94-pin plastic quad flatpack |
| $\mu$ PD72120R | 132-pin ceramic pin grid array |

## Block Diagram



## Description

The $\mu$ PD72185 is a high-speed processor that compresses and expands the binary image data necessary in facsimile equipment, electronic filing systems, and other image processing systems. Direct management of image memory by means of an on-chip DMA controller allows the $\mu$ PD72185 to process images by line, block or page, as directed by commands from the host CPU.

## Features

High-speed compression and expansion processing of CCITT-standard test chart (A4 size at $400 \mathrm{PPI} \times 400 \mathrm{LPI}$ ) in 1 secondEncoding and decoding of CCITT-standard MH , MR, and MMR methodsMaximum 32K pixels in main scanning sectionMain scanning direction$-\times 2$ enlargement on encoding
$-\times 1 / 2$ shrinkage on decoding
Subscanning direction
$-\times 2$ and $\times 4$ enlargement on encoding
$-\times 1 / 2$ and $\times 1 / 4$ shrinkage on decodingBit boundary processing
Multitasking function
High-speed data processing (internal 4-stage basic pipeline)
Dual bus system

- 24-bit address bus and 8- or 16-bit data bus on image memory side
- 8 - or 16-bit data bus on host CPU sideOn-chip DMA controller
CMOS technology
Single +5 -volt power supply
Maximum $8-\mathrm{MHz}$ system clock
Standard 750-mil, 64-pin plastic shrink DIP and
68-pin PLCC packaging


## Ordering Information

| Part Number | Package |
| :--- | :--- |
| $\mu$ PD72185CW | 64 -pin plastic shrink DIP |
| $\mu$ PD72185L | 68 -pin plastic leaded chip carrier (PLCC) |

## Block Diagram



## Introduction

The current trend in storage devices is toward larger, faster, better-performing products. There is a complementary trend toward the development of storage devices designed for specific purposes. The video buffer is an example of a dedicated device. Line buffers, field (frame) buffers for TV and broadcast equipment, and graphics buffers for computers are examples of video storage devices. Table 1 shows some of NEC's dedicated video buffers.

Table 1. Video Buffers

| Function | Product | Storage Configuration | Serial Cycle Time | Application in Video/Optical Systems |
| :---: | :---: | :---: | :---: | :---: |
| Line buffers | $\mu$ PD42505 | $5048 \times 8$ | 50 or 75 ns | Line storage in facsimile machines, copiers, and scanners |
|  | $\mu \mathrm{PD} 41101 / \mu \mathrm{PD} 42101$ | $910 \times 8$ | 34 or 69 ns | Double-speed scan conversion for NTSC TV, Iuma/chroma separation |
|  | $\mu$ PD41102/ $\mu$ PD42102 | $1135 \times 8$ | 28 or 56 ns | Double-speed scan conversion for PAL TV, Iuma/chroma separation |
| Field buffer | $\mu$ PD42270 | $263 \times 910 \times 4$ | 60 ns | Image field storage |
| Dual-port graphics buffers | $\mu \mathrm{PD} 41264$ | $64 \mathrm{~K} \times 4 / 256 \times 4$ | 40 or 60 ns | High-speed drawing device |
|  | $\mu \mathrm{PD} 42274 / \mu \mathrm{PD42273}$ | $256 \mathrm{~K} \times 4 / 512 \times 4$ | 30 or 40 ns |  |
| Triple-port graphics buffer | $\mu$ PD42232 | $32 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 1 / 128 \times 8$ | 40 or 60 ns | High-speed drawing/image processing device |
| Bidirectional data buffer | $\mu \mathrm{PD} 42532$ | $32 \mathrm{~K} \times 8$ | 100 ns | Data transfer rate conversion |

This application note introduces the $\mu$ PD 42505 , a highspeed serial access device with the same general interface specifications as those of the $\mu$ PD41101. The $\mu$ PD42505 was developed specifically for office automation equipment that handles a large amount of data in each horizontal line, equipment such as G3 and G4 digital facsimile machines, high-performance copiers, and image scanners.
There has been a great deal of technical progress toward higher quality and performance in the development of this image-processing equipment. For example, there are already advances in image quality using two-dimensional filtering, image contraction and expansion, and high-speed video signal transfer. The $\mu$ PD42505 achieves optimal processing with a storage array of $5048 \times 8$ bits, and by use of an internal algorithm to read out data in the order in which it was input. The fast cycle time of 50 ns allows the $\mu$ PD 42505 to perform various types of image processing.

Figure 1 shows a typical application for the $\mu$ PD42505 using a digital copier as an example.

A digital copier mainly consists of a reader and a printer section. The image reflected from the original document placed in the scanner section is input to an image sensor (e.g., a CCD or contact-type image sensor) and photoelectrically converted to a digital signal. The digital signal is then input to the image processing section for image quality improvement and processing. The electronic image signal processed in the reader block is sent to the printer block, converted to light in the laser modulation section, developed, fixed, and printed out. If a communication facility is added to this copier, it can function as a facsimile machine.
Digital copiers and facsimile machines configured in this way can use dedicated video buffers in the image processing or transmission section.

Figure 1. Conflguration and Data Flow in a Digital Copier


## Uses for the $\mu$ PD42505

The following discussion describes the types of applications for which the $\mu$ PD42505 was developed: frequency (speed) conversion, a data delay line for one horizontal scanning line, and buffering for data transfer operations in a simple configuration with simple control.

Consider the need for a device that asynchronously converts the read and write speed for frequency conversion, e.g., a serial access device used for image contraction or expansion, with a word length of one to two horizontal lines. The buffer must be written to and read from asynchronously and at different rates. High speed is also a requirement. Figure 2 illustrates a frequency conversion application.

Figure 2. Frequency Conversion


Another application might require a data delay line with a delay length of one to two lines. This type of buffer could be used for image quality improvement in two-dimensional filtering, especially for filtering in the vertical direction, because it could be written to and read from simultaneously in synchronization with a single clock signal. Figure 3 illustrates two-dimensional filtering.

A third application is a buffer for data transfer operations. This application requires a device large enough to store the amount of data handled, with the capability to read and write asynchronously, simultaneously, and at different speeds. An output such as a flag to indicate the amount of data in the storage array might also be required. Figure 4 illustrates buffering for data transfer.

Figure 3. Two-Dimensional Filtering


83-004955A

Figure 4. Data Transfer Buffering


These applications typically require a double-buffer configuration using high-speed SRAMs for data storage in bits, as shown in figure 5.
In the first phase, data is written to the first SRAM while data in the second SRAM is read simultaneously, alternating operations between the two SRAMs. However, this operation requires components such as read and write address counters, a multiplexer to switch address signals according to the read and write state of each device, a multiplexer to switch write data input and read data output, and a sophisticated controller to control the SRAMs and the other components. The $\mu$ PD42505, by performing some of these functions itself, considerably simplifies these applications.

Figure 5. Typical System Using High-Speed SRAMs


## Features of the $\mu$ PD42505

The $\mu$ PD42505 is a 5048 -word $\times 8$-bit high-speed serial access device that uses $1.5-\mu \mathrm{m}$ CMOS processing and dual-port storage cell circuits allowing simultaneous, asynchronous read and write cycles at different speeds. An internal algorithm makes an external address signal unnecessary.

Read and write operations are fully and independently controlled by their own set of control signals. The storage array length of 5048 words meets the size required to sample one line of JIS A3-size paper on the shorter side ( 297 mm ) with a sampling rate of 16 dots $/ \mathrm{mm}$ ( 400 dots $/ \mathrm{in}$ ). On the longer side ( 418 mm ), the sampling rate is 12 dots $/ \mathrm{mm}$ ( 300 dots $/ \mathrm{in}$ ). The $\mu$ PD42505 can easily process document data for each line. The configuration of 8 bits to 1 word corresponds to the number of bits for one sampling point, which allows the device to process natural-looking images.

The $\mu$ PD42505 can be used in video applications that require high-speed processing because of its minimum simultaneous write/read cycle time of 50 ns and maximum access time of 40 ns . For example, the cycle time of 50 ns is fast enough to digitally process an NTSC or PAL composite video signal at a sampling rate of four times the color subcarrier frequency ( $4 \mathrm{f}_{\mathrm{SC}}$ ).

The $\mu$ PD42505 is particularly suitable for use as a digital delay line with a delay length of up to 5048 cycles in one-cycle steps. The device is mounted in a $300-\mathrm{mil}, 24$-pin plastic slim DIP. The $300-\mathrm{mil}$ width allows high-density mounting.

## $\mu$ PD42505 Pinout

Pins 1 through 12 control read operation (Douto-Dout7, $\overline{R S T R}, \overline{R E}$, and RCK) and the GND pin. Pins 13 through 24 control write operation ( $\mathrm{D}_{1 \mathrm{~N} 0}-\mathrm{D}_{\text {IN } 7}, \overline{\mathrm{RSTW}}, \overline{\mathrm{WE}}$, and WCK) and the power supply ( $\mathrm{V}_{\mathrm{CC}}$ ).
$\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are control signal inputs that reset the internal read and write address pointers to starting address 0 . These pins are useful for initializing the chip after power-on or for returning the address to 0 .

Figure 6. $\mu$ PD 42505 Pin Configuration

$\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ are control signals that enable (low) or disable (high) write and read operation. When WE is high, write operation is disabled and the write address stops at the current value. When RE is high, read operation is disabled, the read address stops at the current value, and the output goes to high impedance. $\overline{W E}$ and $\overline{R E}$ may be input at any time, but they are latched in each cycle at the rising edge of WCK or RCK, respectively.

WCK and RCK are the write and read system clock inputs. One write or read cycle is executed in synchronization with each WCK or RCK input when WE or $\overline{\mathrm{RE}}$ is low. The write or read address is incremented internally in single steps and wraps around automatically from 5047 to 0 .
$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN } 7}$ are the write data input pins. Write data is clocked into the chip at the rising edge at the end of the WCK cycle. Douto-Doutr are the read data output pins. Read data is output when the access time has elapsed from the rising edge at the beginning of the RCK cycle.

## Read and Write Timing

Input a low-level signal to $\overline{\text { RSTW }}$ (for writing) or $\overline{\text { RSTR }}$ (for reading) to satisfy the setup and hold times measured from the rising edge at the beginning of the WCK or RCK cycle. This returns the cycle to starting address 0. Figure 7 shows read and write timing for the $\mu$ PD42505.
As the figure shows, the $\overline{\text { RSTW }}$ or $\overline{\text { RSTR }}$ signal can end in one write or read cycle or can be repeated for successive write or read cycles. Repeating the reset cycle holds the address at 0 . The address is incremented to address 1 only in a cycle when RSTW or $\overline{\text { RSTR }}$ is set high at the rising edge of the WCK (RCK) cycle. For write reset, the write data clocked in the last reset cycle is written to address 0 . For read reset, the data in address 0 is output continuously. After the reset, write or read operation continues as the address is incremented by 1 for each cycle in synchronization with its appropriate clock. When the internal address reaches 5,047 (i.e., when write or read cycles are executed 5,048 times), the address returns to address 0 and the write or read operation starts over at that point.
Speed Conversion. Independently controlling the read and write operations of the $\mu$ PD42505 allows you to perform speed conversion. For example, when the read and write addresses are initialized by $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$,
data is written in synchronization with WCK and the write data is written to the chip from device address 0 . Data written can be read out from address 0 . In this case, the reset signal input timing and the clock signal speed (cycle time) can be independently controlled for read and write operation. The $\mu$ PD42505 can be used for speed (frequency or time axis) conversion by outputting the data previously input with an arbitrary drive frequency and time at a different drive frequency and time.

Digital Delay Line. To use the $\mu$ PD42505 as a digital delay line, input the same clock to WCK and RCK and reset the read and write cycles in parallel. Written data is read out after 5,048 cycles to provide a 5,048 -cycle digital delay line.

There are three ways to control the delay length:

- By controlling the $\overline{W E}$ and $\overline{R E}$ signals
- By inputting $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ at different times (the delay length is determined by the offset between the signals)
- By changing the reset signal interval when $\overline{\text { RSTW }}$ and RSTR are concurrently controlled (the delay length is determined by the reset signal input interval)

Figure 7. Read and Write Timing


Notes:
[1] $\overline{W E}=\overline{R E}=V_{I L}$.
[2] $\mathbf{V}=$ Valid data.

The delay length can be changed in one-cycle steps by controlling $\overline{W E}$ and $\overline{R E}$. When $\overline{W E}$ and $\overline{R E}$ are high, write and read operation is disabled. The write and read addresses remain where they were when the operations were disabled, regardless of WCK and RCK.
When $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are used to control the delay length, the data written at address 0 when RSTW is input is read out from address 0 when $\overline{\text { RSTR }}$ is next input. The offset between RSTW and RSTR determines the delay length.

In the third method, changing the reset signal input interval, the same signal is used for WCK and RCK so that $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are controlled together. The data, written after a reset signal, is read out after the next reset signal in the order it was written. This interval determines the delay length. For example, if the reset signal is input every 4,800 cycles, the delay length is 4,800 cycles. Figure 8 shows the timing for this method.

Figure 8. Controlling Delay Length with the Reset Interval


## Functional Blocks

The write data input from pins $D_{\text {IN }}-D_{\text {iN7 }}$ goes through the $D_{\text {IN }}$ buffer and is serially written to either a static cell in an 8-byte configuration, or a dynamic cell in a 5,040-byte configuration, one byte ( 8 bits) at a time, in synchronization with WCK. The data read out from
these cells is serially output from the Dout pins through the sense amplifier and the Dout buffer, one byte at a time, in synchronization with RCK. The read and write control circuits control these operations.

Figure 9. $\mu$ PD42505 Block Diagram


## Storage Celis

The $\mu$ PD42505 uses dual-port storage cells to allow read and write cycles to be executed asynchronously and at different speeds. Figure 10 shows a circuit diagram of a static dual-port storage cell, and figure 11 shows a dynamic dual-port storage cell.
In the static cell, read and write data are input as a differential signal so that it can operate at a higher speed. The circuit size is larger because it requires more components.

Figure 10. Static Dual-Port Storage Cell


Figure 11. Dynamic Dual-Port Storage Cell


83-004961A

The dynamic cell has only one bit line for read operation and one for write operation. It requires a longer data sense phase, reducing the speed. However, it can be configured with fewer components.

Both types of cells are used in the $\mu$ PD42505 to exploit the advantages of each. Other than initializing the internal address pointer to the starting address with the reset signal, the $\mu$ PD42505 is configured so that the internal address is incremented one bit at a time and data is serially accessed. After a reset operation (immediately changing the addressing sequence), a static dual-port storage cell that can operate at higher speed is accessed. Simultaneously or subsequently, a dynamic cell is used as a pipeline, allowing both types of cells to be accessed at high speed.
Pipeline operation refers to an instance where the word line (row) to be selected next is set to the selected level in advance, so that it can be written or read at high speed in the time required to select a column in dynamic static-column mode.

Shift registers are used as read and write column and row selectors to enable the sequential selection of write or read addresses in pipeline processing.

## Applications

Signal processing technology aims toward higher quality in the development of digital copiers and facsimile machines. As examples, consider image quality improvement processing such as the adaptive bilevel control technique, which produces a stable and accurate binarization regardless of the original document type, and the two-dimensional equalizing filter, which corrects fading in photoelectric signal conversion. The $\mu$ PD42505 fits easily into these processes. It can also reduce system size and cost.

## Two-Dimensional Filter

In handling an image with half-tones, e.g., a photograph, there is some deterioration in the image quality, such as thin lines and small characters fading out; fading is usually caused by the lens or photoelectric signal conversion system in a CCD sensor. A twodimensional filter is very effective in enhancing contours where contrast changes sharply and in reducing the fading problems. Figure 12 shows a contour enhancement circuit.

Figure 12. Contour Enhancement Circuit


In this example, the video input is handled as a 4-bit signal so that a circuit with a delay length equal to two scanning lines can be configured with a single $\mu$ PD42505. Adding adders or subtractors and multipliers to the $\mu$ PD42505 completes the contour enhancement configuration.
The video signal of the $n+1$ th line (delayed by one scanning line) is input to $\mathrm{D}_{\text {IN0 }}-\mathrm{D}_{\text {IN3 }}$ and output from $\mathrm{D}_{\text {оит0-D }}$ Out3 as the $n$th line. Applying this output directly to $\mathrm{D}_{\text {IN4 }}-\mathrm{D}_{\text {IN7 }}$ delays the video signal another scanning line before it is output from $D_{\text {OUT4 }}$-D OUT7 as the $n-1$ th line. There is a delay of one scanning line between the signal input to $\mathrm{D}_{\mathrm{INO}^{-}} \mathrm{D}_{\mathrm{IN} 3}$ and the signal output from Douto-Dоит3, and a delay of another scanning line between the signal input to $\mathrm{D}_{\text {IN4 }}-\mathrm{D}_{\text {IN7 }}$ and the signal output from Dout4-Doutr. Processing these signals in the adders and multipliers provides
contour enhancement in the vertical direction. You can control the delay length by controlling the reset signals (RSTW and $\overline{\text { RSTR }}$ ) and the clock signals (WCK and RCK) in common, and by controlling the reset signal input interval.

The delay length of one scanning line is used in various applications for two-dimensional data processing. The $\mu$ PD42505 can also be used in applications such as VTR jitter compensation (time axis variation) caused by the variance in head drum rotation rate or the expansion or shrinkage of the tape, applications requiring variable-length delay lines to contract or expand a video image in the horizontal direction, applications involving the synchronization of two or more digital signal inputs, and as a line buffer in data transfer operations between devices using different data transfer rates.

Figure 13. $\mu$ PD42505 $5048 \times 8$ Line Buffer


## Introduction

The $\mu$ PD41101 and $\mu$ PD41102 are high-speed serial access line buffers organized as 910 words $\times 8$ bits and as 1135 words $\times 8$ bits, respectively. An algorithm that enables data to be read out in the order in which it was input makes these devices suitable for use as data delay lines or for converting data transfer rates, e.g., as buffer storage used for data transfer between devices with different data processing rates.
The $\mu$ PD41101 can process an NTSC composite video signal (the TV system used in Japan and North America) that has been previously digitized. The fast access times of the device allow a sampling frequency of four times the color signal subcarrier frequency ( where $\mathrm{f}_{\mathrm{SC}}=3.58 \mathrm{MHz}$ and $4 \mathrm{f}_{\mathrm{SC}}=14.32 \mathrm{MHz}$ ) for each scanning line to be used. This means that 910 addresses are required for each scanning line when sampling at $4 \mathrm{f}_{\mathrm{SC}}$.

The $\mu$ PD41102 can process a PAL composite video signal (the TV system used in European countries other than France) that has been previously digitized. This device also uses a sampling frequency of four times the color signal subcarrier frequency (where fsc $=4.43 \mathrm{MHz}$ and $4 \mathrm{f}_{\mathrm{SC}}=17.72 \mathrm{MHz}$ ) for each scanning line, which means that 1135 addresses are required for each scanning line when sampling at $4 \mathrm{f}_{\mathrm{Sc}}$.
Figure 1 shows the pin configuration for these devices. The $\mathrm{D}_{\mathrm{IN} 0}-\mathrm{D}_{\mathrm{IN} 7}, \overline{\mathrm{RSTW}}, \mathrm{WE}$, and WCK pins control write operation, while $\mathrm{D}_{\text {Outo }}{ }^{-} \mathrm{D}_{\text {OUt7 }}, \overline{\mathrm{RSTR}}, \overline{\mathrm{RE}}$, and RCK control read operation. The pins are organized to operate asynchronously and at different speeds simultaneously. A built-in serial address generator automatically generates read and write addresses so that an address need not be supplied externally.

## High-Speed Operation

## Write and Read Operation

Write and read cycles are executed identically. One address of data ( 8 bits) is written or read in one cycle in synchronization with WCK or RCK when WE or RE is low. The write or read address is incremented by 1 at the falling edge of each write or read clock. Write data must satisfy setup and hold times as measured from the rising edge of WCK.

Figure 1. Pin Configuration

| Douto 4 | $4{ }^{4}$ Dino |
| :---: | :---: |
| Dout $\mathrm{Cl}_{2}$ | ${ }^{3} \mathrm{DIN1}^{\text {d }}$ |
| Dout2 3 | $2 \mathrm{DIN}^{2}$ |
| Dout3 4 | 1 Din3 |
| $\overline{R E} 5$ | 0 WE |
| RSTE ${ }^{6}$ | 9 ¢STW |
| GND 7 | ${ }^{8} \square \mathrm{~V}_{\mathrm{cc}}$ |
| RCK 8 | 7 wck |
| DOUT4 ${ }^{9}$ | ${ }^{6} \mathrm{DiN4}^{\text {a }}$ |
| Douts 10 | 5 Dins |
| Dours ${ }^{11}$ | 4 -DiN6 |
| Doutr 12 | 3] $\mathrm{DIN7}^{\text {a }}$ |

The $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ reset signals initialize the write and read address pointers to 0 . A reset signal must be input to satisfy the setup and hold times as measured from the rising edge of WCK or RCK. Once the address is initialized, a write or read cycle is executed in synchronization with its respective clock and the pointer is incremented by 1 . In the $\mu$ PD41101, the pointer returns to 0 after address 909 . In the $\mu$ PD41102, the pointer returns to 0 after address 1134.
When $\overline{W E}$ is high, write operation is disabled and the line address is held regardless of the status of WCK. When $\overline{R E}$ is high, read operation is disabled, the output goes to high impedance, and the line address is held regardless of the status of RCK.

## Functional Blocks

The write data from $D_{\text {INO }}-D_{\text {IN }}$ goes through an input buffer and is serially written to either a static cell in an 8-byte configuration, or a dynamic cell in an 1136-byte configuration, one byte ( 8 bits) at a time, in synchronization with WCK. The data read from these cells is serially output from the $\mathrm{D}_{\text {Out }}$ pins through a sense amplifier and the output buffer, one byte at a time, in synchronization with RCK. The read and write circuits control these operations.
WCK, $\overline{W E}$, and $\overline{\text { RSTW }}$ are input to the write control circuit. RCK, $\overline{\operatorname{RE}}$, and $\overline{\operatorname{RSTR}}$ are input to the read control circuit. These segments are composed of simple gate circuits (figure 2).

Figure 2. Block Dlagram of the $\mu$ PD41101 and $\mu$ PD41102


## Storage Cells

The $\mu$ PD41101 and $\mu$ PD41102 use dual-port storage cells to execute read and write cycles asynchronously and at different speeds (figures 3 and 4).

Static Cell Organization. In the static cell, two pairs of transfer gates (one pair each for read and write operation) are connected to the flip-flop in the middle. The other end is connected to a pair of bit lines for read operation (RD, $\overline{R D}$ ), and another pair for write operation (WD, WD). One word line each for RW and WW are connected to the transfer gate pins.
When the word line for a write cycle (WW) goes to the selected level, and write data is applied to the pair of bit lines (WD, WD) of the selected column, a write cycle is executed on the cell where the row (word line) and column (bit line) intersect.
A read cycle is executed independently. When the word line goes to the selected level (RW), data is transferred to the bit line pair (RD, $\overline{R D}$ ) through a transfer gate. Data is selected by the column signal and read externally. Data in the storage cell at the intersection of the selected row and column is also read.

Read and write data are input as a differential signal so that the static dual-port cell can operate at a higher speed. The circuit size is larger because it requires more components.
Dynamic Cell Organization. Each dynamic array in the $\mu$ PD41101 and $\mu$ PD41102 consists of two subarrays with 71 rows apiece. Each row of the subarray consists of 8 (number of bits) $\times 8$ addresses (bytes). Each row of each subarray therefore has 8 subword lines. Figure 5 shows the organization of a dynamic array.

Figure 3. Dual-Port Static Storage Cell


Figure 4. Dual-Port Dynamic Storage Cell


Figure 5. Organization of Dynamic Storage Array


The dynamic cell has only one bit line for each read $(\overline{R D})$ and write (WD) operation, one word line for each read (RW) and write (WW) operation, three transistors, and one capacitor. Although the longer data sense phase reduces its speed, a dynamic cell can be configured with fewer components and used for highdensity integration.
In a write cycle, write data input through the bit line (WD) is guided through a transfer gate made conductive by the word line (WW). The gate charges or discharges the storage capacitor.

In a read cycle, the transistor with the gate connected to one end of the storage capacitor is turned on or off depending on whether or not the capacitor is charged. Data is transferred to the bit line ( $\overline{\mathrm{RD}}$ ) through the transfer gate, made conductive by the word line (RW), and then read externally. Word and bit lines for each operation are independent of each other so that read and write cycles can be executed asynchronously.

## Data Transfer

The $\mu$ PD41101 and $\mu$ PD41102 are configured so that the internal address is incremented one bit at a time and data is accessed serially. After a reset signal initializes the device, a static cell that can operate at higher speed is accessed. Simultaneously or later, a dynamic cell is used as a pipeline, allowing access to both types of cells at high speed.
Stored information is defined by the state of the storage capacitor. When the word line for the write cycle goes to a selected level, the write transfer gate of each storage cell connected to the word line becomes conductive, and the data (electrical level) given to the bit line is rewritten to the capacitor connected to the end of the transfer gate. The precharge level of the write bit line (typically a high level) is rewritten to the storage cells on the selected word line, other than the one to which the column signal applies data, thereby destroying data stored there.

$\mu$ PD41101/ $\mu$ PD41102

The $\mu$ PD41101 and $\mu$ PD41102 prevent this destruction of data by using a main word line and a subword line. The subword line is driven by the ANDed signals of the main word line and the write column. The transfer gate of each cell corresponding to each address is connected to a subword line. Therefore, the write word line of the storage cells at the selected row and column address is the only one which goes to a high level, preventing the destruction of data in other cells on the same write line.

## Address Selection

A dynamic storage array consists of subarrays 1 and 2 , each of which is $568(71 \times 8)$ bytes. A column selector and a row selector circuit are provided for independent read and write operation for each subarray.
The first step of address selection involves the accessing of an 8-byte static cell immediately after a reset cycle. The address selector moves to the first row of the subarray, and subarray 1 is accessed from left to right, one byte at a time. When 8 bytes of subarray 1 have been accessed, the address selector moves to the first row of subarray 2 , also accessed from left to right, one byte at a time. When 8 bytes of subarray 2 have been accessed, the address selector alternately selects 8 bytes from addresses in both subarrays, so that rows are selected from the higher row to the lower row.

When the number of access cycles to the static cell array ( 8 addresses) and the dynamic cell array reaches 910 (for the $\mu$ PD41101) or 1135 (for the $\mu$ PD41102), the pointer moves to address 0 of the static array.
This method of sequential address selection increases the access speed of the dynamic cell by selecting row addresses in the pipeline method. Pipeline operation occurs when the word line (row) to be selected next is set to the selected level in advance so that it can be written or read at high speed, i.e., in the time required to select one column in static-column mode.
After a reset cycle, when 8 bytes of the static cell are being accessed, the first row of subarray 1 , which is accessed next, is set to the selected level in advance. When the selected address moves to the first row of subarray 1 (after 8 bytes of static storage are accessed), a read or write cycle can be executed at high speed for that row. The first row of subarray 1 can be accessed at high speed even after the static array is selected. This process continues with the first row of subarray 2, the second row of subarray 1 , and so on.
While the static cell is being accessed immediately after a reset cycle, the address on the dynamic cell is held on the first column and row of subarray 1 . The dynamic array is not accessed at this time. Pipeline
operation is performed independently for write and read cycles by the row and column selectors for each subarray.
Shift registers are used as read and write column and row selectors for the sequential selection of write or read addresses and pipeline processing. Shift registers are provided for each column and row, and each node level is set in advance so that when reset, each shift register outputs a high signal for the first column or row and a low signal for other columns or rows.

The column selector (shift register) is driven by WCK or RCK and the address is incremented by 1 for each clock cycle, i.e., the node that outputs a high signal changes in synchronization with the clock, and the column selector changes with it.
The row selector (shift register) is related to pipeline control and is driven by the pulse generated when the column address selector moves from subarray 1 to subarray 2 or vice versa. The row selector is incremented by one row address after the change from one subarray to another.
Each shift register used as a column or row selector is configured as a ring counter so that when the last column or row is reached, it automatically returns to the first column or row.

## Applications

For the most part, the applications described below pertain to noninterlaced digital TV. The descriptions apply to NTSC systems, unless otherwise specified.

## Comb Filter

A composite TV signal (output of a TV tuner) is the sum of the luminance ( $Y$ ) and chrominance ( $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ ) color signals. The $Y, R-Y$, and $B-Y$ signals must be separated, and the $R, G$, and $B$ signals input to the picture tube generated from them.
A comb filter with line buffers derives the color or luminance signal by cancelling it from the composite signal, using the correlation between neighboring lines. This filtering fully separates the color and luminance signals, especially when there is a strong correlation between lines, to produce a clear picture.
If the signals are not well separated, the color signal may interfere with the luminance signal and cause dot crawl. The luminance signal may also interfere with the color signal and cause cross-color. This interference degrades the picture quality, especially where color or luminance changes sharply. Figure 6 shows a typical comb filter using line correlation.

This example compares target line B with neighboring lines $A$ and $C$. Two $\mu$ PD41101s are used as 910 -bit delay lines. The color signal ( $C=R-Y, B-Y$ ) is separated by subtracting the data of the upper and lower lines ( $A+C$ ) from the target line data ( $B$ ) and filtering the separated signal through the $3.58-\mathrm{MHz}$ bandpass filter. The luminance signal is the result of subtracting the separate color signal from the original data (B). See the description of the "Variable-Length Delay Line" application for information on controlling a delay line of 910 bits or less.

## Double-Speed Scan Conversion

The current NTSC and PAL TV systems use interlaced scanning to eliminate the flickering caused by field transition. Scanning is performed every two lines,
reducing the pixel density and doubling the field frequency (number of fields-per-second), as illustrated in figure 7.

In interlaced scanning in the NTSC system, a complete frame consists of two fields of $\mathbf{2 6 2 . 5}$ scanning lines each. The field frequency is 60 Hz , i.e., the sum of 30 first fields-per-second and 30 second fields-persecond. In the PAL system, a complete frame is comprised of two fields of 312.5 scanning lines each. The field frequency is 50 Hz , the sum of 25 first fields-per-second and 25 second fields-per-second. In both cases, interlaced scanning reduces the flicker in motion scenes caused by field transition. The pixel density in the vertical direction is also reduced, diminishing the level of detail.

Figure 6. Interline Y/C Separation with a Comb Filter


83-004927B

Figure 7. Relationship of Field to Frame in NTSC Systems


The $\mu$ PD41101 or $\mu$ PD41102 can be used to convert interlaced scanning to noninterlaced scanning. Doubling the pixel density (number of scanning lines) in the vertical direction without changing the field frequency produces clear and precise images (figure 8). In interlaced scanning, the first field of solid lines and the second field of broken lines are scanned alternately at 30 fields-per-second ( 25 fields-per-second in PAL). In noninterlaced scanning, the number of scanning lines per field is doubled, and 60 fields-per-second are scanned (50 fields-per-second in PAL).

In noninterlaced scanning, the data of the skipped line is created using the buffer. It is read at twice the sampling frequency of interlaced scanning ( $8 \mathrm{f}_{S C}$ if the interlaced sampling rate is $4 \mathrm{f}_{\mathrm{SC}}$ ). Noninterlaced scanning scans two lines in the time that one line is scanned in interlaced scanning. The horizontal frequency of the CRT must also be doubled for noninterlaced scanning.

The data of the skipped line can be created

- Using the data of the previous line (reading out the same data twice)
- Using the average value of the lines before and after the skipped line
- Using data that is one-field-old (the data for 262 lines before for NTSC, or 312 lines before for PAL)

In the first option, one $\mu$ PD41101 (or one $\mu$ PD41102 for PAL) is used for one input signal. The data is written at $4 \mathrm{f}_{\mathrm{SC}}$ and read out at $8 \mathrm{f}_{\mathrm{SC}}$. Reading starts when data is written to half of the line ( 455 bytes). The same data is read twice ( 910 bytes $\times 2$ ) at $8 \mathrm{f}_{\mathrm{Sc}}$. Data read in the latter half is used as interpolated data (figure 9).

In the second method, one $\mu$ PD41101 delays the data of one line, and two $\mu$ PD41101s convert the current data and the interpolated data for double-speed scanning.

Figure 8. Interlaced and Noninterlaced Scanning


Figure 9. Using the Previous Line as Interpolated Data


The two $\mu$ PD41101s used for scan conversion are written at $4 \mathrm{f}_{\mathrm{SC}}$ and read at 8 fsc . The $\overline{R E}$ signal is controlled to first read the $\mu$ PD41101 to which the current line data is written, and then read the $\mu$ PD41101 to which the interpolated data is written (figure 10).

In the last option, as in the previous one, one buffer delays the data for one field and two other $\mu$ PD41101s perform scan conversion. The control sequence is the same as described in the second method. Using data from a line of the previous field produces a clear image, especially in a still scene (figure 11).

Figure 10. Using the Average of the Previous and Following Lines


Figure 11. Using a Line from the Previous Field


## Dropout Compensation

Dropout compensation cancels the noise in a VTR picture reproduction. If a line contains noise, the portion of the previous line in the same position as the noise is reproduced instead, eliminating the noise from the reproduced image (figure 12).

Figure 12. Example of Dropout Compensation

|  | Data Output to TV System <br> Data with Noise | $83-004932 A$ |
| :---: | :---: | :---: |

Video data from a tape normally is written to the $\mu$ PD41101, delayed for one scanning line (910 bits), and then used as image data to a TV system. The noisedetection circuit senses noise in the video signal. When data containing noise is input to the $\mu$ PD41101, the input is switched to the data already in the buffer so that the previous data line is written again. Data containing the noise is not output to the TV system (figure 13).

Figure 13. Dropout Compensation Circuit


The $\mu$ PD41101 can also be used as a 910-bit (one scanning line) delay. If the write data fed back by switching is delayed, the delay length must be reduced to compensate for it. For example, if switching causes two bits of delay, the delay length must be adjusted to 908 bits.

## Jitter Compensation [Time Base Correction]

In a VTR, variation in head drum rotation speed or tape contraction or expansion can cause jitter in the reproduced image. The image can be reproduced clearly when jitter is adjusted and the image is reproduced with accurate clocks (figure 14).

Figure 14. Basic Jitter Compensation Circuit


The video signal input from the tape is written to the $\mu$ PD41101 with a clock that can be accurately slaved to the time axis variation of the input video signal. Video data with the same time axis is reproduced by reading data using the synchronized read clock as a reference. If a jitter compensation circuit is configured so that the device to which the data is written, or from which it is read, is selected from among two or more devices by the $\overline{R E}$ or $\overline{W E}$ signal, the circuit can have a delay length of two or more lines.

## Variable-Length Delay Line

The $\mu$ PD41101, driven at 8 fSC , can be used as a variable-length delay line with a delay length of 10 to 910 bits ( 12 to 1135 bits for the $\mu$ PD41102). Driven at 4 fSC , it can produce a delay of 5 to 910 bits ( 6 to 1135 bits for the $\mu$ PD41102). If an analog-to-digital (A/D) and a digital-to-analog (D/A) converter are connected to the input and output sides, respectively, it can also be used as an analog signal delay line (figure 15).

Figure 15. Analog Signal Delay Line


When reading data at a certain address, the $\mu$ PD41101 requires $300 \mathrm{~ns}+0.5$ write cycles (maximum) to read data once the write cycle is complete. For example, when the $\mu$ PD41101 operates on a 34 -ns clock, the minimum delay length is $(300+34 / 2) / 34=9.3$, or 10 cycles. When the $\mu$ PD41102 operates on a 28 -ns clock, the minimum delay length is $(300+28 / 2) / 28=11.2$, or 12 cycles. The maximum delay length of the $\mu$ PD41101 is 910 cycles and 1135 cycles for the $\mu$ PD41102.
Delay length can be controlled by

- Controlling the reset input interval
- Inputting the write and read reset signals at different times (the delay length is determined by the offset between the inputs)
- Controlling the $\overline{W E}$ and $\overline{\operatorname{RE}}$ signals

In the first method, the same signal is used for WCK and RCK. $\overline{\text { RSTW }}$ and RSTR are controlled together. Data written after a reset signal is read after the next reset interval. If the reset signal is input every 900 cycles, the delay length is 900 bits. This option produces a delay length determined by the reset interval to control the delay length (figure 16).

In the second method, using the write and read reset signals, data written from address 0 by the RSTW signal is read out from address 0 when the next RSTR signal is input. The delay length is determined by the offset between the write reset signal and the next read reset signal input (figure 17).

Figure 16. Controlling Delay Length with the Reset Interval


Figure 17. Controlling Delay Length with $\overline{\operatorname{RSTW}}$ and $\overline{\text { RSTR }}$


In the third method, using the $\overline{W E}$ and $\overline{R E}$ signals, write or read operation is disabled when $\overline{W E}$ or $\overline{\mathrm{RE}}$ is high; the interval pointer remains at the address where operation is disabled, regardless of the status of WCK or RCK. The delay length can be controlled in onecycle units by controlling $\overline{W E}$ and $\overline{R E}$. After the reset interval, read data is delayed by 910 cycles ( 1135 cycles for the $\mu \mathrm{PD} 41102$ ) from the write data (figure 18).

## Time Axis Conversion

You can use the $\mu$ PD41101 for time axis conversion by changing the write clock frequency (WCK) and the read clock frequency (RCK). One application for time axis conversion involves image contraction or expansion in the horizontal direction. The image contracts if the read clock frequency is higher than the write clock frequency, and it expands if WCK is higher than RCK (figure 19).

Figure 18. Controlling Delay Length with $\overline{W E}$ and $\overline{R E}$ in the $\mu P D 41101$


Figure 19. Time Access Conversion Application


## Digital Signal Input Synchronization

When performing timeshared data processing in an electronic telephone exchanger or in a star-configured local area network, the phase between input streams may be offset because of differences between the terminal and the central line exchange module. The $\mu$ PD41101 can be used to correct the phase offset (figure 20 ).

Inputs 1 to $n$ are serial data input streams. However, the frame heads (flags indicating the beginning of the data) of each input stream are not synchronized.

The solution requires controlling write operation for each stream. When a frame head is detected, the write address is reset to 0 . A clock extracted from each input can be used as the clock for that write cycle. When data is written to all $\mu$ PD41101s, the read address is reset to 0 by inputting RSTR with appropriate timing. All data streams then can be read out in the same phase by reading all $\mu$ PD41101s simultaneously, even if the input streams are not synchronized.

The serial-to-parallel and parallel-to-serial conversion circuits shown in figure 20 may be used only when serial data is handled at each input and output.

Figure 20. Digital Signal Input Synchronization


## General Application

The $\mu$ PD41101 and $\mu$ PD41102 are suitable for use as buffer storage in data transfer operations between devices of different speeds. Because they use dynamic circuits, the maximum hold time for storage cell data is 1 ms . To hold data longer than 1 ms , you must rewrite it to the same address within 1 ms (figure 21).

The read and write addresses must coincide when rewriting data. If the feedback data is not delayed by a multiplexer, input the RSTW and RSTR signals simultaneously so that the output data of address $n$ is fed
back to the input as it is, and then written again to address n .

If the feedback data is delayed, adjust the input timing of $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$, depending on the delay (number of cycles) of the feedback data. RSTR must be advanced according to the feedback data delay.

In either case, WCK and RCK must be the same. To read the data written to an address after the write cycle for that address is complete, $300 \mathrm{~ns}+$ one-half write cycle is required.

Figure 21. Static Hold Circuit for Storage Cell Data


Notes:
[1] A D.type flip-flop must be provided when the data is delayed.
[2] RSTW must be input at least once while Data Hold is at a true (high) logic level.

Figure 22. $\mu$ PD41101/ $\mu$ PD41102 High-Speed Line Buffer


## Introduction

In the field of computer-aided design and manufacturing (CAD/CAM), running software with many utility programs results in time-consuming disk accesses. Workstations operating in a local area network (LAN) also are performance-limited by the heavy burden on magnetic disks serving multiple users. These systems receive a performance boost when the magnetic disk is replaced with a solid-state disk.

NEC developed the $\mu$ PD42601 silicon file, a $1,048,576 \mathrm{x}$ 1-bit semiconductor disk, precisely for such applications. The CMOS-fabricated $\mu$ PD42601 operates much faster than hard disks, with simplified circuitry and fewer sense amplifiers than standard DRAMs. Although access times from $\overline{\operatorname{RAS}}\left(\mathrm{t}_{\mathrm{RAC}}\right)$ and $\overline{\mathrm{CAS}}\left(\mathrm{t}_{\mathrm{CAC}}\right)$ of 600 ns and 100 ns , respectively, make this device slower than standard DRAMs such as NEC's $\mu$ PD421000, the use of word-width system architecture and page-cycle accesses achieves very high data transfer rates and can therefore improve system efficiency.

## Applications

Because the device's high capacity, battery-supportable nonvolatility, and environmental hazard resistance are expected to challenge the niche previously defined by bubble devices, the $\mu$ PD42601 should find its major market in large solid-state disk applications. However, as shown in table 1, other potential markets exist. For example, the $\mu$ PD42601's very low data retention current, which reduces heat buildup and simplifies thermal design, means that a cool die operating in a $300-\mathrm{mil}$ SOJ offers greater flexibility in packaging and stimulates new ideas for other product applications (see figure 1 for packaging options and pin assignments of the $\mu$ PD42601).

Table 1. Potential Markets for $\mu$ PD42601 Silicon File

| Market | Requirements | Applications |
| :--- | :--- | :--- |
| Solid-state disks | High capacity <br>  <br>  <br>  <br> Reliability <br> Battery backup | High-end engineering <br> workstation (100 <br> Mbytes to 1 Gbyte) |
| Portable handheld | Light weight | Personal computers |
| products | Low power | Retail point-of-sale |
|  | Small size | terminals |
| Industrial | Immunity to a | Process control |
|  | hazardous environ- | Robotics |
|  | ment: vapors, dust, |  |
|  | vibration |  |

Figure 1. Pin Configurations

18-Pin Plastic DIP


26/20-Pin Plastic SOJ

| Din | 1 |  | 26 | $\square \mathrm{GND}$ |
| :---: | :---: | :---: | :---: | :---: |
| WE | 2 |  | 25 | $\square$ DOUT |
| $\overline{\text { RAS }}$ | 3 |  | 24 | $\overline{\text { CAS }}$ |
| $\overline{\text { RFSH }} \square$ | 4 |  | 23 | $\square \mathrm{NC}$ |
| NC $\square$ | 5 |  | 22 | $\square \mathrm{Ag}$ |
| $\mathrm{A}_{0}$ | 9 |  | 18 | $\square \mathrm{AB}_{8}$ |
| $\mathrm{A}_{1} \square$ | 10 |  | 17 | $\square A_{7}$ |
| $\mathrm{A}_{2} \square$ | 11 |  | 16 | $\mathrm{A}_{6}$ |
| $\mathrm{A}_{3}$ | 12 |  | 15 | $\square A_{5}$ |
| Vcc | 13 |  | 14 | $\square A_{4}$ |

20-Pin Plastic ZIP


## Power and Speed Enhancements

All access cycles and timing specifications for the $\mu$ PD42601 are similar to those of generic DRAMs. However, the $\mu$ PD42601 requires only $25 \%$ of the operating power and $5 \%$ of the standby power of a standard DRAM, and therefore provides a better silicon solution for the aforementioned applications. The silicon file has a specified access time from $\overline{\mathrm{RAS}}$ ( $\mathrm{t}_{\text {RAC }}$ ) of 600 ns . A quick page access time from $\overline{\mathrm{CAS}}$ ( $\mathrm{t}_{\mathrm{CAC}}$ ) of 100 ns is also available. Heavy system use of page cycles makes the best choice for two reasons: the first is speed enhancement over standard $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles and the second is disk sector size, which closely matches the number of bits accessible in page cycles.

In target applications for the $\mu$ PD42601, low power is required. Both operating and standby power are important: low operating power results in cooler device temperatures and higher reliability, while standby currents in the microampere range allow for battery backup and small packaging options.

## Self-Refreshing

The $\mu$ PD42601 has a self-refresh feature similar to the one found in pseudostatic DRAMs. Bringing the RFSH pin low and clocking $\overline{\operatorname{RAS}}$ permits the silicon file to retain data while using only $30 \mu \mathrm{~A}$ of power. In large solid-state systems, the solid-state disk would use byte-wide or word-wide banks of silicon file storage, with only one bank of devices active at a time, and all others in a state of self-refreshing. In this low-power operation, total power consumption of the system
would be very low, making battery backup possible with compact batteries.
During self-refresh cycles, a relatively slow $\overline{\mathrm{RAS}}$ clock can be applied and data integrity still be maintained. To enter this power-down quiescent state, the user can pull $\overline{\text { RFSH }}$ low and start the $\overline{\text { RAS }}$ clock at a slow cycle time ( $t_{\text {RCF }}$ ). Since data loss is caused by leakage, and leakage current increases with temperature, NEC has specified the $t_{R C F}$ rating at $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Each temperature rating has a corresponding refresh current (directly proportional to the refresh rate) which is required to maintain data, with faster rates required for higher temperatures (table 2).

Table 2. Self-Refresh Conditions

| $\mathrm{T}_{\mathrm{A}}$ | tref $^{\text {(max) }}$ | Seli-Refresh Current (max] |
| :---: | :---: | :---: |
| $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~S}$ | $30 \mu \mathrm{~A}$ |
| $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~S}$ | $60 \mu \mathrm{~A}$ |
| $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~S}$ | $120 \mu \mathrm{~A}$ |

It is important to make a distinction between selfrefresh cycles and the more familiar CAS before RAS refresh cycles. When low, the RFSH pin enables selfrefreshing and disables most of the internal circuits. Only those circuits required for self-refresh operation are active. Because of the rate of $t_{\text {RCF }}$ required for substrate bias generation, nineteen RAS clocks are used in the $\mu$ PD42601 to refresh one row (figure 2).

Figure 2. Internal Address Generation in Self-Refresh Operation


Figure 3 shows a simplified block diagram of the $\mu$ PD42601 during self-refresh operation. The low level of RFSH disables the ring oscillator and initializes the $\overline{\text { RAS }}$ buffer and 19-bit counter. The external $\overline{\text { RAS }}$ clock is reduced in frequency by the 19-bit counter. The outputs of the counter and the timing generator are then used to generate the slow-speed timing, decoding, and sensing operations, while the substrate bias generator functions at a reduced frequency to keep the substrate stabilized but minimize power consumption.

Figure 4 shows the transition and delay times for IDD1, $I_{D D 2}, I_{D D 3}$, and I ${ }_{\text {DD5 }}$. When RFSH goes low, a $2.5-\mathrm{ms}$ delay occurs before the device enters true self-refreshing. The timing shown in figure 4 depends on internal temperature-compensated delay circuits and is required to allow the die to stabilize at a lower temperature. During this $2.5-\mathrm{ms}$ period, the standby current is specified as $\mathrm{I}_{\mathrm{DD}}$, or $500 \mu \mathrm{~A}$. After the die cools, the substrate bias generator operates at a lower frequency and power consumption is composed of five components: the $\overline{\text { RAS }}$ buffer, the 19-bit counter, the decoder, the substrate bias generator, and the sense amplifiers. All other peripheral circuits are disabled.

Figure 4. Transition and Delay Timing In Self-Refresh Operation


3

Figure 3. Circuit Operation in Self-Refresh Operation


83YL-5402B

## $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refreshing

The $\mu$ PD42601 does not incorporate its own automatic refresh circuits on-chip, but requires pulsing $\overline{\text { RAS }}$ in the self-refresh state to hold data. Another more descriptive term for this function is "pulse refreshing." In most pulse-refreshed devices, the method of entering and exiting self-refresh operation is crucial; however, the $1 \mathrm{M} \times 1$ silicon file makes transitioning between operating and self-refresh modes simpler than previous-generation pseudostatic devices.
In the case shown in figure 5, no $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycles are executed during a period of normal write and read cycles. Re-entering self-refresh operation after short write/read bursts limits the number of bits that could have been accessed in the relatively short time specified for $t_{\text {RCF }}$ (i.e., the maximum cycle time for $\overline{R A S}$ in self-refresh operation).

If system timing remains in normal write or read operation longer than $t_{\text {RCF }}$ (max), then refresh logic is needed to control $\overline{C A S}$ before $\overline{R A S}$ refreshing. Every $32 \mathrm{~ms}, 512$ refresh cycles are needed to refresh the 512
row addresses, an average rate of one every $62 \mu \mathrm{~s}$. Because of the reduced operating current and the resultant lower die temperature, the refresh period can be extended to four times the 8 -ms value specified for most $1 \mathrm{M} \times 1$ DRAMs.

In $\overline{\text { CAS }}$ before $\overline{R A S}$ cycles, addresses need not be supplied because an internal counter supplies them to the decoders. Since the clocks for both CAS before $\overline{\mathrm{RAS}}$ refresh cycles and self-refresh cycles increment the same internal address counter, there are orderly and sequential transitions from self-refreshing to $\overline{C A S}$ before $\overline{\mathrm{RAS}}$ refreshing and back to self-refreshing. Ensuring that the row addresses are refreshed in a timely fashion is the function of the refresh counter, which is clocked by CAS before $\overline{\mathrm{RAS}}$ during normal cycles and at the rate of $1 /\left(19 \times t_{\text {RCF }}\right)$ during self-refresh cycles. The $\mu$ PD42601 runs cooler than other selfrefreshing devices and does not require a burst of extra $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ cycles before self-refreshing to ensure data integrity.

Figure 5. Special Requirements for $t_{\text {RCF }}$ Near Periods of Limited Standard Refresh Cycles


## Notes:

[1] The value for treF $^{[\mathrm{min}}$ ] is specified in AC Characteristics. The value for t RCF [max] is dependent upon temperature and shown in the table below.

|  | t $_{\text {RCF }}[\max ]$ |  |
| :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}$ | $\mu \mathrm{PD42601-L}$ | $\mu \mathrm{PD} 42601$ |
| $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
[3] In this period of normal read/write operation, there are no CBR refresh cycles or less than $512 \overline{\mathbf{R A S}}$-only refresh cycles.
[4] The time delay between the last self-refresh pulse in one selfrefresh cycle, and the first self-refresh puise in the next cycle, is defined by tRCF [max] when the intervening period of read and write operation meets the conditions in Note 3.
[5] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

As discussed earlier, a lower die temperature permits both a relaxed refresh rate and simplified transition timing between self-refresh and normal write and read cycles. The die temperature is a function of the ambient temperature, operating power, and the junction-toambient thermal resistance $\left(\theta_{J A}\right)$. The calculations showing the increase of junction temperature ( $\mathrm{T}_{\mathrm{J}}$ ) over ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ at maximum power consumption ( $P_{D} \max$ ) are shown in the sequence below.
(1) $T_{J}=\left(\theta_{J A} \times P_{D}\right)+T_{A}$
(2) $\mathrm{T}_{J}=\left[95^{\circ} \mathrm{C} / \mathrm{W} \times(5.5 \mathrm{~V} \times 12 \mathrm{~mA})\right]+55^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{J}=61.27^{\circ} \mathrm{C}$

In a solid-state disk system where the air temperature stabilizes at $55^{\circ} \mathrm{C}$, the silicon file chip temperature would not exceed $61.27^{\circ} \mathrm{C}$, comparing favorably with the die temperature of $81^{\circ} \mathrm{C}$ or more for a standard DRAM encapsulated in a plastic SOJ and operating in similar conditions.

Figure 6 shows the maximum specification for $t_{\text {RCF }}$, the critical parameter when transitioning between $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ and self-refresh cycles. When exiting selfrefresh operation, $\mathrm{t}_{\text {RCF }}$ (max) is measured between the falling edges of $\overline{\text { RAS, from the last self-refresh cycle to }}$ the first CAS before $\overline{\text { RAS }}$ refresh cycle. After transitioning from self-refresh operation to a period of normal write or read cycles, writing and reading can proceed
for only $5 \mu \mathrm{~S}$ (at $70^{\circ} \mathrm{C}$ ) before a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle is required. When transitioning from write and read operation to self-refresh operation, the process is simply reversed, with $t_{\text {RCF }}$ (max) referenced between the last CAS before $\overline{R A S}$ refresh cycle and the first self-refresh cycle.
$\overline{\text { RAS-only }}$ refreshing does not increment the refresh counter, complicating the procedure for moving between refresh modes. In refresh methods other than $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$, a burst of 512 refresh cycles is required before entering and also after exiting selfrefresh operation. Complete refreshing of all rows is needed since, in refresh modes other than CAS before $\overline{\mathrm{RAS}}$, the status of the refresh counter is unknown and the maximum specification for $t_{\text {RCF }}$ may be exceeded. When the self-refresh capability is used, then CAS before $\overline{\text { RAS }}$ refreshing is recommended.

## Soft Error Performance

Like the 1M x 1 DRAM, the $\mu$ PD42601 uses the trench cell for a small die size and excellent immunity to alpha particles. Accelerated soft error results are less than 1000 FITs (Failures In Time, or errors in $10^{9}$ devicehours). With low manufacturing cost as an objective, the device includes no error correction circuit (ECC), parity, or data checking functions on-chip. Most customers prefer to implement these functions off-chip.

Figure 6. Timing Restrictions Entering and Exiting Self-Refresh Operation


Notes:
[1] The value for tRCF [min] is specified in AC Characteristics. The value for tRCF [max] is dependent upon temperature and shown in the table below.

|  | tRCF [max] |  |
| :---: | :---: | :---: |
| TA $^{\circ}$ | $\mu$ PD42601-L | $\mu$ PD42601 |
| $50^{\circ} \mathrm{C}$ | $20 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $60^{\circ} \mathrm{C}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| $70^{\circ} \mathrm{C}$ | $5 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, trCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, $t_{R C F}$ is the delay between the last CBR cycle and the first self-refresh pulse.
[3] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells jusl before changing to and just after exiting self-refresh operation.

## Silicon File-Based Solid-State Disk System

To assist our customers in the design-in of the $\mu$ PD42601, NEC undertook a 20-Mbyte solid-state disk hardware project, a block diagram of which appears in figure 7 and a photograph in figure 8 (the hardware enclosure was designed for expansion to 40 Mbytes). Contained within the same package form factor as a 5.25-inch Winchester, the solid-state disk system includes batteries, a power supply, and the necessary power fail logic to provide complete nonvolatility for up to one month. The error correction device is a gate array developed at NEC and is not commercially available. A specification summary of this application project is shown in table 3.

## Table 3. Specification Summary

| Parameter | Specification |
| :--- | :--- |
| Capacity | 20 Mbytes |
| Interface | SCSI (host) |
| Data transfer rate | 1.5 Mbytes/sec (max) |
| Access time | 0.1 ms (max) |
| Error correction | 1 -bit correction and 2-bit detection |
| Sector size | 256 or 512 bytes |
| Power supply | 5 volts, 2 amps |
| Package size | 5.25 -inch disk |
| Battery voltage | 4.8 volts |
| Battery backup | 0 ne month |
| Operating temperature | 5 to $50^{\circ} \mathrm{C}$ |

## Description of the Block Diagram

For the purpose of explanation, the block diagram in figure 7 and the following system description are detailed according to the format shown in table 4.

Table 4.

| Major Functional Blocks | Major Components |
| :--- | :--- |
| Power source/switch | Battery, power control circuits |
| Silicon file and ECC | $\mu$ PD42601LA, ECC gate array |
| Timing generator circuits | $\overline{\text { RAS }}, \overline{\overline{C A S}}, \overline{\text { WE }}$ logic |
| Data/address control | V40 $^{\text {Tm }}$, WD33C93 |

## Power Supply and Power Fail Circuits

The upper left corner of the block diagram consists of the battery, power switch, voltage detector, and power fail circuits. Included in the power switch is a 5 -volt
switching regulator and the power conversion circuits. When the detector senses the falling power supply voltage, the power switch supplies the battery voltage to the components shown within the shaded block (battery backup). At the same time, the power fail logic sends a nonmaskable interrupt (NMI) to the V40, which initiates an internal subroutine and places the microprocessor in the low-current HALT mode.

When system power is restored, the rising voltage is detected. After a delay, the power switch disconnects the battery source and allows the 5 -volt supply to power the system. Once the V40 receives the second NMI and resets the processor, $\overline{\text { RFSH }}$ goes inactive and normal timing resumes.

To ensure nonvolatility and reduced battery current drain, the silicon file devices must be placed in selfrefresh operation when system power fails. In figure 7, the power fail logic has two outputs: one called selfrefresh, which pulls $\overline{\text { RFSH }}$ low on all the storage chips, and a second output connected to the control pins of the V40 and the timing generator block. This output is actually two lines: one for the V40 NMI input initializing HALT mode and the second for initializing the timing generator circuits. When this output signal is active, the power fail logic switches the timing for $\overline{\mathrm{RAS}}$ from normal read/write/refresh timing to the self-refresh oscillator. For this application, the self-refresh frequency is set at 50 kHz because this system is specified to operate at $50^{\circ} \mathrm{C}$ (maximum).

## Storage Organization with ECC

The solid-state disk is organized as five banks of 39 devices, a 32-bit internal data word and an additional 7 bits for the ECC check bits. The ECC device is capable of 2-bit detection and 1-bit correction.
A 32-bit data bus is acceptable for the ECC chip, but the V40 and the SCSI interface controller require a byte-wide bus. The lower right corner of figure 7 shows a four-section register to accomplish this 32- to 8-bit conversion. This register is composed of eight octal bus transceivers with eight enable lines generated in the timing generator block. Four of these transceivers are used for the input side and four are used for the output side. The four octal bus transceivers ( $4 \times 8$ bits) comprise the 32-bit-wide data bus. The enable signals select one of the four transceivers receiving and sending each byte to or from the 8-bit data bus.

[^1]Figure 7. Block Diagram of Silicon File Disk


Figure 8. Photograph of Silicon File Disk


## Timing Generation and Decoding

The timing generator block consists of a delay line, several PALs ${ }^{\circledR}$, and glue logic. Its purpose is to control write and read operation and $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ timing. One of the PALs is used for decoding the eight enable signals used in the 32- to 8-bit multiplexing and demultiplexing operation discussed in the preceding section. Selecting one of five of the storage banks is accomplished by decoding $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and $\overline{\mathrm{WE}}$. This function, together with the selection of the self-refresh oscillator, is contained in the logic blocks shown to the left of the storage array. The self-refresh oscillator is contained in the power fail logic block.

## Data Transfer Control [V40 and SCSI Controller]

In this system, the SCSI controller is the target and the host computer connected to the SCSI controller is the initiator. Although a solid-state device is not a disk in that it has no cylinders, heads, or sectors, the V40 has been designed to handle all the control, data transfer, and address translation functions. Used as a microcontroller, the V40 makes the silicon disk look like a magnetic disk to the WD33C93.

## Read Operation

Upon receiving the input/output command from the host system, the host adapter arbitrates and wins bus control. The target, the SCSI controller in this case, is selected and receives the read instruction and starting address from the host adapter. This information is stored as part of the command data block in the SCSI controller's internal register. At this point, the host disconnects. The V40 first recognizes the read command and the address and then sets the proper bits in the WD33C93 address register. Under V40 control, data is accessed from the correct logical address in the silicon file and moved to the $\mu$ PD43256A buffer RAM.

Once the silicon file has started filling the RAM, the SCSI adapter can reconnect to the host. During this phase, the target arbitrates for the bus and wins control of it. The host is selected and the target sends the message that it is reconnecting. Under control of the V40, data is moved from the RAM to the SCSI controller and is received by the host adapter completing the operation. With this fast semiconductor disk, the data transfer rate depends more on arbitration time than on device access time.

## APPLICATION NOTE 57 $\mu$ PD41101/ $\mu$ PD41102/ $\mu$ PD42505 HIGH-SPEED LINE BUFFERS

## Introduction

The need for storage devices to provide delay and speed conversion in a variety of computer, telecommunication, and consumer applications has led to NEC's development of several new high-speed line buffers. The synchronous or asynchronous operation of these devices allows them to be used as elastic storage to synchronize data flow between two asynchronous parts of a system, e.g., between communication and microcomputer chips.
In graphics systems, line storage devices can act as high-speed source and destination registers during raster operations. In television and VCR products, the $1 \mathrm{~K} \times 8$ buffers provide the raster line storage required
for luminance and chrominance separation and noninterlaced scan conversion. The larger 5K $\times 8$ devices are perfectly suited for facsimile and printer applications because they can store a line of information or a page of text at high speed.

This application note describes NEC's $\mu$ PD41101, $\mu$ PD41102 and $\mu$ PD42505, three functionally equivalent buffers with different capacities and speeds. Each device has independent, 1-byte write and read ports with separate write and read clocks. High-speed performance is achieved by means of unique circuitry rather than a submicron process. Fast access times

Figure 1. Die Photograph of the $\mu$ PD41101 and $\mu$ PD41102

and low cost are possible because of specialized dynamic circuit designs using the best of MOS technology (figures 1 and 2).

## Features

The $\mu$ PD41101, $\mu$ PD41102, and $\mu$ PD42505 are identical except in organization and cycle times (table 1). The following discussion applies to the three devices collectively, unless noted otherwise.

Serial Addressing. Addresses are generated automatically by an internal address counter and need not be supplied externally. The clocks provided by the WCK and RCK signals increment the respective write and read address counters, enabling data to be read out in the order in which it was input.

Wraparound Addresses. The internal address pointers are implemented as ring counters; they return to address 0 after the last byte in a line has been accessed.
Asynchronous Operation. Separate write and read clocks, coupled with their respective enable inputs, allow for independent write and read operation.

Reset Function. The $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ pins reset the internal pointers to address 0 . Resetting of the read pointer can be initiated after " $n$ " write cycles to provide an adjustable delay line of " $n$ " cycles.
High-Speed Address Selection. By interleaving the internal storage arrays and using a novel pipelining technique for high-speed address selection, the devices achieve very fast access times. The $\mu$ PD41102-3, for example, has a specified mínimum cycle time of 28 ns .

Large Capacity. All devices are 1-byte wide. Their line lengths vary as shown in table 1. The $\mu$ PD42505 is configured as 5048 by 8 bits to store a page of information.

Table 1. Configurations and Cycle Times

| Part Number | Organization | Cycle Times |
| :--- | ---: | :--- |
| $\mu$ PD41101 | $910 \times 8$ bits | 34 or 69 ns |
| $\mu$ PD41102 | $1135 \times 8$ bits | 28,34, or 56 ns |
| $\mu$ PD42505 | $5048 \times 8$ bits | 50 or 75 ns |

## Functional Description

Historically, line buffers were designed with shift registers that suffered from fall-through delay as data tumbled down the stack. With NEC's new generation of buffers, which provide independent write and read clocks for asynchronous writing and reading, the write data requires a delay of at least 10 or 11 cycles before appearing at the output. The minimum line delay (specified in the individual data sheets for each device) is not a problem in most applications because the required delay is usually longer than the specified minimum delay.
In synchronous operation, where write and read cycles are controlled together (and write and read addresses coincide), the internal logic causes a write cycle to be delayed by one-half cycle from the read cycle. Read data is output from the previous line, while new input data is written just one-half cycle later.

## Storage Arrays

Unlike other devices based solely on static cells, NEC's line buffers have two types of storage elements: a static cell for high-speed operation and a dynamic cell for achieving large capacity in a small die area. To operate at high speed, the fast static cell is used as a prefetch buffer. While the first 8 bytes of data are being accessed from the static cell, the first row of the dynamic cell is preselected for subsequent access (see Addressing).

Figure 2. Die Photograph of the $\mu$ PD 42505


Figure 3. Dual-Port Static Storage Cell Array


Figure 4. Dual-Port Dynamic Storage Cell Array


The static storage cell has separate word lines for write and read cycles (RW and WW), as well as differential data inputs (RD/RD and WD/WD) for high-speed operation (figure 3). The three-transistor, one-capacitor dynamic storage cell contains separate write and read data and word lines, two access transistors, and a third transistor for cell signal pre-amplification (figure 4). Pre-amplification is required since there are only eight data amplifiers, one each for the eight input/output ports.

Unlike the static cell, the dynamic cell uses only one write and read data line and cannot take advantage of differential sensing. Although the speed is slower, its fewer components make this cell more suitable for compact layout and high device integration. The success of these high-speed buffers lies in the matching of the static and dynamic cells to achieve high performance at a low cost (figure 5).

## Addressing

On a cold start, initial writing and reading to the device requires fast access times from the six-transistor static cell. While the first eight bytes are being accessed from the static cell, the first row of the dynamic cell is preselected. To achieve relatively fast dynamic access, the dynamic array is split into two segments and storage interleaving is employed.

From a functional point of view, the line buffer is a long, eight-bit-wide shift register. Its layout is compacted to produce a small die size. The chip has two arrays, each representing one-half of the line length. For the $1135 \times 8$ device, each subarray is organized as 568 bytes ( $71 \times 8$ bytes).

The serial addresses are generated automatically using column and row selectors for both write and read operation. The following steps summarize the interleaving sequence.

- In a reset cycle, data is read from the 8 -byte static cell, and the first row of subarray 2 is preselected.
- Row 1 of dynamic subarray 2 is accessed, and the address pointer moves to subarray 1 for preselection.
- Row 1 of subarray 1 is read, and row 2 of subarray 2 is preselected.
- Interleaving continues between the subarrays until the last address is accessed, at which time the internal pointer automatically resets to address 0 .

The address pointers are shift registers wired as ring counters and clocked in a wraparound fashion to control writing and reading of data at specific locations. The shift registers are incremented by one address for each WCK or RCK clock. Separate write and read address pointers are required to execute write and read cycles independently and at different speeds.

Figure 5. Block Diagram


## Write and Read Timing

The $\mu$ PD41101, $\mu$ PD41102, and $\mu$ PD42505 are equipped with the following pins: $\mathrm{D}_{\text {INO }}$ through $\mathrm{D}_{\mathrm{iN},}, \overline{\mathrm{RSTW}}, \mathrm{WE}$, and WCK for write operation and Dоuto through $\mathrm{D}_{\text {OUTT }}, \overline{\mathrm{RSTR}}, \overline{\mathrm{RE}}$, and RCK for read operation (figures 6 and 7). Serial addresses are automatically generated by an internal address counter. When WE is low, one byte is written to each address in synchronization with the WCK write clock (refer to the individual data sheets for timing diagrams); the internal write address pointer increments by 1 with each falling edge of WCK. Write data must meet the specified setup and hold times as measured from the rising edge of WCK.

Figure 6. Configuration of 24-Pin Plastic DIP (and Miniflat for $\mu$ PD41101, $\mu$ PD41102 only)

| DOUT1 -1 | 24 |
| :--- | :--- |
| DOUT1 |  |
| DOUT2 |  |
| DOUT3 |  |
| RE |  |

Figure 7. Configuration of 28-Pin Plastic ZIP ( $\mu$ PD 42505 only)


The signal on $\overline{\text { RSTW, }}$, which is used to reset the write address pointer to 0 , also has setup and hold requirements with respect to the write clock.

When the signal on the read enable ( $\overline{\mathrm{RE}}$ ) pin is low, one byte of data is read out of the device for each RCK clock cycle, and the read address pointer increments by 1. The read address pointer is totally independent of the write address pointer.
The control functions of $\overline{W E}$ and $\overline{\mathrm{RE}}$ are shown in figure 8. Bringing these two signals high (inactive) stops the internal address pointers; activating them again causes the internal pointers to increment to the next sequential address.

## Synchronous Operation

Figure 8 shows the internal timing sequences, including those for address transitions and write cycles, during synchronous operation of these devices. With a common write and read clock, the internal write period is delayed from the write address. This delay, required when the write and read addresses are identical, allows a read cycle and then a write cycle to be executed to the same cell location. Read data is taken from the previously written line.

## Designing with NEC's Line Buffers

Initialization
After power has been applied, the write and read address pointers are undefined and therefore need to be set to address 0 . Proper timing for a RSTR or RSTW reset cycle is described in the individual data sheet for each device.

## Refreshing

Refreshing of the dynamic storage cells must be performed at regular intervals. Data remains valid for 1 or 5 ms , depending on the line length of the device ( 1 ms for the $\mu$ PD41101 or $\mu$ PD41102 and 5 ms for the $\mu$ PD42505). Since NEC's line buffers contain only data amplifiers and no sense amplifiers, a standard read cycle does not refresh the storage cell. If longer hold times are required, the original data must be rewritten to the same address.

Figure 8. Internal TIming for Synchronous Operation


## Minimum Delay Length

Unlike register-based line buffers, which use a data flow-through cycle, NEC's line storage elements are not capable of reading data immediately after it has been written. Each device requires a minimum delay, as calculated by the equations shown in table 2.

Table 2. Calculating Minimum Delay

| Part Number | Equation |
| :---: | :---: |
| $\mu$ PD41101 | $1 / 2$ write cycle +300 ns <br> $(34 \mathrm{~ns} / 2+300 \mathrm{~ns}) / 34=9.3$ or 10 cycles |
| $\mu \mathrm{PD41102}$ | $1 / 2$ write cycle +300 ns $(28 \mathrm{~ns} / 2+300 \mathrm{~ns}) / 28=11.2$ or 12 cycles |
| $\mu$ PD42505 | $\begin{aligned} & 1 / 2 \text { write cycle }+500 \mathrm{~ns} \\ & (50 \mathrm{~ns} / 2+500 \mathrm{~ns}) / 50=10.5 \text { or } 11 \text { cycles } \end{aligned}$ |

Delay length, as measured by the number of cycles, is dependent on the speed of the clock, i.e., at 14.3 MHz , the minimum delay for the $\mu$ PD 41101 would be 5 cycles.

## Storage Contention

In asynchronous operation, when write and read cycles contend for the same line, the last " $n$ " bytes (where " $n$ " may be 5-12 bytes) of line output are taken from the previous line. This type of contention occurs most frequently when executing continuous write and read cycles at different rates, such as when converting video images from interlaced to noninterlaced scanning. In this case, the read clock operates at twice the speed of the write clock. Near the end of the line, the read cycle catches up and contends with the write cycle.

## Setting Delay Length

Varying the Reset Interval in Synchronous Operation. Depending on the application, some schemes for implementing delay length suit system timing better than others (see individual data sheets for timing).

In synchronous operation, the delay is set simply by varying the interval between the reset pulses. In this case, the reset clocks are tied together. Since write and read clocks are common, line delay is determined by the offset between resets.
Varying the Reset Interval in Asynchronous Operation. In asynchronous operation, the reset interval can be varied using independent clocks and reset signals. Delay length is calculated as the timing difference between the write and read reset pulses.

Controlling the $\overline{\mathbf{R E}}$ Pin. In the third option, the read enable pin ( $\overline{\mathrm{RE}})$ can be used to control read operation and the read address counter. When $\overline{R E}$ is high (disabled), the read address counter does not increment and no data is output. After the desired delay, $\overline{\operatorname{RE}}$ can be brought low to begin executing read cycles. For delays exceeding one line length, care must be taken to ensure that new data is not written into an address before the old data is read.

## $\mu$ PD42505 Large-Capacity Line Buffer

The $\mu$ PD42505 was designed for applications where a large amount of data is handled per line, e.g., in highperformance digital copiers and G3 or G4 facsimile machines requiring buffer storage for image compression, expansion, data transmission, and in some cases, image enhancement using filtering techniques for digital signal processing. The $5 \mathrm{~K} \times 8$ line length has also been used in some designs to hold the data tokens in digital filtering arrays.
Although line buffering can be achieved using fast static RAMs as shown in figure 9, the need for two devices and other complicated peripheral circuits necessarily increases the cost of a system and makes it more difficult to implement. The $\mu$ PD42505 eliminates the complexity and high cost by providing the same functions and more advantages in one package.

## HIGH-SPEED LINE BUFFERS

Figure 9. System Design Using Static RAMs Versus High-Speed Line Buffer


Figure 10. Line Buffering in Local Area Networks


Figure 11. Elastic Storage for Digital Signal Processing Applications


Notes:
[1] Line buffers synchronize data flow between two asynchronous processors.

Figure 12. Image Enhancement Techniques in High-Performance Digital Copiers


Notes:
[1] In this application, a large-capacity line buffer is used to hold token data for digital signal processing.

Figure 13. Doubling the Line Rate in Scan Conversion


Notes:
[1] In high-definition TV applications, the line buffer is used to double the scan rate by reading at twice the write frequency.

## Introduction

Interlaced scanning is used in television, videotape, and videocassette recording applications to reduce bandwidth and maintain an acceptable amount of screen flicker in video signals. The procedure involves lowering the vertical resolution and doubling the number of fields so that one complete frame is formed from the first and second fields. When a video signal subsequently is decoded and ready for display on a monitor or TV, bandwidth generally is no longer a problem and the higher vertical resolution of a noninterlaced signal may be used to produce a sharper image on the screen.
In NTSC TV systems, there are 262.5 scan lines per field, 2 fields per frame, and 30 frames per second (figure 1 ). With the resolution per field in the vertical
direction lowered by interlaced scanning, the lines become rougher and the gap between scanned lines more visible. This drawback becomes all the more conspicuous in larger-screen TVs.
Vertical resolution problems caused by interlaced scanning can be resolved by first repeating the signal of each scan line. The number of scan lines per field then can be doubled by doubling the horizontal frequency and keeping the vertical frequency intact. Subsequently, an interlaced signal can be converted to a noninterlaced signal to increase the resolution of the picture in the vertical direction (figure 2).
The conversion from interlaced to noninterlaced scanning can be achieved by temporarily storing each line in a buffer and then displaying it twice to double the number of lines per field (figure 3).

Figure 1. Relationship of Field to Frame in Interlaced Scanning


Field $1+$ Field 2 = 1 Frame

Figure 2. Difference Between Interlaced and Noninterlaced Scanning
Interlaced Scanning

Figure 3. Doubling the Line Rate


Figure 4. Block Diagram


## The $\mu$ PD41101 High-Speed Line Buffer

The type of scan conversion described in this application note requires buffer storage for each line. Required storage is calculated by dividing the scanning period per line by the sampling period to determine the number of samples per line. Required storage for NTSC systems is computed as shown in the following sequence.
(1) Scanning period per line:

$$
\frac{1}{\frac{(525 \text { lines }}{\text { frame }} \times \frac{30 \text { frames })}{\text { second }}}=63.5 \mu \mathrm{~s}
$$

(2) Minimum sampling frequency:

$$
3.58 \mathrm{MHz} \times 4=14.32 \mathrm{MHz}=69.83 \mathrm{~ns}
$$

(3) Samples per line:

$$
63.5 \mu \mathrm{~s} / 69.8 \mathrm{~ns}=909.7 \text { samples }
$$

This application requires the storing of 910 words, exactly one horizontal scanning line of data. NEC's $\mu$ PD41101 high-speed line buffer, configured as 910 words by 8 bits, is ideally suited for the digital processing of video signals because one-line delays and time axis conversions can be executed easily.
The $\mu$ PD41101 differs from general-purpose static devices in that it doesn't require a double-buffer configuration (figure 4). Writing and reading can be
executed independently and asynchronously. Since an internal address pointer eliminates the need for external address generation, the only external controls required are those for the WCK and RCK write and read clocks and the RSTW and RSTR write and read reset signals (see figure 5 for pin assignments). As shown in table 1, three versions of the $\mu$ PD41101 are available.

