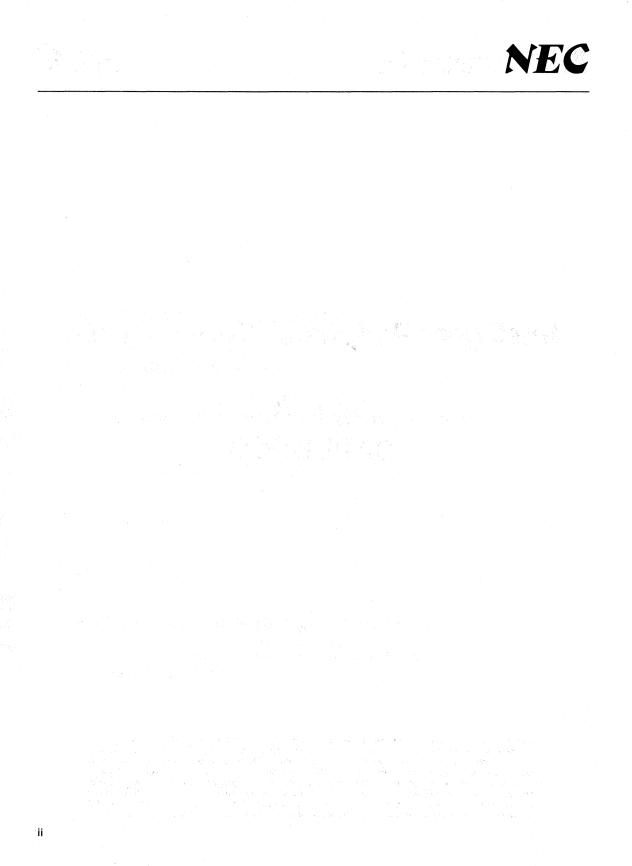


INTELLIGENT PERIPHERAL DEVICES (IPD) DATA BOOK

EXIS, INCORPORATED MANUFACTURERS' REPRESENTATIVE 2841 JUNCTION AVENUE SUITE-202 SAN JOSE CA 95134 (408) 456-4650


Intelligent Peripheral Devices [IPD]

1989-1990 DATA BOOK

June 1989 Document No. 50051 ©1989 NEC Electronics Inc./Printed in the U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

i

SELECTION GUIDES

COMMUNICATIONS CONTROLLERS

GRAPHICS CONTROLLERS

ADVANCED COMPRESSION/EXPANSION ENGINE

FLOPPY-DISK CONTROLLERS

HARD-DISK CONTROLLERS

LCD CONTROLLERS

MEMORIES FOR GRAPHICS APPLICATIONS

PACKAGE DRAWINGS

NEC

NEC

Contents

Section 1 Selection Guides

Single-Chip Microcomputers	1-3
V-Series Microprocessors and Peripherals	1-9
Intelligent Peripheral Devices (IPD)	1-13
DSP and Speech Products	1-15
V-Series Development Tools	1-17
μPD75XX Series Development Tools	1-21
μPD75XXX Series Development Tools	1-25
µPD78XX Series Development Tools	1-29
µPD78XXX Series Development Tools	1-31
DSP and Speech Development Tools	1-35
PG-1500 Programming Adapters	1-37

Section 2 Communications Controllers

μPD7201A	2-3
Multiprotocol Serial Communications Controller	
μPD72001	2-21
CMOS, Advanced Multiprotocol Serial	
Communications Controller	

Section 3 Graphics Controllers

μ PD7220A High-Performance Graphics Display Controller	3-3
μ PD72020 CMOS Graphics Display Controller	3-31
μ PD72022 Intelligent Display Processor	3-57
μ PD72120 Advanced Graphics Display Controller	3-97
μ PD72123 Advanced Graphics Display Controller II	3-153

Section 4 **Advanced Compression/Expansion Engine** μPD72185 4-3 Advanced Compression/Expansion Engine Section 5 **Floppy-Disk Controllers** μPD765A/μPD765B 5-3 Single/Double Density Floppy-Disk Controller µPD71065/66 5-21 Floppy-Disk Interface µPD72065/65B 5-43 **CMOS Floppy-Disk Controller** μPD72067 5-57 Floppy-Disk Controller μPD72068 5-79 Floppy-Disk Controller μPD72069 5-105 Floppy-Disk Controller Section 6 Hard-Disk Controllers µPD7261A/B 6-3 Hard-Disk Controllers **µPD7262** 6-39 Enhanced Small-Disk Interface Controller μPD72061 6-67 CMOS Hard-Disk Controller

μPD72111 Small Computer System Interface Controller 6-69

Contents

Section 7 LCD Controllers	
μ PD7225 CMOS, Intelligent Alphanumeric LCD Controller/Driver	7-3
μ PD7227 CMOS, Intelligent Dot-Matrix LCD Controller/Driver	7-13
μ PD7228/28A CMOS, Intelligent Dot-Matrix LCD Controller/Driver	7-21
Section 8 Memories for Graphics Applications	
μ PD41264/42273/42274 Dual-Port Graphics Buffers	8-3
μPD42101/42102/42505 CMOS Line Buffers	8-5
μ PD42270 NTSC Field Buffer	8-9

μ**PD43501** 1,024-Channel Time-Division Switch

Section 9 Package Drawings

8-11

Fackage Diawings	
Package/Device Cross-Reference	9-3
28-Pin Plastic SOP (375 mil)	9-5
30-Pin Plastic Shrink DIP (400 mil)	9-5
40-Pin Plastic DIP (600 mil)	9-6
40-Pin Ceramic DIP With Side-Brazed Leads (600 mil)	9-7
40-Pin Cerdip (600 mil)	9-8
44-Pin PLCC	9-9
48-Pin Plastic DIP (600 mil)	9-10
52-Pin Plastic Miniflat (3.5-mm leads)	9-11
52-Pin Plastic Miniflat (1.8-mm leads)	9-12
52-Pin PLCC	9-13
64-Pin Plastic Miniflat	9-14
64-Pin Plastic Shrink DIP (750 mil)	9-15
68-Pin PLCC	9-16
74-Pin Plastic Miniflat	9-17
80-Pin Plastic Miniflat (2.35-mm leads)	9-18
80-Pin Plastic Miniflat (1.8-mm leads)	9-19
84-Pin PLCC	9-20
94-Pin Plastic Miniflat	9-21
100-Pin Plastic Miniflat	9-22
132-Pin Ceramic PGA	9-23

NEC

Numerical Index

Device, µPD	Page
41264	8-3
42101	8-5
42102	8-5
42270	8-9
42273	8-3
42274	8-3
42505	8-5
43501	8-11
71065/66	5-21
72001	2-21
7201A	2-3
72020	3-31
72022	3-57
72061	6-67
72065/65B	5-43
72067	5-57
72068	5-79
72069	5-105
72111	6-69
72120	3-97
72123	3-153
72185	4-3
7220A	3-3
7225	7-3
7227	7-13
7228/28A	7-21
7261A/B	6-3
7262	6-39
765A/B	5-3

Contents

SELECTION GUIDES

1

Section 1 Selection Guides

Single-Chip Microcomputers	1-3
V-Series Microprocessors and Peripherals	1-9
Intelligent Peripheral Devices (IPD)	1-13
DSP and Speech Products	1-15
V-Series Development Tools	1-17
µPD75XX Series Development Tools	1-21
µPD75XXX Series Development Tools	1-25
μPD78XX Series Development Tools	1-29
μPD78XXX Series Development Tools	1-31
DSP and Speech Development Tools	1-35
PG-1500 Programming Adapters	1-37

Part Numbering System

μPD72001L	Typical microdevice part number
μP	NEC monolithic silicon integrated circuit
D	Device type (D = digital MOS)
72001	Device identifier (alphanumeric)
L	Package type (L = PLCC)

A part number may include an alphanumeric suffix that identifies special device characteristics; for example, μ PD72001L-11 has an 11-MHz data clock rating.

Single-Chip Microcomputers Selection Guide

Device, μPD	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	٧o	* Package	Pins
7502	LCD controller/driver	0.4	2.5 to 6.0	2K	128	23	Miniflat	64
7503	LCD controller/driver	0.4	2.5 to 6.0	4K	224	23	Miniflat	64
7507	General-purpose	0.4	2.7 to 6.0	2K	128	32	DIP	40
							SDIP	40
		· · · ·		· · · · · · · · · · · · · · · · · · ·			Miniflat	52
7508	General-purpose	0.4	2.7 to 6.0	4K	224	32	DIP SDIP	40 40
							Miniflat	40 52
75CG08	Piggyback EPROM	0.4	4.5 to 5.5	2K or 4K	224	32	Ceramic DIP	40
7514	LCD controller/driver	0.5	2.7 to 6.0	4K	256	31	Miniflat	80
7527A	FIP controller/driver	0.6	2.7 to 6.0	2K	128	35	DIP	42
	· · · · · · · · · · · · · · · · · · ·	and a start of the second			·····		SDIP	42
7528A	FIP controller/driver	0.6	2.7 to 6.0	4K	160	35	DIP SDIP	42 42
75CG28	Piggyback EPROM; FIP controller/driver	0.5	4.5 to 5.5	4K	160	35	Ceramic DIP	42
7533	A/D converter	0.5	2.7 to 6.0	4K	160	30	DIP	42
							SDIP	42
750000	Discute of CDDOM						Miniflat	44
75CG33	Piggyback EPROM; A/D converter	0.5	4.5 to 5.5	4K	160	30	Ceramic DIP	42
7537A	FIP controller/driver	0.6	2.7 to 6.0	2K	128	35	DIP	42
75001							SDIP	42
7538A	FIP controller/driver	0.6	2.7 to 6.0	4K	160	35	DIP SDIP	42 42
75CG38	Piggyback EPROM; FIP controller/driver	0.5	4.5 to 5.5	4K	160	35	Ceramic DIP	42
7554	Serial I/O; external clock	0.7	2.7 to 6.0	1K	64	16	SDIP	20
75P54	or RC oscillator Serial I/O; external clock	0.7	4.5 to 6.0	1K	64	16	SOP SDIP	20
	or RC oscillator	0.7	4.5 10 6.0	OTPROM	04	10	SOP	20
7564	Serial I/O; ceramic oscillator	0.7	2.7 to 6.0	1K	64	16	SDIP	20
							SOP	20
75P64	Serial I/O; ceramic oscillator	0.7	4.5 to 6.0	1K	64	16	SDIP SOP	20 20
7556	Comparator; external	0.7	2.7 to 6.0	OTPROM 1K	64	20	SDIP	20
7550	clock or RC oscillator	0.7	2.7 10 0.0	IK	04	20	SOP	24
75P56	Comparator; external clock or RC oscillator	0.7	4.5 to 6.0	1K OTPROM	64	20	SDIP SOP	24 24
7566	Comparator; ceramic oscillator	0.7	2.7 to 6.0	1K	64	19	SDIP SOP	24 24
75066	Comparator: caramia agaillat-	0.7	4.5 to 6.0	1K	64	19	SDIP	24
75P66	Comparator; ceramic oscillator	0.7	4.5 [0 6.0	1K OTPROM	04	19	SOP	24
75004	General-purpose	4.19	2.7 to 6.0	4K	512	34	SDIP	42
	FF						Miniflat	44

Plastic unless ceramic (or cerdip) is specified.
 * Under development; consult Microcontroller Marketing for availability.

4-Bit, Single-Chip CMOS Microcomputers (cont)

Device, μPD	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	I/O	# Package	Pins
75006	General-purpose	4.19	2.7 to 6.0	6K	512	34	SDIP Miniflat	42 44
75008	General-purpose	4.19	2.7 to 6.0	8K	512	34	SDIP Miniflat	42 44
75P008	General-purpose	4.19	4.5 to 5.5	8K OTPROM	512	34	SDIP Miniflat	42 44
75028 *	A/D converter	4.19	2.7 to 6.0	8K	512	40	SDIP Miniflat	64 64
75P028 *	A/D converter	4.19	4.5 to 6.0	8K	512	40	SDIP Miniflat	64 64
75048 *	A/D converter; 0.5K EEPROM	4.19	2.7 to 6.0	8K	512	40	SDIP Miniflat	64 64
75104	High-end with 8-bit instruction	4.19	2.7 to 6.0	4096	320	58	SDIP Miniflat	64 64
75106	High-end with 8-bit instruction	4.19	2.7 to 6.0	6016	320	58	SDIP Miniflat	64 64
75108	High-end with 8-bit instruction	4.19	2.7 to 6.0	8064	512	58	SDIP Miniflat	64 64
75P108	High-end with 8-bit instruction; on-chip OTPROM or UVEPROM	4.19	4.5 to 5.5	8064	512	58	DIP Miniflat Shrink cerdip	64 64 64
75112	High-end with 8-bit instruction	4.19	2.7 to 6.0	12,032	512	58	SDIP Miniflat	64 64
75116	High-end with 8-bit instruction	4.19	2.7 to 6.0	16,128	512	58	SDIP Miniflat	64 64
75P116	High-end with 8-bit instruction	4.19	4.5 to 5.5	16,128 OTPROM	512	58	DIP Miniflat	64 64
75206	FIP controller/driver	4.19	2.7 to 6.0	6016	369	32	SDIP Miniflat	64 64
75208	FIP controller/driver	4.19	2.7 to 6.0	8064	497	32	SDIP Miniflat	64 64
75CG208	FIP controller/driver; piggyback EPROM	4.19	4.5 to 5.5	8064	512	32	Ceramic SDIP Ceramic flatpack	64 64
75212A	FIP controller/driver	4.19	2.7 to 6.0	12,160	512	32	SDIP Miniflat	64 64
75216A	FIP controller/driver	4.19	2.7 to 6.0	16,256	512	32	SDIP Miniflat	64 64
75CG216A	FIP controller/driver; piggyback EPROM	4.19	4.5 to 5.5	16,256	512	32	Ceramic SDIP Ceramic miniflat	64 64
75P216A *	FIP controller/driver	4.19	4.5 to 5.5	16,256 OTPROM	512	32	SDIP	64
75268 *	FIP controller/driver	4.19	2.7 to 6.0	8064	512	20	SDIP Flatpack	64 64
75304	LCD controller/driver	4.19	2.7 to 6.0	4K	512	68	Miniflat	80
75306	LCD controller/driver	4.19	2.7 to 6.0	6K	512	68	Miniflat	. 80
75308	LCD controller/driver	4.19	2.7 to 6.0	8K	512	68	Miniflat	80
75P308	LCD controller/driver; on-chip OTPROM or UVEPROM	4.19	4.5 to 5.5	8K	512	68	Miniflat Ceramic LCC	80 80
75312	LCD controller/driver	4.19	2.7 to 6.0	12K	512	68	Miniflat	80

4-Bit, Single-Chip CMOS Microcomputers (cont)

Device, μPD	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	I/O	* Package	Pins
75316	LCD controller/driver	4.19	2.7 to 6.0	16K	512	68	Miniflat	80
75P316A *	LCD controller/driver; on-chip OTPROM or UVEPROM	4.19	2.7 to 6.0	16K	512	68	Miniflat Ceramic LCC	80 80
75328	LCD controller/driver; A/D converter	4.19	2.7 to 6.0	8064	512	24	Miniflat	80
75P328	LCD controller/driver; A/D converter	4.19	4.5 to 5.5	8064 OTPROM	512	24	Miniflat	80
75402	Low-end	4.19	2.7 to 6.0	1920	64	22	DIP SDIP Miniflat	28 28 44
75P402	Low-end	4.19	4.5 to 5.5	1920 OTPROM	64	22	DIP SDIP Miniflat	28 28 44
75516	High-end; A/D converter	4.19	2.7 to 6.0	16K	512	68	Miniflat	80
75P516	High-end; A/D converter	4.19	4.5 to 5.5	16K OTPROM	512	68	Miniflat LCC	80 80

8-Bit, Single-Chip NMOS/CMOS Microcomputers

Device, μPD	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	I/O	# Package	Pins
7810H	NMOS; A/D converter	15	4.5 to 5.5	External	256	32	SDIP	64
	•						QUIP	64
7811H	NMOS; A/D converter	15	4.5 to 5.5	4K	256	44	SDIP	64
	•						QUIP	64
78PG11H	NMOS; A/D converter piggyback EPROM	15	4.5 to 5.5	4K	256	44	Ceramic QUIP	64
78C10/78C10A	CMOS; A/D converter	15	4.5 to 5.5	External	256	32	QUIP	64
							SDIP	64
an a							Miniflat	64
		in the second second second					PLCC	68
78C11/78C11A	CMOS; A/D converter	15	4.5 to 5.5	4K	256	44	QUIP	64
		· · ·					SDIP	64
							Miniflat	64
							PLCC	68
78C12A	CMOS; A/D converter	15	4.5 to 5.5	8K	256	44	QUIP	64
							SDIP	64
							Miniflat	64
							PLCC	68
78C14	CMOS; A/D converter	15	4.5 to 5.5	16K	256	44	QUIP	64
							SDIP	64
							Miniflat	64
							PLCC	68
78CP14	CMOS; A/D converter	15	4.5 to 5.5	16K	256	44	QUIP	64
				OTPROM			SDIP	64
							Miniflat	64
						·	PLCC	68
				16K	256	44	Ceramic QUIP	64
	· · · · ·			UVEPROM			Shrink cerdip	64

8-Bit, Single-Chip NMOS/CMOS Microcomputers (cont)

Device, μPD	Features	· .	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	I/O	# Package	Pins
78213	CMOS; A/D converter;		12	4.5 to 5.5	External	512	54	SDIP	64
	advanced peripherals							QUIP	64
			···**					Miniflat	74
								PLCC	68
78214	CMOS; A/D converter;		12	4.5 to 5.5	16K	512	54	SDIP	64
	advanced peripherals							QUIP	64
								Miniflat	74
								PLCC	68
78P214	CMOS; A/D converter;		12	4.5 to 5.5	16K	512	54	SDIP	64
	advanced peripherals				OTPROM			QUIP	64
								Miniflat	74
								PLCC	68
			12 (C) 1		16K	512	54	Shrink cerdip	64
					UVEPROM			Ceramic QUIP	64
78220	CMOS; analog comparator;		12	4.5 to 5.5	External	640	71	PLCC	84
	large I/O							Miniflat	94
78224	CMOS; analog comparator;		12	4.5 to 5.5	16K	640	71	PLCC	84
	large I/O							Miniflat	94
78P224	CMOS; analog comparator;		12	4.5 to 5.5	16K	640	71	PLCC	84
	large I/O				OTPROM			Miniflat	94
78233 *	CMOS; real-time outputs;		12	4.5 to 5.5	External	640	54	Miniflat	80
	A/D and D/A converters				1.50			Miniflat	94
								PLCC	84
78234 *	CMOS; real-time outputs;		12	4.5 to 5.5	16K	640	54	Miniflat	80
	A/D and D/A converters							Miniflat	94
								PLCC	84
78P234 *	CMOS; real-time outputs;		12	4.5 to 5.5	16K	640	54	Miniflat	80
	A/D and D/A converters				OTPROM	~		Miniflat	94
								PLCC	84

16-Bit, Single-Chip CMOS Microcomputers

Device, μPD	Features		Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	I/O	# Package	Pins
78310A	Real-time motor control	1.5	12	4.5 to 5.5	External	256	48	SDIP	64
								QUIP	64
								Miniflat	64
								PLCC	68
78312A	Real-time motor control		12	4.5 to 5.5	8K	256	48	SDIP	64
								QUIP	64
								Miniflat	64
								PLCC	68
78P312A	Real-time motor control	and a second second	12	4.5 to 5.5	8K	256	48	Shrink cerdip	64
					UVEPROM			Ceramic QUIP	64
					8K	256	48	SDIP	64
					OTPROM			QUIP	64
								PLCC	68
78320	High-end; advanced analog		16	4.5 to 5.5	External	640	55	Miniflat	64
	and digital paripharala	e entre						PLCC	68
78322	High-end; advanced analog		16	4.5 to 5.5	16K	640	55	Miniflat	64
	and digital peripherals	an an a'	-	s a la seconda de la second		a tan ing a	e de la care	PLCC	68

16-Bit, Single-Chip CMOS Microcomputers (cont)

Device, μPD	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	٧o	* Package	Pins
78P322	High-end; advanced analog and digital peripherals	16	4.5 to 5.5	16K OTPROM	640	55	PLCC	68
71P301	Port and memory extender used with 7832X microcomputer family; UVEPROM or OTPROM	-	4.5 to 5.5	16K	1K	16	PLCC Miniflat Ceramic QUIP	44 64 64

8-Bit, Single-Chip Microcomputers

Device, μPD	Features	Clock (MHz)	Supply Voitage (V)	ROM (X8)	RAM (X8)	٧o	# Package	Pins
8035HL	HMOS	6	4.5 to 5.5	External	64	27	DIP	40
8039HL	HMOS	11	4.5 to 5.5	External	128	27	DIP	40
80C39H	CMOS	12	2.5 to 6.0	External	128	27	DIP Miniflat	40 44
80C40H	CMOS	12	2.5 to 6.0	External	256	27	DIP	40
8041AH	NMOS; universal PPI	11	4.5 to 5.5	1K	64	18	DIP	40
80C42	CMOS; universal PPI	12	4.5 to 5.5	2K	128	18	DIP Miniflat	40 44
8048H	HMOS	6	4.5 to 5.5	1K	64	27	DIP	40
8049H	HMOS	11	4.5 to 5.5	2К	128	27	DIP	40
80C49H	CMOS	12	2.5 to 6.0	2K	128	27	DIP	40
49H	CMOS	12	2.5 to 6.0	2K	128	27	Miniflat	44
80C50H	CMOS	12	2.5 to 6.0	4K	256	27	DIP	40
50H	CMOS	12	2.5 to 6.0	4K	256	27	Miniflat	44
8741A	NMOS; universal PPI; UVEPROM	6	4.5 to 5.5	1K	64	18	Cerdip	40
8748H	NMOS; OTPROM or UVEPROM	11	4.5 to 5.5	1K	64	27	DIP Cerdip	40 40
8749H	HMOS; OTPROM or UVEPROM	11	4.5 to 5.5	2К	128	27	DIP Cerdip	40 40

Single-Chip

V-Series Microprocessors and Peripherals Selection Guide

CMOS Microprocessors

Device, μPD	Features	Data Bits	Clock (MHz)	* Package	Pins
70008A	*Z80 microprocessor	8	8	DIP	40
		-	-	Miniflat	44
				PLCC	44
70108	8088 compatible; enhanced	8/16	8 or 10	DIP	40
(V20)				Ceramic DIP	40
				Miniflat	52
				PLCC	44
70116	8086 compatible; enhanced	16	8 or 10	DIP	40
(V30)				Ceramic DIP	40
				Miniflat	52
	·			PLCC	44
70208	MS-DOS, V20 compatible CPU with peripherals	8/16	8 or 10	Ceramic PGA	68
(V40)				PLCC	68
				Miniflat	80
70216	MS-DOS, V30 compatible CPU with peripherals	16/16	8 or 10	PGA	68
(V50)				PLCC	68
	•	· · · · · · · · · · · · · · · · · · ·		Miniflat	80
70616	32-bit; high-speed	16/32	16	PGA	68
(V60)				·····	
70632	32-bit; high-speed	32/32	20/25	PGA	132
(V70)	the second s				
70832	32-bit; high-speed	32/32	25	Ceramic PGA	208
(V80)					
70136	Hardwired, enhanced V30	. 16	12 or 16	PGA	68
(V33)				PLCC	68
70236	V33 core-based; high-integration; DMA, serial I/O,	16	-	Ceramic PGA	132
(V53)	interrupt controller, etc.	······································			
70320	MS-DOS compatible; high-integration; DMA, serial I/O,	8/16	5 or 8	PLCC	84
(V25)	interrupt controller, etc.			Miniflat	94
70330	MS-DOS compatible; high-integration; DMA, serial I/O,	16	8	PLCC	84
(V35)	interrupt controller, etc.			Miniflat	94
70325	MS-DOS compatible; high-integration; high-speed DMA	8/16	8 or 10	PLCC	84
(V25+)		·		Miniflat	94
70335	MS-DOS compatible; high-integration; high-speed DMA	16	8 or 10	PLCC	84
(V35+)				Miniflat	94
70327	MS-DOS compatible; high-integration; software protection	8/16	8	PLCC	84
(V25 Software Guard)				Miniflat	94
70337	MS-DOS compatible; high-integration; software protection	16	8	PLCC	84
(V35 Software Guard)				Miniflat	94
79011	MS-DOS compatible; high-integration; real-time operating system	8/16	8	PLCC	84
(V25 RTOS)				Miniflat	94
79021	MS-DOS compatible; high-integration; real-time operating system	16	8	PLCC	84
(V35 RTOS)				Miniflat	94
70322	MS-DOS compatible; high-integration; 16K-byte ROM	8/16	8	PLCC	84
(V25 ROM)			-		

Plastic unless ceramic (or cerdip) is specified.
 * For additional information, refer to 1987 Microcomputer Data Book.

CMOS Microprocessors (cont)

Device,	``````````````````````````````````````	Data	Clock			
μ PD	Features	Bits	(MHz)	* Package	Pins	
70P322	MS-DOS compatible; high-integration; 16K-byte UVEPROM; V25 or V35 mode	8/16	8	Ceramic LCC	84	
70332 (V35 ROM)	MS-DOS compatible; high-integration; 16K-byte ROM	16	8	PLCC	84	

NMOS and HMOS Microprocessors

Device, μPD	Features	Data Bits	Clock (MHz)	* Package	Pins
8085A	*8-bit microprocessor; NMOS or HMOS	8	5	DIP	40
8086	*16-bit microprocessor; HMOS	16	8	Cerdip	40
8088	*8-bit microprocessor; HMOS	8	8	Ceramic DIP	40

CMOS System Support Products

Device, μPD	Name	Dat Bits		[#] Package	Pins
71011	Clock Pulse Generator/Driver		20	DIP	18
				SOP	20
71037	Programmable DMA Controller	8	10	DIP	40
	-			Miniflat	40
				PLCC	44
71051	Serial Control Unit	8	8/10	DIP	28
				Miniflat	44
				PLCC	28
71054	Programmable Timer/Controller	8	8/10	DIP	24
	•			Miniflat	44
				PLCC	28
71055	Parallel Interface Unit	8	8/10	DIP	40
				Miniflat	44
				PLCC	44
71059	Interrupt Control Unit	8	8/10	DIP	28
				Miniflat	44
				PLCC	28
71071	DMA Controller	8/10	6 8/10	DIP	48
				Ceramic DIP	48
				Miniflat	52
				PLCC	52
71082	Transparent Latch	8	8	DIP	20
				SOP	20
71083	Transparent Latch	8	8	DIP	20
				SOP	20
71084	Clock Pulse Generator/Driver		25	DIP	18
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			SOP	20
71086	Bus Buffer/Driver	8	8	DIP	18
				SOP	20
71087	Bus Buffer/Driver	8	8	DIP	20
				SOP	20

#### **CMOS System Support Products (cont)**

Device, μPD	Name	Data Bits	Clock (MHz)	* Package	Pins
71088	System Bus Controller	_	8/10	DIP SOP	20 20
82C43	*Input/Output Expander		5	DIP	20
			5	Skinny DIP	24

## **NMOS System Support Products**

Device, μPD	Name	Data Bits	Ciock (MHz)	* Package	Pins
8155H	*256 x 8 RAM; I/O ports and timer	8	3 or 5	DIP	40
8156H	*256 x 8 RAM; I/O ports and timer	8	3 or 5	DIP	40
8237A	*Programmable DMA Controller	8	5	DIP	40
8243	*Input/Output Expander	-	5	DIP	24
8251A	*Programmable Communications Interface	8	3/5	DIP	28
8253	*Programmable Internal Timer	8	5	DIP	24
8255A	*Programmable Peripheral Interface	8	5	DIP	40
8257	*Programmable DMA Controller	8	5	DIP	40
8259A	*Programmable Interrupt Controller	8	5	DIP	28
8279	*Programmable Keyboard/Display Interface	_	5	DIP	40

1

V-Series





#### **Communications Controllers**

Device, μPD	Name	Description	Data Rate	# Package	Pins
7201A	Multiprotocol Serial Communications Controller	Dual full-duplex serial channels; four DMA channels; programmable interrupt vectors; asychronous COP and BOP support; NMOS	1 Mb/s	DIP Ceramic DIP	40 40
72001	CMOS, Advanced Multiprotocol Serial Communications Controller	Functional superset of 8530; 8086/V30 interface; two full-duplex serial channels; two digital phase-locked loops; two baud-rate generators per channel; loopback test mode; short frame and mark idle detection	2.2 Mb/s	DIP Miniflat PLCC	40 52 52
72002	CMOS, Advanced Multiprotocol Serial Communications Controller	Low-cost, single-channel version of 72001; software compatible; direct interface to 8237 DMA. Not included in 1989-1990 IPD Data Book; refer to 72002 data sheet.	2.2 Mb/s	DIP Miniflat PLCC	40 44 44
72101	CMOS, HDLC Controller	uate sheet. Single full-duplex serial channel; on-chip DMA Controller. Not included in 1989-1990 IPD Data Book; refer to 72101 data sheet	4 Mb/s	DIP PLCC	64 68

#### **Graphics Controllers**

Device, μPD	Name	Description	Drawing Rate	* Package	Pins
7220A	High-Performance Graphics Display Controller	General-purpose, high-integration controller; hardwired support for lines, arc/circles, rectangles, and graphics characters; 1024x1024 pixel display with four planes	500 ns/dot	Ceramic DIP	40
72020	Graphics Display Controller	CMOS 7220A with 2M video memory; dual-port RAM control; write-masking on any bit; enhanced external synch	500 ns/dot	DIP Miniflat	40 52
72022	Intelligent Display Processor	Display and image processing for text and sprites; three display modes; four-way horizontal split-screen display; CMOS	500 ns/dot	PLCC Miniflat	68 80
72120	Advanced Graphics Display Controller	High-speed graphics operations including paint, area fill, slant, arbitrary angle rotate, up to 16x enlargement and reduction; dual-port RAM control; CMOS	500 ns/dot	PLCC Miniflat	84 94
72123	Advanced Graphics Display Controller II	Enhanced 72120; expanded command set; improved painting performance; laser printer interface controls; CMOS	400 ns/dot	PLCC Miniflat	84 94

# Advanced Compression/Expansion Engine

Device, μPD	Name	Description	# Packa	ge Pins
72185	Advanced Compression/	High-speed CCITT Group 3/4 bit-map image compression/expansion (A4 test	SDIP	64
	Expansion Engine	chart, 400 PPI x 400 LPI in under 1 second); 32K-pixel line length; 32-megabyte	PLCC	68
		image memory; on-chip DMA and refresh timing generator; CMOS		

* Plastic unless ceramic (or cerdip) is specified.



# Floppy-Disk Controllers

Device, μPD	Name	Description	a Ala tatat	Transfer Rate	* Package	Pins
765A/B	Floppy-Disk Controller	Industry-standard controller supporting IBM 3740 and IBM System 34 double-density format; enhanced 765B supports multitasking applications	а 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	500 kb/s	DIP	40
71065/66	Floppy-Disk Interface	Compatible with 765-family controllers and others; supports multiple data rates from 125 to 500 kb/s		500 kb/s	SOP SDIP	28 30
72065/65B	CMOS Floppy-Disk Controller	100% 765A/B microcode compatible; compatible with 808x microprocessor families	14 14 1 1	1 Mb/s	DIP PLCC Miniflat	40 44 52
72067	Floppy-Disk Controller	CMOS; 765A/B microcode compatible; clock generation/ switching circuitry; selectable write precompensation; digital phase-locked loop		500 kb/s	DIP Miniflat PLCC	48 52 52
72068	Floppy-Disk Controller	All features of the 72067 plus IBM-PC, PC/XT, PC/AT, or PS/2 style registers; 24-ma high-current drivers		500 kb/s	Miniflat PLCC	80 84
72069	Floppy-Disk Controller	All features of the 72067/68 with substitution of high- performance analog phase-locked loop for digital PLL		1 Mb/s	PLCC Miniflat	84 100

#### Hard-Disk Controllers

Name	Description	Read/Write Clock	* Package	Pins
Hard-Disk Controller	Supports eight drives in SMD mode, four drives in ST506 models and detection	23 MHz	Ceramic DIP	40
Enhanced Small-Disk Interface (ESDI) Controller	Serial-mode ESDI compatible; controls up to seven drives; supports up to 80 heads; hard and soft-sector interfacing	18 MHz	Ceramic DIP	40
CMOS Hard-Disk Controller	Supports SMD/SMD-E and ST506/412 type drives	24 MHz	DIP Miniflat PLCC	40 52 52
Small Computer System Interface (SCSI) Controller	Selectable 8/16 data bus width; 16 high-level commands for reduced CPU load; single-command automatic execution; 4-Mb sync/async; CMOS	16 MHz	SDIP Miniflat PLCC	64 74 68
	en e	0	artan a Alfana ya shi	
	Hard-Disk Controller Enhanced Small-Disk Interface (ESDI) Controller CMOS Hard-Disk Controller Small Computer System	Hard-Disk Controller         Supports eight drives in SMD mode, four drives in ST506 mode; error correction and detection           Enhanced Small-Disk         Serial-mode ESDI compatible; controls up to seven drives; supports up to 80 heads; hard and soft-sector interfacing           CMOS Hard-Disk         Supports sMD/SMD-E and ST506/412 type drives           Controller         Selectable 8/16 data bus width; 16 high-level commands for reduced CPU load; single-command automatic execution; 4-Mb sync/async; CMOS	NameDescriptionClockHard-Disk ControllerSupports eight drives in SMD mode, four drives in ST506 mode; error correction and detection23 MHzEnhanced Small-Disk Interface (ESDI) ControllerSerial-mode ESDI compatible; controls up to seven drives; supports up to 80 heads; hard and soft-sector interfacing18 MHzCMOS Hard-Disk ControllerSupports SMD/SMD-E and ST506/412 type drives24 MHzSmall Computer System Interface (SCSI) ControllerSelectable 8/16 data bus width; 16 high-level commands for reduced CPU load; single-command automatic execution; 4-Mb sync/async; CMOS16 MHz	NameDescriptionClock# PackageHard-Disk ControllerSupports eight drives in SMD mode, four drives in ST506 mode; error correction and detection23 MHzCeramic DIPEnhanced Small-Disk Interface (ESDI) ControllerSerial-mode ESDI compatible; controls up to seven drives; supports up to 80 heads; hard and soft-sector interfacing18 MHzCeramic DIPCMOS Hard-Disk ControllerSupports SMD/SMD-E and ST506/412 type drives24 MHzDIP Miniflat PLCCSmall Computer System Interface (SCSI) ControllerSelectable 8/16 data bus width; 16 high-level commands for reduced CPU load; single-command automatic execution; 4-Mb sync/async; CMOS16 MHzSDIP Miniflat PLCC



#### Digital Signal Processors

Device, μPD	Description	Instruction Cycle (ns)	Instruction ROM (Bits)	Data ROM (Bits)	Data RAM (Bits)	* Package	Pins
7720A	16-bit, fixed-point DSP; NMOS	244	512 x 23	510 x 13	128 x 16	DIP	28
						PLCC	44
77C20A	16-bit, fixed-point DSP; CMOS	244	512 x 23	510 x 13	128 x 16	DIP	28
						PLCC	28
						PLCC	44
77P20	16-bit, fixed-point DSP; CMOS	244	512 x 23 UVEPROM	510 x 13 UVEPROM	128 x 16	Cerdip	28
77C25	16-bit, fixed-point DSP; CMOS	122	2048 x 24	1024 x 16	256 x 16	DIP	28
						PLCC	44
77P25	16-bit, fixed-point DSP; CMOS	122	2048 x 24	1024 x 16	256 x 16	DIP	28
			OTPROM	OTPROM		PLCC	44
			2048 x 24	1024 x 16	256 x 16	Cerdip	28
			UVEPROM	UVEPROM			
77220	24-bit, fixed-point DSP; CMOS	122	2048 x 32	1024 x 24	512 x 24	Ceramic PGA	68
						PLCC	68
77230AR	32-bit, floating-point DSP; CMOS	150	2048 x 32	1024 x 32	1024 x 32	Ceramic PGA	68
77230AR-003	32-bit, floating-point DSP; CMOS; standard library software	150	n/a	n/a	n/a	Ceramic PGA	68
77P230R	32-bit, floating-point DSP; CMOS	150	2048 x 32 UVEPROM	1024 x 32 UVEPROM	1024 x 32	Ceramic PGA	68
77810	16-bit fixed-point modem DSP; CMOS	181	2048 x 24	1024 x 16	256 x 16	Ceramic PGA	68
	· ·					PLCC	68
7281	Image pipelined processor; NMOS	5-MHz clock	n/a	n/a	512 x 18	Ceramic DIP	40
9305	Support device for µPD7281 processors; CMOS	10-MHz clock	n/a	n/a	n/a	Ceramic PGA	132

#### **Speech Processors**

Device, μPD	Name	Technology	Clock (MHz)	Data ROM (Bits)	* Package	Pins
7730	ADPCM Speech Encoder/Decoder	NMOS	8	<u> </u>	DIP	28
77C30	ADPCM Speech Encoder/Decoder	NMOS	8		DIP PLCC	28 44
7755	ADPCM Speech Synthesizer	CMOS	0.7	96K	DIP SOP	18 24
7756	ADPCM Speech Synthesizer	CMOS	0.7	256K	DIP SOP	18 24
77P56	ADPCM Speech Synthesizer	CMOS	0.7	256K OTPROM	DIP SOP	20 24
7757	ADPCM Speech Synthesizer	CMOS	0.7	512K	DIP SOP	18 24
7759	ADPCM Speech Synthesizer	CMOS	0.7	1024K external	DIP Miniflat	40 52

* Plastic unless ceramic (or cerdip) is specified.

# **DSP and Speech**





#### **V-Series Development Tools Selection Guide**

Part Number (Note 1)	Fuil Emulator	Full Emulator Probe	Mini-IE Emulator	Mini-IE Probe	Evaluation Boards	EPROM/OTP Device	Relocatable Assembler (Note 13)	C Compiler (Note 14)
μPD70136GJ-12	IE-70136-A016	EP-70136L-A (Note 2)	IE-70136-PC	EP-70136L-PC (Note 2)	DDK-70136		RA70136	CC70136
μPD70136GJ-16	IE-70136-A016	EP-70136L-A (Note 2)	IE-70136-PC	EP-70136L-PC (Note 2)	DDK-70136	-	RA70136	CC70136
μPD70136L-16	IE-70136-A016	EP-70136L-A	IE-70136-PC	EP-70136L-PC	DDK-70136	-	RA70136	CC70136
μPD70136L-12	IE-70136-A016	EP-70136L-A	IE-70136-PC	EP-70136L-PC	DDK-70136	-	RA70136	CC70136
μPD70136R-12	IE-70136-A016	EP-70136L-A (Note 3)	IE-70136-PC	EP-70136L-PC (Note 3)	DDK-70136	-	RA70136	CC70136
μPD70136R-16	IE-70136-A016	EP-70136L-A (Note 3)	IE-70136-PC	EP-70136L-PC (Note 3)	DDK-70136		RA70136	CC70136
μPD70208GF-8	IE-70208-A010	(Note 12)	EB-V40MINI-IE		EB-70208	-	RA70116	CC70116
μPD70208GF-10	IE-70208-A010	(Note 12)	EB-V40MINI-IE	·	EB-70208	-	RA70116	CC70116
μPD70208L-8	IE-70208-A010	IE-70000-2958	EB-V40MINI-IE	ADAPT68PGA 68PLCC (Note 4)	EB-70208	-	RA70116	CC70116
μPD70208L-10	IE-70208-A010	IE-70000-2958	EB-V40MINI-IE	ADAPT68PGA 68PLCC (Note 4)	EB-70208	-	RA70116	CC70116
μPD70208R-8	IE-70208-A010	IE-70000-2959	EB-V40MINI-IE	(Note 4)	EB-70208	-	RA70116	CC70116
μPD70208R-10	IE-70208-A010	IE-70000-2959	EB-V40MINI-IE	(Note 4)	EB-70208	-	RA70116	CC70116
μPD70216GF-8	IE-70216-A010	(Note 12)	EB-V50MINI-IE	-	EB70216	-	RA70116	CC70116
μPD70216GF-10	IE-70216-A010	(Note 12)	EB-V50MINI-IE	-	EB70216	-	RA70116	CC70116
μPD70216L-8	IE-70216-A010	IE-70000-2958	EB-V50MINI-IE	ADAPT68PGA 68PLCC (Note 4)	EB70216	_	RA70116	CC70116
μPD70216L-10	IE-70216-A010	IE-70000-2958	EB-V50MINI-IE	ADAPT68PGA 68PLCC (Note 4)	EB70216	-	RA70116	CC70116
μPD70216R-8	IE-70216-A010	IE-70000-2959	EB-V50MINI-IE	(Note 4)	EB70216	-	RA70116	CC70116
μPD70216R-10	IE-70216-A010	IE-70000-2959	EB-V50MINI-IE	(Note 4)	EB70216	-	RA70116	CC70116
μPD70320GJ	IE-70320-A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320		RA70320	CC70116
μPD70320GJ-8	IE-70320-A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320	-	RA70320	CC70116
μPD70320L	IE-70320-A008	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK-70320	-	RA70320	CC70116
µPD70320L-8	IE-70320-A008	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK-70320	-	RA70320	CC70116
μPD70322GJ	IE-70320-A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320	-	RA70320	CC70116
μPD70322GJ-8	IE-70320-A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320	-	RA70320	CC70116
μPD70322L	IE-70320-A008	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK-70320	70P322K (Note 10)	RA70320	CC70116



#### V-Series Development Tools Selection Guide (cont)

Part Number (Note 1)	Full Emulator	Full Emulator Probe	Mini-IE Emulator	Mini-IE Probe	Evaluation Boards	EPROM/OTP Device	Relocatable Assembler (Note 13)	C Compiler (Note 14)
μPD70322L-8	IE-70320-A008	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK70320	70P322K (Note 10)	RA70320	CC70116
μPD70325GJ-8	IE-70325-A008	EP-70320GJ (Note 5)	(Note 12)	(Note 12)	DDK-70325	<del>-</del>	RA70320	CC70116
μPD70325GJ-10	IE-70325-A008 (Note 8)	EP-70320GJ (Note 5)	(Note 12)	(Note 12)	DDK-70325	-	RA70320	CC70116
μPD70325L-8	IE-70325-A008	EP-70320L	(Note 12)	(Note 12)	DDK-70325	-	RA70320	CC70116
μPD70325L-10	IE-70325-A008 (Note 8)	EP-70320L	(Note 12)	(Note 12)	DDK-70325	<del>-</del> ".	RA70320	CC70116
μPD70327GJ-8 (Note 9)	IE-70320-A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	-		RA70320	CC70116
μPD70327L-8 (Note 9)	IE-70320-A008	EP-70320L	EB-V25MINI-IE-P	(Note 7)	-	-	RA70320	CC70116
μPD70330GJ-8	IE-70330-A008	EP-70320GJ (Note 5)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	-	RA70320.	CC70116
μPD70330L-8	IE-70330-A008	EP-70320L	EB-V35MINI-IE-P	(Note 7)	DDK-70330	-	RA70320	CC70116
μPD70332GJ-8	IE-70330-A008	EP-70320GJ (Note 5)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	<del>.</del> .	RA70320	CC70116
μPD70332L-8	IE-70330-A008	EP-70320L	EB-V35MINI-IE-P	(Note 7)	DDK-70330	70P322K (Note 10)	RA70320	CC70116
μPD70335GJ-8	IE-70335-A008	EP-70320GJ (Note 5)	(Note 12)	(Note 12)	DDK-70330	-	RA70320	CC70116
μPD70335GJ-10	IE-70335-A008 (Note 8)	EP-70320GJ (Note 5)	(Note 12)	(Note 12)	DDK-70330		RA70320	CC70116
μPD70335L-8	IE-70335-A008	EP-70320L	(Note 12)	(Note 12)	DDK-70330	-	RA70320	CC70116
μPD70335L-10	IE-70335-A008 (Note 8)	EP-70320L	(Note 12)	(Note 12)	DDK-70330	-	RA70320	CC70116
μPD70337GJ-8 (Note 9)	IE-70330-A008	EP-70320GJ (Note 5)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	-	-	RA70320	CC70116
μPD70337L-8 (Note 9)	IE-70330-A008	EP-70320L	EB-V35MINI-IE-P	(Note 7)	-	-	RA70320	CC70116
μPD79011GJ-8 (Note 11)	IE-70320-A008	EP-70320GJ (Note 5)	(Note 12)	(Note 12)	-		RA70320	CC70116
μPD79011L-8 (Note 11)	+IE-70320-RTOS	EP-70320L	(Note 12)	(Note 12)	* 11 <b>-</b>		RA70320	CC70116
μPD79021L-8 (Note 11)	IE-70330-A008 +IE-70330-RTOS	EP-70320L	(Note 12)	(Note 12)	-		RA70320	CC70116

#### Notes:

(1) Packages:

#### Package Description

	Beachphon
GF	80-pin plastic miniflat
GJ	74-pin or 94-pin plastic miniflat
к	84-pin ceramic LCC with window
L	68-pin or 84-pin plastic LCC
R	68-pin PGA

(3) 68-pin PGA parts are supported by using the EP-70136L-A PLCC probe or EP-70136L-PC PLCC probe, plus a PLCC socket with a PGA-pinout. A PLCC socket of this type is supplied with the EP-70136L-A.

(4) The EB-V40 MINI-IE and EB-V50 MINI-IE support PGA packages directly; the ADAPT68PGA68PLCC adaptor converts the PGApinout on the MINI-IE to a PLCC footprint. This adaptor is supplied with the MINI-IE.

(2) The EP-70136GL-A and EP-70136L-PC contain both a 68-pin PLCC probe and an adapter which converts the 68-pin PLCC probes to a 74-pin miniflat footprint.

# NEC

- (5) The EP-70320GJ is an adaptor to the EP-70320L, which converts 84-pin PLCC probes to a 94-pin minifiat footprint. For GJ parts, both the PLCC probe and the adaptor are needed.
- ( 6) The EP-70320GJ adaptor can be used to convert the supplied 84-pin PLCC cable of the EB-V25 MINI-IE-P or EB-V35 MINI-IE-P to a 94-pin miniflat.
- (7) The EB-V25 MINI-IE-P and EB-V35 MINI-IE-P are supplied with an 84-pin PLCC cable.
- (8) At the current time, the emulators for the μPD70325 and μPD70335 are specified to 8 MHz. Contact your local NEC Sales Office for the latest information on 10 MHz emulation.
- ( 9) Development for the μPD70327 or μPD70337 can be done using the appropriate μPD70320 or μPD70330 tools; however, debugging of programs in the Software Guard mode is not supported at this time.
- (10) The μPD70P322K EPROM device can be used for both μPD70322 and μPD70332 emulation. The μPD70P322K EPROM device can be programmed by using the PA-70P322L Programming Adapter and the PG-1500 EPROM Programmer.
- (11) For emulation of μPD79011 or μPD79021, the base emulator (IE-70320 or IE-70330) plus Real-Time Operating System software IE-70320-RTOS or IE-70330-RTOS) is required.
- (12) This emulation option is not currently supported, but may be available in the future. Contact your local NEC Sales Office for further information.

(13) The following relocatable assemblers are available:

RA70116-D52 Fo RA70116-VVT1 V4 RA70116-VXT1		(VS-DOS®) (VAX/VMS™) (VAX/UNIX™ 4.2 BSD or Ultrix™)
RA70136-D52 Fo	or V33™	(MS-DOS) (VAX/VMS)
RA70136-VXT1		(VAX/UNIX 4.2 BSD or Ultrix)
RA70320-D52 Fo	or V25™ and V35™	
RA70320-VVT1		(VAX/VMS)
RA70320-VXT1		(VAX/UNIX 4.2 BSD or Ultrix)
(14) The following	C compilers are a	available:
CC70116-D52	For V20/V30/	(MS-DOS)
CC70116-VVT1	V40/V50 and	(VAX/VMS)
CC70116-VXT1	V25/V35	(VAX/UNIX 4.2 BSD or Ultrix)
CC70136-D52	For V33	(MS-DOS)
CC70136-VVT1		(VAX/VMS)
CC70136-VXT1		(VAX/UNIX 4.2 BSD or Ultrix)
CC70320-D52	For V25 and V35	5 (MS-DOS)
CC70320-WT1		(VAX/VMS)
CC70320-VXT1		(VAX/UNIX 4.2 BSD or Ultrix)
Contraction of the second seco		

V20 and V30 are registered trademarks of NEC Corporation. V25, V33, V35, V40 and V50 are trademarks of NEC Corporation. MS-DOS is a registered trademark of Microsoft Corporation. VAX, VMS and Ultrix are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

## **V-Series**





### μPD75XX Series Development Tools Selection Guide

#### **µPD75XX Series Development Tools Selection Guide**

Part Number (Note 1)	Emulator*	Add-on Board*	System Evaluation Board	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Absolute Assemble (Note 3)
μPD7501G-12	EVAKIT-7500B	EV7514	SE-7514A			ASM75
μPD7502G-12	EVAKIT-7500B	EV7514	SE-7514A		-	ASM75
μPD7503G-12	EVAKIT-7500B	EV7514	SE-7514A	_	-	ASM75
μPD7506C	EVAKIT-7500B	-	SE-7508	<u> </u>		ASM75
μPD7506CT	EVAKIT-7500B	-	-		-	ASM75
μPD7506G-00	EVAKIT-7500B	· · · · · · · · · · · · · · · · · · ·				ASM75
μPD7507C	EVAKIT-7500B	-	· _	µPD78CG08E	-	ASM75
μPD7507CU	EVAKIT-7500B	-	_	-	-	ASM75
μPD7507G-00	EVAKIT-7500B	-	_			ASM75
μPD7507HC	EVAKIT-7500B	EV7508H		µPD75CG08HE	-	ASM75
μPD7507HCU	EVAKIT-7500B	EV7508H	· · ·			ASM75
μPD7507HG-22	EVAKIT-7500B	EV7508H			-	ASM75
μPD7507SC	EVAKIT-7500B		SE-7508		-	ASM75
μPD7507SCT	EVAKIT-7500B		· _		_	ASM75
μPD7508C	EVAKIT-7500B		_	μPD78CG08E	-	ASM75
μPD7508CU	EVAKIT-7500B		_		_	ASM75
μPD7508G-00	EVAKIT-7500B	-	_	-		ASM75
μPD75CG08E	EVAKIT-7500B	-	_			ASM75
μPD7508AC	EVAKIT-7500B		SE-7508	-		ASM75
μPD7508HC	EVAKIT-7500B	EV7508H	_	µPD75CG08HE	_	ASM75
μPD7508HCU	EVAKIT-7500B	EV7508H	-	-		ASM75
μPD7508HG-22	EVAKIT-7500B	EV7508H				ASM75
μPD75CG08HE	EVAKIT-7500B	EV7508H				ASM75
μPD7514G-12	EVAKIT-7500B	EV7514	SE-7514A	-	_	ASM75
μPD7516HCW	EVAKIT-7500B	EV7500FIP			_	ASM75
μPD7516HG-12	EVAKIT-7500B	EV7500FIP		-	-	ASM75
μPD7516HG-36	EVAKIT-7500B	EV7500FIP		µPD75CG16HE	-	ASM75
μPD75CG16HE	EVAKIT-7500B	EV7500FIP	_	-		ASM75
μPD7519HCW	EVAKIT-7500B	EV7500FIP	-			ASM75
μPD7519HG-12	EVAKIT-7500B	EV7500FIP	-			ASM75
μPD7519HG-36	EVAKIT-7500B	EV7500FIP	_	µPD75CG19HE		ASM75
µPD75CG19HE	EVAKIT-7500B	EV7500FIP	-	······································	-	ASM75
μPD7527AC	EVAKIT-7500B	EV7528	-	μPD75CG28E	-	ASM75
μPD7527ACU	EVAKIT-7500B	EV7528	-	-	-	ASM75
μPD7528AC	EVAKIT-7500B	EV7528	_	µPD75CG28E	-	ASM75
μPD7528ACU	EVAKIT-7500B	EV7528			-	ASM75

* Required Tools



#### µPD75XX Series Development Tools Selection Guide (cont)

Part Number (Note 1)	Emulator*	Add-on Board*	System Evaluation Board	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Absolute Assemble: (Note 3)
μPD75CG28E	EVAKIT-7500B	EV7528	_	-	-	ASM75
μPD7533C	EVAKIT-7500B	EV7533	-	µPD75CG33E	-	ASM75
μPD7533CU	EVAKIT-7500B	EV7533	-	-	-	ASM75
μPD7533G-22	EVAKIT-7500B	EV7533	_		-	ASM75
μPD75CG33E	EVAKIT-7500B	EV7533	_			ASM75
μPD7537AC	EVAKIT-7500B	EV7528		µPD75CG38E	<b>_</b>	ASM75
μPD7537ACU	EVAKIT-7500B	EV7528	_	-		ASM75
μPD7538AC	EVAKIT-7500B	EV7528	_	µPD75CG38E	·	ASM75
μPD7538ACU	EVAKIT-7500B	EV7528			<del>.</del>	ASM75
μPD75CG38E	EVAKIT-7500B	EV7528			<b>-</b>	ASM75
μPD7554CS	EVAKIT-7500B	EV7554A	SE-7554A	µPD75P54CS	PA-75P54CS	ASM75
μPD7554G	EVAKIT-7500B	EV7554A	SE-7554A	μPD75P54G	PA-75P54CS	ASM75
μPD75P54CS	EVAKIT-7500B	EV7554A	<u>-</u>			ASM75
μPD75P54G	EVAKIT-7500B	EV7554A		-	-	ASM75
μPD7556CS	EVAKIT-7500B	EV7554A	SE-7554A	µPD75P56CS	PA-75P56CS	ASM75
μPD7556G	EVAKIT-7500B	EV7554A	SE-7554A	μPD75P56G	PA-75P56CS	ASM75
μPD75P56CS	EVAKIT-7500B	EV7554A	· · · · · · · · · · · · · · · · · · ·		-	ASM75
μPD75P56G	EVAKIT-7500B	EV7554A		· · · · · · · · · · · · · · · · · · ·	<del>-</del>	ASM75
μPD7564CS	EVAKIT-7500B	EV7554A	SE-7554A	μPD75P64CS	PA-75P54CS	ASM75
μPD7564G	EVAKIT-7500B	EV7554A	SE-7554A	μPD75P64G	PA-75P54CS	ASM75
μPD75P64CS	EVAKIT-7500B	EV7554A		· · ·	_	ASM75
μPD75P64G	EVAKIT-7500B	EV7554A	_	-		ASM75
μPD7566CS	EVAKIT-7500B	EV7554A	ŠE-7554A	µPD75P66CS	PA-75P56CS	ASM75
μPD7566G	EVAKIT-7500B	EV7554A	SE-7554A	μPD75P66G	PA-75P56CS	ASM75
μPD75P66CS	EVAKIT-7500B	EV7554A				ASM75
μPD75P66G	EVAKIT-7500B	EV7554A	· · · ·	· _	<u> </u>	ASM75

* Required tools

#### Notes:

NEC

(1	) Packages:	
	Package	Description
	сŤ	28-pin plastic DIP (µPD7506/07S)
		40-pin plastic DIP (µPD7507/07H/08/08A/08H)
		42-pin plastic DIP (µPD7527A/28A/33/37A/38A)
	CS	20-pin plastic shrink DIP (µPD7554/P54/64/P64)
		24-pin plastic shrink DIP (µPD7556/P56/66/P66)
	СТ	28-pin plastic shrink DIP
	CU	40-pin plastic shrink DIP (μPD7507/07H/08/08H)
		42-pin plastic shrink DIP
		(µPD7527A/28A/33/37/37A/38A)
	CW	64-pin plastic shrink DIP
	E	40-pin ceramic piggy-back DIP (μPD75CG08/08H)
		42-pin ceramic piggy-back DiP (µPD75CG28/33/38)
		64-pin ceramic piggy-back QUIP
	-	(µPD75CG16H/19H)
	G	20-pin plastic SO (µPD7554/P54/64/P64)
		24-pin plastic SO (µPD7556/P56/66/P66)
	G-00	52-pin plastic miniflat
	G-12	64-pin plastic miniflat (µPD7501/02/03/16H/19H)
	·	80-pin plastic miniflat (µPD7514)
	G-22	44-pin plastic miniflat
	G-36	64-pin plastic QUIP
12	By using th	a specified edepter the PG-1500 EPROM programme

- (2) By using the specified adapter, the PG-1500 EPROM programmer can be used to program the OTP device.
- (3) The ASM75 Absolute Assembler is provided to run under the MOS-DOS[®] operating system. (ASM75-D52).

1

# $\mu$ PD75XX Series





## μPD75XXX Series Development Tools Selection Guide

#### $\mu$ PD75XXX Series Development Tools Selection Guide

Part Number (Note 7)	Main Board Emulator*	Add-on Board*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 5)	Structured Assembler (Note 6)
μPD75004CU	EVAKIT-75X	EV-75008	(Note 3)	-	µPD75P008CU/DU	RA75X	ST75X
μPD75006GB	EVAKIT-75X	EV-75008	EP-75008GB	EV-9200G-44	μPD75P008GB	RA75X	ST75X
μPD75006CU	EVAKIT-75X	EV-75008	(Note 3)	· •	µPD75P008CU/DU	RA75X	ST75X
μPD75006GB	EVAKIT-75X	EV-75008	EP-75008GB	EV-9200G-44	μPD75P008GB	RA75X	ST75X
μPD75008CU	EVAKIT-75X	EV-75008	(Note 3)	_	μPD75P008CU/DU	RA75X	ST75X
μPD75008GB	EVAKIT-75X	EV-75008	EP-75008GB	EV-9200G-44	μPD75P008GB	RA75X	ST75X
μPD75P008CU	EVAKIT-75X	EV-75008	(Note 3)	-		RA75X	ST75X
μPD75P008DU	EVAKIT-75X	EV-75008	(Note 3)	-	· · · · ·	RA75X	ST75X
μPD75P008GB	EVAKIT-75X	EV-75008	EP-75008GB	EV-9200G-44		RA75X	ST75X
μPD75028CW	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)	μPD75P028CW	RA75X	ST75X
μPD75028GC	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)	μPD75P028GC	RA75X	ST75X
μPD75P028CW	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)		RA75X	ST75X
μPD75P028GC	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)	-	RA75X	ST75X
μPD75048CW	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)	-	RA75X	ST75X
μPD75048GC	EVAKIT-75X	EV-75048	(Note 4)	(Note 4)		RA75X	ST75X
μPD75104CW	EVAKIT-75X	EV-75108	(Note 3)	-	μPD75P108CW/DW	RA75X	ST75X
μPD75104G	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75104GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75104AGC	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	-	RA75X	ST75X
μPD75106CW	EVAKIT-75X	EV-75108	(Note 3)		µPD75P108CW/DW	RA75X	ST75X
μPD75106G	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75106GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75108AG	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64		RA75X	ST75X
μPD75108AGC	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	-	RA75X	ST75X
μPD75108CW	EVAKIT-75X	EV-75108	(Note 3)	-	µPD75P108CW/DW	RA75X	ST75X
μPD75108G	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75108GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P108G/GF μPD75P116GF	RA75X	ST75X
μPD75P108BCW	EVAKIT-75X	EV-75108	(Note 3)	-	-	RA75X	ST75X
μPD75P108CW	EVAKIT-75X	EV-75108	(Note 3)	-	· · ·	RA75X	ST75X
μPD75P108DW	EVAKIT-75X	EV-75108	(Note 3)	- [_]		RA75X	ST75X
μPD75P108G	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	-	RA75X	ST75X
μPD75112CW	EVAKIT-75X	EV-75108	(Note 3)	_	μPD75P116CW	RA75X	ST75X

* Required Tools

32. 2



#### µPD75XXX Series Development Tools Selection Guide (cont)

Part Number (Note 7)	Main Board Emulator*	Add-on Board*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 5)	Structured Assembler (Note 6)
μPD75112GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P116GF	RA75X	ST75X
μPD75116CW	EVAKIT-75X	EV-75108	(Note 3)		μPD75P116CW	RA75X	ST75X
μPD75116GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64	μPD75P116GF	RA75X	ST75X
μPD75P116BGF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64		RA75X	ST75X
μPD75P116CW	EVAKIT-75X	EV-75108	(Note 3)	-		RA75X	ST75X
μPD75P116GF	EVAKIT-75X	EV-75108	EP-75108GF	EV-9200G-64		RA75X	ST75X
μPD75206CW	EVAKIT-75X	EV-75216A	(Note 3)	_	µPD75P216ACW	RA75X	ST75X
μPD75206G	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64	-	RA75X	ST75X
μPD75208CW	EVAKIT-75X	EV-75216A	(Note 3)		µPD75P216ACW	RA75X	ST75X
μPD75208G	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64		RA75X	ST75X
μPD75CG208AE	EVAKIT-75X	EV-75216A	(Note 3)			RA75X	ST75X
μPD75CG208AEA	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64		RA75X	ST75X
μPD75212ACW	EVAKIT-75X	EV-75216A	(Note 3)	-	μPD75P216ACW	RA75X	ST75X
μPD75212AGF	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64	-	RA75X	ST75X
μPD75216ACW	EVAKIT-75X	EV-75216A	(Note 3)		μPD75P216ACW	RA75X	ST75X
μPD75216AGF	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64	к	RA75X	ST75X
μPD75CG216AE	EVAKIT-75X	EV-75216A	(Note 3)		· · · ·	RA75X	ST75X
μPD75CG216AEA	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64		RA75X	ST75X
μPD75P216ACW	EVAKIT-75X	EV-75216A	(Note 3)		µPD75P216ACW	RA75X	ST75X
μPD75268CW	EVAKIT-75X	EV-75216A	(Note 3)	-	μPD75P216ACW	RA75X	ST75X
μPD75268GF	EVAKIT-75X	EV-75216A	EP-75216AGF	EV-9200G-64		RA75X	ST75X
μPD75304GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80	µPD75P308GF/K	RA75X	ST75X
μPD75306GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80	μPD75P308GF/K	RA75X	ST75X
μPD75308GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80	μPD75P308GF/K	RA75X	ST75X
μPD75P308GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80		RA75X	ST75X
μPD75P308K	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80	avenue a	RA75X	ST75X
μPD75312GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80	μPD75P316GF	RA75X	ST75X
μPD75P316GF	EVAKIT-75X	EV-75308	(Note 3)	EV-9200G-80		RA75X	ST75X
μPD75328GC	EVAKIT-75X	EV-75328	(Note 3)		μPD75P328GC	RA75X	ST75X
μPD75P328GC	EVAKIT-75X	EV-75328	(Note 3)	_ S ² ;	1	RA75X	ST75X
μPD75402C	EVAKIT-75X	EV-75402	(Note 3)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	μPD75P402C	RA75X	ST75X
μPD75402CT	EVAKIT-75X	EV-75402	(Note 3)		μPD75P402CT	RA75X	ST75X
μPD75402GB	EVAKIT-75X	EV-75402	EP-75402GB	EV-9200G-44	μPD75P402GB	RA75X	ST75X
μPD75P402C	EVAKIT-75X	EV-75402	(Note 3)	-		RA75X	ST75X
μPD75P402CT	EVAKIT-75X	EV-75402	(Note 3)			RA75X	ST75X
μPD75P402GB	EVAKIT-75X	EV-75402	EP-75402GB	EV-9200G-44		RA75X	ST75X
μPD75516GF	EVAKIT-75X	EV-75516	(Note 3)		μPD75P516GF/K	RA75X	ST75X
μPD75P516GF	EVAKIT-75X	EV-75516	(Note 3)		an a	RA75X	ST75X
μPD75P516K	EVAKIT-75X	EV-75516	(Note 3)		64 - 199 y	n an	

* Required Tools

#### Notes:

- (1) The EV-9200G-XX is an LCC socket with the footprint of the flat package. One unit is supplied with the probe. Additional units are available as replacement parts in sets of five.
- (2) All EPROM/OTP devices can be programmed using the NEC PG-1500. Refer to the PG-1500 Programming Socket Adapter Selection Guide for the appropriate socket adapter.
- (3) The emulation probe is shipped with the add-on board.
- (4) Preliminary information. Contact your NEC Sales Representative for further information and availability.
- (5) The RA75X relocatable assembler package is provided for the following operating systems: RA75X-D52 (MOS-DOS®) RA75X-VVT1 (VAX/VMS™)
- (6) The ST75X structures assembler preprocessor is provided with RA75X

(7)	Packages:	
	Package	Description
	c	28-pin plastic DIP
	CT	28-pin plastic shrink DIP
	CU	42-pin plastic shrink DIP
	CW	64-pin plastic shrink DIP
	DU	42-pin ceramic shrink DIP with window
	DW	64-pin ceramic shrink DIP with window
	E	64-pin ceramic piggy-back shrink DIP
	EA	64-pin ceramic piggy-back miniflat
	G	64-pin plastic miniflat
	GB	44-pin plastic miniflat
	GC	64 or 80-pin plastic minifiat
	GF	64 or 80-pin plastic minifiat
	K	80-pin plastic miniflat

# **µPD75XXX Series**



H. S. Markara, M. Markara, J. M. Markara, A. M. K. Markara, A. M. K. Markara, A. M. K. Markara, A. M. K. Markara, M. K. Markara, K. K. Mar

and a start of the second of the second s Second s Second second

الا المحمد المحمد المحمد المحمد . المواقع المحمد المحمد المحمد المحمد . المحمد المحم



# μPD78XX Series Development Tools Selection Guide

### µPD78XX Series Development Tools Selection Guide**

Part Number (Note 1)	Emulation EPROM/OTP Emulator* Probe* Device		PG-1500 Adapter (Note 2)	Relocatable Assembler (Note 10)	C Compiler (Note 10)	
μPD7810HCW	IE-7811H-M	EV-9001-64 (Note 3)	- 1	-	RA87	CC87
μPD7810HG-36	IE-7811H-M	(Note 4)		-	RA87	CC87
μPD7811HCW	IE-7811H-M	EV-9001-64 (Note 3)		-	RA87	CC87
μPD7811HG-36	IE-7811H-M	(Note 4)	µPD78PG11HE (Note 6)	· -	RA87	CC87
μPD78PG11HE	IE-7811H-M	(Note 4)		· · · · -	RA87	CC87
μPD78C10CW	IE-78C11-M	EV-9001-64 (Note 3)	-		RA87	CC87
μPD78C10G-36	IE-78C11-M	(Note 4)		-	RA87	CC87
μPD78C10G-1B	IE-78C11-M	(Note 5)		-	RA87	CC87
μPD78C10GF-3BE	IE-78C11-M	(Note 5)		. –	RA87	CC87
μPD78C10L	IE-78C11-M	(Note 5)		-	RA87	CC87
μPD78C10ACW	IE-78C11-M (Note 8)	EV-9001-64 (Note 3)	-	-	RA87	CC87
μPD78C10AGQ-36	IE-78C11-M (Note 8)	(Note 4)	<del>-</del>		RA87	CC87
μPD78C10AGF-3BE	IE-78C11-M (Note 8)	(Note 5)		ай <mark>.</mark> Н	RA87	CC87
μPD78C10AL	IE-78C11-M (Note 8)	(Note 5)		-	RA87	CC87
μPD78C11CW	IE-78C11-M	EV-9001-64 (Note 3)	μPD78CP14CW/DW	PA-78CP14CW	RA87	CC87
μPD78C11G-36	IE-78C11-M	(Note 4)	μPD78CP14GQ-36/R μPD78CG14E	PA-78CP14GQ	RA87	CC87
μPD78C11G-1B	IE-78C11-M	(Note 5)	µPD78CP14GF-3BE	PA-78CP14GF	RA87	CC87
μPD78C11GF-3BE	IE-78C11-M	(Note 5)	µPD78CP14GF-3BE	PA-78CP14GF	RA87	CC87
μPD78C11L	IE-78C11-M	(Note 5)	μPD78CP14L	PA-78CP14L	RA87	CC87
µPD78C11ACW	IE-78C11-M (Note 8)	EV-9001-64 (Note 3)	μPD78CP14CW/DW (Note 7)	PA-78CP14CW	RA87	CC87
μPD78C11AGQ-36	IE-78C11-M (Note 8)	(Note 4)	μPD78CP14GQ-36/R (Note 7)	PA-78CP14GQ	RA87	CC87
µPD78C11AGF-3BE	IE-78C11-M (Note 8)	(Note 5)	μPD78CP14GF-3BE (Note 7)	PA-78CP14GF	RA87	CC87
μPD78C11AL	IE-78C11-M (Note 8)	(Note 5)	μPD78CP14L (Note 7)	PA-78CP14L	RA87	CC87
μPD78C12ACW	IE-78C11-M (Note 8)	EV-9001-64 (Note 3)	μPD78CP14CW/DW (Note 7)	PA-78CP14CW	RA87	CC87
μPD78C12AGQ-36	IE-78C11-M (Note 8)	(Note 4)	μPD78CP14GQ-36/R (Note 7)	PA-78CP14GQ	RA87	CC87

* Required Tools

** For all μPD78C1X devices, you may use the DDK-78C10 for evaluation purposes.

#### µPD78XX Series Development Tools Selection Guide** (cont)

Part Number (Note 1)	Emulator*	Emulation Probe*	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Relocatable Assembler (Note 10)	C Compiler (Note 10)
µPD78C12AGF-3BE	IE-78C11-M (Note 8)	(Note 5)	μPD78CP14GF-3BE (Note 7)	PA-78CP14GF	RA87	CC87
μPD78C12AL	IE-78C11-M (Note 8)	(Note 5)	μPD78CP14L (Note 7)	PA-78CP14L	RA87	CC87
μPD78C14CW	IE-78C11-M	EV-9001-64 (Note 3)	μPD78CP14CW/DW	PA-78CP14CW	RA87	CC87
μPD78C14G-36	IE-78C11-M	(Note 4)	μPD78CP14GQ-36/R μPD78CG14E	PA-78CP14GQ	RA87	CC87
μPD78C14G-1B	IE-78C11-M	(Note 5)	μPD78CP14GF	PA-78CP14GF	RA87	CC87
μPD78C14GF-3BE	IE-78C11-M	(Note 5)	μPD78CP14GF	PA-78CP14GF	RA87	CC87
μPD78C14L	IE-78C11-M	(Note 5)	μPD78CP14L	PA-78CP14L	RA87	CC87
μPD78C14AG-AB8	IE-78C11-M (Note 8)	(Note 5)	-	10 <del>2</del> - 10 - 36 - 10 - 10	RA87	CC87
μPD78CG14E (Note 9)	IE-78C11-M	(Note 4)		-	RA87	CC87
μPD78CP14CW	IE-78C11-M	EV-9001-64 (Note 3)	<u> </u>	PA-78CP14CW	RA87	CC87
μPD78CP14DW	IE-78C11-M	EV-9001-64 (Note 3)	-	PA-78CP14CW	RA87	CC87
μPD78CP14GQ-36	IE-78C11-M	(Note 4)	-	PA-78CP14GQ	RA87	CC87
µPD78CP14GF-3BE	IE-78C11-M	(Note 5)	· · · · · · · · · · · · · · · · · · ·	PA-78CP14GF	RA87	CC87
μPD78CP14L	IE-78C11-M	(Note 5)	· -	PA-78CP14L	RA87	CC87
μPD78CP14R	IE-78C11-M	(Note 4)		PA-78CP14GQ	RA87	CC87

* Required Tools

#### Notes:

(1) Packages

Package	Description
CW	64-pin plastic shrink DIP
DW	64-pin ceramic shrink DIP with window
E	64-pin ceramic piggyback QUIP
GF-1B	64-pin plastic miniflat (Resin Thickness: 2.05mm)
G-36	64-pin plastic QUIP
G-AB8	64-pin plastic miniflat (interpin Pitch: 0.8mm)
GF-3BE	64-pin plastic miniflat (Resin Thickness: 2.7mm)
GQ-36	64-pin plastic QUIP
L	68-pin PLCC
R	64-pin ceramic QUIP with window

(2) By using the specified adapter, the PG-1500 EPROM programmer can be used to program the EPROM/OTP device.

(3) 64-pin shrink DIP adapter which plugs into the EP-7811HGQ emulation probe supplied with each IE.

(4) The emulation probe for the 64-pin QUIP package (EP-7811HGQ) is supplied with the IE.

MS-DOS is a trademark of Microsoft Corporation.

VAX, VMS and Ultrix are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

- (5) No emulation probe available.
- (6) The μPD78PG11HE is a piggy-back EPROM device in a ceramic QUIP package. It accepts 2764 EPROMs.
- (7) The μPD78CP14 EPROM/OTP devices do not have pull-up resistors on ports A, B, and C.
- (8) The IE-78C11-M can be used by replacing the μPD78C10G-36 with a μPD78C10AGQ-36. However, it will not be able to emulate the optional pull-up resistors on ports A, B, and C.
- (9) The μPD78CG14E is a piggy-back EPROM device in a ceramic QUIP package. It accepts 27C256 and 27C256A EPROMS.
- (10) The following relocatable assemblers and C Compilers are available:

RA87-D52	(MS-DOS®)	Relocatable assemblers
RA87-VVT1	(VAX/VMS™)	for 78XX series
CCMSD-I5DD-87	(MS-DOS)	C Compilers for
CCVMS-OT16-87	(VAX/VMS)	78XX Series
CCUNX-OT16-87	(VAX/UNIX™) 4.2 BSD or Ultrix™)	



# μPD78XXX Series Development Tools Selection Guide

# $\mu$ PD78XXX Series Development Tools Selection Guide

Part Number Emulation EPROM/OTP (Note 1) Emulator* Probe* Device		PG-1500 Adapter (Note 2)	Relocatable Assembler (Notes 11)	Structured Assembler (Note 12)	C Compiler (Note 13)		
μPD78213CW	IE-78210-R	EP-78210CW	-	-	RA78K2	ST78K2	CC782XX
μPD78213GC-3B8	IE-78210-R	EP-78210GC	-		RA78K2	ST78K2	CC782XX
μPD78213GJ-5BJ	IE-78210-R	EP-78210GJ (Note 3)	<del>.</del>	<del>-</del> .	RA78K2	ST78K2	CC782XX
μPD78213GQ-36	IE-78210-R	EP-78210GQ			RA78K2	ST78K2	CC782XX
μPD78213L	IE-78210-R	EP-78210L	· · · · · · · · · · · · · · · · · · ·	-	RA78K2	ST78K2	CC782XX
μPD78214CW	IE-78210-R	EP-78210CW	µPD78P214CW/DW	PA-78P214CW	RA78K2	ST78K2	CC782XX
μPD78214GC-3B8	IE-78210-R	EP-78210GC	μPD78P214GC	PA-78P214GC	RA78K2	ST78K2	CC782XX
μPD78214GJ-5BJ	IE-78210-R	EP-78210GJ (Note 3)	μPD78P214GJ	PA-78P214GJ	RA78K2	ST78K2	CC782XX
μPD78214GQ-36	IE-78210-R	EP-78210GQ	μPD78P214GQ	PA-78P214GQ	RA78K2	ST78K2	CC782XX
μPD78214L	IE-78210-R	EP-78210L	μPD78P214L	PA-78P214L	RA78K2	ST78K2	CC782XX
μPD78P214CW	IE-78210-R	EP-78210CW		PA-78P214CW	RA78K2	ST78K2	CC782XX
μPD78P214DW	IE-78210-R	EP-78210CW	-	PA-78P214CW	RA78K2	ST78K2	CC782XX
μPD78P214GC-3B8	IE-78210-R	EP-78210GC		PA-78P214GC	RA78K2	ST78K2	CC782XX
μPD78P214GJ-5BJ	IE-78210-R	EP-78210GJ (Note 3)	-	PA-78P214GJ	RA78K2	ST78K2	CC782XX
μPD78P214GQ-36	IE-78210-R	EP-78210GQ		PA-78P214GQ	RA78K2	ST78K2	CC782XX
μPD78P214L	IE-78210-R	EP-78210L		PA-78P214L	RA78K2	ST78K2	CC782XX
μPD78220GJ-5BG	IE-78220-R	EP-78220GJ (Note 4)		-	RA78K2	ST78K2	CC782XX
μPD78220L	IE-78220-R	EP-78220L	-	-	RA78K2	ST78K2	CC782XX
μPD78224GJ-5BG	IE-78220-R	EP-78220GJ (Note 4)	μPD78P224GJ	PA-78P224GJ	RA78K2	ST78K2	CC782XX
μPD78224L	IE-78220-R	EP-78220L	μPD78P224L	PA-78P224L	RA78K2	ST78K2	CC782XX
μPD78P224GJ-5BG	IE-78220-R	EP-78220GJ (Note 4)	-	PA-78P224GJ	RA78K2	ST78K2	CC782XX
μPD78P224L	IE-78220-R	EP-78220L	-	PA-78P224L	RA78K2	ST78K2	CC782XX
μPD78310ACW	IE-78310A-R	(Note 5)	μPD78P312ACW/DW	PA-78P312CW	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78310AGF-3BE	IE-78310A-R	EP-78310GF	μPD78P312AGF-3BE	PA-78P312GF	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78310AGQ	IE-78310A-R	(Note 6)	μPD78P312AGQ/RQ	PA-78P312GQ	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78310AL	IE-78310A-R	EP-78310L	μPD78P312AL	PA-78P312L	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78312ACW	IE-78310A-R	(Note 5)	μPD78P312ACW/DW	PA-78P312CW	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78312AGF-3BE	IE-78310A-R	EP-78310GF	μPD78P312AGF-3BE	PA-78P312GF	RA78K3	ST78K3	CC78K3 (Note 7)

* Required Tools



# µPD78XXX Series Development Tools Selection Guide (cont)

Part Number (Note 1)	Emulator*	Emulation Probe*	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Relocatable Assembler (Note 11)	Structured Assembler (Note 12)	C Compiler (Note 13)
μPD78312AGQ	IE-78310A-R	(Note 6)	µPD78P312AGQ/RQ	PA-78P312GQ	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78312AL	IE-78310A-R	EP-78310L	µPD78P312AL	PA-78P312L	RA78K3	ST78K3	CC78K3 (Note 7)
µPD78P312ACW	IE-78310A-R	(Note 5)	<u>-</u>	PA-78P312CW	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78P312ADW	IE-78310A-R	(Note 5)	-	PA-78P312CW	RA78K3	ST78K3	CC78K3 (Note 7)
µPD78P312AGF-3BE	IE-78310A-R	EP-78310GF		PA-78P312GF	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78P312AGQ	IE-78310A-R	(Note 6)	- 	PA-78P312GQ	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78P312AL	IE-78310A-R	EP-78310L	-	PA-78P312L	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78P312AR	IE-78310A-R	(Note 6)	-	PA-78P312GQ	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78320GJ-5BJ	IE-78320-R	(Note 8)	(Note 8)	(Note 8)	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78320L	IE-78320-R	(Note 8)	(Note 8)	(Note 8)	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78322GJ-5BJ	IE-78320-R	(Note 8)	(Note 8)	(Note 8)	RA78K3	ST78K3	CC78K3 (Note 7)
μPD78322L	IE-78320-R	(Note 8)	(Note 8)	(Note 8)	RA78K3	ST78K3	CC78K3 (Note 7)
μPD71P301GF-3BE				PA-71P301GF	<b>.</b> .	-	-
μPD71P301GQ-36	· •	-	_	PA-71P301GQ		-	· · -
μPD71P301KA (Note 9)	-	- 1997 1997 - 1997 1997 - 1997	_	PA-71P301KA	-		-
μPD71P301KB (Note 10)	-	· · · · · · · · · · · · · · · · · · ·		PA-71P301KB	-	an a	- Alexandri
μPD71P301L	-		-	PA-71P301L		-	

* Required Tools

#### Notes:

(1)	•	
	Package	Description
	CW	64-pin plastic shrink DIP
	DW	64-pin ceramic shrink DIP with window
	GC-3B8	64-pin ceramic plastic miniflat (14mm x 14mm
	GF-3BE	64-pin plastic miniflat (Resin Thickness: 2.7mm)
	GJ-5BG	94-pin plastic miniflat
	GJ-5BJ	74-pin plastic miniflat (20mm x 20mm)
	GQ	64-pin plastic QUIP
	GQ-36	64-pin plastic QUIP
	KA	44-pin ceramic LCC with window
	KB	64-pin ceramic LCC with window
	L	44-pin PLCC (μPD71P301L)
		68-pin PLCC (μPD78213/214/P214L,
		μPD78320/322L)
		84 pin PLCC (μPD78220L, μPD78224L)
	RQ	64-pin ceramic QUIP with window

- ( 2) By using the specified adapter, the PG-1500 EPROM programmer can be used to program the EPROM/OTP device.
- ( 3) The EP-78210GJ is a 68-pin PLCC to 74-pin miniflat package adapter for use with the EP-78210L emulation probe.
- (4) The EP-78220GJ is a 84-pin PLCC to 94-pin miniflat package adapter for use with the EP-78220L emulation probe.
- (5) The emulation probe for the 64-pin shrink DIP package (EP-78310CW) is supplied with the IE.
- ( 6) The emulation probe for the 64-pin QUIP package (EP-78310GQ) is supplied with the IE.
- (7) There are two C Compilers for the μPD783XX devices: CC78K3 from NEC Electronics and one from Lattice Corporation. A source code debugger is included with CC78K3 package.
- (8) Please contact your NEC Sales Representative for further information.
- (9) Sockets for the μPD71P301KA (44-pin LCC package) are available from Yamaichi (IC61-0444-030).
- (10) Sockets for the μPD71P301KB (64-pin LCC package) are available from NEC Electronics (EV-9200G-64) in sets of five.

# $\mu \text{PD78XXX}$ Series Evaluation Boards Selection Guide

Part Number	Design/Development Boards	<b>Evaluation Boards</b>
μPD7821X	EB-78210-PC	DDK-78K2
μPD7822X	EB-78220-PC	DDK-78K2
μPD7831X		DDK-78310A
μPD7832X	EB-78320-PC	

#### Notes:

(1) The following relocatable packages are available:

RA78K2-D52 RA78K2-VVT1	(MS-DOS®) (VAX/VMS™)	Relocatable assembler for 78XX series
RA78K3-D52 RA78K3-VVT1	(MS-DOS) (VAX/VMS)	Relocatable assembler for 78XX series

- (2) The ST78K2 structured assembler processor is provided with RA78K2. The ST78K3 structured assembler preprocessor is provided with RA78K3 and CC78K3.
- (3) The following C Compiler packages are available:

CCMSD-I5DD-782XX	(MS-DOS)	For µPD783XX series
CC78K3-D52	(MS-DOS)	
CC78K3-VVT1	(VAX/VMS)	

MOS-DOS is a trademark of Microsoft Corporation. VAX and VMS are trademarks of Digital Equipment Corporation.

# $\mu$ PD78XXX Series



1-34



# DSP and Speech Development Tools Selection Guide

# DSP and Speech Development Tools Selection Guide

Part Number (Note 7)	Emulator	Evaluation Board	Assembler (Note 1)	Simulator (Note 2)	EPROM/OTP Device	PG-1500 Adapter (Note 3)
μPD7720AC	EVAKIT-7720B		ASM77	SIM77	μPD77P20D	(Note 5)
μPD7720AL	EVAKIT-7720B (Note 4)		ASM77	SIM77		
μPD77P20D	EVAKIT-7720B		ASM77	SIM77		
μPD77C20AC	EVAKIT-7720B		ASM77	SIM77	μPD77P20D	(Note 5)
μPD77C20AL	EVAKIT-7720B (Note 4)		ASM77	SIM77	_	
μPD77C20ALK	EVAKIT-7720B (Note 4)		ASM77	SIM77		
μPD77220L	EVAKIT-77220		RA77230	SM77230	-	
μPD77220R	EVAKIT-77220		RA77230	SM772230	μPD77P220R	PA-77P230R
μPD77P220R	EVAKIT-77220		RA77230	SM77230		PA-77P230R
μPD77230AR	EVAKIT-77230	DDK-77230	RA77230	SM77230	μPD77P230R	PA-77P230R
μPD77P230R	EVAKIT-77230	DDK-77230	RA77230	SM77230		PA-77P230R
μPD77C25C	EVAKIT-77C25		RA77C25	· ····	μPD77P25C/D	PA-77P25C
μPD77C25L	EVAKIT-77C25 (Note 4)		RA77C25		μPD77P25L	
μPD77P25C	EVAKIT-77C25		RA77C25			PA-77P25C
μPD77P25D	EVAKIT-77C25		RA77C25			PA-77P25C
μPD77P25L	EVAKIT-77C25 (Note 4)		RA77C25			
μPD7755C	NV-300 System	EB-7759			μPD77P56C	PA-77P56C
μPD7755G	NV-300 System	EB-7759 (Note 6)	_		μPD77P56G	PA-77P56C
μPD7756C	NV-300 System	EB-7759			μPD77P56C	PA-77P56C
μPD7756G	NV-300 System	EB-7759 (Note 6)	-		μPD77P56G	PA-77P56C
μPD77P56C	NV-300 System	EB-7759				PA-77P56C
μPD77P56G	NV-300 System	EB-7759 (Note 6)	_			PA-77P56C
μPD7757C	NV-300 System	EB-7759				
μPD7757G	NV-300 System	EB-7759 (Note 6)	-		-	
μPD7759C	NV-300 System	EB-7759	-			
μPD7759GC	NV-300 System	EB-7759				-
μPD77810L	IE-77810		RA77810			
μPD77810R	IE-77810	_	RA77810			_

# **DSP and Speech**

#### Notes:

(1) The following assemblers are available:

Part Number	Description
ASM77-D52	Assembler for 7720 (MS-DOS®)
RA77C25-D52	Assembler for 77C25 (MS-DOS)
RA77C25-VVT1	Assembler for 77C25 (VAX/VMS™)
RA77230-D52	Assembler for 77230 (MS-DOS)
RA77230-VVT1	Assembler for 77230 (VAX/VMS)
RA77230-VXT1	Assembler for 77230 (VAX/UNIX ™)
	4.2 BSD or Ultrix™)

(2) The following simulators are available:

Description
Simulator for 7720 (MS-DOS)
Simulator for 77230 (VAX/UNIX)
Simulator for 77230 (VAX/UNIX
4.2 BSD or Ultrix)

- (3) By using the specified adapter, the NEC PG-1500 EPROM programmer can be used to program the EPROM/OTP device.
- (4) Please check with your NEC Sales Representative on the availability of a PLCC emulation probe.
- (5) The µPD77P20D can be programmed using the EVAKIT-7720B.
- (6) The EB-7759 comes with an emulation probe for only the 18-pin DIP.

#### (7) Packages:

#### Package Description

- C 18, 28, or 40-pin plastic DIP
- D 28-pin ceramic DIP
- G 24-pin plastic SOP
- GC 52-pin plastic miniflat
- L 44-or 68-pin PLCC
- LK 28-pin PLCC
- R 68-pin ceramic PGA

MS-DOS is a registered trademark of Microsoft Corporation. VAX, VMS, and Ultrix are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.



# PG-1500 Programming Adapters Selection Guide

#### Socket Adapters and Adapter Modules

Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)	Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)		
Standard 27XXX E	PROM Devices		μPD75XXX Series Devices (cont)				
μPD27256 (12.5 V)	-	027A Board	μPD75P316GF	PA-75P308GF	04A Board		
μPD27256 (21 V)	-	027A Board	μPD75P328GC	PA-75P328GC	04A Board		
μPD27C256		027A Board	μPD75P402C	(Note 3)	027A Board		
μPD27C256A		027A Board	μPD75P402CT	PA-75P402CT	027A Board		
μPD27C512		027A Board	μPD75P402GB	PA-75P402GB	027A Board		
μPD27C1000	-	027A Board	μPD75P516GF	PA-75P516GF	04A Board		
μPD27C1001		027A Board	μPD75P516K	PA-75P516K	04A Board		
μPD27C1024	-	027A Board	pPD78XX Series	Devices			
#PD75XX Series L	Devices		µPD78CP14CW	PA-78CP14CW	027A Board		
μPD75P54CS	PA-75P54CS	04A Board	µPD78CP14DW	PA-78CP14CW	027A Board		
μPD75P54G	PA75P54CS	04A Board	μPD78CP14GQ	PA-78CP14GQ	027A Board		
μPD75P56CS	PA-75P56CS	04A Board	μPD78CP14GF	PA-78CP14GF	027A Board		
μPD75P56G	PA-75P56CS	04A Board	μPD78CP14L	PA-78CP14L	027A Board		
μPD75P64CS	PA-75P54CS	04A Board	μPD78CP14R	PA-78CP14GQ	027A Board		
μPD75P64G	PA75P54CS	04A Board	PD78XXX Serie هر	s Devices			
μPD75P66CS	PA-75P56CS	04A Board	μPD71P301GF	PA-71P301GF	027A Board		
μPD75P66G	PA-75P56CS	04A Board	μPD71P301GQ	PA-71P301GQ	027A Board		
#PD75XXX Series	Devices		μPD71P301KA	PA-71P301KA	027A Board		
μPD75P008CU	PA-75P008CU	04A Board	μPD71P301KB	PA-71 P301 KB	027A Board		
μPD75P008DU	PA-75P008CU	04A Board	μPD71P301L	PA71P301L	027A Board		
μPD75P008GB	PA-75P008CU	04A Board	μPD78P214CW	PA-78P214CW	027A Board		
μPD75P028CW	PA-75P028CW	04A Board	μPD78P214GC	PA-78P214GC	027A Board		
μPD75P028GC	PA-75P028GC	04A Board	μPD78P214GJ	PA-78P214GJ	027A Board		
μPD75P108BCW	PA75P108CW	04A Board	μPD78P214GQ	PA-78P214GQ	027A Board		
μPD75P108CW	PA-75P108CW	04A Board	μPD78P214L	PA-78P214L	027A Board		
μPD75P108DW	PA75P108CW	04A Board	μPD78P224GJ	PA78P224GJ	027A Board		
μPD75P108BGF	PA75P116GF	04A Board	μPD78P224L	PA-78P224L	027A Board		
μPD75P108G	PA75P116GF	04A Board	μPD78P312ACW	PA-78P312CW	027A Board		
μPD75P116CW	PA75P108CW	04A Board	μPD78P312ADW	PA-78P312CW	027A Board		
μPD75P116GF	PA-75P116GF	04A Board	μPD78P312AGF	PA-78P312GF	027A Board		
μPD75P216ACW	PA-75P216ACW	04A Board	μPD78P312AGQ	PA-78P312GQ	027A Board		
μPD75P308GF	PA75P308GF	04A Board	μPD78P312AL	PA-78P312L	027A Board		
"PD75P308K	PA-75P308K	04A Board	"PD78P312AR	PA-78P312GQ	027A Board		

NE	C

Socket Adapters	and Adapter	Modules	(cont)

Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)						
V-Series Devices								
μPD70P322K	PA-70P322L	027A Board						
Digital Signal	Processors							
μPD77P56C	PA-77P56C	04A Board						
μPD77P56G	PA-77P56C	04A Board						
μPD77P25C	PA77P25C 027A Boa							
μPD77P25D	PA-77P25C 027A Board							
μPD77P230R	PA-77P230R	027A Board						

#### Notes:

- (1) All socket adapters must be purchased separately.
- (2) The 27A and 04A Adapter Modules are shipped with the PG-1500.
- (3) The μPD75P402C does not require a programming socket adapter. It can be plugged directly into the 027A Board.

# **COMMUNICATIONS CONTROLLERS**

# **Communications Controllers**

Section 2 Communications Controllers	
μ <b>PD7201A</b> Multiprotocol Serial Communications Controller	2-3
PD72001     CMOS, Advanced Multiprotocol Serial     Communications Controller	2-21

NEC



# µPD7201A Multiprotocol, Serial Communications Controller

#### Description

The  $\mu$ PD7201A is a dual-channel, multiprotocol, serial communications controller (MPSCC) that satisfies a wide variety of serial data communication requirements in computer systems. Its basic function is as a serial-to-parallel, parallel-to-serial converter/controller, and it is software configurable for serial data communications applications.

The  $\mu$ PD7201A can handle asynchronous and synchronous byte-oriented protocols, such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. It also supports virtually any other serial protocol for applications other than data communications.

The  $\mu$ PD7201A can generate and check cyclic redundancy check (CRC) codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where modem controls are not needed, they can be used for general-purpose I/O.

#### Features

- Two independent full-duplex serial channels
- □ Four independent DMA channels for send/receive data for both serial inputs/outputs
- Programmable interrupt vectors and interrupt priorities
- Modem control signals
- □ Variable software programmable data rate, up to 1 Mb/s at 5-MHz system clock
- Double-buffered transmitter data and quadruplebuffered receive data
- □ Selectable CRC algorithm
- □ Selection of interrupt, DMA, or polling mode of operation
- □ Asynchronous operation
  - Character length: 5, 6, 7, or 8 bits
  - Data clock frequency: 1x, 16x, 32x, or 64x data rate
  - Parity: odd, even, or disable
  - Break generation and detection
  - Interrupt on parity, overrun, or framing errors

- $\hfill\square$  Monosync, bisync, and external sync operations
  - Software selectable sync characters
  - Automatic sync insertion
  - CRC generation and checking
- □ HDLC and SDLC operations
  - Abort sequence generation and detection
  - Automatic zero insertion and detection
  - Address field recognition
  - CRC generation and checking
  - I-field residue handling
- □ N-channel MOS technology
- □ Single +5V power supply; interface to most microprocessors including 8080, 8085, 8086, and others.
- □ Single-phase TTL system clock: up to 5 MHz
- □ Plastic and ceramic dual-in-line packages

#### **Ordering Information**

Part Number	Package Type
μPD7201AC	40-pin plastic DIP
μPD7201AD	40-pin ceramic DIP

#### **Pin Configuration**

	$\sim$		1
СLК 🔲 1		40	D v _{cc}
RESET 2		39	CTSA
DCDA 🔤 3		38	RTSA
RxCB 🔲 4		37	TxDA
DCDB C 5		36	TXCA
СТЅВ 🔲 6		35	RXCA
TxCB 7		34	RxDA
TxDB 🛛 8		33	SYNCA
RxDB 🖸 9	₹	32	WAITA/DRORXA
RTSB/SYNCB 10	µPD7201A	31	DTRA/HAO
WAITB/DRQTXA	Ğ	30	PRO/DRQTxB
D ₇ 🗖 12	л Д	29	PRI/DRORxB
D ₆ [] 13		28	דאום
D ₅ 🗖 14		27	INTAK
D4 🖸 15		26	DTRB/HAI
D ₃ 🗖 16		25	D B/Ā
D ₂ 17		24	
D, C 18		23	
D ₀ 🖸 19		22	RO
V _{ss} 20		21	



#### **Pin Identification**

No.	Symbol	Function
1	CLK	System clock input
2	RESET	Reset input
3	DCDA	Data carrier detect input A
4	RxCB	Receiver clock input B
5	DCDB	Data carrier detect input B
6	CTSB	Clear to send input B
7	TxCB	Transmitter clock input B
8	TxDB	Transmit data output B
9	RxDB	Receive data input B
10	RTSB/SYNCB	Request to send output B/Synchro- nization input/output B
11	WAITB/DRQTxA	Wait output B/Transmit DMA request output A
12-19	D ₇ -D ₀	Data Bus
20	V _{SS}	Ground
21	WR	Write strobe input
22	RD	Read strobe input
23	CS	Chip select input
24	C/D	Control/data input
25	B/Ā	Channel select input
26	DTRB/HAI	Data terminal output B/Hold acknowledge input
27	INTAK	Interrupt acknowledge input
28	INT	Interrupt request output
29	PRI/DRQRxB	Interrupt priority input/Receive DMA request output B
30	PRO/DRQTxB	Interrupt priority output/Transmit DMA request output B
31	DTRA/HAO	Data terminal output A/Hold acknowledge output
32	WAITA/DRQRxA	Wait output A/Receive DMA request output A
33	SYNCA	Synchronization input/output A
34	RxDA	Receive data input A
35	RxCA	Receiver clock input A
36	TxCA	Transmitter clock input A
37	TxDA	Transmit data output A
38	RTSA	Request to send output A
39	CTSA	Clear to send input A
40	V _{CC}	+5 V

#### **Pin Functions**

#### **CLK [System Clock]**

A TTL-level clock signal is applied to the CLK input. The system clock frequency must be at least 4.5 times the data rate.