Table 1. Access and Cycle Times of the $\mu$ PD41101

| Part Number | Access Time <br> (max) | Write Cycle <br> Time (min) | Read Cycle <br> Time (min) |
| :--- | :---: | :---: | :---: |
| $\mu$ PD41101-3 | 27 ns | 34 ns | 34 ns |
| $\mu$ PD41101-2 | 27 ns | 69 ns | 34 ns |
| $\mu$ PD41101-1 | 49 ns | 69 ns | 69 ns |

Figure 5. $\mu$ PD41101 Pin Configuration

| Douto ${ }^{1}$ |  | 24 | $\mathrm{D}_{\text {Dino }}$ |
| :---: | :---: | :---: | :---: |
| Douti |  | 23 | $\square \mathrm{DIN1}^{\text {a }}$ |
| Doute ${ }^{3}$ |  | 22 | $\mathrm{D}_{\text {IN2 }}$ |
| Dout3 4 |  | 21 | - ${ }_{\text {IN3 }}$ |
| RE 5 |  | 20 | WE |
| RSTR 6 | 욱 | 19 | - $\overline{\text { RSTW }}$ |
| GND | \% | 18 | $\square \mathrm{vcc}$ |
| RCK | $\pm$ | 17 | F wck |
| Douta |  | 16 | Din4 |
| Douts 10 |  | 15 | $\square \mathrm{Dins}^{\text {a }}$ |
| Dout6 11 |  | 14 | -Din6 |
| Dout7 12 |  | 13 | $\square \mathrm{DiN}^{\text {l }}$ |

## Operation

Write and Read Reset Cycles. After power is applied to the $\mu$ PD41101, its internal address pointers are undefined and must be initialized to address 0 . As shown in figure 6, the inputs on RSTW and RSTR have required setup and hold times as measured from the rising edges of WCK and RCK, respectively.
Write Cycles. Write cycles are executed in synchronization with the WCK clock (figure 7). When WE is low, 8 bits of data are sampled from $\mathrm{D}_{\mathrm{IN} 0^{-} \mathrm{D}_{\mathrm{IN7} 7} \text { at the rising }}$ edge of WCK and the internal write pointer increments to the next sequential address. When the pointer reaches the last address, it wraps around to address 0 again. When high, $\overline{W E}$ disables write operation and inhibits the write address pointer. Write data must satisfy required setup and hold times as specified from the rising edge of WCK.

Read Cycles. When $\overline{R E}$ is low, read cycles are executed in synchronization with the RCK clock (figure 7). Read data is output from Douto-D Out7 after a specified access time as measured from the rising edge of RCK. The internal read pointer functions identically to the write pointer, except that the read address increments sequentially with each RCK clock.

## Example of System Configuration

The block diagram in figure 8 shows a hardware system designed to convert a standard NTSC interlaced video signal to a noninterlaced signal. In this configuration, described on the following pages, the input signals derive either from an NTSC composite signal (video input), from a TV/VTR/VCR, or from the R-G-B signal output of a personal computer.

Figure 6. Write or Read Reset Cycle


Note:
[1] $\overline{W E}=\overline{\operatorname{RE}}=V_{I L}$.
[2] $\mathbf{V}=$ Valld Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as $t_{A C R}$. In all other cycles, $t_{A C}$ defines the read access time.
[4] $H=910$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

Figure 7. Write or Read Cycle


Figure 8. Scan Converter Block Diagram


## Video Signal Processor

The video signal is decoded from the R-G-B inputs by NEC's $\mu$ PC1401, a device specifically designed to process the color, video, and synchronizing signals
used in NTSC color TV systems (figures 9 and 10). By separating the signals, the $\mu \mathrm{PC} 1401$ can independently control them and thereby reduce the number of peripheral devices usually required in this phase.

Figure 9. $\mu$ PD 1401 Block Dlagram


Figure 10. $\mu$ PD1401 Pin Configuration
Picture Ground
Chroma Input
ACC Capacitor
"SHARPNESS"
"COLOR SATURATION"
Chroma Ground
Color Killer Filter
B-Y Output
G-Y Output
R-Y Output
Master Power Supply
Subcarrier Phase Shifter
Chroma APC Filter
Chroma VCO Filter 1
Chroma VCO Filter 2
"TINT"
Subcarrier Resonator
Vertical DC Feedback
Vertical AC Feedback
Vertical Predrive Output
Deflection Ground

Deflection Ground


[^2]
## R-G-B Signal Processor

The level of the R-G-B output signals from the personal computer are adjusted by a $\mu \mathrm{PC} 1387$ (figures 11 and 12). An interface between the digital R-G-B signals and the TV color signal output, the $\mu \mathrm{PC} 1387$ provides high-speed switching by means of a built-in R-G-B signal converter and sophisticated circuitry that blanks the signal levels. The horizontal (H) and vertical (V) synchronizing signals from the personal computer are combined into a composite synchronizing signal. When the selector switches to the R-G-B input position, the composite signal is applied to the $\mu \mathrm{PC} 1401$ in place of a TV signal.

Figure 12. $\mu$ PD1387 Pin Configuration


Figure 11. $\mu$ PD 1387 Block Diagram


## Analog-to-Digital Converter

The input selector chooses one of the two R-G-B signals from the $\mu \mathrm{PC} 1401$ and $\mu \mathrm{PC} 1387$ and passes it to the $\mu$ PD6950, where it first is sampled at a clock frequency equal to $4 f_{s c}(14.3 \mathrm{MHz})$ and then written to the $\mu$ PD41101 line buffer. The CMOS-fabricated $\mu$ PD6950 is an analog-to-digital (A/D) converter whose high speed and low power consumption are particularly suited to video applications (figures 13 and 14).

Figure 13. $\mu$ PD 6950 Pin Configuration


Figure 14. $\mu$ PD6950 Block Diagram


## Line Buffer

This configuration uses a total of three $\mu$ PD41101 line buffers, one each for the R-G-B inputs. Independent control of write and read operation by the $\mu$ PD41101 allows the inputs to be written at a $4 f_{s c}$ sampling rate and subsequently read at twice that frequency ( $8 \mathrm{f}_{\mathrm{sc}}$ ). Reading the scanned image twice doubles the number of lines sent to the TV monitor, fills the gaps between lines of an interlaced signal, and increases the vertical resolution.

## Digital-to-Analog Converter

After being read at a frequency of $8 f_{s c}(28.6 \mathrm{MHz})$, the digital signal from the $\mu$ PD41101 is converted to an analog signal by the $\mu \mathrm{PC} 6902$ (figures 15 and 16). The CMOS-fabricated $\mu$ PC6902 D/A converter is designed to handle 50 million samples per second.

## Timing Generator

The $8 \mathrm{f}_{\mathrm{sc}}$ and $4 \mathrm{f}_{\mathrm{sc}}$ clocks and $\overline{\text { RSTW }}$ and $\overline{\text { STTR }}$ signals are output by the timing generator. The horizontal (H) signal from the $\mu \mathrm{PC} 1401$ passes to a phase-locked loop
circuit, where it is compared and locked with a horizontal signal obtained by dividing the $8 \mathrm{f}_{\mathrm{sc}}$ clock. After the horizontal frequency has been multiplied by $2(2 \mathrm{H})$, this signal is combined with the vertical drive signal (V) from the $\mu \mathrm{PC} 1401$ for use as the composite synchronizing signal in noninterlaced scanning. Together with the R-G-B output signals, it is then passed to the TV monitor.

Figure 15. $\mu$ PD6902 Pin Configuration


Figure 16. $\mu$ PD 6902 Block Diagram


## Operation

A circuit diagram for the scan converter is shown in figure 17. The operation in each block is described below.

## Video Signal Input Stage

Switch SW Selects the NTSC video signal and applies it to the $\mu \mathrm{PC} 1401$, which decodes the composite signal and outputs R-G-B horizontal and vertical synchronizing signals. The $\mu \mathrm{PC} 1401$ integrated circuit separates color types (Y, R-Y, B-Y, G-Y) to form a matrix using three external transistors $\left(\mathrm{Tr}_{3}-\mathrm{Tr}_{5}\right)$ to produce the R-G-B signal.

A 4528BC one-shot multivibrator sets the horizontal synchronizing signal to a suitable pulse width. One of the pulse signals is applied to pins 34 and 35 of the $\mu \mathrm{PC} 1401$ as the burst gate and blanking pulses; the other signal is applied to the MC4044 phase comparator for clock generation comparison purposes.

## R-G-B Signal Input Stage

The R-G-B input signal passes to a 74LS08 two-input positive AND gate and then to the $\mu \mathrm{PC} 1387$ which, together with $\mathrm{Tr}_{6}$ and the 74LS08, ensures that no signal is applied during the horizontal retracing period.

The R-G-B signal applied to the $\mu \mathrm{PC} 1387$ is adjusted to a suitable level prior to being output from that device. Conversely, the vertical and horizontal synchronizing signals are combined in the 74LS08 to form the composite synchronizing signal passed to the $\mu$ PC1401 by selection switch $\mathrm{SW}_{1}$.

## A/D Conversion Stage

The R-G-B signal selected by $S W_{1}$ is passed to the $\mu$ PC6950 through a $7-\mathrm{MHz}$ low-pass filter to cut frequencies in excess of one-half the sampling frequency of 14.3 MHz (figure 18). This analog signal is converted by the $14.3-\mathrm{MHz}$ clock and then passed to the $\mu \mathrm{PC} 1401$ as an 8-bit digital signal.

## Line Buffer Stage

The 8-bit digital input is written at 14.3 MHz before being passed to the $\mu \mathrm{PC} 6902$ for D/A conversion at 28.6 MHz . The WCK, RCK, $\overline{\text { RSTW, }}$, and RSTR controls for the line buffer are supplied from the timing generator (figure 19).

## D/A Conversion Stage

The digital input from the $\mu$ PD41101 is converted to an analog signal by the $28.6-\mathrm{MHz}$ clock to reproduce an R-G-B signal of twice the horizontal line frequency.

## Timing Generation Stage

An LC oscillator circuit uses a 74F04 inverter to generate the $28.6-\mathrm{MHz}$ signals required for driving the line buffer and D/A converter clocks, as well as the $14.3-\mathrm{MHz}$ signals required for driving the line buffer and A/D converter clocks.

The horizontal signal from the $\mu \mathrm{PC} 1401$ is passed to the MC4044 phase frequency detector for phase comparison with the horizontal signal obtained by dividing the clock from the clock generator. The resultant signal is then transferred through a low-pass filter to the 1SV164 varactor diode of a voltage-controlled oscillator to adjust the oscillating frequency (figure 20).

Three 74LS163 synchronous 4-bit counters divide the $14.3-\mathrm{MHz}$ clock by a factor of 455 . The resultant $31.5-\mathrm{kHz}$ clock ( $2 \mathrm{f}_{\mathrm{H}}$ ) is timed by the $28.6-\mathrm{MHz}$ clock and passed to the line buffer as the RSTR signal.
The vertical synchronizing signal from the $\mu \mathrm{PC} 1401$ is adjusted to a suitable pulse width by a 74LS123 retriggerable monostable multivibrator. The signal timed by this $2 f_{H}$ clock is then combined with the $2 f_{H}$ clock to obtain the composite synchronizing signal for noninterlaced scanning purposes. The $2 \mathrm{f}_{\mathrm{H}}$ clock is subsequently divided in half and timed by the $14.3-\mathrm{MHz}$ clock to become the RSTW signal passed to the line buffer and MC4044 (figures 21 and 22).

## R-G-B Output Stage

The noninterlaced R-G-B signal and the composite synchronizing signal output to the TV monitor are adjusted to levels of 0.7 and $0.3 \mathrm{~V}_{\mathrm{Pp}}$, respectively, by a 75 -ohm terminating resistor. Switch $\mathrm{SW}_{2}$ is used to select external or internal display. When on, the switch allows a noninterlaced picture to be displayed externally on a TV monitor.

In this application, the TV monitor must be capable of operating at a horizontal scanning frequency of 31.5 kHz . Suitable monitors include the PC-TV451 and PC-TV471 from NEC Home Electronics.

Figure 17. $\mu$ PD41101 Composite Schematic



Figure 18. Characteristics of LT15LP7.0M01-32 Low-Pass Filter



## INTERLACED TO NONINTERLACED VIDEO SCAN CONVERSION

Figure 20. Characteristic Curve of 1 SV164


# תתתחתחּת 

 תนะ ת

Figure 22. Synchronizing Signal Generator


## INTERLACED TO NONINTERLACED VIDEO SCAN CONVERSION

| Section 4 <br> Dynamic RAM Modules |  |
| :---: | :---: |
| $\begin{aligned} & \text { MC-41256A8 } \\ & \text { 262,144 x 8-Bit Dynamic NMOS } \\ & \text { RAM Module (Page) } \end{aligned}$ | 4-1 |
| MC-41256A9 <br> 262,144 x 9-Bit Dynamic NMOS <br> RAM Module (Page) | 4-13 |
| $\begin{aligned} & \text { MC-421000A8 } \\ & \text { 1,048,576 } \times 8 \text {-Bit CMOS Dynamic } \\ & \text { RAM Module (Fast Page) } \end{aligned}$ | 4-27 |
| $\begin{aligned} & \hline \text { MC-421000A9 } \\ & \text { 1,048,576 } \times \text { 9-Bit CMOS Dynamic } \\ & \text { RAM Module (Fast Page) } \end{aligned}$ | 4-41 |
| MC-421000B8 <br> 1,048,576 x 8-Bit CMOS Dynamic RAM Module (Nibble) | 4-57 |
| MC-421000B9 <br> 1,048,576 x 9-Bit CMOS Dynamic RAM Module (Nibble) | 4-71 |
| MC-421000C8 <br> 1,048,576 x 8-Bit CMOS Dynamic RAM Module (Static Column) | 4-87 |
| MC-421000C9 <br> 1,048,576 x 9-Bit CMOS Dynamic RAM Module (Static Column) | 4-101 |

## Description

The MC-41256A8 is a 262,144 -word by 8 -bit NMOS RAM module designed to operate from a single +5 -volt power supply. Advanced dynamic circuitry, including a single-transistor storage cell, 1024 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.

The MC-41256A8 is functionally equivalent to eight $\mu$ PD41256 standard 256K DRAMs. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles, or by normal read or write cycles on the 256 address combinations of $A_{0}-A_{7}$ during a 4-ms period.
Packaged in a Single Inline Memory Module (SIMM ${ }^{\top M}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-41256A8 includes eight $\mu$ PD41256s in PLCC packages and eight power supply decoupling capacitors.

## SIMM is a trademark of Wang Laboratories.

## Features

262,144-word by 8-bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30-pin Single Inline Memory Module (SIMM) packagingEight 256K dynamic RAMs incorporated in highdensity PLCC packagingEight power supply decoupling capacitors includedLow power dissipation: 220 mW standby (max)TTL-compatible inputs and outputs256 refresh cycles ( $A_{0}-A_{7}$ are refresh address pins)Page-mode capability
## Ordering Information

| Part Number | Acgess Time (max) | Read/Write Cycle Time (min) | Page-Mode Cycle Time (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-41256A8A-12 | 120 ns | 220 ns | 120 ns | $\begin{aligned} & \text { 30-pin leaded } \\ & \text { SIMM } \end{aligned}$ |
| A-15 | 150 ns | 260 ns | 145 ns |  |
| MC-41256A8B-12 | 120 ns | 220 ns | 120 ns | 30-pin sock |
| B-15 | 150 ns | 260 ns | 145 ns |  |

## Pin Configurations

30-Pin SIMM, MC-41256A8A


## Pin Configurations (cont)

30-Pin SIMM, MC-41256A8B


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $\mathrm{I/O}_{1}-I / O_{8}$ | Common data inputs and outputs |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\mathrm{WE}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Block Diagram



| Absolute Maximum Ratings |  |
| :--- | ---: |
| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| Operating temperature, $\mathrm{T}_{0 P R}$, ambient | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 8.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IA }}$ |  |  | 55 | pF | $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
|  | $\mathrm{C}_{\text {IR }}$ |  |  | 70 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{C}_{\text {IC }}$ |  |  | 70 | pF | $\overline{\text { CAS }}$ |
| Input/output capacitance | $\mathrm{C}_{\mathrm{D}}$ |  |  | 17 | pF | $\begin{aligned} & \text { For } 1 / 0_{1}-1 / 0_{8}: \\ & \hline C A S=V_{H H} \text { to } \\ & \text { disable } D_{0 U T} \end{aligned}$ |

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$; GND $=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $V_{\text {IH }}$ | 2.4 |  | $\begin{gathered} V_{C C} \\ +1.0 \end{gathered}$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | $-1.0$ |  | 0.8 | V |  |
| Standby current | ${ }_{10 C 2}$ |  |  | 40.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\mathrm{VH}} ; \\ & \mathrm{D}_{\text {OUT }}=\text { high }-\mathrm{Z} \end{aligned}$ |
| input leakage current | IIL | -80 |  | 80 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=0 \text { to } V_{C C} ; \\ & \text { other pins }=0 \mathrm{~V} \end{aligned}$ |
| Output leakage current | 10 L | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{\text {OUT }}=0$ to $V_{C C}$ |
| Output voltage, low | $\mathrm{V}_{0}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}$ | V | $\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$ |

MC-41256A8

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-41256AB-12 |  | MC-41256A8-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Operating current, average | ICC1 |  | 560 |  | 480 | mA | $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ($ Note 5$)$ |
| Refresh operating current, average | ICC3 |  | 480 |  | 400 | mA | $\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}}=V_{I H}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Page-mode operating current, average | ICC4 |  | 400 |  | 320 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{PC}}=\mathrm{tPC}_{\mathrm{PC}} \mathrm{~min}(\text { Note } 5) \end{aligned}$ |
| $\overline{\overline{\mathrm{CAS}}}$ before $\overline{\mathrm{RAS}}$ refresh operating current, average | ICC5 |  | 480 |  | 400 | mA | $\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}}=V_{\text {IL }}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{R}}$ | 220 |  | 260 |  | ns | (Note 6) |
| Page-mode cycle time | tpC | 120 |  | 145 |  | ns | (Note 6) |
| Refresh period | $t_{\text {REF }}$ |  | 4 |  | 4 | ms |  |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 120 |  | 150 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ | $\mathrm{t}_{\text {cac }}$ |  | 60 |  | 75 | ns | (Notes 7, 9) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 30 | 0 | 35 | ns | (Note 10) |
| Rise and fall transition time | ${ }_{T}$ | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $t_{\text {RP }}$ | 90 |  | 100 |  | ns |  |
| $\overline{\text { RAS }}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 120 | 10000 | 150 | 10000 | ns |  |
| $\widehat{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 60 |  | 75 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width | $\mathrm{t}_{\text {cas }}$ | 60 | 10000 | 75 | 10000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t CSH }}$ | 120 |  | 150 |  | ns |  |
|  | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | ns | (Note 11) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }_{\text {t }}^{\text {CRP }}$ | 10 |  | 10 |  | ns | (Note 12) |
| CAS precharge time (non-page mode) | ${ }_{\text {t }}^{\text {CPN }}$ | 25 |  | 25 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (page mode) | ${ }^{\text {t }}$ P | 50 |  | 60 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 15 |  | 15 |  | ns |  |
| Column address setup time | ${ }_{\text {t }}$ ASC | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {chah }}$ | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $\mathrm{t}_{\text {AR }}$ | 80 |  | 100 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{R A S}$ | $\mathrm{t}_{\text {RRH }}$ | 20 |  | 20 |  | ns | (Note 13) |

## AC Characteristics (cont)

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-41256A8-12 |  | MC-41256AB-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Read command hold time referenced to $\overline{\mathrm{CAS}}$ | $\mathrm{trCH}^{\text {I }}$ | 0 |  | 0 |  | ns | (Note 13) |
| Write command hold time | ${ }^{\text {W WCH }}$ | 30 |  | 40 |  | ns |  |
| Write command hold time referenced to RAS | ${ }_{\text {t }}^{\text {WCR }}$ | 90 |  | 115 |  | ns |  |
| Write command pulse width | $t_{\text {wp }}$ | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 40 |  | 45 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | $\mathrm{t}_{\text {CWL }}$ | 40 |  | 45 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 30 |  | 40 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {DHR }}$ | 90 |  | 115 |  | ns |  |
| Write command setup time | ${ }^{\text {twCS }}$ | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{CAS}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing | ${ }_{\text {t }}^{\text {CSR }}$ | 10 |  | 10 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing | ${ }_{\text {cher }}$ | 30 |  | 30 |  | ns | (Note 15) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{\text { RAS cycles before proper device operation is achieved. }}$
(3) $A C$ measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\mathrm{IL}}$.
(5) $I_{C C 1}, I_{C C 3}, I_{C C 4}$, and $I_{C C 5}$ depend on output loading and cycle rates. Specified values were obtained with the output open.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}\right.$ $=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value in this table. $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{\mathrm{ACD}}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by tcAC.
(12) The $t_{C R P}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the leading edge of $\overline{\mathrm{CAS}}$.
(15) $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

Page Read Cycle


## Timing Waveforms (cont)

Page Write Cycle (Early Write)


## Timing Waveforms (cont)

## Hidden Refresh Cycle



## RAS-Only Refresh Cycle



## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Cycle


## 262,144 x 9-BIT DYNAMIC NMOS RAM MODULE

## Description

The MC-41256A9 is a 262,144 -word by 9 -bit NMOS RAM module designed to operate from a single +5 -volt power supply. Advanced dynamic circuitry, including a single-transistor storage cell, 1024 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.
The MC-41256A9 is functionally equivalent to eight $\mu$ PD41256 standard 256K DRAMs with a parity bit. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh cycles, or by normal read or write cycles on the 256 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{7}$ during a $4-\mathrm{ms}$ period.
Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {™ }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-41256A9 includes nine $\mu$ PD41256s in PLCC packages and nine power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

262,144-word by 9-bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30 -pin Single Inline Memory Module (SIMM) packagingNine 256K dynamic RAMs incorporated in highdensity PLCC packagingNine power supply decoupling capacitors includedLow power dissipation: 248 mW standby (max)TTL-compatible inputs and outputs256 refresh cycles ( $A_{0}-A_{7}$ are refresh address pins)Page-mode capability
## Ordering Information

| Part Number | Access <br> Time (max) | Read/Write Cycle Time [min] | Page-Mode Cycle Time (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-41256A9A-12 | 120 ns | 220 ns | 120 ns | 30-pin leaded SIMM |
| A-15 | 150 ns | 260 ns | 145 ns |  |
| MC-41256A9B-12 | 120 ns | 220 ns | 120 ns | 30-pin socketable SIMM |
| B-15 | 150 ns | 260 ns | 145 ns |  |

## Pin Configurations

30-Pin SIMM, MC-41256A9A


## Pin Configurations (cont)

30-Pin SIMM, MC-41256A9B


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $/ / 0_{1}-1 / 0_{8}$ | Common data inputs and outputs |
| $\bar{D}_{\text {IN } 9}$ | Data input 9 |
| $D_{0 U T} 9$ | Data output 9 |
| $\overline{\mathrm{CAS}}$ | Column address strobe |
| $\overline{\overline{\mathrm{CAS}} 9} 9$ | Column address strobe for data output 9 |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\overline{\mathrm{WE}}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Block Diagram



## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, TOPR $^{\circ}$ ambient | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 9.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IA }}$ |  |  | 60 | pF | $A_{0}-\mathrm{A}_{8}$ |
|  | $\mathrm{C}_{1 \mathrm{R}}$ |  |  | 75 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{CIC}^{\text {c }}$ |  |  | 70 | pF | $\overline{\mathrm{CAS}}$ |
|  | $\mathrm{CIC9}^{\text {c }}$ |  |  | 13 | pF | $\overline{\mathrm{CAS}}_{9}$ |
|  | CIN 9 |  |  | 10 | pF | Din 9 |
| Input/output capacitance | $\mathrm{C}_{1 / 0}$ |  |  | 17 | pF | $\begin{aligned} & \text { For } 1 / 0_{1}-1 / 0_{8}: \\ & \mathrm{CAS}=V_{\text {H }} \text { to } \\ & \text { disable } D_{0 U T} \\ & \hline \end{aligned}$ |
| Output capacitance | COUT 9 |  |  | 12 | pF | $\begin{aligned} & \text { For } D_{\text {OUT }} g: \\ & \text { CAS }_{9}=V_{\text {IH }} \text { to } \\ & \text { disable } D_{\text {OUT }} \end{aligned}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Parameter | Symbol | Min | Typ Max | Unit | Test Conditions |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-41256A9-12 |  | MC-41256A9-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }^{\text {CCC1 }}$ |  | 630 |  | 540 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling, $\mathrm{t}_{\mathrm{RC}}=$ $\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Refresh operating current, average | $\mathrm{I}_{\text {CC3 }}$ |  | 540 |  | 450 | mA | $\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}}=V_{\mid H}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Page-mode operating current, average | ${ }^{\text {cCa }}$ |  | 450 |  | 360 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\mathrm{IL}} ; \overline{\overline{\mathrm{CAS}}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{PC}}=\mathrm{t}_{\mathrm{PC}} \text { min (Note 5) } \end{aligned}$ |
| $\overline{\overline{\mathrm{CAS}} \text { before } \overline{\mathrm{RAS}} \text { operating current, }}$ average | ICC5 |  | 540 |  | 450 | mA | $\overline{\text { RAS cycling; } \overline{C A S}}=V_{\text {IL }}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ($ Note 5$)$ |
| Random read or write cycle time | $t_{\text {RC }}$ | 220 |  | 260 |  | ns | (Note 6) |
| Read-write cycle time | $t_{\text {RWC }}$ | 265 |  | 310 |  | ns | (Notes 6, 17) |
| Page-mode cycle time | $t_{\text {pc }}$ | 120 |  | 145 |  | ns | (Note 6) |
| Refresh period | treF |  | 4 |  | 4 | ms |  |
| Access time from $\overline{\mathrm{RAS}}$ | $t_{\text {RAC }}$ |  | 120 |  | 150 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }_{\text {t }}^{\text {cac }}$ |  | 60 |  | 75 | ns | (Notes 7, 9) |
| Output buffer turnoff delay | $\mathrm{t}_{0 \text { FF }}$ | 0 | 30 | 0 | 35 | ns | (Note 10) |
| Rise and fall transition time | $\mathrm{t}_{T}$ | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 90 |  | 100 |  | ns |  |
| $\overline{\text { RAS }}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 120 | 10000 | 150 | 10000 | ns |  |
| RAS hold time | $t_{\text {RSS }}$ | 60 |  | 75 |  | ns |  |
| CAS pulse width | $\mathrm{t}_{\text {CAS }}$ | 60 | 10000 | 75 | 10000 | ns |  |
| CAS hold time | ${ }_{\text {t }}^{\text {CSH }}$ | 120 |  | 150 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | ns | (Note 11) |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {chP }}$ | 10 |  | 10 |  | ns | (Note 12) |
| $\overline{\mathrm{CAS}}$ precharge time (non-page mode) | $\mathrm{t}_{\text {CPN }}$ | 25 |  | 25 |  | ns |  |
| $\overline{\overline{\text { CAS }} \text { precharge time (page mode) }}$ | $\mathrm{t}_{\mathrm{CP}}$ | 50 |  | 60 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 15 |  | 15 |  | ns |  |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 |  | 0 |  | ns |  |
| Column address hold time | $\mathrm{t}_{\mathrm{CAH}}$ | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\mathrm{RAS}}$ | $t_{\text {AR }}$ | 80 |  | 100 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 20 |  | 20 |  | ns | (Note 13) |
| Read command hold time referenced to CAS | $t_{\text {RCH }}$ | 0 |  | 0 |  | ns | (Note 13) |
| Write command hold time | twCH | 30 |  | 40 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-41256AS-12 |  | MC-41256A9-15 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }_{\text {twCR }}$ | 90 |  | 115 |  | ns |  |
| Write command pulse width | ${ }^{\text {W }}$ W ${ }^{\text {P }}$ | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 40 |  | 45 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }_{\text {t }}$ WL | 40 |  | 45 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | ${ }^{\text {t }}$ D | 30 |  | 40 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {DHR }}$ | 90 |  | 115 |  | ns |  |
| Write command setup time | $t_{\text {WCS }}$ | 0 |  | 0 |  | ns | (Note 15, 17) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\text { WE }}$ delay | ${ }_{\text {t }}$ WD | 60 |  | 75 |  | ns | (Note 15, 17) |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay | $\mathrm{t}_{\text {RWD }}$ | 120 |  | 150 |  | ns | (Note 15, 17) |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing | $\mathrm{t}_{\mathrm{CSR}}$ | 10 |  | 10 |  | ns | (Note 16) |
|  | ${ }_{\text {t }}^{\text {chR }}$ | 30 |  | 30 |  | ns | (Note 16) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight RAS cycles before proper device operation is achieved.
(3) $A C$ measurements assume $t_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\min )$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$.
(5) $I_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC}}$, $\mathrm{I}_{\mathrm{CC} 4}$, and $\mathrm{I}_{\mathrm{CC} 5}$ depend on output loading and cycle rates. Specified values were obtained with the output open.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(10) $\mathrm{t}_{\text {OFF }}$ (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by tcac.
(12) The t ${ }_{\text {CRP }}$ requirement should be applicable for $\overline{\text { RAS }} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the leading edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the leading edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(15) For DOUT $9, t_{\text {WCS }}, t_{\text {CWD }}$, and $t_{\text {RWD }}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twCs $\geq t_{\text {wCS }}(\mathrm{min})$, the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\text {RWD }} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of DOUT 9 (at access time and until $\overline{C A S}_{9}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(16) $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.
(17) Read-write/read-modify-write operation can be performed only by the PLCC controlled by $\overline{\mathrm{CAS}}_{9}$ because of its separate data input and output pins.

MC-41256A9

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle (Dout g only)


## Timing Waveforms (cont)

## $\overline{\operatorname{RAS}}$-Only Refresh Cycle



## Page Read Cycle



## Timing Waveforms (cont)

Page Write Cycle (Early Write)


## Timing Waveforms (cont)

Page Read-Write/Read-Modify-Write Cycle (Dout9 only)


## Timing Waveforms (cont)

## Hidden Refresh Cycle



## $\overline{C A S}$ Before $\overline{R A S}$ Refresh Cycle



## PRELIMINARY INFORMATION

## Description

The MC-421000A8 is a fast-page $1,048,576$-word by 8 -bit CMOS dynamic RAM module designed to operate from a single +5 -volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.
The MC-421000A8 is functionally equivalent to eight $\mu$ PD421000 standard 1M DRAMs. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, $\overline{\text { CAS }}$ before RAS refresh cycles, or normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms period.

Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {™ }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-421000A8 includes eight $\mu$ PD421000s in SOJ packages and eight power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

$\square 1,048,576$-word by 8 -bit organization
$\square$ Single +5 -volt $\pm 10 \%$ power supplyStandard 30 -pin Single Inline Memory Module (SIMM) packagingEight 1M dynamic RAMs incorporated in highdensity SOJ packaging ( $\mu$ PD421000LA)Eight power supply decoupling capacitorsLow power dissipation: 44 mW standby (max)TTL-compatible inputs and outputs512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Fast-page capability

## Ordering Information

| Part Number | Row Access Time (max) | Column Access Time (max) | Address Access Time (max) | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000A8A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000A8B-80 | 80 ns | 20 ns | 45 ns | 30-pin socketable SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

## 30-Pin SIMM, MC-421000A8A



## Pin Configurations (cont)

## 30-Pin SIMM, MC-421000A8B



Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Address inputs |
| $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$ | Common data inputs/outputs |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\mathrm{CAS}}$ | Column address strobe |
| $\overline{\mathrm{WE}}$ | Write enable |
| GND | Ground |
| $\mathrm{V}_{C C}$ | +5 -volt power supply |
| NC | No connection |

Block Diagram


Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{0 P R}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 8.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :---: | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 60 | pF | $\mathrm{A}_{0}-\mathrm{A}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
| Input/output <br> capacitance | $\mathrm{C}_{\mathrm{D}}$ | 15 | pF | $\mathrm{I} / 0_{1}-\mathrm{I} / \mathrm{o}_{8}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $\mathrm{V}_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{H}}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+1.0$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | $\mathrm{I}_{\text {cc2 }}$ |  |  | 24 | mA | $\overline{\mathrm{RAS}}=\widehat{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ |
|  |  |  |  | 8 | mA | $\overline{\mathrm{RAS}}=\widetilde{\mathrm{CAS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | ILI | -80 |  | 80 | $\mu \mathrm{A}$ | For $\mathrm{A}_{0}-\mathrm{Ag}_{\mathrm{g}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}: \mathrm{V}_{\text {iN }}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{l}_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | For I/ $/ 0_{1}-1 / 0_{8}$ : DOUT $^{\text {disabled; }} \mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\text {Out }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{C C}$ | V | $\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000A8-80 |  | MC-421000A8-10 |  | MC-421000A8-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $\mathrm{I}_{\text {CC1 }}$ |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\text {RC }}=t_{\text {RC }} \min$ (Note 5) |
| Refresh operating current, average | $\mathrm{I}_{\text {CC3 }}$ |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ;$ $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Fast-page operating current, average | $\mathrm{I}_{\mathrm{CC} 4}$ |  | 480 |  | 400 |  | 320 | mA | $\overline{\mathrm{RAS}} \leq \mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{AS}}$ cycling; tpC $=\mathrm{tPC}$ min; $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before RAS refreshing, average | ${ }^{\text {CC5 }}$ |  | 560 |  | 480 |  | 400 | mA | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ; \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Random read or write cycle time | ${ }_{\text {t }} \mathrm{C}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Fast-page cycle time | tPC | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Refresh period | $t_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| Access time from $\overline{\mathrm{RAS}}$ | $t_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ (falling edge) | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10, 11) |
| Access time from column address | $\mathrm{t}_{\mathrm{AA}}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10, 11) |
| Access time from $\overline{\mathrm{ASS}}$ precharge (rising edge) | $t_{\text {ACP }}$ |  | 45 |  | 55 |  | 65 | ns | (Notes 7, 11) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 12) |
| Transition time (rise and fall) | $t_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| Fast-page $\overline{\mathrm{RAS}}$ pulse width | $t_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| RAS hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{CAS}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\overline{\text { CAS }} \text { hold time }}$ | ${ }^{\text {t }}$ CSH | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 13) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| $\overline{\mathrm{CAS}}$ precharge time (non-page cycle) | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns |  |
| Fast-page $\overline{\mathrm{CAS}}$ precharge time | ${ }_{\text {t }}^{\text {CP }}$ | 10 | 20 | 10 | 25 | 15 | 30 | ns | (Note 11) |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | ${ }^{\text {taSR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $t_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns | (Note 11) |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $\mathrm{t}_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000A8-80 |  | MC-421000A8-10 |  | MC-421000A8-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address lead time referenced to RAS (rising edge) | $t_{\text {RAL }}$ | 45 |  | 55 |  | 65 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 15) |
| Read command hold time referenced to $\overline{C A S}$ | $\mathrm{trach}^{\text {r }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | twCR | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | twp | 15 |  | 20 |  | 25 |  | ns | (Note 16) |
| Write command to $\overline{\mathrm{RA} \bar{S}}$ lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | tewL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| Data-in hold time | $t_{\text {DH }}$ | 20 |  | 20 |  | 25 |  | ns | (Note 17) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }_{\text {t }}$ HR | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | ${ }^{\text {twCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{R A S}$ refreshing | ${ }_{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 18) |
| $\overline{\mathrm{CAS}}$ hold time for $\overline{\mathrm{CAS}}$ before RAS refreshing | ${ }_{\text {t }}^{\text {che }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 18) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight RAS cycles before proper device operation is achieved.
(3) Ac measurements assume $t_{\top}=5$ ns.
(4) $\mathrm{V}_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I $I_{C C 1}, I_{C C 3}$, $I_{\mathrm{CC} 4}$, and $\mathrm{I}_{\mathrm{CC} 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles. ${ }^{\text {I CC4 }}$ is measured assuming that all column address inputs are switched only once each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}(\max )$ and $t_{R A D} \leq t_{R A D}(\max )$. If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max).

## Notes [cont]:

(10) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(11) For fast-page read operation, the definition of access time is as follows.

| $\overline{\text { CAS and Column Address }}$ |  |
| :--- | :---: |
| Input Conditions | Access Time <br> Definition |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max) $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}$ (max) | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{ASC}}$ (max) | $\mathrm{t}_{\mathrm{CAC}}$ |

(12) t $_{\text {OFF }}$ (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(13) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{\mathrm{RCD}}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$ -
(14) The ${ }_{\text {CRPP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(15) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(16) For early write operation, both $t_{\text {WCS }}$ and $t_{\text {WCH }}$ must be met.
(17) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles.
(18) $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ operation is specified.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

## Write Cycle (Early Write)



MC-421000A8

Timing Waveforms (cont)
$\overline{R A S}-O n l y$ Refresh Cycle


DOUT
High Impedance

## Timing Waveforms (cont)

## Hidden Refresh Cycle



## Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{R A S}$ Refresh Cycle


## Timing Waveforms (cont)

Fast-Page Read Cycle


## Timing Waveforms (cont)

Fast-Page Write Cycle (Early Write)


## PRELIMINARY INFORMATION

## Description

The MC-421000A9 is a fast-page, $1,048,576$-word by 9 -bit CMOS dynamic RAM module, designed to operate from a single +5 volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.

The MC-421000A9 is functionally equivalent to eight $\mu$ PD421000 standard 1M DRAMs plus a parity bit. Refreshing is accomplished by performing RAS-only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an $8-\mathrm{ms}$ period.
The Single Inline Memory Module (SIMM ${ }^{\text {™ }}$ ) package reduces system cost, enhances reliability, and reduces the size and weight of a system. The SIMM includes nine $\mu$ PD421000s in SOJ packages and nine power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

$\square$ 1,048,576-word by 9-bit organizationSingle $+5 \mathrm{~V} \pm 10 \%$ power supplyStandard 30-pin Single Inline Memory Module (SIMM) packagingIncorporates nine 1M dynamic RAMs in high-density SOJ packaging ( $\mu$ PD421000LA)Includes power supply decoupling capacitorsLow power dissipation: 49.5 mW standby (max) TTL-compatible I/O512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Fast-page capability

## Ordering Information

| Part Number | $\begin{gathered} \text { Row } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | Column <br> Access Time (max] | $\begin{gathered} \text { Address } \\ \text { Access } \\ \text { Time [max] } \end{gathered}$ | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000A9A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000A9B-80 | 80 ns | 20 ns | 45 ns | 30-pin socketable SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

30-Pin SIMM, MC-421000A9A


83-004344A

## Pin Configurations (cont)

30-PIn SIMM, MC-421000A9B


## Block Diagram



## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 9.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 70 | pF | $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{C}_{12}$ | 7 | pF | $\overline{\mathrm{CAS}}, \overline{\mathrm{D}_{\mathrm{N9}}}$ |
| Input/output <br> capacitance | $\mathrm{C}_{\mathrm{D}}$ | 15 | pF | $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 10 | pF | $\mathrm{D}_{0 \mathrm{OUT}} 9$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $V_{C C}+1.0$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | $\mathrm{I}_{\text {cc2 }}$ |  |  | 27 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}}$ |
|  |  |  |  | 9 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | IIL | -90 |  | 90 | $\mu \mathrm{A}$ | For $\mathrm{A}_{0}-\mathrm{Ag}^{\prime}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}} . \mathrm{V}$ IN $=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Input leakage current | IL9 | -10 |  | 10 | $\mu \mathrm{A}$ | For $\overline{\mathrm{CAS}}_{9}, \mathrm{D}_{\mathbb{N} \mathrm{g}} ; \mathrm{V}_{\mathbb{N}}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Output leakage current | 10 L | -10 |  | 10 | $\mu \mathrm{A}$ | For $1 / 0_{1}-1 / 0_{8}$ and $D_{\text {OUT }} 9$ : $D_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 |  | 0.4 | $V$ | $\mathrm{IOUT}^{\text {O }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{C C}$ | V | lout $=-5 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000A9-80 |  | MC-421000Ag-10 |  | MC-421000A9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $I_{\text {CC1 }}$ |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, refresh cycle, average | ${ }_{\text {ICC3 }}$ |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathbb{H}}, \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ;$ $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Fast-page operating current, average | $I_{C C 4}$ |  | 540 |  | 450 |  | 360 | mA | $\overline{\mathrm{RAS}} \leq \mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CAS}}$ cycling; tPC $=\mathrm{tpC}$ min; $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before RAS refreshing, average | ${ }^{\text {CCC5 }}$ |  | 630 |  | 540 |  | 450 | mA | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ; \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $t_{\text {RWC }}$ | 190 |  | 225 |  | 260 |  | ns | (Notes 6, 20) |
| Fast-page cycle time | $\mathrm{tPC}^{\text {c }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RaC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| $\overline{\text { Access time from } \overline{\mathrm{CAS}}}$ (falling edge) | $\mathrm{t}_{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10, 11) |
| Access time from column address | $t_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10, 11) |
| Access time from $\overline{\text { AS }}$ precharge (rising edge) | $\mathrm{t}_{\mathrm{ACP}}$ |  | 45 |  | 55 |  | 65 | ns | (Notes 7, 11) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 12) |
| Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| RAS pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| Fast-page $\overline{\mathrm{RAS}}$ pulse width | $t_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\text { RAS }}$ hold time | $t_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns | , |
| $\overline{\overline{\mathrm{RAS}}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 13) |
| $\overline{\overline{C A S}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }_{\text {t }}^{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (non-page mode) | ${ }_{\text {t }}$ PPN | 10 |  | 10 |  | 15 |  | ns |  |
| Fast-page $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ PP | 10 | 20 | 10 | 25 | 15 | 30 | ns | (Note 11) |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns | . |
| Row address setup time | tasR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns | (Note 11) |
| Column address hold time | ${ }_{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $t_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000A9-80 |  | MC-421000A9-10 |  | MC-421000A9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $t_{\text {RAL }}$ | 45 |  | 55 |  | 65 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | trRH | 10 |  | 10 |  | 10 |  | ns | (Note 15) |
| Read command hold time referenced to $\overline{\text { CAS }}$ | $\mathrm{t}_{\mathrm{RCH}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }_{\text {t WCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | twp | 15 |  | 20 |  | 25 |  | ns | (Note 16) |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }_{\text {t }}$ WL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 17) |
| Data-in hold time referenced to $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | (Note 18) |
| $\overline{\overline{\mathrm{CAS}} \text { to } \overline{\mathrm{WE}} \text { delay time }}$ | ${ }^{\text {t }}$ WD | 20 |  | 25 |  | 30 |  | ns | (Notes 18, 20) |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{WE}} \text { delay time }}$ | $t_{\text {RWD }}$ | 80 |  | 100 |  | 120 |  | ns | (Notes 18, 20) |
| Column address to $\overline{\text { WE }}$ delay time | $\mathrm{t}_{\text {AWD }}$ | 45 |  | 55 |  | 65 |  | ns | (Notes 18, 20) |
| $\overline{\overline{\mathrm{AS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refreshing | ${ }_{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 19) |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before RAS refreshing | $\mathrm{t}_{\text {CHR }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 19) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved.
(3) Ac measurements assume $\mathrm{t}_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) $I_{C C 1}, I_{C C 3}, I_{C C 4}$, and $I_{C C 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles. ${ }^{\text {I CC4 }}$ is measured assuming that all column address inputs are switched only once each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}(\max )$ and $t_{R A D} \leq t_{R A D}(\max )$. If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max).
(10) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(11) For fast-page read operation, the definition of access time is as follows.

| $\overline{\overline{C A S}}$and Column Address <br> Input <br> Conditions | Access Time Definition |
| :--- | :---: |
| $t_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}(\max )$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{CAC}}$ |

## Notes [cont]:

(12) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(13) Operation within the $t_{\text {RCD }}$ (max) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $t_{C A C}$.
(14) The tCRP requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(15) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(16) Parameter tWP is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both $t_{W C S}$ and $t_{W C H}$ must be met.
(17) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of $\overline{\mathrm{WE}}$ for delayed write or read-modify-write cycles.
(18) For DOUT , parameters $t_{W C S}, t_{C W D}, t_{R W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modifywrite cycles only. If $t_{\text {WCS }} \geq t_{\text {WCS }}$ (min), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $t_{C W D} \geq t_{C W D}(\mathrm{~min}), \mathrm{t}_{\text {RWD }} \geq t_{\text {RWD }}$ ( min ), and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\text {AWD }}(\mathrm{min}$ ), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of DOUT9 (at access time and until $\overline{\mathrm{CAS}}_{9}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(19) $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.
(20) Read-write/read-modify-write operation can be performed only by the SOJ controlled by $\overline{\mathrm{CAS}}_{9}$ because of its separate data input and output pins.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle (Dout 9 only)


## Timing Waveforms (cont)

## $\overline{R A S}-O n l y$ Refresh Cycle



DOUT
High Impedance

## Timing Waveforms (cont)

HIdden Refresh Cycle


## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Cycle


## Timing Waveforms (cont)

Fast-Page Read Cycle


## Timing Waveforms (cont)

Fast-Page Write Cycle (Early Write)


## Timing Waveforms (cont)

Fast-Page Read-Write/Read-Modify-Write Cycle (Dout9 only)


## PRELIMINARY INFORMATION

## Description

The MC-421000B8 is a nibble-mode $1,048,576$-word by 8 -bit dynamic RAM module designed to operate from a single +5 -volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.
The MC-421000B8 is functionally equivalent to eight $\mu$ PD421001 standard 1M DRAMs. Refreshing is accomplished by means of $\overline{\text { RAS-only refresh cycles, }}$ hidden refresh cycles, $\overline{\text { CAS }}$ before RAS refresh cycles, or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms period.
Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {u }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-421000B8 includes eight $\mu$ PD421001s in SOJ packages and eight power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

$\square 1,048,576$-word by 8 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30 -pin Single Inline Memory Module (SIMM)Eight 1M dynamic RAMs incorporated in highdensity SOJ packaging ( $\mu$ PD421001LA)Eight power supply decoupling capacitors
Low power dissipation: 44 mW standby (max)TTL-compatible inputs and outputs512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Nibble-mode capability

## Ordering Information

| Part Number | Row Access Time (max) | $\begin{gathered} \text { Column } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | $\begin{gathered} \text { Address } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000B8A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000B8B-80 | 80 ns | 20 ns | 45 ns | 30-pin socketable SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

30-Pin SIMM, MC-421000B8A


## Pin Configurations (cont)

30-Pin SIMM, MC-421000B8B


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Address inputs |
| $\mathrm{I/O}-\mathrm{I} / \mathrm{O}_{8}$ | Common data inputs/outputs |
| $\overline{\overline{\mathrm{RAS}}}$ | Row address strobe |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\mathrm{WE}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Block Diagram



## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 8.0 W |
| Cor |  |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathbf{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 60 | pF | $\mathrm{A}_{0}-\mathrm{Ag}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
| Input/output <br> capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{I} / 0_{1}-/ / 0_{8}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+1.0$ | V |  |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | $\mathrm{I}_{\text {CC2 }}$ |  |  | 24 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}}$ (min) |
|  |  |  |  | 8 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | IIL | -80 |  | 80 | $\mu \mathrm{A}$ | For $\mathrm{A}_{0}-\mathrm{Ag}^{\prime}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ : $\mathrm{V}_{\text {IN }}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{l}_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | For $1 / 0_{1}-1 / 0_{8}$ : $\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $V_{0 L}$ | 0 |  | 0.4 | V | $\mathrm{l}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}$ | V | $\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$ |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-42100088-80 |  | MC-421000B8-10 |  | MC-42100088-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }^{\text {c }} 10$ |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$ (Note 5) |
| Operating current, refresh cycle, average | ICC3 |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{H}}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ; \mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refreshing, average | ICC5 |  | 560 |  | 480 |  | 400 | mA | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{~min} ; \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ (falling edge) | ${ }_{\text {t }}^{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10) |
| Access time from column address | $t_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10) |
| Output buffer turnoff delay | toff | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\overline{\text { RAS }}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\overline{\text { RAS }} \text { pulse width }}$ (nibble mode) | $\mathrm{t}_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 12) |
| $\overline{\overline{\mathrm{CAS}} \text { to } \overline{\mathrm{RAS}} \text { precharge time }}$ | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| $\overline{\overline{\text { CAS }} \text { precharge time }}$ (non-nibble mode) | $\mathrm{t}_{\text {CPN }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | ${ }_{\text {tasR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | ${ }_{\text {t }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-42100088-80 |  | MC-42100088-10 |  | MC-42100088-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address lead time referenced to $\overline{\text { RAS }}$ (rising edge) | $t_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{R A S}$ | trRH | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| Read command hold time referenced to CAS | trCH | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to RAS | $t_{\text {WCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | $t_{\text {wp }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 15) |
| Write command to RAS lead time | $\mathrm{t}_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }_{\text {t }}$ WL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 16) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 16) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ HRR | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refresh | ${ }_{\text {t }}^{\text {CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 17) |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\text { AS }}$ refresh | ${ }_{\text {tehr }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 17) |
| Nibble Mode |  |  |  |  |  |  |  |  |  |
| Operating current, nibble mode, average | ICC4 |  | 480 |  | 400 |  | 320 | mA | $\begin{aligned} & \overline{\mathrm{RAS}} \leq \mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\text {NC }}=\mathrm{t}_{\text {NC }} \text { min } ; \mathrm{I}_{0}=0 \mathrm{~mA}(\text { (Note } 5) \end{aligned}$ |
| Nibble-mode cycle time | ${ }_{\mathrm{n}} \mathrm{NC}$ | 40 |  | 45 |  | 55 |  | ns | (Note 6) |
| Nibble-mode access time | $t_{\text {NAC }}$ |  | 20 |  | 25 |  | 30 | ns | (Note 7) |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (nibble mode) | $\mathrm{t}_{\mathrm{NP}}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\text { CAS }} \text { pulse width (nibble }}$ mode) | $\mathrm{t}_{\text {NAS }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{RAS}}$ hold time (nibblemode read cycle) | $\mathrm{t}_{\text {NRRSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{RAS}}$ hold time (nibblemode write cycle) | $\mathrm{t}_{\text {NWRSH }}$ | 20 |  | 25 |  | 30 |  | ns | . |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu$ s is required after power-up, followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is achieved.
(3) Ac measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{I H}$ (min) and $\mathrm{V}_{I \mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Transition times are measured between $V_{\mathrm{IH}}$ and $V_{\mathrm{IL}}$.
(5) I $I_{C C 1}, I_{C C 3}, I_{C C 4}$, and $I_{C C 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. $\mathrm{I}_{\mathrm{CC}}$ is measured by assuming that all column address inputs are held at either a high level or a low level during $\overline{\mathrm{RAS}}$-only refresh cycles.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range $\left(\mathrm{T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max).
(10) If $t_{R A D} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(11) t OFF (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(12) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $t_{C A C}$
(13) The tCRP requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles that are preceded by any cycle.
(14) Specifications for either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(15) For early write operation, specifications for both twCs and twCH must be met.
(16) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles.
(17) $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

## $\overline{R A S}$-Only Refresh Cycle



## Timing Waveforms (cont)

Hidden Refresh Cycle


## Timing Waveforms (cont)

$\overline{\text { CAS Before }} \overline{\text { RAS }}$ Refresh Cycle


Note:
[1] $\overline{W E}$, Address: Don't Care.

## Nibble Mode

The $\mu$ PD421000B8 is capable of executing nibblemode read, write, or read-modify-write cycles. Nibble mode allows high-speed serial access of a maximum of 4 data bits per data output. The first bit is determined by the row and column addresses, and the next bits are accessed automatically by cycling $\overline{\mathrm{CAS}}$ while $\overline{\mathrm{RAS}}$ is held low. The addresses of nibble bits are determined by the combination of row address $\mathrm{A}_{9}$ and column address $\mathrm{A}_{g}$ in the following sequence.

| Sequence | Nibble Bit | Row Address |  |  |  |  |  |  |  |  |  | Column Address |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $A_{8}$ | $A_{7}$ | $A_{B} A^{\prime}$ |  | $A_{5} A^{4}$ | $A_{3} A_{2}$ |  | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ |  |  | $A_{7} A^{2}$ |  | $A_{6} A_{5}$ | $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ |  |
| $\overline{\text { RAS }} / \overline{\mathrm{CAS}}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Comment <br> Example: external address input |
| $\overline{\text { CAS }}$ cycling | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Internal address generated |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| CAS cycling | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Repeated sequence |

## Timing Waveforms (cont)

Nibble-Mode Read Cycle


## Timing Waveforms (cont)

Nibble-Mode Write Cycle (Early Write)


## PRELIMINARY INFORMATION

## Description

The MC-421000B9 is a nibble-mode $1,048,576$-word by 9 -bit CMOS dynamic RAM module designed to operate from a single +5 -volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.
The MC-421000B9 is functionally equivalent to eight $\mu$ PD421001 standard 1M DRAMs plus a parity bit. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms period.
Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {Tu }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-421000B9 includes nine $\mu$ PD421001s in SOJ packages and nine power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

$\square 1,048,576$-word by 9 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30 -pin Single Inline Memory Module (SIMM)Nine 1M dynamic RAMs incorporated in highdensity SOJ packaging ( $\mu$ PD421001LA)Nine power supply decoupling capacitorsLow power dissipation: 49.5 mW standby (max)TTL-compatible inputs and outputs 512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Nibble-mode capability

## Ordering Information

| Part Number | $\begin{gathered} \text { Row } \\ \text { Access } \\ \text { Time [max] } \end{gathered}$ | Column Access Time (max) | Address <br> Access <br> Time (max) | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000B9A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000B9B-80 | 80 ns | 20 ns | 45 ns | 30-pin socketable SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

30-Pin SIMM, MC-421000B9A


## Pin Configurations (cont)

30-Pin SIMM, MC-421000B9B


## Block Diagram



Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 9.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 60 | pF | $\mathrm{A}_{0}-\mathrm{Ag}_{1}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{C}_{12}$ | 7 | pF | $\overline{\mathrm{CAS}}, \mathrm{D}_{1 \mathrm{~N} 9}$ |
| Input/output <br> capacitance | $\mathrm{C}_{\mathrm{D}}$ | 15 | pF | $\mathrm{I} / 0_{1}-1 / 0_{8}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 10 | pF | $\mathrm{D}_{0 \mathrm{OT} 9}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Condilions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}+1.0$ | V |  |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | ICC2 |  |  | 27 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{1 H}$ |
|  |  |  |  | 9 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | IIL | -90 |  | 90 | $\mu \mathrm{A}$ | For $\mathrm{A}_{0}-\mathrm{Ag}^{\prime}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}: \mathrm{V}_{\text {IN }}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Input leakage current | ILL9 | -10 |  | 10 | $\mu \mathrm{A}$ | For $\overline{\mathrm{CAS}}_{9}$ and $\mathrm{D}_{\text {IN }} 9$ : $\mathrm{V}_{\text {IN }}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{l}_{0 \mathrm{~L}}$ | -10 |  | 10 | $\mu \mathrm{A}$ | For $1 / 0_{1}-1 / 0_{8}$ and $D_{\text {OUT }} \mathrm{g}$ : $D_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $\mathrm{V}_{\text {OL }}$ | 0 |  | 0.4 | V | $\mathrm{l}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V CC | V | $\mathrm{l}_{\text {OUT }}=-5 \mathrm{~mA}$ |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Condilions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-42100089-80 |  | MC-42100089-10 |  | MC-42100089-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }_{\text {CC1 }}$ |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ($ Note 5) |
| Operating current, refresh cycle, average | ICC3 |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ;$ $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5 ) |
| Operating current, $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refreshing, average | $\mathrm{I}_{\mathrm{CC}}$ |  | 630 |  | 540 |  | 450 | mA | $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ; \mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5 ) |
| Random read or write cycle time | thC | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $t_{\text {RWC }}$ | 190 |  | 225 |  | 260 |  | ns | (Notes 6, 19) |
| Refresh period | $t_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Access time from RAS | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ (falling edge) | ${ }^{\text {t }}$ cac |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10) |
| Access time from column address | $\mathrm{t}_{\mathrm{AA}}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10) |
| Output buffer turnoff delay | toff | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| Transition time (rise and fall) | ${ }_{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 70 |  | 80 |  | 90 |  | ns |  |
| RAS pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\overline{\text { RAS }}}$ pulse width (nibble mode) | $\mathrm{t}_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\overline{\text { RAS }} \text { hold time }}$ | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{CAS}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ hold time | ${ }_{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 12) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }_{\text {t CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time (non-nibble mode) | ${ }^{\text {tapN }}$ | 10 |  | 10 |  | 15 |  | ns | - |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | task | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\overline{R A S}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $t_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | $\mathrm{t}_{\text {cah }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |

AC Characteristics (cont)
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000B9-80 |  | MC-421000B9-10 |  | MC-421000B9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $t_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| Read command hold time referenced to CAS | $\mathrm{t}_{\mathrm{RCH}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }_{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | $t_{\text {WP }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 15) |
| Write command to RAS lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | tcwi | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 16) |
| Data-in hold time | $t_{\text {DH }}$ | 20 |  | 20 |  | 25 |  | ns | (Note 16) |
| Data-in hold time referenced to RAS | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCs | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| $\overline{\text { CAS }}$ to $\overline{\text { WE }}$ delay time | tcw | 20 |  | 25 |  | 30 |  | ns | (Note 17, 19) |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{WE}} \text { delay time }}$ | $\mathrm{t}_{\text {RWD }}$ | 80 |  | 100 |  | 120 |  | ns | (Note 17, 19) |
| Column address to $\overline{\mathrm{WE}}$ delay time | $t_{\text {AWD }}$ | 45 |  | 50 |  | 60 |  | ns | (Note 17, 19) |
| $\overline{\overline{C A S}}$ setup time for $\overline{\mathrm{CAS}}$ before RAS refreshing | $t_{\text {CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 18) |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before RAS refreshing | ${ }^{\text {cherr }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 18) |
| Nibble Mode |  |  |  |  |  |  |  |  |  |
| Operating current, nibble mode, average | ICC4 |  | 540 |  | 450 |  | 360 | mA | $\begin{aligned} & \overline{\mathrm{RAS}} \leq \mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{NC}}=\mathrm{I}_{\text {NC }} \text { min; } \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Nibble-mode cycle time | ${ }^{\text {INC }}$ | 40 |  | 45 |  | 55 |  | ns | (Note 6) |
| Nibble-mode access time | $\mathrm{t}_{\text {NAC }}$ |  | 20 |  | 25 |  | 30 | ns | (Note 7) |
| $\overline{\overline{C A S}}$ precharge time, nibble mode | $t_{\text {NP }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| C̄AS pulse width, nibble mode | ${ }^{\text {NAS }}$ | 20 |  | 25 |  | 30 |  | ns |  |

MC-421000B9

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-42100089-80 |  | MC-421000B9-10 |  | MC-421000Bg-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Nibble Mode (cont) |  |  |  |  |  |  |  |  |  |
| $\overline{\mathrm{RAS}}$ hold time (nibble-mode read cycle) | $\dagger_{\text {NRRSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{RAS}}$ hold time (nibble-mode write cycle) | $\mathrm{t}_{\text {NWRSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay (nibble mode) | $\mathrm{t}_{\text {NCWD }}$ | 20 |  | 25 |  | 30 |  | ns | (Note 17) |
| Write command to $\overline{\mathrm{CAS}}$ lead time (nibble mode) | $\mathrm{t}_{\text {NCWL }}$ | 20 |  | 25 |  | 30 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight RAS cycles before proper device operation is achieved.
(3) $A c$ measurements assume $t_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}$ ( min ) and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I $\mathrm{ICC1}_{1}, I_{\mathrm{CC}}$, I $\mathrm{ICC4}$, and $I_{\mathrm{CC5}}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured by assuming that all column address inputs are held at either a high level or a low level during $\overline{\text { RAS-only refresh }}$ cycles.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2$ TTL ( $-1 \mathrm{~mA},+4 \mathrm{~mA}$ ) loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{R A C}$ increases by the amount that $t_{R C D}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max).
(10) If $t_{R A D} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(11) t $_{\text {OFF }}$ (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(12) Operation within the $t_{R C D}(\max )$ limit assures that $t_{R A C}$ (max) can be met. $\mathrm{t}_{\mathrm{RCD}}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlied exclusively by $\mathrm{t}_{\mathrm{CA}}$.
(13) The t CRP requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(14) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(15) Parameter $t_{W P}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both twCS and $\mathrm{t}_{\mathrm{WCH}}$ must be met.
(16) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
(17) For Dout 9, parameters $t_{\text {WCS }}, t_{\text {CWD }}, t_{\text {NCWD }}, t_{\text {RWD }}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modifywrite and nibble-mode read-write/read-modify-write cycles only. If $t_{W C S} \geq t_{\text {wCS }}(\mathrm{min})$, the cycle is an early write or nibblemode early write cycle and the data output will remain open circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ ( min ), $\mathrm{t}_{\mathrm{RWD}}$ $\geq \mathrm{t}_{\mathrm{RWD}}$ (min), and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}$ (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If $\mathrm{t}_{\mathrm{NCWD}} \geq \mathrm{t}_{\text {NCWD }}$ ( min ), the cycle is a nibblemode read-write cycle and the data output will contain data from the selected cell. If none of the above conditions are met, the condition of DOUT 9 (at access time and until $\overline{\mathrm{CAS}}_{9}$ returns to $V_{I H}$ ) is indeterminate.
(18) $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.
(19) Read-write/read-modify-write operation can be performed only by the SOJ controlled by $\overline{\mathrm{CAS}}_{9}$ because of its separate data input and output pins.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle (Doutg only)


## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle


DOUT $\longrightarrow$ High Impedance
Note:
[1] WE, Address: Don't Care.

Hidden Refresh Cycle


## Timing Waveforms (cont)

## $\overline{R A S}-O n l y$ Refresh Cycle



## Nibble Mode

The $\mu$ PD421000B9 is capable of executing nibblemode read, write, or read-modify-write cycles. Nibble mode allows high-speed serial access of a maximum of 4 data bits per data output. The first bit is determined by the row and column addresses, and the next bits are accessed automatically by cycling $\overline{\mathrm{CAS}}$ while RAS is held low. The addresses of nibble bits are determined by the combination of row address $A_{9}$ and column address $\mathrm{A}_{\mathrm{g}}$ in the following sequence.

| Sequence | Nibble Bit | Row Address |  |  |  |  |  |  |  |  |  | Column Address |  |  |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ag | $A_{B}$ |  | $\mathrm{A}_{6}$ | $A_{5}$ | $A_{4}$ | ${ }_{3}$ | $\mathrm{A}_{2}$ | $A_{1}$ | $A_{0}$ | $\mathrm{Ag}_{9}$ | $A_{8}$ | ${ }^{\text {A }}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ |  | $A_{3}$ | $A_{2}$ |  |  |  |
| $\overline{\overline{\mathrm{RAS}}} / \overline{\mathrm{CAS}}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Example: external address input |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Internal address generated |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Repeated sequence |

## Timing Waveforms (cont)

Nibble Read Cycle


## Timing Waveforms (cont)

## Nlbble Write Cycle (Early Write)



## Timing Waveforms (cont)

Nibble Read-Write/Read-Modify-Write Cycle (Dout g only)


## PRELIMINARY INFORMATION

## Description

The MC-421000C8 is a static-column, $1,048,576$-word by 8 -bit dynamic RAM module designed to operate from a single +5 -volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.
The MC-421000C8 is functionally equivalent to eight $\mu$ PD421002 standard 1M DRAMs. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles, or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms period.
Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {u }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-421000C8 includes eight $\mu$ PD421002s in SOJ packages and eight power supply decoupling capacitors.

## SIMM is a trademark of Wang Laboratories.

## Features

$1,048,576$-word by 8 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30-pin Single Inline Memory Module (SIMM)Eight 1M dynamic RAMs incorporated in highdensity SOJ packaging ( $\mu$ PD421002LA)Eight power supply decoupling capacitorsLow power dissipation: 44 mW standby (max)TTL-compatible inputs and outputs512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Static-column capability
## Ordering Information

| Part Number | $\begin{gathered} \text { Row } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | $\begin{gathered} \text { Column } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | $\begin{aligned} & \text { Address } \\ & \text { Access } \\ & \text { Time (max) } \end{aligned}$ | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000C8A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000C8B-80 | 80 ns | 20 ns | 45 ns | 30-pin socketable SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

## 30-Pin SIMM, MC-421000C8A



83-005128A

## Pin Configurations (cont)

30-PIn SIMM, MC-421000C8B


Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{g}$ | Address inputs |
| $/ / 0_{1}-1 / 0_{8}$ | Common data inputs/outputs |
| $\overline{\overline{R A S}}$ | Row address strobe |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |
| NC | No connection |

Block Diagram


Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 8.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :---: | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 60 | pF | $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{RAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ |
| Input/output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 15 | pF | $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+1.0$ | V |  |
| input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | ${ }^{\text {ICC2 }}$ |  |  | 16 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {IH }}(\mathrm{min})$ |
|  |  |  |  | 8 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | f [L | -80 |  | 80 | $\mu \mathrm{A}$ | For $A_{0}-A_{g}, \overline{\mathrm{RAS}}, \overline{\mathrm{C}}, \overline{\mathrm{WE}}$ : $\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\mathrm{CC}}$; other pins $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{IOL}_{0}$ | -10 |  | 10 | $\mu \mathrm{A}$ | For $1 / 0_{1}-1 / 0_{8}$ : $D_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to $\mathrm{V}_{\text {CC }}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 |  | 0.4 | V | $\mathrm{l}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}$ | V | lout $=-5 \mathrm{~mA}$ |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C8-80 |  | MC-421000c8-10 |  | MC-421000C8-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }_{\text {CCO }}$ |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Operating current, refresh cycle, average | ICC3 |  | 560 |  | 480 |  | 400 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{H}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min; $\mathrm{I}_{0}=0 \mathrm{~mA}($ Note 5$)$ |
| Operating current, $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refreshing, average | ICC5 |  | 560 |  | 480 |  | 400 | mA | $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ; \mathrm{I}_{0}=0 \mathrm{~mA} \mathrm{(Note} 5$ ) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from CS | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10) |
| Access time from column address | $t_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| Transition time (rise and fall) | ${ }_{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\overline{\overline{R A S}}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\mathrm{RAS}}$ hold time | $t_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{C S}}$ pulse width | $\mathrm{t}_{\mathrm{CS}}$ | 20 | 100000 | 25 | 100000 | 30 | 100000 | ns |  |
| $\overline{\text { CS }}$ hold time | ${ }_{\text {t }}^{\text {CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CS}} \text { delay time }}$ | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 12) |
| $\overline{\overline{\mathrm{CS}} \text { to } \overline{\mathrm{RAS}} \text { precharge time }}$ | ${ }^{\text {t }}$ CRP | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| $\overline{\overline{C S}}$ precharge time | $\mathrm{t}_{\mathrm{CP}}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CS}}$ hold time | $\mathrm{t}_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | ${ }_{\text {tasR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | $\mathrm{t}_{\text {CAH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {AR }}$ | 80 |  | 100 |  | 120 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C8-80 |  | Mc-421000C8-10 |  | MC-421000C8-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\overline{R A S}}$ to column address hold time | $\mathrm{t}_{\mathrm{AH}}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $t_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | trics | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| Read command hold time referenced to $\overline{\mathrm{CS}}$ | trach | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Column address hold time referenced to $\overline{\mathrm{RAS}}$ (write cycle) | $\mathrm{t}_{\text {AWR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }_{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | twp | 15 |  | 20 |  | 25 |  | ns | (Note 15) |
| Write command to $\widehat{\text { RAS }}$ lead time | trwL | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CS}}$ lead time | ${ }^{\text {t }}$ WL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 16) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 16) |
| Data-in hold time referenced to RAS | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCs | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\overline{C S}}$ setup time for $\overline{C S}$ betore RA'S refreshing | ${ }_{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 17) |
| CS hold time for $\overline{\text { CS }}$ before $\overline{\text { RAS }}$ refreshing | ${ }_{\text {t }}^{\text {CHR }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 17) |
| Static-Column Operation |  |  |  |  |  |  |  |  |  |
| Static-column operating current, average | ${ }_{\text {ICC4 }}$ |  | 480 |  | 400 |  | 320 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \\ & \text { addresses cycling; } \\ & \text { t }_{\text {RSC }}=\text { t }_{\text {RSC }} \text { min or or } \\ & \text { t }_{\text {WSC }}=\text { t }_{\text {WSC }} \min (\text { Note 5) } \end{aligned}$ |
| Static-column read cycle time | $t_{\text {RSC }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column write cycle time | twsc | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column $\overline{\text { RAS }}$ pulse width | $t_{\text {RASC }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Condlitions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C8-80 |  | MC-42 | 0C8-10 | MC-42 | OC8-12 |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Static-Column Operation (cont) |  |  |  |  |  |  |  |  |  |
| $\overline{\overline{\mathrm{RAS}} \text { to second } \overline{\mathrm{WE}} \text { delay }}$ | $t_{\text {RSW }}$ | 95 |  | 115 |  | 135 |  | ns |  |
| Write invalid time | ${ }_{\text {W }}$ I | 10 |  | 10 |  | 10 |  | ns |  |
| Output hold time from address | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight RAS cycles before proper device operation is achieved.
(3) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) $I_{C C 1}, I_{C C 3}, I_{C C 4}$, and $I_{C C 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured by assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles.
(6) The minimum specifications are used oniy to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{\text {RAD }}$ is greater than the maximum recommended value in this table, $\mathrm{t}_{\text {RAC }}$ increases by the amount that $\mathrm{t}_{\text {RCD }}$ or $\mathrm{t}_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max).
(10) If $t_{\text {RAD }} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(11) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(12) Operation within the $\mathrm{t}_{\mathrm{RCD}}$ (max) limit assures that $\mathrm{t}_{\mathrm{RAC}}$ (max) can be met. $\mathrm{t}_{\mathrm{RCD}}$ (max) is specified as a reference point only; if $\mathrm{t}_{\mathrm{RCD}}$ is greater than $\mathrm{t}_{\mathrm{RCD}}$ (max), access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$ -
(13) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CS}}$ cycles that are preceded by any cycle.
(14) Specifications for either $\mathrm{t}_{\text {RRH }}$ or $\mathrm{t}_{\mathrm{RCH}}$ must be satisfied for a read cycle.
(15) Parameter twp is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, specifications for both twCs and twCH must be met.
(16) These parameters are referenced to the falling edge of CS for early write cycles and to the falling edge of $\overline{\mathrm{WE}}$ for delayed write or read-modify-write cycles.
(17) $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ operation is specified.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

## $\overline{C S}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle



Note:
[1] WE, Address: Don't Care.

## Hidden Refresh Cycle



## Timing Waveforms (cont)

## $\overline{\text { RAS-Only Refresh Cycle }}$



DOUT
High Impedance

## Timing Waveforms (cont)

Static-Column Read Cycle


## Timing Waveforms (cont)

## Static-Column Write Cycle (Early Write)



## Description

The MC-421000C9 is a static-column $1,048,576$-word by 9 -bit dynamic RAM module designed to operate from a single +5 -volt power supply. Advanced CMOS circuitry, including a single-transistor storage cell, 2048 sense amplifiers per data output, multiplexed address buffers and flexible refresh controls, provides good system operating margins.

The MC-421000C9 is functionally equivalent to eight $\mu$ PD421002 standard 1M DRAMs plus a parity bit. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles, or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an $8-\mathrm{ms}$ period.

Packaged in a Single Inline Memory Module (SIMM ${ }^{\text {w }}$ ) to enhance reliability and reduce the size, weight and cost of a system, the MC-421000C9 includes nine $\mu$ PD421002s in SOJ packages and nine power supply decoupling capacitors.

SIMM is a trademark of Wang Laboratories.

## Features

1,048,576-word by 9 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStandard 30 -pin Single Inline Memory Module (SIMM)Nine 1M dynamic RAMs incorporated in highdensity SOJ packaging ( $\mu$ PD421002LA)Nine power supply decoupling capacitorsLow power dissipation: 49.5 mW standby (max)TTL-compatible inputs and outputs512 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{8}$ are refresh address pins)Static-column capability
## Ordering Information

| Part Number | Row Access Time [max] | Column <br> Access Time (max) | $\begin{gathered} \text { Address } \\ \text { Access } \\ \text { Time (max) } \end{gathered}$ | Package |
| :---: | :---: | :---: | :---: | :---: |
| MC-421000C9A-80 | 80 ns | 20 ns | 45 ns | 30-pin leaded SIMM |
| A-10 | 100 ns | 25 ns | 55 ns |  |
| A-12 | 120 ns | 30 ns | 65 ns |  |
| MC-421000C9B-80 | 80 ns | 20 ns | 45 ns | 30-pin socket able SIMM |
| B-10 | 100 ns | 25 ns | 55 ns |  |
| B-12 | 120 ns | 30 ns | 65 ns |  |

## Pin Configurations

30-Pin SIMM, MC-421000C9A


## Pin Configurations (cont)

## 30-Pin SIMM, MC-421000C9B



## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Address inputs |
| $1 / 0_{1}-1 / 0_{8}$ | Common data inputs/outputs |
| DIN9 | Data input 9 |
| DOUT 9 | Data output 9 |
| $\widehat{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{\mathrm{CS}} 9}$ | Chip select for data output 9 |
| $\overline{\text { WE }}$ | Write enable |
| GND | Ground |
| $V_{\text {CC }}$ | +5-volt power supply |
| NC | No connection |

Block Diagram


## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 9.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 70 | pF | $\mathrm{A}_{0}-\mathrm{Ag}_{\mathrm{g}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{C}_{12}$ | 7 | pF | $\overline{\mathrm{CS}_{9}, \mathrm{D}_{\text {IN }}}$ |
| Input/output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 15 | pF | $\mathrm{I} / 0_{1}-1 / 0_{8}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 10 | pF | $\mathrm{D}_{\text {OUT } 9}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+1.0$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Standby current | ${ }^{\text {cCC2 }}$ |  |  | 27 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{H}}$ |
|  |  |  |  | 9 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Input leakage current | $\mathrm{I}_{\text {IL }}$ | -90 |  | 90 | $\mu \mathrm{A}$ | For $\mathrm{A}_{0}-\mathrm{Ag}_{\mathrm{g}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}: \mathrm{V}_{1 N}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
|  | IIL9 | -10 |  | 10 | $\mu \mathrm{A}$ | For $\overline{\mathrm{CS}}_{9}$ and $\mathrm{D}_{\mathrm{IN} \mathrm{g}}: \mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V ; other pins $=0 \mathrm{~V}$ |
| Output leakage current | 1 OL | -10 |  | 10 | $\mu \mathrm{A}$ | For $1 / 0_{1}-1 / 0_{8}$ and $D_{\text {OUT }} \mathrm{g}$ : $\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 |  | 0.4 | V | $\mathrm{l}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{\text {CC }}$ | V | $\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C9-80 |  | MC-421000C9-10 |  | MC-421000C9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $l_{\text {CC1 }}$ |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ($ Note 5) |
| Operating current, refresh cycle, average | ICC3 |  | 630 |  | 540 |  | 450 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min; $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Operating current, $\overline{C S}$ before $\overline{\mathrm{RAS}}$ refreshing, average | ICC5 |  | 630 |  | 540 |  | 450 | mA | $\begin{aligned} & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ; \mathrm{t}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Random read or write cycle time | trc | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $t_{\text {RWC }}$ | 190 |  | 225 |  | 260 |  | ns | (Notes 6, 19) |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CS}}$ | $\mathrm{t}_{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10) |
| Access time from column address | $\mathrm{t}_{\mathrm{AA}}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10) |
| Output buffer turnoff delay | toff | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| स्दAS pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\overline{\text { RAS }} \text { hold time }}$ | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{C S}}$ pulse width | $\mathrm{t}_{\mathrm{CS}}$ | 20 | 100000 | 25 | 100000 | 30 | 100000 | ns |  |
| $\overline{\text { CS }}$ hold time | ${ }^{\text {t }}$ CSH | 80 |  | 100 |  | 120 |  | ns |  |
| $\stackrel{\text { RAS }}{ }$ to $\overline{\mathrm{CS}}$ delay time | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 12) |
| $\overline{\text { CS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {C }}$ CRP | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| $\overline{\text { CS }}$ precharge time | ${ }^{\text {teP }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ precharge $\overline{\mathrm{CS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $t_{\text {AR }}$ | 80 |  | 100 |  | 120 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C9-80 |  | MC-421000C9-10 |  | MC-421000C9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\overline{R A S}}$ to column address hold time | $\mathrm{t}_{\text {AH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address lead time referenced to $\widehat{\mathrm{RAS}}$ (rising edge) | $t_{\text {taL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | trics | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | trRH | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| Read command hold time referenced to $\overline{C S}$ | trach | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Column address hold time referenced to $\overline{\text { RAS }}$ (write cycle) | $t_{\text {AWR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command hold time | $\mathrm{t}_{\text {WCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{R A S}$ | ${ }^{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | twp | 15 |  | 20 |  | 25 |  | ns | (Note 15) |
| Write command to $\overline{R A S}$ lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CS}}$ lead time | ${ }_{\text {t }}$ WL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 16) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 16) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| $\overline{\overline{C S}}$ to $\overline{\text { WE }}$ delay time | tewD | 20 |  | 25 |  | 30 |  | ns | (Notes 17, 19) |
| $\overline{\overline{\mathrm{RAS}}}$ to $\overline{\mathrm{WE}}$ delay time | trwD | 80. |  | 100 |  | 120 |  | ns | (Notes 17, 19) |
| Column address to $\overline{\mathrm{WE}}$ delay time | tawd | 45 |  | 50 |  | 60 |  | ns | (Notes 17, 19) |
| Output hold time from $\overline{\mathrm{WE}}$ | $\mathrm{t}_{\text {OHW }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\overline{C S}}$ setup time for $\overline{\mathrm{CS}}$ before RAS refreshing | ${ }_{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 18) |
| $\overline{\overline{C S}}$ hold time for $\overline{\mathrm{S}}$ before $\overline{\text { RAS }}$ refreshing | $\mathrm{t}_{\text {CHR }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 18) |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MC-421000C9-80 |  | MC-421000C9-10 |  | MC-421000C9-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Static-Column Operation |  |  |  |  |  |  |  |  |  |
| Static-column operating current, average | ${ }^{\text {c C } 4}$ |  | 540 |  | 450 |  | 360 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}} ; \text { addresses cycling; } \\ & \mathrm{t}_{\mathrm{RSC}}=\mathrm{t}_{\mathrm{RSC}} \text { min or } \mathrm{t}_{\mathrm{WSC}}=\mathrm{t}_{\mathrm{WSC}} \text { min; } \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \text { (Note } 5 \text { ) } \end{aligned}$ |
| Static-column read cycle time | $\mathrm{t}_{\text {RSC }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column write cycle time | twsc | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column read-write cycle time | $t_{\text {RWSC }}$ | 95 |  | 115 |  | 135 |  | ns | (Notes 6, 19) |
| Access time from previous $\overline{W E}$ (falling edge) | tpwA |  | 90 |  | 110 |  | 130 | ns | (Notes 7, 19, 20) |
| Static-column $\overline{\mathrm{RAS}}$ pulse width | $t_{\text {RASC }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\overline{\text { RAS }} \text { to second } \overline{\text { WE }} \text { delay }}$ | $\mathrm{t}_{\text {RSW }}$ | 95 |  | 115 |  | 135 |  | ns |  |
| Previous $\overline{W E}$ (falling edge) to column address delay time | ${ }^{\text {twAD }}$ | 20 | 45 | 25 | 55 | 25 | 65 | ns | (Notes 19, 20) |
| Column address hold time from previous $\overline{W E}$ (falling edge) | tpwh | 90 |  | 110 |  | 130 |  | ns | (Note 19) |
| Write invalid time | ${ }_{\text {twi }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output hold time from address | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved.
(3) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{I H}(\min )$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) $\mathrm{I}_{\mathrm{CC} 1}, \mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC} 4}$, and $\mathrm{I}_{\mathrm{CC} 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured by assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $\mathrm{t}_{\text {RAD }} \leq \mathrm{t}_{\mathrm{RAD}}$ (max). If $\mathrm{t}_{\mathrm{RCD}}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{R A D}$ (max).
(10) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(11) t $_{\text {OFF }}$ (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(12) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by ${ }^{\text {chac }}$.
(13) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CS}}$ cycles that are preceded by any cycle.
(14) Specifications for either $t_{\text {RRH }}$ or $t_{R C H}$ must be satisfied for a read cycle.
(15) Parameter ${ }^{W}$ w is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, specifications for both $\mathrm{t}_{\mathrm{WCS}}$ and $\mathrm{t}_{\mathrm{WCH}}$ must be met.
(16) These parameters are referenced to the falling edge of $\overline{\mathrm{CS}}$ for early write cycles and to the falling edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(17) For Dout 9, parameters $t_{\text {WCS }}, \mathrm{t}_{\mathrm{CWD}}, \mathrm{t}_{\text {RWD }}$, and $\mathrm{t}_{\mathrm{AWD}}$ are restrictive operating parameters in read-write/read-modifywrite cycles only. If $t_{\text {wCs }} \geq t_{\text {wCs }}(\mathrm{min})$, the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min}), \mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}$ ( min ), and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}$ ( min ), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of DOUT9 (at access time and until $\overline{\mathrm{CS}}_{9}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(18) $\overline{C S}$ before $\overline{\text { RAS }}$ operation is specified.
(19) A read-write/read-modify-write operation can be performed only by the SOJ controlled by $\overline{\mathrm{CS}}_{9}$ because of its separate data input and output pins.
(20) If $t_{\text {WAD }} \leq t_{\text {WAD }}$ (max), then the access time is defined by $t_{\text {PWA }}$.