## **RESET** [Reset]

A low on the RESET input (one complete CLK cycle minimum) initializes the MPSCC to the following conditions: receivers and transmitters disabled, TxDA and TxDB set to marking (high), and modem controls (DTRA, DTRB, RTSA, RTSB) set high.

In addition, all interrupts are disabled and all interrupt and DMA requests are cleared. All control registers must be rewritten after a reset before transmission or reception can be restarted.

#### DCDA, DCDB [Data Carrier Detect]

The DCDA and DCDB inputs go low to indicate the presence of valid serial data at RxD. The MPSCC may be programmed so that the receiver is enabled only when DCD is low, and so that any change in state that lasts longer than the minium specified pulse width causes an interrupt and latches the DCD status bit to the new state.

#### RxCA, RxCB [Receiver Clock]

The  $\overline{\text{RxCA}}$  and  $\overline{\text{RxCB}}$  inputs control sampling and shifting serial data at RxDA and RxDB. The MPSCC can be programmed so that the clock rate is 1, 16, 32, or 64 times the data rate. RxD is sampled on the rising edge of  $\overline{\text{RxC}}$ .  $\overline{\text{RxC}}$  features a Schmitt-trigger input for relaxed rise and fall time requirements.

## TxCA, TxCB [Transmitter Clock]

The TxCA and TxCB inputs control the rate at which data is shifted out at TxDA and TxDB. The MPSCC can be programmed so that the clock rate is 1, 16, 32, or 64 times the data rate. Data changes on the falling edge of TxC. TxC features a Schmitt-trigger input for relaxed rise and fall time requirements.

#### TxDA, TxDB [Transmit Data]

TxDA and TxDB output serial data from the MPSCC. (Marking high).

NEC

#### **RxDA, RxDB [Receive Data]**

RxDA and RxDB input serial data to the MPSCC. (Marking high.)

#### CTSA, CTSB [Clear to Send]

The CTSA and CTSB inputs go low to indicate that the receiving modem or peripheral is ready to receive data from the MPSCC. The MPSCC can be programmed so that the transmitter is enabled only when CTS is low. As with DCD, the MPSCC can be programmed to cause an interrupt and latch the new state when CTS changes state for longer than the minimum specified pulse width.

#### **RTSA, RTSB [Request to Send]**

When the MPSCC is in one of the synchronous modes, RTSA and RTSB are general-purpose outputs that can be set or reset with commands to the MPSCC. In asynchronous mode, RTS is active (low) as soon as it is programmed on. However, when programmed off, RTS remains active until the transmitter is completely empty. This feature simplifies the programming required to perform modem control.

#### SYNCA, SYNCB [Synchronization]

The function of the SYNCA and SYNCB pins depends on the <u>MPSCC</u> operating mode. In asynchronous mode, <u>SYNC</u> is used as an input that the processor can read. It can be programmed to generate an interrupt in the same manner as DCD or CTS.

In external sync mode, SYNC is an active-low input that notifies the MPSCC that synchronization has been achieved (see timing waveforms for details). Once synchronization is achieved, SYNC should be held low until synchronization is lost or a new message is about to start.

In internal synchronization modes (monosync, bisync, HDLC), <u>SYNC</u> is an output which is active (low) whenever a SYNC character match is made. There is no qualifying logic associated with this function. Regardless of character boundaries, <u>SYNC</u> is active on any match.

#### DRQTxA, DRQTxB, DRQRxA, DRQRxB [DMA Request]

When a DRQTxA, DRQTxB, DRQRxA, or DRQRxB output is active (high), it indicates to a DMA controller that a transmitter or receiver is requesting a DMA data transfer.

#### WAITA, WAITB [Wait]

The WAITA and WAITB outputs synchronize the processor with the MPSCC when block transfer mode is used. It can be programmed to operate with either the receiver or transmitter, but not both simutaneously. WAIT is normally inactive (high). If the processor tries, for example, to perform an inappropriate data transfer such as a write to the transmitter when the transmitter buffer is full, the WAIT output for the channel will go active (low) until the MPSCC is ready to accept the data. The CS, C/D, B/A, RD, and WR inputs must remain stable while wait is active. (Open drain.)

#### D₀-D₇ [Data Bus]

The three-state data bus lines are connected to the system data bus. Data or <u>status</u> from the MPSCC is output on these lines when CS and RD are active (low). Data and commands are latched into the MPSCC on the rising edge of WR when CS is active.

#### WR [Write Strobe]

A low on the WR input (with either CS during the read cycle or HAI during a DMA cycle) notifies the MPSCC to write data or control information to the device.

#### **RD** [Read Strobe]

A low on the  $\overline{\text{RD}}$  input (with either  $\overline{\text{CS}}$  during a read cycle or  $\overline{\text{HAI}}$  during a DMA cycle) notifies the MPSCC to read data or status from the device.

#### **CS** [Chip Select]

A low on the  $\overline{CS}$  input allows the MPSCC to transfer data or commands during a read or write cycle.

#### C/D [Control/Data]

The C/D input, with RD,  $\overline{WR}$ ,  $\overline{CS}$ , and B/A selects the data register (C/D=0) or the control and status registers (C/D=1) for access over the data bus.

#### **B/A** [Channel Select]

B/A input low selects channel A and B/A high selects channel B for access during a read or write cycle.

#### DTRA, DTRB [Data Terminal]

The DTRA and DTRB outputs are general-purpose, active-low outputs which may be set or reset with commands to the MPSCC.



#### INTAK [Interrupt Acknowledge]

The processor generates two or three INTAK low pulses (depending on the processor type) to signal all peripheral devices that an interrupt acknowledge sequence is taking place. During the interrupt acknowledge sequence, the MPSCC, if so programmed, places information on the data bus to vector the processor to the appropriate interrupt service location.

#### **INT** [Interrupt Request]

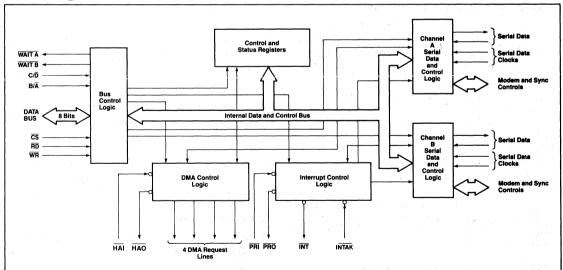
The INT output is pulled low when an internal interrupt request is accepted. (Open drain.)

#### PRI [Interrupt Priority In]

The PRI input informs the MPSCC that the highest priority device is requesting an interrupt. It is used with PRO to implement a priority-resolution daisychain when there is more than one interrupting device. The state of PRI and the programmed interrupt mode determine the MPSCC's response to an interrupt acknowledge sequence.

## PRO [Interrupt Priority Out]

The PRO output is active (low) when PRI is active (low) and the MPSCC is not requesting an interrupt (INT is not active).


The active state informs the next lower priority device that there are no higher priority interrupt requests pending during an acknowledge sequence.

#### HAI [Hold Acknowledge In]

The HAI input goes low to notify the MPSCC that the host processor has acknowledged the DMA request and has placed itself in the hold state. The MPSCC then performs a DMA cycle for the highest priority outstanding DMA request, if any.

#### HAO [Hold Acknowledge Out]

The  $\overline{\text{HAO}}$  output, with  $\overline{\text{HAI}}$ , implements a priorityresolution daisychain for multiple DMA devices.  $\overline{\text{HAO}}$ is active (low) when  $\overline{\text{HAI}}$  is active and there are no DMA requests pending in the MPSCC.



#### **Block Diagram**

# **Absolute Maximum Ratings**

 $T_A = 25^{\circ}C$ 

Power Supply, V _{CC}	-0.5 to + 7.0 V
Input Voltage, V _I	-0.5 to + 7.0 V
Output Voltage, V ₀	-0.5 to + 7.0 V
Operating temperature, T _{OPT}	0°C to + 70°C
Storage Temperature, T _{STG}	-65°C to + 150°C

**Comment:** Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Capacitance

 $T_A = 25^{\circ}C; V_{CC} = GND = OV$ 

	Limits				
Parameter	Symbol	Min	Max	Unit	<b>Test Conditions</b>
Input Capacitance	CIN		10	pF	fc = 1MHz
Output Capacitance	COUT		15	pF	Unmeasured pins
I/O Capacitance	CI/O		20	pF	returned to GND.

#### **DC Characteristics**

 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5 \text{ V} \pm 10\%$ 

· · ·		L	imits.		
Parameter	Symbol	Min	Max	Unit	<b>Test Conditions</b>
Input low voltage	VIL	-0.5	+0.8	V	
Input high voltage	VIH	+2.0	V _{CC} +0.5	۷	
Output low voltage	V _{OL}		+0.45	۷	$I_{0L} = +2.0 \text{ mA}$
Output high Voltage	V _{OH}	+2.4		۷	$I_{OH} = 200\mu A$
Input leakage current	կլ		±10	μA	$V_{IN} = V_{CC}$ to 0 V
Output leakage current	lol		±10	μA	V _{OUT} =V _{CC} to 0 V
V _{CC} supply current	Icc		230	mA	

#### **AC Characteristics**

 $T_A$  = 0°C to + 70°C;  $V_{CC}$  = +5 V  $\pm$  10%

		L			
Parameter	Symbol	Min	Max	Unit	<b>Test Conditions</b>
Clock cycle	t _{CY}	200	4000	ns	
Clock high width	t _{CH}	70	2000	ns	
Clock low width	t _{CL}	70	2000	ns	

#### **AC Characteristics (cont)**

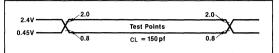
 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5 \text{ V} \pm 10\%$ 

Limits										
Parameter	Symbol	Min	Max	Unit	<b>Test Conditions</b>					
Clock rise time	tr	0	30	ns						
Clock fall time	tf	0	30	ns						
Ad <u>dre</u> ss setup to RD	t _{AR}	0		ns						
Addre <u>ss</u> hold from RD	t _{RA}	0	<u></u>	ns						
RD pulse width	t _{RR}	200		ns						
Data output delay from address	t _{AD}		200	ns						
Data output delay from RD	t _{RD}		200	ns						
Data f <u>lo</u> at delay from RD	t _{DF}	10	100	ns						
Addre <u>ss</u> setup from WR	t _{AW}	0		ns						
Addre <u>ss</u> hold from WR	t _{WA}	0		ns						
WR pulse width	tww	200		ns						
Da <u>ta s</u> etup to WR	t _{DW}	130		ns						
Data <u>hold</u> from WR	t _{WD}	0		ns						
PRO delay from PRI	t _{PIPO}		100	ns						
PRO delay from INTAK	t _{IAPO}		200	ns						
PRI_setup to_INTAK	t _{PHA}	0		ns						
PRI h <u>old</u> from INTAK	t _{IAPI}	20		ns						
INTAK pulse width	t _{IAIA}	200		ns						
Data output delay from INTAK	tiad		200	ns						
Data <u>float d</u> elay from INTAK	t _{DF}	10	100	ns						
Request hold from RD/WR	t _{CQ}		150	ns						
HAI setup to RD/WR	thic	300		ns						
HAI hold from RD/WR	tCHI	0		ns						
HAO delay from HAI	t _{HIHO}		100	ns						
Data clock cycle	t _{DCY}	400		ns	RxC, TxC					

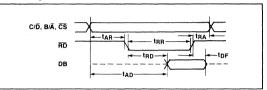


#### **AC** Characteristics (cont)

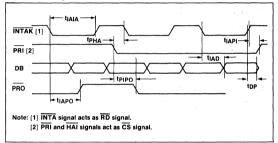
 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5 \text{ V} \pm 10\%$ 


		·· Li	imits		
Parameter	Symbol	Min	Max	Unit	<b>Test Conditions</b>
Data clock high width	tDCH	180		ns	RxC, TxC
Data clock low width	t _{DCL}	180		ns	RxC, TxC
Tx data delay	t _{TCTD}		300	ns	x1 Mode
from TxC			1000	ns	x16, x32, x64 Mode
Rx <u>da</u> ta setup to RxC	t _{rdrc}	0		ns	
Rx Data_hold from RxC	^t rcrd	140		ns	
INT delay Time from Tx Data	t _{IDI}		4–6	t _{CY}	
INT delay Time from RxC	trci		7-11	t _{CY}	
CTS, DCD, SYNC high pulse width	tмн	200		ns	
CTS, DCD, SYNC low pulse width	t _{ML}	200		ns	· · · · · · · · · · · · · · · · · · ·
External INT from CTS, DCD, SYNC	t _{MF}		500	ns	
Recovery time between controls	t _{RV}	300		ns	
WAIT delay time from Address	tawt		120	ns	
SYNC setup to RxC	trcs		100	ns	

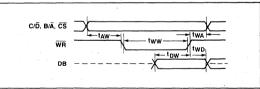
Note: 1. RESET must be active for a minimum of one complete CLK cycle.


2. In all modes system clock rate must be 4.5 times data rate.

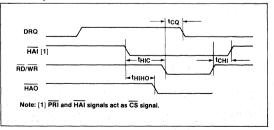
#### **Timing Waveforms**


AC Waveform Measurement Points



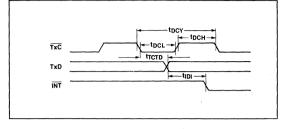

#### **Read Cycle**



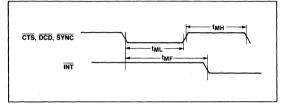

#### **INTAK Cycle**



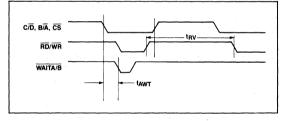







## **Timing Waveforms (cont)**


#### Transmit Data Cycle

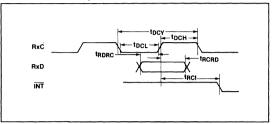


#### Other Timing

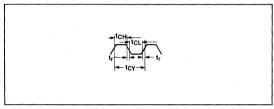


#### Read/Write Cycle (Software Block Transfer Mode)

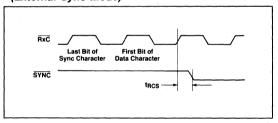



#### Programming the MPSCC

Software operation of the MPSCC includes consistent register organization and high-level command structure to help minimize the number of operations required to implement complex protocol designs. The MPSCC also has extensive interrupt and status reporting capabilities to simplify programming.


#### **The MPSCC Registers**

The MPSCC interfaces to the system software with a number of control and status registers associated with each channel (see tables 1 and 2). Commonly used commands and status bits are accessed directly through control and status register 0. Other functions are accessed indirectly with a register pointer to minimize the address space that must be dedicated to the MPSCC.


#### Receive Data Cycle



Clock



#### Sync Pulse Generation (External Sync Mode)



All control and status registers except CR2 are separately maintained for each channel. Control and status register 2 are linked with the overall operation of the MPSCC and have different meanings when addressed through different channels.

Before intializing the MPSCC, first program control register 2A (2B if desired) to establish the MPSCC processor/bus interface mode. Each channel may then be programmed for separate use beginning with control register 4 to set the protocol mode for that channel. The remaining registers may then be programmed in any order.

Control Register	Function
0	Frequently used commands and register pointer control
1	Interrupt control
2	Processor/bus interface control
3	Receiver control
4	Mode control
5	Transmitter control
6	Sync/address character
7	Sync character

#### Table 1. Control Registers

#### **Control Register 0**

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
CRC C Comr			Command	ļ	Reg	jister Poir	nter

#### Register Pointer [D₀-D₂]

The register pointer specifies which register number is accessed at the next control register write or status register read. After a hardware or software reset, the register pointer is set to zero. Therefore, the first control byte goes to control register 0. When the register pointer is set to a value other than zero the next control or status ( $C/\overline{D} = 1$ ) access is to the specified register. The pointer is then reset to 0 by setting the register pointer.

#### Commands [D₃-D₅]

Commands commonly used during the operation of the MPSCC are grouped in control register 0. They include the following:

**Null [000] :** This command has no effect and is used only to set the register pointer or issue a CRC command.

Send Abort [001] : When operating in the HDLC mode, this command causes the MPSCC to transmit the HDLC abort code by issuing 8 to 13 consecutive 1s. Any data currently in the transmitter or the transmitter buffer is destroyed. After sending the abort, the transmitter reverts to the idle phase (flags). When using the Tx byte count mode enable (D₆ of CR1), the send abort command is automatically issued when an underrun condition occurs.

 	change hoge the
 Status Register	Function
 0	Buffer and "external/status" status
1	Received character error and special condition status
2 (Channel B only)	Interrupt Vector
3	Tx byte count register, low byte
 4	Tx byte count register, high byte

Table 2. Status Registers

**Reset External Status Interrupt [010] :** When the external/status change flag is set, the condition of bits  $D_3$ - $D_7$  of status register 0 are latched to capture the short pulses that may occur. The reset external/status interrupts command reenables the latches so that new interrupts may be sensed.

**Channel Reset [011]:** This command has the same effect on a single channel as an external reset at pin 2. A channel reset command to channel A rests the internal interrupt prioritization logic. This does not occur when a channel reset command is issued to channel B. All control registers associated with the channel to be reset must be reinitialized. After a channel reset, wait at least four system clock cycles before writing new commands or controls to that channel.

Enable Interrupt on Next Character [100] : Issue this command at any time when operating the MPSCC in an interrupt on first received character mode. This command must be issued at the end of a message to reenable the interrupt logic for the next received character (first character of the next message).

**Reset Pending Transmitter Interrupt/DMA Request** [101]: A pending transmitter buffer empty interrupt or DMA request can be reset without sending another character by issuing this command (typically at the end of a message). A new transmitter buffer empty interrupt or DMA request is not made until another character has been loaded and transferred to the transmitter shift register or when, if operating in synchronous mode, the first CRC character has been sent.

**Error Reset [110]:** This command resets a special receive condition interrupt. It also reenables the parity and overrun error latches that allow error checking at the end of a message.

End of Interrupt [111] [Channel A Only] : Once an interrupt request has been issued by the MPSCC, all lower priority internal and external interrupts in the daisy chain are held off to permit the current interrupt to be serviced while allowing higher priority interrupts to occur. At some point in the interrupt service routine (generally at the end), the end of the interrupt command must be issued to channel A to reenable the daisy chain and allow any pending lower priority internal interrupt requests to occur. The EOI command must be sent to channel A for interrupts that occured on either channel.

#### CRC Control Commands [D₆-D₇]

The following commands control the operation of the CRC generator/checker logic:

**Null [00] :** This command has no effect and is used when issuing other commands or setting the register pointer.

**Reset Receiver CRC Checker [01] :** This command resets the CRC checker to zero when the channel is in a synchronous mode. It resets to all 1s when in an HDLC mode.

**Reset Transmitter CRC Generator [10] :** This command resets the CRC generator to zero when the channel is in a synchronous mode. It resets to all 1s when in an HDLC mode.

**Reset Idle/CRC Latch [11] :** This command resets the idle/CRC latch so that when a transmitter underrun condition occurs (transmitter has no more characters to send), the transmitter enters the CRC phase of operation and begins to send the 16-bit CRC character calculated up to that point. The latch is then set so that if the underrun condition persists, idle characters are sent following the CRC. After a hardware or software reset, the latch is in the set state. This latch is automatically reset after the first character has been loaded into the Tx buffer in the HDLC mode.

## **Control Register 1**

D ₇	· D ₆	D ₅	DĄ	D ₃	D ₂	D1	Do		
Wait Func- tion Enable	Tx Byte Count Mode Enable	Wait on Receive Trans- mitter	Receiver Interrupt Mode		Condi- tion Affects Vector	Trans- mitter Interrupt Enable	Ext/ Status INT Enable		
D ₇	D ₆	D ₅	DĄ	D ₃	D2	D ₁	D ₀		
	·		Low	Byte					
D ₇	D ₆	D ₅	D4	D ₃	D2	D ₁	D ₀		
High Byte									

#### External/Status Interrupt Enable [D₀]

When this bit is set to one, the MPSCC issues an interrupt whenever any of the following conditions occur:

- Transition of the DCD, CTS or SYNC input pin
- Entering or leaving synchronous hunt phase, break detection or termination
- HDLC abort detection or termination
- Idle/CRC latch set (CRC being sent)
- After ending flag is sent in the HDLC mode

#### Transmitter Interrupt Enable [D₁]

When this bit is set to one, the MPSCC issues an interrupt when the following conditions occur:

- A character currently in the transmitter buffer is transferred to the shift register (transmitter buffer becomes empty), or
- The transmitter enters the idle phase and begins transmitting sync or flag characters.
- The Tx byte count mode enable bit is set (D₆ of CR1 = 1). The 7201A will automatically issue a Tx interrupt or DMA request when the transmitter becomes enabled (D₃ of CR5 = 1).

#### **Condition Affects Vector [D2]**

When this bit is set to zero, the fixed vector programmed in CR2B during MPSCC initialization is returned in an interrupt acknowledge sequence. When this bit is set to one, the vector is modified to reflect the condition that caused the interrupt. (Programmed in channel B for both channels).

#### Receiver Interrupt Mode [D₃ - D₄]

This field controls how the MPSCC interrupt/DMA logic handles the character received condition.

**Receiver Interrupts/DMA Request Disabled [00]**: The MPSCC does not issue an interrupt or a DMA request when a character has been received.

Interrupt/DMA on First Received Character Only [01]: In this mode the MPSCC issues an interrupt only for the first character received after an enable interrupt/DMA on first character command (CR0) has been given. If the channel is in a DMA mode, a DMA request is issued for each character received, including the first. In general, use this mode whenever the MPSCC is in a DMA or block transfer mode. This will signal the processor that the beginning of an incoming message has been received.



Interrupt [and Issue a DMA Request] on All Received Characters [10]: In this mode an interrupt (and DMA request if the DMA mode is selected) is issued whenever there is a character present in the receiver buffer. A parity error is considered a special receive condition.

Interrupt [and Issue a DMA Request] on All Received Characters [11] : This mode is the same as the one above, except that a parity error is not considered a special receive condition. The following are considered special receive conditions:

- Receive overrun error
- Asynchronous framing error
- Parity error (if specified)
- HDLC end of message (final flag received)

#### Wait on Receiver/Transmitter [D₅]

If the wait function is enabled for block mode transfers, setting this bit to zero causes the MPSCC to issue a wait (WAIT output goes low) when the processor attempts to write a character to the transmitter while the transmitter buffer is full. Setting this bit to one causes the MPSCC to issue a wait when the processor attempts to read a character from the receiver while the receiver buffer is empty.

#### Tx Byte Count Enable [D₆]

Each channel has a 16-bit Tx byte count register used for automatic transmit termination. When this bit is set to one, the next two consecutive command cycle writes will be to the byte count register. The first byte is loaded into the lower 8 bits and the second to the upper 8 bits of the byte count register. The byte count register holds the number of transfers to be performed by the transmitter. A byte counter is incremented each time a transfer is performed until the value of the byte counter is equal to the value in the byte count register. When equal, interrupts or DMA requests will be stopped until the byte count enable bit is issued and a new byte count is loaded into the byte count register. If a transmit underrun occurs in the HDLC mode, and the byte count is not equal to the byte count register, an abort sequence will be sent automatically.

Also, when using the Tx byte count mode, a transmit interrupt or DMA request will automatically become active after issuing the TX enable command to CR5.

The Tx byte count mode can be cleared by either a channel reset command or a hardware reset.

#### Wait Function Enable [D₇]

Setting this bit to one enables the wait function selected by  $D_5$  of CR1.

#### **Control Register 2 (Channel A)**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀
Pin 10 SYNCB/ RTSB	Rx INT Mask	Int	errupt Veo	ctor	Priority		Mode lect

#### DMA Mode Select [D₀ - D₁]

Setting this field determines whether channel A or B is used in a DMA mode [data transfers are performed by a DMA controller], or in a non-DMA mode where transfers are performed by the processor in either a polled, interrupt, or block transfer mode. The functions of some MPSCC pins are also controlled by this field. See table 3.

#### Priority [D₂]

This bit selects the relative priorities of the various interrupt and DMA conditions according to the application requirements. See table 4.

#### Interrupt Vector Mode [D₃ - D₅]

This field determines how the MPSCC responds to an interrupt acknowledge sequence from the processor. See table 5.

#### Rx INT Mask [D₆]

This option is generally used in the DMA modes. Enabling this bit inhibits the interrupt from occuring when the interrupt/DMA request on first received character mode is selected. In other words, only a DMA request will be generated when the first character is received.

Table 3. DMA Mode Selection

	Channel				Pin Function					N
D1	Do	A	В	11	26	29	30		31	32
0	0	Non-DMA	Non-DMA	WAITB	DTRB	PRI	PRO		DTRA	WAITA
0	1	DMA	Non-DMA	DRQTxA	HAI	PRI	PRO	11	HAO	DRQRxA
1	0	DMA	DMA	DRQTXA	HAI	DRQRxB	DRQTxB	n Alta a a	HAO	DRQRxA
1	1	DMA	DMA	DRQTxA	DTRB	DRQRxB	DRQTxB		DTRA	DRQRxA

#### Table 4. DMA/Interrupt Priorities

	Ma	ode	DMA Priority					
D ₂	Channel A	Channel B	Relation	interrupt Priority Relation				
0	INT	INT		SRxA, RxA>TxA>SRxB, RxB>TxB>ExTA>ExTB				
1	INT	INT		SRxA, RxA>SRxB, RxB>TxA>TxB>ExTA>ExTB				
0	DMA	INT	RxA >TxA	SRxA, RxA>SRxB, RxB>TxB>ExTA>ExTB				
1	DMA	INT	RxA >TxA	SRxA, RxA>SRxB, RxB>TxB> ExTA>ExTB				
0	DMA	DMA	RxA>TxA>RxB>TxB	SRxA, RxA>SRxB, RxB>TxB>ExTB				
1	DMA	DMA	RxA > RxB > TxA > TxB	SRxA, RxA>SRxB, RxB>ExTA, ExTB				

#### Table 5. Interrupt Acknowledge Sequence Response

D5	D4	D ₃	Mode	Status Register 2B and Inter- rupt Vector Bits Affected When Condition Affects Vector is Enabled
0	0	0	Nonvectored	D ₄ D ₃ D ₂
0	0	1	Nonvectored	D ₄ D ₃ D ₂
0	1	0	Nonvectored	D ₂ D ₁ D ₀
0	- 1	1	lllegal	· · · · · · · · · · · · · · · · · · ·
1	0	0	8085 Master	D ₄ D ₃ D ₂
1	0	1	8085 Slave	D ₄ D ₃ D ₂
1	1	0	8086	D ₂ D ₁ D ₀
1	1	1	8085/8259A Slave	D ₄ D ₃ D ₂

## Pin 10 SYNCB/RTSB Select [D7]

Programming a zero into this bit selects RTSB as the function of pin 10. A one selects SYNCB as the function.

#### **Control Register 2 (Channel B)**

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
			Interrup	t Vector			

#### Interrupt Vector [D₀ - D₇]

When using the MPSCC in the vectored interrupt mode, the contents of this register are placed on the bus during the appropriate portion of the interrupt acknowledge sequence. Its value is modified if status affects vector is enabled. The value of SR2B can be read at anytime. This feature is useful in determining the cause of an interrupt when using the MPSCC in a nonvectored interrupt mode.

#### **Control Register 3**

D ₇	D ₆	D ₅	D4	D ₃	D2	D ₁	Do
Numt Receive per Ch	ed Bits	Auto Enables	Enter Hunt Phase	Re- ceiver CRC Enable	Address Search Mode	Sync Char- acter Load Inhibit	Re- ceiver Enable

#### Receiver Enable [D₀]

Setting this bit to one after the channel has been completely initialized allows the receiver to begin operation. This bit may be set to zero at any time to disable the receiver.

#### Sync Character Load Inhibit [D₁]

In the character synchronous modes, this bit inhibits the transfer of sync characters to the receiver buffer, thus performing a "sync-stripping" operation. When using the MPSCC's CRC checking ability, use this feature only to strip leading sync characters preceding a message, since the load inhibit does not exclude sync characters embedded in the message from the CRC calculation. Synchronous protocols using other types of block checking such as checksum or LRC are free to strip embedded sync characters.

#### Address Search Mode [D₂]

In the HDLC mode, setting this bit places the MPSCC in an address search mode. Character assembly does not begin until the 8-bit character (secondary address field) following the starting flag of a message matches either the address programmed into CR6 or the global address 1111111.

#### **Receiver CRC Enable [D3]**

This bit enables and disables (1 = enable) the CRC checker in the character oriented protocol mode, allowing characters from the CRC calculation to be selectively included or excluded. The MPSCC has a one-character delay between the receiver shift register and the CRC checker so that the enabling or disabling takes affect with the last character transferred from the shift register to the receiver buffer. Therefore, there is one full character time in which to read the character and decide whether or not it should be included in the CRC calculation. In the HDLC mode, there is no 8-bit delay.



#### Enter Hunt Phase [D₄]

Although the MPSCC receiver automatically enters the sync hunt phase after a reset, there are other times when reentry is appropriate. This may occur when synchronization has been lost or, in an HDLC mode, to ignore the current incoming message. A one in this bit position at any time after initialization causes the MPSCC to reeneter the hunt phase.

#### Auto Enables [D₅]

Setting this bit to one causes the DCD and CTS inputs to act as enable inputs to the receiver and transmitter, respectively.

#### Number of Received Bits per Character [D₆ - D₇]

This field specifies the number of data bits assembled to make each character. The value may be changed while a character is being assembled and, if the change is made before the new number of bits has been reached, it affects that character. Otherwise, the new specifications take effect on the next character received. See table 6.

#### **Control Register 4**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	Do
			an st Frank	Nun of Sto		Parity Even/	Parity
Clock	Rate	Sync	Mode	per Syn		Odd	Enable

#### Parity Enable [D₀]

Setting this bit to one adds an extra data bit containing parity information to each transmitted character. Each received character is expected to contain this extra bit, and the receiver parity checker is enabled.

Table 6.	Received Bi	ts per (	Character
----------	-------------	----------	-----------

D ₇	D ₆	Bits per Character
0	0	5
0	1	7
1 .	0	6
1	1	8

#### Table 7. Stop Bits

 D ₃	D ₂	-	Mode
 0	0	1.1	Synchronous modes
0	1		Asynchronous 1 bit time (1 stop bit)
1	0		Asynchronous 11/2 bit times (11/2 stop bits)
 1	1		Asynchronous 2 bit times (2 stop bits)

#### Parity Even/Odd [D₁]

Programming a zero into this bit when parity is enabled selects odd parity for the received character. Conversely, a one in this bit selects even parity generation and checking.

#### Number of Stop Bits or Sync Mode [D₂ - D₃]

This field specifies whether the channel is used in a synchronous or an asynchronous mode. In an asynchronous mode, this field also specifies the number of bit times used as the stop bit length by the transmitter. The receiver always checks for one stop bit. See table 7.

#### Sync Mode [D₄ - D₅]

When the stop bits/sync mode field is programmed for synchronous modes ( $D_2$ ,  $D_3 = 00$ ), this field specifies the particular synchronous format to be used. This field is ignored in an asynchronous mode. See table 8.

#### Clock Rate [D₆ - D₇]

This field specifies the relationship between the transmitter and receiver clock inputs (TxC, RxC) and the actual data rates at TxD and RxD. When operating in a synchronous mode, a 1x clock rate must be specified. In asynchronous modes, any of the rates may be specified. However, with a 1x clock rate, the receiver cannot determine the center of the start bit. In this mode, the sampling (rising) edge of RxC must be externally synchronized with the data. See table 9.

#### Table 8. Synchronous Formats

Sync Mode 1 D ₅	Sync Mode 2 D ₄	Mode
0	0	8-bit internal synchronization character (monosync)
0	1	16-bit internal synchronization character (bisync)
1	0	SDLC/HDLC
1	1	External synchronization (SYNC pin becomes an input)

#### Table 9. Clock Rates

Clock Rate 1 D ₇	Clock Rate 2 D ₆	Clock Rate	
0	0	Clock Rate = 1x Data Rate	
0	1.	Clock Rate = 16x Data Rate	
1	0	Clock Rate = 32x Data Rate	· · · · ·
1	1	Clock Rate = 64x Data Rate	



#### **Control Register 5**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀
DTR	Numb Transmit per Ch	ted Bits	Send Break	Trans- mitter Enable	CRC Poly- nomial Select	RTS	Trans- mitter CRC Enable

#### Transmitter CRC Enable [D₀]

A one or a zero enables or disables (respectively) the CRC generator calculation. The enable or disable does not take effect until the next character is transferred from the transmitter buffer to the shift register, thus allowing specific characters to be included or excluded from the CRC calculation. By setting or resetting this bit just before loading the next character, it and subsequent characters are included or excluded from the calculation. If this bit is zero when the transmitter becomes empty, the MPSCC goes to the idle phase regardless of the state of the idle/CRC latch.

# RTS [D1]

In synchronous and HDLC modes, setting this bit to one causes the RTS pin to go low, while a zero causes it to go high. In an asynchronous mode, setting this bit to zero causes the RTS pin to go high when the transmitter is completely empty. This feature facilitates programming the MPSCC for use with asynchronous modems.

#### **CRC Polynomial Select [D2]**

This bit selects the polynomial used by the transmitter and receiver for CRC generation and checking. A one selects the CRC-16 polynomial ( $X^{16} + X^{15} + X^2 + 1$ ). A zero selects the CRC-CCITT polynomial ( $X^{16} + X^{12} + X^5 + 1$ ). In an HDLC mode CRC-CCITT must be selected. Either polynomial may be used in other synchronous modes.

#### Transmitter Enable [D₃]

After a reset, the transmitted data output (TxD) is held high (marking) and the transmitter is disabled until this bit is set.

In an asynchronous mode TxD remains high until data is loaded for transmission.

When the transmitter is disabled in an asynchronous mode, any character currently being sent is completed before TxD returns to the marking state.

If the transmitter is disabled during the data phase in a synchronous mode, the current character is sent. TxD then goes high (marking). In an HDLC mode, the current character is sent, but the following marking line is zero-inserted. That is, the line goes low for one bit time out of every five.

Never disable the transmitter during the HDLC data phase unless a reset follows immediately. In either case, any character in the buffer register is held.

Disabling the transmitter during the CRC phase causes the remainder of the CRC character to be bitsubstituted with the sync (or flag). The total number of bits transmitted is correct and TxD goes high after they are sent.

If the transmitter is disabled during the idle phase, the remainder of the sync (flag) character is sent. TxD then goes high.

#### Send Break [D₄]

Setting this bit to one immediately forces the transmitter output (TxD) low (spacing). This function overrides the normal transmitter output and destroys any data being transmitted, although the transmitter is still in operation. Resetting this bit releases the transmitter output.

#### Transmitted Bits per Character [D₅ · D₆]

This field controls the number of data bits transmitted in each character. The number of bits per character may be changed by rewriting this field just before the first character is loaded. See table 10.

Normally each character is sent to the MPSCC rightjustified and the unused bits are ignored. However, when sending five bits or less, the data should be formatted as shown below to inform the MPSCC of the precise number of bits to be sent. See table 11.

#### Table 10. Transmitted Bits per Character

Transmitted Bits per Character 1 D ₆	Transmitted Bits per Character D ₅	Bits per Character
0	0	5 or less (see below)
0	1	7
1	0	6
1	1	8

 
 Table 11.
 Transmitted Bits per Character for 5 Characters or Less

D ₇	D ₆	D ₅	D4	D3	D ₂	D ₁	D ₀	Number of Bits per Charater
1	1	1	1	0	0	0	Do	·· 1 ··
1	1	1	0	0	0	D ₁	D ₀	2
1	1	0	0	0,	$D_2$	D ₁	D ₀	3
1	0	0	0	$D_3$	D ₂	D ₁	D ₀	4
0	0	0	D4	D3	D ₂	D ₁	D ₀	5



#### DTR [Data Terminal Ready] [D7]

When this bit is one, the DTR output is low [active]. When this bit is zero, DTR is high.

#### **Control Register 6**

D ₇ ,	D ₆	D ₅	D4	D ₃	D ₂	D1	Do
		1.1	÷				

#### Sync Byte 1 [D₀ - D₇]

Sync byte 1 is used in the following modes:

Monosync	8-bit sync character transmitted during the idle phase
Bisync	Least significant (first) 8 bits of the 16-bit transmit and receive sync character
External Sync	Sync character transmitted during the idle phase
HDLC	Secondary address value matched to secondary address field of the HDLC frame when the MPSCC is in the ad- dress search mode

#### **Control Register 7**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	Do
1			Sync E	Byte 2	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

#### Sync Byte 2 [D₀ - D₇]

Sync byte 2 is used in the following modes:

Monosync	8-bit sync character matched by the receiver
Bisync	Most significant (second) 8 bits of the 16-bit transmit and receive sync characters
HDLC	The flag character 01111110 must be programmed into control register 7 for flag matching by the MPSCC receiver

#### **Status Register 0**

D ₇	D ₆	D ₅	DA	D ₃	D ₂	D1	Do
Break / Abort	Idle/ CRC	CTS	Sync Status	DCD	Tx Buffer Empty	INT Pend- ing	Rec'd Char Avail- able

#### **Received Character Available [D0]**

When this bit is set, it indicates that one or more characters in the receiver buffer are available for the processor to read. Once the processor has read all the available characters, the MPSCC resets this bit until a new character is received.

#### Interrupt Pending [D₁ - Channel A Only]

The interrupt pending bit is used with the interrupt vector register (status register 2) to make it easier to determine the MPSCC's interrupt status. This is useful in a nonvectored interrupt mode where the processor must poll each device to determine the interrupt source. In this mode, interrupt pending is set when status register 2B is read, the PRI input is active (low), and the MPSCC requests interrupt service.

It is not necessary to read the status registers of both channels to determine if an interrupt is pending. If the status affects vector is enabled and the interrupt pending is set, the vector read from SR2 contains valid condition information.

In a vectored interrupt mode, interrupt pending is set during the interrupt acknowledge cycle (on the leading edge of the second INTAK pulse) when the MPSCC is the highest priority device requesting interrupt service (PRI is active). In either mode, if there are no other pending interrupt requests, interrupt pending is reset when the end of the interrupt command is issued.

#### Transmitter Buffer Empty [D₂]

This bit is set whenever the transmitter buffer is empty — except during the transmission of CRC. The MPSCC uses the buffer to facilitate this function. After a reset, the buffer is considered empty and transmit buffer empty is set.

#### External/Status Flags [D₃ - D₇]

The following status bits reflect the state of the various conditions that cause an external/status interrupt. The MPSCC latches all external/status bits whenever a change occurs that would cause an external/status interrupt, regardless of whether this interrupt is enabled. This allows transient status changes on these lines to be saved.

When operating the MPSCC in an interrupt-driven mode for external/status interrupts, read status register 0 when this interrupt occurs and issue a reset external/status interrupt command to reenable the interrupt and the latches. To poll these bits without interrupts, issue the reset external/status interrupt command to first update the status to reflect the current values.

# NEC

**DCD** [D₃]: This bit reflects the inverted state of the DCD input. When DCD is low the DCD status bit is high. Any transition on this bit causes an external/ status interrupt request.

**Sync Status [D₄] :** The meaning of this bit depends on the operating mode of the MPSCC.

Asynchronous mode: Sync status reflects the inverted state of the SYNC input. When SYNC is low, sync status is high. Any transition on this bit causes an external/status interrupt request.

External synchronization mode: Sync status operates in the same manner as in asynchronous mode. The MPSCC's receiver synchronization logic is also tied to the sync status bit in an ext<u>ernal</u> synchronization mode. A low-to-high transition (SYNC input going low) informs the receiver that synchronization has started and character assembly begins.

A low-to-high transition on the SYNC input indicates that synchronization has been lost. The sync status becomes zero and an external/status is generated. The receiver remains in the receive data phase until the enter hunt phase bit in control register 3 is set.

Monosync, bisync, HDLC modes: In these modes, sync status indicates whether the MPSCC receiver is in the sync hunt or receive data phase of operation. A zero indicates that the MPSCC is in the receive data phase, and a one indicates that the MPSCC is in the sync hunt phase (as in after a reset or when the enter sync hunt bit sets to 1). As in the other modes, a transition on this bit causes an external/status interrupt. Note that entering a sync hunt phase (when programmed) or a reset causes an external/status interrupt request which may be cleared immediately with a reset external/status interrupt command.

**CTS** [D₅]: This bit reflects the inverted state of the CTS input. When CTS is low, the CTS status bit is high. Any transition on this bit causes an external/ status interrupt request.

**Idle/CRC**  $[D_6]$  **[Tx Underrun/EOM]**: This bit indicates the state of the idle/CRC latch used in the synchronous mode. After a hardware reset, this bit is set to one, indicating that the transmitter is completely empty. When the MPSCC enters idle phase, it automatically transmits sync or flag characters.

In the HDLC mode, the MPSCC automatically resets this latch after the first byte of a frame is written to the Tx buffer. When the transmitter is completely empty, the MPSCC sends the 16-bit CRC character and sets the latch again. An external/status interrupt is issued when the latch is set, indicating that CRC is being sent. No interrupt is issued when the latch is reset.

**Break/Abort**  $[D_7]$ : In the asynchronous mode, this bit indicates the detection of a break sequence (a null character plus framing error that occurs when the RxD input is held low, spacing, for more than one character time). Break/abort is reset when RxD returns high (marking).

In the HDLC mode, break/abort indicates the detection of an abort sequence when seven or more ones are received in sequence. It is reset when a zero is received.

Any transition of the break/abort bit causes an external/status interrupt.

#### **Status Register 1**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	Do
End of SDLC Frame	CRC Framing Error	Over- run Error	Parity Error	SDLC	Residue	Code	All Sent

## All Sent [D₀]

This bit is set when the transmitter is empty and reset when a character is present in the transmitter buffer or shift register. This feature simplifies the mode control software routines. In the bit synchronous mode, this bit sets when the ending flag pattern is sent.

#### Residue Code [D₁ - D₃]

Since the data portion of an HDLC message can consist of any number of bits and not necessarily an integral number of characters, the MPSCC has special logic to determine and report when the end of frame flag has been received (that is, the boundary between the data field and the CRC character in the last few data characters that were just read).

When the end of frame condition is indicated ( $D_7$  of status register 1 = 1) and there is a special receive condition interrupt (if enabled), the last bits of the CRC character are in the receiver buffer. The residue code for the frame is valid in the status register 1 byte associated with that data character. (SR1 tracks the received data in its own buffer).

The meaning of the residue code depends upon the number of bits per character specified for the receiver. The previous character refers to the last character read before the end of frame, and so on. See table 12.

#### Table 12. Residue Codes

			B Bits per Character	
D ₃	D ₂	D ₁	Previous Character	2nd Previous Character
1	0	0	сссссссс	CCCCCDDD
0	1	0	C C C C C C C C	CCCCDDDD
1	1	0	C C C C C C C C	CCCDDDDD
0	0	1	C C C C C C C C	CCDDDDD
1	0	1	C C C C C C C C	CDDDDDD
0	1	1	C C C C C C C C*	DDDDDDD*
1	1	1	CCCCCCCD	DDDDDDD
0	0	0	CCCCCDD	DDDDDDD
			7 Bits per Character	
D ₃	D2	D ₁	Previous Character	2nd Previous Character
1	0	0	C C C C C C C	CCCCDD
0	1	0	ССССССС	CCCCDDD
1	1	0	ССССССС	CCCDDDD
0	0	1	CCCCCCC	CCDDDDD
1	0	1.	ССССССС	CDDDDD
0	1	1	C C C C C C C*	DDDDDD*
0	0	0	CCCCCCD	DDDDDD
			6 Bits per Character	
D ₃	D2	D ₁	Previous Character	2nd Previous
1	0	0	CCCCCC	CCCCCD
0	1	0	000000	
1.		0		CCCDDD
0	0	1	CCCCCC	
1	0	1		
0	0	0		
		-	5 Bits per Character	000000
			Previous	2nd Previous
D ₃	D ₂	D ₁	Character	
1	0	0 **	C C C C C*	DDDDD*
0	1	0	CCCCD	DDDD
1	1	0	CCCDD	DDDD
0	0	1	CCDDD	DDDD
0	0	0	CDDDD	DDDDD

Notes: C = CRC bit

D = Valid data

= No residue

#### **Special Receive Condition Flags**

The status bits described below—parity error (if parity as a special receive condition is enabled), receiver overrun error, CRC/framing error, and end of HDLC frame all represent special receive conditions.



When any of these conditions occur and interrupts are enabled, the MPSCC issues an interrupt request. In addition, if a condition affect vector mode is enabled, the vector generated (and the contents of SR2B for nonvectored interrupts) is different from that of a received character available condition. Therefore, it is not necessary to analyze SR1 with each character to determine if an error has occurred.

Also, the parity error and receiver overrun error flags are latched. That is, once one of these errors occurs, the flag remains set for all subsequent characters until reset by the error reset command. Therefore read SR1 only at the end of a message to determine if either of these errors occurred anywhere in the message. The other flags are not latched and follow each character available in the receiver buffer.

**Parity Error**  $[D_4]$ : This bit is set and latched when parity is enabled and the received parity bit does not match the sense (odd or even) calculated from the data bits.

**Receiver Overrun Error**  $[D_5]$ : This error occurs and is latched when the receiver buffer already contains three characters and a fourth character is completely received, overwriting the last character in the buffer.

**CRC/Framing Error**  $[D_6]$ : In the asynchronous mode a framing error is flagged (but not latched) when no stop bit is detected at the end of a character (RxD is low one bit time after the center of the last data or parity bit). When this condition occurs, the MPSCC waits an additional one-half bit time before sampling again so that the framing error is not interpreted as a new start bit.

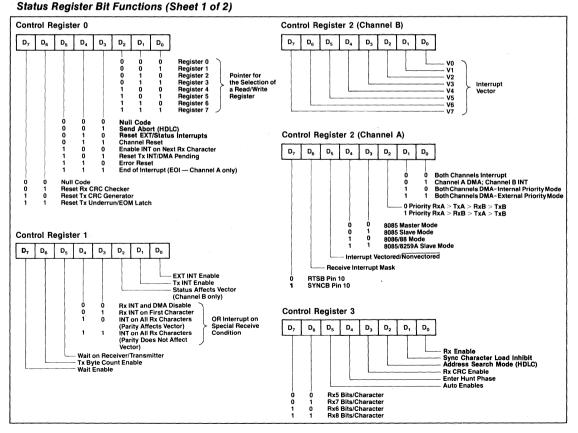
In the synchronous mode, this bit indicates the result of the comparison between the current CRC result and the appropriate check value. It is usually set to one, since a message rarely indicates a correct CRC result until correctly completed with the CRC check character. Note that a CRC error does not result in a special receive condition interrupt.

End of HDLC Frame [EOF]  $[D_7]$ : This status bit is used only in the bit synchronous mode to indicate that the end of frame flag has been received and that the CRC error flag and residue code are valid. This flag can be reset at any time by issuing an error reset command. The MPSCC also automatically resets this bit when the first character of the next message is sent.

#### **Status Register 2B**

D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	Do	
Interrupt Vector								

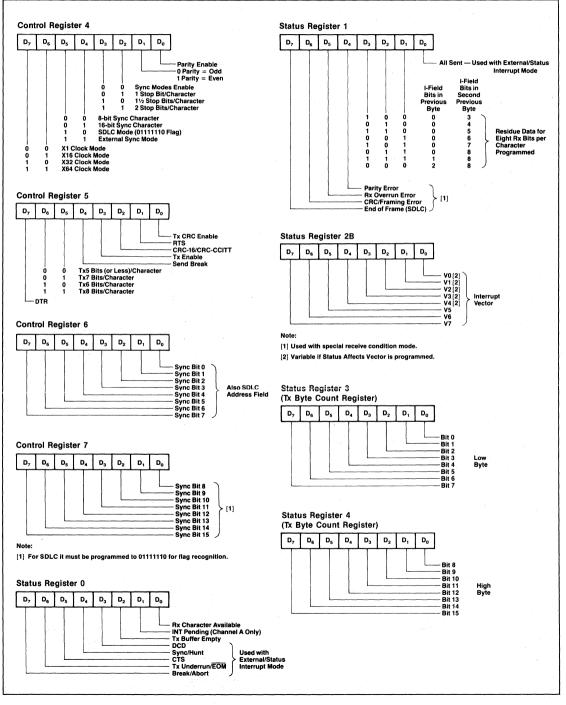
## Interrupt Vector [D₀ - D₇ - Channel B Only]


Reading status register 2B returns the interrupt vector that is programmed into control register 2B. If a condition affects vector mode is enabled, the value of the vector is modified as shown in table 13.

Code 111 can mean either channel A special receive condition or no interrupt pending. Examine the interrupt pending bit ( $D_1$  of status register 0, channel A), to distinguish which it means. In a nonvectored interrupt mode, the vector register must be read first for the interrupt pending to be valid.

Interrupt Pending	8085 Modes	D4	D3	D ₂	
(SRO, D ₁ Channel A)	8086 Modes	D ₂ D ₁		Do	Condition
0		1	1	1	No interrupt pending
1		0	0	0	Channel B transmitter buffer empty
1		0	0	1	Channel B external/status Change
1		0	1	0	Channel B received character available
1		0	1	1	Channel B special receive condition
1		1	0	0	Channel A transmitter buffer empty
1		1	0	1	Channel A external/status change
1		1	1	0	Channel A received Character available
1		1	1	1	Channel A special receive condition

Condition Affects Vector Modifications


Table 13



•



#### Status Register Bit Functions (Sheet 2 of 2)





# μPD72001 CMOS, Advanced Multiprotocol, Serial Communications Controller

## Description

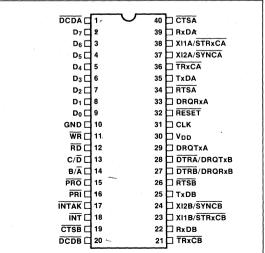
The  $\mu$ PD72001 advanced multiprotocol serial controller (AMPSC) is a high-performance, single-chip, serial communications controller designed to meet a wide variety of communications requirements. The AMPSC contains two independent full-duplex channels which can be configured to transmit and receive data in either asynchronous protocol or one of two synchronous protocols: character-oriented protocol (COP) or bitoriented protocol (BOP). The COP and BOP synchronous protocols include cyclic redundancy check (CRC) generation and checking.

The AMPSC has several interrupt modes, including vectored and nonvectored. Separate direct memory access (DMA) requests are available for the transmitter and receiver on each channel, allowing high speed operation. The AMPSC is easily interfaced to most microprocessors with a minimum of logic.

The  $\mu$ PD72001 AMPSC is an upgraded CMOS version of the  $\mu$ PD7201A MPSCC with the following additions: four internal baud rate generator (BRG)/timers, two digital phase-locked loops (DPLL), two crystal oscillators, and the capability of synchronous data link control (SDLC) loop operation. The BRG's can be used as independent timers, when they are not being used as baud rate generators. Each timer generates its own zero count interrupt. These features simplify design requirements and at the same time enhance the flexible architecture of the  $\mu$ PD7201A.

#### Features

- □ Advanced version of the µPD7201A
- Functional superset of industry standard 8530
- □ CMOS technology
- □ Multiprotocol
  - Asynchronous
  - Synchronous
  - Character-oriented (BISYNC/MONO-SYNC)
  - Bit-oriented (SDLC/HDLC)
- □ Two independent full-duplex channels
- Versatile host-system interface
  - Software polling
  - Interrupt
  - DMA
- □ Interface to a majority of microprocessors (V-Series, 8080, 8085, 80X86/88, and others)
- DC to 2.2-Mb/s data rate
- □ Modem control signals
- NRZ, NRZI, and FM encoding/decoding, Manchester decoding

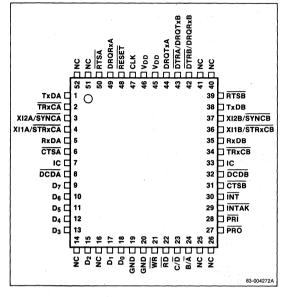

- Digital phase-locked loop per channel
- □ Two baud rate generator/timers per channel (receive and transmit)
- □ Crystal oscillator per channel
- □ Loopback test mode
- □ SDLC loop mode
- □ Mark idle detection
- □ Short frame detection
- □ Single +5 V power supply
- □ Standby mode for reduced power consumption
- Two speed versions: 8 MHz and 11 MHz systems and input data clocks
- □ Available in DIP, PLCC, and quadflat packages

#### **Ordering Information**

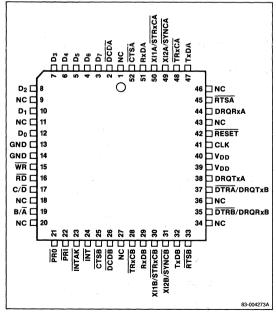
Package Type	Max Clock Speed
40-pin plastic DIP	8 MHz
40-pin plastic DIP	11 MHz
52-pin plastic miniflat	8 MHz
52-pin plastic	11 MHz
52-pin plastic leaded chip carrier (PLCC)	8 MHz
52-pin plastic leaded chip carrier (PLCC)	11 MHz
	40-pin plastic DIP 40-pin plastic DIP 52-pin plastic miniflat 52-pin plastic 52-pin plastic leaded chip carrier (PLCC) 52-pin plastic leaded

## **Pin Configurations**

#### 40-Pin Plastic DIP




83-004274A




#### **Pin Configurations (cont)**

#### 52-Pin Plastic Miniflat



52-Pin Plastic Leaded Chip Carrier (PLCC)



#### **Pin Identification**

Symbol	Function
B/Ā	Channel B or channel A select input from host computer
C/D	Control/data input select from host computer
CLK	System clock input from host computer
CTSA	Clear-to-send input for channel A
CTSB	Clear-to-send input for channel B
DCDA	Data carrier detect input for channel A
DCDB	Data carrier detect input for channel B
DTRA/DRQTxB	Data terminal ready output for channel A or DMA request output for transmit channel B; determined by control register CR2A
DTRB/DRQRxB	Data terminal ready output for channel B or DMA request output for receive channel B; determined by control register CR2A
DRQRxA	DMA request output for receive channel A
DRQTxA	DMA request output for transmit channel A
D ₇ -D ₀	System data bus
INT	Interrupt request output to host computer
INTAK	Interrupt acknowledge input from host computer
PRI	Priority input, interrupt daisy chain control
PRO	Priority output, interrupt daisy chain control
RD	Read control input from host computer
RESET	System reset input from host computer
RTSA	Request-to-send output for channel A
RTSB	Request-to-send output for channel B
RxDA	Receive data input for channel A
RxDB	Receive data input for channel B
TRxCA	Transmit-receive clock input for channel A
TRxCB	Transmit-receive clock input for channel B
TxDA	Transmit data output for channel A
TxDB	Transmit data output for channnel B
WR	Write control input from host computer
XI1A/STRxCA	External crystal connection for channel A or transmit- receive clock source input for channel A
XI2A/SYNCA	External crystal connection for channel A or synchronization input for channel A
XI1B/STRxCB	External crystal connection for channel B or transmit- receive clock source input for channel B
XI2B/SYNCB	External crystal connection for channel B or synchronization input for channel B
GND	System ground
V _{DD}	+5 V (typical)



#### **Pin Functions**

#### **CPU Interface**

 $B/\overline{A}$  [Channel Select]. The input to this pin selects the channel to be accessed for a write or read operation. A low input selects channel A; a high input selects channel B.

 $C/\overline{D}$  [Control/Data Select]. The input to this pin selects the type of data on the data bus during a write or read access. A low input selects data; a high input selects a control or status register.

**CLK** [System Clock]. This input supplies the clock for the internal operation of the device. It is separate from the data clocks. The system clock input must be more than five times the serial data transfer rate.

**INT** [Interrupt]. The interrupt request output signal at this pin goes low if an interrupt cause occurs within the AMPSC. The output is an open-drain transistor and requires a pull-up resistor.

**INTAK** [Interrupt Acknowledge]. An active-low input signal at this pin is used in response to an interrupt request. In the Vector mode (CR2A bit D7 = 1), it causes the interrupt vector to be placed on the data bus. The output vector mode determines the number of cycles of INTAK toggling that are required for each interrupt acknowledge cycle (see CR2A bits D3-D5). In the Nonvector mode (D7 = 0), this pin must be pulled high. If unused, this pin must also be pulled high.

**PRI** [Priority Input]. The PRI signal controls interrupt request generation and interrupt vector output. The pin is the input for the interrupt priority daisy chain that determines how interrupts from multiple devices are resolved. A high level prevents the AMPSC from presenting an interrupt vector during the INTAK sequence. A low level allows the vector to be presented. If unused, this pin must be tied low.

**PRO** [**Priority Output**]. This is an output to the interrupt priority daisy chain. It controls interrupt requests from lower-priority devices. It indicates the existence of a higher-priority interrupt, either within the AMPSC or, if no internal interrupt exists, the condition of the PRI input.

**RESET** [**Reset**]. Applying a low signal continuously for two or more clock cycles ( $t_{CYK}$ ) to this pin resets the AMPSC (system reset) and places it in Standby mode. A system reset disables the transmitter, receiver, interrupt, and DMA functions and sets the TxD and general-purpose output pins to high. It also resets all bits of the control registers. **RD** [**Read**]. The active-low  $\overline{RD}$  input signal causes status or receive (Rx) data to be read out of the AMPSC. The data is presented on pins D₀-D₇. The values are dependent on the state of the B/A and C/D inputs and the internal state of the device.

**WR** [Write]. The active-low WR input signal causes control words or transmit (Tx) data to be written into the AMPSC. The data written is input on pins D0-D7 (data bus). The destination of the data is determined by the state of the  $B/\overline{A}$  and  $C/\overline{D}$  pins and the value of the internal register pointer.

 $D_7-D_0$  [Data Bus]. These pins constitute a three-state, 8-bit, bidirectional data bus. The bus is connected to the host processor's data bus to transfer control words, status information, and send/receive data.

#### **Channel Interface**

**RxDA, RxDB** [**Receive Data**]. Receive data enters the AMPSC on these pins.

**TxDA, TxDB** [**Transmit Data**]. Transmit data exits the AMPSC on these pins.

**DRQTxA, DRQTxB** [**DMA Transmit Requests**]. These active-high outputs for channels A and B are DMA requests to the DMA controller. The pin is set to high when the Tx buffer is emptied. The conditions under which this occurs depend on the status of control register CR1 bit D2. (DRQTxB and DTRA are dual functions of the same pin.)

**DRQRxA, DRQRxB** [**DMA Receive Requests**]. These active-high outputs for channels A and B are DMA requests to the DMA controller. The pin is set to high when the receiver enters the Rx Character Available state. It is reset when received data is read out of the channel. (DRQRxB and DTRB are dual functions of the same pin.)

**TRxCA**, **TRxCB** [**Transmit/Receive Clock**]. If bit D2 of control register CR15 is zero, these pins are transmit or receive clock inputs. Also, they are inputs if bits D5 and D6 or D3 and D4 are set to one and zero, respectively, overriding the state of bit D2.

If none of the conditions above are true, the pins function as outputs with the source selectable between the crystal oscillator, the BRG, the DPLL, and the transmit clock. Selection is made with bits D0 and D1 of CR15.

**STRxCA**, **STRxCB** [Clock Source]. These pins are the transmit or receive clock source inputs for channels A and B, respectively. They can be routed internally to the transmitter, receiver, BRG's, or DPLL. An alternative function as an external crystal connection point (XI) is selected by control register CR15 bit D7.



XI1A, XI2A and XI1B, XI2B [Crystal Connections]. These two pin pairs may be connected to external crystals that control the internal oscillators for channels A and B, respectively. (See STRxCA and STRxCB.)

#### Modem Control

**RTSA, RTSB** [**Request to Send**]. These are generalpurpose outputs usable, as an example, for modem control. Pin status is set by CR5 bit 01 and Auto Enable bit status (CR3 bit D5).

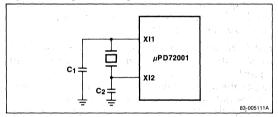
**CTSA**, **CTSB** [**Clear to Send**]. These are generalpurpose inputs usable, as an example, for modem control. A status change on CTSA or CTSB affects E/S bit latch operation. If E/S INT is enabled (CR1 bit D0 set to 1), an E/S interrupt occurs. If the Auto Enable mode is selected (CR3 bit D5 set to 1), CTSA and CTSB can be used with the Tx Enable bit (CR5 bit D3) to control transmitter operation.

**DCDA**, **DCDB** [**Data Carrier Detect**]. These are generalpurpose inputs usable, as an example, for modem control. A status change on DCDA or DCDB affects E/S bit latch operation. If E/S INT is enabled (CR1 bit D0 set to 1), an E/S interrupt occurs. If the Auto Enable mode is selected (CR3 bit D5 set to 1), DCDA and DCDB can be used with the Rx Enable bit (CR3 bit D0) to control receiver operation.

**DTRA**, **DTRB** [**Data Terminal Ready**]. These are general-purpose active-low outputs controlled by control register CR5A bit D7. (DRQTxB and DRQRxB have dual pin functions with DTRA and DTRB.)

**SYNCA**, **SYNCB** [Sync Input or Output]. In accordance with the settings of control regsister CR4 bits D7-D2, and with CR15 bit D7 = 0, the three functions of these pins are as follows.

- (1) Asynchronous mode: general-purpose input that functions like DCD and CTS.
- (2) External sync mode: active-low input indicates to the AMPSC that synchronization has occurred.
- (3) Internal sync mode: active-low output indicates when synchronization is detected by the AMPSC.


#### Crystal Recommendations

The crystals used with the  $\mu$ PD72001 internal crystal oscillators should be parallel resonant, fundamental mode, with an AT cut. For frequency stability, two capacitors can be added from the pins of the crystal to ground (figure 1). The value of the capacitors can be calculated by the following formula:

$$C_{L} = \frac{C_{1} \times C_{2}}{C_{1} + C_{2}} + C_{S}$$

 $C_L$  is the load capacitance of the crystal and  $C_S$  is all stray capacitance in parallel with the crystal. The  $C_S$  value should include the input capacitance ( $C_{IO}$  and  $C_{IN}$ ) of the  $\mu PD72001$  and any wiring or socket capacitance.





## **Absolute Maximum Ratings**

T_A = +25°C

Power supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _i	-0.5 to V _{DD} + 0.5 V
Output voltage, V ₀	-0.5 to V _{DD} + 0.5 V
Operating temperature, T _{OPT}	−10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
An and a state of the second state of the seco	

#### **DC Characteristics**

 $T_{A}$  =–10 to +70 °C;  $V_{DD}$  = + 5 V  $\pm 10\%$ 

			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input low voltage	VIL	-0.5		+0.8	V	All pins except CLK
	VILC	-0.5		+0.6	٧	CLK pin
Input high voltage	VIH	+2.2		V _{DD} + 0.5	٧	All pins except CLK
	VIHC	+3.3		V _{DD} + 0.5	٧	CLK pin
Output low voltage	V _{OL}			+0.45	٧	$I_{0L} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	0.7 V _{DD}			V	$I_{OH} = -400 \mu A$
Output leakage current, high	LOH			+10	μA	$V_{OUT} = V_{DD}$
Output leakage current, low	LOL			-10	μA	$V_{OUT} = 0 V$
Input leakage current, high	ILIH			+10	μA	$V_{IN} = V_{DD}$
Input leakage current, low	ILIL			-10	μA	$V_{IN} = 0 V$
V _{DD} supply current	IDD		20	40	mA	All outputs at high level; $t_{CY} = 0.125 \mu s$
Standby current	IDDI		1	20	μA	$f_{RxC} = f_{TxC} = f_{CLK} = DC$
			1	2	mA	Standby mode

# **Capacitance** $T_A = 25 \text{ °C}; V_{DD} = 0 \text{ V}$

			Limits		
Parameter	Symbol	Min	Max	Unit	Test Conditions
Input capacitance	CIN		10	pF	$f_{C} = 1$ MHz; unmeasured pins returned to 0 V.
I/O capacitance	C _{IO}		20	pF	

#### **AC Characteristics**

 $T_A = -10$  to +70 °C;  $V_{DD} = +5 V \pm 10\%$ 

Parameter	Symbol	Limits, 8 MHz		Limits, 11 MHz			
		Min	Max	Min	Max	Unit	Test Conditions
Clock	· · · · · · · · · · · · · · · · · · ·						
Clock cycle (Note 1)	^t CYK	125	2000	91	2000	ns	
Clock high level width	twкн	50	1000	40	1000	ns	
Clock low-level width	^t wkl	50	1000	40	1000	ns	
Clock rise time	t _{KR}		10		10	ns	1.5 to 3.0 V
Clock fall time	t _{KF}		10		10	ns	3.0 to 1.5 V

#### Notes:

(1) In all modes, the system clock frequency must be more than five times the maximum data rate.

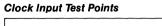
# **AC Characteristics (cont)**

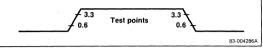
		Limits	8 MHz	Limits,	11 MHz		
Parameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Read Cycle							
Address setup time to RD↓	tSAR	0		0		ns	
Address hold time from RD 1	tHRA	0		0		ns	
RD pulse width	twRL	150		150		ns	
Data output delay time from address	t _{DAD}		120	,	120	ns	
Data <u>out</u> put delay time from RD ↓	tdrd	- 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 199 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996	120		120	ns	
Data <u>floa</u> t delay time from RD 1	t _{frd}	10	85	10	85	ns	1
Write Cycle	· · · · · · · · · · · · · · · · · · ·						
Address setup time to WR ↓	tSAW	0		0		ns	
Address h <u>old</u> time from WR 1	t _{HWA}	0		0		ns	
WR pulse width	twwL	150		150		ns	· · · ·
Data setup time to WR 1	t _{SDW}	120		120		ns	
Data hold time from WR 1	thwd	0		0		ns	
Read/Write Cycle				,			
RD/WR recovery time (Note 2)	t _{RV}	160		160		ns	
Transmit or Receive Cycle				· .			
Transmit/receive data cycle	tCYD	5		5		tсүк	
STRxC, TRxC input clock cycle	tCYC	125		91		ns	
STRxC, TRxC input clock pulse							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
High-level width	^î wch	50		40		ns	
Low-level width	twcL	50		40		ns	
Transmit Cycle							
TxD delay time from STRxC ↓,	t _{DTCTD1}		100		100	ns	x1 mode
TRXC	tDTCTD2		300		300	ns	x16, x32, x64 mode
INT delay time from TxD	t _{dtdiq}	4	6	4	6	tсук	Tx INT mode
DRQTx delay time from TxD	tDTDDQ	4	6	4	6	tсүк	Tx DMA mode

Notes [cont]:

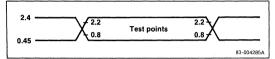
(2) For all operations except Tx/Rx data transfer

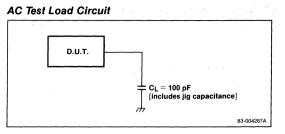
# **AC Characteristics (cont)**


		Limits	, 8 MHz	Limits,	11 MHz			
Parameter	Symbol	Min	Max	Min	Max	 Unit	Test Conditions	
Receive Cycle								
Rx <u>D setup</u> ti <u>me</u> to STRxC †, TRxC †	^t SRDRC	0		0		ns		
RxD hold time from STRxC 1, TRxC 1	^t HRCRD	140		140		ns		
INT delay time from RxC 1 (Note 3)	tDRCIQ	7	11	7	11	tсук	Rx IN mode	
DRQR <u>x de</u> lay time from RxC 1 (Note 3)	t _{drcda}	7	11	7	11	^t сүк	Rx DMA mode	
DMA Request Control								
DRQRx ↓ request delay time from RD ↓	torda		120		120	ns		
DRQT <u>x</u> ↓ request delay time from WR ↓	tdwdq		120		120	ns		
Interrupt Control								
INTAK low-level width	twial	150		150		ns		
PRO delay time from PRI	t _{DPIPO}		50		50	ns		
PRI setup time to INTAK ↓	tSPIIA	0	,	0		ns	When vector output	
PRI h <u>old time</u> from INTAK 1	t _{HIAPI}	20		20		ns	is selected.	
Data output delay time from INTAK↓	t _{DIAD}		120		120	ns		
Data <u>float de</u> lay time from INTAK 1	t _{FIAD}	10	85	10	85	ns	,	
Modem Control								
CTS, DCD, SYNC pulse					-			
High-level width	twмн	2		2		t _{сук}		
Low-level width	twml	2		2		tсук		
INT delay time from CTS, DCD, SYNC	tdmiq		2		2	tсүк		
Sync Control		· · ·						
<u>SYNC</u> delay STRxC 1, TRxC 1	^t DTRCSY	0	2	0	2	tсүк	COP external synchronization	
Crystal Oscillator		,						
XI1 input cycle time	tCYX	125	1000	91	1000	ns		
Reset			v					
RESET pulse width	twrsl	2		2		tсук		

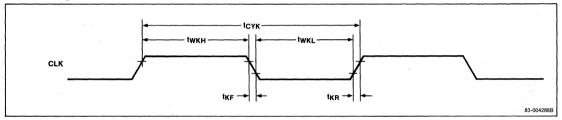

Notes [cont]:

(3) STRxC or TRxC, whichever is used for the receive clock

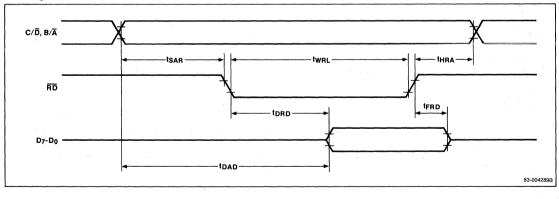




# **Timing Waveforms**





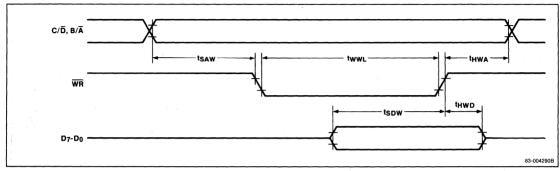

#### I/O Waveform Test Points



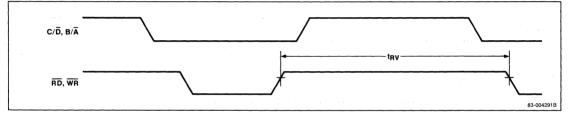



#### **Clock Timing**

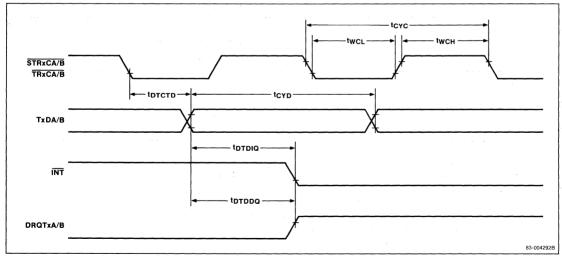



# Read Cycle






# **Timing Waveforms (cont)**

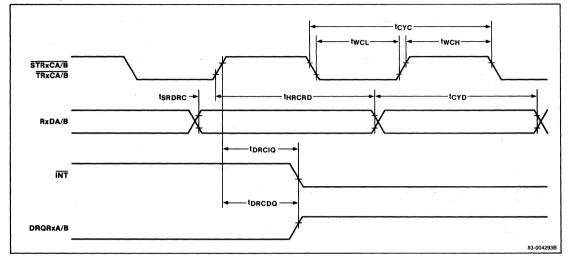

# Write Cycle



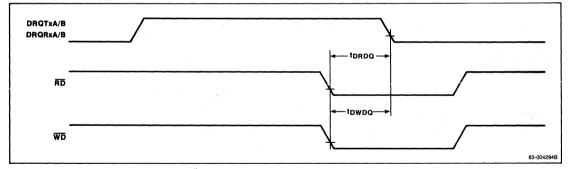
#### Read/Write Cycle (for all operations except Tx/Rx data transfer)



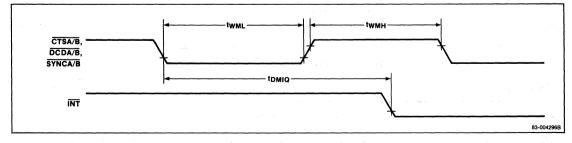
# Transmit Cycle





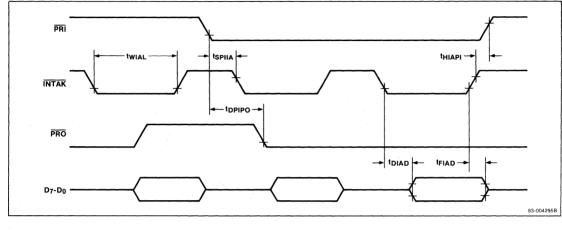


# **Timing Waveforms (cont)**

a har an an an the second

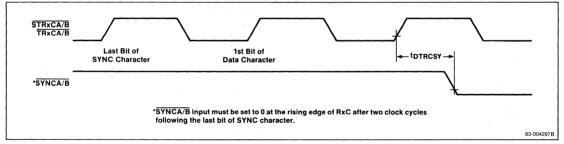

# **Receive** Cycle



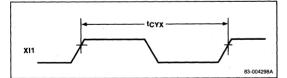
#### **DMA Request Control**



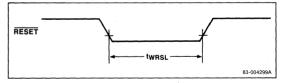

#### **Modem** Control




# **Timing Waveforms (cont)**


#### Interrupt Control




#### Sync Control



#### **Crystal Oscillator**



#### Reset



#### **Functional Operation**

Refer to the  $\mu$ PD72001 AMPSC block diagram (figure 2) for an overview of the four major functional blocks of logic listed below.

- System clock control
- Interface control
- Transmitter
- Receiver

#### System Clock Control

The system clock control logic receives and manages the system clock (CLK), which operates the internal circuitry of the  $\mu$ PD72001. The system clock and internal circuitry must be operating in order for the transmitters and receivers of the  $\mu$ PD72001 to function. In standby mode, the system clock is blocked by the clock control circuitry and the transmitters and receivers can not operate. In clocked operation, the system clock can be used as the source for the data clock, which is used by the transmitters and receivers. The internal registers of the  $\mu$ PD72001 are static in nature and do not require the system clock to retain their contents.

#### **Interface Control**

The interface control logic contains the signals used to control the transfer of data and status information between the host CPU and the AMPSC. This logic block has four types of interface lines. The read/write and control lines ( $\overline{RD}$ ,  $\overline{WR}$ ,  $C/\overline{D}$ ,  $B/\overline{A}$ ) select what data is to be transferred and the direction of the transfer. The reset line ( $\overline{RESET}$ ) which is part of this group, resets the internal state of the  $\mu$ PD72001 when held active. The interrupt control line ( $\overline{INT}$ ) sends a signal to the host CPU when the AMPSC requires attention. The interrupt acknowledge line ( $\overline{INTAK}$ ) signals the  $\mu$ PD72001 when the host CPU is ready to service its request for attention. The interrupt priority lines ( $\overline{PRI}$ ,  $\overline{PRO}$ ) are used to form the interrupt service priority.

The DMA control lines (DRQRxA, DRQTxA, DRQRxB, DRQTxB), inform the DMA controller when a data transfer is ready. The data bus buffer provides temporary storage of the data (D7-D0) being transferred from the internal registers of the  $\mu$ PD72001 to the host CPU.

#### Transmitter

Each channel's transmitter accepts parallel byte data and sends it out serially. The data is sent out at a rate determined by the transmit data clock (TxCLK). The source of this clock is determined by the clock control multiplexer. Bytes are loaded into the transmit buffer. When the transmit shift register is empty, the contents of the transmit buffer are loaded into the transmit shift register.

The transmitter is also responsible for the transmit CRC calculation and sending flags and sync characters. The transmitter can be made to send breaks and aborts using commands from the host CPU.

The internal loopback feature connects the transmitter to the receiver and disconnects the receiver from the RxD pin.

The echo loop feature connects the receiver to the TxD pin and disconnects the transmitter.

The Baud Rate Generators (BRGs) divide down the selected clock source to produce data clocks that can be used for the transmitter and receiver. The clock multiplexer selects the clock sources for them. By selecting the correct value for the BRG count, the BRG

can be used as a timer with a wide dynamic range. The clock source for the timer can be selected from the system clock, the data clock, an external source, or a crystal.

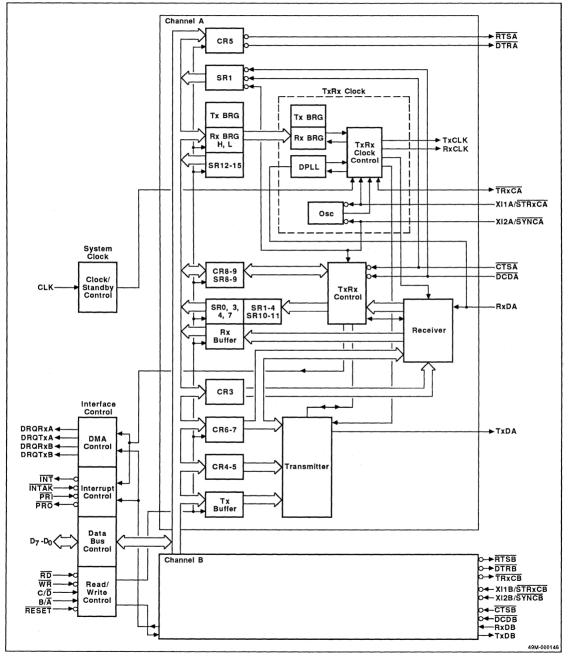
#### Receiver

The receivers in the AMPSC accept serial data into the receive shift register, which in turn assembles this serial data into parallel characters (byte). The assembled byte is transferred into the receive buffer (FIFO), which can contain up to three bytes. The receive status of each byte is transferred along with it through the receive buffer. In this way, the status reported by the  $\mu$ PD72001 is always current for the byte that is about to be removed from the FIFO.

The receive shift register also checks for flags and sync characters in the synchronous modes. Flags are automatically removed from the data stream, while sync characters have the option of being retained. This is determined by a CPU command.

The receiver in synchronous modes, calculates the received CRC and checks it against the CRC that is received with the data. A difference is reported to the host processor.

The digital phase-locked loop (DPLL) is used to separate the data from the clocking information in the NRZI, FM, and Manchester encoded received bit streams. It locks in on the received data and provides an accurate and stable clock for the receiver.


#### Standby Mode

The  $\mu$ PD72001 enters the standby mode after a hardware reset or by issuing the standby command (CR13 bit D0). In standby mode, the system and data clocks are blocked internally by the clock multiplexer. This shuts down the AMPSC and reduces power consumption greatly. System power requirements can be further reduced by externally stopping the input clock transitions.

In standby mode, the  $\mu$ PD72001 retains all register values, but no internal functions operate and read operations of the AMPSC will not transfer any data.

To release the standby mode, a write cycle must be performed to CR0. To resume normal operation without affecting the internal state of the device, a zero can be written to CR0.

Figure 2. µPD72001 AMPSC Block Diagram





#### **System Configuration Example**

In the system configuration example (figure 3), the  $\mu$ PD72001 is used as a high-speed interface to a modem. It controls the modem interface and serial data flow. The AMPSC is used with a direct memory access controller (DMAC), such as the  $\mu$ PD71071 in order to speed the data transfer and reduce the host CPU overhead. The  $\mu$ PD72001 directly interfaces with the host CPU, without requiring an interrupt controller, such as the  $\mu$ PD71059. Extra hardware is not required, since the AMPSC can generate its own interrupt vectors.

The interface between the  $\mu$ PD72001 and the host CPU is not very complex. It requires only address decoding logic for I/O operations. A multiplexer can be used to decode DMA acknowledge signals. However, it is not necessary with DMA controllers, such as the  $\mu$ PD71071, which are able to do their own I/O addressing.

The AMPSC's flexible interface to a variety of host processors makes connection simple.

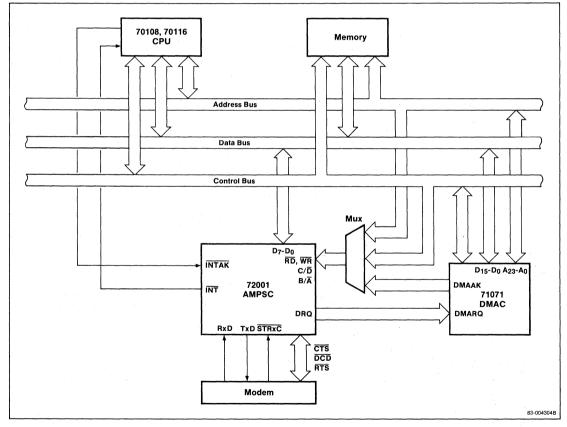



Figure 3. System Configuration Example

#### **Programming the AMPSC**

Software programming the AMPSC utilizes separate data and command/status paths. The data path uses an 8-bit register. The command/status path has a set of 8-bit registers structured for efficient and complete control with a minimum of interaction from the host processor.

The internal registers (table 1) are divided into control registers (CRs) and status registers (SRs). Also, unless otherwise noted in table 1, each channel has its own set of registers; for example, CR1A and CR1B are the CR1 control registers for channels A and B.

The control and status registers for a given channel are all accessed through the same I/O address. The different registers are selected by using the register pointer in CR0 (bits D0-D2). The register pointer is reset to zero after each register operation. For example, to write to CR2, a two is initially written to the control address (C/D pin set high). After this the value to be written into CR2 is also written to the control address. To read from SR2, a two is written to the control address, and then a read cycle at the control address reads the value in SR2. A zero is not required to be written before CR0 and SR0 are accessed.Control registers (figure 4) set up the device operation mode or control device operations. The host processor writes control words into these registers.

Status registers (figure 5) hold device status information. The host processor can sense the AMPSC device status by reading these registers.

Frequently used information is retained in control register CR0 and status register SR0. This information can be sent or received by writing or reading a single byte. In normal operation, CR0 is initially loaded with a command to reset the AMPSC. Next, CR2 is loaded to set the interface mode. This is followed by the remaining registers, beginning with CR4 to set the protocol type.

izes separate	00111101	0110	
a path uses an	Registers	CR1	
n has a set of and complete rom the host		CR2	Functions differ for CR2A and CR2B
		CR3	
		CR4	
d into control		CR5	
Also, unless		CR6	
nas its own set		CR7	
B are the CR1	Status Registers	CR8, CR9	Registers for each channel are used in pairs: CR8A/CR9A; CR8B/CR9B
n channel are		CR10	
ress. The dif-		CR11	
the register ter pointer is		CR12	Tx/Rx BRG registers are loaded by setting bits 0 and 1 of CR12
For example, to the control		CR13	
e value to be ntrol address. the control ntrol address equired to be		CR14	
		CR15	
		SR0	· · · · · · · · · · · · · · · · · · ·
		SR1	· · ·
essed.Control		SR2B	No register SR2A
ation mode or		SR3	
cessor writes		SR4A	No register SR4B
		SR5, SR6, SR7	No registers

SR8

SR9

SR10

SR11

SR12, SR13

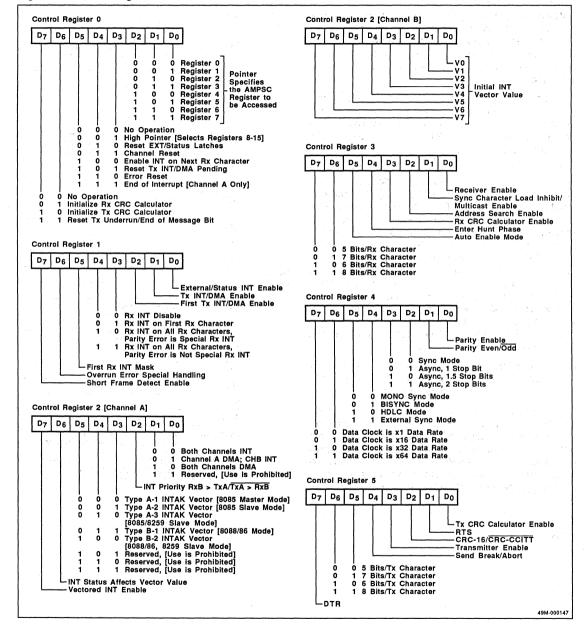
SR14, SR15

Registers for each channel are used in

Registers for each channel are used in

pairs: SR12A/SR13A; SR12B/SR13B

pairs: SR14A/SR15A; SR14B/SR15B


CRO

Control

Table 1. AMPSC Internal Register Configuration

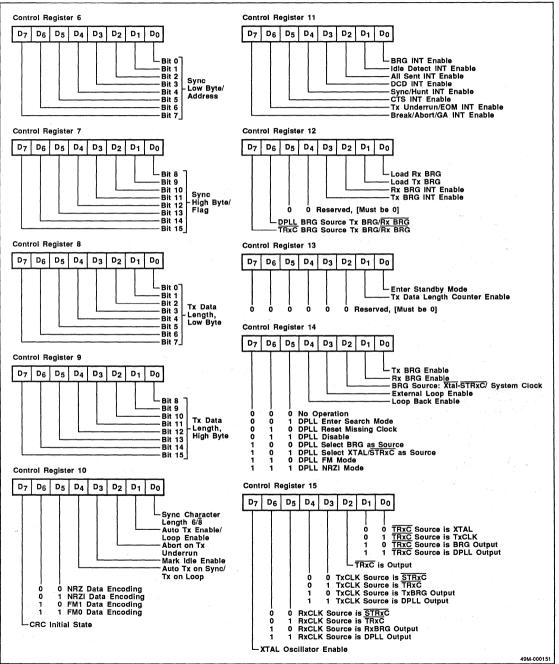
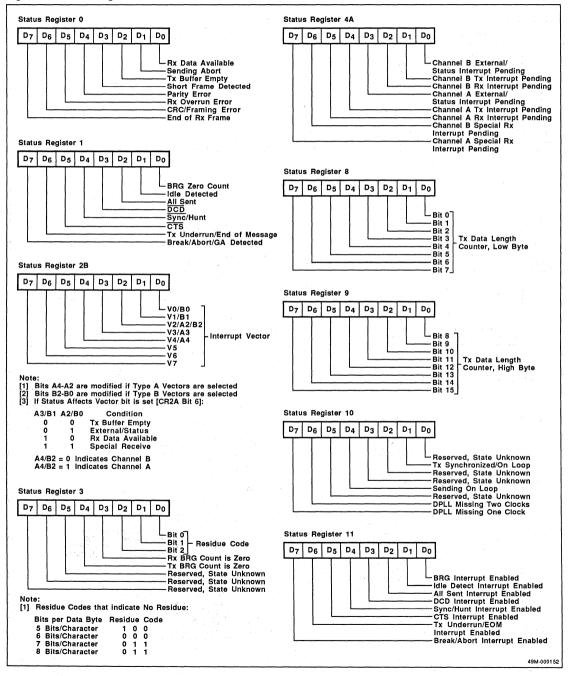
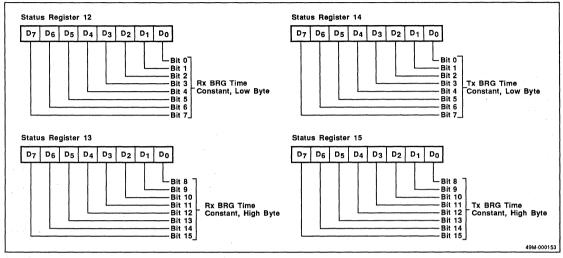



Figure 4. Control Register Bit Functions


















# **Control Register CR0**

#### CRC Control [D7-D6]

These bits are valid when the COP or BOP mode is selected. They are not used in the asynchronous mode.

No Operation [00]. This command has no effect.

Initialize Rx CRC Calculator [01]. This command initializes the receiver (Rx) CRC calculator. The command should be issued before data reception starts. However, before this command is issued, the initial value of the Rx CRC calculator must be set by the value of CR10 bit D7.

This command is not required in the BOP mode, since the CRC calculator is automatically initialized upon receipt of the flag value according to the value of CR10 bit D7.

Initialize Tx CRC Calculator [10]. This command initializes the transmit (TX) CRC calculator. It should be issued before data transmission is started. However, before the command is issued, the initial value of the Tx CRC calculator must be set by the value of CR10 bit D7.

In the BOP mode, if CR10 bit D7 is set to one, the Tx CRC calculator is automatically initialized to one, when a flag value is loaded into the transmit shift register within the AMPSC.

**Reset Tx Underrun/EOM Bit** [11]. This command resets SR1 bit D6 from one to zero (transmit underrun/end-of-message bit). If data is not loaded into the transmit buffer before the transmit shift register begins transmitting its last bit, the AMPSC enters the Tx Underrun/EOM state. At this point, the AMPSC checks to see if a CRC SYNC/Flag or abort is to be sent, which depends on the value of SR1 bit D6 and the operating mode. Therefore, SR1 bit D6 must be reset before transmission of the last byte starts. At the occurrence of Tx underrun, the CRC or the SYNC character/flag is sent when the SR1 bit D6 is a zero or one, respectively.SR1 bit D6 is set when the CRC or SYNC/Flag byte is written to the Tx register by the AMPSC.

In the BOP mode, bit D6 of SR1 is automatically set to zero when the first data byte of a frame is written into the AMPSC.

#### Command [D5-D3]

These bits control the state of the device.

No Operation [000]. This command has no effect.

**High Pointer** [001]. This command is used in conjunction with CR0 bits D2-D0 (Register Pointer) to access status registers 8 through 15. For example, to access SR11, bits D5-D0 of CR0 are set to 001011.

**Reset E/S Bit Latches [010].** This Reset External/Status Bit Latch command is issued when an E/S bit (each bit of SR1) latch operation has occurred. It opens the E/S latches and prepares for the latching of a new E/S bit status change. If E/S interrupt is enabled, an E/S interrupt will occur and the latches will latch when an E/S bit's status changes. Not all state transitions will cause latching and an interrupt to occur. See the description of SR1 for details. New status will not be available in SR1 until this command is issued.



**Channel Reset** [011]. This command resets an AMPSC channel. It performs a function similar to the RESET pin. Executing the channel reset command halts channel operation. After a channel reset, three system clock periods ( $t_{CY}$ ) should elapse before any further commands or data are sent to the channel.

Enable Next Rx Character Interrupt [100]. This command is valid only when the First Rx INT mode (CR1 bits D4-D3 = 01) is selected. It is issued at the end of a message to request an additional Rx interrupt for the first received byte of the next message. The additional Rx interrupt occurs when the next data byte is received after the command is issued.

This command has no effect when the First Rx INT mask is on (CR1 bit D5 = 1), even if the First Rx INT mode is selected.

**Reset Tx Interrupt/DMA Pending** [101]. This command is used to clear a pending Tx interrupt request or Tx DMA request while the Tx buffer is empty (SR0 bit D2 = 1). It is typically used to clear a Tx interrupt or Tx DMA request caused by the Tx buffer empty state that occurs after the last byte is written into the AMPSC.

**Error Reset** [110]. This command is used to reset the pertinent bits (SR0 bits D7-D3) if a Special Rx Condition has occurred. If it occurs when the First Rx INT mode is selected, any data that is subsequently received is not transferred to the last stage of the AMPSC internal Rx buffer, but will remain in the first and second stages until this command is issued.

End of Interrupt [111]. This command is used so that the AMPSC can recognize the end of interrupt service processing. It should be issued when interrupt service for the AMPSC is completed. Command execution resets the internal interrupt service latch and reenables lower priority interrupt requests. This command is required when the start of interrupt service has been indicated by either conducting an INTAK cycle, or by reading SR2B.

#### Register Pointer [D2-D0]

These bits specify which AMPSC register number is to be accessed. The bits are reset to 000 when system reset is executed or when the AMPSC is accessed after a Register Pointer value is specified. For registers numbered 8 and above, the High Pointer command (D5-D3 = 001) is used inconjunction with the Register Pointer to access them.

#### **Control Register CR1**

#### Short Frame Detect [D7]

Valid only in BOP mode, this bit detects short HDLC frames (frames that are less than 32 bits long).

Short Frame Detect Disabled [0]. Short frame detection is disabled.

Short Frame Detect Enabled [1]. Short frame detection is enabled. If a short frame is received, SR0 bit D3 (Short Frame Detect) is set to 1, causing a Special Rx condition interrupt.

#### Overrun Error INT [D6]

This bit selects the timing of overrun error detection.

**Normal Mode** [0]. In this mode, an overrrun error is indicated when the received data that caused the overrun error is transferred to the last stage of the receive buffer. A Special Rx Condition interrupt occurs at this time.

**Special Mode** [1]. In this mode, the Rx Overrun Error bit immediately reflects an overrun error within the AMPSC. A Special Rx Condition interrupt also occurs at this time. The received data that caused the overrun error may not be the byte at the last stage of the RxFIFO.

#### Receive Interrupt on First Character Mask [D5]

This bit is enabled only if the First Rx INT mode (CR1 bits D4-D3 = 01) is selected. It is used to mask Rx interrupts caused by received data. Setting this bit to 1 causes all first receive interrupts to be masked. It does not mask Special Receive interrupts. It is used in data transfers when no interrupt service is desired or required, such as DMA only data transfer.

#### Receive Interrupt Mode [D4-D3]

These bits set the Rx INT mode. They specify the way received data is managed.

**Disable Mode** [00]. This Receive Interrupt Disable mode is used to accept received data using status polling, or to disable the receive interrupt request.

**First Rx Character Mode** [01]. In this mode, which is typically used with DMA data transfer, an Rx interrupt occurs only when the first byte is received. This occurs when Rx is enabled after initialization or after the Enable Next Received Character interrupt command is issued.



All Receive-1 Mode [10]. This mode causes a receive interrupt to be generated for each byte received. In this mode, a parity error causes a Special Rx Condition interrupt.

All Receive-2 Mode [11]. This mode is the same as All Receive-1, except that parity error does not cause a Special Rx Condition interrupt.

#### First Transmit Interrupt/DMA Enable [D2]

This bit determines whether a Tx INT/DMA request is generated immediately after the transmitter is enabled. It is valid when INT/DMA is enabled (CR1 bit D1 = 1).

A transmit interrupt or DMA request is issued if bit D2 is 1 when the transmitter is enabled, but not if the bit is 0. Regardless of the state of bit D2, an interrupt or DMA request is generated when the Tx buffer makes the full-to-empty transition.

#### Transmit Interrupt/DMA Enable [D1]

This bit enables the transmit interrupt or DMA request. Each time a transmit interrupt condition exists and provided bit D1 is set, an interrupt or DMA request is generated.

#### External/Status Interrupt Enable [D0]

If bit D0 is set, a change in state of the external/status bits causes an interrupt and the state of the bits is latched. The latches must be reset with the Reset External/Status Bit Latch command (CR0 bits D5-D3), before subsequent interrupts can occur.

# **Control Register CR2A**

#### Vectored Interrupt Enable [D7]

This bit enables transmission of the interrupt vector. If the bit is set, the interrupt vector is placed on the data bus during the INTAK cycle. If the bit is reset, the vector is never placed on the bus; It can be read by the host processor. In this mode, the  $\overline{INT}$  signal is released after the host processor reads SR2B or clears the interrupt condition.

#### Interrupt Status Affects Vector [D6]

This bit determines if the value of an interrupt vector is modified by the cause of interrupt. If the bit is set, the vector is modified as specified by bits D5-D3. If the bit is reset, the vector is not modified and the cause of interrupt must be determined by reading SR0 and SR1.

#### Interrupt Vector Mode [D5-D3]

These bits determine the interrupt vector operation. The bits also select which bits of an interrupt vector are to be changed when the Status Affects Vector is set by CR2A bit D6. For details of how the vector is modified, refer to the description of register SR2B. Table 4 shows the vector operation determined by bits D5-D3.

#### Interrupt Priority Select [D2]

This bit selects the priority of interrupt requests within the AMPSC. The priority does not apply to DMA transfer.

If bit D2 = 0, the priority from high-to-low is RxA, TxA, RxB, TxB, E/S A, E/S B.

If bit D2 = 1, the priority from high-to-low is RxA, RxB, TxA, TxB, E/S A, E/S B.

#### Interrupt/DMA Mode [D1-D0]

These bits select the data transfer mode for each channel. The E/S, Rx, and Special Rx Condition interrupts can be enabled in both modes. The Tx interrupts are disabled on any channel in DMA mode. The three modes are as follows:

Bits D1-D0	Mode
00	Both channels interrupt
01	DMA on channel A, interrupt on channel B
10	DMA on both channels

#### **Control Register CR2B**

Bits D7-D0 of CR2B set the initial value of an interrupt vector.

	CR2A							Data Bus S	Status (INTA	K response (	of AMPSC)		
05	D4	D3	Mode	PRI	INTAK Cycle	07	D6	05	D4	D3	D2	01	DO
0	0	0	A1	*	1st.	1	1	0	0	1	1	0	1
				low	2nd.	V7	V6	V5	M4	M3	M2	V1	· V0
				low	3rd.	0	0	0	0	0	0	0	0
				*	1st.	1	1	0	0	1	1	0	1
				high	2nd.				Hiah Im	pedance			
				high	3rd.					pedance			
0	0		A2	*	1st.					pedance			
-	1		A2 A3	1		1/7	V6	VIE			140		1/0
0	1	0	A3	low	2nd.	V7		V5	M4	M3	M2	V1	VO
				low	3rd.	0	0	0	0	0	0	0	0
				*	1st.				High Im	pedance			
				high	2nd.				High Im	pedance			
				high	3rd.					pedance			
0	1	1	B1	•	1st.				High Im	pedance			
1	0	0	B2	low	2nd.	V7	V6	V5	<b>V</b> 4	V3	M2	M1	MO
				*	1st.				High Im	pedance			
				high	2nd.				High Im	pedance			

#### Table 4. Interrupt Vector Operation Throughout INTAK Sequence

Notes:

(1) * = Don't care.

(2) When Status Affects Vector (bit 6 of CR2A) is set, the M data bits are modified to indicate the interrupt source.

(3) Modes A3 and B2 ignore the state of PRI. They are slave modes for use with an interrupt controller such as the µPD71059.

#### **Control Register CR3**

#### Receive Character Bit Length [D7-D6]

These bits determine the number of bits per character in the received data.

Bits D7-D6	Bits/Character	
00	5	
01	<b>7 1</b>	
10	6	
11	8	

#### Auto Enable Mode [D5]

Bit D5 enables and disables the auto enable mode. In this mode, the CTS and DCD pins control operation of the transmitter and receiver, respectively. If the input pin is high, the Tx or Rx is disabled. The RTS pin outputs the current transmitter status. The pin remains low during transmission and returns high only after all characters have been sent. The auto enable mode is enabled by setting bit D5 to one and disabled by resetting bit D5 to zero. With bit D5=0, CTS, DCD, and RTS function as normal inputs and outputs.

#### Enter Hunt Phase [D4]

Valid in COP or BOP mode, this bit forces the AMPSC to enter the Hunt Phase. In the Hunt Phase, the  $\mu$ PD72001 searches the received data stream for either a sync or flag before it begins loading data into the Rx FIFO.

#### Receive CRC Calculator Enable [D3]

Valid only in COP or BOP mode, bit D3 determines whether or not a CRC calculation is to be performed on the received data. The CRC is calculated 8 bit times after a byte is transferred into the receive FIFO. If bit D3 is reset before this time, the byte will not be included in the CRC calculation. The bit must be set again after the next byte is received to resume the CRC calculation.

#### Address Search Mode Enable [D2]

Valid only in BOP mode, bit D2 determines whether or not the address field value of a received frame is to be compared with the value set in CR6. If the bit is set to one, Address Search is enabled and the AMPSC checks the first byte of the frame. If the byte matches CR6 or the global address (FFH), the frame is received. If the byte does not match, the AMPSC enters the Hunt mode again, and the byte and the rest of the frame are blocked and not received. If Multicast mode is enabled (bit D1), only the four most significant bits (D7-D4) of the address byte are compared.

#### Sync Character Load Inhibit/Multicast Enable [D1]

Valid only in COP or BOP mode, bit D1 has a different meaning in each mode. In COP mode, setting bit D1 to one enables the Sync Character Load Inhibit function. This prevents any byte that matches the value in CR6 from being loaded into the receive FIFO and being included in the CRC calculation.

In BOP mode, bit D1 enables the Multicast function. In this mode, which is a modified form of the address search mode, only the most significant four bits of the received address are compared with the identical bits of CR6. Frame acceptance will function in the same way as in the address search mode.

#### Receiver Enable [D0]

This bit enables and disables the receiver. Setting bit D0 enables the receiver, resetting it disables the receiver.

# **Control Register CR4**

#### Clock Rate [D7-D6]

Bits D7 and D6 select the clock rate divisor. They are ignored in the internal synchronous modes. In the external synchronous mode, only the x1 and x16 selections are valid.

In asynchronous mode, the following values apply:

Bits D7-D6	Divisor
00	x1
01	x16
10	x32
11	x64

The divisor value is the factor by which the supplied data clock is greater than the data rate for the transmitter and receiver. The data clock source is selected by the clock multiplexer. It can be set to any of the BRG, DPLL, or external clock sources. The divisor determines the number of times that the received data is sampled per bit time by the receiver. Also, it determines the composition of the transmitter output.

#### Protocol Mode [D5-D4]

Bits D5-D4 select the synchronous protocol, which are used when synchronous mode is selected with bits D3-D2.

Bits D5-D4	Mode
00	Mono-Sync, character synchronous
01	Bisync, character synchronous
11	External Sync, character synchronous
10	HDLC, bit synchronous

#### Tx Stop Bits/Sync Mode [D3-D2]

Bits D3-D2 select the number of stop bits sent after each byte in Asynchronous mode, or they select the Synchronous mode.

Bits D3-D2	Mode
00	Sync mode
01	Async mode, 1 stop bit
10	Async mode, 1.5 stop bits
11	Async mode, 2 stop bits

#### Parity Select [D1]

Valid in Asynchronous and COP modes, bit D1 selects the parity type: 0 = odd and 1 = even. It is used only when the Parity Enable bit D0 of CR4 is set to one.

#### Parity Enable [D0]

Bit D0 enables the parity bit calculation on transmitted data and parity checking on received data. Setting bit D0 enables parity; resetting bit D0 disables parity. If the length of the received character is 7 bits or less, the parity bit can be read in the received data byte. If parity is disabled, no parity bit is transmitted and none is expected on receipt.

#### **Control Register CR5**

#### DTR Control [D7]

This bit controls the  $\overline{\text{DTR}}$  pin status: 0 = high and 1 = low. The  $\overline{\text{DTR}}$  pin function is disabled if channel B is operating in the DMA mode (CR2A bits D1-D0 = 10)

#### Transmit Character Bit Length [D6-D5]

These bits specify the bit count per character in transmitted data.

Bits D6-D5	Bits/Character
00	5 or fewer
01	7
10	6
11	8

If the bit count per character is 6 or 7, only the low-order bits of the byte are valid and the most significant bit(s) are ignored. If the count is 5 bits or lower when writing into the transmit data register, refer to the data format that is shown in table 5.



 
 Table 5.
 Parallel Data Format for One to Five Bits per Character

Bits	07	D6	D5	D4	D3	D2	D1	DO
1	1	1	1	1	0	0	0	D0
2	1	1	1	0	0	0	D1	DO
3	1	1	0	0	0	D2	D1	DO
4	1	0	0	0	D3	D2	D1	DO
5	0	0	0	D4	D3	D2	D1	DO

Dn = Effective data bit

#### Send Break/Abort [D4]

Bit D4 controls the break or abort transmission according to the selected operation mode. In asynchronous mode, bit D4 controls sending the break signal (TxD set to spacing (0) condition). Setting bit D4 to one begins sending the break signal; resetting it to zero returns the transmitter to normal operation.

In COP mode with Tx on Loop selected (bits 4 and 1 in CR10), setting bit D4 causes the transmitter to be synchronized with the receiver. The bit is reset automatically when synchronization is achieved.

In BOP mode, setting bit D4 to one causes eight 1-bits (abort sequence) to be sent. After completion of the message, bit D4 is reset automatically and the transmitter returns to the idle state.

#### Transmit Enable [D3]

**Disable.** Setting bit D3 to the zero state disables the transmitter function. If the transmitter is currently sending a character, the AMPSC waits until the character is completed before setting TxD to the marking (1) state. If bit D3 is reset during transmission of a CRC character, a SYNC character or flag is sent in place of the CRC character.

If D3 is reset in the COP or BOP mode, the Tx Underrun/EOM bit (SR1 bit D6) is set.

If the AMPSC is in the SDLC Loop mode (refer to CR10) or Echo Loop Test (refer to CR14), the TxD pin is connected to RxD, and is not set to marking.

**Enable.** Setting bit D3 to the one state enables the transmitter to start transmission. If the Auto Enable mode is selected (CR3 bit D5 = 1), the signal applied to the CTS pin controls the transmitter operation.

#### CRC Polynomial [D2]

This bit selects the polynomial used for CRC calculation. It is valid only in COP or BOP mode. Only the CCITT polynomial is used in BOP mode. Bit 7 of CR10 sets the initial value of the CRC calculator. D2 = 0 (CRC-CCITT): The generating polynomial expression is  $X^{16} + X^{12} + X^5 + 1$ .

D2 = 1 (CRC-16): The generating polynomial expression is  $X^{16} + X^{12} + X^2 + 1$ .

#### **RTS** Control [D1]

Bit D1 controls the  $\overline{\text{RTS}}$  pin. Setting bit D1 to the zero state causes  $\overline{\text{RTS}}$  to be high, setting it to the one state causes it to go low. If Auto Enable mode is selected in Asynchronous mode,  $\overline{\text{RTS}}$  operates differently. If the bit remains at zero from the start of transmission through to the end,  $\overline{\text{RTS}}$  will stay high. If it is set to one, it remains low. If it starts set to one and is then set to zero while transmitting,  $\overline{\text{RTS}}$  will not go high until all data is transferred out of the Tx shift register.

#### Transmit CRC Calculator Enable [D0]

Valid only in the COP or BOP mode, bit D0 determines whether or not transmitted data is included in the CRC calculation. If bit D0 is set when the byte is transferred into the Tx shift register, the byte is included in the Tx CRC calculation. Bit D0 should be set or reset before loading a data byte into the AMPSC.

#### **Control Register CR6**

Valid only in the COP or BOP mode, this byte (bits D7-D0) specifies the SYNC character pattern or address value.

In Monosync or External Sync mode, D7-D0 holds the transmit Sync character. In Bisync mode, the low-order byte of the Sync pattern is set in D7-D0.

If the sync character is 6 bits (CR10 bit D0 = 1), bits D3-D0 should be set to one.

In mono or external sync bits D1 and D0 are repeated in positions D7 and D6.

In BOP mode, this byte is the secondary address.

#### **Control Register CR7**

Valid only in the COP or BOP mode, these bits specify the Sync character or flag.

In Monosync mode, D7-D0 holds the receive Sync character. In BISYNC mode, the high-order byte of the Sync character is set in D7-D0. These bits are not used in External Sync mode.

In BOP mode, the flag pattern (01111110) is set in bits D7-D0.



# **Control Register CR8**

Valid only in the BOP mode, CR8 bits D7-D0 hold the low byte (bits 7-0) of the transmit data length. Register pair CR8 and CR9 must be set before the Tx Data Length Counter Enable bit (D1 of CR13) and Tx Enable bit (D3 of CR5) are set. The transmit data length register (TxDLR) is used to automate the sending of HDLC frames. See the description of CR13 for detail information.

#### **Control Register CR9**

Valid only in the BOP mode, CR9 bits D7-D0 hold the high byte (bits 15-8) of the transmit data length. Register CR9 is paired with CR8.

#### **Control Register CR10**

#### Initial CRC State [D7]

Valid only in the COP or BOP mode, bit D7 specifies the initial state of the CRC calculation circuit. Setting this bit to zero causes the CRC to be initialized to zero when the Initialize CRC command (CR0 bits 7-6) is performed. Setting this bit to one causes the CRC to be set to all ones.

#### Data Format [D6-D5]

These bits specify the serial data format and enable the corresponding encoder/decoder.

Bits D6-D5	Format
00	NRZ
01	NRZI
10	FM1
11	FM0

With NRZ format, it is possible to decode Manchester encoded data by setting the DPLL mode to FM (CR14 bits D7-D5 = 110).

#### Auto Tx on Sync/Tx on Loop [D4]

Bit D4 is valid only in the COP or BOP mode. In COP mode, it synchronizes the receiver with the transmitter. In BOP mode, it controls SDLC loop operation. The bit is valid only when the Loop Enable state (CR10 bit D1 = 1) is selected.

In COP mode, bit D4 provides the Auto Tx on Sync function to synchronize receiver and transmitter operation.

(1) D4 = 0. The Auto Tx on Sync function (CR10 bit D1 = 1) is disabled. Once synchronization is established after this bit is set to 1, resetting the bit to 0 does not affect synchronization.

(2) D4 = 1. If bit D1 (Loop Enable) is also set to one, the transmitter is disabled and the receiver enters the Hunt Phase. When the SYNC character is detected, character synchronization is established, the transmitter is enabled, and data transmission can begin. The state of character synchronization can be determined from the state of the Tx Sync/ GA Detect bit (SR10 bit D1).

In BOP mode, bit D4 set to one enables or bit D4 set to zero disables the Tx on Loop function. It is used for data transmission during the SDLC loop operation.

- (1) D4 = 0. Once the AMPSC forms a loop and starts transmission, bit D4 must be reset to zero. This allows the CRC and flag to be automatically transmitted if a Tx Underrun/EOM occurs and allows the AMPSC to be subsequently placed in Loop mode with a 1-bit delay. Bit D4 must be reset before the CRC transmission is completed.
- (2) D4 = 1. When the Loop Enable bit (CR10 bit D1) is set to one. SDLC Loop Operation mode is selected. in which the RxD input is connected to the TxD output within the AMPSC to form a loop. The GA (Go Ahead) pattern detection is initiated. If the GA pattern (11111110 = FEH) is detected, a 1-bit delay is inserted between RxD and TxD and the GA pattern detection is continued. At this point, the transmitter remains disabled. The receiver can be enabled at this point. Subsequently, if the GA pattern is detected, the transmitter is enabled. At this point, the GA pattern is automatically transformed into a flag so that any data in the Tx buffer may be transmitted following the flag. Once transmission is started, bit D4 must be reset before the end of the frame.

#### Idle Condition [D3]

Valid only in BOP mode, bit D3 determines the type of information to be transmitted following a closing flag or completion of the Send Abort. If bit D3 is zero, flags will be sent; if it is a one, continuous marks (ones) will be sent.

#### Transmit Condition on Underrun [D2]

Valid only in the BOP mode, bit D2 determines transmitter action when a Tx Underrun condition occurs. If bit D2 is reset, Tx Underrun/EOM generates either the CRC followed by a flag or just a flag depending on the state of the Tx Underrun bit (SR1 bit D6) and the CRC enable bit (CR5 bit D0). If the CRC is disabled or the Tx underrun bit is a one, only flags are sent. Otherwise, the CRC is sent followed by flags. If bit D2 is set, the abort message is sent followed by flags.



#### Auto Tx/Loop Enable [D1]

Valid only in the COP or BOP mode, bit D1 enables the two types of loop operations that are set with bit D4. This bit should be set before the transmitter or receiver is enabled.

#### SYNC Character Length [D0]

Valid only in the COP mode, bit D0 determines the number of bits per SYNC character. Setting bit D0 to zero gives a character length of 8 bits in Mono-sync and 16 bits in Bisync. With bit D0 = 1, the character lengths are 6 and 12 bits, respectively.

#### **Control Register CR11**

Each bit of CR11 controls an E/S interrupt request generated by the AMPSC. An interrupt is set if the E/S interrupts are enabled (CR1 bit D0 = 1). For the causes of interrupts assigned to each, refer to the description of SR1. Setting each bit to one enables it as a source of interrupts.

#### Break/Abort/Go Ahead Interrupt Enable [D7]

In Asynchronous and COP modes, bit D7 enables interrupts at the beginning and end of each detected break condition (a null character plus a framing error).

In BOP mode, when not in SDLC loop, bit D7 enables interrupts at the beginning and end of each received abort condition (seven or more consecutive 1-bits). In SDLC loop mode, bit D7 also enables interrupts for detecting the GA pattern (1111110 = FEH).

#### Transmitter Underrun/End of Message Interrupt Enable [D6]

Valid only in the COP or BOP mode, bit D6 enables interrupts caused by transmitter underrun and Tx End of Message detection.

#### Clear to Send Interrupt Enable [D5]

Bit D5 enables interrupts caused by a change of state on the  $\overline{\text{CTS}}$  pin.

#### SYNC/Hunt Interrupt Enable [D4]

Bit D4 enables interrupts caused by a change in the SYNC/Hunt state.

#### Data Carrier Detect Interrupt Enable [D3]

Bit D3 enables interrupts caused by a change of state on the DCD pin.

#### All Sent Interrupt Enable [D2]

Valid only in the Asynchronous or BOP mode, bit D2 enables interrupts generated by the All-Sent condition.

#### Idle Detect Interrupt Enable [D1]

Valid only in the BOP mode, bit D1 enables interrupts caused by a change in the Idle Detection condition.

#### BRG Interrupt Enable [D0]

Bit D0 enables interrupts caused by one of the baud rate generator/timers (BRG) counting down from one to zero. Also, each of the BRGs must be enabled in CR12 bits D3-D2.

#### **Control Register CR12**

#### BRG Select for TRxC [D7]

When BRG is selected as the source of the clock at the TRxC pin (CR15 bits D1-D0 = 10), and the TRxC pin is set to output (CR15 bit D2 = 1), bit D7 selects TxBRG (one state) or RxBRG (zero state).

#### BRG Select for DPLL [D6]

Bit D6 selects the source (TxBRG or RxBRG) for the DPLL. It is valid when the BRG is selected as the source for the DPLL circuit (CR14 bits D7-D5 = 100). Setting bit D6 to one selects TxBRG and setting it to zero selects RxBRG.

#### Transmit BRG Interrupt Enable [D3]

Bit D3 enables an E/S interrupt when the TxBRG counts down from 1 to 0. It is valid only when the BRG IE bit is set (CR11 bit D0 = 1).

#### Receive BRG Interrupt Enable [D2]

Bit D2 enables an E/S interrupt when the RxBRG counts down from 1 to 0. It is valid only when the BRG IE bit is set (CR11 bit D0 = 1).

#### Transmit BRG Register Set [D1]

Bit D1 is used to write the time constant value into the TxBRG register. When D1 is set to one, the next two bytes written to the AMPSC are assumed to be the time constant value. The lower byte is written in the first write cycle and the upper byte in the second write cycle. Bit D1 is automatically reset after the register is loaded.

The time constant value is calculated by using the following formula.

Time constant =  $\frac{\text{Source clock frequency (Hz)}}{2 \times (\text{Data clock rate (BPS)})} - 2$ 



The data clock rate is the transmitted or received data rate multiplied by the clock factor specified in CR4 bits D7-D6.For example, if the system clock is selected as the BRG source (CR14 bit D2 = 1) at 8 MHz and the BRG is the transmitter source (CR15 bits D4-D3 = 10) with a clock factor of x16 (CR4 bits D7-D6 = 01) and data rate of 9600 bits per second, the calculation would be as follows.

$$\frac{8 \times 10^6}{2 \times (9600 \times 16)} - 2 = 24.04 = 0018 \text{ (hex)}$$

The loading sequence in hexadecimal for the TxBRG would be; 0C, 02, 18, and 00.

If data is being written while the BRG is running, the value will not be loaded into the BRG until it counts down to zero.

#### **Receive BRG Register Set [D0]**

Bit D0 is used to write the count value into the RxBRG register. It operates in the same manner as bit D1 for the TxBRG register.

#### **Control Register CR13**

#### Transmit Data Length Counter Enable [D1]

Bit D1 enables the transmit data length counter (TxDLC) that is used to determine the end of a transmitted frame and is only valid in BOP mode. When bit D1 is set to one, the TxDLC (SR8-SR9) is incremented each time a Tx interrupt or DMA request is generated, and the value is compared with the value in the transmit length register (TxLR) (CR8-CR9). If the two values are equal, Tx interrupts/DMA requests are masked.

The subsequent Tx buffer empty interrupt is masked and no interrupt or DMA request is made. This results in a transmitter underrun. The AMPSC then sends the CRC and a closing flag. After this the AMPSC issues an external status interrupt with the All Sent bit set. If the transmitter underruns and the transmit length values do not match, then the MPSC sends an abort and sets the Sending Abort bit (SR0 bit D1). An E/S interrupt for the All Sent is generated. The TxLC value (SR8-SR9) can also be compared with the frame length to determine if correct transmission occurred. After the abort is sent, the TxDLC enable bit must be set to one again in order to generate new Tx interrupts/DMA requests.

#### Standby Mode Set [D0]

Setting bit D0 to one places the AMPSC in the Standby mode. This mode consumes very little power but saves all internal register values. Greater power reduction is possible by not toggling any of the AMPSC inputs. In this mode, the system clock (CLK) and the data clocks are not circulated within the AMPSC.

The AMPSC enters the Standby mode automatically after RESET. Writing 00H to CR0 restores normal operation. Table 6 lists the status of the pins in standby mode.

During Standby mode, the  $\overline{WR}$  and  $\overline{RD}$  pins must be held high and the  $\overline{CTS}$ ,  $\overline{DCD}$ , and  $\overline{SYNC}$  pins can not be toggled. Read cycles that are conducted will not result in data being driven onto the bus.

Table 6.	Pin	Status	in	Standb	y Mode
----------	-----	--------	----	--------	--------

Pin Symbol	Input/Output	Pin Status
WR	Input	Unchanged
RD	Input	Unchanged
B/A	Input	Unchanged
C/D	Input	Unchanged
D ₇ -D ₀	Input/Output	High impedance
INT	Output	Retains the current state
INTAK	Input	Unchanged
PRI	Input	Unchanged
PRO	Output	Depends on PRI
DRQTxA	Output	Retains the current state
DRQRxA	Output	Retains the current state
DTRA/DRQTxB	Output	Retains the current state
DTRB/DRQRxB	Output	Retains the current state
TxDA, TxDB	Output	Retains the current state
RxDA, RxDB	Input	Unchanged
TRxCA, TRxCB	Input/Output	High impedance
STRxCA, XI1A	Input	Unchanged
STRxCB, XI1B	Input	Unchanged
XI2A/SYNCA	Input/Output	High impedance
XI2B/SYNCB	Input/Output	High impedance
RTSA, RTSB	Output	Retains the current state
CTSA, CTSB	Input	Unchanged
DCDA, DCDB	Input	Unchanged

# **Control Register CR14**

#### DPLL Command [D7-D5]

These bits control the digital phase-locked loop (DPLL). After reset, the DPLL is disabled, the STRxC pin is selected as the source clock, and the NRZ1 mode is selected. The DPLL commands corresponding to the eight states of bits D7-D5 are described below.

**No Operation** [000]. This command causes no operation.



**Enter Search [001].** This command causes the DPLL to start the detection of edges in received data. Circuit operation depends on the data format.

**Reset Missing Clock** [010]. Valid when FM mode is selected, this command resets the Missing Clock bits (SR10 bits D7-D6).

**Disable** [011]. This command stops DPLL operation and resets the Missing Clock bits.

**Source BRG Select** [100]. This command selects one BRG as the clock source for the DPLL. Selection of TxBRG or RxBRG is determined by CR12 bit D6 (BRG Select for DPLL).

**Source Xtal/STRxC Select** [101]. This command is used when the crystal-controlled oscillator or a clock applied to the STRxC pin is to be the source clock for the DPLL. Selection between the crystal OSC and the STRxC input is specified by CR15 bit D7 (Xtal Select).

**FM Mode** [110]. This command is used when received data is to be treated as FM format. Setting the data format to NRZ (CR10 bits D6-D5 = 00) allows the  $\mu$ PD72001 to decode Manchester encoded data.

**NRZI Mode** [111]. This command is used when received serial data is to be treated as NRZI format.

#### Local Self Test [D4]

When bit D4 is set to one, the transmitter output is directly connected to the input of the receiver within the AMPSC. Signals applied to the RxD pin will be ignored. In this mode, Autoenable cannot be used to control the transmitter or receiver.

#### Echo Loop Test [D3]

When bit D3 is set to one, the RxD input pin is connected to the TxD output pin in the AMPSC, so that the received data is echoed back to the remote sender for line testing. The AMPSC transmitter is disabled.

#### **BRG Source Select [D2]**

Bit D2 selects the source clock for the BRGs. The selected source clock is shared by the TxBRG and the RxBRG. If D2 is set to one, the system clock is used as the source clock. If D2 is set to zero, the source clock can either be the crystal oscillator (CR15 bit D7 = 1) or the  $\overline{STRxC}$  input (CR15 bit D7 = 0).

#### Receive BRG Enable [D1]

Setting bit D1 to one starts the RxBRG, which takes two clocks to begin operating.

#### Transmit BRG Enable [D0]

Setting bit D0 to one starts the TxBRG, which takes two clocks to begin operating.

#### **Control Register CR15**

#### Crystal Select [D7]

If bit D7 is set to one, the on-chip crystal oscillator is enabled and a crystal can be connected across pins XI1 and XI2. If bit D7 is zero, the oscillator is disabled and the pins become  $\overline{\text{SYNC}}$  and  $\overline{\text{STRxC}}$ .

#### Receive Clock Select [D6-D5]

These bits select the source for the receive data clock.

Bits D6-D5	Receive Clock Source
00	Clock applied to STRxC pin
01	Clock applied to TRxC pin (CR15 bits D2-D0 are invalid)
	bits D2-D0 are invalid)
10	RxBRG output
· 11 C	DPLL output

#### Transmit Clock Select [D4-D3]

These bits select the source for the transmit data clock.

Bits D4-D3	Transmit Clock Source
00	Clock applied to STRxC pin
01	Clock applied to TRxC pin (CR15
	bits D2-D0 are invalid.)
10	TxBRG output
11	DPLL output

#### TRxC Input/Output [D2]

Bit D2 determines whether the  $\overline{TRxC}$  pin will be an input or an output. It is an input if bit D2 = 0 or if the pin is specified as an input by bits D6-D5 or D4-D3.

#### TRxC Source Select [D1-D0]

When the  $\overline{TRxC}$  pin is selected as an output, these bits determine the output source. Refer to the preceding descriptions for D6-D5, D4-D3, and D2 to determine when the  $\overline{TRxC}$  pin is an output.

Bits D1-D0	Output at Pin TRxC
00	On-chip crystal oscillator
	(if enabled)
01	Transmit data clock
10	TxBRG or RxBRG as selected by
	CR12 bit D7
11	DPLL output

# **Status Register SR0**

#### End of Frame [D7]

Valid only in the BOP mode, bit D7 indicates if reception of a single frame is complete. When this bit is one, a complete frame has been received and the CRC Error bit (SR0 bit D6) and Residue Code (SR3 bits D2-D0) are valid. The EOF condition causes a Special Rx Condition interrupt. The Error Reset command resets this bit.

## CRC/Framing Error [D6]

In the asynchronous mode, bit D6 indicates a framing error. It is set to one if a zero is detected at the stop bit position. It generates a Special Rx Condition interrupt. Bit D6 is reset by an Error Reset command or reception of a normal data byte.

In the COP or BOP mode, bit D6 set to one indicates a CRC error. Bit D6 set to zero indicates no CRC error.

In the COP mode, bit D6 is valid 20 bit times subsequent to the last bit of the second CRC byte that is input at the RxD pin, or 16 bit times after the second CRC byte is transferred to the Rx buffer.

In the BOP mode, bit D6 is valid when the End-of-Frame bit (SR0 bit D7) is set to one.

A CRC error does not generate a Special Rx Condition interrupt.

#### **Receive Overrun Error [D5]**

A one in bit D5 indicates an Rx Overrun error. This error occurs each time the AMPSC attempts to transfer an additional byte from the Rx shift register to the Rx FIFO and the FIFO is already full.

An Rx Overrun error causes a Special Rx Condition interrupt. The timing of the Rx Overrun Error and the resulting Special Rx Condition interrupt will differ depending on the setting of the Overrun Error INT bit (CR1 bit D6). For more details, refer to the description of control register CR1.

The Rx Overrun Error bit is reset by the Error Reset command.

#### Parity Error [D4]

Valid only in the Asynchronous or COP mode when parity is enabled (CR4 bit D0 = 1). A one in bit D4 indicates that a parity error occurred in a received byte. The Parity Error bit is reset by the Error Reset command.

In the All Receive INT-1 mode (CR1 bits D4-D3 = 10), a parity error causes a Special Rx Condition interrupt.

#### Short Frame Detect [D3]

Valid only in the BOP mode when Short Frame Detect Enable is selected (CR1 bit D7 = 1), bit D3 is set when a short frame is received and is reset by the Error Reset command. A short frame has less than 32 bits between two flags.

Detection of a short frame causes a Special Rx Condition interrupt.

#### Transmit Buffer Empty [D2]

A one in bit D2 indicates that the Tx buffer is empty and can be loaded with the next Tx byte. Bit D2 is zero when the Tx buffer contains a byte that has not been transferred to the Tx shift register. Bit D2 is also zero in the COP or BOP mode during CRC transmission.

#### Sending Abort [D1]

Valid only in the BOP mode, a one in bit D1 indicates that the AMPSC is sending an abort sequence.

Bit D1 is reset by the Error Reset command. Status changes in bit D1 do not cause an interrupt.

#### Receive Data Available [D0]

A one in bit D0 indicates the presence of valid received data in the Rx buffer of the AMPSC.

#### **Status Register SR1**

This register consists of external status bits that indicate the causes of E/S interrupts. If the E/S INT is enabled (CR1 bit D0 = 1) and an interrupt by an specific E/S bit is enabled, the changes in the pertinent E/S bit states are latched and cause an E/S interrupt. If the E/S interrupt is disabled, changes in the E/S bit status will not be latched.

#### Break/Abort/Go Ahead Detect [D7]

Bit D7 is valid only in the Asynchronous or BOP mode. In the Asynchronous mode, a one in bit D7 indicates that a Break (character in which the start, stop, and data bits are all zeros) has occurred. Data received during the Break (all zeros) are not loaded into the Rx FIFO.

In the BOP mode, bit D7 indicates the reception of an abort (seven or more consecutive ones). In SDLC Loop mode, bit D7 indicates reception of the Go Ahead message (11111110 = FEH).



#### Transmit Underrun/End of Message [D6]

Valid only in the COP or BOP mode, a one in bit D6 indicates that all transmit data has been transferred to the Tx shift register. CRC transmission, when the transmitter underruns, can be controlled by manipulating this bit.

If CRC transmission is desired when the transmitter underruns, bit D6 must be reset to zero by the Reset Tx Underrun/EOM command bit (CR0 bits D7-D6 = 11). Before this command is issued, the transmitter must be enabled and at least one byte must have been transferred to the Tx buffer.

In the BOP mode, bit D6 is automatically reset to zero when the first byte is transferred after transmission is enabled. A status change from one to zero in this bit does not cause an E/S interrupt.

#### Clear To Send [D5]

Bit D5 indicates the inverted state of the CTS pin. Any change causes an interrupt.

#### Sync/Hunt [D4]

In the Asynchronous or external sync COP mode, bit D4 indicates the inverted state of the SYNC pin.

In the internal sync COP or BOP mode, bit D4 indicates the AMPSC synchronization state. A zero in bit D4 indicates that synchronization is established. A one indicates that the AMPSC is in the Hunt Phase or that the receiver is disabled.

Any change in state generates an interrupt.

#### Data Carrier Detect [D3]

Bit D3 indicates the inverted state of the DCD pin. Any change generates an interrupt.

#### All Sent [D2]

Valid only in the Asynchronous or BOP mode. Bit D2 set to one indicates that all the transmit data within the AMPSC has left the Tx shift register. The one to zero state transition of this bit does not generate an interrupt.

#### Idle Detect [D1]

Bit D1 set to one indicates detection of the Idle state (15 or more consecutive 1's) in BOP mode. The one to zero state transition of this bit does not generate an interrupt.

#### BRG Zero Count [D0]

Bit D0 set to one indicates that one of the BRG's has counted down to zero. Bits D4-D3 of SR3 determine which BRG counted out. The one to zero state transition of this bit does not generate an interrupt.

#### **Status Register SR2B**

This register indicates the value of the interrupt vector. It can only be read from the B channel. The value depends on the state of CR2A bit D6 (Status Affects Vector bit). If bit D6 is zero, SR2B will always equal CR2B. If bit D6 is one, the value of SR2B is modified by the cause of the highest priority interrupt source within the  $\mu$ PD72001.

The bits of SR2B that are affected depend on the Output Vector Type setting. Bits V4-V2 are affected for Type A vectors, and bits V2-V0 for Type B vectors. All other bits remain unchanged. Table 7 gives the value returned for the various types of interrupts.

#### Table 7. Vector Values in SR2B

V4, V2	V3, V1	V2, VO	Channel	Condition
0	0	0	В	Tx buffer empty
0	0	1		External/status
0	1 .	0		Rx data available
0	. <b>1</b>	C. 1		Special Rx condition
1	0	0	A	Tx buffer empty
1	0	1		External/status
1	1	0		Rx data available
1	1	1		Special Rx condition

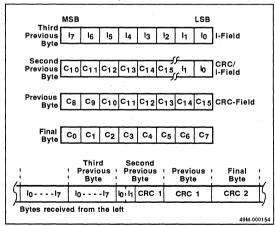
When interrupts are available in the non-vectored mode (CR2A bit D7 = 0), SR2B is read in order to indicate to the  $\mu$ PD72001 that interrupt service has started. This clears the interrupt request (INT) and prevents lower priority interrupts from being generated until the End of Interrupt command (CR0) is issued.

# NEC

# **Status Register SR3**

#### TxBRG Zero Count [D4]

Bit D4 is valid when TxBRG is enabled (CR14 bit D0 = 1). A one in bit D0 indicates that the TxBRG counted down to zero. This bit in conjunction with the SR1 bit D0, causes an external/status interrupt and is latched on a transition from zero to one. The transition from one to zero does not cause an interrupt.


#### **RxBRG Zero Count [D3]**

Bit D3 is valid when RxBRG is enabled (CR14 bit D1 = 1). A one in bit D3 indicates that the RxBRG counted down to zero. This bit functions in the same manner as bit D4.

#### Residue Code [D2-D0]

Valid only in the BOP mode, bits D2-D0 indicate the number of valid bits in the last data byte received in a frame. The meaning of these bits depends on the number of bits per data byte. The previous character refers to the last character read before the end of frame, and so on. See Table 8. Figure 6 is an example of a residue code of 000 and a character length of 8 bits. It indicates that bits zero and one in the last byte are valid.

# Figure 6. Example of Valid Bits in the I-Field (Residue Code = 000)



D2	D1	DO		MS		revi	ous	Cha	raci		SB	M		Pre	viou	is C	hara		r SB
8 E	Bits	per	Cha	ra	cte	or													
0	0	0		С	С	С	С	С	С	С	С	С	С	С	С	C	С	D	D
0	0	1		C	C	C	C	C	C	C	C	C	C	D	D	D	D	D	D
0 0	1	0 .1*		C C	C C	C C	C C	C C	C C	C C	C C	C D	C	C	C	D	D	D	D
1	0	0		C	C	C	c	C	C	C	C	C	D C	D C	D C	D C	D D	D D	D D
1	0	1		č	č	č	č	č	č	č	č	č	D	D	D	D	D	D	D
i	1	ò		č	č	č	č	č	č	č	č	č	č	č	Ď	Ď	D	Ď	D
1	1.	1		Č	Č	Č	Č	Č	Č	Č	Ď	Ď	D	D	D	D	D	Ď	D
7 E	Bits	per	Cha	ra	cte	r													
0	0	0		Х	С	С	С	С	С	С	D	Х	D	D	D	D	D	D	D
0	0	1		Х	С	С	С	С	С	С	С	Х	С	С	D	D	D	D	D
0	1	0		Х	С	С	С	С	С	С	С	Х	С	С	С	С	D	D	D
0	1	1*		Х	С	С	С	С	С	С	С	Х	D	D	D	D	D	D	D
1	0	0		X	C	C	C	C	C	C	C	X	C	C	C	С	C	D	D
1	0 1	1		X X	C C	C C	С С	C C	С С	C C	C	X X	C C	D C	D C	D	D	D	D
1		0			-	<u> </u>	6	U.	U	D	D	D	D						
6 E	Bits	per	Cha	ra	cte	er													
0	0	0*		Х	Х	С	С	С	С	С	С	Х	Х	D	D	D	D	D	D
0	0	1		Х	Х	C	C	C	C	C	C	X	X	C	C	D	D	D	D
0	1	0		X	X	C	C	C	C	C	C	X	X	C	C	C	C	D	D
1	0	0		X	X	C	C	C	C	C	C	X	X	ç	C	C	C	C	D
1. 1	0 1	.1		X X	X X	C C	C C	C C	C C	C C	С С	X X	X X	C C	D C	D C	D	D	D D
							0				<u> </u>			<u> </u>	<u> </u>				_
		per	Cha																
0	0	0		X	Х	Х	Ç	C	C	C	C	X	Х	Х	C	D	D	D	D
0	0	1		X	X	X	Ç	C	C	C	C	X	X	X	C	Ç	D	D	D
0	1	0		X	X	X	C	C	C C	C	C	X	X	X	C	C	C	C	D
1 1	0 1	0* 0		X X	X X	X X	C C	C C	C	C C	C C	X	X	X	C C	C C	C C	CD	C
				^	^	^	0		<u> </u>		<u> </u>			^	<u> </u>		<u> </u>	0	
C=	= CF	IC bi	t																

D = Valid dataX = Invalid

* = No residue (boundary of the last received data matches the boundary between one byte and the CRC).



Each bit of this register indicates whether or not a corresponding cause of interrupt exists within the AMPSC. A bit is set to one when its matching interrupt is being serviced or if a lower-priority interrupt is pending during the servicing of a higher-priority interrupt. Otherwise, it is zero, Although this register can be read only on channel A, its function is shared by both channels.

Bit	Chan	Description
D7	A	Special Rx condition; INT pending
D6	В	Special Rx condition; INT pending
D5	А	Rx INT pending
D4	А	Tx INT pending
D3	A	E/S INT pending
D2	В	Rx INT pending
D1	В	Tx INT pending
D0	В	E/S INT pending

#### **Status Register SR8**

Valid only in the BOP mode, bits D7-D0 of SR8 are the low order byte of the Tx Data Length counter. Register SR8 is normally used to determine if frame transmission completed correctly. If the value of CR8/CR9 does not equal the value of SR8/SR9 when the transmitter underruns, the AMPSC automatically transmits an Abort. Registers SR8 and SR9 are cleared by a reset or when the TxDLC enable bit (CR13 bit D8) is set to one.

#### **Status Register SR9**

Valid only in the BOP mode, bits D7-D0 of SR9 are the high order byte of the Tx Data Length counter. Registers SR8 and SR9 are used in conjunction with each other.

# **Status Register SR10**

#### One Clock Missing [D7]

This bit indicates if a transition has been detected in the received data. It is valid when the FM data format is selected and the DPLL is in operation. With FM data format, a transition (rising or falling) must occur within one bit time at a bit boundary or center. The DPLL uses this transition as a reference for clock generation.

If no transitions occur, the DPLL clock generation may not operate properly. The DPLL detects transitions every 2 bits.

A one in bit D7 indicates no transition was detected in the received data. This bit is latched, and is reset by the Reset Missing Clock command (CR14 bits D7-D5 = 010) or the Enter Search command (CR14 bits D7-D5 = 001).



#### Two Clocks Missing [D6]

Bit D6 indicates that two consecutive transitions in the received data were missed.

#### Sending on Loop [D4]

Bit D4 set to the one state indicates that the AMPSC is in the SDLC loop connection and is transmitting. It is valid only in the BOP mode when the SDLC Loop is selected (CR10 bits D4, D1 = 1,1).

#### Tx Sync/On Loop [D1]

Bit D1 is valid only in the COP or BOP mode. In the COP mode, a one in bit D1 indicates that the transmitter and receiver are synchronized (SYNC character detection on the receiver has been completed) after both the Auto Tx on Sync and the bit D4 Enable bits (CR10 bits D4,D1) were reset, and transmission is enabled for the device.

In the BOP mode, a one in bit D1 indicates that a GA pattern was detected and a 1-bit delay was inserted between the RxD input and the TxD output. Bit D1 remains a one during the time that the SDLC loop is formed. When D1 is zero, the TxD and RxD lines are connected without the delay in loop mode. Bit D1 is also zero when the AMPSC is not in the loop mode.

#### Status Register SR11

This register directly indicates the value set in CR11 for interrupt enables. The host processor can use SR11 to read the interrupt enable states for the various interrupt sources within the AMPSC.

#### **Status Register SR12**

This register indicates the lower 8 bits (bits 7-0) of the value set in the Rx BRG.

#### **Status Register SR13**

This register indicates the upper 8 bits (bits 15-8) of the value set in the Rx BRG.

#### **Status Register SR14**

This register indicates the lower 8 bits (bits 7-0) of the value set in the Tx BRG.

#### **Status Register SR15**

This register indicates the upper 8 bits (bits 15-8) of the value set in the Tx BRG.

# **GRAPHICS CONTROLLERS**

# **Graphics Controllers**

# Section 3 Graphics Controllers

μ <b>PD7220A</b> High-Performance Graphics Display Controller	3-3
μ <b>PD72020</b> CMOS Graphics Display Controller	3-31
μ <b>PD72022</b> Intelligent Display Processor	3-57
μ <b>PD72120</b> Advanced Graphics Display Controller	3-97
μ <b>PD72123</b> Advanced Graphics Display Controller II	3-153





# µPD7220A High-Performance Graphics Display Controller

#### Description

The  $\mu$ PD7220A high-performance graphics display controller (HGDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the HGDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the HGDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the HGDC can be configured in any number of formats and sizes up to 256K 16-bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the HGDC is ideal for advanced computer graphics applications.

For a more detailed description of the HGDC's operation, please refer to the 7220/7220A design manuals.

#### **System Considerations**

The HGDC is designed to work with a general purpose microprocessor to implement a high-performance computer graphics system. Through the division of labor established by the HGDC's design, each of the system components is used to the maximum extent through a six-level hierarchy of simultaneous tasks. At the lowest level, the HGDC generates the basic video raster timing, including sync and blanking signals. Partitioning areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the HGDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the HGDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the HGDC takes care of the highspeed and repetitive tasks required to implement a graphics system.

#### **Features**

- □ Microprocessor interface
  - DMA transfers with 8257- or 8237-type controllers
- FIFO command buffering
- Display memory interface
  - Up to 256K words of 16-bits
  - Read-modify-write (RMW) display memory cycles as fast as 500 ns
  - Dynamic RAM refresh cycles for nonaccessed memory
- 🗆 Light pen input
- Drawing hold input
- External video synchronization mode
- Graphic mode
- ─ Four megabit, bit-mapped display memory
  □ Character mode
- Character mode
  - 8K character code and attributes display memory
- Mixed graphics and character mode
  - 64K if all characters
- 1 megapixel if all graphics
- □ Graphics capabilities
  - Figure drawing of lines, arc/circles, rectangles, and graphics characters in 500 ns per pixel
  - Display 1024-by-1024 pixels with 4 planes of color or grayscale
  - Two independently scrollable areas
- □ Character capabilities
  - Auto cursor advanced
  - Four independently scrollable areas
  - Programmable cursor height
  - Characters per row: up to 256
  - Character rows per screen: up to 100
- □ Video display format
  - Zoom magnification factors of 1 to 16
  - Panning
  - Command-settable video raster parameters
- □ NMOS technology
- □ Single +5 V power supply
- DMA capability
  - Bytes or word transfers
  - 4 clock periods per byte transferred
- On-chip pull-up resistor for VSYNC/EXT, HSYNC and DACK, and a pull-down resistor for LPEN/DH



# **Ordering Information**

Package Type	Max Frequency of Operation
40-pin ceramic DIP	6 MHz
40-pin ceramic DIP	7 MHz
40-pin ceramic DIP	8 MHz
	Type 40-pin ceramic DIP 40-pin ceramic DIP

# **Pin Configuration**

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
---------------------------------------------------------

# **Character Mode Pin Utilization**

Pin			
No.	Symbol	Function	
35-37	AD ₁₃ -AD ₁₅	Line counter bits 0 to 2 outputs	
38	AD ₁₆	Line counter bit 3 output	
39	AD ₁₇	Cursor output and line counter bit 4	

#### **Mixed Mode Pin Utilization**

Pin			
No.	Symbol	Function	
35-37	AD ₁₃ -AD ₁₅	Address and data bits 13 to 15	
38	A ₁₆	Attribute blink and clear line counter output	
39	A ₁₇	Cursor and bit-map area flag output	

# **Pin Identification**

	Pin		
No.	Symbol	Function	
1	2xWCLK	Clock input	
2	DBIN	Display memory read input flag	
3	HSYNC	Horizontal video sync output	
4	V/EXT SYNC	Vertical video sync output or external VSYNC input	
5	BLANK	CRT blanking output	
6	ALE	Address latch enable output	
7	DRQ	DMA request output	
8	DACK	DMA acknowledge input	
9	RD	Read strobe input for microprocessor interface	
10	WR	Write stobe input for microprocessor interface	
11	A ₀	Address select input for microprocesso interface	
12-19	DB ₀ -DB ₇	Bidirectional data bus to host micro- processor	
20	GND	Ground	
21	LPEN/DH	Light pen detect input drawing hold input	
22-34	AD0-AD12	Address data lines to display memory	
35-37	AD ₁₃ -AD ₁₅	Utilization varies with mode of operation	
38	A ₁₆	Utilization varies with mode of operation	
39	A ₁₇	Utilization varies with mode of operation	
40	V _{CC}	$+5 V \pm 10\%$ power supply	

# Graphics Mode Pin Utilization

Pin			
No.	Symbol	Function	
35-37	AD ₁₃ -AD ₁₅	Address and data bits 13 to 15	
38	A ₁₆	Address bit 16 output	
39	A ₁₇	Address bit 17 output	

# NEC

# **Pin Functions**

## 2xWCLK [Clock Input]

2xWCLK is the clock input.

# DBIN [Data Bus Input Enable]

The DBIN output indicates the time the AGDC will accept data read from display RAM during read-modify-write (RMW) cycles.

## HSYNC [Horizontal Sync]

The HSYNC output indicates the time the CRT's beam is to start its retrace back to the left side of the screen.

# V/EXT SYNC [Vertical SYNC Output/External Sync Input]

The AGDC can be programmed to output a vertical sync signal at the start of the return of the CRT's beam from the lower right of the screen to the upper left during vertical retrace. The AGDC may also be programmed to accept an external sync input when used in slave mode.

#### BLANK [Blank]

BLANK is output during inactive display times (horizontal and vertical retrace) of the CRT and during a read-modify-write memory cycle when in flash mode.

#### ALE [Address Latch Enable]

The falling edge of ALE indicates the first clock cycle of a display memory cycle and the availability of the memory address on pins  $AD_0$ - $AD_{17}$ . ALE and external logic can generate display memory control signals.

#### A₀ [Address Bit 0]

 $A_{0}$  is the address select input for the microprocessor interface.

#### A1 [Address Bit 1]

The  $A_1$  input selects registers when reading or writing to the AGDC.

# DACK [DMA Acknowledge]

DACK is the DMA acknowledge input handshake line that directly interfaces to the  $\mu$ PD8257 or  $\mu$ PD8237 DMA controller.

#### DRQ [DMA Request]

DRQ is the DMA request output handshake line that directly interfaces to the  $\mu$ PD8257 or  $\mu$ PD8237 DMA controller.

# RD [Read Strobe]

The host CPU clears the  $\overline{\text{RD}}$  input to 0 when reading the internal status and FIFO registers.

# WR [Write Strobe]

The host CPU clears  $\overline{WR}$  to 0 when writing to the internal command and parameter registers.

#### DB₀-DB₇ [Data Bus]

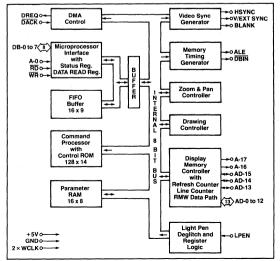
 $\mathsf{DB}_0\text{-}\mathsf{DB}_7,$  the 8-bit, three-state bidirectional data bus transfers data to and from the host CPU via the system bus.

#### LPEN/DH [Light Pen/Drawing Hold]

The LPEN/DH input can be programmed as either a light pen input or drawing hold input. The drawing hold input halts all read-modify-write operations.

## AD0-AD17 [Address and Data Lines]

AD₀-AD₁₇ are address and data lines to display memory. AD₁₃-AD₁₇ functions vary with the mode of operation of the ADGC. The  $\mu$ PD7220/7220A Graphics Display Controller User's Manual describes these functions and modes of operation.


#### V_{CC} [Power Supply]

V_{CC} is the +5 V power supply input.

# GND [Ground]

GND is ground potential.

#### **Block Diagram**



#### **HGDC Components**

#### **Microprocessor Bus Interface**

Control of the HGDC by the system microprocessor is achieved through an 8-bit bidirectional interface. The status register is readable at any time. Access to the FIFO buffer is coordinated through flags in the status register and operates independently of the various internal HGDC operations, due to the separate data bus connecting the interface and the FIFO buffer.

#### Applications

NEC Electronics Inc. recently learned that applicaion of the  $\mu$ PD7220 or  $\mu$ PD7220A Graphics Display Controller in conjunction with other non-NEC Electronics Inc. equipment to achieve panning and zooming capabilities may infringe U.S. Patents 4,197,590 and RE 31,200 held by CADTRAK CORP-ORATION of Sunnyvale, Ca. Neither the  $\mu$ PD7220 nor the  $\mu$ PD7220A Graphics Display Controllers by themselves infringe CADTRAK's patents. CUSTOMERS OF NEC ELECTRONICS INC. ARE HEREBY GIVEN NOTICE OF THE EXISTENCE OF THE CADTRAK PATENTS. USER'S ARE RESPONSIBLE FOR IN-SURING THAT THEIR SYSTEM DESIGN, MANU-FACTURE AND RESULTING PRODUCT DO NOT VIOLATE ANY APPLICABLE PATENTS.

#### **Command Processor**

The contents of the FIFO are interpreted by the command processor. The command bytes are decoded, and the succeeding parameters are distributed to their proper destinations within the HGDC. The command processor yields to the bus interface when both access the FIFO simultaneously.

#### **DMA Control**

The DMA control circuitry in the HGDC coordinates transfers over the microprocessor interface when using an external DMA controller. The DMA Request and Acknowledge handshake lines directly interface with a  $\mu$ PD8257 or  $\mu$ PD8237 DMA controller, so that display data can be moved between the microprocessor memory and the display memory.

#### Parameter RAM

The 16-byte RAM stores parameters that are used repetitively during the display and drawing processes. In character mode, this RAM holds four sets of partitioned display area parameters; in graphics mode, the drawing pattern and graphics character take the place of two of the sets of parameters.

#### Video Sync Generator

Based on the clock input, the sync logic generates the raster timing signals for almost interlaced, noninterlaced, or "repeat field" interlaced video format. The generator is programmed during the idle period following a reset. In video sync slave mode, it coordinates timing between multiple HGDCs.

#### **Memory Timing Generator**

The memory timing circuitry provides two memory cycle types: a two-clock period refresh cycle and the read-modify-write (RMW) cycle, which takes four clock periods. The memory control signals needed to drive the display memory devices are easily generated from the HGDC's ALE and DBIN outputs.

#### Zoom & Pan Controller

Based on the programmable zoom display factor and the display area entries in the parameter RAM, the zoom and pan controller determines when to advance to the next memory address for display refresh and when to go on to the next display area. A horizontal zoom is produced by slowing down the display refresh rate while maintaining the video sync rates. Vertical zoom is accomplished by repeatedly accessing each line a number of times equal to the horizontal repeat. Once the line count for a display area is exhausted, the controller accesses the starting address and line count of the next display area from the parameter RAM. The system microprocessor, by modifying a display area starting address, can pan in any direction, independently of the other display areas.

#### **Drawing Controller**

The drawing processor contains the logic necessary to calculate the addresses and positions of the pixels of the various graphics figures. Given a starting point and the appropriate drawing parameters, the drawing controller needs no further assistance to complete the figure drawing.



#### **Display Memory Controller**

The display memory contoller's tasks are numerous. Its primary purpose is to multiplex the address and data information in and out of the display memory. It also contains the 16-bit logic unit used to modify the display memory contents during RMW cycles, the character mode line counter, and the refresh counter for dynamic RAMs. The memory controller apportions the video field time between the various types of cycles.

#### Light Pen Deglitcher/Drawing Hold

Only if two rising edges on the light pen input occur at the same point during successive video fields are the pulses accepted as a valid light pen detection. A status bit indicates to the system microprocessor that the light pen register contains a valid address. If this input is held high for a period greater than four 2xWCLK cycles, drawing execution is halted when bit 7 of P5 of the SYNC command is set.

#### **Programmer's View of HGDC**

The HGDC occupies two addresses on the system microprocessor bus through which the HGDC's status register and FIFO are accessed. Commands and parameters are written into the HGDC's FIFO and are differentiated based on address bit  $A_0$ . The status register or the FIFO can be read as selected by the address line.

Commands to the HGDC take the form of a command byte followed by a series of parameter bytes as needed for specifying the details of the command. The command processor decodes the commands, unpacks the parameters, loads them into the appropriate registers within the HGDC, and initiates the required operations.

The commands available in the HGDC can be organized into five categories as described in the following section.

#### **HGDC Microprocessor Bus Interface Registers**

A0	READ	WRITE
	Status Register	Parameter Into FIFO
0		
1	FIFO Read	Command Into FIFO

#### **HGDC Commands Summary**

#### **Video Control Commands**

- 1. RESET1 Resets the GDC to its idle state. Resychronizes video timing. Blanks the display.
- 2. RESET2 Resets the HGDC to its idle state. Does not resynchronize video timing. Blanks the display.
- RESET3 Resets the HGDC to its idle state. Does not resynchronize video timing. Does not blank the display.
- 4. SYNC Specifies the video display format.
- 5. VSYNC Selects master or slave video synchronization mode.
- 6. CCHAR Specifies the cursor and character row heights.

#### **Display Control Commands**

- START Ends idle mode and unblanks the display.
   BLANK1 Controls the blanking and unblanking of the display, along with video resynchronization.
   BLANK2 Controls the blanking and
- unblanking of the display. Does not blank the display.
- 4. ZOOM Specifies zoom factors for the display and graphics characters writing.
- 5. CURS Sets the position of the cursor in display memory.
- 6. PRAM Defines starting addresses and lengths of the display areas and specifies the eight bytes for the graphics character.
- 7. PITCH Specifies the width of the X dimension of display memory.

#### **Drawing Control Commands**

- 1. WDAT Writes data words or bytes into display memory.
- 2. MASK Sets the mask register contents.
- 3. FIGS Specifies the parameters for the drawing controller.
- 4. FIGD Draws the figure as specified above.
- 5. GCHRD Draws the graphics character into display memory.



#### **Data Read Commands**

- 1. RDAT Reads data words or bytes from display memory.
- 2. CURD Reads the cursor position.
- 3. LPRD Reads the light pen address.

#### **DMA Control Commands**

- 1. DMAR Requests a DMA read transfer.
- 2. DMAW Requests a DMA write transfer.

#### **Status Register Flags**

#### SR-7: Light Pen Detect

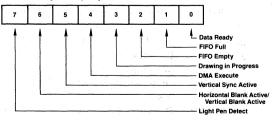
When this bit is set to 1, the light pen address (LAD) register contains a deglitched value that the system microprocessor may read. This flag is reset after the 3-byte LAD is moved into the FIFO in response to the light pen read command.

#### SR-6: Horizontal Blank Active/Vertical Blank Active

A 1 value for this flag signifies that horizontal retrace blanking or vertical retrace blanking is currently underway dependent on the status of the VH bit in SYNC or the RESETx parameter 6.

#### SR-5: Vertical Sync

Vertical retrace sync occurs while this flag is a 1. The vertical sync flag coordinates display format modifying commands to the blanked interval surrounding vertical sync. This eliminates display disturbances.


#### SR-4: DMA Execute

This bit is a 1 during DMA data tranfers.

#### **SR-3: Drawing in Progress**

While the HGDC is drawing a graphics figure, this status bit is a 1.

#### Status Register (SR)



#### SR-2: FIFO Empty

This bit and the FIFO-full flag coordinate system microprocessor accesses with the HGDC FIFO. When it is 1, the Empty flag ensures that all the commands and parameters previously sent to the HGDC have been interpreted.

#### SR-1: FIFO Full

A 1 at this flag indicates a full FIFO in the HGDC. A 0 ensures that there is room for at least one byte. This flag needs to be checked before each write into the HGDC.

#### **SR-0: Data Ready**

When this flag is a 1, it indicates that a byte is available to be read by the system microprocessor. This bit must be tested before each read operation. It drops to a 0 while the data is transferred from the FIFO into the microprocessor interface data register.

#### **FIFO Operation & Command Protocol**

The first-in, first-out buffer (FIFO) in the HGDC handles the command dialogue with the system microprocessor. This flow of information uses a half-duplex technique, in which the single 16-location FIFO is used for both directions of data movement, one direction at a time. The FIFO's direction is controlled by the system microprocessor through the HGDC's command set. The host microprocessor coordinates these transfers by checking the appropriate status register bits.

The command protocol used by the HGDC requires differentiation of the first byte of a command sequence from the succeeding bytes. The first byte contains the operation code and the remaining bytes carry parameters. Writing into the HGDC causes the FIFO to store a flag value alongside the data byte to signify whether the byte was written into the command or the parameter address. The command processor in the HGDC tests this bit as it interprets the entries in the FIFO.

The receipt of a command byte by the command processor marks the end of any previous operation. The number of parameter bytes supplied with a command is cut short by the receipt of the next command byte. A read operation from the HGDC to the microprocessor can be terminated at any time by the next command.



The FIFO changes direction under the control of the system microprocessor. Commands written into the HGDC always put the FIFO into write mode if it was not in it already. If it was in read mode, any read data in the FIFO at the time of the turnaround is lost. Commands which require an HGDC response, such as RDAT, CURD and LPRD, put the FIFO into read mode after the command is interpreted by the HGDC's command processor. Any commands and parameters behind the read-evoking command are discarded when the FIFO direction is reversed.

## **Read-Modify-Write Cycle**

Data transfers between the HGDC and the display memory are accomplished using a read-modify-write (RMW) memory cycle. The four-clock period timing of the RMW cycle is used to 1. output the address, 2. read data rom the memory, 3. modify the data, and 4. write the modified data back into the initially selected memory address. This type of memory cycle is used for all interactions with display memory including DMA transfers, except for the two-clock period display and RAM refresh cycles.

The operations performed during the modify portion of the RMW cycle merit additional explanation. The circuitry in the HGDC uses three main elements: the Pattern register, the Mask register, and the 16-bit Logic unit. The Pattern register holds the data pattern to be moved into memory. It is loaded by the WDAT parameters or, during drawing, from the parameter RAM. The Mask register contents determine which bits of the read data will be modified. Based on the contents of these registers, the Logic unit performs the selected operations of REPLACE, COMPLEMENT, SET, or CLEAR on the data read from display memory.

The Pattern register contents are ANDed with the Mask register contents to enable the actual modification of the memory read data, on a bit-by-bit basis. For graphics drawing, one bit at a time from the Pattern register is combined with the Mask. When ANDed with the bit set to a 1 in the Mask register, the proper single pixel is modified by the Logic unit. For the next pixel in the figure, the next bit in the Pattern register is selected and the Mask register bit is moved to identify the pixel's location within the word. The Execution word address pointer register, EAD, is also adjusted as required to address the word containing the next pixel. In character mode, all of the bits in the Pattern register are used in parallel to form the respective bits of the modify data word. Since the bits of the character code word are used in parallel, unlike the one-bit-at-a-time graphics drawing process, this facility allows any or all of the bits in a memory word to be modified in one RMW memory cycle. The Mask register must be loaded with ones in the positions where modification is to be permitted.

The Mask register can be loaded in either of two ways. In graphics mode, the CURS command contains a 4-bit dAD field to specify the dot address. The command processor converts this parameter into the 1-of-16 format used in the Mask register for figure drawing. A full 16-bits can be loaded into the Mask register using the MASK command. In addition to the character mode use mentioned above, the 16-bit MASK load is convenient in graphics mode when all of the pixels of a word are to be set to the same value.

The Logic unit combines the data read from display memory, the Pattern register, and the Mask register to generate the data to be written back into display memory. Any one of four operations can be selected: REPLACE, COMPLEMENT, CLEAR or SET. In each case, if the respective Mask bit is 0, that particular bit of the read data is returned to memory unmodified. If the Mask bit is 1, the modification is enabled. With the REPLACE operation, the Pattern register data simply takes the place of the read data for modification enabled bits. For the other three operations, a 0 in the modify data allows the read data bit to be returned to memory. A 1 value causes the specified operation to be performed in the bit positions with set Mask bits.

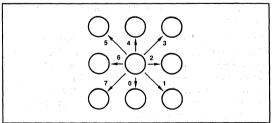
#### **Figure Drawing**

The HGDC draws graphics figures at the rate of one pixel per read-modify-write (RMW) display memory cycle. These cycles take four clock periods to complete. At a clock frequency of 8 MHz, this is equal to 500 ns. During the RMW cycle the HGDC simultaneously calculates the address and position of the next pixel to be drawn.

The graphics figure drawing process depends on the display memory addressing structure. Groups of 16 horizontally adjacent pixels form the 16-bit words which are handled by the HGDC. Display memory is organized as a linearly addressed space of these words. Addressing of individual pixels is handled by the HGDC's internal RMW logic.

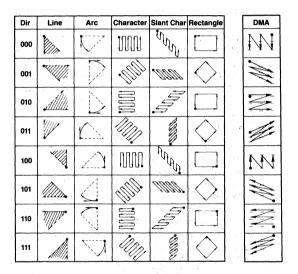


During the drawing process, the HGDC finds the next pixel of the figure which is one of the eight nearest neighbors of the last pixel drawn. The HGDC assigns each of these eight directions a number from 0 to 7, starting with straight down and proceeding counterclockwise.


Figure drawing requires the proper manipulation of the address and the pixel bit position according to the drawing direction to determine the next pixel of the figure. To move to the word above or below the current one, it is necessary to subtract or add the number of words per line in display memory. This parameter is called the pitch. To move to the word to either side, the Execute word address cursor, EAD, must be incremented or decremented as the dot address pointer bit reaches the LSB or the MSB of the Mask register. To move to a pixel within the same word, it is necessary to rotate the dot address pointer to the right or left. The table below summarizes these operations for each direction.

Dir	<b>Operations to Address the Next Pixel</b>		
000	$EAD - P \rightarrow EAD$		
001	$\begin{array}{l} EAD - P \rightarrow EAD \\ dAD \ (MSB) = 1: EAD - 1 \rightarrow EAD  dAD \end{array}$	→LR	
010	$dAD (MSB) = 1:EAD - 1 \rightarrow EAD  dAD$	→ LR	
011	$\begin{array}{c} EAD - P  EAD \\ dAD \ (MSB) = 1: EAD - 1  EAD  dAD \end{array}$	→ LR	•
100	$EAD - P \rightarrow EAD$		
101	$\begin{array}{c} EAD - P \rightarrow EAD \\ dAD \ (LSB) = 1:EAD - 1 \rightarrow EAD  dAD \end{array}$	→ RR	
110	$dAD (LSB) = 1:EAD - 1 \rightarrow EAD  dAD$	→ RR	
111	$\begin{array}{c} EAD - P \rightarrow EAD \\ dAD \ (LSB) = 1: EAD - 1 \rightarrow EAD  dAD \end{array}$	→ RR	

#### Note:


P = Pitch, LR = Left Rotate, RR = Right Rotate, EAD = Execute Word Address, and dAD = Dot Address stored in the Mask register.

#### **Drawing Directions**



Whole word drawing is useful for filling areas in memory with a single value. By setting the Mask register to all 1s with the MASK command, both the LSB and MSB of the dAD will always be 1, so that the EAD value will be incremented or decremented for each cycle regardless of direction. One RMW cycle will be able to affect all 16 bits of the word for any drawing type. One bit in the Pattern register is used per RMW cycle to write all the bits of the word to the same value. The next Pattern bit is used for the word, etc.

For the various figures, the effect of the initial direction upon the resulting drawing is shown below:



Note that during line drawing, the angle of the line may be anywhere within the shaded octant defined by the DIR value. Arc drawing starts in the direction initially specified by the DIR value and veers into an arc as drawing proceeds. An arc may be up to 45° in length. DMA transfers are done on word boundaries only, and follow the arrows indicated in the table to find successive word addresses. The slanted paths for DMA transfers indicate the HGDC changing both the X and Y components of the word address when moving to the next word. It does not follow a 45° diagonal path by pixels.

# NEC

### **Drawing Parameters**

In preparation for graphics figure drawing, the HGDC's Drawing processor needs the figure type, direction and drawing parameters, the starting pixel address, and the pattern from the microprocessor. Once these are in place within the HGDC, the Figure Draw command, FIGD, initiates the drawing operation. From that point on, the system microprocessor is not involved in the drawing process. The HGDC Drawing controller coordinates the RMW circuitry and address registers to draw the specified figure pixel by pixel.

The algorithms used by the processor for figure drawing are designed to optimize its drawing speed. To this end, the specific details about the figure to be drawn are reduced by the microprocessor to form conducive to high-speed address calculations within the HGDC. In this way the repetitive, pixel-by-pixel calculations can be done quickly, thereby minimizing the overall figure drawing time. The table below summarizes the parameters.

Drawing	20 I	· .			
Type	DC	D	D2	D1	DM
Initial Value (1)	0	8	8	-1	-1
Line	<b>Δ</b>	$2 \Delta D - \Delta I $	$2( \Delta D  -  \Delta I )$	2 ∆D	. —
Arc (2)	rsin <b>ø</b>	r—1	2(r-1)	1	rsin∂↓
Rectangle	3	A-1	B—1	-1	A-1
Area fill	B-1	Α	Α		
Graphic character (3)	B—1	A	A	-	-
Read & write data	W-1		_		
DMAW	D-1	C-1		_	_
DMAR	D-1	C-1	(C-1)/2/+		

#### Note:

All numbers are shown in base 10 for convenience. The HGDC accepts base 2 numbers (2's complement notation) where appropriate.

- (1) Initial values for the various parameters remain as each drawing process ends.
- (2) Circles are drawn with 8 arcs, each of which span 45°, so that sin  $\phi = 1/\sqrt{2}$  and sin  $\theta = 0$ .
- (3) Graphic characters are a special case of bit-map area filling in which B and A  $\leq$  8. If A = 8 there is no need to load D and D2.

## Symbol Definitions

- -1 = AII ONES value.
  - = No parameter bytes sent to HGDC for this parameter.
- $\Delta I =$  The larger at  $\Delta x$  or  $\Delta y$ .
- $\Delta D = The smaller at \Delta x or \Delta y.$ 
  - $\mathbf{r}$  = Radius of curvature, in pixels.
  - $\phi$  = Angle from major axis to end of the arc.  $\phi \le 45^{\circ}$ .
  - $\theta$  = Angle from major axis to start of the arc.  $\theta \le 45^{\circ}$ .
  - $\uparrow$  = Round up to the next higher integer.
  - $\downarrow$  = Round down to the next lower integer.
  - A = Number of pixels in the initially specified direction.
  - B = Number of pixels in the direction at right angles to the initially specified direction.
  - W = Number of words to be accessed.
  - C = Number of bytes to be transferred in the initially specified direction. (Two bytes per word if word transfer mode is selected.)
  - D = Number of words to be accessed in the direction at right angles to the initially specified direction.
- DC = Drawing count parameter which is one less than the number of RMW cycles to be executed.
- DM = Dots masked from drawing during arc drawing.
  - † = Needed only for word reads.

## **Graphics Character Drawing**

Graphics characters can be drawn into display memory pixel by pixel. The up to 8-by-8 character display is loaded into the HGDC's parameter RAM by the system microprocessor. Consequently, there are no limitations on the character set used. By varying the drawing parameters and drawing direction, numerous drawing options are available. In area fill applications, a character can be written into display memory as many times as desired without reloading the parameter RAM.

Once the parameter RAM has been loaded with up to eight graphics character bytes by the appropriate PRAM command, the GCHRD command can be used to draw the bytes into display memory starting at the cursor. The zoom magnification factor for writing, set by the ZOOM command, controls the size of the character written into the display memory in integer multiples of 1 through 16. The bit values in the PRAM are repeated horizontally and vertically the number of times specified by the zoom factor.



The movement of these PRAM bytes to the display memory is controlled by the parameters of the FIGS command.

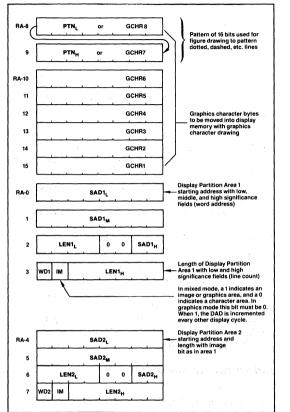
Based on the specified height and width of the area to be drawn, the parameter RAM is scanned to fill the required area.

For an 8-by-8 graphics character, the first pixel drawn uses the LSB of RA-15, the second pixel uses bit 1 of RA-15, and so on, until the MSB of RA-15 is reached.

The HGDC jumps to the corresponding bit in RA-14 to continue the drawing. The progression then advances toward the LSB of RA-14. This snaking sequence is continued for the other 6 PRAM bytes. This progression matches the sequence of display memory addresses calculated by the drawing processor as shown above. If the area is narrower than 8 pixels wide, the snaking will advance to the next PRAM byte before the MSB is reached. If the area is less than 8 lines high, fewer bytes in the parameter RAM will be scanned. If the area is larger than 8 by 8, the HGDC will repeat the contents of the parameter RAM in two dimensions, as required to fill the area with the 8-by-8 mosaic. (Fractions of the 8-by-8 pattern will be used to fill areas which are not multiples of 8 by 8.)

#### Parameter RAM Contents: RAM Address RA-0 to RA-15

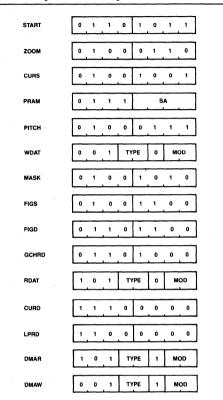
The parameters stored in the parameter RAM, PRAM, are available for the HGDC to refer to repeatedly during figure drawing and raster-scanning. In each mode of operation the values in the PRAM are interpreted by the HGDC in a predetermined fashion. The host microprocessor must load the appropriate parameters into the proper PRAM locations. PRAM loading command allows the host to write into any location of the PRAM and transfer as many bytes as desired. In this way any stored parameter byte or bytes may be changed without influencing the other bytes.


The PRAM stores two types of information. For specifying the details of the display area partitions, blocks of four bytes are used. The four parameters stored in each block include the starting address in display memory of each display area, and its length. In addition, there are two mode bits for each area which specify whether the area is a bit-mapped graphics area or a coded-character area, and whether a 16-bit or a 32-bit wide display cycle is to be used for that area. The other use for the PRAM contents is to supply the pattern for figure drawing when in a bit-mapped graphics area or mode. In these situations, PRAM bytes 8 through 16 are reserved for this patterning information. For line, arc, and rectangle drawing (linear figures) locations 8 and 9 are loaded into the Pattern register to allow the HGDC to draw dotted, dashed, etc. lines. For area filling and graphics bit-mapped character drawing, locations 8 through 15 are referenced for the pattern or character to be drawn.

Details of the bit assignments are shown for the various modes of operation.

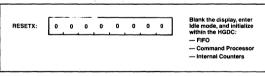
#### RA-0 SAD1, **Display Partition Area 1** Display Partition Area 1 starting address with low & high significance fields (word address) SAD1_H 0 0 0 LEN1, 0 ٥ 0 0 Length of Display Partition 1 (line count) with high and low significance fields LEN1_H WD1 0 3 A Wide Display cycle width of two words per memory cycle is selected for this display area if this bit is set to a 1 The display address counter is then incremented by 2 for each display scan cycle. Other memory cycle types are not influenced. Display Partition 2 starting address and length BA-4 SAD2 SAD2_H 5 0 0 0 6 LEN2 0 0 0 0 WD2 0 7 LEN2. **Display Partition 3** starting ad and length RA-8 SAD3 9 0 0 0 SAD3 LEN3 10 0 0 0 0 11 WD3 0 LEN3 **Display Partition 4** starting address and length RA-12 SAD4, 13 0 0 0 SAD4 LEN4, 14 0 0 0 0 15 WD4 0 LEN4

#### Character Mode


# Graphics and Mixed Graphics and Character Modes



### **Command Bytes Summary**


			•		•			
RESET1	0	0 0	0	0	0	0	0	
	·							
RESET2	0	0 0	0	0	0	0	1	
	<u>_</u>					·	·	
RESET3	0 0	0 0	0	1	0	0	1	
	·····							
BLANK1	0	0 0	0	1	1	0	DE	
	LI			·				
BLANK2	0 0	0 0	0	0	1	0	DE	
	LL		4	<u> </u>		·	L	
SYNC	0	0 0	0	1	1	1	DE	
	L							
VSYNC	0 1	1 1	0	1	1	1	м	
	L	<u> </u>	4	L4			L	
CCHAR	0 1	0	0	1	0	1	1	
				L		<b>ن</b> ے با		

#### **Command Bytes Summary**



## **Video Control Commands**

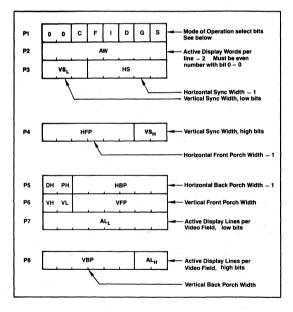
#### Reset



This command can be executed at any time and does not modify any of the parameters already loaded into the HGDC.

If followed by the parameter bytes, this command also sets the sync generator parameters as described below. Idle mode is exited with the START command.

RESET1:	Resync video timing in slave mode.
RESET2:	Blank the display and so not resync.
RESET3:	Unblank the display and do not resync.


## μ**PD7220A**



In graphics mode, a word is a group of 16 pixels. In character mode, a word is one character code and its attributes, if any. The number of active words per line must be an even number from 2 to 256. An all-zero parameter value selects a count equal to  $2^n$  where n = number of bits in the parameter field for vertical parameters. All horizontal widths are counted in display words. All vertical invervals are counted in lines.

If the Drawing Hold (DH) is set to one, pin 21 (LPEN/DH) is used as the drawing hold control pin. When the input to LPEN/DH is held high for over four 2 x WCLK clocks, the drawing address output is temporarily held and the display address is output.

The HGDC allows an even or odd number of lines per frame. Selection is via the VL flag, the seventh bit of the sixth parameter byte following a RESET or SYNC command. When VL is 0, an odd number of display lines is generated.



VL	Number of lines in interfaced mode	
0	0dd, as in 7220	
1	Even	

When VH = 0, status operation is as in  $\mu$ PD7220.

VH	371	<b>Blank Status Bit Definition</b>	Star P	100
0		Status register bit 6 indicat	es horizontal blan	k
1		Status register bit 6 indicat	tes vertical blank	

PH is the most significant bit (9) of the display pitch parameter. Use the PITCH command to set the lower eight bits.

## **SYNC Generator Period Constraints**

#### **Horizontal Back Porch Constraints**

- 1. In general:
- HBP  $\geq$  3 Display Word Cycles (6 clock cycles).
- 2. If the Image bit or WD mode changes within one video field:
  - HBP  $\geq$  5 Display Word Cycles (10 clock cycles).
- 3. If interlaced, mixed mode, or split screen is used: HBP  $\geq$  5 Display Word Cycles (10 clock cycles).

#### **Horizontal Front Porch Constraints**

- In general: HFP ≥ 2 Display Word Cycles (4 clock cycles).
- 2. If the GDC is used in video sync Slave mode:  $HFP \ge 4$  Display Word Cycles (8 clock cycles).
- 3. If the Light Pen is used: HFP  $\geq$  6 Display Word Cycles (12 clock cycles).
- If interlaced mode, DMA, or ZOOM is used: HFP ≥ 3 Display Word Cycles (6 clock cycles).

### **Horizontal Sync Constraints**

- If interlaced display mode is used: HS ≥ 5 Display Word Cycles (6 clock cycles).
- 2. If DRAM Refresh is enabled: HS  $\geq$  2 Display Word Cycles (4 clock cycles).

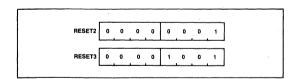
#### Modes of Operation Bits

C	G	Display Mode
0	0	Mixed graphics and character
0	1	Graphics mode
1	0	Character mode
1	1	Invalid

S	Video Framing
0	Non-interlaced
1	Invalid second second
0	Interlaced repeat field for character displays
1	Interlaced
	<b>S</b> 0 1 0 1

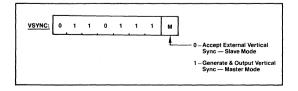


Repeat Field Framing:	2 field sequence with 1/2 line offset between
	otherwise identical fields.
Interlaced Framing:	2 field sequence with 1/2
	line offset. Each field
	displays alternate lines.
Non-Interlaced Framing:	1 field brings all the
-	information to the screen.


D	Dynamic RAM Refresh Cycles Enable
0	No refresh—static RAM
1	Refresh—dynamic RAM

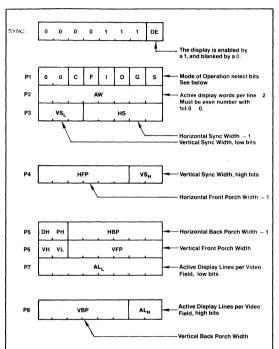
Dynamic RAM refresh is important when high display zoom factors or DMA are used in such a way that not all of the rows in the RAMs are regularly accessed during display raster generation and for otherwise inactive display memory.

F	Drawing Time Window
0	Drawing during active display time and retrace blanking
1	Drawing only during retrace blanking


Access to display memory can be limited to retrace blanking intervals only, so that no disruptions of the image are seen on the screen.

Both commands allow a reset while preventing reinitialization of the internal sync generator by an external sync source (slave mode).




#### **Vertical Sync Mode**

When using two or more HGDCs to contribute to one image, one HGDC is defined as the master sync generator, and the others operate as its slaves. The VSYNC pins of all HGDCs are connected together.



#### **SYNC Format Specify**

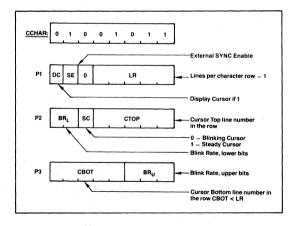
This command also loads parameters into the sync generator. The various parameter fields and bits are identical to those at the RESET command. The HDGC is not reset nor does it enter idle mode.



#### **Slave Mode Operation**

A few considerations should be observed when synchronizing two or more HGDCs to generate overlayed video via the V/EXT SYNC pin. As mentioned above, the Horizontal Front Porch (HFP) must be four or more display cycles wide. This is equivalent to eight or more clock cycles. This gives the slave HGDCs time to initialize their internal video sync generators to the proper point in the video field to match the incoming vertical sync pulse (VSYNC). This resetting of the generator occurs just after the end of the incoming VSYNC pulse, during the HFP interval. Enough time during HFP is required to allow the slave HGDC to complete the operation before the start of the HSYNC interval.

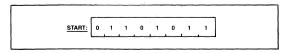
## μ**PD7220A**




Once the HGDCs are initialized and set up as master and slaves, they must be given time to synchronize. It is a good idea to watch the VSYNC status bit of the master HGDC and wait until after one or more VSYNC pulses have been generated before the display progess is started. The START command will begin the active display of data and will end the video synchronization process, so be sure there has been at least one VSYNC pulse generated to which the slaves can synchronize.

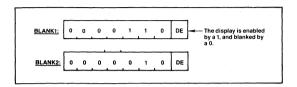
### **Cursor and Character Characteristics**

In graphics mode, LR should be set to 0. The blink rate parameter controls both the cursor and attribute blink rates. The cursor blink-on time = blink-off time =  $2 \times BR$  (video frames). The attribute blink rate is always one-half the cursor rate but with a 3/4-on-1/4-off duty cycle. All three parameter bytes must be output for interlaced displays, regardless of mode. For interlaced displays in graphics mode, the parameter BR_L = 3.


When SE = 0, the HGDC, in slave mode, detects the falling edge of EX. SYNC on the first frame. When SE = 1, the HGDC, in slave mode, detects the falling edge of EX. SYNC on every frame.

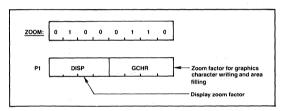


## **Display Control Commands**


#### Start Display and End Idle Mode

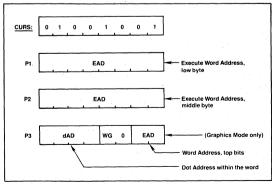
The START command generates the video signals as specified by the RESETX or SYNC command.




#### **Display Blanking Control**

BLANK2 does not cause the resyncing of an HGDC in slave mode. BLANK1 does cause the resyncing of an HGDC in slave mode.



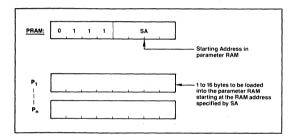

#### **Zoom Factors Specify**

Zoom magnification factors of 1 through 16 are available using codes 0 through 15, respectively.



#### **Cursor Position Specify**

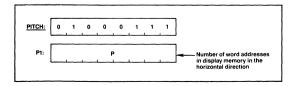
In character mode, the third parameter byte is not needed. The cursor is displayed for the word time in which the display scan address (DAD) equals the cursor address. In graphics mode, the cursor word address specifies the word containing the starting pixel of the drawing; the dot address value specifies the pixel within that word.






When the WG bit is set to one, any data following the WDAT command is written as is. When the WG bit is set to zero, the 7220A performs as the 7220 does: The pattern written is determined by the least significant bit of each parameter byte following the WDAT command. This bit is expanded into 16 identical bits which form the pattern.

#### **Parameter RAM Load**


From the starting address, SA, any number of bytes may be loaded into the parameter RAM at incrementing addresses, up to location 15. The sequence of parameter bytes is determined by the next command byte entered into the FIFO. The parameter RAM stores 16 bytes of information in predefined locations which differ for graphics and character modes. See the parameter RAM discussion for bit assignments.



#### **Pitch Specification**

This value is used during drawing by the drawing processor to find the word directly above or below the current word, and during display to find the start of the next line.

The Pitch parameter (width of display memory) is set by two different commands. In addition to the PITCH command, the RESET (or SYNC) command also sets the pitch value. The "active-words-per-line" parameter, which specifies the width of the raster-scan display, also sets the pitch of the display memory. Note that the AW value is two less than the display window width. The PITCH command must be used to set the proper memory width larger than the window width.



#### **Drawing Control Commands**

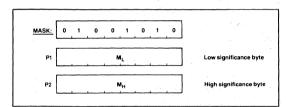

#### Write Data into Display Memory

Upon receiving a set of parameters (two bytes for a word transfer, one for a byte transfer), one RMW cycle into video memory is done at the address pointed to by the cursor EAD. The EAD pointer is advanced to the next word, according to the previously specified direction. More parameters can then be accepted.

For byte writes, the unspecified byte is treated as all zeros during the RMW memory cycle.

In graphics bit-map situations, only the LSB of the WDAT parameter bytes is used as the pattern in the RMW operations. Therefore it is possible to have only an all ones or all zeros pattern. If the WG bit of the third parameter of the CURS command is set to one, any byte following the WDAT command is written as is. In coded character applications all the bits of the WDAT parameters are used to establish the drawing pattern.

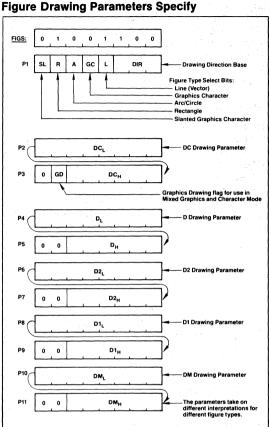
The WDAT command operates differently from the other commands which initiate RMW cycle activity. It requires parameters to set up the Pattern register while the other commands use the stored values in the parameter RAM. Like all of these commands, the WDAT command must be preceded by a FIGS command and its parameters. Only the first three parameters need be given following the FIGS opcode to set up the type of drawing, the DIR direction, and DC value. The DC parameter +1 will be the number of RMW cycles done by the HGDC with the first set of WDAT parameters. Additional sets of WDAT parameters will see a DC value of 0 which will cause only one RMW cycle to be executed per set of parameters.






#### Mask Register Load

This command sets the value of the 16-bit Mask register of the figure drawing processor. The Mask register controls which bits can be modified in the display memory during a read-modify-write cycle.


The Mask register is loaded both by the MASK command and the third parameter byte of the CURS command. The MASK command accepts two parameter bytes to load a 16-bit value into the Mask register. All 16-bits can be individually one or zero, under program control. The CURS command, on the other hand, puts a 1-of-16 pattern into the Mask register based on the value of the Dot Address value, dAD. If normal single-pixel-at-a-time graphics figure drawing is desired, there is no need to do a MASK command at all since the CURS command will set up the proper pattern to address the proper pixels as drawing progresses. For coded character DMA, and screen setting and clearing operations using the WDAT command, the MASK command should be used after the CURS command if its third parameter byte has been output. The Mask register should be set to all ones for any "word-at-a-time" operation.

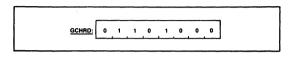


#### Valid Figure Type Select Combinations

SL	R	A	GC	L	Operation
0	0	0	0	0	Character display mode drawing, individual dot drawing, DMA, WDAT, and RDAT
0	0	0	0	1	Straight line drawing
0	0	0	1	0	Graphics character drawing and area filling with graphics character pattern
0	0	1.	0	0	Arc and circle drawing
0	1	0	0	0	Rectangle drawing
1	0	0	1	0	Slanted graphics character drawing and slanted area filling

Only these bit combinations assure correct drawing operation.



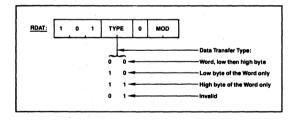

#### **Figure Draw Start**

On execution of this instruction, the HGDC loads the parameters from the parameter RAM into the drawing processor and starts the drawing process at the pixel pointed to by the cursor, EAD, and the dot address, dAD.

					5 C .		
				1.14		· ·	1.1
FIGD:	0 1	1 0	1	1 0	0		

#### **Graphics Character Draw and Area Filling Start**

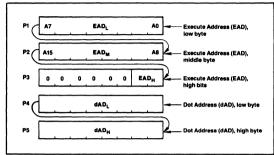
Based on parameters loaded with the FIGS command, this command initiates the drawing of the graphics character or area filling pattern stored in parameter RAM. Drawing begins at the address in display memory pointed to by the EAD and dAD values.




#### **Data Read Commands**

#### **Read Data from Display Memory**

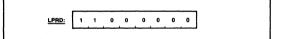
Using the DIR and DC parameters of the FIGS command to establish direction and transfer count, multiple RMW cycles can be executed without specification of the cursor address after the initial load (DC = number of words or bytes).


As this instruction begins to execute, the FIFO buffer direction is reversed so that the data read from display memory can pass to the microprocessor. Any commands or parameters in the FIFO at this time will be lost. A command byte sent to the HGDC will immediately reverse the buffer direction back to write mode, and all RDAT information not yet read from the FIFO will be lost. MOD should be set to 00 if no modification to video buffer is desired.

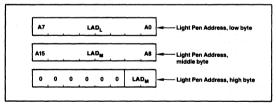


#### **Cursor Address Read**

De <u>CURD:</u> 1 1 1 0 0. 0 0 0


The following bytes are returned by the HGDC through the FIFO:




The execute address, EAD, points to the display memory word containing the pixel to be addressed.

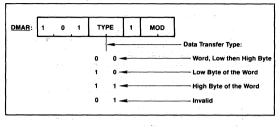
The dot address, dAD, within the word is represented as a 1-of-16 code for graphics drawing operations.

#### **Light Pen Address Read**

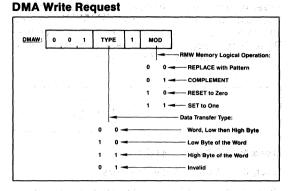


The following bytes are returned by the HGDC through the FIFO:




The light pen address, LAD, corresponds to the display word address, DAD, at which the light pen input signal is detected and deglitched.

The light pen may be used in graphics, character, or mixed modes but only indicates the word address of light pen position.




#### **DMA** Control Commands

#### **DMA Read Request**



#### -----



#### **AC Characteristics**

 $T_A = 0$  to +70 °C;  $V_{CC} = 5.0 V \pm 10\%$ ; GND = 0 V

		7220	DAD Limits	7220	AD-1 Limits	7220A	D-2 Limits		11 (1986) N. 1977
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	<b>Test Conditions</b>
Read Cycle (GDC	CPU)					2.841 N	and the set of the		
Address setup to RD↓	t _{AR}	0		0		0		ns	n ann ann ann. Anns an Anns
Address hold from RD1	t _{RA}	0		0	an partire	0		ns	ta provinsi ta terreta. A status status ta con
RD pulse width	t _{RH1}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	t _{RD1} + 20	t _{RCY} - 1/2 t _{CLK}	ns	
Data delay from RD↓	t _{RD1}	an star st	75	e to Menta	65		55	ns	C _L = 50 pF
Data floating from RD1	t _{DF}	0	75	0	65	0	55	ns	na na kuto stani na miningan sette na na
RD pulse cycle	t _{RCY}	4 t _{CLK}		4 t _{CLK}	, ,	4 t _{CLK}	· · · · · · · · · · · · · · · · · · ·	ns	
Write Cycle (GDC ←	- CPU)						e de la composición d		
Address setup to ₩R↓	t _{AW}	0		0	ji dan Maringan Sarah		·	ns	
Address hold from WR1	t _{WA}	10	a a de se text	10	n de la seconda de la secon Seconda de la seconda de la	10		ns	
WR pulse width	tww	80	t _{WCY} - t _{CLK}	70	twcy - tclk	60	twcy - t _{CLK}	ns	
Data setup to WR1	t _{DW}	65		55	1 . 1 m 1	45		ns	рана — 1. т. т. К
Data hold from WR1	t _{WD}	1 - <b>0</b> - 11	e esta precienta	10		10	1.8.5.82	ns	al a Start Aparta
WR pulse cycle	twcy	4 t _{CLK}	이 지수는 아이들이 같	4 t _{CLK}		4 t _{CLK}		ns	and the second
			×						

3-20

3

# AC Characteristics (cont) $T_{A} = 0 \text{ to } +70 \,^{\circ}\text{C}; \, V_{CC} = 5.0 \text{ V} \pm 10\%; \, \text{GND} = 0 \text{ V}$

		72204	D Limits	7220A	D-1 Limits	7220A	D-2 Limits		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	<b>Test Conditions</b>
DMA Read Cycle (GDC	←→ CPU)								
DACK setup to RD↓	t _{KR}	0		0		0		ns	
DACK hold from RD1	t _{RK}	0		0		0		ns	
RD pulse width	t _{RR2}	t _{RD2} + 20		t _{RD2} + 20		t _{RD2} + 20		ns	
Data delay from RD↓	t _{RD2}		1.5 t _{CLK} + 80		1.5 t _{CLK} + 70		1.5 t _{CLK} + 60	ns	<b>C</b> _L = 50 pF
DREQ delay from 2xWCLK1	t _{REQ}		100	.1	85		75	ns	$C_L = 50 \text{ pF}$
DREQ setup to DACK↓	t _{QK}	0		0		0		ns	
DACK high-level width	t _{DK}	t _{CLK}		t _{CLK}		t _{CLK}		ns	
DACK pulse cycle	t _E	4 t _{CLK} (1)		4 t _{CLK} (1)		4 t _{CLK} (1)		ns	
DREQ↓ delay from DACK↓	t _{KQ(R)}		t _{CLK} + 100		t _{CLK} + 90		t _{CLK} + 80	ns	$C_L = 50 \text{ pF}$
DACK low-level width	tLK	2 t _{CLK}		2 t _{CLK}		2 t _{CLK}			
DMA Write Cycle (GDC	←→ CPU	)						· ·	
DACK setup to WR↓	t _{KW}	0		0	-	0		ns	
DACK hold from WR1	twĸ	0	1.5	0		0		ns	
RMW Cycle (GDC -	Display M	emory)	······································						
Address/data display from 2xWCLK1	t _{AD}	20	105	20	90	15	80	ns	$C_L = 50 \text{ pF}$
Address/data floating from 2xWCLK1	^t OFF	20	105	20	90	15	80	ns	$C_L = 50 \text{ pF}$
Input data setup to 2xWCLK↓	tdis	0		0		0		ns	
Input data hold from 2xWCLK↓	tdih	t _{DE}		t _{DE}		t _{DE}		ns	
DBIN delay from 2xWCLK↓	t _{DE}	20	80	20	70	15	60	ns	$C_L = 50 \text{ pF}$
ALE ¹ delay from 2xWCLK ¹	t _{RR}	20	80	20	70	15	60	ns	$C_L = 50 \text{ pF}$
ALE↓ delay from 2xWCLK↓	t _{RF}	20	65	20	55	15	50	ns	$C_L = 50 \text{ pF}$
ALE high width	t _{RW}	1/3 t _{CLK}		1/3 t _{CLK}		1/3 t _{CLK}		ns	$C_L = 50 \text{ pF}$
ALE low width	t _{RL}	1.5 t _{CLK} - 30		1.5 t _{CLK} - 30		1.5 t _{CLK} - 30		ns	······································
Address setup to ALE↓	t _{AA}	30		30		30	· · · · ·		

Note:

(1) For high-byte and low-byte transfers:  $t_{\text{E}} = 5 \; t_{\text{CLK}}.$ 



#### AC Characteristics (cont)

 $T_A = 0$  to +70 °C;  $V_{CC} = 5.0 \text{ V} \pm 10\%$ ; GND = 0 V

		7220AD Limits		7220A	D-1 Limits	7220/	AD-2 Limits		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Display Cycle (GDC ←	→ Display	Memory)							
Video signal display from 2xWCLK1	t _{VD}		90		80		70	ns	$C_L = 50 \text{ pF}$
input Cycle (GDC	Display M	emory)							
Input signal setup to 2xWCLK [↑]	t _{PS}	10	·.	10	· · ·	10		ns	
Input signal width	t _{PW}	t _{CLK}		t _{CLK}		^t CLK		ns	
Clock (2xWCLK)									
Clock rise time	t _{CR}		15		15		15	ns	-
Clock fall time	t _{CF}		15	······	. 15		15	ns	
Clock high pulse width	t _{CH}	70		61	х.	52		ns	
Clock low pulse width	t _{CL}	70		61		52	-	ns	
Clock cycle	t _{CLK}	165	10000	145	10000	125	10000	ns	

#### Capacitance

 $T_A = 25 \degree C; V_{CC} = GND = 0 V$ 

	Limits					Test	
Parameter	Symbol	Min Typ		Max	Unit	Conditions	
Input capacitance IO capacitance	C _{IN} C _{IO}			10 20	pF pF	V ₁ (unmeasured)	
Output capacitance Clock input capacitance	C _{OUT} Cø			20 20	pF pF	= 0 V	

#### Absolute Maximum Ratings (Tentative)

Ambient temperature under bias	0 to +70°C
Storage temperature	-65 to +150°C
Voltage on any pin with respect to ground	-0.5 to +7 V
Power dissipation	1.5 W

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **DC Characteristics**

 $T_A = 0$  to +70 °C;  $V_{CC} = 5 V \pm 10\%$ ; GND = 0 V

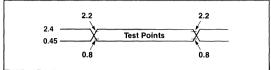
			Limits		Test Conditions	
Parameter	Symbol	Min	Typ Max	Unit		
Input low voltage	VIL	-0.5	0.8	۷	(Note 1)	
Input high voltage	VIH	2.2	V _{CC} + 0.5	۷	(Notes 2, 3)	
Output low voltage	VOL		0.45	۷	$I_{0L} = 2.2 \text{ mA}$	
Output high voltage	V _{OH}	2.4		۷	$I_{0H} = -400 \ \mu A$	

# DC Characteristics (cont) $T_A = 0$ to +70 °C; $V_{CC} = 5 V \pm 10\%$ ; GND = 0 V

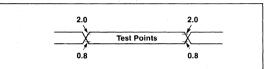
		Li	mits		Test		
Parameter	Symbol	Min Typ	Max	Unit	Conditions		
Input low leak current (except VSYNC, DACK)	ηL	· · · · · ·	-10	μA	$V_{I} = 0 V$		
Input low leak current (VSYNC, DACK)	Ι _{ΙL}	, ,	-500	μA	$V_I = 0 V$		
Input high leak current (except LPEN/DH)	Ιн		+10	μA	$V_I = V_{CC}$		
Input high leak current (LPEN/DH)	lιH		+500	μA	$V_I = V_{CC}$		
Output low leak current	I _{OL}		-10	μA	$V_0 = 0 V$		
Output high leak current	I _{OH}		+10	μA	$V_0 = V_{CC}$		
Clock input low voltage	V _{CL}	-0.5	0.6	۷			
Clock input high voltage	V _{CH}	3.5	V _{CC} + 1.0	۷			
V _{CC} supply current	ICC	le g	270	mΑ	· · · · ·		

#### Note:

(1) For 2xWCLK,  $V_{\rm IL}=-0.5$  to +0.6 V.