Timing Waveforms
Read Cycle


## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle (Dout 9 only)


## Timing Waveforms (cont)

## $\overline{C S}$ Before $\overline{R A S}$ Refresh Cycle



## Hidden Refresh Cycle



## Timing Waveforms (cont)

$\overline{R A S}$-Only Refresh Cycle


## Timing Waveforms (cont)

Static-Column Read Cycle


## Timing Waveforms (cont)

Static-Column Write Cycle (Early Write)


## Timing Waveforms (cont)

Static-Column Read-Wrlte/Read-Modify-Write Cycle (Dout 9 only)


DYNAMIC RAMs
5

| Section 5 Dynamic RAMs |  |
| :---: | :---: |
| $\mu$ PD41256 <br> 262,144 x 1-Bit Dynamic NMOS RAM <br> (Page) | 5-1 |
| $\mu$ PD41257 <br> 262,144 x 1-Bit Dynamic NMOS RAM <br> (Nibble) | 5-17 |
| $\mu$ PD41464 <br> 65,536 x 4-Bit Dynamic NMOS RAM (Page) | 5-33 |
| $\begin{aligned} & \mu \text { PD421000 } \\ & 1,048,576 \times 1 \text {-Bit Dynamic CMOS RAM } \\ & \text { (Fast Page) } \end{aligned}$ | 5-53 |
| $\mu$ PD421001 <br> 1,048,576 $\times 1$-Bit Dynamic CMOS RAM (Nibble) | 5-67 |
| $\mu$ PD421002 <br> 1,048,576 x 1-Bit Dynamic CMOS RAM (Static Column) | 5-81 |
| $\begin{aligned} & \mu \text { PD424256 } \\ & 262,144 \times 4 \text {-Bit Dynamic CMOS RAM } \\ & \text { (Fast Page) } \end{aligned}$ | 5-95 |
| $\mu$ PD424258 <br> 262,144 x 4-Bit Dynamic CMOS RAM <br> (Static Column) | 5-111 |
| AN 53 $\mu$ PD421000-Series Dynamic RAMs | 5-127 |

## Description

The $\mu$ PD 41256 is a 262,144 -word by 1 -bit dynamic NMOS RAM designed to operate from a single +5 -volt power supply. The negative voltage substrate bias is automatically generated internally.
The $\mu$ PD41256 is fabricated with double polylayer, N -channel, silicon-gate processing to provide high storage cell density, high performance, and high reliability. A single-transistor storage cell and advanced dynamic circuitry, including 1024 sense amplifiers, ensure that power dissipation is minimized.
The three-state output is controlled by $\overline{\mathrm{CAS}}$ independent of $\overline{\text { RAS. }}$. After a valid read or read-modify-write cycle, data is held on the output by holding $\overline{\text { CAS }}$ low. The data output then is returned to high impedance by returning CAS high. A hidden refresh feature allows $\overline{\mathrm{CAS}}$ to be held low to maintain output data while $\overline{\text { RAS }}$ is used to execute refresh cycles.
Refreshing is accomplished by means of $\overline{\text { RAS }}$-only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or by normal read or write cycles on the 256 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{7}$ during a $4-\mathrm{ms}$ period.

## Features

$\square$ 262,144-word x 1-bit organizationHigh-density plastic DIP and PLCC packagingMultiplexed address inputsSingle +5 -volt $\pm 10 \%$ power supplyOn-chip substrate bias generatorLow power dissipation: 28 mW standby (max)Nonlatched, three-state outputsFully TTL-compatible inputs and outputsLow input capacitance
256 refresh cycles ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ are refresh address pins) $\square$ Page-mode operation
 $\overline{R A S}$ refresh cycles

## Pin Configurations

## 16-Pin Plastic DIP



18-Pin Plastic Leaded Chip Carrier (PLCC)


5

## Ordering Information

| Part Number | Access Time (max) | R/W Cycle (min) | Page Cycle (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD41256C-10 | 100 ns | 200 ns | 100 ns | 16-pin plastic DIP |
| C-12 | 120 ns | 220 ns | 120 ns |  |
| C-15 | 150 ns | 260 ns | 145 ns |  |
| $\mu$ PD41256L-10 | 100 ns | 200 ns | 100 ns | 18-pin plastic leaded chip carrier |
| L-12 | 120 ns | 220 ns | 120 ns |  |
| L-15 | 150 ns | 260 ns | 145 ns |  |

Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $\mathrm{D}_{\text {IN }}$ | Data input |
| $\mathrm{D}_{\text {OUT }}$ | Data output |
| $\overline{\mathrm{CAS}}$ | Column address strobe |
| $\overline{\overline{\text { RAS }}}$ | Row address strobe |
| $\overline{\mathrm{WE}}$ | Write enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |

Block Diagram

$\mu$ PD41256

## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\mathrm{A}}$ (ambient) | 0 to $70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1.0 \mathrm{MHz}$

| Parameter |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Symbol | Min | Typ | Max | Unit |
|  |  |  |  |  |  |
|  | $\mathrm{C}_{11}$ |  | 5 | pF | $\mathrm{A}_{0}-A_{8}, \mathrm{D}_{1 \mathrm{~N}}$ |
|  | $\mathrm{C}_{12}$ |  | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
|  | $\mathrm{C}_{\text {OUT }}$ |  | 7 | pF | $\mathrm{D}_{\text {OUT }}$ |

## DC Characteristics

| Parameter | Symbal | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Standby supply current | ${ }_{\text {ICC2 }}$ |  |  | 5.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{HH}} ; \\ & \mathrm{D}_{\mathrm{DOT}}=\text { high } \\ & \text { impedance } \end{aligned}$ |
| Input leakage current | $1(L)$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{I N}=0 \text { to } V_{C C} ;}^{\text {all other pins not }} \\ & \text { under test }=0 \mathrm{~V} \end{aligned}$ |
| Output leakage current | $I_{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | DOUT disabled; $V_{\text {OUT }}=0 \text { to } V_{C C}$ |
| Output voltage, low | $\mathrm{V}_{0}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{C C}$ | V | IOUT $=-5 \mathrm{~mA}$ |
| Input voltage, low | $V_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |
| Input voltage, high | $V_{\text {IH }}$ | 2.4 |  | $\begin{gathered} V_{C C} \\ +1.0 \end{gathered}$ | V |  |

AC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41256-10 |  | $\mu \mathrm{PD} 41256$-12 |  | $\mu \mathrm{PD} 41256$-15 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating supply current, average | $\mathrm{I}_{\mathrm{CC} 1}$ |  | 80 |  | 70 |  | 60 | mA | $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min}) ; \mathrm{l}_{0}=0 \mathrm{~mA}$ (Note 5) |
| Operating supply current, $\overline{\text { RAS-only }}$ refresh, average | $I_{\text {cC3 }}$ |  | 65 |  | 60 |  | 50 | mA | $\begin{aligned} & \overline{\mathrm{RAS}} \text { cycling; } \overline{\mathrm{CAS}}=V_{\mathrm{IH}} ; \\ & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; I_{0}=0 \mathrm{~mA} \\ & (\text { Note } 5) \end{aligned}$ |
| Operating supply current, page mode, average | ${ }^{\text {cca }}$ |  | 60 |  | 50 |  | 40 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \text { tPC }=\operatorname{tpC}(\mathrm{min}) ; \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh, average | $I_{\text {CC5 }}$ |  | 65 |  | 60 | . | 50 | mA | $\begin{aligned} & \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{LL}} ; \overline{\mathrm{RAS}} \text { cycling; } \\ & \text { t }_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; l_{0}=0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 200 |  | 220 |  | 260 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 240 |  | 265 |  | 310 |  | ns | (Note 6) |
| Page-mode cycle time | $t_{P C}$ | 100 |  | 120 |  | 145 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 100 |  | 120 |  | 150 | ns | (Notes 7, 8) |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }}$ CAC |  | 50 |  | 60 |  | 75 | ns | (Notes 7, 9) |
| Output buffer turnoff delay | $\mathrm{t}_{0 \mathrm{FF}}$ | 0 | 25 | 0 | 30 | 0 | 35 | ns | (Note 10) |
| Transition time (rise and fall) | ${ }_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $t_{\text {RP }}$ | 90 |  | 90 |  | 100 |  | ns |  |
| $\overline{\text { RAS }}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 100 | 10,000 | 120 | 10,000 | 150 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 50 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{CAS}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 50 | 10,000 | 60 | 10,000 | 75 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t CSH }}$ | 100 |  | 120 |  | 150 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\text {RCD }}$ | 20 | 50 | 25 | 60 | 25 | 75 | ns | (Note 11) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 12) |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time, nonpage cycle | $\mathrm{t}_{\text {CPN }}$ | 25 |  | 25 |  | 25 |  | ns |  |
| $\overline{\overline{\text { CAS }} \text { precharge time, page cycle }}$ | $\mathrm{t}_{\mathrm{CP}}$ | 40 |  | 50 |  | 60 |  | ns |  |
| $\overline{\overline{\text { RAS }} \text { precharge } \overline{\mathrm{CAS}} \text { hold time }{ }^{\text {a }} \text { ( }}$ | $\mathrm{t}_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | $\mathrm{t}_{\text {cah }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $t_{\text {AR }}$ | 65 |  | 80 |  | 100 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 20 |  | 20 |  | ns | (Note 13) |
| Read command hold time referenced to $\overline{\mathrm{CAS}}$ | $\mathrm{t}_{\text {RCH }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 13) |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41256-10 |  | $\mu \mathrm{PD41256-12}$ |  | $\mu \mathrm{PD} 41256.15$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write command hold time | ${ }_{\text {t WCH }}$ | 25 |  | 30 |  | 40 |  | ns |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | $t_{\text {WCR }}$ | 75 |  | 90 |  | 115 |  | ns |  |
| Write command pulse width | $t_{\text {WP }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 17) |
| Write command to $\overline{\text { RAS }}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | $\mathrm{t}_{\text {CWL }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | ${ }_{\text {th }}$ | 25 |  | 30 |  | 40 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {DHR }}$ | 75 |  | 90 |  | 115 |  | ns |  |
| Refresh period | $t_{\text {REF }}$ |  | 4 |  | 4 |  | 4 | ms |  |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {tw }}$ WS | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{CAS}} \text { to } \overline{\mathrm{WE}} \text { delay }}$ | ${ }_{\text {t }}$ WWD | 50 |  | 60 |  | 75 |  | ns | (Note 15) |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay | $\mathrm{t}_{\text {RWD }}$ | 100 |  | 120 |  | 150 |  | ns | (Note 15) |
| $\overline{\mathrm{CAS}}$ setup time for CBR refresh | ${ }^{\text {c CSR }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 16) |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for CBR refresh | ${ }_{\text {t }}^{\text {CHR }}$ | 20 |  | 30 |  | 30 |  | ns | (Note 16) |
| Read or write cycle time (counter test cycle) | $t_{\text {tre }}$ | 220 |  | 250 |  | 285 |  | ns | (Note 18) |
| Read-write cycle time (counter test cycle) | $t_{\text {TRWC }}$ | 260 |  | 295 |  | 335 |  | ns | (Note 18) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight RAS cycles before proper device operation is achieved.
(3) Ac measurements assume $\mathrm{t}_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}$ ( min ) and $\mathrm{V}_{\mathrm{IL}}(\max )$ are reference levels for measuring the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I ${ }^{\mathrm{CC}} 1, \mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC}}$ and $\mathrm{I}_{\mathrm{CC}}$ depend on output loading and cycle rates. Specified values are obtained with the output open.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ ) is assured.
(7) Output load $=2 \mathrm{TTL}$ loads and 100 pF .
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value shown in this table, $t_{\text {RAC }}$ will increase by the amount that $t_{R C D}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(11) Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. $t_{\text {RCD }}$ (max) is specified as a reference point only. If $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
(12) The $\mathrm{t}_{\mathrm{CRP}}$ requirement should be applicable for RAS/CAS cycles preceded by any cycle.
(13) Either $t_{R R H}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the leading edge of $\overline{\text { CAS }}$ in early write cycles and to the leading edge of $\overline{W E}$ in delayed write or read-modify-write cycles.
(15) twCS, $t_{\text {CWD }}$, and $\mathrm{t}_{\text {RWD }}$ are restrictive operating parameters in read-write and read-modify-write cycles only. If twcs $\geq$ twcs ( min ), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{C}}$ WD ( min ) and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data out (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(16) DIP products with process codes $E, K$, and $P$ do not have the $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh feature. All other package types and process codes do have $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing.
On DIP products with process codes E, K, and P, the external address inputs are required in hidden refresh cycles and the address timing must satisfy ${ }_{t_{\text {ASR }}}$ and $\mathrm{t}_{\text {RAH }}$, which are specified with respect to the falling edge of RAS.
(17) twp is applicable for a delayed write cycle. If the cycle is early write, it should be satisfied with the specified value of twCH.
(18) $t_{T R C}$ and $t_{T R W L}$ are applicable for a $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh counter test cycle.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

## Read-Write/Read-Modify-Write Cycle



## Timing Waveforms (cont)

## $\overline{\operatorname{RAS}}$-Only Refresh Cycle



Page-Mode Read Cycle


## Timing Waveforms (cont)

## Page-Mode Write Cycle (Early Write)



## Timing Waveforms (cont)

Page-Mode Read-Write/Read-Modify-Write Cycle


## Timing Waveforms (cont)

## Hidden Refresh Cycle



## $\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle



Note:
[1] $\overline{W E}$, Address: Don't Care.

## $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test

The $\mu$ PD41256 provides a method to verify proper operation of the internal address counter used in CAS before $\overline{\mathrm{RAS}}$ refreshing. After a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle is initiated, $\overline{\mathrm{CAS}}$ satisfies a hold time ( $\mathrm{t}_{\mathrm{CHR}}$ ), a precharge time ( $t_{C P}$ ), and then returns low while $\overline{R A S}$ is held low to enable read, write, or read-modify-write operation. As shown in the appropriate timing waveforms, a refresh counter test can be initiated at this point on specified row and column addresses. The row is selected by the internal address counter, and the column is defined by an external address supplied at the second falling edge of $\overline{C A S}$. Test patterns can be generated in several ways; the following example is one possibility. Any pattern must be preceded by the normal power-up procedure containing a pause of $100 \mu \mathrm{~s}$ and then eight $\overline{\mathrm{RAS}}$ cycles to initialize the internal counter.
(1) Write " 0 " into 256 memory cells with 256 CAS before $\overline{\mathrm{RAS}}$ refresh counter test write cycles. Use the same column address in each cycle.
(2) Use a counter test read-modify-write cycle to read the " 0 " written in the first cycle of step 1 and then write a " 1 " into that location in the same cycle. Perform this operation 256 times, until a " 1 " is written into each of the 256 memory cells. Continue using the same column address as specified in step 1.
(3) Read each "1" written in step 2 using a counter test read cycle.
(4) Complement the test pattern and repeat steps 1,2, and 3.

## Timing Waveforms (cont)

## $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Read Cycle



## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Counter Test Write Cycle


## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Read-Modify-Write Cycle


## Description

The $\mu$ PD41257 is a 262,144 -word by 1 -bit dynamic NMOS RAM designed to operate from a single +5 -volt power supply. A double-polylayer N -channel silicon gate fabrication process provides for high storage cell density, high performance, and high reliability.The device also uses a single-transistor dynamic storage cell and advanced dynamic circuitry, including 1024 sense amplifiers, which ensure that power dissipation is minimized. The negative voltage substrate bias is automatically generated internally.
The three-state output is controlled by $\overline{\mathrm{CAS}}$ independent of $\overline{\mathrm{RAS}}$. Nibble mode read or write cycles are available by cycling $\overline{\text { CAS }}$.
Refreshing is initiated by a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycle that enables internal generation of the refresh address. Refreshing is also accomplished by means of RASonly refresh cycles, hidden refresh cycles, or by normal read or write cycles on the 256 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{7}$ during a 4-ms period.

## Features

262,144-word x 1-bit organizationMultiplexed address inputsSingle +5 -volt $\pm 10 \%$ power supplyNibble read, write, or read-modify-write cycles$\overline{C A S}$ before $\overline{\text { RAS }}$ internal refreshingLow power dissipation- 28 mW max (standby)
-413 mW max (active, $\mathrm{t}_{\mathrm{RC}}=220 \mathrm{~ns}$ )Nonlatched, three-state outputTTL-compatible inputs with low input capacitance256 -cycle/4-ms refresh period ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ are refresh addresses)High-density plastic DIP and PLCC packaging


## Pin Configurations

## 16-PIn Plastic DIP

|  |  |
| :---: | :---: |
|  | 83-003271A |

18-PIn Plastic Leaded Chip Carrier (PLCC)


## Block Diagram



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $\bar{D}_{\mathrm{IN}}$ | Data input |
| $\bar{D}_{0 U T}$ | Data output |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{\overline{\text { RAS }}}$ | Row address strobe |
| $\overline{\overline{C A S}}$ | Column address strobe |
| $\overline{\text { GND }}$ | Ground |
| $V_{C C}$ | +5.0 -volt power supply |

## Capacitance

| $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Limits |  |  |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |
| $\begin{array}{l}\text { Input } \\ \text { capacitance }\end{array}$ | $\mathrm{C}_{11}$ | 5 | pF | $\mathrm{A}_{0}-\mathrm{A}_{8}, \mathrm{D}_{\mathrm{IN}}$ |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
| $\begin{array}{l}\text { Output } \\ \text { capacitance }\end{array}$ | $\mathrm{C}_{0}$ | 7 | pF | $\mathrm{D}_{0 U T}$ |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Short-circuit output current | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1 W |
| Operating temperature, $\mathrm{T}_{\mathrm{A}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Ordering Information

| Part Number | Access Time (max) | R/W Cycle (min) | Package |
| :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD41257C-12}$ | 120 ns | 220 ns | 16-pin plastic DIP |
| C-15 | 150 ns | 260 ns |  |
| C-20 | 200 ns | 330 ns |  |
| $\mu \mathrm{PD} 41257 \mathrm{~L}-12$ | 120 ns | 220 ns | 18-pin PLCC |
| L-15 | 150 ns | 260 ns |  |
| L-20 | 200 ns | 330 ns |  |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Standby power supply current | $\mathrm{I}_{\text {CC2 }}$ |  |  | 5 | mA | $\overline{\mathrm{RAS}}=\mathrm{V}_{1 H} ; D_{\text {OUT }}=$ high impedance |
| Input leakage current | $1(L)$ | -10 |  | 10 | $\mu \mathrm{A}$ | Any input $V_{I N}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | 10(L) | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}$ | V | $\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\text {OUT }}=4.2 \mathrm{~mA}$ |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |  |
|  | GND | 0 | 0 | 0 | V |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | 5.5 | V | All inputs |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V | All inputs |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD41257-12 |  | $\mu$ PD41257-15 |  | $\mu$ PD41257-20 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Standard Operation |  |  |  |  |  |  |  |  |  |
| Average power supply operating current | $\mathrm{I}_{\mathrm{CC1}}$ |  | 75 |  | 70 |  | 60 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $t_{R C}=t_{R C} \min ($ Note 5$)$ |
| Average power supply current, refresh cycle | $\mathrm{I}_{\mathrm{CC}}$ |  | 60 |  | 55 |  | 55 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Random read or write cycle time | $t_{\text {RC }}$ | 220 |  | 260 |  | 330 |  | ns | (Note 6) |
| Read-write cycle time | $t_{\text {RWC }}$ | 265 |  | 310 |  | 390 |  | ns | (Note 6) |
| Access time from $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RAC }}$ |  | 120 |  | 150 |  | 200 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ | $\mathrm{t}_{\text {CAC }}$ |  | 60 |  | 75 |  | 100 | ns | (Notes 7, 9) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 30 | 0 | 40 | 0 | 50 | ns | (Note 10) |
| Rise and fall transition time | ${ }_{\dagger}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 90 |  | 100 |  | 120 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ pulse width | $t_{\text {RAS }}$ | 120 | 10,000 | 150 | 10,000 | 200 | 10,000 | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 60 |  | 75 |  | 100 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width | ${ }^{\text {t }}$ CAS | 60 | 10,000 | 75 | 10,000 | 100 | 10,000 | ns |  |
| $\overline{\overline{C A S}}$ hold time | ${ }_{\text {t CSH }}$ | 120 |  | 150 |  | 200 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | 35 | 100 | ns | (Note 11) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }_{\text {t }}^{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 12) |
| $\overline{\overline{C A S}}$ precharge time | ${ }^{\text {t CPN }}$ | 30 |  | 30 |  | 35 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $\mathrm{t}_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | $\mu$ PD41257-12 |  | $\mu$ P141257-15 |  | $\mu$ PD41257-20 |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Standard Operation (cont) |  |  |  |  |  |  |  |  |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 15 |  | 15 |  | 25 |  | ns |  |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }_{\text {t }}{ }_{\text {cah }}$ | 20 |  | 25 |  | 55 |  | ns |  |
| Column address hold time referenced to $\overline{\text { AAS }}$ | $t_{\text {AR }}$ | 80 |  | 100 |  | 155 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 25 |  | ns | (Note 13) |
| Read command hold time referenced to $\overline{\text { CAS }}$ | $\mathrm{t}_{\mathrm{RCH}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 13) |
| Write command hold time | ${ }^{\text {twCH }}$ | 30 |  | 40 |  | 55 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {twCR }}$ | 90 |  | 115 |  | 155 |  | ns |  |
| Write command pulse width | $t_{\text {WP }}$ | 20 |  | 25 |  | 55 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| Write command to CAS lead time | $\mathrm{t}_{\text {CWL }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 30 |  | 40 |  | 55 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {DHR }}$ | 90 |  | 115 |  | 155 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 4 |  | 4 |  | 4 | ms |  |
| WE command setup time | ${ }^{\text {twCs }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{WE}}$ delay | tewo | 60 |  | 75 |  | 100 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{WE}} \text { delay }}$ | $\mathrm{t}_{\text {RWD }}$ | 120 |  | 150 |  | 200 |  | ns | (Note 15) |
| Nibble Mode |  |  |  |  |  |  |  |  |  |
| Average power supply current, nibble mode | ${ }_{\text {ICC6 }}$ |  | 35 |  | 27 |  | 27 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{iL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{NC}}=\mathrm{N}_{\mathrm{NC}} \text { min (Note } 5 \text { ) } \end{aligned}$ |
| Nibble-mode cycle time | $\mathrm{t}_{\mathrm{NC}}$ | 60 |  | 70 |  | 100 |  | ns | (Note 6) |
| Nibble-mode access time | $\mathrm{t}_{\text {NAC }}$ |  | 30 |  | 35 |  | 50 | ns | (Note 7) |
| Nibble-mode precharge time | $\mathrm{t}_{\mathrm{NP}}$ | 20 |  | 25 |  | 40 |  | ns |  |
| Nibble-mode $\overline{\text { WE }}$ pulse width | ${ }_{\text {t }}^{\text {WWP }}$ | 20 |  | 25 |  | 40 |  | ns |  |
| Nibble-mode $\overline{\text { CAS }}$ pulse width | $\mathrm{t}_{\text {NAS }}$ | 30 |  | 35 |  | 50 |  | ns |  |
| Nibble-mode $\overline{\mathrm{RAS}}$ hold time (read cycle) | $\mathrm{t}_{\text {NRRSH }}$ | 30 |  | 35 |  | 50 |  | ns |  |
| Nibble-mode $\overline{\mathrm{RAS}}$ hold time (write cycle) | $\mathrm{t}_{\text {NWRSH }}$ | 35 |  | 35 |  | 50 |  | ns |  |
| Nibble-mode $\overline{\mathrm{CAS}}$ to WE delay | $\mathrm{t}_{\text {NCWD }}$ | 30 |  | 35 |  | 50 |  | ns |  |
| Nibble-mode $\overline{W E}$ to CAS lead time | $\mathrm{t}_{\text {NCWL }}$ | 30 |  | 35 |  | 50 |  | ns |  |

## AC Characteristics (cont)

| Parameter | Symbol | $\mu$ PD41257-12 |  | $\mu \mathrm{PD} 41257.15$ |  | $\mu$ PD41257-20 |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\text { CAS Before RAS Refresh Cycle }}$ |  |  |  |  |  |  |  |  |  |
| Average power supply current, CAS before RAS refreshing | $I_{\text {CC4 }}$ |  | 65 |  | 60 |  | 55 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=V_{\mathrm{IL}}$; $t_{R C}=t_{R C} \min$ (Note 5) |
| $\overline{\overline{\mathrm{CAS}} \text { setup time for } \overline{\mathrm{CAS}}}$ before $\overline{\text { RAS }}$ refreshing | $\mathrm{t}_{\text {CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{CAS}}$ hold time for $\overline{\mathrm{CAS}}$ before RAS refreshing | ${ }_{\text {t }}$ HR | 25 |  | 30 |  | 30 |  | ns |  |
| Read or write cycle time (counter test cycle) | $t_{\text {TRC }}$ | 245 |  | 285 |  | 350 |  | ns |  |
| Read-write cycle time (counter test cycle) | tTRWC | 290 |  | 335 |  | 410 |  | ns |  |
| C̄AS precharge time (counter test cycle) | ${ }_{\text {t }}$ CP | 50 |  | 60 |  | 80 |  | ns |  |

## Notes:

(1) An initial pause of $100 \mu$ s is required after power-up, followed by any eight $\widehat{R A S}$ cycles before proper device operation is achieved.
(2) Ac measurements assume $t_{\top}=5 \mathrm{~ns}$.
(3) $\mathrm{V}_{\mathrm{IH}}$ (min) and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{I L}$.
(4) All voltages are referenced to GND.
(5) I $\mathrm{ICC}_{1}, \mathrm{I}_{\mathrm{CC}}$, I $\mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC} 6}$ depend on output loading and cycle rates. Specified values are obtained with the output open.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2$ TTL loads and 100 pF .
(8) Assumes that $\mathrm{t}_{\mathrm{RCD}} \leq \mathrm{t}_{\mathrm{RCD}}$ (max). If $\mathrm{t}_{\mathrm{RCD}}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $\mathrm{t}_{\mathrm{RCD}}$ exceeds the value shown. For the $\overline{\mathrm{CAS}}$ before RAS refresh counter test cycle, $\mathrm{t}_{\text {RAC }}$ is specified as $t_{\text {RAC }}=t_{C H R}+t_{T C P}+t_{C A C}+2 t_{\top}$ and is greater than the maximum specified value shown in this table.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$
(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. Time $\mathrm{t}_{\mathrm{RCD}}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by tcac.
(12) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the leading edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the leading edge of WE for delayed write or read-modify-write cycles.
(15) $t_{W C S}, t_{C W D}, t_{N C W D}$, and $t_{R W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only.
If $t_{W C S} \geq t_{W C S}(\mathrm{~min})$, the cycle is an early write cycle or a nibble mode early write cycle and the data output pin will remain open-circuit throughout the entire cycle.

If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data output pin will contain data read from the selected cell.
If $\mathrm{t}_{\mathrm{NCWD}} \geq \mathrm{t}_{\mathrm{NCWD}}$ (min), the cycle is a nibble mode read-write cycle and the data output pin will contain data read from the selected cell.

If none of the above conditions is met, the condition of the data output pin (at access time and until $\overline{\text { CAS }}$ returns to $\mathrm{V}_{1 H}$ ) is indeterminate.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

## Read-Write/Read-Modify-Write Cycle



## Timing Waveforms (cont)

## $\overline{\text { RAS }}$-Only Refresh Cycle



## $\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle



## Timing Waveforms (cont)

Hidden Refresh Cycle


## Nibble Mode

The $\mu$ PD41257 is capable of executing nibble read, write, or read-modify-write cycles. Nibble mode allows high-speed serial access of a maximum of 4 data bits. The first bit is determined by the row and column addresses, and the next bits are accessed automatically by cycling $\overline{\text { CAS }}$ while $\overline{R A S}$ is held low. The addresses of nibble bits are determined by the combination of row address $A_{8}$ and column address $A_{8}$ in the following sequence.

| Sequence | Nibble Bit | Row Address |  |  |  |  |  |  |  |  | Column Address |  |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{A}_{8}$ | $\mathrm{A}_{7}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ | $\mathrm{A}_{4}$ | $A_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ | $\mathrm{A}_{8}$ | $\mathrm{A}_{7}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ | $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ |  |
| $\overline{\text { RAS }} / \overline{\mathrm{CAS}}$ | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Example: external address input |
| $\overline{\text { CAS }}$ cycling | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Internal address generated |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}}}$ cycling | 4 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Repeated sequence |

## Timing Waveforms (cont)

## Nibble Mode Read Cycle



## Timing Waveforms (cont)

Nibble Mode Write Cycle


## Timing Waveforms (cont)

Nibble Mode Read-Modify-Write Cycle


## Timing Waveforms (cont)

## $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test

The $\overline{C A S}$ before $\overline{R A S}$ refresh counter functionality is verified by using the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test cycle. After $\overline{C A S}$ before $\overline{R A S}$ refresh operation, $\overline{C A S}$ goes to a high level (after prescribed time $t_{C H R}$ ) and then goes to a low level (after prescribed time tTCP ) while $\overline{R A S}$ is held at a low level. The read, write, and read-modify-write operations are enabled as shown in the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test timing diagrams. A row address is defined by the $\overline{\mathrm{CAS}}$ before RAS refresh internal address counter, and a column address is defined by latching the external address at the second falling edge of $\overline{\mathrm{CAS}}$.

Suggested $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test pattern:
(1) Initialize the internal refresh counter using $8 \overline{\text { RAS }}-$ only refresh cycles after power-on.
(2) Write a test pattern of zeros into 256 memory cells at a single fixed column address using $256 \overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test write cycles.
(3) Using the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test read-modify-write cycle, read the " 0 " previously written during operation (2) and write a new "1" in the same cycle. Repeat this 256 times to write a pattern of ones into the 256 memory cells.
(4) Read the "1" written in operation (3) using the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh counter test read cycle.
(5) Complement the test pattern data and repeat operations (2), (3), and (4).

## CAS Before $\overline{R A S}$ Refresh Counter Test Read Cycle



## Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Counter Test Write Cycle


## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Read-Modify-Write Cycle


## Description

The $\mu$ PD41464 is a 65,536 -word by 4 -bit dynamic NMOS RAM designed to operate from a single +5 -volt power supply. The negative voltage substrate bias is generated internally; its operation is automatic and transparent. The $\mu$ PD41464 is fabricated with doublepolylayer, N -channel silicon gate processing to provide high storage cell density, high performance, and high reliability. A single-transistor dynamic storage cell and advanced dynamic circuitry throughout ensure minimum power dissipation.
The three-state I/O is controlled by CAS independent of $\overline{\text { RAS. After a valid read or hidden refresh cycle, data }}$ is held by holding CAS low. Input and output is returned to a state of high impedance by returning $\overline{\mathrm{CAS}}$ high. Hidden refreshing allows $\overline{\mathrm{CAS}}$ to be held low to maintain output data while $\overline{\text { RAS }}$ is used to execute RAS-only refresh cycles.

Automatic refreshing of internally generated refresh addresses is accomplished by means of $\overline{C A S}$ before $\overline{\text { RAS }}$ cycles. Refreshing can also be accomplished by means of RAS-only refresh cycles or by normal read or write cycles on the 256 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{7}$ during a $4-\mathrm{ms}$ period.

## Features

- 65,536-word by 4-bit organizationSingle +5 -volt $\pm 10 \%$ power supply$\overline{C A S}$ before $\overline{R A S}$ internal refreshingMultiplexed address inputsOn-chip substrate bias generatorLow power dissipation
-28 mW (standby)
-440 mW (active, $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$ )Nonlatched, TTL-compatible inputs and outputsLow input capacitance256 refresh cycles during 4-ms period
Standard plastic DIP, PLCC, and ZIP packaging


## Pin Configurations

18-Pin Plastic DIP

|  |  |
| :---: | :---: |
|  |  |

## 18-Pin PLCC



## 20-Pin Plastic ZIP



Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Address inputs |
| $1 / 0_{1}-1 / 0_{4}$ | Data 1/0 |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\mathrm{CAS}}$ | Column address strobe |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{\overline{O E}}$ | Output enable |
| GND | Ground |
| $\mathrm{V}_{\text {CC }}$ | +5-volt power supply |
| NC | No connection |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, $\mathrm{I}_{\mathrm{OS}}$ | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1 W |
| Cor |  |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Ordering Information

| Part Number | Row Access Time [Max] | Package |
| :---: | :---: | :---: |
| $\mu$ PD41464C-10 | 100 ns | 18-pin plastic DIP |
| C-12 | 120 ns |  |
| C-15 | 150 ns |  |
| $\mu \mathrm{PD} 41464 \mathrm{~L}-10$ | 100 ns | 18-pin PLCC |
| L-12 | 120 ns |  |
| L-15 | 150 ns |  |
| $\mu \mathrm{PD} 41464 \mathrm{~V}-10$ | 100 ns | 20-pin ZIP |
| V-12 | 120 ns |  |
| V-15 | 150 ns |  |

## Capacitance <br> $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parametar | Symbol | Min Typ Max | Unit | Pins Under Test |  |
| Input capacitance | $\mathrm{C}_{11}$ | 5 | pF | $\mathrm{A}_{0}-\mathrm{A}_{7}$ |  |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ |  |
| Input/output <br> capacitance | $\mathrm{C}_{0}$ | 7 | pF | $1 / 0_{1}-1 / O_{4}$ |  |

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V | Referenced to GND |
| Input voltage, high | $V_{\text {IH }}$ | 2.4 |  | $V_{C C}+1.0$ | V | Referenced to GND |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 |  | 0.8 | V | Referenced to GND |
| Standby current | ${ }_{\text {ICC2 }}$ |  |  | 5.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=V_{I H}$ |
| Input leakage current | $1(L)$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbb{I}}=0$ to $\mathrm{V}_{\mathrm{CC}}$; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{I}_{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | $1 / 0$ is high-Z; $\mathrm{V}_{1 / 0}=0$ to $\mathrm{V}_{\mathrm{CC}}$ |
| Output voltage, low | $\mathrm{V}_{\text {OL }}$ | 0 |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}$ | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | $\mu$ PD41464-10 |  | $\mu \mathrm{P} 041464-12$ |  | $\mu$ PD41464-15 |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $\mathrm{I}_{\text {CC1 }}$ |  | 80 |  | 75 |  | 70 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, refresh cycle, average | $I_{\text {CC3 }}$ |  | 65 |  | 60 |  | 55 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=V_{\mid H} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, page cycle, average | ${ }^{\text {c CC4 }}$ |  | 55 |  | 50 |  | 45 | mA | $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{LL}} ; \overline{\mathrm{CAS}}$ cycling; $\mathrm{tpC}=\mathrm{t}_{\text {PC }}$ min (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refresh cycle, average | ICC5 |  | 70 |  | 65 |  | 60 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}} \geq V_{I H} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Random read or write cycle time | $\mathrm{t}_{\text {RC }}$ | 200 |  | 220 |  | 260 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 270 |  | 300 |  | 355 |  | ns | (Note 6) |
| Page cycle time | $\mathrm{tPC}^{\text {P }}$ | 100 |  | 120 |  | 145 |  | ns | (Note 6) |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 4 |  | 4 |  | 4 | ms |  |
| Access time from $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RAC }}$ |  | 100 |  | 120 |  | 150 | ns | (Notes 7,8) |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ AC |  | 50 |  | 60 |  | 75 | ns | (Notes 7, 9) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 25 | 0 | 30 | 0 | 40 | ns | (Note 10) |
| Transition time (rise and fall) | ${ }_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Notes 2, 3) |
| $\widehat{\text { RAS }}$ precharge time | $t_{\text {RP }}$ | 90 |  | 90 |  | 100 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 100 | 10000 | 120 | 10000 | 150 | 10000 | ns |  |
| RAS hold time | $\mathrm{t}_{\text {RSH }}$ | 50 |  | 60 |  | 75 |  | ns |  |
| CAS pulse width | $\mathrm{t}_{\text {CAS }}$ | 50 | 10000 | 60 | 10000 | 75 | 10000 | ns |  |
| $\widehat{\text { CAS }}$ hold time | ${ }^{\text {t CSH }}$ | 100 |  | 120 |  | 150 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CAS}} \text { delay time }{ }^{\text {a }} \text { ( }}$ | $\mathrm{t}_{\text {RCD }}$ | 20 | 50 | 25 | 60 | 25 | 75 | ns | (Note 11) |
| $\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 12) |

## AC Characteristics (cont)

| Parameter | Symbol | $\mu$ PD41464-10 |  | $\mu$ PD41464-12 |  | $\mu$ PD41464-15 |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\overline{\text { CAS }} \text { precharge time, }}$ non-page cycle | ${ }_{\text {t CPN }}$ | 25 |  | 25 |  | 25 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time, page cycle | $t_{\text {cP }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }_{\text {t }}$ (AH | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {AR }}$ | 65 |  | 80 |  | 100 |  | ns |  |
| Read command setup time | trics | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to RAS | $t_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| Read command hold time referenced to CAS | trCH | 0 |  | 0 |  | 0 |  | ns | (Note 13) |
| Write command hold time | ${ }^{\text {twCH }}$ | 25 |  | 30 |  | 40 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }_{\text {twCR }}$ | 75 |  | 90 |  | 115 |  | ns |  |
| Write command pulse width | ${ }_{\text {twp }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {c }}$ WWL | 35 |  | 40 |  | 45 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 25 |  | 30 |  | 40 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {DHR }}$ | 75 |  | 90 |  | 115 |  | ns |  |
| Write command setup time | $t_{\text {WCS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{WE}}$ delay | trwD | 130 |  | 155 |  | 195 |  | ns | (Note 15) |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay | $t_{\text {CWD }}$ | 80 |  | 95 |  | 120 |  | ns | (Note 15) |
| Access time from $\overline{\mathrm{OE}}$ | $\mathrm{t}_{\text {OEA }}$ |  | 25 |  | 30 |  | 40 | ns |  |
| Data delay time | $\mathrm{t}_{\text {OED }}$ | 25 |  | 30 |  | 40 |  | ns |  |
| $\overline{\overline{O E} \text { command hold time }}$ | $\mathrm{t}_{\text {OEH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output turnoff delay from $\overline{O E}$ | $\mathrm{t}_{\text {OEZ }}$ | 0 | 25 | 0 | 30 | 0 | 40 | ns |  |
| $\overline{\overline{0} \mathrm{E}}$ to $\overline{\mathrm{RAS}}$ inactive setup time | toes | 10 |  | 10 |  | 10 |  | ns |  |
| Read or write cycle time (counter test cycle) | $t_{\text {TRC }}$ | 220 |  | 245 |  | 285 |  | ns | (Note 16) |
| Read write cycle time (counter test cycle) | ${ }_{\text {t }}$ RWC | 290 |  | 325 |  | 380 |  | ns | (Note 16) |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refresh cycle | ${ }^{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before $\widehat{R A S}$ refresh cycle | ${ }_{\text {t }}^{\text {chr }}$ | 20 |  | 25 |  | 30 |  | ns |  |

Notes:
(1) An initial pause of $100 \mu \mathrm{~s}$ ( $\overline{\mathrm{RAS}}$ inactive) is required after power-up, followed by any eight $\overline{\mathrm{RAS}}$ cycles, before proper device operation is achieved.
(2) $A C$ measurements assume $t_{T}=5 \mathrm{~ns}$.
(3) $V_{I H}$ (min) and $V_{I L}$ (max) are reference levels for measuring the timing of input signals.
(4) All voltages are referenced to GND.
(5) $I_{\mathrm{CC}_{1}}, \mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC}}$ depend on output loading and cycle rates. Specified values are obtained with the output open. For lot code $K$ of the $\mu$ PD41464-15, $\mathrm{t}_{\mathrm{RC}}$ (min) must be 270 ns and $I_{\mathrm{CC}}=60 \mathrm{~mA}$.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured. For lot code K of the $\mu \mathrm{PD} 41464-15$, $t_{R C}(\mathrm{~min})$ must be 270 ns .
(7) Load $=2$ TTL loads and 100 pF .
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value in this table, trAC increases by the amount that $t_{R C D}$ exceeds the value shown. For a $\overline{C A S}$ before RAS refresh counter test cycle, $t_{\text {RAC }}$ is specified as $t_{\text {RAC }}$ $=t_{C H R}+t_{C P}+t_{C A C}+2 t_{T}$ and is greater than the maximum specified value shown in this table.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(10) $t_{\text {OFF }}$ (max) and $t_{\text {OEZ }}$ (max) define the time at which the outputs achieve the open-circuit condition and are not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $t_{C A C}$.
(12) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\operatorname{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the leading edge of $\overline{C A S}$ for early write cycles and to the leading edge of $\bar{W}$ for delayed write or read-modify-write cycles.
(15) twCS, $t_{\text {CWD }}$, and $t_{\text {RWD }}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twCs $\geq t_{\text {wCs }}$ (min), the cycle is an early write cycle and the data l/O pins will remain high impedance throughout the entire cycle. If $t_{C W D} \geq t_{C W D}$ ( min ) and $t_{R W D} \geq t_{\text {RWD }}(\mathrm{min})$, the cycle is a read-write cycle and the data I/O pins will contain data read from the selected cells. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until $\overline{\mathrm{CAS}}$ returns to $\mathrm{V}_{1 H}$ ) is indeterminate.
(16) $t_{\text {TRC }}$ and $t_{\text {TRWC }}$ are applicable for $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh counter test cycles.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

## $\overline{O E}$-Controlled Write Cycle



## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle


## Timing Waveforms (cont)

Page Mode Read Cycle


## Timing Waveforms (cont)

Page Mode Write Cycle (Early Write)


## Timing Waveforms (cont)

Page Mode Read-Write/Read-Modify-Write Cycle


## Timing Waveforms (cont)

## $\overline{R A S}-O n l y$ Refresh Cycle



## Timing Waveforms (cont)

$\overline{\text { CAS Before }} \overline{\text { RAS }}$ Refresh Cycle


## Timing Waveforms (cont)

Hidden Refresh Cycle


## CAS Before $\overline{\operatorname{RAS}}$ Refresh Counter Test

The $\mu$ PD41464 provides a method to verify proper operation of the internal address counter used in CAS before $\overline{R A S}$ refreshing. After a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle is initiated, $\overline{\mathrm{CAS}}$ satisfies a hold time ( $\mathrm{t}_{\mathrm{CHR}}$ ), a precharge time ( $t_{C P}$ ), and then returns low while $\overline{R A S}$ is held low to enable read, write, or read-modify-write operation. As shown in the appropriate timing waveforms, a refresh counter test can be initiated at this point on specified row and column addresses. The row is selected by the internal address counter, and the column is defined by an external address supplied at the second falling edge of $\overline{C A S}$. Test patterns can be generated in several ways; the following example is one possibility. Any pattern must be preceded by the normal power-up procedure containing a pause of $100 \mu \mathrm{~s}$ and then eight $\overline{\mathrm{RAS}}$ cycles to initialize the internal counter.
(1) Write " 0 " into 256 memory cells with 256 CAS before $\overline{\mathrm{RAS}}$ refresh counter test write cycles. Use the same column address in each cycle.
(2) Use a counter test read-modify-write cycle to read the " 0 " written in the first cycle of step 1 and then write a " 1 " into that location in the same cycle. Perform this operation 256 times, until a " 1 " is written into each of the 256 memory cells. Continue using the same column address as specified in step 1.
(3) Read each " 1 " written in step 2 using a counter test read cycle.
(4) Complement the test pattern and repeat steps 1,2, and 3.
$\mu$ PD41464

## Timing Waveforms (cont)

$\overline{\text { CAS }}$ Before $\overline{\mathbf{R A S}}$ Refresh Counter Test Read Cycle


## Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Write Cycle


## Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Counter Test Read-Modify-Write Cycle


## Description

The $\mu$ PD 421000 is a fast-page, $1,048,576$-word by 1 -bit dynamic CMOS RAM designed to operate from a single +5 -volt power supply. The device is fabricated with advanced polycide technology using trench capacitors to minimize silicon area and provide high storage cell capacity, high performance, and high reliability. A single-transistor dynamic storage cell and advanced CMOS circuitry throughout ensure minimum power dissipation. The negative-voltage substrate bias is automatically generated internally.

The three-state output is controlled by $\overline{\mathrm{CAS}}$ independent of $\overline{R A S}$. After a valid read or read-modify-write cycle, data is held on the output by holding CAS low. The data output is returned to high impedance by returning CAS high. Fast-page read and write cycles can be executed by cycling CAS.

Refreshing may be accomplished by means of a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycle, enabling internal generation of the refresh address. Refreshing can also be accomplished by means of $\overline{\text { RAS-only refresh cycles or by normal read }}$ or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms refresh period.

## Features

1,048,576-word by 1 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyFast-page operationLow power dissipation:-70 mA max (active), 80 ns version
-1 mA max (standby)$\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles
Multiplexed address inputsOn-chip substrate bias generatorNonlatched, three-state outputsLow input capacitance
TTL-compatible inputs and outputs 512 refresh cycles during 8 -ms period
High-density 18 -pin plastic DIP, 26/20-pin SOJ, or 20 -pin plastic ZIP packaging

## Pin Configurations

## 18-Pin Plastic DIP



## 26/20-Pin Plastic SOJ



## 20-Pin Plastic ZIP



## Block Diagram



## Pin Identification

| Name | Function |
| :--- | :--- |
| $A_{0}-A_{g}$ | Address inputs |
| $D_{\text {IN }}$ | Data input |
| $D_{\text {OUT }}$ | Data output |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{C A S}}$ | Column address strobe |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Ordering Information

| Part Number | How Access Time (max) | R/W Cycle Time (min) | Page-Mode Cycle (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD421000C-80 | 80 ns | 160 ns | 50 ns | 18-pin plastic DIP |
| C-10 | 100 ns | 190 ns | 60 ns |  |
| C-12 | 120 ns | 220 ns | 70 ns |  |
| $\mu$ PD421000LA-80 | 80 ns | 160 ns | 50 ns | 26/20-pin plastic SOJ |
| LA-10 | 100 ns | 190 ns | 60 ns |  |
| LA-12 | 120 ns | 220 ns | 70 ns |  |
| $\mu$ PD421000V-80 | 80 ns | 160 ns | 50 ns | 20-pin plastic ZIP |
| V -10 | 100 ns | 190 ns | 60 ns |  |
| V-12 | 120 ns | 220 ns | 70 ns |  |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.
$\mu$ PD421000

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | $V$ | Referenced to GND |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 |  | $\begin{gathered} V_{\mathrm{CC}}+ \\ 1.0 \end{gathered}$ | V | Referenced to GND |
| Input voltage, low | VIL | -1.0 |  | 0.8 | V | Referenced to GND |
| Stand by current | ${ }^{\text {CCC2 }}$ |  |  | 3.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{1 H}$ |
|  |  |  |  | 1.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}= \\ & \mathrm{V}_{\mathrm{CC}}=0.2 \end{aligned}$ |
| Input leakage current | ${ }_{1}(\mathrm{~L})$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V ; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{I}_{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $\mathrm{V}_{\text {OUT }}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, low | $\mathrm{V}_{\mathrm{OL}}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{\text {CC }}$ | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 6 | pF | Address, $\mathrm{D}_{\mathrm{IN}}$ |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
| Output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $\mathrm{D}_{\text {OUT }}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 421000-80$ |  | $\mu \mathrm{PD} 421000-10$ |  | $\mu \mathrm{PD} 421000-12$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| 0perating current, average | $\mathrm{I}_{\mathrm{CC1}}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\text {RC }} \min ($ Note 5$)$ |
| Operating current, $\overline{\mathrm{RAS}}$-oniy refresh cycle, average | $\mathrm{I}_{\text {CC3 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}}=V_{I H} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, fastpage cycle, average | ${ }^{\text {c C } 4}$ |  | 60 |  | 50 |  | 40 | mA | $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CAS}}$ cycling; tpC $=\mathrm{t}_{\mathrm{PC}}$ min (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle, average | ${ }^{\text {c C } 5}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 190 |  | 225 |  | 260 |  | ns | (Note 6) |
| Page cycle time | $\mathrm{tPC}^{\text {P }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ (falling edge) | $\mathrm{t}_{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10, 11) |
| Access time from column address | $t_{A A}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10, 11) |
| Access time from $\overline{\mathrm{CAS}}$ precharge (rising edge) | $\mathrm{t}_{\text {ACP }}$ |  | 45 |  | 55 |  | 65 | ns | (Notes 7, 11) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 12) |
| Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}} \text { pulse width }}$ | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421000-80 |  | $\mu$ P1421000-10 |  | $\mu \mathrm{PD} 421000-12$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\text { RAS }}$ pulse width (page cycle) | $\mathrm{t}_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ hold time | $t_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\text { CAS }} \text { pulse width }}$ | ${ }_{\text {t }}^{\text {cas }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\mathrm{CAS}}$ hold time | ${ }_{\text {t }}^{\text {CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 13) |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | $\mathrm{t}_{\text {cRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time, nonpage cycle | ${ }_{\text {t }}^{\text {CPN }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| CAS precharge time, page cycle | $\mathrm{t}_{\mathrm{CP}}$ | 10 | 20 | 10 | 25 | 15 | 30 | ns | (Note 11) |
| $\overline{\mathrm{RAS}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $\mathrm{t}_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns | (Note 11) |
| Column address hold time | $\mathrm{t}_{\text {cah }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address lead time referenced to $\overline{\text { RAS }}$ (rising edge) | $\mathrm{t}_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 15) |
| Read command hold time referenced to CAS | $\mathrm{t}_{\text {RCH }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }^{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {twp }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 16) |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {c }}$ WL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| Data-in hold time | $t_{\text {DH }}$ | 20 |  | 20 |  | 25 |  | ns | (Note 17) |
| Data-in hold time referenced to $\stackrel{\rightharpoonup}{\mathrm{RAS}}$ | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | (Note 18) |
| $\overline{\mathrm{RAS}}$ to $\overline{\text { WE }}$ delay | trwD | 80 |  | 100 |  | 120 |  | ns | (Note 18) |
| $\overline{\text { CAS }}$ to $\overline{W E}$ delay | $t_{\text {cw }}$ | 20 |  | 25 |  | 30 |  | ns | (Note 18) |
| Column address to $\overline{\text { WE }}$ delay time | $\mathrm{t}_{\text {AWD }}$ | 45 |  | 50 |  | 60 |  | ns | (Note 18) |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 421000-80$ |  | $\mu$ PD421000-10 |  | $\mu$ PD421000-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\overline{\mathrm{CAS}} \text { setup time for } \overline{\mathrm{CAS}} \text { before } \overline{\mathrm{RAS}}}$ refresh cycle | ${ }_{\text {t }}^{\text {CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{CAS}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle | $\mathrm{t}_{\mathrm{CHR}}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu$ s is required after power-up, followed by any eight RAS cycles before proper device operation is achieved.
(3) Ac measurements assume $t_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I ${ }^{C C 1}, I_{C C 3}$, $\mathrm{ICC4}^{2}$, and $\mathrm{I}_{\mathrm{CC} 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured assuming that all column address inputs are held at either a high level or a low level during $\overline{\text { RAS-only refresh cycles. }}$ $I_{C C 4}$ is measured assuming that all column address inputs are switched only once each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{\text {RAD }}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max).
(10) If $t_{\text {RAD }} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(11) For fast-page read operation, the definition of access time is as follows.

| $\overline{\overline{C A S}}$and Column Address <br> Input Conditions | Access Time Definition |
| :--- | :---: |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}$ (max) | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}$ (max), $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{CAC}}$ |

(12) $t_{\text {OFF }}$ (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(13) Operation within the $t_{\text {RCD }}$ (max) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{R C D}(\max )$ is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by tcac.
(14) The ${ }_{C R P}$ requirement should be applicable for $\overline{R A S} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(15) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(16) Parameter $t_{W p}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both $t_{W C S}$ and $t_{W C H}$ must be met.
(17) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
(18) $t_{W C S}, t_{\text {RWD }}, t_{C W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twCs $\geq t_{\text {wCS }}$ ( min ), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ $(\min ), \mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}$ ( min ), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data output pin (at access time and until $\overline{\text { CAS }}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Write Cycle (Early Write)


## Timing Waveforms (cont)

## Read-Write/Read-Modify-Write Cycle



## Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle


Note:
[1] WE, Address: Don't Care.
$\mu$ PD421000

## Timing Waveforms (cont)

HIdden Refresh Cycle


## Timing Waveforms (cont)

$\overline{R A S}-O n l y$ Refresh Cycle


## Timing Waveforms (cont)

Fast-Page Read Cycle


## Timing Waveforms (cont)

Fast-Page Write Cycle (Early Write)


## Timing Waveforms (cont)

Fast-Page Read-Write/Road-Modify-Write Cyole


## Timing Waveforms (cont)

Fast-Page Write Cycle (Early Write)


## Timing Waveforms (cont)

Fast-Page Read-Write/Read-Modify-Write Cycle


## Description

The $\mu$ PD421001 is a nibble version, $1,048,576$-word by 1-bit dynamic CMOS RAM designed to operate from a single +5 -volt power supply. Advanced polycide technology using trench capacitors to minimize silicon area provides high storage cell capacity, high performance, and high reliability. The device also uses a single-transistor dynamic storage cell and advanced CMOS circuitry throughout, ensuring minimum power dissipation. The negative-voltage substrate bias is automatically generated internally.
The three-state output is controlled by $\overline{\mathrm{CAS}}$ independent of RAS. After a valid read or read-modify-write cycle, data is held on the output by holding CAS low. Data output is returned to high impedance by returning $\overline{\text { CAS }}$ high. The device is capable of executing nibble read and write cycles by cycling $\overline{\mathrm{CAS}}$.
Refreshing may be accomplished by means of $\overline{C A S}$ before $\overline{\text { RAS }}$ cycles, enabling internal generation of the refresh address. Refreshing can also be accomplished by means of $\overline{\text { RAS }}$-only refresh cycles or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8 -ms period.

## Features

1,048,576-word by 1 -bit organizationSingle +5 -volt $\pm 10 \%$ power supply
Nibble operation
Low power dissipation:
-70 mA max (active), 80 ns version
-1 mA max (standby)$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh cyclesMultiplexed address inputsOn-chip substrate bias generatorNonlatched, three-state outputs
Low input capacitanceTTL-compatible inputs and outputs512 refresh cycles during $8-\mathrm{ms}$ periodHigh-density 18 -pin piastic DIP, 26/20-pin plastic SOJ, or 20-pin plastic ZIP packaging

## Pin Configurations

18-Pin Plastic DIP


26/20-Pin Plastic SOJ


20-Pin Plastic ZIP


831H-5377A

## Block Diagram



## Pin Identification

| Name | Function |
| :--- | :--- |
| $A_{0}-A_{g}$ | Address inputs |
| $D_{\text {IN }}$ | Data input |
| $\bar{D}_{\text {OUT }}$ | Data output |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{\text { CAS }}}$ | Column address strobe |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{G N D}$ | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Ordering Information

| Part Number | Row Access <br> Time (max) | R/W Cycle Time (min) | Nibble-Mode Cycle (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD421001C-80 | 80 ns | 160 ns | 40 ns | 18-pin plastic DIP |
| C-10 | 100 ns | 190 ns | 45 ns |  |
| C-12 | 120 ns | 220 ns | 55 ns |  |
| $\mu$ PD421001LA-80 | 80 ns | 160 ns | 40 ns | 26/20-pin plastic SOJ |
| LA-10 | 100 ns | 190 ns | 45 ns |  |
| LA-12 | 120 ns | 220 ns | 55 ns |  |
| $\mu$ PD421001V-80 | 80 ns | 160 ns | 40 ns | 20-pin plastic ZIP |
| V-10 | 100 ns | 190 ns | 45 ns |  |
| V-12 | 120 ns | 220 ns | 55 ns |  |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, ToPR | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, TSTG | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V | Referenced to GND |
| Input voltage, high | $\mathrm{V}_{1}$ | 2.4 |  | $\begin{gathered} V_{C C}+ \\ 1.0 \end{gathered}$ | V | Referenced to GND |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 |  | 0.8 | V | Referenced to GND |
| Standby current | ICC2 |  |  | 3.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ |
|  |  |  |  | 1.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}= \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \end{aligned}$ |
| Input leakage current | $I_{1(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V ; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $10(L)$ | -10 |  | 10 | $\mu \mathrm{A}$ | DOUT disabled; $V_{\text {OUT }}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, low | $V_{0 L}$ | 0 |  | 0.4 | V | $\mathrm{l}_{0 \mathrm{LL}}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $V_{C C}$ | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 6 | pF | Address, $\mathrm{D}_{1 \mathrm{~N}}$ |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ |
| Output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $\mathrm{D}_{\text {OUT }}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 421001-80$ |  | $\mu$ PD421001-10 |  | $\mu$ PD421001-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $\mathrm{I}_{\mathrm{CC} 1}$ |  | 70 |  | 60 |  | 50 | mA | $\widehat{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note 5) |
| Operating current, $\overline{\mathrm{RAS}}$-only refresh cycle, average | ${ }^{\text {c CC3 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$ (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before सAS refresh cycle, average | $I_{\text {CC5 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$ (Note 5) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\mathrm{RWC}}$ | 190 |  | 225 |  | 260 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from falling edge of $\overline{\mathrm{CAS}}$ (non-nibble cycle) | $\mathrm{t}_{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 16) |
| Access time from column address | $t_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 16) |
| Output buffer turnoff delay | $\mathrm{t}_{0 \text { FF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 10) |
| Transition time (rise and fall) | ${ }_{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\widehat{\text { RAS }}$ precharge time | $\mathrm{t}_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| 人 $\overline{\text { AS }}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\mathrm{RAS}}$ pulse width (nibble cycle) | $t_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ pulse width (non-nibble cycle) | $\mathrm{t}_{\text {CAS }}$ | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |

## AC Characteristics (cont)

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421001-80 |  | $\mu$ PD421001-10 |  | $\mu \mathrm{PD} 421001-12$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\mathrm{CAS}}$ hold time | ${ }^{\text {c CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 11) |
| $\overline{\overline{\mathrm{CAS}} \text { to }} \widehat{\mathrm{RAS}}$ precharge time | ${ }_{\text {t }}^{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 12) |
| $\overline{\text { CAS }}$ precharge time (non-nibble cycle) | ${ }^{\text {t CPN }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ precharge $\overline{\mathrm{CAS}}$ hold time | trPC | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $t_{\text {RAH }}$ | 12 |  | 12. |  | 15 |  | ns |  |
| RAS to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 16) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS | $t_{\text {AR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $\mathrm{t}_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $t_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{R A S}$ | trRH | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| Read command hold time referenced to $\overline{\mathrm{CAS}}$ | trach | 0 |  | 0 |  | 0 |  | ns | (Note 13) |
| Write command hold time | ${ }^{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\widehat{\text { RAS }}$ | ${ }^{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | $t_{\text {WP }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 17) |
| Write command to $\overline{\mathrm{RAS}}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time (non-nibble cycle) | ${ }^{\text {tewL }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | $t_{\text {wCs }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay | trwD $^{\text {d }}$ | 80 |  | 100 |  | 120 |  | ns | (Note 15) |
| $\overline{\overline{C A S}}$ to $\overline{\text { WE }}$ delay (non-nibble cycle) | tcwo | 20 |  | 25 |  | 30 |  | ns | (Note 15) |
| Column address to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ WWD | 45 |  | 50 |  | 60 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle | ${ }_{\text {t }}^{\text {CSR }}$ | 10 |  | 10 | ' | 10 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle | ${ }^{\text {cherr }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421001-80 |  | $\mu$ PD421001-10 |  | $\mu \mathrm{PD} 421001-12$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Nlbble Mode |  |  |  |  |  |  |  |  |  |
| Operating current, average (nibble cycle) | ${ }^{\text {cca }}$ |  | 60 |  | 50 |  | 40 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=V_{\mathrm{IL}} ; \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{t}_{\mathrm{NC}}=\mathrm{t}_{\mathrm{NC}} \min \text { (Note 5) } \end{aligned}$ |
| Nibble cycle time | $\mathrm{t}_{\mathrm{NC}}$ | 40 |  | 45 |  | 55 |  | ns | (Note 6) |
| Nibble access time | $\dagger_{\text {NAC }}$ |  | 20 |  | 25 |  | 30 | ns | (Note 7) |
| $\overline{\text { CAS }}$ precharge time (nibble cycle) | $t_{\text {NP }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\mathrm{CAS}}$ pulse width (nibble cycle) | $\mathrm{t}_{\text {NAS }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\mathrm{RAS}}$ hold time (nibble read cycle) | $\mathrm{t}_{\text {NRRSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ hold time (nibble write cycle) | $\mathrm{t}_{\text {NWRSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { CAS }}$ to $\overline{\text { WE }}$ delay (nibble cycle) | $\mathrm{t}_{\text {NCWD }}$ | 20 |  | 25 |  | 30 |  | ns | (Note 15) |
| Write command to $\overline{\mathrm{CAS}}$ lead time (nibble cycle) | $t_{\text {NCWL }}$ | 20 |  | 25 |  | 30 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved.
(3) $A C$ measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{I H}$ (min) and $\mathrm{V}_{I L}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I ${ }^{\text {CC1 }}, I_{C C 3}$ I $I_{C C 4}$, and I ICC5 depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured assuming that all column address inputs are held at either a high level or a low level during $\overline{R A S}-$ only refresh cycles.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2$ TTL loads and 100 pF .
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max).
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$
(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $\mathrm{t}_{\mathrm{RCD}}$ is greater than $\mathrm{t}_{\mathrm{RCD}}$ (max), access time is controlled exclusively by tcac.
(12) The ${ }_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(15) $t_{W C S}, t_{\text {AWD }}, t_{C W D}, t_{A W D}$ and $t_{\text {NCWD }}$ are restrictive operating parameters in read-write/read-modify-write and nibble read-write/read-modify-write cycles only. If $t_{\text {wCS }} \geq t_{\text {wCS }}$ (min), the cycle is an early write or nibble early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ (min), $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}$ ( min ), and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}$ ( min ), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If $\mathrm{t}_{\text {NCWD }} \geq \mathrm{t}_{\text {NCWD }}$ ( min ), the cycle is a nibble read-write cycle and the data output will contain data read from the selected cell. If none of the above conditions is met, the condition of the data output pin (at access time and until $\overline{\mathrm{CAS}}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(16) If $t_{R A D} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(17) Parameter $t_{W P}$ is applicable for a delayed write cycle. For early write operation, both $t_{\text {wCs }}$ and $\mathrm{t}_{\mathrm{WCH}}$ must be met.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

Read-Write/Read-Modify-Wrlte Cycle


## Timing Waveforms (cont)

## $\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle



Dout
High Impedance
Note:
[1] WE, Address: Don't Care.

## Timing Waveforms (cont)

Hidden Refresh Cycle


## Timing Waveforms (cont)

## RAS-Only Refresh Cycle



## Nibble Mode

The $\mu$ PD421001 is capable of executing nibble read, write, or read-modify-write cycles. Nibble mode allows high-speed serial access of a maximum of 4 data bits. The first bit is determined by the row and column addresses, and the next bits are accessed automatically by cycling CAS while $\overline{\text { RAS }}$ is held low. The addresses of nibble bits are determined by the combination of row address $\mathrm{A}_{9}$ and column address $\mathrm{A}_{9}$ in the following sequence.

| Sequence | Nibble Bit | Row Address |  |  |  |  |  |  |  |  |  | Column Address |  |  |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{Ag}_{9}$ | $A_{8}$ | $A_{7}$ | $\mathrm{A}_{6}$ | $A_{5}$ | $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $A_{2}$ | $A_{1}$ | $\mathrm{A}_{0}$ | Ag | $A_{8}$ | ${ }^{\text {A }}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ | $\mathrm{A}_{4}$ | $A_{3}$ | $A_{2}$ |  | $\mathrm{A}_{0}$ |  |
| $\overline{\overline{\text { AAS }} / \overline{\mathrm{CAS}}}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Example: external address input |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Internal address generated |
| $\overline{\text { CAS }}$ cycling | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| $\overline{\overline{\mathrm{CAS}} \text { cycling }}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Repeated sequence |

## Timing Waveforms (cont)

NIbble Mode Read Cycle


## Timing Waveforms (cont)

Nibble Mode Write Cycle (Early Write)


## Timing Waveforms (cont)

NIbble Mode Read-Write/Read-Modify-Write Cycle


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD421002 is a static-column, $1,048,576$-word by 1-bit dynamic CMOS RAM designed to operate from a single +5 -volt power supply. The device is fabricated with advanced polycide technology using trench capacitors to minimize silicon area and provide high storage cell capacity, high performance, and high reliability. The $\mu$ PD421002 uses a single-transistor dynamic storage cell and advanced CMOS circuitry throughout, ensuring minimum power dissipation. The negative-voltage substrate bias is automatically generated internally.
The three-state output is controlled by $\overline{\mathrm{CS}}$ independent of $\overline{\text { RAS. }}$. After a valid read or read-modify-write cycle, data is held on the output by holding $\overline{\mathrm{CS}}$ low. The data output is returned to a state of high impedance by returning $\overline{C S}$ to a high logic level. The device is capable of executing static-column read and write cycles by switching the column address inputs.
Refreshing may be accomplished by means of a $\overline{\mathrm{CS}}$ before RAS cycle, enabling internal generation of the refresh address. Refreshing can also be accomplished by means of RAS-only refresh cycles or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8-ms refresh period.

## Features

1,048,576-word by 1 -bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStatic-column operationLow power dissipation
-70 mA max (active), 80 ns version

- 1 mA max (standby)
$\square \overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refreshingMultiplexed address inputsOn-chip substrate bias generatorNonlatched, three-state outputsLow input capacitance
TTL-compatible inputs and outputs
512 refresh cycles during 8 -ms periodHigh-density 18 -pin plastic DIP, 26/20-pin plastic SOJ, or 20-pin plastic ZIP packaging


## Pin Configurations

18-Pin Plastic DIP


83-004652A

26/20-Pin Plastic SOJ

| DIN | 1 |  | 26 | $\square \mathrm{GND}$ |
| :---: | :---: | :---: | :---: | :---: |
| WE | 2 |  | 25 | $\square$ DOUT |
| $\overline{\text { RAS }}$ | 3 |  | 24 | $\square \overline{\mathrm{CS}}$ |
| NC $\square$ | 4 |  | 23 | $\square \mathrm{NC}$ |
| NC - | 5 | \% | 22 | $\square \mathrm{A} 9$ |
| $\mathrm{A}_{0}{ }^{\text {a }}$ | 9 |  | 18 | $\mathrm{A}_{8}$ |
| $\mathrm{A}_{1}$ | 10 |  | 17 | $\square A_{7}$ |
| $\mathrm{A}_{2}-$ | 11 |  | 16 | $\square A_{6}$ |
| $\mathrm{A}_{3} \square$ | 12 |  | 15 | $\mathrm{A}_{5}$ |
| Vcc | 13 |  | 14 | $\square A 4$ |

## 20-Pin Plastic ZIP



83IH-5376A

## Block Diagram



83-0044718

## Pin Identification

| Name | Function |
| :--- | :--- |
| $A_{0}-A_{g}$ | Address inputs |
| $D_{I N}$ | Data input |
| $D_{O U T}$ | Data output |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $N C$ | No connection |

## Ordering Information

| Part Number | Row Access Time (max) | R/W Cycle Time (min) | Static Column Cycle (min) | Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD421002C-80 | 80 ns | 160 ns | 50 ns | 18-pin plastic DIP |
| C-10 | 100 ns | 190 ns | 60 ns |  |
| C-12 | 120 ns | 220 ns | 70 ns |  |
| $\mu$ PD421002LA-80 | 80 ns | 160 ns | 50 ns | 26/20-pin plastic |
| LA-10 | 100 ns | 190 ns | 60 ns |  |
| LA-12 | 120 ns | 220 ns | 70 ns |  |
| $\mu$ PD421002V-80 | 80 ns | 160 ns | 50 ns | 20-pin plastic ZIP |
| V-10 | 100 ns | 190 ns | 60 ns |  |
| V-12 | 120 ns | 220 ns | 70 ns |  |

Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, I I S | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Supply voltage | $V_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V | Referenced to GND |
| Input voltage, high | $V_{\text {IH }}$ | 2.4 |  | $\begin{gathered} \mathrm{V}_{C C}+ \\ 1.0 \end{gathered}$ | V | Referenced to GND |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V | Referenced to GND |
| Standby current | ${ }^{\text {ccc2 }}$ |  |  | 3.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$ |
|  |  |  |  | 1.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CS}}= \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \end{aligned}$ |
| Input leakage current | ${ }^{1}(\mathrm{~L})$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.5 \mathrm{~V}$ <br> all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $I_{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $\mathrm{V}_{\text {OUT }}=0 \text { to } 5.5 \mathrm{~V}$ |
| Output voltage, low | $\mathrm{V}_{\text {OL }}$ | 0 |  | 0.4 | V | $\mathrm{I}_{\text {OL }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}$ | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 6 | pF | Address, $\mathrm{D}_{\mathrm{IN}}$ |
|  | $\mathrm{C}_{12}$ | 8 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ |
| Output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $\mathrm{D}_{\text {OUT }}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421002-80 |  | $\mu$ PD421002-10 |  | $\mu$ PD421002-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | $\mathrm{I}_{\text {CC1 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, $\overline{\mathrm{RAS}}$-only refresh cycle, average | $\mathrm{I}_{\mathrm{CC} 3}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Operating current, $\overline{\mathrm{CS}}$ before RAS refresh cycle, average | ICC5 |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min$ (Note5) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 190 |  | 225 |  | 260 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{C S}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 16) |
| Access time from column address | $\mathrm{t}_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 16) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 10) |
| Transition time (rise and fall) | $\dagger_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| KAS precharge time | $\mathrm{t}_{\text {P }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\overline{\overline{\mathrm{AAS}}}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| $\overline{\mathrm{RAS}}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{\text { CS }} \text { pulse width }}$ | ${ }_{\text {t }}$ | 20 | 100000 | 25 | 100000 | 30 | 100000 | ns |  |

## AC Characteristics (cont)

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421002-80 |  | $\mu \mathrm{PD} 421002 \cdot 10$ |  | $\mu$ PD421002-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\text { CS }}$ hold time | ${ }_{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CS}} \text { delay time }}$ | $\mathrm{t}_{\text {RCD }}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 11) |
| $\overline{\overline{C S}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {CRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 12) |
| $\overline{\overline{C S}}$ precharge time | $\mathrm{t}_{\mathrm{CP}}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | ${ }^{\text {t ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | $t_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 16) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | $t_{\text {cah }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| RAS to column address hold time | $\mathrm{t}_{\text {AH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address hold time referenced to RAS | $t_{\text {AR }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $\mathrm{t}_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to RAS | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| Read command hold time referenced to $\overline{\mathrm{CS}}$ | trCH | 0 |  | 0 |  | 0 |  | ns | (Note 13) |
| Column address hold time referenced to $\overline{\text { RAS }}$ (write cycle) | $\mathrm{t}_{\text {AWR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }_{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | twp | 15 |  | 20 |  | 25 |  | ns | (Note 17) |
| Write command to RAS lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CS}}$ lead time | $t_{\text {cWL }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Data-in hold time | ${ }_{\text {DH }}$ | 20 |  | 20 |  | 25 |  | ns | (Note 14) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | $t_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| $\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{WE}} \text { delay }}$ | trwD | 80 |  | 100 |  | 120 |  | ns | (Note 15) |
| CS to WE delay | ${ }_{\text {t }}$ | 20 |  | 25 |  | 30 |  | ns | (Note 15) |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421002-80 |  | $\mu$ PD421002-10 |  | $\mu$ PD421002-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address to $\overline{\mathrm{WE}}$ delay time | $t_{\text {AWD }}$ | 45 |  | 50 |  | 60 |  | ns | (Note 15) |
| Output hold time from WE | $\mathrm{t}_{\text {OHW }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\overline{C S}}$ setup time for $\overline{C S}$ before RAS refresh cycle | ${ }^{\text {c CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\overline{\mathrm{CS}}}$ hold time for $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle | $\mathrm{t}_{\text {CHR }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Static-Column Operation |  |  |  |  |  |  |  |  |  |
| Operating current, staticcolumn cycle, average | ICC4 |  | 60 |  | 50 |  | 40 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}} ; \text { addresses cycling; } \\ & \mathrm{t}_{\mathrm{RSC}}=\mathrm{t}_{\mathrm{RSC}} \min \text { or } \\ & \mathrm{t}_{\mathrm{WSC}}=\mathrm{t}_{\mathrm{WSC}} \min (\text { Note } 5) \end{aligned}$ |
| Static-column read cycle time | $\mathrm{t}_{\text {RSC }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column write cycle time | ${ }_{\text {twSC }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Static-column read-write cycle time | $\mathrm{t}_{\text {RWSC }}$ | 95 |  | 115 |  | 135 |  | ns | (Note 6) |
| Access time from previous $\overline{W E}$ (falling edge) | tpwa |  | 90 |  | 110 |  | 130 | ns | ( Notes 7, 18) |
| $\overline{\overline{\mathrm{RAS}}}$ pulse width (static-column cycle) | $t_{\text {RaSC }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to second $\overline{\mathrm{WE}}$ delay | $t_{\text {RSW }}$ | 95 |  | 115 |  | 135 |  | ns |  |
| Previous $\overline{W E}$ (falling edge) to column address delay time | twad | 20 | 45 | 25 | 55 | 25 | 65 | ns | (Note 18) |
| Column address hold time from previous $\overline{W E}$ (falling edge) | tPWH | 90 |  | 110 |  | 130 |  | ns |  |
| Write invalid time | ${ }^{\text {twi }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output hold time from address | ${ }^{\text {toH }}$ | 5 |  | 5 |  | 5 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is achieved.
(3) $A C$ measurements assume $t_{\top}=5 \mathrm{~ns}$.
(4) $V_{I H}(\min )$ and $V_{I L}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I $I_{C C 1}$, $I_{C C 3}$, ICC4, and I $I_{C C 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. $\mathrm{l}_{\mathrm{CC}}$ is measured by assuming that all column address inputs are held at either a high level or a low level during $\overline{\text { RAS }}$-only refresh cycles.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range $\left(T_{A}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ is assured.
(7) Load $=2 \mathrm{TTL}$ loads and 100 pF .
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{R C D}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max).
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.