(2) For 2xWCLK,  $V_{IH} = +3.9$  V to  $V_{CC} + 1.0$  V.

(3) For  $\overline{\text{WR}}$ ,  $V_{\text{IH}} = 2.5 \text{ V}$  to  $V_{\text{CC}} + 0.5 \text{ V}$ .

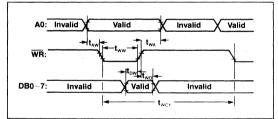

NEC

## **AC Testing Conditions**

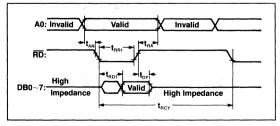
Input Waveform for AC Test (Except 2xCCLK)



#### **Output Waveform for AC Test**

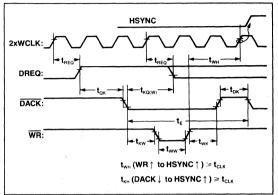



#### Clock Timing (2xCCLK)

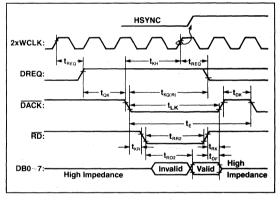



## **Timing Waveforms**

**Microprocessor Interface Write Timing** 




#### **Microprocessor Interface Read Timing**

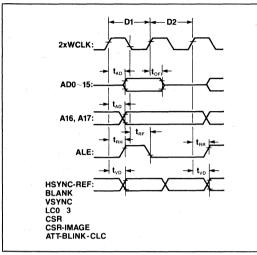


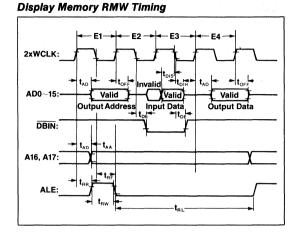

## Timing Waveforms (cont)

#### Microprocessor Interface DMA Write Timing

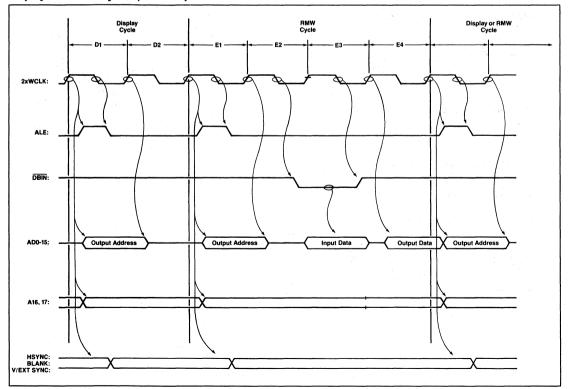


#### Microprocessor Interface DMA Read Timing





3



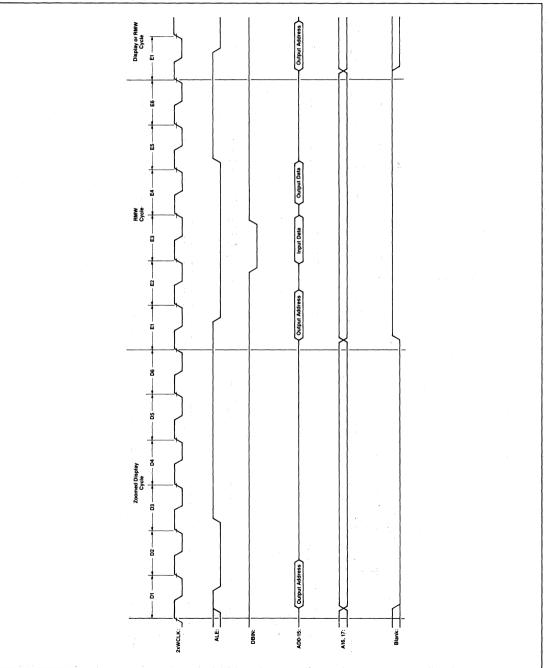

## **Timing Waveforms (cont)**

#### Display Memory Display Cycle Timing





#### Display and RMW Cycles (1x Zoom)

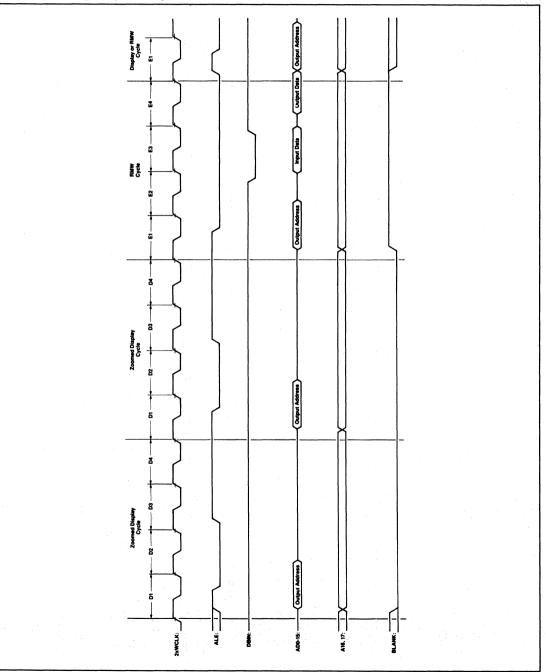





μ**ΡD7220A** 

## **Timing Waveforms (cont)**

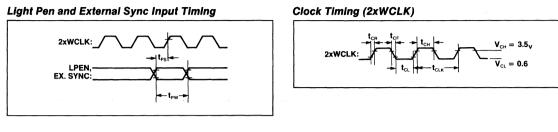
## Display and RMW Cycles (2x Zoom)



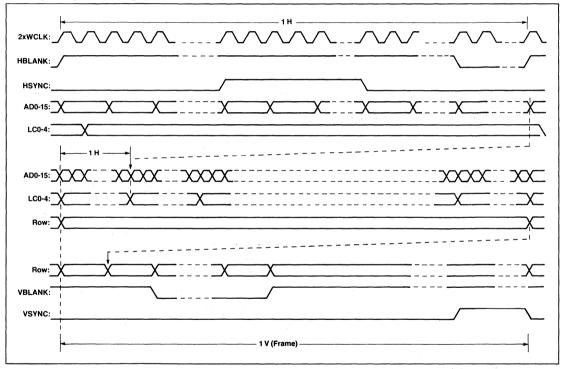

3



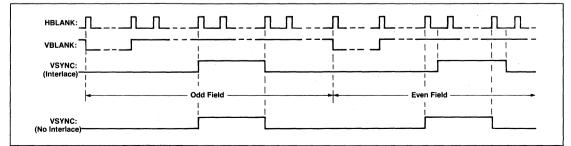
## Timing Waveforms (cont)


## Display and RMW Cycles (3x Zoom)






μ**ΡD7220A** 

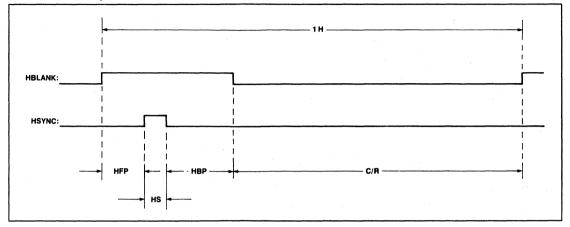

## **Timing Waveforms (cont)**



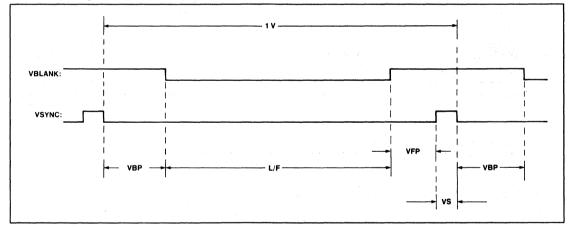
#### Video Sync Signals Timing



#### Interlaced Video Timing



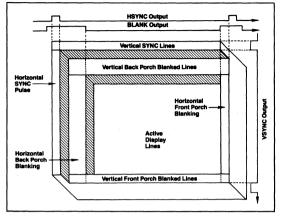

3



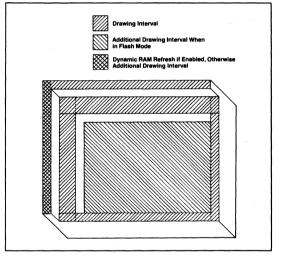

## **Timing Waveforms (cont)**


#### Video Horizontal Sync Generator Parameters

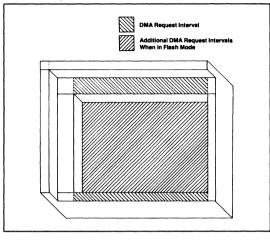



### Video Vertical Sync Generator Parameters




#### Cursor—Image Bit Flag

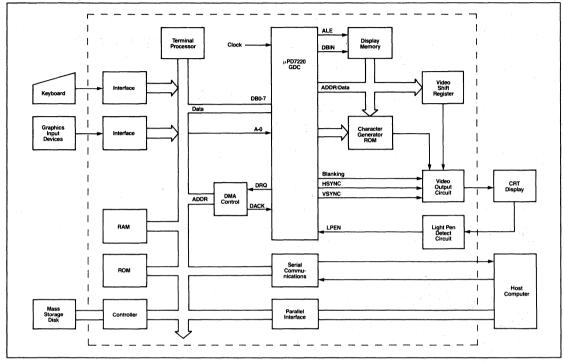



## **Video Field Timing**

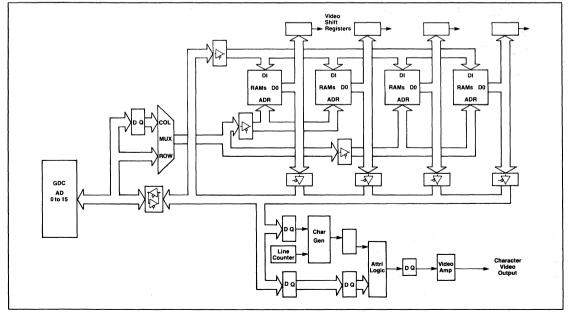


## **Drawing Intervals**




## **DMA Request Intervals**




3







## **Multiplane Display Memory Diagram**





## μPD72020 CMOS Graphics Display Controller

#### Description

The  $\mu$ PD72020 is an enhanced graphics display controller resulting from the implementation of CMOS technology on the  $\mu$ PD7220A.

In addition to the functions of the  $\mu$ PD7220A, the  $\mu$ PD72020 incorporates address space expansion, video RAM control, and write mask functions. It is suitable for a wide range of applications from simple display terminals to high-resolution graphics display devices.

This data sheet covers only functions additional to those of the  $\mu$ PD7220A. For further details of the  $\mu$ PD72020, refer to the  $\mu$ PD72020 User's Manual.

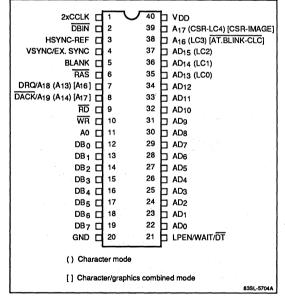
#### Features

- Enhanced functions compared with the µPD7220A
  - Video memory space: 2M bytes maximum (1M 16-bit words)
  - Control of dual-port RAM (video RAM)
  - Write-masking of any desired bit
  - Enhanced external synchronization function
  - CMOS technology
- μPD7220A-compatible functions
  - High-speed graphics drawing: 500 ns/dot (operating at 8 MHz)
  - Selection of drawing timing: flashless/flash mode
  - Drawing of straight lines, arcs, quadrilaterals, graphic characters
  - Any kind of line specifiable
  - Four different dot-correction modes
  - Enlarged drawing/enlarged display
  - Panning and scrolling
  - Automatic cursor shifting
  - Attributes assignable character by character
  - Interlaced/noninterlaced scanning
  - DRAM refreshing
  - Master/slave operation
  - Video memory control independent of main memory
  - 16 x 9-bit on-chip input/output FIFO
  - DMA control
  - Single +5-volt power supply

#### Applications

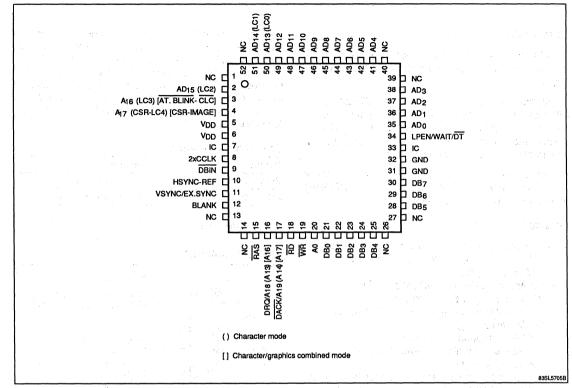
50061

Some application functions implemented by use of this product in conjunction with other products may infringe on U.S. Patent No. 4,197,590 and Re. 31,200 etc. held by CADTRAK Corporation of the United States, and the


corresponding patents in various countries. Problems may arise from such patents even when a different graphics display controller or discrete circuitry is used, and thus resolution on the basis of this product alone is not possible. Therefore, the user is requested to undertake as his or her own responsibility an investigation of measures to cope with this situation before designing an application system.

#### **Ordering Information**

Part No.	Package
μPD72020C-8	40-pin plastic DIP
μPD72020GC-8-3B6	52-pin plastic miniflat


#### **Pin Configurations**

## 40-Pin Plastic DIP





#### 52-Pin Plastic Miniflat



80.00

## **Pin Identification**

Symbol	Function
AO	Address select input for microprocessor interface
AD0-AD12	Address-data lines to display memory
AD ₁₃ /LC0, AD ₁₄ /LC1, AD ₁₅ /LC2	See text and table 3.
A ₁₆ /LC3/AT.BLINK-CLC, A ₁₇ /CSR-LC4/CSR-IMAGE	See text and table 3.
BLANK	CRT blanking output
DACK/A19/A14/A17	See text and table 1.
DB ₀ -DB ₇	Bidirectional data bus to host microprocessor
DBIN	Display memory read input flag
DRQ/A18/A13/A16	See text and table 1.
HSYNC-REF	Horizontal video sync output

Symbol	Function
LPEN/WAIT/DT	See text and table 2.
RAS	Row address strobe
RD	Read strobe input for microprocessor interface
VSYNC/EX.SYNC	Vertical video sync output or external VSYNC input
WR	Write strobe input for microprocessor interface
2xCCLK	Clock input
GND	Ground
V _{DD}	+5-volt power supply
IC	Internal connection
NG	No connection



### **PIN FUNCTIONS**

Pins on the  $\mu$ PD7220A and the  $\mu$ PD72020 have similar functions. Differences are described below.

#### Pins DRQ and DACK

The functions of these pins depend on the setting of the PN bit by the WMASK command, which validates the address extension functions See table 1.

 $A_{13}$ ,  $A_{14}$ ,  $A_{16}$ - $A_{19}$ . When the address extension function is selected by setting PN of the WMASK command, the upper 2 bits (of the extended address) are output in the video memory in each display/draw mode.

After the address extension function has been selected, the DMA-related functions cannot be used. Use the CHR and G bits of the SYNC command to set the display/ draw mode (as with the  $\mu$ PD7220A).

DRQ (DMA Request). When the DMAR or DMAW command is executed, the DMA request signal is output. This signal is input to the DRQ pin of the DMA controller.

After the DMA-related functions have been selected, the address extension functions cannot be used.

**DACK (DMA Acknowledge).** A signal indicating DMA transfer is input. This signal is output from the DACK pin of the DMA controller.

#### Pin LPEN/WAIT/DT

The functions of this pin depend on the setting of the DTE bit by the WMASK command, which validates the DT signal generation function. See table 2.

 $\overline{\text{DT}}$  (Data Transfer). When the  $\overline{\text{DT}}$  signal generation function is selected by setting DTE of the WMASK command, the  $\overline{\text{DT}}$  signal is output to indicate the display address supply timings for the  $\mu$ PD41264-type video RAMs (VRAMs).

After the  $\overline{\text{DT}}$  signal generation function has been selected, the LPEN and WAIT functions cannot be used.

LPEN (Light Pen Strobe). When the light pen detects a light input, the H-level signal is input.

After the LPEN function has been selected, the  $\overline{\text{DT}}$  signal generation function cannot be used.

WAIT (Drawing Wait). When a signal that remains at the H-level for a period of at least four clocks is input in the drawing stop mode, the  $\mu$ PD72020 will stop drawing temporarily if it is executing drawing and output a display address.

After the WAIT function has been selected, the  $\overline{\text{DT}}$  signal generation function cannot be used.

## Pins AD13-AD15, A16, and A17

The functions of some other pins depend on the operating mode: character, graphics, or character/graphics combined. See table 3.

Pin Symbol	PN Bit (WMASK Command)	Action	Mode	I/O	Pin Function
DRQ/A18/A13/A16	0	Action similar to µPD7220A		Output	DRQ
	1	Address extension	Graphics	Output	A ₁₈
			Character	Output	A ₁₃
			Combined	Output	A ₁₆
DACK/A19/A14/A17	0	Action similar to µPD7220A		Input	DACK
	1	Address extension	Graphics	Output	A ₁₉
			Character	Output	A ₁₄
			Combined	Output	A ₁₇

Table 1. Pin Functions Available Through Address Extension

Table 2. Pin Functions Available Through DT Signal Generation

Pin Symbol	DTE Bit (WMASK Command)	Action	I/O	Pin Function
LPEN/WAIT/ DT	0	Action similar to $\mu$ PD7220A	Input	LPEN/WAIT
	1	DT signal generation	Output	DT



Pin Symbol	Mode	1/0	
AD ₁₃ -AD ₁₅	Graphics; combined	I/O	Address-data lines 13-15 to display memory
LC0-LC2	Character	Output	Line counter bits 0-2
A ₁₆	Graphics	Output	Address bit 16
LC3	Character	Output	Line counter bit 3
AT.BLINK-CLC	Combined	Output	Attribute blink and clear line counter
A ₁₇	Graphics	Output	Address bit 17
CSR-LC4	Character	Output	Cursor and line counter bit 4
CSR-IMAGE	Combined	Output	Cursor and bit-map area flag

#### Table 3. Multifunction Pins AD13-AD15, A16, and A17

#### ADDED BLOCK FUNCTIONS

Refer to the  $\mu$ PD72020 Block Diagram and the System Configuration Diagram.

#### Video RAM Control

Additional blocks generate the  $\overline{\text{DT}}$  signal, which indicates the display-address supply timings for the video RAMs. Data within the RAMs can be transferred to the serial register.

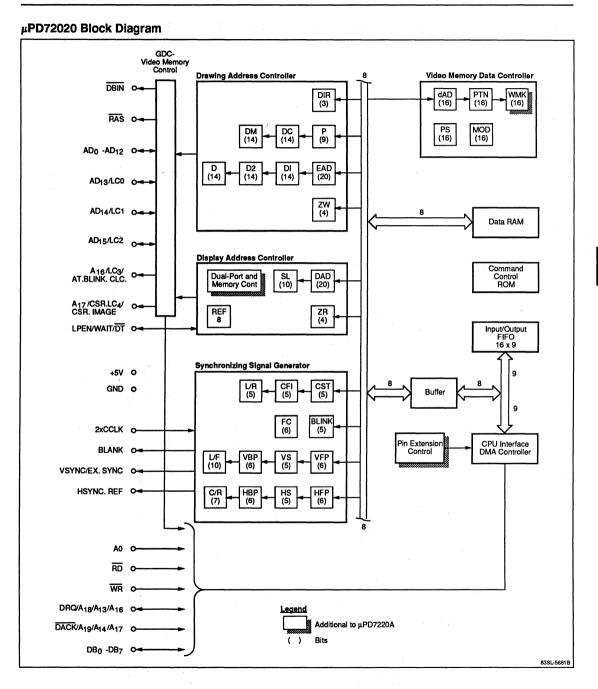
#### Pin Extension Control

The video memory address is extended 2 bits (with the address space extended fourfold) in each of the character, character/graphics combined, and graphics modes.

These bits are used for both  $\overrightarrow{DACK}$  pin and DRQ pin in each mode: A₁₄ and A₁₅; A₁₇ and A₁₆; A₁₉ and A₁₈.

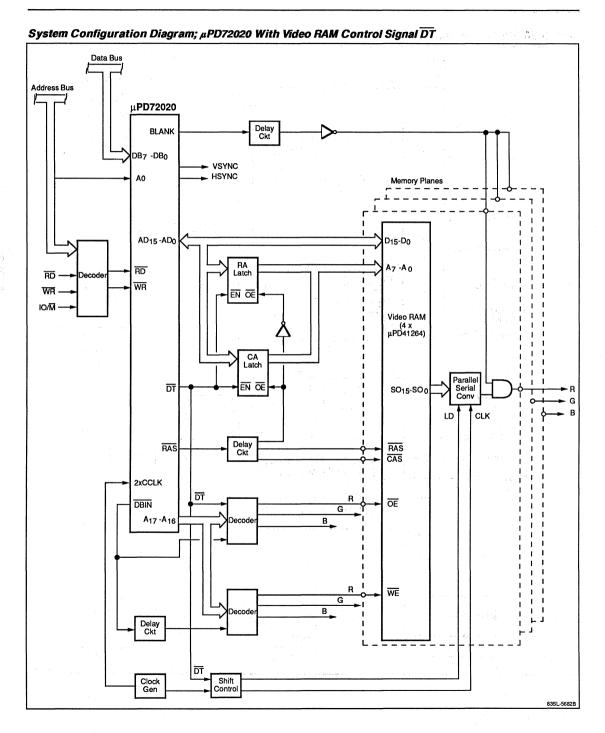
#### WMASK Register

This 16-bit register is used to mask the data for multicolor synchronous drawing with one word in 8/4/2/1-bit configuration.


#### **IMPROVED FUNCTIONS**

The  $\mu$ PD72020 functions have been improved while maintaining compatibility with the  $\mu$ PD7220A in both hardware and software. Table 4 compares functions of the  $\mu$ PD72020 and the  $\mu$ PD7220A.

The  $\mu$ PD72020 is initialized by reset input so that it can function similarly to the  $\mu$ PD7220A.




μPD72020



3





3-36

#### Table 4. Comparison of µPD72020 and µPD7220A Functions "PD72020 **"PD7220A** WMASK Command WMASK command is used to validate the new functions of the WMASK command is not used. μPD72020. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 CMD 0 1 0 1 1 0 1 0 P1 WMKL P2 WMKH P3 DTE CY1 CY0 PN ТΜ 0 0 0 WMK Sets the WMASK register value. PN Sets the address extension function. ΤМ Changes the initializing timing of the horizontal synchronization counter in the slave mode for external synchronization, and sets the initializing function of the field counter. DTE Sets the function of generating the DT signal. CY Set the DT signal output mode and the BLANK signal mask. **LPEN Command**

Light pen address (LAD) is extended 2 bits by setting PN of the WMASK command.

#### PN 0 Same as µPD7220A

EAD is extended 2 bits.

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
CMD	1	1	0	0	0	0	0	0
D1				LA	DL			
D2				LA	DM			
D3	х	X	х	X		LA	DH	

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CMD	1	1	0	0	0	0	0	0
D1				LA	DL			
D2				LA	DH			
D3	Х	X	X	X	X	X	LA	DH

#### CSRW Command

1

Draw execution address (EAD) is extended 2 bits by setting PN of the WMASK command. Draw execution address (EAD) extension function is not available.

#### PN 0 Same as µPD7220A

1 EAD is extended 2 bits.

#### **Character Mode**

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO		DB7	DB6	DB5	DB4	DB3	DB2	DB1	
CMD	0	1	0	0	1	0	0	1	CMD	0	1	0	0	1	0	0	Γ
P1			2	EA	DL				P1				EA	DL			
P2	0				EADH				P2	0	0	0			EADH		

## Light pen address (LAD) extension function is not available.



#### Table 4. Comparison of µPD72020 and µPD7220A Functions (cont)

μPD72020

μPD7220A

#### CSRW Command (cont)

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
CMD	0	1.	0	0	1	0	0	1			
P1	EADL										
P2				EA	DM						
P3	0	0	0	0	0	0	EADH				

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
CMD	0	1	0	0	1	0	0	1			
P1		EADL									
P2		EADH									

#### EADM P2 F

Character/Graphics Combined Mode (Character Display)

#### Character/Graphics Combined Mode (Graphics Display/Drawing)

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
CMD	0	1	0	0	1	0	0	1			
P1		EADL									
P2				EA	DM						
P3		d/	٨D		0	0	EA	DH			
P4	WG	0	0	0	0	0	0	0			

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
CMD	0	1	0	0	1	0	0	1				
P1		EADL										
P2		EADH										
P3		d/	٨D		WG	0	0.0	0				

#### **Graphics Mode**

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
CMD	0	1	0	0	1	0	0	1
P1	e filia			EA	DL			
P2				EA	DM			
P3		d	AD .			EA	DH	·
P4	WG	0	0	0	0	0	0	0

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
CMD	0	1	0	0	1	0	0	1
P1	an a			EA	DL			
P2		:		EA	DM		1	
P3		dAD WG 0 EAD				DH		

#### **CSRR** Command

Draw execution address (EAD) is extended 2 bits by setting PN of the WMASK command.

PN	0	Same	as	μPD7220A
----	---	------	----	----------

1 EAD is extended 2 bits.

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
CMD	1	1	1	0	0	0	0	0	
D1				EA	DL				
D2	1	EADM							
D3	X	х	х	X	1.1	EA	DH		
D4	·			dA	DL		č.		
D5		dADH							

Draw execution address (EAD) extension function is not available.

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
CMD	1	1	1	0	0	0	0	0
D1				EA	DL			
D2			1	EA	DM			
D3	Х	х	X	X	X	X	EA	DH
D4				dA	DL			
D5				dA	DH			

2

#### Table 4. Comparison of *µPD72020* and *µPD7220A* Functions (cont)

μPD72020

μPD7220A

#### SCROLL Command

1

Display start address (SAD) is extended 2 bits by setting PN of the Display start address (SAD) extension function is not available. WMASK command.

PN 0 Same as µPD7220A

SAD is extended 2 bits.

	MSB							LSB
RA			С	ontent	s or RA	M		
0				SAL	D1L			
1	0				SAD1H			
2		SL	.1L		0	0	0	0
3	*	0			SL	1H		
4	· ·			SAI	D2L		, t	
5	0				SAD2H			
6		SL	.2L		0	0	0	0
7	*	0			SL	2H		
8				SAI	D3L			
9	0	-			SAD3H			
A		SL	.3L		0	0	0	0
В	*	0			SL	зн		
С				SAI	D4L			
D	0				SAD4H			
Е		SL	.4L		0	0	0	0
F	*	0			SL	4H	ъ.,	19.7
* DAD	+2							

MSB LSB Contents or RAM RA SAD1L 0 SAD1H 1 0 0 0 2 SL1L 0 0 0 0 * з 0 SL1H SAD2L 4 SAD2H 5 0 0 0 6 SL2L 0 0 0 0 * 7 0 SL2H SAD3L 8 9 0 0 0 SAD3H Α SL3L 0 0 0 0 в * SL3H 0 С SAD4L D SAD4H 0 0 0 Е SL4L 0 0 0 0 F * 0 SL4H * DAD+2

Character Mode Built-In RAM Map



#### Table 4. Comparison of µPD72020 and µPD7220A Functions (cont)

μPD72020

μPD7220A

SCROLL Command (cont)

#### Character/Graphics Combined Mode (Character Display)

	MSB							LSB
RA			C	ontent	s of RA	M		
0				SAI	D1L			
1		SAD1M						
2		SL	.1L		0	0	SAD	D1H
3	*	0		;	SL	.1H		
4				SAI	D2L			
5				SAE	)2M			
6		SL2L 0 0 S					SAD	02H
7	*	0			SL	2H		
8				SAI	D3L			
9				SAE	ОЗМ			
A		SL	.3L		0	0	SAD	зн
В	*	0	÷ .		SL	3H		
С				SAI	D4L ·	· .		
D		SAD4M						
Ε		SL	.4L		0	0	SAD	)4H
F	*	0			SL	4H		
* DAD	)+2							

#### Built-In RAM Map

				· · · · · · · · · · · · · · · · · · ·				
	MSB							LSB
RA			С	ontents	s of RA	м		
0				SAI	D1L			
1				SAD	D1H	÷.		
2		SL	.1L		0	0	0	0
3	* .	0		-	SL	1H	·	
4				SAI	02L			
5				SAD	)2H			
6		SL	.2L		0	0	0	0
7	*	0			SL	2H		
8			·	SAI	D3L			
9				SAD	озн			
A		SL	.3L		0	0	0	0
В	*	0			SL	зн		
С				SAI	D4L			
D		SAD4H						
E		SL4L 0 0 0 0						0,
F	*	0			SL	4H		
* DAD	)+2	••••••						

### Character/Graphics Combined Mode (Graphics Display/Drawing) Built-In RAM Map

	MSB							LSB
RA			С	ontents	s of RA	M		
0				SAI	D1L			
1				SAD	D1M			
2		SL	L1L 0 0 SAD1H					
3	*	IM	SL1H					
4				SAI	D2L			
5				SAD	)2M			
6		SL	.2L		0	0	SAI	D2H
7	*	IM	SL2H					
* DAC	)+2							

	MSB							LSB
RA			C	ontents	s of RA	м		
0				SAI	D1L			
1				SAD	01H			
2		SL	.1L		0	0	0	0
3	*	IM			SL	1H		
4				SAD	02L			
5				SAD	)2H			
6		SL	.2L		0	0	0	0
7	*	IM			SL	2H		

## Table 4. Comparison of µPD72020 and µPD7220A Functions (cont)

μPD72020

μPD7220A

Scroll Command (cont)

## Graphics Mode

	MSB						LSB		MSB		
RA			Conten	ts or RA	M			RA			
0		1.1	SA	AD1L				0			
1			SA	D1M	•			1			-
2		SL	1L		SAD	1H		2		SL	.11
3	*	IM		SL	1H			3	*	IM	Γ
4			SA	D2L				4			<u> </u>
5			SA	D2M				5			
6		SL	2L	Τ	SAD	2H		6	1	SL	.2
7	*	IM	÷.	SL	2H			7	*	IM	Γ
DAC	0+2							* DAL	)+2		L

#### Built-In RAM Map

	MSB						L	SB
RA	ł		C	ontent	s or RA	M		
0				SAI	D1L			
1		SAD1M						
2		SL	.1L		0	0	SAD1	Н
3	*	IM	SL1H					
4				SAI	D2L			
5				SAD	02M			
6		SL	SL2L 0 0 SAD2H					H
7	*	IM	M SL2H					
DAD	)+2							

3

#### COMMANDS

The  $\mu$ PD72020 supports all commands of the  $\mu$ PD7220A. Although command names are different, opcodes are the same. The  $\mu$ PD72020 can activate the software created for use with the  $\mu$ PD7220A.

The improved functions of the  $\mu$ PD72020 can be used by setting the new WMASK command. Once the RESET command is input, however, the WMASK command becomes inactive and the  $\mu$ PD72020 maintains the same functions as those of the  $\mu$ PD7220A.

This section describes the WMASK command as well as the SCROLL, LPEN, CSRW, and CSRR commands, which are affected by the setting of the WMASK command.

#### WMASK Command

This new command (figure 1) controls four new functions.

- WMASK register setting
- Address extension
- Selection of additional functions in the external slave mode
- DT signal generation

#### Figure 1. WMASK Command Format

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CMD	0	1	0	1	1	0	1	0
P1		WMKL						
P2		WMKH						
P3	PN	тм	DTE	CY1	CY0	0	0	0

WMK Bit. The  $\mu$ PD72020 is equipped with the conventional MASK register and a 16-bit WMASK register. The WMK bit is used to set this WMASK register.

The 16-bit WMASK register is used for write mask of the multicolor, simultaneously-drawn data with one word set in 8-, 4-, 2- and 1-bit formats. Each bit of the WMASK register corresponds to each bit of the drawn data.

- (1) When a WMASK register bit is set to 0 by the WMK, the drawn data bit corresponding to the WMASK register bit set to 0 is not affected by drawing.
- (2) When a WMASK register bit is set to 1 by the WMK, operation is similar to the μPD7220A. Thus, the



drawn data bit corresponding to the WMASK register bit set to 1 is affected by drawing.

When the RESET command is input, the  $\mu$ PD72020 is set to this mode.

**PN Bit.** PN is used to set the address extension function for the video memory.

(1) When PN = 0, operation is similar to the  $\mu$ PD7220A. Thus, the address extension function cannot be used.

When the RESET command is input, the  $\mu$ PD72020 is set to this mode.

(2) When PN = 1, the video memory address is extended 2 bits (with the address space expanded fourfold).

The DRQ/A₁₀/A₁₃/A₁₆ pin and the DACK/A₁₉/A₁₄/A₁₇ pin output the upper 2 bits of the extended address. The DMA-related functions cannot be used.

The address to be output depends on the display and drawing modes. See table 1. The address space is shown in table 5.

#### Table 5. Address Space With Extended Address

	Character	Character/Graphics	Graphics
	Mode	Combined Mode	Mode
Address	15 bits	18 bits	20 bits
space	(32K words)	(256K words)	(1M words)

As the address space is expanded, the following command bits are also extended.

- LAD bit of LPEN command
- EAD bit of CSRW command
- EAD bit of CSRR command
- SAD bit of SCROLL command

Refer to the description of each command for details.

**TM Bit.** TM has been added to solve the following two problems with the  $\mu$ PD7220A.

 Because the vertical and horizontal counters are initialized at the start of VFP and HFP, respectively, when the external synchronizing signal is input to the μPD7220A, horizontal positioning cannot be readily done for synchronization with the μPD7220A by inputting a synchronizing signal from the external device.



 When the μPD7220A is operated in the interlace mode, input of the external synchronizing signal causes no effect on the field counter. Thus, if the synchronizing signal is unconditionally input from the external device when the μPD7220A is in the second field, the second and first fields are reversed in subsequent frames and the fields do not conform with the external device.

When the  $\mu$ PD72020 operates in the slave mode for external synchronization, the setting of the TM bit will cause the  $\mu$ PD72020 to operate differently from the  $\mu$ PD7220A in the following operations.

- The timing of initializing the horizontal synchronous counter is changed.
- The initializing function of the field counter is validated.

When TM = 0, the function similar to the external synchronizing function of the  $\mu$ PD7220A is carried out. When the RESET command is input, the  $\mu$ PD72020 is set to this mode.

When TM = 1, the following two operations differ from those of the  $\mu$ PD7220A.

- (1) When the RESET command is executed or the EX.SYNC (external synchronizing signal) is input, the horizontal counter is reset at the rising edge of the HS. See figure 2.
- (2) When the RESET command is executed in the interlace mode or the EX.SYNC signal is input, the field counter is unconditionally reset to the first field mode.

Thus, the VSYNC signal in the second field should be removed externally so that the synchronizing signal applied to the EX.SYNC pin serves as the VSYNC signal in the first field (in the interlace mode).

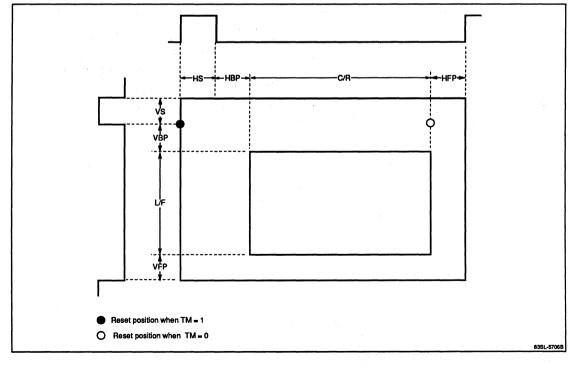



Figure 2. Horizontal Counter Reset Timing

## μPD72020

NEC

**DTE, CY1, CY0 Bits.** To prevent the display screen from becoming blurred during drawing operations, the  $\mu$ PD7220A normally performed drawing in the flashless drawing mode. Thus, the drawing period was limited and it was difficult to improve the drawing efficiency.

To solve this problem, video RAMs can be used for the  $\mu$ PD72020. Through the use of VRAMs, both drawing and display can be carried out simultaneously in the flashless drawing mode with the result that the drawing efficiency can be improved. DTE, CY1, and CY0 are used to control the  $\mu$ PD41264-type VRAMs and the BLANK signal.

#### Table 6. DT Signal Output Modes

DTE	CY1	CY0	Function 1 and a second
0	0	0	GDC mode 0
0	0	844 <b>1</b> - 1944	GDC mode 1 (BLANK signal mask †)
0	1	0	Inhibited
0	<b>1</b> - 1 - 2 - 2	1	Inhibited
1	0	0	DT signal output mode 0 (BLANK sig- nal mask †)
1	0	1	Inhibited
1	1	0	DT signal output mode 1 (BLANK sig- nal mask †)
1	1	1	DT signal output mode 2 (BLANK sig- nal mask †)

† If the μPD72020 has started drawing operations in the display mode, the BLANK signal is not set to H.

**DTE** = **0**. Operation is similar to the  $\mu$ PD7220A. The  $\overline{DT}$  signal functions cannot be used. The LPEN/WAIT/ $\overline{DT}$  pin performs the LPEN or WAIT functions.

The following two modes are available by setting CY1 or CY0 (table 6).

- (1) GDC mode 0 operation is similar to the  $\mu$ PD7220A. When the RESET command is input, the  $\mu$ PD72020 is set to this mode.
- (2) GDC mode 1 operation is similar to GDC mode 0 except if the  $\mu$ PD72020 starts drawing operations during the display period, the BLANK signal is not set to H even in the flash screen mode.

**DTE** = 1. The  $\overline{\text{DT}}$  signal functions are enabled and the  $\overline{\text{DT}}$  signal is output from the LPEN/WAIT/ $\overline{\text{DT}}$  pin. The  $\overline{\text{DT}}$  signal is used for display timing when the display memory consists of dual-port video RAMs. The VRAMs allow drawing during both drawing and display cycles.

When DTE is set to 1, the  $\mu$ PD72020 internally tracks the display address and outputs it and the  $\overline{\text{DT}}$  signal under either of two conditions.

- (1) At the start of every horizontal scan line (figure 3).
- (2) When the lower 8 bits of the display address (DAD) internal counter are 0.

The starting display address should be set before setting DTE to 1. The  $\mu$ PD72020 will temporarily stop a drawing operation before issuance of the DT signal, as in the case of the  $\mu$ PD7220A WAIT function.

The  $\overline{\text{DT}}$  signal output timing depends on the setting of the IM and DAD+2 bits of the SCROLL command. CY0 and CY1 determine which of the following three  $\overline{\text{DT}}$  signal output modes is used.

## μPD72020



**Mode 0 With DTE = 1.** In mode 0, the  $\overline{\text{DT}}$  signal is output as shown in figure 4.

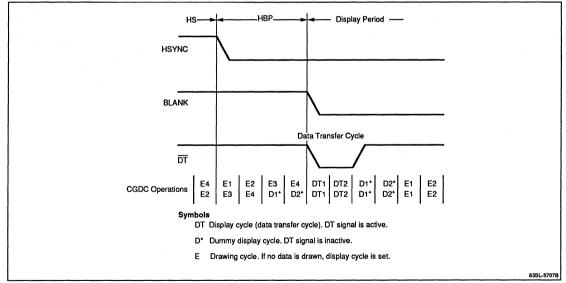
- (1) At the start of every horizontal scan line.
- (2) When the lower 8 bits of the DAD counter change from FEH or FFH to 00H.

Additionally, the DT signal active state in mode 0 has the following qualifications.

- (1) DT may become active in succession; for example, when the DAD counter changes to 00H just after the start of a horizontal scan line as in figure 4C.
- (2) When the lower 8 bits of the DAD counter become 00H in succession, DT becomes active during the first cycle only. See figure 4D.
- (3) DT will not become active during HFP, HS, HBP, VFP, VS, or VBP periods.

**Mode 1 With DTE = 1.** In mode 1, the  $\overline{\text{DT}}$  signal is ouput as shown in figure 5A.

(1) At the start of every horizontal scan line.




(2) When the lower 8 bits of the DAD counter change from FEH or FFH to 00H.

Additionally, the DT signal active state in mode 1 has the following qualifications.

- (1) DT may become active in succession.
- (2) When the lower 8 bits of the DAD counter change to 00H in succession, DT is active only during the first cycle.
- (3) DT can become active during HFP, HS, HBP, VFP, VS, or VBP periods.
- (4) DT will not become active while the DMA refresh operation is disabled (D-bit of SYNC command set to 1).
- (5) DT becomes active every four cycles.

**Mode 2 With DTE = 1.** In mode 2, the  $\overline{\text{DT}}$  signal output is the same as described for mode 1 except  $\overline{\text{DT}}$  is active every eight cycles instead of every four cycles. See figure 5B.



3-45



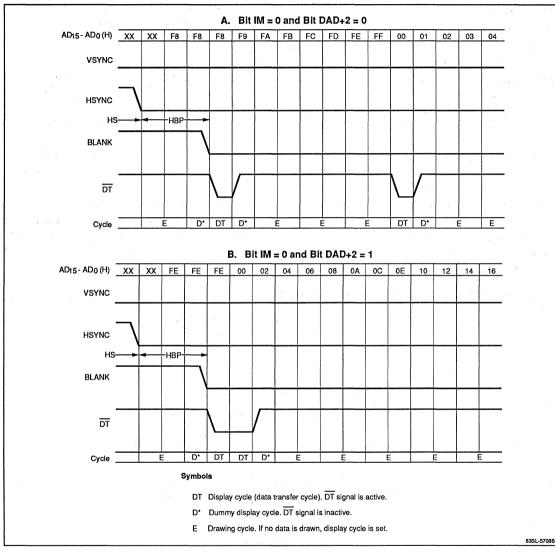



Figure 4. DT Signal Output, Mode 0 (Sheet 1 of 2)

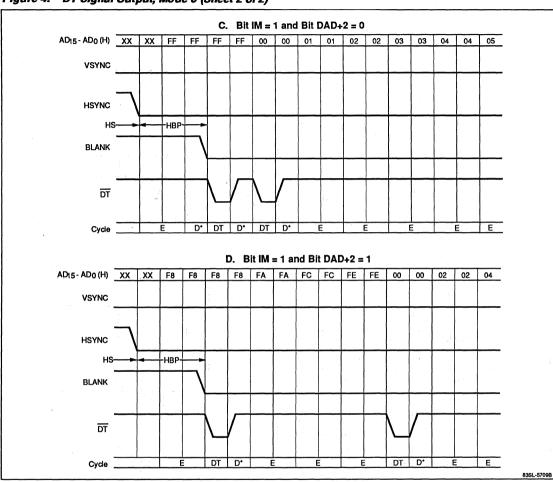
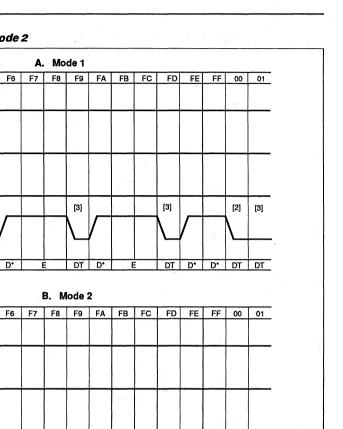




Figure 4. DT Signal Output, Mode 0 (Sheet 2 of 2)



3



НC



XX XX F5 F5 F5

HBP

[3]

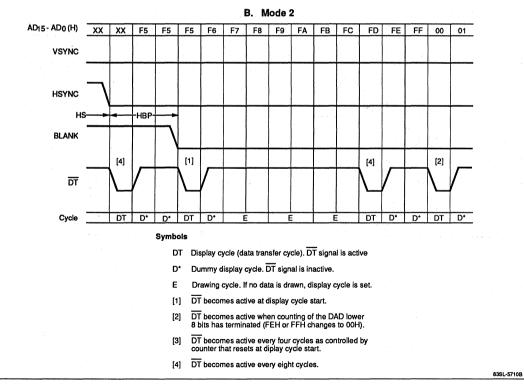
DT

E

[1]

D* DT

AD15-AD0(H)


VSYNC

HSYNC HS

BLANK

DT

Cycle



#### LPEN Command

When the address extension function is set by the WMASK command (with PN set to 1), the upper 2 bits of the light pen address (LAD) in the LPEN command are extended and a maximum of 20 bits can be used.

When PN = 0, the light pen address (LAD) is the same as with the  $\mu$ PD7220A.

The LPEN command format with the extended LAD is shown in figure 6.

#### Figure 6. LPEN Command Format

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
CMD	1	1	0	0	0	0	0	0	
D1		LADL							
D2		LADM							
D3	X	X	X	х	LADH				

#### **CSRW** Command

When the address extension function is set by the WMASK command (with PN set to 1), the upper 2 bits of the drawing execution address (EAD) in the LPEN command are extended.

When PN = 0, the drawing execution address (EAD) is the same as with the  $\mu$ PD7220A.

Address extension causes the WG bits to be positioned differently in the character/graphics combined mode (character display/drawing) or the graphics mode.

The CSRW command formats are included in table 4.

#### **CSRR** Command

When the address extension function is set by the WMASK command (with PN set to 1), the upper 2 bits of the drawing execution address (EAD) in the LPEN command are extended and a maximum of 20 bits can be used.

When PN = 0, the drawing execution address (EAD) is the same as with the  $\mu$ PD7220A.

The CSRR command format with the extended EAD is shown in figure 7.

#### Figure 7. CSRR Command Format

•										
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
CMD	1	1	1	0	0	0	0	0		
D1		EADL								
D2		EADM								
D3	X	X	X	x	EADH					
D4		dADL								
D5	dADH									

#### SCROLL Command

When the address extension function is set by the WMASK command (with PN set to 1), the upper 2 bits of the display start address (SAD) in the SCROLL command are extended.

When PN = 0, the display start address (SAD) is the same as with the  $\mu$ PD7220A.

The SCROLL command format is shown in figure 8. The built-in RAM map with the extended SAD is included in table 4.

#### Figure 8. SCROLL Command Format

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
CMD	0	1	1	1	RA			



## Absolute Maximum Ratings

TΔ	=	+25	°C

Supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, V _I	- 0.5 to V _{DD} + 0.3 V
Output voltage, V _O	– 0.5 to V _{DD} + 0.3 V
Operating temperature, T _{OPT}	- 10 to +70°C
Storage temperature, T _{STG}	– 65 to + 150°C

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

#### DC Characteristics

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$ 

				·	
Parameter	Symbol	Min	Max	Unit	Conditions
Low-level input	VIL	- 0.5	0.8	V	Except 2xCCLK
voltage		-0.5	0.6	۷	2xCCLK
High-level input voltage	V _{IH}	2.2	V _{CC} + 0.5	v	Except 2xCCLK, WR
		3.5	$V_{\rm CC}$ + 0.5	V	2xCCLK
		2.5	$V_{CC} + 0.5$	۷	WR
Low-level output voltage	V _{OL}	ан 1917 - Ар	0.45	V	$I_{OL} = 2.2 \text{ mA}$
High-level output voltage	V _{OH}	0.7 V _{DD}		v	$I_{OH} = -400 \ \mu A$
Low-level input leakage current	ILIL		-10	μA	V _I = 0 V; except VSYNC, DACK
·			-500	μA	V _I = 0 V; VSYNC, DACK
High-level input leakage current	LIH		10	μA	V _I = V _{DD} ; except LPEN/WAIT/DT
			500	μA	V _I = V _{DD} ; LPEN/WAIT/DT
Low-level output leakage current	LOL		-10	μA	$V_0 = 0 V$
High-level output leakage current	LOH		10	μA	$V_{O} = V_{DD}$
Supply current	lcc		70	mA	

#### Capacitance

 $T_A = +25^{\circ}C; V_{DD} = GND = 0 V$ 

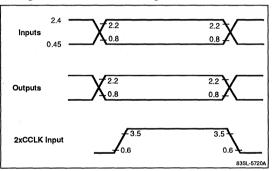
ltem	Symbol	Min	Max	Unit	Condition
Input	CI		15	pF	f = 1 MHz;
Output	Co		20	pF	0 V except for tested pin
Input/output	CI/O		20	pF	
Clock input	CC		20	pF	-

#### AC Characteristics

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$ 

$T_{A} = -10 \text{ to } +70^{\circ}\text{C};$					· · · · · · · · · · · · · · · · · · ·
Item	Symbol	Min	Max	Unit	Conditions
Clock 2xCCLK		2			1.3
Clock cycle	^t CY	125	10,000	ns	
High-level clock width	^t CH	52		ns	
Low-level clock width	^t CL	52		ns	
Clock rise time	t _{CR}		15	ns	
Clock fall time	t _{CF}		15	ns	8 - A
Read Cycle			· ·		
Address setup time to $\overline{RD} \downarrow$	t _{AR}	0		ns	
Address hold time from RD ↑	t _{RA}	0		ns	
RD pulse width	t _{RR1}	^t RD1 +20		ns	
Data output delay time from RD ↓	t _{RD1}	·	55	ns	$C_L = 50 \text{ pF}$
Data float delay time from RD ↑	t _{DF}	0	55	ns	e An an each
RD pulse cycle	t _{RCY}	4.5 t _{CY}	1.1	ns	DE = 0
and the second second		12 t _{CY}	1. 1914	ns	DE = 1
RD recovery time	t _{RV}	2 t _{CY}		ns	Also valid in DMA cycle
Write Cycle			4	ч.,	
Address setup time to ₩R ↓	t _{AW}	0		ns	
Address hold time from ₩R ↑	t _{WA}	10		ns	
WR pulse width	tww	60		ns	
Data setup time to ₩R ↑	t _{DW}	45		ns	
Data hold time from ₩R ↑	t _{WD}	10		ns	
WR pulse cycle	twcy	4.5 t _{CY}		ns	•
WR recovery time	t _{RV}	2 t _{CY}		ns	Also valid in DMA cycle
DMA Read Cycle	1. v				an a
DACK setup time to RD ↓	t _{AKR}	0		ns	
DACK hold time from RD ↑	t _{RAK}	0		ns	
RD pulse width	t _{RR2}	^t RD2 +20	:	ns	
Data output delay time from RD ↓	t _{RD2}		2 t _{CY} +60	ns	C _L = 50 pF

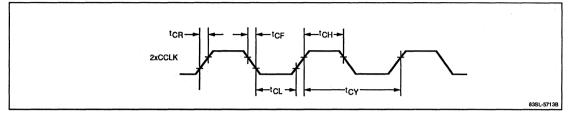
# AC Characteristics (cont) $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$


item	$V_{DD} = -$ Symbol	Min	Max	Unit	Conditions
DMA Read Cycle					
DREQ output delay time from 2xCCLK ↑	^t CRQ		75	ns	$C_L = 50 \text{ pF}$
DREQ setup time to DACK↓	^t RQAK	0		ns	
DREQ $\downarrow$ delay time from DACK $\downarrow$	t _{akrq}		1.5 t _{CY} + 80	ns	$C_L = 50 \text{ pF}$
DACK pulse cycle	^t akcy	4.5 t _{CY}		ns	See Note.
High-level DACK width	^t акн	tCY		ns	
Low-level DACK width	t _{akl}	2.5 t _{CY}		ns	
DMA Write Cycle	,				
DACK setup time to WR ↓	t _{akw}	0		ns	
DACK hold time from WR ↑	^t WAK	0		ns	
Read/Modify/Wri	te Cycle	1			
Address/data delay time from 2xCCLK ↑	^t CA	15	80	ns	C _L = 50 pF
Address/data float delay time from 2xCCLK ↑	^t CAF	15	80	ns	$C_L = 50 \text{ pF}$
Data setup time to 2xCCLK ↓	^t DC	0		ns	
Data hold time from 2xCCLK ↓	^t CDF	^t CBI		ns	
DBIN delay time from 2xCCLK ↓	^t сві	15	60	ns	$C_L = 50 \text{ pF}$
RAS ↑ delay time from 2xCCLK	^t CRSH	15	60	ns	C _L = 50 pF
RAS ↑ delay time from 2xCCLK ↓	^t CRSL	15	50	ns	$C_L = 50 \text{ pF}$
High-level RAS width	^t RSH	1/3 ^t CY		ns	
Low-level RAS width	t _{RSL}	1.5 t _{CY} - 30		ns	
Address setup time to ARSL ↓	tARSL	30		ns	
Display Cycle					
Output signal delay time from 2xCCLK ↑	tco		70	ns	$C_L = 50 \text{ pF}$

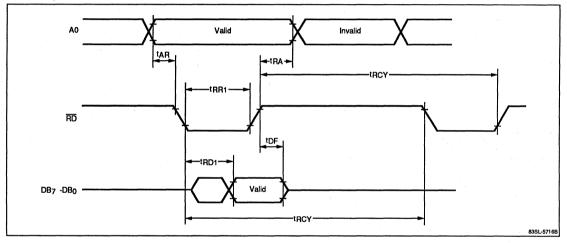
# AC Characteristics (cont) $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$

ltem	Symbol	Min	Max	Unit	Conditions
Input Cycle					
Input signal setup time to 2xCCLK ↑	^t ₽C	10		ns	
Input signal pulse width	tpp	^t CY		ns	

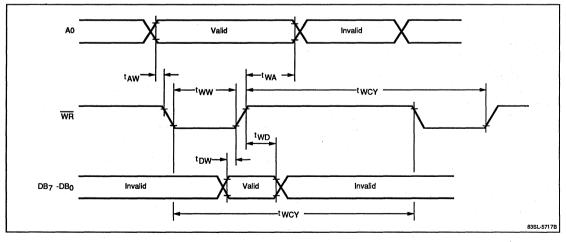
Note: Performs two-dimensional rectangular area assignment whereby the dc parameter is set to other than 0. When byteby-byte transfer is specified, the value is 5.5 t_{CY}.


#### Voltage Thresholds for Timing Measurements





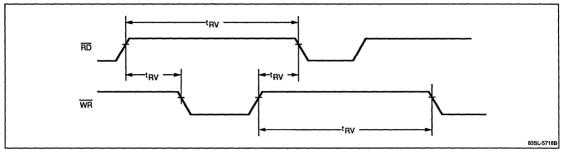

# **Timing Waveforms**


## Clock 2xCCLK

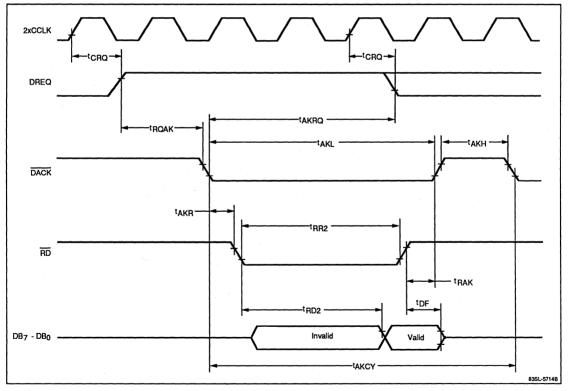


#### Read Cycle





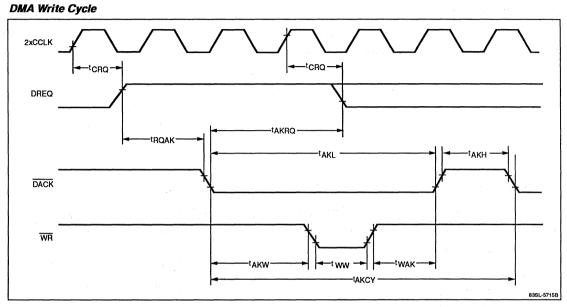


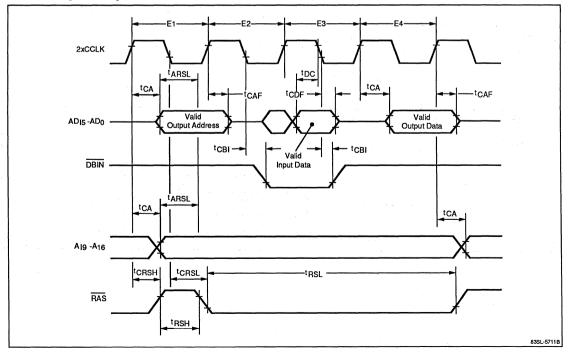

# Timing Waveforms (cont)

# Read/Write Recovery




# DMA Read Cycle

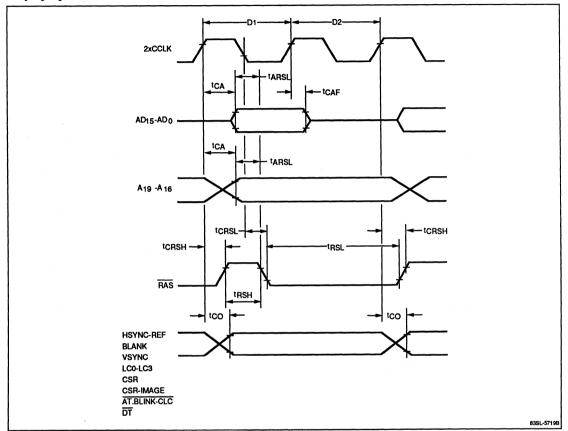




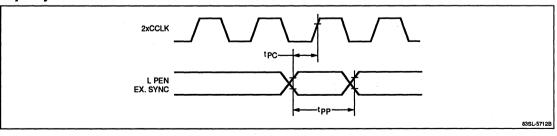

# Timing Waveforms (cont)






#### Read/Modify/Write Cycle






# **Timing Waveforms (cont)**

# Display Cycle







3



a pressión a sector de la sector





# PD72022 µPD72022 Intelligent Display Processor

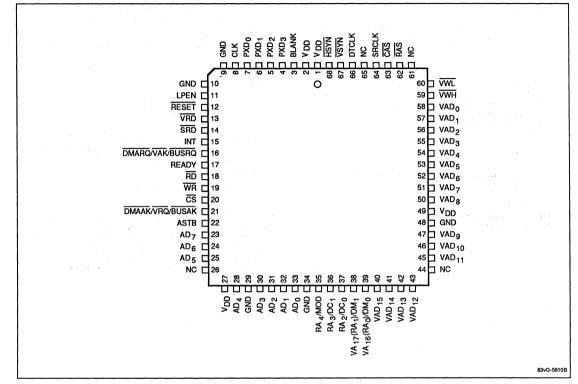
#### Description

The  $\mu$ PD72022 Intelligent Display Processor (IDP) performs CRT display control and image display data processing for text, static pictures, and sprites.

#### Features

- D Three display modes: text, semigraphics, graphics
- Four-way horizontal split-screen display
- Smooth-scroll control (vertical, horizontal)
- Sprite image display
- □ 16-color display
- Attribute addition (7 max)
- Interlaced display through external synchronization
- Up to 256K x 16-bit word video memory addressing
- DRAM refresh
- Optional dual-port RAM
- □ Bus arbitration control

- CRT control signal programmable variables
  - Horizontal display time, retrace time (left and right), sync pulse width
  - Vertical display time, retrace time, sync pulse width
  - Rasters/line
  - Blinking time
- Variable display resolution
  - Horizontal: 640 dots max (22-MHz max dot rate)
  - Vertical: 512 dots max
  - Display signal (4 bits/dot) serial output
- Horizontal and vertical external synchronization
- 22 screen-control/drawing commands
- CMOS
- □ Single +5-volt power supply


#### **Ordering Information**

Part Number	Package
μPD72022GF-3B9	80-pin plastic miniflat
μPD72022L	68-pin PLCC



#### **Pin Configurations**





# NEC

ſ

# μPD72022

٦

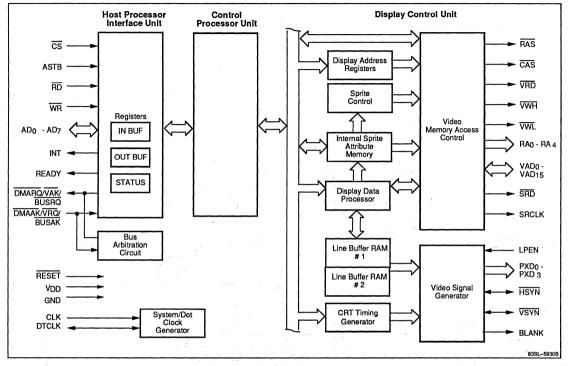
#### 80-Pin Plastic Miniflat

P PXD 0 P PXD 0 PXD 0 PX	l
□ 8 2 2 5 2 5 2 5 2 5 2 5 2 5 8 8 6 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	1
	1
VRD d 6 59 VAD2	
READY 10 55 VAD5	
NC □ 11 54 □ NC	
$\overrightarrow{RD}$ $\overrightarrow{D}$ $\overrightarrow{12}$ $\overrightarrow{53}$ $\overrightarrow{VAD}_6$	ļ
	!
CS □ 15 50 → VAD ₈	
AD ₇ <b>[</b> 19 46 <b>[</b> VAD ₁₀	
$AD_6 \square 20 \qquad 45 \square VAD_{11}$	
$AD_{6} \square 20 \qquad \qquad 45 \square \sqrt{AD_{11}}$	
GND $\begin{bmatrix} 24 \\ 0 \end{bmatrix}$ $p > p = 0$ $p > p > p = 0$ $p > p > p = 0$	
40         83         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34<	
AD2 AD2 SUC1 AD0 MOD15 C N N N N N N N N N N N N N N N N N N	
AD3 AD2 AD2 AD2 AD2 AD2 AD2 AD2 AD2 AD2 AD2	
A A	
> >	
83%	5909B

3



## **Pin Identification**


Symbol	1/0	Signal Function
Host Sys	stem li	nter face
AD ₀ -AD ₇	1/0	Three-state, bidirectional address/data bus. See table 1.
ASTB	In	Address Strobe. Read address information from $AD_0$ - $AD_7$ .
BUSAK	In	Bus Acknowledge. While this signal is active, $\mu$ PD72022 controls the system bus.
BUSRQ	Out	Bus Request. Request for system bus control.
CLK	In	System clock.
CS	In	Chip Select. Enables RD and WR signals.
DMAAK	In	DMA Acknowledge. Enables DMA cycle.
DMARQ	Out	DMA Request.
INT	Out	Interrupt request to host processor.
RD	In	Control signal for reading data or status flag from µPD72022.
READY	Out	Indicates µPD72022 may be accessed for memory read/write cycle or I/O read/write cycle.
RESET	In	Initializes μPD72022.
VAK	Out	Video Memory Acknowledge. Indicates host processor has direct control of video memory.
VRQ	In	Video Memory Request. Host processor requests direct control of video memory.
WR	In	Control signal for writing data, commands, or parameters into µPD72022.
Video Me	omory	Interface
CAS	Out	Column Address Strobe.
MOD	In	Mode change signal. See RA ₄ .
RA ₀ -RA ₁	Out	Raster Address 0-1. $RA_0$ and $RA_1$ are also used for $DM_0$ and $DM_1$ , respectively. See Display Data Control in this table.
RA ₂ -RA ₃	Out	Raster Address 2-3. RA ₂ and RA ₃ are also used for $DC_0$ and $DC_1$ , respectively. See Display Data Control in this table.
RA4	Out	Raster Address 4. RA4 is also used for MOD input.
RAS	Out	Row Address Strobe.
SRCLK	Out	Serial Read Clock. Used with optional dual-port RAM.
SRD	Out	Serial Read. Active while data is read from serial port with optional dual-port RAM.
VAD ₀ - VAD ₁₅	I/O	Video Memory Address 0-15 output; DRAM refresh addresss output; data input/output.
VA ₁₆ - VA ₁₇	Out	Video Memory Address 16-17. Also used for RA ₀ , RA ₁

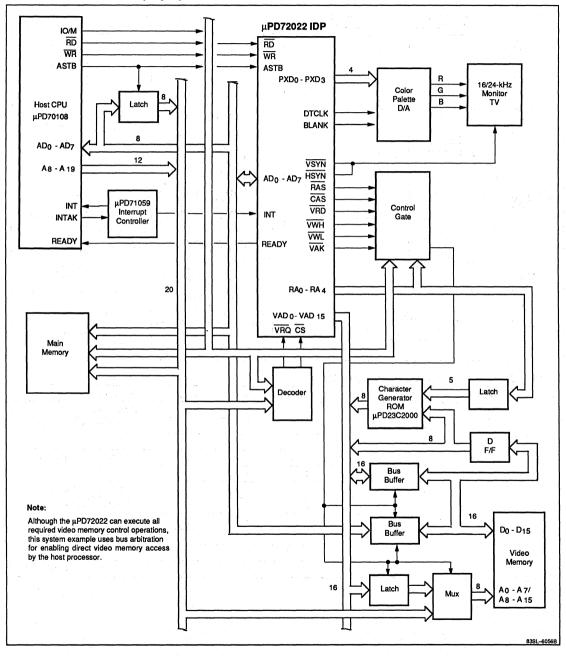
Symbol	I/O	Signal Function
VRD	Out	Video Memory Read. Strobe signal to read data from video memory.
VWH, VWL	Out	Video Memory Write, High and Low. Strobe signals to write data into video memory.
CRT Inter	face	· .
BLANK	Out	Blanking display signal.
DTCLK	I/O	Dot Clock. During internal DTCLK mode, timing pulses derived by dividing CLK are output.
		During external DTCLK mode, the interna scanning subsystem derives a reference clock from the DTCLK input.
HSYN	I/O	Horizontal Sync. Signal output when interna sync is specified; signal input when external syn is specififed.
LPEN	In	Light Pen Strobe. The DTCLK mode is specified by the LPEN level when the RESET signal leve rises.
		LPEN DTCLK Mode High Internal DTCLK output Low External DTCLK input
PXD0-PXD3	Out	Pixel Data 0-3. Display signal (four bits/dot) i sync with DTCLK.
VSYN	I/O	Vertical Sync. Signal output when internal sync i specified; signal input when external sync i specified.
Display D	ata C	ontrol
DC ₀ , DC ₁	Out	Display Cycle. Specifies display processing cycl when µPD72022 is accessing video memory.
		DC1 DC0 Display Cycle
		0 0 Other than indicated below 0 1 Static picture display cycle
		1 0 Sprite display cycle
		1 1 Screen start cycle
		See Video Memory Interface, RA ₂ and RA ₃ .
DM ₀ , DM ₁	Out	Display Mode. Specifies the static picture displa mode.
		DM1 DM0 Display Mode Text mode
		1 0 Semigraphics mode
		1 1 Graphics mode
		See Video Memory Interface, RA ₀ and RA ₁ .
Other Pin	5	
GND		Ground
		+5-volt power supply
		No Connection



µPD72022

## µPD72022 Block Diagram




Table	<ol> <li>Functions o</li> </ol>	f Address/Dat	a Bus AD _O -A	D7			
CS	DMAAK	WR	RD	AD2	AD1	AD ₀	<b>Bus Function</b>
1	<b>1</b>	x	x	x	X	X	Floating (high i
0	1	<b>0</b>	·· 1 :	0	1	0	μPD72022 com
				1	1	1	•

-

1	1 <b>1</b> 111111	x	x	x	<b>x</b> , , , , , , , , , , , , , , , , , , ,	x	Floating (high impedance)
0	1	0	 1	0	1	0	μPD72022 command input
				1	1	1	
				0	1	1	μPD72022 parameter input
			25	1	1 .	0	
1	0	0	1	x	x	x	Write operation via DMA transfer
0	1	1	0	0	1	0	μPD72022 status output
				1	1	1	and the second
				0	1	1	μPD72022 parameter output
				1	1	0	
1	0	1	 0	x	x	X	Read operation via DMA transfer
x = [	Don't care		 				



# µPD72022 in a Video Display System



# **Absolute Maximum Ratings**

$I_{A} = +25^{\circ}C$	·
Power supply voltage, V _{DD}	–0.5 to +7.0 V
Input voltage, V _I	–0.5 to +7.0 V
Output voltage, V _O	-0.5 to +7.0 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to +150℃

#### Capacitance

 $T_A = +25^{\circ}C$ ;  $V_{DD} = GND = 0 V$ ; f = 1 MHz

Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	Cl		10	pF	Unmeasured pins returned to 0 V
Output capacitance	CO		20	pF	•
Input/output capacitance	CIO		20	рF	• •
Clock input capacitance	CC		20	pF	

#### DC Characteristics

 $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Max	Unit	Conditions
Input low	VIL	-0.5	0.8	۷	Note 1
voltage		-0.5	0.6	۷	Note 2
Input high	VIH	2.2	$V_{DD} + 0.5$	۷	Note 1
voltage		3.5	V _{DD} + 1.0	۷	Note 2
Output low voltage	V _{OL}		0.45	v	l _{OL} = 2.2 mA
Output high voltage	VOH	0.7 V _{DD}		v	$I_{OH} = -400 \ \mu A$
Input low leakage current	ևո		10	μA	V _I = 0 V
Input high leakage current	I _{LIH}		10	μA	$V_i = V_{DD}$
Output low leakage current	LOL		-10	μA	V _I = 0 V
Output high leakage current	ILOH		10	μA	$V_I = V_{DD}$
Power supply current	IDD		150	mA	

#### Notes:

(1) Except CLK, DTCLK, and RESET

(2) CLK, DTCLK, and RESET

# **AC Characteristics**

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$ 

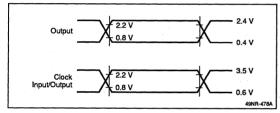
Parameter	Figure	Symbol	Min	Max	Unit	Conditions
Clock						
System clock cycle	2	tCY	45	50	ns	
System clock width, high	2	^t ккн	18		ns	
System clock width, low	2	^t ĸĸ∟	- 18		ns	
Dot clock cycle	2	^t CYDK	45	4 t _{CY}	ns	input; C _L = 30 pF
		-	67.5	4 t _{CY}	ns	Output; C _L = 30 pF
Dot clock width, high	2	[†] ококн	18		ns	Input; C _L = 30 pF
		-	^t ккн		ns	Output; C _L = 30 pF
Dot clock width, low	2		18		ns	
Reset				· ·		· · · ·
RESET pulse width	3	tRSRSL	8 t _{CY} + 6 t _{CYDK}		ns	· ·
LPEN setup time to RESET ↑	3	tSLPRS	16 t _{CY}			
LPEN hold time from RESET ↑	3	tHRSLP	0	······································		
CPU Read/Write Cycle						· · · · · · · · · · · · · · · · · · ·
ASTB pulse width	4, 5	tsтятн	45		ns	
Address setup time to ASTB $\downarrow$	4, 5	^t SAST	25		ns	
Address hold time from ASTB↓	4, 5	tHAST	10		ns	
CS setup time to RD or WR↓	4, 5	^t SCSRW	0		ns	



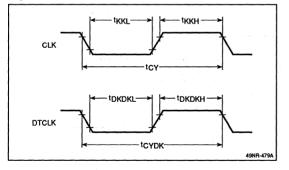
Parameter	Figure	Symbol	Min	Max	Unit	Conditions
CPU Read/Write Cycle (cont)						
CS hold time from RD or WR ↑	4, 5	tHRWCS	0		ns	
RD pulse width	4, 15	tRRL	170		ns	
Data delay time from $\overline{RD}\downarrow$	4, 15	tORD	120		ns	· · · · · · · · · · · · · · · · · · ·
Data hold time from RD ↑	4, 15	tHRD	0		ns	
Data float time from $\overline{RD}$ $\uparrow$	4, 15	t <del>⊊</del> RD		55	ns	
WR pulse width	5, 16	twwL	180		ns	
Data setup time to ₩R ↑	5, 16	tsow	100		ns	· · · · · · · · · · · · · · · · · · ·
Data hold time from ₩R ↑	5, 16	tHWD	10		ns	
READY delay time from $\overline{\text{RD}}$ or $\overline{\text{WR}}\downarrow$	4, 5, 16	^t DRWRDY		55	ns	
READY delay time from VRQ ↓	9	t DVQRDY		60	ns	
RD recovery time	4	t _{RVR}	150		ns	
WR recovery time	5	t _{RVW}	150		ns	· · · · · · · · · · · · · · · · · · ·
Read access cycle	4	^t CYR	t _{RRL} + 10 t _{CY}		ns	
Write access cycle	5	tcyw	twwL +10 toy		ns	
VRAM Read/Write Cycle			· · ·			
Random read/write cycle	6-8,	^t CYRAS	270		ns	Note 1; also refresh cycle
	11-13		360		ns	Note 2; also data transfer cycle
RAS width high	6-8, 11-13	^t RASRASH	95		ns	
RAS width low	6-8,	^t RASRASL	130		ns	Note 1; also refresh cycle
	11-13	,-	210		ns	Note 2; also data transfer cycle
CAS width high	6-7, 11-13	^t CASCASH	110		ns	
CAS width low	6-7,	^t CASCASL	105	· · ·	ns	Note 1
	11-13		185	5 A A	ns	Note 2; also data transfer cycle
$\overrightarrow{RAS} \downarrow delay time from \overrightarrow{CAS} \uparrow$	6-8, 11-13	^t DCASRASL	30		ns	an a
$\overrightarrow{CAS} \downarrow delay time from \overrightarrow{RAS} \downarrow$	6-7, 11-13	^t DRASCASL	40		ns	
$\overrightarrow{RAS} \uparrow delay time from \overrightarrow{CAS} \downarrow$	6-7,	^t DCASRASH	60		ns	Note 1
	11-13		150		ns	Note 2; also data transfer cycle
Address setup time to $\overline{RAS}\downarrow$	6-8, 11-13	tsvaras	35		ns	
Address hold time from $\overline{RAS}\downarrow$	6-8, 11-13	^t HRASVA	10		ns	
Mode setup time to $\overline{CAS}\downarrow$	6-7, 11-13	tSMDCAS	10		ns	
Mode hold time from CAS ↓	6-7,	tHCASMD	1 10	an terretari	ns	Note 1
	11-13	· · · · ·	185		ns	Note 2

Parameter	Figure	Symbol	Min	Max	Unit	Conditions
VRAM Read/Write Cycle (cont)						
VRD ↑ delay time from CAS ↓	6,	^t DCASVR	70		ns	Note 1
	12-13		150		ns	Note 2
CAS ↑ delay time from VRD ↑	6, 11-13	t _{DVRCAS}	0		ns	
VRD pulse width	6,	^t ∨rivrl	70		ns	Note 1
	12-13		150		ns	Note 2
$\overline{CAS} \downarrow$ delay time from $\overline{VW} \uparrow$	6	tDVWHCAS	70		ns	
$\overline{VW} \downarrow delay time from \overline{RAS} \uparrow$	6	tDRASHVW	35		ns	
$\overline{VW} \downarrow delay time from \overline{CAS} \uparrow$	6	tDCASVWL	15	1	ns	
Input data setup time to $\overline{VRD}$ $\uparrow$	6	^t SDVR	40		ns	
Input data hold time from VRD ↑	6	^t HVRD	0	30	ns	
$\overline{\text{VRD}} \uparrow \text{delay time from } \overline{\text{RAS}} \downarrow$	6,	tDRASVRH	130		ns	Note 1
	12-13		210		ns	Note 2
$\overline{RAS} \downarrow setup time from \overline{VRD} \uparrow$	6, 12-13	^t svrras	15		ns	
$\overrightarrow{\text{VRD}}\downarrow$ hold time from $\overrightarrow{\text{RAS}}\downarrow$	6, 12-13	^t HRASVR	25		ns	
VRAM Write Cycle						
$\overrightarrow{RAS} \downarrow delay time from \overrightarrow{VRD} \uparrow$	7	^t DVRRAS	15		ns	
$\overline{\text{VRD}}\downarrow$ delay time from $\overline{\text{RAS}}\downarrow$	7	tDRASVRL	130		ns	
$\overrightarrow{RAS} \downarrow delay time from \overrightarrow{VW} \uparrow$	7	^t DVWRAS	35		ns	
$\overline{VW}$ $\uparrow$ delay time from $\overline{RAS} \downarrow$	7	tDRASLVW	-10		ns	
$\overline{CAS} \downarrow$ delay time from $\overline{VW} \downarrow$	7	tDVWLCAS	10		ns	
$\overline{VW}$ $\uparrow$ delay time from $\overline{CAS} \downarrow$	7	tDCASVWH	155		ns	
W pulse width	7	tvwvwL	165		ns	
Data setup time to $\overline{CAS}\downarrow$	7	tSDCAS	10		ns	
Data hold time from $\overline{CAS} \downarrow$	7	tHCASD	155		ns	
VRAM Refresh Cycle						
$\overline{CAS} \downarrow delay time from \overline{RAS} \uparrow$	8	tDRASHCAS	20		ns	· · · · · · · · · · · · · · · · · · ·
VRAM Request						
VAK setup time to CAS ↑	9	tsvacas	20	· · · · · · · · · · · · · · · · · · ·	ns	interleave mode
VAK hold time from CAS↓	9	^t HCASVA	10		ns	•
VRQ recovery time	9	t _{RVVQ}	10 t _{CY}		ns	•
READY delay time from VRQ ↓	9	t DVQRDY		60	ns	
VRQ hold time from READY ↑	9	thrdyvQ	0		ns	
VAD float delay time from CAS ↑	9,10	t _{FCASVAD}		30	ns	•

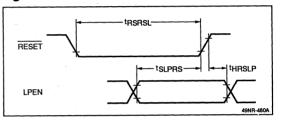



Parameter	Figure	Symbol	Min	Ma	ıx Ünit	Conditions
VRAM Request (cont)						the second second
BURSQ ↓ delay time from BUSAK ↑	10	tDBABQ	0		ns	Dual-port mode
BUSAK hold time from BUSRQ ↑	10	tнвонва	10		ns	-
BUSAK hold time from BUSRQ ↓	10	^t HBQLBA	0	200	)0 ns	-
Data Transfer Cycle			4 A A			······································
VRD ↑ delay time from SRCLK ↑	11	^t DSKVR	100		ns	
SRCLK hold time from VRD ↑	11	t _{HVRSK}	100		ns	·
$\overline{RAS} \downarrow$ delay time from $\overline{VRD} \downarrow$	11	^t DVRRASL	30		ns	
VRD hold time from RAS ↓	11	^t HRASLVR	60		ns	
VRD hold time from CAS ↓	11	^t HCASVR	10		ns	· · ·
$\overrightarrow{RAS}$ $\uparrow$ delay time from $\overrightarrow{VRD}$ $\downarrow$	11	¹ DVRRASH	100		ns	
CAS ↑ delay time from VRD ↑	11	^t DVRCAS	120		ns	
VRD hold time from RAS ↑	11	^t HRASHVR	10		ns	
VRAM Serial Read Cycle						
SRD width high	12, 13	tSRSRH	200		ns	-
SRD width low	12, 13	tSRSRL	200		ns	Sector Anna Anna Anna Anna Anna Anna Anna Ann
SRCLK $\downarrow$ delay time from $\overline{SRD} \downarrow$	12, 13	t _{DSRSK}	15		ns	
SRCLK width high	12, 13	tskskh	25		ns	
SRCLK width low	12, 13	tskskl.	25		ns	
Serial read cycle	12, 13	^t CYSK	90		ns	
Data setup time to SRCLK ↑	12	^t SDSK	25	the set	ns	Graphics display cycle
Data hold time from SRCLK↑	12	tHSKD	10		ns	• • • • • • • • • • • • • • • • • • • •
Data setup time to VRD ↑	13	^t SDVR	40	er ja se en	ns	Text display cycle
Data hold time from $\overline{VRD}$ $\uparrow$	13	^t HVRD	0	30	) ns	Semigraphics display cycle
Display Timing	14. •		•			
Output display time from DTCLK ↑	14	t _{DDKDSP}	5	38	3 ns	Note 3; C _L = 50 pF
Input setup time to DTCLK ↑	14	tSIDK	25		ns	Note 4
Input hold time from DTCLK ↑	14	tHDKI	5		ns	<ul> <li>A distribution</li> </ul>
Input pulse width	14	ty .	6 t _{CYDK}		ns	
DMA Cycle			· .			a de la compañía de l
$\overline{\text{DMARQ}} \uparrow \text{delay time from } \overline{\text{DMAAK}} \downarrow$	15, 16	^t DDADQH		50	) ns	
DMARQ ↓ delay time from DMAAK ↑	15, 16	^t DDADQL	0		ns	
DMAAK hold time to DMARK ↓	15, 16		0		ns	
DMAAK setup time to RD ↓	15	^t SDAR	0		ns	
DMAAK hold time to RD ↑	15	^t HRDA	20	1	ns	
DMAAK setup time to WR↓	16	tSDAW	0	1917 - E. S.	ns	and a second second Second second
DMAAK hold time to WR 1	16	tHWDA	20		ns	de la contra da

Parameter	Figure	Symbol	Min	Max	Unit	Conditions
Interrupt						
INT rising time	17	<b>t</b> INTR		30	ns	
INT falling time	17	t _{INTF}		30	ns	

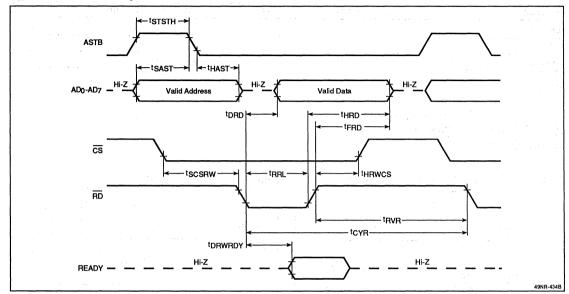

#### Notes:

- (1) Cycles: Text display; Semigraphics display; Display start
- (2) Cycles: Graphics display; Sprite display; Command processing
- (3) HSYN, VSYN, BLANK, PXD0-PXD3
- (4) HSYN, VSYN, LPEN

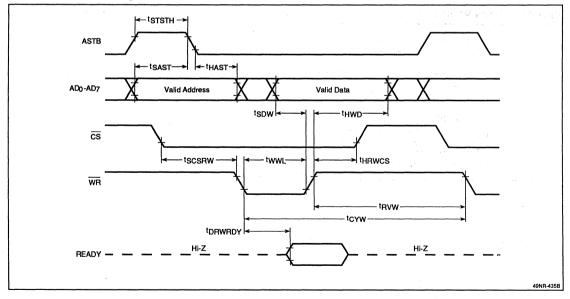

Figure 1. Voltage Thresholds for Timing Measurements



#### Figure 2. Clock Waveform



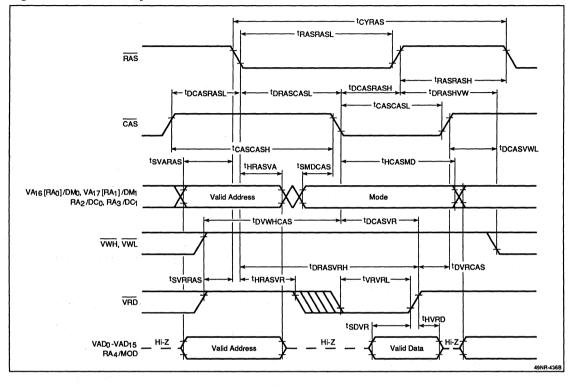

#### Figure 3. Reset Waveform






#### Figure 4. CPU Read Cycle










3

#### Figure 6. VRAM Read Cycle





医血液 化拉丁拉丁 最终的人

# Figure 7. VRAM Write Cycle

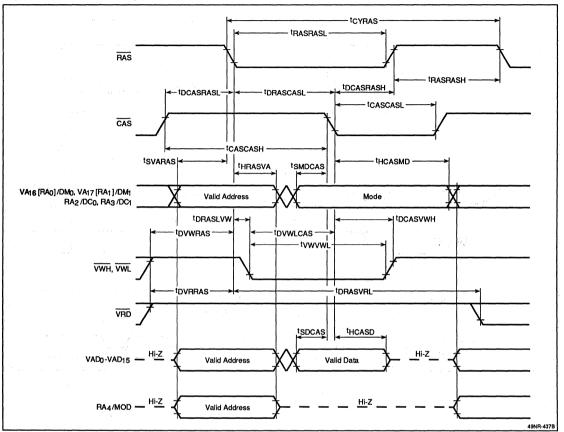





Figure 8. VRAM Refresh Cycle

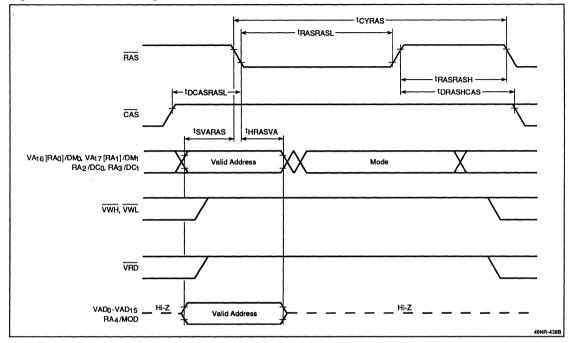
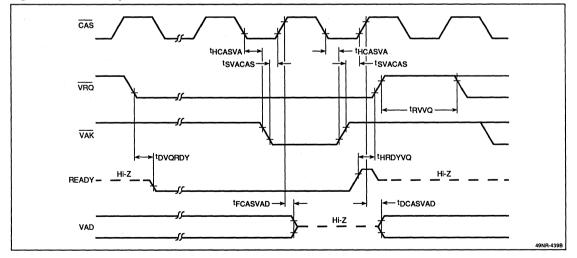




Figure 9. VRAM Request; Interleave Mode







요즘 아이지 않는 것이 같이 있는 것

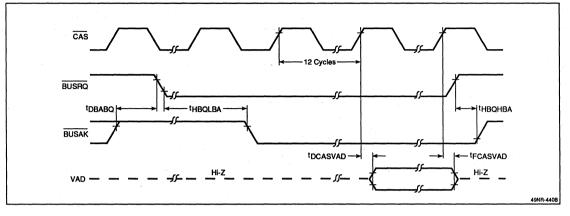
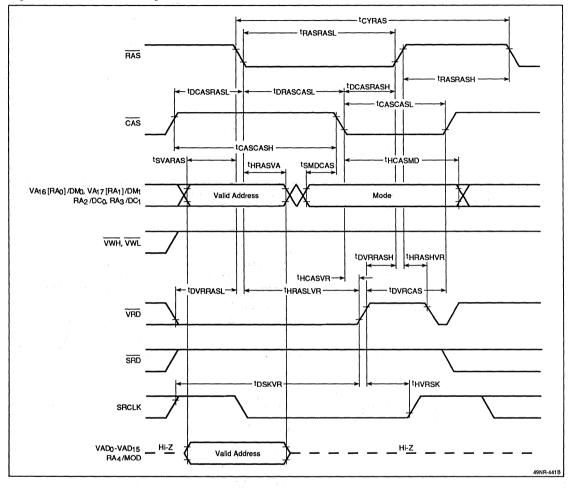
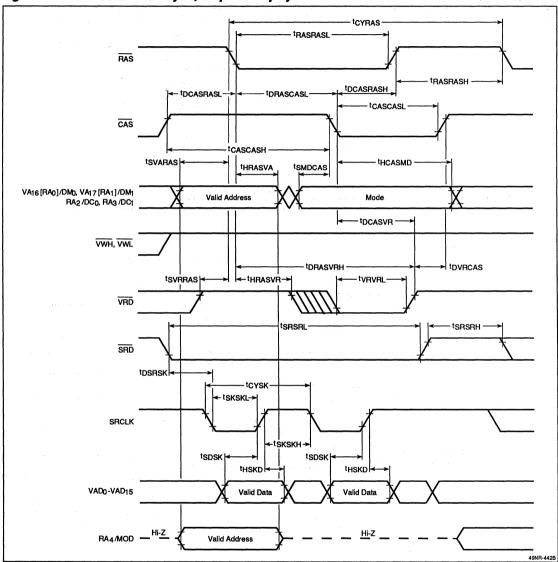







Figure 11. Data Transfer Cycle









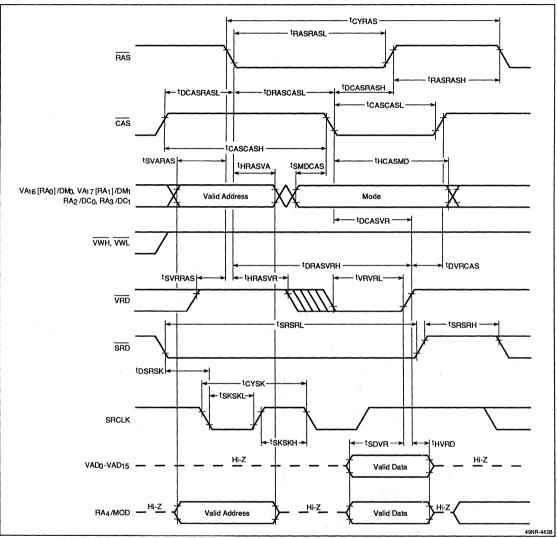



Figure 13. VRAM Serial Read Cycle; Text or Semigraphics Display

3



#### Figure 14. Display Timing

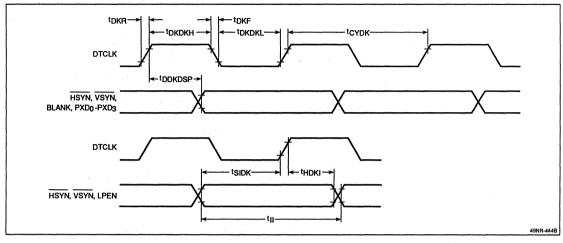



Figure 15. DMA Read Cycle

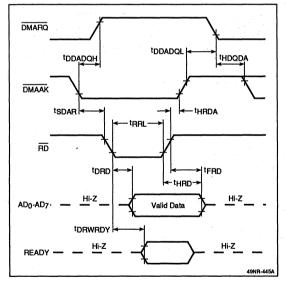



Figure 16. DMA Write Cycle

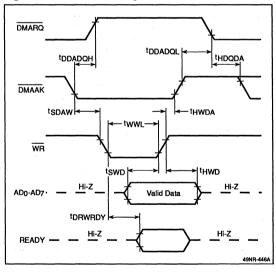




Figure 17. Interrupt Waveform



#### INTERNAL STRUCTURE

The  $\mu$ PD72022 IDP consists of three units: host processor interface unit, control processor unit, and display control unit. Refer to the  $\mu$ PD72022 Block Diagram.

#### **Host Processor Interface Unit**

The host processor interface unit transfers commands, parameters, and such status information as the  $\mu$ PD72022 internal processing state, to and from the host processor.

Control functions include asynchronous bus interface control, DMA control, and interrupt control.

#### **Control Processor Unit**

The control processor unit reads and executes commands and parameters from the host processor via the host processor interface unit.

Display data processing in video memory, display address control, screen control, etc., in the display control unit are implemented.

#### **Display Control Unit**

The display control unit generates and outputs video memory display addresses, display signals, and CRT control signals. It generates various timing signals required in the  $\mu$ PD72022.

#### COMMANDS

The  $\mu$ PD72022 has 22 commands for implementing initialization, display control, and sprite control operations. See table 2.

Table 2.	List	of C	omm	ands
----------	------	------	-----	------

Function
ion
Selects display operation mode and specifies scan timing.
ontrol
Generates screen control table base address and border color; enables display controller; starts display.
Disables display controller and terminates display.
Defines display screen layout and display format.
Defines cursor display format.
Selects active screen area.
Moves cursor to specified cursor display position.
Determines light pen position.

Table 2.	l ist of i	Commands	(cont)

Name	Function
Video Mei	mory Control
DPLD	Specifies video memory operation address or address of field of the sector of the sect
DPRD	Determines video memory operation address.
MASK	Sets bit mask for data storage in video memory.
RDAT	Reads contents of video memory and sends data to host processor.
WDAT	Stores transfer data in video memory.
BLKTOT	Reads the video memory contents and transfers the data via DMA operation.
BLKTIN	Stores the data transferred via DMA operation into the video memory.
EXIT	Terminates video memory operation command processing.
Sprite Co	ntrol
SPRON	Enables the sprite controller and initiates sprite image display.
SPROF	Disables the sprite controller and terminates sprite image display.
SPRSW	Toggles the sprite display on or off for each sprite operation.
SPRRD	Reads the sprite attribute table data.
SPRWR	Writes data into the sprite attribute table.
SPROV	Determines the sprite controller operation status.



#### INITIALIZATION COMMANDS

#### SYNC Command

Command Code 10H

Parameters

R	M	EL	EV	VM	0	DPM	ILM		
0	RF	EC	ES	RV		RS			
0	0	LBL							
0	0		LBR 424						
			HAD						
0	0		RBR						
0	0		RBL						
0	0	HS							
0	0		TBL						
0	0	TBR							
			VAD	) (L)					
0	VAD (H)			BI	3R				
0	0			В	BL				
0	0			٧	S				

The SYNC command terminates display controller operation and defines operation mode and horizontal/vertical scan timing with the following parameters.

• ILM, DPM (Interleave Mode, Dual Port Mode)

The format of the interblock interface between the host system, IDP, and video memory is specified. Dual-port mode can only be specified for the VRAM serial access (VM = 1).

DPM 0	ILM 0	Operation Standalone mode
0	1	Interleave mode
1	0	Dual-port mode
1	1	Disabled

• EV (Enable Vertical Blank Interrupt)

Parameter EV determines whether the occurrence of a vertical blanking signal causes an interrupt signal to be generated on the INT pin.

- EV Interrupt
- 0 Vertical blank interrupt disabled
- 1 Vertical blank interrupt enabled
- EL (Enable Light Pen Interrupt)

Parameter EL specifies whether the occurrence of a light-pen signal causes an interrupt signal to be generated on the INT line.

- EL Interrupt
- 0 Light pen interrupt disabled
- 1 Light pen interrupt enabled
- VM (VRAM Access Mode)

Parameter VM specifies the video memory access mode for static picture display data generation.

- VM Video Memory
- 0 Random access mode
- 1 Serial access mode
- RM (Raster Mode)

Parameter RM specifies CRT scanning mode and display signal generation mode.

- RM CRT Scanning Mode
- 00 Noninterlace (640 x 400, 24K CRT)
- 01 Interlace (640 x 400, 15K CRT)
- 10 Vertical magnify (640 x 200, 24K CRT)
- 11 Normal (640 x 200, 15K CRT)
- RS (Resolution Select)

Parameter RS specifies the divide ratio for generation of the display signal dot time. This ratio can be combined with horizontal and vertical scan timing to vary display resolution. Table 3 is an example based on a 20-MHz source clock.

RS	Divide Ratio	<b>Corresponding Resolution</b>	HAD Setup Value	VAD Setup Value	Recommended CRT
000	Divide by 4	256 x 192	256 (63)	192	Horizontal scan frequency 15.75 kHz
001	Divide by 3	320 x 200	320 (79)	200	-
010	Divide by 2	512 x 192	512 (127)	192	-
011	Divide by 1.5	640 x 200	640 (159)	200	-
100	Divide by 1	640 x 400	640 (159)	400	24.83 kHz
Others			Disabled (dot clock i	s not output)	

Table 3. Display Resolution Example (20-MHz Clock)

• RV (Reverse Screen)

Parameter RV specifies reverse display of the entire screen. When RV is cleared to 0, normal display is enabled; when RV is set to 1, text foreground and background colors in the text display are reversed.

• ES (External Sync)

Parameter ES specifies use of the HSYN and VSYN pins and external synchronization. When ES is set to 1, horizontal and vertical synchronizing signals are output on the HSYN and VSYN pins.

When ES is cleared to 0, the pins are placed in a high-impedance state, and display timing is synchronized with an input reference signal.

EC (External Clock)

Parameter EC specifies DTCLK pin operation and determines display timing signals. When EC is set to 1, a signal generated from the internal divider is output on the DTCLK pin as dot clock.

When EC is cleared to 0, the DTCLK pin is placed in a high-impedance state, and display timing is based on an input clock reference signal.

EC an be set in external dot clock input mode (LPEN signal is low at reset time).

• **RF** (Refresh Control)

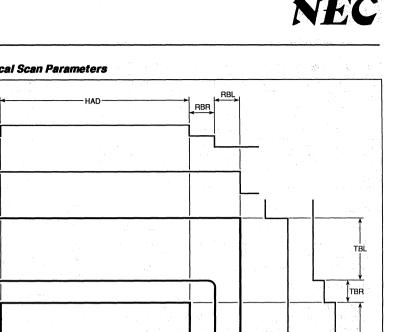
Parameter RF controls video memory refresh operations. When RF is cleared to 0, no refresh operation is performed; when set to 1, refresh operations are initiated. LBL (Left Blanking) See figure 18.
 LBR (Left Border)
 HAD (Horizontal Active Display)
 RBR (Right Border)
 RBL (Right Blanking)
 HS (Horizontal Sync)

Horizontal scan timing is specified in four-dot time (TCK) units. Each timing is generated at the time of (specified value + 1) x TCK.

The horizontal scan parameters have the following restrictions.

 $\begin{array}{l} HS \geq 04H \\ LBL \geq 03H \\ HAD = odd number (bit 0 = 1) \end{array}$ 

 TBL (Top Blanking) See figure 18 TBR (Top Border) VAD (Vertical Active Display) BBR (Bottom Border) BBL (Bottom Blanking) VS (Vertical Sync)


The number of rasters (vertical scan lines) is specified to control vertical scan timing. An integer multiple of 2 is set in the valid display time (VAD). The vertical border time (TBR, BBR) can be omitted if the specified value is 0.

The vertical scan parameters have the following restrictions.

 $\label{eq:VS} \begin{array}{l} \mathsf{VS} \geq \mathsf{04H} \\ \mathsf{TBL} + \mathsf{TBR} \geq \mathsf{10H} \text{ (for non-sprite display)} \\ \mathsf{TBL} + \mathsf{TBR} \geq \mathsf{20H} \text{ (for sprite display)} \\ \mathsf{VAD} \geq \mathsf{04H} \\ \mathsf{BBR} + \mathsf{BBL} \geq \mathsf{02H} \end{array}$ 

Video signal

Horizontal sync signal





LBR

LBL-

нs

# DISPLAY CONTROL COMMANDS

# DSPON Command

Command Code 12H

0	0	0	1	0	0	1	0
L					L		

#### Parameters

	Ba	se addre	ss	1	(lower)		
0	0	0	0	0	(upper)		
0	0	0	0		BC		

The DSPON command enables the display controller and generates the display signal.

Vertical

sync signal

VAD

BBR

vs

Video

signal

BBL

49NR-489B

In display access after the screen control table base address is specified in byte units, the address provided by multiplying the setup value by 256 is referenced as the screen control table start address.

• BC (Back Drop Color)

Valid display area

Border area

Parameter BC specifies the background color of the transparent color specification portion of the valid display time and the horizontal/vertical border area.

#### **DSPOF Command**

#### Command Code 13H

			-				Ł
0	0	1		0	1	1	L
Ŷ	•	•	•	ų ų			L

The DSPOF command disables the display controller and sprite controller and terminates display. The horizontal/vertical retrace time is output on the display signal output pin.

#### **DSPDEF** Command

#### Command Code 14H

-				-		· - ·	-
	0	0	1	0		( 0 )	0
Ŷ	•	v		U U	•	•	•

Parameters

ATROFF (L)							
ATROFF (M)							
0	PITCH		0	(H)			
0	0	0	MRA				
0	0	0	HRA				
		BR			0	0	0

The DSPDEF command defines display screen layout and display format. The following parameters are specified.

#### ATROFF (Attribute Offset)

The character code and attribute code store address offset are specified in byte units. If the offset is a negative value, input the complement.

ATROFF	Offset
OH	Disabled
1H	1 byte
2H	2 bytes
:	:
3FFFFH	262,143 bytes
40000H	-262,144 bytes
:	: · · · · · · · · · · · · · · · · · · ·
7FFFFH	-1 byte

• PITCH (Character Pitch)

The character code pitch is specified.

PITCH	Pitch
OH	Disabled
1H	1 byte
:	:
7H	7 bytes

MRA (Maximum Raster Address)

The character vertical display size is specified in number of rasters. This position is used as the underline display position.

MRA	No. of Rasters		
0 to 6H	Disabled		
7H	8 rasters		
:	:		
1FH	32 rasters		

HRA (Horizontal Raster Address)

The horizontal line display position is specified as a raster position.

HRA	<b>Display Position</b>
OH	First raster
1H	Second raster
: .	:
1FH	32nd raster



## BR (Blinking Rate)

The blink attribute character display and cursor blink are specified. Each character specified with the blink attribute is turned on (bright) in the time of the setup value x 24 fields and off (dark) in the time of the setup value x 8 fields.

The cursor blinks in the time of the setup value x 8 fields.

The number of bright and dark fields for attribute and cursor blink are shown below.

	Attrib	ute	Cursor		
<u>BR</u>	Bright	Dark	Bright	Dark	
оH	768	256	256	256	
1H	24	8	8	8	
2H	48	16	16	16	
:	:	:	:	:	
1FH	744	248	248	248	

## CURDEF Command

Command Code 15H

0	0	0	1	0	1	0	1	
<b>D</b>							•	

#### Parameters

CURN	0	CE	BE	

The CURDEF command defines the cursor display mode. Parameter CURN specifies cursor sprite, and the CURS command specifies the cursor position, which also updates the display position of the sprite specified in CURN.

• BE (Blinking Enable)

Parameter BE specifies whether cursor blinking is enabled. To suppress cursor blinking, clear BE to 0.

• CE (Cursor Enable)

Parameter CE specifies whether cursor display is enabled. To turn off the cursor, clear CE to 0.

Since the sprite function is used for cursor display, specify sprite display accordingly at the same time.

#### ACTSCR Command

Command Code 16H

0	0	0	1	0	1	1	0
Parame	ters						
0	SC	BN	0	0	0	0	0

The active screen area where cursor position control and light pen position control are valid is specified.

SCRN Active Screen Area

- 0 First split screen
- 1 Second split screen
- 2 Third split screen

3 Fourth split screen

# **CURS Command**

Command Code 1EH

0	0	0	1	1	1	1	0

Parameters

Vertical position (lower)									
0	0 0 0 0 (upper)								
	Horizontal position (lower)								
0 0 0 0 0 0 (upper)									

The cursor is moved to the position specified by the parameters.

Screen position is specified by virtual screen coordinates, first designating a Y (line) position value, then an X (column) position value. If a specified position exceeds the lower or right edge of the virtual screen, the cursor is positioned at the respective edge of the virtual screen.

The internal variable data pointer (DPTR0) is updated to the video memory address value corresponding to the coordinates of the cursor position.

# LPNR Command

Comma	nd C	ode	1AH

•	•	•			•		•
0	0	0	1	1	) 0	1	0

#### **Output Data**

Vertical position (lower)									
0	0	0 0 0 (upper)							
	Horizontal position (lower)								
0 0 0 0 0 0 (upper)						(upper)			

The light pen detection coordinates are determined and the light pen detection status is reset to 0.

Virtual screen coordinates are specified by first designating the Y (line) position and then the X (column) position.

The internal variable data pointer (DPTR0) is updated to the video memory address value corresponding to the light pen detection coordinates.

# VIDEO MEMORY OPERATION COMMANDS

## **DPLD** Command

#### Command Code 8E/8FH

1	0	0	0	1	1	.° 1	N .	

#### Parameters

VRAM address (lower)								
(intermediate)								
0 0 0 0 0 (upper)								

The address data entered by using the parameter is stored in the specified internal variable data pointer (DPTR0 or DPTR1)

- N Data Pointer
- 0 Store in DPTR0
- 1 Store in DPTR1

The data pointer value is used for address specification or update in later VRAM access.

The 19-bit address parameter can be used to access 512K-byte video memory space. If the DPTR1 value is negative, input the complement.

In the commands listed in table 4, the address update mode is specified in the command code MOD field, and the data pointer value can be updated each time a VRAM access is made.

If the coordinates on the virtual screen can be obtained by cursor position specification and light pen input position detection, the data pointer (DPTR0) is updated to the corresponding video memory address value.

#### Table 4. Data Pointer Update

MOD	Data Pointer Update	RDAT, WDAT	BLKTOT, BLKTIN
00	Data pointer is not changed.	Enabled	Disabled
01	ATROFF value is added; then the data pointer is updated.	Enabled	Enabled
10	PITCH value is added; then the data pointer is updated.	Enabled	Enabled
11	DPTR1 value is added; then the data pointer is updated.	Enabled	Enabled

# **DPRD** Command

#### Command Code 8AH

	·				·····	·	
1	0	0	0	1	0	1	0

Output Data

		VR	AM add	ess (lower)	)
			(interm	ediate)	·
0	0	0	0	0	(upper)

The data pointer (DPTR0) value is determined.

#### MASK Command

Command Code 89H

1	0	0	0	1	0	0	1

Parameters

Mask data



The mask data entered via the parameter is stored in the internal variable mask register (MSKR).

The mask register value is used for write data mask processing in later VRAM access. When the mask bit value is 0, the VRAM contents are held; when 1, write data is stored.

In mask processing, the mask register value is determined before a VRAM write operation is initiated.

The video memory contents at the transfer destination address are read and ANDed with the inverted mask data value, and a mask is set. In addition, the write data to be stored in video memory and the mask data value are ANDed together, and a mask is set. The results are ORed together, and then written into video memory.

## **RDAT Command**

Command Code 90/91/92/93H

	1	0	0	1	0	0	MOD
--	---	---	---	---	---	---	-----

Output Data

 Read data	
 •	 15
•	
•	
 Read data	

The video memory contents are read from the address specified in the data pointer (DPTR0), and the data is transferred to the host processor.

If the host processor receives the memory data, the data pointer (DPTR0) contents are updated according to MOD specification (table 4), and the video memory contents at the next address are read and transferred.

The memory contents are read until another command is entered.

# WDAT Command

Command Code 94/95/96/97H

ſ	1	0	0	1	0	1	MOD	
-								

Input Data

Write data	
•	
•	
•	
Write data	

With the WDAT (Write VRAM Data) command, mask processing is performed for data input by the host processor according to the mask register value. Then, the data is written into video memory at the address specified by the data pointer (DPTR0).

After the data is written, the data pointer (DPTR0) contents are updated according to MOD specification (table 4) to the next video memory address.

If the host processor inputs data consecutively, the data write into video memory and data pointer update are repeated until another command is entered.

#### **BLKTOT Command**

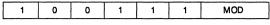
Command Code 99/9A/9BH

, <b>1</b> ·	0	0	1	1	0	MOD	

DMA Transfer Output Data

			Rea	d da	ta	a de la composición d Composición de la composición de la comp		
-				:	-	. 4		
	· .	1. A.	÷,	•	. ⁹⁴			
			Rea	d da	ta			

The video memory contents are read from the address specified in the data pointer (DPTR0) and stored in the output data buffer. A DMA transfer request signal (DMARQ) is then generated to prompt the DMA controller to receive the read data. The DMA acknowledge signal (DMAAK, RD) is used to output the data buffer contents to the data bus. If the DMA controller receives the data and the buffer is not empty, the DMA transfer request generation is continued.


If the buffer is empty, the data pointer (DPTR0) value is updated according to MOD specification (table 4), and the video memory contents at the next address are read and stored in the output data buffer. Therefore, the address of the data read by the DMA controller does not correspond to the data pointer value.

If the output data buffer is empty, the memory read and the data pointer update are repeated until the host processor inputs another command based on the DMA controller terminal count.



# **BLKTIN Command**

Command Code 9D/9E/9FH



DMA Transfer Input Data

	Write data	
	•	
	•	
1944 - C. 1947 -	•	
	Write data	

DMA transfer request signal (DMARQ) is generated to prompt the DMA controller to transfer write data. Data input together with the DMA acknowledge signal (DMAAK, WR) is written into video memory.

Mask processing is performed for data input by executing the DMA transfer according to the mask register value; then the data is written into video memory at the address specified in the data pointer (DPTR0).

After the data is written, the data pointer (DPTR0) contents are updated according to MOD specification (table 4) to the next video memory address.

If the DMA controller inputs data consecutively, the data write into video memory and the update of the data pointer are repeated until the host processor inputs another command based on the DMA controller terminal count.

# **EXIT Command**

Command Code 88H

1	1	0	Ö	0	1	0	0	0
1								

Command processing during parameter acceptance is stopped and a command wait state is initiated.

Video memory operation command processing during data transfer is stopped and a command wait state is initiated.

If parameter acceptance is terminated and processing is started, data or any command other than the video memory operation commands cannot be terminated by issuing the EXIT command.

# SPRITE CONTROL COMMANDS

## **SPRON Command**

Command Code 82H

11									-
1	1	0	0	0	0	0	1	0	

Parameters

SAB (lower)							
0	0	0	0	0	(upper)		
HSPN					ESP	SPMG	SPGR

If the display controller has been enabled by the DSPON command, sprite display is initiated.

The sprite status (SC) in the status data is reset and interrupt signal generation from the sprite controller is enabled or disabled according to ESP specification.

The sprite attribute table and sprite pattern area base address (SAB), sprite magnification (SPMG), and sprite grouping function (SPGR) are set in the sprite controller.

If the command is input during sprite display, the sprite controller operation parameter is changed.

• HSPN (Horizontal Sprite Number)

This parameter specifies the maximum number of sprite images that can be displayed on a single horizontal line.

• SPMG (Sprite Magnify)

Sprite magnification display is specified. When SPMG is set to 1, sprite display data is magnified two-fold in the vertical direction display.

• SPGR (Sprite Grouping)

The grouping function in sprite detection is specified. When SPGR is set to 1, collision detection between different groups is enabled.

• ESP (Enable Sprite Interrupt)

INT signal from the sprite controller is specified. When ESP is set to 1, an INT signal is generated at the INT pin when sprite collision is detected or the maximum number of sprite images is exceeded.



## SPROF Command

Command Code 83H

1 0 0 0 0 1 1
---------------

Sprite controller operation is disabled and sprite display is terminated.

# SPRRD Command

#### Command Code 80H

SPN

		•					•
1		0	0	1 0	1 0	0	
· ·	-	•	-	-	-	-	-

ATN

#### Parameters

#### **Output Data**

	- 12 A - 12	Read data 1	
	2010 - 10 C	•	1
1.1		an a	
		•	
		Read data n	

The sprite attribute table contents are read from the address corresponding to the SPN (sprite number) and ATN (attribute number) parameters, and the data is transferred to the host processor.

ATN	Attribute
0.0	YP lower
1 🔅	YSIZE, SPSW, YP upper
2	XP lower
3	XSIZE, SPDM, XP upper
4	SPDA lower
5	SPDA upper
0	SCE (color)

- 6 SCF (color)
- 7 Not used

If the host processor receives the attribute data, the attribute number is incremented and the next attribute data is read and transferred. When attribute number 7 is read, the sprite number is also updated so that the next sprite vertical position (YP lower) can be read.

The attribute data read and the attribute and sprite number update are repeated until another command is input.

# SPWR Command

#### Command Code 84H

1		0	0	0	1	0	0	ł
•	v	v	, v		•	U U	U U	ł
								,

Parameters

SPN	ATN

#### Input Data

	Store data 1		
	•		
	•		
 1.1.6	Store data n		

Data input by using the parameters is stored in the sprite attribute table.

# ATN Attribute

- 0 YP lower
- 1 YSIZE, SPSW, YP upper
- 2 XP lower
- 3 XSIZE, SPDM, XP upper
- 4 SPDA lower
- 5 SPDA upper
- 6 SCF (color)
- 7 Not used

The input data following the second parameter is written into video memory from the address corresponding to the first parameter SPN (sprite number) and ATN (attribute number).

Each time one byte of data is stored, the attribute number is incremented so that the next attribute number can be specified. When attribute number 7 is stored, the sprite number is also updated so that the next sprite vertical position (YP lower) can be specified.

If the host processor inputs data consecutively, the attribute number is incremented from 0 through 7 for each sprite number, which advances in increments of 1.

### **SPRSW Command**

Command Code 85H

1	0	0	0	0	1	0	1
Parame	ters	-					

SPN	0	SPSW	0	
	L			



This command specifies the sprite display on or off by setting the sprite attribute SPSW bit.

The sprite number is specified in the SPN parameter. If the SPSW parameter is set to 1, sprite display is turned on; if cleared to 0, sprite display is turned off. Thus, display on or off for each sprite can be specified as desired.

# SPROV Command

Command Code 81H

1								
	1	0	0	0	0	0	0	1
							·	

Output Parameters

0	so	С	OVS

The sprite controller operation status is determined and the sprite status bit in the status data (SC) is reset to 0.

The sprite controlled status is defined by parameters SO, OVS, and C.

- (1) SO indicates whether the maximum number of sprite images that can be displayed on a single horizontal line (HSPN specification) has been exceeded.
- (2) OVS specifies the first excessive sprite number.
- (3) C indicates the detection of sprite collision.

# STATUS

The  $\mu$ PD72022 sends the display hardware operation status and command processing status information to the host processor via the status output port.

The status data format and the bit contents viewed from the host are explained below.

7	6	5	4	3	2	1	0	
LP	VB	SC	ER	-	BUSY	OBF	IBF	

# Input Buffer Full

IBF (bit 0) indicates that data is stored in the internal input data buffer during command/parameter input from the host processor. It is set on the rising edge of the WR strobe signal when the host processor writes commands/parameters. It is reset when the input data buffer contents are read by  $\mu$ PD72022 internal processing.

The host processor should check that the flag is reset before inputting the next command/parameter. If a command/parameter is input when the flag is set, the  $\mu$ PD72022 drives the READY signal low, forcing the host to wait.

## **Output Buffer Full**

OBF (bit 1) indicates that the  $\mu$ PD72022 has data stored in the output data buffer. It is set when a write is made to the output data buffer during internal processing. It is reset on the rising edge of the RD strobe signal when the host reads the output data buffer contents through the parameter output port.

The host processor should check that the flag is set before reading data from the parameter output port. If data is read when the flag is set, the  $\mu$ PD72022 drives the READY signal low, forcing the host to wait. The flag is reset when a command is input.

#### Busy

The BUSY flag (bit 2) indicates that the  $\mu$ PD72022 is performing command processing. It is set under the same conditions as IBF and reset when the execution of all commands stored in the internal FIFO buffer has been completed.

In command processing of SPRRD, SPRWR, BLKTIN, BLKTOT, WDAT, or RDAT, however, BUSY is reset when the FIFO buffer is empty after the completion of processing of successive input commands. Therefore, BUSY is always set when any of these six commands is being executed.

#### Error

ER (bit 4) indicates that an error occurred during command processing. It is set when an abnormal state is encountered; for example, when parameters required for command execution are not entered, or the value of an entered parameter is not proper.

When an error occurs,  $\mu$ PD72022 stops command processing. To recover, issue the EXIT command, followed by the desired command. ER is reset when the EXIT command is executed.

Specific error causes are as follows.

- (1) Parameter is entered when command code is not entered.
- (2) Command/parameter is entered from any port other than the command or parameter input port.
- (3) Any code other than a command code is entered from the command port.



- (4) The number of parameters is too large. Up to a given number of parameters are assumed to be valid and processed. When excessive parameters are entered, ER is set and the excessive parameters are not processed.
- (5) The number of parameters is too small. All the entered parameters are assumed to be valid and processed.
  - (a) When a command (except EXIT) is entered following the parameters, ER is set and command processing starts
  - (b) When an EXIT command is entered following the parameters, it is assumed that termination of the immediately preceding command entered is specified. ER is not set and command entry is awaited.
  - (c) When other than a command or parameter entry follows the parameters, an error results. ER is set and command entry is awaited.
- (6) LPNR command is made on any area other than the active screen area specified by the ACTSCR command.

# Sprite Control

The SC flag (bit 5) indicates occurrence of sprite over or sprite collision state during sprite display operation. It is updated each time one screen display is terminated (vertical blank).

(1) Sprite Over. The SC flag is set when the number of

sprite images existing on a single horizontal line exceeds the HSPN setup value. The first sprite number exceeding the setup value can be read by command (SPROV) specification.

(2) Sprite Collision. The SC flag is set when dot overlap of two or more sprite images occurs.

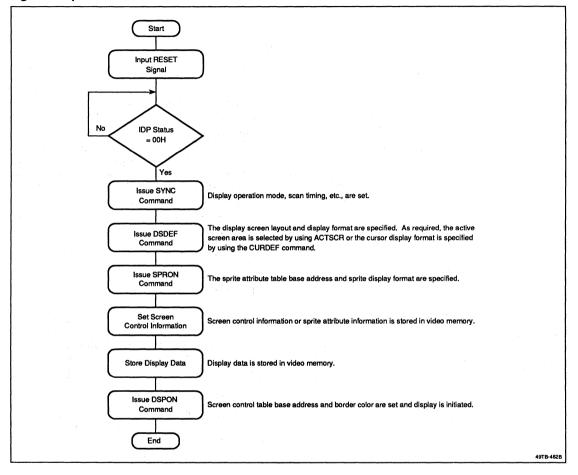
#### Vertical Blank

VB (bit 6) indicates vertical blanking time (BBR, BBL, or VS time). It can be used for the host processor to synchronize with display operations.

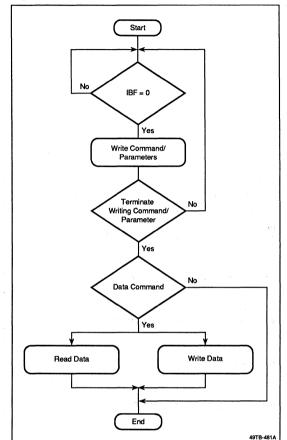
#### Light Pen Detect

LP (bit 7) indicates that an address is detected by using the light pen signal. It is set when the address is detected and reset when the LPNR command is issued.

#### CONTROL


After initialization (figure 19), the  $\mu$ PD72022 executes control according to the sequence shown in figure 20.

In figure 20, a check is made to ensure that IBF (bit 0) of the  $\mu$ PD72022 status data format is cleared to 0; then the command/parameter is written.


If the command is a data read or write command, then data is read or written.

The sequence to check that the IBF bit is cleared to 0 can be omitted by using the READY signals; however, this does not apply to read commands (RDAT, BLKTOT, SPRRD, DPRD, LPNR, SPROV).

### Figure 19. µPD72022 Initialization







#### Figure 20 µPD72022 Basic Control Flow

#### DISPLAY

# **Static Picture Display**

The  $\mu$ PD72022 IDP has three static picture display modes: text, semigraphics, and graphics.

**Text Mode.** Video memory data is recognized as character code and attribute data. Character patterns from the character generator specified by character code are displayed. Color or format qualification is specified by attribute data paired with character code. See figure 21.

Semigraphics Mode. Video memory data is recognized as pattern code. Pattern data (format and color) in the pattern data area specified by pattern code is displayed. Two modes are available according to how pattern data is stored. See figures 22 and 23.

**Graphics Mode.** Video memory data is recognized and displayed as color patterns corresponding directly to the display screen. See figure 24.

### Sprite Image Display

The  $\mu$ PD72022 IDP can control a maximum of 32 sprite images. Collision between sprite images can be detected.

Any desired color pattern (sprite) is displayed at any desired position of the screen based on information in the video memory sprite attribute table. Sprite control commands can change the sprite size, color, display address, display position, etc. See figure 25.

# **Screen Split Display**

The  $\mu$ PD72022 IPD can split the display screen into rectangular windows and display any area extracted from video memory. Each display area is independently controlled by the  $\mu$ PD72022. See figure 26.





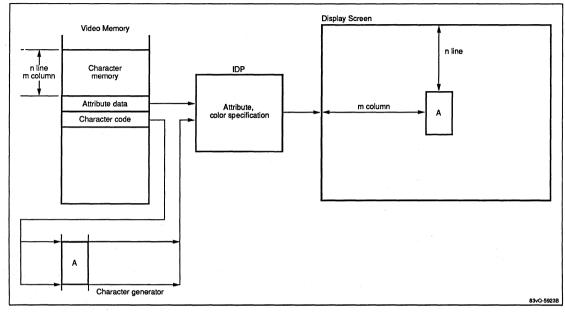
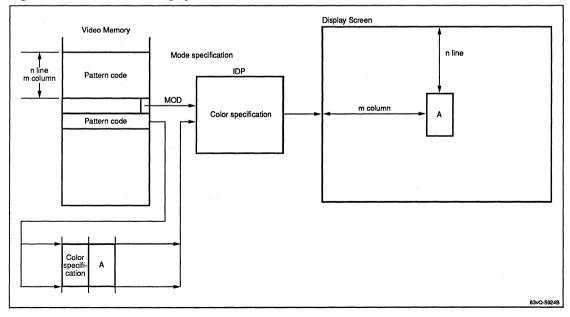
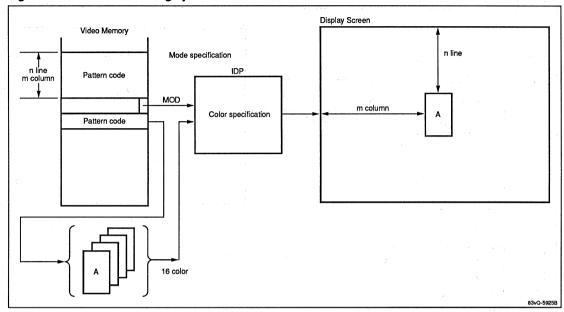
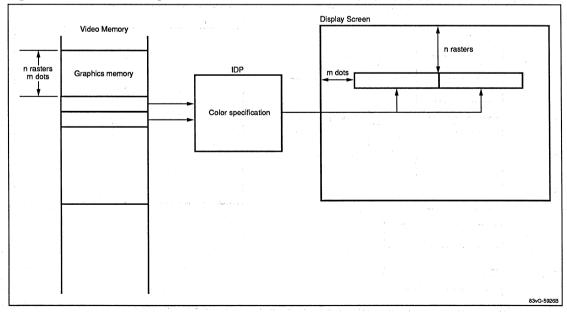





Figure 22. Data Flow in Semigraphics Mode 0






EC

ľ

Figure 23. Data Flow in Semigraphics Mode 1

Figure 24. Data Flow in Graphics Mode



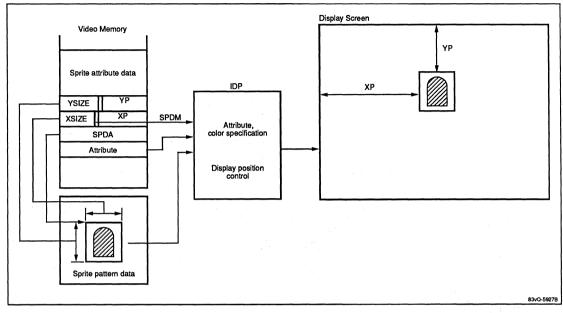
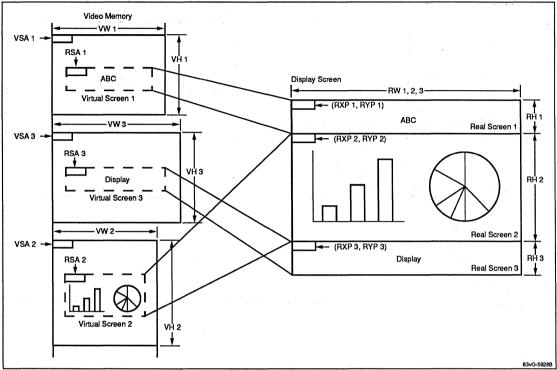




Figure 25. Data Flow During Sprite Image Display





#### Figure 26. Example of Screen Split Display

# Scan Mode Specification

The  $\mu$ PD72022 IDP enables specification of four scan modes by using SYNC command parameter RM before video signal generation. See figure 27.

Noninterlace Mode. The raster address is incremented for each horizontal scan. The display data address is updated every specified number of rasters.

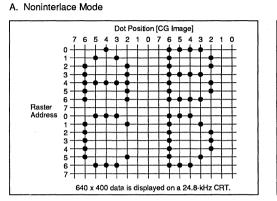
In graphics mode, the display data address is updated each horizontal scan.

**Interlace Mode.** Odd and even fields are displayed alternately. In the odd field, the raster address starts at 0; in the even field, it starts at 1. The raster address is incremented by two for each horizontal scan.

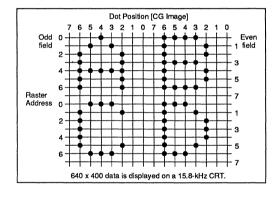
In graphics mode, the display address is updated so that display data in the opposite field is skipped.

In interlace mode, the MRA value must be specified so that the numbeer of rasters is even.

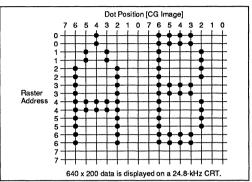
To use the interlace mode, a value appropriate for the 16-kHz monitor must be set in the raster parameter and the interlace synchronizing signal must be input from an external source.


Vertical Magnification Mode. The raster address is incremented every two horizontal scans. The display data address is updated every specified number of rasters.

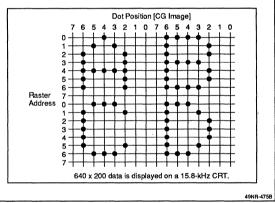
In graphics mode, the display data address is updated every two horizontal scans.


**Normal Mode.** The raster address is incremented each horizontal scan. The display data address is updated every specified number of rasters.

In graphics mode, the display data address is updated each horizontal scan.


#### Figure 27. Scan Modes




#### B. Interlace Mode



#### C. Vertical Magnification Mode



#### D. Normal Mode



3

3-96





# μPD72120 Advanced Graphics Display Controller

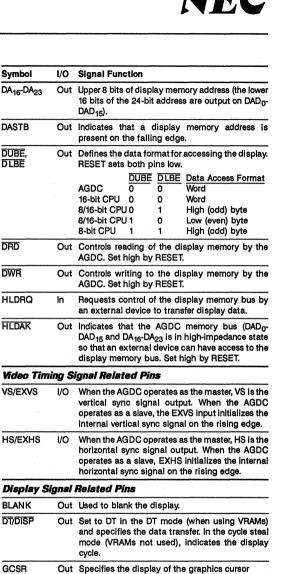
## Description

The  $\mu$ PD72120 Advanced Graphics Display Controller (AGDC) displays characters and graphics on a raster scan device from commands and parameters received from a host processor or CPU. Features of the AGDC include high-speed graphics drawing capabilities, video timing signal generation, large capacity display memory control (including video RAMs), and a versatile CPU interface. These features allow the AGDC to control graphics drawing and display of bit-mapped systems.

#### Features

- High-speed graphics drawing functions
  - Graphics drawing: dot, straight line, rectangle, circle, arc, sector, segment, ellipse, ellipse arc, ellipse sector, and ellipse segment
  - Maximum drawing speed
     500 ns/pixel (8 MHz, pixel mode)
     500 ns/dot (8 MHz, plane mode)
  - Area filling (high-speed processing in word units): triangle, trapezoid, circle, ellipse, and rectangle
  - Painting: filling of any arbitrary enclosed area (bit boundary retrieval)
  - Data transfers in display memory: multiplane transfers; data transformation (90°/180°/270° rotation and reversal); multiwindow transfers; maximum transfer speed of 500 ns/word
  - Image processing: slant, arbitrary angle rotation, 16/N enlargement, and N/16 shrinkage (N any integer from 1 to16)
  - Position specification by X-Y coordinates
  - Logical operations between planes

- Video timing signal generation
  - High-speed processing by two system clocks: display (for video sync signal generation) and graphics drawing clocks
  - External synchronization capability
- Large-capacity display memory
  - Display memory bus interface: 24-bit address and 16-bit data bus for addressing up to 16M words, 16 bits/word
  - Video RAM (VRAM) control
  - Display memory bus arbitration
- Host processor (CPU) interface
  - System bus interface: 20-bit address bus, 8- or 16-bit data bus
  - Data transfer with external DMA controller: from system memory to display memory (PUT); from display memory to system memory (GET)
  - High-speed pipeline processing with preprocessor before drawing processor
  - CPU memory or I/O mapping of internal registers and display memory for efficient system interface
- 8-MHz system clock
- CMOS technology
- Single +5-volt power supply
- Packages: 84-pin PLCC, 94-pin plastic miniflat


### **Ordering Information**

Part No	Package
μPD72120L	84-pin PLCC
μPD72120GJ-5BG	94-pin plastic miniflat

#### Pin Identification

Symbol	I/O	Signal Function
Clock Pins		
CLK	In	Clock supplied to circuits other than the sync signal generator and display processor. The drawing processor and preprocessor speed depend on this clock frequency.
SCLK	in	Clock supplied to the sync signal generator and the display processor. This clock frequency is determined by the CRT timing requirements: horizontal sync frequency, number of dots per line, etc.
System Bu	s Co	ntrol Pins
AD ₀ -AD ₁₅	I/O	I/O bus to the CPU consisting of multiplexed 16-bit address and a bidirectional data bus.
A ₁₆ -A ₁₉	In	Upper four address bits of the 20-bit address.
ASTB	In	Latches the address on $A_{16}\text{-}A_{19}$ and $AD_0\text{-}AD_{15}$ on the falling edge.
UBE	In	Together with $AD_0$ , defines the data access format as shown below. UBE should be tied high when connected to an 8-bit CPU.
		AD0         UBE         Data Access Format           0         0         Even-address word           0         1         Even-address byte           1         0         Odd-address byte           1         1         Odd-address byte
RD	In	Performs a read of data from the AGDC by the host CPU.
WR	In	Performs a write of data to the AGDC from the host CPU.
CSIR	In	Enables reading/writing of the AGDC internal registers by the host CPU. The register is selected by the address input on $AD_0$ - $AD_7$ .
CSDM	In	Enables reading/writing of display memory through the AGDC by the host CPU. The display memory address is generated by the address input on $A_{16}$ - $A_{19}$ and $AD_0$ - $AD_{15}$ and by the bank register.
READY	Out	Activated by the data access request (RD/WR) for the AGDC. During the access, the signal may be low. RESET will set the READY line high.
INT	Out	Signals an interrupt from the AGDC.
DMARQ	Out	Indicates a request for data transfer (PUT/GET) to an external DMA controller. DMARQ will be low after RESET.
DMAAK	In	Acknowledgment of DMA request to the AGDC by the DMA controller.
RESET	In	Initializes operation of the AGDC. The internal parameter register is not cleared by RESET (it is initialized by setting data).
Display Me	emor	y Control Pins
DAD0-DAD15	I/O	I/O pins for display memory; 16-bit address

multiplexed with data.



DASTB

DUBE,

DLBE

DRD

DWR

GCSR

GWAIT

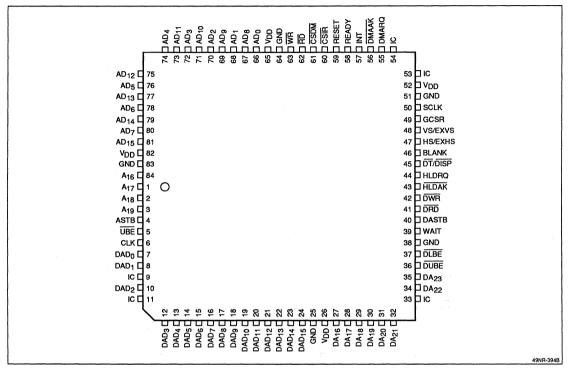
GND

IC

Other Pins VDD

Out Graphics wait signal

Ground

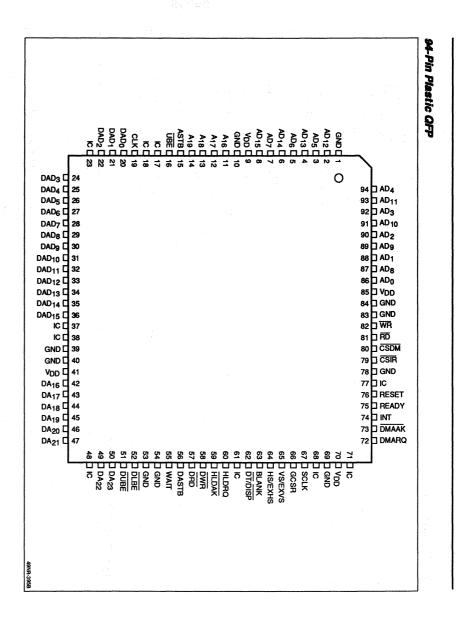

+5-volt power supply

Internally connected; leave unconnected



# **Pin Configurations**

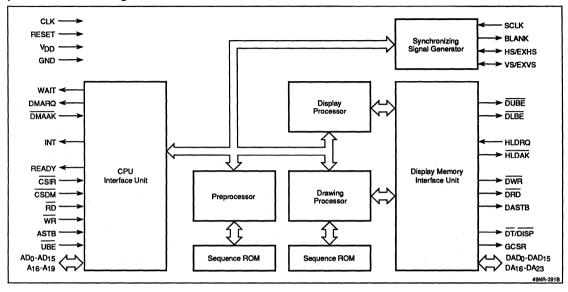
#### 84-Pin PLCC



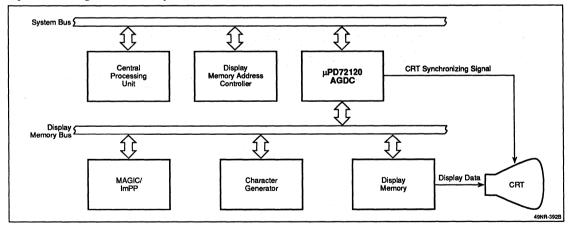

μPD72120

3



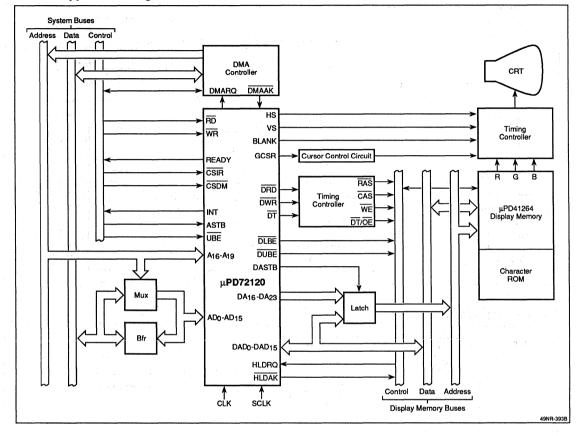






3-100



## µPD72120 Block Diagram




# System Configuration Example





# **General Application Diagram**



# **ELECTRICAL SPECIFICATIONS**

# Absolute Maximum Ratings

$I_{A} = +25^{\circ}C$	
Supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, VI	-0.5 to +7.0 V
Output voltage, V _O	-0.5 to +7.0 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
Power dissipation, PD	1.1 W

Capacitance  $T_A = +25^{\circ}C; V_{DD} = GND = 0 V$ 

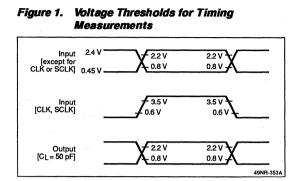
Parameter	Symbol	Min	Max	Unit	Condition
Input	C _l		10	pF	f = 1 MHz;
Output	Co		20	pF	<ul> <li>unmeasured</li> <li>pins returned</li> </ul>
Input/ output	C _{I/O}		20	pF	to 0 V
Clock input	Cc		20	pF	<u></u>

# **DC Characteristics**

 $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Max	Unit	Condition
Low-level input voltage	VIL	-0.5	0.8	v	Except CLK or SCLK
		-0.5	0.6	v	CLK, SCLK
High-level input voltage	VIH	2.2	V _{DD} + 0.5	v	Except CLK or SCLK
		3.5	V _{DD} + 1.0	v	CLK, SCLK
Low-level output voltage	VOL		0.45	v	I _{OL} = 2.2 mA
High-level output voltage	V _{OH}	2.4		v	l _{OH} = -400 μA
Low-level input leakage current	ILIL		-10	μA	V _I = 0 V
High-level input leakage cur ent	ILIH		10	μA	$V_{I} = V_{DD}$
Low-level output leakage current	LOL		-10	μA	$V_0 = 0 V$
High-level output leakage current	LOH		10	μA	$V_0 = V_{DD}$
Supply current	IDD		200	mA	




AC Characteristics  $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%; \text{ see figure 1}$ 

Parameter		Figure	Symbol	Min	Max	Unit *	Condition
Clock (CLK, SCLK)							·
Clock period	CLK	2	tсук	125	600	ns	
	SCLK	2	tCYSK	125	600	ns	tcyk ≤ tcysk
High-level clock width	CLK	2	twkH	52		ns	
	SCLK	2	twskh	52		ns	
Low-level clock width	CLK	2	^t wĸ∟	52		ns	
	SCLK	2	twskL	52		ns	
Clock rise time	CLK	2	^t KR		15	ns	
	SCLK	2	t _{SKR}		15	ns	
Clock fall time	CLK	2	tKF	1. au	15	ns	
and the second sec	SCLK	2	t _{SKF}		15	ns	
Reset, Interrupt			·.				
Reset pulse width	···	3	tRST	5		^t CYSK	······
CLK ↑ to INT ↑ delay time	· · ·	3	t _{DKI}		50	ns	C _L = 50 pF
RD ↓ to INT↓ delay time	·	3	tDRI		3 t _{CYK} + 50	ns	STATUS read
HLDRQ, HLDAK							· · · · · · · · · · · · · · · · · · ·
CLK ↑ to HLDAK delay time		4	^t DKHA		50	ns	C _L = 50 pF
HLDRQ setup time to CLK ↑		4	tSKHQ	20		ns	
HLDRQ hold time from CLK ↑		4	тнкно	20		ns	
DMA Read/Write Cycle	* 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				an a		<u>in in an an</u>
CLK ↑ to DMARQ output delay time		5,6	t _{DKMQ}		50	ns	C _L = 50 pF
DMARQ setup time to DMAAK ↓		5,6	tSMAMQ	0		ns	
DMAAK setup time to RD ↓		5	tSRMA	0		ns	
DMAAK hold time from RD ↑		5	^t HRMA	0	· · · · · · · · · · · · · · · · · · ·	ns	
DMAAK setup time to ₩R ↓		6	^t SWMA	0		ns	
DMAAK hold time from WR ↑		6	tHWMA	0		ns	
Display Memory Bus Read Cycle							
CLK ↑ to address or data output delay time		4,7,8	t _{DKA}		30	ns	C _L = 50 pF
Input data setup time to CLK ↑		7	tSKD	20		ns	
Input data hold time from CLK ↑		7	tнкр	0	**********	ns	
CLK ↑ to DASTB ↑ delay time		7,8	^t DKDSH		30	ns	C _L = 50 pF
CLK↓ to DASTB↓ delay time		7,8	^t DKDSL		30	ns	
CLK ↑ to DRD delay time		7	^t DKDR		30	ns	-
CLK ↑ to DWR delay time		8	tokow		30	ns	-
System Bus Read Cycle							
$\overline{\text{CS}}$ setup time to $\overline{\text{RD}} \downarrow$		9	tSRC	0		ns	
CS hold time from RD ↑		9	tHRC	0	·····	ns	
RD width, high		5,9	twnn	50		ns	
ASTB pulse width		5,6,9,10		30		ns	

# AC Characteristics (cont)

Parameter	Figure	Symbol	Min	Max	Unit	Condition
ASTB setup time to RD ↓	5,9	^t SRAS	0		ns	
Address setup time to ASTB ↓	5,6,9,10	tsasa	20		ns	
Address hold time from ASTB ↓	5,9	thasa	0		ns	
Data setup time to READY ↑	5,9	tSRYD	0		ns	
Data float delay time from $\overline{\text{RD}}$ $\uparrow$	5,9	t∓RD	0	40	ns	
$\overline{RD} \downarrow to READY \downarrow delay time$	5,9	t _{DRRY}		30	ns	$C_L = 50  pF$
RD hold time from READY ↑	5,9	<b>¹HRYR</b>	0		ns	
CLK ↑ to READY ↑ delay time	5,9	^t DKRY		40	ns	$C_L = 50  pF$
RD ↑ to ASTB ↑ delay time	5,9	t _{DRAS}	0		ns	
System Bus Write Cycle						
CS setup time to ₩R ↓	10	tswc	0		ns	
CS hold time from ₩R ↑	10	tHWC	0		ns	
WR width, low	6,10	twwL	50		ns	
WR width, high	6,10	twwn	50		ns	······································
Data setup time to ₩R ↑	6,10	tswp	50		ns	
Data hold time from ₩R ↑	6,10	thwp	0		ns	
$\overline{WR}\downarrow$ to READY $\downarrow$ delay time	6,10	towry		30	ns	$C_L = 50  pF$
WR hold time from READY ↑	6,10	tHRYW	50		ns	
CLK ↑ to READY ↑ delay time	6,10	^t DKRY		40	ns	C _L = 50 pF
ASTB setup time to ₩R ↓	6,10	tswas	0		ns	
₩R ↑ to ASTB ↑ delay time	6,10	t _{DWAS}	0		ns	
Display Cycle						
SCLK ↑ to DASTB ↑ delay time	11,12,13	^t DSKDASH		30	ns	$C_L = 50  pF$
SCLK↓ to DASTB↓ delay time	11,12,13	tDSKDASL		30	ns	
SCLK ↑ to DT/DISP delay time	11,12,13	^t DSKDT		30	ns	
SCLK ↑ to address delay time	11,12,13	^t DSKA		30	ns	
SCLK ↑ to output signal delay time (HS, VS, BLANK, or GCSR)	11,12, 13	^t DSKO		50	ns	
SCLK ↑ to WAIT delay time	11,12	^t DSKWT		70	ns	
WAIT pulse width	11	twwr	4t _{CYSK} - 70		ns	
EXVS setup time to SCLK ↑	11	tSSKEV	20		ns	
EXHS setup time to SCLK ↑	11	tSSKEH	20		ns	
EXVS hold time from SCLK ↑	11	^t HSKEV	20		ns	
EXHS hold time from SCLK ↑	11	tHSKEH	20		ns	





#### Figure 2. Clock Waveforms

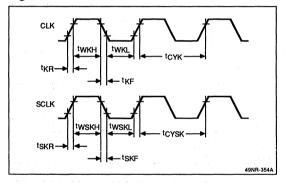
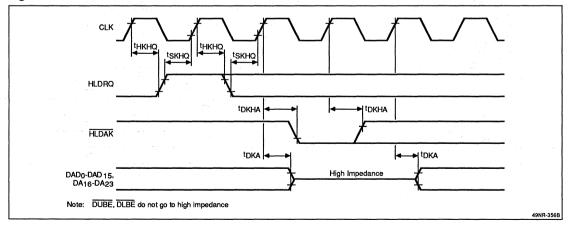




Figure 4. HLDRQ and HLDAK Waveforms



×.

# Figure 3. Reset and Interrupt Waveforms

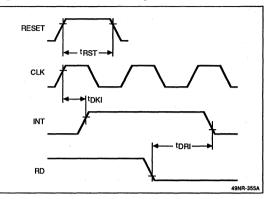
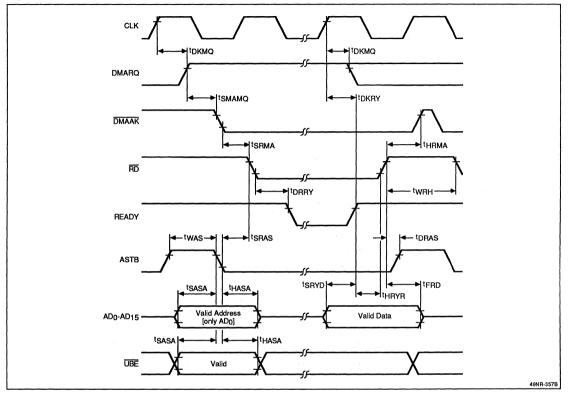
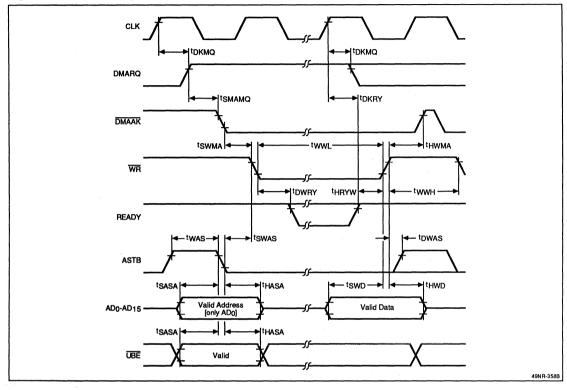



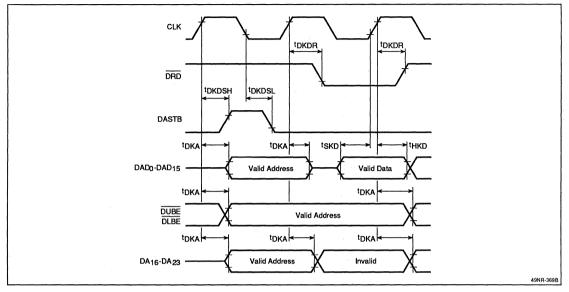



Figure 5. DMA Read Cycle




3-107

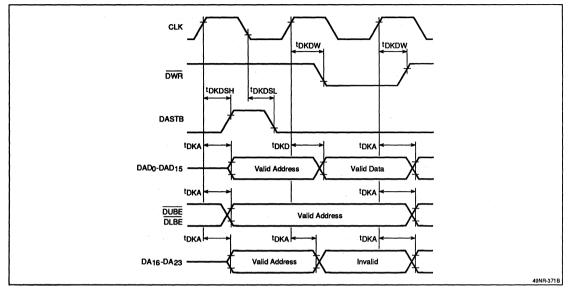
3




# Figure 6. DMA Write Cycle



3






3-109









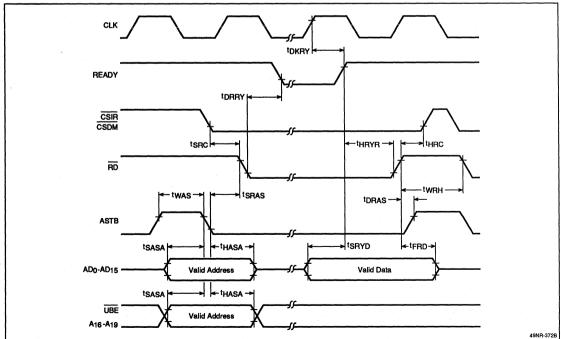
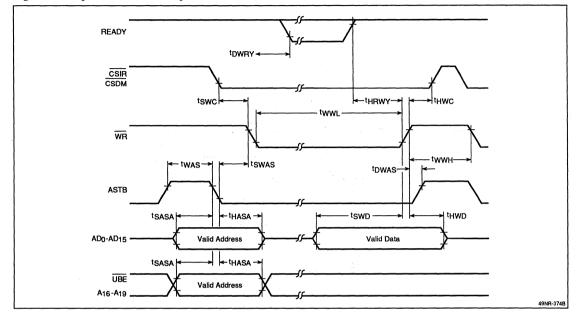






Figure 10. System Bus Write Cycle



3



# Figure 11. Display Cycle

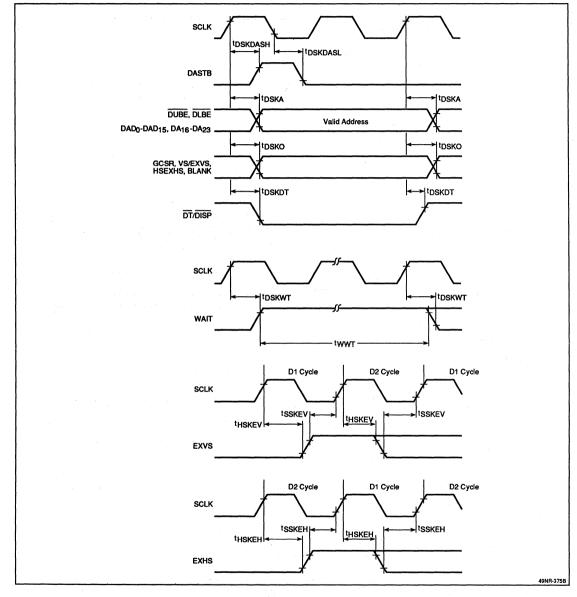
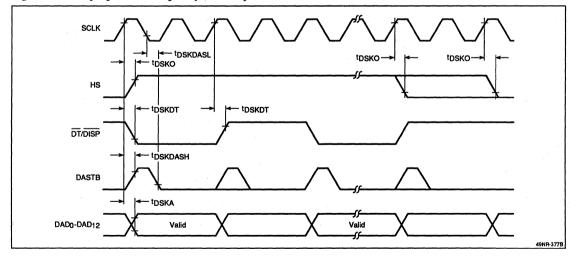






Figure 12. Display Refresh Cycle (DT Mode)



Figure 13. Display Refresh Cycle (CS Mode)





# **FUNCTIONAL DESCRIPTION**

#### Preprocessor

The preprocessor includes a 56-word parameter RAM, an arithmetic logic unit, and a general-purpose register. It carries out the following drawing preprocessing by microprogram control.

- Conversion between coordinate and physical addresses
- Command interpretation
- Drawing parameter generation
- Calculation of tiling pattern position
- Sorting of vertex coordinates for triangular fill command
- · Error checking on user-defined parameters
- Data passing with drawing processor
- Drawing processor initiation

Along with the drawing processor, the preprocessor forms part of a three-stage pipeline to improve throughput.

# **Drawing Processor**

The drawing processor carries out the drawing operations on the display memory with the commands and parameters generated by the preprocessor. The drawing processor includes various arithmetic units, a generalpurpose register, an arithmetic logic unit, and mask generating circuitry. In addition, it contains a 32-bit barrel shifter for high-speed bit-boundary processing operations and a 90-degree rotation data buffer. These components are controlled by a horizontal-type microprogram that can execute five types of instructions simultaneously in a single step.

# **Display Processor**

An external dot-shifter for parallel-to-serial conversion is generally necessary to create scan line information for display on a CRT. The display processor generates display addresses to supply the image data to the dot shifter. This processor includes a DRAM refresh controller to generate refresh addresses during the horizontal sync active period. The display controller also controls the generation of refresh and display addresses for dual-port DRAMs (video RAMs), DRAMs, and SRAMs.

# Sync Signal Generator

The sync signal generator produces horizontal and vertical sync signals and blank signals according to the parameters set by the user. This circuitry also generates the graphics cursor signal that can be used (with external circuitry) to generate a screen cursor.

# **CPU Interface Unit**

The CPU interface unit includes a DMA interface (DMARQ, DMAAK) and an interrupt (INT) control circuit. The unit controls timing for system bus communications.

# **Display Memory Interface Unit**

This interface unit controls the drawing, display, and refresh address outputs. It also controls the display memory bus arbitration for direct access to the display memory by other processors.

# REGISTERS

Table 1 lists the registers according to four classifications: control, display, drawing, and data port. Figure 14 shows the register configurations in numerical order by register address from 00H to 7FH.

Also in numerical order by address are the register descriptions in table 2. Figures listed below supplement the descriptions.

Figure	Title
15	Raster Operations; Replace and XOR
16	Raster Operations; AND and OR
17	Status Register Configuration
18	Display Memory Address Generation
19	Control Register Configuration
20	Definition of Clipping Rectangle
21	Display Control Register Configuration
22	Cursor Position Registers
23	Horizontal and Vertical Sync
	Timing Diagram

# **DRAWING OPERATIONS**

The DRAW command is written to the COMMAND register at address 6EH-6FH. The opcode in register 6FH determines the type of drawing. Various combinations of the command are selected by flags in register 6EH.

Table 3 lists the commands in five categories: data read, graphics drawing, fill, copy, and PUT/GET. Table 4 describes the commands and shows the register configuration.



27

3

Figures listed below give examples of DRAW commands.

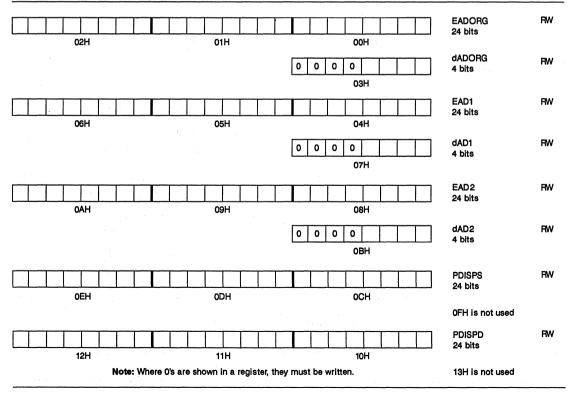
Copy Commands; Enlarge/Shrink, Rotate

FigureTitle24Graphics Drawing Commands25Fill and Paint Commands26Copy Commands; Copy, Rotate, Slant

Table 5 summarizes the DRAW commands. Table 6 describes the 20 operation flags that can be set in register 6EH.

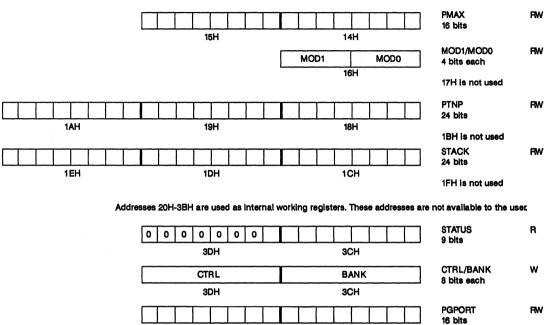
Classification	Application	Register Name	Address (Hex)	Bits
µPD72120 AGDC control registers	Status	STATUS	3C-3D	9
	Control	CTRL	3D	8
	Higher 8 bits of address in display memory direct access	BANK	зС	8
Display-related registers	Display status setting	DISPLAY CTRL	70-71	16
	Display area setting	DISPLAY PITCH AC DAD WC(L)	72-73 73 74-76 77	12 3 24 8
	Cursor setting	WC(H) CRS CE GCSRX GCSRYS GCSRYE	7D 79 79 78-79 7A-7B 7C-7D	4 1 12 12 12
	Horizontal sync signal setting	HS, HBP HH, HD, HFP	7E-7F	12
	Vertical sync signal setting	VS, VBP, L/F, VFP	7E-7F	12
Drawing-related registers	Logical address zero point setting	EADORG dADORG	00-02 03	24 4
	Vertical sync signal setting     VS, VBP, L/F, VFP     7E-7F       Logical address zero point setting     EADORG 03       Logical address setting     PITCHS 58-59 PITCHD 5A-5B       Plane setting     PDISPS 0C-0E PDISPD 10-12	16 16		
	Plane setting			24 24 16
	Interplane logical operation setting	MOD0 MOD1 PLANES	16 16 5E-5F	4 4 16
	Clipping setting	XCLMIN YCLMIN XCLMAX YCLMAX CLIP	62-63 64-65 66-67 68-69 6D	16 16 16 16 2
	Enlarge/shrink coefficient setting	MAGH MAGV	6C 6C	4 4
	Painting pattern setting	PTNP PTNCNT	18-1A 60-61	24 16
	AGDC work area setting	STACK STMAX	1C-1E 5C-5D	24 16
	Physical address (word address) value setting	EAD1 EAD2	04-06 08-0A	24 24

# Table 1. Register Classifications




Classification	Application	Register Name	Address (Hex)	Bits
Drawing related-registers (cont)	Physical address (dot address) value setting	dAD1	07	4
		dAD2	0B	4
	Logical address (X coordinate) value setting	x	40-41	16
		DX*	44-45	16
		XS	48-49	16
		XE	4C-4D	16
		XC	50-51	16
		DH	54-55	16
	Logical address (Y coordinate) value setting	Y	42-43	16
		DY	46-47	16
		YS	4A-4B	16
		YE	4E-4F	16
		YC	52-53	16
		DV	56-57	16
	Command	COMMAND	6E-6F	16
Data port registers	Data port during execution of PUT/GET	PGPORT	3E-3F	16
	Data port during execution of READ DP/READ COL	DX*	44-45	16

#### Table 1. Register Classifications (cont)

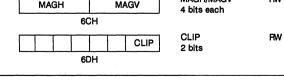

* The DX register is used as the logical address (X coordinate) value setting register and at the same time as the data port during the execution of a READ DP or READ COL command.

## Figure 14. Register Configurations

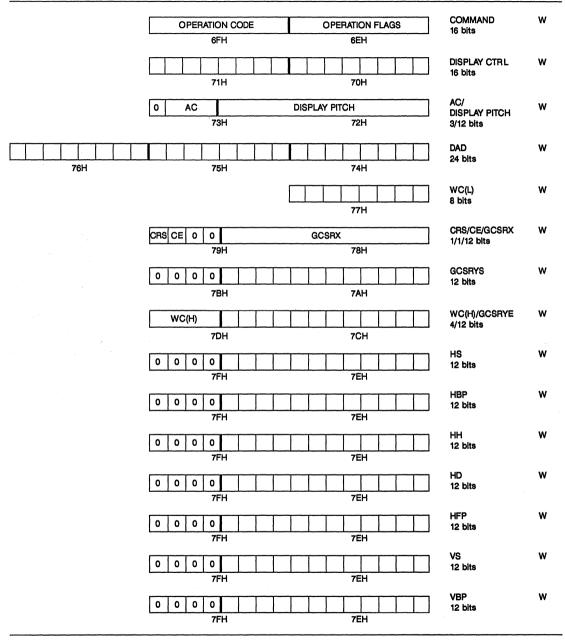




# Figure 14. Register Configurations (cont)



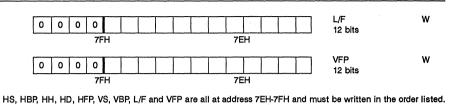

0	0	0	0	0	0	0										9 bits	н
			30	н				зсн									
CTRL									BANK							CTRL/BANK 8 bits each	w
3DH									зСн							• • • • • • • • • •	
																PGPORT 16 bits	RW
			3	Ή							ЗE	н					
									<u> </u>				<u> </u>	<u> </u>		X 16 bits	RW
			41	IH			•				40	н					
$\square$					<u> </u>	<u> </u>		Γ	Γ	<u> </u>				Τ	Π	Y 16 bits	RW
43H									42H								
							<u> </u>		<u> </u>					Γ	Π	DX 16 bits	RW
45H								44H							10 0113		
							Γ		Γ	Γ				Γ		DY 16 bits	RW
47H								46H									
							<u> </u>			Γ					Π	XS 16 bits	RW
			4	ЭH						L	48	н					
									Γ					Γ	Π	YS 16 bits	RW
			4	ЗH						<b>.</b>	4A	н					
							Γ		Γ	Γ				1	Π	XE 16 bits	RW
			4[	ЭН						-L	4C	н					
																YE	RW
			4	FH							4E	н				16 bits	




# Figure 14. Register Configurations (cont)

						MAG				AGV		MAGH/MAGV	RW
	Add	resses	6AH-	6BH ai	e use	d as	inter	nal wo	rking	registe	ərs. Th	ney are not available t	to the use
Laurenterar		69H	•t-				·!	68H		J		16 bits	
		1								Π		YCLMAX	RW
		67H			1	L		66H				XCLMAX 16 bits	RW
· <b></b>		65H	·			T	,ı	64H	· · · ·	r	1		<b>F11</b>
												YCLMIN 16 bits	RW
·		63H	······			·	·	62H		·····			~
												XCLMIN 16 bits	RW
		61H		نسبغب		-		60H					
												PTNCNT 16 bits	RW
		5FH						5EH					
												PLANES 16 bits	RW
		5DH						5CH					
		-		i e	Γ							STMAX 16 bits	RW
Ll		5BH	I				L	5AH			J	16 bits	
		T							1		7	PITCHD	RW
L	-ll	59H	l		- <b>I</b>	I	LI	58H		JL	J	16 bits	
		T			T	<b></b>						PITCHS	RW
LL_	J	 57H	I				II			1	]	16 bits	
<u> </u>	ТТ	Т	r r		T	<u> </u>	<b></b>	· · ·	- <u></u>	1-1		DV	RW
	Lill	55H		<u>.</u>		L	<u> </u>	 54H				16 bits	
	1				1							DH	RW
		53H			1			52H				16 bits	
	<del></del>								<del></del>	<del></del>		YC	RW
		51H	l		-			50H				16 bits	




### Figure 14. Register Configuration (cont)



3



# Figure 14. Register Configurations (cont)



### Table 2. Register Descriptions

Address (Hex)	Bits	Name	Description
00H-02H	24	EADORG Execution Address Origin	Sets the physical address (effective address) in the display memory corresponding to the origin (0,0) on the logical plane (the X-Y coordinate plane).
03H	4	dADORG Dot Address Origin	Sets the dot position in the physical address (effective address) in the display memory corresponding to the origin (0,0) on the logical plane (the X-Y coordinate plane).
04H-06H	24	EAD1 Execution Address 1	Sets the drawing start physical address value in the drawing processor when the drawing start position is given by the physical address.
07H	4	dAD1 Dot Address 1	Sets the dot position in the display memory when the drawing start position is given by the physical address
08H-0AH	24	EAD2 Execution Address 2	Sets the drawing start physical address value in the drawing processor when the drawing start position is given by the physical address.
OBH	4	dAD2 Dot Address 2	Sets the dot position in the display memory when the drawing start position is given by the physical address.
OCH-0EH	24	PDISPS Plane Displacement Source	Sets the number of words that occupy one memory plane when the memory is configured with two or more planes. In the case of a COPY command, sets the number of words per source plane. In the case of a PAINT command, sets the number of words per plane containing the tiling pattern.
10H-12H	24	PDISPD Plane Displacement Destination	Sets the number of words that occupy one memory plane when the memory is configured with two or more planes. In the case of a COPY command, sets the number of words per destination plane. In the case of a PAINT command, sets the number of words per painting plane.
14H-15H	16	PMAX Piane Maximum	Sets the number of planes (up to 16) in the display memory to be drawn, as shown in the following table:           PMAX         Planes           0000         0000         0001         1           0000         0000         0001         1-2           0000         0000         0100         1-3
			0010 0000 0000 0000 1-14 0100 0000 0000 0000 1-15 1000 0000 0000 0000 1-16
16H	4	MOD0 Drawing Mode 0	Defines the type of logical operation to be performed during drawing or copying. When the bit in the PLANES register corresponding to the memory plane is 0, the logical operation defined by MOD0 is performed. See figures 15 and 16.
16H	4	MOD1 Drawing Mode 1	Defines the type of logical operation to be performed during drawing or copying. When the bit in the PLANES registers corresponding to the memory plane is 1, the logical operation defined by MOD1 is performed. See figures 15 and 16.
18H-1AH	24	PTNP Pattern Pointer	Sets the first physical address in the display memory area containing the tiling (painting or filling) pattern.

### Table 2. Register Descriptions (cont)

Address (Hex)	Bits	Name	Description
1CH-IEH	H-IEH 24 STACK Stack Pointer		Sets the first physical address in the display memory area to save data such as coordinates, etc., during retrieval of the boundary points during the PAINT command (arbitrary area fill). It may be considered as the working area of the AGDC during execution of the PAINT command.
3CH-3DH	9	STATUS Status	Contains the internal status of the AGDC. The format is shown in figure 17.
зСН	8	BANK Bank	The AGDC interface to the CPU accommodates up to a 20-bit address. The AGDC can address 16M words (32M bytes) of display memory (24-bit addressing). When the CPU addresses display memory directly (through the AGDC), the lower 16 or 20 bits provided by the CPU are combined with the 8 bits from the BANK register to form the 24-bit display memory address. The address combination is shown in figure 18,
3DH	8	CTRL Control	Controls internal AGDC processing. See figure 19.
3EH-3FH			During a PUT operation, data is written to this register by the host CPU or system DMA controller. The AGDC then places the data into display memory. During a GET operation, the host CPU or DMA controller reads the data from this register that was retrieved from the display memory by the AGDC.
40H-57H	16 each	X, Y, DX, DY, XS, YS, XE, YE, XC, YC, DH, DV	Set the coordinate parameters for various drawing operations. The DX register is also used for reading the data during the READ COL command. The DH register is also used for storing half the line pattern when a 32-bit line pattern is used.
58H-59H	16	PITCHS Pitch Source	Sets the number of words in the horizontal direction of the source display memory area to be transferred.
5AH-5BH	16	PITCHD Pitch Destination	Sets the number of words in the horizontal direction of the display memory for drawing or as the destination of display memory transfer.
5CH-5DH	16	STMAX Stack Maximum	Sets the size of the display memory area in words for the STACK (used during the arbitrary area fill PAINT command). Each boundary point found during the PAINT command requires six words of memory in the STACK area.
5EH-5FH	16	PLANES Plane Select	Selects the type of logical operation to be performed on each plane during drawing or copying. Each bit in this register corresponds to a display memory plane. The least significant bit (bit 0) corresponds to the first plane, the most significant bit (bit 15) to the 16th plane. A 0 in the bit position for a plane indicates that the logical operation specified by MOD0 is to be performed and a 1, the operation specified by MOD1.
60H-61H	16	PTNCNT Pattern Count	Sets the line pattern for drawing straight and curved lines. During filling or painting operations, the function of this register depends on the TL bit as follows.
			TL = 1 PTNCNT specifies the length (in words) of the tiling pattern in display memory. The starting address is contained in the PTNP register.
			TL = 0 PTNCNT contains the actual 16-bit pattern to be used as the tiling pattern.
62H-69H	16 each	XCLMIN, YCLMIN, XCLMAX, YCLMAX	Defines the rectangular clipping region. An example is shown in figure 20.
		X and Y Clipping, Minimum/Maximum Values	
6CH	4	MAGH Horizontal Magnification	Sets the horizontal enlarge/shrink factor.
6CH	4	MAGV Vertical Magnification	Sets the vertical enlarge/shrink factor.



# Table 2. Register Descriptions (cont)

Address (Hex)	Bits	Name	Description
6DH	2	CLIP	Sets the clipping mode to select one of the following operations.
		Clipping Mode	CLIP         Function           00         Draws within the clipping rectangle. Must be in this mode for PAINT.           01         No clipping operation           10         Draws outside the clipping rectangle           11         Prohibited
6EH-6FH	16	COMMAND	Commands to be executed by the AGDC are written to this register. The lower byte (bits 0-7) consists of operation flags and the upper byte (bits 8-15), an operation code Processing begins when an operation code is written to the COMMAND register.
70H-71H	16	DISPLAY CTRL Display Control	Sets the operation of the display processor and sync signal generation. The format and function are shown in figure 21.
72H-73H	12	DISPLAY PITCH	Sets the total number of words in the horizontal direction (width) of a plane.
			Display Pitch         Number of addresses (words)           0000         0000         4096           0000         0000         1           0000         0000         0010         2
			0000 0000 0011 3 : : 1111 1111 1110 4094 1111 1111 1111 4095
73H	3	AC Address Control	Defines which address bus signal lines should be used to output the refresh address
			ACRefresh address output pinsConditions for setting DT active000DAD0-DAD12DAD0-DAD7 = 0001DisabledDisabled
			010DisabledDisabled011DisabledDisabled100DAD ₁ -DAD ₁₂ DAD ₁ -DAD ₈ = 0101DAD ₂ -DAD ₁₂ DAD ₂ -DAD ₉ = 0110DAD ₃ -DAD ₁₂ DAD ₃ -DAD ₁₀ = 0111DAD ₄ -DAD ₁₂ DAD ₄ -DAD ₁₁ = 0
74H-76H	24	DAD Display Address	Sets the display starting address for the screen
77H (Lower 8 bits),	12	WC Word Count	Sets the number of displayed words during a horizontal scan line (while BLANK low o inactive)
7DH (Upper 4 bits)	#		WC         Number of displayed words           0000         0000         1           0000         0000         2           :         :         :           1111         1111         4095           1111         1111         4096
78H-79H	12	GCSRX Graphics Cursor X	Sets the X (horizontal) coordinate start for the graphics cursor output pin. It is given as the number of dispaly cycles from the start of each horizontal scan line
		Coordinate	GCSRX     Starting position on each horizontal line       0000     0000     Disabled       0000     0000     1st display cycle       0000     0000     2nd display cycle       :     :     :       1111     1110     4094th display cycle
			1111 1111 1111 4095th display cycle

3

# Table 2. Register Descriptions (cont)

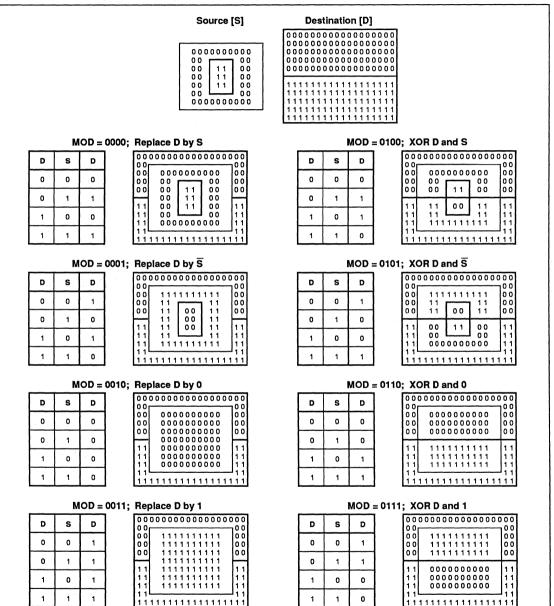

Address (Hex)	Bits	Name	Description
79H	1	CRS Cursor Configure	Determines whether the horizontal and vertical cursor position registers are ANDed or ORed together. See figure 22.
		Select	CRS Function 0 AND 1 OR
79H	1	CE Cursor Display Enable	Enables the graphics cursor signal to be output on the GCSR pin. <u>CE</u> Function 0 Disabled 1 Enabled
7АН-7ВН	12	GCSRYS Graphics Cursor Y Coordinate Start	Determines the starting Y (vertical) coordinate of the graphics cursor, counting display lines from the top down.         GCSRYS       Vertical starting line         0000 0000 0000       Invalid         0000 0000 0001       1st display line         0000 0000 0010       2nd display line         :       :         1111 1111       4094th display line         1111 1111       :
7СН-7DH	12	GCSRYE Graphics Cursor Y Coordinate End	Determines the ending Y (vertical) coordinate of the graphics cursor, counting display lines from the top down.         GCSRYE       Vertical ending line         0000<0000
7EH-7FH	12	HS (Horizontal Sync), HBP (Horizontal Back Porch), HH (HBP to Midpoint Between Consecutive HSs), HD (Horizontal Drawing Period), HFP (Horizontal Front Porch)	Sets the horizontal video sync (timing) parameters. See figure 23.         HS       Horizontal sync high-level period (horizontal retrace)         HBP       Horizontal back porch (non-displayed portion on left side of screen)         HH       Rising/falling timing for even field synchronization during interlaced display         HD       Horizontal display period (active display time)         HFP       Horizontal front porch (non-displayed portion on right side of screen)         HS, HBP, HH, HD, HFP       * SCLK periods         0000       0000       2 clocks         0000       0000       4 clocks         :       :       :         1111       1111       8190 clocks         1111       1111       8192 clocks         *One display cycle is equal to two SCLK periods       Setting requirements         For display control by AGDC: HS, HBP, HH, HD, HBP ≥ 4 SCLK periods       For interlace display: HBP ≥ 6 SCLK periods         For interlace display: HBP ≥ 6 SCLK periods       For AGDC in slave mode: HS ≥ 10 SCLK periods



Table 2. Register Descriptions (cont)

Address (Hex)	Bits	Name	Description	
7EH-7FH	12 each	VS (Vertical Sync), VBP (Vertical Back Porch), L/F (Lines per Field), VFP (Vertical Front	VS Vertical syr VBP Vertical bac L/F Lines per fi	nc (timing) parameters. See figure 23. nc (retrace) high-level period ck porch (non-displayed portion on upper part of screen) eld (number of horizontal scan lines displayed) nt porch (non-displayed portion on lower part of screen)
		Porch)	VS, VBP, L/F, VFP	*Horizontal scan lines
			0000 0000 0000	4096
			0000 0000 0001	1
			0000 0000 0010	2
			1111 1111 1110	4094
			1111 1111 1111	4095
			* Vertical timing pa	rameters are set as multiples of the horizontal scan line period.

Figure 15. Raster Operations: Replace and XOR (MOD0/MOD1)



49NR-389B

# μPD72120



	Source [S]	Destination [D]
	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	000000000000000000000000000000000000
MOD = 1	1000; AND D and S	MOD = 1100; OR D and S
D         S         D           0         0         0           0         1         0           1         0         0           1         1         1	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	D         S         D           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
MOD =	1001; AND D and $\overline{S}$	MOD = 1101; OR D and $\overline{S}$
D         S         D           0         0         0         0           0         1         0         1           1         0         1         1           1         1         0         1	$1001; \text{ AND } \overline{D} \text{ and } S$ $0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
MOD =           D         S         D           0         0         1           0         1         0           1         0         0           1         1         0	1011; AND $\overline{D}$ and $\overline{S}$ 000000000000000000000000000000000000	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

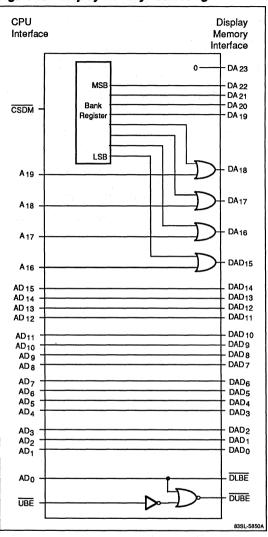
### Figure 16. Raster Operations; AND and OR (MOD0/MOD1)

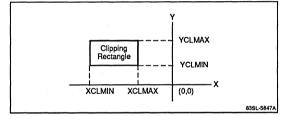
3-126

# Figure 17. Status Register Format

		8	7	6	5	4	3	2	1	0					
		CLIP	PGRDY	ODDFB	VSB	VS	DPERR	PPERR	DPBSY	PPBSY	]				
	3DH				****	3	СН	L			1				
Bit	Flag Name			Abbreviation	bbreviation Meaning When Bit = 1										
0	Preprocessor Busy			PPBSY	The pr	The preprocessor is executing a command.									
1	Drawing Processor Busy			DPBSY	The dra	The drawing processor is executing a command.									
2	Prep	processor Err	or	PPERR	An error was detected during the execution of a command by the preprocessor.										
3	Drav	wing Process	or Error	DPERR	An error was detected during execution of a command by the drawing processor.										
4	Vert	ical Sync Pe	riod	VS	Indicat	es vertical sy	/nc period.								
5	Vert	ical Blanking	Period	VSB	Indicat	es vertical b	anking period	•							
6	Odd	field		ODDFD	Indicat	es odd field	during interla	ced operation	1.						
7	Put/	Get Ready		PGRDY	Indicates that data can be transferred during a PUT or GET command.										
8	Clip	ping		CLIP	Picking	Picking or object detected.									

# μPD72120





Figure 18. Display Memory Addressing

NEC

### Figure 19. Register Format

		7	6	5	4	3	2	1	0			
	[	DBIE	PBIE	CIE	0	0	0	ABORT	RESET	]		
Bit	Flag Name Abbreviation				Meaning Whe	en Bit = 1						
0	Software R	RESET	Г	Initializes µPD	072120.				-			
1	Processor Abort ABORT				Stops any processing being performed and clears the processor BUSY status.							
2	Not used				Must be set to	o 0.						
3	Not used											
4	Not used											
5	Clipping In	terrupt Enabl	e CIE		Enables the INT signal when picking (drawing in the clipped region).							
6	Preprocess Interrupt Er		PBIE		Enables the INT signal when the preprocessor status changes from BUSY to NOT BUSY.							
7	Drawing Pr Busy Interr		DBIE		Enables the INT signal when the drawing processor status changes from BUSY to NOT BUSY.							

# Figure 20. Rectangular Clipping Region

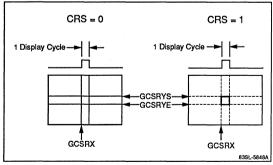


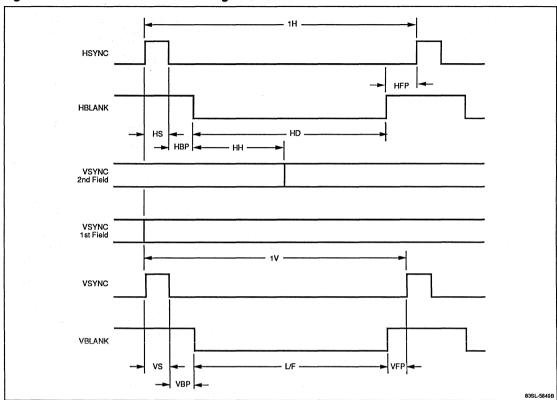
# Figure 21. Display Control Register

MSB	15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	0 L	SB
	DTM	DTT	D	AD+		IN	RE	SC	FCCL	TCCL	MASK	M/S	SD	LFI	SPST	SVS	

Bit	Flag Name	Abbreviation	Function						
0	Slave Sync	SVS	When the AGDC is in the slave mode, SVS determines the initialization of the inter- nal horizontal and vertical counters. SVS is ignored in the master mode.						
			SVS         Initializes the vertical and horizontal counters at the rising edge of EXVS and EXHS, respectively.           1         Initializes the vertical and horizontal counters at the rising edge of EXVS.						
1	Sync Parameter Setting	SPST	Enables the writing of the sync timing parameters (HS, HBP, HH, HD, HFP, VS, VBP, L/F and VFP) to address 7EH-7FH. The writing should take place after SPST is set to 0, then to 1. <u>SPST</u> 0 Disables writing of sync parameters 1 Enables writing of sync parameters						
2	Display Lines per Frame in Interlace Mode	LFI	Defines whether there is an even or odd number of lines per frame in interlaced mode. LFI is ignored in non-interlaced mode.						
			LFI           0         Even total number of lines for the sum of even and odd fields (one frame).           1         Odd total number of lines for sum of even and odd fields.						




Bit	Flag Name	Abbreviation	Function
3	Stop Display	SD	Defines the state of the BLANK output signal. SD is set to 1 by a high level on the RESET pin.
			SD
			BLANK signal active (high) only for the non-display period defined by the video sync signals.
			1 BLANK signal active for display and non-display periods (on continuously),
4	Master/Slave	M/S	Defines whether the AGDC is a master or a slave in terms of video sync signal gen- eration.
			<u>M/S</u>
			0 Sets the AGDC to slave mode (video sync signals input through EXVS and EXUS)
			EXHS). 1 Sets the AGDC to master mode (generates video sync signals and outputs them through VS and HS).
5	Mask	MASK	Defines the VS signal output timing in the master mode. In the slave mode, defines the validity of the EXHS and EXVS sync timing input.
			MS MASK
			0 Accepts EXHS and EXVS sync timing input.
			0 1 Ignores EXHS and EXVS sync timing input.
			1 0 Only the VS signal of the even field in interlace mode is output.
			1 1 The VS signal is output normally.
6	Timing Counter Clear	TCCL	Defines the timing for initializing the internal display cycle counter when the AGDC is in slave mode. TCCL is ignored when the AGDC is in master mode.
			TCCL           0         Does not initialize the display cycle counter on the rising edge of EXVS.           1         Initializes the display cycle counter on the rising edge of EXVS (sets the counter to the D1 cycle).
7	Field Counter Clear	FCCL	Defines the timing for initializing the internal field counter when using interlaced display in the slave mode. When the AGDC is in master mode or non-interlaced dis- play, FCCL is ignored.
			FCCL         0       Does not initialize the field counter on the rising edge of EXVS.         1       Initializes the field counter on the rising edge of EXVS, setting the counter to the even field.
8	Steal Control	SC	Defines the relationship between the CLK and SCLK signals when the AGDC is in
			the DT mode (using video RAMs). If the AGDC is in cycle steal mode, SC is ignored
			<u>SC</u>
			0 CLK does not equal SCLK. 1 CLK and SCLK are the same
9	Refresh Enable	RE	Defines whether the AGDC is to generate DRAM refresh addresses.
			<u>RE</u>
			0 The AGDC does not generate DRAM refresh addresses 1 The AGDC generates DRAM refresh address while HS is active (high)
10	Interlace	IN	Defines whether interlaced or non-interlaced display mode is to be used.
			IN
			0 Non-interlaced display
			1 Interlaced display
	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •


# Figure 21. Display Control Register (cont)

Bit	Flag Name	Abbreviation	Function
11, 12, 13	Display Address Proceedings	DAD +	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
14	Data Transfer Timing	DTT	<ul> <li>Defines the output timing for the DT (data transfer) signal when using VRAMs. DTT is ignored in the cycle steal mode.</li> <li>DTT <ul> <li>DT</li> <li>DT is generated (active low) when any of the following conditions is true.</li> <li>(a) At the start of the screen display (at the first rising edge of the BLANK signal in a frame)</li> <li>(b) At the start of each horizontal scan line (at the falling edge of BLANK)</li> <li>(c) When all 8 AC register-defined bits of the 24-bit display address are 0 (when the lower 8 bits are 00H).</li> </ul> </li> <li>1 DT is generated when any of the following conditions is true.</li> <li>(a) At the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the start of the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the screen display (at the first rising edge of the BLANK signal at the screen display (at the first rising edge of the screen display (at the screen display</li></ul>
			nal in a frame) (b) When all 8 AC register-defined bits of the 24-bit display address are 0.
15	Data Transfer Mode	DTM	Defines the display cycle generation timing. Data transfer mode is normally used with video RAMs and cycle steal mode with other types of memories.         DTM         0       Sets the cycle steal (SC) mode. The DT/DISP pin outputs the DISP signal (active low). Display and drawing cycles alternate in this mode.         1       Sets the data transfer (DT) mode. The DT/DISP pin outputs the DT signal (active low).

### Figure 21. Display Control Register (cont)

# Figure 22. Cursor Position Select





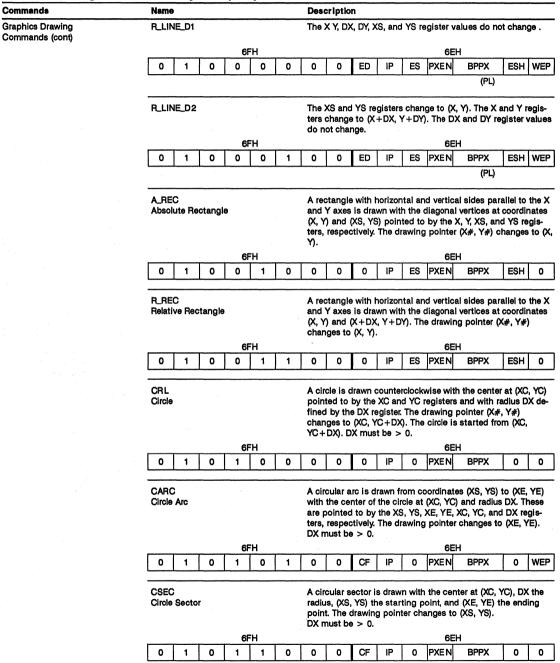
NEC

Figure 23. Horizontal and Vertical Timing Parameters

# Table 3. List of DRAW Commands

Commands		Absolute Coordinates	Relative Coordinates
Data Read Commands	Coordinate value read	READ_DP	
	Color information read	READ_COL	
Graphics Drawing	Dot	DOT_D	
Commands		A_DOT_M	R_DOT_M
	Straight line	A_LINE_M0	R_LINE_MO
		A_LINE_M1	R_LINE_M1
		A_LINE_M2	R_LINE_M2
		A_LINE_D0	R_LINE_D0
		A_LINE_D1	R_LINE_D1
		A_LINE_D2	R_LINE_D2
		A_LINE_D3	•
	Rectangle	A_REC	R_REC
	Circle	CRL	
	Arc	CARC	
	Circle sector	CSEC	
	Circle segment (bow)	CSEG	
	Ellipse	ELPS	
	Ellipse arc	EARC	
	Ellipse sector	ESEC	
	Ellipse segment (bow)	ESEG	
Fill Commands	Arbitrary area fill	PAINT	
	Triangle fill	A_TRI_FILL	
	Trapezoid fill	A_TRA_FILL	
	Rectangle fill	A_REC_FILL_C	
		A_REC_FILL_A	R_REC_FILL
	Circle fill	CRL_FILL	
	Ellipse fill	ELPS_FILL	
Copy Commands	Physical address to physical address	A_COPY_AA	
	Coordinate to physical address	A_COPY_CA	
	Physical address to coordinate	A_COPY_AC	
	Coordinate to coordinate	A_COPY_CC	<u></u>
	Copy function extensions	90°_COPY	
		SL_COPY	
		FR_ES_COPY	······································
		ES_COPY	
PUT/GET Commands	System memory to display memory	PUT_A	
		PUT_C	
	Display memory to system memory	GET_A	
		GET_C	
	GET function extensions	90°_GET	·




Commands	Name	8						Desc	riptio	n							
Data Read Commands	REAL Read	D_DP I Drawi	ing Po	inter									oordina read b				utput
	·····				6FI	<u>+</u>		·					65	H	<del></del>	·	
	0	0	0		0	0	1	0	0	0	0	0	0	0	0	0	0
		AD_COL ad Color					the c place least	The color information in each memory plane correspon the coordinates ( $X$ , $Y$ ) pointed to by the X and Y regist placed in the DX register to be read by the host CPU. least significant bit corresponds to the first plane, the r significant bit to the 16th plane.									
					6FI	<u> </u>				·			68	H	·····	-1	
	1	0	0		1	1	1	0	0	0	0	0	0	0	0	0	0
Graphics Drawing Commands	DOT Dot [	_D Direct					****	Y#). poin	The d ter of t	rawing	pointe TCNT I	ər (X#,	drawing , Y#) re er shifts	mains	s unch	anged.	The I
					6FI	<u> </u>							65	H			
	0	0	0		0	1	0	0	0	0	IP	0	PXEN	BI	PPX	0	0
	A_D( Abso	DT_M plute D	ot with	n Mo				and chan	Y regi: ges to	sters, r (X, Y).	espect . The b	ively. it poir	ordinat The dra nter of t ward th	wing he PN he MS	pointe ITCNT	r (X#,	Y#)
					6651	-							68	=H			
	0	0	0		6Fł	T	1	0	0	0	IP	0		EH BI	PPX	0	l o
		0 DT_M tive Do	0 t with	<b>-</b>	0	1	1	and	DY reg	jisters,	respec	ctively	PXEN Y+DY) The dr	Bi defin	point	er (X#	, Y#)
	 R_D(	M_TC		<b>-</b>	0	T	1	A do and char	t is dra DY reg iges to	awn at gisters,	the (X respec X, Y+	+DX, ctively DY). T	PXEN Y+DY) The dr he bit p	Bi defin awing ointer	ed by point of the	the X, er (X#	DX, Y,
	 R_D(	M_TC		<b>-</b>	0 e	1	1	A do and char	t is dra DY reg iges to	awn at gisters,	the (X respec X, Y+	+DX, ctively DY). T	PXEN Y+DY) The dr he bit p y 1 bit t	defin awing ointer oward	ed by point of the	the X, er (X#	DX, Y, , Y#)
	 R_D(	M_TC		Mov	0	1	1	A do and char	t is dra DY reg iges to	awn at gisters,	the (X respec X, Y+	+DX, ctively DY). T	PXEN Y+DY) The dr he bit p y 1 bit t	Bi define awing oointer oward EH	ed by point of the	the X, er (X#	DX, Y, , Y#)
	R_DC Relat	OT_M tive Do	t with	Mov	0 9 6Fi 1	1 H 0		A do and char regis 0 A stri the ) regis draw	t is dra DY reg oges to ster sh 0 raight ( and ` sters. \v m. The	awn at jisters, o (X+D ifts froi 0 line is o Y regis WEP de	the (X respective X, Y+1 m the 1 IP drawn ters to etermin ng poin	+ DX, ctively DY). T LSB b 0 from c (XE, ` nes wh nter (X	PXEN Y+DY) The dr he bit p y 1 bit t 6E	defin awing oointer owarc EH Bl ates () nted t	ed by g point r of the d the M PPX K, Y) p o by t d point	the X, er (X# PNTC 1SB . 0 ointed he XE t (XE, Y	DX, Y, , Y#) NT 0 to by and Y (E) is
	R_D( Relat	DT_M live Do	ot with	Mov	0 9 6Fi 1	1 H 0		A do and char regis 0 A stri the ) regis draw com	t is dra DY reg Iges to ster sh 0 aight 1 ( and ` sters. V (n. The mands X and sters. 1	awn at jisters, b (X+D ifts from line is o Y regis WEP de b drawin s differ Y regis	the (X respective X, Y+1 m the I IP drawn ters to betermin ng point as follow	+ DX, ctively DY). T LSB b 0 from c (XE, ' nes wh nter () ows.	PXEN Y+DY) The bit p y 1 bit t 6E PXEN coordina YE) poi	Bi defini awing oointer owarce EH Bi ates () Inted to chang values	ed by g point r of the d the M PPX K, Y) p o by the ges to s in the	the X, er (X# PNTC 1SB . ointed he XE t (XE, Y (XE, Y	DX, Y, , Y#) NT to by and Yi (E) is E). Th
	R_D( Relat	DT_M tive Do	ot with	Mov	0 9 6Fi 1	1 0 , 1, 2		A do and char regis 0 A stri the ) regis draw com The regis	t is dra DY reg Iges to ster sh 0 aight 1 ( and ` sters. V (n. The mands X and sters. 1	awn at jisters, b (X+D ifts from line is o Y regis WEP de b drawin s differ Y regis	the (X respective X, Y+1 m the I IP drawn ters to betermin ng point as follow	+ DX, ctively DY). T LSB b 0 from c (XE, ' nes wh nter () ows.	PXEN Y+DY) The dr he bit py 1 bit t 6E PXEN coordina 7E) poi tether th (#, Y#) to the d YS reg	Bi defini awing oointer owarce EH Bi ates () Inted to chang values	ed by g point r of the d the M PPX K, Y) p o by the ges to s in the	the X, er (X# PNTC 1SB . ointed he XE t (XE, Y (XE, Y	DX, Y, , Y#) NT to by and Yi (E) is E). Th
	R_D( Relat	DT_M tive Do	ot with	Mov	0 6FH	1 0 , 1, 2		A do and char regis 0 A stri the ) regis draw com The regis	t is dra DY reg Iges to ster sh 0 aight 1 ( and ` sters. V (n. The mands X and sters. 1	awn at jisters, b (X+D ifts from line is o Y regis WEP de b drawin s differ Y regis	the (X respective X, Y+1 m the I IP drawn ters to etermin ng poin as follo	+ DX, ctively DY). T LSB b 0 from c (XE, ' nes wh nter () ows.	PXEN Y+DY) The dr he bit py 1 bit t 6E PXEN coordina 7E) poi tether th (#, Y#) to the d YS reg	Bi defini awing ointer owarce EH Bi Bi Attes () the enc chang values gisters	ed by g point r of the d the M PPX K, Y) p o by the ges to s in the	the X, er (X# PNTC 1SB . ointed he XE t (XE, Y (XE, Y	DX, Y, , Y#) NT to by and Yi (E) is E). Th nd YE ige

#### Commands Name Description **Graphics Drawing** A LINE M1 The X, Y, XE, YE, XS, and YS registers do not change value. Commands (cont) 6FH 6EH 0 0 0 1 1 ٥ 0 0 ED IP ES PXEN BPPX ESH WEP (PL) A LINE M2 The XS and YS registers change to the values in the X and Y registers. The X and Y registers change to the values in the XE and YE registers. The XE and YE registers do not change value. 6FH 6EH 0 1 1 PXEN BPPX ESH WEP 0 0 1 0 0 ED IP ES (PL) Absolute Line Direct 0, 1, 2, 3 A straight line is drawn from the current drawing pointer (X#, Y#) to the coordinates (XE, YE) pointed to by the XE and YE registers, respectively. The values in the X and Y registers should be equal to the drawing pointer (X#, Y#) in order to execute these commands. The drawing of the end point (XE YE) is determined by WEP. The commands differ as follows. A_LINE_D0 The drawing pointer (X#, Y#) and X and Y register values change to XE and YE. The values in the XE, YE, XS, and YS registers do not change. 6FH 6EH 0 PXEN BPPX ESH WEP 0 0 1 0 0 0 0 ED IP ES (PL) A_LINE_D1 The values in the X, Y, XE, YE, XS, and YS registers do not change. The drawing pointer (X#, Y#) changes to (XE, YE). 6EH 6FH 0 0 1 0 0 1 0 0 ED IP ES PXEN BPPX ESH WEP (PL) A_LINE_D2 The values in the XS and YS registers change to those in the X and Y registers. The X and Y register values change to those in the XE and YE registers. The XE and YE register values do not change. The drawing pointer (X#, Y#) changes to (XE, YE). 6FH 6EH 0 0 PXEN BPPX ESH WEP 0 1 0 1 0 0 ED IP ES (PL)



Commands	N	lame							Des	criptic	on						
Graphics Drawing Commands (cont)	A	A_LINE_D3							The values in the XS and YS registers are used for the end point of the line. The drawing pointer changes to (XS, YS). The values in the X and Y registers change to those in the XS and YS registers. The XE, YE, XS, and YS register values do not change.								). The S and
						6F	н			-				6EH	4		
	Г	0	0	1	T	0	1	1	0	0	ED	IP	ES	PXEN	BPPX	ESH	WEP
								l	L	1			L		(PL)		
		Relative Line with															
			/e Line 0, 1, 2						A straight line is drawn from coordinates (X, Y) pointed to by the X and Y registers to the point (X+DX, Y+DY) with DX and DY contained in their respective registers. Drawing of the end point is determined by the WEP bit.							X and	
	R	LIN	E_M0	······································		6F	:н	,	X aı	nd Y re	gisters	chang	je to (				
	Г	0	0	1	T	1	0	0	0	0	ED	IP	ES	PXEN	BPPX	ESH	WFP
	L	<u> </u>		· ·								L		17211	(PL)	12011	
	R	LIN	E_M1	· .		6F	Ή								to (X+DX s do not cl f		). The
		0	0	1	Τ	1 -	0	1	0	0	ED	IP	ES	PXEN	BPPX	ESH	WEP
		k		I				·				J	1	_1	(PL)		
	R	LIN	E_M2			6F	: <b>н</b>		XS, cha	and Y	S regist (X+D)	ters ch	ange	to (X, Y).	to (X+DX The X and DY regist	Y regis	ters
		7		· .	<b>—</b>			· • • • • • • • • • • • • • • • • • • •		1		1	1 50	T			
		0	0	1			1	0	0	0	I FD	I IP	1 55		BPPX	ESH	WEP
		0	0	1		1	1	0	0	0	ED	IP	ES	PXEN	BPPX (PL)	ESH	WEP
	 F	I	0 Direc			• •	1	0	A st the regi	raight coordi sters.	line is nates ( The dra	drawn X + DX	from from from from from from from from	the drawi Y) pointe end poin		(X#, Y# e DX an ined by	¥) to d DY the
		I	Direc					0	A st the regi WE	raight coordi sters. ⁻ bit. T X and	line is nates () The dra he draw Y regis	drawn X + DX wing p wing p	from f , Y+D of the ointer hange	the drawi Y) pointe end poin changes to (X+E o not cha	(PL) ng pointer id to by the t is determ to (X+DX DX, Y+DY). nge.	(X#, Y e DX an ined by , Y+DY	≠) to d DY the ).
		R Line	Direc		, 2	6F 1		0	A st the regi WE	raight coordi sters. ⁻ bit. T X and	line is nates () The dra he draw Y regis	drawn X + DX wing p wing p	from f , Y+D of the ointer hange	the drawi Y) pointe end poin changes to (X+E	(PL) ng pointer id to by the t is determ to (X+DX DX, Y+DY). nge.	(X#, Y e DX an ined by , Y+DY	≠) to d DY the ).