## Notes [cont]:

(11) Operation within the $t_{R C D}$ (max) limit assures that $t_{R A C}$ (max) can be met. $t_{R C D}(\max )$ is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by ${ }^{\text {t }}$ CAC.
(12) The terp requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CS}}$ cycles preceded by any cycle.
(13) Either $t_{R R H}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) These parameters are referenced to the falling edge of $\overline{\mathrm{CS}}$ for early write cycles and to the falling edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(15) $t_{\text {WCS }}, t_{\text {RWD }}, t_{C W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twcs $\geq$ twCS ( min ), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ $(\min ), \mathrm{t}_{\text {RWD }} \geq \mathrm{t}_{\text {RWD }}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data output pin (at access time and until $\overline{\mathrm{CS}}$ returns to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
(16) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(17) Parameter twp is applicable for a delayed write cycle. For early write operation, both $t_{\text {wCs }}$ and $t_{W C H}$ must be met.
(18) If twAD $\leq$ twAD $_{\text {(max }}$ ), then the access time is defined by $t_{\text {PWA. }}$.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Write Cycle (Early Write)



## Timing Waveforms (cont)

## Read-Write/Read-Modify-Write Cycle



## Timing Waveforms (cont)

## $\overline{C S}$ Before $\overline{R A S}$ Refresh Cycle



DOUT
High Impedance
Note:
[1] WE, Address: Don't Care.

## HIdden Refresh Cycle



## Timing Waveforms (cont)

$\overline{\operatorname{RAS}}$-Only Refresh Cycle


## Timing Waveforms (cont)

## Static-Column Read Cycle



## Timing Waveforms (cont)

Static-Column Write Cycle (Early Write)


## Timing Waveforms (cont)

Static-Column Read-Write/Read-Modify-Write Cycle


## Description

The $\mu$ PD424256 is a fast-page, 262,144 -word by 4 -bit dynamic CMOS RAM designed to operate from a single +5 -volt power supply. The device is fabricated with advanced polycide technology using trench capacitors to minimize silicon area and provide high storage cell capacity, high performance, and high reliability. The $\mu$ PD424256 also uses a single-transistor dynamic storage cell and advanced CMOS circuitry throughout, ensuring minimum power dissipation. The negative-voltage substrate bias is automatically generated internally.
The three-state I/O pins are controlled by $\overline{\mathrm{CAS}}$ independent of RAS. After a valid read or read-modify-write cycle, data is held on the outputs by maintaining a low CAS. The data outputs are returned to a state of high impedance by returning $\overline{\mathrm{CAS}}$ to a high logic level. The device is also capable of performing fast-page read and write cycles by cycling CAS.
Refreshing may be accomplished by means of a $\overline{\text { CAS }}$ before RAS cycle, enabling the internal generation of a refresh address. Refreshing may also be accomplished by means of RAS-only refresh cycles or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an 8-ms refresh period.

## Features

- 262,144-word by 4-bit organizationSingle +5 -volt $\pm 10 \%$ power supplyFast-page operation
$\square$ Low power dissipation
- $70 \mathrm{~mA} \max$ (active), 80 ns version
- 1 mA max (standby)
$\square \overline{\text { CAS }}$ before $\overline{\text { RAS }}$ internal refreshing capability
$\square$ Multiplexed address inputs
$\square$ On-chip substrate bias generator
$\square$ Nonlatched, TTL-compatible, three-state I/O
$\square$ Low input capacitance
$\square$ TTL-compatible inputs
- 512 refresh cycles during an 8 -ms period
$\square$ High-density 20-pin plastic DIP, 26/20-pin plastic SOJ, or 20-pin plastic ZIP packaging


## Pin Configurations

20-Pin Plastic DIP


26/20-Pin Plastic SOJ


20-PIn Plastic ZIP


## Block Diagram



## Pin Identification

| Name | Function |
| :--- | :--- |
| $\overline{A_{0}-A_{8}}$ | Address inputs |
| $\overline{\mathrm{I} / 0_{1}-I / O_{4}}$ | Data input/output |
| $\overline{\mathrm{RAS}}$ | Row address strobe |
| $\overline{\overline{\mathrm{CAS}}}$ | Column address strobe |
| $\overline{\overline{\mathrm{WE}}}$ | Write enable |
| $\overline{\overline{\mathrm{OE}}}$ | Output enable |
| $\overline{\mathrm{GND}}$ | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Absolute Maximum Ratings

| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| :--- | ---: |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Ordering Information

| Part Number |  | $\begin{gathered} \overline{\mathrm{CAS}} \\ \text { Accass } \\ \text { Time (max) } \end{gathered}$ | Column Address Access (max) | Packagı |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 424256 \mathrm{C}-80$ | 80 ns | 20 ns | 45 ns | 20-pin plasticDIP |
| C-10 | 100 ns | 25 ns | 50 ns |  |
| C-12 | 120 ns | 30 ns | 60 ns |  |
| $\mu$ PD424256LA-80 | 80 ns | 20 ns | 45 ns | $\begin{aligned} & \text { 26/20-pin } \\ & \text { plastic SOJ } \end{aligned}$ |
| LA-10 | 100 ns | 25 ns | 50 ns |  |
| LA-12 | 120 ns | 30 ns | 60 ns |  |
| $\mu \mathrm{PD} 424256 \mathrm{~V}-80$ | 80 ns | 20 ns | 45 ns | $\begin{aligned} & \text { 20-pin } \\ & \text { plastic ZIP } \end{aligned}$ |
| V-10 | 100 ns | 25 ns | 50 ns |  |
| V-12 | 120 ns | 30 ns | 60 ns |  |

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $V_{C C}+1.0$ | $V$ | Referenced to GND |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1.0 |  | 0.8 | V | Referenced to GND |
| Standby current |  |  |  | 2.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ |
|  |  |  |  | 1.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}= \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \end{aligned}$ |
| Input leakage current | $1(L)$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V ; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | $\mathrm{I}_{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; <br> $V_{\text {OUT }}=0$ to 5.5 V |
| Output voltage, low | $\mathrm{V}_{0}$ |  |  | 0.4 | V | $\mathrm{IOL}^{\text {a }}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

AC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathbf{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :---: | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 5 | pF | Address |
|  | $\mathrm{C}_{\mathrm{l}}$ | 7 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ |
| Input/output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $\mathrm{I} / 0$ |


| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 424256$-80 |  | $\mu$ PD424256-10 |  | $\mu \mathrm{PD} 424256$-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }_{\text {CCO1 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\text {RC }}=\mathrm{t}_{\text {RC }} \mathrm{min}$ (Note 5) |
| Operating current, $\overline{\text { RAS }}$-only refreshing, average | ${ }_{\text {ICC3 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Fast-page operating current, average | $I_{\text {CC4 }}$ |  | 60 |  | 50 |  | 40 | mA | $\overline{\mathrm{RAS}}=\mathrm{V}_{\text {IL }} ; \overline{\mathrm{CAS}}$ cycling; tPC $=$ tpC min (Note 5) |
| Operating current, $\overline{\mathrm{CAS}}$ before RAS refreshing, average | ICC5 |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Note 5) |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 215 |  | 255 |  | 295 |  | ns | (Note 6) |
| Fast-page cycle time | $t_{P C}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $t_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{\mathrm{CAS}}$ (falling edge) | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10, 11) |
| Access time from column address | $t_{\text {AA }}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10, 11) |
| Access time from $\overline{\mathrm{CAS}}$ precharge (rising edge) | $t_{\text {ACP }}$ |  | 45 |  | 55 |  | 65 | ns | (Notes 7, 11) |
| Output buffer turnoff delay | $t_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 12) |
| Transition time (rise and fall) | ${ }_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| $\overline{\text { RAS }}$ precharge time | $t_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| $\underline{\overline{\mathrm{RAS}}}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD424256-80 |  | $\mu \mathrm{PD} 424256-10$ |  | $\mu$ PD424256-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\text { RAS }}$ pulse width (page mode) | $\mathrm{t}_{\text {RASP }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{C A S}}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 10000 | 25 | 10000 | 30 | 10000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
|  | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 13) |
| $\overline{\overline{\mathrm{CAS}} \text { to } \overline{\mathrm{RAS}} \text { precharge time }{ }^{\text {a }} \text { ( }{ }^{\text {a }} \text { ( }}$ | ${ }^{\text {cher }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| $\overline{\overline{C A S}}$ precharge time, non-page cycle | ${ }^{\text {t CPN }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ precharge time, page cycle | ${ }_{t}{ }_{\text {PP }}$ | 10 | 20 | 10 | 25 | 15 | 30 | ns | (Note 11) |
| $\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns | (Note 11) |
| Column address hold time | ${ }_{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge) | $\mathrm{t}_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $\mathrm{t}_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to RAS | trRH | 10 |  | 10 |  | 10 |  | ns | (Note 15) |
| Read command hold time referenced to CAS | $\mathrm{t}_{\mathrm{BCH}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 15) |
| Write command hold time | twCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | $t_{\text {WP }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 16) |
| Write command to $\overline{\text { RAS }}$ lead time | $t_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }_{\text {t }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $t_{\text {DS }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| Data-in hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | 20 |  | 25 |  | ns | (Note 17) |
| Data-in hold time referenced to $\overline{\text { AS }}$ | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twcs | 0 |  | 0 |  | 0 |  | ns | (Note 18) |
| $\overline{\overline{R A S}}$ to $\overline{\text { WE }}$ delay | trwD | 105 |  | 130 |  | 155 |  | ns | (Note 18) |
| $\overline{\overline{C A S}}$ to $\overline{\text { WE }}$ delay | $t_{\text {cWD }}$ | 45 |  | 55 |  | 65 |  | ns | (Note 18) |
| Column address to $\overline{\mathrm{WE}}$ delay time | $t_{\text {AWD }}$ | 70 |  | 80 |  | 95 |  | ns | (Note 18) |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD424256-80}$ |  | $\mu \mathrm{PD424256-10}$ |  | $\mu$ PD424256-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $t_{A R}$ | 60 |  | 70 |  | 85 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ setup time for $\overline{\mathrm{CAS}}$ betore RAS refresh | ${ }^{\text {c CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\overline{\mathrm{CAS}}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh | ${ }^{\text {t }}$ (HR | 15 |  | 20 |  | 25 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addresses $\mathrm{A}_{0}-\mathrm{A}_{8}$ |
| Access time from $\overline{O E}$ | $\mathrm{t}_{\text {OEA }}$ |  | 20 |  | 25 |  | 30 | ns |  |
| $\overline{\overline{\mathrm{EE}} \text { data delay time }}$ | $\mathrm{t}_{\text {OED }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { OE command hold time }}$ | $\mathrm{t}_{\text {OEH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output turnoff delay from $\overline{\mathrm{OE}}$ | toez | 0 | 20 | 0 | . 25 | 0 | 30 | ns | (Note 12) |
| $\overline{\text { OE }}$ to $\overline{\mathrm{RAS}}$ inactive setup time | $\mathrm{t}_{\text {OES }}$ | 0 |  | 0 |  | 0 |  | ns |  |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any $8 \overline{\text { RAS }}$ cycles before proper device operation is achieved.
(3) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\min )$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I $\mathrm{ICC}_{1}, \mathrm{I}_{\mathrm{CC}}$, $\mathrm{I}_{\mathrm{CC}}$, and $\mathrm{I}_{\mathrm{CC}}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured by assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles. I ICC4 is measured by assuming that all column address inputs are switched only once each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or traD is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max).
(10) If $t_{R A D} \geq t_{R A D}$ (max), then the access time is defined by $t_{A A}$.
(11) For fast-page read operation, the definition of access time is as follows.

| $\overline{\overline{\mathrm{CAS}} \text { and Column Address }}$ |  |
| :--- | :---: |
| Input Condlitions | Access Time Definition |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}$ (max) $\mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{ACP}}$ |
| $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{CP}}$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \leq \mathrm{t}_{\mathrm{ASC}}(\max )$ | $\mathrm{t}_{\mathrm{AA}}$ |
| $\mathrm{t}_{\mathrm{CP}} \geq \mathrm{t}_{\mathrm{CP}}(\max ), \mathrm{t}_{\mathrm{ASC}} \geq \mathrm{t}_{\mathrm{ASC}}(\max )$ | $\mathrm{t}_{\mathrm{CAC}}$ |

(12) $t_{\text {OFF }}$ (max) and toez (max) define the time at which the outputs $^{\text {m }}$ achieve the open-circuit condition and are not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(13) Operation within the $t_{R C D}$ ( $\max$ ) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{\text {RCD }}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by tcac.
(14) The ${ }_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(15) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(16) Parameter $t_{w P}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both twCs and twCH must be met.
(17) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(18) $t_{W C S}, t_{\text {RWD }}, t_{C W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twcs $\geq$ $\mathrm{t}_{\text {WCS }}$ (min), the cycle is an early write cycle and the data I/O pins will remain open circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq$ $\mathrm{t}_{\mathrm{CWD}}(\mathrm{min}), \mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data I/O pins will contain data read from the selected cells. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until $\overline{\text { CAS }}$ returns to $V_{(H)}$ ) is indeterminate.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Write Cycle (Early Write)



Noles:
[1] $\overline{\mathbf{O E}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$.

## Timing Waveforms (cont)

## $\overline{O E}$-Controlled Write Cycle



## Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle


## Timing Waveforms (cont)

## $\overline{\operatorname{RAS}}$-Only Refresh Cycle



Timing Waveforms (cont)
$\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle


## Timing Waveforms (cont)

HIdden Refresh Cycle


## Timing Waveforms (cont)

## Page Mode Read Cycle



## Timing Waveforms (cont)

Page Mode Write Cycle (Early Write)


## Timing Waveforms (cont)

Page Mode Read-Write/Read-Modify-Write Cycle


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD424258 is a static-column, 262,144 -word by 4-bit dynamic RAM designed to operate from a single +5 -volt power supply. The device is fabricated with advanced polycide technology using trench capacitors to minimize silicon area and provide high storage cell capacity, high performance, and high reliability. The $\mu$ PD424258 also uses a single-transistor dynamic storage cell and advanced CMOS circuitry throughout, ensuring minimum power dissipation. The negativevoltage substrate bias is automatically generated internally.

The three-state I/O pins are controlled by $\overline{\mathrm{CS}}$ independent of $\overline{R A S}$. After a valid read or read-modify-write cycle, data is held on the outputs by maintaining a low $\overline{C S}$. The data outputs are returned to a state of high impedance by returning $\overline{\mathrm{CS}}$ to a high logic level. The device is also capable of executing static-column read and write cycles by switching the column address inputs.

Refreshing may be accomplished by means of a $\overline{\mathrm{CS}}$ before $\overline{R A S}$ cycle, enabling the internal generation of a refresh address. Refreshing may also be accomplished by means of $\overline{R A S}$-only refresh cycles or by normal read or write cycles on the 512 address combinations of $\mathrm{A}_{0}-\mathrm{A}_{8}$ during an $8-\mathrm{ms}$ refresh period.

## Features

262,144-word by 4-bit organizationSingle +5 -volt $\pm 10 \%$ power supplyStatic-column operationLow power dissipation$\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ internal refreshingMultiplexed address inputsOn-chip substrate bias generatorNonlatched, TTL-compatible, three-state I/O
Low input capacitance
TTL-compatible inputs
512 refresh cycles during an 8-ms period
High-density 20 -pin plastic DIP, 26/20-pin plastic SOJ, or 20-pin plastic ZIP packaging

## Pin Configurations

## 20-Pin Plastic DIP



26/20-Pin Plastic SOJ


20-Pin Plastic ZIP


831H-5374A

## Block Diagram



## Pin Identification

| Name | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $\overline{1 / O_{1}-I / O_{4}}$ | Data input/output |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{\overline{O E}}$ | Output enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $N C$ | No connection |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Voltage on any pin relative to GND | -1.0 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Short-circuit output current, IOS | 50 mA |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.
$\mu$ PD424258

## Ordering Information

| Part Number | Row Access <br> Time (max) | R/W <br> Cycle Time (min) | Address Access <br> Time (max] | Static-Column <br> Cycle Time (min) | Package |
| :---: | :---: | :---: | :---: | :---: | :---: |

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $V_{\text {IH }}$ | 2.4 |  | $V_{C C}+1.0$ | V | Referenced to GND |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 |  | 0.8 | V | Referenced to GND |
| Standby current | ${ }^{1} \mathrm{CC2}$ |  |  | 2.0 | mA | $\overline{\mathrm{RAS}}=\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$ |
|  |  |  |  | 1.0 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \end{aligned}$ |
| Input leakage current | ${ }_{1}($ L $)$ | -10 |  | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0$ to $V_{C C}$; all other pins not under test $=0 \mathrm{~V}$ |
| Output leakage current | ${ }^{0(L)}$ | -10 |  | 10 | $\mu \mathrm{A}$ | Dout disabled; $V_{O U T}=0 \text { to } V_{C C}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=4.2 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$ |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathbf{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Max | Unit | Pins Under Test |
| :--- | :--- | :--- | :--- | :--- |
| Input capacitance | $\mathrm{C}_{11}$ | 5 | pF | Address |
|  | $\mathrm{C}_{12}$ | 7 | pF | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ |
| Input/output capacitance | $\mathrm{C}_{\mathrm{D}}$ | 7 | pF | $1 / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$ |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 424258$-80 |  | $\mu \mathrm{PD} 424258-10$ |  | $\mu \mathrm{PO424258-12}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current, average | ${ }^{\text {CCC1 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}, \overline{\mathrm{CS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=t_{\text {RC }} \min$ (Note 5) |
| Operating current, $\overline{\mathrm{RAS}}$-only refresh, average | ${ }_{\text {ICC3 }}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{SS}}=V_{H} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$ (Note 5) |
| Operating current, $\overline{\mathrm{CS}}$ before RAS refresh, average | ${ }^{\text {c C } 5}$ |  | 70 |  | 60 |  | 50 | mA | $\overline{\text { RAS }}$ cycling; $t_{\text {RC }}=t_{\text {RC }}$ min ( (Note 5) |
| Random read or write cycle time | $t_{\text {RC }}$ | 160 |  | 190 |  | 220 |  | ns | (Note 6) |
| Read-write cycle time | $\mathrm{t}_{\text {RWC }}$ | 215 |  | 255 |  | 295 |  | ns | (Note 6) |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ |  | 80 |  | 100 |  | 120 | ns | (Notes 7, 8) |
| Access time from $\overline{C S}$ | $\mathrm{t}_{\text {cac }}$ |  | 20 |  | 25 |  | 30 | ns | (Notes 7, 9, 10) |
| Access time from column address | $t_{A A}$ |  | 45 |  | 50 |  | 60 | ns | (Notes 7, 10) |
| Output buffer turnoff delay | $\mathrm{t}_{\text {OFF }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| Transition time (rise and fall) | ${ }_{T}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | (Note 4) |
| RAS precharge time | $t_{\text {RP }}$ | 70 |  | 80 |  | 90 |  | ns |  |
| RAS pulse width | $t_{\text {RAS }}$ | 80 | 10000 | 100 | 10000 | 120 | 10000 | ns |  |
| RAS hold time | $\mathrm{t}_{\text {RSH }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { CS pulse width }}$ | ${ }^{\text {t }}$ CS | 20 | 100000 | 25 | 100000 | 30 | 100000 | ns |  |
| $\overline{\text { CS }}$ hold time | ${ }_{\text {t CSH }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\overline{\mathrm{AAS}}}$ to $\overline{\text { CS }}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 25 | 60 | 25 | 75 | 25 | 90 | ns | (Note 12) |
| $\overline{\overline{C S}}$ to $\overline{\mathrm{RAS}}$ precharge time | $\mathrm{t}_{\text {cRP }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 13) |
| $\overline{\overline{C S}}$ precharge time | ${ }^{1}$ CP | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\overline{\text { RAS }} \text { precharge } \overline{\mathrm{CS}} \text { hold time }}$ | $t_{\text {RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address setup time | $t_{\text {ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | $t_{\text {RAH }}$ | 12 |  | 12 |  | 15 |  | ns |  |
| $\overline{\overline{\mathrm{RAS}}}$ to column address delay time | $t_{\text {RAD }}$ | 17 | 35 | 17 | 50 | 20 | 60 | ns | (Note 10) |
| Column address setup time | $t_{\text {ASC }}$ | 0 | 20 | 0 | 20 | 0 | 25 | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to RAS (rising edge) | $\mathrm{t}_{\text {AH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address hold time referenced to RAS (write cycle) | $t_{\text {AWR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address lead time referenced to $\overline{\text { RAS }}$ (rising edge) | $t_{\text {RAL }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | $t_{\text {RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to RAS | $\mathrm{t}_{\text {RRH }}$ | 10 |  | 10 |  | 10 |  | ns | (Note 14) |
| Read command hold time referenced to CS | $\mathrm{t}_{\mathrm{RCH}}$ | 0 |  | 0 |  | 0 |  | ns | (Note 14) |
| Write command hold time | ${ }^{\text {twCH }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }^{\text {twCR }}$ | 55 |  | 70 |  | 85 |  | ns |  |

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limils |  |  |  |  |  | Unit | Tost Candtions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 424258$-80 |  | $\mu \mathrm{PD424258-10}$ |  | $\mu$ PD424258-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write command pulse width | $t_{\text {WP }}$ | 15 |  | 20 |  | 25 |  | ns | (Note 15) |
| Write command to $\overline{\text { RAS }}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write command to $\overline{\mathrm{CS}}$ lead time | ${ }^{\text {t }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | $\mathrm{t}_{\text {D }}$ | 0 |  | 0 |  | 0 |  | ns | (Note 16) |
| Data-in hold time | $t_{\text {DH }}$ | 20 |  | 20 |  | 25 |  | ns | (Note 16) |
| Data-in hold time referenced to RAS | $\mathrm{t}_{\text {DHR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | (Note 17) |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay | $\mathrm{t}_{\text {RWD }}$ | 105 |  | 130 |  | 155 |  | ns | (Nate 77) |
| $\overline{\text { CS }}$ to $\overline{\text { WE }}$ delay | $\mathrm{t}_{\text {CWD }}$ | 45 |  | 55 |  | 65 |  | ns | (Note 17) |
| Column address to $\overline{\mathrm{WE}}$ delay time | $\mathrm{t}_{\text {AWD }}$ | 70 |  | 80 |  | 95 |  | ns | (Note 17) |
| Column address hold time referenced to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {AR }}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\overline{\mathrm{CS}}}$ setup time for $\overline{\mathrm{CS}}$ before RAS refresh | ${ }_{\text {t }}^{\text {CSR }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{CS}}$ hold time for $\overline{\mathrm{CS}}$ before RAS refresh | ${ }_{\text {t }}^{\text {chR }}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Refresh period | $\mathrm{t}_{\text {REF }}$ |  | 8 |  | 8 |  | 8 | ms | Addrassec $\mathrm{A}_{0} \mathrm{~A}_{0}$ |
| Access time from $\overline{O E}$ | $\mathrm{t}_{\text {OEA }}$ |  | 20 |  | 25 |  | 30 | ns | (Note 7) |
| $\overline{\overline{0 E}}$ data delay time | $\mathrm{t}_{\text {OED }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\overline{0 E}}$ command hold time | $\mathrm{t}_{0 \text { EH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output turnoff delay from $\overline{O E}$ | $\mathrm{t}_{0 \text { EZ }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 11) |
| $\overline{0 \mathrm{E}}$ to $\overline{\mathrm{RAS}}$ inactive setup time | $\mathrm{t}_{0 \text { ES }}$ | 0 |  | 0 |  | 0 |  | ns |  |

## Static-Column Mode

| Operating current, staticcolumn operation, average | ICC4 |  | 60 |  | 50 |  | 40 | mA | $R A S=C S=V_{L L}$ addresses cycling; $t_{\text {RSC }}=$ trss min or twsc $=$ twsc $^{\text {min }}$ (Note 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read cycle time | $\mathrm{t}_{\text {RSC }}$ | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Write cycle time | twSC | 50 |  | 60 |  | 70 |  | ns | (Note 6) |
| Read/write cycle time | $\mathrm{t}_{\text {RWSC }}$ | 120 |  | 145 |  | 170 |  | ns | (Note 6) |
| Access time from WE | tpWA |  | 90 |  | 110 |  | 130 | ns | (Notes 7, 18) |
| $\overline{\mathrm{RAS}}$ pulse width | $t_{\text {RASC }}$ | 80 | 100000 | 100 | 100000 | 120 | 100000 | ns |  |
| $\overline{\overline{\text { RAS }} \text { to second } \overline{\text { WE }} \text { delay time }}$ | $t_{\text {RSW }}$ | 95 |  | 115 |  | 135 |  | ns |  |
| $\overline{\overline{W E}}$ to column address delay time | ${ }^{\text {twad }}$ | 20 | 45 | 25 | 55 | 25 | 65 | ns | (Note 18) |
| Column address hold time referenced to WE | tpWH | 90 |  | 110 |  | 130 |  | AS |  |

## AC Characteristics (cont)

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 242458$-80 |  | $\mu$ PD424258-10 |  | $\mu \mathrm{PD} 424258 \mathrm{l}$-12 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write invalid time | $t_{W}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output hold time from address | ${ }^{\text {OH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output enable time from $\overline{\mathrm{WE}}$ | $\mathrm{t}_{\mathrm{OW}}$ |  | 25 |  | 30 |  | 35 | ns | (Note 7) |

## Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight $\overline{R A S}$ cycles before proper device operation is achieved.
(3) Ac measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) $V_{I H}(\min )$ and $V_{I L}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
(5) I $\mathrm{ICC}_{1}, \mathrm{I}_{\mathrm{CC} 3}, \mathrm{I}_{\mathrm{CC} 4}$, and $\mathrm{I}_{\mathrm{CC} 5}$ depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured by assuming that all column address inputs are held at either a high level or a low level during RAS-only refresh cycles. I ICC4 is measured by assuming that all column address inputs are switched only once each static-column cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ( $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ ).
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or $t_{\text {RAD }}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max).
(10) If $t_{\text {RAD }} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(11) $t_{\text {OFF }}$ (max) and t $_{\text {OEZ }}$ (max) define the time at which the outputs achieve the open-circuit condition and are not referenced to $\mathrm{V}_{\mathrm{OH}}$ or $\mathrm{V}_{\mathrm{OL}}$.
(12) Operation within the $t_{R C D}$ (max) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $t_{C A C}, t_{A A}$, or toEA.
(13) The t ${ }_{\text {CRP }}$ requirement should be applicable for $\overline{R A S} / \overline{C S}$ cycles preceded by any cycle.
(14) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(15) Parameter ${ }^{W}$ WP is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both $t_{\text {WCS }}$ and $t_{\text {WCH }}$ must be met.
(16) These parameters are referenced to the falling edge of $\overline{\mathrm{CS}}$ for early write cycles and to the falling edge of $\overline{W E}$ for delayed write or read-modify-write cycles.
(17) $t_{\text {WCS }}, t_{\text {RWD }}, \mathrm{t}_{\mathrm{CWD}}$, and $\mathrm{t}_{\mathrm{AWD}}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If twos $\geq$ $\mathrm{t}_{\text {WCS }}$ ( min ), the cycle is an early write cycle and the data I/O pins will remain open circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq$ $\mathrm{t}_{\mathrm{CWD}}(\mathrm{min}), \mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data I/O pins will contain data read from the selected cells. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until CS returns to $\mathrm{V}_{(H)}$ ) is indeterminate.
(18) If $t_{\text {WAD }} \leq t_{\text {WAD }}$ (max), then the access time is defined by $t_{\text {PWA }}$.

## Timing Waveforms

## Read Cycle



## Timing Wrwefowns (cont)

## Write Cyche (Early Wrfte)



## Timing Waveforms (cont)

## Write Cycle (Late Write)



## Timing Waveforms (cont)

Read-Modify-Wrlte Cycle


## Timing Waveforms (cont)

## RAS-Only Refresh Cycle


[1] $\overline{O E}$ and $\overline{W E}=$ don't care.

## $\overline{\text { CS }}$ Before $\overline{\text { RAS }}$ Refresh Cycle



## Timing Waveforms (cont)

Hidden Refresh Cycle


## Timing Waveforms (cont)

## Static-Column Read Cycle



## Timing Waveforms (cont)

## Statlc-Column Write Cycle (Early Write)



Note:
[1] $\overline{O E}=$ don't care.

## Timing Waveforms (cont)

Static-Column Read-Modify-Write Cycle


## Description

NEC's $\mu$ PD421000, $\mu$ PD421001, and $\mu$ PD421002 are 1-megabit dynamic RAMs (DRAMs) manufactured with the CMOS $1-\mu \mathrm{m}$ fine-pattern process and configured as $1,048,576 \times 1$ bit. As shown in table 1 , this family of DRAMs has been developed in a variety of speeds and packages. The package pin layouts appear in figure 1.

## Configurations

The $\mu$ PD421000, $\mu$ PD421001, and $\mu$ PD421002 (figures 2, 3 , and 4) consist of memory cell arrays, input and output buffers, clock generators, refresh address counters, and row and column decoders.

The basic layout of the chips is shown in figure 5. As can be seen from the diagram, the whole memory cell array is divided into 16 smaller 64-kilobit arrays that are accessed separately.

## Memory Cell Structure

Dynamic RAMs generally feature one-transistor memory cells, which require only about one-fourth of the area used by four-transistor and six-transistor (flipflop) memory cells in static RAMs. Although a onetransistor cell provides a big advantage in reducing chip size, data must be rewritten (refreshed) at regular intervals for proper data storage on the memory cell capacitor. A cross-sectional view of the trench-type, one-transistor memory cell used in the $\mu$ PD421000series DRAMs is shown in figure 6.

This trench design uses three-dimensional rather than planar capacitors, thereby achieving a larger capacitance in a smaller surface area than in conventional circuits. The capacitance of this type of cell is determined by total trench area, the dielectric constant, and the thickness of the insulating film. To reduce soft errors caused by $\alpha$-particles, an effective capacitance in excess of 50 femtofarads ( fF ) is used in the $\mu$ PD421000, $\mu$ PD421001, and $\mu$ PD421002.

Figure 1. Pin Layouts

## 18-Pin Plastic DIP



26/20-Pin Plastic SOJ


20-Pin Plastic ZIP


Table 1. $1,048,576 \times 1$-Bit DRAM Family

| Device | $\begin{aligned} & \overline{\mathrm{RAS}} \text { Access } \\ & \text { Time (max) } \end{aligned}$ | R/W Cycle Time [min] | Operating Current (max) | Standby Current (max) | $\begin{gathered} \text { High-Spead } \\ \text { Mode } \end{gathered}$ | Packages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 421000-80$ | 80 ns | 160 ns | 70 mA | 1 mA | Fast Page | $C=18$-pin plastic DIP |
| -10 | 100 ns | 190 ns | 60 mA | 1 mA |  | $V=20$-pin plastic ZIP |
| -12 | 120 ns | 220 ns | 50 mA | 1 mA |  | $L A=26 / 20-p i n$ plastic SOJ |
| $\mu \mathrm{PD} 421001-80$ | 80 ns | 160 ns | 70 mA | 1 mA | Nibble |  |
| -10 | 100 ns | 190 ns | 60 mA | 1 mA |  |  |
| -12 | 120 ns | 220 ns | 50 mA | 1 mA |  |  |
| $\mu \mathrm{PD} 421002-80$ | 80 ns | 160 ns | 70 mA | 1 mA | Static Column |  |
| -10 | 100 ns | 190 ns | 60 mA | 1 mA |  |  |
| -12 | 120 ns | 220 ns | 50 mA | 1 mA |  |  |

Figure 2. $\mu$ PD 421000 Block Diagram


Figure 3. $\mu$ PD 421001 Block Diagram


Figure 4. $\mu$ PD 421002 Block Diagram


Figure 5. Chip Layout of $\mu$ PD421000-Series DRAMs


Notes:
[1] The memory is divided into sixteen 64-kbit memory cell arrays.
[2] RD = row decoder/word driver.

Figure 6. Cross Section of 1-Transistor Memory Cell


## Read/Write Operation

In dynamic RAMs, changes in bit line potential caused by the minute charging and discharging of memory cells are amplified by a sense amplifier to be read as either 1 or 0 . Memory cell and sense amplifier equivalent circuits are shown in figure 7.
To read the data from storage cell $\mathrm{C}_{\mathrm{S11}}$, the row address selects word line $\mathrm{WL}_{1}$, and data from memory cells $\mathrm{C}_{\mathrm{S} 11}, \mathrm{C}_{\mathrm{S} 21}, \ldots, \mathrm{C}_{\mathrm{Sn} 1}$ connected to $\mathrm{WL}_{1}$ is passed to bit lines $B L_{1}, B L_{2}, \ldots, B L_{n}$. These data signais are passed to the sense amplifiers, where they first are compared with data from dummy cells $\mathrm{C}_{\mathrm{D11}}$, $\mathrm{C}_{\mathrm{D} 21}, \ldots, \mathrm{C}_{\mathrm{Dn} 1}$, connected simultaneously with the
memory cells, and then amplified. At the same time, the original data is rewritten to memory cells $\mathrm{C}_{\mathrm{S} 11}$, $\mathrm{C}_{\mathrm{S} 21}, \ldots, \mathrm{C}_{\mathrm{Sn} 1}$. Switch $\mathrm{Y}_{1}$ is then selected by the column address, and the $\mathrm{C}_{\mathrm{S} 11}$ data on the $B L_{1}$ line is passed via the I/O bus and a data amplifier to external circuits.

Write and read operations are identical, up to amplification and rewriting of memory cell data selected by a row address. After being passed to the bit line selected by the column address, write data is written into a target memory cell (such as $\mathrm{C}_{\mathrm{S} 11}$ ). Since the number of memory cells selected by one row address in the devices is 2048, 2048 memory cells are refreshed simultaneously in each memory or refresh cycle.

Figure 7. Memory Cell and Sense Amplifier Equivalent Circuits


## Pin Functions

$\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ [ $\mathrm{or} \overline{\mathbf{C S}}$ ]. The $\mu$ PD421000-series DRAMs include two chip activator inputs: $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ), row address strobe and column address strobe (or chip select). In addition to reading row addresses $A_{0}$ through $A_{9}$, selecting the relevant word line, and activating the sense amplifiers for read and write operation, the RAS input also refreshes the 2048 bits selected by row addresses $A_{0}$ through $A_{8}$. The CAS input latches in column addresses (on the $\mu$ PD421000 and the $\mu$ PD421001) and connects the chip's internal I/O bus to the sense amplifiers activated by the $\overline{\mathrm{RAS}}$ clock, thereby executing data input or output operations.
$\mathbf{A}_{\mathbf{0}}$ through $\mathbf{A g}_{\mathbf{g}}$. Selection of an individual cell from the $1,048,576$-word $\times 1$-bit memory cell array requires a 20 -bit address input. The three devices all feature an address multiplexing method in which an address is divided into two parts, the lower 10 bits (row address) and the upper 10 bits (column address).
The row address is latched into memory at the falling edge of the $\overline{R A S}$ clock. After an internal timing delay, the column address input circuits become active. Flow-through latches (voltage-level activated, not edge-triggered) for column addresses are enabled on the $\mu$ PD421000 or $\mu$ PD421001, and the column addresses immediately begin propagating through the latches to the column decoders. A column address is held in the latches by the falling edge of $\overline{\mathrm{CAS}}$. For read cycles on the $\mu$ PD421002, the column address input circuitry is not controlled by $\overline{\mathrm{CS}}$, and column addresses must be held valid until data is read out.

Setup times ( $\mathrm{t}_{\text {ASR }}$ and $\mathrm{t}_{\text {ASC }}$ ) and hold times ( $\mathrm{t}_{\text {RAH }}$ and $t_{C A H}$ ) for address inputs are defined in relationship to the falling edges of $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ ( $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ for write cycles on the $\mu$ PD421002). In actual operation, a row address is specified before the $\overline{\text { RAS }}$ input is activated; once the address bus switches to column addresses, $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) is activated.
WE [Write Enable]. Read and write cycles are executed by activating the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) inputs and controlling WE. An early write cycle is executed if WE is activated before the falling edge of $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) during a write cycle, and a late write (read-modify-write) cycle is executed if the WE input is activated later.

## Read and Write Cycles

Read cycles are executed by activating $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ (or $\overline{\mathrm{CS}}$ ) with the $\overline{\mathrm{WE}}$ input at a high level (inactive). The $\overline{\text { RAS }}$ access time of $t_{\text {RAC }}$ is valid if the delay from $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) is less than $\mathrm{t}_{\mathrm{RCD}}$ (max), and the delay from RAS to the column address is less than trad (max). The $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) access time of $\mathrm{t}_{\mathrm{CAC}}$ is valid if the delay from $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) is greater than $t_{\mathrm{RCD}}$ (max), and the delay from the column address to $\overline{\mathrm{CAS}}$ ( $\mathrm{or} \overline{\mathrm{CS} \text { ) }}$ is greater than $\mathrm{t}_{\mathrm{ASC}}$ (max). The address access time of $t_{A A}$ is valid if the delay from $\overline{R A S}$ to the column address is greater than $t_{\text {RAD }}$ (max), and the delay from the column address to $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) is less than $\mathrm{t}_{\mathrm{ASC}}$ (max). Output data is held valid until $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) becomes inactive again (figure 8).
Write cycles are executed by activating the $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ), and $\overline{\mathrm{WE}}$ inputs. Write data is latched by the falling edge of $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) or $\overline{\mathrm{WE}}$, whichever occurs later.
A $\overline{W E}$ input applied before the $\overline{C A S}$ (or $\overline{\mathrm{CS}}$ ) input initiates an early write cycle, whereby write data is latched by the falling edge of $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ).
Conversely, a $\overline{W E}$ input applied after the $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) input initiates a late write cycle (read-modify-write cycle), whereby write data is latched into the chip by the falling edge of WE. The status of DOut is not guaranteed in this case, but depends on the timing of $\overline{W E}$ with respect to $\overline{R A S}$ and $\overline{\overline{C A S}}$ (or $\overline{\mathrm{CS}}$ ). If $\overline{\mathrm{WE}}$ is activated at least tcwd after the $\overline{C A S}$ (or $\overline{\mathrm{CS}}$ ) input, and at least $t_{\text {RWD }}$ after the RAS input, write operation is enabled in the same memory cycle during which the read data is valid.

## Refresh Cycles

The process of rewriting data held in a memory cell, refreshing, is performed by a sense amplifier in the $\mu$ PD421000-series DRAMs. The three devices are capable of executing the same $\overline{\text { RAS }}$-only and $\overline{\text { CAS }}$ (or $\overline{\mathrm{CS}}$ )-before- $\overline{\mathrm{RAS}}$ refresh cycles as are executed in other conventional, general-purpose DRAMs. All 512 rows of memory cells must be refreshed within any 8 -ms period.
Since in image memory applications, row addresses $A_{0}$ through $A_{8}$ are read or written sequentially within 8 ms , the accessing itself initiates refreshing and no additional refresh cycles are required.

Figure 8. Access Timing


Notes:

[2] Timing tCAH applies to the $\mu$ PD421000 and the $\mu$ PD421001.
[3] Timing taH applies to the $\mu$ PD421002.

RAS-Only Refresh Cycle. $\overline{\text { RAS-only }}$ refreshing is executed simply by leaving the $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) input inactive (high level) during a $\overline{\text { RAS }}$ clock cycle. This cycle uses the 512 lower addresses specified by row addresses $\mathrm{A}_{0}$ through $\mathrm{A}_{8}$ to ensure that all memory cell bits are refreshed. Hence, 2048 bits of memory are refreshed in a single cycle (figure 9).
$\overline{\mathbf{C A S}}$ [or $\overline{\mathbf{C S}}]$-Before- $\overline{\mathrm{RAS}}$ Refresh Cycle. This type of refreshing is executed using the addresses generated by the chip's internal address counter when CAS (or $\overline{\mathrm{CS}}$ ) is activated (low level) in advance of the $\overline{\text { RAS }}$ input (figure 10).

Even in systems without an address output from the microprocessor, no additional external address counter or refresh address selector is required. $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ )-before- $\overline{R A S}$ refreshing allows refreshing to be accomplished with a minimum of peripheral circuits (figure 11).

## High-Speed Access Cycles

In addition to being capable of standard access, the $\mu$ PD421000 is equipped with fast-page access, the $\mu$ PD421001 with nibble access, and the $\mu$ PD421002 with static-column access (table 2).

Flgure 9. $\overline{R A S}-O n l y$ Refresh Cycle


| DOUT |
| :--- |
| Row address Ag is not necessary for refreshing, but the taSR and trat <br> specifications must be satisfled just as for other addresses. |
| 8 83-004472B |

Figure 10. $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ )-Before- $\overline{\mathrm{RAS}}$ Refresh Cycle


Figure 11. Address Multiplexing

Table 2. Major Characteristics of Fast-Page, Nibble, and Static-Column Modes

| Device | Access Time [max] | Cycle Time (min) | Internal Address Usage | High-Speed Access |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD421000-80}$ | 45 ns | 50 ns | Row: Page selection Column: Individual cell access on one page | Random access on one page selected by $A_{0}$ through $A_{9}$ |
| -10 | 50 ns | 60 ns |  |  |
| -12 | 60 ns | 70 ns |  |  |
| $\mu$ PD421001-80 | 20 ns | 40 ns | Row, Column: Ag inputs set starting location for nibblemode access | Serial access (4 bits maximum) |
| -10 | 25 ns | 45 ns |  |  |
| -12 | 30 ns | 55 ns |  |  |
| $\mu$ PD421002-80 | 45 ns | 50 ns | Row: Row selection Column: Individual cell access on one row | Random access on one row selected by $A_{0}$ through $A_{9}$ |
| -10 | 50 ns | 60 ns |  |  |
| -12 | 60 ns | 70 ns |  |  |

Fast-Page Mode. Fast-page mode makes it possible to randomly access data in the same row address (figures 12 and 13). The 1024 bits of memory are obtained from the combinations of column address inputs $A_{0}$ through $A_{9}$ within one row address in the $\mu$ PD421000. Up to

1998 continuous accesses can be executed on the $80-n s$ version before the maximum interval for $t_{\text {RASP }}$ ( $100 \mu \mathrm{~s}$ ) is reached.

The $t_{P C}$ cycle time for random fast-page read or write cycles is equivalent to $t_{C A S}+t_{C P}+2 t_{T}$.

Figure 12. Memory Cell/Sense Amplifier Block of the $\mu$ PD421000


Flgure 13. Fast-Page Timing


Nibble Mode. In nibble-mode cycles, the first data location is specified by row and column addresses $A_{0}$ through $A_{g}$ during a read or write cycle (table 2 and figures 14 and 15). When the $\mu$ PD 421001 internally
sequences the two highest-order addresses ( $A_{9}$ ) during the next CAS clock cycle, read and write cycles can be executed in less time than in fast-page operation.

Figure 14. Nibble-Mode Block Dlagram and Example of Access Sequence


Figure 15. Nibble-Mode Timing


For the 80-ns version, the average cycle time per bit in nibble mode is 70 ns , when 4 bits are accessed during a long $t_{\text {RAS }}$ cycle (figure 16). By using multiple $\mu$ PD421001
devices, high-speed cache and frame buffer applications are possible (figure 17).

Figure 16. Average Data Rate in Nibble Access


## Notes:

[1] Minfmum trc [ns] in nibble mode:

$=80+40 \times 2+10+20+70+20$
$=280 \mathrm{~ns}$ [for 4 bits]

Figure 17. High-Speed Data Access Using Nibble Mode


Static-Column Mode. Row and column addresses are functionally equivalent in static-column and fast-page access. The available number of continuous accesses on one row, and the cycle timing, are also similar to fast-page operation.

In a static-column device, there are no setup or hold timing requirements for read addresses; $\overline{\mathrm{CS}}$ may be held low continuously in the ON-state. To allow this feature, the column addresses must be maintained as valid inputs for the duration of each cycle. There are few other restrictions on timing (figure 18).

Figure 18. Static-Column TIming


## Precautions

Precautions when using the $\mu$ PD421000, $\mu$ PD421001, $\mu$ PD421002, and other DRAMs should be carefully observed in the areas listed below:

- Power-on and initialization
- Supply voltage fluctuations caused by peak currents
- Relationships between address/data inputs and drivers
- $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) generation

Power-On and Initialization. Dynamic RAMs operate by the charging and discharging of gate and internal circuit capacitances. Therefore, dummy $\overline{R A S}$ clock cycles must be executed to charge internal potentials to the prescribed levels when power is applied. Dummy $\overline{R A S}$ cycles are also necessary when there has been no accessing (reading, writing, or refreshing) for periods longer than the refresh interval (figure 19).

To control transistor threshold voltages and decrease internal stray capacitance, DRAMs are usually equipped with a substrate voltage generator circuit to supply the chip's interior with negative voltage. Approximately $100 \mu \mathrm{~s}$ is required to generate an adequate negative voltage level after power is applied and $\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$.

When the power is switched on, a peak current dependent on the levels of $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ), and $\overline{W E}$ is reached during the rising of $V_{C C}$. This peak current-maximum when $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) are active and $\overline{W E}$ is inactive-can be minimized by using clock input pullups on $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) so that their rise times correspond to the rise time of the power supply.

Supply Voltage Fluctuations. Since 1 and 0 logic (storage) operations are executed by the charging and discharging of capacitances, including the memory cells, the peak current generated is dependent on charge and discharge timing.
This peak current is concentrated just after $\overline{\operatorname{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) transition intervals (figure 20 ) with a peak value of about 120 mA . Since this current is a source of noise (voltage drop) in the memory system supply voltage, decoupling by multilayer ceramic capacitors with excellent frequency response is necessary. If the average of the $120-\mathrm{mA}$ peak current pulse lasts about 100 ns , the capacitance required to keep the drop in the
supply voltage line at about 0.1 V will be calculated as follows:

$$
\begin{aligned}
C & =\frac{120(\mathrm{~mA}) \times 100(\mathrm{~ns})}{0.1(\mathrm{~V})} \\
& =120 \times 10^{3} \mathrm{pF} \\
& =0.12 \mu \mathrm{~F}
\end{aligned}
$$

Therefore, when designing the memory board, keep the power and ground leads as short as possible for low inductance. Decoupling capacitors of about $0.2 \mu \mathrm{~F}$ must be inserted between the power supply lines for each memory device. With careful board layout, the use of fewer but larger capacitors is possible. Capacitors used in one of every two memory device locations, with a value of perhaps $0.33 \mu \mathrm{~F}$, can provide satisfactory decoupling in many cases.

Figure 19. Dummy Cycles after Power is Applied


Figure 20. Operating Current Waveform


Address/Data Inputs and Drivers. Probably the most important consideration in DRAM timing is the relationship between address/data inputs and the external drivers. In address-multiplexed DRAMs such as the $\mu$ PD421000, $\mu$ PD421001, and $\mu$ PD421002 (where row and column addresses are supplied as two sets of inputs), addresses supplied externally have to be switched by a multiplexer.

The sequence of this timing must be designed very carefully. A timing sequence starts with the setting of row addresses. Next, $\overline{R A S}$ falls. After the specified hold time for row addresses is met, the addresses are switched to set up column address input. Once $\overline{C A S}$ (or $\overline{\mathrm{CS}}$ ) falls, the specified hold time for column addresses must be satisfied.

When $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) is activated within the time specified for $t_{R C D}$ (max), the setup time for column addresses is more difficult to guarantee than when $t_{R C D}$ is longer than $t_{\text {RCD }}$ (max), because one external address driver has to drive more than one address pin in an array of DRAMs. The address multiplexer's delay time is increased by load capacitances larger than the typical value.

For illustration, measurements of output delay times for certain drive load capacitances are shown in figure 21.

In the design of high-density memory boards having a large number of memory devices, partitioning of drivers becomes necessary because of wiring and through-hole capacitances. Special care must be taken to ensure that the setup and hold times for addresses conform with the specifications. Otherwise, invalid or undefined addresses may be latched into the chip, and data may be destroyed even if nothing is written.
$\overline{\text { RAS }}$ and $\overline{\mathbf{C A S}}$ [or $\overline{\mathbf{C S}}$ ] Generation. In addition to reading the address inputs, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) also generate the basic timing for all DRAM circuit operations. The internal timing generators are connected in daisy-chain fashion, and are completely controlled by the basic $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) inputs. Because of this control, the memory system design must prevent noise glitches from being generated in the $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) inputs.
$\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) timing is specified in terms of minimum values. High-or low-level pulses that do not satisfy these minimum values can result in incorrect output data (because there is insufficient time for sense amplifier operation), and can also lead to destruction of write data. Therefore, the prevention of noise glitches must be carefully considered in logic and circuit design.

Figure 21. Effect of Load Capacitance on TTL (7404) Output

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Delay and Transition Times |  | Time $[\mathrm{ns}]$ |  |
|  |  | $\mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}$ | $\mathrm{C}_{\mathrm{L}}=110 \mathrm{pF}$ |
| Parameter | $\mathrm{C}_{\mathrm{L}}=210 \mathrm{pF}$ |  |  |
| tPLH | 9 | 16.5 | 26 |
| $\mathrm{tPHL}^{t_{\mathrm{R}}}$ | 5.5 | 12.5 | 17 |
| $\mathrm{t}_{\mathrm{F}}$ | 3.2 | 7.8 | 15 |

Notes:
[1] tPLH, tPHL are defined as the delay time from VIN $=1.5 \mathrm{~V}$ to VOUT $=2.4 \mathrm{~V}$ or 0.8 V .
[2] $t_{R}$ and $t_{F}$ are defined as the transition time between VOH [min] and VOL [max].
[3] Load capacitance CL includes the oscilloscope input capacitance.


83-005257B

## V40'" MICROPROCESSOR APPLICATION

## Features

The $\mu$ PD70208 (also known as V40) is a high-performance 8 -bit CMOS microprocessor featuring 16-bit architecture in the CPU, and including a number of other peripheral devices within the same chip. The CPU is equipped with a powerful set of instructions that cover bit processing and multiple-length, packed-BCD operations, high-speed multiplications and divisions, and variable-length bit and field manipulations.
This device combines high-speed processing with flexibility in a variety of applications. The on-chip peripherals include a clock generator with a timer/ counter and programmable wait control, refresh control, serial control, interrupt control, and DMA control units. In addition to allowing more compact microcomputer systems, the V40 has a simplified system design.
When connected to the $\mu$ PD421000-series DRAMs, the V40 does not require an external refresh timer or other peripherals, which means a big reduction in the number of external devices required.

## Memory Mapping

In the V40, memories of up to 1 megaword can be accessed using address information ( $\mathrm{A}_{19}$ through $\mathrm{A}_{0}$ ) output from the 20-bit address bus (figure 22).
The first 1024 bytes, 0 through 3FFH, are allocated to interrupt vectors (although areas that cannot be used by the system can be used elsewhere). Addresses FFFFOH through FFFFBH are used for starting and resetting purposes; FFFFCH through FFFFFH are reserved for future use and cannot be used here. The remaining address space, 400 H through FFFEFH, is not allocated and may be used as desired.
As shown in figure 23, with a data bus width of 8 bits in the V40, CPU connections to the memory require only that the 20 -bit address output from the CPU be accepted in the 1-megabyte address space. Byte data is accessed in one bus cycle, and word data is accessed in two bus cycles.

V40 is a trademark of NEC Corporation.

Because of this simple connection requirement, it is only necessary to allocate the system control ROM to addresses of at least FFFFOH and disable the ROM-area RAM (since 1 megabyte is already taken up by eight 1 -megabit DRAMs). The method used may involve either deselecting the ROM-area RAM by a decoder, or executing bank switching to use the entire area as RAM area. The example included for this application shows the former method because it is simpler.

Figure 22. V40 Memory Mapping


Figure 23. V40 Memory Interface


## Hardware Configuration

Since refresh addresses and the timing control outputs can be supported by programming on-chip circuits, the generation of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) timing is the only major DRAM support not provided directly by the V40 (figure 24).

## Memory Access Timing Generation

Although V40 memory access timing can be generated from either the bus status or MWR/MRD, the $\mu$ PD71088 system bus controller is used in this application example to enable connections to slightly slowerspeed memories. The $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) signals are thus generated by decoding the bus status.

The $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) generator is shown in figure 25 , and the operation timing in figure 26. To generate the control timing with this system controller, bus status signal $\mathrm{BS}_{2}$ is sampled by the CPU clock output ( $\phi_{\text {OUT }}$ ) at the rising edge of the $T_{1}$ cycle, and RAS is generated from FF2 at the falling edge of $\phi_{\text {OUT }}$ at the end of T1. The multiplex control signal (MPX) used in address switching during memory cycles is generated by $\overline{\text { RAS. After } \overline{\text { RAS }} \text { is generated, it is delayed by the }}$ rising edge of the external $16-\mathrm{MHz}$ clock to create MPX, which is then passed to the data selector input.

As can be seen from figure 26, memory access time is equal to $2 / \mathrm{f}\left(\phi_{\text {OUT }}\right)$ - ( $\mathrm{t}_{\text {SDK }}+$ TTL delay time). Even if an external clock of 16 MHz is used, a -12 device is sufficient (RAS access time in the -12 device is 120 ns ).

Figure 24. Hardware Configuration for the Use of 1M DRAMs


Figure 25. $\overline{R A S}$ and $\overline{C A S}$ (or $\overline{C S}$ ) Timing Generator


Figure 26. $\overline{\operatorname{RAS}}$ and $\overline{C A S}$ (or $\overline{C S}$ ) Timing Sequence


## Refresh Timing Generation

Refreshing for the $\mu$ PD421000, $\mu$ PD421001, and $\mu$ PD421002 is executed by selecting 512 lines in 8 ms . In the V40, memory refreshing can be handled easily by outputting the $\overline{\operatorname{REFRQ}}$ control signal and the $A_{0}$ through $A_{8}$ refresh addresses. These signals are controlled by programming the refresh control register (RFC), allocated to I/O address FFF2H (figure 27).

Figure 27. Programming of Refresh Control Register


Refresh Interval $[\mu \mathrm{s}]=\mathbf{8} \times \mathbf{N} \times$ Clock Cycle Time $[\mu \mathrm{s}$ ]

This function generates the $\overline{\text { REFRQ }}$ control signal in accordance with the programmed interval. In this application example, $\overline{\operatorname{REFRQ}}$ is used to disable generation of the $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) clock during refresh cycles, thereby initiating $\overline{\operatorname{RAS}}$-only refreshing. Figures 28 and 29 show how to generate memory addresses and how to control data input and output by using control signals generated by the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{CS}}$ ) timing generator. Figure 30 shows the timing for V40generated refresh addresses.
The programmed values for the control register appear in figure 27 (also refer to the $\mu$ PD70208/ $\mu$ PD70216 User's Manual).
Authorization for the $\mu$ PD70208/ $\mu$ PD70216 refresh control unit to use the memory bus can be set either to top priority or lowest priority, depending on the hold status of the refresh request. Top priority is set if seven refresh requests are being held, and refreshing is executed consecutively until the number of requests is reduced to three.
Although a wait interval of maximum duration (three clocks) is inserted by the built-in wait control unit, if a reset input is applied after power is applied, no wait interval need be inserted in actual applications. Therefore, the wait control register has to be reset when the V40 is used at 8 MHz .
Wait control registers WCY2 (FFF6H), WCY1 (FFF5H), and WMB (FFF4H) write program data at these I/O addresses using an I/O write instruction (figure 31).

Figure 28. Memory Access Generation


Figure 29. Data Input and Output Control


Figure 30. Refresh Timing Cycle


## Dummy Cycles

As explained previously, dummy cycles are required to charge certain internal voltage potentials to proper operating levels in the DRAM's internal circuits after power has been applied.

In the following application example, these dummy cycles are implemented by executing eight write (or read) cycles, from 0000 H to 00007 H , in the memory.

|  | MOV | AL, 0000 H |
| :--- | :--- | :--- |
| LOOP: | MOV | $(B L), 0000 \mathrm{H}$ |
|  | INC | AL |
|  | CMP | AL,00007H |
|  | JNZ | LOOP |

Figure 31. Register Programming

WCY1 [Wait Cycle Register 1] . . . . I/O Address FFF5H

| 7 | 6 | 5 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10 W$ | UMW | MMW | LMW |  |  |
| 1 WCY1 |  |  |  |  |  |

## Composite Schematic

Figure 32 shows the complete schematic. The V40 and 1M CMOS DRAMs are included, as well as circuits to control timing and refreshing.

| IOW [I/O Wait] |
| :--- |
| UMW [Upper Memory Block Wait] |
| MMW [Middle Memory Block Wait] |
| LMW [Lower Memory Block Wait] |
| IOW/UMW/MMW/LMW |
| 00 |
| 01 |

WCY2 [Wait Cycle Register 2] .... I/O Address FFF6H


| DMAW <br> RFW | [DMA Wait] <br> [Refresh Wait] |
| :---: | :---: |
| DMAW/RFW | Number of Wait States |
| 00 | 0 |
| 01 | 1 |
| 10 | 2 |
| 11 | 3 |

WMB [Wait Memory Boundary Register] . . . . I/O Address FFF4 ${ }_{H}$

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LMB |  |  |  | UMB |  |

LMB [Lower Memory Block]
UMB [Upper Memory Block]

| LMB/UMB | Memory Block Size |
| :---: | :---: |
| 000 | 32 KB |
| 001 | 64 KB |
| 010 | 96 KB |
| 011 | 128 KB |
| 100 | 192 KB |
| 101 | 256 KB |
| 110 | 384 KB |
| 111 | 512 KB |

Figure 32. Composite Schematic


## Section 6

Static RAMs

| $\mu$ PD4311 |  |
| :--- | :---: |
| $16,384 \times 1$-Bit Static CMOS RAM | $\mathbf{6 - 1}$ |
| $\mu$ PD4314 |  |
| $4,096 \times 4$-Bit Static CMOS RAM | $6-5$ |
| $\mu$ PD4361 |  |
| $65,536 \times 1$-Bit Static CMOS RAM | $6-9$ |
| $\mu$ PD4362 |  |
| $16,384 \times 4$-Bit Static CMOS RAM | $\mathbf{6 - 1 5}$ |
| $\mu$ PD4363 |  |
| $16,384 \times 4$-Bit Static CMOS RAM | $\mathbf{6 - 2 1}$ |
| $\mu$ PD4364 |  |
| $8,192 \times 8$-Bit Static CMOS RAM | $\mathbf{6 - 2 7}$ |
| $\mu$ PD4464 |  |
| $8,192 \times 8$-Bit Static CMOS RAM | $\mathbf{6 - 3 3}$ |
| $\mu$ PD43254 |  |
| $65,536 \times 4$-Bit Static CMOS RAM | $\mathbf{6 - 3 9}$ |
| $\mu$ PD43256A |  |
| $32,768 \times 8$-Bit Static CMOS RAM | $\mathbf{6 - 4 5}$ |
| APPLICATION NOTE 50 <br> Battery Backup Circuits for SRAMs | $\mathbf{6 - 5 1}$ |

## Description

The $\mu$ PD4311 is a 16,384 -word by 1 -bit static random access memory fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD4311 a high-speed device that requires very low power and no clock or refreshing to operate.
The $\mu$ PD4311 is packaged in a 20-pin plastic DIP.

## Features

$\square$ Single +5 -volt supplyFully static operation - no clock or refreshing requiredTTL-compatible inputs and outputsSeparated data input and outputThree-state outputLow power dissipation

- 80 mA max (active)
$-2 \mathrm{~mA} \max$ (standby)Standard 300-mil, 20-pin plastic DIP


## Ordering Information

| Part Number | Access Time $[$ max $]$ | Package |
| :--- | :--- | :--- |
| $\mu$ PD4311C-35 | 35 ns | 20-pin plastic OHR |
| $\frac{\mathrm{C}-45}{\mathrm{C}-55}$ | 45 ns |  |

## Pin Configuration

## 20-Pin Plastic DIP



## Pin Identirication

| Symbol | Function |
| :---: | :---: |
| $A_{0}-A_{13}$ | Address inputs |
| N | Data input |
| H/ | Data output |
|  | Chip select |
| W6, | Write enable |
| GND | Ground |
| $\mathrm{V}_{\mathrm{CC}}$ | +5-volt power supply |

## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}($ Note 1$)$ | -0.5 to +7.0 V |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ | -0.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

Notes:
(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V} \min$ for 20 ns maximum pulse.

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

## Capacitance

| $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1) |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Limits |  |  | Test <br> Parameter |  |  |  |  |  |
|  | Symbol | Min | Typ | Max | Unit |  |  |  |  |  |
| Conditions |  |  |  |  |  |  |  |  |  |  |

## Notes:

(1) This parameter is sampled and not $100 \%$ tested.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\text { WE }}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | X | Not selected | $\mathrm{Hi}-\mathrm{Z}$ | Standby |
| L | H | Read | $\mathrm{D}_{\text {OUT }}$ | Active |
| L | L | Write | $\mathrm{Hi}-\mathrm{Z}$ | Active |

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parametar | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low <br> (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.5 | 0.8 | V |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 | 6.0 | V |  |

## Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ min for 20 ns maximum pulse.

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Condilions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | ILI | -2 |  | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{CC}}=\max \end{aligned}$ |
| Output leakage current | lo | -2 |  | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {OUT }}=0 V_{t 0} \\ & V_{C C} ; \overline{C S}=V_{I H} ; \\ & V_{C C}=\max \end{aligned}$ |
| Operating supply current | $I_{C C}$ |  |  | 80 | mA | $\begin{aligned} & \overline{\mathrm{CS}}=V_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{DOUT}}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | $I_{\text {SB }}$ |  |  | 15 | mA | $\overline{\mathrm{CS}}=\mathrm{V}_{1}$ |
| Standby supply current | $\mathrm{I}_{\text {SB1 }}$ |  |  | 2 | mA | $\begin{aligned} & \overline{C S}=V_{C C}-0.2 V ; \\ & V_{I N} \leq 0.2 V \text { or } \\ & \geq V_{C C}-0.2 V \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0} \mathrm{~L}$ |  |  | 0.4 | V | $\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ |

$\mu$ PD4311

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions (Note 1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 4311-35$ |  | $\mu$ PD4311-45 |  | $\mu$ PD4311-55 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Address access time | $t_{\text {AA }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Chip select access time | $\mathrm{t}_{\text {ACS }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Output hold from address change | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip select to output in Lo-Z | tLZ | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip deselect to output in $\mathrm{Hi}-\mathrm{Z}$ | $\mathrm{t}_{\mathrm{HZ}}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Chip select to power-up time | $t_{P U}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselect to power-down time | $\mathrm{t}_{\mathrm{PD}}$ | 0 | 35 | 0 | 40 | 0 | 45 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | $t_{\text {wc }}$ | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Chip select to end of write | ${ }^{\text {t }}$ W | 35 |  | 40 |  | 45 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {WP }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Write recovery time | $t_{\text {WR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Data valid to end of write | tow | 20 |  | 25 |  | 25 |  | ns |  |
| Data hold time | $t_{\text {DH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in $\mathrm{Hi}-\mathrm{Z}$ | twz | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Output active from end of write | $\mathrm{t}_{0} \mathrm{~W}$ | 0 |  | 0 |  | 0 |  | ns | (Note 3) |

## Notes:

(1) Input pulse levels = GND to 3.0 V Input pulse rise and fall times $=5 \mathrm{~ns}$
Timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.

Figure 1. Output Load

(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with the loading shown in figure 2.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}, t_{o w}$


## Timing Waveforms

Read Cycle No. 1 (Address Access)


Read Cycle No. 2 (Chip Select Access)


Notes: [1] WE is held high for read cycie.
[2] Address valid prior to or coincident with $\overline{\mathbf{C S}}$ transition low.

Write Cycle No. 1 (WE Controlled)


Write Cycle No. 2 ( $\overline{C S}$ Controlled)


## Description

The $\mu$ PD4314 is a 4,096 -word by 4 -bit static random access memory fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD4314 a high-speed device that requires very low power and no clock or refreshing to operate.

The $\mu \mathrm{PD} 4314$ is packaged in a standard 20-pin plastic DIP.

## Features

$\square$ Single +5 -volt power supplyFully static operation - no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O using three-state outputLow power dissipation

- 80 mA max (active)
- 2 mA max (standby)
$\square$ Standard 300-mil, 20-pin plastic DIP


## Ordering Information

| Part Number | Access TIme (max) | Package |
| :---: | :---: | :---: |
| $\mu \mathrm{PD} 4314 \mathrm{C}-35$ | 35 ns | 20-pin plastic DIR |
| C-45 | 45 ns |  |
| C-55 | 55 ns |  |

## Pin Configuration

20-Pin Plastic DIP


## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1$)$ | -0.5 to +7.0 V |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ | -0.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $70^{\circ} \mathrm{C}$ |
| Storage temperature, TSTG | -55 to $125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V} \min$ for 20 ns maximum pulse.

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{1}$ |  |  | 5 | pF | $\mathrm{V}_{1 \times}=0 \mathrm{~V}$ |
| Data output capacitance | $\mathrm{C}_{\text {DOUT }}$ |  |  | 7 | pF | $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$ |

## Notes:

(1) This parameter is sampled and not $100 \%$ tested.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\mathrm{WE}}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: |
| H | X | Not selected | Hi-Z | Standby |
| L | H | Read | $\mathrm{D}_{\text {OUT }}$ | Active |
| L | L | Write | Hi-Z | Active |

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low <br> (Note 1) | $\mathrm{V}_{\text {IL }}$ | -0.5 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |

## Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V} \min$ for 20 ns maximum pulse.

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | $\begin{gathered} \text { Teast } \\ \text { Conditions } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Tyi | p Max |  |  |
| Input leakage current | ${ }_{L}$ | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{N}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{CC}}=\max \end{aligned}$ |
| Output leakage current | Lo | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & V_{\mathrm{CC}} \overline{\overline{S S}}=V_{\text {HH }} \\ & V_{\mathrm{CC}}=\max \end{aligned}$ |
| Operating supply current | $\mathrm{I}_{\mathrm{cc}}$ |  | 80 | mA | $\begin{aligned} & \overline{C S}=V_{I L ;} \\ & I_{\text {DOUT }}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | ${ }_{\text {ISB }}$ |  | 15 | mA | $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$ |
| Standby supply current | ${ }_{\text {SB1 }}$ |  | 2 | mA | $\begin{aligned} & \overline{\mathrm{CS}}=V_{C C}-0.2 \mathrm{~V} ; \\ & \mathrm{V}_{1 N} \leq 0.2 \mathrm{~V} \text { or } \\ & \geq V_{C C}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0}$ |  | 0.4 | V | $\mathrm{l}_{0 \mathrm{~L}}=8.0 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions [Note I] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD4314-35 |  | $\mu \mathrm{PD} 4314-45$ |  | $\mu$ PD4314-55 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Address access time | $t_{\text {AA }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Chip select access time | $\mathrm{t}_{\text {ACS }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Output hold from address change | $\mathrm{t}_{0 \mathrm{H}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip select to output in Lo-Z | tiz | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip deselect to output in $\mathrm{Hi}-\mathrm{Z}$ | $\mathrm{t}_{\mathrm{HZ}}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Chip select to power-up time | $\mathrm{t}_{\mathrm{PU}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselect to power-down time | $\mathrm{t}_{\mathrm{PD}}$ | 0 | 35 | 0 | 45 | 0 | 55 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | $t_{\text {WC }}$ | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Chip select to end of write | ${ }^{\text {c }}$ W | 35 |  | 40 |  | 45 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| Address setup time | $\mathrm{t}_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {WP }}$ | 30 |  | 40 |  | 50 |  | ns |  |
| Write recovery time | $t_{\text {WR }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Data valid to end of write | $\mathrm{t}_{\text {DW }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in Hi-Z | ${ }_{\text {t }}$ WZ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Output active from end of write | tow | 0 |  | 0 |  | 0 |  | ns | (Note 3) |

## Notes:

(1) Input puise levels = GND to 3.0 V

Input pulse rise and fall times $=5 \mathrm{~ns}$
Timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.

Figure 1. Output Load

(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with the loading shown in figure 2.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}, t_{\text {OW }}$


## Timing Waveforms

## Read Cycle No. 1 (Address Access)



## Read Cycle No. 2 (Chip Select Access)



Notes:
[1] $\overline{W E}$ is held high for read cycle.
[2] Address valid prior to or coincident with CS transition low.

## Write Cycle No. 1 (WE Controlled)



Write Cycle No. 2 ( $\overline{C S}$ Controlled)


## Description

The $\mu$ PD4361 is a 65,536 -word by 1 -bit static random access memory fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD4361 a high-speed device that requires very low power and no clock or refreshing to operate.
The $\mu \mathrm{PD} 4361$ is packaged in a $300-$ mil-wide, 22 -pin plastic DIP and a $290-\mathrm{mil} \times 490-\mathrm{mil}$, 22 -pin ceramic leadless chip carrier. The $\mu$ PD4361 has two types of access times, address and chip select. In addition, the $\mu$ PD4361C-L features low-power data retention.

## Features

$\square 65,536 \times 1$-bit organization
$\square$ Single +5 -volt power supply
$\square$ Fully static operation - no clock or refreshing requiredTTL-compatible - all inputs and outputsSeparated data input and outputThree-state outputData retention current of $50 \mu \mathrm{~A}$ max availableStandard $300-\mathrm{mil}$, 22-pin plastic DIP and 290-mil x 490-mil ceramic LCCStandard JEDEC pin configurations
Ordering Information

| Part Number | Access <br> Time (max) | Power Supply (max) |  | Package |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Standby | Data Ret. |  |
| $\mu$ P04361C-45 | 45 ns | 2 mA | N/A | 22-pin plastic DIP |
| C-55 | 55 ns |  |  |  |
| C-70 | 70 ns |  |  |  |
| $\mu \mathrm{PD} 4361 \mathrm{C}-45 \mathrm{~L}$ | 45 ns | 2 mA | $50 \mu \mathrm{~A}$ |  |
| C-55L | 55 ns |  |  |  |
| C-70L | 70 ns |  |  |  |
| $\mu$ PD4361K-40 | 40 ns | 2 mA | N/A | 22-pin ceramic LCC |
| K-45 | 45 ns |  |  |  |
| K-55 | 55 ns |  |  |  |

## Pin Configurations

22-Pin Plastic DIP


## 22-Pin Ceramic LCC



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{13}$ | Address inputs |
| $D_{I N}$ | Data input |
| $D_{0 U T}$ | Three-state data output |
| $\overline{\mathrm{CS}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |

## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\text {IN }}$ (Note 1) | -0.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ (Note 2) | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ (Note 3) | -55 to $+125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) $\mathrm{V}_{1 \mathrm{~N}}=-3.0 \mathrm{~V} \min$ for 20 ns maximum pulse.
(2) $\mathrm{T}_{\text {OPR }}$ for $4361 \mathrm{~K}=-10$ to $+85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\text {STG }}$ for $4361 \mathrm{~K}=-65$ to $+150^{\circ} \mathrm{C}$

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1)

|  |  | LImits |  |  |
| :--- | :--- | :---: | :---: | :--- |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ | 5 | pF | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ |
| Data output <br> capacitance | $\mathrm{C}_{\text {DOUT }}$ | 7 | pF | $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$ |

## Notes:

(1) This parameter is sampled and not $100 \%$ tested.

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low <br> (Note 1) | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |  |

Notes:
(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V} \min$ for 20 ns maximum pulse.

## DC Characteristics

$T_{A}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |  |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  | Unit | Test Conditions (Note 1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mu \text { PD4361-40 } \\ \text { (Note 2) } \end{gathered}$ |  | $\mu \mathrm{PD} 4361$-45 |  | $\mu \mathrm{PD4361-55}$ |  | $\begin{aligned} & \mu \text { PD4361-70 } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 40 |  | 45 |  | 55 |  | 70 |  | ns | (Note 4) |
| Address access time | $t_{\text {AA }}$ |  | 40 |  | 45 |  | 55 |  | 70 | ns |  |
| Chip select access time | $t_{\text {ACS }}$ |  | 40 |  | 45 |  | 55 |  | 70 | ns |  |
| Output hold from address change | ${ }^{\text {toH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip select to output in Low-Z | tLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 5) |
| Chip deselect to output in High-Z | $t_{H z}$ | 0 | 22 | 0 | 25 | 0 | 30 | 0 | 30 | ns | (Note 6) |
| Chip select to power-up time | tpu | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselect to power-down time | tPD | 0 | 27 | 0 | 30 | 0 | 40 | 0 | 40 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Write cycle time | ${ }_{\text {tw }}$ | 40 |  | 45 |  | 55 |  | 70 |  | ns | (Note 4) |
| Chip select to end of write | ${ }_{\text {t }}$ cw | 37 |  | 40 |  | 50 |  | 60 |  | ns |  |
| Address valid to end of write | ${ }_{\text {taw }}$ | 37 |  | 40 |  | 50 |  | 60 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {WP }}$ | 23 |  | 25 |  | 30 |  | 40 |  | ns |  |
| Write recovery time | twr | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data valid to end of write | ${ }_{\text {dW }}$ | 23 |  | 25 |  | 25 |  | 30 |  | ns |  |
| Data hold time | $\mathrm{t}_{\text {DH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in High-Z | $t_{W Z}$ | 0 | 22 | 0 | 25 | 0 | 25 | 0 | 30 | ns | (Note 6) |
| Output active from end of write | tow | 0 |  | 0 |  | 0 |  | 0 |  | ns | (Note 5) |

## Notes:

(1) Input pulse levels $=$ GND to 3.0 V

Input pulse rise and fall times $=5 \mathrm{~ns}$ Timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for the output load.
(2) Available for $\mu$ PD 4361 K only.
(3) Available for $\mu$ PD4361C or $\mu$ PD4361C-L only.
(4) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(5) The transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with the loading shown in figure 2.
(6) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

## Truth Table

| $\overline{\mathbf{C S}}$ | $\overline{\text { WE }}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | X | Not selected | High-Z | Standby |
| L | H | Read | DOUT | Active |
| L | L | Write | High-Z | Active |

Figure 1. Output Load


## Low Vcc Data Retention Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ (Note 1)

|  |  | Limits |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions |
| Data retention <br> supply voltage | VCCDR | 2.0 | 5.5 | V | (Note 2) |  |
| Data retention <br> supply current | ICCDR |  | 1 | 50 | $\mu \mathrm{~A}$ | (Note 3) |
| Chip deselect to <br> data retention time | $\mathrm{t}_{\mathrm{CDR}}$ | 0 |  | ns |  |  |
| Operation recovery <br> time | $\mathrm{t}_{\mathrm{R}}$ | $\mathrm{t}_{\mathrm{RC}}$ |  | ns |  |  |

Notes:
(1) For $\mu$ PD4361C-L only
(2) $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \mathrm{V}_{I N} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$ or $0 \mathrm{~V} \leq \mathrm{V}_{I N}$ $\leq 0.2 \mathrm{~V}$

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}$, tow


## Data Retention



## Timing Waveforms

Read Cycle No. 1 (Address Access)


Read Cycle No. 2 (Chip Select Access)


Note: [1] $\overline{\text { WE }}$ is held high for read cycle.
[2] Address valid prior to or coincident with CS transition low.
83-001548A

## Write Cycle No. 1 (WE Controlled)



Write Cycle No. 2 ( $\overline{C S}$ Controlled)


## Description

The $\mu$ PD 4362 is a 16,384 -word by 4 -bit static RAM fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD4362 a high-speed device that requires very low power and no clock or refreshing to operate.

The $\mu$ PD4362 is packaged in a standard 22-pin plastic DIP.

## Features

Single +5 -volt power supplyFully static operation-no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O capabilityStandard 300-mil, 22-pin plastic DIP
## Ordering Information

| Part Number | Access Time (max) | Package |
| :---: | :---: | :--- |
| $\mu$ PD4362C-45 | 45 ns |  |
| $\mathrm{C}-55$ | 55 ns | 22-pin plastic DIP |
| $\mathrm{C}-70$ | 70 ns |  |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input and output voltages, $\mathrm{V}_{\text {IN }}$ (Note 1) | -0.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}$ for 20 ns pulse.

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configuration

## 22-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-\mathrm{A}_{13}$ | Address inputs |
| $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / 0_{4}$ | Data inputs/outputs |
| $\overline{\mathrm{CS}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |

## Block Diagram



## Recommended DC Operating Conditions

$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.5 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 |  | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |

## Notes:

(1) $V_{\text {IL }}=-3.0 \mathrm{~V}$ for 20 ns pulse

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1)

|  |  | LImits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Test Conditions |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 5 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| I/O capacitance | $\mathrm{C}_{\text {DOUT }}$ |  | 7 | pF | $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$ |

## Notes:

(1) This parameter is sampled and not $100 \%$ tested.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\text { WE }}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | X | Not selected | High-Z | Standby |
| L | H | Read | $D_{\text {OUT }}$ | Active |
| L | L | Write | $\mathrm{D}_{\text {IN }}$ | Active |

## Notes:

(1) $X=$ don't care

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Input leakage current | lıI | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=0 \text { to } V_{C C} ; \\ & V_{C C}=\max \end{aligned}$ |
| Output leakage current | LLO | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {OUT }}=0 \text { to } V_{C C} ; \\ & C S=V_{\text {IH }} ; \\ & V_{C C}=\max \\ & \hline \end{aligned}$ |
| Operating supply current | ICC |  | 90 | mA | $\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | ${ }_{\text {ISB }}$ |  | 20 | mA | $\overline{\mathrm{CS}}=\mathrm{V}_{1}$ |
|  | $\mathrm{I}_{\text {SB1 }}$ |  | 2 | mA | $\begin{aligned} & \overline{C S} \geq V_{C C}-0.2 \mathrm{~V} \\ & V_{\mathbb{I}} \leq 0.2 \mathrm{~V} \text { or } \geq \\ & V_{C C}-0.2 \mathrm{~V} \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=8.0 \mathrm{~mA}$. |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD4362-45 |  | $\mu \mathrm{PD} 4362$-55 |  | $\mu \mathrm{PD4362.70}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 45 |  | 55 |  | 70 |  | ns | (Note 2) |
| Address access time | $t_{\text {AA }}$ |  | 45 |  | 55 |  | 70 | ns |  |
| Chip selection access time | $t_{\text {ACS }}$ |  | 45 |  | 55 |  | 70 | ns |  |
| Output hold from address change | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip selection to output in low-Z | $\mathrm{t}_{\mathrm{L}}$ | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip deselection to output in high-Z | $\mathrm{t}_{\mathrm{HZ}}$ | 0 | 25 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Chip selection to power-up time | tpu | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselection to power-down time | tpD | 0 | 45 | 0 | 55 | 0 | 55 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | twc | 45 |  | 55 |  | 70 |  | ns | (Note 2) |
| Chip selection to end of write | $\mathrm{t}_{\mathrm{CW}}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | twp | 40 |  | 50 |  | 60 |  | ns |  |
| Write recovery time | twr | 0 |  | 0 |  | 0 |  | ns |  |
| Data valid to end of write | tow | 20 |  | 25 |  | 30 |  | ns |  |
| Data hold time | ${ }^{\text {t }}$ D ${ }^{\text {d }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in high-Z | twz | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Output active from end of write | tow | 0 |  | 0 |  | 0 |  | ns | (Note 3) |

## Notes:

(1) Input pulse levels = GND to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

FIgure 1. Output Load


Flgure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}$, and tow


## Timing Waveforms

Read Cycle No. 1 (Address Access)


Notes: [1] WE is held high for a read cycle.
[2] Device is continuousily selected; $\overline{\mathbf{C S}}=\mathrm{V}_{\mathbf{I L}}$.

Read Cycle No. 2 (Chip Select Access)


## Timing Waveforms (cont)

Write Cycle No. 1 ( $\overline{W E}$-Controlled)


## Timing Waveforms (cont)

Write Cycle No. 2 ( $\overline{\text { CS }}$-Controlled)


## Description

The $\mu$ PD 4363 is a 16,384 -word by 4 -bit static RAM fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory celis with polysilicon resistors, makes the $\mu$ PD4363 a high-speed device that requires very low power and no clock or refreshing to operate.
The $\mu$ PD4363 is packaged in a standard $300-\mathrm{mil}, 24$-pin plastic DIP.

## Features

Single +5 -volt supplyFully static operation - no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O capabilityOE eliminates the need for external bus buffersThree-state outputsLow power dissipation- 90 mA max (active)
- 2 mA max (standby)Standard $300-\mathrm{mil}, 24-$ pin plastic DIP packaging
Ordering Information

| Oevice | Access Time [max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD4363C-45 | 45 ns |  |
| $\mathrm{C}-55$ | 55 ns | $24-$ pin plastic DIP |
| $\mathrm{C}-70$ | 70 ns |  |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to 7.0 V |
| :--- | ---: |
| All input and ouput voltages, $\mathrm{V}_{\mathrm{IN}}$ (Note 1) | -0.5 to 7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) Minimum $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}$ for 20 -ns pulse

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configuration

## 24-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{13}$ | Address input |
| $/ / 0_{1}-1 / O_{4}$ | Data input/output |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{O E}}$ | Output enable |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $N C$ | No connection |

## Block Diagram



Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limils |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low <br> (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.5 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |

## Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for $20-\mathrm{ns}$ pulse.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |
| :--- | :--- | :---: | :--- | :--- |
|  |  |  |  |  |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ | 5 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| $1 / 0$ capacitance | $\mathrm{C}_{\text {DOUT }}$ | 7 | pF | $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$ |

## Notes:

(1) These parameters are sampled and not $100 \%$ tested.

## Truth Table

| $\overline{\overline{C S}}$ | $\overline{\mathrm{WE}}$ | $\overline{\mathrm{OE}}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | Not selected | High-Z | Standby |
| L | H | L | Read | $\mathrm{D}_{\text {OUT }}$ | Active |
| L | H | H | D Dut disabled $^{\text {High-Z }}$ | Active |  |
| L | L | X | Write | $\mathrm{D}_{\text {IN }}$ | Active |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Paramater | Symbol |  | Limilts |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Min Typ Max | Unit Test Conditions |  |  |  |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 4363$-45 |  | $\mu \mathrm{PD} 4363-55$ |  | $\mu \mathrm{PD4363-70}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 45 |  | 55 |  | 70 |  | ns | (Note 2) |
| Address access time | $t_{\text {AA }}$ |  | 45 |  | 55 |  | 70 | ns |  |
| Chip select access time | $t_{\text {ACS }}$ |  | 45 |  | 55 |  | 70 | ns |  |
| Output hold from address change | $\mathrm{t}_{\mathrm{OH}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip selection to output in low-Z | tLZ | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip deselection to output in high-Z | $\mathrm{t}_{\mathrm{Hz}}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Output enable to output in low-Z | tolz | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Output disable to output in high-Z | $\mathrm{t}_{0 \mathrm{HZ}}$ | 0 | 25 | 0 | 30 | 0 | 35 | ns | (Note 4) |
| Chip selection to power-up time | $t_{\text {Pu }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselection to power-down time | $t_{\text {PD }}$ | 0 | 30 | 0 | 40 | 0 | 40 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | twc | 45 |  | 55 |  | 70 |  | ns | (Note 2) |
| Chip selection to end of write | ${ }_{\text {c }}{ }_{\text {W }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {wP }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Write recovery time | $t_{\text {WR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Data valid to end of write | $t_{\text {dW }}$ | 20 |  | 25 |  | 30 |  | ns |  |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write enabled to output in high-Z | $t_{\text {Wz }}$ | 0 | 20 | 0 | 25 | 0 | 30 | ns | (Note 4) |
| Output active from end of write | $\mathrm{t}_{0} \mathrm{~W}$ | 0 |  | 0 |  | 0 |  | ns | (Note 3) |

## Notes:

(1) Input pulse levels = GND to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) The read and write cycle times are referenced from the last valid address to the first transitioning address.
(3) Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 1. Output Load


Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{\mathrm{OLZ}}, t_{\mathrm{OHZ}}, t_{\mathrm{WZ}}$, and tow


## Timing Waveforms

Read Cycle No. 1 (Address Access)


Read Cycle No. 2 (Chip Select Access)


Notes: [1] $\overline{W E}$ is held high for a read cycle.
[2] Address is valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
(3) $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

## Read Cycle No. 3 ( $\overline{O E}$ Access)



## Timing Waveforms (cont)

Write Cycle No. 1 (WE-Controlled)


Notes:
[1] CS or WE must be high during address transition.
[2] If $\overline{O E}$ is high, the I/O pins remain in a state of high impedance.
[3] During this period, the I/O may be active [OE low]. Therefore, data input signals of opposite polarity to the outputs must not be applied.

## Timing Waveforms (cont)

Write Cycle No. 2 ( $\overline{C S}$-Controlled)


Notes:
[1] $\overline{\mathrm{CS}}$ or $\overline{\text { WE }}$ must be high during address transition.
[2] If $\overline{O E}$ is high, the I/O pins remain in a state of high impedance.
[3] During this period, the I/O may be active [OE low]. Therefore, data input signals of opposite polarity to the outputs must not be applied.

## Description

The $\mu$ PD4364 is a high-speed, 8192 -word by 8 -bit static RAM. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD4364 a very low-power device that requires no clock or refreshing to operate.
Two chip enable pins are provided for battery backup application, and an output enable pin is provided for easy interface. Data retention is guaranteed at a power supply voltage as low as 2 V ( -xxL and -xxLL versions).
The $\mu$ PD4364 is packaged in standard and slim 28-pin plastic DIP, as well as plastic miniflat packages that are plug-in compatible with 2764-type EPROMs.

## Features

Single +5 -volt power supplyFully static operation-no clock or refreshing requiredTTL-compatible-all inputs and outputsCommon I/O using three-state outputsOne output enable and two chip enable pins for easy applicationData retention voltage: 2 V min for $-x x L$ and $-x \times L L$ versionsPlug-in compatible with 2764 -type EPROMs
Standard 28-pin plastic DIP 28-pin 300 mil plastic slim DIP 28-pin plastic miniflat package

## Pin Identification



## Pin Configuration

## 28-Pin Plastic DIP or Miniflat



## Ordering Information

| Part flamber [Netes 1, 2, 3) | Standby Current (max) | $\begin{gathered} \text { Access } \\ \text { Time (max) } \end{gathered}$ | Package |
| :---: | :---: | :---: | :---: |
| $\triangle P \mathrm{PD} 4364 \mathrm{Gx}$ | 2 mA | (Notes 1,4) | 28-pin DIP |
| $2-\mathrm{C}-\mathrm{xxL}$ | $100 \mu \mathrm{~A}$ |  |  |
| C-xxLL | $50 \mu \mathrm{~A}$ | . |  |
| CX-xx | 2 mA | (Notes 1,5) | 28-pin slim DIP |
| CX-xxL | $100 \mu \mathrm{~A}$ |  |  |
| $\mu$ PD4364G-xx | 2 mA | (Notes 1,4) | 28-pin miniflat |
| G-xxL | $100 \mu \mathrm{~A}$ |  |  |
| G-xxLL | $50 \mu \mathrm{~A}$ |  |  |

## Notes:

(1) The symbol " $x x^{\prime \prime}$ in the part number denotes access time.

| xx |  |
| :--- | :--- |
|  | Access Time (max) |
| 10 | 100 ns |
| 15 | 120 ns |
| 20 | 150 ns |
|  | 200 ns |

(2) The symbol $C, C X$, or $G$ in the part number denotes a 28-pin plastic package.
C = 600-mil DIP
CX $=300-\mathrm{mil}$ slim DIP
$\mathrm{G}=$ Miniflat
(3) Part number example: $\mu$ PD4364CX-12L denotes a $300-\mathrm{mil}$ DIP package, $120-$ ns maximum access time, and $100-\mu \mathrm{A}$ maximum standby current.
(4) Contact your NEC sales representative for availability of a -10LL version.
(5) A 200-ns access time is not available in the CX package.

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ (Note 1) | -0.5 to 7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ (Note 1) | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ (Note 1) | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) $-3.0 \mathrm{~V} \min$ (pulse width of 50 ns max)

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under Recommended DC Operating Conditions.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

|  |  | Limits |  |  |
| :--- | :---: | ---: | :--- | :--- |
| Parameter | Symbol | Min Typ Max Unit | Test Conditions |  |
| Input <br> capacitance | $\mathrm{C}_{\mathrm{I}}$ | (1) | pF | $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ |
| Input/output <br> capacitance | $\mathrm{C}_{1 / 0}$ | 8 | pF | $\mathrm{V}_{1 / 0}=0 . \mathrm{V}$ |

## Notes:

(1) Maximum input capacitance

CX package: 5 pF
C or G package, 100 -ns version: 5 pF
C or G package, except 100-ns version: 6 pF

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 <br> $($ Note 1$)$ |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 |  | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |

## Notes:

(1) -3.0 V min (pulse width 50 ns max)

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input leakage current | ${ }_{\text {LI }}$ |  |  | 1 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ |
| Output leakage current | Lo |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1 / 0}=0 V \text { to } V_{C C} \\ & C E_{1}=V_{1 H} \text { or } \\ & C E_{2}=V_{I L} \text { or } \\ & \overline{O E}=V_{I H \text { or }} \\ & \overline{W E}=V_{I L} \end{aligned}$ |
| Operating supply current | ICCA1 |  |  | (1) | mA | $\begin{aligned} & \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{CE}_{2}=V_{\mathrm{H}}, \\ & \mathrm{I}_{1 / 0}=0, \\ & \text { Min cycle } \end{aligned}$ |
|  | ICCA2 |  | 5 | 10 | mA | $\begin{aligned} & \overline{C E}_{1}=V_{I L}, \\ & C E_{2}=V_{I H}, \\ & I_{1 / 0}=0, \\ & D C \text { current } \end{aligned}$ |
|  | ICCA3 |  | 3 | 5 | mA | $\begin{aligned} & \overline{C E}_{1} \leq 0.2 \mathrm{~V}, \\ & C E_{2} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{I L} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{I H} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{I}_{1 / 0}=0 \end{aligned}$ |
| Standby supply current | ${ }^{\text {SB }}$ |  |  | (2) | mA | $\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{1 \mathrm{H}} \text { or } \\ & \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
|  | ${ }_{\text {ISB1 }}$ |  |  | (3) | mA | $\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{CE}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$ |
|  | $\mathrm{I}_{\text {B } 2}$ |  |  | (3) | mA | $\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ |

Notes:
(1) $\mu$ PD4364-10/10L: 45 mA max $\mu$ PD $4364-12 / 12 \mathrm{~L} / 12 \mathrm{LL}: 40 \mathrm{~mA}$ max $\mu$ PD4364-15/15L/15LL: 40 mA max $\mu$ PD4364-20/20L/20LL: 35 mA max
(2) $\mu$ PD4364-xx: $5 \mathrm{~mA} \max$ $\mu$ PD4364-xxL: 3 mA max $\mu$ PD4364-xxLL: 3 mA max $\mu$ PD $4364-x x L: 100 \mu \mathrm{~A}$ max $\mu$ PD 4364-xxLL: $50 \mu \mathrm{~A} \max$
$\mu$ PD4364

## AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \hat{\mathrm{~V}} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \hline \mu \mathrm{PD} 4364 \\ -10 / 10 \mathrm{~L} \end{gathered}$ |  | $\begin{gathered} \mu \mathrm{PD} 4364 \\ -12 / 12 \mathrm{~L} / 12 \mathrm{LL} \end{gathered}$ |  | $\begin{gathered} \mu \mathrm{PD} 4364 \\ -15 / 15 \mathrm{~L} / 15 \mathrm{LL} \end{gathered}$ |  | $\begin{gathered} \mu \mathrm{PD} 4364 \\ -20 / 20 \mathrm{~L} / 20 \mathrm{LL} \end{gathered}$ |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |  |
| Read cycle time | $t_{\text {RC }}$ | 100 |  | 120 |  | 150 |  | 200 |  | ns |
| Address access time | $t_{\text {AA }}$ |  | 100 |  | 120 |  | 150 |  | 200 | ns |
| $\overline{\overline{\mathrm{EE}}}_{1}$ access time | ${ }^{\text {t }} 01$ |  | 100 |  | 120 |  | 150 |  | 200 | ns |
| $\mathrm{CE}_{2}$ access time | ${ }^{\text {t }} \mathrm{O} 2$ |  | 100 |  | 120 |  | 150 |  | 200 | ns |
| Output enable to output valid | $\mathrm{t}_{0 \mathrm{E}}$ |  | 50 |  | 60 |  | 70 |  | 100 | ns |
| Output hold from address change | $\mathrm{t}_{0 \mathrm{H}}$ | 10 |  | 10 |  | 15 |  | 15 |  | ns |
| Chip enable ( $\overline{\mathrm{CE}}_{1}$ ) to output in low-Z | $\mathrm{t}_{\text {LZ1 }}$ | 10 |  | 10 |  | 15 |  | 15 |  | ns |
| Chip enable ( $\mathrm{CE}_{2}$ ) to output in low-Z | tıZ2 | 10 |  | 10 |  | 15 |  | 15 |  | ns |
| Output enable to output in low-Z | $\mathrm{t}_{\text {OLZ }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |
| Chip enable ( $\overline{\mathrm{CE}}_{1}$ ) to output in high-Z | $\mathrm{t}_{\mathrm{Hz1}}$ |  | 35 |  | 40 |  | 50 |  | 100 | ns |
| Chip enable ( $\mathrm{CE}_{2}$ ) to output in high-Z | thz2 |  | 35 |  | 40 |  | 50 |  | 100 | ns |
| Output enable to output in high-Z | ${ }^{\text {tohz }}$ |  | 35 |  | 40 |  | 50 |  | 80 | ns |
| Write Cycle |  |  |  |  |  |  |  |  |  |  |
| Write cycle time | twc | 100 |  | 120 |  | 150 |  | 200 |  | ns |
| Chip enable ( $\overline{\mathrm{CE}}_{1}$ ) to end of write | tcW1 | 80 |  | 85 |  | 100 |  | 180 |  | ns |
| Chip enable ( $\mathrm{CE}_{2}$ ) to end of write | $\mathrm{t}_{\mathrm{CW} 2}$ | 80 |  | 85 |  | 100 |  | 180 |  | ns |
| Address valid to end of write | $\mathrm{t}_{\text {AW }}$ | 80 |  | 85 |  | 100 |  | 180 |  | ns |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Write pulse width | twp | 60 |  | 70 |  | 90 |  | 140 |  | ns |
| Write recovery time | ${ }^{\text {twR }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |
| Data valid to end of write | $t_{\text {DW }}$ | 40 |  | 50 |  | 60 |  | 80 |  | ns |
| Data hold time | $t_{\text {DH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Write enable to output in high-Z | twhz |  | 35 |  | 40 |  | 50 |  | 100 | ns |
| Output active from end of write | tow | 5 |  | 5 |  | 10 |  | 10 |  | ns |

## Notes:

(1) Input pulse levels: 0.8 to 2.4 V

Input pulse rise and fall times: 5 ns
Timing reference levels: 1.5 V
Output load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

## Truth Table

| $\overline{\text { EF }}_{1}$ | CEE $_{2}$ | $\overline{\mathbf{O E}}$ | $\overline{\text { WE }}$ | Mode | I/O | ICC |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| H | X | X | X | Not selected | High-Z | Standby |
| X | L | X | X | Not selected | High-Z | Standby |
| L | H | H | H | Dout disable | High-Z | Active |
| L | H | L | H | Read | D $_{\text {OUT }}$ | Active |
| L | H | X | L | Write | DIN $^{\text {IN }}$ | Active |

## Timing Waveforms

Read Cycle No. 1 (Address Access)


Read Cycle No. 2 (Chip Enable Access)


## Note:

[1] $\overline{W E}$ is a high for a read cycle.
[2] The address inputs are valid prior to or coincident with the $\overline{\mathrm{CE}}_{1}$ transition low and the $\mathrm{CE}_{2}$ transition high.

Write Cycle No. 1 (WE Controlled)


## Note:

[1] A write occurs during the overlap of a low $\overline{\mathrm{CE}}_{1}$ and a high $\mathrm{CE}_{2}$ and a low $\overline{\mathrm{WE}}$. [2] $\mathrm{CE}_{1}$ or WE [or $\mathrm{CE}_{2}$ ] must be high [low] during any address transition. [3] If $\overline{\mathrm{OE}}$ is high the I/O pins remain in a high impedance state.

## Timing Waveforms (cont)

Write Cycle No. $2\left(\overline{C E}_{1}\right.$ Controlled)


Write Cycle No. 3 (CE ${ }_{2}$ Controlled)


## Note:

[1] A write occurs during the overlap of a low $\overline{C E}_{1}$ and a high $C E_{2}$ and a low $\overline{W E}$. [2] $\overline{C E}_{\dagger}$ or $\overline{W E}$ [or $\mathrm{CE}_{2}$ ] must be high [low] during any address transition.

83-001759A

Low Vcc Data Retention Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Data retention supply voltage | $V_{\text {CCDR1 }}$ | 2.0 |  | 5.5 | V | $\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{CE} \\ & 2 \end{aligned} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ |
|  | $V_{\text {CCDR2 }}$ | 2.0 |  | 5.5 | V | $\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ |
| Data retention supply current | $I_{\text {CCDR1 }}$ |  | 1 | (2) | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{CE}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$ |
|  | $\mathrm{I}_{\text {CCOR2 }}$ |  | 1 | (2) | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=3.0 \mathrm{~V} \\ & C E_{2} \leq 0.2 \mathrm{~V} \end{aligned}$ |


| Chip deselect to <br> data retention <br> time | $\mathrm{t}_{\mathrm{CDR}}$ | 0 | ns |
| :--- | :--- | :---: | :--- |
| Operation <br> recovery time | $\mathrm{t}_{\mathrm{R}}$ | $\mathrm{t}_{\mathrm{RC}}$ |  |
| Note 3 |  |  |  |$\quad$ ns |  |
| :--- |

## Notes:

(1) This table is applicable to $\mu$ PD4364-xxL and $-x \times L L$ only.
(2) $\mu$ PD $4364-x x L: 50 \mu \mathrm{~A}$ max; $15 \mu \mathrm{~A}\left(0\right.$ to $40^{\circ} \mathrm{C}$ ) $\mu \mathrm{PD} 4364-\mathrm{xxLL}: 20 \mu \mathrm{~A} \max ; 5 \mu \mathrm{~A}\left(0\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
(3) $t_{R C}$ is read cycle time.

## Data Retention ( $\overline{C E}_{1}$ Controlled)



## Data Retention (CE $\mathbf{2}_{\mathbf{2}}$ Controlled)



Note:
(1) The other inputs (Addresses, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{OE}}, \overline{\mathrm{WE}}, \mathrm{I} / \mathrm{Os}$ ) can be in a high impedance state.

## Description

The $\mu$ PD4464 is a high-speed 8,192 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Full CMOS storage cells with six transistors make the $\mu$ PD4464 a very low-power device that requires no clock or refreshing to operate.

Two chip enable pins are provided for battery backup application, and an output enable pin is included for easy interface. Data retention is guaranteed at a power supply voltage as low as 2 volts.

The $\mu$ PD4464 is available in standard 28-pin plastic DIP or miniflat packaging.

## Features

Operating temperature range: -40 to $85^{\circ} \mathrm{C}$Single +5 -volt power supplyFully static operation - no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O using three-state outputOne output enable pin and two chip enable pins for easy applicationData retention voltage: 2 V minimumStandard 28-pin plastic DIP or miniflat packaging
## Ordering Information

| Part Number | $\begin{gathered} \text { Access } \\ \text { Time } \\ \text { (max) } \\ \hline \end{gathered}$ | Active Current [max] | Standby Current [max] |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 4464 \mathrm{C}-12$ | 120 ns | 40 mA |  |  |
| C-15 | 150 ns | 40 mA |  |  |
| C-20 | 200 ns | 35 mA |  |  |
| $\mu$ PD4464C-12L | 120 ns | 40 mA | M ${ }^{\text {a }}$ (at | 28-pin plastic DIP |
| C-15L | 150 ns | 40 mA | ) |  |
| C-20L | 200 ns | 35 mA |  |  |
| $\mu \mathrm{PD} 4464 \mathrm{G}-12$ | 120 ns | 40 mA . | $10 \mu \mathrm{~A}$ | 28-pin plastic |
| G-15 | 150 ns | 40 mA |  | miniflat |
| G-20 | 200 ns | 35 mA |  |  |
| $\mu$ PD4464G-12L | 120 ns | 40 mA | $1 \mu \mathrm{~A}$ (at | 28-pin plastic |
| G-15L | 150 ns | 40 mA | $\left.\mathrm{T}_{A}=60^{\circ} \mathrm{C}\right)$ | miniflat |
| G-20L | 200 ns | 35 mA |  |  |

## Pin Configuration

## 28-Pin Plastic DIP or Miniflat



## Pin Identification

| Symbod | Function |
| :---: | :---: |
| $A_{0}+\mathrm{Cl}^{2}$ | Address inputs |
| $7170+1408$ | Data inputs/outputs |
| $\mathrm{CEH}^{2}$ | Chip enable (active low) |
| $\mathrm{CE}_{2}$ | Chip enable (active high) |
| OE | Output enable |
| प' $\overline{\text { WE }}$ | Write enable |
| GND | Ground |
| $\mathrm{V}_{\mathrm{CC}}$ | +5-volt power supply |
| NC | No connection |

Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ (Note 1) | -0.5 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ (Note 1) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -40 to $85^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$ maximum)

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low <br> (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 |  | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |

Notes:
(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$ maximum)

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\mathbb{N}}$ |  | 6 | pF | $\mathrm{V}_{I N}=0 \mathrm{~V}$ |
| I/O capacitance | $\mathrm{C}_{1 / 0}$ |  | 8 | pF | $\mathrm{V}_{1 / 0}=0 \mathrm{~V}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | 7yp | Max |  |  |
| Input leakage current | $\mathrm{ILI}^{\prime}$ |  |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ |
| 1/0 leakage current | Lo |  |  | 1 |  | $\begin{aligned} & V_{I I O}=0 \mathrm{~V} \text { to } V_{C C} ; \\ & \mathrm{CE}_{1}=V_{I H} \text { or } \\ & C E_{2}=V_{I L} \text { or } \\ & \frac{C E}{O E}=V_{I H} \text { or } \\ & \overline{W E}=V_{I L} \end{aligned}$ |
| Operating supply current | $I_{\text {CCA1 }}$ |  |  | $\begin{gathered} 40 \\ \text { (Note } 1 \end{gathered}$ |  | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}} ; \\ & C E_{2}=V_{I H} ; \\ & I_{1 / 0}=0 \\ & \text { (min cycle) } \end{aligned}$ |
|  | ICCA2 |  | 5 | 10 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=V_{I L} ; \\ & C E_{2}=V_{I H} ; \\ & I_{1 / 0}=0 \\ & \text { (dc current) } \end{aligned}$ |
| Standby supply current | $\mathrm{I}_{\text {ccs } 1}$ |  | 0.004 | $\begin{gathered} 10 \\ \text { (Note } 2 \end{gathered}$ |  | $\begin{aligned} & \overline{C E} \geq V_{C C}-0.2 \mathrm{~V} \\ & C E_{2} \geq V_{C C}-0.2 \mathrm{~V} \end{aligned}$ |
|  | ICCS2 |  | $0.004$ | $\begin{gathered} 10 \\ \text { (Note? } \end{gathered}$ |  | $\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{IOH}^{\text {O }}=-1.0 \mathrm{~mA}$ |

## Notes:

(1) $\mu$ PD4464-20/-20L: 35 mA max
(2) $\mu \mathrm{PD} 4464-12 \mathrm{~L} /-15 \mathrm{~L} /-20 \mathrm{~L}: 1.0 \mu \mathrm{~A} \max \left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
$0.2 \mu \mathrm{~A} \max \left(-40\right.$ to $\left.25^{\circ} \mathrm{C}\right)$

## Truth Table

| $\bar{C}_{\bar{E}_{1}}$ | $\mathrm{CE}_{2}$ | $\overline{\mathrm{OE}}$ | $\overline{W E}$ | Mode | 1/0 | ICC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | Not selected | High-Z | Standby |
| X | L | X | X | Not selected | High-Z | Standby |
| L | H | H | H | DOUT disabled | High-Z | Active |
| L | H | L | H | Read | Dout | Active |
| L | H | X | L | Write | $\mathrm{D}_{\text {IN }}$ | Active |

## Notes:

(1) $X=$ don't care

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions [Note 1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 4464-12$ |  | $\mu$ PD4464.15 |  | $\mu$ PD4464-20 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $t_{\text {RC }}$ | 120 |  | 150 |  | 200 |  | ns |  |
| Address access time | $t_{\text {AA }}$ |  | 120 |  | 150 |  | 200 | ns |  |
| $\overline{\mathrm{CE}}_{1}$ access time | ${ }^{\text {c }}$ 01 |  | 120 |  | 150 |  | 200 | ns |  |
| $\mathrm{CE}_{2}$ access time | ${ }^{\text {c }} \mathrm{O} 2$ |  | 120 |  | 150 |  | 200 | ns |  |
| Output enable to output valid | $\mathrm{t}_{\mathrm{OE}}$ |  | 60 |  | 75 |  | 100 | ns |  |
| Output hold from address change | $\mathrm{t}_{\mathrm{OH}}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Chip enable ( $\overline{\mathrm{CE}}_{1}$ ) to output in low-Z | ${ }_{\text {t }}^{\text {L }}$ ( | 10 |  | 10 |  | 100 |  | ns |  |
| Chip enable ( $\mathrm{CE}_{2}$ ) to output in low-Z | $\mathrm{t}_{1 / 22}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output enable to output in low-Z | $\mathrm{t}_{0 \mathrm{LZ}}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip enable ( $\overline{\mathrm{EE}}_{1}$ ) to output in high-Z | $\mathrm{t}_{\mathrm{ZZ1}}$ |  | 40 |  | 75 |  | 100 | ns |  |
| Chip enable ( $\mathrm{CE}_{2}$ ) to output in high-Z | $\mathrm{t}_{\mathrm{Hz2}}$ |  | 40 |  | 75 |  | 100 | ns |  |
| Output enable to output in high-Z | $\mathrm{t}_{\mathrm{OHZ}}$ |  | 40 |  | 60 |  | 80 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | $t_{\text {w }}$ | 120 |  | 150 |  | 200 |  | ns |  |
| Chip enable ( $\overline{\mathrm{CE}}_{1}$ ) to end of write | $\mathrm{t}_{\mathrm{CW}}$ | 85 |  | 130 |  | 180 |  | ns |  |
| Chip enable ( $\mathrm{CE}_{2}$ ) to end of write | $\mathrm{t}_{\mathrm{CW}_{2}}$ | 85 |  | 130 |  | 180 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 85 |  | 130 |  | 180 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | ${ }^{\text {twp }}$ | 70 |  | 100 |  | 140 |  | ns |  |
| Write recovery time | $t_{\text {WR }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Data valid to end of write | $\mathrm{t}_{\mathrm{DW}}$ | 50 |  | 70 |  | 80 |  | ns |  |
| Data hold time | $\mathrm{t}_{\text {DH }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Write enable to output in high-Z | ${ }^{\text {twhz }}$ |  | 40 |  | 75 |  | 100 | ns |  |
| Output active from end of write | $\mathrm{t}_{0} \mathrm{~W}$ | 5 |  | 10 |  | 10 |  | ns |  |

## Notes:

(1) Input puise levels $=0.8 \mathrm{~V}$ to 2.4 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; output load $=1 \mathrm{TTL}$ gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.

## Timing Waveforms

Read Cycle No. 1 (Address Access)


Note:
[1] WE is a high for a read cycle.
[2] The device is continuously selected; $\overline{C E}_{1}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
83-001755A
Read Cycle No. 2 (Chip Enable Access)


Note:
[1] $\overline{W E}$ is a high for a read cycle.
[2] The address inputs are valid prior to or coincident with the $\overline{\mathbf{C E}}_{\mathbf{1}}$ transition low and the $\mathrm{CE}_{2}$ transition high.

Write Cycle No. 1 (WE-Controlled)


Note:
[1] A write occurs during the overlap of a low $\overline{C E}_{1}$ and a high $C E 2$ and a low $\overline{W E}$. [2] $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{WE}}$ [or $\mathrm{CE}_{2}$ ] must be high [low] during any address transition.
[3] If $\overline{\mathrm{OE}}$ is high the I/O pins remain in a high impedance state.

## Timing Waveforms (cont)

Write Cycle No. 2 ( $\overline{\mathrm{CE}}_{1}$-Controlled)


Note:
[1] A write occurs during the overlap of a low $\overline{\mathrm{CE}}_{1}$ and a high $\mathrm{CE}_{2}$ and a low $\overline{\mathrm{WE}}$. [2] $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{WE}}$ [or $\mathrm{CE}_{2}$ ] must be high [low] during any address transition.

Write Cycle No. 3 (CE $\mathbf{2}_{2}$-Controlled)


Note:
[1] A write occurs during the overlap of a low $\overline{C E}_{1}$ and a high $C E_{2}$ and a low $\overline{W E}$. [2] $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{WE}}$ [or $\mathrm{CE}_{2}$ ] must be high [low] during any address transition.

83-00500A

## Low Vcc Data Retention Characteristics

$T_{A}=-40$ to $85^{\circ} \mathrm{C}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Data retention supply voltage | $\mathrm{V}_{\text {CCDR1 }}$ | 2.0 |  | 5.5 | $V$ | $\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \\ & C \mathrm{CE}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$ |
|  | $V_{\text {CCDR2 }}$ | 2.0 |  | 5.5 | V | $\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ |
| Data retention supply current | $I_{\text {cCor } 1}$ |  |  | $\begin{gathered} 10 \\ \text { (Note } \end{gathered}$ |  | $\begin{aligned} & \mathrm{V}_{C C}=3.0 \mathrm{~V} ; \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \\ & C E_{2} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} \\ & \text { or } C E_{2} \leq 0.2 \mathrm{~V} \end{aligned}$ |
|  | $I_{\text {CCDR2 }}$ |  | $0.003$ | $\begin{gathered} 10 \\ \text { (Note } 1 \end{gathered}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \\ & \mathrm{CE}_{2} \leq 0.2 \mathrm{~V} \end{aligned}$ |
| Chip deselect to data retention time | ${ }_{\text {t }}^{\text {CDR }}$ | 0 |  |  | ns |  |
| Operation recovery time | $t_{R}$ | $\mathrm{t}_{\mathrm{RC}}$ |  |  | ns |  |

## Notes:

(1) $\mu \mathrm{PD} 4464-12 \mathrm{~L} /-15 \mathrm{~L} /-20 \mathrm{~L}: 1.0 \mu \mathrm{~A} \max \left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ $0.2 \mu \mathrm{~A} \max \left(-40\right.$ to $\left.25^{\circ} \mathrm{C}\right)$

## Data Retention ( $\overline{C E}_{1}$-Control/ed)



## Data Retention (CE $\mathbf{R}_{2}$-Controlled)



## PRELIMINARY INFORMATION

## Description

The $\mu$ PD43254 is a 65,536 -word by 4 -bit static RAM fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD43254 a high-speed device that requires very low power and no clock or refreshing to operate.
The $\mu$ PD43254 is packaged in a standard 24-pin plastic DIP.

## Features

$\square$ 65,536-word x 4-bit organizationSingle +5 -volt power supplyFully static operation-no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O capabilityLow power consumption

- Active: 120 mA
- Standby: 2 mA

Standard 300-mil, 24-pin plastic DIP packaging

## Ordering Information

| Part Number | Access Time (max) | Package |
| :--- | :--- | :--- |
| $\mu$ PD43254C-35 | 35 ns | 24-pin plastic DIP |
| $\mathrm{C}-45$ | 45 ns |  |
| $\mathrm{C}-55$ | 55 ns |  |

Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input and output voltages, $\mathrm{V}_{\text {IN }}$ (Note 1) | -0.5 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -55 to $+125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}$ minimum for 20 ns pulse.

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configuration

## 24-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{15}$ | Address inputs |
| $1 / 0_{1}-1 / 0_{4}$ | Data inputs/outputs |
| $\overline{\mathrm{CS}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| GND | Ground |
| VCC | +5 -volt power supply |

## Recommended Operating Conditions

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.5 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{H}}$ | 2.2 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Ambient temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

## Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ minimum for 20 ns pulse

## Block Diagram



## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1 )

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 5 | pF | $\mathrm{V}_{\text {IN }}=0 . \mathrm{V}$ |
| 1/0 capacitance | $\mathrm{C}_{\text {dout }}$ |  |  | 7 | pF | $V_{\text {DOUT }}=0 \mathrm{~V}$ |

Notes:
(1) This parameter is sampled and not $100 \%$ tested.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\text { WE }}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | X | Not selected | High-Z | Standby |
| L | H | Read | $D_{\text {OUT }}$ | Active |
| L | L | Write | $D_{\text {IN }}$ | Active |

## Notes:

(1) $X=$ don't care

## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Input leakage current | ${ }^{\prime} \mathrm{LI}$ | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=0 \text { to } V_{C C} \\ & V_{C C}=\max \end{aligned}$ |
| Output leakage current | ${ }_{\text {L }} \mathrm{O}$ | -2 | 2 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {OUT }}=0 \text { to } V_{\text {CC }} ; \\ & C S=V_{I H ;} \\ & V_{C C}=\max \end{aligned}$ |
| Operating supply current | ${ }^{\text {ICC }}$ |  | 120 | mA | $\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | $\mathrm{I}_{\text {SB }}$ |  | 20 | mA | $\overline{\overline{C S}}=V_{1 H}$ |
|  | ${ }_{\text {I }}^{\text {S } 1}$ |  | 2 | mA | $\begin{aligned} & \overline{C S} \geq V_{C C}-0.2 \mathrm{~V} ; \\ & V_{I N} \leq 0.2 \mathrm{~V} \text { or } \geq \\ & V_{C C}-0.2 \mathrm{~V} \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ |

$\mu$ PD43254

## AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD43254-35 |  | $\mu$ PD43254-45 |  | $\mu \mathrm{PD} 43254-55$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Address access time | $t_{\text {AA }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Chip select access time | $\mathrm{t}_{\text {ACS }}$ |  | 35 |  | 45 |  | 55 | ns |  |
| Output hold from address change | $\mathrm{t}_{0} \mathrm{H}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip selection to output in low-Z | $\mathrm{t}_{\mathrm{LZ}}$ | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip deselection to output in high-Z | ${ }_{\text {t }}^{\text {Hz }}$ | 0 | 15 | 0 | 20 | 0 | 25 | ns | (Note 4) |
| Chip selection to power-up time | tpu | 0 |  | 0 |  | 0 |  | ns |  |
| Chip deselection to power-down time | tpD | 0 | 35 | 0 | 45 | 0 | 55 | ns |  |
| Write Cycle |  |  |  |  |  |  |  |  |  |
| Write cycle time | twC | 35 |  | 45 |  | 55 |  | ns | (Note 2) |
| Chip select to end of write | $\mathrm{t}_{\mathrm{CW}}$ | 30 |  | 40 |  | 50 |  | ns |  |
| Address valid to end of write | $t_{\text {AW }}$ | 30 |  | 40 |  | 50 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {WP }}$ | 25 |  | 35 |  | 45 |  | ns |  |
| Write recovery time | ${ }_{\text {t }}$ WR | 0 |  | 0 |  | 0 |  | ns |  |
| Data valid to end of write | tow | 15 |  | 20 |  | 25 |  | ns |  |
| Data hold time | $\mathrm{t}_{\text {DH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in high-Z | twz | 0 | 15 | 0 | 20 | 0 | 25 | ns | (Note 4) |
| Output active from end of write | $\mathrm{t}_{0} \mathrm{~W}$ | 0 |  | 0 |  | 0 |  | ns | (Note 3) |

## Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.

Figure 1. Output Load

(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}$, and tow


## Timing Waveforms

Read Cycle No. 1 (Address Access)


Read Cycle No. 2 (Chip Select Access)


Note: [1] $\overline{\text { WE }}$ is held high for read cycle. [2] Address valid prior to or coincident with $\overline{\mathbf{C S}}$ transition low.

Write Cycle No. 1 ( $\overline{\text { WE-Controlled) }}$


## Timing Waveforms (cont)

Write Cycle No. 2 ( $\overline{\text { CS }}$-Controlled)


## Description

The $\mu$ PD43256A is a 32,768 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Its unique circuitry, using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors, makes the $\mu$ PD43256A a high-speed device that requires very low power and no clock or refreshing to operate.

Minimum standby power is drawn when $\overline{\mathrm{CS}}$ is at a high level, independent of the other inputs' levels. Data retention is guaranteed at a power supply voltage as low as 2 V . The $\mu$ PD43256A is available in standard 28-pin plastic DIP or 28-pin plastic miniflat packaging.

## Features

Single +5 -volt power supplyFully static operation-no clock or refreshing requiredTTL-compatible inputs and outputsCommon I/O using three-state outputsOne $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy applicationData retention voltage: 2 V minimumStandard 28-pin plastic DIP or miniflat packaging

## Ordering Information

| Part Number | $\begin{gathered} \text { Access } \\ \text { Time (max) } \\ \hline \end{gathered}$ | Data Retention Current [max] $\mathrm{T}_{\mathrm{A}}=0.70^{\circ} \mathrm{C}$ | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PD43256AC-85L | 85 ns | $50 \mu \mathrm{~A}$ | 28-pin plastic DIP |
| C-10L | 100 ns |  | ( 600 mil ) |
| C-12L | 120 ns |  | . |
| C-15L | 150 ns | . |  |
| $\mu \mathrm{PD} 43256 \mathrm{AC}$-85LL | 85 ns | $20 \mu \mathrm{~A}$ | 28-pin plastic DIP |
| C-10LL | 100 ns |  | (600 mil) |
| C-12LL | 120 ns |  |  |
| C-15LL | 150 ns |  |  |
| $\mu$ PD43256AGU-85L | 85 ns | $50 \mu \mathrm{~A}$ | 28-pin plastic |
| GU-10L | 100 ns |  | miniflat |
| GU-12L | 120 ns |  |  |
| GU-15L | 150 ns |  |  |
| $\mu$ PD43256AGU-85LL | 85 ns | $20 \mu \mathrm{~A}$ | 28-pin plastic |
| GU-10LL | 100 ns |  | miniflat |
| GU-12LL | 120 ns |  |  |
| GU-15LL | 150 ns |  |  |

## Pin Configuration

28-Pin Plastic DIP or Miniflat


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-\mathrm{A}_{14}$ | Address inputs |
| $\mathrm{I/0}_{1}-1 / O_{8}$ | Data inputs/qutputs |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{O E}}$ | Output enable |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\mathrm{OE}}$ | $\overline{\overline{W E}}$ | Mode | I/O | ICC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | Not selected | High-Z | Standby |
| L | H | H | Not selected | High-Z | Active |
| L | L | H | Read | $D_{\text {OUT }}$ | Active |
| L | X | L | Write | DIN | Active |

## Notes:

(1) $X=$ don't care.

Block Diagram


## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}($ Note 1$)$ | -0.5 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}($ Note 1$)$ | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{\mathrm{I} / \mathrm{O}}($ Note 1$)$ | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | 0 to $70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -55 to $125^{\circ} \mathrm{C}$ |
| Power dissipation, $\mathrm{P}_{\mathrm{D}}$ | 1.0 W |

## Notes:

(1) -3.0 V minimum (pulse width 50 ns )

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limilts |  |  |  |
| :--- | :--- | :---: | :--- | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ | 5 | pF | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ |  |
| Input/output <br> capacitance | $\mathrm{C}_{\mathrm{I} / 0}$ | 8 | pF | $\mathrm{V}_{\mathrm{I} / 0}=0 \mathrm{~V}$ |  |

Recommended Operating Conditions

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, low (Note 1) | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 |  | 0.8 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |  |
| Ambient temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Notes:
(1) -3.0 V minimum (pulse width 50 ns )

DC Characteristics
$T_{A}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Input leakage current | $\mathrm{l}_{1}$ | -1 | 1 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0$ to $V_{C C}$ |
| I/0 leakage current | 'LO | -1 | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I / 0}=0 \text { to } V_{C C} \\ & C S \geq V_{I H} \text { or } \\ & \frac{\partial E}{} \geq V_{I H} \text { or } \\ & W E \leq V_{I L} \end{aligned}$ |
| Operating supply current | ICCA1 |  | 45 | mA | $\overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}$ (min cycle); $l_{1 / 0}=0$ (Note 1) |
|  | Iccaz |  | 10 | mA | $\begin{aligned} & \overline{\mathrm{CS}}=V_{I L} ; \\ & I_{1 / 0}=0 \end{aligned}$ |
|  | ICCA3 |  | 10 | mA | $\begin{aligned} & \hline \overline{\mathrm{CS}} \leq 0.2 \mathrm{~V} ; \\ & \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 ; \\ & \mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$ |
| Standby supply current | $\mathrm{I}_{\text {SB }}$ |  | 3 | mA | $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$ |
|  | ${ }_{\text {SB1 }}$ | 0.002 | 0.1 | mA | $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ |
| Output voltage, low | $V_{0 L}$ |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output voltage, high | $\mathrm{V}_{0 \mathrm{H} 1}$ | 2.4 |  | V | $\mathrm{IOH}^{\mathrm{O}}=-1.0 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\text {CC }}-0.5$ |  | V | $\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$ |

## Notes:

(1) $\mu$ PD43256A-10L/-10LL/-12L/-12LL: 40 mA (max) $\mu$ PD43256A-15L/-15LL: 35 mA (max)

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu^{\text {PPD43256A-85L/-85LL }} \boldsymbol{\mu \text { PPO43256A-10L/-10LL }}$ |  |  |  | $\mu \mathrm{PD} 43256 \mathrm{~A}-12 \mathrm{~L} / 12 \mathrm{LL}$ |  | $\mu \mathrm{PD} 43256 \mathrm{~A}-15 \mathrm{~L} /-15 \mathrm{LL}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Read cycle time | $\mathrm{t}_{\mathrm{BC}}$ | 85 |  | 100 |  | 120 |  | 150 |  | ns |  |
| Address access time | $\mathrm{t}_{\mathrm{AA}}$ |  | 85 |  | 100 |  | 120 |  | 150 | ns | (Note 2) |
| Chip select access time | $t_{\text {ACS }}$ |  | 85 |  | 100 |  | 120 |  | 150 | ns | (Note 2) |
| Output enable to output valid | $\mathrm{t}_{0 \mathrm{E}}$ |  | 40 |  | 50 |  | 60 |  | 70 | ns | (Note 2) |
| Output hold from address change | $\mathrm{t}_{0}$ | 10 | - | 10 |  | 10 |  | 10 |  | ns |  |
| Chip select to output in low-Z | $\mathrm{t}_{\text {CLZ }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | (Note 3) |
| Output enable to output in low-Z | $\mathrm{t}_{0 \mathrm{LZ}}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | (Note 3) |
| Chip select to output in high-Z | ${ }^{\text {t }} \mathrm{CHZ}$ |  | 30 |  | 35 |  | 40 |  | 50 | ns | (Note 3) |
| Output enable to output in high-Z | $\mathrm{t}_{\mathrm{OHZ}}$ |  | 30 |  | 35 |  | 40 |  | 50 | ns | (Note 3) |
| Write Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Write cycle time | $t_{\text {w }}$ | 85 |  | 100 |  | 120 |  | 150 |  | ns |  |
| Chip select to end of write | ${ }_{\text {t }} \mathrm{W}$ | 70 |  | 80 |  | 85 |  | 100 |  | ns |  |
| Address valid to endof write | $t_{\text {AW }}$ | 70 |  | 80 |  | 85 |  | 100 |  | ns |  |
| Address setup time | $t_{\text {AS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | $t_{\text {WP }}$ | 65 |  | 70 |  | 70 |  | 90 |  | ns |  |
| Write recovery time | ${ }_{\text {twr }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Data valid to end of write | $t_{\text {bw }}$ | 35 |  | 40 |  | 50 |  | 60 |  | ns |  |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable to output in high-Z | ${ }_{\text {t }}$ HzZ |  | 30 |  | 35 |  | 40 |  | 50 | ns | (Note 3) |
| Output active from end of write | $\mathrm{t}_{0} \mathrm{~W}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | (Note 3) |

## Notes:

(1) Input pulse levels $=0.8$ to 2.2 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$.
(2) See figure 1 for output loading.
(3) See figure 2 for output loading.

Figure 1. Output Load
*Including scope and jig.

Figure 2. Output Load for $\boldsymbol{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OLZ}}, \boldsymbol{t}_{\mathrm{CHZ}}, \boldsymbol{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathrm{WHZ}}$, and tow

*Including scope and jig.

## Timing Waveforms

Read Cycle No. 1 (Address Access)


Notes:
[1] WE is high for a read cycle.
[2] The device is continuously selected; $\overline{\mathbf{C S}}=\overline{\mathbf{O E}}=\mathrm{V}_{\mathrm{IL}}$.
$\mu$ PD43256A

## Timing Waveforms (cont)

Read Cycle No. 2 (Chip Select Access)


Write Cycle No. 1 (WE-Controlled)


## Timing Waveforms (cont)

Write Cycle No. 2 ( $\overline{\text { CS-Controlled) }}$


Low Vcc Data Retention Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Data retention supply voltage | $V_{\text {CCDR }}$ | 2.0 |  | 5.5 | V | CS $\geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |
| Data retention supply current | ICCDR |  | 1 | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=3.0 \mathrm{~V} \\ & C S \geq V_{C C}-0.2 \mathrm{~V} \\ & (\text { Notes } 1,2) \end{aligned}$ |
| Chip deselection to data retention | $t_{C D R}$ | 0 |  |  | ns |  |
| Operation recovery time | $t_{R}$ | $t_{\text {RC }}$ |  |  | ns |  |

## Data Retention Timing Chart



## Notes:

(1) For $\mu$ PD43256A-LL, $I_{C C D R}=20 \mu \mathrm{~A}(\max )$ for $T_{A}=0$ to $70^{\circ} \mathrm{C}$ and $3 \mu \mathrm{~A}$ (max) for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.
(2) For $\mu \mathrm{PD} 43256 \mathrm{~A}-\mathrm{L}, \mathrm{I}_{\mathrm{CCDR}}=15 \mu \mathrm{~A}(\max )$ for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.

## Introduction

The evolution of low-power, high-capacity, high-speed memory technologies has led the system designer to novel and highly portable computer designs. As technology has advanced to low-power devices, it has become possible to make an entire system nonvolatile for the life of the product.
To provide this nonvolatile function, secondary power sources are mounted on a printed circuit board controlled by a backup circuit that switches from the primary power to secondary power during power failures. The backup issue is considered as part of the overall system design, and the choice of a secondary power source and backup circuit are based on the unique characteristics of each application.
This application note deals with the issues of providing a nonvolatile memory system. A review of the evolution of static RAMs (SRAMs) with regard to state-of-the-art, low-power SRAM technology is followed by an example of secondary power sources, as well as several sample backup circuit designs.

## SRAM Technology

The SRAM historically has been used by system designers to provide a high-speed, low-power data storage function for a variety of computer architectures. The higher cost-per-bit compared to dynamic memories is offset by a simpler circuit design that features a nonmultiplexed address structure, simple timing signals, and no refresh requirement.

## Six-Transistor Cell

The development of the SRAM memory cell has followed the trail of bipolar, NMOS, and CMOS technologies in that large-capacity memory devices require minimal cell size, not only to reduce power requirements, but also to be able to fit the die into the package.

The static memory cell is basically a cross-coupled flip-flop circuit requiring no clocks or refreshing. Early six-transistor NMOS static memory cell designs employed the use of enhancement or depletion mode FETs as load devices. Figure 1 shows an example using depletion loads. Q3 and Q4 are depletion-type devices fabricated such that they are always conductive when their respective gate and source nodes are shorted together. If the gate of enhancement device Q2 is written to a low level using Q5 and the data line, Q2 turns off. This allows load device Q4 to pull its source node high and turn on Q1; the write operation using Q6 also helps this action. The cell is designed so that Q1 has much lower "on" resistance than its load Q3. After the write operation ends, and Q5 and Q6 are off, Q1 keeps its drain node at a low level to maintain Q2 in the off state, while the drain node of Q2 is maintained high by Q4. The stored voltages are stable.

Figure 1. Six-Transistor Cell-Depletion


## Four-Transistor Cell

As NMOS technology evolved, the active device for the load was replaced with polysilicon resistors (see figure 2). With the polysilicon load resistor, current levels of less than 1 nA are achievable. Because of these low-current levels, the cell can be used in advanced SRAMs with very high memory density and low standby current. NEC uses this technology in its low-power family of SRAMs to facilitate their use in battery backup applications. This type of core cell is used in both NMOS and CMOS SRAMs from NEC.

## CMOS Cell

CMOS technology, with its high-speed, low-power characteristics, makes an attractive choice for memory backup systems.

In figure 3, Q1-Q3 and Q2-Q4 form two CMOS inverters that are cross-coupled to form the conventional flipflop of the SRAM cell. Unlike the enhancement or polysilicon resistor cells, the CMOS cell does not have a dc current path (other than leakage) in either of its quiescent logic states. While the potentially lowerleakage and wider-voltage operating range makes the six-transistor CMOS cell very desirable for battery backup operation, the large die area required makes it less competitive in cost and memory density.

Figure 2. Four-Transistor Cell—Polysilicon Resistor


Figure 3. CMOS Cell


## Battery Backup Concept

The goal of a memory backup system design is to guarantee memory data retention for days, months, or years. In the past, these memory backup circuits were implemented as part of the computer's power supply circuit. Today, the memory backup function is designed as part of the individual memory circuit, where each provides a constant secondary (backup) power source and the necessary circuitry to detect power failures and isolate the main power supply from the backup power source (battery). The battery backup circuit must be an integral part of printed circuit board layout. Furthermore, SRAM technology must be able to guarantee the requirements of the memory battery backup function. The following sections discuss in detail the aspects of memory battery backup circuit design using NEC's low-power SRAM technology.

A typical functional block diagram for a memory battery backup system is illustrated in figure 4. The power supply converts ac voltage into a regulated dc voltage, which powers all of the system components ( $\mathrm{V}_{\mathrm{CC}}$ ). The power supply monitor circuit detects a power failure and generates an interrupt to the CPU. This circuit also signals the memory circuit to deselect the memory array, thus protecting the memory from false CPU commands. The power supply monitor circuit may be centralized to the power supply or decentralized to each memory circuit.

On the memory circuit, power failure is sensed by a voltage-detector circuit, which isolates the system power from the memory power, allowing the backup battery to become active.

Figure 4. Battery Backup System Block Diagram


Notes:
[1] May be located on memory PCB.

## Backup Battery Selection

## Battery Type

Nickel-cadmium batteries and lithium batteries were compared for use in a memory battery backup application. Although nickel-cadmium batteries have been a popular choice for this application, recent years have seen the development of lithium batteries. Some characteristics of these two types of batteries are contrasted in table 1. For additional comparison, the characteristics of current drain versus operating time for nickel-cadmium and lithium batteries are shown in figures 5 and 6, respectively.

Since lithium batteries provide a constant current for up to 10 years in this type of low-power application, they were chosen over nickel-cadmium for this design example. A single 3-volt lithium battery is adequate for most CMOS SRAM applications. If higher voltage is required, batteries may be connected in series.

Physical characteristics of a battery are determined by the manufacturer according to common system requirements. The designer must select a battery of the proper size and shape to meet the requirements of printed circuit board technology. Such requirements may include terminal connections and solderability.

Table 1. Lithium Versus Nickel-Cadmium Battery Characteristics

| Characteristic | Lithium | Nickel-Cadmium |
| :--- | :--- | :--- |
| Shelf life | 10 years | 6 months |
| Rechargeable | no | yes |
| Energy density | $5000 \mathrm{mAh}^{*}$ | $4000 \mathrm{mAh}^{*}$ |
| Cost | moderate | moderate |
| PCB-compatible | yes | yes |

*milliampere hours

Figure 5. Current Drain Versus Operating TimeNickel Cadmium Battery


Figure 6. Current Drain Versus Operating TimeLithium Battery


## Battery Capacity

Battery capacity defines the current drive of the battery over a period of time, measured in milliampere hours (mAh). Required capacity of the battery selected for the memory backup circuit can be determined from the following formula:
Current required ( mA ) $\times$ time in backup mode (hours/day) $\times 365$ days/year $x$ number of years

Figure 7. Lithium Discharge Characteristics$\simeq 20 \mu \mathrm{~A}$ Load


Battery capacity is affected by temperature, humidity, and load conditions. The designer must ensure that these conditions do not degrade the operating life (discharge characteristics) of the battery. Figures 7 and 8 show the effects of temperature and load current variations on lithium battery discharge characteristics.

Figure 8. Lithium Discharge Characteristics$\simeq 8.5 \mathrm{~mA}$ Load


## Design Example

This section presents and documents a detailed battery backup design example. The discussion encompasses SRAM memory array design, current and voltage requirements, voltage-detector and isolation circuitry, and memory protection design considerations.

## SRAM Memory Array

For the battery backup design example, NEC's $\mu$ PD43256A-15LL (a CMOS-fabricated, 150-ns SRAM memory device) is used to implement the memory array, configured as 32 K by 32 bits using four $32 \mathrm{~K} \times 8$-bit memory devices (figure 9 ). The memory array's interface of common address lines, common I/O lines, and control signals are asserted by control logic common to all devices. However, the power supply connection to the memory array requires special consideration. The power plane of the memory array must be isolated from the system power supply to ensure that the backup battery drives only the memory array (see "Voltage-Level Detector and Isolation Circuit Design").

## Current and Voltage Requirements

The first task for the designer is to define the required battery capacity. Table 2 shows data retention characteristics for the $\mu$ PD43256A SRAM. The maximum data retention current for this device is $20 \mu \mathrm{~A}$ at 0 to $70^{\circ} \mathrm{C}$. For a circuit with four memory devices, total memory array current is $4 \times 20 \mu \mathrm{~A}=80 \mu \mathrm{~A}$.

The battery's operating period is assumed to be 10 years at 12 hours-per-day. Using the formula shown under "Battery Capacity," the required capacity of the battery can be derived from this calculation.
$80 \mu \mathrm{~A} \times 12$ hours $/$ day $\times 365$ days/year $\times 10$ years $=3504 \mathrm{mAh}$
Requirements for the data retention voltage of the $\mu$ PD43256A SRAM are defined in table 2, while figure 10 shows timing requirements for data retention with respect to the $\overline{\mathrm{CS}}$ chip select signal.

Table 2. $\mu$ PD $43256 A$ SRAM Data Retention Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Data retention supply voltage | $V_{\text {CCDR }}$ | 2.0 |  | 5.5 | V | $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ |
| Data retention supply current | ${ }^{\text {I CCDR }}$ |  | 1 | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=3.0 \mathrm{~V} ; \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { (Notes } 1,2 \text { ) } \end{aligned}$ |
| Chip deselection to data retention | ${ }^{t} \mathrm{CDR}$ | 0 |  |  | ns |  |
| Operation recovery time | $t_{R}$ | $t_{\text {RC }}$ |  |  | ns |  |

## Notes:

(1) $\mu$ PD43256A-LL: $I_{C C D R}=20 \mu \mathrm{~A}(\max )$ for $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ and $3 \mu \mathrm{~A}(\max )$ for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.
(2) $\mu \mathrm{PD} 43256 \mathrm{~A}-\mathrm{L}: \mathrm{I}_{\mathrm{CCDR}}=15 \mu \mathrm{~A}(\max )$ for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.

Figure 9. SRAM Memory Array


Figure 10. Data Retention Timing Waveforms


Battery Protection. Figure 11 shows the battery portion of the memory battery backup circuit. This portion of the circuit must be designed to provide the required data retention voltage and energy capacity for the memory backup function, yet protect the battery from reverse (charging) current. The diode and resistor shown in figure 11 were selected to protect the battery according to UL standards.

Since lithium batteries are not rechargeable, currentlimiting protection must be provided to control the amount of current from the main power supply. For this purpose, the designer must select a diode that protects against charging current, yet provides sufficient voltage for memory battery backup.
The UL-allowable charging current for a lithium battery is specified as $1 \%$ of the battery capacity, calculated as follows:
$1 \% \times$ capacity of battery (mAh) $\div$ (amount of time charging may occur (hours/day) $\times 365$ days/year $\times$ number of years)
In this design example, a minimum capacity of 3504 mAh is required. The closest standard-size lithium battery has a capacity of 5000 mAh . The allowed charging current of this battery for a 10 -year period is calculated in this way:
$1 \% \times 5000 \mathrm{mAh} \div(12$ hours $/$ day $\times 365$ days $/$ year $\times 10$ years $)=1.1 \mu \mathrm{~A}$

Therefore, the diode selected to protect the battery must have a maximum reverse leakage current rating of $1.1 \mu \mathrm{~A}$. To maintain the required data retention voltage at the memory device, a diode with a small forward-voltage drop must be selected. A Schottky diode, with a forward-voltage drop of 0.2 volt, provides a 2.7 -volt battery backup voltage and also meets the reverse leakage current specification for this circuit.
According to UL standards, the battery must also be protected against charging current in case the protection diode is damaged. The designer must select a current-limiting resistor for this purpose. Resistor value is determined according to this formula:
$\left(V_{C C}-V_{\text {Battery }}\right) \div$ maximum charging current
UL standards specify a maximum charging current of 5 mA . Therefore, for the circuit in this design example, the minimum resistor value is specified as follows:
$(5.5-3 \mathrm{~V}) \div 5 \mathrm{~mA}=500 \Omega$
Selecting the aforementioned Schottky diode and a standard $10 \%$ resistor value of $560 \Omega$ would guarantee minimum data retention voltage for the battery backup circuit. Total voltage drop across the protection diode and current-limiting resistor is equal to 0.245 volt, which provides a memory backup voltage of 2.755 volts-well above the minimum data retention voltage of 2 volts.

Figure 11. Backup Energy Source Circuit


## Voltage-Level Detector and Isolation Circuit Design

The designer must also determine the best method for detecting power failures and isolating the main power supply from the backup battery. The circuit designed for these functions must fulfill two requirements: 1) sustain maximum operating current for the memory array, and 2) provide isolation protection during battery backup operation. Several design alternatives for voltage-level detector and isolation circuits are discussed in this section. The standards of comparison between these circuits are relative simplicity of design and voltage drop of the isolation element.

Note: In applications that are subjected to brownouts or extreme temperatures, these voltage-level detector and isolation circuits will minimize unnecessary cycling of the backup battery. However, considerations must be made to protect the memory devices from unstable circuit conditions, especially during power failure. For a discussion of memory protection under these circumstances, refer to "System Power Failure Design Considerations," following this section.

The designer must first determine maximum operating current of the memory array. Since maximum operating current for the $\mu$ PD43256A SRAM is specified as 35 mA , total operating current is calculated as $4 \times 35 \mathrm{~mA}=$ 140 mA for the memory array in this design example.

Diode Isolation Circuit. The diode isolation circuit in figure 12 provides a simple approach to memory battery backup. The isolation diode (D1) must be able to sustain the maximum memory operating current, yet minimize voltage skew between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {CCM }}$ by limiting forward-voltage drop. A large voltage skew could cause illegal conditions to occur in normal system operations. A typical silicon diode with a forward-voltage drop of 0.7 V at a $140-\mathrm{mA}$ load current would provide a large voltage skew between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CCM}}$. Since SRAM $\mathrm{V}_{\text {CC }}$ is 0.7 V less than the level of a logic signal from a device not in the backup system, $\mathrm{V}_{\mathrm{CC}}$ would have to be adjusted to a nonstandard level of 5.7 V to maintain $\mathrm{V}_{\mathrm{CC}}$ at 5 V .
In contrast, a Schottky diode typically provides a forward-voltage drop of 0.2 V at a 3-A load current. This low voltage drop minimizes voltage skew and maintains logic input levels to within 0.2 V of $\mathrm{V}_{\mathrm{CC}}$, which makes the Schottky diode an ideal choice for the diode isolation circuit.

Voltage-Level Detector Circuit. The diode isolation circuit provides a simple means of battery backup, but some applications may require a circuit that minimizes voltage skew and has a more defined threshold level. The voltage-level detector circuit shown in figure 13 would allow the designer to fulfill these system requirements.

The voltage-level detector circuit isolates the supply voltage from the memory voltage when the voltage level falls below $\mathrm{V}_{\mathrm{CC}}$ minimum. Threshold voltage is specified by using a zener diode in the voltage-divider circuit of figure 13. Care must be taken to ensure that marginal $\mathrm{V}_{\mathrm{CC}}$ levels do not cause unnecessary cycling of the backup battery.

Figure 12. Dlode Isolation Circult


Figure 13. Voltage-Level Detector Circuit


## BATTERY BACKUP CIRCUITS FOR SRAMs

The voltage-level detector circuit consists of zener diode Z1, switching transistor Q1, and the R1 and R2 voltage-divider network. The collector of Q1 is connected to the base of PNP isolation transistor Q2, isolating $\mathrm{V}_{\mathrm{CC}}$ from $\mathrm{V}_{\mathrm{CCM}}$ when the $\mathrm{V}_{C C}$ voltage level falls below threshold. Threshold voltage ( $\mathrm{V}_{\mathrm{TH}}$ ) is determined by $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{BE} 1}$, where $\mathrm{V}_{\mathrm{Z}}$ is zener voltage and $\mathrm{V}_{\mathrm{BE}} 1$ is the base-to-emitter voltage drop of Q1. The threshold voltage in figure 13 is $3.9+0.6 \mathrm{~V}=$ 4.5 V , which is the specification for minimum $\mathrm{V}_{\mathrm{CC}}$. When $V_{C C}$ drops below minimum specification, the zener diode operates in its forward-voltage region, and no base current flows into Q1. Q1 is then forced into cutoff. With Q1 in cutoff, no base current flows into Q2, consequently forcing Q 2 into cutoff and isolating $\mathrm{V}_{\mathrm{CC}}$ from $\mathrm{V}_{\mathrm{CCM}}$.
Isolation transistor Q2 must be capable of supplying a maximum memory operating current of 140 mA and also must provide a minimum $\mathrm{V}_{\text {SAT }}$ to reduce voltage skew. The PNP 2N2907 medium-power transistor chosen for this application can drive up to 150 mA with a dc gain range of 100 to 300 . The maximum base current needed to turn on Q2 is calculated as follows: $I_{\mathrm{BQ} 2}=\mathrm{I}_{\mathrm{CQ} 2} \div \mathrm{h}_{\mathrm{fe}}=140 \mathrm{~mA} \div 100=1.4 \mathrm{~mA}$
Since the base of Q2 is connected to the collector of Q1, and $\mathrm{I}_{\mathrm{BQ} 2}=\mathrm{I}_{\mathrm{CQ} 1}$, Q1 must be capable of driving a collector current of 1.4 mA or greater. The choice for Q1 is an NPN 2N3904, a general-purpose transistor with an $\mathrm{I}_{\mathrm{C}}$ maximum of 10 mA and an $\mathrm{h}_{\mathrm{fe}}$ of 100 . The base current needed to turn on Q1 is calculated at $3 \mathrm{~mA} \div 100=30 \mu \mathrm{~A}$, which is much less than the maximum $\mathrm{I}_{\mathrm{BQ} 1}$ provided by the R1-R2 network. The voltage divider R1-R2 must also forward-bias the base-emitter junction of Q1 to allow the transistor to operate in its active region. The voltage at the Q1 base
node is 4.1 volts, which keeps Q1 turned on until threshold voltage is reached.
The circuit in figure 13 was characterized, and the relationship between the input and output voltage for two output loads is shown in figure 14. At an input voltage level of 4.5 V , the output voltage maintains a voltage level higher than the minimum data retention voltage of 2 V .
Schmitt Trigger Voltage-Level Detector. The voltagelevel detector circuit is an improvement over the diode isolation circuit. However, the threshold point is sensitive to variations in Q1 gain, and could cause oscillations around the trigger point, draining the backup battery. The circuit shown in figure 15 reduces threshold sensitivity by adding an operational amplifier, thereby improving threshold margin by introducing hysteresis into the threshold region. This comparator circuit is commonly referred to as a Schmitt trigger.

Figure 14. Voltage-Level Detector/Transfer Function


83-004859A

Figure 15. Schmitt Trigger Voltage-Level Detector Circuit


The noninverting input of the $\mu \mathrm{PC} 358$ is connected to a reference-voltage network consisting of R4 and R5. This reference voltage, when compared to the input voltage on the inverting input, determines when the output of the operational amplifier will transition. If a loop gain in excess of unity is chosen, the output waveform continues to be virtually discontinuous at the comparison voltage. However, at this point, the circuit would exhibit a phenomenom called hysteresis. Hysteresis voltage is determined by the resistor network of R4 and R5.
Figure 16 illustrates the response of the Schmitt trigger voltage-level detector circuit to the input signals connected to the noninverting input of the $\mu \mathrm{PC} 358$. When the input voltage reaches the value V1, the output goes high, and when the input is at V2, the output transitions to the low state. The difference between the input signals ( $\mathrm{V} 1-\mathrm{V} 2$ ) is called the hysteresis voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$. Therefore, the threshold voltage is dependent upon two input values, increasing the threshold sensitivity by the difference between the two voltages. For the circuit in figure $15, \mathrm{~V}_{\mathrm{H}}$ is equal to 0.34 V . This circuit provides the best response of the three backup circuits, but at a cost of increased device count.
The circuit in figure 15 was characterized, and the relationship between input voltage and output voltage for a $100-\mathrm{k} \Omega$ output load is shown in figure 17. When the input voltage reaches $4.5 \mathrm{~V}(\mathrm{~V} 1)$, the output voltage is set at a level higher than the minimum data retention voltage. Output voltage does not change until input voltage reaches a value of $4.1 \mathrm{~V}(\mathrm{~V} 2)$.

## System Power Failure Design Considerations

As shown in figure $18, \mathrm{~V}_{\mathrm{CC}}$ decays slowly after power failure, providing time for an orderly system shutdown. Even during an orderly shutdown, the system may generate spurious memory commands, causing viable data to be overwritten. The designer can use the status signal generated by the system's power supply monitor circuit to protect the memory from false CPU commands after power failure. (The power supply monitor circuit is shown as part of the memory battery backup system in figure 4.)

Figure 16. Response of the Schmitt Trigger to an Arbitrary Signal


Figure 17. Schmitt Trigger Detector/Transfer Function


Figure 18. Power Failure VCc Profile


The power supply status signal generates a nonmaskable interrupt to the CPU, initiating an orderly system shutdown. This status signal also is sent to the NAND gate of the memory circuit ("Power OK" in figure 19). The memory circuit "ands" this status signal with the other control signals and deselects the memory array before any false commands are generated.
Once the backup circuit has taken over and the memory array has been deselected, $\overline{C S}$ must be maintained at $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$. The power supply status signal (Power OK) must remain low during the entire time $\mathrm{V}_{C C}$ is off to force the output of the NAND gate to remain high. The $1 \mathrm{k} \Omega$ resistor ensures that the requirement for $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CCM}}-0.2 \mathrm{~V}$ is met.
If a power supply monitor circuit is not provided, the designer may design one. The circuit shown in figure 20 uses a voltage-level detector design to detect when $\mathrm{V}_{\mathrm{CC}}$ falls below 4.5 V . This circuit is similar to the voltage-level detector circuit used in the battery backup design example. Rather than control an isolation transistor, this power supply monitor circuit generates a power supply status signal (Power OK) to the memory select logic. Threshold voltage is determined by the zener diode and base-emitter voltage drop.

The circuit shown in figure 20 is subject to oscillations due to variations in Q1 gain and limited threshold margins. The addition of a Schmitt trigger to the power supply monitor circuit (figure 21) increases threshold margins by introducing hysteresis into the threshold region. The amount of hysteresis is determined by the values of R4 and R5. When input voltage falls below 4.5 V , the circuit generates a low signal (Power OK) to the memory select logic, and the memory array is deselected. Power OK remains low, because R5 pulls it down as long as $\mathrm{V}_{\mathrm{CC}}$ is off.

Figure 19. Memory Array Deselect Circuit


83-004856A

Figure 20. Power Supply Monitor Circuit


Figure 21. Power Supply Monitor Circuit With Schmitt Trigger


| Section 7 ECL RAMs |  |
| :---: | :---: |
| $\mu \mathrm{PB10422}$ | 7-1 |
| $256 \times 4$-Bit 10K ECL RAM |  |
| $\mu$ PB10470 | $7-5$ |
| $4,096 \times 1$-Bit 10K ECL RAM |  |
| $\mu$ PB10474 | 7-11 |
| 1,024 $\times 4$-Bit 10K ECL RAM |  |
| $\mu \mathrm{PB} 10474 \mathrm{~A}$ | 7-15 |
| 1,024 $\times 4$-Bit 10K ECL RAM |  |
| $\mu \mathrm{PB} 10480$ | 7-19 |
| 16,384 $\times 1$-Bit 10K ECL RAM |  |
| $\mu \mathrm{PB10484}$ | 7-23 |
| 4,096 x 4-Bit 10K ECL RAM |  |
| $\mu \mathrm{PB} 100422$ | 7-29 |
| $256 \times 4$-Bit 100K ECL RAM |  |
| $\mu \mathrm{PB} 100470$ | 7-33 |
| 4,096 $\times 1$-Bit 100K ECL RAM |  |
| $\mu \mathrm{PB} 100474$ | 7-37 |
| 1,024 $\times 4$-Bit 100K ECL RAM |  |
| $\mu \mathrm{PB100474A}$ | 7-41 |
| 1,024 x 4-Bit 100K ECL RAM |  |
| $\mu \mathrm{PB} 100480$ | 7-45 |
| 16,384 $\times 1$-Bit 100K ECL RAM |  |
| $\mu$ PB100484 | 7-49 |
| 4,096 $\times 4$-Bit 100K ECL RAM |  |

## Description

The $\mu$ PB10422 is a very high-speed 10K interface ECL RAM. It is organized as 256 words by 4 bits with noninverted, open-emitter outputs and low power consumption. Two fast access time versions are available: 7 ns max and 10 ns max.