#### Table 4. Drawing Command Descriptions (cont)



З



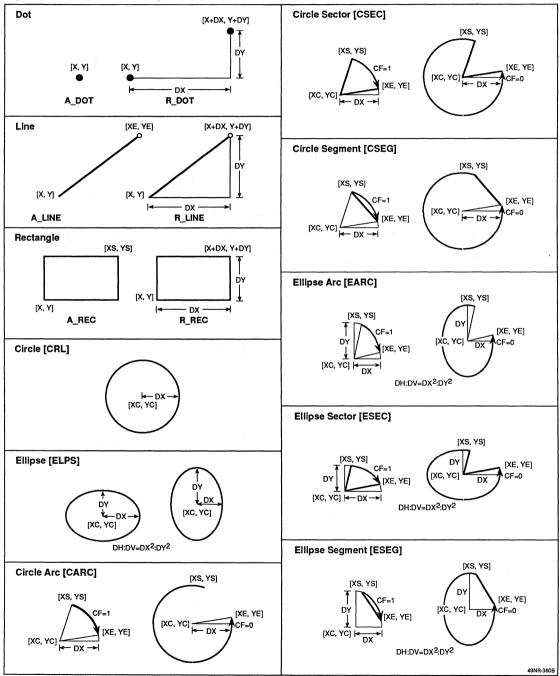
Commands	Na	me						Desc	riptio	n						
Graphics Drawing Commands (cont)		EG cle S	legm	ent		×		endir dius point	ng at ( DX. A t to co	XE, YE line se mplete	), the o gment the se	conn conn gmer	center at ects the a nt. The dra	starting a (XC, YC), arc startin awing poi ist be > 0	and wit g and e nter (X#	h ra- nding
					6	FH			•				6EH			
	0		1	0	1	1	0	1	0	CF	IP	0	PXEN	BPPX	0	0
	ELI Elli	PS ipse		,				axes Y-dir and ` The d	is dra ection Y-axis drawin	wn cou radius radii in g poini	DY, ar DY, ar DH ai ter (X#	ockwi: Id the Id DV	se with th ratio of t such tha	arallel to le center a he square it DX ² /DY ² to (XC, Yi	t (XC, ) s of the = DH/	'C), th X-axi DV.
								radiu	s DY r	nust be	9 > 0.					
		- i			T	FH	T	T .					6EH			T
		<u>, </u>	1	0	1	1	1	0	0	0	IP	0	PXEN	BPPX	0	0
		RC												axes paral (XE, YE) v		
	EIII	ipse /	Arc					cento squa The d	er at () res of drawin	(C, YC) the X-	, Y-dir and Y-	ectior direct	i radius D tion radii changes	Y, and the DX ² /DY ² to (XE, Y	= DH/D	۷.
	200 - 1.				T	FH	<del></del>	cento squa The o DY m	er at () res of drawin hust b	(C, YC) the X- g point e > 0.	, Y-dir and Y- ter (X#	ectior direc , Y#)	i radius D tion radii changes 6EH	Y, and the DX ² /DY ² : to (XE, Y	= DH/D E). The	V. radius
			Arc 1	1	6	FH 0	0	cento squa The d	er at () res of drawin	(C, YC) the X- g point	, Y-dir and Y-	ectior direct	i radius D tion radii changes	Y, and the DX ² /DY ² to (XE, Y	= DH/D	V. radius
	ES	EC			T		0	centa squa The c DY m 0 An el coord ellips of the DH/D	er at () res of drawin nust b 0 0 Illiptica dinate se cen e squa DV. The	(C, YC) the X- ig point $\Rightarrow > 0.$ CF I secto axes is ter at () ares of	, Y-dir and Y- ter (X# IP r with s draw KC, YC the X- ng poi	ection direct , Y#) 0 major n from ), Y-d and Y nter (	and minumentation radius D tion radii changes 6EH PXEN and minumentation (XS, YS) irrection radio citection ra	Y, and the DX ² /DY ² : to (XE, Y	= DH/D E). The 0 trallel to E) with and the 2/DY ² =	V. radius WEF the the ratio
	ES	EC	1		0		0	centa squa The c DY m 0 An el coord ellips of the DH/D	er at () res of drawin nust b 0 0 Illiptica dinate se cen e squa DV. The	(C, YC) the X- g point $\Rightarrow > 0.$ CF I secto axes is ter at () ares of $\Rightarrow$ drawi	, Y-dir and Y- ter (X# IP r with s draw KC, YC the X- ng poi	ection direct , Y#) 0 major n from ), Y-d and Y nter (	and minumentation radius D tion radii changes 6EH PXEN and minumentation (XS, YS) irrection radio citection ra	Y, and the DX ² /DY ² : to (XE, Y BPPX or axes pa to (XE, Y adius DY, i n radii DX ² changes to	= DH/D E). The 0 trallel to E) with and the 2/DY ² =	V. radius WEF the the ratio
	ES	EC ipse :	1		0	0	0	centa squa The c DY m 0 An el coord ellips of the DH/D	er at () res of drawin nust b 0 0 Illiptica dinate se cen e squa DV. The	(C, YC) the X- g point $\Rightarrow > 0.$ CF I secto axes is ter at () ares of $\Rightarrow$ drawi	, Y-dir and Y- ter (X# IP r with s draw KC, YC the X- ng poi	ection direct , Y#) 0 major n from ), Y-d and Y nter (	and minin (XS, YS) (Alternion of the second and minin (XS, YS) (alternion of the second (XS, YS) (Alternion	Y, and the DX ² /DY ² : to (XE, Y BPPX or axes pa to (XE, Y adius DY, i n radii DX ² changes to	= DH/D E). The 0 trallel to E) with and the 2/DY ² =	V. radius WEF the the ratio
	ES EIII EIII	EC ipse : D	1 Secto	or 1	0	FH		Center squa The c DY m 0 An el coord ellips of the DH//C The i 0 An el coord ellips of the intervention	er at () res of drawin ust bi 0 Uliptica dinate e cen e squa W. Tho radius	KC, YC) the X- g point a > 0. CF Il secto axes is ter at () ures of 1 of drawi DY mu CF Il segm axes is ter at () axes of 1	, Y-dir. and Y- ter (X# IP r with s draw KC, YC the X- ng poi st be : IP eent wi s draw KC, YC the X- the X-	ection direction (, Y#) 0 major n from ), Y-d and Y nter ( $)$ > 0. 0 0 0 th ma n from ), Y-d and Y	A radius D tion radii changes 6EF PXEN and min- (XS, YS) irection r -directior X#, Y#) c 6EF PXEN jor and rm (XS, YS) irection r (XS, YS) irection r (XS, YS)	Y, and the DX2/DY2 = to (XE, Y BPPX or axes pa to (XE, Y BPPX or axes pa to (XE, Y adius DY, i n radii DX3 hanges to BPPX BPPX ninor axes to (XE, Y adius DY, i hanges to boot (XE, Y n radii DX3 hanges to boot (XE, Y hanges to boot (XE, Y hanges to boot (XE, Y hanges to boot (XE, Y) hanges to boot	= DH/D E). The o arallel to E) with and the C/DY ² = o XS, YS o paralle CE) with and the charter o	V. radius the the ratio s).
	ES EIII EIII	EC ipse : D	1 Sector	or 1	0 6 0	FH 0		Center squa The c DY m 0 An el coord ellips of the DH//C The i 0 An el coord ellips of the intervention	er at () res of drawin ust bi 0 Uliptica dinate e cen e squa W. Tho radius	KC, YC) the X- g point a > 0. CF Il secto axes is ter at () ures of 1 of drawi DY mu CF Il segm axes is ter at () axes of 1	, Y-dir. and Y- ter (X# IP r with s draw KC, YC the X- ng poi st be : IP eent wi s draw KC, YC the X- the X-	ection direction (, Y#) 0 major n from ), Y-d and Y nter ( $)$ > 0. 0 0 0 th ma n from ), Y-d and Y	A radius D tion radii changes 6EH PXEN A and min- n (XS, YS) irection r -directior (X#, Y#) c 6EH PXEN - pyEN - pyEN - or and m (XS, YS) - irection r - (XS, YS) - - - - - - - - - - - - -	Y, and the DX2/DY2 = to (XE, Y BPPX or axes pa ) to (XE, Y adius DY, adius DY, n radii DX3 changes to BPPX binor axes ) to (XE, Y adius DY, n radii DX3 changes to changes to	= DH/D E). The o arallel to E) with and the C/DY ² = o XS, YS o paralle CE) with and the charter o	V. radius tradius the the ratio s).
	ES EIII EIII	EC ipse : EG ipse :	1 Sector	or 1	0 6 0	FH		Center squa The c DY m 0 An el coord ellips of the DH//C The i 0 An el coord ellips of the intervention	er at () res of drawin ust bi 0 Uliptica dinate e cen e squa W. Tho radius	KC, YC) the X- g point a > 0. CF Il secto axes is ter at () ures of 1 of drawi DY mu CF Il segm axes is ter at () axes of 1	, Y-dir. and Y- ter (X# IP r with s draw KC, YC the X- ng poi st be : IP eent wi s draw KC, YC the X- the X-	ection direction (, Y#) 0 major n from ), Y-d and Y nter ( $)$ > 0. 0 0 0 th ma n from ), Y-d and Y	A radius D tion radii changes 6EF PXEN and min- (XS, YS) irection r -directior X#, Y#) c 6EF PXEN jor and rm (XS, YS) irection r (XS, YS) irection r (XS, YS)	Y, and the DX2/DY2 = to (XE, Y BPPX or axes pa ) to (XE, Y adius DY, adius DY, n radii DX3 changes to BPPX binor axes ) to (XE, Y adius DY, n radii DX3 changes to changes to	= DH/D E). The o arallel to E) with and the C/DY ² = o XS, YS o paralle CE) with and the charter o	V. radius tradius the the ratio s).

Commands	Name	Description						
ill and Paint Commands	PAINT	A boundary-point search is carried out starting from coordi- nates (X, Y) and the resulting enclosed area is filled with a solid or tiling pattern. When PMOD = 0, the boundary colors are set into the DX register. The area to be painted must be enclosed within the clipping rectangle and the CLIP register must be set to 00.						
	6FH	6EH						
	0 1 1 0 1	0 0 0 TL 0 1 SS 0 PMOD 0 0						
	A_TRI_FILL Absolute Triangle Fill	A triangular region with vertices at (X, Y), (XS, YS), and (XC, YC) is filled with the tiling pattern. Y, YS, and YC must not be equal to each other.						
	6FH	6EH						
	0 1 1 0 1	1 0 0 TL 0 1 SS WL WR 0 0						
	A_TRA_FILL Absolute Trapezoid Fill	A trapezoidal area with its parallel sides (upper and lower) de fined by line segments connecting (X, Y) to (XS, Y) and (YS, YE) to (XE, YE), where YS is an X-axis value, is filled with the tiling pattern.						
	6FH	6EH						
	0 1 1 1 0	0 0 0 TL 0 1 SS WL WR 0 0						
	R_TRA_FILL Relative Trapezoid Fill 6FH	A trapezoidal area with its upper parallel side defined by the line segment connecting (X, Y) to (XS, Y), a height of $DV+1$ dots above the lower side line segment connecting $X+DX$ an XS+XC, is filled with the tilng pattern. 6EH						
	A_REC _ FILL_ C Absolute Rectangle Fill by Coordinates	A rectangle with vertical and horizontal sides parallel to the coordinate axes is filled with the tiling pattern. The diagonal vertices of the rectangle are (X, Y) and (XS, YS).						
	Absolute Rectangle Fill by	coordinate axes is filled with the tiling pattern. The diagonal						
	Absolute Rectangle Fill by Coordinates	coordinate axes is filled with the tiling pattern. The diagonal vertices of the rectangle are (X, Y) and (XS, YS).						
	Absolute Rectangle Fill by Coordinates 6FH	coordinate axes is filled with the tiling pattern. The diagonal vertices of the rectangle are (X, Y) and (XS, YS). 6EH						
	Absolute Rectangle Fill by Coordinates 6FH 1 0 0 0 1 A_REC_FILL_A Absolute Rectangle	coordinate axes is filled with the tiling pattern. The diagonal vertices of the rectangle are (X, Y) and (XS, YS).         6EH         1       0       0       TL       0       1       SS       WL       WR       FAST       0         A rectangle with vertical and horizontal sides parallel to the coordinate axes is filled with the tiling pattern. The rectangle is defined by the number of dots in the vertical direction DV + 1, the starting address (physical address) EAD1, and the bit positio						



Commands	Name	Description						
Fill and Paint Commands (cont)	R_REC_FILL Relative Rectangle Fill by Coordinates	A rectangle with vertical and horizontal sides parallel to the coordinate axes is filled with the tiling pattern. The rectangle is defined by the starting point (X, Y), the horizontal width DX and the vertical height DY. The diagonal vertices are at (X, Y) and $(X + DX, Y + DY)$ .						
	6FH	6EH						
	1 0 0 1 0 0	0 0 TL 0 1 SS WL WR FAST 0						
	CRL_FILL Circle Fill	A circle with its center at (XC, YC) and a radius of DX is filled with the tilling pattern. Points on the circumference are filled. The filling starts from the top of the circle and proceeds downward.						
	6FH	6EH						
	0 1 0 1 0 0	0 0 TL 0 1 SS 1 1 0 0						
	ELPS_FILL Ellipse Fill 6FH	An ellipse with its major and minor axes parallel to the coordinate axes, center at (XC, YC), Y-direction radius DY, and ratio of the squares of the X- and Y-direction radii $DX^2/DY^2 = DH/DV$ is filled with the tiling pattern. The filling starts from the the top of the ellipse and proceeds downward. 6EH						
	0 1 0 1 1 1	0 0 TL 0 1 SS 1 1 0 0						
Copy Commands	A_COPY_AA Absolute Copy Address to Address 6FH	A rectangular area of memory starting from physical location EAD2 and bit position dAD2, with horizontal size $DH+1$ dots and vertical size $DV+1$ dots, is transferred to the rectangular area of memory starting from EAD1 and bit position dAD1. 6EH						
	0 1 1 1 1 0	0 0 ESE REV ROT 0 SD_SEL FAST 0						
	A_COPY_CA Absolute Copy Coordinate to Address	A rectangular area of display memory starting from (XS, YS), with horizontal size DH+1 dots and vertical size DV+1 dots, is transferred to the rectangular area of memory starting from physical address EAD1 and bit position dAD1.						
	6FH	6EH						
	6FH 0 1 1 1 1 1	• • •						
	0     1     1     1     1       A_COPY_AC       Absolute Copy Address       to Coordinate	6EH         0       0       ESE       REV       ROT       0       SD_SEL       FAST       0         A rectangular area of display memory starting from physical address EAD2 and bit position dAD2, with horizontal size DH+1 dots and vertical size DV+1 dots, is transferred to the rectangular area of memory starting from (X, Y).						
	0 1 1 1 1 1 A_COPY_AC Absolute Copy Address	6EH 0 0 ESE REV ROT 0 SD_SEL FAST 0 A rectangular area of display memory starting from physical address EAD2 and bit position dAD2, with horizontal size DH+1 dots and vertical size DV+1 dots, is transferred to the						

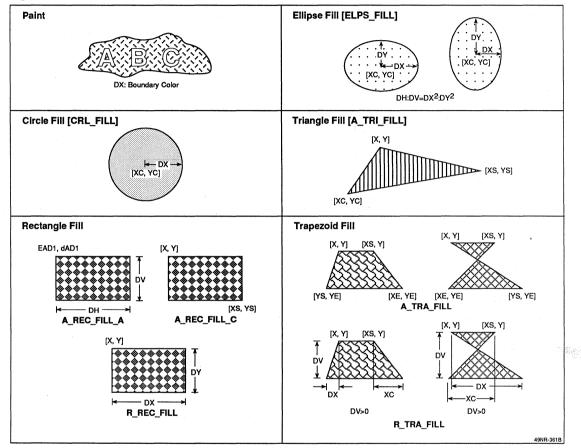
Commands	Name						Dese	riptio	n						
Copy Commands (cont)	A_COPY_CC Absolute Copy Coordinate to Coordinate							A rectangular area of display memory starting from (XS, YS), with horizontal size DH+1 dots and vertical size DV+1 dots, is transferred to the rectangular area of memory starting at (X, Y).							
				6	FH		6EH								
	1	0	0	0	0	1	0	0	ESE	REV	ROT	0	SD_SEL	FAST	0
Copy Function Extensions							char	ging ti is defi	he lower	2 bits	of the	com	d can be ex mand code. -) of the con	This exte	
		90°_COPY 90° Rotation Copy								emory	area is	s rotat	ed 90° coun	terclockv	vise.
							6	EH							
					ESE	REV	ROT	1	SD_S	SEL	0	0	]		
	SL_CC Slant (				· .	The data in a rectangular area of display memory is slanted by DX in the X-direction to the change in the Y-direction 6EH									
					ESE	REV	ROT	0	SD_S	SEL	0	1	]		
	FR_ES Free A Enlarge	ngle F	Rotatio				para and for th	llelogr DX del ne vert nd ver	am at th termine ical side tical enl	ne dest the an e. MAG	tination gle for iH and	n area the h MAG	a rea is trar in display r orizontal sic V determine c factors.	nemory. Ie, XE an	DY Id Yi
					ESH	ESV	FS	61 1	EH SD_8	SEL	1	0	]		
	ES_CC Enlarge		nk Coj	ру			recta large	ngula d or sl H and	r area a hrunk in	t the do the ho	estinat orizont	tion in al and	e area is tran display me d/or vertical zontal and v	mory and direction	d en
								6	EH				_		
					_	1									



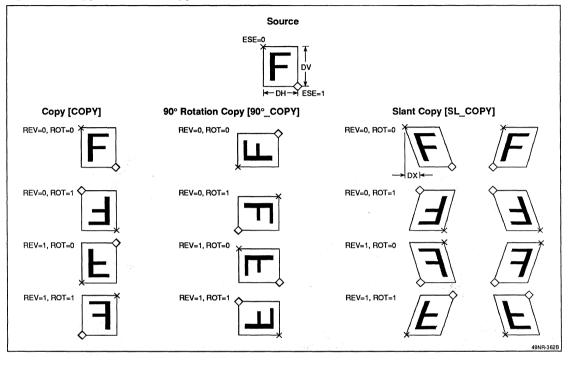

Commands	Name	)		12			Des	riptio	n						
PUT/GET Commands	PUT_ Put D Field		Addre	<b>S</b> S			of di posit	splay i ion d/	nemor	y start h horiz	ing froi	m wor	ster to a reci d address EA DH+1 dots a	D1 an	d bit
				6	FH							68	EH		
	1	0	0	1	0	1	0	0	0	REV	ROT	0	SD_SEL	1	1
	Put D	PUT_C Put Data to Coordinate Field							Transfers data from the PGPORT register to a rectangular area of display memory starting from (X, Y) with horizontal width DH+1 dots and vertical height DV+1 dots.						
				6	FH							68	EH		
	1	0	0	1	1	0	0	0	0	REV	ROT	0	SD_SEL	1	1
	GET_A Get Data from Address Field							Transfers data to the PGPORT register from a rectangular area of display memory starting from word address EAD1 and bit position dAD1 with horizontal width DH+1 dots and vertical height DV+1 dots.							
	Get D		om Ada	dress			of di posi	splay i tion dA	nemor D1 wit	y start h horiz	ing from	m wor	d address EA	D1 an	d bit
	Get D		om Ado		FH		of di posi	splay i tion dA	nemor D1 wit	y start h horiz	ing from	m word width [	d address EA	D1 an	d bit
	Get D		om Ado		FH 0	1	of di posi	splay i tion dA	nemor D1 wit	y start h horiz	ing from	m word width [	d address EA DH+1 dots a	D1 an	d bit
	Get D Field	Data fro	o om	6	1	1	of di posi heigi 1 Tran of di	splay I tion dA nt DV -I 0 sfers d splay I	0 ata to	y start h horiz s. 0 the PC y start	ontal v ontal v	m word width [ 6] 0 regist m (X, Y	d address EA DH + 1 dots a EH SD_SEL er from a rec Y) with horizo	D1 an nd ver 1	d bit tical 0 ar are
	Get D Field	0 0 0 0 0 0 0 0 0	o om	6	1	1	of di posi heigi 1 Tran of di	splay I tion dA nt DV -I 0 sfers d splay I	0 ata to	y start h horiz s. 0 the PC y start	ontal v ontal v PORT	m word width I 6I 0 regist m (X, Y DV+1	d address EA DH + 1 dots a EH SD_SEL er from a rec Y) with horizo	D1 an nd ver 1	d bit tical 0 ar are
	Get D Field	0 0 0 0 0 0 0 0 0	o om	6	0	1	of di posi heigi 1 Tran of di	splay I tion dA nt DV -I 0 sfers d splay I	0 ata to	y start h horiz s. 0 the PC y start	ontal v ontal v PORT	m word width I 6I 0 regist m (X, Y DV+1	d address EA DH + 1 dots a EH SD_SEL er from a rec: Y) with horizo I dots.	D1 an nd vei 1	d bit tical 0 ar are
	Get E Field	0 0 0 0 0 0 0 0 0	0 Dm Field	6   1 6   1	0 FH	I	of di posi heigi 1 Tran of di DH+	splay i tion dA nt DV - 0 sfers d splay i - 1 dots 0 in the igh 90	nemor D1 wit 1 dots ata to memor s and v 0 rectar ° and t	y start h horiz s. 0 the PC y start ertical 0 ngular	0 aPORT height area of	m word width I 6 0 regist m (X, Y DV + 1 6 0 0	d address EA DH + 1 dots a EH SD_SEL er from a rec Y) with horizo dots. EH	D1 an nd ver 1 tangui ontal v	d bit tical 0 ar are vidth
	Get E Field	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 om Field	6   1 6   1	0 FH	I	of di posi heigi 1 Tran of di DH+	splay i tion dA nt DV - 0 sfers d splay i - 1 dots 0 in the igh 90	nemor D1 wit -1 dots -1 dots -1 dots -1 dots 	y start h horiz s. 0 the PC y start ertical 0 ngular	0 aPORT height area of	m word width I 6 0 regist m (X, Y DV + 1 6 0 0	d address EA DH + 1 dots a EH SD_SEL er from a rec Y) with horizo dots. EH SD_SEL ay memory is	D1 an nd ver 1 tangui ontal v	d bit tical 0 ar are vidth

NEC

μPD72120







3











3

# μPD72120



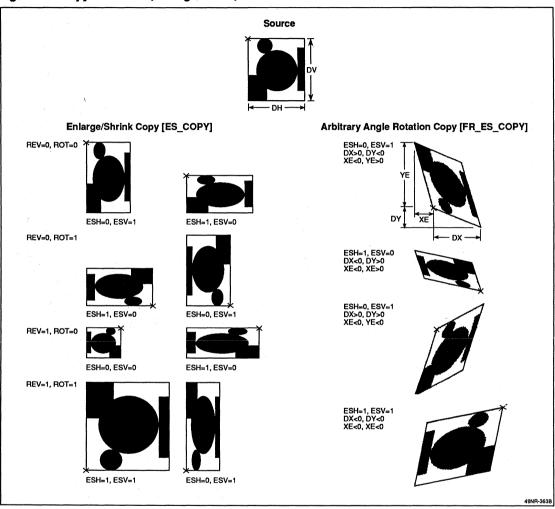



Figure 27. Copy Commands; Enlarge/Shrink, Rotate

B0

B0

B0

B0

0 6EH

**B**0

B0

0

B0

B0

0 6EH

6EH

6EH

6EH

WEP 6EH

0 0

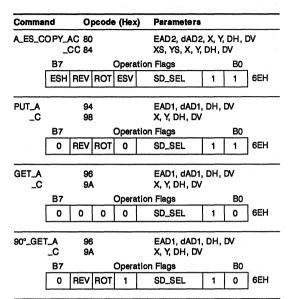
0

0 0

0

0 0 6EH

1 0 6EH


#### Command Opcode (Hex) Parameters Command Opcode (Hex) Parameters READ DP ELPS XC. YC. DY. DH. DV None 5C **04** READ COL 9C X. Y B7 **Operation Flags B**7 **Operation Flags** B0 IP PXEN BPPX 0 0 6EH 0 0 0 0 ٥ 0 0 0 XC, YC, DY, DH, DV, DX, XS, YS, EARC 60 DOT_D 08 None XE. YE A_DOT_M 0C X,Y **B**7 **Operation Flags** R_DOT_M 10 DX. DY CF IP PXEN 0 BPPX B7 **Operation Flags** BO 0 IP 0 PXEN BPPX 0 0 6EH ESEC XC, YC, DY, DH, DV, DX, XS, YS, 64 XE, YE A_LINE_MO ESEG 14 X. Y. XE. YE 65 18 _MI **B7 Operation Flags** _M2 1C CF IP PXEN BPPX 0 A LINE DO 20 XE, YE _D1 24 PAINT 68 X, Y, (DX) _D2 28 B7 **Operation Flags** D3 2C TL 0 1 SS 0 PMOD R_LINE_M0 30 X, Y, DX, DY _M1 34 A_TRI_FILL 6C X, Y, XS, YS, XC, YC _M2 38 A_TRA_FILL X, Y, XS, YS, XE, YE 70 R_TRA_FILL X, Y, XS, DX, XC, DV 74 R_LINE_D0 зC DX, DY _D1 40 **B7 Operation Flags** _D2 44 TL 0 SS WL WR 1 **Operation Flags B7** B0 A_REC_FILL_C 8C X, Y, XS, YS IP ES PXEN BPPX WEP 6EH ED ESH **B7 Operation Flags** (PL) SS WR FAST TL 0 1 WL A_REC 48 X. Y. XS. YS X, Y, DX, DY R_REC 4C A_REC_FILL_A 8E EAD1, dAD1, DH, DV **B7 Operation Flags** B0 **B7 Operation Flags** 6EH 0 IP ES PXEN BPPX ESH 0 0 0 1 1 1 1 CRL 50 XC, YC, DX R_REC_FILL 90 X, Y, DX, DY **B**7 **Operation Flags** B0 **B**7 **Operation Flags** IP 6EH 0 0 PXEN BPPX 0 0 TL 0 SS WL WR FAST 1 CARC 54 XC. YC. DX. XS. YS. XE. YE **B7 Operation Flags B0** CF IP 0 PXEN BPPX 0 WEP 6EH CSEC 58 XC, YC, DX, XS, YS, XE, YE CSEG 5A B7 **Operation Flags** B0 IP PXEN 6EH CF 0 BPPX 0 0

#### Table 5. DRAW Command Summarv



Command	Opcode (Hex	) Parameters
CRL_FILL	50	XC, YC, DX
ELP\$_FILL	5C	XC, YC, DY, DH, DV
B7	Opera	tion Flags B0
TL	0 1 SS	6EH
A_COPY_AA	78	EAD1, dAD1, EAD2, dAD2, DH, DV
_CA _AC _CC	7C 80 84	XS, YS, EAD1, dAD1, DH, DV EAD2, dAD2, DH, DV, X, Y XS, YS, X, Y, DH, DV
B7		tion Flags B0
	REV ROT 0	SD_SEL FAST 0 6EH
A_90°_COPY_/	A 78	EAD1, dAD1, EAD2, dAD2, DH, DV
ل_	CA 7C AC 80	XS, YS, EAD2, dAD2, DH, DV EAD2, dAD2, X, Y, DH, DV
	CC 84	XS, YS, X, Y, DH, DV
B7	Opera	tion Flags B0
ESE	REV ROT 1	SD_SEL 0 0 6EH
A_SL_COPY_A	A 78	EAD1, dAD1, EAD2, dAD2, DH,
_0	A 7C	DV, DX XS, YS, EAD1, dAD1, DH, DV, DX
	C 80 C 84	EAD2, dAD2, X, Y, DH, DV, DX XS, YS, X, Y, DH, DV, DX
B7	Opera	tion Flags B0
ESE	REV ROT 0	SD_SEL 0 1 6EH
A_FR_		
ES_COPY _AA	78	EAD1, dAD1, EAD2, dAD2, DH, DV, DX, DY, XE, YE
_C/	A 7C	XS, YS, EAD1, dAD1, DH, DV, DX, DY, XE, YE
_A(	C 80	EAD2, dAD2, X, Y, DH, DV, DX, DY, XE, YE
_C(	C 84	XS, YS, X, Y, DH, DV, DX, DY, XE, YE
B7	Opera	tion Flags B0
ESH	ESV FS 1	SD_SEL 1 0 6EH

#### Table 5. DRAW Command Summary (cont)





# Table 6. Operation Flag Descriptions

Name	Description				
PXEN (Pixel Drawing Enable) BPPX (Bits per Pixel)		fined by BPPX. Th		figuration is selected by I isplay memory data width	PXEN and the number of bits n is 16 bits. For plane
	BPPX	PXEN	Bits/Pixel		
	XX	0	1		
	00	1	2		
	01	1	4		
	10	1	8		
	11	i	16		
S (Enlarge/Shrink)	Select the enla	rge and shrink op	tions.		
SH (Enlarge/Shrink Horizontally)	ES	ESH	ESV	Copy Operation	Drawing Operation
SV (Enlarge/Shrink Vertically)	0	X	X	No enlarge/shrink	No enlarge/shrink
	1	ô	x	Horizontal shrink	Horizontal pattern shrink
	1	1	x	Horizontal enlarge	
	•				Horizontal pattern enlarge
	1	X	0	Vertical shrink Vertical enlarge	
			•	formour ormango	
	-	nrinkage factors.			
	MAGH/MAGV	ESH/ESV = 0	ESH/ESV =	1	
	0	1/16	16/1		
	1	2/16	16/2		
	2	3/16	16/3		
	3	4/16	16/4		
	4	5/16	16/5		
	5	6/16	16/6		
	6	7/16	16/7		
	7	8/16	16/8		
	8	9/16	16/9		
	9	10/16	16/10		
	10	11/16	16/11		
	11	12/16	16/12		
	12	13/16	16/13		
	13	14/16	16/14		
	14	15/16	16/15		
	15	16/16	16/16		
D (Enlargement Direction)	Defines the dire	ection of enlarger	nent for line dr	awing.	
	ED	Enlargement Di	rection		
	0			lirection of drawing.	
	1			ection of drawing.	
P (Initialize Pattern Pointer)	Initializes the li	ne pattern pointe	r to the first bi	t of the pattern register.	
		Function			
	0	Pointer not initi	alized		
	1	Pointer initialize	əd		
F (Clockwise Flag)	Defines the dra	wing direction fo	r circular and e	lliptical arcs, sectors, and	i segments.
	CF	Function			
	0	Counterclockwi	se		
	1	Clockwise	+		
	1				



Name	Description	
TL (Tiling Pattern)	Defines the use of a tiling pattern in filling.	c.
SS (Single Source Pattern)	TL     SS     Function       0     0     Not used       0     1     The pattern in the PTNCNT register is used for all planes       1     0     The patterns stored in display memory are used for each plane       1     1     The same pattern stored in display memory is used for all plane       To quickly clear all planes to zero, set TL = 0 and SS = 1. When it is necessary to paint with a clear stored in the store of the s	nes.
	color for each bit, set $TL = 1$ and $SS = 0$ .	
PMOD (Paint Mode)	Selects the arbitrary boundary area for the PAINT command.	
	PMOD         Function           0         Boundary colors are defined by the DX register.           1         Boundaries are all the points with colors different than the starting point (X, Y).	
WL (Write Left)	Defines whether the boundary points are drawn during a FILL command.	
WR (Write Right)	WL         Function         WR         Function           0         Points on left boundary are not drawn         0         Points on right boundary are not drawn           1         Points on left boundary are drawn         1         Points on right boundary are drawn	n
FAST (Fast)	Specifies the normal or fast mode for drawing.	
	FAST     Function       0     Normal speed       1     Fast speed	
	However, FAST mode cannot be used for all drawing operations.	
	REC_FILL The FAST mode cannot be used if clipping or painting with a tiling pattern. It can be used for replacing data. COPY The FAST mode can be used only for ordinary COPY with replace, it cannot be	
	with other COPY operation or with multiple sources.	
ESE (Exchange Start With End)	Defines the reading order of the source data during COPY.	
	ESE     Reading Order       0     Upper left to lower right (left to right on each row)       1     Lower right to upper left (right to left on each row)	
REV (Reverse)	Defines the reverse drawing direction during COPY	
	REV         Drawing Direction           0         Left to right, top to bottom           1         Right to left, top to bottom	
ROT (Rotation)	Defines 180° rotation drawing during COPY.	
	ROT     Function       0     Normal       1     180° rotation drawing	
SD_SEL	Selects the transfer mode between planes.	
Source Destination Mode Select)	SD SEL         Transfer Mode         Logical Operation By           00         Multiple sources and single destination         MOD1 during read of the sources; I during write to the destination	MODO
	01 Multiple sources and single destination MOD0 or MOD1 during read of the sources; REPLACE during write to destination	the
	10 Single source and multiple desinations MOD0 or MOD1 during write to eac the destinations.	ch of

# Table 6. Operation Flag Descriptions (cont)

Name	Description			
FS (Fill Shortage)	When the coordinate conversion is made during the arbitrary angle rotate copy, some points may not be drawn. FS specifies whether to draw these points.			
	FS Function 0 X Points drawn 1 X Points not drawn			
	0 0 0 0			
	0 0 0 • • • •			
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	• • • • o o o X • • • •			
	0 0 0 0 X • • • 0 0 0 0			
	$\bullet \bullet \bullet \bullet \circ \circ \circ \bullet \bullet \bullet \bullet$			
PL (Pattern Line Length)	Specifies whether a 16-bit or 32-bit pattern is to be used for line drawing.			
	PL Pattern Length Pattern			
	0 16 bits PNTCNT contains the 16-bit pattern.			
	1 32 bits PNTCNT contains the first 16 bits of the pattern; DH contains the next 16 bits. The pattern cannot be initialized by setting IP = 0.			

# Table 6. Operation Flag Descriptions (cont)

# μPD72120

NEC



# μPD72123 Advanced Graphics Display Controller II

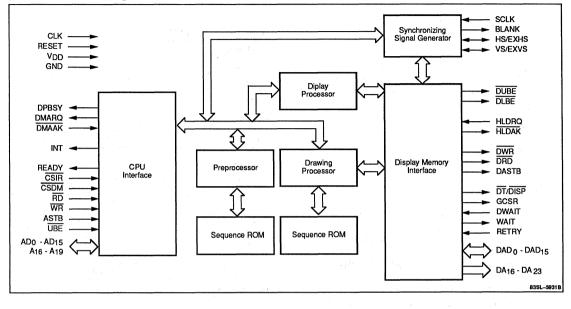
### Description

The  $\mu$ PD72123 Advanced Graphics Display Controller II (AGDC II) is an enhanced version of the  $\mu$ PD72120 AGDC. It executes bit map graphics processing at high speed as a peripheral to a host CPU, reducing the host's workload and improving processing efficiency.

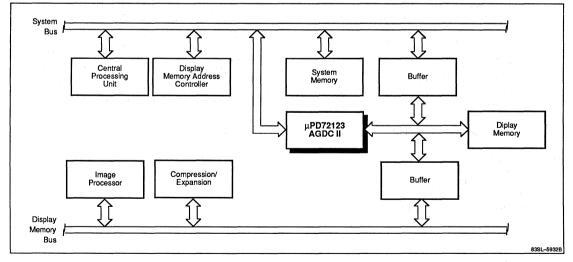
#### **Features**

- Compatible with µPD72120 AGDC
- Higher speed drawing
   10-MHz drawing clock
- Large command set
  - Line drawing with graphics pen
  - Painting arbitrary or defined areas with tiling patterns
  - Enlarge, shrink, and arbitrary-angle rotate copy commands
  - Data transfer between system and display memory
- Flexible system configurations
  - Drawing can be performed on display or system memory space
  - Data bus can be used with most microprocessors
  - Independent drawing and display clocks
  - VRAM control
  - Laser printer interface controls
- Versatile drawing environment
  - Pipelined processing
  - Two X-Y coordinate systems can be defined
  - Conversion between one-dimensional and twodimensional data arrays
  - Clipping/picking
- Improved painting performance
- Bit search command
- Vertical blank interrupt
- Bit reversal
- Drawing wait/retry timing
- CMOS technology
- Single +5-volt power supply

#### **Ordering Information**


Part Number	Package	
μPD72123R	132-pin ceramic PGA	
μPD72123GJ-5BG	94-pin plastic miniflat	
μPD72123L	84-pin PLCC	

### Comparison of µPD72123 and µPD72120


ltem	μPD72123	μPD72120
Clock frequency	10 MHz	8 MHz
X-Y coordinate systems	Two	One
Line pattern	32 bits	16 bits
Raster operations (no. of operands)	Three	Тwo
Tiling pattern (horizontal)	32 bits	16 bits
Trapezoid fill (lower line select)	10	
Paint speed	increased	
Paint stack area	Decreased	
Graphics pen	~	
Bit search	-	
Vertical blank interrupt	~	
Laser printer control	~	
Drawing busy output signal	~	
Wait drawing cycle	~	
Retry drawing cycle	~	
Bit reversal	-	



#### µPD72123 Block Diagram



### System Configuration Example



### **ADVANCED COMPRESSION/EXPANSION ENGINE**

### **Advanced Compression/Expansion Engine**

4-3



#### Section 4 Advanced Compression/Expansion Engine

μPD72185 Advanced Compression/Expansion Engine NEC Electronics Inc.

### μPD72185 Advanced Compression/ Expansion Engine

#### Description

The  $\mu$ PD72185 Advanced Compression/Expansion Engine (ACEE) is a dedicated high-speed processor that performs binary image data compression and expansion using CCITT Group 3 and Group 4 algorithms. The  $\mu$ PD72185 supports all the coding methods specified in the CCITT T.4 and T.6 recommendations.

The  $\mu$ PD72185 ACEE operates on 8- or 16-bit-wide data residing in memory. It can compress image data into reduced codes and also expand reduced codes into an image. Compressed codes can be transferred to or from a separate processor or parallel peripheral through an I/O port.

The  $\mu$ PD72185 has a high-performance, four-stage pipelined architecture. It has separate host CPU and image data buses for maximum data throughput. The on-chip DMA controller manages all data transfer on the image bus.

The  $\mu$ PD72185 is designed for high-performance image compression applications, such as facsimile machines, PC FAX boards, scanners, printers, image workstations, electronic document storage systems, and magnetic and optical disk based electronic filing systems.

#### Features

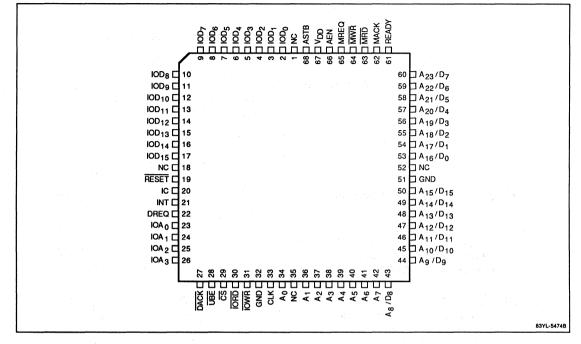
- High-speed processing
  - Compression/expansion of CCITT standard test chart (A4 size, 400 PPI x 400 LPI) in under 1 second
    - Internal four-stage pipelined CPU
- Handles a variety of encoding/decoding methods: CCITT standard MH, MR, and MMR
- 32K pixels maximum per line
- Supports 32-megabyte image memory
- Image data enlargement/reduction
  - Horizontally
    - x2 enlargement (on decoding) x1/2 reduction (on encoding)
  - Vertically
    - x2 and x4 enlargement (on decoding)
    - x1/2 and x1/4 reduction (on encoding)
- Bit boundary processing
- Automatic error handling on decoding
- Multitasking capability
- Dual bus system
  - Image memory side (24-bit address bus, 8/16-bit data bus)

Host CPU side (8/16-bit data bus)

- High integration
  - On-chip DMA controller
  - On-chip refresh timing generation circuit
- CMOS process
  - Single +5-volt power supply
  - System clock: 8 MHz maximum

#### **Ordering Information**

Part No.	Package
μPD72185CW	64-pin plastic shrink DIP (750 mil)
μPD72185L	68-pin PLCC (plastic leaded chip carrier)


#### **Pin Configurations**

64-Pin Plastic Shrink DIP

·		-
RESET	1 64	D 10D 15
	2 63	D 10D 14
	3 62	D 10D 13
DREQ 🗖	4 61	D 10D12
	5 60	
	6 59	
	7 58	
	8 57	
the second s	9 56	
	10 55	
	11 54	
	12 53	
	13 52	
	14 51	
	15 50	
	16 49	
AIC	17 48	ASTB
	18 47	
	19 46	AEN
-	20 45	] MREQ
	21 44	
	22 43	
-	23 42	
	24 41	READY
	25 40	A23/D7
	26 39	$\Box A_{22}/D_6$
	27 38	$A_{21}/D_5$
	28 37	$\Box A_{20}/D_4$
	29 36	$\Box A_{19}/D_3$
	30 35	A ₁₈ /D ₂
	31 34	$\Box A_{17}/D_1$
	32 33	$A_{16}/D_0$
		83YL-5473A

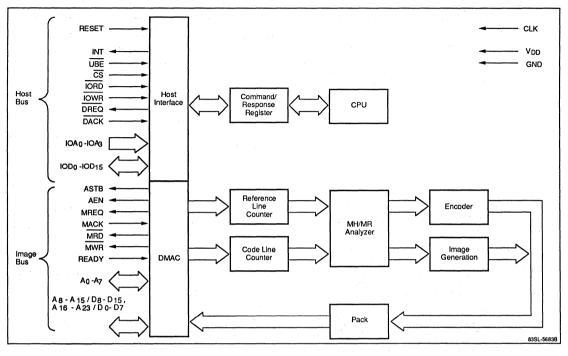






#### **Pin Identification**

Symbol	Function
Host Interfac	e
CS (Chip Select)	Active-low input signal enables I/O access to μPD72185 from host bus.
DACK (DMA Acknowledge)	Input signal from external DMA controller. Must be inactive (high) when host CPU performs I/O access to μPD72185.
DREQ (DMA Request)	Output signal to external DMA controller. Becomes active low when there is readable data or space that can be written to in the μPD72185.
INT (Interrupt Request)	Output signal to host CPU.
IOA ₀ -IOA ₃ I/O Address)	4-bit address input selects register or register pair when host CPU performs I/O access to μPD72185.
IOD ₀ -IOD ₁₅ (I/O Data Bus)	16-bit, two-way data bus
IORD (I/O Read)	Low-level input signal when host CPU reads from $\mu\text{PD72185}$ by I/O access.
IOWR (I/O Write)	Low-level input signal when host CPU writes to $\mu$ PD72185 by I/O access.
UBE (Upper Byte Enable)	When host CPU writes to $\mu$ PD72185 by I/O access, byte or word transfer is specified by UBE input signal in combination with IOA ₀ input.
Image Memory	y Interface
A ₀ -A ₇ (Address Bus)	Lower 8-bit address of image memory bus.
A ₈ -A ₁₅ /D ₈ -D ₁₅ , A ₁₆ -A ₂₃ /D ₀ -D ₇ (Address/Data Bus)	Upper 16-bit address of image memory bus multiplexed with the 16-bit data bus.
AEN (Address Enable)	Output signal becomes active when $\mu$ PD72185 is Bus Master on the image bus.
ASTB (Address Strobe)	High-level output signal used to latch address output from μPD72185.
MACK (Memory Acknowledge)	Active-high input signal grants μPD72185 use o image memory bus in response to MREQ signal.
MRD (Memory Read)	High-level output when µPD72185 is Bus Master on the image bus. Becomes low level when data is read from image memory.
	Set to high impedance when $\mu$ PD72185 is Bus Slave.
MREQ (Memory Request)	High-level output signal requests use of image memory bus when μPD72185 is Bus Slave on the image bus. Becomes active for a DMA transfer between uPD72195 and image memory


transfer between µPD72185 and image memory.

### Pin Identification (cont)

Symbol	Function			
MWR (Memory Write)	High-level output when µPD72185 is Bus Master on the image bus. Becomes low level when data is written to image memory.			
	Set to high impedance when $\mu\text{PD72185}$ is Bus Slave.			
READY (Ready)	Low-level input signal extends MRD and MWR cycle by adding wait states			
	Signal must not be altered within setup/hold time period.			
Other Pins				
CLK (Clock)	External clock input.			
RESET (Reset)	System reset input. Must be held low for at least seven system clock cycles. After reset, μPD72185 becomes Bus Slave on the image bus.			
IC (Internal Connection)	This pin must always be pulled up.			
NC (No Connec- tion)	No internal connections are made to this pin.			
V _{DD}	Positive power supply pin.			
GND (Ground)	Both ground pins must be connected.			



#### µPD72185 Block Diagram



#### **Absolute Maximum Ratings**

 $T_A = +25^{\circ}C$ 

-0.5 to +7.0 V
- 0.5 to V _{DD} + 0.3 V
- 0.5 to V _{DD} + 0.3 V
- 40 to +85°C
- 40 to +125°C

### DC Characteristics

Output leakage

Supply current

current

ILO

DD

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage,	VILC	- 0.5		+0.8	V	CLK pin
low-level	VIL	- 0.5		+0.8	V	Other pins
Input voltage, high-level	VIHC	+3.3		V _{DD} + 0.3	V	CLK, RESET pins
	VIH	+2.2		V _{DD} + 0.3	v	Other pins
Output voltage, low-level	VOL			+0.4	v	I _{OL} = 2.5 mA
Output voltage, high-level	V _{OH}	0.7 V _{DD}	· .		V	l _{OH} = -400 μA
Input leakage current	ILI -	·.		±10	μA	$V_{IN} = 0$ to $V_{DD}$

±10

50 100

μA

 $V_{OUT} = 0$  to

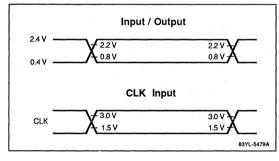
mA While operating

VDD

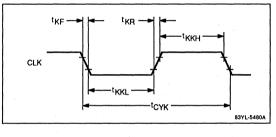
AC Characteristics  $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 5 \text{ V} \pm 10\%$ 

Parameter	Figure	Symbol	Min	Max	Unit	Condition
Clock						
CLK cycle	2	tсук	125	1000	ns	
CLK low-level width	2	^t ĸĸ∟	50		ns	
CLK high-level width	2	^t ккн	50		ns	
CLK rise time	2	^t KR		10	ns	1.5 → 3.0 V
CLK fall time	2	^t ĸ⊧				3.0 → 1.5 V
Image Memory Interface						
MREQ ↑ delay time from CLK ↑	3	tомон		100	ns	
MREQ↓ delay time from CLK ↑	3	t _{DMQH}		100	ns	•
MACK ↑ setup time to CLK ↑	3	^t SMA	35		ns	•
MACK ↓ hold time from CLK ↑	3	^t HMA	20		ns	•
AEN ↑ delay time from CLK ↑	3	^t DAEH		100	ns	•
AEN ↓ delay time from CLK ↑	3	^t DAEL		100	ns	•
ASTB ↑ delay time from CLK ↓	3	t _{DSTH}		70	ns	•
ASTB high-level width	3	tstst	t _{KKH} – 15		ns	•
ASTB ↓ delay time from CLK ↑	3	t _{DSTL}		100	ns	•
Address/data/MRD/MWR delay time from CLK↓	3	t _{DA}		100	ns	•
Address/data/MRD/MWR float time from CLK ↓	3	t _{FA}	25	70	ns	•
Address setup time to ASTB ↓	3	^t SAST	t _{ККН} – 35		ns	•
Address hold time from ASTB $\downarrow$	3	^t HSTA	t _{KKL} – 20		ns	•
$\overline{MRD}\downarrowdelay$ time from Address float	3	^t DAR	0		ns	•
$\overline{MRD}\downarrow$ delay time from CLK $\downarrow$	3	^t DRL		70	ns	•
MRD low-level width	3	tRRL2	2t _{CYK} - 50		ns	WAIT = 0
MRD↑ delay time from CLK ↑	3	^t DRH		70	ns	
Input data setup time to MRD ↑	3	tSDR	70		ns	-
Input data hold time from MRD ↑	3	tHRD	0		ns	-
MWR↓ delay time from CLK ↓	3	^t DWL		70	ns	-
MWR low-level width	3	twwL2	2t _{CYK} - 50		ns	WAIT = 0
MWR↑ delay time from CLK ↑	3	tоwн		70	ns	
READY setup time to CLK ↑	3	tSRY	35		ns	-
READY hold time from CLK ↑	3	tHRY	20		ns	-
Host Interface						
DACK/CS recovery time	4, 5	t _{RDC}	200		ns	
IORD low-level width	4, 7	t _{RRL}	150		ns	•
Address/ $\overline{\text{CS}}\downarrow$ setup time to $\overline{\text{IORD}}\downarrow$	4	^t SAR	35		ns	-
Address/CS ↓ hold time from IORD ↑	4	tHRA	0		ns	-
Output data delay time from $\overline{IORD}\downarrow$	4	^t DRD		120	ns	-
Output data float time from IORD ↑	4	^t FRD	10	70	ns	-
IOWR low-level width	5	twwL	100		ns	-
CS ↓ hold time from IOWR ↑	5	twwcs	0		ns	-

4




### AC Characteristics (cont)


$T_A =$	– 40 to	+85°C;	VDD	=	5	۷	±10%	
---------	---------	--------	-----	---	---	---	------	--

Parameter	Figure	Symbol	Min	Max	Unit	Condition
Address/UBE/CS $\downarrow$ setup time to IOWR $\downarrow$	5	tSAW	0		ns	
Address/UBE hold time from IOWR ↑	5	tHWA	0		ns	•
Input data setup time to IOWR ↑	5	tsow	100		ns	•
Input data hold time from IOWR ↑	5	t _{HWD}	0		ns	
RESET low-level width	6	^t rstl	7t _{CYK}		ns	•
V _{DD} setup time to RESET ↑	6	tSVDD	1000		ns	-
IOWR/IORD wait time from RESET ↑	6	tSYWR	2t _{CYK}		ns	
IOWR/IORD recovery time	7	t _{R/WR}	200		ns	•
DREQ $\downarrow$ delay time from $\overline{\text{IORD}} \downarrow$	7	^t DRDQ		140	ns	•
DREQ $\downarrow$ delay time from $\overline{\text{IOWR}} \downarrow$	7	tDWDQ		140	ns	-

#### Figure 1. Voltage Thresholds for Timing Measurements



### Figure 2. Clock Timing



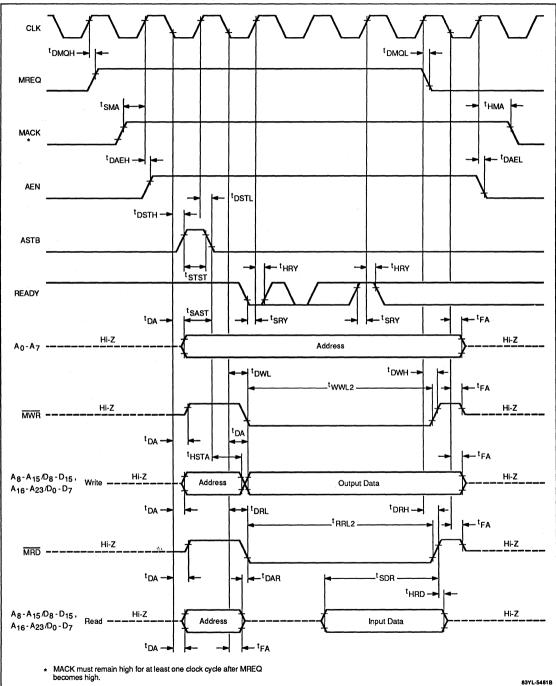



Figure 3. DMA Transfer Timing on Image Bus

4

### μ**PD72185**



Figure 4. Timing for Read from µPD72185 on Host Bus

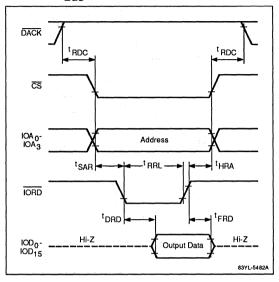



Figure 5. Timing for Write to µPD72185 on Host Bus

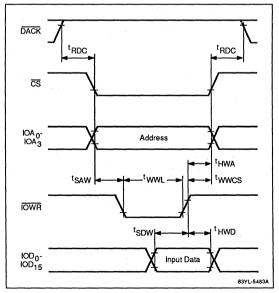



Figure 6. Reset Timing

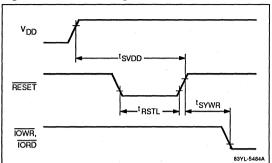
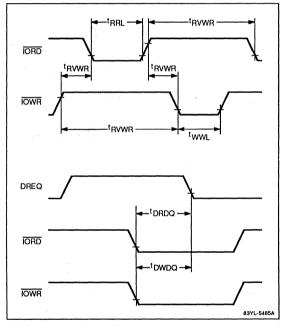




Figure 7. Read/Write Cycle Timing



S.

#### **OVERVIEW**

The µPD72185 encodes and decodes binary image data in accordance with the standard system prescribed by the CCITT (International Telegraph and Telephone Consultative Committee). See table 1.

#### Table 1. CCITT Standard Systems

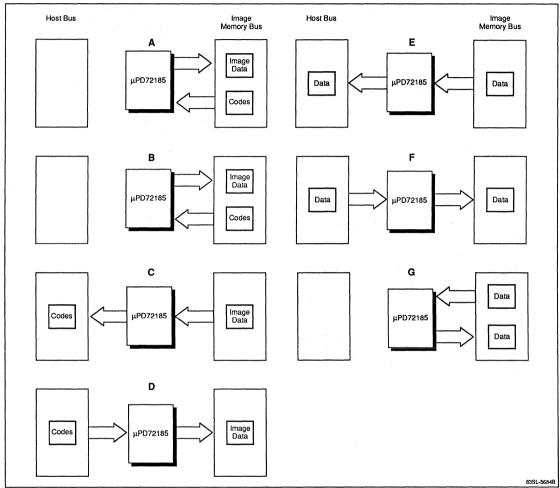
System	CCITT Recommendation				
MW	T.4 (G3 Facsimile)				
MR	T.4 (G3 Facsimile)				
MMR	T.6 (G4 Facsimile)				

The µPD72185 has two bus interfaces with which it connects to the system. One interface is with the host CPU and the other is with image memory. Data exchange with the host CPU is by ordinary I/O accesses; data exchange with image memory is by DMA transfers using the on-chip DMA controller.

In this document, the bus on the host CPU side is called the host bus, and the the bus on the image memory side is called the image memory bus.

In addition to encoding/decoding, the µPD72185 can perform data transfers between the image memory and the host CPU. Also, it can perform image enlargement and reduction on expansion and compression and logical operations (AND, OR, XOR,) while transferring data. Table 2 and figure 8 show the processing patterns.

Туре	Processing	Data Fl	ow, Bu	s-to-Bus
A	Encoding	image memory	-	Image memo
в	Decodina	Image memory	->	Image memo


#### Table 2. µPD72185 Processing Patterns

Type	Processing	Data riow, Bus-to-Bus				
A	Encoding	image memory	<b>→</b>	Image memory		
В	Decoding	Image memory	->	Image memory		
С	Encoding	Image memory	<b>→</b>	Host		
D	Decoding	Host	<b>→</b>	Image memory		
E	Data transfer	Image memory	-	Host		
F	Data transfer	Host	<b>→</b>	Image memory		
G	Data transfer	Image memory	+	Image memory		

### μPD72185





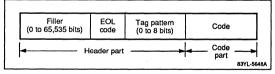


#### PROCESSING

#### Modes

The two processing modes of the  $\mu$ PD72185—block and line—are selected by commands from the host CPU. In block mode, which is more commonly used, one command controls processing of multiple lines. In line mode, one command is required for each line. Line mode allows encoding/decoding methods other those prescribed by the CCITT.

#### Line Processing


A compressed line consists of a header and code as shown in figure 9. In the header, commands from the host CPU specify the number of filler bits (0 to 65,535), the presence/absence of the EOL code, and the number of bits in the tag pattern (0 to 8).

The code that follows the header consists of encoded binary image data. The encoding method can be specified per line by commands from the host CPU.

At the time of encoding, a line is generated in this order: filler + EOL code + tag pattern + code. This filler is appended to the immediately preceding line.

Decoding is performed one line at a time in this order: code + filler + EOL code + tag pattern. If a page starts with an EOL code, the  $\mu$ PD72185 detects the EOL code and the following tag pattern and processes them before starting line-by-line decoding.





#### **EXTERNAL INTERFACE**

The  $\mu$ PD72185 exchanges data with image memory by DMA transfers via the on-chip DMA controller. When the  $\mu$ PD72185 needs to access image memory, it requests use of the image memory bus by activating MREQ. Data is exchanged with a host CPU (including an external DMA controller) by normal I/O accesses. The host CPU reads and writes data through the  $\mu$ PD72185 I/O addresses.

#### MULTITASKING

Multitasking means using the  $\mu$ PD72185 to process multiple image areas in parallel by time division.

The  $\mu$ PD72185 processes an image area specified by the host CPU as a unit. On completion of processing, the  $\mu$ PD72185 sends back to the host CPU in the form of a response: memory manage ment information, processing information, counter information, etc.

As an example, consider a case in which image data encoded by one method is to be recoded by another method. When the recoded data extends over multiple image areas, the following two methods can be employed.

- All encoded data in the multiple image areas is decoded. This image data is then reencoded all at once.
- (2) Encoded data in multiple image areas is decoded in small blocks. This image data is then recoded a block at a time, processing only a section of each image each time.

Depending on the system design, pipelining with method 2 may improve processing efficiency. This method can be implemented through the host CPU's management of responses sent back by the  $\mu$ PD72185.

#### **ENLARGEMENT/REDUCTION**

The  $\mu$ PD72185 can reduce an image when encoding and enlarge image data when decoding. Reduction is performed by a simple thinning-out operation, and enlargement by repeating the same data. Enlargement/reduction types are shown in table 3.

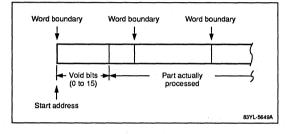
Table 3.	Enlargeme	nt/Reduction	Types
----------	-----------	--------------	-------

Enlargement and (Reduction) Factors			
Horizontal	Vertical		
1 (1)	1 (1)		
1 (1)	2 (1/2)		
2 (1/2)	2 (1/2)		
2 (1/2)	4 (1/4)		
	Horizontal 1 (1) 1 (1) 2 (1/2)		

#### WHITE MASK

The  $\mu$ PD72185 can perform white mask processing on the right edge and left edge of image data. The amount of white masking is specified separately for each edge in word units (0 to 255 words)

The  $\mu$ PD72185 automatically white masks data on encoding image data. It is not able to perform decoding and white mask processing at the same time. Hence, white mask processing is performed once decoding is completed



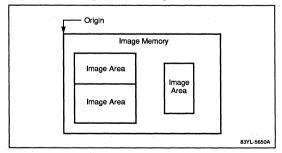

#### **BIT BOUNDARY**

Some image areas consist of lines not terminated in either byte or word units but with an odd number of bits. The  $\mu$ PD72185 handles image areas of this kind with bit boundary processing.

Lines with an odd number of bits are processed by specifying void bits up to the byte or word boundary. See figure 10.






#### **IMAGE MEMORY**

#### Image Area

Image memory means the whole area of memory accessible by the  $\mu$ PD72185. An image area, on the other hand, is a rectangular area within image memory (figure 11), the size and location of which is specified by commands from the host CPU. The unit of processing is an image area.

The  $\mu$ PD72185 can append and also detect the code indicating the end of a page using commands from the host CPU. Page management, however, is performed by the host CPU.





#### Memory Organization

Under control of the host CPU, image memory can be either byte-organized (8-bit units) or word-organized (16-bit units). One  $\mu$ PD72185 address corresponds to one byte or one word in memory. In both cases the  $\mu$ PD72185 does its internal processing and writes to image memory in 16-bit units. Thus, when image memory is byte-organized, two accesses are required, one to an odd-numbered address and one to an even-numbered address.

The 24-line address bus allows access to a large amount of image memory. Table 4 shows image memory capacity for byte and word organization.

#### Table 4. Image Memory Capacity

Organization	Size	*Capacity
Byte	16M bytes	64 A4 sheets
Word	32M bytes	128 A4 sheets
*44 sheet - 210 mm	wide by 297 mm long	

*A4 sheet = 210 mm wide by 297 mm long Horizontal: 8 dots/mm Vertical: 4 dots/mm

#### Data Storage

Image memory can store code and other general data as well as binary image data. Binary image data is converted to white/black levels shown in table 5 and stored as follows.

- The first bits scanned are packed in sequence starting from the LSB of a byte/word.
- (2) The first data byte/word scanned is packed in sequence in byte/word units starting from the lower address side.

Code transferred serially is stored as follows.

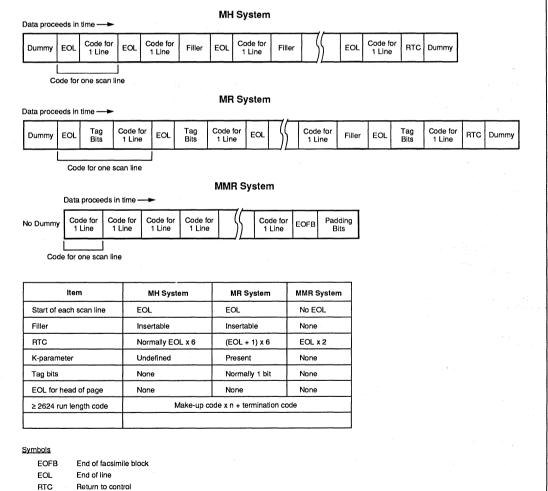
- (1) The first bits transmitted are packed in sequence starting from the LSB of a byte/word.
- (2) The first data byte/word transmitted is packed in sequence starting from the lower address side.

Table 5. Binary Image Data Level	els	s
----------------------------------	-----	---

Level			
White	0		
Black	1		

#### **ENCODING/DECODING SYSTEMS**

Table 6 lists the encoding/decoding systems the  $\mu$ PD72185 can handle, including CCITT standard systems. Figure 12 shows coded data formats for MH, MR, and MMR systems.


#### Table 6. Encoding/Decoding Systems

System	Summary	
МН	One-dimensional encoding/decoding system, G3 facsimile, CCITT standard.	
MR	Two-dimensional encoding/decoding system, G3 facsimile, CCITT standard.	
MMR	Two-dimensional encoding/decoding system, G4 facsimile, CCITT standard.	
Other	Systems other than CCITT standards that can be implemented by selecting line mode	

#### **Picture Elements**

Image data that exceeds 2623 picture elements (pixels) per scan line is processed using the run-length code table expansion method stipulated in CCITT Recommendation T.6.

#### Figure 12. Code Data Formats in MH, MR, and MMR Systems



RTC Return to control
Dummy Variable-length string of zeros

4-15

83YL-5651B



#### **K-Parameter**

In the MR system, the K-parameter determines the coding technique and the transmission error recovery procedures. The value of the K-parameter can be specified as a number from 1 to 255 or as infinity ( $\infty$ ).

Whether the code for a particular line uses onedimensional encoding or two-dimensional encoding is indicated by the value of the tag bit inserted after EOL. See table 7.

 
 Table 7.
 Relation Between Encoding System and Tag Bit

Encoding System	Tag Bit Value	Method of Representation
One-dimensional	1	EOL + 1 (tag bit)
Two-dimensional	0	EOL + 0 (tag bit)

#### **Filler Bits**

When encoding, the  $\mu$ PD72185 can adjust the length of the coded data by adding filler bits. The two methods of adding filler bits are as follows.

- (1) Specify minimum number of bits transmitted with the BLO command
- (2) Specify number of added filler bits with the LNO command.

When decoding, the  $\mu$ PD72185 ignores the added filler bits.

#### **Error Detection**

When decoding, the  $\mu$ PD72185 can detect errors in the code and carry out appropriate processing. Table 8 lists the types of error detection.

#### Table 8. Types of Error Detection

Error Detection	Applicable Encoding Systems
illegal code	MH, MR, MMR
Logically inconsistent code	MR, MMR
Decoded line longer than specified line length	MH, MR, MMR
Decoded line shorter than specified line length	-
Abnormal page end	-

#### Line Number Count

When decoding, the  $\mu\text{PD72185}$  performs three kinds of line counting.

- The number of normally-decoded lines (normallyprocessed line count).
- (2) The number of lines in error (error line count).
- (3) The maximum number of consecutive lines in which errors occurred (consecutive error line count).

The start of error line counting and successive error line counting can be specified in either of two ways as shown below. The selection and setting of the initial value of each line count is done by command.

- (1) Start count from occurrence of first error.
- (2) Start count from normal decoding of one line.

#### HOST INTERFACE

Exchanges between the  $\mu$ PD72185 and the host CPU (or an external DMA controller) are performed by I/O accesses over the host interface. In general, writes from the host CPU to the  $\mu$ PD72185 are in the form of commands and reads from the  $\mu$ PD72185 are in the form of responses.

The host bus width is 16 data bits but can be accessed 8 bits at a time by manipulation of the logic level on pins  $IOA_0$  and  $\overline{UBE}$ . See table 9.

#### Table 9. Host Bus Width

IOA ₀	UBE	Bus Width	Pins
0	0	16 bits	IOD0-IOD15
x	1	8 bits	IOD ₀ -IOD ₇
1	0	8 bits	IOD8-IOD15

To get the  $\mu$ PD72185 to start processing, the following operations are necessary.

(1) Write the command into the command registers.

(2) Write 1 into the CRQ bit of the control register.

When the CRQ bit is set, the  $\mu$ PD72185 begins processing as directed by the command received. Once processing has begun, the host CPU cannot write 1 to the CRQ bit again for the next processing operation until it confirms that processing has been completed or interrupted.

#### **Basic Timing**

Figure 13 is a timing diagram applicable to reads from the  $\mu$ PD72185 and writes by the host CPU. Figure 14 shows the timing for an external DMA controller in the word mode and byte mode.

#### REGISTERS

Exchanges between the  $\mu$ PD72185 and the host CPU, including commands and responses, utilize the registers and the data FIFO area illustrated in figure 15. The register I/O addresses are 0H through DH; EH and FH are not allowed. Note that the I/O addresses are shared by corresponding registers in the read and write configurations of figure 15.

#### Figure 13. Read/Write Timing

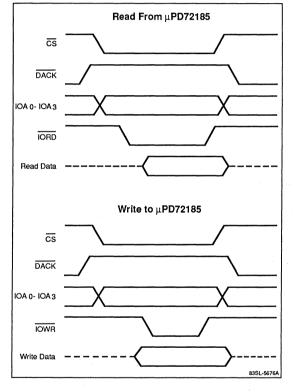
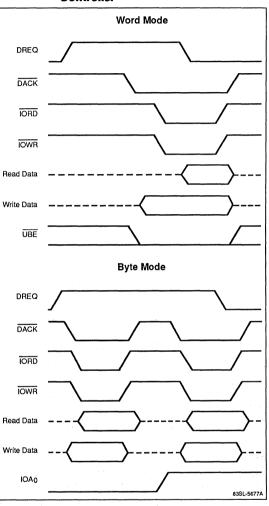
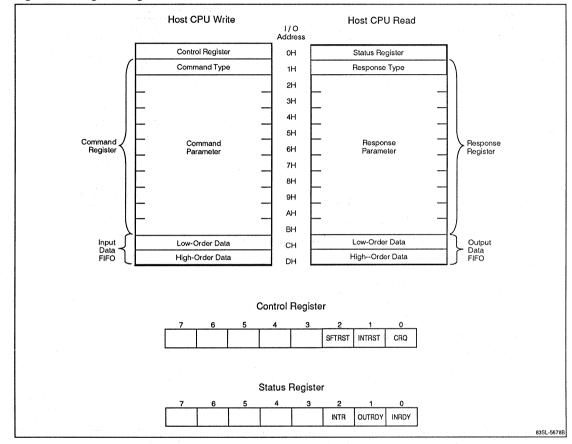





Figure 14. Read/Write Timing With External DMA Controller





#### Figure 15. Register Organization



#### **Control Register**

The control register is used in writes from the host CPU. The functions of bits 0, 1, and 2 are explained below.

**Command Request (CRQ).** When 1 is written to the CRQ bit after the host CPU has written a command, the  $\mu$ PD72185 begins processing according to the command. The CRQ bit is automatically reset after completion of processing.

**Interrupt Reset (INTRST).** When the host CPU writes a 1 to the INTRST bit, the INT pin output and the INTR bit are reset. After being set, the INTRST bit will be reset automatically.

**Software Reset (SFTRST).** Software reset by setting SFTRST to 1 is functionally identical to hardware reset at the RESET pin.

#### **Status Register**

The status register is used in reads from the host CPU. The functions of bits 0, 1, and 2 are explained below.

**Input Ready (INRDY).** A 1 in the INRDY bit indicates the input data FIFO is ready to receive data from the host CPU.

Interrupt Request (INTR). The INTR bit shows the same logic level as the INT pin. The  $\mu$ PD72185 sets this bit to notify the host CPU that processing has been completed or interrupted.

#### **Command Register**

The command register is used in writes from the host CPU. It has two parts: command type and command parameter.

#### **Response Register**

The response register is used in reads from the host CPU. It has two parts: response type and response parameter.

#### Input/Output Data FIFO

The  $\mu$ PD72185 exchanges image data, code, etc., with the host CPU via the data FIFOs. The input data FIFO and the output data FIFO are each two bytes wide.

#### **IMAGE MEMORY INTERFACE**

The image memory interface is between the  $\mu$ PD72185 and the image memory, which stores image data and code. Accesses to image memory from the  $\mu$ PD72185 are performed by DMA operations using the on-chip DMA controller. Via the image memory interface, the  $\mu$ PD72185 directly controls image memory.

When the  $\mu$ PD72185 completes command processing, it reports completion or interruption to the host CPU by

setting the output of the INT pin to high and at the same time setting the INTR bit in the status register. See figure 15.

The host CPU, meanwhile, confirms completion or interruption of processing either by sampling the INT signal level or by software polling the INTR bit.

#### **DMA Transfer Timing**

The basic bus cycle in a DMA transfer takes three system clock pulses: S1, S2, and S3. In this bus cycle, the  $\mu$ PD72185 reads or writes 1 byte or 1 word. See figure 16.

If the access time to an image memory element is long, and a read/write is not possible within the basic bus cycle, then the  $\mu$ PD72185 can insert wait states (SW) between S2 and S3, extending the read/write pulse width.

The two methods of inserting a wait state are:

- (1) Using the READY pin.
- (2) Programming wait states with a command

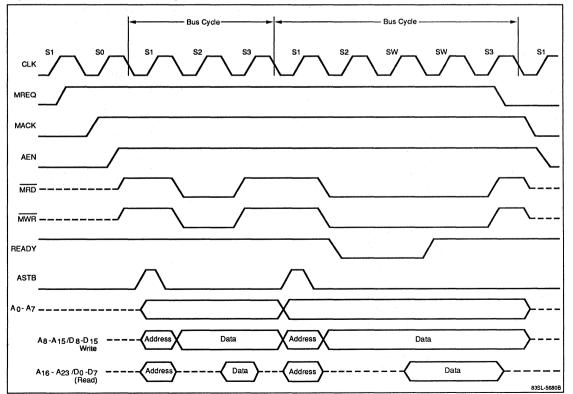



Figure 16. DMA Transfer Timing

4



#### Bus Cycle Modes

The  $\mu$ PD72185 has three modes in which it operates on the image memory bus as a Bus Master. A command selects the bus cycle mode.

Total Bus Monopolization Mode. The  $\mu PD72185$  completely monopolizes the bus. The MREQ and MACK signals are not used.

**Demand Mode.** The  $\mu$ PD72185 holds on to the bus by keeping the MREQ signal high. The length of time held depends on the data being processed. The  $\mu$ PD72185 will always surrender the bus on completing the processing of a line.

Eight Bus Cycle Monopolization Mode. The  $\mu$ PD72185 monopolizes the bus for a maximum of eight bus cycles, after which it releases the bus by dropping MREQ to low. It waits at least three clock intervals before raising MREQ high again .

#### **DMA Break**

When the  $\mu$ PD72185 is monopolizing the image memory bus (MREQ = 1), MACK is normally kept high. If MACK falls to low while MREQ is high, the  $\mu$ PD72185 immediately discontinues the DMA transfer. However, because

#### Table 11. Command Types

the MACK signal level is sampled at the rising edge of S3, there is a maximum delay of 1 bus cycle + 1/2 clock interval from the fall of MACK until the  $\mu$ PD72185 actually releases the bus.

In the total bus monopolization mode, DMA break does not operate.

#### Refresh

The  $\mu$ PD72185 is able to output refresh timing to image memory, thus facilitating the connection of pseudo-SRAM. However, the  $\mu$ PD72185 does not output the refresh address itself. Consequently, when DRAM is used in image memory, a refresh address generation circuit must be connected externally or a CAS-before-RAS cycle must be generated.

The refresh function is enabled with a command and performed with a read cycle to address 80000H. Pin  $A_{23}/D_7$  used as the refresh timing output pin decreases the bus width to 23 bits.

#### COMMANDS

The  $\mu$ PD72185 has five types of commands: assignment, operation, statistical, CLB switch, and special. Table 11 describes the command types; table 12 describes the commands

Туре	Function	Command MOD, SCDB, SIMB, SPRS, SYS	
Assignment	Specifies system configuration, storage locations of data pro- cessed or to be processed, and processing mode.		
Operation	Gives directions to µPD72185 for start of encoding/decoding, data transfer (composition), and similar processing.	ABT, BLO, CNT, EOL, LNO, MSK, RTAG, RTC, TR	
Statistical	Requests information on processing executed by µPD72185.	RCLB. RPRS	
CLB switch	Specifies use/non-use of compressed line buffer.*	CLB-ON, CLB-OFF	
Special	Reads firmware version of the µPD72185.	RVER	

* The compressed line buffer handles compressed storage of the code for one line according to the coding mode.

#### Table 12. List of Commands

Name	Function
ABT (Abort)	When a CFE interrupt* is generated, the $\mu$ PD72185 resumes processing with the ABT command. However, this is done only for the line being processed when the interrupt was generated. When this line is completed, the $\mu$ PD72185 interrupts processing again.
	If the ABT command is issued when an in- terrupt has not been generated, the μPD72185 cancels the continuous processing mode.
BLO (Block operation)	For block mode, specifies minimum number of bits transferred, word length of a line, number of void bits at left/right side, word length of white mask at left/ right side, etc.
	Normally, encoding/decoding by the µPD72185 is performed through this command.
CLB-ON/OFF (Compression line buffer on/off)	User specifies use of compression line buffer by CLB-ON or CLB-OFF command. Valid only in line mode.
CNT (Continue)	When the CNT command is issued, the $\mu$ PD72185 processes the next consecutive image area equal in size to the area previously processed using the same processing mode and encoding/decoding system.
	By means of the CNT command, the μPD72185 can resume processing even when a CFE interrupt has been generated.
EOL (End of line)	During encoding, adds EOL code to coded data; during decoding, detects added EOL code.
	If the detected EOL code is judged to be part of the RTC code, the $\mu$ PD72185 starts RTC search.
FILL (Fill	During encoding, adds till bits to coded data.
LNO (Line operation)	For line mode, specifies number of fill bits to be added, word length of a line, number of void bits at left/right side, tag bit, etc.
MOD (Mode)	Assigns processing mode, encoding/ decod- ing format (transfer mode in case of a transfer), K-parameter, RTC, enlargement/ reduction, etc.
MSK (White mask)	For line-to-receive mask processing, speci- fies word length, word length of left/right side white mask, number of void bits on left/ right, etc. Also performs white mask pro- cessing on image buffer.
RCLB (Read compres- sion line buffer)	When the RCLB command is received, the $\mu$ PD72185 reads the contents of the compression line buffer. Provides user with pixel distribution data for a line.

#### Table 12. List of Commands (cont) Name Function RPRS Requests statistical information from uPD72185 on number of normally-processed (Read process status) lines, number of error lines, etc., resulting from processing. RTAG During decoding, reads tag pattern attached (Read tag to start of a line. pattern) In line mode, interpretation of the tag pattern by the host CPU allows an individual non-CCITT standard encoding/decoding system to be implemented. RTC During encoding, adds RTC code to coded (Return to data; during decoding, detects added RTC control) code. RVER Reads firmware versions built into (Read version µPD72185 number) SCDB Specifies start address, size, and start bit (Set code position of image area (code buffer) that buffer) stores code. When the coded data is coming from the host CPU side, the start address should be set to 0 SIMB Specifies start address of reference line in (Set image image memory, and start address and size buffer) of image area (image buffer) that stores image data. When a transfer is performed, specifies transfer source/destination address and size of transfer. SPRS Specifies initialization values for normal pro-(Set process cessing line count, maximum error line status) count, etc., and abort if error line count exceeds maximum. SYS Assigns specific system parameters such as (System) image memory organization, bus cycle mode, word length of a line, etc. Also initializes internal µPD72185 parameter table. TRO Performs data transfer/composition for im-(Transfer age buffer specified by IMB command. operation)

* CFE interrupt is generated if a CEMPT or CFULL response is returned.

#### RESPONSES

The  $\mu$ PD72185 has four types of responses: confirmation, error, statistical, and special. Table 13 describes the response types; table 14 describes the responses.



Table 1	3. Re:	sponse	Types
---------	--------	--------	-------

Туре	Function	Response		
Confirmation	Reports normal com- pletion of processing requested by a com- mand	BCDOK, BDCOK,ECDOK, EDCOK, FILLOK, LCDOK, LDCOK, MODOK, MSKOK, POK, RCDOK, RDCOK, SCDBOK, SIM- BOK, SOK, SYSOK, TAG- PAT, TRNOK, VEROK		
Error	Returned when an error occurs during processing requested by a command.	BLABT, CMDERR, DBLCRQ LNABT		
Statistical	Returns statistical in- formation in response to a command.	PRSTBL		
Special	Other than above.	CEMPT, CFULL, CLBTBL		

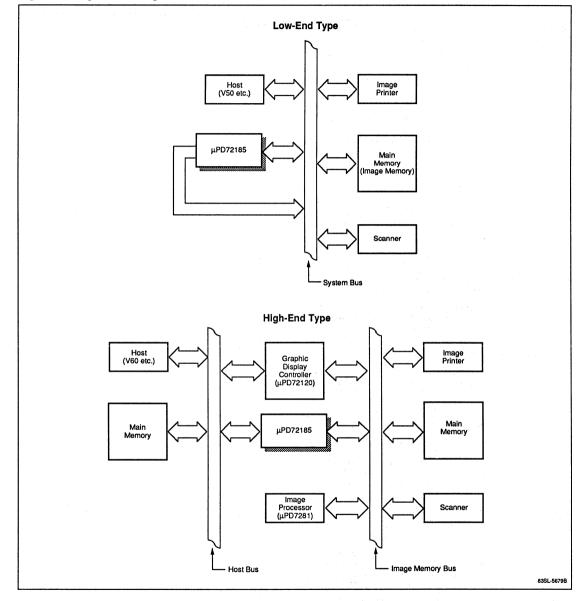
#### Table 14. List of Responses

Name	Function			
BCDOK (Block code okay)	Indicates normal termination of encoding by BLO command.			
	Sends back to host CPU: number of lines processed; start address of image data buffer following processed image data buffer; start address and start bit position of code buffer following processed code buffer.			
BDCOK (Block decode	Indicates normal termination of decoding by BLO command.			
okay)	Sends back to host CPU: number of lines processed; start address of image data buffer following processed image data buffer; start address and start bit position of code buffer following processed code buffer.			
BLABT (Block abort)	Indicates that during decoding by BLO com- mand, processing was aborted because er- ror line count exceeded maximum value set by SPRS command.			
	Sends back to host CPU: number of lines processed; start address of image buffer following processed image buffer; start ad- dress and start bit position of code buffer following processed code buffer.			
CEMPT (CDB empty)	Indicates specified code buffer has become , empty during decoding.			
	At this point, the μPD72185 enters the CFE interrupt state and subsequently accepts only SYS, SCDB, CNT, ABT, RPRS, and RCLB commands. If other commands are issued, a CFEERR response is returned.			
CFE ERR (CDB full/empty error)	In the CFE interrupt state, indicates a com- mand other than SYS, SCDB, CNT, ABT, RPRS, or RCLB has been issued.			

### s Table 14. List of Responses (cont)

Table 14. List of Responses (cont)		
Name	Function	
CFULL (CDB full)	Indicates specified code buffer has become full during encoding.	
e di	At this point, the $\mu$ PD72185 enters the CFE interrupt state and subsequently accepts only SYS, SCDB, CNT, ABT, RPRS, and RCLB commands. If other commands are issued, a CFEERR response is returned.	
CLBTBL (CLBTBL table)	Reports compression line buffer contents in response to RCLB command.	
CMDERR (Command error)	Indicates that there is no command corre- sponding to input command code.	
DBLCRQ (Double CRQ error)	Indicates receipt of duplicate command re- quests during processing, and notifies host CPU that processing being executed is in- validated.	
ECDOK (EOL code okay)	Indicates EOL code has been added and output to code buffer by EOL command.	
	Sends back to host CPU: start address and start bit position of code buffer following processed code buffer.	
EDCOK (EOL decode	Indicates detection of EOL code in code buffer by EOL command.	
okay)	Sends back to host CPU: address and posi- tion of bit following detected EOL code.	
FILLOK (FILL okay)	Indicates that the number of fill bits speci- fied by a FILL command have been output.	
	Sends back to host CPU: start address and bit position of buffer code following fill bits.	
LCD OK (Line code okay)	Indicates normal termination of encoding by LNO command.	
	Sends back to host CPU: number of lines remaining in image buffer; start address of image buffer following processed image buffer; start address and start bit position of code buffer following processed code buffer.	
LDCOK (Line decode okay)	Indicates normal termination of decoding by LNO command.	
	Sends back to host CPU: number of lines remaining in image buffer; start address of image buffer following processed image buffer; start address and start bit position of code buffer following processed code buffer.	
LNABT (Line abort)	Indicates that during execution of decoding by LNO command, processing was aborted because error line count exceeded maxi- mum value set by SPRS command.	
	Sends back to host CPU: number of lines remaining in image buffer; start address of image buffer following processed image buffer; start address and start bit position of code buffer following processed code buffer.	

#### Table 14. List of Responses (cont)


Name	Function		
MODOK (MOD okay)	Indicates normal termination of MOD com- mand processing.		
MSKOK (Mask okay)	Indicates normal termination of processing by MSK command.		
	Sends back to host CPU: start address of next image buffer to be processed.		
POK (Process okay)	When the $\mu$ PD72185 is in continuous processing mode, and the object of execu- tion by an ABT command is BLO, LNO, RTAG, EOL, or RTC, then POK indicates con- tinuous processing mode has been discontinued.		
	Sends back to host CPU: start address and start bit position of code buffer following processed code buffer.		
PRSTBL (Process status table)	Reports contents of statistical information table before it is initialized by SPRS com- mand.		
	Also reports current contents of table in re- sponse to RPRS command.		
RCDOK (RTC code okay)	Indicates RTC code has been added and output to code buffer by RTC command.		
	Sends back to host CPU: start address and start bit position of code buffer following processed code buffer.		
RDCOK (RTC decode okay)	Indicates detection of RTC code in code buffer by RTC command.		
	Sends back to host CPU: address and posi- tion of bit following detected RTC code.		
S CDBOK (S CDB okay)	Indicates normal termination of SCDB com- mand processing.		
SIMBOK (SIMB okay)	Indicates normal termination of SIMB com- mand processing.		
SOK (Set okay)	Indicates that when a CNT or ABT command has been issued and the command to be executed does not exist, the µPD72185 has terminated processing.		
SYSOK (SYS okay)	Indicates normal termination of SYS com- mand processing.		
TAGPAT (Tag pattern)	Indicates tag pattern specified by an RTAG command has been read.		
	Sends back to host CPU: start address of code buffer following read tag pattern and start bit position of that code buffer.		
TRNOK (Transfer okay)	Indicates normal termination of data transfer/composition processing by TRO command.		
	Sends back to host CPU: next transfer source/destination address.		
VEROK (RVER okay)	Returns firmware version to the host CPU.		

#### SYSTEM CONFIGURATION

Figure 17 is a diagram of low-end and high-end system configurations.









## **FLOPPY-DISK CONTROLLERS**

# Floppy-Disk Controllers

Section 5 Floppy-Disk Controllers	
μ <b>PD765A/μPD765B</b> Single/Double Density Floppy-Disk Controller	5-3
μ <b>PD71065/66</b> Floppy-Disk Interface	5-21
μ <b>PD72065/65B</b> CMOS Floppy-Disk Controller	5-43
μ <b>PD72067</b> Floppy-Disk Controller	5-57
μ <b>PD72068</b> Floppy-Disk Controller	5-79
μ <b>PD72069</b> Floppy-Disk Controller	5-105

NEC



### μPD765A/μPD765B Single/Double Density Floppy-Disk Controller

#### Description

The  $\mu$ PD765A/B is an LSI floppy disk controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to 4 floppy disk drives. It is capable of either IBM 3740 single density format (FM), or IBM System 34 double density format (MFM) including double-sided recording. The  $\mu$ PD765A/B provides control signals which simplify the design of an external phase-locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy disk interface.

Hand-shaking signals are provided in the  $\mu$ PD765A/B which make DMA operation easy to incorporate with the aid of an external DMA controller chip, such as the  $\mu$ PD8257. The FDC will operate in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

There are 16 commands which the  $\mu$ PD765A/ $\mu$ PD765B will execute. Most of these commands require multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available.

Read Data	Read Deleted Data
Read ID	Write Data
Specify	Write ID (Format Write)
Read Diagnostic	Write Deleted Data
Scan Equal	Seek
Scan High or Equal	Recalibrate
Scan Low or Equal	Sense Interrupt Status
Version	Sense Drive Status.

#### **Ordering Information**

Device Number	Package Type	Max Freq. of Operation		
μPD765AC2	40-pin plastic DIP	8 MHz		
μPD765B	40-pin plastic DIP	8 MHz		

#### Features

Address mark detection circuitry is internal to the FDC which simplifies the phase-locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The  $\mu$ PD765A/ $\mu$ PD765B offers additional features such as multi-track and multi-side read and write commands and single and double density capabilities.

- FM, MFM Control
- □ Variable recording length: 128, 256, ... 8192 bytes/ sector
- □ IBM-compatible format (single- and doublesided, single- and double-density)
- □ Multi-sector and multi-track transfer capability
- □ Drive up to 4 floppy or micro floppydisk drives
- Data scan capability will scan a single sector or an entire cylinder comparing byte-for-byte host memory and disk data
- Data transfers in DMA or non-DMA mode
- □ Parallel seek operations on up to four drives
- □ Compatible with µPD8080/85, µPD8086/88, V-series and µPD780 (Z80[®]) microprocessors
- □ Single-phase clock: 8 MHz maximum
- □ +5 V only

Z80 is a registered trademark of the Zilog Corporation.

#### **Pin Configuration**

	RESET ( RD ( WR ( CS ( A0 ( DB0 ( DB1 ( DB2 ( DC ( DD2 ( DC (	1         44           2         33           3         34           3         35           6         33           7         8994C0dH ¹ /19592C0dH ¹ /1           10         115           115         22           116         22           117         22           118         22	P         RW/SEEK           B         LCT/DIR           7         FLTR/STEP           6         HDLD           5         READY           4         WPRT/2SIDE           3         FLT/TRK0           2         PS0           1         PS1           0         WDATA           9         US0           8         US1           7         SIDE           6         MFM           5         WE           4         SYNC           3         RDATA
CLK 🗖 19 22 🗖 WINDOW			

### μ**PD765A***I*μ**PD765B**



#### **Pin Identification**

No.	Symbol	Function	
1	RESET	Reset input	
2	RD	Read control input	
3	WR	Write control input	
4	CS	Chip select input	
5	A ₀	Data or status select input	
6-13	DB0-DB7	Bidirectional data bus	
14	DRQ	DMA request output	
15	DACK	DMA acknowledge input	
16	TC	Terminal count input	
17	INDEX	Index input	
18	INT	Interrupt request output	
19	CLK	Clock input	
20	GND	Ground	
21	WCLK	Write clock input	
22	WINDOW	Read data window input	
23	RDATA	Read data input	
24	SYNC	VCO sync output	
25	WE	Write enable output	
26	MFM	MFM output	
27	SIDE	Head select output	
28, 29	US ₀ , US ₁	FDD unit select output	
30	WDATA	Write data output	
31, 32	PS ₀ , PS ₁	Preshift output	
33	FLT / TRK0	Fault / track zero input	
34	WPRT / 2SIDE	Write protect / two side input	
35	READY	Ready input	
36	HDLD	Head load output	
37	FLTR / STEP	Fault reset / step output	
38	LCT / DIR	Low current direction output	
39	RW / SEEK	Read / write / seek output	
40	V _{CC} DC power (+5V)		

#### **Pin Functions**

#### **RESET (Reset)**

The RESET input places the FDC in the idle state. It resets the output lines to the FDD to 0 (low), except PS0, 1 and WDATA (undefined), INT and DRQ also go low; DB0-7 goes to an input state. It does not affect SRT, HUT, or HLT in the Specify command. If the RDY input is held high during reset, the FDC will generate an interrupt within 1.024 ms. To clear this interrupt, use the Sense Interrupt Status command.

#### **RD** (Read Strobe)

The RD input allows the transfer of data from the FDC to the data bus when low and either  $\overline{CS}$  or  $\overline{DACK}$  is asserted.

#### WR (Write Strobe)

The  $\overline{WR}$  input allows the transfer of data to the FDC from the data bus when low. Disabled when  $\overline{CS}$  is high.

#### A₀ (Data/Status Select)

The  $A_0$  input selects the data register ( $A_0 = 1$ ) or status register ( $A_0 = 0$ ) contents to be accessed through the data bus.