## Features

256-word x 4-bit organization10K interface ECLNoninverted, open-emitter outputFast access timesLow power consumptionAvailable in a 24 -pin ceramic DIP
## Ordering Information

| Part Number | Access <br> Time (max) | Supply <br> Current (min) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PB10422D-7 | 7 ns | -220 mA | 24 -pin ceramic DIP |
| D-10 | 10 ns |  |  |

## Pin Configuration

24-Pin Ceramic DIP


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{7}$ | Addresses |
| $\mathrm{DI}_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\overline{D O_{1}-D O_{4}}$ | Data outputs |
| $\overline{\mathrm{BS}}-\overline{\bar{B}} \bar{S}_{4}$ | Block select inputs |
| $\overline{\overline{W E}}$ | Write enable |
| $V_{C C}$ | Power supply (current switches and bias driver) |
| $V_{C C A}$ | Power supply (output devices) |
| $V_{E E}$ | Power supply |

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | +0.5 to -7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | +0.5 V to $\mathrm{V}_{\mathrm{EE}}$ |
| Output current, $\mathrm{I}_{\mathrm{OUT}}$ | +0.1 to -30 mA |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. Operating conditions should be within the limits specified under DC and AC Characteristics.

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2 V

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | -1000 | -840 | mV | $V_{I N}=V_{\text {IH }}$ max or $V_{I L} \min ; \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -960 | -810 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -900 | -720 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; T_{A}=75^{\circ} \mathrm{C}$ |
| Output voltage, low | $\mathrm{V}_{0}$ | -1870 | -1665 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min; $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 | -1650 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 | -1625 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | -1020 |  | mV | $V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }} \max ; T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -980 |  | mV | $V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }} \max ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | -920 |  | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \min$ or $\mathrm{V}_{\text {IL }} \max ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, low | VoLC |  | -1645 | mV | $V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$ |
|  |  |  | -1630 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \min$ or $\mathrm{V}_{\text {IL }} \max ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  |  | -1605 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \min$ or $\mathrm{V}_{\text {IL }} \max ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | -1145 | -840 | mV | For all inputs: $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1105 | -810 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | -1045 | -720 | mV | For all inputs: $T_{A}=75^{\circ} \mathrm{C}$ |
| Input voltage, low | $V_{\text {IL }}$ | -1870 | -1490 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 | -1475 | mV | For all inputs: $T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 | -1450 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Input current, high | $\mathrm{IIH}_{\mathrm{H}}$ |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{H}}$ max |
| Input current, low | IIL | 0.5 | 170 | $\mu \mathrm{A}$ | $\overline{\mathrm{BS}}_{1} \cdot \overline{\mathrm{BS}}_{4} ; \mathrm{V}_{\text {IN }}=V_{\text {IL }}$ min |
|  |  | -50 |  | $\mu \mathrm{A}$ | All others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min |
| Supply current | $\mathrm{I}_{\mathrm{EE}}$ | -220 |  | mA | All inputs and outputs open |

## Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## Capacitance

| Parameter | Symbol | Limits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB10422-7 |  | $\mu$ PB10422-10 |  |  |
|  |  | Typ | Max | Typ | Max |  |
| Input capacitance | $\mathrm{C}_{1}$ | 4 |  | 4 |  | pF |
| Output capacitance | $\mathrm{Cout}^{\text {O }}$ | 5 |  | 5 |  | pF |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB10422-7 |  |  | $\mu$ PB10422-10 |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |
| Block select access time | $t_{\text {ABS }}$ |  |  | 5 |  |  | 5 | ns |
| Block select recovery time | $t_{\text {RBS }}$ |  |  | 5 |  |  | 5 | ns |
| Address access time | $t_{\text {AA }}$ |  |  | 7 |  |  | 10 | ns |
| Write Mode |  |  |  |  |  |  |  |  |
| Write pulse width | ${ }^{\text {w }}$ W | 5 |  |  | 6 |  |  | ns |
| Data setup time | ${ }_{\text {twSD }}$ | 1 |  |  | 2 |  |  | ns |
| Data hold time | twho | 1 |  |  | 2 |  |  | ns |
| Address setup time | twSA | 1 |  |  | 2 |  |  | ns |
| Address hold time | twha | 1 |  |  | 2 |  |  | ns |
| Block select setup time | $t_{\text {WSBS }}$ | 1 |  |  | 2 |  |  | ns |
| Block select hold time | ${ }^{\text {tWHBS }}$ | 1 |  |  | 2 |  |  | ns |
| Write disable time | tws |  |  | 5 |  |  | 5 | ns |
| Write recovery time | $t_{\text {Wr }}$ |  |  | 6 |  |  | 9 | ns |
| Output Rise and Fall Times |  |  |  |  |  |  |  |  |
| Output rise time | $t_{R}$ |  | 2 |  |  | 2 |  | ns |
| Output fall time | $\mathrm{t}_{\mathrm{F}}$ |  | 2 |  |  | 2 |  | ns |

## Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) All timing measurements are referenced to $50 \%$ input levels.
(3) See figures 1 and 2.

Figure 1. Loading Conditions Test Circuit


Figure 2. Input Pulse
$-0.9 \mathrm{~V}$

## Timing Waveforms

Read Mode


## Write Mode



## Description

The $\mu$ PB10470 is a very high-speed 10K interface ECL random access memory. The device is organized as 4 K words by 1 bit, with an open emitter output (noninverted) and low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The $\mu$ PB10470 is available in a hermetic, 300-mil, 18-pin ceramic DIP.

## Features

| $\square$ 4K-word x 1-bit organization |
| :--- |
| $\square$ 10K ECL interface |
| $\square$ Open emitter output (noninverted) |
| $\square$ Fast access times |
| $\square$ Low power consumption |
| $\square$ 300-mil, 18-pin ceramic DIP packaging |
| Ordering Information | | Part Number |
| :--- |
| $\mu$ PB10470D-10 |
| Time [max) |$\quad$ Package | D-15 |
| :--- |

Open emitter output (noninverted)
Low power consumption300-mil, 18-pin ceramic DIP packaging

## Ordering Information

## Pin Configuration

## 18-Pin Ceramic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{11}$ | Address inputs |
| $D_{I N}$ | Data input |
| $D_{O U T}$ | Data output |
| $\overline{\overline{C S}}$ | Chip select |
| $\overline{\overline{W E}}$ | Write enable |
| $V_{C C}$ | Ground |
| $V_{E E}$ | -5.2 -volt power supply |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Supply voltage, $\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\mathrm{CC}}$ | -7.0 to +0.5 V |
| Input voltage, $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\text {EE }}$ to +0.5 V |
| Output current, lout | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  | 4 |  | pF |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 5 |  | pF |

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

| Parameter | Symbol | $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 0 | -1000 | -840 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{max})$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$ |
|  |  | +25 | -960 | -810 | mV |  |
|  |  | +75 | -900 | -720 | mV |  |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 | -1870 | -1665 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}(\mathrm{max})$ or $\mathrm{V}_{\text {IL }}(\mathrm{min})$ |
|  |  | +25 | -1850 | -1650 | mV |  |
|  |  | +75 | -1830 | -1625 | mV |  |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | 0 | -1020 |  | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ min $)$ or $\mathrm{V}_{\mathrm{IL}}(\max )$ |
|  |  | +25 | -980 |  | mV |  |
|  |  | +75 | -920 |  | mV |  |
| Output threshold voltage, Iow | $V_{0 L C}$ | 0 |  | -1645 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}}($ min $)$ or $\mathrm{V}_{\mathrm{IL}}($ max $)$ |
|  |  | +25 |  | -1630 | mV |  |
|  |  | +75 |  | -1605 | $m \mathrm{~V}$ |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 0 | -1145 | -840 | mV | Guaranteed input voltage high for all inputs |
|  |  | +25 | -1105 | -810 | mV |  |
|  |  | +75 | -1045 | -720 | mV |  |
| Input voltage, low | VIL | 0 | -1870 | -1490 | mV | Guaranteed input voltage low for all inputs |
|  |  | +25 | -1850 | -1475 | mV |  |
|  |  | +75 | -1830 | -1450 | mV |  |
| Input current, high | $\mathrm{IIH}^{\text {H }}$ | 0 to +75 |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ |
| Input current, low | IIL | 0 to +75 | 0.5 | 170 | $\mu \mathrm{A}$ | For $\overline{\overline{C S}}: \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}(\min )$ |
|  |  | 0 to +75 | -50 |  | $\mu \mathrm{A}$ | For all others: $V_{\text {IN }}=V_{\text {IL }}(\mathrm{min})$ |
| Supply current | $I_{\text {EE }}$ | 0 to +75 | -220 |  | mA | All inputs and outputs open |

Notes:
(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB10470-10 |  | $\mu \mathrm{PB10470-15}$ |  |  |
|  |  | Min Typ | Max | Min Typ | Max |  |
| Read Mode |  |  |  |  |  |  |
| Address access time | $t_{A A}$ |  | 10 |  | 15 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  | 6 |  | 8 | ns |
| Chip select recovery time | $\mathrm{t}_{\mathrm{RCS}}$ |  | 6 |  | 8 | ns |


| Write Mode |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Write pulse width | ${ }_{\text {t }}$ W | 10 |  | 15 |  | ns |
| Data setup time | ${ }^{\text {twSD }}$ | 2 |  | 2 |  | ns |
| Data hold time | ${ }_{\text {t WHD }}$ | 2 |  | 2 |  | ns |
| Address setup time | twSA | 3 |  | 3 |  | ns |
| Address hold time | twha | 2 |  | 2 |  | ns |
| Chip select setup time | twSCS | 2 |  | 2 |  | ns |
| Chip select hold time | ${ }^{\text {twHCS }}$ | 2 |  | 2 |  | ns |
| Write disable time | tws |  | 6 |  | 8 | ns |
| Write recovery time | ${ }^{\text {twR }}$ |  | 10 |  | 10 | ns |

## Output Rise and Fall Times

| Rise time | $t_{R}$ | 2 | 2 | $n s$ |
| :--- | :--- | :--- | :--- | :--- |
| Fall time | $t_{f}$ | 2 | 2 | $n s$ |

Notes:
(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Truth Table

| $\overline{\text { CS }}$ | $\overline{W E}$ | $0_{1 \times}$ | Mode | Output |
| :---: | :---: | :---: | :---: | :---: |
| H | X | X | Not selected | L |
| L | L | L | Write 0 | L |
| L | L | H | Write 1 | L |
| L | H | X | Read | Dout |

Notes:
(1) $X=$ don't care

Figure 1. Loading Conditions Test Circuit


Note: $\mathrm{R}_{\mathrm{L}}=\mathbf{5 0} \Omega ; \mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$

Figure 2. Input Pulse Waveform for Test


Note: $\mathbf{t}_{\mathbf{R}}=\mathbf{t}_{\mathbf{F}}=\mathbf{2} \mathbf{n s}$ (typ).
83M-004973A

## Timing Waveforms

Read Mode


Write Mode


## Description

The $\mu$ PB10474 is a very high-speed, 10K interface ECL RAM. It is organized as 1,024 words by 4 bits with noninverted, open-emitter outputs and low power consumption. Three access time versions are available: 8 ns max, 10 ns max, and 15 ns max. The $\mu$ PB10474 is available in a hermetic, 400 -mil, 24 -pin ceramic DIP.

## Features

ㅁ 1,024-word x 4-bit organization10K ECL interfaceNoninverted, open-emitter outputsFast access timesLow power consumption400-mil, 24-pin ceramic DIP

## Ordering Information

| Part Number | Access <br> Time [max] | Package |
| ---: | :---: | :--- |
| $\mu$ PB10474D-8 | 8 ns | 24 -pin ceramic DIP |
| $\mathrm{D}-10$ | 10 ns |  |
| $\mathrm{D}-15$ | 15 ns |  |

## Pin Configuration

## 24-Pin Ceramic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Addresses |
| $\mathrm{DI}_{1}-D \mathrm{D}_{4}$ | Data inputs |
| $\overline{\mathrm{DO}}-\mathrm{DO}_{4}$ | Data outputs |
| $\overline{\mathrm{WE}}$ | Write enable |
| $\overline{\mathrm{CS}}$ | Chip select |
| $\mathrm{V}_{\mathrm{CC}}$ | Power supply (current switches and bias driver) |
| $\mathrm{V}_{\mathrm{CCA}}$ | Power supply (output devices) |
| $\mathrm{V}_{\mathrm{EE}}$ | Power supply |
| NC | No connection |

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | +0.5 to -7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | +0.5 V to $\mathrm{V}_{\mathrm{EE}}$ |
| Output current, I IOUT | +0.1 to -30 mA |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| $\quad$ Under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{CIN}_{1}$ |  | 4 |  | pF | $f=1 \mathrm{MHz}$ |
| Output capacitance | COUT |  | 5 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2 V

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | -1000 |  | -840 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\text {OH }}$ | -960 |  | -810 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\mathrm{OH}}$ | -900 |  | -720 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | -1870 |  | -1665 | mV | $V_{I N}=V_{\text {IH }}$ max or $V_{I L} \min ; T_{A}=0^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{0 \mathrm{~L}}$ | -1850 |  | -1650 | mV | $V_{I N}=V_{\text {IH }}$ max or $V_{I L} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{0 \mathrm{~L}}$ | -1830 |  | -1625 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min; $T_{A}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, high | $\mathrm{V}_{\mathrm{OHC}}$ | -1020 |  |  | mV | $V_{\text {IN }}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max; $T_{A}=0^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\mathrm{OHC}}$ | -980 |  |  | mV | $V_{I N}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=25^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\mathrm{OHC}}$ | -920 |  |  | mV | $V_{I N}=V_{I H} \min$ or $V_{I L} \max ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, low | $\mathrm{V}_{\text {OLC }}$ |  |  | -1645 | mV | $V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$ |
|  | $V_{\text {OLC }}$ |  |  | -1630 | mV | $V_{I N}=V_{I H} \min$ or $V_{I L} \max ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  | $V_{\text {OLC }}$ |  |  | -1605 | mV | $V_{I N}=V_{\text {IH }}$ min or $V_{\text {IL }} \max ; T_{A}=75^{\circ} \mathrm{C}$ |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | -1145 |  | -840 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\text {IH }}$ | -1105 |  | -810 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\text {IH }}$ | -1045 |  | -720 | mV | For all inputs: $T_{A}=75^{\circ} \mathrm{C}$ |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1870 |  | -1490 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  | $\mathrm{V}_{\text {IL }}$ | -1850 |  | -1475 | mV | For all inputs: $T_{A}=25^{\circ} \mathrm{C}$ |
|  | $V_{\text {IL }}$ | -1830 |  | -1450 | mV | For all inputs: $T_{A}=75^{\circ} \mathrm{C}$ |
| Input current, high | $\mathrm{I}_{\mathrm{H}}$ |  |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max |
| Input current, low | I/L | 0.5 |  | 170 | $\mu \mathrm{A}$ | For $\overline{C S}: V_{\mathbb{I N}}=V_{\text {IL }}$ min |
|  | If | -50 |  |  | $\mu \mathrm{A}$ | For all others: $V_{\text {IN }}=V_{\text {IL }}$ min |
| Supply current | $\mathrm{I}_{\text {EE }}$ | -220 |  |  | mA | All inputs and outputs open |

## Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2 V

| Parameter | Symbol | Limits |  |  |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB10474-8 |  |  | $\mu$ PB10474-10 |  |  | $\mu$ PB10474-15 |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |  |  |  |
| Chip select access time | $\mathrm{t}_{\text {ACS }}$ |  |  | 5 |  |  | 6 |  |  | 8 | ns |
| Chip select recovery time | $\mathrm{t}_{\text {RCS }}$ |  |  | 5 |  |  | 6 |  |  | 8 | ns |
| Address access time | $t_{\text {AA }}$ |  |  | 8 |  |  | 10 |  |  | 15 | ns |

Write Mode

| Write pulse width | ${ }^{\text {W }}$ W | 6 |  | 10 |  | 15 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data setup time | tWSD | 1 |  | 2 |  | 2 |  | ns |
| Data hold time | tWHD | 1 |  | 2 |  | 2 |  | ns |
| Address setup time | twSA | 1 |  | 3 |  | 3 |  | ns |
| Address hold time | twha | 1 |  | 2 |  | 2 |  | ns |
| Chip select setup time | tWSCS | 1 |  | 2 |  | 2 |  | ns |
| Chip select hold time | twHCS | 1 |  | 2 |  | 2 |  | ns |
| Write disable time | tws |  | 5 |  | 6 |  | 8 | ns |
| Write recovery time | twR |  | 8 |  | 10 |  | 10 | ns |

Output Rise and Fall Times

| Output rise time | $t_{R}$ | 2 | 2 | 2 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output fall time | $t_{F}$ | 2 | 2 | 2 | ns |

## Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Figure 1. Loading Conditions Test Circuit


| Truth Table |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- |
|  | Input |  |  |  |
| $\overline{\text { Cs }}$ | $\overline{\text { WE }}$ | $\mathrm{D}_{\text {III }}$ | Output | Mode |
| H | X | X | L | Not selected |
| L | L | L | L | Write 0 |
| L | L | H | L | Write 1 |
| L | H | X | $\mathrm{D}_{\text {OUT }}$ | Read |

Figure 2. Input Pulse
$-2.9 \mathrm{~V}$

Timing Waveforms

## Read Mode



Write Mode


## PRELIMINARY INFORMATION

## Description

The $\mu$ PB10474A is a very high-speed 10K interface ECL RAM. It is organized as 1,024 words by 4 bits with noninverted, open emitter outputs and low power consumption. Two access time versions are available: 5 ns maximum and 7 ns maximum. The device is packaged in a hermetic, 400-mil, 24-pin cerdip.

## Features

1,024-word x 4-bit organization10K ECL interfaceNoninverted, open-emitter outputsFast access timesLow power consumption400-mil, 24-pin cerdip packaging
## Ordering Information

| Part Number | Access Time [max] | Package |
| :---: | :---: | :--- |
| $\mu$ PB10474AD-5 | 5 ns |  |
| AD-7 | 7 ns |  |

## Pin Configuration

## 24-Pin Cerdip



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{9}$ | Address inputs |
| $\mathrm{DI}_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\mathrm{DO}_{1}-\mathrm{DO}_{4}$ | Data outputs |
| $\overline{\mathrm{WE}}$ | Write enable (active low) |
| $\overline{\mathrm{CS}}$ | Chip select (active low) |
| $V_{\mathrm{CC}}$ | Power supply (current switches and bias driver) |
| $\mathrm{V}_{\mathrm{CCA}}$ | Power supply (output devices) |
| $\mathrm{V}_{\mathrm{EE}}$ | -5.2 -volt power supply |
| NC | No connection |

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | -7.0 to +0.5 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current, IoUT | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{S T G}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (Bias) | -55 to $+125^{\circ} \mathrm{C}$ |

## Capacitance

|  |  | Limits |  |
| :--- | :--- | :---: | :--- |
|  | Symbol |  |  |
| Parameter | Min Typ Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ | 4 | pF |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ | 5 | pF |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | -1000 |  | -840 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$ or $\mathrm{V}_{\mathrm{IL}}\left(\right.$ min) ; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |
|  |  | -960 |  | -810 | mV | $V_{I N}=V_{\text {IH }}($ max $)$ or $V_{I L}\left(\right.$ min) $; T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -900 |  | -720 | mV | $V_{I N}=V_{\text {IH }}($ max $)$ or $V_{\text {IL }}(\min ) ; T_{A}=75^{\circ} \mathrm{C}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | -1870 |  | -1665 | mV | $V_{I N}=V_{\text {IH }}($ max $)$ or $V_{\text {IL }}(\min )$; $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 |  | -1650 | mV | $V_{\text {IN }}=V_{\text {IH }}($ max $)$ or $V_{\text {IL }}(\min ) ; T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 |  | -1625 | mV | $V_{I N}=V_{\text {IH }}($ max $)$ or $V_{\text {IL }}(\min ) ; \mathrm{T}_{\text {A }}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, high | $\mathrm{V}_{\mathrm{OHC}}$ | -1020 |  |  | mV | $V_{I N}=V_{I H}(\min )$ or $V_{I L}(\max ) ; \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -980 |  |  | mV | $V_{I N}=V_{\text {IH }}($ min $)$ or $V_{\text {IL }}($ max $) ; ~ T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -920 |  |  | mV | $V_{I N}=V_{\text {IH }}(\min )$ or $V_{\text {IL }}(\max ) ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, low | VOLC |  |  | -1645 | mV | $V_{I N}=V_{\text {IH }}(\min )$ or $V_{\text {IL }}(\max ) ; T_{A}=0^{\circ} \mathrm{C}$ |
|  |  |  |  | -1630 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}\left(\right.$ min) or $V_{\text {IL }}($ max $) ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  |  |  | -1605 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}\left(\right.$ min) or $\mathrm{V}_{\mathrm{IL}}($ max $) ; T_{A}=75^{\circ} \mathrm{C}$ |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | -1145 |  | -840 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1105 |  | -810 | mV | For all inputs: $T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1045 |  | -720 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Input voltage, low | VIL | -1870 |  | -1490 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 |  | -1475 | mV | For all inputs: $T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 |  | -1450 | mV | For all inputs: $T_{A}=75^{\circ} \mathrm{C}$ |
| Input current, high | $\mathrm{I}_{\mathrm{H}}$ |  |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max )$ |
| Input current, low | IIL | 0.5 |  | 170 | $\mu \mathrm{A}$ | For $\overline{C S}: V_{\text {IN }}=V_{\text {IL }}($ min) |
|  |  | -50 |  |  | $\mu \mathrm{A}$ | For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (min) |
| Supply current | $I_{\text {EE }}$ | -250 |  |  | mA | All inputs and outputs open |

## Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2.0 V ; $V_{C C}=V_{C C A}=0 V$

|  | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1047 |  |  | 1047 |  |  |
| Parameter |  | Min | Typ | Max | Min | Typ | Max |  |

## Read Mode

| Address access <br> time | $\mathrm{t}_{\mathrm{AA}}$ | 5 | 7 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Chip select <br> access time | $\mathrm{t}_{\mathrm{ACS}}$ | 3 | 5 | ns |
| Chip select <br> recovery time | $\mathrm{t}_{\mathrm{RCS}}$ | 3 | 5 | ns |

## Write Mode

| Write pulse <br> width | $\mathrm{t}_{\mathrm{W}}$ | 5 | 7 | ns |
| :--- | :--- | :--- | :--- | :--- |
| Data setup time | $\mathrm{t}_{\text {WSD }}$ | 1 | 1 | ns |
| Data hold time | $\mathrm{t}_{\text {WHD }}$ | 1 | 1 | ns |
| Address setup <br> time | $\mathrm{t}_{\text {WSA }}$ | 1 | 1 | ns |
| Address hold <br> time | $\mathrm{t}_{\text {WHA }}$ | 1 | 1 | ns |
| Chip select <br> setup time | $\mathrm{t}_{\text {WSCS }}$ | 1 | 1 | ns |
| Chip select <br> hold time | $\mathrm{t}_{\text {WHCS }}$ | 1 | 1 | ns |
| Write disable <br> time | $\mathrm{t}_{\text {WS }}$ |  | 3 |  |
| Write recovery <br> time | $\mathrm{t}_{\text {WR }}$ |  | 6 | ns |

## Rise and Fall Times

| Output rise time | $\mathrm{t}_{\mathrm{R}}$ | 2 | 2 | ns |
| :--- | :--- | :--- | :--- | :--- |
| Output fall time | $\mathrm{t}_{\mathrm{F}}$ | 2 | 2 | ns |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between $20 \%$ and $80 \%$ or $80 \%$ and $20 \%$ ) $=2 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit


Figure 2. Input Pulse


## Truth Table

| $\overline{\text { CS }}$ | $\overline{\text { WE }}$ | $\mathbf{D}_{\text {IN }}$ | Output | Mode |
| :--- | :---: | :---: | :---: | :---: |
| H | X | X | L | Not selected |
| L | L | L | L | Write 0 |
| L | L | H | L | Write 1 |
| L | H | X | DOUT | Read |

## Notes:

(1) $X=$ don't care.

## Timing Waveforms

Read Mode


Write Mode


## PRELIMINARY INFORMATION

## Description

The $\mu$ PB10480 is a very high-speed 10K interface ECL RAM. The device is organized as 16,384 words by 1 bit, with an open emitter output (noninverted) and low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The $\mu \mathrm{PB} 10480$ is available in a hermetic, $300-\mathrm{mil}, 20$-pin cerdip or 20-pin ceramic flatpack.

## Features

$\square$ 16,384-word x 1-bit organization10K ECL interfaceOpen emitter output (noninverted)Fast access timesLow power consumption$300-\mathrm{mil}, 20-\mathrm{pin}$ cerdip or $20-$ pin ceramic flatpack packaging

## Ordering Information

| Part Number | Access <br> Time (max) | Power <br> Consumption <br> (max) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PB10480D-10 | 10 ns | 1.4 W | 20-pin cerdip |
| $\mathrm{D}-15$ | 15 ns | 1.3 W |  |
| $\mu$ PB10480B-10 | 10 ns | 1.4 W | 20-pin ceramic <br> flatpack |
| B-15 | 15 ns | 1.3 W |  |

Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ | -7.0 to +0.5 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current, $\mathrm{I}_{\mathrm{OUT}}$ | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Storage temperature under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configurations

## 20-Pin Cerdip



## 20-Pin Ceramic Flatpack



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{13}$ | Address inputs |
| $D_{I N}$ | Data input |
| $D_{O U T}$ | Data output |
| $\overline{C S}$ | Chip select |
| $\overline{W E}$ | Write enable |
| $V_{C C}$ | Ground |
| $V_{E E}$ | -5.2 -volt power supply |

## Block Diagram



83M-0049928

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\mathrm{WE}}$ | $\mathrm{D}_{\text {IN }}$ | Mode | Output |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | $X$ | X | Not selected | L |
| L | L | L | Write 0 | L |
| L | L | H | Write 1 | L |
| L | H | X | Read | DOUT |

Notes:
(1) $X=$ don't care

Capacitance

|  |  | Limits |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max |
| Unit |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 4 | pF |
| Output capacitance | $\mathrm{C}_{\mathrm{OUT}}$ |  | 6 | pF |

Figure 1. Loading Condifions Test Clrcult


Note: $\mathbf{R}_{\mathbf{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$
83M-004918A
Figure 2. Input Pulse Waveform for Test


## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

| Parameter | Symbol | $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | 0 | -1000 | -840 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max )$ or $\mathrm{V}_{\mathrm{IL}}(\min )$ |
|  |  | +25 | -960 | -810 | mV |  |
|  |  | +75 | -900 | -720 | mV |  |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | 0 | -1870 | -1665 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ or $\mathrm{V}_{\mathrm{IL}}($ min $)$ |
|  |  | +25 | -1850 | -1650 | mV |  |
|  |  | +75 | -1830 | -1625 | mV |  |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | 0 | -1020 |  | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min )$ or $\mathrm{V}_{\mathrm{IL}}(\max )$ |
|  |  | +25 | -980 |  | mV |  |
|  |  | +75 | -920 |  | mV |  |
| Output threshold voltage, low | VoLC | 0 |  | -1645 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min )$ or $\mathrm{V}_{\mathrm{IL}}(\max )$ |
|  |  | +25 |  | -1630 | mV |  |
|  |  | +75 |  | -1605 | mV |  |
| Input voltage, high | $V_{\text {IH }}$ | 0 | -1145 | -840 | mV | Guaranteed input voltage high for all inputs |
|  |  | +25 | -1105 | -810 | mV |  |
|  |  | +75 | -1045 | -720 | mV |  |
| Input voltage, low | VIL | 0 | -1870 | -1490 | mV | Guaranteed input voltage low for all inputs |
|  |  | +25 | -1850 | -1475 | mV |  |
|  |  | +75 | -1830 | -1450 | mV |  |
| Input current, high | ${ }_{1 / \mathrm{H}}$ | 0 to +75 |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ |
| Input current, low | IIL | 0 to +75 | 0.5 | 170 | $\mu \mathrm{A}$ | For $\overline{C S}: V_{\text {IN }}=V_{\text {IL }}($ min $)$ |
|  |  | 0 to +75 | -50 |  | $\mu \mathrm{A}$ | For all others: $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IL}}$ (min) |
| Supply current | $l_{\text {eE }}$ | 0 to +75 | -260 |  | mA | For $\mu$ PB10480-10: all inputs and outputs open |
|  |  | 0 to +75 | -240 |  | mA | For $\mu \mathrm{PB10480-15:} \mathrm{all} \mathrm{inputs} \mathrm{and} \mathrm{outputs} \mathrm{open}$ |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | LImits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB100480-10}$ |  | $\mu \mathrm{PB} 100480-15$ |  |  |
|  |  | Min Typ | Max | Min Typ | Max |  |
| Read Mode |  |  |  |  |  |  |
| Address access time | $t_{\text {AA }}$ |  | 10 |  | 15 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  | 5 |  | 8 | ns |
| Chip select recovery time | $\mathrm{t}_{\text {RCS }}$ |  | 5 |  | 8 | ns |
| Write Mode |  |  |  |  |  |  |
| Write pulse width | tw | 10 |  | 15 |  | ns |
| Data setup time | tWSD | 2 |  | 3 |  | ns |
| Data hold time | tWHD | 1 |  | 2 |  | ns |
| Address setup time | twsa | 2 |  | 3 |  | ns |
| Address hold time | twha | 1 |  | 2 |  | ns |
| Chip select setup time | twscs | 2 |  | 3 |  | ns |
| Chip select hold time | twhCs | 1 |  | 2 |  | ns |
| Write disable time | tws |  | 5 |  | 8 | ns |
| Write recovery time | ${ }^{\text {twR }}$ |  | 11 |  | 17 | ns |
| Output Rise and Fall Times |  |  |  |  |  |  |
| Rise time | $\mathrm{t}_{\text {R }}$ | 2 |  | 2 |  | ns |
| Fall time | $\mathrm{t}_{\text {F }}$ | 2 |  | 2 |  | ns |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between $20 \%$ and $80 \%$ or $80 \%$ to $20 \%$ ) $=2.5 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

## Timing Waveforms

## Read Mode



## Write Mode



## PRELIMINARY INFORMATION

## Description

The $\mu \mathrm{PB} 10484$ is a very high-speed 10K interface ECL RAM. It is organized as 4,096 words by 4 bits with noninverted, open-emitter outputs and low power consumption. Two access time versions are available: 10 ns and 15 ns maximum. The $\mu \mathrm{PB} 10484$ is available in a hermetic, $400-\mathrm{mil}, 28-\mathrm{pin}$ cerdip or 28-pin ceramic flatpack.

## Features

$\square$ 4,096-word $\times 4$-bit organization10K ECL interface
$\square$ Noninverted, open-emitter outputs
$\square$ Fast access times: 10 and 15 ns maximum
$\square$ Low power consumption: 1.4 W maximum
$\square 400-\mathrm{mil}, 28$-pin cerdip or 28-pin ceramic flatpack packaging

## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PB10484D-10 | 10 ns | 28-pin cerdip |
| D-15 | 15 ns |  |
| $\mu$ PB10484B-10 | 10 ns |  |
| B-15 | 15 ns |  |

## Absolute Maximum Ratings

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ | -7.0 to +0.5 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current, $\mathrm{I}_{\text {OUT }}$ | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Parameter | Symbol | Min Typ Max | Unit | Test Conditions |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ | 4 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ | 6 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |

## Pin Configurations

## 28-Pin Cerdip



83-004558A

## 28-Pin Ceramic Flatpack



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{11}$ | Address inputs |
| $\mathrm{Di}_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\mathrm{DO}_{1}-\mathrm{DO}_{4}$ | Data outputs |
| $\overline{\mathrm{WE}}, \overline{W E}_{2}$ | Write enable (active low) |
| $\overline{\overline{C S}}$ | Chip select (active low) |
| $\overline{V_{C C}}$ | Power supply (current switches and bias driver) |
| $V_{\mathrm{CCA}}$ | Power supply (output devices) |
| $V_{\mathrm{EE}}$ | -5.2 -volt power supply |
| NC | No connection |

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to $-2 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{0} \mathrm{H}$ | -1000 |  | -840 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \max$ or $\mathrm{V}_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |
|  |  | -960 |  | -810 | mV | $V_{I N}=V_{I H}$ max or $V_{I L} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | -900 |  | -720 | mV | $V_{I N}=V_{I H} \max$ or $V_{\text {IL }} \min ; \mathrm{T}_{A}=75^{\circ} \mathrm{C}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | -1870 |  | -1665 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 |  | -1650 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 |  | -1625 | mV | $V_{I N}=V_{I H} \max$ or $V_{\text {IL }} \min ; \mathrm{T}_{A}=75^{\circ} \mathrm{C}$ |
| Output threshold voitage, high | $\mathrm{V}_{\mathrm{OHC}}$ | -1020 |  |  | mV | $V_{I N}=V_{I H}$ min or $V_{\text {IL }} \max ; T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -980 |  |  | mV | $V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -920 |  |  | mV | $V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$ |
| Output threshold voltage, low | V 0 LC |  |  | -1645 | mV | $V_{I N}=V_{\text {IH }}$ min or $V_{\text {IL }} \max ; T_{A}=0^{\circ} \mathrm{C}$ |
|  |  |  |  | -1630 | mV | $V_{I N}=V_{\text {IH }}$ min or $V_{\text {IL }} \max ; T_{A}=25^{\circ} \mathrm{C}$ |
|  |  |  |  | -1605 | mV | $V_{\text {IN }}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$ |
| Input voltage, high | $V_{\text {IH }}$ | -1145 |  | -840 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1105 |  | -810 | mV | For all inputs: $T_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1045 |  | -720 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Input voltage, low | $V_{\text {IL }}$ | -1870 |  | -1490 | mV | For all inputs: $T_{A}=0^{\circ} \mathrm{C}$ |
|  |  | -1850 |  | -1475 | mV | For all inputs: $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |
|  |  | -1830 |  | -1450 | mV | For all inputs: $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ |
| Input current, high | $\mathrm{IIH}^{\text {H }}$ |  |  | 220 | $\mu \mathrm{A}$ | $V_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max |
| Input current, low | IIL | 0.5 |  | 170 | $\mu \mathrm{A}$ | For $\overline{\mathrm{CS}}$ : $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min |
|  |  | -50 |  |  | $\mu \mathrm{A}$ | For all others: $V_{\text {IN }}=V_{\text {IL }}$ min |
| Supply current | $\mathrm{I}_{\text {ee }}$ | -260 |  |  | mA | For $\mu$ PB10484-10: all inputs and outputs open |
|  |  | -240 |  |  | mA | For $\mu \mathrm{PB} 10484-15$ : all inputs and outputs open |

## Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2 V ; $V_{C C}=V_{C C A}=0 V$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB} 10484$-10 |  |  | $\mu$ PB10484-15 |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |
| Address access time | $t_{\text {AA }}$ |  |  | 10 |  |  | 15 | ns |
| Chip select recovery time | $t_{\text {RCS }}$ |  |  | 5 |  |  | 8 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  |  | 5 |  |  | 8 | ns |
| Write Mode |  |  |  |  |  |  |  |  |
| Write pulse width | ${ }_{\text {t }}$ W | 10 |  |  | 15 |  |  | ns |
| Data setup time | twSD | 2 |  |  | 3 |  |  | ns |
| Data hold time | tWHD | 1 |  |  | 2 |  |  | ns |
| Address setup time | t WSA | 2 |  |  | 3 |  |  | ns |
| Address hold time | ${ }^{\text {t WHA }}$ | 1 |  |  | 2 |  |  | ns |
| Chip select setup time | $t_{\text {wscs }}$ | 2 |  |  | 3 |  |  | ns |
| Chip select hold time | ${ }^{\text {twHCS }}$ | 1 |  |  | 2 |  |  | ns |
| Write disable time | tws |  |  | 5 |  |  | 8 | ns |
| Write recovery time | $t_{\text {wr }}$ |  |  | 11 |  |  | 17 | ns |

Output Rise and Fall Times

| Output rise time | $t_{R}$ | 2 | 2 | $n s$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output fall time | $t_{F}$ | 2 | 2 | $n s$ |

## Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between $20 \%$ and $80 \%$ or $80 \%$ to $20 \%$ ) $=2.5 \mathrm{~ns}$; input and output timing reference level $=50 \%$.

## Truth Table

| $\overline{\text { CS }}$ | $\overline{\text { WE }}$ | $\mathrm{D}_{\text {IN }}$ | Output | Mode |
| :---: | :---: | :---: | :---: | :---: |
| H | X | X | L | Not selected |
| L | L (Note 2) | L | L | Write 0 |
| L | L (Note 2) | H | L | Write 1 |
| L | H (Note 2) | X | DOUT | Read |

Notes:
(1) $X=$ don't care.
(2) Both $\overline{W E}_{1}$, and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either $\overline{W E}_{1}$ or $\overline{W E}_{2}$ or both must be high.

Figure 1. Loading Conditions Test CIrcuit


Note: $R_{L}=50 \Omega ; C_{L}=30 \mathrm{pF}$
83M-004987A

Figure 2. Input Pulse Waveform for Test


Note: $\mathbf{t}_{\mathbf{R}}=\mathbf{t}_{\mathbf{F}}=\mathbf{2 . 5} \mathbf{n s}$ (typ).
83M-004988A

## Timing Waveforms

## Read Mode



Write Mode


## Description

The $\mu$ PB100422 is a very high-speed, 100 K interface ECL RAM. It is organized as 256 words by 4 bits with noninverted, open-emitter outputs and low power consumption. Two fast access time versions are available: 7 ns max and 10 ns max.

## Features

$\square$ 256-word x 4-bit organization100K ECL interfaceNoninverted, open-emitter outputFast access timesLow power consumptionAvailable in a $24-\mathrm{pin}, 400$-mil ceramic DIP or a 24 -pin ceramic flatpack

## Ordering Information

| Part Number | Supply <br> Current (min) | Access <br> Time (max) | Package |
| :---: | :---: | :---: | :--- |
| $\mu$ PB100422D-7 | 7 ns | -220 mA | 24-pin ceramic DIP |
| $\mathrm{D}-10$ 10 ns   <br> $\mathrm{~B}-7$ 7 ns -220 mA 24-pin ceramic flatpack <br> $\mathrm{B}-10$ 10 ns   |  |  |  |

## Pin Configurations

## 24-Pin Ceramic DIP



## 24-Pin Ceramic Flatpack



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{7}$ | Addresses |
| $\overline{B S}_{1}-\overline{-\bar{S}}{ }_{4}$ | Block select inputs |
| $D_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\overline{D O_{1}-D O_{4}}$ | Data outputs |
| $\overline{\mathrm{WE}}$ | Write enable |
| $\overline{V_{C C}}$ | Power supply (current switches and bias driver) |
| $V_{C C A}$ | Power supply (output devices) |
| $V_{E E}$ | Power supply |

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}$ | +0.5 to -7.0 V |
| :---: | :---: |
| Input voltage, $\mathrm{V}_{\mathrm{iN}}$ | +0.5 V to $\mathrm{V}_{\mathrm{EE}}$ |
| Output current, IOUT | +0.1 to -30 mA |
| Storage temperature, TSTG Under bias, TSTG (bias) | $\begin{aligned} & -65 \text { to }+150^{\circ} \mathrm{C} \\ & -55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB100422-7}$ |  |  | $\mu \mathrm{PB100422-10}$ |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  | 4 |  |  | 4 |  | pF |
| Output capacitance | COUT |  | 5 |  |  | 5 |  | pF |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2 V

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | -1025 |  | -880 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | -1810 |  | -1620 | mV | $V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | -1035 |  |  | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {HH }}$ min or $V_{\text {IL }}$ max |
| Output threshold voltage, low | $V_{\text {OLC }}$ |  |  | -1610 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max |
| Input voltage, high | $V_{\text {IH }}$ | -1165 |  | -880 | mV | For all inputs |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1810 |  | -1475 | mV | For all inputs |
| Input current, high | $\mathrm{IIH}^{\text {I }}$ |  |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max |
| input current, low | IIL | 0.5 |  | 170 | $\mu \mathrm{A}$ | $\overline{B S}_{1}-\overline{B S}_{4}, V_{\text {IN }}=V_{\text {IL }}$ min |
|  | IIL | -50 |  |  | $\mu \mathrm{A}$ | All others, $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}$ min |
| Supply current | $\mathrm{I}_{\text {EE }}$ | -220 |  |  | mA | All inputs and outputs open |

## Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB100422-7}$ |  |  | $\mu \mathrm{PB100422-10}$ |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |
| Block select access time | $t_{\text {ABS }}$ |  |  | 5 |  |  | 5 | ns |
| Block select recovery time | $\mathrm{t}_{\text {RBS }}$ |  |  | 5 |  |  | 5 | ns |
| Address access time | $t_{A A}$ |  |  | 7 |  |  | 10 | ns |
| Write Mode |  |  |  |  |  |  |  |  |
| Write pulse width | ${ }^{\text {W }}$ W | 5 |  |  | 6 |  |  | ns |
| Data setup time | twSD | 1 |  |  | 2 |  |  | ns |
| Data hold time | twho | 1 |  |  | 2 |  |  | ns |
| Address setup time | twsa | 1 |  |  | 2 |  |  | ns |
| Address hold time | twha | 1 |  |  | 2 |  |  | ns |
| Block select setup time | tWSBS | 1 |  |  | 2 |  |  | ns |
| Block select hold time | twhBS | 1 |  |  | 2 |  |  | ns |


| Parameter Symbol | Limits |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mu \mathrm{PB100422-7}$ |  | $\mu \mathrm{PB} 100422-10$ |  |  |  |
|  | Min Typ | Max | Min | Typ | Max |  |
| Write Mode (cont) |  |  |  |  |  |  |
| Write disable tws time |  | 5 |  |  | 5 | ns |
| Write recovery twR time |  | 6 |  |  | 9 | ns |
| Output Rise and Fall Times |  |  |  |  |  |  |
| Output rise time $\mathrm{t}_{\mathrm{R}}$ | 2 |  |  | 2 |  | ns |
| Output fall time $\mathrm{t}_{F}$ | 2 |  |  | 2 |  | ns |
| Notes: |  |  |  |  |  |  |
| (1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$. |  |  |  |  |  |  |
| (2) All timing measurements are referenced to 50\% input levels. |  |  |  |  |  |  |
| (3) The output load is shown in figure 1. |  |  |  |  |  |  |
| (4) Input transition times are shown in figure 2. |  |  |  |  |  |  |

Figure 1. Loading Conditions Test Circuit


Figure 2. Input Pulse


## Timing Waveforms

Read Mode


Write Mode


## Description

The $\mu$ PB100470 is a very high-speed 100K interface ECL RAM with full voltage and temperature compensation. The device is organized as 4 K words by 1 bit, with an open emitter output (noninverted) and low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The $\mu \mathrm{PB} 100470$ is available in a hermetic, 300 -mil, 18 -pin ceramic DIP.

## Features

4K-word x 1-bit organization100K ECL interface with full voltage and temperature compensationOpen emitter output (noninverted)Fast access timesLow power consumption300-mil, 18-pin ceramic DIP packaging
## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PB100470D-10 | 10 ns | 18 -pin ceramic DIP |
| $\mathrm{D}-15$ | 15 ns |  |

## Pin Configuration

## 18-PIn Coramic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{11}$ | Address inputs |
| $\frac{D_{I N}}{}$ | Data input |
| $\bar{D}_{0 U T}$ | Data output |
| $\overline{W E}$ | Write enable |
| $\overline{\mathrm{CS}}$ | Chip select |
| $V_{C C}$ | Ground |
| $V_{E E}$ | -4.5 -volt power supply |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Supply voltage, $\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\mathrm{CC}}$ | -7.0 to +0.5 V |
| Input voltage, $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current, IOUT | -30 to +0.1 mA |
| Storage temperature, TSTG | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\text {STG }}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Parameter | Symbel | Min | Typ | Max | Unit |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 4 | PF |  |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 5 | PF |  |

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Max | Unit Test Conditions |  |

Notes:
(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## Truth Table

| $\overline{\text { CS }}$ | $\overline{\text { WE }}$ | $\mathbf{D I N}_{\text {N }}$ | Mode | Output |
| :--- | :---: | :---: | :---: | :---: |
| $H$ | X | X | Not selected | L |
| L | L | L | Write 0 | L |
| L | L | H | Write 1 | L |
| L | H | X | Read | $D_{\text {OUT }}$ |

## Notes:

(1) $X=$ don't care

## AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | Limits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB100470-10}$ |  | $\mu \mathrm{PB100470-15}$ |  |  |
|  |  | Min Typ | Max | Min Typ | Max |  |
| Read Mode |  |  |  |  |  |  |
| Address access time | $t_{\text {AA }}$ |  | 10 |  | 15 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  | 6 |  | 8 | ns |
| Chip select recovery time | $t_{\text {RCS }}$ |  | 6 |  | 8 | ns |
| Write Mode |  |  |  |  |  |  |
| Write pulse width | ${ }^{\text {tw }}$ | 10 |  | 15 |  | ns |
| Data setup time | twSD | 2 |  | 2 |  | ns |
| Data hold time | ${ }_{\text {t }}$ WHD | 2 |  | 2 |  | ns |
| Address setup time | ${ }^{\text {twSA }}$ | 3 |  | 3 |  | ns |
| Address hold time | ${ }^{\text {W }}$ WHA | 2 |  | 2 |  | ns |
| Chip select setup time | twscs | 2 |  | 2 |  | ns |
| Chip select hold time | twhCs | 2 |  | 2 |  | ns |
| Write disable time | ${ }^{\text {tws }}$ |  | 6 |  | 8 | ns |
| Write recovery time | $t_{\text {WR }}$ |  | 10 |  | 10 | ns |


| Output Rise and Fall Times      <br> Rise time      <br> $\mathrm{t}_{\mathrm{R}}$      |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Fall time | $\mathrm{t}_{\mathrm{F}}$ | 2 | 2 | ns |  |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Figure 1. Loading Conditions Test Circult


Note: $\mathrm{R}_{\mathrm{L}}=50 \mathrm{M} ; \mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$

## Timing Waveforms

Read Mode


Figure 2. Input Pulse Waveform for Test


Note: $t_{R=}=\mathrm{t}_{\mathrm{F}}=\mathbf{2 n s}$ (typ).
83M-004973A

Write Mode


## Description

NEC's $\mu$ PB100474 is a very high-speed ECL 100 K interface random access memory. The $\mu \mathrm{PB} 100474$ is organized as 1 K words by 4 bits with open-emitter outputs (noninverted). It is available in a 24 -pin cerdip, 24 -pin ceramic LCC, or 24 -pin ceramic flatpack package.

## Features

- 1K-word bx 4-bit organizationECL 100K interfaceFull voltage and temperature compensationOpen emitter outputs (noninverted)Fast access times
$\square$ Available in cerdip, LCC, and flatpack packaging


## Ordering Information

| Part Number | $\begin{gathered} \text { Access } \\ \text { Time (max) } \end{gathered}$ | Supply Current (min) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PB100474B-6 | 6 ns | -450 mA | 24-pin ceramic flatpack |
| B-8 | 8 ns | -220 mA |  |
| B-10 | 10 ns |  |  |
| B-15 | 15 ns |  |  |
| - PB100474D-8 | 8 ns | -220 mA | 24-pin cerdip |
| D-10 | 10 ns |  |  |
| D-15 | 15 ns |  |  |
| $\mu$ PB100474K-4.5 | 4.5 ns | $-450 \mathrm{~mA}$ | 24-pin ceramic LCC |
| K-6 | 6 ns |  |  |

Block Diagram


## Pin Configurations

## 24-Pin Cerdip



## 24-Pin Ceramic Flatpack



## 24-Pin Ceramic LCC



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Addresses |
| $\mathrm{DO}_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\mathrm{DO}_{1}-\mathrm{DO}_{4}$ | Data outputs |
| $\overline{\mathrm{WE}}$ | Write enable |
| $\overline{\mathrm{CS}}$ | Chip select |
| $\mathrm{V}_{\mathrm{CC}}$ | Power supply (current switches and bias driver) |
| $\mathrm{V}_{\mathrm{CCA}}$ | Power supply (output devices) |
| $\mathrm{V}_{\mathrm{EE}}$ | Power supply |
| NC | No connection |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | +0.5 to -7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | +0.5 V to $\mathrm{V}_{\mathrm{EE}}$ |
| Output current, I $\mathrm{I}_{\text {OUT }}$ | +0.1 to -30 mA |
| Storage temperature, TSTG | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (Bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

## Truth Table

|  | Input |  |  |  |
| :--- | :---: | :---: | :---: | :--- |
| $\overline{\text { CS }}$ | $\overline{\text { WE }}$ | $\mathbf{D N M}_{\mathbf{N}}$ | Output | Mode |
| H | X | X | L | Not selected |
| L | L | L | L | Write 0 |
| L | L | H | L | Write 1 |
| L | H | X | $\mathrm{D}_{\text {OUT }}$ | Read |

## Notes:

(1) $X=$ don't care.

## Capacitance

|  |  | Limits |  |  |
| :--- | :--- | :---: | :--- | :--- |
| Paramater | Symbol | Min Typ Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\mathbb{I N}}$ | 4 | pF |  |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ | 5 | pF |  |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; Output load $=50 \Omega$ to -2 V

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | -1025 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \max \\ & \text { or } V_{I L} \text { min } \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ | -1810 |  | -1620 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { max } \\ & \text { or } V_{I L} \text { min } \end{aligned}$ |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | -1035 |  |  | mV | $\begin{aligned} & V_{V_{N}}=V_{\text {IH }} \min \\ & \text { or } V_{\mathrm{IL}} \text { max } \end{aligned}$ |
| Output threshold voltage, low | V LLC |  |  | -1610 | mV | $\begin{aligned} & V_{I N}=V_{I H} \min \text { or } \\ & V_{I L} \max \end{aligned}$ |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | -1165 |  | -880 | mV | Guaranteed input voltage high for all inputs |
| Input voltage, low | VII. | -1810 |  | -1475 | mV | Guaranteed input voltage low for all inputs |
| Input current, high | IIH |  |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbb{H}}$ max |
| Input current, low | IIL | 0.5 |  | 170 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CS}}: \mathrm{V}_{\mathbb{N}}= \\ & \mathrm{V}_{\mathrm{IL}} \min \end{aligned}$ |
|  |  | -50 |  |  | $\mu \mathrm{A}$ | Others: $V_{I N}=V_{I L} \min$ |
| Supply current | $\mathrm{l}_{\text {EE }}$ | -220 |  |  | mA | $t_{A A}=8 / 10 / 15 \mathrm{~ns} ;$ all inputs and outputs open |
|  |  | -450 |  |  | mA | $t_{A A}=4.5 / 6 \mathrm{~ns} ;$ all inputs and outputs open (Note 2) |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) For the $\mu \mathrm{PB} 100474-4.5 / 6$, take measures to reduce the thermal resistance and to keep the junction temperature less than $90^{\circ} \mathrm{C}$. Forced air and appropriate fins on the substrate on which the package is mounted, or on the package itself, are recommended. The thermal resistance of the junction to the case (bottom side) of an LCC or flatpack package is less than $10^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 1. Loading Conditions Test Circuit


Figure 2. Input Pulse


Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}$
83-003566A

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | Limits |  |  |  |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB100474-4.5}$ |  | $\mu$ PB100474.6 |  | $\mu$ PB100474-8 |  | $\mu \mathrm{PB} 100474-10$ |  | $\mu$ PB100474-15 |  |  |
|  |  | Min | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |  |  |  |  |
| Chip select access time | $\mathrm{t}_{\text {ACS }}$ |  | 4 |  | 4 |  | 5 |  | 6 |  | 8 | ns |
| Chip select recovery time | $t_{\text {RCS }}$ |  | 4 |  | 4 |  | 5 |  | 6 |  | 8 | ns |
| Address access time | $t_{\text {AA }}$ |  | 4.5 |  | 6 |  | 8 |  | 10 |  | 15 | ns |
| Write Mode |  |  |  |  |  |  |  |  |  |  |  |  |
| Write pulse width | ${ }^{\text {tw }}$ | 4.5 |  | 6 |  | 6 |  | 10 |  | 15 |  | ns |
| Data setup time | twSD | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | ns |
| Data hold time | tWHD | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | ns |
| Address setup time | twSA | 1 |  | 1 |  | 1 |  | 3 |  | 3 |  | ns |
| Address hold time | ${ }^{\text {t }}$ WHA | 2 |  | 2 |  | 1 |  | 2 |  | 2 |  | ns |
| Chip select setup time | twSCS | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | ns |
| Chip select hold time | twHCS | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | ns |
| Write disable time | tws |  | 4 |  | 4 |  | 5 |  | 6 |  | 8 | ns |
| Write recovery time | twR |  | 4.5 |  | 6 |  | 8 |  | 10 |  | 10 | ns |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) For the $\mu$ PB100474-4.5/6, take measures to reduce the thermal resistance and to keep the junction temperature less than $90^{\circ} \mathrm{C}$. Forced air and appropriate fins on the substrate on which the package is mounted, or on the package itself, are recommended.

The thermal resistance of the junction to the case (bottom side) of an LCC or flatpack package is less than $10^{\circ} \mathrm{C} / \mathrm{W}$.
(3) See figures 1 and 2 for loading conditions and input pulse timing. For the $\mu \mathrm{PB} 100474-4.5 / 6, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. For the $\mu \mathrm{PB} 100474-8 / 10 / 15$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
(4) Output rise and fall times $=2 \mathrm{~ns}$ (typ).

## Timing Waveforms

Read Mode


Write Mode


## PRELIMINARY INFORMATION

## Description

The $\mu \mathrm{PB} 100474 \mathrm{~A}$ is a very high-speed 100 K interface ECL RAM. It is organized as 1 K words by 4 bits with noninverted, open emitter outputs and full voltage and temperature compensation. The device is packaged in a 24-pin cerdip or flatpack.

## Features

$\square$ 1K-word bx 4-bit organization100K ECL interfaceFull voltage and temperature compensationOpen emitter outputs (noninverted)Fast access times
$\square$ 24-pin cerdip and flatpack packaging

## Ordering Information

| Part Number | $\begin{gathered} \text { Access } \\ \text { Time (max) } \end{gathered}$ | Supply Current (min) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PB100474AB-5 | 5 ns | -250 mA | 24-pin ceramic |
| AB-7 | 7 ns |  | flatpack |
| $\mu$ PB100474AD-5 | 5 ns | -250 mA | 24-pin cerdip |
| AD-7 | 7 ns |  |  |

## Block Diagram



## Pin Configurations

## 24-Pin Cerdip



## 24-Pin Ceramic Flatpack



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ | Address inputs |
| $\mathrm{DI}_{1}-\mathrm{DI}_{4}$ | Data inputs |
| $\mathrm{DO}_{1}-D 0_{4}$ | Data outputs |
| $\overline{\mathrm{WE}}$ | Write enable |
| $\overline{\overline{\mathrm{CS}}}$ | Chip select |
| $V_{\mathrm{CC}}$ | Power supply (current switches and bias driver) |
| $V_{\mathrm{CCA}}$ | Power supply (output devices) |
| $V_{\mathrm{EE}}$ | -4.5 -volt power supply |
| NC | No connection |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$ | -7.0 to +0.5 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current,IOUT | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (Bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the timits specified under DC and AC Characteristics.

Truth Table

| $\overline{\overline{C S}}$ | $\overline{\text { WE }}$ | $\mathbf{D}_{\text {IW }}$ | Output | Mode |
| :--- | :--- | :--- | :---: | :--- |
| $H$ | $X$ | $X$ | $L$ | Not selected |
| $L$ | $L$ | $L$ | $L$ | Write 0 |
| $L$ | $L$ | $H$ | $L$ | Write 1 |
| L | $H$ | $X$ | $D_{\text {OUT }}$ | Read |
| Notes: |  |  |  |  |

## Notes:

(1) $X=$ don't care.

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | -1025 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\max ) \\ & \text { or } V_{I L}(\min ) \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{\mathrm{OL}}$ | -1810 |  | -1620 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\max ) \\ & \text { or } V_{\mathrm{IL}}(\min ) \end{aligned}$ |
| Output threshold voltage, high | $\mathrm{V}_{\mathrm{OHC}}$ | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\min ) \\ & \text { or } V_{I L}(\max ) \end{aligned}$ |
| Output threshold voltage, low | $V_{\text {OLC }}$ |  |  | -1610 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\min ) \\ & \text { or } V_{I L}(\max ) \end{aligned}$ |
| Input voltage, high | $V_{1 H}$ | -1165 |  | -880 | mV |  |
| Input voltage, low | $V_{\text {IL }}$ | -1810 |  | -1475 | mV |  |
| input current, high | $\mathrm{I}_{\mathrm{H}}$ |  |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max )$ |
| Input current, low | IIL | 0.5 |  | 170 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { For } \overline{\mathrm{CS}}: \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{~min}) \end{aligned}$ |
|  |  | $-50$ |  |  | $\mu \mathrm{A}$ | For all others: $V_{I N}=V_{\text {IL }}$ (min) |
| Supply current | $\mathrm{l}_{\text {EE }}$ | -250 |  |  | mA | All inputs and outputs open |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.

## Capacitance

|  |  | Limits |  |  |
| :--- | :--- | :---: | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Unit Test Conditions |  |
| Input capacitance | $\mathrm{C}_{\mathbb{N}}$ | 4 | pF |  |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ | 5 | pF |  |

Figure 1. Loading Conditions Test Circuit


Figure 2. Input Pulse


## AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2.0 V ; $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB100474A-5 |  |  | $\mu \mathrm{PB} 100474 \mathrm{~A}-7$ |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |
| Address access time | $t_{A A}$ |  |  | 5 |  |  | 7 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  |  | 3 |  |  | 5 | ns |
| Chip select recovery time | tris |  |  | 3 |  |  | 5 | ns |
| Write Mode |  |  |  |  |  |  |  |  |
| Write pulse width | ${ }^{\text {tw }}$ | 5 |  |  | 7 |  |  | ns |
| Data setup time | twSD | 1 |  |  | 1 |  |  | ns |
| Data hold time | twhd | 1 |  |  | 1 |  |  | ns |
| Address setup time | twSA | 1 |  |  | 1 |  |  | ns |
| Address hold time | tWHA | 1 |  |  | 1 |  |  | ns |
| Chip select setup time | ${ }^{\text {twscs }}$ | 1 |  |  | 1 |  |  | ns |
| Chip select hold time | ${ }^{\text {twhCs }}$ | 1 |  |  | 1 |  |  | ns |
| Write disable time | tws |  |  | 3 |  |  | 5 | ns |
| Write recovery time | ${ }^{\text {twR }}$ |  |  | 6 |  |  | 8 | ns |
| Rise and Fall Times |  |  |  |  |  |  |  |  |
| Output rise time | $t_{R}$ |  | 2 |  |  | 2 |  | ns |
| Output fall time | $\mathrm{t}_{\mathrm{F}}$ |  | 2 |  |  | 2 |  | ns |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between $20 \%$ and $80 \%$ or $80 \%$ and $20 \%$ ) $=2 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

## Timing Waveforms

Read Mode


Write Mode


## PRELIMINARY INFORMATION

## Description

The $\mu \mathrm{PB} 100480$ is a very high-speed 100K interface ECL RAM with full voltage and temperature compensation. The device is organized as 16,384 words by 1 bit, with an open emitter output (noninverted) and low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The $\mu \mathrm{PB} 100480$ is available in a hermetic, 300-mil, 20-pin cerdip or 20-pin ceramic flatpack.

## Features

$\square$ 16,384-word $\times$ 1-bit organization
$\square 100 \mathrm{~K}$ ECL interface with full voltage and temperature compensationOpen emitter output (noninverted)Fast access times: 10 and 15 ns maximumLow power consumption300-mil, 20-pin cerdip or 20-pin ceramic flatpack packaging

## Ordering Information

| Part Number | Access <br> Time [max] | $\qquad$ | Package |
| :---: | :---: | :---: | :---: |
| $\mu \mathrm{PB} 100480 \mathrm{D}-10$ | 10 ns | 1.2 W | 20-pin cerdip |
| D-15 | 15 ns | 1.1 W |  |
| $\mu \mathrm{PB} 100480 \mathrm{~B}-10$ | 10 ns | 1.2 W | 20-pin ceramic flatpack |
| B-15 | 15 ns | 1.1 W |  |

## Pin Configurations

## 20-PIn Cerdip



## 20-Pin Ceramic Flatpack



## Pin Identification

| Symboi | Function |
| :--- | :--- |
| $A_{0}-A_{13}$ | Address inputs |
| $D_{\text {IN }}$ | Data input |
| $D_{0 U T}$ | Data output |
| $\overline{\mathrm{WE}}$ | Write enable |
| $\overline{\mathrm{CS}}$ | Chip select |
| $V_{\mathrm{CC}}$ | Ground |
| $V_{\text {EE }}$ | -4.5 -volt power supply |

## Block Diagram



## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ | -7.0 to +0.5 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output current, IOUT | -30 to +0.1 mA |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :---: | :---: |
| Parameter | Symbol | Min | Typ Max | Unit |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 4 | pF |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 6 | pF |

## DC Characteristics

$\underline{T_{A}=0 \text { to }+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \text {; output load }=50 \Omega \text { to }-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}}$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | -1025 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\max ) \\ & \text { or } V_{I L}(\min ) \end{aligned}$ |
| Output voltage, low | $\mathrm{V}_{0}$ | -1810 | -1620 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\max ) \\ & \text { or } V_{\text {IL }}(\min ) \end{aligned}$ |
| Output threshold voltage, high | $\mathrm{V}_{\text {OHC }}$ | -1035 |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\min ) \\ & \text { or } V_{I L}(\max ) \end{aligned}$ |
| Output threshold voltage, low | $V_{\text {OLC }}$ |  | -1610 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\min ) \\ & \text { or } V_{I L}(\max ) \end{aligned}$ |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | -1165 | -880 | mV | Guaranteed input voltage high for all inputs |
| Input voltage, low | $\mathrm{V}_{\text {IL }}$ | -1810 | -1475 | mV | Guaranteed input voltage low for all inputs |
| Input current, high | $\mathrm{I}_{\mathrm{H}}$ |  | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}}($ max $)$ |
| Input current, low | ILL | 0.5 | 170 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { For } \overline{\mathrm{CS}}: \mathrm{V}_{\mathrm{IN}}= \\ & \mathrm{V}_{\mathrm{IL}}(\mathrm{~min}) \end{aligned}$ |
|  |  | -50 |  | $\mu \mathrm{A}$ | For all others: $V_{I N}=V_{\mathrm{IL}}(\mathrm{~min})$ |
| Supply current | $\mathrm{I}_{\mathrm{EE}}$ | $-260$ |  | mA | For $\mu$ PB100480-10: all inputs and outputs open |
|  |  | -240 |  | mA | For $\mu$ PB100480-15: all inputs and outputs open |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

| Parameter | Symbol | Limits |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PB10480-10}$ |  | ${ }_{\mu} \mathrm{PB} 10480-15$ |  |  |
|  |  | Min Typ | Max | Min Typ | Max |  |
| Read Mode |  |  |  |  |  |  |
| Address access time | $t_{\text {AA }}$ |  | 10 |  | 15 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  | 5 |  | 8 | ns |
| Chip select recovery time | $\mathrm{t}_{\mathrm{RCS}}$ |  | 5 |  | 8 | ns |
| Write Mode |  |  |  |  |  |  |
| Write pulse width | $\mathrm{t}_{\mathrm{W}}$ | 10 |  | 15 |  | ns |
| Data setup time | tWSD | 2 |  | 3 |  | ns |
| Data hold time | ${ }^{\text {twHD }}$ | 1 |  | 2 |  | ns |
| Address setup time | twSA | 2 |  | 3 |  | ns |
| Address hold time | twha | 1 |  | 2 |  | ns |
| Chip select setup time | ${ }^{\text {t WSCS }}$ | 2 |  | 3 |  | ns |
| Chip select hold time | ${ }^{\text {twhCs }}$ | 1 |  | 2 |  | ns |
| Write disable time | $t_{\text {WS }}$ |  | 5 |  | 8 | ns |
| Write recovery time | ${ }^{\text {twR }}$ |  | 11 |  | 17 | ns |
| Output Rise and Fall Times |  |  |  |  |  |  |
| Rise time | $t_{R}$ | 2 |  | 2 |  | ns |
| Fall time | $\mathrm{t}_{\mathrm{F}}$ | 2 |  | 2 |  | ns |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between $20 \%$ and $80 \%$ or $80 \%$ and $20 \%$ ) $=2.5 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{W E}$ | $\mathrm{D}_{\mathrm{N}}$ | Mode | Output |
| :---: | :---: | :---: | :---: | :---: |
| H | X | X | Not selected | L |
| L | L | L | Write 0 | L |
| L. | L | H | Write 1 | L |
| L | H | X | Read | Dout |

## Notes:

(1) $X=$ don't care

Figure 1. Loading Conditions Test Circult


Note: $\mathrm{R}_{\mathrm{L}}=\mathbf{5 0} \Omega \mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$
83M-004918A

## Timing Waveforms

## Read Mode



Figure 2. Input Pulse Waveform for Test


Note: $\mathbf{t}_{\mathbf{R}}=\mathbf{t}_{\mathbf{F}}=\mathbf{2 . 5} \mathbf{n s}$ (typ).

Write Mode


## Description

The $\mu$ PDB100484 is a very high-speed 100K interface ECL random access memory. The device is organized as 4 K words by 4 bits with open emitter outputs (noninverted). It is available in 28 -pin cerdip or flatpack versions.

## Features

4K-word $\times 4$-bit organization100 K ECL interfaceFull voltage and temperature compensationOpen emitter outputs (noninverted)Fast access times and low power consumption28-pin cerdip and flatpack packaging
## Ordering Information

| Part Number | Access Time (max) | Supply Current (min) | Package |
| :---: | :---: | :---: | :---: |
| $\mu$ PB100484B-10 | 10 ns | -260 mA | 28-pin ceramic flatpack |
| B-15 | 15 ns | -240 mA |  |
| $\mu \mathrm{PB} 100484 \mathrm{D}-10$ | 10 ns | -260 mA | 28-pin cerdip |
| D-15 | 15 ns | -240 mA |  |

## Absolute Maximum Ratings

$\mathrm{v}_{\mathrm{CC}}=\mathrm{v}_{\mathrm{CCA}}=0 \mathrm{~V}$

| Supply voltage, $\mathrm{V}_{\mathrm{EE}}$ | +0.5 to -7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | +0.5 V to $\mathrm{V}_{\mathrm{EE}}$ |
| Output current, louT | +0.1 to -30 mA |
| Storage temperature, TSTG | -65 to $+155^{\circ} \mathrm{C}$ |
| Under bias, $\mathrm{T}_{\text {STG }}$ (Bias) | -55 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :--- | :---: | :---: |
| Parameter | Symbol | Min Typ Max | Unit Test Conditions |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ | 4 | pF |  |  |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ | 6 | pF |  |  |

## Pin Configurations

## 28-Pin Cerdip



## 28-Pin Ceramic Flatpack



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{11}$ | Address inputs |
| $\mathrm{DI}_{1}-\mathrm{Dl}_{4}$ | Data inputs |
| $\overline{\mathrm{D} 0_{1}-\mathrm{DO} 0_{4}}$ | Data outputs |
| $\overline{\mathrm{WE}}, \overline{\mathrm{WE}} \mathrm{E}_{2}$ | Write enable inputs (active low) |
| $\overline{\mathrm{CS}}$ | Chip select (active low) |
| $V_{\mathrm{CC}}$ | Power supply (current switches and bias driver) |
| $V_{C C A}$ | Power supply (output devices) |
| $V_{E E}$ | -4.5 -volt power supply |
| $N C$ | No connection |

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2 V ; $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Parameter | Symbol | Min Typ Max | Unit | Test Conditions |

## Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.

## AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2 V ; $V_{C C}=V_{C C A}=0 V$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PB100484-10 |  |  | $\mu \mathrm{PB100484-15}$ |  |  |  |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| Read Mode |  |  |  |  |  |  |  |  |
| Address access time | $t_{A A}$ |  |  | 10 |  |  | 15 | ns |
| Chip select recovery time | $t_{\text {RCS }}$ |  |  | 5 |  |  | 8 | ns |
| Chip select access time | $t_{\text {ACS }}$ |  |  | 5 |  |  | 8 | ns |
| Write Mode |  |  |  |  |  |  |  |  |
| Write pulse width | tw | 10 |  |  | 15 |  |  | ns |
| Data setup time | ${ }^{\text {twSD }}$ | 2 |  |  | 3 |  |  | ns |
| Data hold time | tWHD | 1 |  |  | 2 |  |  | ns |
| Address setup time | twSA | 2 |  |  | 3 |  |  | ns |
| Address hold time | tWHA | 1 |  |  | 2 |  |  | ns |
| Chip select setup time | $t_{\text {twSCS }}$ | 2 |  |  | 3 |  |  | ns |
| Chip select hold time | twhCs | 1 |  |  | 2 |  |  | ns |
| Write disable time | tws |  |  | 5 |  |  | 8 | ns |
| Write recovery time | twr |  |  | 11 |  |  | 17 | ns |
| Output Rise and Fall Times |  |  |  |  |  |  |  |  |
| Output rise time | $t_{R}$ |  | 2 |  |  | 2 |  | ns |
| Output fall time | $t_{\text {F }}$ |  | 2 |  |  | 2 |  | ns |

## Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times $=$ 2.5 ns ; input and output timing reference levels $=50 \%$.

## Truth Table

| $\overline{\mathrm{CS}}$ | $\overline{\mathrm{WE}}$ | $\mathrm{D}_{\text {IN }}$ | Output | Mode |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | X | X | L | Not selected |
| L | L (Note 2) | L | L | Write 0 |
| L | L (Note 2) | H | L | Write 1 |
| L | H (Note 2) | X | Dout | Read |

Notes:
(1) $\mathrm{X}=$ don't care.
(2) Both $\overline{W E}_{1}$ and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either $W E_{1}$ or $W E_{2}$ or both must be high.

Figure 1. Loading Conditions Test Circuit


Note: $\mathrm{R}_{\mathrm{L}}=\mathbf{5 0} \Omega ; \mathrm{C}_{\mathrm{L}}=\mathbf{3 0} \mathrm{pF}$
83M-004987A

Figure 2. Input Pulse Waveform


## Timing Waveforms

## Read Mode



Write Mode


## EPROMs AND EEPROMs

## Section 8 <br> EPROMs and EEPROMs

$\mu$ PD27C256A ..... 8-1
32,768 x 8-Bit CMOS UV EPROM
$\mu$ PD27C512 ..... 8-5
65,536 x 8-Bit CMOS UV EPROM
$\mu$ PD27C1000A ..... 8-11
131,072 x 8-Bit CMOS UV EPROM
$\mu$ PD27C1001A ..... 8-21
131,072 x 8-Bit CMOS UV EPROM
$\mu$ PD27C1024 ..... 8-31
65,536 x 16-Bit CMOS UV EPROM
$\mu$ PD27C2001 ..... 8-39
262,144 x 8-Bit CMOS UV EPROM
$\mu$ PD28C04 ..... 8-49
$512 \times 8$-Bit CMOS EEPROM
$\mu$ PD28C64 ..... 8-57
8,192 x 8-Bit CMOS EEPROM

## Description

The $\mu$ PD27C256A is a 262,144 -bit ultraviolet erasable and electrically programmable read-only memory fabricated with double-polysilicon CMOS technology. The device is organized as 32 K words by 8 bits and operates from a single +5 -volt power supply.

The $\mu$ PD27C256A has a single-location programming feature, three-state outputs, fully TTL-compatible inputs and outputs, and a program voltage ( $\mathrm{V}_{\mathrm{PP}}$ ) of 12.5 volts.

The $\mu$ PD27C256A is available in a cerdip package with a quartz window as an ultraviolet (UV) erasable EPROM.

## Features

- 32K-word by 8 -bit organizationUltraviolet erasable and electrically programmableSingle location programmingHigh-speed programmingLow power dissipation
- 165 mW (active)
$-550 \mu \mathrm{~W}$ (standby)TTL-compatible I/O for reading and programmingSingle +5 -volt power supplyJEDEC vendor identificationDouble-polysilicon CMOS technology28-pin cerdip packaging
Ordering Information

| Part Number | Access <br> Time max] | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C256AD-15 | 150 ns | 28 -pin cerdip |
| $\mathrm{D}-20$ | 200 ns |  |

## Pin Configuration

## 28-Pin Cerdip



Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{14}$ | Address inputs |
| $0_{0}-0_{7}$ | Data outputs |
| $\overline{\mathrm{CE}}$ | Chip enable |
| $\overline{\overline{O E}}$ | Output enable |
| GND | Ground |
| $V_{\mathrm{CC}}$ | +5 -volt power supply |
| $V_{\text {PP }}$ | Program voltage |

## Block Diagram



Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1) | -0.6 V to $\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ | -0.6 V to $\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -25 to $85^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $125^{\circ} \mathrm{C}$ |
| Program voltage, $\mathrm{V}_{\text {PP }}$ | -0.6 to +13.0 V |
| ID read voltage on pin 24, $\mathrm{V}_{\text {ID }}$ | -0.6 to +13.5 V |

## Note:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V} \min$ for 20 ns pulse.

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1)

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  | 4 | 6 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output capacitance | COUT |  | 8 | 12 | pF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |

## Notes:

(1) This parameter is sampled and not $100 \%$ tested.

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Input voltage, high | $V_{\text {IH }}$ | 2.0 |  | $V_{C C}+0.3$ | V |  |
| Input voltage, low | VIL | -0.3 |  | 0.8 | V |  |
| Output leakage current | ${ }_{1} \mathrm{O}$ |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\overline{0 E}}=V_{\text {IH }} ; \\ & V_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & V_{\mathrm{CC}} \end{aligned}$ |
| Input leakage current | $\mathrm{ILI}^{\prime}$ |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{I N}}=0 \mathrm{~V} \text { to } \\ & V_{C C} \end{aligned}$ |
| Operating supply current | ICCA1 |  |  | 30 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=V_{I L} ; \\ & V_{I N}=V_{I H} \end{aligned}$ |
| Operating supply current | $I_{\text {CCA2 }}$ |  |  | 30 | mA | $\begin{aligned} & \mathrm{f}=5 \mathrm{MHz} ; \\ & \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | ${ }_{\text {SB1 }}$ |  |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$ |
|  | ISB2 |  | 1 | 100 | $\mu \mathrm{A}$ | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {CC }}$ |
| Program voltage current | IPP1 |  | 1 | 100 | $\mu \mathrm{A}$ | $V_{P P}=V_{C C}$ |

## DC Characteristics (cont)

$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=+12.5 \pm 0.3 \mathrm{~V}$

| Paramater | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ Max |  |  |
| Program, Program Verify, and Program Inhlbit Modes |  |  |  |  |  |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | 2.4 |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0}$ |  | 0.45 | V | $10 \mathrm{~L}=2.1 \mathrm{~mA}$ |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.0 | $\mathrm{v}_{\text {cc }}+0.3$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 | 0.8 | V |  |
| 1 Dread voltage | $V_{\text {ID }}$ | 11.5 | 12.5 | V |  |
| Input leakage current | 'LI |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {IN }}=V_{\text {IL }} \text { or } \\ & V_{1 H} \end{aligned}$ |
| Operating supply current | ICC |  | 30 | mA |  |
| Program voltage current | Ipp2 |  | 30 | mA | $\begin{aligned} & \overline{\overline{C E}}=V_{I L} ; \\ & \overline{0 E}=V_{1 H} \end{aligned}$ |

$\mu$ PD27C256A

## AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions (Note 2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ P027C256A-15 |  | $\mu$ PD27C256A-20 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |  |
| Address to output delay | $\mathrm{t}_{\text {ACC }}$ |  | 150 |  | 200 | ns | $\overline{\mathrm{CE}}=\overline{\overline{\mathrm{OE}}}=V_{\text {IL }}$ |
| $\overline{\overline{C E} \text { to output delay }}$ | $\mathrm{t}_{\text {CE }}$ |  | 150 |  | 200 | ns | $\overline{\overline{O E}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{O E}}$ low to data output delay | $\mathrm{t}_{0 \mathrm{E}}$ |  | 75 |  | 75 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{\mathrm{OE}} \text { high to data output float delay }}$ | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | 0 | 60 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| Address to output hold time | ${ }^{\text {toh }}$ | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ |

(1) See figure 1 for output load; input rise and fall times $=0.45 \mathrm{~V}$ to 2.4 V ; input and output timing measurement levels $=0.8 \mathrm{~V}$ and 2.0 V .

## AC Characteristics (cont)

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Program, Program Verify, and Program Inhiblt Modes |  |  |  |  |  |  |
| Address setup time | $t_{\text {AS }}$ | 2 |  |  | $\mu \mathrm{S}$ | (Note 1) |
| Data setup time | tDS | 2 |  |  | $\mu \mathrm{S}$ | (Note 1) |
| Address hold time | $\mathrm{t}_{\mathrm{AH}}$ | 2 |  |  | $\mu \mathrm{S}$ | (Note 1) |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 2 |  |  | $\mu \mathrm{S}$ | (Note 1) |
| Output enable to output float delay | $\mathrm{t}_{\mathrm{DF}}$ | 0 |  | 130 | ns | (Note 1) |
| $V_{\text {pp }}$ setup time | tvPS | 2 |  |  | $\mu \mathrm{s}$ | (Note 1) |
| Program pulse width | $t_{\text {PW }}$ | 0.95 | 1 | 1.05 | ms | (Note 1) |
| $\mathrm{V}_{\text {CC }}$ setup time | tves | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{0 E}$ setup time | toes | 2 |  |  | $\mu \mathrm{s}$ | (Note 1) |
| Overprogram pulse width | topw | 2.85 |  | 78.75 | ms |  |
| Data valid from $\overline{0 E}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  |  | 150 | ns |  |

## Notes:

(1) Input pulse levels $=0.45 \mathrm{~V}$ to 2.4 V ; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; input rise and fall times $=20 \mathrm{~ns}$.

Figure 1. Loading Conditions Test Circuit


## Truth Table

| Mode | $\begin{aligned} & \overline{\mathrm{CE}} \\ & {[20)} \end{aligned}$ | $\begin{aligned} & \overline{\overline{O E}} \\ & {[22]} \end{aligned}$ | $\begin{aligned} & \mathbf{A g}_{9} \\ & {[24]} \end{aligned}$ | $V_{p p}$ [I] | $\begin{aligned} & V_{C C} \\ & {[28]} \end{aligned}$ | $\begin{gathered} \text { Outputs } \\ (11 \cdot 13,15-19) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $V_{\text {IL }}$ | $\mathrm{V}_{\text {IL }}$ | $X$ | $V_{\text {CC }}$ | $V_{\text {CC }}$ | DOUT |
| Read disable | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\mathrm{H}}$ | X | $V_{C C}$ | $V_{\text {¢ }}$ | High-Z |
| Standby | $\mathrm{V}_{\text {IH }}$ | X | X | $V_{\text {CC }}$ | $V_{\text {CC }}$ | High-Z |
| Program | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{H}}$ | X | $V_{\text {PP }}$ | $V_{\text {cc }}$ | $\mathrm{DIN}^{\text {IN }}$ |
| Program verify | $\mathrm{V}_{\text {IH }}$ | $\mathrm{V}_{\mathrm{IL}}$ | X | $V_{\text {pp }}$ | $V_{\text {cc }}$ | D OUT |
| Program inhibit | $V_{\text {IH }}$ | $\mathrm{V}_{\mathrm{H}}$ | X | $V_{P P}$ | $V_{C C}$ | High-Z |
| ID read | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\text {IL }}$ | $V_{\text {ID }}$ | $V_{C C}$ | $V_{\text {CC }}$ | $\mathrm{D}_{\text {OUT }}$ |

## Notes:

(1) X can be either $\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$.

## Programming Operation

## High-Speed Programming Mode

Begin programming by erasing all data; this sets all bits at a high logic level (1). To enter data, program a lowlevel (0) TTL signal into the chosen bit location.

Address the first location and apply valid data at the eight output pins. Raise $\mathrm{V}_{\mathrm{CC}}$ to $+6 \pm 0.25 \mathrm{~V}$; then raise $\mathrm{V}_{\mathrm{PP}}$ to $+12.5 \pm 0.3 \mathrm{~V}$.
Apply a $1-\mathrm{ms}$ ( $\pm 5 \%$ ) program pulse to $\overline{\mathrm{CE}}$ as shown in the programming portion of the timing waveform. Verify the bit prior to making a program/no-program decision. If the bit is not programmed, apply another 1 -ms pulse to $\overline{C E}$, up to a maximum of 25 times. If the bit is programmed within 25 tries, apply an additional overprogram pulse of $3 x \mathrm{~ms}$ (where " $x$ " equals the number of tries) and input the next address. If the bit is not programmed in 25 tries, reject the device as a program failure.

After all bits are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{PP}}$ to $+5 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Programming Inhibit Mode

Use the programming inhibit mode to program multiple $\mu$ PD27C256As connected in parallel. All like inputs (except $\overline{C E}$, but including $\overline{O E}$ ) may be common. Program individual devices by applying a low-level (0) TTL pulse to the $\overline{\mathrm{CE}}$ input of the device to be programmed. Applying a high level (1) to the $\overline{\mathrm{CE}}$ input of the other devices prevents them from being programmed.

## Program Verify Mode

To verify that the device was correctly programmed, set $\overline{O E}$ at logic level 0 . To verify data on multiple $\mu$ PD27C256As connected in parallel with a common $\overline{O E}$ input applied to all devices, first reduce $\mathrm{V}_{\mathrm{PP}}$ to $\mathrm{V}_{\mathrm{CC}}$. Then the normal read mode can be used with a logic level 0 applied to the $\overline{C E}$ input of the device to be verified. Apply a logic level 1 to the $\overline{\mathrm{CE}}$ input of all other devices.

## Erasure

Erase data on the $\mu$ PD27C256A by exposing it to light with a wavelength shorter than 400 nm . Exposure to direct sunlight or fluorescent light could also erase the data. Consequently, mask the window to prevent unintentional erasure by ultraviolet rays.
Data is typically erased by ultraviolet rays of 254 nm . A lighting level of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}(\mathrm{~min})$ is required to completely erase written data (ultraviolet ray intensity multiplied by exposure time).

An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu$ PD27C256A within 2.5 cm of the lamp tubes. Remove any filter on the lamp.

## Timing Waveforms

## Read Mode



## Program Mode



## Description

The $\mu$ PD27C512 is an ultraviolet erasable, electrically programmable 524,288-bit ROM fabricated with an advanced CMOS process for substantial power savings. The device is organized as 64 K words by 8 bits and operates from a single +5 -volt power supply. All inputs and outputs are TTL-compatible. The device is available in a 28 -pin cerdip package with quartz window.

## Features

64K x 8-bit organizationUltraviolet erasable and electrically programmableHigh-speed programming modeLow power dissipation- 30 mA max (active)
$-100 \mu \mathrm{~A}$ max (standby)TTL-compatible inputs and outputsSingle +5 -volt power supplyThree-state outputsAdvanced CMOS technology28-pin cerdip with quartz window


## Ordering Information

| Part Number | Access Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C512D-15 | 150 ns | 28-pin cerdip with <br> $\mathrm{D}-20$ |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{15}$ | Address inputs |
| $0_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{O E} / V_{P P}}$ | Output enable/program voltage |
| GND | Ground |
| $V_{C C}$ | Power supply |

## Pin Configuration

## 28-Pin Cerdip

|  |  |
| :---: | :---: |
|  |  |

## Absolute Maximum Ratings

| Output voltage, $\mathrm{V}_{0}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{Ag}_{g}$ | -0.6 to +13.5 V |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| Supply voltage, $\mathrm{V}_{\mathrm{PP}}$ | -0.6 to +13.5 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | -10 to $+80^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+125^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



Mode Selection

| Mode | $\overline{\mathrm{CE}}$ | $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ | $\mathrm{V}_{\mathrm{CC}}$ | Outputs |
| :--- | :---: | :---: | :---: | :--- |
| Read | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +5 V | $\mathrm{D}_{\text {OUT }}$ |
| Output disable | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +5 V | High-Z |
| Standby | $\mathrm{V}_{\mathrm{IH}}$ | X | +5 V | High-Z |
| Program | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{PP}}$ | +6 V | $\mathrm{D}_{\mathrm{IN}}$ |
| Program verify | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +6 V | $\mathrm{D}_{\text {OUT }}$ |
| Program inhibit | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{PP}}$ | +6 V | High-Z |

## Notes:

(1) $X=V_{\text {IL }}$ or $V_{I H}$

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN1 }}$ |  |  | 6 | pF | $V_{1}=0 \mathrm{~V}$ |
|  | $\mathrm{C}_{\text {IN2 }}$ |  |  | 20 | pF | $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}} ; \mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output capacitance | Cout |  |  | 12 | pF | $\mathrm{V}_{0}=0 \mathrm{~V}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 |  | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{0 \mathrm{H} 1}$ | 2.4 |  |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\text {CC }}-0.7$ |  |  | V | $\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $V_{0 L}$ |  |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output leakage current | lo |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{0}=0$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\overline{0 E}}=\mathrm{V}_{\mathrm{IH}}$ |
| Input leakage current | $\mathrm{l}_{\mathrm{LI}}$ |  |  | 10 | $\mu \mathrm{A}$ | $V_{1}=0$ to $V_{\text {CC }}$ |
| $\mathrm{V}_{\text {CC }}$ current, active | ICCA1 |  |  | 30 | mA | $\overline{C E}=V_{\text {IL }} ; V_{1}=V_{\text {IH }}$ |
|  | $I_{\text {CCA2 }}$ |  |  | 30 | mA | $\mathrm{f}=5 \mathrm{MHz}$; OUUT $=0 \mathrm{~mA}$ |
| V $\mathrm{VCC}^{\text {current, standby }}$ | ICCS1 |  |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$ |
|  | ICCS2 |  | 1 | 100 | $\mu \mathrm{A}$ | $\overline{C E}=V_{C C} ; V_{1}=0$ to $V_{C C}$ |

## Programming Modes

| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | $V_{C C}+0.3$ | V |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 | 0.8 | V |  |
| Input leakage current | lıI |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{\text {IL }}$ or $V_{\text {IH }}$ |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | 2.4 |  | V | $\mathrm{IOH}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Vpp current | IPP |  | 30 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{IH}}$ |
| $\mathrm{V}_{\text {cc }}$ current | ICC |  | 30 | mA |  |

AC Characteristics, Read and Standby Modes
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD27C512-15 |  | $\mu$ PD27C512-20 |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Address to output delay | $t_{\text {ACC }}$ |  | 150 |  | 200 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{C E}}$ to output delay | $\mathrm{t}_{\text {CE }}$ |  | 150 |  | 200 | ns | $\overline{\overline{O E}} / V_{P P}=V_{\text {IL }}$ |
| $\overline{\overline{\mathrm{OE}} / \mathrm{V}_{\text {PP }} \text { to output delay }}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  | 75 |  | 75 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
|  | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | 0 | 60 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| Output hold from address, $\overline{C E}$ or $\overline{O E}$, whichever transition occurs first | ${ }^{\text {OH }}$ | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {IL }}$ |

## Notes:

(1) Output load: see figure 1 . Input rise and fall times $\leq 20 \mathrm{~ns}$. Input pulse levels: 0.45 and 2.4 V . Timing measurement reference levels: inputs and outputs $=0.8$ and 2.0 V

## AC Characteristics, Programming Modes

$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=6.0 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Address setup time | $t_{\text {AS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{\mathrm{OE}} \text { setup time }}$ | toEs | 2 |  |  | $\mu \mathrm{S}$ |  |
| Data setup time | $t_{\text {DS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Address hold time | $\mathrm{t}_{\text {AH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{\mathrm{CE}} \text { to output float time }}$ | $t_{\text {DF }}$ | 0 |  | 130 | ns |  |
| $\mathrm{V}_{\text {CC }}$ setup time | tvCs | 2 |  |  | $\mu \mathrm{S}$ |  |
| Initial program pulse width | tpw | 0.95 | 1.0 | 1.05 | ms |  |
| Overprogram pulse width | topw | 2.85 |  | 78.75 | ms |  |
| $\overline{\overline{C E} \text { to output delay }}$ | $t_{\text {DV }}$ |  |  | 1 | $\mu \mathrm{S}$ | $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{O E} /} / \mathrm{V}_{\mathrm{PP}}$ hold time | $\mathrm{t}_{\text {OEH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{O E} / V_{\text {pp }}$ recovery time | tVR | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{O E} / V_{P P} \text { rise time }}$ | tpRT | 50 |  |  | ns |  |

Figure 1. Loading Conditions Test Circuit
MPPD27C512

## Timing Waveforms

## Read Mode



## Programming Mode



## Programming Operation

## High-Speed Programming Mode

Begin programming by erasing all data; this places all bits in the high-level (1) state. Enter data by programming a low-level (0) TTL signal into the chosen bit location.

Address the first location and apply valid data at the eight output pins. Raise $\mathrm{V}_{C C}$ to $+6 \mathrm{~V} \pm 0.25 \mathrm{~V}$; then raise $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pp}}$ to $+12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Apply a $1-\mathrm{ms}( \pm 5 \%)$ program pulse to $\overline{C E}$ as shown in the programming mode timing waveform. The bit is verified and the program/noprogram decision is made. If the bit is not programmed, apply another 1 -ms pulse to $\overline{\mathrm{CE}}$, up to a maximum of 25 times. If the bit is programmed within 25 tries, apply an additional overprogram pulse of " $x$ " ms (where " $x$ " equals the number of tries multiplied by 3) and input the next address. If the bit is not programmed in 25 tries, reject the device as a program failure.

## Programming Inhibit Mode

Use the programming inhibit mode to program multiple $\mu$ PD27C512s connected in parallel. All like inputs (except $\overline{C E}$, but including $\overline{O E} / V_{P P}$ ) may be common. Program individual devices by applying a low-level (0) TTL pulse to the $\overline{\mathrm{CE}}$ input of the $\mu \mathrm{PD} 27 \mathrm{C} 512$ to be programmed. Applying a high level (1) to the $\overline{\mathrm{CE}}$ input of the other devices prevents them from being programmed.

## Program Verify Mode

Perform verification on the programmed bits to determine that the data was correctly programmed. The program verification can be performed with $\overline{C E}$ and $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ at low levels (0).

## Erasure

Erase data on the $\mu$ PD27C512 by exposing it to light with a wavelength shorter than 400 nm . Exposure to direct sunlight or fluorescent light could also erase the data. Consequently, mask the window to prevent unintentional erasure by ultraviolet rays.
Data is typically erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}$ (ultraviolet ray intensity multiplied by exposure time) is required to completely erase written data.

An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu$ PD27C512 within 2.5 cm of the lamp tubes. Remove any filter on the lamp.

## Description

The $\mu$ PD27C1000A is a $1,048,576$-bit ultraviolet erasable and electrically programmable read-only memory fabricated with double-polysilicon CMOS technology for a substantial savings in both operating and standby power. The device is organized as 131,072 words by 8 bits and operates from a single +5 -volt power supply.
The $\mu$ PD27C1000A has both page and single-location programming features, three-state outputs, and fully TTL-compatible inputs and outputs. It also has a program voltage ( $\mathrm{V}_{\mathrm{PP}}$ ) of 12.5 volts and is available in a 32-pin cerdip with a quartz window.

## Features

- 131,072-word by 8 -bit organizationUltraviolet erasable and electrically programmable
High-speed programming capability
- Page programming
- Single byte programming

Low power dissipation

- 40 mA maximum (active)
- $100 \mu \mathrm{~A}$ maximum (standby)TTL-compatible I/O for reading and programmingSingle +5 -volt power supplyDouble-polysilicon CMOS technology32-pin cerdip packagingPinout compatibility with 28-pin, mask-
programmable $\mu$ PD23C1000s


## Ordering Information

| Part Number | Access <br> Time $[$ max] | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C1000AD-12 | 120 ns | 32-pin cerdip with a <br> quartz window |
| $\mathrm{D}-15$ | 150 ns |  |
| $\mathrm{D}-20$ | 200 ns |  |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{16}$ | Address inputs |
| $\bar{O}_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{\mathrm{OE}}}$ | Output enable |
| $\overline{\mathrm{PGM}}$ | Program |
| GND | Ground |
| $V_{C C}$ | +5-volt power supply |
| $V_{P P}$ | Program voltage |
| $N C$ | No connection |

## Pin Configuration

## 32-Pin Cerdip



## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{A}_{\mathrm{g}}$ | -0.6 to +13.5 V |
| Output voltage, $\mathrm{V}_{\text {OUT }}$ | -0.6 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+80^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+125^{\circ} \mathrm{C}$ |
| Program voltage, $\mathrm{V}_{\mathrm{PP}}$ | -0.6 to +13.5 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Test Conditions |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 14 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 16 | PF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |

## Truth Table

| Mode | $\overline{\mathrm{CE}}$ | $\overline{\mathrm{OE}}$ | PGM <br> (Note 2) | $\mathrm{V}_{\mathrm{PP}}$ | $\mathrm{V}_{\mathrm{CC}}$ | Outputs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +5.0 V | +5.0 V | $\mathrm{D}_{\text {OUT }}$ |
| Output disable | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | X | +5.0 V | +5.0 V | High-Z |
| Standby | $\mathrm{V}_{\mathrm{IH}}$ | X | X | +5.0 V | +5.0 V | High-Z |
| Page data latch | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{\text {IN }}$ |
| Page program | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | High-Z |
| Program verify | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{\text {OUT }}$ |
| Byte program | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{\text {IN }}$ |
| Program inhibit | X | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | High-Z |
|  | X | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IH}}$ |  |  |  |

## Notes:

(1) " $X$ " can be either $V_{I L}$ or $V_{I H}$.
(2) In read operation, $\overline{\mathrm{PGM}}$ must be set to $\mathrm{V}_{I H}$ at all times or switched from $V_{I L}$ to $V_{I H}$ at least $2 \mu$ sefore $\overline{O E}$ or $\overline{C E}$ becomes $V_{I H}$.

Figure 1. Loading Conditions Test Circuit
DOUT $\bigcirc$

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \pm 0.6$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Parameter | Symbol | Min Typ Max | Unit Test Conditions |

## Read, Output Disable, and Standby Modes

| Output voltage, high | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $\begin{gathered} V_{C C} \\ -0.7 \end{gathered}$ |  | V | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Input voltage, high | $V_{\text {IH }}$ | 2.0 | $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | 0.8 | V |  |
| Output leakage current | Lo | -10 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{OE}}=V_{\mathrm{IH}} ; \\ & V_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & V_{\mathrm{CC}} \end{aligned}$ |
| Input leakage current | l I | -10 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} \text { to } \\ & V_{C C} \end{aligned}$ |
| Operating supply current | ICCA1 |  | 15 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=V_{\mathrm{IL}} ; \\ & V_{I N}=V_{I H} \end{aligned}$ |
|  | lCCA2 |  | 40 | mA | $\begin{aligned} & \mathrm{f}=8.4 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{ACC}}=120 \mathrm{~ns} ; \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$ |
|  |  |  | 30 | mA | $\begin{aligned} & \mathrm{f}=6.7 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{ACC}}=150 \mathrm{~ns} ; \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$ |
|  |  |  | 25 | mA | $\begin{aligned} & f=5 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{ACC}}=200 \mathrm{~ns} ; \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | ICCS1 |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{1}$ |
|  | ICCS2 |  | 1100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{C E}=V_{C C} ; V_{I N} \\ & =0 \mathrm{~V} \text { to } V_{C C} \end{aligned}$ |
| Program voltage current | Ipp |  | 1100 | $\mu \mathrm{A}$ | $V_{P P}=V_{C C}$ |

## All Program Modes

$T_{A}=+25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{P P}=+12.5 \pm 0.3 \mathrm{~V}$

| Output voltage, <br> high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output voltage, <br> low | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$ |
| Input voltage, <br> high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, <br> low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | 0.8 | V |  |
| Input leakage <br> current | $\mathrm{I}_{\mathrm{LI}}$ | -10 | 10 | $\mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or <br> Operating supply <br> current $\mathrm{I}_{\mathrm{CC}}$ |
| Program voltage <br> current | $\mathrm{I}_{\mathrm{PP}}$ |  | 50 | mA |  |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD27C1000A-12 |  | $\mu$ PD27C1000A-15 |  | $\mu$ PD27C1000A-20 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |  |  |  |
| Address to output delay | $\mathrm{t}_{\text {ACC }}$ |  | 120 |  | 150 |  | 200 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{\mathrm{CE}} \text { to output delay }}$ | $\mathrm{t}_{\text {CE }}$ |  | 120 |  | 150 |  | 200 | ns | $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{O E}}$ to output delay | $\mathrm{t}_{\text {OE }}$ |  | 70 |  | 70 |  | 75 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{O E}}$ or $\overline{C E}$ high to data output float delay | $t_{\text {DF }}$ | 0 | 50 | 0 | 50 | 0 | 60 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{OE}}=V_{\text {IL }}$ |
| Address to output hold time | ${ }_{\text {tor }}$ | 0 |  | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |

## Notes:

(1) See figure 1 for output load; input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; input and output timing measurement levels $=0.8 \mathrm{~V}$ and 2.0 V .

## AC Characteristics (cont)


Page Data Latch, Page Program, Program Verify, and Program Inhiblt Modes

| Address setup time | $t_{\text {AS }}$ | 2 |  | $\mu \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| Data setup time | $t_{\text {DS }}$ | 2 |  | $\mu \mathrm{S}$ |
| Address hold time | $\mathrm{t}_{\text {AH }}$ | 2 |  | $\mu \mathrm{S}$ |
|  | ${ }^{\text {AHLL }}$ | 2 |  | $\mu \mathrm{S}$ |
|  | $\mathrm{t}_{\text {AHV }}$ | 0 |  | $\mu \mathrm{S}$ |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 2 |  | $\mu \mathrm{S}$ |
| Output enable to output float delay | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 130 | ns |
| $V_{\text {Pp }}$ setup time | tvps | 2 |  | $\mu \mathrm{S}$ |
| Program pulse width | $t_{\text {PW }}$ | 0.095 | 0.10 .105 | ms |
| $V_{\text {CC }}$ setup time | tves | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{O E} \text { setup time }}$ | toes | 2 |  | $\mu \mathrm{S}$ |
| OE hold time | $\mathrm{t}_{\text {OEH }}$ | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{C E}}$ hold time | ${ }^{\text {C CEH }}$ | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{O E}}$ pulse width during data latch | tLW | 1 |  | $\mu \mathrm{S}$ |
| $\overline{\text { PGM }}$ setup time | tpgMs | 2 |  | $\mu \mathrm{S}$ |
| CE setup time | $\mathrm{t}_{\text {CES }}$ | 2 |  | $\mu \mathrm{S}$ |
| Data valid from $\overline{O E}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  | 150 | ns |


|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\begin{array}{llll}\text { Parameter }\end{array}$ | Symbol | Min | Typ | Max | Unit |
| (Note 1] |  |  |  |  |  |$]$.

## Notes:

(1) Input pulse levels $=0.45 \mathrm{~V}$ to 2.4 V ; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; input rise and fall times $\leq 20 \mathrm{~ns}$. See figure 1 for output load.

## Programming Operation

Begin programming by erasing all data; this sets all bits at a high logic level (1). The $\mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A}$ is originally shipped in this condition. To enter data, program a low-level ( 0 ) TTL signal into the chosen location.
Address the first byte or page location and apply valid data at the eight output pins. Raise $\mathrm{V}_{\mathrm{CC}}$ to $+6.5 \pm 0.25 \mathrm{~V}$; then raise $\mathrm{V}_{\mathrm{PP}}$ to $+12.5 \pm 0.3 \mathrm{~V}$.

## Byte Programming

For byte programming, $\overline{\mathrm{CE}}$ should be set at 0 and $\overline{\mathrm{OE}}$ at 1 to start programming at the initial address. Apply a $0.1-\mathrm{ms}$ program pulse to $\overline{\mathrm{PGM}}$ as shown in the byte programming portion of the timing waveforms. Set OE to 0 to verify the eight bits prior to making a program/ no program decision. If the byte is not programmmed, apply another 0.1-ms pulse to $\overline{\mathrm{PGM}}$, up to a maximum of 10 times, and input the next address. If the bits are not programmed in 10 tries, reject the device as a program failure.

After all addresses are programmed, lower both $V_{C C}$ and $V_{P P}$ to $+5.0 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Page Programming

For page programming, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ should be set to 1 . $\overline{O E}$ pulses low four times to latch the addressed 4-byte, one-page data. Subsequently, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ should be set to a high level and a $0.1-\mathrm{ms}$ program pulse applied to $\overline{\text { PGM }}$ as shown in the page programming portion of the timing waveforms. Verify the data prior to making a program/no program decision. If all four bytes of page data are not programmed, apply another 0.1-ms pulse to $\overline{\text { PGM, up to a maximum of } 10 \text { times, and input the }}$ next page address. If the page is not programmed in 10 tries, reject the device as a program failure.

After all addresses are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $V_{P P}$ to $+5.0 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Program Inhibit

Use the programming inhibit option to program multiple $\mu$ PD27C1000As connected in parallel. All like inputs except $\overline{\mathrm{PGM}}$ and $\overline{\mathrm{OE}}$ may be common. Program individual devices by applying a low-level TTL pulse to the $\overline{\text { PGM }}$ pin of the device to be programmed. Applying a high-level signal to the $\widehat{\operatorname{PGM}}$ pins of the other devices prevents them from being programmed.

## Program Verification

To verify that the device is correctly programmed, normal read operation can be used with a logic level 1 applied to the PGM pin and a logic level 0 applied to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins of the device to be verified. A logic level 1 should be applied to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins of all other devices.

## Erasure

Erase data on the $\mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A}$ by exposing it to light with a wavelength shorter than 400 nm . Since exposure to direct sunlight or room-level fluorescent light could also erase the data, mask the window to prevent unintentional erasure by ultraviolet rays. Opaque labels are supplied with every device.
Data is typically erased by ultraviolet rays with a wavelength of 254 nm . A minimum integrated dose of 15 W -sec/ $\mathrm{cm}^{2}$ (ultraviolet lighting intensity multiplied by exposure time) is required to completely erase written data.
An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu \mathrm{PD} 27 \mathrm{C} 1000 \mathrm{~A}$ within 2.5 cm of the lamp tubes and remove any filter on the lamp.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Page Programming


Figure 2. Page Programming Flowchart


## Timing Waveforms (cont)

## Byte Programming



Figure 3. Byte Programming Flowchart


## Description

The $\mu$ PD27C1001A is a $1,048,576$-bit ultraviolet erasable and electrically programmable read-only memory fabricated with double-polysilicon CMOS technology for a substantial savings in both operating and standby power. The device is organized as 131,072 words by 8 bits and operates from a single +5 -volt power supply.
The $\mu$ PD27C1001A has both page and single-location programming features, three-state outputs, and fully TTL-compatible inputs and outputs. It also has a program voltage ( $\mathrm{V}_{\mathrm{PP}}$ ) of 12.5 volts and is available in a 32-pin cerdip with a quartz window.

## Features

$\square 131,072$-word by 8-bit organization
$\square$ Ultraviolet erasable and electrically programmable
$\square$ High-speed programming capability

- Page programming
- Single byte programmingLow power dissipation
- 40 mA maximum (active)
- $100 \mu \mathrm{~A}$ maximum (standby)TTL-compatible I/O for reading and programmingSingle +5 -volt power supplyDouble-polysilicon CMOS technology32-pin cerdip packagingJEDEC-compatible pinout


## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C1001AD-12 | 120 ns | 32-pin cerdip with a <br>  <br> D-15 <br> $D-20$ |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{16}$ | Address inputs |
| $\mathrm{O}_{0}-07$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{O E}}$ | Output enable |
| $\overline{\overline{P G M}}$ | Program |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -voit power supply |
| $V_{P P}$ | Program voltage |
| $N C$ | No connection |

## Pin Configuration

## 32-Pin Cerdip



83-005185A

## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{Ag}_{\mathrm{g}}$ | -0.6 to +13.5 V |
| Output voltage, $\mathrm{V}_{\mathrm{OUT}}$ | -0.6 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+80^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+125^{\circ} \mathrm{C}$ |
| Program voltage, $\mathrm{V}_{\mathrm{PP}}$ | -0.6 to +13.5 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Test Conditions |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  | 14 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 16 | pF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |

## Truth Table

| Mode | CE | $\overline{0 E}$ | $\begin{gathered} \overline{\mathrm{PGM}} \\ \text { (Note 2) } \end{gathered}$ | Vpp | $V_{\text {cc }}$ | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $V_{\text {IL }}$ | $V_{\text {IL }}$ | $\mathrm{V}_{\mathrm{IH}}$ | +5.0 V | $+5.0 \mathrm{~V}$ | Dout |
| Output disable | $V_{\text {IL }}$ | $V_{\text {IH }}$ | X | +5.0 V | $+5.0 \mathrm{~V}$ | High-Z |
| Standby | $V_{\text {IH }}$ | X | X | +5.0 V | $+5.0 \mathrm{~V}$ | High-Z |
| Page data latch | $\mathrm{V}_{\mathrm{H}}$ | $V_{\text {IL }}$ | $V_{\text {IH }}$ | +12.5 V | $+6.5 \mathrm{~V}$ | DIN |
| Page program | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{H}}$ | $V_{\text {IL }}$ | +12.5V | $+6.5 \mathrm{~V}$ | High-Z |
| Program verify | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\mathrm{H}}$ | +12.5 V | $+6.5 \mathrm{~V}$ | Dout |
| Byte program | $V_{\text {IL }}$ | $\mathrm{V}_{\mathrm{IH}}$ | $V_{\text {IL }}$ | +12.5 V | +6.5V | DIN |
| Program inhibit | X | $\mathrm{V}_{\text {IL }}$ | $V_{\text {IL }}$ | +12.5 V | $+6.5 \mathrm{~V}$ | High-Z |
|  | X | $V_{\text {IH }}$ | $\mathrm{V}_{\mathrm{IH}}$ |  |  |  |

Notes:
(1) " $X$ " can be either $V_{I L}$ or $V_{I H}$.
(2) In read operation, $\overline{P G M}$ must be set to $V_{I H}$ at all times or switched from $V_{I L}$ to $V_{I H}$ at least $2 \mu$ before $\overline{O E}$ or $\overline{C E}$ becomes $V_{I H}$.

Figure 1. Loading Conditions Test Circuit


## DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \pm 0.6$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Parameter | Symbol | Min Typ Max | Unit Test Conditions |

## Read, Output Disable, and Standby Modes

| Output voltage, high | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\text {OH2 }}$ | $\begin{gathered} V_{C C} \\ -0.7 \end{gathered}$ |  |  | V | $\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Input voltage, high | $V_{\text {IH }}$ | 2.0 |  | $V_{C C}+0.3$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 |  | 0.8 | V |  |
| Output leakage current | Lo | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\overline{O E}}=V_{\text {H }} ; \\ & V_{O U T}=O V \text { to } \\ & V_{C C} \end{aligned}$ |
| Input leakage current | ${ }_{\text {LII }}$ | -10 |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{I N}}=0 \mathrm{~V} \text { to } \\ & V_{C C} \end{aligned}$ |
| Operating supply current | ICCA1 |  |  | 15 | mA | $\begin{aligned} & \overline{C E}=V_{I L} ; \\ & V_{I N}=V_{I H} \end{aligned}$ |
|  | $I_{\text {CCA2 }}$ |  |  | 40 | mA | $\begin{aligned} & f=8.4 \mathrm{MHz} ; \\ & \mathrm{t}_{\text {ACC }}=120 \mathrm{~ns} ; \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \hline \end{aligned}$ |
|  |  |  |  | 30 | mA | $\begin{aligned} & \mathrm{f}=6.7 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{ACC}}=150 \mathrm{~ns} ; \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$ |
|  |  |  |  | 25 | mA | $\begin{aligned} & \mathrm{f}=5 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{ACC}}=200 \mathrm{~ns} ; \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | ICCS1 |  |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$ |
|  | ICCS2 |  | 1 | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CE}}=V_{C C} \cdot V_{I N} \\ & =0 \mathrm{~V} \text { to } V_{C C} \end{aligned}$ |
| Program voltage current | Ipp |  | 1 | 100 | $\mu \mathrm{A}$ | $V_{P P}=V_{C C}$ |

## All Program Modes

$\mathrm{T}_{\mathrm{A}}=+25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=+12.5 \pm 0.3 \mathrm{~V}$

| Output voltage, <br> high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output voltage, <br> low | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$ |
| Input voltage, <br> high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, <br> low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | 0.8 | V |  |
| Input leakage <br> lurrent | $\mathrm{I}_{\mathrm{LI}}$ | -10 | 10 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or |
| Operating supply <br> current | $\mathrm{I}_{\mathrm{CC}}$ |  | 30 | mA |  |
| Program voltage <br> current | $\mathrm{IPP}_{\mathrm{IP}}$ |  | 50 | mA | $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=$ |

$\mu$ PD27C1001A

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD27C1001A-12 |  | $\mu$ PD27C1001A-15 |  | $\mu$ PD27C1001A-20 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |  |  |  |
| Address to output delay | $\mathrm{t}_{\text {ACC }}$ |  | 120 |  | 150 |  | 200 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{C E}}$ to output delay | $\mathrm{t}_{\text {CE }}$ |  | 120 |  | 150 |  | 200 | ns | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{0 E} \text { to output delay }}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  | 70 |  | 70 |  | 75 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{O E}}$ or $\overline{\mathrm{CE}}$ high to data output float delay | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 50 | 0 | 50 | 0 | 60 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |
| Address to output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |

## Notes:

(1) See figure 1 for output load; input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; input and output timing measurement levels $=0.8 \mathrm{~V}$ and 2.0 V .

## AC Characteristics (cont)

$T_{A}=+25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=+12.5 \pm 0.3 \mathrm{~V}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions [Note 1] | Parameter | Symbol | Limits |  |  | Unit | Test Conditions (Note 1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |  |  | Min | Typ | Max |  |  |
| Page Data Latch, Page Program, Program Verify, and Program Inhibit Modes |  |  |  |  |  |  | Byte Programming Mode |  |  |  |  |  |  |
|  |  |  |  |  |  |  | Address setup | $t_{\text {AS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Address setup time | $t_{\text {AS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  | time |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $\overline{\overline{\mathrm{OE}} \text { setup time }}$ | $\mathrm{t}_{\text {OES }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Data setup time | $t_{\text {DS }}$ | 2 |  |  | $\mu \mathrm{s}$ |  | Data setup | $\mathrm{t}_{\mathrm{DS}}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Address hold time | ${ }^{\text {taH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  | time |  |  |  |  |  |  |
|  | ${ }^{\text {AHLL }}$ | 2 |  |  | $\mu \mathrm{S}$ |  | Address hold time | $\mathrm{t}_{\mathrm{AH}}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
|  | $\mathrm{t}_{\text {AHVV }}$ | 0 |  |  | $\mu \mathrm{S}$ |  | Data hold | $t_{\text {DH }}$ | 2 |  |  | $\mu \mathrm{s}$ |  |
| Data hold time | $t_{\text {DH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |  |  |  |  |  |  |  |
| Output enable to output float delay | $\mathrm{t}_{\mathrm{DF}}$ | 0 |  | 130 | ns |  | $\overline{\mathrm{OE}}$ to output float time | $t_{\text {DF }}$ | 0 |  | 130 | ns |  |
|  |  |  |  |  |  |  | $V_{\text {PP }}$ setup time | tvPS | 2 |  |  | $\mu \mathrm{S}$ |  |
| $V_{\text {Pp }}$ setup time | tvPs | 2 |  |  | $\mu \mathrm{S}$ |  | $V_{\text {CC }}$ setup time | tvcs | 2 |  |  | $\mu \mathrm{S}$ |  |
| Program pulse width | tpw | 0.095 | 0.1 | 0.105 | ms |  | Initial program pulse width | tpw | 0.095 | 0.1 | 0.105 | ms |  |
| $V_{\text {CC }}$ setup time | tvcs | 2 |  |  | $\mu \mathrm{S}$ |  | $\overline{\overline{\mathrm{CE}} \text { setup time }}$ | $\mathrm{t}_{\text {CES }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\text { OE }}$ setup time | $\mathrm{t}_{0 \text { ES }}$ | 2 |  |  | $\mu \mathrm{S}$ |  | $\overline{\overline{O E}}$ to output | ${ }^{\text {toE }}$ |  |  | 150 | ns |  |
| $\overline{\overline{O E}}$ hold time | $\mathrm{t}_{\text {OEH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  | delay |  |  |  |  |  |  |

## Notes:

(1) Input pulse levels $=0.45 \mathrm{~V}$ to 2.4 V ; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; input rise and fall times $\leq 20 \mathrm{~ns}$. See figure 1 for output load.

## Programming Operation

Begin programming by erasing all data; this sets all bits at a high logic level (1). The $\mu$ PD27C1001A is originally shipped in this condition. To enter data, program a low-level ( 0 ) TTL signal into the chosen location.
Address the first byte or page location and apply valid data at the eight output pins. Raise $\mathrm{V}_{\mathrm{CC}}$ to $+6.5 \pm 0.25 \mathrm{~V}$; then raise $\mathrm{V}_{\mathrm{PP}}$ to $+12.5 \pm 0.3 \mathrm{~V}$.

## Byte Programming

For byte programming, $\overline{\mathrm{CE}}$ should be set at 0 and $\overline{\mathrm{OE}}$ at 1 to start programming at the initial address. Apply a $0.1-\mathrm{ms}$ program puise to $\overline{\mathrm{PGM}}$ as shown in the byte programming portion of the timing waveforms. Set $\overline{\mathrm{OE}}$ to 0 to verify the eight bits prior to making a program/ no program decision. If the byte is not programmmed, apply another $0.1-\mathrm{ms}$ pulse to $\overline{\mathrm{PGM}}$, up to a maximum of 10 times, and input the next address. If the bits are not programmed in 10 tries, reject the device as a program failure.
After all addresses are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $V_{P P}$ to $+5.0 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Page Programming

For page programming, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ should be set to 1 . $\overline{O E}$ pulses low four times to latch the addressed 4-byte, one-page data. Subsequently, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ should be set to a high level and a $0.1-\mathrm{ms}$ program pulse applied to PGM as shown in the page programming portion of the timing waveforms. Verify the data prior to making a program/no program decision. If all four bytes of page data are not programmed, apply another $0.1-\mathrm{ms}$ pulse to $\overline{\text { PGM }}$, up to a maximum of 10 times, and input the next page address. If the page is not programmed in 10 tries, reject the device as a program failure.
After all addresses are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{PP}}$ to $+5.0 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Program Inhibit

Use the programming inhibit option to program multiple $\mu$ PD27C1001As connected in parallel. All like inputs except $\overline{\mathrm{PGM}}$ and $\overline{\mathrm{OE}}$ may be common. Program individual devices by applying a low-level TTL pulse to the PGM pin of the device to be programmed. Applying a high-level signal to the $\overline{\mathrm{PGM}}$ pins of the other devices prevents them from being programmed.

## Program Verification

To verify that the device is correctly programmed, normal read operation can be used with a logic level 1 applied to the $\overline{P G M}$ pin and a logic level 0 applied to the $\overline{C E}$ and $\overline{O E}$ pins of the device to be verified. A logic level 1 should be applied to the $\overline{C E}$ and $\overline{O E}$ pins of all other devices.

## Erasure

Erase data on the $\mu$ PD27C1001A by exposing it to light with a wavelength shorter than 400 nm . Since exposure to direct sunlight or room-level fluorescent light could also erase the data, mask the window to prevent unintentional erasure by ultraviolet rays. Opaque labels are supplied with every device.

Data is typically erased by ultraviolet rays with a wavelength of 254 nm . A minimum integrated dose of 15 W -sec/ $\mathrm{cm}^{2}$ (ultraviolet lighting intensity multiplied by exposure time) is required to completely erase written data.

An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu$ PD27C1001A within 2.5 cm of the lamp tubes and remove any filter on the lamp.

## Timing Waveforms

Read Cycle


## Timing Waveforms (cont)

Page Programming


Figure 2. Page Programming Flowchart


## Timing Waveforms (cont)

Byte Programming


Figure 3. Byte Programming Flowchart

$\mu$ PD27C1024
65,536 x 16-BIT

## Description

The $\mu$ PD27C1024 is a $1,048,576$-bit, ultraviolet erasable and electrically programmable ROM fabricated with an advanced CMOS process for substantial power savings. The device is organized as 64 K words by 16 bits and operates from a single +5 -volt $\pm 10 \%$ power supply. All inputs and outputs are TTL-compatible.

The $\mu$ PD27C1024 is available in a 40-pin cerdip with a quartz window.

## Features

$64 \mathrm{~K} \times 16$-bit organizationUltraviolet erasable and electrically programmableHigh-speed programmingLow power dissipation

- 50 mA max (active)
- $100 \mu \mathrm{~A}$ max (standby)TTL-compatible inputs and outputsSingle +5 -volt $\pm 10 \%$ power supplyThree-state outputsAdvanced CMOS technology40-pin cerdip packaging


## Ordering Information

| Part Number | Access Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C1024D-15 | 150 ns | 40-pin cerdip |
| $\mathrm{D}-20$ | 200 ns |  |
| $\mathrm{D}-25$ | 250 ns |  |

## Pin Configuration

## 40-Pin Cerdip



## Pin Identification

| Symboi | Function |
| :--- | :--- |
| $A_{0}-A_{15}$ | Address inputs |
| $0_{0}-0_{15}$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{0 E}}$ | Output enable |
| $\overline{\overline{P G M}}$ | Program |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $V_{P P}$ | Program voltage |
| $N C$ | No connection |

## Block Diagram



## Truth Table

| Mode | $\overline{\mathrm{CE}}$ | $\overline{\mathrm{OE}}$ | $\overline{\mathrm{PGM}}$ | $\mathrm{V}_{\mathrm{PP}}$ | $\mathrm{V}_{\mathrm{CC}}$ | Outputs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +5.0 V | +5.0 V | $\mathrm{D}_{\text {OUT }}$ |
| Output disable | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | X | +5.0 V | +5.0 V | High-Z |
| Standby | $\mathrm{V}_{\mathrm{IH}}$ | X | X | +5.0 V | +5.0 V | High-Z |
| Program | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.0 V | $\mathrm{D}_{\mathrm{IN}}$ |
| Program verify | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +12.5 V | +6.0 V | $\mathrm{D}_{\text {OUT }}$ |
| Program inhibit | $\mathrm{V}_{\mathrm{IH}}$ | X | X | +12.5 V | +6.0 V | High-Z |

## Notes:

(1) $X=V_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ |  | 4 | 6 | pF | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output capacitance | Cout |  | 8 | 12 | pF | $\mathrm{V}_{0}=0 \mathrm{~V}$ |

## Absolute Maximum Ratings

| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+80^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+125^{\circ} \mathrm{C}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{V}_{1}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{A}_{g}$ | -0.6 to +13.5 V |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| Supply voltage, $\mathrm{V}_{\mathrm{PP}}$ | -0.6 to +13.5 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## DC Characteristics

| Parameter | Symbol | Limits |  | Unit Test Conditions |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |
| Read and Standby Modes$T_{A}=0 \text { to }+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$ |  |  |  |  |
|  |  |  |  |  |  |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | $V_{\text {CC }}+0.3$ | V |
| Input voltage, low | VIL | -0.3 | 0.8 | V |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  | V $\mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $V_{C C}-0.7$ |  | $\checkmark \quad \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |
| Output voltage, low |  |  | 0.45 | $\checkmark \mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output leakage current |  |  | 10 | $\begin{aligned} \mu \mathrm{A} \quad V_{0} & =0 \text { to } V_{C C} ; \\ 0 E & =V_{I H} \end{aligned}$ |
| Input leakage current | $\mathrm{I}_{\mathrm{L}}$ |  | 10 | $\mu \mathrm{A} \mathrm{V}_{1}=0$ to $\mathrm{V}_{\text {CC }}$ |
| VPp current | Ipp | 1 | 100 | $\mu \mathrm{A} \mathrm{V}_{\mathrm{PP}}=V_{\text {CC }}$ |
| $V_{\text {CC }}$ current (active) | ICCA1 |  | 30 | $\begin{aligned} \mathrm{mA} \overline{\mathrm{CE}} & =\mathrm{V}_{\mathrm{IL}} ; \\ \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \end{aligned}$ |
|  | $I_{\text {CCA2 }}$ |  | 50 | $\begin{aligned} \hline \mathrm{mA} & =5 \mathrm{MHz} ; \\ \mathrm{I}_{\mathrm{OUT}} & =0 \mathrm{~mA} \end{aligned}$ |
| $V_{\text {CC }}$ current (standby) | ${ }^{\text {I CCS } 1}$ |  | 1 | $\mathrm{mA} \overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$ |
|  | ICCS2 | 1 | 100 | $\begin{gathered} \mu \mathrm{A} \overline{\mathrm{CE}}=V_{\mathrm{CC}} ; \\ \mathrm{V}_{\mathrm{I}}=0 \text { to } V_{\mathrm{CC}} \end{gathered}$ |
| Programming Modes$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{~V} \pm 0.25 ; \mathrm{V}_{\mathrm{PP}}=+12.5 \mathrm{~V} \pm 0.3$ |  |  |  |  |
| input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |
| Input voltage, low | VIL | -0.3 | 0.8 | V |
| Input leakage current | ${ }_{\text {L }}$ |  | 10 | $\mu \mathrm{A} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$ |
| Output voltage, high |  | 2.4 |  | $\checkmark \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low |  |  | 0.45 | $\checkmark \quad \mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| VPp current | IPp |  | 100 | $\begin{gathered} \mathrm{mA} \overline{\mathrm{CE}}=\overline{\mathrm{PGM}}= \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$ |
| $V_{\text {CC }}$ current | ICC |  | 30 | mA |

Figure 1. Loading Conditions Test Circuit


## AC Characteristics

| Parameter | Symbol | LImits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD27C1024-15 |  | $\mu$ PD27C1024-20 |  | $\mu$ PD27C1024-25 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |

## Read and Standby Modes

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Address to output delay | $t_{\text {ACC }}$ |  | 150 |  | 200 |  | 250 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\overline{C E}}$ to output delay | ${ }^{\text {t CE }}$ |  | 150 |  | 200 |  | 250 | ns | $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{O E} \text { to output delay }}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  | 75 |  | 75 |  | 100 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{O E}}$ high to output float | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | 0 | 60 | 0 | 85 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ |
| Output hold from address, |  | 0 |  | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |

or $\overline{O E}$, whichever transition
occurs first

## Programming Modes

| Address setup time | $t_{\text {AS }}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\overline{O E}}$ setup time | $\mathrm{t}_{\text {OES }}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| Data setup time | $t_{\text {DS }}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| Address hold time | $t_{\text {AH }}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{O E}}$ to output float time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 130 | 0 | 130 | 0 | 130 | ns |
| $\mathrm{V}_{\mathrm{PP}}$ setup time | tvps | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| $V_{\text {CC }}$ setup time | tves | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| Initial program pulse width | $t_{\text {tpw }}$ | 0.095 | 0.105 | 0.095 | 0.105 | 0.095 | 0.105 | ms |
| Overprogram pulse width | topw | 0.38 | 4.2 | 0.38 | 4.2 | 0.38 | 4.2 | ms |
| $\overline{\overline{\mathrm{CE}}}$ setup time | ${ }^{\text {t CES }}$ | 2 |  | 2 |  | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{O E}}$ to output delay | $\mathrm{t}_{\text {OE }}$ |  | 150 |  | 150 |  | 150 | ns |

## Notes:

(1) See figure 1 for output load. Input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V .

## Timing Waveforms

## Read Mode



## Timing Waveforms (cont)

Programming Mode


Note:

1. VCC must be applied before or simultaneously with VPP and removed after or simultaneously with VPR 2. $V_{P P}$ must not be greater than +13 V , including overshoot.

## Programming Operation

## High-Speed Programming

Begin programming by erasing all data; this places all bits in the high-level (1) state. Enter data by programming a low-level (0) TTL signal into the chosen bit location.

Address the first location and apply valid data at the 16 output pins. Raise $\mathrm{V}_{\mathrm{CC}}$ to $+6 \pm 0.25 \mathrm{~V}$; then raise $\mathrm{V}_{\mathrm{PP}}$ to $+12.5 \pm 0.3 \mathrm{~V}$. Apply a $0.1-\mathrm{ms}( \pm 5 \%)$ pulse to $\overline{\text { PGM }}$ as shown in the pertinent timing waveform. The bit is verified and the program/no-program decision is made. If the bit is not programmed, apply another 0.1-ms pulse to $\overline{P G M}$, up to a maximum of 10 times. If the bit is programmed within 10 tries, apply an additional overprogram pulse of " $x$ " ms (where " $x$ " equals 0.4 multiplied by the number of tries). If the bit is not programmed in 10 tries, apply another pulse of 4 ms . If the bit is not programmed at this stage, reject the device as a failure. If the bit is programmed, input the next address and repeat the procedure until all addresses are programmed.

## Program Inhibit

Use this option to program multiple $\mu \mathrm{PD} 27 \mathrm{C} 1024 \mathrm{~s}$ connected in parallel. All like inputs (except $\overline{\mathrm{CE}}$ or $\overline{\mathrm{PGM}}$, but including $\overline{\mathrm{OE}}$ ) may be common. Program individual devices by applying a low-level TTL pulse to
the $\overline{\mathrm{CE}}$ input of the $\mu \mathrm{PD} 27 \mathrm{C} 1024$ to be programmed. Applying a high level to the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{PGM}}$ input of the other devices prevents them from being programmed.

## Program Verification

Verification of the programmed bits to determine that the data was correctly programmed can be performed with $\overline{C E}$ and $\overline{O E}$ at low levels and $\overline{\text { PGM }}$ at a high level.

## Erasure

Erase data on the $\mu$ PD27C1024 by exposing it to light with a wavelength shorter than 400 nm . Exposure to direct sunlight or fluorescent light could also erase the data. Consequently, mask the window to prevent unintentional erasure by ultraviolet rays.

Data is typically erased by $254-\mathrm{nm}$ ultraviolet rays. A lighting level of $15 \mathrm{~W} \cdot \mathrm{sec} / \mathrm{cm}^{2}(\mathrm{~min})$ is required to completely erase written data (ultraviolet ray intensity multiplied by exposure time).
An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu \mathrm{PD} 27 \mathrm{C} 1024$ within 2.5 cm of the lamp tubes. Remove any filter on the lamp.

## Description

The $\mu$ PD27C2001 is a $2,097,152$-bit ultraviolet erasable EPROM fabricated with double-polysilicon CMOS technology for a substantial savings in both operating and standby power. The device is organized as 262,144 words by 8 bits and operates from a single +5 -volt power supply.
The $\mu$ PD27C2001 has a single-location programming feature, three-state outputs, and fully TTL-compatible inputs and outputs. It also has a program voltage ( $V_{P P}$ ) of 12.5 volts and is available in a 32 -pin cerdip with a quartz window.

## Features

$\square$ 262,144-word by 8-bit organizationUltraviolet erasable and electrically programmableHigh-speed page or byte programmingLow power dissipation
-30 mA (active)

- $100 \mu \mathrm{~A}$ (standby)TTL-compatible I/O for reading and programmingSingle +5 -volt power supplyDouble-polysilicon CMOS technology
32-pin cerdip packaging with a quartz window JEDEC-compatible pinout


## Ordering Information

| Parl Number | Access Time [max] | Package |
| :--- | :---: | :--- |
| $\mu$ PD27C2001D-15 | 150 ns |  |

Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{17}$ | Address inputs |
| $O_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{O E}}$ | Output enable |
| $\overline{\overline{\text { PGM }}}$ | Program |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $V_{P P}$ | Program voltage |

## Pin Configuration

## 32-Pin Cerdip



## Block Diagram



## Absolute Maximum Ratings

| Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{A}_{\mathrm{g}}$ | -0.6 to +13.5 V |
| Output voltage, $\mathrm{V}_{0} \mathrm{UT}$ | -0.6 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | -10 to $+80^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{I}_{\mathrm{STG}}$ | -65 to $+125^{\circ} \mathrm{C}$ |
| Program voltage, $\mathrm{V}_{\text {PP }}$ | -0.6 to +13.5 V |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Test Conditions |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ |  | 14 | pF | $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ |
| Output capacitance | $\mathrm{C}_{\text {OUT }}$ |  | 16 | pF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \pm 0.6$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Read, Output Dlsable, and Standby Modes |  |  |  |  |  |
| Output voltage, high | $\mathrm{V}_{0 \mathrm{H} 1}$ | 2.4 |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $V_{\text {cc }}-0.7$ |  | V | $\mathrm{I}_{0 \mathrm{H}}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0} \mathrm{~L}$ |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Input voltage, high | $V_{\text {IH }}$ | 2.0 | $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, low | VIL | -0.3 | 0.8 | V |  |
| Output leakage current | $\mathrm{I}_{10}$ |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{OE}}=V_{\mathrm{H}} ; \\ & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \text { to } V_{\mathrm{CC}} \end{aligned}$ |
| Input leakage current | ILI |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=0 \mathrm{~V} \\ & \text { to } V_{C C} \end{aligned}$ |
| Operating supply current | ICCA1 |  | 30 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=V_{I L} ; \\ & V_{I N}=V_{I H} \end{aligned}$ |
|  | ICCA2 |  | 30 | mA | $\begin{aligned} & \mathrm{f}=6.7 \mathrm{MHz} ; \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$ |
| Standby supply current | Iccs1 |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$ |
|  | ICCS2 | 1 | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{C C} V_{I N} \\ & =0 \mathrm{~V} \text { to } V_{C C} \\ & \hline \end{aligned}$ |
| Program voltage current | Ipp | 1 | 100 | $\mu \mathrm{A}$ | $V_{P P}=V_{C C}$ |

## DC Characteristics (cont)

$T_{A}=+25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=+12.5 \pm 0.3 \mathrm{~V}$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Parameter | Symbol | Min Typ Max | Unit Test Condilions |
| AIIProgram |  |  |  |  |

All Program Modes

| Output voltage, <br> high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output voltage, <br> low | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$ |
| Input voltage, <br> high | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, <br> low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | 0.8 | V |  |
| Input leakage <br> current | lLI |  | 10 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or |
| Operating supply <br> current | $\mathrm{I}_{\mathrm{CC}}$ |  | 30 | mA |  |
| Program voltage <br> current | $\mathrm{IPP}_{\mathrm{PP}}$ |  | 50 | mA | $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=$ |

Figure 1. Loading Conditions Test Circult


## Truth Table

| Mode | $\overline{\mathrm{CE}}$ | $\overline{\mathbf{0 E}}$ | PGM <br> (Note 2) | $\mathrm{V}_{\text {PP }}$ | $\mathrm{V}_{\mathrm{CC}}$ | Outputs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +5.0 V | +5.0 V | $\mathrm{D}_{\text {out }}$ |
| Output disable | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | X | +5.0 V | +5.0 V | High-Z |
| Standby | $\mathrm{V}_{\mathrm{IH}}$ | X | X | +5.0 V | +5.0 V | High-Z |
| Page data latch | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{\mathrm{IN}}$ |
| Page program | $\mathrm{V}_{\mathrm{HH}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | High-Z |
| Program verity | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{0 u T}$ |
| Byte program | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | $\mathrm{D}_{\mathrm{IN}}$ |
| Program inhibit | X | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | +12.5 V | +6.5 V | High-Z |
|  | X | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IH}}$ |  |  |  |

## Notes:

(1) " $X$ " can be either $V_{I L}$ or $V_{I H}$.
(2) In read operation, $\overline{P G M}$ must be set to $V_{I H}$ at all times or switched from $V_{I L}$ to $V_{I H}$ at least $2 \mu$ s before $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ becomes $\mathrm{V}_{\mathrm{IH}}$.
$\mu$ PD27C2001

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$

| Parameter | Symbol | Limits |  |  |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD27C2001-15 |  | $\mu$ PD27C2001-17 |  | $\mu \mathrm{PD27C2001-20}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read and Standby Modes |  |  |  |  |  |  |  |  |  |
| Address to output delay | $t_{\text {ACC }}$ |  | 150 |  | 170 |  | 200 | ns | $\overline{\mathrm{CE}}=\overline{0 \mathrm{E}}=\mathrm{V}_{\text {iL }}$ |
| $\overline{C E}$ to output delay | $\mathrm{t}_{\text {CE }}$ |  | 150 |  | 170 |  | 200 | ns | $\overline{O E}=V_{\text {IL }}$ |
| $\overline{\text { OE }}$ to output delay | $\mathrm{t}_{0 \mathrm{E}}$ |  | 70 |  | 70 |  | 75 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{O E}}$ or $\overline{\mathrm{CE}}$ high to data output float delay | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 55 | 0 | 55 | 0 | 60 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |
| Address to output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | 0 |  | 0 |  | ns | $\overline{\overline{C E}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |

## Notes:

(1) See figure 1 for output load; input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; input and output timing measurement levels $=0.8 \mathrm{~V}$ and 2.0 V .

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=+25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6.5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=+12.5 \pm 0.3 \mathrm{~V}$


Page Data Latch, Page Program, Program Verify, and Program Inhibit Modes

| Address setup time | $t_{\text {AS }}$ | 2 |  | $\mu \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| Data setup time | $\mathrm{t}_{\mathrm{DS}}$ | 2 |  | $\mu \mathrm{S}$ |
| Address hold time | ${ }^{\text {taH }}$ | 2 |  | $\mu \mathrm{S}$ |
|  | ${ }^{\text {t }}$ HLL | 2 |  | $\mu \mathrm{S}$ |
|  | $\mathrm{t}_{\text {AHV }}$ | 0 |  | $\mu \mathrm{S}$ |
| Data hold time | $t_{\text {DH }}$ | 2 |  | $\mu \mathrm{S}$ |
| Output enable to output float delay | ${ }^{\text {t }}$ DF | 0 | 130 | ns |
| Vpp setup time | tVPS | 2 |  | $\mu \mathrm{S}$ |
| Program pulse width | tpw | 0.095 | 0.10 .105 | ms |
| $V_{\text {CC }}$ setup time | tvcs | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\mathrm{OE}}$ setup time | toEs | 2 |  | $\mu \mathrm{S}$ |
| OE hold time | $\mathrm{t}_{\text {OEH }}$ | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\text { CE }}$ hold time | $\mathrm{t}_{\text {CEH }}$ | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{0 E}}$ pulse width during data latch | tLW | 1 |  | $\mu \mathrm{S}$ |
| $\overline{\text { PGM }}$ setup time | tPGMS | 2 |  | $\mu \mathrm{S}$ |
| $\overline{\mathrm{CE}}$ setup time | ${ }^{\text {ICES }}$ | 2 |  | $\mu \mathrm{S}$ |
| Data valid from $\overline{0 E}$ | $\mathrm{t}_{0 \mathrm{E}}$ |  | 150 | ns |


| Parameter | Symbol | Limits |  |  | Unit | Test Conditions [Note 1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Byte Programming Mode |  |  |  |  |  |  |
| Address setup time | $t_{\text {AS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{0 E} \text { setup time }}$ | $\mathrm{t}_{0 \text { ES }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Data setup time | $t_{\text {DS }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Address hold time | $\mathrm{t}_{\text {AH }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{0 E}}$ to output float time | $\mathrm{t}_{\mathrm{DF}}$ | 0 |  | 130 | ns |  |
| $V_{\text {PP s setup time }}$ | tvps | 2 |  |  | $\mu \mathrm{S}$ |  |
| $V_{\text {CC }}$ setup time | tvcs | 2 |  |  | $\mu \mathrm{S}$ |  |
| Initial program pulse width | tpw | 0.095 | 0.1 | 0.105 | ms |  |
| $\overline{\overline{C E}}$ setup time | ${ }_{\text {t CES }}$ | 2 |  |  | $\mu \mathrm{S}$ |  |
| $\overline{\overline{0 E}}$ to output delay | $\mathrm{t}_{0 \mathrm{E}}$ |  |  | 150 | ns |  |

## Notes:

(1) Input pulse levels $=0.45 \mathrm{~V}$ to 2.4 V ; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; input rise and fall times $\leq 20 \mathrm{~ns}$. See figure 1 for output load.

## Programming Operation

Begin programming by erasing all data; this sets all bits at a high logic level (1). The $\mu$ PD27C2001 is originally shipped in this condition. To enter data, program a low-level ( 0 ) TTL signal into the chosen location.

Address the first byte or page location and apply valid data at the eight output pins. Raise $\mathrm{V}_{\mathrm{Cc}}$ to $+6.5 \pm 0.25 \mathrm{~V}$; then raise $\mathrm{V}_{\mathrm{PP}}$ to $+12.5 \pm 0.3 \mathrm{~V}$.

## Byte Programming

For byte programming, $\overline{\mathrm{CE}}$ should be set at 0 and $\overline{\mathrm{OE}}$ at 1 to start programming at the initial address. Apply a 0.1 -ms program pulse to $\overline{\mathrm{PGM}}$ as shown in the byte programming portion of the timing waveforms. Set $\overline{O E}$ to 0 to verify the eight bits prior to making a program/ no program decision. If the byte is not programmmed, apply another 0.1 -ms pulse to $\overline{\mathrm{PGM}}$, up to a maximum of 10 times, and input the next address. If the bits are not programmed in 10 tries, reject the device as a program failure.
After all addresses are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{PP}}$ to $+5.0 \pm 10 \% \mathrm{~V}$ and verify all data again.

## Page Programming

For page programming, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ should be set to 1 . $\overline{O E}$ pulses low four times to latch the addressed 4-byte, one-page data. Subsequently, $\overline{C E}$ and $\overline{O E}$ should be set to a high level and a 0.1-ms program pulse applied to PGM as shown in the page programming portion of the timing waveforms. Verify the data prior to making a program/no program decision. If all four bytes of page data are not programmed, apply another 0.1-ms pulse to $\overline{\text { PGM, up }}$, to a maximum of 10 times, and input the next page address. If the page is not programmed in 10 tries, reject the device as a program failure.

After all addresses are programmed, lower both $\mathrm{V}_{\mathrm{CC}}$ and $V_{p p}$ to $+5.0 \mathrm{~V} \pm 10 \%$ and verify all data again.

## Program Inhibit

Use the programming inhibit option to program multiple $\mu$ PD27C2001s connected in parallel. All like inputs except $\overline{\mathrm{PGM}}$ and $\overline{\mathrm{OE}}$ may be common. Program individual devices by applying a low-level TTL pulse to the PGM pin of the device to be programmed. Applying a high-level signal to the PGM pins of the other devices prevents them from being programmed.

## Program Verification

To verify that the device is correctly programmed, normal read operation can be used with a logic level 1 applied to the $\overline{\text { PGM }}$ pin and a logic level 0 applied to the $\overline{C E}$ and $\overline{O E}$ pins of the device to be verified. A logic level 1 should be applied to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins of all other devices.

## Erasure

Erase data on the $\mu$ PD27C2001 by exposing it to light with a wavelength shorter than 400 nm . Since exposure to direct sunlight or room-level fluorescent light could also erase the data, mask the window to prevent unintentional erasure by ultraviolet rays. Opaque labels are supplied with every device.

Data is typically erased by ultraviolet rays with a wavelength of 254 nm . A minimum integrated dose of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ (ultraviolet lighting intensity multiplied by exposure time) is required to completely erase written data.

An ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes to complete erasure. Place the $\mu$ PD27C2001 within 2.5 cm of the lamp tubes and remove any filter on the lamp.

## Timing Waveforms

## Read Cycle



## Timing Waveforms (cont)

## Page Programming



Figure 2. Page Programming Flowchart


## Timing Waveforms (cont)

## Byte Programming



Flgure 3. Byte Programming Flowchart


## PRELIMINARY INFORMATION

## Description

The $\mu$ PD28C04 is a 4,096-bit ( $512 \times 8$-bit), electrically erasable and programmable read-only memory (EEPROM). The device is fabricated with an advanced CMOS process for high performance and low power consumption.
Operating from a single +5 -volt power supply, the $\mu \mathrm{PD} 28 \mathrm{C} 04$ provides a DATA polling function to indicate the precise end of write cycles. Additional functions include chip erase, auto erase and programming.

The $\mu$ PD28C04 is available in standard 24 -pin plastic DIP or miniflat packaging.

## Features

Fast access times: 200 ns and 250 ns maximumSingle +5 -volt power supplyChip erase featureAuto erase and programming: 10 ms maxDATA polling verificationLow power dissipation

- $17 \mathrm{~mA} \max$ (active)
$-100 \mu \mathrm{~A}$ max (standby)Endurance: 100,000 erase/write cycles per byteTTL-compatible inputs and outputsThree-state outputsAdvanced CMOS technology24 -pin plastic DIP or miniflat packaging


## Ordering Information

| Part Number | Access Time (max) | Package |
| :---: | :---: | :---: |
| $\mu \mathrm{PD28C04C-20}$ | 200 ns | 24-pin plastic DIP |
| C-25 | 250 ns |  |
| $\mu \mathrm{PD28C04G-20}$ | 200 ns | 24-pin plastic miniflat |
| G-25 | 250 ns |  |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ Max | Unit | Test Conditions |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{I}}$ |  | 7 | 12 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |  |  |  |  |
| Output capacitance | $\mathrm{C}_{0}$ |  | 10 | pF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |  |  |  |  |  |

## Pin Configuration

## 24-Pin Plastic DIP or Miniflat



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{8}$ | Address inputs |
| $\overline{I / O_{0}-1 / 0_{7}}$ | Data inputs/outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{O E}}$ | Output enable |
| $\overline{\overline{W E}}$ | Write enable |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |
| $N C$ | No connection |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{V}_{11}$ | -0.6 to +7.0 V |
| Input voltage, $\mathrm{V}_{13}(\overline{\mathrm{OE})}$ | -0.6 to +16.5 V |
| Output voltage, $\mathrm{V}_{0}$ | -0.6 to +7.0 V |
| Operating temperature, $\mathrm{T}_{\text {OPT }}$ | -40 to $+85^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Block Diagram



## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\text {CC }}-0.7$ |  | V | $\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.45 | V | $\mathrm{I}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output leakage current | LLO |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \end{aligned}$ |
| Input leakage current | ILI |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathbb{I N}}=0 \text { to } \\ & V_{C C} \end{aligned}$ |
| $V_{\text {CC }}$ current (active) | ICCA1 |  | 4.1 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=0.1 \mathrm{~V} ; \overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
|  | ICCA2 |  | 17 | mA | $\begin{aligned} & \mathrm{f}=5 \mathrm{MHz} ; \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$ |
| VCC current (standby) | $\mathrm{ICCS}^{\text {c }}$ |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$ |
|  | ICCs2 |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CE}}=V_{\mathrm{CC}} ; \\ & V_{\mathrm{IN}}=0 \text { to } V_{\mathrm{CC}} \end{aligned}$ |

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}-40$ to $+85^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 |  | 0.7 | V |

## AC Characteristics

| Parameter | Symbol | Limits |  |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{\mu \text { PD28C04-20 } \mu \text { PD28C04-25 }}$ |  |  |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| Read Mode |  |  |  |  |  |  |  |
| Address to output delay | $t_{\text {ACC }}$ |  | 200 |  | 250 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ |
| $\overline{\overline{\mathrm{CE}}}$ to output delay |  |  | 200 |  | 250 | ns | $\overline{0 E}=V_{\text {IL }}$ |
| $\overline{\overline{0 E}}$ to output delay |  | 10 | 80 | 10 | 100 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| $\overline{\overline{O E} \text { or } \overline{C E}}$ high to output float | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 65 | 0 | 80 | ns | $\overline{\mathrm{CE}}$ or $\overline{\overline{O E}}=\mathrm{V}_{\mathrm{IL}}$ |
| Output hold | ${ }^{\text {toH }}$ | 0 |  | 0 |  | ns | $\begin{aligned} & \overline{\overline{C E}}=\overline{O E}=V_{I L} \\ & \text { (Note 2) } \end{aligned}$ |


| Parameter | Symbol | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |
| Write Mode |  |  |  |  |
| Write cycle time | twC | 10 |  | ms |
| Address setup time | $\mathrm{t}_{\text {AS }}$ | 10 |  | ns |
| Address hold time | $t_{\text {AH }}$ | 200 |  | ns |
| Write setup time | $\mathrm{t}_{\text {CS }}$ | 0 |  | ns |
| Write hold time | ${ }_{\text {ter }}$ | 0 |  | ns |
| $\overline{\overline{\mathrm{CE}} \text { pulse width }}$ | $\mathrm{t}_{\mathrm{CW}}$ | 150 |  | ns |
| $\overline{\overline{O E}}$ high setup time | toes | 10 |  | ns |
| $\overline{\overline{O E}}$ high hold time | $\mathrm{t}_{\text {OEH }}$ | 10 |  | ns |
| $\overline{\overline{W E}}$ pulse width | $t_{\text {WP }}$ | 150 |  | ns |
| WE high hold time | ${ }_{\text {twPH }}$ | 50 |  | ns |
| Data valid time | tov |  | 300 | ns |
| Data setup time | $\mathrm{t}_{\text {DS }}$ | 100 |  | ns |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 20 |  | ns |
| Chip Erase Mode |  |  |  |  |
| $\overline{\overline{\mathrm{CE}} \text { setup time }}$ | $\mathrm{t}_{\mathrm{CS}}$ | 500 |  | ns |
| $\overline{\overline{O E}}$ setup time | $\mathrm{t}_{\text {OES }}$ | 500 |  | ns |
| Data setup time | $t_{\text {DS }}$ | 500 |  | ns |
| Data hold time | $\mathrm{t}_{\text {DH }}$ | 100 |  | ns |
| $\overline{\overline{W E} E}$ pulse width | twp | 10 |  | ms |
| $\overline{\overline{\mathrm{CE}} \text { hold time }}$ | ${ }^{\text {t }} \mathrm{CH}$ | 5 |  | $\mu \mathrm{S}$ |
| $\overline{\overline{O E} \text { hold time }}$ | $\mathrm{t}_{\text {OEH }}$ | ${ }^{\text {t }}$ + +3 |  | $\mu \mathrm{S}$ |

## Notes:

(1) See figure 1 for the output load. Input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; timing measurement reference levels $=0.8 \mathrm{~V}$ and 2.0 V for both inputs and outputs.
(2) Output hold time is specified from address, $\overline{O E}$ or $\overline{C E}$, whichever goes invalid first.

## Truth Table

| Mode | $\overline{\mathbf{C E}}$ | $\overline{\mathbf{0 E}}$ | $\overline{\mathrm{WE}}$ | $\mathrm{I} / \mathrm{O}_{\mathbf{0}}-1 / \mathrm{O}_{7}$ | $\mathrm{I}_{\mathrm{CC}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Read | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{H}}$ | $\mathrm{D}_{\text {OUT }}$ | Active |
| Standby and <br> write inhibit | $\mathrm{V}_{\mathrm{IH}}$ | X | X | High-Z | Standby |
| Write | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{D}_{\mathrm{IN}}$ | Active |
| Chip erase | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IHH}}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{D}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ | Active |
| Write inhibit | X | $\mathrm{V}_{\mathrm{IL}}$ | X | - | - |
|  | X | X | $\mathrm{V}_{\mathrm{IH}}$ |  |  |

Notes:
(1) $X$ can be either $V_{I L}$ or $V_{I H}$.
(2) $\mathrm{V}_{1 \mathrm{HH}}=+15 \mathrm{~V} \pm 0.5$.

Figure 1. Output Load


83-004119A

## Timing Waveforms

## Read Cycle



## Notes:

[1] For the read mode, $\overline{O E}$ may be delayed up to taCC-toE after the falling edge of $\overline{C E}$ without impact on tacc.
[2] tDF is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

## Timing Waveforms (cont)

## $\overline{W E}$-Controlled Write Cycle



Notes:
[1] The address inputs are latched at the falling edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] The write operation requires both $\overline{C E}$ and $\overline{W E}$ to be at VIL. Parameters twP and tCW are defined only for the period when both CE and WE are at VIL.

## Timing Waveforms (cont)

## $\overline{C E}$-Controlled Write Cycle


$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$
High Impedance
DOUT
Notes:
[1] The address inputs are latched at the falling edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] The write operation requires both $\overline{C E}$ and $\overline{W E}$ to be at VIL. Parameters twP and ICW are defined only for the period when both $\overline{C E}$ and $\overline{W E}$ are at $\mathrm{VIL}^{2}$.

## Timing Waveforms (cont)

Chip Erase Cycle


## Device Operation

## Read Mode

Both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must be at $\mathrm{V}_{\mathrm{IL}}$ in order to read stored data. While the device is in read mode, bringing either of these inputs to $\mathrm{V}_{I H}$ will place the outputs in a state of high impedance. This two-line output control allows bus contention to be eliminated in the system application.

## Byte Write Mode

Low levels on $\overline{C E}$ and $\overline{W E}$ and a high level on $\overline{O E}$ place the $\mu$ PD28C04 in write mode. The write address inputs are latched by the falling edge of either $\overline{C E}$ or WE, whichever occurs later. The data inputs are latched by the rising edge of either $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier. Once byte write operation has begun, internal circuits assume all timing control and the byte being addressed is automatically erased and then programmed. The operation is completed within a write cycle time ( $\mathrm{t}_{\mathrm{wc}}$ ) of 10 ms .

## Chip Erase Mode

All bytes of the $\mu$ PD28C04 can be erased simultaneously by making $\overline{C E}$ and $\overline{W E}$ fall to $\mathrm{V}_{\mathrm{IL}}$ after $\overline{O E}$ has been increased to $\mathrm{V}_{1 H H}(15 \pm 0.5 \mathrm{~V}$ ). The address inputs are "don't care," but the data inputs must all be driven to $\mathrm{V}_{\mathrm{IH}}$ before the chip erase operation begins.

## $\overline{\text { DATA }}$ Polling Feature

This feature supports system software by indicating the precise end of byte write cycles. DATA polling can be used to reduce the total programming time of the $\mu \mathrm{PD} 28 \mathrm{C} 04$ to a minimum value which varies with the system environment.

While the internal automatic write operation is in progress, any attempt to read data at the last externally supplied address location will result in inverted data on pin $1 / \mathrm{O}_{7}$ (for example, if write data $=1 \mathrm{xxx} x \mathrm{xxx}$, then read data $=0 x x x \mathrm{xxxx})$. Once the write operation is complete, a read cycle will result in true data being output on $\mathrm{I} / \mathrm{O}_{7}$.

## Write Protect Functions

The $\mu$ PD28C04 provides three functions to prevent invalid write operations.

- Noise immunity: write operation is inhibited when the $\overline{W E}$ pulse width is 20 ns or less.
- Supply voltage level detection: write operation is inhibited when $\mathrm{V}_{\mathrm{CC}}$ is 2.5 V or less.
- Write protection logic: if $\overline{\mathrm{OE}}$ is held low, or $\overline{\mathrm{CE}}$ or $\overline{W E}$ is held high during power-on or power-off of the $\mathrm{V}_{\mathrm{CC}}$ supply voltage, then write operation is inhibited.