#### **CS** (Chip Select)

The FDC is selected when  $\overline{CS}$  is low, enabling  $\overline{RD}$  and  $\overline{WR}$ .

#### DB₀-DB₇ (Data Bus)

 $\mathsf{DB}_0\text{-}\mathsf{DB}_7$  are a bidirectional 8-bit data bus. Disabled when  $\overline{\mathsf{CS}}$  is high.

#### DRQ (DMA Request)

The FDC asserts the DRQ output high to request a DMA transfer.

#### DACK (DMA Acknowledge)

When the DACK input is low, a DMA cycle is active and the controller is performing a DMA transfer.

#### **TC (Terminal Count)**

When the TC input is high, it indicates the termination of a DMA transfer. It terminates data transfer during Read/ Write/Scan commands in DMA or interrupt mode.

#### **INDEX** (Index)

The INDEX input goes high at the beginning of a disk track.

#### **INT (Interrupt)**

The INT output is FDC's interrupt request. In Non-DMA mode, the signal is output for each byte. In DMA mode, it is output at the termination of a command operation.

#### CLK (Clock)

CLK is the input for the FDC's single-phase, TTL-level squarewave clock: 8 MHz or 4 MHz. (Requires a pull-up resistor.)

#### WCLK (Write Clock)

The WCLK input sets the data write rate to the FDD. It is 500 kHz for FM, 1MHz for MFM drives, for 8 MHz operation of the FDC; 250 kHz FM or 500 kHz MFM for 4 MHz FDC operation.

This signal must be input for read and write cycles. WCLK's rising edge must be synchronized with CLK's rising edge, except for the  $\mu$ PD765B.

#### WINDOW (Read Data Window)

The WINDOW input is generated by the phase-locked loop (PLL). It is used to sample data from the FDD and in distinguishing between clock and data bits in the FDC.

#### **RDATA (Read Data)**

The RDATA input is the read data from the FDD, containing clock and data bits. To avoid a deadlock situation, input RDATA and WINDOW together.

#### WDATA (Write Data)

WDATA is the serial clock and data output to the FDD.

#### WE (Write Enable)

The WE output enables write data into the FDD.

#### SYNC (VCO Sync)

The SYNC output inhibits the VCO in the PLL when low, enables it when high.

#### MFM (MFM Mode)

The MFM output shows the VCO's operation mode. It is high for MFM, low for FM.

#### SIDE (Head Select)

Head 1 is selected when the SIDE output is 1 (high), head 0 is selected when SIDE is 0 (low).

#### US₀, US₁ (Unit Select 0, 1)

The US $_0$  and US $_1$  outputs select up to 4 floppy disk drive units using an external decoder.

#### PS₀, PS₁ (Preshift 0, 1)

The  $PS_0$  and  $PS_1$  outputs are the write precompensation request signals for MFM mode. They determine early, late, and normal times for WDATA shifting.

PS0	PS1	Shift (MFM WDATA)
0	0	Normal
0	1	Late
1	0	Early
1	1	

#### **READY** (Ready)

The READY input indicates that the FDD is ready to receive data.

#### HDLD (Head Load)

The HDLD output is the command which causes the read/write head in the FDD to contact the diskette.

#### FLT/TRK0 (Fault/Track 0)

In the read/write mode, the FLT input detects FDD fault conditions. In the seek mode, TRK0 indicates track 0 head position.

#### WPRT/2SIDE (Write Protect/Two Side)

In the read/write mode, the WPRT input senses write protected status (at the drive or media.) In the seek mode, 2SIDE senses two-sided media.

#### FLTR/STEP (Fault Reset/Step)

In the read/write mode, the FLTR output resets the fault flip-flop in the FDD. In the seek mode, STEP outputs step pulses to move the head to another cylinder. A fault reset pulse is issued at the beginning or each Read or Write command prior to the HDLD signal.

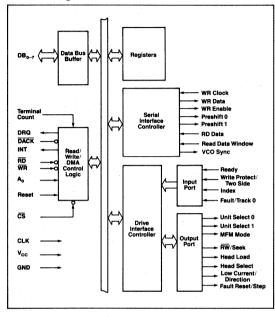
#### LCT/DIR (Low Current/Direction)

In the read/write mode, the LCT output indicates that the R/W head is positioned at cylinder 42 or greater. In the seek mode, the DIR output determines the direction the head will move in when it receives a step pulse. If DIR is 0, seeks are performed in the outward direction; DIR is 1, seeks are performed in the inward direction.

#### RW/SEEK (Read/Write/Seek)

The RW/SEEK output specifies the read/write mode when low, and the seek mode when high.

#### GND (Ground)


Ground.

V_{CC} (+5 V) +5 V power supply.

### μ**PD765A***I*μ**PD765B**



#### **Block Diagram**



### Absolute Maximum Ratings

T_A = 25°C

Power supply voltage, V _{CC}	-0.5 to +7 V
Input voltage, V _I	-0.5 to +7 V
Output voltage, V _O	-0.5 to +7 V
Operating temperature, T _{OPT}	- 10°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

**Comment:** Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device should not be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **DC Characteristics**

 $T_A = -10^{\circ}C \text{ to } +70^{\circ}C, V_{CC} = +5 \text{ V} \pm 10\%$ 

		Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	VIL	- 0.5		+0.8	۷	
Input voltage high	VIH	2.0		V _{CC} +0.	5 V	
Output voltage low	V _{OL}			0.45	۷	$I_{OL} = 2.0 \text{ mA}$
Output voltage high	V _{OH}	2.4		V _{CC}	۷	$I_{OH} = -200 \mu\text{A}$
Input voltage low (CLK + WCLK)	V _{IL} (Φ)	-0.5		0.65	V	
Input voltage high (CLK + WCLK)	V _{IH} (Φ)	2.4		V _{CC} +0.	5 V	
Supply current (V _{CC} )	ICC		- - 4.) -	150 140	mA mA	μPD765AC2 μPD765B
Input load current high	ILIH			10	μA	$V_{IN} = V_{CC}$
Input load current low	ILIL			- 10	μΑ	$V_{IN} = 0 V$
Output leakage current high	ILOH			10	μΑ	V _{OUT} = V _{CC}
Output leakage current low	LOL			- 10	μA	$V_{0UT} = +0.45 V$

### 

 $T_A = 25 \,^{\circ}C, f_C = 1 \,^{\circ}MHz, V_{CC} = 0 \,^{\circ}V$ 

			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input clock capacitance	С _{IN} (Ф)			20	pF	(Note 1)	
Input capacitance	CIN			10	pF	(Note 1)	
Output capacitance	C _{OUT}			20	pF	(Note 1)	

Note:

(1) All pins except pin under test tied to AC ground.





# DIFFERENCES BETWEEN µPD765A AND µPD765B

The  $\mu$ PD765B is a functionally enhanced version of the  $\mu$ PD765A. Differences are explained below.

#### Overrun Bit [OR]

In  $\mu$ PD765A, when executing a read- or write-type command (except READ ID and SCAN types), the result status OR bit is not set if there is an overrun on the final byte of a sector. An improvement in the  $\mu$ PD765B allows it to set the OR bit in any situation.

#### **DRQ** Reset

When an overrun occurs, the  $\mu$ PD765A needs DACK input to reset DRQ. If DACK is not available, an external DMA controller continues to operate even after the FDC enters the R-Phase (Result Phase), and stored result status may be transferred accidentally as ordinary data.

On the other hand, the  $\mu$ PD765B resets DRQ automatically just before the R-Phase entry and independent of the DACK input. See AC Characteristics for DRQ reset timing.

#### **Clock Synchronization**

The  $\mu$ PD765B does not require synchronization between the CLK and WCLK inputs.

#### Version Command

The Version command distinguishes the  $\mu$ PD765B from other devices. The ST0 response to the Version command is:

Part No.	ST0 Value				
μPD765A	80H				
µPD765B	90H				

#### **AC Characteristics**

 $T_A = -10$  to +70 °C;  $V_{CC} = +5 V \pm 10\%$ 

Parameter	Symbol	Min	Typ (1)	Max	Unit	Conditions	Parameter	Symbol	Min	Typ (1)	Max	U
Clock period	Φርγ	120	125	500	ns	8-MHz CLK	WCLK cycle time	tCY		16		φ
		240	250	500	ns	4-MHz CLK				8		¢
Clock active (high, low)	Φ0	40			ns		WCLK active time (high)	t ₀	80	250	350	ſ
Clock rise time	ΦR			20	ns		CLK ↑ → WCLK ↓ delay	tcwl	0		Φ0	ſ
Clock fall time	ΦF			20	ns		WCLK, RDATA and WINDOW rise time	t _R			20	ſ
A ₀ , CS, DACK setup time to RD↓	t _{AR}	0			ns		WCLK, RDATA and WINDOW fall time	t _F			20	ſ
A ₀ , CS, DACK hold time from RD †	t _{RA}	0			ns		Preshift delay time from WCLK 1	t _{CP}	20		100	r
RD width Data access time	t _{RR} t _{RD}	200		140	ns	C _L = 100 pF	WCLK ↑ → WE ↑ delay	^t CWE	20		100	ſ
from RD ↓ DB to float delay		10		85	ns	- -	WDATA delay time from WCLK 1	t _{CD}	20		100	r
time from $\overline{RD}$ 1 A ₀ , $\overline{CS}$ , $\overline{DACK}$	t _{DF}	0					RDATA active time (high)	t _{RDD}	40			r
setup time to WR	t _{AW}	U			ns		Window cycle time	twcy		2		
A ₀ , CS, DACK hold time to WR 1	t _{WA}	0			ns		Window hold time	•	15	1		ŀ
WR width	tww	200			ns		Window hold time from RDATA	t _{rdw}	15			ſ
Data setup time to WR 1	t _{DW}	100			ns		Window setup time to RDATA	^t WRD	15			ſ
Data hold time from WR 1	t _{WD}	0			ns		US _{0, 1} setup time to SEEK 1	tus	12			1
INT delay time from	t _{RI}			2φ _{CY} + φ ₀	ns	Non-DMA mode	SEEK setup time to DIR	t _{SD}	7			,
INT delay time from	t _{WI}			+ 135 2φ _{CY}	ns	-	Direction setup time to step 1	t _{dst}	1.0			
				+ φ ₀ + 135			US _{0, 1} hold time from step 1	tstu	5.0			. 1
DRQ cycle time	t _{MCY}	13			μS	$\phi_{CY} = 125$ ns (Note 4)	Step active time (high)	t _{STP}	6	7	8	1
$\overline{\text{DACK}} \downarrow \rightarrow \text{DRQ} \downarrow$ delay	t _{AM}			140	ns		Step cycle time	t _{SC}	33	Note 2	Note 2	4
$\frac{1}{\text{DRQ}} \uparrow \rightarrow \overline{\text{DACK}} \downarrow$	t _{MA}	200			ns	$\phi_{CY} = 125$ ns (Note 4)	Fault reset active time (high)	t _{FR}	8.0		10	ļ
DACK width	t _{AA}	2 φ _{CY} + 15	(		ns		Write data width	twdd	t ₀ — 50			I
TC width	t _{TC}	1			Φርγ		US _{0, 1} hold time after seek	tsu	15			1
Reset width	t _{RST}	14			Φርγ		allei Seek					
DRQ ↓ → INT response time	t _{MI}	60		77		μPD765B only	SEEK hold time from DIR	t _{DS}	30			1
INT → DACK ineffective	t _{IA}			1	ФСҮ	_	DIR hold time after step	tstd	24			1

**VEC** 

Unit Conditions  $\phi_{CY}$  MFM = 0  $\phi_{CY}$  MFM = 1

ns Note 4

ns µPD765AC2

only

 $\mu s MFM = 0$ MFM = 1

> 8-MHz CLK Notes 4, 5

μs Notes 4, 5

μs 8-MHz CLK Notes 3, 4, 5 μs 8-MHz CLK Notes 4, 5

μS ns

ns μS

μS μS μS

μS μS 10

ns

μS

Φርγ

Γ

20 ns

20 ns

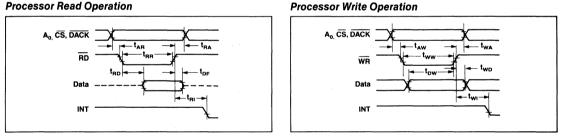
100 ns

100 ns

100 ns ns

5-8

### **AC Characteristics (cont)**


Parameter	Symbol	Min	Typ (1)	Max	Unit	Conditions
RD ↓ delay from DRQ	t _{MR}	800			ns	8-MHz CLK Note 4
₩R ↓ delay from DRQ	t _{MW}	250			ns	-
WR 1 or RD 1 response time from DRQ 1	t _{MRW}			12	μS	-

#### Notes:

- (1) Typical values for  $T_A = 25 \,^{\circ}$ C and nominal supply voltage.
- (2) Under software control. The range is from 1 ms to 16 ms at 8-MHz clock period, and 2 ms to 32 ms at 4-MHz clock period.
- (3) When one device is executing a SEEK operation, SENSE DRIVE STATUS is executed on another device.
- (4) Double these values for a 4-MHz clock period.
- (5) The drive side rating has a variance of -50 ns from the minimum value.

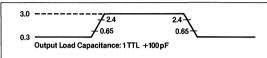
#### **Timing Waveforms**

#### **Processor Read Operation**

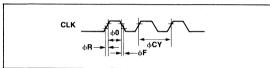


5

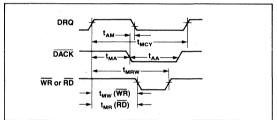
### μ**PD765A***I*μ**PD765B**



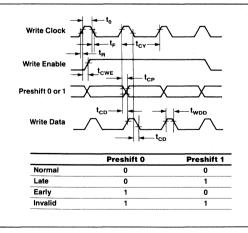

#### **Timing Waveforms (Cont)**


#### Data Input Waveform for AC Test (Except CLK, WCLK)

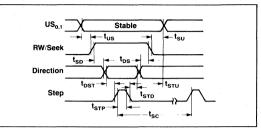



#### Clock (WCLK, CLK) Input Waveform for AC Test

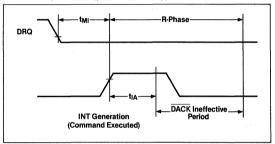



#### Clock

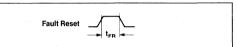



#### **DMA** Operation

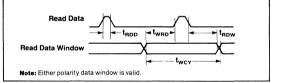



#### **FDD Write Operation**

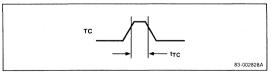



#### Seek Operation

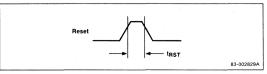



### Overrun Operation (µPD765B Only)

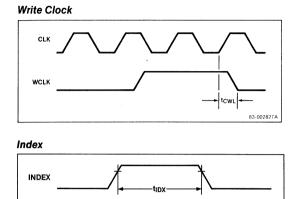



#### **FLT Reset**




#### **FDD Read Operation**




#### **Terminal Count**



#### Reset



#### **Timing Waveforms (Cont)**



#### **Internal Registers**

The  $\mu$ PD765A/ $\mu$ PD765B contains two registers which may be accessed by the main system processor: a status register and a data register. The 8-bit main status register contains the status information of the FDC, and may be accessed at any time. The 8-bit data register (which actually consists of four registers, ST0–ST3, in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the data register in order to program or obtain the results after a particular command (table 3). Only the status register may be read and used to facilitate the transfer of data between the processor and  $\mu$ PD765B.

The relationship between the status/data registers and the signals  $\overline{RD}$ ,  $\overline{WR}$ , and  $A_0$  is shown in table 1.

A ₀	RD	WR	Function	
0	0	1	Read main status register	
0	1	0	Illegal	
0	0	0	Illegal	
1	0	0	Illegal	
1	0	1	Read from data register	
1	1	0	Write into data register	

The bits in the main status register are defined in table 2.

	Pin	
No.	Name	Function
DB ₀	D ₀ B (FDD 0 Busy)	FDD number 0 is in the seek mode. If any of the $D_n B$ bits is set FDC will not accept read or write command.
DB ₁	D ₁ B (FDD 1 Busy)	FDD number 1 is in the seek mode. If any of the $D_nB$ bits is set FDC will not accept read or write command.
DB ₂	D ₂ B (FDD 2 Busy)	FDD number 2 is in the seek mode. If any of the $D_n B$ bits is set FDC will not accept read or write command.
DB3	D ₃ B (FDD 3 Busy)	FDD number 3 is in the seek mode. If any of the $D_n B$ bits is set FDC will not accept read or write command.
DB ₄	CB (FDC Busy)	A Read or Write command is in process. FDC will not accept any other command.
DB ₅	EXM (Execution Mode)	This bit is set only during execution phase in non-DMA mode. When $\mathrm{DB}_5$ goes low, execution phase has ended and result phase has started. It operates only during non-DMA mode of operation.
DB ₆	DIO (Data Input / Output)	Indicates direction of data transfer be- tween FDC and data register. If DIO=1, then transfer is from data register to the processor. If DIO=0, then transfer is from the processor to data register.
DB ₇	RQM (Request for Master)	Indicates data register is ready to send or receive data to or from the processor. Both bits DIO and RQM should be used to per- form the hand-shaking functions of "ready" and "direction" to the processor.

Table 2. Main Status Register

The DIO and RQM bits in the status register indicate when data is ready and in which direction data will be transferred on the data bus. See figure 1.

Figure 1. DIO and RQM

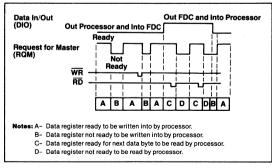



Table 3. Status Register Identification

	Pin	
No.	Name	Function
Status Reg	jister O	
D ₇ , D ₆	IC (Interrupt Code)	$D_7 = 0$ and $D_6 = 0$ Normal termination of command, (NT). Command was completed and properly executed.
		$D_7 = 0$ and $D_6 = 1$ Abnormal termination of command, (AT). Execution of command was started but was not successfully completed.
		$D_7 = 1$ and $D_6 = 0$ Invalid command issue, (IC). Command which was issued was never started.
		$D_7 = 1$ and $D_6 = 1$ Abnormal termination because during command execution the ready signal from FDD changed state.
D ₅	SE (Seek End)	When the FDC completes the Seek com- mand, this flag is set to 1 (high).
D4	EC (Equipment Check)	If a fault signal is received from the FDD, or if the track 0 signal fails to occur after 77 step pulses (Recalibrate Command) then this flag is set.
D ₃	NR (Not Ready)	When the FDD is in the not-ready state and a Read or Write command is issued, this flag is set. If a Read or Write command is issued to side 1 of a single-sided drive, then this flag is set.
D ₂	HD (Head Address)	This flag is used to indicate the state of the head at interrupt.
D ₁	US ₁ (Unit Select 1)	This flag is used to indicate a drive unit number at interrupt.
D ₀	US ₀ (Unit Select 0)	This flag is used to indicate a drive unit number at interrupt.
Status Reg	jister 1	
D ₇	EN (End of Cylinder)	When the FDC tries to access a sector be- yond the final sector of a cylinder, this flag is set.
D ₆		Not used. This bit is always 0 (low).
D5	DE (Data Error)	When the FDC detects a CRC(1) error in ei- ther the ID field or the data field, this flag is set.
D4	OR (Overrun)	If the FDC is not serviced by the host sys- tem during data transfers within a certain time interval, this flag is set.
D3		Not used. This bit is always 0 (low).



	Pin	
No.	Name	Function
Status Re	egister 1 (cont)	
D ₂	ND (No Data)	During execution of Read Data, Read De- leted Data, Write Data, Write Deleted Data or Scan command, if the FDC cannot find the sector specified in the IDR(2) Register, this flag is set.
		During execution of the Read ID command, if the FDC cannot read the ID field without an error, then this flag is set.
		During execution of the Read Diagnostic command, if the starting sector cannot be found, then this flag is set.
D ₁	NW (Not Writable)	During execution of Write Data, Write De- leted Data or Write ID command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D ₀	MA (Missing Address Mark)	This bit is set if the FDC does not detect the IDAM before 2 index pulses. It is also set if the FDC cannot find the DAM or DDAM af- ter the IDAM is found, MD bit of ST2 is also set at this time.
Status Re	egister 2	
D ₇		Not used. This bit is always 0 (low).
D ₆	CM (Control Mark)	During execution of the Read Data or Scan command, if the FDC encounters a sector which contains a deleted data address mark, this flag is set. Also set if DAM is found during Read Deleted Data.
D ₅	DD (Data Error in Data Field)	If the FDC detects a CRC error in the data field then this flag is set.
D4	WC (Wrong Cylinder)	This bit is related to the ND bit, and when the contents of C(3) on the medium is dif- ferent from that stored in the IDR, this flag is set.
D ₃	SH (Scan Equal Hit)	During execution of the Scan command, if the condition of "equal" is satisfied, this flag is set.
D ₂	SN (Scan Not Satisfied)	During execution of the Scan command, if the FDC cannot find a sector on the cylin- der which meets the condition, then this flag is set.
D ₁	BC (Bad Cylinder)	This bit is related to the ND bit, and when the contents of C on the medium is differ- ent from that stored in the IDR and the con- tents of C is FFH, then this flag is set.
Do	MD (Missing Address Mark in Data Field)	When data is read from the medium, if the FDC cannot find a data address mark or deleted data address mark, then this flag is set.

# Table 3. Status Register Identification (cont)

#### Table 3. Status Register Identification (cont)

NEC

lame	Function							
	Function							
1	This bit is used to indicate the status of the fault signal from the FDD.							
Protected)	This bit is used to indicate the status of the write protected signal from the FDD.							
()	This bit is used to indicate the status of the ready signal from the FDD.							
0)	This bit is used to indicate the status of the track 0 signal from the FDD.							
Side)	This bit is used to indicate the status of the two-side signal from the FDD.							
Address)	This bit is used to indicate the status of the side select signal to the FDD.							
Select 1)	This bit is used to indicate the status of the unit select 1 signal to the FDD.							
	This bit is used to indicate the status of the unit select 0 signal to the FDD.							
	Side) Address)							

#### Note:

(1) CRC = Cyclic Redundancy Check

(2) IDR = Internal Data Register

(3) Cylinder (C) is described more fully in the Command Symbol Description.

#### **Command Sequence**

The  $\mu$ PD765A/ $\mu$ PD765B is capable of performing 15 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the  $\mu$ PD765A/  $\mu$ PD765B and the processor, it is convenient to consider each command as consisting of three phases:

Command Phase:	The FDC receives all information re- quired to perform a particular opera- tion from the processor.
Execution Phase:	The FDC performs the operation it was instructed to do.
Result Phase:	After completion of the operation, status and other housekeeping information are made available to the processor.

Table 4 shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The "W" to the left of each byte indicates a command phase byte to be written, and an "R" indicates a result byte. The definitions of other abbriviations used in table are given in the Command Symbol Description table.

Name	Function
A ₀ (Address Line 0)	$A_0$ controls selection of main status register ( $A_0 = 0$ ) or data register ( $A_0 = 1$ ).
C (Cylinder Number)	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D (Data)	D stands for the data pattern which is going to be written into a sector during WRITE ID operation.
D7-D0 (Data Bus)	8-bit data bus, where $D_7$ stands for a moss significant bit, and $D_0$ stands for a least significant bit.
DTL (Data Length)	When N is defined as 00, DTL stands for the data length which users are going to read out or write into the sector.
EOT (End of Track)	EOT stands for the final sector number on a cylin- der. During read or write operations, FDC will stop data transfer after a sector number equal to EOT.
GPL (Gap Length)	GPL stands for the length of gap 3. During Read / Write commands this value determines the num- ber of bytes that VCO sync will stay low after two CRC bytes. During Format command it deter- mines the size of gap 3.
H (Head Address)	H stands for the logical head number 0 or 1, as specified in ID field.
HD (Head)	HD stands for a the physical head number 0 or and controls the polarity of pin 27. (H = HD in al command words.)
HLT (Head Load Time)	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT (Head Unload Time)	HUT stands for the head unload time after a Reac or Write operation has occurred (16 to 240 ms in 16 ms increments).
MF (FM or MFM Mode)	If MF is low, FM mode is selected, and if it is high. MFM mode is selected.
MT (Multitrack)	IF MT is high, a multitrack operation is per- formed. If $MT = 1$ after finishing read / write oper- ation on side 0, FDC will automatically star searching for sector 1 on side 1.
N (Number)	N stands for the number of data bytes written in a sector.
NCN (New Cylinder Number)	NCN stands for a new cylinder number which is going to be reached as a result of the seek opera- tion; desired position of head.
ND (Non-DMA Mode)	ND stands for operation in the non-DMA mode.
PCN (Present Cylinder Number)	PCN stands for the cylinder number at the completion of Sense Interrupt Status command position of head at present time.
R (Record)	R stands for the sector number which will be read or written.
R/W (Read/Write)	R/W stands for either Read (R) or Write (W signal.
SC (Sector)	SC indicates the number of sectors per cylinder.
SK (Skip)	SK stands for skip deleted data address mark.

# **Command Symbol Description**

# μ**PD765A***I* μ**PD765B**



# **Command Symbol Description (cont)**

Name	Function						
SRT (Step Rate Time)	SRT stands for the stepping rate for the FDD (1 to 16 ms in 1 ms increments). Stepping rate applies to all drives (FH = 1 ms, EH = 2 ms, etc.).						
STO-ST3 (Status 0-3)	ST0–ST3 stands for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_0=0$ ). ST0–ST3 may be read only after a command has been executed and contains information relevant to that particular command.						

Name	Function						
STP	During a scan operation, if STP=1, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP=2, then alternate sectors are read and com- pared.						
US ₀ , US ₁ (Unit Select)	US stands for a selected drive number 0 or $-3$ .						

**Command Symbol Description (cont)** 

# Table 4. Instruction Set (Notes 1, 2)

				I	nstructi	ion Coc				
Phase	R/W	D7	D ₆	D5	D4	D3	D ₂	D ₁	Do	Remarks
Read Data										
Command	W	MT	MF	SK	0		1	1	0	Command codes
	w	Х	Х	X	Х		HD	US ₁	US ₀	(Note 3)
	W	<b>4</b>			(	;			>	Sector ID information prior to command execution. The 4 byte
	w	<b>~</b>			ŀ				>	are compared against header on floppy disk.
	w	<b></b>			F	1			>	
	w				N					
	w				EC					
	w				GF					
	W	<			D1	「L			<b>&gt;</b>	
Execution										Data transfer between the FDD and main system
Result	R	<b>~</b>			ST	0			>	Status information after command execution
	R	٠			ST	[1			>	
	R				ST					
	R	<b></b>			(	) —			>	Sector ID information after command execution
	R	-			H	1			>	
	R	<b></b>			F	}			>	
	R				N	J			>	
Read Deleted Dat	3									
Command	W	MT	MF	SK	0	1		0	0	Command codes
	W	Х	Х	Х					US ₀	
	w	٠			(				<b>&gt;</b>	Sector ID information prior to command execution. The 4 byte
	w	<b>«</b>			H	I			>	are compared against header on floppy disk.
	w	٠			F	} }			>	
	W				N					
	W			· · · · · · · · · · · · · · · · · · ·	EC	)T			>	
	w	<b>~</b>			GF	ካ			>	
	W	4			D1	۲L			>	
Execution					1					Data transfer between the FDD and main system
Result	R				ST					Status information after command execution
	R				ST					
	R	٠			ST	2				
	R	◄			(	;			>	Sector ID information after command execution
	R				H					
	R				F					
	R	<b>«</b>			N	ا			>	

#### Note:

(1) Symbols used in this table are described at the end of this section.

(2) A₀ should equal 1 for all operations.
(3) X = Don't care, usually made to equal 0.



# $\mu$ PD765A/ $\mu$ PD765B

# Table 4. Instruction Set (Notes 1, 2) (cont)

				1	nstructi	on Coc				
Phase	R/W	D ₇	D ₆	D ₅	D4	D3	D ₂	D ₁	D ₀	Remarks
Write Data										
Command	W	MT	MF	0	0	0	1	0	1	Command codes
	W	Х	Х	Х	Х	Х	HD	US ₁	US ₀	
	W	٠			—— С —— н				>	Sector ID information prior to command execution. The 4 bytes
	W	<b></b>			H				>	are compared against header on floppy disk.
	w				—— H					
	Ŵ				FC	)T			>	
	Ŵ	<b></b>			EC GF	ν. —			>	
	W				DT	ïL —			>	
Execution										Data transfer between the main system and FDD
Result	R	<			ST ST	0			>	Status information after command execution
	R	<b>«</b>			ST	1			>	
	R				ST C H	2 —			>	
	R	4			C					Sector ID information after command execution
	R				F					
	R R				H					
Write Deleted Data										
Command	w	MT	MF	0	0	1	0	0	1	Command codes
oominand	Ŵ	X	X	x	x	x	нĎ	US₁	υSo	Command Couco
	Ŵ				(				<b>&gt;</b>	Sector ID information prior to command execution. The 4 bytes
	W	<del>.</del>			—— F	I			>	are compared against header on floppy disk.
	W	<b></b>								
	W	<b>4</b>			N EC					
	W				EC GF	)T			>	
	W	4			GF DT	'L				
Execution		-								Data transfer between the FDD and main system
Result	R				ST	0		· · · · ·		Status information after command execution
nesuli	R	-			ST	1				Status information after command execution
	R	<b></b>	·		—— ST	2			>	
	R				C					Sector ID information after command execution
	R	<b></b>			H	I			>	
	R	*			P				>	
	R	<b>~</b>							<b>&gt;</b>	· · · · · · · · · · · · · · · · · · ·
Read Diagnostic						· · · · · · · · · · · · · · · · · · ·		·		
Command	W	0	MF	SK	0	0	0	1	0	Command codes
	W	Х	Х	Х	c	. <u>х</u>	HD	US1	US ₀	Sector ID information prior to command execution
	Ŵ				ĩ				>	Sector 10 mormation prior to command execution
	ŵ				F					
	W	<b></b>								
	W				EC	л —				
	W				GF DT	۲L			>	
	W	<b></b>			—— D1	ι —				
Execution										Data transfer between the FDD and main system. FDC reads al data fields from index hole to EOT.
Result	R	<u>ج</u>			ST	0			>	Status information after command execution
	R	4			ST ST	1			>	
	R				ST C	2 —				Contar ID information offer command evenution
	R R									Sector ID information after command execution
	R				F					

# μ**PD765A***I*μ**PD765B**



				1	nstruct	ion Cod	le		a na na manana manana manana manana mana Manana	
Phase R/	R/W									Remarks
Read ID				ā				· · · · ·		
Command	w	0	MF	0	0	1	0	1	0	Command codes
	W	X	Х	Х	х	Х	HD	US ₁	US ₀	
Execution			-							The first correct ID information on the cylinder is stored in data register.
Result	R	4			S1	ro			>	Status information after command execution
	R				S ⁻	r1 —				
	R				S1	[2			>	
	R	4			(	2				Sector ID information read during execution phase from floppy
	R									disk.
	R					۲ ۱				
Write ID [Format ]						•				
Command	W	. 0	MF	0	0	1	1	0	1	Command codes
Contantanto	Ŵ	x	X	x	x	×	нр	US₁	USo	Command Codes
	Ŵ		~			a				Bytes / sector
	ŵ	<b></b>			s	r				Sectors / track
	W	4	· · · · · ·		GI	ค้	· · · · · · · · · · · · · · · · · · ·			Gap 3
	W				(	) (				Filler byte
Execution		*********								FDC formats an entire track.
Result	R									Status information after command execution
	R				S	Г1 —				
	R				S]	[2 —				
	R	4			(	?			·····	In this case, the ID information has no meaning
	R	4			1	1				
	R	4				ν ——				
Scan Equal										
Command	W	MT	MF	SK	1	0	0	0	1	Command codes
Commanu	W	X	X	X	x	X	нр	US₁	USo	Command codes
	Ŵ.	<u> </u>				:				Sector ID information prior to command execution
	w i	<b>.</b>			i	, 				
	w									
	W									
	w	4	,		E(	DT TC				
	W	· •			GI	PL				
1	W	•			S	TP				
Execution										Data compared between the FDD and main system
Result	R									Status information after command execution
	R	4			S'	T1 —		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	R	<b>.</b>			ST	[2				
	R							,		Sector ID information after command execution
		-				-				the second se
	R									

# Table 4. Instruction Set (Notes 1, 2) (cont)

Note:

(1) Symbols used in this table are described at the end of this section.

(2) A₀ should equal 1 for all operations.

(3) X = Don't care, usually made to equal 0.

# NEC

# μ**PD765A***I*μ**PD765B**

# Table 4. Instruction Set (Notes 1, 2) (cont)

				1	nstructi	ion Cod	le			
Phase	R/W	D ₇	D ₆	D ₅	D4	D3	D ₂	D ₁	Do	Remarks
Scan Low or Equal										
Command	W	MT	MF	SK	1	1	0	0	1	Command codes
	W	Х	Х	Х	X	X	HD	US ₁	US ₀	
	W	<b>4</b>			(					Sector ID information prior to command execution
	Ŵ					·				
	ŵ					•			>	
	W				EC				>	
	W	<b></b>			GF				>	
	W				SI	ГР ——			>	
Execution										Data compared between the FDD and main system
Result	R		-1		ST	-			>	Status information after command execution
	R					[1 [2				
	R				(				>	Sector ID information after command execution
	R	-			F				>	
	R				F	۱ — ۱			>	
	R	<			N	· ·				
Scan High or Equal										· .
Command	W	MT	MF	SK	1	1	1	0	1	Command codes
	W	Х	X	X	X	X	HD	US ₁	US ₀	
	W W				( H				>	Sector ID information prior to command execution
	Ŵ				F					
	Ŵ				Ň	J				
	W				—— EC					
	W				GF				>	
	W				S1	IP			>	
Execution										Data compared between the FDD and main system
Result	R	•				0			>	Status information after command execution
	R R					[1 [2			<del>_</del>	
	R				(					Sector ID information after command execution
	R	٠			—— ŀ				>	
	R				F				>	
	R				N	l			>	
Recalibrate										
Command	W	0	0	0	0	0	1	1	- 1	Command codes
	W	X	Х	Χ.	X	Х	0	US ₁	US ₀	
Execution			1.1	1 						Head retracted to track 0
Sense Interrupt Stat	us									
Command	W	0	0	0	0	1	0	0	0	Command codes
Result	R	<b>~</b>			ST	0			>	Status information about the FDC at the end of seek operation
	R				PC	N			>	
Specify	-									
Command	W	0	0	0	0	0	0	1	- 1	Command codes
	W	-	SI	AT		<b>4</b>	— Н	UT	>	
	W	<b></b>			- HLT -			>	ND	
Sense Drive Status										
Command	W	0	0	0	0	0	1	0	0	Command codes
	W	X	X	X	X	Х	HD	US ₁	US ₀	
Result	R				ST	3 —			>	Status information about FDD

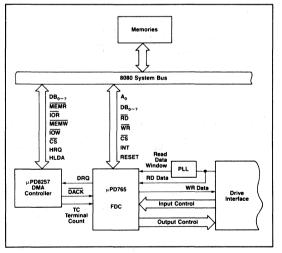
# μ**PD765A***I*μ**PD765B**

				I	nstruct	ion Cod	0			
Phase	R/W	D ₇	D ₆	D5	D4	D3	D ₂	D ₁	D ₀	Remarks
Version										
Command	W	X	Х	Х	- 1	0	0	0	0	Command codes
Result	R				ST	ro —			>	90H indicates 765B 80H indicates 765A / A-2
Seek										.,
Command	W W	0 X	0 X	0 X	0 X	1 X	1 HD	1 US ₁	1 US ₀	Command code
	W	<b>~</b>			N(	CN			>	
Execution										Head is positioned over proper cylinder on diskette
Invalid										
Command	W	٠			Invalid	Codes			>	Invalid Command codes (No op – FDC goes into state)
Result	R	4			— S	0				ST 0 = 80H

NEC

#### Note:

(1) Symbols used in this table are described at the end of this section.


(2) A₀ should equal 1 for all operations.

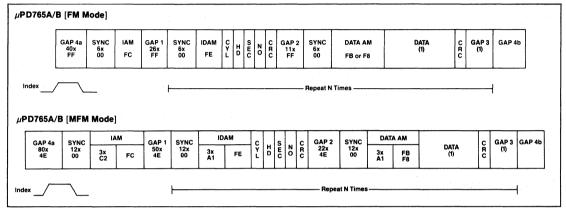
(3) X = Don't care, usually made to equal 0.

# **System Configuration**

Figure 2 shows an example of a system using a  $\mu$ PD765A/B.

# Figure 2. System Configuration




5-18



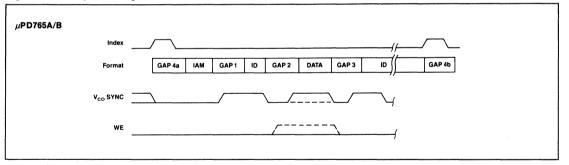

# **Data Format**

Figure 3 shows the data transfer format for the  $\mu PD765A$  and  $\mu PD765B$  in FM and MFM modes. Figure 4 shows VCO Sync timing.

#### Figure 3. Data Format



### Figure 4. VCO Sync Timing



# μ**PD765A**/μ**PD765B**



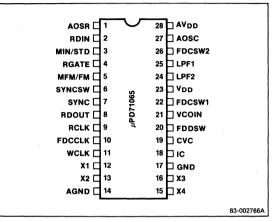


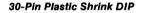
# Description

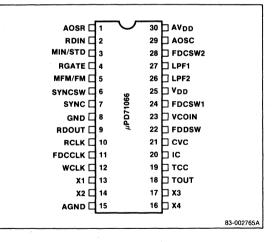
The  $\mu$ PD71065 and  $\mu$ PD71066 are CMOS devices that interface a floppy-disk drive (FDD) with a floppy-disk controller (FDC). The controller can be  $\mu$ PD765A/B,  $\mu$ PD7265,  $\mu$ PD72065/B,  $\mu$ PD72066,  $\mu$ PD7260, or one of the FD179X series.

The floppy-disk interface can operate at various data rates, including the 300-kb/s rate that results from using high-density 5-inch drives with media formatted at the standard 250-kb/s rate. Also, the  $\mu$ PD71065/66 generates the write clock needed by the selected controller and provides synchronous switching when changing data rates.

# Features


- Compatible with all industry-standard controllers
- □ Multiple data rates: 500/300/250/150/125 kb/s
- Internal or external sync field detection logic
- □ Head-loading timer for FD179X-series controllers
- No analog adjustments required
- □ CMOS, low power consumption
- 5-volt power supply


# **Ordering Information**


Part Number	Package	Internal Timer		
μPD71065G	28-pin plastic S0	Not included		
μPD71066CT	30-pin plastic shrink DIP	Implemented to FD179X-series controllers as head- loading timer.		

# **Pin Configurations**

#### 28-Pin Plastic SO









Symbol	Input/Output	Function
ACOS		Capacitor connection pin for analog one-shot
AGND		Ground for analog circuits
AOSR		Resistor connection pin for analog one-shot
AV _{DD}		Power supply for analog circuits
CVC		Capacitor connection pin for VCO
FDCCLK	Output	Clock to FDC
FDCSW1	Input*	FDC selection pin or timer trigger input
FDCSW2	Input*	FDC selection pin
FDDSW	Input*	Data transfer rate selection pin
GND	-	Ground
IC		Internally connected; should be left open
LPF1, LPF2	Output	Connection pins to external lowpass filter
MFM/FM	Input*	Recording density selection pin
MIN/STD	Input*	5- or 8-inch FDD selection pin
RCLK	Output	Read data sampling clock
RDOUT	Output	Read data to FDC
RGATE	Input*	Read enable/disable
RDIN	Input*	Read data from FDD
SYNC	Input*	External PLL gain selection
SYNCSW	input*	Determines whether gain selection is internal or external
TCC		External RC time constant connection to internal timer ( $\mu$ PD71066)
TOUT	Output	Timer signal (µPD71066)
VCOIN	Input	External lowpass filter output to internal VCO
V _{DD}		+5-volt power supply
WCLK	Output	Write clock to FDC
X1, X2		Connection pins for 16-MHz crystal (X1, X2) or external clock input (X1)
X3, X4		Connection pins for 19.2-MHz crystal (X3, X4) or external clock input (X3)

*Input pin has an on-chip pull-up resistor

# **Pin Functions**

The following paragraphs supplement the brief descriptions of certain pins in the preceding table. Pin symbols are in alphabetical order.

**FDCSW1 and FDCSW2.** The  $\mu$ PD71065/66 is configured for the applicable FDC by applying logic levels L and H (or open) to these pins.

FDCSW1	FDCSW2	Floppy-Disk Controller
Open or H	Open or H	µPD765A/7265
L	Open or H	μPD7260
*	L	FD179X series

*FDCSW1 is the trigger input to the timer circuit when FDCSW2 is low.

**FDDSW.** The logic level applied to this pin selects the data transfer rate of the FDD.

FDDSW	Data Transfer Rate	
Open or H	500/250/125 kb/s	
Ľ	500/250/300/150 kb/s	

**MFM/FM Pin.** The logic level applied to this pin and the FDCSW2 pin selects the modulation type. Double-density and single-density recording use MFM (modified FM) and FM modulation, respectively.

FDCSW2	MFM/FM	Modulation	
Н	Н	MFM	
Н	L	FM	
L	Н	FM	
L	L	MFM	

**MIN/STD.** Logic level L on this pin selects a 5-inch FDD. An open or H selects an 8-inch FDD.

**RDIN.** This is a composite read data and clock signal input from the FDD.

**RDOUT.** The read data output from this pin is synchronized with the read clock (RCLK) derived from the RDIN composite signal.

**RGATE.** In conjuction with FDCSW2, RGATE enables or disables the read operation that is sent from the FDC.

FDCSW2	RGATE	Read Operation
Н	Н	Enable
Н	L	Disable
L	Н	Disable
L	L	Enable

(1) Input signal at SYNC is the PLL gain selection signal between the

(2) Input signal at SYNC Is the SYNC field detection signal from the

**SYNC and SYNCSW.** The PLL gain is determined by the intput signal at the SYNC pin and the logic levels at the FDCSW1 and SYNCSW pins.

FDCSW1	SYNCSW	SYNC	PLL Gain
Open or H	Open or H	H (1)	Low
		L (1)	High
	L	H (2)	Low
		L (2)	High

# **Block Diagram**

#### AOSR AOSC RDIN LPF2 I PF1 VCOIN cvc Analog One-Shot Up Charge Voltage-Input Phase Pump Data Controlled Comparato and Filter Generator Oscillator R Down Selector Digital One-Shot O FDDSW RGate O-O FDCSW1 MIN/STD O-----MFM/FM O-----X1 O -O FDCSW2 X2 O Ident Sync Output Data Clock Field Byte Timer Generator Generator -0 тсс* Detector X3 O Detector X4 O PLD0 *Not on µPD71065 Ĵ Į FDCCLK WCLK SYNC SYNCSW RCLK RDOUT 83-002767B

Note:

FDC.

ID and DATA fields.

Functions of the block diagram components are explained below.

**Clock Generator.** Using both 16-MHz and 19.2-MHz oscillators, outputs clock signals corresponding to the mode used to the FDCCLK and WCLK pins.

**Input Data Generator.** According to the input data, generates the R and V signals to be input to the phase comparator. In addition to this, the input data generator determines whether the analog one-shot circuit or the digital one-shot circuit is used.

Charge Pump and Filter Selector. According to the PLL (phase-locked loop) gain selection signal, enables or disables the LPF2 side charge pump to control the PLL gain.

**Output Data Generator.** Generates the window signal (RCLK) and read data signal (RDOUT) depending on the mode and FDC to be used.

**Sync Byte Detector.** Detects the sync field within 16 to 20 pulses regardless of FM or MFM mode.

Ident Field Detector. Determines whether the sync field detected by the sync byte detector is ID or DATA field and sets the PLL gain.



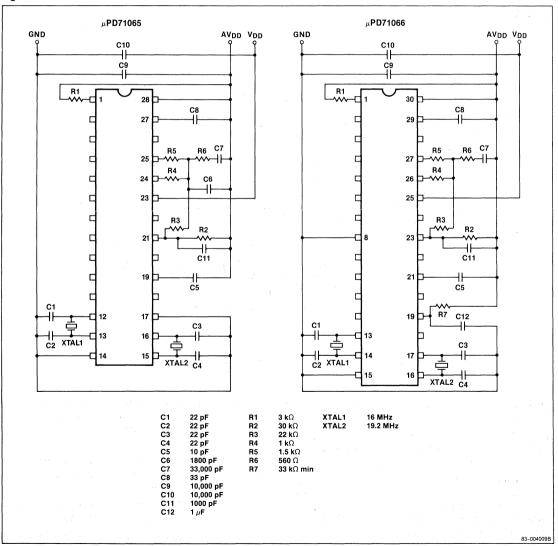
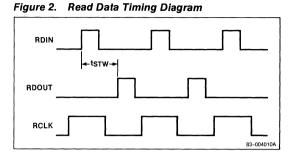

# **Basic External Circuit**

Figure 1 shows the basic external circuit including the lowpass filter and crystals. The data transfer rate is selected by strapping pins FDDSW, MIN/STD, and MFM/FM to L (low) or open (high). See table 1.

The VCO frequency and the phase delay between RDIN and RDOUT can be optimized by adjusting resistors R2 and R1, respectively.

# **VCO Frequency**


For this procedure, the data transfer rate is undefined. Strap RGATE to H and RDIN to L. Adjust resistor R2 to set the VCO frequency at the RCLK pin to the same numerical value as the data transfer rate; for example, 500 kHz and 500 kb/s.



#### Figure 1. Basic External Circuit

# Data Read Phase Delay

For this procedure, set the data transfer rate to 500 kb/s, set the RDIN signal to a  $2-\mu$ s cycle time, and strap RGATE to H. Adjust resistor R1 to set the value of t_{STW} (figure 2) to 950 ns.



#### Table 1. Data Transfer Rate Selection

	Data Transfer Rate	Clock Output Fro	equencies from $\mu$	PD71065/71066	S	election Pins (Note	1)
Floppy-Disk Controllers	(kb/s)	FDCCLK (MHz)	RCLK (kHz)	WCLK (kHz)	FDDSW	MIN/STD	MFM/FM
μPD765A, μPD7265,	250	4	250	500	Open	Open	Open
µPD72065, µPD72066 (Note 2)	125	4	125	250	Open	Open	L
(NOTE 2)	500	8	500	1 MHz	Open	L	Open
	250	8	250	500	Open	L	L
	300	4.8	300	600	L	Open	Open
	150	4.8	150	300	L	Open	L
	500	8	500	1 MHz	L	L	Open
	250	8	250	500	L	L	L
µPD7260 (Note 3)	250	4	500	500	Open	Open	Open
	125	4	250	250	Open	Open	L
	500	8	1 MHz	1 MHz	Open	L	Open
	250	8	500	500	Open	L	L
	300	4.8	600	600	L	Open	Open
	150	4.8	300	300	L	Open	L
	500	8	1 MHz	1 MHz	L	L	Open
	250	8	500	500	L	L	L
FD179X Series (Note 4)	250	1	250	500	Open	Open	L
	125	. 1	125	250	Open	Open	Open
	500	2	500	1 MHz	Open	L	L
	250	2	250	500	Open	L	Open
	300	1.2	300	600	L	Open	L
	150	1.2	150	300	L	Open	Open
	500	2	500	1 MHz	L	L	L
	250	2	250	500	L	L	Open

Note:

(1) Selection pin states: L = low; Open = open or H (high) (4) FD179X Series:

(2) μPD765A/7265/72065/72066:FDCSW1 and FDCSW2 = Open

FD179X Series: FDCSW1 = Don't care and FDCSW2 = L.

WCLK clock is not used.

(3) µPD7260:

FDCSW1 = L and FDCSW2 = Open. FDCLK clock is not used



# **Electrical Characteristics**

Figures 3 through 8 are test circuits for verifying certain parameters in the dc and ac characteristics tables.

# **Absolute Maximum Ratings** $T_A = +25 \,^{\circ}C$

$I_{A} = \pm 25  \text{°C}$	
Power supply voltage, V _{DD}	-0.3 to +6 V
Input voltage, V _I	-0.3 to V _{DD} + 0.3 V
Output voltage, V ₀	-0.3 to V _{DD} + 0.3 V
Operation temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	−40 to +125°C

# **DC Characteristics**

 $T_A = -10$  to +70 °C;  $V_{DD} = +5 V \pm 10\%$ 

			Limits				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	Test Circuit
Input voltage, low	VIL	0.3		0.8	V		-
Input voltage, high	VIH	2.2		V _{DD} + 0.3	V		
Output voltage, low	V _{OL}			0.45	V	$I_{0L} = 2 \text{ mA}$	
Output voltage, high	V _{OH}	0.7 V _{DD}		V _{DD}	٧	I _{0H} = - 200 μA	
Clock input level	V _{Kp-p}	1		V _{DD}	۷		Figure 5
Input leakage current, low	ILIL	-150		50	μA	$V_{I} = 0 V$	
Input leakage current, high	ILIH	-10		+10	μA	$V_{I} = V_{DD}$	
Output leakage current, low	ILOL	-10		······	μA	$V_0 = 0.45 V$	
Output leakage current, high	ILOH			+10	μA	$V_0 = V_{DD}$	
Power supply current	IDD			25	mA	XTAL: 16 MHz, 19.2 MHz	Figure 3
				20	mA	XTAL: 16 MHz	Figure 4

# **AC Characteristics**

 $T_A = -10$  to +70°C;  $V_{DD} = +5 V \pm 10\%$ 

			Limits				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	Test Circuit
Rise time	t _R	0		20	ns		
Fall time	t _F	0		20	ns		
RDOUT setup time to RCLK 1	t _{SRR}	40			ns	For µPD7260	Figure 6
CLK high/low level width	t _{KK}	20			ns		
VCO oscillation frequency	f _o			8	MHz	$V_{\rm F} = V_{\rm DD}$	Figure 7
VCO free-run frequency	fi	3.6	4	4.4	MHz	$FDDSW = H, V_F = open$	
		2.1	2.4	2.7	MHz	$FDDSW = L, V_F = open$	
VCO control voltage sensitivity	Kγ	2.5	3.5	4.6	MHz/V	$ (V_{DD}/2) - V_F  \le 0.5 V$	
Ky voltage coefficient	∆K _V /V _{DD}	-1	—19	-22	%/V		-
f _i power supply voltage coefficient	$\Delta f_i / V_{DD}$	0		5	%/V		
f _i temperature coefficient	∆f _i /T _A	0	500	-1000	ppm/°C		
Phase detect sensitivity	Kp	0.7	0.8	0.9	V/rad		
RCLK jitter	tj	0	30	50	ns	500-kb/s mode	Figure 8
RDIN 1 to RDOUT 1 delay time	t _{DRR}	900	950	1000	ns		
Capture range (Note 1)	fCAP	537		427	kHz	500-kb/s mode	
		286		213	kHz	250-kb/s mode	
		143		107	kHz	125-kb/s mode	
		343		256	kHz	300-kb/s mode	
		172		128	kHz	150-kb/s mode	
FDCCLK [†] to WCLK [†] delay time (Note 2)	tdfwr			30	NS	C _L = 15 pF	Figure 1
FDCCLK [↑] to WCLK ↓ delay time (Note 2)	tdfwf			30	ns	$C_L = 15 \text{ pF}$	

#### Note:

(1) The frequencies in the Max and Min columns are the lower and upper limits, respectively, of the capture range. For example, in the 500-kb/s mode, the capture range is from 427 kHz (or lower) to 537 kHz (or higher).

(2) Clock outputs to FDC.

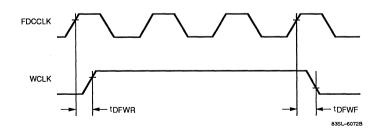
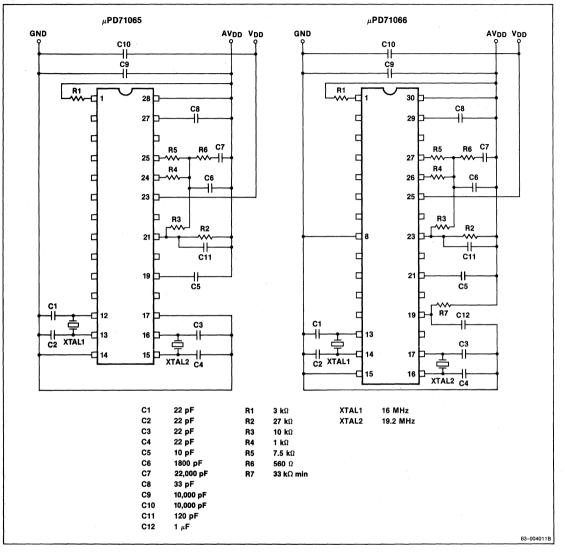
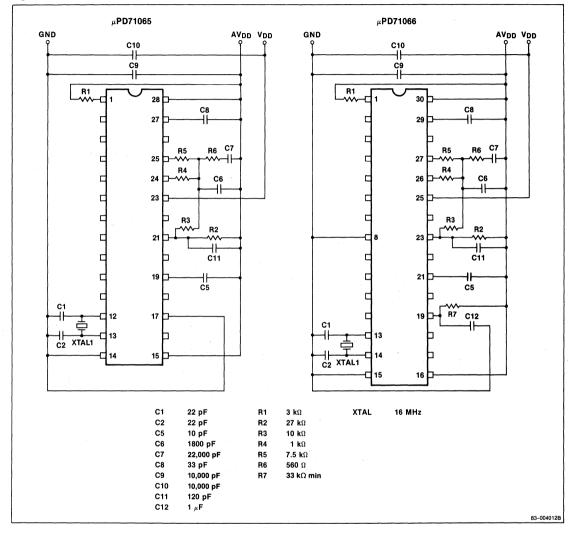
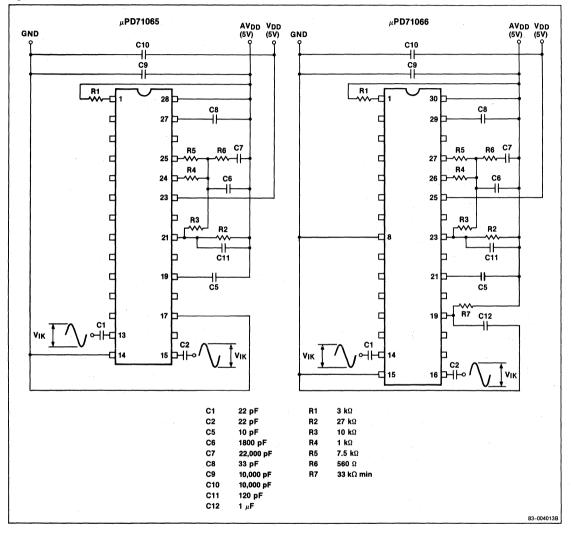





Figure 3. Test Circuit 1



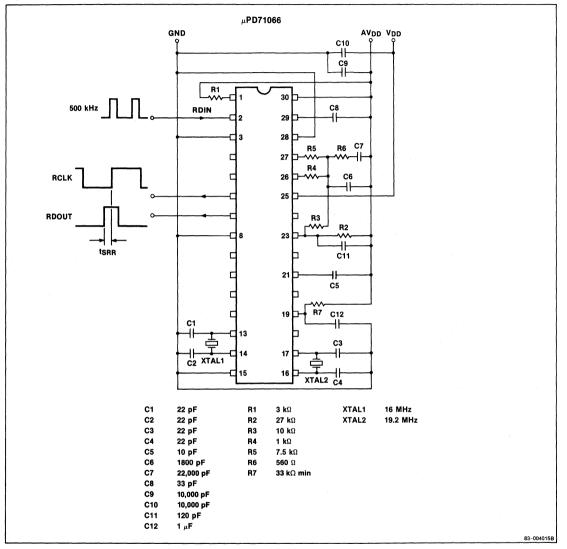


Figure 4. Test Circuit 2



5-2<del>9</del>



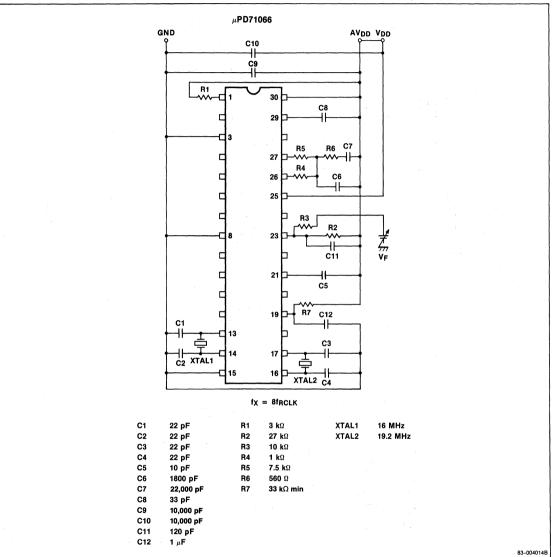
#### Figure 5. Test Circuit 3






Ş.

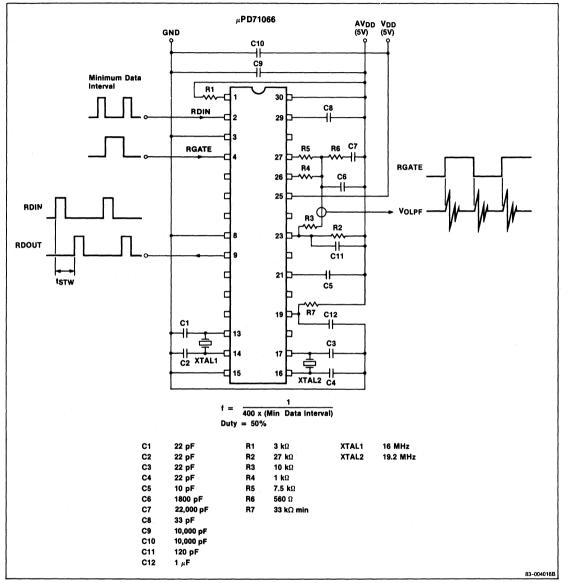
# μPD71065/66


Figure 6. Test Circuit 4








EC



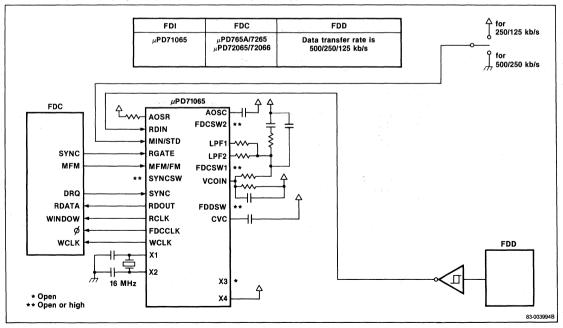
5-32



#### Figure 8. Test Circuit 6






# **System Configurations**

Figures 9 through 23 are system configuration examples of the  $\mu$ PD71065 and  $\mu$ PD71066 with various floppy-disk controllers and data transfer rates. See table 2.

For additional details and the values of resistors and capacitors, see figure 1.

Floppy-Disk Interface	Floppy-Disk Controllers	Data Transfer Rates (kb/s)	Figure
µPD71065	μPD765A, μPD7265,	500/250/125	9
	μPD72065, μPD72066	300/150	10
-		500/250/125 and 300/150	11
	μPD7260	500/250/125	12
		300/150	13
		500/250/125 and 300/150	14
µPD71066	μPD765A, μPD7265,	500/250/125	15
	μPD72065, μPD72066	300/150	16
		500/250/125 and 300/150	17
-	μPD7260	500/250/125	18
		300/150	19
	an Alfred Alfred Alfred Alfred Alfred	500/250/125 and 300/150	20
-	FD179X	500/250/125	21
		300/150	22
		500/250/125 and 300/150	23

## Figure 9. System Example 1: µPD71065 FDI and µPD765A FDC



### Table 2. System Configuration Examples

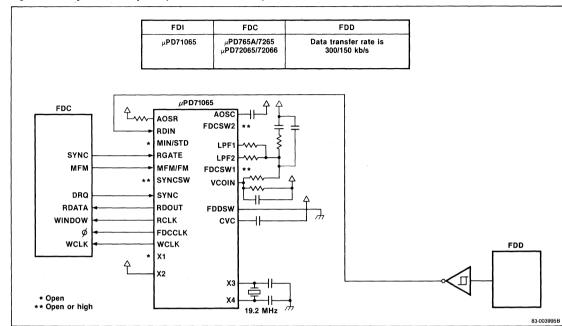
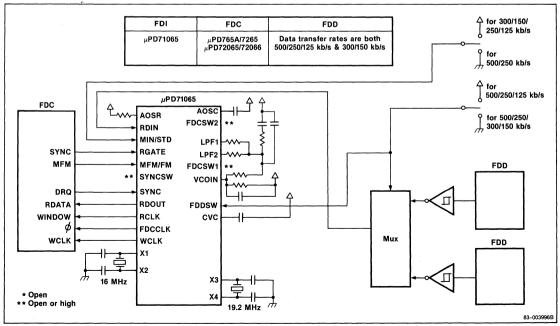
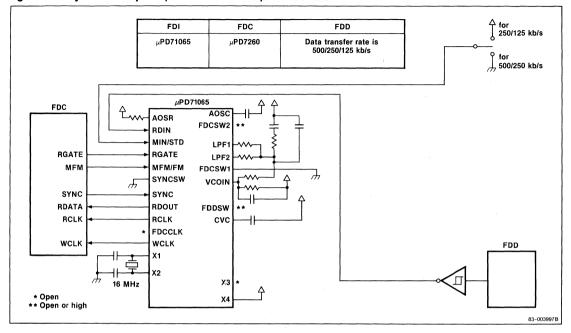
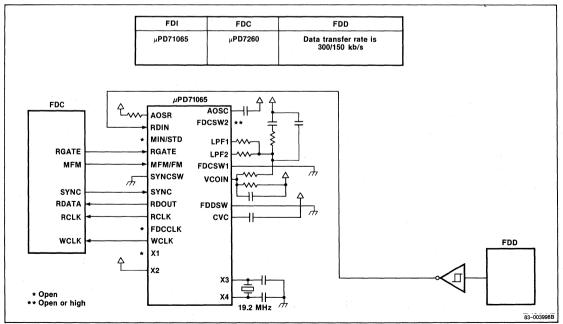





Figure 10. System Example 2: µPD71065 FDI and µPD765A FDC

Figure 11. System Example 3: µPD71065 FDI and µPD765A FDC








# Figure 12. System Example 4: µPD71065 FDI and µPD7260 FDC

Figure 13. System Example 5: µPD71065 FDI and µPD7260 FDC





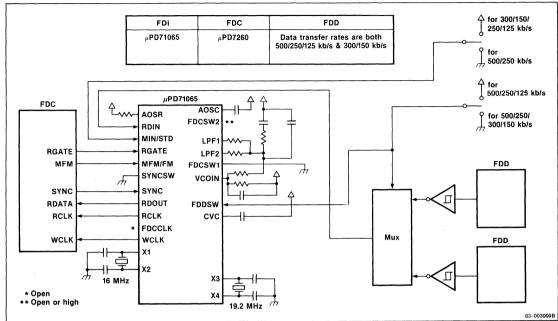
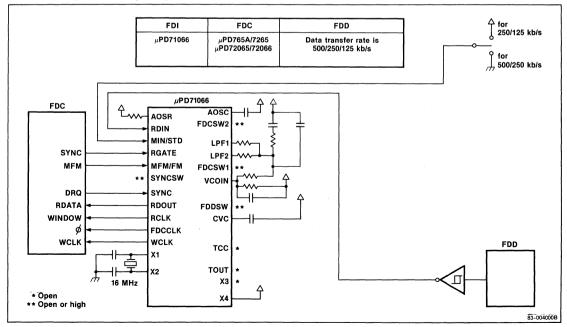
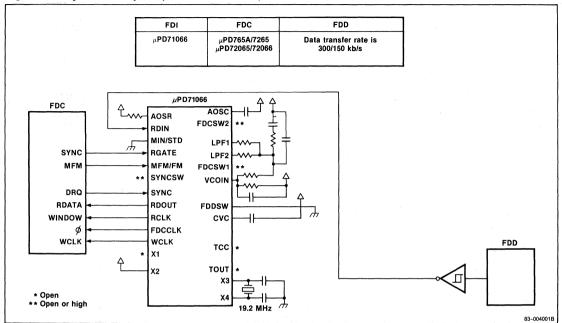
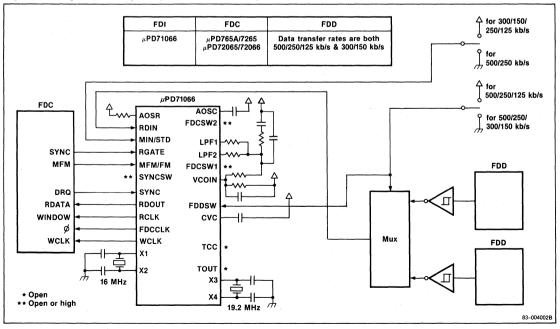





Figure 15. System Example 7: µPD71066 FDI and µPD765A FDC



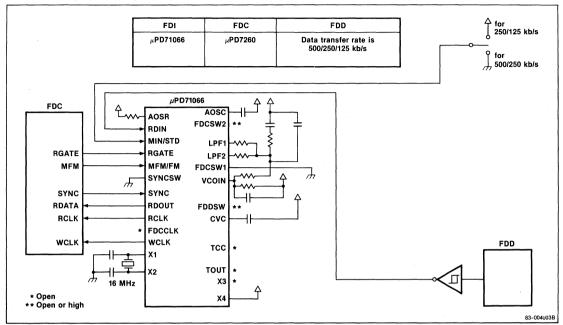
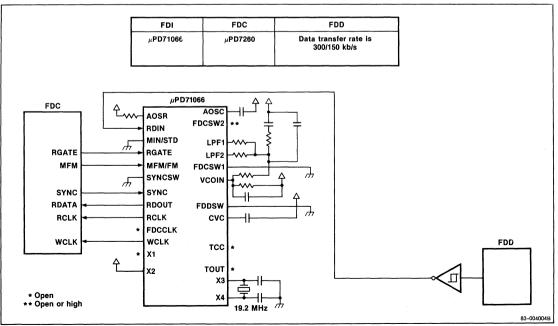
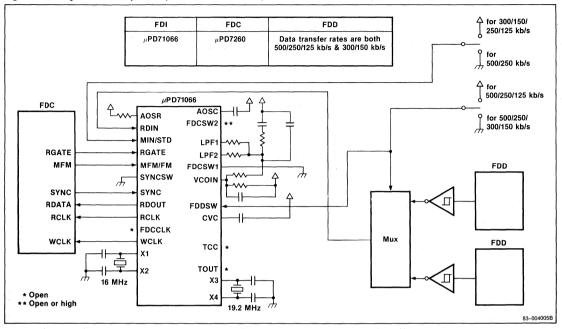


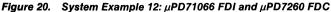

**FC** 

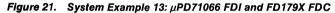


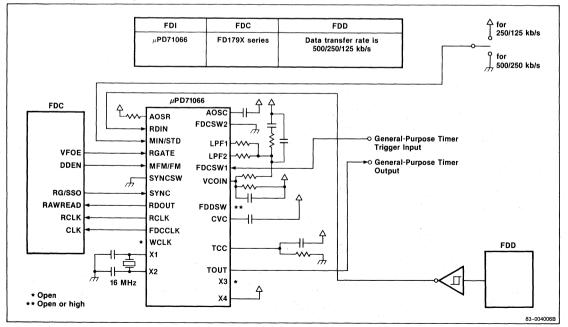
Figure 17. System Example 9: µPD71066 FDI and µPD765A FDC





Figure 18. System Example 10: µPD71066 FDI and µPD7260 FDC


Figure 19. System Example 11: µPD71066 FDI and µPD7260 FDC













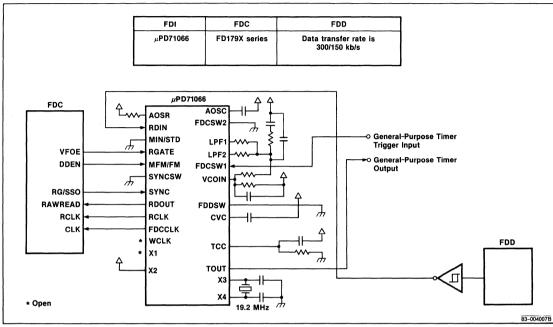
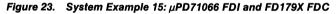
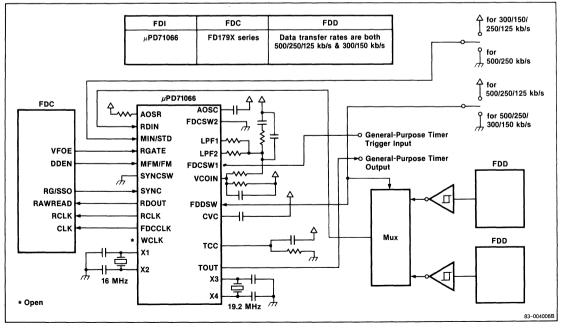






Figure 22. System Example 14: µPD71066 FDI and FD179X FDC









NEC Electronics Inc.

# Description

The  $\mu$ PD72065/65B CMOS Floppy-Disk Controller (FDC) is NEC's follow-on to the  $\mu$ PD765A/B. ( $\mu$ PD72065B is a functionally enhanced version of  $\mu$ PD72065.) The FDC is an LSI chip containing the circuitry and control functions for interfacing a processor to four floppy-disk drives (FDDs). It is capable of either IBM 3740 single-density format (FM) or IBM system 34 double-density format (MFM), including double-sided recording.

Control signals of the FDC simplify the design of an external phase-locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy-disk interface.

Handshaking signals of the FDC make DMA operation easy to incorporate with the aid of an external DMA controller chip, such as the  $\mu$ PD8257. In DMA mode, the processor need only load the command into the FDC; all data transfers occur under control of the FDC and DMA controllers. In non-DMA mode, the FDC generates interrupts to the processor every time a data byte is to be transferred.

The FDC will execute the 19 commands listed below. Most of the commands require multiple 8-bit bytes to fully specify the operation that the processor wants the FDC to perform.

Read Data	Read Deleted Data
Read ID	Write Data
Specify	Write ID
Read Diagnostics	Write Deleted Data
Scan Equal	Seek
Scan High or Equal	Recalibrate
Scan Low or Equal	Sense Interrupt Status
Sense Drive Status	Set Standby
Reset Standby	Software Reset
Version	

# **Features**

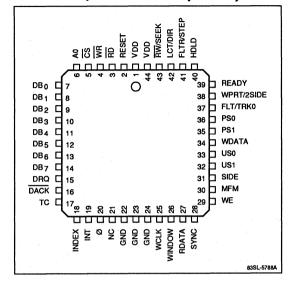
Internal address mark detection circuitry of the FDC simplifies the phase-locked loop and read electronics. Track stepping, head load time, and head unload time are user-programmable. Additional features are multi-track and multiside read and write commands plus single- and double-density capabilities.

Z80 is a registered trademark of Zilog Corp.

- □ 100% 765A/B microcode compatibility
- Sony (ECMA) compatible recording format
- IBM-compatible format (single- and double-density)
- Multisector and multitrack transfer capability
- Interface processor with up to four floppy-disk or microfloppy-disk drives
- Data scan capability: single sector or entire cylinder, comparing host memory and disk data byte-by-byte
- Data transfers in DMA and non-DMA modes
- □ Parallel seek operations on up to four disk drives
- Compatible with μPD8080/85, μPD8086/88, and μPD780 (Z80[®]) microprocessors
- □ Single-phase clock (8 MHz maximum)
- +5-volt power supply
- CMOS technology

#### **Ordering Information**

Part Number		Package	Note	
μPD7	2065C	40-pin plastic DIP (600 mil)		
	65G	52-pin plastic miniflat (3.5-mm leads)	3	
	65GC	52-pin plastic miniflat (1.8-mm leads)	3	
	65L	44-pin PLCC		
μPD7	2065BC	40-pin plastic DIP (600 mil)	2	
	65BGC-3B6	52-pin plastic miniflat (1.8-mm leads)	2, 3	
	65BL	44-pin PLCC	2	


#### Notes:

- The basic part numbers are 
  µPD72065 and µPD72065B. Suffix codes are added to identify particular packages.
- (2) The part is under development.
- (3) Surface-mount conditions differ among the miniflat packages, as in reflow soldering. The NEC sales staff can provide details.

# **Pin Configurations**

#### 40-Pin Plastic DIP

RESET C		40 🛛 VDD	
RD	2	39 RW/SEEK	
WRE	3	38 LCT/DIR	
CS E	4	37 FLTR/STEP	
A0 🗆	5	36 🗇 HDLD	
DB0 C	6	35 🗇 READY	
DB1 C	7	34 WPRT/2SIDE	
DB ₂	8	33 🛱 FLT/TRKO	
DB3 C	9	32 🛱 PS0	
DB4 🕻	10	31 🗇 PS1	
DB5 C	11	30 🖾 WDATA	
DB6 C	12	29 🖵 US0	
DB7 C	13	28 🖵 US1	
DRQ E	14	27 SIDE	
DACK C	15	26 🛱 MFM	
тс	16	25 🗇 WE	
INDEX C	17	24 SYNC	
INT C	18	23 📮 RDATA	
ØC	19	22 🛱 WINDOW	
GND C	20	21 🖵 WCLK	
			83SL-5787A



#### 52-Pin Plastic Miniflat

NC DACK DACK DBC DBC DBC DBC DBC DBC DBC DBC NC NC NC П П 51 54 22 NC C 1 39 🗖 A0 0 2 38 🗋 🔂 з 37 🗖 WR C 4 ø 36 B RD 5 NC C 35 B RESET GND C 6 34 🗘 VDD 7 33 L IC GND C 8 32 🗖 V_{DD} 9 GND [ 31 🗗 V_{DD} 10 WCLK 30 RW/SEEK WINDOW 11 29 LCT/DIR RDATA 12 28 FLTR/STEP SYNC [ 13 27 HOLD 
 15

 15

 15

 16

 17

 17

 18

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 19

 10

 19

 10

 10

 10

 11

 10

 11

 10

 11

 10

 11

 11

 11

 11

 12

 13

 14

 15

 15

 16

 17

 18

 19

 19

 10

 10

 11

 10

 11

 11

 12

 13

 14

 15

 15

 16

 17

 17

 18

 17

 18

 19

 10

 10
 </tr 8 READY FLT/TRK0 **WPRT/2SIDE** g 83SL-5789B



КC

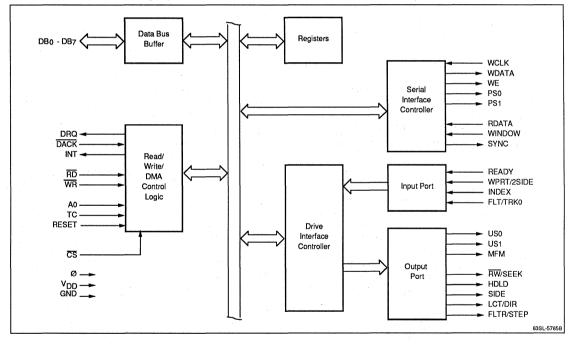
# μPD72065/65B

# **Pin Identification**

Symbol	I/O	Function			
A0	in	Via the address bus, selects internal status register (0) or data register (1)			
CS	In	Chip select. Enables RD and WR signals.			
DACK	In	DMA acknowledge.			
DB ₀ -DB ₇	I/O	Bidirectional three-state data bus. At reset, bus goes to input mode.			
DRQ	Out	DMA request. Request for data transfer in DMA mode.			
FLT/TRK0	In	FLT (Fault). In read/write operation (FW/SEE pin = 0), indicates whether FDD is in fault state.			
		TRK0 (Track 0). In seek operation (RW/SEEK pin = 1), indicates whether FDD read/write head is positioned at cylinder 0.			
FLTR/STEP	Out	FLTR (Fault read). In read/write operation (RW/SEEK pin = 0), releases FDD fault state.			
		STEP. In seek operation (RW/SEEK pin = 1), outputs seek pulses.			
HDLD	Out	Head load. Sets FDD read/write head to load state.			
INDEX	In	Indicates that FDD read/write head is on the physical starting point of the track.			
INT	Out	Interrupt request. Requests main system to deal with transfer of data or result of execution.			
LCT/DIR	Out	LCT (Low current). In read/write operation (RW/SEEK pin = 0), indicates FDD read/ write head is selecting a cylinder beyond the 42nd.			
		DIR. In seek operation (RW/SEEK pin = 1), specifies direction, toward the outside (0) or the inside (1).			
MFM	Out	Specifies function mode of VFO circuits: $0 =$ FM; $1 =$ MFM.			
PS0, PS1	Out	Preshift signal requesting WDATA bit to shift in the opposite direction of expected peak shift to cancel out peak shift created when writing in MFM mode.			
		PS0         PS1         FM         MFM           0         0         No         No shift           0         1         shift         Delays WDATA bit           1         0         Advances WDATA bit           1         1         1			
RD	In	Control signal used by main system to read out data from FDC to data bus.			

Symbol	1/0	Function	
RDATA	In	Data (clock and data bits) read out from FDD.	
		Unless both WINDOW and RDATA are input at read operation, FDC will enter deadlock state.	
READY	In	Indicates FDD is in ready state.	
RESET	In	Sets FDC to idle state as follows.	
		Drive interface outputs except PS0, PS1, and WDATA (undefined) are set to low.	
		In the main system, INT and DRQ are set to low and $\text{DB}_0\text{-}\text{DB}_7$ are set to input mode.	
RW/SEEK	Out	Selects read/write operation (0) or seek operation (1).	
SIDE	Out	Selects head 0 (SIDE = 0) or head 1 (SIDE = 1) in a double-sided FDD.	
SYNC	Out	VFO synchronize. Indicates FDC functional mode: read operation (1) or read operation inhibited (0).	
тС	In	Terminal count. Request for data transfer termination.	
US0, US1	Out	Unit select. One of four FDDs is selected by decoding US0 and US1.	
WCLK	In	Write clock. Timing signal for data transfer in write operation; should also be input in read operation.	
		Rising edges of WCLK and $\phi$ must be synchronized for $\mu$ PD72065 but not for $\mu$ PD72065B.	
		WCLK = 16 $\phi$ cycles in FM mode and 8 $\phi$ cycles in MFM mode.	
WDATA	Out	Write data (clock and data bits) to FDD.	
WE	Out	Write enable. Requests write operation to FDD.	
WINDOW	in	Data window signal generated by VFO circuit and used for sampling the clock and data bits of RDATA. Discrimination between clock and data bits is done in the FDC.	
WPRT/2SIDE	In	WPRT (Write protected). In read/write operation (RW/SEEK pin = 0), indicates whether media is in write inhibit state.	
		2SIDE. In seek operation (RW/SEEK pin = 1), indicates whether a double-sided floppy disk is inserted.	

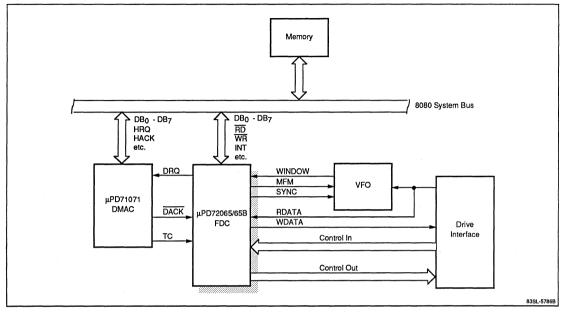
# μPD72065/65B




# Pin Identification (cont)

Symbol	I/O	Function
WR	In	Control signal used by main system to write data on data bus to FDC.
φ	in	Single-phase clock: standard floppy, 8 MHz; minifloppy, 4 MHz.
GND		Ground
V _{DD}	In	+5-volt power supply
IC		Internal connection; must be left open.
NC		No connection.

Note: At reset, all output pins go to the low state except for pins PS0 and PS1, whose state is undefined.


# µPD72065/65B Block Diagram



# NEC

# μPD72065/65B

# **System Configuration**



# Absolute Maximum Ratings $T_A = +25^{\circ}C$

$I_{A} = \pm 250$	
Voltage on any pin	–0.5 to +7 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C

# Capacitance

Parameter	Symbol	Min	Max	Unit	Conditions
Clock capacitance	С _ф		20	pF	Unmeasured pins returned to 0 V.
Input capacitance	C _{IN}		10	pF	
Output capacitance	COUT		20	pF	•



## **DC Characteristics**

 $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Max	Unit	Conditions
Input voltage, low	VI _{IL}	- 0.5	0.8	۷	
Input voltage, high	VIIH	2.2	V _{DD} + 0.5	٧	
input voltage, low (φ, WCLK)	VIL	- 0.5	0.65	v	
Input voltage, high (¢, WCLK)	VIH	2.2	V _{DD} + 0.5	v	
Output voltage, low	V _{OL}		0.45	v	l _{OL} = 2.0 mA
Output voltage, high	V _{OH}	2.4	V _{DD}	V	l _{OH} = -200 μA
Input leakage current, low	ILIL		-10	μΑ	$V_{IN} = 0 V$
Input leakage current, high	Ісін		+ 10	μA	$V_{IN} = V_{DD}$
Output leakage current, low	ILOL		-10	μΑ	V _{OUT} = +0.45 V
Output leakage current, high	ILOH		+ 10	μA	$V_{OUT} = V_{DD}$
V _{DD} supply current	lad		10	mA	$\phi_{CY}$ = 125 ns
	IDD1		500	μA	$\phi_{CY} = 125 \text{ ns}$
			250	μA	$\phi_{CY} = 250 \text{ ns}$
			100	μΑ	Clock stopped

AC Characteristics; Main System Side  $T_A = -10 \text{ to } +70^\circ\text{C}; V_{DD} = +5 \text{ V} \pm 10\%; \text{ MFM data transfer} = 500 \text{ kb/s} (8 \text{ MHz}), 250 \text{ kb/s} (4 \text{ MHz})$ 

			8-MI	Iz Oper	ation	4-M	Hz Oper	ation		
Parameter	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Clock cycle	2	φ _{CY}	120	125	500	240	250	500	ns	
Clock width, high/low	2	$\phi_{\theta}$	40			40			ns	-
Clock rise time	2	$\phi_{R}$			20			20	ns	-
Clock fall time	2	$\phi_{F}$			20	*****		20	ns	•
A0, CS, DACK setup time to RD	3	t _{AR}	0			0			ns	•
A0, CS, DACK hold time from RD	3	^t RA	0			0			ns	-
RD pulse width	3	t _{RR}	200			200			ns	-
Data access time from $\overline{RD}\downarrow$	3	t _{RD}			140			140	ns	•
Data float delay time from RD ↑	3	tDF	10		85	10		85	ns	-
A0, CS, DACK setup time to WR	4	t _{AW}	0			0			ns	-
A0, CS, DACK hold time to WR	4	twa	0			0			ns	•
WR pulse width	4	tww	200			200			ns	•
Data setup time to WR	4	tow	100			100			ns	
Data hold time from WR	4	twp	0			0			ns	
INT delay time from RD ↑	3	t _{RI}			400			400	ns	Data transfer in
INT delay time from ₩R ↑	4	twi			400			400	ns	non-DMA mode
DRQ cycle time	5	^t MCY	13			26			μs	8-MHz: $\phi_{CY} = 125$ ns
$\overrightarrow{DACK}\downarrow response$ time from $DRQ\uparrow$	5	t _{MA}	200			400			ns	• 4-MHz: $\phi_{CY} = 250 \text{ m}$
$\overline{\text{RD}}\downarrow$ response time from DRQ $\uparrow$	5	t _{MR}	125			250			ns	•
$\overline{WR}\downarrow$ response time from DRQ $\uparrow$	5	t _{MW}	250			500			ns	•
DRQ delay time from $\overline{DACK}\downarrow$	5	t _{AM}			140			140	ns	-
DACK pulse width	5	t _{AA}	2			2			φ _{CY}	
₩R/RD response time from DRQ ↑	5	^t MRW			12			12	μs	•
TC pulse width	5	^t тC	60			60			ns	
RESET pulse width	6	tRST	14		*****	14			φ _{CY}	
Clock hold time at standby	7	twc	32			32			φ _{CY}	
Clock setup time at standby release	7	tcw	16			16			φ _{CY}	•
INT response time from DRQ ↓	8	t _{MI}	60		77	60		77	φ _{CY}	μPD72065B only
INT ↑ to DACK ineffective	8	ţА			1			1	φ _{CY}	•

## AC Characteristics; Drive Side

 $T_A = -10$  to  $+70^{\circ}$ C;  $V_{DD} = +5$  V  $\pm 10\%$ ; MFM data transfer = 500 kb/s (8 MHz), 250 kb/s (4 MHz)

			8-MHz	Opera	ation	4-MHz	Opera	tion		Conditions
Parameter	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
WCLK cycle time	9	tCY		16			16		φ _{CY}	MFM = 0
				8			8		φ _{CY}	MFM = 1
WCLK width, high	9	t <i>g</i>	80	250	350	160	500	700	ns	8-MHz: $\phi_{CY} = 125 \text{ ns}$ 4-MHz: $\phi_{CY} = 250 \text{ ns}$
WCLK, RDATA, WINDOW rise time	9	t _R			20			20	ns	
WCLK, RDATA, WINDOW fall time	9	t _F			20			20	ns	•
PS0, PS1 delay time from WCLK	9	t _{CP}	10		80	10			ns	-
WDATA delay time from WCLK	9	t _{CD}	10		80	10			ns	
WE delay time from WCLK	9	tCWE	10		80	10			ns	• • .
WDATA width	9	twod	t _ø – 50			tg - 50			ns	
RDATA active time high	10	t _{RDD}	40			40			ns	•
WINDOW cycle time	10	twcy		2			4		μs	MFM = 0
				1			2		μs	MFM = 1
WINDOW setup time to RDATA	10	twRD	15			15			ns	
WINDOW hold time from RDATA	10	t _{RDW}	15			15			ns	
US0, US1 setup time to SEEK	11	tus	12			24			μs	8-MHz: $\phi_{CY} = 125 \text{ ns}$
SEEK setup time to DIR	11	tsp	7			14			μs	΄ 4-MHz: φ _{CY} = 250 ns . (Note 1)
DIR setup time to STEP	11	t _{DST}	1			2			μs	
US0, US1 hold time from STEP	11	tstu	5			10			μs	•
STEP active time high	11	tSTP	6	7	8	12	14	16	μs	•
US0, US1 hold time after SEEK	11	tsu	15			30			μs	
SEEK hold time from DIR	11	t _{DS}	30			60	-		μs	•
DIR hold time after STEP	11	t _{STD}	24			48			μs	•
STEP cycle time	11	tsc	33			66			μs	•
FLTR active time high	11	t _{FR}	8		10	16		20	μs	•
INDEX level high	12	ЧОК	4			4			φςγ	•

Notes:

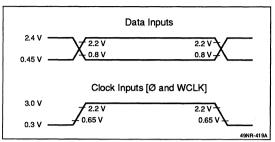
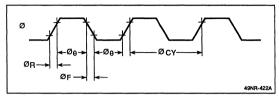
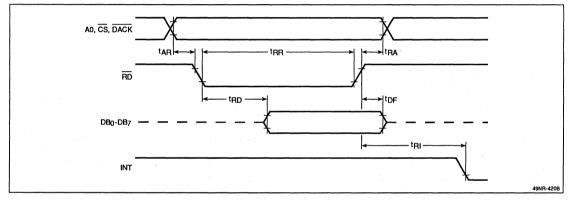
(1) For the parameters on figures 11 and 12, the minimum values are 50 ns less than the values ( $\mu$ s) specified in the table. For example, 10  $\mu$ s is actually 9.950  $\mu$ s.

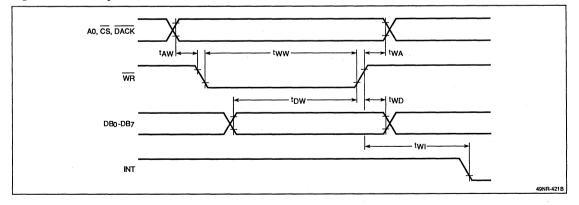
(2) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.



## μPD72065/65B

## Figure 1. Voltage Thresholds for Timing Measurements

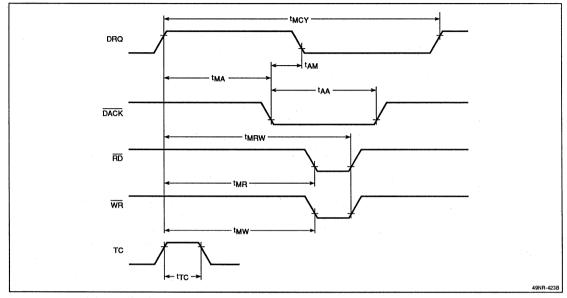






Figure 2. Clock Waveform

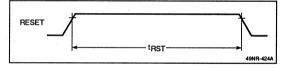


## Figure 3. Read Operation




## Figure 4. Write Operation




## μPD72065/65B



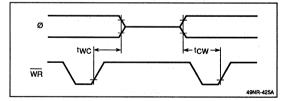
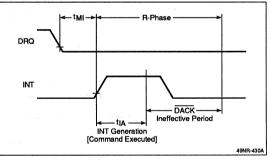


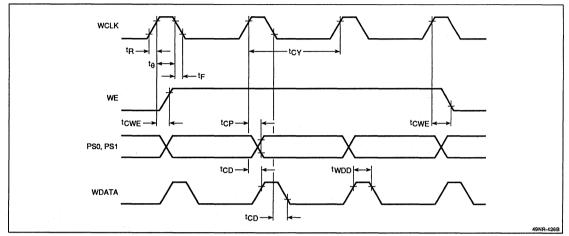


## Figure 6. RESET Waveform

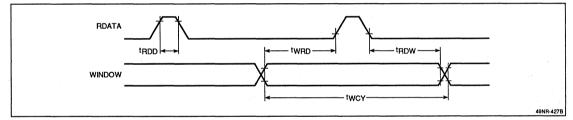




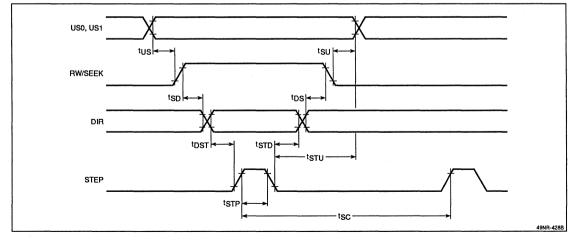





Figure 8. Overrun Operation (#PD72065B)



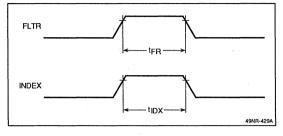



μPD72065/65B






## Figure 10. FDD Read Operation










### Figure 12. FLTR and INDEX Waveforms



## COMPARISON, µPD72065 VS µPD72065B

The  $\mu$ PD72065B is a functionally enhanced version of the  $\mu$ PD72065. Differences are explained below.

## **Overrun Bit (OR)**

In the  $\mu$ PD72065, when executing a read- or write-type command (except READ ID and SCAN types), the result status OR bit is not set if there is an overrun on the final byte of a sector. An improvement in the  $\mu$ PD72065B allows it to set the OR bit in any situation.

#### **DRQ Reset**

When an overrun occurs, the  $\mu$ PD72065 needs the DACK input to reset DRQ. If DACK is not available, an external DMA controller continues operating even after the FDC enters the R-phase, and stored result status may be transferred accidentally as ordinary data.

On the other hand, the  $\mu$ PD72065B resets DRQ automatically just before the R-phase entry and independent of the DACK input. See AC Characteristics for DRQ reset timing.

#### **Clock Synchronization**

The  $\mu$ PD72065 does not require synchronization between the  $\phi$  clock and WCLK inputs.

## VERSION Command

The VERSION command distinguishes the  $\mu$ PD72065B from other devices. The ST0 response to the command is:

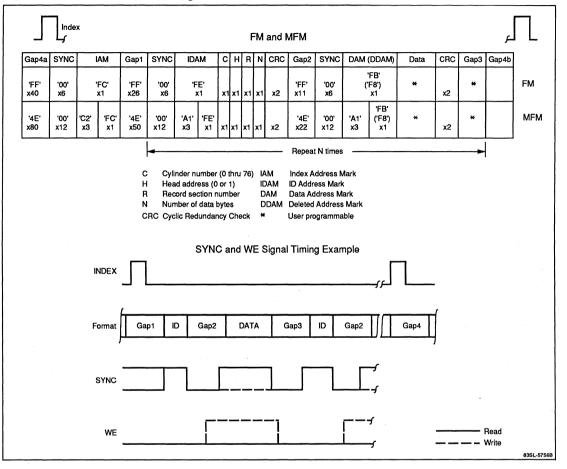
Part No.	STO Value
μPD72065	80H
μPD72065B	90H

## COMPARISON, µPD72065/65B VS µPD765A/B

Table 1 shows differences in the parameters and features of the FDCs.

## Table 1. µPD72065/65B and µPD765A/B

Parameter	μPD72065/65B	μPD765A/B
Track format	IBM	IBM
Tracks to be recalibrated	255	77
Skipping time after Index pulse detection	0.2 ms (4 MHz)	1.2 ms (4 MHz)
DRQ ↑ to RD ↓ response time	······································	
$\phi_{\rm CY}$ = 125 ns	1 x φ _{CY}	0.8 μs
$\phi_{\rm CY}$ = 250 ns	1 x φ _{CY}	1.6 μs
FDD response latency after Unit select signal	-	
$\phi_{\rm CY}$ = 125 ns	2.5 μs	0.5 μs
$\phi_{CY} = 250 \text{ ns}$	5.0 μs	1.0 μs
Multitrack write by tunnel erase head	Yes	No
Standby function (Standby command)	Yes	No
SOFTWARE RESET	Yes	No


 $\phi_{CY}$  = clock cycle time

#### DATA FORMAT

Figure 13 shows the data format for FM and MFM modes



## Figure 13. Data Format and Timing.









## Description

The  $\mu$ PD72067 Floppy-Disk Controller (FDC) is a CMOS device that integrates onto a single chip the peripheral logic necessary for todays's high-performance, low-power designs. It maintains complete microcode compatibility with the NEC  $\mu$ PD765 and  $\mu$ PD72065 devices, long established as the industry standard for floppy-disk control.

The  $\mu$ PD72067 incorporates on-chip clock generation/ switching, selectable write precompensation, and all the circuitry required for directly interfacing four floppy- disk drives.

An internal high-performance digital phase-locked loop (DPLL) enables reliable data separation at data transfer rates up to 500 kb/s.