## Description

The $\mu$ PD28C64 is a 65,536 -bit ( $8192 \times 8$-bit), electrically erasable and programmable read-only memory (EEPROM). The device is fabricated with an advanced CMOS process for high performance and low power consumption.

Operating from a single +5 -volt power supply, the $\mu$ PD28C64 provides a DATA polling function to indicate the precise end of write cycles. Additional functions include chip erase, auto erase and programming, and 32-byte page write operations.
The $\mu$ PD28C64 is available in a standard 28 -pin plastic DIP.

## Features

$\square$ Single +5 -volt power supplyChip erase modeAuto erase and programming mode: 10 ms maxPage programming mode: 32-byteDATA polling verification
$\square$ Low power dissipation
-50 mA max (active)

- $100 \mu \mathrm{~A} \max$ (standby)

Endurance: 100,000 erase/write cycles per byte
Silicon signatureTTL-compatible inputs and outputsThree-state outputs
Advanced CMOS technology28-pin plastic DIP

## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| ---: | :---: | :--- |
| $\mu$ PD28C64C-20 | 200 ns |  |
| $\mathrm{C}-25$ | 250 ns |  |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.6 to +7.0 V |
| :--- | ---: |
| Input voltage | -0.6 to +7.0 V |
| Input voltage $\left(\mathrm{Ag}_{\mathrm{g}}\right)$ | -0.6 to +13.5 V |
| Input voltage $\overline{(\overline{\mathrm{E}})}$ | -0.6 to +16.5 V |
| Output voltage | -0.6 to +7.0 V |
| Operating temperature | -10 to $+85^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under Recommended Operating Conditions.

## Pin Configuration

28-Pin Plastic DIP


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{12}$ | Address inputs |
| $\overline{\mathrm{I} / 0_{0}-1 / 0_{7}}$ | Data inputs/outputs |
| $\overline{\mathrm{CE}}$ | Chip enable |
| $\overline{\mathrm{OE}}$ | Output enable |
| $\overline{\mathrm{WE}}$ | Write enable |
| GND | Ground |
| $V_{\mathrm{CC}}$ | +5 -volt power supply |
| NC | No connection |

## Block Diagram



## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | Limits |  |  |  | Test <br> Parameter |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  | Symbol | Min | Typ | Max | Unit | Conditions |

Recommended Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

|  |  | Limilt |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Supply voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input voltage, high | $\mathrm{V}_{\mathrm{H}}$ | 2.0 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 |  | 0.8 | V |

DC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit | $\begin{gathered} \text { Test } \\ \text { Condilions } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| $\begin{aligned} & \text { Output voltage, } \\ & \text { high } \end{aligned}$ | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  |  | $V$ | $\mathrm{IOH}=-400 \mu \mathrm{~A}$ |
|  | $\mathrm{V}_{\text {OH2 }}$ | $\begin{aligned} & V_{C C} \\ & -0.7 \end{aligned}$ |  |  | V | $\mathrm{IOH}^{\text {}}=-100 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0}$ |  |  | 0.45 | V | $\mathrm{l}_{0 \mathrm{~L}}=2.1 \mathrm{~mA}$ |
| Output leakage current | lo |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {out }}=0 \text { to } \\ & V_{\text {CCiC }}^{C E} \text { or or } \\ & 0 E=V_{I H} \end{aligned}$ |
| Input leakage current | LL |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1 \times}=0$ to $\mathrm{V}_{\text {CC }}$ |
| $V_{\text {CC }}$ current (active) | ${ }^{\text {ICCaI }}$ |  |  | 20 | mA | $\begin{aligned} & \overline{\overline{C E}}=V_{1 L} ; \\ & \overline{O E}=V_{1 H} \end{aligned}$ |
|  | ${ }_{\text {ICCA2 }}$ |  |  | 50 | mA | $\begin{aligned} & \mathrm{f}=5 \mathrm{MHz} ; \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$ |
| VCC current (standby) | ${ }^{\text {c Cas }}$ |  |  | 1 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{1}$ |
|  | ICCS2 |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\overline{C E}}=V_{C C} ; \\ & V_{I N}=0 \text { to } V_{C C} \end{aligned}$ |

## AC Characteristics



## Read Mode

| Address to <br> output delay | 200 | 250 | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{IL}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\overline{\mathrm{CE}}$ to output $\mathrm{t}_{\mathrm{CE}}$ | 200 | 250 | ns | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ |

delay

| $\overline{\overline{\mathrm{E}} \text { to } \text { output }}$ delay | $\mathrm{t}_{\text {OE }}$ | 10 | 75 | 10 | 100 | ns | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\overline{O E}}$ or $\overline{C E}$ high to output float | ${ }^{\text {d }}$ D | 0 | 60 | 0 | 80 | ns | $\begin{aligned} & \overline{\overline{\mathrm{CE}}}=V_{\mathrm{IL}} \text { or } \\ & \overline{0 \mathrm{E}}=V_{\mathrm{IL}} \end{aligned}$ |
| Output hold** | ${ }^{\text {tor }}$ | 0 |  | 0 |  | ns | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=$ |

*from address, $\overline{0} \bar{E}$, or $\overline{C E}$, whichever transition occurs first

| $\mu$ PD28C64-20/25 | Symbol | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Write Mode |  |  |  |  |
| Write cycle time | twc | 10 |  | ms |
| Address setup time | $t_{\text {AS }}$ | 10 |  | ns |
| Address hold time | $\mathrm{taH}_{\text {A }}$ | 200 |  | ns |
| Write setup time | $\mathrm{t}_{\mathrm{CS}}$ | 0 |  | ns |
| Write hold time | ${ }^{\text {t }} \mathrm{CH}$ | 0 |  | ns |
| $\overline{\overline{C E}}$ pulse width | ${ }^{\text {t }} \mathrm{CW}$ | 150 |  | ns |
| $\overline{\overline{0 E}}$ high setup time | toes | 10 |  | ns |
| $\overline{\overline{O E}}$ high hold time | $\mathrm{t}_{\text {OEH }}$ | 10 |  | ns |
| WE pulse width | twp | 150 |  | ns |
| WE high hold time | ${ }^{\text {twPH }}$ | 50 |  | ns |
| Data valid time | tov |  | 300 | ns |
| Data setup time | $\mathrm{t}_{\mathrm{DS}}$ | 100 |  | ns |
| Data hold time | ${ }^{\text {t }}$ D | 20 |  | ns |
| Byte load cycle time | $\mathrm{t}_{\text {BLC }}$ | 3 | 100 | $\mu \mathrm{S}$ |

## Chip Erase Mode

| $\overline{\mathrm{CE}}$ setup time | $\mathrm{t}_{\mathrm{CS}}$ | 500 | ns |
| :--- | :--- | :---: | :---: |
| $\overline{\overline{0} E}$ setup time | $\mathrm{t}_{\mathrm{OES}}$ | 500 | ns |
| Data setup time | $\mathrm{t}_{\mathrm{DS}}$ | 500 | ns |
| Data hold time | $\mathrm{t}_{\mathrm{DH}}$ | 100 | ns |
| $\overline{\overline{W E}}$ pulse width | $\mathrm{t}_{\text {WP }}$ | 10 | ms |
| $\overline{\mathrm{CE}}$ hold time | $\mathrm{t}_{\mathrm{CH}}$ | 5 | $\mu \mathrm{~s}$ |
| $\overline{\overline{0 E}}$ hold time | $\mathrm{t}_{\mathrm{OEH}}$ | $\mathrm{t}_{\mathrm{CH}}+3$ | $\mu \mathrm{~s}$ |

## Notes:

(1) See figure 1 for the output load. Input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45 \mathrm{~V}$ and 2.4 V ; timing measurement reference levels $=0.8 \mathrm{~V}$ and 2.0 V for both inputs and outputs.

## Truth Table

| Mode | $\overline{\text { CE }}$ | $\overline{\mathbf{O}}$ | $\overline{\text { WE }}$ | $1 / 00^{-1 / 07}$ | Icc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $V_{\text {IL }}$ | $V_{\text {IL }}$ | $V_{\text {IH }}$ | DOUT | Active |
| Standby and write inhibit | $\mathrm{V}_{\text {IH }}$ | X | X | High-Z | Standby |
| Write | $V_{\text {IL }}$ | $\mathrm{V}_{\mathrm{H}}$ | $\mathrm{V}_{\text {IL }}$ | DIN | Active |
| Chip erase | $V_{\text {IL }}$ | $\mathrm{V}_{\text {IHH }}$ | $V_{\text {IL }}$ | $\mathrm{D}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ | Active |
| Write inhibit | X | $\mathrm{V}_{\text {IL }}$ | X | - | - |
|  | X | X | $\mathrm{V}_{\mathrm{IH}}$ |  |  |

## Notes:

(1) $X$ can be either $V_{I L}$ or $V_{I H}$.
(2) $\mathrm{V}_{\mathrm{IHH}}=+15 \mathrm{~V}-0.5 \mathrm{~V}$.

Figure 1. Output Load

|  |  |
| :---: | :---: |

## Timing Waveforms

## Read Cycle



## Notes:

[1] For the read mode, $\overline{O E}$ may be delayed up to tacc-toE after the
falling edge of CE without impact on taCC.
[2] tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

## Timing Waveforms (cont)

$\overline{W E}$-Controlled Write Cycle


## Timing Waveforms (cont)

## $\overline{C E}$-Controlled Write Cycle



## Timing Waveforms (cont)

Page Mode Write Cycle


## Notes:

[1] The address inputs are latched at the falling edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] The write operation requires both $\overline{C E}$ and $\overline{W E}$ to be at VIL. Parameters tWP and tcw are defined only for the period when both $\overline{C E}$ and WE are at VIL.
[4] The page cannot be changed in the middle of a page mode write cycle. Address inputs $\mathbf{A}_{5}-\mathrm{A}_{12}$ must be supplied for every byte load cycle and must remain the same throughout the page mode write cycle to prevent writes to an unknown address location. Address inputs $\mathrm{A}_{0}-\mathrm{A}_{4}$ are altered for each byte load cycle and determine the individual byte to be written within the page.
[5] A maximum of 32 bytes may be loaded in a single page mode write cycle.

## Chip Erase Cycle



## Device Operation

## Read Mode

Both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must be at $\mathrm{V}_{\mathrm{IL}}$ in order to read out stored data. While the device is in the read mode, bringing either of these inputs to $\mathrm{V}_{1 H}$ will place the outputs in a state of high impedance. This two-line output control allows bus contention to be eliminated in the system application.

## Byte Write Mode

Low levels on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ and a high level on $\overline{\mathrm{OE}}$ place the $\mu$ PD28C64 in the write mode. The write address inputs are latched by the falling edge of either $\overline{C E}$ or $\overline{W E}$, whichever occurs later. The data inputs are latched by the rising edge of either $\overline{\mathrm{CE}}$ or WE , whichever occurs earlier. Once the byte write operation has begun, internal circuits assume all timing control. The byte being addressed is automatically erased and then programmed. The operation is completed within a write cycle time ( $\mathrm{t}_{\mathrm{wc}}$ ) of 10 ms .

## Page Write Mode

This mode allows the $\mu$ PD28C64 to be completely programmed in a much shorter time than by using only the byte write mode. By loading up to 32 bytes of data before the internal write operation programs all of these bytes simultaneously, the $\mu$ PD28C64 can be completely written in a maximum of 2.6 seconds.

The page address is specified by the inputs $\mathrm{A}_{5}-\mathrm{A}_{12}$; once set, this address cannot be changed during a page write cycle. Within the page, address inputs $\mathrm{A}_{0}-\mathrm{A}_{4}$ can be used sequentially or in random order to specify individual bytes.
The beginning of a page write cycle is the same as a WE-controlled byte write cycle. If the next falling edge of WE occurs within a byte load cycle time of $100 \mu \mathrm{~s}$, the internal byte load register will be loaded with another byte of input data. This cycle can be repeated; a maximum of 32 bytes of data can be loaded. At any
point in the sequence, if $\overline{W E}$ does not have a new falling edge within the byte load cycle time of $100 \mu \mathrm{~s}$, the byte load operation will terminate and automatic erasing and programming operations will begin.

## Chip Erase Mode

All bytes of the $\mu$ PD28C64 can be erased simultaneously by making $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ fall to $\mathrm{V}_{\mathrm{IL}}$ after $\overline{\mathrm{OE}}$ has been increased to $\mathrm{V}_{\mathrm{IHH}}(15 \mathrm{~V} \pm 0.5 \mathrm{~V})$. The address inputs are "don't care," but the data inputs must all be driven to $V_{I H}$ before the chip erase operation begins.

## $\overline{\text { DATA }}$ Polling Feature

This feature supports system software by indicating the precise end of byte write and page write cycles. $\overline{\text { DATA }}$ polling can be used to reduce the total programming time of the $\mu \mathrm{PD} 28 \mathrm{C} 64$ to a minimum value which varies with the system environment.
While the internal automatic write operation is in progress, any attempt to read data at the last externally supplied address location will result in inverted data on pin $\mathrm{I} / \mathrm{O}_{7}$ (for example, if write data $=1 \mathrm{xxx} \mathrm{xxxx}$, then read data $=0 x x x x x x x)$. Once the write operation is complete, a read cycle will result in true data being output on $1 / \mathrm{O}_{7}$.

## Write Protect Functions

The $\mu$ PD28C64 provides three functions to prevent invalid write operations.

- Noise immunity: write operation is inhibited when the $\overline{W E}$ pulse width is 20 ns or less.
- Supply voltage level detection: write operation is inhibited when $\mathrm{V}_{\mathrm{CC}}$ is 2.5 V or less.
- Write protection logic: if $\overline{O E}$ is held low, or $\overline{C E}$ or $\overline{W E}$ is held high during power-on or power-off of the $\mathrm{V}_{\mathrm{CC}}$ supply voltage, then write operation is inhibited.



## Description

The $\mu$ PD23C1000A is a 131,072 -word by 8 -bit static ROM fabricated with CMOS silicon-gate technology. Designed to operate from a single +5 -volt power supply, the device has three-state outputs and fully TTL-compatible inputs and outputs, and is available in 28-pin plastic DIP or miniflat packaging.

## Features

131,072-word by 8-bit organizationTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt power supplyCMOS process technologyFully static operationLow power dissipation

- 220 mW (active)
$-550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access Time [max] | Package |
| :--- | :---: | :--- |
| $\mu$ PD23C1000AC | 200 ns | 28 -pin plastic DIP |
| $\mu$ PD23C1000AG | 200 ns | 28-pin plastic <br> miniflat |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  |  | Limits |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
| Parameter | Symbol | Min Typ Max | Units | Test Conditions |  |  |  |
| Input capacitance | $\mathrm{C}_{\mathrm{l}}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |  |  |
| Output capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |  |  |

## Pin Configuration

## 28-Pin Plastic DIP or Miniflat



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{16}$ | Address inputs |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | Data outputs |
| $\overline{\mathrm{CE}}$ | Chip enable |
| GND | Ground |
| $V_{\mathrm{CC}}$ | +5 -volt power supply |

## Block Diagram



83M-004982B

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $V_{\text {IH }}$ | 2.2 |  | $\begin{gathered} v_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 |  | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{l}_{\mathrm{OL}}=+2.5 \mathrm{~mA}$ |
| Input leakage current, high | ILIH |  |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{\text {CC }}$ |
| Input leakage current, low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | $\mathrm{ILOH}^{2}$ |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { (chip deselected) } \end{aligned}$ |
| Output leakage current, low | ${ }_{\text {LOL }}$ |  |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & \text { (chip deselected) } \end{aligned}$ |
| Power supply current | ICC1 |  |  | 40 | mA | $\overline{C E}=V_{\text {IL }}$ |
|  | ICC2 |  |  | 1.5 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (standby) } \end{aligned}$ |
|  | $I_{\text {cc3 }}$ |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CE}}=V_{c c}-0.2 \mathrm{~V} \\ & \text { (standby) } \end{aligned}$ |

AC Characteristics
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Max | Unit |
| Address access time | $\mathrm{t}_{\mathrm{ACC}}$ |  | 200 | ns |
| Chip enable access time | $\mathrm{t}_{\mathrm{CE}}$ |  | 200 | ns |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | ns |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

Timing Waveform


## Description

The $\mu$ PD23C1000EA is a 131,072 -word by 8 -bit static ROM fabricated with CMOS silicon-gate technology. Designed to operate from a single +5 -volt power supply, the device has three-state outputs, fully TTLcompatible inputs and outputs, and is packaged in a 600-mil, 32-pin plastic DIP.

## Features

131,072-word by 8-bit organizationFast access time: 200 ns maximumTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt power supplyCMOS process technologyFully static operationLow power dissipation- 220 mW (active)
- $550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| :--- | :---: | :--- |
| $\mu$ PD23C1000EAC | 200 ns | 32-pin plastic DIP |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  |  | Limits |  |  |
| :--- | :--- | :---: | :---: | :--- |
| Parameter | Symbol | Min Typ Max | Units | Test Conditions |
| Input capacitance | $\mathrm{C}_{\boldsymbol{l}}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## Pin Configuration

32-Pin Plastic DIP


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{16}$ | Address inputs |
| $0_{0}-0_{7}$ | Data outputs |
| $\overline{\mathrm{CE}}$ | Chip enable |
| $\overline{\overline{0 E_{1}}}$ | Output enable 1 |
| $\overline{\overline{0 E_{2}} / O E_{2} / D C}$ | Output enable 2 (Note 1) |
| $\overline{\overline{O E}_{3} / O E_{3} / D C}$ | Output enable 3 (Note 1) |
| $\overline{\mathrm{GND}}$ | Ground |
| VCC | +5 -volt power supply |
| NC | No connection |

## Notes:

(1) This pin is user-definable as active low, active high, or "don't care" (in the cases of $\overline{\mathrm{OE}}_{2} / \mathrm{OE}_{2} / \mathrm{DC}$ and $\overrightarrow{\mathrm{OE}}_{3} / \mathrm{OE}_{3} / \mathrm{DC}$ ).

## Block Diagram



## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 | $\begin{gathered} V_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{IOH}_{\mathrm{O}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{\text {OL }}$ |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=+2.5 \mathrm{~mA}$ |
| Input leakage current, high | ILIH |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | LILL |  | -10 | $\mu \mathrm{A}$ | $V_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | L LOH |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Output leakage current, low | LoL |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Power supply current | ICC1 |  | 40 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
|  | $\mathrm{I}_{\text {CO2 }}$ |  | 1.5 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$ |
|  | ${ }_{\text {l CC3 }}$ |  | 100 | $\mu \mathrm{A}$ | $\overline{\mathrm{CE}}=\mathrm{V}_{C C}-0.2 \mathrm{~V}$ |

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Address access time | $\mathrm{t}_{\mathrm{ACC}}$ |  |  | 200 | ns |
| Chip enable access time | $\mathrm{t}_{\mathrm{CE}}$ |  | 200 | ns |  |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ |  |  | 100 | ns |
| Output hold time | $\mathrm{t}_{0 \mathrm{H}}$ | 0 |  | ns |  |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | ns |  |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Timing Waveform



## Description

The $\mu$ PD23C1001E is a 131,072 -word by 8 -bit static ROM fabricated with CMOS silicon-gate technology. Designed to operate from a single +5 -volt power supply, the device has three-state outputs and fully TTL-compatible inputs and outputs, and is packaged in a $600-\mathrm{mil}, 32$-pin plastic DIP.

## Features

$\square$ 131,072-word by 8 -bit organizationFast access time: 200 ns maximumTTL-compatible inputs and outputsThree-state outputs
Single +5 -volt power supplyCMOS process technology
Fully static operationLow power dissipation

- 220 mW (active)
$-550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access <br> Time $[$ max $]$ | Package |
| :--- | :---: | :--- |
| $\mu$ PD23C1001EC | 200 ns | 32 -pin plastic DIP |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device shouid be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$T_{A}=25^{\circ} \mathrm{C}$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min Typ Max | Units | Test Conditions |
| Input capacitance | $\mathrm{C}_{\boldsymbol{l}}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## Pin Configuration

## 32-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{16}$ | Address inputs |
| $0_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{O E}_{1} / 0 \mathrm{E}_{1} / D C$ | Output enable 1 (Note 1) |
| $\overline{0 E_{2}} / 0 \mathrm{E}_{2} / \mathrm{DC}$ | Output enable 2 (Note 1) |
| $\overline{\overline{O E}}_{3}$ | Output enable 3 |
| GND | Ground |
| $\mathrm{V}_{\text {CC }}$ | +5 -volt power supply |
| NC | No connection |

## Notes:

(1) This pin is user-definable as active low, active high, or "don't care" (in the cases of $\overline{\mathrm{OE}}_{1} / \mathrm{OE}_{1} / \mathrm{DC}$ and $\overline{\mathrm{OE}}_{2} / \mathrm{OE}_{2} / \mathrm{DC}$ ).

## Block Diagram



## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 | $\begin{gathered} V_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=+2.5 \mathrm{~mA}$ |
| Input leakage current, high | LIH |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | ILIL |  | -10 | $\mu \mathrm{A}$ | $V_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | LOH |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Output leakage current, low | ILOL |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Power supply current | ICC1 |  | 40 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
|  | ICC2 |  | 1.5 | mA | $\overline{C E}=V_{\text {IH }}$ |
|  | ICC3 |  | 100 | $\mu \mathrm{A}$ | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ |

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

| Parameter | Symbol | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Address access time | $t_{\text {ACC }}$ |  |  | 200 | ns |
| Chip enable access time | $\mathrm{t}_{\text {CE }}$ |  |  | 200 | ns |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ |  |  | 100 | ns |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 |  | 60 | ns |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Timing Waveform



## Description

The $\mu$ PD23C1010A is a $1,048,576$-bit ROM fabricated with CMOS silicon-gate technology. The device is static in operation and organized as 131,072 words by 8 bits. It has three-state outputs and fully TTL-compatible inputs and outputs. The $\mu$ PD23C1010A is available in a 28 -pin plastic DIP.

## Features

$\square 131,072$ words by 8 -bit organizationFast access timeTTL-compatible inputs and outputsThree-state outputs
Single +5 -volt power supply
CMOS technologyFully static operationLow power dissipation: 220 mW

## Ordering Information

|  | Address <br> Access Time <br> [max] | Dutput Enable <br> Access Time <br> [max] | Package |
| :--- | :---: | :---: | :--- |
| Part Number | 200 ns | 100 ns | 28-pin plastic DIP |
| $\mu$ PD23C1010AC |  |  |  |

## Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ | Max |  |  |
| Input capacitance | $\mathrm{C}_{1}$ |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## Pin Configuration

## 28-Pin Plastic DIP



## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{16}$ | Address inputs |
| $O_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{O E}}$ | Output enable |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |

## Block Diagram



## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 |  | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{0 H}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  |  | 0.4 | V | $\mathrm{I}_{0 \mathrm{~L}}=+2.5 \mathrm{~mA}$ |
| Input leakage current, high | ILIH |  |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | L OH |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { output disabled } \end{aligned}$ |
| Output leakage current, low | LoL |  |  | -10 | $\mu \mathrm{A}$ | $V_{0}=0 V_{i}$ <br> output disabled |
| Power supply current | ${ }^{\text {c CC1 }}$ |  |  | 40 | mA |  |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Max | Unit |
| Address access time | $\mathrm{t}_{\mathrm{ACC}}$ |  | 200 | ns |
| Output enable <br> access time | $\mathrm{t}_{\mathrm{OE}}$ |  | 100 | ns |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | ns |

Notes:
(1) $A C$ test conditions: input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Timing Waveform



## Description

The $\mu$ PD23C2000 is a $2,097,152$-bit ROM fabricated with CMOS silicon-gate technology. Static in operation and organized as 131,072 words by 16 bits (word mode) or 262,144 words by 8 bits (byte mode), the device has three-state outputs and fully TTL-compatible inputs and outputs. The output enable pin is mask-programmable and can be specified by selecting " 1 ", " 0 ", or "don't care" data.

The $\mu$ PD23C2000 is available in 40-pin plastic DIP or 52-pin plastic miniflat packaging.

## Features

$\square$ Programmable organization

- 131,072 words by 16 bits (word)
- 262,144 words by 8 bits (byte)
$\square$ Fast access time: 250 ns maximum
$\square$ TTL-compatible inputs and outputsThree-state outputsSingle +5 -volt power supply
$\square$ CMOS technologyFully static operationLow power dissipation
- 220 mW (active)
$-550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access <br> Time (max) | Power Consumption (max] |  | Package |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Active | Standby |  |
| $\mu \mathrm{PD} 23 \mathrm{C} 2000 \mathrm{C}$ | 250 ns | 40 mA | $100 \mu \mathrm{~A}$ | 40-pin plastic DIP |
| $\mu$ PD23C2000G | 250 ns | 40 mA | $100 \mu \mathrm{~A}$ | 52-pin plastic miniflat |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{16}$ | Address inputs |
| $\mathrm{O}_{0}-\mathrm{O}_{14}$ | Outputs |
| $\mathrm{O}_{15} / \mathrm{A}_{-1}$ | Output 15 (word)/LSB address (byte) |
| $\overline{\mathrm{CE}}$ | Chip enable |
| OE | Output enable |
| GND | Ground |
| V CC | +5 -volt power supply |
| NC | No connection |

## Pin Configurations

## 40-Pin Plastic DIP



## 52-Pin Plastic Miniflat

|  <br>  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| NC 5 | $1 \bigcirc 39$ | - nc |
| NC |  | A14 |
| $A_{2}$ | 3 37 | $\square^{\text {A }} 15$ |
| $A_{1}$ | 4 - 36 | $\square \mathrm{NC}$ |
| $A_{0}$ |  | $\mathrm{P}^{\text {A }} 16$ |
| $\overline{C E}$ | $6 \quad \mu$ PD23C2000 ${ }^{34}$ | NC |
| GND | 7 \% 33 | $\square \mathrm{GND}$ |
| GND | 8 - 32 | $\square \mathrm{GND}$ |
| OE | 9 31 | - 015/A-1 |
| 00 | 10 - 30 | $\mathrm{P}_{7}$ |
| 08 | 11 29 | - NC |
| nc ${ }^{\text {d }}$ | 1228 | $\square \mathrm{O}_{14}$ |
| $0_{1} \mathrm{H}$ |  | - NC |
|  |  |  |
| $0 \text { Oi o o o o }$ |  |  |
|  |  |  |

Block Diagram


## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{I}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

|  |  | Limits |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions |
| Input capacitance | $\mathrm{C}_{\mathrm{l}}$ |  |  | 10 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output capacitance | $\mathrm{C}_{0}$ |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | $\begin{aligned} & V_{C C} \\ & +0.3 \end{aligned}$ | V |  |
| Input voltage, low | VIL | -0.3 |  | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\text {OH }}$ | 2.4 |  |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0}$ |  |  | 0.4 | V | $\mathrm{l}_{\mathrm{OL}}=+3.2 \mathrm{~mA}$ |
| Input leakage current, high | LILH |  |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | LiL |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}=0 \mathrm{~V}$ |
| Output leakage current, high | $\mathrm{l}_{\mathrm{LOH}}$ |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { chip deselected } \end{aligned}$ |
| Output leakage current, low | LOL |  |  | -10 | $\mu \mathrm{A}$ | $v_{0}=0 \mathrm{~V}$ <br> chip deselected |
| Power supply current | ICC1 |  |  | 40 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ |
|  | ICC2 |  |  | 1.5 | mA | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (standby) } \end{aligned}$ |
|  | ICC3 |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{C E} \geq V_{C C}- \\ & 0.2 V \text { (standby) } \end{aligned}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

|  |  | Limits |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max | Unit |
| Address access time | $\mathrm{t}_{\text {ACC }}$ |  | 250 | ns |  |
| Chip enable access time | $\mathrm{t}_{\mathrm{CE}}$ |  | 250 | ns |  |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ | 10 | 110 | ns |  |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | ns |  |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 90 | ns |  |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

Timing Waveform


Notes:
[1] tDF is specified from $O E$ or $\overline{C E}$, whichever occurs first.

## Description

The $\mu$ PD23C2001 is a 262,144 -word by 8 -bit static ROM fabricated with CMOS silicon-gate technology. Designed to operate from a single +5 -volt power supply, the device has three-state outputs and fully TTL-compatible inputs and outputs. The $\mu$ PD23C2001 is packaged in a 32-pin plastic DIP.

## Features

$\square$ 262,144-word by 8-bit organization
$\square$ Fast access time: 250 ns maximum
$\square$ TTL-compatible inputs and outputs
$\square$ Three-state outputs
$\square$ Single +5 -volt power supply
$\square$ CMOS process technology
$\square$ Fully static operation
$\square$ Low power dissipation

- 220 mW (active)
$-550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access <br> Time <br> $\mu$ PD23ax | Package |
| :--- | :---: | :--- |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{\mathrm{I}}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\text {OPR }}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Limits | Units | Test Condilions |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min Typ Max |  |  |
| Input capacitance | $\mathrm{C}_{1}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## Pin Configuration

## 32-Pin Plastic DIP



B3.004564A

## Pin Identification

| Symbol | Function |
| :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{17}$ | Address inputs |
| $0_{0-07}$ | Data outputs |
| $\overline{\mathrm{CE}}_{1} / \mathrm{CE}_{1}$ | Chip enable 1 (Note 1) |
| $\overline{\mathrm{CE}}_{2} / \mathrm{CE}_{2} / \mathrm{DC}$ | Chip enable 2 (Note 1) |
| OE/OE/DC | Output enable (Note 1) |
| GND | Ground |
| $\mathrm{V}_{\text {CC }}$ | +5-volt power supply |
| NC | No connection |

Notes:
(1) This pin is user-definable as active low, active high, or "don't care" (in the cases of $\overline{\mathrm{CE}}_{2} / \mathrm{CE}_{2} / \mathrm{DC}$ and $\overline{\mathrm{OE}} / \mathrm{OE} / \mathrm{DC}$ ).

## Block Diagram



## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ | 2.2 | $\begin{gathered} V_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{IOH}^{\text {a }}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0}$ |  | 0.4 | V | $\mathrm{l}_{0 \mathrm{~L}}=+2.1 \mathrm{~mA}$ |
| Input leakage current, high | $\mathrm{ILIH}^{\text {l }}$ |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | LILL |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | $\mathrm{L}_{\mathrm{LOH}}$ |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Output leakage current, low | LOL |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Power supply current | ${ }^{\text {CCO }}$ |  | 40 | mA | Both $\overline{\mathrm{EE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ active |
|  | ICC2 |  | 1.5 | mA | Either $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ inactive ( $V_{\mathrm{IL}}, \mathrm{V}_{\mathrm{HH}}$ ) |
|  | ICC3 |  | 100 | $\mu \mathrm{A}$ | Either $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ inactive (both $\leq 0.2 \mathrm{~V}$ or $\geq V_{\text {CC }}-0.2 \mathrm{~V}$ ) |

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max |
| Unit |  |  |  |  |
| Address access time | $\mathrm{t}_{\mathrm{ACC}}$ |  | 250 | ns |
| Chip enable access time | $\mathrm{t}_{\mathrm{CE}}$ |  | 250 | ns |
| Output enable access time | $\mathrm{t}_{0 \mathrm{EE}}$ |  | 110 | ns |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 60 | ns |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Timing Waveform



## Description

The $\mu$ PD23C4000 is a 4,194,304-bit ROM fabricated with CMOS silicon-gate technology. Static in operation, the device has three-state outputs and fully TTL-compatible inputs and outputs. The output enable pin is mask-programmable and can be specified as active high, active low, or don't care.
The $\mu$ PD23C4000 can be hardware-configured as either $256 \mathrm{~K} \times 16$ bits or as $512 \mathrm{~K} \times 8$ bits by tying the WORD/BYTE pin high or low, respectively. In the word configuration, pins $\mathrm{O}_{0}-\mathrm{O}_{15}$ are active. In the byte configuration, pins $\mathrm{O}_{0}-\mathrm{O}_{7}$ are active, pins $\mathrm{O}_{8}-\mathrm{O}_{14}$ are high impedance, and pin $\mathrm{O}_{15} / \mathrm{A}_{-1}$ becomes the additional bit required to address 512 K bytes.
The $\mu$ PD23C4000 is available in a 40-pin plastic DIP and a 64-pin plastic QFP.

## Features

Programmable organization- 262,144 words by 16 bits (word)
- 524,288 words by 8 bits (byte)Fast access time: 250 ns maximumTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt power supplyCMOS technologyFully static operationLow power dissipation
40-pin plastic DIP or 64-pin plastic QFP packaging


## Ordering Information

| Part Number | Access Time [max] | Package |
| :--- | :---: | :--- |
| $\mu$ PD23C4000C | 250 ns | 40 -pin plastic DIP |
| $\mu$ PD23C4000GF | 250 ns | 64 -pin plastic QFP |

## Absolute Maximum Ratings

| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| :--- | ---: |
| Input voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\mathrm{STG}}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configurations

## 40-Pin Plastic DIP



## 64-Pin Plastic QFP



Block Diagram


## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{17}$ | Address inputs |
| $O_{0}-O_{14}$ | Outputs |
| $O_{15} / A_{-1}$ | Output 15 (word)/LSB address (byte) |
| WORD/BYTE | Word/byte selection |
| $\overline{\overline{C E}}$ | Chip enable |
| $\overline{\overline{O E}}$ | Output enable |
| $D C$ | Don't care |
| GND | Ground |
| $V_{C C}$ | +5 -volt power supply |
| NC | No connection |

## Capacitance

| $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |  |  |
|  | Limits |  |  |  |  |  |
| Parameter | Symbol | Min | Typ | Max | Unit |  |
| Test Conditions |  |  |  |  |  |  |
| nnput <br> capacitance | $\mathrm{C}_{\mathrm{l}}$ |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |
| Output <br> capacitance | $\mathrm{C}_{0}$ |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |

## DC Characteristics

| Parameter | Symbol | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Input voltage, high | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | $\begin{gathered} V_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | $V_{\text {IL }}$ | -0.3 |  | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{IOH}^{\text {O }}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V | $\mathrm{IOL}=+2.5 \mathrm{~mA}$ |
| Input leakage current, high | ${ }_{\text {LIH }}$ |  |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | LILI |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | L OH |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { chip deselected } \end{aligned}$ |
| Output leakage current, low | Lol |  |  | -10 | $\mu \mathrm{A}$ | $V_{0}=0 \mathrm{~V}$ <br> chip deselected |
| Power supply current | $\mathrm{I}_{\text {CC1 }}$ |  |  | 40 | mA | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ |
|  | ${ }_{\text {ICC2 }}$ |  |  | 1.5 | mA | $\begin{aligned} & \overline{\overline{C E}}=V_{I H} ; \\ & \text { chip deselected } \end{aligned}$ |
|  | ICC3 |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CE}}=V_{C C}-0.2 \mathrm{~V} \\ & \text { chip deselected } \end{aligned}$ |

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| Parameter | Symbol | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Address access time | $\mathrm{t}_{\text {ACC }}$ |  |  | 250 | ns |
| Chip enable access time | $\mathrm{t}_{\text {CE }}$ |  |  | 250 | ns |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ |  |  | 110 | ns |
| Output hold time | $\mathrm{t}_{\mathrm{OH}}$ | 0 |  |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 |  | 70 | ns |
| Output disable time for $0_{8}-\mathrm{O}_{15}$ referenced to WORD/BYTE | $\mathrm{t}_{\mathrm{H} D \mathrm{~F}}$ |  |  | 100 | ns |
| Output enable access time referenced to WORD/BYTE | ${ }^{\text {tw }}$ |  |  | 250 | ns |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Timing Waveforms

## Read Cycle



Notes:
[1] tDF is specified from OE or $\overline{C E}$, whichever occurs first.
[2] When WORD/BYTE is low, $\mathrm{O}_{8}-\mathrm{O}_{14}$ are high impedance. PIn $\mathrm{O}_{15} / \mathrm{A}_{-1}$ becomes an additional address input.

WORD/BYTE Selection Timing


## Description

The $\mu$ PD 23 C 4001 E is a 524,288 -word by 8 -bit static ROM fabricated with CMOS silicon-gate technology. Designed to operate from a single +5 -volt power supply, the device has three-state outputs and fully TTL-compatible inputs and outputs. The $\mu$ PD23C4001E is packaged in a $600-\mathrm{mil}, 32$-pin plastic DIP.

## Features

524,288-word by 8 -bit organizationFast access time: 250 ns maximumTTL-compatible inputs and outputsThree-state outputsSingle +5 -volt power supplyCMOS process technologyFully static operationLow power dissipation- 220 mW (active)
$-550 \mu \mathrm{~W}$ (standby)


## Ordering Information

| Part Number | Access <br> Time (max) | Package |
| :--- | :--- | :--- |
| $\mu$ PD23C4001EC | 250 ns | 32-pin plastic DIP |


| Absolute Maximum Ratings |  |
| :--- | ---: |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 V |
| Input voltage, $\mathrm{V}_{\mathrm{l}}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Output voltage, $\mathrm{V}_{0}$ | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$ | -10 to $+70^{\circ} \mathrm{C}$ |
| Storage temperature, $\mathrm{T}_{\text {STG }}$ | -65 to $+150^{\circ} \mathrm{C}$ |

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

## Pin Configuration

## 32-Pin Plastic DIP

| $\left.\overline{C E}_{2} / \mathrm{CE}_{2} / \mathrm{DC}\right]$ | 32 | $\square \mathrm{vcc}$ |
| :---: | :---: | :---: |
| $\mathrm{A}_{16} \square^{2}$ | 31 | [ $\mathrm{A}_{18}$ |
| $\mathrm{A}_{15} \square^{3}$ | 30 | $\square A_{17}$ |
| A12 -4 | 29 | $\square \mathrm{A}_{14}$ |
| $A_{7} \square^{5}$ | 28 | $\square \mathrm{A}_{13}$ |
| $\mathrm{A}_{6} \square^{6}$ | - 27 | $\square^{\text {A }}$ |
| $A_{5} \square^{7}$ | \% 26 | $\square^{\text {A }}$ 9 |
| $\mathrm{A}_{4} \mathrm{-}^{8}$ | U 25 | $\square \mathrm{A}_{11}$ |
| $\mathrm{A}_{3} \mathrm{C}^{9}$ | \% 24 | $\square \overline{O E / O E / D C}$ |
| $\mathrm{A}_{2}-10$ | O 23 | $\square \mathrm{A}_{10}$ |
| $A_{1}{ }^{11}$ | ₹ 22 | $\square \overline{C E}_{1 / C E 1 / D C}$ |
| $A_{0} 12$ | 21 | $\mathrm{P}_{7}$ |
| $\mathrm{O}_{0} \square 13$ | 20 | $\mathrm{D}_{6}$ |
| $0_{1} \square_{14}$ | 19 | $\mathrm{T}_{5}$ |
| $\mathrm{O}_{2} \square^{15}$ | 18 | $\mathrm{p}_{4}$ |
| GND 16 |  | $\mathrm{p}_{3}$ |

## Pin Identification

| Symbol | Function |
| :--- | :--- |
| $A_{0}-A_{18}$ | Address inputs |
| $O_{0}-0_{7}$ | Data outputs |
| $\overline{\overline{C E}_{1} / C E_{1} / D C}$ | Chip enable 1 (Note 1) |
| $\overline{\overline{C E}} / C E_{2} / D C$ | Chip enable 2 (Note 1) |
| $\overline{\overline{O E} / O E / D C}$ | Output enable (Note 1) |
| $\overline{G N D}$ | Ground |
| $V_{C C}$ | +5 -volt power supply |

## Notes:

(1) This pin is user-definable as active low, active high, or "don't care."

## Block Diagram



## DC Characteristics

| Parameter | Symbol | Limits |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Input voltage, high | $V_{\text {IH }}$ | 2.2 | $\begin{gathered} V_{C C} \\ +0.3 \end{gathered}$ | V |  |
| Input voltage, low | VIL | -0.3 | 0.8 | V |  |
| Output voltage, high | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | V | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output voltage, low | $\mathrm{V}_{0 \mathrm{~L}}$ |  | 0.4 | V | $10 \mathrm{~L}=+2.1 \mathrm{~mA}$ |
| Input leakage current, high | ILIH |  | 10 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input leakage current, low | ILIL |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ |
| Output leakage current, high | ${ }_{\text {LOH }}$ |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=V_{C C} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Output leakage current, low | LOL |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{0}=0 \mathrm{~V} \\ & \text { (outputs disabled) } \end{aligned}$ |
| Power supply current | $\mathrm{I}_{\mathrm{CC} 1}$ |  | 40 | mA | $\text { Both } \overline{\mathrm{CE}}_{1} \text { and } \overline{\mathrm{CE}}_{2}$ active |
|  | $\mathrm{I}_{\mathrm{CC} 2}$ |  | 1.5 | mA | Either $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ inactive; $\overline{C E}=V_{I H}$ |
|  | $I_{\text {cc3 }}$ |  | 100 | $\mu \mathrm{A}$ | Either $\overline{\mathrm{C}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ inactive (both $\leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ ) |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Symbol | Min Typ Max | Units | Test Conditions |
| Parameter | Syput capacitance | $\mathrm{C}_{\boldsymbol{l}}$ | 15 | pF |
| $\mathrm{f}=1 \mathrm{MHz}$ |  |  |  |  |
| Output capacitance | $\mathrm{C}_{0}$ | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

|  |  | Limits |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Parameter | Symbol | Min | Typ | Max |
| Unit |  |  |  |  |
| Address access time | $\mathrm{t}_{\mathrm{ACC}}$ |  | 250 | ns |
| Chip enable access time | $\mathrm{t}_{\mathrm{CE}}$ |  | 250 | ns |
| Output enable access time | $\mathrm{t}_{0 \mathrm{E}}$ |  | 110 | ns |
| Output hold time | $\mathrm{t}_{0 \mathrm{H}}$ | 0 |  | ns |
| Output disable time | $\mathrm{t}_{\mathrm{DF}}$ | 0 | 70 | ns |

## Notes:

(1) Input voltage rise and fall times $=20 \mathrm{~ns}$; input and output timing reference levels $=0.8 \mathrm{~V}$ and 2.0 V ; output load $=1 \mathrm{TTL}+100 \mathrm{pF}$.

## Truth Table

| $\overline{\mathrm{CE}}_{1}$ | $\overline{\mathrm{CE}}_{2}$ | $\overline{\mathrm{OE}}$ |
| :---: | :---: | :---: |
| L | L | L |
| H | H | H |
| X | X | X |

## Notes:

(1) $X=$ don't care

## Timing Waveform



| Device/Package Cross Reference | 10-1 |
| :---: | :---: |
| 16-Pin Plastic DIP (300 mil) | 10-5 |
| 18-Pin Packages | 10-6 |
| 20-Pin Packages | 10-8 |
| 22-Pin Packages | 10-11 |
| 24-Pin Packages | 10-12 |
| 26/20-Pin Plastic SOJ | 10-17 |
| 28-Pin Packages | 10-18 |
| 30-Pin SIMMs | 10-23 |
| 32-Pin Packages | 10-26 |
| 40-Pin Packages | 10-28 |
| 52-Pin Plastic Miniflat | 10-29 |
| 64-Pin Plastic Quad Flatpack | 10-30 |

PACKAGING INFORMATION

Device/Package Cross Reference

| Part Number | Package | Ordering Designation | Page |
| :---: | :---: | :---: | :---: |
| MC-41256A8 | 30-pin leaded SIMM \#1 | A | 10-23 |
|  | 30-pin socket-mountable SIMM \#1 | B | 10-24 |
| MC-41256A9 | 30-pin leaded SIMM \#2 | A | 10-23 |
|  | 30-pin socket-mountable SIMM \#2 | B | 10-25 |
| MC-421000A8 | 30-pin leaded SIMM \#4 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#4 | B | 10-26 |
| MC-421000A9 | 30-pin leaded SIMM \#3 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#3 | B | 10-25 |
| MC-421000B8 | 30-pin leaded SIMM \#4 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#4 | B | 10-26 |
| MC-421000B9 | 30-pin leaded SIMM \#3 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#3 | B | 10-25 |
| MC-421000C8 | 30-pin leaded SIMM \#4 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#4 | B | 10-26 |
| MC-421000C9 | 30-pin leaded SIMM \#3 | A | 10-24 |
|  | 30-pin socket-mountable SIMM \#3 | B | 10-25 |
| $\overline{\mu \text { PB100422 }}$ | 24-pin ceramic DIP (400 mil) | D | 10-14 |
|  | 24-pin ceramic flatpack | B | 10-16 |
| $\mu \mathrm{PB} 100470$ | 18-pin ceramic DIP ( 300 mil ) | D | 10-7 |
| $\mu \mathrm{PB} 100474$ | 24 -pin cerdip ( 400 mil ) | D | 10-14 |
|  | 24-pin ceramic flatpack | B | 10-16 |
|  | 24-pin ceramic LCC | K | 10-17 |
| $\overline{\mu \text { PB100474A }}$ | 24 -pin cerdip ( 400 mil ) | D | 10-14 |
|  | 24-pin ceramic flatpack | B | 10-16 |
| $\mu \mathrm{PB} 100480$ | 20-pin cerdip ( 300 mil ) | D | 10-9 |
|  | 20-pin ceramic flatpack | B | 10-10 |
| $\boldsymbol{\mu P B 1 0 0 4 8 4}$ | 28-pin cerdip ( 400 mil ) | D | 10-19 |
|  | 28-pin ceramic flatpack | B | 10-22 |
| بPB10422 | 24 -pin ceramic DIP ( 400 mil ) | D | 10-14 |
| $\mu \mathrm{PB} 10470$ | 18-pin ceramic DIP ( 300 mil ) | D | 10-7 |
| $\mu$ PB10474 | 24 -pin ceramic DIP ( 400 mil) | D | 10-14 |
| $\mu$ PB10474A | 24 -pin cerdip ( 400 mil ) | D | 10-14 |

## Device/Package Cross Reference (cont)

| Part Number | Package | Ordering Designation | Page |
| :---: | :---: | :---: | :---: |
| $\mu \mathrm{PB} 10480$ | 20-pin cerdip (300 mil) | D | 10-9 |
|  | 20-pin ceramic flatpack | B | 10-10 |
| $\boldsymbol{\mu P B 1 0 4 8 4}$ | 28 -pin cerdip ( 400 mil ) | D | 10-19 |
|  | 28-pin ceramic flatpack | B | 10-22 |
| $\overline{\mu \text { PD23C1000A }}$ | 28 -pin plastic DIP (600 mil) | C | 10-19 |
|  | 28-pin plastic miniflat \#1 | G | 10-21 |
| $\mu$ PD23C1000EA | 32-pin plastic DIP (600 mil) | C | 10-26 |
| $\mu \mathrm{PD} 23 \mathrm{C} 1001 \mathrm{E}$ | 32-pin plastic DIP ( 600 mil ) | C | 10-26 |
| $\mu$ PD23C1010A | 28-pin plastic DIP (600 mil) | C | 10-19 |
| $\mu$ PD23C2000 | 40-pin plastic DIP (600 mil) | C | 10-28 |
|  | 52-pin plastic miniflat | G | 10-29 |
| $\mu$ PD23C2001 | 32-pin plastic DIP ( 600 mil ) | C | 10-26 |
| $\mu$ PD23C4000 | 40-pin plastic DIP (600 mil) | C | 10-28 |
|  | 64-pin plastic quad flatpack | GF | 10-30 |
| $\mu \mathrm{PD23C4001E}$ | 32-pin plastic DIP (600 mil) | C | 10-26 |
| $\mu$ PD27C1000A | 32-pin cerdip ( 600 mil ) \#1 | D | 10-27 |
| $\mu$ PD27C1001A | 32-pin cerdip ( 600 mil ) \#1 | D | 10-27 |
| $\mu$ PD27C1024 | 40-pin cerdip ( 600 mil ) | D | 10-28 |
| $\mu$ PD27C2001 | 32-pin cerdip ( 600 mil ) \#2 | D | 10-27 |
| $\mu \mathrm{PD27C256A}$ | 28 -pin cerdip ( 600 mil ) | D | 10-20 |
| $\mu$ PD27C512 | 28-pin cerdip ( 600 mil ) | D | 10-20 |
| $\mu \mathrm{PD28C04}$ | 24 -pin plastic DIP ( 600 mil ) | C | 10-13 |
|  | 24-pin plastic miniflat | G | 10-15 |
| $\mu$ PD28C64 | 28-pin plastic DIP (600 mil) | C | 10-19 |
| $\mu$ PD41101 | 24-pin plastic DIP (300 mil) \#1 | C | 10-12 |
|  | 24-pin plastic miniflat | G | 10-15 |
| $\overline{\mu \text { PD41102 }}$ | 24-pin plastic DIP (300 mil) \#1 | C | 10-12 |
|  | 24-pin plastic miniflat | G | 10-15 |
| $\overline{\mu \text { PD41256 }}$ | 16-pin plastic DIP (300 mil) | C | 10-5 |
|  | 18-pin plastic leaded chip carrier | L | 10-7 |

## Device/Package Cross Reference (cont)

| Part Number | Package | Ordering Designation | Page |
| :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 41257$ | 16-pin plastic DIP (300 mil) | C | 10-5 |
|  | 18-pin plastic leaded chip carrier | L | 10-7 |
| $\mu$ PD41264 | 24-pin plastic DIP (400 mil) | C | 10-13 |
|  | 24-pin plastic ZIP | V | 10-15 |
| $\overline{\mu \text { PD41464 }}$ | 18-pin plastic DIP (300 mil) \#2 | C | 10-6 |
|  | 18-pin plastic leaded chip carrier | L | 10-7 |
|  | 20-pin plastic ZIP \#1 | V | 10-9 |
| $\mu \mathrm{PD} 421000$ | 18-pin plastic DIP (300 mil) \#1 | C | 10-6 |
|  | 26/20-pin plastic SOJ | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |
| $\mu \mathrm{PD} 421001$ | 18-pin plastic DIP (300 mil) \#1 | C | 10-6 |
|  | 26/20-pin plastic SOJ | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |
| $\overline{\mu \text { PD421002 }}$ | 18-pin plastic DIP (300 mil) \#1 | C | 10-6 |
|  | 26/20-pin plastic S0J | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |
| ${ }_{\mu \text { P042101 }}$ | 24-pin plastic DIP (300 mil) \#1 | C | 10-12 |
|  | 24-pin plastic miniflat | G | 10-15 |
| $\mu \mathrm{P} 042102$ | 24-pin plastic DIP (300 mil) \#1 | C | 10-12 |
|  | 24-pin plastic miniflat | G | 10-15 |
| $\mu$ PD42270 | 28 -pin plastic DIP (400 mil) | C | 10-18 |
| $\mu \mathrm{PD} 42273$ | 28-pin plastic SOJ | LE | 10-22 |
|  | 28-pin plastic ZIP | V | 10-20 |
| $\overline{\mu \text { PD42274 }}$ | 28 -pin plastic S0J | LE | 10-22 |
|  | 28-pin plastic ZIP | V | 10-20 |
| $\mu$ PD424256 | 20-pin plastic DIP (300 mil) \#2 | C | 10-8 |
|  | 26/20-pin plastic S0J | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |
| $\mu \mathrm{PD} 424258$ | 20-pin plastic DIP (300 mil) \#2 | C | 10-8 |
|  | 26/20-pin plastic SOJ | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |

## Device/Package Cross Reference (cont)

| Part Number | Package | Ordering Designation | Page |
| :---: | :---: | :---: | :---: |
| $\mu$ PD42505 | 24-pin plastic DIP (300 mil) \#1 | C | 10-12 |
| $\mu \mathrm{PD} 42532$ | 40-pin plastic DIP (600 mil) | C | 10-28 |
| $\mu$ PD42601 | 18-pin plastic DIP ( 300 mil ) \#1 | C | 10-6 |
|  | 26/20-pin plastic SOJ | LA | 10-17 |
|  | 20-pin plastic ZIP \#2 | V | 10-10 |
| $\mu \mathrm{PD} 4311$ | 20-pin plastic DIP (300 mil) \#1 | C | 10-8 |
| $\mu$ PD4314 | 20-pin plastic DIP (300 mil) \#1 | C | 10-8 |
| $\mu \mathrm{PD} 43254$ | 24-pin plastic DIP (300 mil) \#2 | C | 10-12 |
| $\mu$ PD43256A | 28 -pin plastic DIP (600 mil) | C | 10-19 |
|  | 28-pin plastic miniflat \#2 | GU | 10-21 |
| $\mu$ PD4361 | 22 -pin plastic DIP ( 300 mil ) | C | 10-11 |
|  | 22-pin ceramic leadless chip carrier | K | 10-11 |
| $\mu$ PD4362 | 22-pin plastic DIP ( 300 mil ) | C | 10-11 |
| $\mu$ PD4363 | 24-pin plastic DIP (300 mil) \#2 | C | 10-12 |
| $\mu$ PD4364 | 28 -pin plastic DIP ( 300 mil ) | CX | 10-18 |
|  | 28-pin plastic DIP ( 600 mil ) | C | 10-19 |
|  | 28-pin plastic miniflat \#1 | G | 10-21 |
| $\mu$ PD4464 | 28-pin plastic DIP ( 600 mil ) | C | 10-19 |
|  | 28-pin plastic miniflat \#1 | G | 10-21 |

## 16-Pin Plastic DIP (300 mII)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 20.32 max | . 800 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020{ }_{-.005}^{+.004}$ |
| F | 1.2 min | . 047 min |
| G | $3.2 \pm 0.3$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| L | 6.7 | . 264 |
| M | $0.25_{-0.05}^{+0.10}$ | $.010_{-.003}^{+.004}$ |
| N | 1.0 min | . 039 min |
| P | 0.25 | . 010 |

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " $\mathbf{K}$ " to center of leads when formed parallel.


18-Pin Plastic DIP (300 mil) \#1

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 22.86 max | . 900 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | 1.2 min | . 047 min |
| G | $3.2 \pm 0.3$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| $K$ | 7.62 [TP] | . 300 [TP] |
| L | 7.35 | . 289 |
| M | $0.25{ }_{-0.05}^{+0.10}$ | $.010 \underset{-.003}{+.004}$ |
| N | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " $K$ " to center of leads when formed parallel.


## 18-Pin Plastlc DIP (300 mil) \#2

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 22.86 max | . 900 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+. .004$ |
| F | 1.2 min | . 047 min |
| G | $3.2 \pm 0.3$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| I | 4.31 max | . 170 max |
| $J$ | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| $\underline{L}$ | 6.7 | . 264 |
| M | $0.25{ }_{-0.05}^{+0.10}$ | $.010_{-.003}^{+.004}$ |
| N | 1.0 min | . 039 min |
| P | 0.25 | . 010 |

Notes:
[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " $K$ " to center of leads when formed parallel.


## 18-Pin Ceramic DIP (300 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 25.40 max | 1.000 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | . $46 \pm .05$ | . $018 \pm .002$ |
| E | 20.32 | . 800 |
| F | 1.25 min | . 049 min |
| G | $3.5 \pm .3$ | $.138 \pm .012$ |
| H | . 51 min | . 020 min |
| 1 | 2.90 | . 114 |
| J | 4.57 max | . 180 max |
| K | 7.62 [TP] | . 300 [TP] |
| $L$ | 7.32 | . 288 |
| M | . $25 \pm .05$ | $.010_{-.003}^{+.002}$ |

Notes:
[1] Each lead centeriine is located within . 25 mm [. 010 inch] of lits true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 18-Pin Plastic Leaded Chip Carrier



## 20-PIn Plastic DIP (300 mil) \#1

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 25.40 max | 1.00 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | ${ }_{.020}^{+.004}$ |
| F | 1.10 min | . 043 min |
| G | $3.50 \pm 0.30$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 mln |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| 2 | 6.4 | . 252 |
| M | $\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$ | $.010^{+.004}$ |
| $\mathbf{N}$ | 0.90 min | . 035 min |
| P | 0.25 | . 010 |

Notes:
[1] Each lead centerine is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " $\mathbf{K}$ " to center of leads when formed paraliel.


20-PIn Plastic DIP (300 mil) \#2


## 20-Pin Cerdip (300 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 25.4 max | 1.00 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.46 \pm 0.06$ | . $018 \pm .002$ |
| F | 1.42 min | . 055 min |
| G | $3.50 \pm 0.30$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 3.95 | . 156 |
| J | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| L. | 7.32 | . 288 |
| M | $0.25 \pm 0.05$ | $.010_{-.003}^{+.002}$ |
| N | 0.89 min | . 035 min |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within $0.25 \mathrm{~mm}[.010 \mathrm{inch}]$ of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 20-Pin Plastic ZIP \#1

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 26.0 max | 1.024 max |
| B | 1.27 max | . 050 max |
| C | 1.27 [TP] | . 050 [TP] |
| D | $\mathbf{0 . 5 0} \pm 0.10$ | $.020+.004$ |
| $F$ | 3.00 min | .118 min |
| G | 0.90 min | . 035 min |
| H | 6.60 | . 260 |
| 1 | 8.26 max | . 325 max |
| J | 2.54 [TP] | . 100 [TP] |
| K | $2.80 \pm 0.20$ | . $110 \pm .008$ |
| $L$ | $0.25{ }_{-0.05}^{+0.10}$ | $.010_{-.003}^{+.004}$ |
| N | $\phi 0.12$ | ¢ . 005 |

Notes:
[1] Each lead centerline is located within 0.12 mm [. 005 inch] of its true position [TP] at maximum material condition.


## 20-Pin Plastic ZIP \#2



20-Pin Ceramic Flatpack


## 22-PIn Plastic DIP (300 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 27.94 max | 1.100 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020 \begin{gathered} +.004 \\ -.005 \end{gathered}$ |
| F | 1.2 min | . 047 min |
| G | $3.20 \pm 0.30$ | $.126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| $J$ | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| $\underline{L}$ | 7.35 | . 289 |
| M | $\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$ | $.010_{-.003}^{+.004}$ |
| N | 0.25 | . 010 |
| $\mathbf{P}$ | 0.9 min | . 035 min |

Notes:
[1] Each lead centerline is located within 0.25 mm [. 010 inch] of Its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 22-Pin Ceramic LCC



## 24-PIn Plastic DIP (300 mil) \#1

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 33.02 max | 1.300 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D. | $0.50 \pm 0.10$ | $.020 \pm .004$ |
| F | 1.2 min | . 047 min |
| $\underline{\mathbf{G}}$ | $3.50 \pm 0.3$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| $K$ | 7.62 [TP] | . 300 [TP] |
| $\underline{L}$ | 6.4 | . 252 |
| M | $0.25{ }_{-0.05}^{+0.10}$ | $.010_{-.003}^{+.004}$ |
| N | 1.0 min | . 039 min |
| P | 0.25 | . 010 |

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 24-PIn Plastic DIP (300 mil) \#2

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 30.48 max | 1.200 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | 1.1 min | . 043 min |
| G | $3.20 \pm 0.3$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| K | 7.62 [TP] | . 300 [TP] |
| L | 7.35 | . 289 |
| M | $0.25_{-0.05}^{+0.10}$ | $.010 \begin{gathered} +.004 \\ -.003 \end{gathered}$ |
| N | 0.9 min | . 035 min |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 01 inch] of Its true position [TP] at maximum material condition.
[2] Item " $K$ " to center of leads when formed parallel.


## 24-Pin Plastic DIP (400 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 30.48 max | 1.200 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020{ }_{-.005}^{+.004}$ |
| F | 1.2 min | . 047 min |
| G | $3.2 \pm 0.3$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| K | 10.16 [TP] | . 400 [TP] |
| L | 8.6 | . 339 |
| M | $.25{ }_{-0.05}^{+0.10}$ | $.010_{-.003}^{+.004}$ |
| N | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


24-PIn Plastic DIP ( 600 mll )


## 24-Pin Ceramic DIP (400 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 33.02 max | 1.30 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.46 \pm 0.05$ | . $018 \pm .002$ |
| F | 1.25 min | . 049 min |
| G | $3.50 \pm 0.30$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 2.74 | . 108 |
| J | 4.57 max | . 180 max |
| K | 10.16 [TP] | . 400 [TP] |
| L | 10.0 | . 394 |
| M | $0.25 \pm 0.05$ | $.010_{-.003}^{+.002}$ |
| N | 1.00 min | . 039 min |
| P | 0.25 | . 010 |

1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 24-Pin Cerdip ( 400 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 33.02 max | 1.300 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020{ }_{-.005}^{+.004}$ |
| F | 1.2 min | . 047 min |
| G | $3.5 \pm 0.3$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 3.80 | . 150 |
| $J$ | 5.08 max | . 200 max |
| K | 10.16 [TP] | . 400 [TP] |
| L | 9.70 | . 382 |
| M | $0.25 \pm 0.05$ | $.010_{-.003}^{+.002}$ |
| N | 0.89 min | . 035 min |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


24-Pin Plastic ZIP


## 24-Pin Plast/c Miniflat



## 24-PIn Ceramic Flatpack



## 24-Pin Ceramic LCC



26/20-Pin Plastic SOJ

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | $17.4_{-0.35}^{+0.20}$ | $.685{ }_{-.013}^{+.008}$ |
| B | $1.08 \pm 0.15$ | $.043_{-.007}^{+.006}$ |
| C | 1.27 [TP] | . 050 [TP] |
| D | $0.40 \pm 0.10$ | $.016_{-.005}^{+.004}$ |
| F | 0.60 | . 024 |
| G | 0.8 min | . 031 min |
| H | $2.4 \pm 0.2$ | $.094_{-.008}^{+.009}$ |
| 1 | $3.5 \pm 0.2$ | . $138 \pm .008$ |
| J | 7.57 | . 298 |
| K | $8.47 \pm 0.2$ | $.333_{-.008}^{+.009}$ |
| L | $6.73 \pm 0.2$ | . $265 \pm .008$ |
| M | $0.20{ }_{-0.05}^{+0.10}$ | $.008+.004$ |
| 0 | 0.85 rad | . 033 rad |
| P | 2.60 | . 102 |
| Q | 0.12 | . 005 |
| R | 0.15 | . 006 |

Note:
[1] Each lead centerline is located within $.12 \mathrm{~mm}[.005$ inch $]$ of its true position [TP] at maximum material condition.


## 28-Pin Plastic DIP (300 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 35.56 max | 1.400 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020_{-.004}^{+.005}$ |
| $F$ | 1.2 min | . 047 min |
| G | $3.2 \pm 0.3$ | $.126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| $\mathbf{K}$ | 7.62 [TP] | . 300 [TP] |
| $\underline{L}$ | 6.7 | . 264 |
| M | $0.25+0.10$ | $.010_{-.003}^{+.004}$ |
| N | 1.0 min | .039 min |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " $K$ " to center of leads when formed parallel.
formed parallel.


## 28-Pin Plastic DIP ( 400 mll)



## 28-Pin Plastic DIP ( 600 mll )



## 28-Pin Cerdip (400 mil)



## 28-PIn Cerdip ( 600 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 38.10 max | 1.50 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | 1.20 mln | . 047 min |
| G | $3.5 \pm 0.3$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| I | 3.80 | . 150 |
| J | 5.08 max | . 200 max |
| K | 15.24 [TP] | . 600 [TP] |
| $\underline{L}$ | 14.66 | . 577 |
| M | $0.25 \pm 0.05$ | $.010+.002$ |
| N | $\phi 8.89$ dia | $\phi .350$ dia |
| P | 0.25 | . 010 |
| Notes: <br> [1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition. |  |  |



2] Item " $K$ " to center of leads when formed parallel.

## 28-PIn Plastic ZIP

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 36.83 max | 1.45 max |
| B | 1.27 [TP] | . 050 [TP] |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | $3.30 \pm 0.50$ | . $130 \pm .020$ |
| G | 1.00 min | . 039 min |
| H | 8.90 max | . 350 max |
| 1 | 10.16 max | . 400 max |
| $J$ | 2.54 [TP] | . 100 [TP] |
| K | $2.80 \pm 0.20$ | $.110_{-.008}^{+.009}$ |
| L | $0.25{ }_{-0.05}^{+0.10}$ | $.010 \underset{-.003}{+.004}$ |
| N | $\phi 0.25$ | $\phi .010$ |

 within 0.25 mm [. .010 inch ] of its true position [TP] at maximum material condition.

## 28-PIn Plastic Miniflat \#1



## 28-Pin Plastic MIniflat \#2

| Item | Millimeters | Inches |
| :--- | :--- | :--- |
| A | 19.05 max | .750 max |
| B | 1.27 max | .050 max |
| C | $1.27[$ TP] | $.050[\mathrm{TP}]$ |
| D | $0.40 \pm 0.10$ | $.016_{-.005}^{+.004}$ |
| F | $0.1 \pm 0.1$ | $.004_{-.004}^{+.005}$ |
| G | 3.0 max | .118 max |
| H | 2.55 | .100 |
| I | $11.8 \pm 0.3$ | $.465_{-.013}^{+.012}$ |
| J | 8.4 | .331 |
| K | 1.7 | .067 |
| L | $0.15+0.10$ | $.006+.004$ |
| M | $0.7 \pm 0.2$ | $.028+.008$ |
| N | 0.12 | .005 |
| Notes: |  |  |

[1] Each lead centerline is located within 0.12 mm [. 005 inch] of its true position [TP] at maximum material condition.


83-0041148

## 28-PIn Plastic SOJ

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | $18.67_{+0.35}^{+0.20}$ | $.735_{-.014}^{+.008}$ |
| B | $1.08 \pm 0.15$ | $\begin{array}{r} .043+.006 \\ -.007 \end{array}$ |
| c | 1.27 [TP] | . 050 [TP] |
| D | $0.40 \pm 0.10$ | $.016 \pm+.004$ |
| F | 0.600 | . 024 |
| G | 0.800 min | . 031 min |
| H | $2.4 \pm 0.2$ | $.094_{-.008}^{+.009}$ |
| 1 | $3.5 \pm 0.2$ | . $138 \pm .008$ |
| J | 10.16 | . 400 |
| K | $11.18 \pm 0.20$ | . $440 \pm .008$ |
| $\underline{L}$ | $9.40 \pm 0.20$ | . $370 \pm .008$ |
| M | $0.20{ }_{-0.05}^{+0.10}$ | $.008+.004$ |
| N | 2.6 | . 102 |
| 0 | 0.85R | .033R |
| P | 0.12 | . 005 |
| Q | 0.15 | . 006 |

## Notes:

[1] Each lead centerline is located within 0.12 mm [. 005 inch] of its true position [TP] at maximum material condition.


## 28-PIn Ceramic Flatpack



30-Pin SIMM (Leaded) \#1


30-Pin SIMM (Leaded) \#2


## 30-PIn SIMM (Leaded) \#3



30-PIn SIMM (Leaded) \#4


## 30-PIn SIMM (Socket Mountable) \#1



## 30-PIn SIMM (Socket Mountable) \#2



## 30-PIn SIMM (Socket Mountable) \#3



## 30-PIn SIMM (Socket Mountable) \#4



## 32-Pin Plastic DIP (600 mil)

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 40.64 max | 1.6 max |
| B | 1.27 max | . 050 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | 1.1 min | . 043 min |
| G | $3.2 \pm 0.30$ | . $126 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.08 max | . 200 max |
| $\mathbf{K}$ | 15.24 [TP] | . 600 [TP] |
| L | 13.2 | . 520 |
| M | $0.25+0.10$ | $.010_{-.003}^{+.004}$ |
| N | 0.9 min | . 035 min |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


32-Pin Cerdip (600 mil) \#1


## 32-Pin Cerdip (600 mil) \#2

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 43.18 max | 1.700 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | .$_{.020}^{+.004}$ |
| $F$ | 1.2 min | . 047 min |
| G | $3.5 \pm 0.3$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| I | 3.80 | . 150 |
| J | 5.08 max | . 200 max |
| K | 15.24 [TP] | . 600 [TP] |
| L | 14.66 | . 577 |
| M | $0.25 \pm 0.05$ | $.010_{-.003}^{+.002}$ |
| $\mathbf{N}$ | 0.25 | . 010 |
| $\mathbf{X}$ | 12.50 | . 492 |
| Y | 8.50 | . 335 |
| Z | 4-R2.0 | 4-R0.079 |

[1] Each lead centerline is located within 0.25 mm [. 01 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


40-Pin Plastic DIP ( 600 ml )

| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 53.34 max | 2.100 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020+.004$ |
| F | 1.2 min | . 0477 min |
| G | $3.6 \pm 0.3$ | . $142 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 4.31 max | . 170 max |
| J | 5.72 max | . 226 max |
| K | 15.24 [TP] | . 600 [TP] |
| L | 13.2 | . 520 |
| M | $0.25{ }_{-0.05}^{+0.10}$ | $.010{ }_{-.003}^{+.004}$ |
| N | 0.25 | . 010 |

[1] Each lead centerine is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when
 formed parallel.

83-001399B

## 40-Pin Cerdip ( 600 mlI )



| Item | Millimeters | Inches |
| :---: | :---: | :---: |
| A | 53.34 max | 2.100 max |
| B | 2.54 max | . 100 max |
| C | 2.54 [TP] | . 100 [TP] |
| D | $0.50 \pm 0.10$ | $.020_{-.005}^{+.004}$ |
| $F$ | 1.2 min | . 047 min |
| G | $3.5 \pm 0.3$ | . $138 \pm .012$ |
| H | 0.51 min | . 020 min |
| 1 | 3.80 | . 150 |
| $J$ | 5.08 max | . 200 max |
| $\underline{K}$ | 15.24 [TP] | . 600 [TP] |
| $\underline{L}$ | 14.66 | . 577 |
| M | $0.25 \pm 0.05$ | $.010_{-.003}^{+.002}$ |
| N | 8.89 dia | . 350 dia |
| P | 0.25 | . 010 |

## Notes:

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item "K" to center of leads when formed parallel.


## 52-Pin Plastic Miniflat

| Hem | Millimeters | Inches |
| :--- | :--- | :--- |
| A | $21.04 \pm 0.4$ | $.827 \pm .016$ |
| B | $14 \pm 0.2$ | $.551_{-.008}^{+.009}$ |
| C | $1.0[\mathrm{TP}]$ | $.039[\mathrm{TP}]$ |
| D | $0.40 \pm 0.10$ | $.016_{-.005}^{+.004}$ |
| E | 1.0 | .039 |
| F | $3.5 \pm 0.2$ | $.138_{-.009}^{+.008}$ |
| G | $2.2 \pm 0.2$ | $.087_{-.009}^{+.008}$ |
| H | $0.15+0.10$ | $.006_{-0.05}^{+.004}$ |
| I | 0.15 | .006 |
| J | $2.6_{-0.1}^{+0.2}$ | $.002_{-0.004}^{+.009}$ |
| K | $0.1 \pm 0.1$ | $.004 \pm .004$ |

## Notes:

[1] Each lead centerline is located within 0.20 mm [. 008 inch] of its true position [TP] at maximum material condition.
[2] Flat within 0.15 mm [. 006 inch] total.


## 64-PIn Plastic Quad Flatpack



Notes:

## Notes:

Notes:

Notes:

NEC

Notes:

Notes:

NEC

Notes:

## FIELD SALES OFFICES

| NORTHEAST REGION | SOUTH CENTRAL REGION | MIDWEST REGION | NORTHWEST REGION |
| :---: | :---: | :---: | :---: |
| One Natick Executive Park | 16475 Dallas Parkway | 1500 West Shure Drive | 401 Ellis Street |
| Natick, MA 01760 | Suite 380 | Suite 250 | P.O. Box 7241 |
| TEL: 617-655-8833 | Dallas, TX 75248 | Arlington Heights, IL 60004 | Mountain View, CA 94039 |
| FAX: 508-655-1605 | TEL: 214-931-0641 | TEL: 312-577-9090 | TEL: 415-960-6000 |
| 200 Perinton Hills | EZLINK: 62901906 | TWX: 910-687-1492 | TLX: 3715792 |
| Office Park | FAX: 214-931-1182 | FAX: 312-577-2147 | FAX: 415-965-6130 or |
| Fairport, NY 14450 | Echelon Bldg. 2, | 340 E. Big Beaver Road | 415-965-6131 |
| TEL: 716-425-4590 | 9430 Research Blvd. | Suite 210 | or, prior to 1989, |
| TWX: 510-100-8949 | Suite 330 | Troy, M1 48083 | 10080 North Wolfe Rd., SW3 |
| FAX: 716-425-4594 | Austin, TX 78759 | TEL: 313-680-0506 | Suite 360 |
| 2 Jefferson St. | TEL: 512-346-9280 | TWX: 810-224-4625 | Cupertino, CA 95014 |
| Suite 103 | EZLINK: 62811181 | FAX: 313-680-1015 | TEL: 408-446-0650 |
| Poughkeepsie, NY 12601 | FAX: 512-346-9284 | Busch Corporate Center | TLX: 595497 |
| TEL: 914-452-4747 | 6625 Corners Parkway | 6480 Busch Blvd., Suite 121 | FAX: 408-446-0811 |
| TWX: 510-248-0066 | Suite 210 | Columbus, OH 43229 | Two Lincoln Center |
| FAX: 914-471-2853 | Norcross, GA 30092 | TEL: 614-436-1778 | 10220 S.W. Greenburg Road |
| Two Jericho Plaza | TEL: 404-447-4409 | TWX: 510-101-1771 | Suite 125 |
| Jericho, NY 11753 | TWX: 910-997-0450 | FAX: 614-436-1769 | Portland, OR 97223 |
| TEL: 516-932-5700 | FAX: 404-447-8228 | 1550 East 79th Street | TEL: 503-245-1600 |
| FAX: 516-932-5710 | SOUTHEAST REGION | Suite 805 | FAX: 503-245-3716 |
| Six Neshaminy Interplex | Radice Corporate Center | Bloomington, MN 55425 <br> TEL: 612-854-4443 | 5445 DTC Pkwy. |
| Suite 203 | 600 Corporate Drive | TWX. 910-997-0726 | Suite 218 |
| Trevose, PA 19047 | Suite 412 |  | Englewood, CO 80111 |
| TEL: 215-638-8989 | Ft. Lauderdale, FL 33334 | FAX: 612-854-1346 | TEL: 303-694-0041 |
| TWX: 510-224-6090 | TEL.: 305-776-0682 |  | TWX: 510-600-5666 |
| FAX: 215-638-1794 | TLX: 759839 |  | FAX: 303-694-0376 |
|  | FAX: 305-776-1715 |  | SOUTHWEST REGION |
|  | 2525 Meridian Parkway Suite 320 |  | 200 E. Sandpointe, Bldg. 8 |
|  | Durham, NC 27713 |  | Suite 460 |
|  | TEL: 919-544-4132 |  | Santa Ana, CA 92707 |
|  | FAX: 919-544-4109 |  | TEL: 714-546-0501 |
|  |  |  | TLX: 759845 FAX: 714-432-8793 |

## NEC

 NEC Electronics Inc.
## CORPORATE HEADQUARTERS

401 Ellis Street P.O. Box 7241

Mountain View, CA 94039
TEL 415-960-6000
TLX 3715792

For literature, call toll-free 8 a.m. to 4 p.m. Pacific time: 1-800-632-3531

Stock No. 600100
Document No. UIS-UP60000
-1988 NEC Electronics Inc./Printed in U.S.A.


[^0]:    SIMM is a trademark of Wang Laboratories.

[^1]:    V40 is a trademark of NEC Corporation. WD33C93 is a trademark of Western Digital.

[^2]:    Video Output "BRIGHTNESS"

    Aperture Correction Input
    Video Input
    Video \& Chroma Amplified Output
    Video \& Chroma Amplifier Input
    "CONTRAST"
    Horizontal Flyback Pulse Input
    Horizontal Blanking Input
    Horizontal Power Supply
    Synchronous Signal Separator Input
    Horizontal AFC Killer Filter
    Horizontal AFC Killer Output
    Horizontal VCO Resonator 2
    Horizontal VCO Resonator 1
    Horizontal VCO Filter
    Horizontal AFC Filter
    Horizontal Phase Adjuster
    Horizontal APC Filter
    Horizontal Predrive Output
    Hold Down Circuit Input