## Features

- Command compatible with μPD765A, 765A-2, 765B, 7265, 72065, 72065B, 72066
- □ IBM diskette compatible
  - Single-sided, 128/256/512 bytes/sector
  - Double-sided, 256 bytes/sector
  - Double-sided, double-density, 256/1024 bytes/ sector
- ECMA/ISO minifloppy-disk format compatible
  - ECMA66 (ISO/TC 97/SC11 N419), single-sided, single-density, 256 bytes/sector
  - ECMA70 (ISO/TC 97/SC11 N475), double-sided, double-density, 256 bytes/sector
- Data transfer rates: 125, 150, 250, 300, 500 kb/s
- Standby function
- On-chip peripheral circuits
  - VFO (DPLL) for window signal generation
  - Write precompensation
  - System clock generator
  - Write clock generator
- External VFO (such as µPD71065/71066) can be connected
- Spindle motor control
- □ FM, MFM control (specified in each command)
- Variable record length: 128, 256, 512, 1024, 2048, 4096, or 8192 bytes/sector
- Multisector and multitrack functions
- Controls up to four FDDs
- Mixed floppy-disks: single- and double-sided, singleand double-density

- Simultaneous seek operation on four FDDs
- Intermediate or incomplete sector read/write can be specified (FM, 128 bytes/sector)
- Internal CRC generation and check (x¹⁶ + x¹² + x⁵ + 1)
- Stepping speed programmable
- Head load and unlead times programmable
- Data scan function: detection of sector satisfying equal-to, greater-than, or less-than condition with main memory data)
- DMA or non-DMA (interrupt) data transfer
- CMOS
- □ Single +5-volt power supply

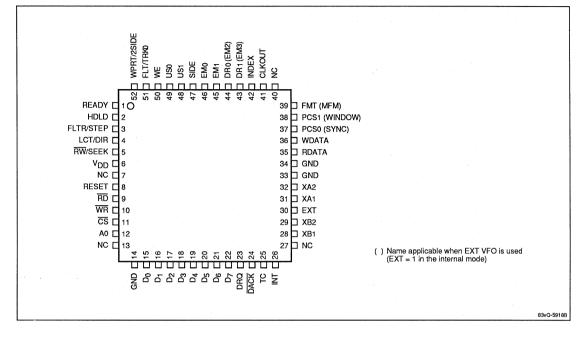
### Ordering Information

Part Number	Package
μPD72067C	48-pin plastic DIP (600 mil)
μPD72067GC-3B6	52-pin plastic miniflat
μPD72067L	52-pin PLCC (plastic leaded chip carrier)

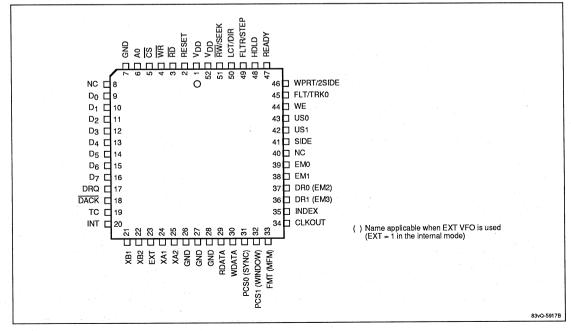
## **Pin Configurations**

## 48-Pin Plastic DIP (600 mil)

D ₆		48	Ъ	D5					
D7		47	Ь	D4					
DRQ	□ 3	46	Ь	D3					
DACK		45	Ь	D2					
TC		44	Ь	D ₁					
INT		43	Ь	Do					
XB1		42	Ь	GND					
XB2	8	41	Ь	A0					
EXT	<b>9</b>	40	þ	CS					
XA1	□ 10	39	Þ	WR					
XA2	C 11	38	占	RD					
GND	L 12	37	þ	RESET					
GND	L 13	36	þ	VDD					
RDATA	<b>1</b> 14	35	Ь	RW/SEEK					
WDATA	L 15	34	þ	LCT/DIR					
PCS0 (SYNC)	16	33	þ	FLTR/STEP					
PCS1 (WINDOW)	<b>1</b> 17	. 32	þ	HDLD					
FMT (MFM)	L 18	31	þ	READY					
CLKOUT	<b>1</b> 9	30	Þ	WPRT/2SIDE					
INDEX	<b>2</b> 0	29	Ь	FLT/TRK0					
DR1 (EM3)	<b>2</b> 1	28	þ	WE					
DR0 (EM2)	L 22	27	þ	US0					
EM1	C 23	26	þ	US1					
EMO	□ 24	25	Þ	SIDE					
	L		1						
() Name ap	() Name applicable when EXT VFO is used								


(EXT = 1 in the internal mode).

83vQ-5911A


## μPD72067



#### 52-Pin Plastic Miniflat



## 52-Pin PLCC



## **Pin Identification**

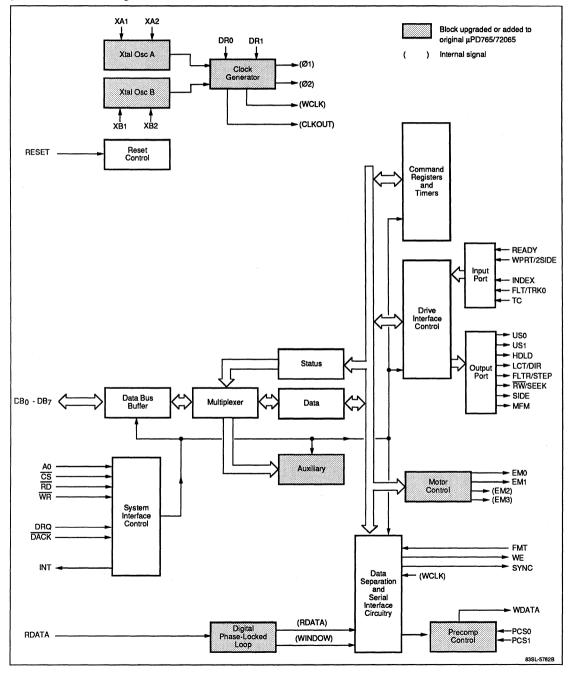
Symbol	1/0	Signal Function
AO	In	Address 0. Selects µPD72067 registers via address bus.
		A0 Registers
		0 Status or auxiliary command 1 Data
CLKOUT	Out	When EXT = 1, supplies clock required by a $\mu$ PD71065/71066 used as an external VFO.
		DR1 CLKOUT 0 16 MHz
		1 19.2 MHz
		Note: CLKOUT goes low when EXT = 0.
CS	In	Chip Select. Validates $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals.
D ₀ -D ₇	1/0	Bidirectional, three-state data bus.
DACK	In	DMA Acknowledge. Enables DMA cycle.
DR0, DR1	In	Data Rate. Sets data transfer rate in external mode.
(EM2, EM3)	Out	Enable Motor. Controls spindle motor in internal mode.
DRQ	Out	DMA Request. Requests data transfer in DMA mode.
EMO, EM1	Out	Enable Motor. Controls spindle motor.
EXT	In	External VFO. Selects VFO in internal mode.
		EXT VFO
		0 Internal 1 External
		In external mode, the input to EXT is not
		significant.
FLTR/STEP	Out	FLTR (Fault Reset). When $\overline{\text{RW}}$ /SEEK is set to 0, FLTR releases the drive fault state.
		STEP. When RW/SEEK is set to 1, STEP generates seek pulses
FLT/TRK0	In	FLT (Fault). When RW/SEEK is set to 0, FLT indicates whether the drive is in fault state or not.
		RK0 (Track 0). When RW/SEEK is set to 1, TRK0 indicates whether the read/write head is positioned at cylinder 0 or not.
FMT	In	Format. Selects format in external mode.
		FMT Format
		0 IBM 1 ECMA
(MFM)	Out	MFM Mode. In internal mode, format is specified by the SELECT FORMAT command. The MFM output signal specifies the VFO circuit operation mode.
		MFM Mode FM
		1 MFM
HDLD	Out	Head Load. Causes read/write head to contact the diskette.

Symbol	I/O	Signal Function		
INDEX	In	Indicates read/write head is positioned at the physical starting point of the track on the medium.		
INT	Out	Interrupt Request. Requests main system to process the transfer data and execution results.		
LCT/DIR	Out	LCT (Low Current). When $\overline{\text{RW}}/\text{SEEK}$ signal is set to 0, LCT indicates the read/write head selects the 43rd or later cylinder.		
		DIR (Direction). When RW/SEEK signal is set to 1, DIR specifies the seek direction.		
		DIR         Direction           0         Outer           1         Inner		
PCS0	In	Precompensation. In external mode, PCS0 determines the amount of precompensation.		
(SYNC)	Out	VFO Synchronize. In internal mode, SYNC indicates the $\mu$ PD72067 operation mode.		
		SYNC         Mode           0         Read operation is inhibited           1         Read operation is being performed		
		This pin should be pulled high or low by resistors if external mode is not used.		
PCS1	In	Precompensation. In external mode, PCS1 (wi PCS0) determines the amount of precompensation.		
(WINDOW)	In	Data Window. In internal mode, the WINDOW signal generated by the VFO circuit samples the RDATA bits. The $\mu$ PD72067 determines whether a bit is clock or data.		
		This pin should be tied directly high or low if external mode is not used.		
RD	In	Read. Causes the main system to read data from the $\mu$ PD72067 to the data bus.		
RDATA	In	Read data (consisting of clock and data bits) from the drive. If both WINDOW and RDATA are not input at the read state, a deadlock state is entered.		
READY	In	Indicates the drive is in a ready state.		
RESET	In	Places μPD72067 in idle state. • Outputs are low except WDATA is undefined. • In main system, INT and DRQ are low. • D ₀ -D ₇ are in the input state.		
RW/SEEK	Out	Specifies whether certain FDD interface signals are used for read/write or seek.		
		FW/SEEK         Signal function           0         Read/write           1         Seek		
SIDE	Out	Selects head 0 or head 1 of screen-type drive.       SIDE     Selected       0     Head 0       1     Head 1		
TC	In	Terminal Count. Indicates data transfer		

NEC

## Pin Identification (cont)

Symbol	I/O	Signal Function
US0, US1	Out	Unit Select. One of four FDDs is selected by decoding US0 and US1.
WDATA	Out	Write data (clock and data bits) to FDD.
WE	Out	Write Enable. Requests FDD to write data.
WPRT/2SIDE	In	WPRT (Write Protected). When $\overline{\text{RW}}/\text{SEEK}$ is set to 0, WPRT indicates whether the medium is write-protected.
		2SIDE (Two Side). When $\overline{\text{RW}}/\text{SEEK}$ is set to 1, 2SIDE indicates whether the medium is double-sided.
WR	In	Write. Control signal that allows the main system to read data from the $\mu$ PD72067 to the data bus.
XA1, XA2	In	Crystal A. To use internal VFO (EXT = 0), connect a 32-MHz quartz crystal resonator to XA1 and XA2. As an alternative, connect a 32- MHz external clock to XA1 and leave XA2 open.
		To use external VFO (EXT = 1), connect a 16-MHz quartz crystal resonator to XA1 and XA2. As an alternative, connect a 16-MHz external clock to XA1 and leave XA2 open.
XB1, XB2	In	Crystal B. To use the 300-kb/s data transfer rate, connect a 19.2-MHz quartz crystal resonator to XB1 and XB2. As an alternative, connect a 19.2-MHz external clock to XB1 and leave XB2 open.
NC		No Connection
GND		Ground
V _{DD}	In	+5-volt power supply


Note:

The pin symbol in parentheses applies when external VFO is used.



μPD72067

## µPD72067 Block Diagram



## **Absolute Maximum Ratings**

$T_{A} = +25^{\circ}C$	
Voltage on any pin	–0.5 to +7 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	–65 to 150°C

## Capacitance

 $T_A = +25^{\circ}C; V_{DD} = 0 V; f = 1 MHz$ 

Parameter	Symbol	Min	Max	Unit	Conditions
Clock capacitance	Сф		20	pF	Unmeasured
Input capacitance	CIN		10	pF	pins returned to 0 V.
Output capacitance	COUT		20	pF	

## **DC Characteristics**

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Max	Unit	Conditions
Low-level input voltage	V _{IL}	-0.5	0.8	v	
High-level input voltage	VIH	2.2	V _{DD} + 0.5	v	
Low-level output voltage	V _{OL}		0.45	V	$I_{OL} = 2.0$ mA
High-level output voltage	VOH	0.7 V _{DD}	V _{DD}	v	l _{OH}
Low-level input leakage current	ILIL		10	μA	V _{IN} = 0 V
High-level input leakage current	ГЛН		+ 10	μA	$V_{IN} = V_{DD}$
Low-level output leakage current	LOL		-10	μA	V _{OUT} = +0.45 V
High-level output leakage current	ILOH		+ 10	μA	V _{OUT} = V _{DD}
V _{DD} supply current	IDD		60	mA	Note 1
Standby current	IDD1	-	100	μA	
Oscillator stabilization time	^t ks		10	ms	

#### Notes:

 When a 32-MHz crystal is connected to XA1-XA2 or a 19.2-MHz crystal is connected to XB1-XB2.

## AC Characteristics 1; Standard Floppy-Disk Control $T_A = -10 \ to +70^{\circ}C; V_{DD} = +5 \ V \pm 10\%;$ MFM data transfer rate = 500 kb/s

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DACK setup time to RD	2	tAR	0			ns	
A0, CS, DACK hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2 .	t _{RR}	200			ns	
Data access time from $\overline{RD}\downarrow$	2	t _{RD}			140	ns	
Data float delay time from $\overline{RD}$ $\uparrow$	2	t _{DF}	10	-	85	ns	
NT delay time from RD ↑	2	t _{RI}			400	ns	Note 1
A0, CS, DACK setup time to WR	3	t _{AW}	0			ns	
A0, CS, DACK hold time from WR	3	t _{WA}	0	• .		ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0	•		ns	
NT delay time from WR ↑	. 3	twi			400	ns	Note 1
DRQ cycle time	4	MCY	13			μs	DR1 = 0, DR0 = 1
DACK $\downarrow$ response time from DRQ $\uparrow$	4	t _{MA}	200			ns	-
DRQ delay time from $\overrightarrow{DACK}\downarrow$	4	t _{AM}			140	ns	
DACK pulse width	4	t _{AA}	8			φcy	Note 5
$\overline{RD} \downarrow response time from DRQ \uparrow$	4	t _{MR}	125			ns	DR1 = 0, DR0 = 1
WR ↓ response time from DRQ ↑	4	t _{MW}	250			ns	-
WR/RD response time from DRQ 1	4	t _{MRW}			12	μs	
TC pulse width	4	t _{TC}	60			ns	
RESET pulse width	5	tRST	60			фсү	Note 5



AC Characteristics 1: Standard Floppy-Disk Co	Introl	(cont)
-----------------------------------------------	--------	--------

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
RDATA high-level width	6	tRDD	40			ns	
WINDOW cycle time (Note 2)	6	twoy		2		μs	MFM = 0
				1	1.	μ8	MFM = 1
WINDOW setup time to RDATA (Note 2)	6	twrd	15			ns	
WINDOW hold time from RDATA (Note 2)	6	^t RDW	15			ns	
US0, US1 setup time to SEEK	7	tus	12			μ8	Note 3
SEEK setup time to DIR	7	tsp	7			μs	
DIR setup time to STEP	7	tDST	.1			μ8	
US0, US1 hold time from STEP	7	tstu	5			μ8	
STEP high-level width	7	t _{STP}	6	7	8	μs	
US0, US1 hold time from SEEK (Note 4)	7	tsu	15			μs	-
SEEK hold time from DIR	7	tos	30			μs	
DIR hold time from STEP	7	tSTD	24			μ\$	-
STEP cycle time	7	tsc	33			μs	
FLTR high-level width	8	t _{FR}	8		10	μs	-
INDEX high-level width	8	t _{IDX}	16			φcy	Note 5

#### Notes:

- (1) For data transfer in non-DMA mode.
- (2) When external VFO is used.
- (3) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 12 μs is actually 11.950 μs.
- (4) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (5) The time  $\phi_{CY}$  is a multiple of the period of a quartz crystal resonator connected to pins XA1-XA2 or an external clock connected to pin XA1. The multiple is four (EXT = 0) or two (EXT = 1).
- (6) See figure 1 for timing measurement voltage thresholds.

## AC Characteristics 2; Minifloppy-Disk Control $T_A = -10$ to $+70^{\circ}$ C; $V_{DD} = +5 V \pm 10\%$ ; MFM data transfer rate = 250 kb/s

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DACK setup time to RD	2	t _{AR}	0			ns	
A0, CS, DACK hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	
Data access time from $\overline{\text{RD}}\downarrow$	2	t _{RD}			140	ns	
Data float delay time from $\overline{RD}$ $\uparrow$	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{RI}			400	ns	Note 1
A0, CS, DACK setup time to WR	3	t _{AW}	0			ns	
A0, CS, DACK hold time from WR	3	t _{WA}	0			ns	<u>.</u>
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0	-		ns	
NT delay time from ₩R ↑	3	twi			400	ns	Note 1
DRQ cycle time	.4	tMCY	26			μs	DR1 = 0, DR0 = 0
DACK↓ response time from DRQ ↑	4	t _{MA}	400			ns	-
DRQ delay time from $\overline{DACK}\downarrow$	4	t _{AM}			140	ns	
DACK pulse width	4	tAA	8			фсү	Note 5
$\overline{RD}\downarrow response time from DRQ \uparrow$	4	t _{MR}	250			ns	DR1 = 0, DR0 = 0
$\overline{WR}\downarrowresponsetimefromDRQ\uparrow$	4	t _{MW}	500			ns	-
WR/RD response time from DRQ ↑	4	tMRW			24	μs	
TC pulse width	4	tTC	60			ns	
RESET pulse width	5	tRST	60			φcy	Note 5



## AC Characteristics 2; Minifloppy-Disk Control (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side					· 1		
RDATA high-level width	6	t _{RDD}	40			ns	
WINDOW cycle time (Note 2)	6	twcy		4		μs	MFM = 0
$(-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)$				2		μs	MFM = 1
WINDOW setup time to RDATA (Note 2)	6	twrd	15			ns	
WINDOW hold time from RDATA (Note 2)	6	tRDW	15			ns	
US0, US1 setup time to SEEK	7	tus	24			μs	Note 3
SEEK setup time to DIR	7	t _{SD}	14			μs	
DIR setup time to STEP	7	t _{DST}	2			μs	
US0, US1 hold time from STEP	7	tstu	10			μs	
STEP high-level width	7	tSTP	12	14	16	μs	
US0, US1 hold time from SEEK (Note 4)	7	tsu	30			μs	
DIR hold time from STEP	7	tSTD	48			μs	
SEEK hold time from DIR	7	tos	60			μs	
STEP cycle time	7	tsc	66			μs	
FLTR high-level width	8	t _{FR}	16		20	μs	
INDEX high-level width	8	t _{IDX}	16			φcy	Note 5

### Notes:

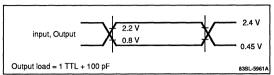
- (1) For data transfer in non-DMA mode.
- (2) When external VFO is used.
- (3) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 12 μs is actually 11.950 μs.
- (4) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (5) φ_{CY} is a multiple of the period of a quartz crystal resonator connected to pins XA1-XA2 or an external clock connected to pin XA1. The multiple is eight (EXT = 0) or four (EXT = 1).
- (6) See figure 1 for timing measurement voltage thresholds.

# AC Characteristics 3; High-Speed Floppy-Disk Control $T_A = -10$ to $+70^{\circ}$ C; $V_{DD} = +5 V \pm 10\%$ ; MFM data transfer rate = 300 kb/s

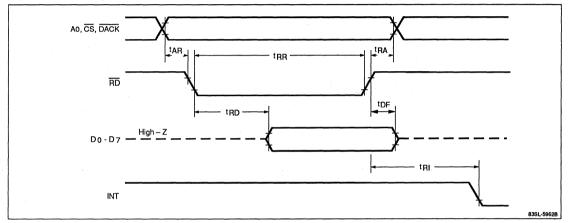
Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DACK setup time to RD	2	t _{AR}	0			ns	
A0, CS, DACK hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	
Data access time from $\overline{RD}\downarrow$	2	t _{RD}			140	ns	
Data float delay time from $\overline{\text{RD}}$ $\uparrow$	2	t _{DF}	10		85	ns	·
NT delay time from RD ↑	2	t _{RI}			400	ns	Note 1
A0, CS, DACK setup time to WR	3	t _{AW}	0		-	ns	
A0, CS, DACK hold time from WR	3	t _{WA}	0			ns	
WR pulse width	3	t _{ww}	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0			ns	
NT delay time from WR ↑	3 4	t _{WI}			400	ns	Note 1
DRQ cycle time	4	tMCY	21.7			μs	DR1 = 1, DR0 = 1
DACK $\downarrow$ response time from DRQ $\uparrow$	4	t _{MA}	333.3			ns	
DRQ delay time from $\overline{DACK}\downarrow$	4	t _{AM}			140	ns	
DACK pulse width	4	tAA	8			фсү	Note 5
RD ↓ response time from DRQ ↑	4	t _{MR}	208.3			ns	DR1 = 1, DR0 = 1
$\overline{\text{WR}} \downarrow \text{response time from DRQ} \uparrow$	4	t _{MW}	416.7			ns	-
WR/RD response time from DRQ 1	4	t _{MRW}			12	μs	
TC pulse width	4	t _{TC}	60			ns	
RESET pulse width	5	t _{RST}	60		1. A.	φcy	Note 5



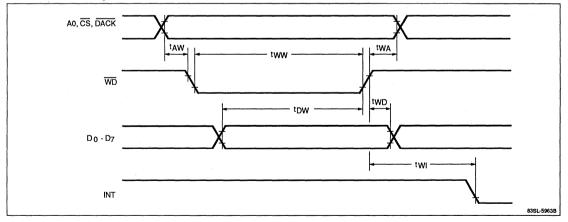
## AC Characteristics 3; High-Speed Floppy-Disk Control (cont)


Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side							1
RDATA high-level width	6	tRDD	40			ns	
WINDOW cycle time (Note 2)	6	twcy		3.33		μs	MFM = 0
				1.67	-	μs	MFM = 1
WINDOW setup time to RDATA (Note 2)	6	twRD	15			ns	
WINDOW hold time from RDATA (Note 2)	6	^t RDW	15			ns	
US0, US1 setup time to SEEK	7	tus	20			μs	Note 3
SEEK setup time to DIR	7	t _{SD}	11.7			μs	
DIR setup time to STEP	7	t _{DST}	1.7			μs	
US0, US1 hold time from STEP	7	tstu	8.3			μs	-
STEP high-level width	7	tSTP	10	11.7	13.3	μs	-
US0, US1 hold time from SEEK (Note 4)	7	tsu	25			μs	
DIR hold time from STEP	7	tSTD	40			μS	
SEEK hold time from DIR	7	t _{DS}	50			μs	
STEP cycle time	7	tsc	55			μs	
FLTR high-level width	8	t _{FR}	13.3		16.7	μs	
INDEX high-level width	8	t _{IDX}	16			φcy	Note 5

#### Notes:

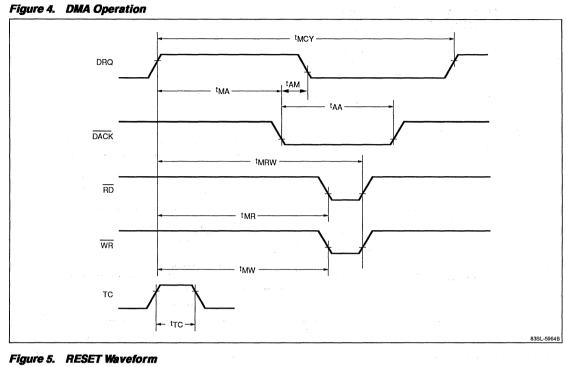

- (1) For data transfer in non-DMA mode.
- (2) When external VFO is used.
- (3) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 12 μs is actually 11.950 μs.
- (4) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (5) φ_{CY} is a multiple of the period of a quartz crystal resonator connected to pins XB1-XB2 or an external clock connected to pin XB1. The multiple is four (EXT = 0) or two (EXT = 1).
- (6) See figure 1 for timing measurement voltage thresholds.




## Figure 1. Voltage Thresholds for Timing Measurements

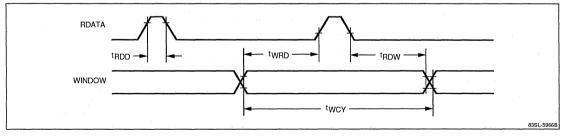


## Figure 2. Read Operation




## Figure 3. Write Operation




5-69











83SL-5965A



μPD72067

## Figure 7. Seek Operation

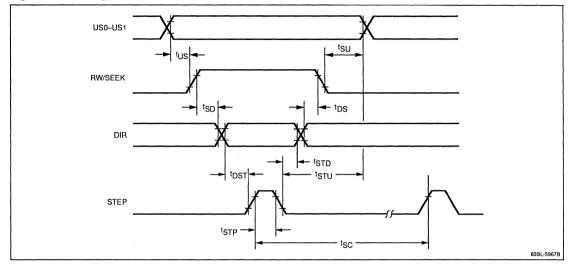
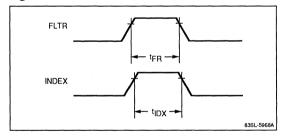




Figure 8. FLTR and INDEX Waveforms



## Registers

The  $\mu$ PD72067 contains three 8-bit registers for interfacing the main system—data, status, and auxiliary command. Control signals  $\overline{CS}$ , A0,  $\overline{RD}$ , and  $\overline{WR}$  select a particular register operation as shown in table 1.

(1) The data register temporarily stores information (command, parameter, data, or result status) transferred between the  $\mu$ PD72067 and the main system.

- (2) The status register (table 2) indicates the state of the μPD72067. The main system can read the status register contents at any time.
- (3) The auxiliary command register temporarily stores auxiliary commands given the μPD72067.

CS	A0	RD	WR	Operation
0	0	0	1	Read status register
0	0	1	0	Write auxiliary command register
0	1	0	1	Read data register
0	1	1	0	Write data register
1	x	x	x	Not defined
	Double on the			

x = Don't care

## Notes:

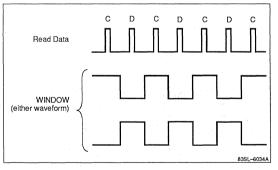
- When the DACK input is active low, data register selection is independent of CS and A0.
- (2) When both CS and A0 are set to 0, a write of code other than auxiliary command code (WR = 0) is inhibited.

N	E	C

Bit	Name	Symbol	Description
D7	Request for master	RQM	Indicates $\mu\text{PD72067}$ is ready to transfer data to and from the main system. Operation depends on the DIO bit D6.
			When DIO = 0, the main system sends data to $\mu$ PD72067. When the main system writes data into $\mu$ PD72067, RQM is set to 0; when $\mu$ PD72067 reads the data, RQM is set to 1.
			<ul> <li>C-phase, wait for command</li> <li>Non-DMA write E-phase</li> <li>SEEK type E-phase</li> </ul>
			When DIO = 1, $\mu$ PD72067 sends data to the main system. When $\mu$ PD72067 places data in the data register, RQM is set to 1; when the main system reads the data, RQM is set to 0.
			<ul> <li>R-phase</li> <li>Non-DMA read E-phase (except for READ ID)</li> </ul>
D6 Data input/output	Data input/output	DIO	Indicates the data transfer direction between the main system and $\mu$ PD72067.
			DIO Direction
			<ul> <li>Main system to μPD72067</li> <li>μPD72067 to main system</li> </ul>
D5	Non-DMA mode	NDM	Indicates data is being transferred in non-DMA mode (E-phase). In C- or R-phase, bit D5 is cleared.
D4	μPD72067 busy	СВ	Indicates μPD72067 is in C-phase, R-phase, or read/write command E-phase. (In SEEK type E- phase, the CB bit D4 is not set to 1.)
			When bit D4 is set to 1, the next command is not acknowledged.
D3	FD3 busy	D3B	Indicates that device 3 performs seek operation or that a seek operation termination interrupt is pending (E-phase).When bit D3 is set to 1, a read/write type command must not be written.
D2	FD2 busy	D2B	Same as bit D3 for device 2.
D1	FD1 busy	D1B	Same as bit D3 for device 1.
D0	FD0 busy	DOB	Same as bit D3 for device 0.

#### Table 2. Status Register Contents

## Digital Phase-Locked Loop (DPLL)


From the external 32-MHz system clock, the DPLL generates a WINDOW signal and synchronizes it with the phase and frequency of read data from a disk drive.

The frequency correction range and peak shift margin of the DPLL are affected by the data transfer rate (pin DR1).

DR1	Range	Margin
0	±25%	81.5
1	±25%	88.6

As shown in figure 9, read data is separated into data bits and clock bits by sampling with the WINDOW signal. The bits are centered in the window. If WINDOW is low for data bits, it is high for clock bits, and vice versa.

## Figure 9. WINDOW Signal Waveform





## **Data Shift Register**

In the read mode, the data shift register converts serial data into parallel form and outputs it to the 8-bit internal bus. In the write mode, the process is reversed and serial data is output to the CRC generator/checker and output mixer.

## **Clock Shift Register**

In the read mode, the clock shift register converts serial clock bits into parallel form and outputs them to the 8-bit internal bus. In the write mode, the clock shift register converts parallel clock bits from the internal bus into a serial stream and sends it to the output mixer.

## Cyclic Redundancy Check (CRC)

The CRC generator/checker operates with the polynomial  $x^{16} + x^{12} + x^5 + 1$ . In the read mode, the CRC of read data is calculated and compared with the CRC byte added following sector ID information and data. A mismatch produces an error indication.

In the write mode, CRC is calculated and two CRC bytes are added following ID information and data.

## Precompensation

Because of the magnetic chracteristics of the media, read data is shifted from data write timing. Because the shift can be predicted according to the data pattern, it can be compensated by preshifting write data in the opposite direction.

Preshifting is used only for MFM mode, which has a data window half the width of the window in FM mode. The precompensation value (shift) is determined in the external mode by the input signals to pins PCS0 and PCS1, or in the internal mode by bits PS0 and PS1 of the CONTROL INTERNAL MODE command. See table 3.

Table 3.	Precom	pensation	Values
----------	--------	-----------	--------

DR1	PCS1	PCS0	Shift
0	0	0	0.0
0	0	1	125.0
0	1	0	187.0
0	1	1	250.0
1	0	0	0.0
1	O	1	208.3
1	1	0	312.5
1	1	1	416.7

## System Clocks

The system clock frequencies depend on the type of VFO and the type of floppy-disk. See table 4.

#### Table 4. System Clocks

VFO	Floppy-Disk	Clock XA	Clock XB
Internal	Standard or mini	32 MHz	
	High-density	32 MHz	19.2 MHz
External	Standard or mini	16 MHz	
	High-density	16 MHz	19.2 MHz

If a 32- or 16-MHz system clock is required, connect a quartz crystal resonator to pins XA1 and XA2, or connect an external clock signal to pin XA1 and leave XA2 open.

If a 19.2-MHz system clock is required, connect a quartz crystal resonator to pins XB1 and XB2, or connect an external clock signal to pin XB1 and leave XB2 open.

## **Internal Clocks**

From the system clock, the  $\mu$ PD72067 generates the five internal clocks listed below.

- (1) Internal system clock: controls internal operations and determines the data transfer rate.
- (2) Write clock: frequency is twice the data transfer rate.
- (3) DPLL clock: based on the 32-MHz system clock; source of the WINDOW signal.
- (4) Precompensation clock
- (5) 71065/66 clock: required if μPD71065 or μPD71066 is the external VFO.

## **Clock Selection**

The system clock—32 or 16 MHz at the XA input or 19.2 MHz at the XB input—is selected by the state of the DR1 pin in external mode or the DR1 bit of the CONTROL INTERNAL MODE command in the internal mode.

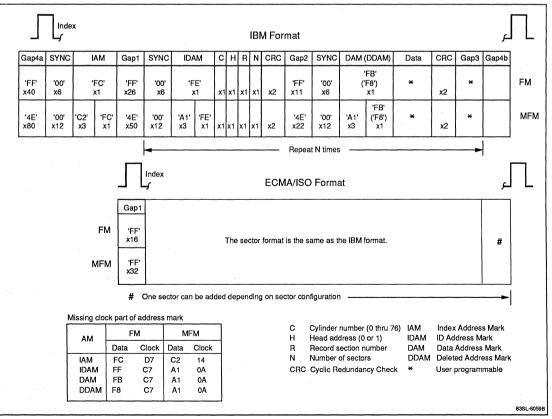
For the selected system clock, the generated internal clock frequencies (table 5) are specified according to mode as follows.

- (1) External mode: state of DR0 pin and command MFM bit.
- (2) Internal mode: state of DR0 bit of CONTROL INTER-NAL MODE command and MFM command bit.

When  $\mu$ PD71065 or  $\mu$ PD71066 is used as external VFO, the clock selected by the DR1 pin is output from the CLKOUT pin as the 71065/66 operation clock.



## Table 5. Control Signals and Internal Clocks


		÷.,				I	nternal C	locks	
System Clock	DR1	DRO	MFM Bit	Data Transfer Rate (kb/s)	System (MHz)	Write (kHz)	DPLL (MHz)	Precomp	71065/66
32 MHz (Note 1) or 16 MHz (Note 2)	0	0	0	125	4	250	8	16 MHz	16 MHz
	0	0	1	250	4	500	16	-	
	0	1	0	250	8	500	16	-	
	0	1	1	500	8	1 MHz	32	-	
19.2 MHz	1	0	0	75	2.4	150	4.8	9.6 MHz	19.2 MHz
	1	°0	1	150	2.4	300	9.6		
	1	1	0	150	4.8	300	9.6	•	
	1	1	1	300	4.8	600	19.2	-	

## Notes:

(1) Internal VFO; internal mode with EXT = 0, or external mode.

(2) External VFO; internal mode with EXT = 1.

## Figure 10. Track Formats





## Format

The track format (IBM or ECMA/ISO) is specified by the FMT bit of the SELECT FORMAT command in internal mode or by the input signal to the FMT pin in external mode. See figure 10.

## Commands

Table 6 describes the 15 commands and 8 auxiliary commands of the  $\mu$ PD72067.

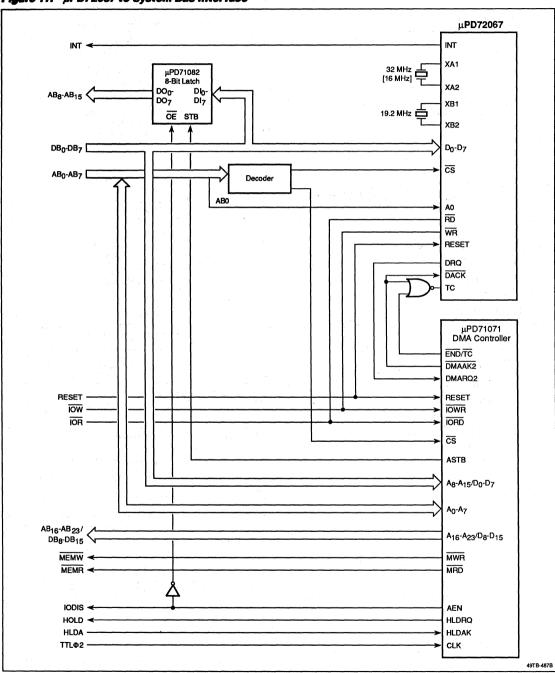
## System Bus Interface

Figure 11 is a reference circuit diagram of the interface between the  $\mu$ PD72067 and a system bus for data transfer in the DMA mode. The DMA controller is  $\mu$ PD71071. To prevent I/O port misselection during the DMA cycle, the Address Enable (AEN) output of  $\mu$ PD71071 inhibits other I/O ports.

## **Floppy-Disk Drive Interface**

Figure 12 is a reference circuit diagram of the interface between a floppy-disk drive and the  $\mu$ PD72067 when the VFO is internal.

Figure 13 is a reference circuit diagram of the interface between a floppy-disk drive and the  $\mu$ PD72067 when the external VFO is  $\mu$ PD71065 or  $\mu$ PD71066. Special signal functions for this application are described below.


MFM	Recording system change signal		
SYNC	Read enable/inhibit		
CLKOUT	System clock to operate µPD71065/66		
DRQ	Lock internal VFO (DPLL)		
USO, US1	Drive select decoded by 74139		
RW/SEEK	Select signal for demultiplexer (NAND		

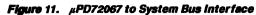
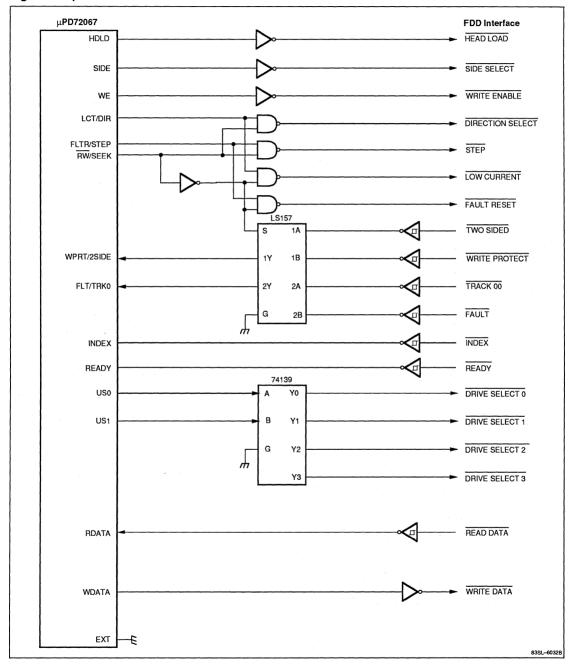

gates) and multiplexer(LS 157)

Table 6.	List	of Ca	ommands
----------	------	-------	---------

Command Name	Function
Read Commands	
READ DATA	Specifies a sector and transfers its data
READ DELETED DATA	to the host.
READ ID	Reads a sector ID.
READ DIAGNOSTIC	Checks the track format.
SCAN EQUAL	Compares each sector data with host
SCAN LOW OR EQUAL	data and detects a sector that satisfies the set condition.
SCAN HIGH OR EQUAL	The set condition.
Write Commands	
WRITE DATA	Specifies a sector and transfers its data
WRITE DELETED DATA	to the host.
WRITE ID	Writes the format of a track.
Seek Commands	
RECALIBRATE	Moves the read/write head to the outer- most track (track 0).
SEEK	Moves the read/write head to the specified cylinder.
Sense Commands	
SENSE INTERRUPT STATUS	Reads the interrupt factor (seek end/ state change) in the µPD72067.
SENSE DEVICE STATUS	Reads the FDD status.
Initialize Command	· · · · · · · · · · · · · · · · · · ·
SPECIFY	Defines a µPD72067 operation mode.
Auxiliary Commands	·
SET STANDBY	Drives the $\mu$ PD72067 in the standby status.
RESET STANDBY	Releases the $\mu$ PD72067 from the standby status.
SOFTWARE RESET	Initializes the µPD72067.
ENABLE EXTERNAL MODE	Sets the µPD72067 in External Mode.
CONTROL INTERNAL MODE	Sets the $\mu$ PD72067 in Internal Mode and sets both data transmission rate and precompensation value.
ENABLE MOTORS	Controls On/Off of the spindle motor.
SELECT FORMAT	Selects either IBM or ECMA/ISO format.
START CLOCK	Starts the clock generator operation.

## μPD72067









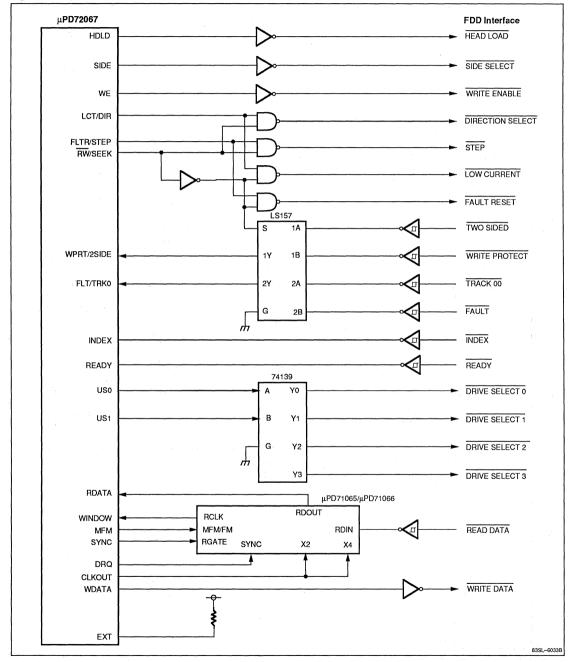


μPD72067

Figure 12. µPD72067 to FDD Interface 1











## μPD72068 Floppy-Disk Controller

## PRELIMINARY

## Description

The  $\mu$ PD72068 FDC is one of NEC's integrated solutions for today's floppy-disk controller designs. An outgrowth of the  $\mu$ PD765A—long established as the industry standard for floppy-disk contol—the  $\mu$ PD72068 maintains complete microcode compatibility and contains the latest enhancements required for multitasking applications. Additionally, the  $\mu$ PD72068 integrates the standard host-interface registers used in IBM PC, PC/XT, PC/AT, and PS/2[®] designs.

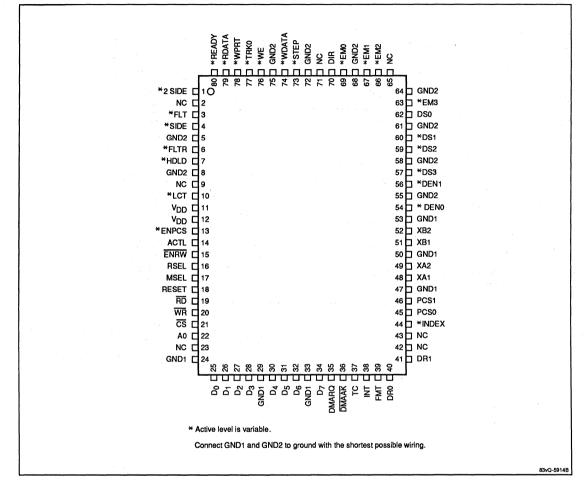
The  $\mu$ PD72068 incorporates a high-performance digital PLL that is impervious to harmonic lock-on, a characteristic of analog counterparts. Being digital, the PLL requires no adjustments and supports all standard data rates as well as 600 kb/s.

The  $\mu$ PD72068 has on-chip clock generation, selectable write precompensation, and all the circuitry necessary for interfacing directly to four floppy-disk drives.

IBM PC, PC/XT, PC/AT, and PS/2 are registered trademarks of international Business Machines Corp.

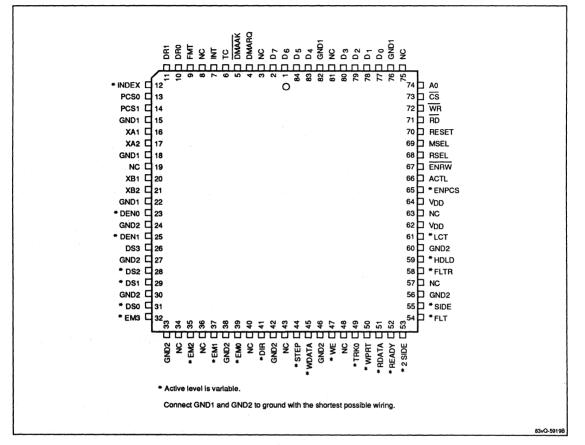
## Features

- Software compatible with μPD765A/765B, μPD7265, μPD72065/65B, μPD72066, and μPD72067
- Compatible with V-Series data/control bus and other standard 8/16-bit CPUs
- IBM and ECMA/ISO formats
- Data transfer rate: 600, 500, 300, 250, 150 kb/s
- High-performance, on-chip digital PLL
- Two system clock generators
- Programmable stepping speed
- Write-compensate circuit (programmable preshift)
- FDD interface
  - High-current drivers (24-mA sink)
  - Schmitt receivers
- Direct control of four FDDs
  - Spindle motor control
  - Unit select control
- □ Three selectable modes support:
  - PC, PC/XT, PC/AT, PS/2 registers
  - Internal operating mode selection
  - External operating mode selection


#### Ordering Information

Part Number	Package
μPD72068GF-3B9	80-pin plastic miniflat
μPD72068L	84-pin PLCC (plastic leaded chip carrier)




## **Pin Configurations**

### 80-Pin Plastic Miniflat



## NEC

## 84-Pin PLCC



## **Pin Identification**

Symbol	I/O	Signal Function
A0	In	Address 0. Selects µPD72068 registers.
		A0         Registers           0         Status, auxiliary command, digital out           1         Data, control
ACTL	In	Active         Level.         Sets active         level         of         drive         interface           ACTL         Active         Level                                                                                                           <
CS	In	Chip Select. Validates $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals when MSEL = 0. In Register mode (MSEL = 1), $\overline{\text{CS}}$ may be used as address line 1 in a typical PC system.
D ₀ -D ₇	1/0	Data Bus. Bidirectional, three-state data bus.
DEN0, DEN1 (*)	Out	Density. Specifies preset data transfer rate; can be used for FDD data transfer rate control. See table 1.
DIR (*)	Out	Direction. Specifies the seek direction. DIR Seek Direction Centrifugal 1 Centripetal
DMAAK	In	DMA Acknowledge. Enables DMA cycle.
DMARQ	Out	DMA Request. Requests data transfer in DMA mode.
DR0, DR1	In	Data Rate. Sets data transfer rate in external mode. For internal mode, pull these pins low with high-value resistors.
DS0-DS3 (*)	Out	Drive Select. Selects up to four FDDs.
EM0-EM3 (*)	Out	Enable Motor. Controls spindle motor on/off; also can be used as a general-purpose output port.
ENPCS (*)	In	Enable Precompensation.         ACTL       ENPCS       Preshift Value         0       0       0 ns         0       1       Assigned by mode         1       0       Assigned by mode         1       1       0 ns
		If the preshift amount is to be varied according to the number of cylinders, the appropriate control signal is input on ENPCS. When applying preshifting to cylinders 43 and above, variable control can be performed automatically by connecting the ENPCS and LCT pins.
ENRW	In	Enable Read Write. Validate $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals when MSEL = 1. When MSEL = 0, this signal is meaningless.
FLT (*)	In	Fault. Indicates FDD is faulty.
FLTR (*)	Out	Fault Reset. Releases FDD from fault state.
FMT	In	Format. Selects format in external mode. FMT Format 0 IBM 1 ECMA
		For internal mode, pull this pin low with a high-value resistor.



point of track on the medium.           INT         Out         Interrupt Request. Requests main system to proc transferred data and execution results.           LCT (*)         Out         Low Current. Indicates drive head has selecter cylinder after the 43rd.           MSEL         In         Mode Select. Validates IBM-PC register and on- peripheral circuits.           PCS0,         In         Precompensation. Selects the preshift amount external or register mode.           For internal mode, pull these pins low with high-varesistors.         For internal mode, pull these pins low with high-varesistors.           RD         In         Read. This control signal causes the main system read data from the μPD72068 to the data bus.           RDATA (*)         In         Read data (consists of clock and data bits) from FI           READY (*)         In         Indicates FDD is ready.           RESET         In         Sets μPD72068 to idle state. FDD interface outpercept for WDATA (undefined) are: ACTL 0         Output 0           In         All low         I         All high           For the main system, INT and DMARQ are set to and D _Q -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.           RSEL         In         Register Select. When MSEL = 1, used with CS			1977 A. 1988.		
diskette.         INDEX (*)       In         INT       Out         In       Mode Select. Validates drive head has selecter cylinder after the 43rd.         MSEL       In         Mode Select. Validates IBM-PC register and on-ceperipheral circuits.         PCS0,       In         Precompensation. Selects the preshift amount external or register mode.         For internal mode, pull these pins low with high-varesistors.         RD       In         Read. This control signal causes the main system read data from the μPD72068 to the data bus.         RDATA (*)       In         In Read data (consists of clock and data bits) from Fi         READY (*)       In         Indicates FDD is ready.         RESET       In Sets μPD72068 to idle state. FDD interface outperstore for WDATA (undefined) are:         ACTL       Output         0       All low         1       All high         For the main system, INT and DMARQ are set to and D _Q -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset. <td>Symbol</td> <td>I/O</td> <td>Signal Function</td>	Symbol	I/O	Signal Function		
point of track on the medium.INTOutInterrupt Request. Requests main system to proc transferred data and execution results.LCT (*)OutLow Current. Indicates drive head has selecter cylinder after the 43rd.MSELInMode Select. Validates IBM-PC register and on- peripheral circuits.PCS0,InPrecompensation. Selects the preshift amount external or register mode.PCS1Error internal mode, pull these pins low with high-varesistors.RDInRead. This control signal causes the main system read data from the $\mu$ PD72068 to the data bus.RDATA (*)InRead data (consists of clock and data bits) from FIREADY (*)InIndicates FDD is ready.RESETInSets $\mu$ PD72068 to idle state. FDD interface outpercept for WDATA (undefined) are: ACTL $\DeltaCTL$ Output 0All low1All low1All low1All highFor the main system, INT and DMARQ are set to and $D_0$ - $D_7$ are set for input.When MSEL = 0, $\mu$ PD72068 enters external m directly after a reset.RSELInRegister Select. When MSEL = 1, used with CS A A to select registers for IBM-PC (digital out regis and control register). Invalid when MSEL = 0SIDE (*)OutSide Select. Selects double-sided drive head. $ACTL$ $O(Active high)$ $O$ $O$ $I$ Head 0 $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ <b< td=""><td>HDLD (*)</td><td>Out</td><td></td></b<>	HDLD (*)	Out			
transferred data and execution results.         LCT (*)       Out       Low Current. Indicates drive head has selecter cylinder after the 43rd.         MSEL       In       Mode Select. Validates IBM-PC register and oncomperipheral circuits.         PCS0,       In       Precompensation. Selects the preshift amount external or register mode.         For internal mode, pull these pins low with high-varesistors.       For internal mode, pull these pins low with high-varesistors.         RD       In       Read. This control signal causes the main system read data from the μPD72068 to the data bus.         RDATA (*)       In       Read data (consists of clock and data bits) from FI         READY (*)       In       Indicates FDD is ready.         RESET       In       Sets μPD72068 to idle state. FDD interface outprescrept for WDATA (undefined) are:         ACTL       Output       0       All low         1       All high       For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.       RSEL       In         RSEL       In       Register Select. When MSEL = 1, used with $\overline{CS}$ : A0 to select registers for IBM-PC (digital out regisand control registers for IBM-PC (digital out	INDEX (*)	In	ndicates drive head is positioned at physical start point of track on the medium.		
cylinder after the 43rd.           MSEL         In         Mode Select. Validates IBM-PC register and oncomperipheral circuits.           PCS0,         In         Precompensation. Selects the preshift amount external or register mode.           For internal mode, pull these pins low with high-varesistors.         For internal mode, pull these pins low with high-varesistors.           RD         In         Read. This control signal causes the main system read data from the μPD72068 to the data bus.           RDATA (*)         In         Read data (consists of clock and data bits) from FI           READY (*)         In         Indicates FDD is ready.           RESET         In Sets μPD72068 to idle state. FDD interface outper except for WDATA (undefined) are:           ACTL         Output         0           0         All low         1           1         All high           For the main system, INT and DMARQ are set to and D _Q -D ₇ are set for input.           When MSEL = 0, μPD72068 enters external m directly after a reset.           RSEL         In Register Select. When MSEL = 1, used with $\overline{CS}$ : A0 to select registers for IBM-PC (digital out regiand control registers. Invalid when MSEL = 0           SIDE (*)         Out         Side Select. Selects double-sided drive head.           ACTL         SIDE         Drive Head 0           0         1         Head 1	INT	Out			
peripheral circuits.         PCS0,       In         PCS1       Precompensation. Selects the preshift amount external or register mode.         For internal mode, pull these pins low with high-varesistors.         RD       In         Read. This control signal causes the main system read data from the μPD72068 to the data bus.         RDATA (*)       In         Read data (consists of clock and data bits) from FI         READY (*)       In         Indicates FDD is ready.         RESET       In         Sets μPD72068 to idle state. FDD interface outperfor WDATA (undefined) are:         ACTL       Output         0       All low         1       All high         For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external medirectly after a reset.         RSEL       In         Register Select. When MSEL = 1, used with CS AO to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out         SIDE (*)       Out         Out Generates seek pulses.         TC       In         1       Head 1         1       1         1       Head 0         STEP (*)       Ou	LCT (*)	Out			
PCS1       external or register mode.         For internal mode, pull these pins low with high-varesistors.         RD       In         Read. This control signal causes the main system read data from the μPD72068 to the data bus.         RDATA (*)       In         Read data (consists of clock and data bits) from FI         READY (*)       In         In       Read data (consists of clock and data bits) from FI         READY (*)       In         Indicates FDD is ready.         RESET       In         Sets μPD72068 to idle state. FDD interface outperts when WDATA (undefined) are:         ACTL       Output         0       All low         1       All high         For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, µPD72068 enters external medirectly after a reset.         RSEL       In         Register Select. When MSEL = 1, used with CS AO to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out         SIDE (*)       Out         Side Select. Selects double-sided drive head.         ACTL       SIDE         0       1         1       1         1       Head 0	MSEL	In	Mode Select. Validates IBM-PC register and on-chip peripheral circuits.		
resistors.         RD       In       Read. This control signal causes the main system read data from the μPD72068 to the data bus.         RDATA (*)       In       Read data (consists of clock and data bits) from FI         READY (*)       In       Indicates FDD is ready.         RESET       In       Sets μPD72068 to idle state. FDD interface outpexcept for WDATA (undefined) are: ACTL       Output         0       All low       1       All high         For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.       When MSEL = 0, μPD72068 enters external m directly after a reset.         RSEL       In       Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out       Side Select. Selects double-sided drive head.         ACTL       SIDE       Drive Head 1         0       1       Head 1         1       1       Head 1         1<		In	Precompensation. Selects the preshift amount in external or register mode.		
read data from the μPD72068 to the data bus.         RDATA (*)       In       Read data (consists of clock and data bits) from FI         READY (*)       In       Indicates FDD is ready.         RESET       In       Sets μPD72068 to idle state. FDD interface outp except for WDATA (undefined) are: <u>ACTL</u> Output 0         0       All low       1       All low         1       All high       For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.       Rest       In       Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regi- and control register). Invalid when MSEL = 0       SIDE (*)       Out       Side Select. Selects double-sided drive head.         ACTL 0       SIDE (*)       Out       Side Select. Selects double-sided drive head.       ACTL Head 0       Drive Head 0         STEP (*)       Out       Generates seek pulses.       TC       In       Head at 0       Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out       Write data (clock and data bits) to FDD.       WE (*)       Out			For internal mode, pull these pins low with high-value resistors.		
READY (*)       In       Indicates FDD is ready.         RESET       In       Sets μPD72068 to idle state. FDD interface outplexcept for WDATA (undefined) are:         ACTL       Output         0       All low         1       All high         For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.         RSEL       In         Register Select. When MSEL = 1, used with CS: A0 to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out         SIDE (*)       Out         SIDE (*)       Out         Generates seek pulses.         TC       In         Terminal Count. Terminates data transfer.         TRK0 (*)       In         Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out         Watte data (clock and data bits) to FDD.         WE (*)       Out	RD	In	Read. This control signal causes the main system to read data from the $\mu\text{PD72068}$ to the data bus.		
RESET       In       Sets μPD72068 to idle state. FDD interface outprexcept for WDATA (undefined) are:         ACTL       Output         0       All low         1       All low         1       All high         For the main system, INT and DMARQ are set to and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.         RSEL       In       Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out       Side Select. Selects double-sided drive head.         ACTL       SIDE       Drive Head 0         0       1       Head 1         1 (Active high)       0       Head 1         1 (Active low)       0       Head 1         1 (Active low)       0       Head 1         1       1       Head 0         STEP (*)       Out       Generates seek pulses.         TC       In       Terminal Count. Terminates data transfer.         TRKO (*)       In       Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out       Write data (clock and data bits) to FDD.         WE (*)       Out       Requests FDD to write data. <td>RDATA (*)</td> <td>In</td> <td>Read data (consists of clock and data bits) from FDD.</td>	RDATA (*)	In	Read data (consists of clock and data bits) from FDD.		
except for WDATA (undefined) are: <u>ACTL</u> 0 All low 1 All low 1 All high For the main system, INT and DMARQ are set to and D _Q -D ₇ are set for input. When MSEL = 0, μPD72068 enters external m directly after a reset. RSEL In Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regi- and control register). Invalid when MSEL = 0 SIDE (*) Out Side Select. Selects double-sided drive head. <u>ACTL</u> 0 (Active high) 0 1 Head 0 1 1 1 Head 1 1 (Active low) 0 STEP (*) Out Generates seek pulses. TC In Terminal Count. Terminates data transfer. TRK0 (*) In Indicates drive head is positioned at cylinder 0. WDATA (*) Out Requests FDD to write data.	READY (*)	In	Indicates FDD is ready.		
and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.         RSEL       In Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regi- and control register). Invalid when MSEL = 0         SIDE (*)       Out Side Select. Selects double-sided drive head. ACTL         0       ACTL         0       Active high)         0       1         1       Head 1         1       1         1       Head 0         STEP (*)       Out Generates seek pulses.         TC       In Terminal Count. Terminates data transfer.         TRK0 (*)       In Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out Write data (clock and data bits) to FDD.         WE (*)       Out Requests FDD to write data.	RESET	In	except for WDATA (undefined) are: <u>ACTL</u> <u>Output</u> <u>AII low</u>		
and D ₀ -D ₇ are set for input.         When MSEL = 0, μPD72068 enters external m directly after a reset.         RSEL       In Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regi- and control register). Invalid when MSEL = 0         SIDE (*)       Out Side Select. Selects double-sided drive head. ACTL         0       ACTL         0       Active high)         0       1         1       Head 1         1       1         1       Head 0         STEP (*)       Out Generates seek pulses.         TC       In Terminal Count. Terminates data transfer.         TRK0 (*)       In Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out Write data (clock and data bits) to FDD.         WE (*)       Out Requests FDD to write data.					
directly after a reset.       RSEL     In     Register Select. When MSEL = 1, used with CS A0 to select registers for IBM-PC (digital out regi- and control register). Invalid when MSEL = 0       SIDE (*)     Out     Side Select. Selects double-sided drive head. ACTL 0 (Active high)     Dife 0     Drive Head Head 0       0     1     Head 1       1     (Active low)     0     Head 1       1     1     Head 0       STEP (*)     Out     Generates seek pulses.       TC     In     Terminal Count. Terminates data transfer.       TRK0 (*)     In     Indicates drive head is positioned at cylinder 0.       WDATA (*)     Out     Requests FDD to write data.			For the main system, INT and DMARQ are set to low and $D_0$ - $D_7$ are set for input.		
A0 to select registers for IBM-PC (digital out regiand control register). Invalid when MSEL = 0         SIDE (*)       Out       Side Select. Selects double-sided drive head.         ACTL       SIDE       Drive Head         0 (Active high)       0       Head 0         0       1       Head 1         1 (Active low)       0       Head 1         1       1       Head 0         STEP (*)       Out       Generates seek pulses.         TC       In       Terminal Count. Terminates data transfer.         TRK0 (*)       In       Indicates drive head is positioned at cylinder 0.         WDATA (*)       Out       Write data (clock and data bits) to FDD.         WE (*)       Out       Requests FDD to write data.			When MSEL = 0, $\mu$ PD72068 enters external mode directly after a reset.		
ACTL 0 (Active high)     SIDE 0     Drive Head Head 0       0     1     Head 1       1 (Active low)     0     Head 1       1 (Active low)     0     Head 1       1 (Active low)     0     Head 1       1     Head 0       STEP (*)     Out     Generates seek pulses.       TC     In     Terminal Count. Terminates data transfer.       TRK0 (*)     In     Indicates drive head is positioned at cylinder 0.       WDATA (*)     Out     Write data (clock and data bits) to FDD.       WE (*)     Out     Requests FDD to write data.	RSEL	In	Register Select. When MSEL = 1, used with $\overline{CS}$ and A0 to select registers for IBM-PC (digital out register and control register). Invalid when MSEL = 0		
TC         In         Terminal Count. Terminates data transfer.           TRK0 (*)         In         Indicates drive head is positioned at cylinder 0.           WDATA (*)         Out         Write data (clock and data bits) to FDD.           WE (*)         Out         Requests FDD to write data.	SIDE (*)	Out	ACTL     SIDE     Drive Head       0 (Active high)     0     Head 0       0     1     Head 1       1 (Active low)     0     Head 1		
TRKO (*)     In     Indicates drive head is positioned at cylinder 0.       WDATA (*)     Out     Write data (clock and data bits) to FDD.       WE (*)     Out     Requests FDD to write data.	STEP (*)	Out	Generates seek pulses.		
WDATA (*)       Out       Write data (clock and data bits) to FDD.         WE (*)       Out       Requests FDD to write data.	тс	In	Terminal Count. Terminates data transfer.		
WE (*) Out Requests FDD to write data.	TRK0 (*)	In	Indicates drive head is positioned at cylinder 0.		
	WDATA (*)	Out	Write data (clock and data bits) to FDD.		
WPRT (*) In Indicates medium is write-protected.	WE (*)	Out	Requests FDD to write data.		
	WPRT (*)	In	Indicates medium is write-protected.		
WR In Write. Control signal that allows the main system write data bus data into μPD72068.	WR	in	Write. Control signal that allows the main system to write data bus data into $\mu$ PD72068.		

Din	Identification	(cont)
гш	ruentincation	<b>ICOIL</b>

Symbol	I/O	Signal Function			
XA1, XA2	In	Crystal A. For internal oscillator frequency control, a crystal resonator is connected to XA1 and XA2. For external clock input at XA1, XA2 is open.			
		Frequency = 32 MHz			
		To support only 500/250 kb/s data rates, crystal B is not necessary; connect XA2 to XB1.			
XB1, XB2	In	Crystal B. For internal oscillator frequency control, a crystal resonator is connected to XB1 and XB2. Fo external clock input at XB1, XB2 is open.			
		FrequencyData Rate38.4 MHz600 kb/s19.2 MHzAll other rates			
		To support only 500/250 kb/s data rates, crystal B is not necessary; connect XA2 to XB1.			
2SIDE (*)	In	Indicates a medium with two usable sides has been loaded into the FDD.			
NC		No Connection.			
GND1	-	Digital system ground.			
GND2		Buffer system ground.			
VDD	In	+5-volt power supply			

(*) Active high when ACTL = 0; active low when ACTL = 1.

#### **Pin Reset Status**

Pin	Reset Status			
D ₀ -D ₇	Input			
DMARQ, INT	Low			
WDATA	Undefined			
DIR, DS0-DS3, EM0-EM3, FLTR, HDLD, LCT, SIDE, STEP, WE	Low when ACTL =0; high when ACTL= 1.			
DENO, DEN1	Output depends on the preset data transfer rates. Value set when ACTL = 0 is inverted when ACTL = 1, and vice versa.			
Other pins				

	Input Pins				MFM Data	Output Pins	
Mode	DR1	DRO	D1	DO	Transfer Rate (kb/s)	DEN1	DENO
Internal/ external (Note 1)	0	0			250	1	0
	0	1			500	1	1
	1	0		-	150 (300)	1	0
	1	1	—		300 (600)	0	0
Register (Note 2)	0	x	0	0	500	1	1
	0	x	0	1	250	1	0
	0	x	1	0	250	1	0
	0	х	1	1	150 (300)	1	0
	1	x	0	0	500	1	1
	1	x	0	1	300 (600)	0	0
	1	x	1	0	250	1	0
	1	x	1	1	150 (300)	1	0

Table 1. Data Transfer Rate Settings

#### Notes:

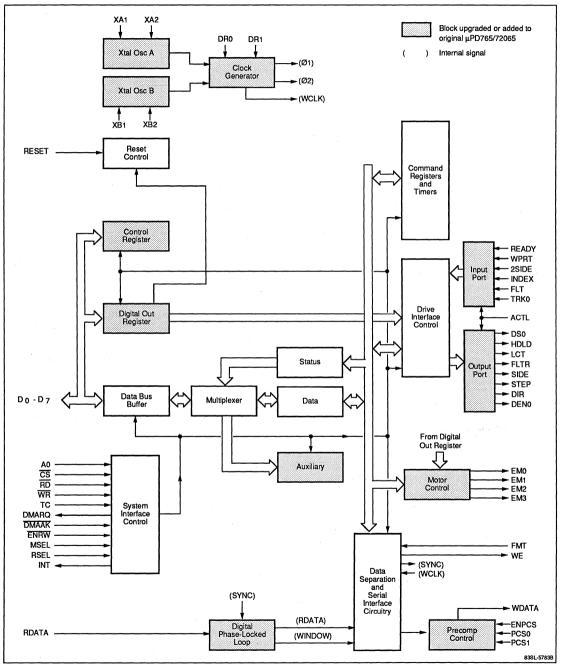
- In internal mode, DR1 and DR0 are bits of the CONTROL INTERNAL MODE command. In external mode, DR1 and DR0 are input pins.
- (2) In register mode, DR0 input pin status is "Don't Care" (x).
- (3) Data transfer rates in parentheses are with a 38.4-MHz crystal resonator connected to pins XB1 and XB2 or a 38.4-MHz clock connected to pin XB1.
- (4) Data transfer rates are for MFM mode. In FM mode, these rates are halved.
- (5) DEN1 and DN0 values are when ACTL = 1 (active low). When ACTL = 0 (active high), values are inverted.

#### **Operation Modes**

Since  $\mu$ PD72068 has been developed from  $\mu$ PD72067, the external and internal modes available for  $\mu$ PD72067 are also available for  $\mu$ PD72068 (except the external VFO mode). In addition, the register mode is available for  $\mu$ PD72068. The register mode is used to operate the IBM-PC registers and special-purpose circuits of  $\mu$ PD72068. Procedures for setting the data transfer rate, precompensation amount, etc., vary depending on the modes. The differences in the procedures are shown in table 2.



#### Table 2. Operation Modes


Mode	MSEL Pin	Command	Data Transfer Rate Setting	Drive Select	Precompensation Amount Setting	Format Change	Motor On/Off Control
Register mode	1	None	D0 and D1 bits and DR1 pin of control register	Digital out register	PCS0, PCS1, and DR1 pins	FMT pin	Digital out register
internal mode	0	Note 1	CONTROL INTERNAL MODE command	US1 and US0 bits in the command	CONTROL INTERNAL MODE command	SELECT FORMAT command	ENABLE MOTORS
External mode	0	Note 2	DR1 and DR0 pins		PCS1, PCS0, and DR1 pins	FMT pin	

#### Notes:

(1) CONTROL INTERNAL MODE command

(2) ENABLE EXTERNAL MODE command

#### µPD72068 Block Diagram



5



#### **Absolute Maximum Ratings**

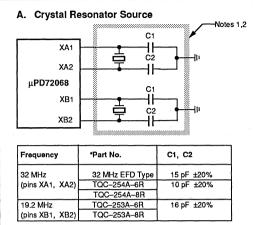
$T_A = +25^{\circ}C$	
Supply voltage, V _{DD}	-0.5 to +7.0 V
Voltage on any pin (except V _{DD} )	-0.5 to +7 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to 150°C

#### Capacitance

 $T_A = +25^{\circ}C; V_{DD} = 0 V; f = 1 MHz$ 

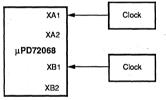
Parameter	Symbol	Min	Max	Unit	Conditions
Clock capacitance	Сф		20	pF	Unmeasured
Input capacitance	CIN		20	pF	pins returned to 0 V.
Output capacitance	COUT		20	pF	

Oscillator Specifications  $T_A = -10$  to  $+70^{\circ}$ C;  $V_{DD} = +5$  V ±10%; see figures 1, 2, and 3.

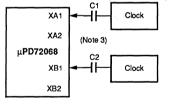

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Crystal Resonator Source	,					·
Oscillator stabilization time (Note 1)	tks			10	ms	11 1
External Clock, Direct Input						
Low-level input voltage	VIL	-0.5		0.2 V _{DD}	٧	Pins XA1, XB1
High-level input voltage	VIH	0.8 V _{DD}		V _{DD} + 0.5	V	•
Clock cycle	^t CYA		31.25		ns	Pin XA1
	^t CYB		52.08		ns	19.2-MHz clock input to pin XB1
			26.04		ns	38.4-MHz clock input to pin XB1
Permissible clock cycle error from typical value (Note 2)				±0.5	%	Pins XA1, XB1
Clock high-level width	^t ккн	7.0			ns	Pin XA1
		15.0			ns	Pin XB1; t _{CYB} = 52.08 ns
		6.0			ns	Pin XB1; t _{CYB} = 26.04 ns
Clock low-level width	^t ĸĸ∟	7.0			ns	Pin XA1
		15.0			ns	Pin XB1; $t_{CYB} = 52.08$ ns
		6.0			ns	Pin XB1; $t_{CYB} = 26.04$ ns
Clock rise time	^t KR			5.0	ns	· · ·
Clock fall time	^t KF			5.0	ns	· · · ·
External Clock, Capacitor-Coupled Inpu	t					
Clock input amplitude	V _{KP-P}	2.0		V _{DD}	V	Pins XA1, XB1
Clock cycle	^t CYA		31.25		ns	Pin XA1
	tсув		52.08		ns	19.2-MHz clock input to pin XB1
			26.04		ns	38.4-MHz clock input to pin XB1
Permissible clock cycle error from typical value (Note 2)				±0.5	%	Pins XA1, XB1
Duty cycle, high-level		40		60	%	

Notes:

(1) Oscillator stabilization time should also be taken as the wait time between the issuance of START CLOCK and RESET STANDBY commands.


(2) Clock cycle error affects DPLL performance.





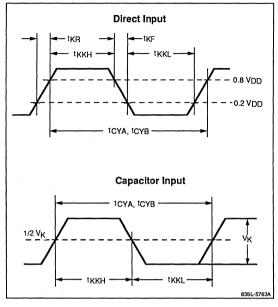

* Toyo Communication Equipment Co., Ltd.

#### B. External Clock, Direct Input

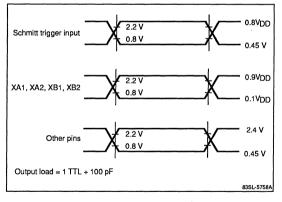


#### C. External Clock, Capacitor-Coupled




#### Notes:

- (1) Oscillator circuit should be as close as possible to pins XA1, XA2, XB1, and XB2.
- (2) No other signal lines should pass through shaded box.


83SL-5757A

(3) C1 and C2 = 110 to 10,000 pf.

Figure 2. External Clock Waveform



#### Figure 3. Voltage Thresholds for Timing Measurements





#### DC Characteristics

 $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$ 

Parameter	Symbol	Pin Groups	Min	Max	Unit	Conditions
Low-level input voltage	VIL	2	-0.5	0.8	V	*****
	VIL1	1	-0.5	0.2 V _{DD}	V	
High-level input voltage	VIH	2	2.2	V _{DD} + 0.5	v	
	V _{IH1}	1	0.8 V _{DD}	V _{DD} + 0.5	V	· · ·
Low-level output voltage	VOL	4, 5		0.45	V	l _{OL} = 2.0 mA
1	V _{OL1}	3		0.45	v	l _{OL} = 24.0 mA
High-level output voltage	V _{OH}	4, 5	0.7 V _{DD}	V _{DD}	v	l _{OH} = -200 μA
Low-level input leakage current	ILIL	1, 2		-10	μA	V _{IN} = 0 V
High-level input leakage current	ILIH	1, 2		+ 10	μA	V _{IN} = V _{DD}
Low-level output leakage current	ILOL	4, 5		-10	μA	$V_{OUT} = +0.45 V$
	LOL 1	3		100	μA	•
High-level output leakage current	ILOH	4, 5	· · · · ·	+ 10	μA	V _{OUT} = V _{DD}
	ILOH1	3		+ 100	μA	
V _{DD} supply current	IDD			60	mA	Note 1
Standby current	I _{DD1}			100	μA	Note 2

#### Notes:

during standby.

When a 32-MHz crystal is connected to XA1-XA2 and a 19.2-MHz crystal is connected to XB1-XB2.
 When an external clock is supplied, the clock should be fixed low

#### Pin Groups:

(1) Schmitt-trigger inputs: ENPCS, FLT, INDEX, RDATA, READY, TRKO, WPRT, 2SIDE.

(2) Non-Schmitt-trigger inputs and D₀-D₇; excludes XA1, XA2, XB1, XB2.

(3) Drive-side outputs when ACTL = 1 (active-low mode): DEN0-DEN1, DIR, DS0-DS3, EM0-EM3, FLTR, HDLD, LCT, SIDE, STEP, WDATA, WE.

(4) Drive-side outputs when ACTL = 0 (active-high mode): Same pins as group 3.

(5) Other than drive-side outputs; also D₀-D₇.

AC Characteristics 1; 500 kb/s  $T_A = -10 \text{ to } +70^\circ\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$ MFM data transfer rate = 500 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	tAR	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	
RD pulse width	4	t _{RR}	200			ns	
Data access time from $\overline{RD} \downarrow$	4	t _{RD}			140	ns	
Data float delay time from $\overline{RD}$ $\uparrow$	4	t _{DF}	10		85	ns	
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
A0, CS, DMAAK, ENRW, RSEL setup time to WR	5	t _{AW}	0			ns	For $\overline{ENRW}$ and RSEL when MSEL = 1
A0, CS, DMAAK, ENRW, RSEL hold time from WR	5	t _{WA}	0			ns	
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	t _{DW}	100			ns	
Data hold time from WR	5	t _{WD}	0			ns	
INT delay time from WR ↑	5	t _{WI}			400	ns	Note 1
DMARQ cycle time	6	t _{MCY}	13			μs	t _{CYA} = 31.25 ns
DMAAK ↓ response time from DMARQ ↑	6	t _{MA}	200			ns	
DMARQ delay time from $\overline{\text{DMAAK}}\downarrow$	6	t _{AM}			140	ns	
DMAAK pulse width	6	t _{AA}	8.5			tCYA	
$\overline{\text{RD}}\downarrow$ response time from DMARQ $\uparrow$	6	t _{MR}	125			ns	t _{CYA} = 31.25 ns
WR ↓ response time from DMARQ ↑	6	t _{MW}	250			ns	
WR/RD response time from DMARQ ↑	6	t _{MRW}			12	μS	
TC pulse width	6	t _{TC}	60			ns	
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
			10			ms	After standby release
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
external clock input			2			ms	On power-on
			60			tCYA	After standby release
Clock hold time on standby	8	twc	128			tCYA	When external clock is input to XA1 pit
Clock setup time after standby release	8	tcw	64			tCYA	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	64			tCYA	
INT response time from DMARQ $\downarrow$	9	t _{MI}	240		308	tCYA	
DMAAK signal invalid from INT ↑	9	t _{IA}			4	tCYA	



#### AC Characteristics 1; 500 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side	21.1						
RDATA high-level width	10	t _{RDD}	40			ns	
WDATA high-level width	10	t _{WDD}		250		ns	
DS0-DS3 setup time to DIR (Note 4)	11	tDSD	12			μs	t _{CYA} = 31.25 ns; Note 2
DIR setup time to STEP	11	tDST	1			μs	-
DS0-DS3 hold time from STEP (Note 4)	11	tsтu	5			μs	-
STEP high-level width	11	tSTP	6	7	8	μs	•
DS0-DS3 hold time from DIR (Notes 3, 4)	11	t _{DDS}	15			μs	-
DIR hold time from STEP	11	tSTD	24			μs	-
STEP cycle time	11	tsc	33			μs	-
FLTR high-level width	12	t _{FR}	8		10	μs	-
INDEX high-level width	12	t _{IDX}	16			tCYA	-

#### Notes:

(1) For data transfer in non-DMA mode.

- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 12 μs is actually 11.950 μs.
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

AC Characteristics 2; 250 kb/s  $T_A = -10 \text{ to } +70^\circ\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$ MFM data transfer rate = 250 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	t _{AR}	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	
RD pulse width	4	t _{RR}	200			ns	
Data access time from $\overline{\text{RD}} \downarrow$	4	tRD			140	ns	
Data float delay time from RD ↑	4	t _{DF}	10		85	ns	
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
A0, CS, DMAAK, ENRW, RSEL setup time to WR	5	t _{AW}	0			ns	For ENRW and RSEL when MSEL = 1
A0, CS, DMAAK, ENRW, RSEL hold time from WR	5	t _{WA}	0			ns	
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	t _{DW}	100			ns	
Data hold time from WR	5	t _{WD}	0			ns	
INT delay time from WR ↑	5	twi			400	ns	Note 1
DMARQ cycle time	6	t _{MCY}	26			μs	t _{CYA} = 31.25 ns
DMAAK ↓ response time from DMARQ ↑	6	t _{MA}	400			ns	-
DMARQ delay time from DMAAK↓	6	t _{AM}			140	ns	
DMAAK pulse width	6	t _{AA}	16.5			tCYA	
RD ↓ response time from DMARQ ↑	6	t _{MR}	250			ns	t _{CYA} = 31.25 ns
₩R ↓ response time from DMARQ ↑	6	t _{MW}	500			ns	
WR/RD response time from DMARQ ↑	6	t _{MRW}			24	μs	
TC pulse width	6	t _{TC}	60			ns	
RESET pulse width for	7	tRST	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
			10			ms	After standby release
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
external clock input			2			ms	On power-on
			60			tCYA	After standby release
Clock hold time on standby	8	twc	256			tCYA	When external clock is input to XA1 pi
Clock setup time after standby release	8	tcw	128			tCYA	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	128			[†] CYA	- 
INT response time from DMARQ ↓	9	t _{MI}	480		616	tCYA	
DMAAK signal invalid from INT ↑	9	t _{IA}			8	tCYA	



#### AC Characteristics 2; 250 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side					- 4		
RDATA high-level width	10	t _{RDD}	40	·.		ns	
WDATA high-level width	10	t _{WDD}		500		ns	
DS0-DS3 setup time to DIR (Note 4)	11	t _{DSD}	24			μs	t _{CYA} = 31.25 ns; Note 2
DIR setup time to STEP	11	tDST	2			μs	
DS0-DS3 hold time from STEP (Note 4)	11	t _{STU}	10			μS	-
STEP high-level width	11	tSTP	12	14	16	μS	-
DS0-DS3 hold time from DIR (Notes 3, 4)	,11	tDDS	30			μs	
DIR hold time from STEP	11	tSTD	48			μs	- 
STEP cycle time	11	tsc	66			μs	
FLTR high-level width	12	t _{FR}	16		20	μs	•
INDEX high-level width	12	t _{IDX}	32			tCYA	-

#### Notes:

(1) For data transfer in non-DMA mode.

- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 24 μs is actually 23.950 μs.
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

#### AC Characteristics 3; 300 kb/s

 $T_A = -10 \text{ to } +70^\circ\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$ MFM data transfer rate = 300 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin); t_{CYB} = 52.08 ns (19.2 MHz at XB1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	t _{AR}	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	-
RD pulse width	4	t _{RR}	200			ns	
Data access time from RD ↓	4	t _{RD}			140	ns	
Data float delay time from RD ↑	4	t _{DF}	10		85	ns	
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
AO, CS, DMAAK, ENRW, RSEL setup time to WR	5	taw	0			ns	For ENRW and RSEL when MSEL = 1
AO, CS, DMAAK, ENRW, RSEL hold time from WR	5	t _{WA}	0			ns	
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	t _{DW}	100			ns	
Data hold time from WR	5	twp	0			ns	
INT delay time from WR ↑	5	twi			400	ns	Note 1
DMARQ cycle time	6	t _{MCY}	21.7			μs	t _{CYB} = 52.08 ns
$\overline{\mathbf{DMAAK}}\downarrow$ response time from $\mathbf{DMARQ}\uparrow$	6	t _{MA}	333.3			ns	
DMARQ delay time from DMAAK↓	6	t _{AM}			140	ns	
DMAAK pulse width	6	taa	8.3			t _{CYB}	
RD ↓ response time from DMARQ ↑	6	t _{MR}	208.3			ns	t _{CYB} = 52.08 ns
WR ↓ response time from DMARQ ↑	6	t _{MW}	416.7			ns	
WR/RD response time from DMARQ ↑	6	t _{MRW}			20	μs	
TC pulse width	6	t _{TC}	60			ns	
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
			10			ms	After standby release
RESET pulse width for	7	tRST	60			tCYA	During normal operation
external clock input			2			ms	On power-on
			60			tCYA	After standby release
Clock hold time on standby	8	twc	128			tCYB	When external clock is input to XB1 pir
Clock setup time after standby release	8	tcw	64			tCYB	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	64			t _{CYB}	-
INT response time from DMARQ ↓	9	t _{MI}	240		308	tCYB	
DMAAK signal invalid from INT ↑	9	t _{IA}			4	tCYB	



#### AC Characteristics 3; 300 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side					- 4		
RDATA high-level width	10	t _{RDD}	40			ns	
WDATA high-level width	10	twod		416.7		ns	the second states and second
DS0-DS3 setup time to DIR (Note 4)	11	tDSD	20			μs	t _{CYB} = 52.08 ns; Note 2
DIR setup time to STEP	11	^t DST	1.7			μs	
DS0-DS3 hold time from STEP (Note 4)	11	tsтu	8.3			μs	•
STEP high-level width	. 11	tSTP	10	11.7	13.3	μs	
DS0-DS3 hold time from DIR (Notes 3, 4)	11	t _{DDS}	25			μs	
DIR hold time from STEP	11	t _{STD}	40			μs	
STEP cycle time	11	tsc	55			μs	
FLTR high-level width	12	t _{FR}	13.3		16.7	μs	
INDEX high-level width	12	t _{IDX}	16			tCYB	- 

#### Notes:

(1) For data transfer in non-DMA mode.

- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 20 μs is actually 19.950 μs.
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

#### AC Characteristics 4; 150 kb/s

 $T_{\rm A} = -10$  to +70°C;  $V_{\rm DD} = +5$  V ±10%; MFM data transfer rate = 150 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin); t_{CYB} = 52.08 ns (19.2 MHz at XB1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	tAR	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	
RD pulse width	4	t _{RR}	200			ns	
Data access time from $\overline{RD}\downarrow$	4	t _{RD}			140	ns	
Data float delay time from RD ↑	4	tDF	10		85	ns	
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
A0, CS, DMAAK, ENRW, RSEL setup time to WR	5	taw	0			ns	For ENRW and RSEL when MSEL = 1
A0, CS, DMAAK, ENRW, RSEL hold time from	5	twa	0			ns	
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	t _{DW}	100			ns	
Data hold time from WR	5	t _{WD}	0	•		ns	
INT delay time from WR ↑	5	twi			400	ns	Note 1
DMARQ cycle time	6	t _{MCY}	43.4			μs	t _{CYB} = 52.08 ns
DMAAK ↓ response time from DMARQ ↑	6	t _{MA}	666.6			ns	-
DMARQ delay time from DMAAK↓	6	t _{AM}			140	ns	
DMAAK pulse width	6	t _{AA}	16.3			t _{CYB}	
$\overline{\text{RD}} \downarrow \text{response time from DMARQ} \uparrow$	6	t _{MR}	416.7			ns	t _{CYB} = 52.08 ns
WR ↓ response time from DMARQ ↑	6	t _{MW}	833.4			ns	•
WR/RD response time from DMARQ ↑	6	t _{MRW}			40	μs	
TC pulse width	6	tтс	60			ns	
RESET pulse width for	7	tRST	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
	- 100 J		10			ms	After standby release
RESET pulse width for	7	tRST	60			tCYA	During normal operation
external clock input			2			ms	On power-on
			60			tCYA	After standby release
Clock hold time on standby	8	twc	256			t _{CYB}	When external clock is input to XB1 pir
Clock setup time after standby release	8	tcw	128			t _{CYB}	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	128			t _{CYB}	
INT response time from DMARQ ↓	9	t _{MI}	480		616	t _{CYB}	
DMAAK signal invalid from INT ↑	9	t _{IA}			8	tCYB	



#### AC Characteristics 4; 150 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side							
RDATA high-level width	10	t _{RDD}	40			ns	
WDATA high-level width	10	twpp		833.4		ns	· · · · · · · · · · · · · · · · · · ·
DS0-DS3 setup time to DIR (Note 4)	11	t _{DSD}	40			μs	t _{CYB} = 52.08 ns; Note 2
DIR setup time to STEP	11	t _{DST}	3.4			μs	
DS0-DS3 hold time from STEP (Note 4)	11	tstu	16.6			μS	-
STEP high-level width	11	tSTP	20	23.4	26.6	μs	
DS0-DS3 hold time from DIR (Notes 3, 4)	11	t _{DDS}	50			μs	-
DIR hold time from STEP	11	tSTD	80			μs	-
STEP cycle time	11	tsc	110			μS	
FLTR high-level width	12	t _{FR}	26.6		33.4	μs	-
INDEX high-level width	12	t _{IDX}	32			tCYB	-

#### Notes:

(1) For data transfer in non-DMA mode.

- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 40 μs is actually 39.950 μs.
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

AC Characteristics 5; 600 kb/s  $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$ MFM data transfer rate = 600 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin); t_{CYB} = 26.04 ns (38.4 MHz at XB1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	t _{AR}	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	
RD pulse width	4	t _{RR}	200			ns	
Data access time from $\overline{RD} \downarrow$	4	t _{RD}			140	ns	
Data float delay time from RD ↑	4	tDF	10		85	ns	
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
A0, CS, DMAAK, ENRW, RSEL setup time to WR	5	tAW	0			ns	For $\overline{\text{ENRW}}$ and RSEL when MSEL = 1
A0, CS, DMAAK, ENRW, RSEL hold time from WR	5	twa	0		-	ns	
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	t _{DW}	100			ns	
Data hold time from WR	5	twp	0			ns	
INT delay time from ₩R ↑	5	twi			400	ns	Note 1
DMARQ cycle time	6	t _{MCY}	10.8			μs	t _{CYB} = 26.04 ns
$\overline{\text{DMAAK}}\downarrow$ response time from DMARQ $\uparrow$	6	t _{MA}	166.7			ns	
DMARQ delay time from $\overline{\text{DMAAK}}\downarrow$	6	t _{AM}			140	ns	÷
DMAAK pulse width	6	t _{AA}	8.6			t _{CYB}	
RD ↓ response time from DMARQ ↑	6	t _{MR}	104.2			ns	t _{CYB} = 26.04 ns
$\overline{\text{WR}}\downarrow$ response time from DMARQ $\uparrow$	6	t _{MW}	208.3			ns	
WR/RD response time from DMARQ ↑	6	t _{MRW}			12	μs	
TC pulse width	6	t _{TC}	60			ns	
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
			10			ms	After standby release
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
external clock input	2		2			ms	On power-on
			60			^t CYA	After standby release
Clock hold time on standby	8	twc	128			tCYB	When external clock is input to XB1 pir
Clock setup time after standby release	8	tcw	64			t _{CYB}	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	64			^t CYB	
INT response time from DMARQ $\downarrow$	9	t _{МI}	240		308	tCYB	
DMAAK signal invalid from INT ↑	9	t _{IA}			4	tCYB	

#### AC Characteristics 5; 600 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side						******	
RDATA high-level width	10	t _{RDD}	40			ns	
WDATA high-level width	10	twdd		208.3		ns	
DS0-DS3 setup time to DIR (Note 4)	11	t _{DSD}	10			μs	t _{CYB} = 26.04 ns; Note 2
DIR setup time to STEP	11	t _{DST}	0.8			μs	
DS0-DS3 hold time from STEP (Note 4)	11	tsтu	4.2			μs	-
STEP high-level width	11	tSTP	5.0	5.8	6.7	μs	-
DS0-DS3 hold time from DIR (Notes 3, 4)	11	tDDS	12.5			μS	- -
DIR hold time from STEP	11	t _{STD}	20			μs	-
STEP cycle time	11	tsc	27.5			μS	-
FLTR high-level width	12	t _{FR}	6.7		8.3	μs	-
INDEX high-level width	12	t _{IDX}	16			tCYB	-

#### Notes:

(1) For data transfer in non-DMA mode.

- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in  $\mu s.$  For example, 10  $\mu s$  is actually 9.950  $\mu s.$
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

AC Characteristics 6; 300 kb/s  $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$ MFM data transfer rate = 300 kb/s; t_{CYA} = 31.25 ns (32 MHz at XA1 pin); t_{CYB} = 26.04 ns (38.4 MHz at XB1 pin)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	4	t _{AR}	0			ns	For ENRW when MSEL = 1
A0, CS, DMAAK, ENRW hold time from RD	4	t _{RA}	0			ns	
RD pulse width	4	t _{RR}	200			ns	
Data access time from $\overline{RD} \downarrow$	4	t _{RD}			140	ns	
Data float delay time from RD ↑	4	tDF	10		85	ns	·
INT delay time from RD ↑	4	t _{RI}			400	ns	Note 1
A0, CS, DMAAK, ENRW, RSEL setup time to WR	5	taw	0			ns	For $\overline{\text{ENRW}}$ and RSEL when MSEL = 1
A0, CS, DMAAK, ENRW, RSEL hold time from WR	5	twa	0			ns	en e
WR pulse width	5	tww	200			ns	
Data setup time to WR	5	tow	100			ns	
Data hold time from WR	5	twp	0			ns	
INT delay time from ₩R ↑	5	twi	1.1		400	ns	Note 1
DMARQ cycle time	6	tMCY	21.7			μs	t _{CYB} = 26.04 ns
$\overline{\text{DMAAK}} \downarrow \text{response time from DMARQ} \uparrow$	6	t _{MA}	333.3			ns	
DMARQ delay time from DMAAK↓	6	tam			140	ns	
DMAAK pulse width	6	tAA	16.6			tCYB	
$\overline{\text{RD}} \downarrow \text{response time from DMARQ} \uparrow$	6	t _{MR}	208.3			ns	t _{CYB} = 26.04 ns
$\overline{\text{WR}} \downarrow \text{response time from DMARQ} \uparrow$	6	t _{MW}	416.7			ns	-
WR/RD response time from DMARQ ↑	6	tMRW		an a	24	μs	
TC pulse width	6	tTC	60			ns	
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
crystal resonator connection			10			ms	On power-on
			10			ms	After standby release
RESET pulse width for	7	t _{RST}	60			tCYA	During normal operation
external clock input			2			ms	On power-on
			60			tCYA	After standby release
Clock hold time on standby	8	twc	256			tCYB	When external clock is input to XB1 pir
Clock setup time after standby release	8	tcw	128			tCYB	-
START CLOCK command write setup time to RESET STANDBY command write	8	tws	128			t _{CYB}	-
INT response time from DMARQ↓	9	t _{MI}	480		616	tCYB	
DMAAK signal invalid from INT ↑	9	t _{iA}			8	tCYB	

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Drive Side							
RDATA high-level width	10	t _{RDD}	40			ns	
WDATA high-level width	10	twdd		416.7		ns	
DS0-DS3 setup time to DIR (Note 4)	11	t _{DSD}	20			μs	t _{CYB} = 26.04 ns; Note 2
DIR setup time to STEP	11	tDST	1.7		1997 - 1997 1997 - 1997 - 1997	μs	
DS0-DS3 hold time from STEP (Note 4)	11	tsтu	8.3			μs	-
STEP high-level width	11	tSTP	10	11.7	13.3	μS	• 
DS0-DS3 hold time from DIR (Notes 3, 4)	11	t _{DDS}	25			μs	
DIR hold time from STEP	11	t _{STD}	40			μs	
STEP cycle time	11	tsc	55			μs	-
FLTR high-level width	12	t _{ER}	13.3		16.7	μs	-
INDEX high-level width	12	t _{IDX}	32			tCYB	-

#### AC Characteristics 6; 300 kb/s (cont)

#### Notes:

- (1) For data transfer in non-DMA mode.
- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 20 μs is actually 19.950 μs.
- (3) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (4) Except in register mode.
- (5) See figure 3 for timing measurement voltage thresholds.

#### Figure 4. Read Operation

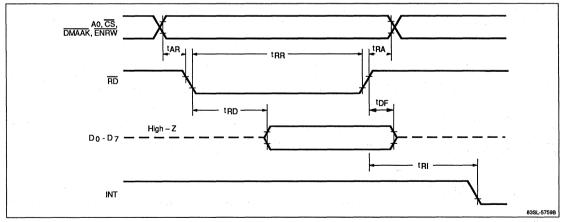





Figure 5. Write Operation

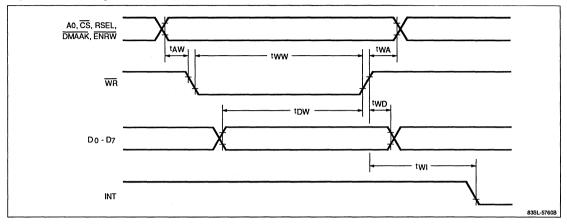
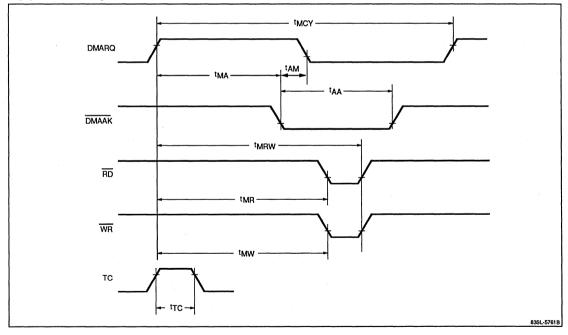
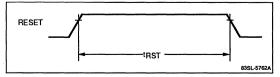





Figure. 6 DMA Operation







5



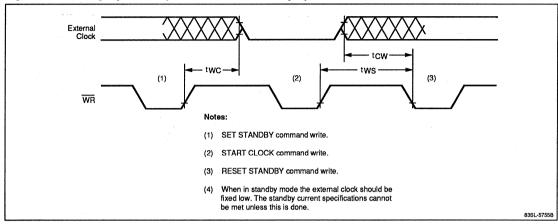
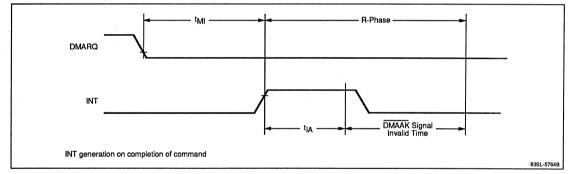
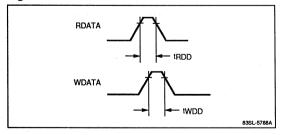





Figure 8. Standby Operation (With External Clock Input)











### Figure 11. Seek Operattion

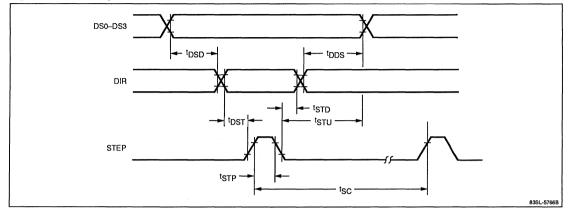
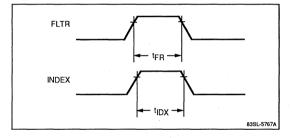




Figure 12. FLTR and INDEX Waveforms



5





#### Description

The  $\mu$ PD72069 Floppy-Disk Controller (FDC) is one of NECs integrated solutions for today's floppy-disk controller designs. An outgrowth of the  $\mu$ PD765A—long established as the industry standard for floppy-disk contol—the  $\mu$ PD72069 maintains complete microcode compatibility and contains the latest enhancements required for multitasking applications. Additionally, the  $\mu$ PD72069 integrates the standard host-interface registers used in IBM PC, PC/XT, PC/AT, and PS/2[®] designs.

The  $\mu$ PD72069 incorporates a high-performance analog PLL that requires no adjustments and supports all standard data rates as well as 600 kb/s and 1 Mb/s for the latest advances in tape and disk technology.

The  $\mu$ PD72069 has on-chip clock generation, selectable write precompensation, and all the circuitry necessary for interfacing directly to four floppy-disk drives.

#### **Features**

- I00% μPD765A/765B software and hardware compatible
- IBM and ECMA (Sony) formats
- Analog PLL (no adjustment required)
- Data transfer rate: 1 Mb/s; 600, 500, 300, 250, 150 kb/s
- Two system clock generators
- Write precompensation (programmable shift values)
- Programmable stepping speed
- Direct control of four FDDs
  - Spindle motor control
  - Unit select control
  - High-current driver outputs (open drain)
- Three selectable modes support:
  - PC, PC/XT, PC/AT registers
  - Internal operating mode selection
  - External operating mode selection

#### **Ordering Information**

Part Number	Package
μPD72069GF-3BA	100-pin plastic miniflat
μPD72069L	84-pin PLCC (plastic leaded chip carrier)

IBM PC, PC/XT, PC/AT, and PS/2 are registered trademarks of International Business Machines Corp.

#### **Pin Identification**

Symbol	1/0	Signal Function
A0	In	
		Address 0. Selects a register in µPD72069.
ACTL	In	Active Level. Sets active level of drive interface signal.
		ACTL Active Level O High 1 Low
CGP1, CGP2	Out	Charge Pump. Phase difference of sub PLL devices.
CS	In	Chip Select. Validates $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals.
D ₀ -D ₇	I/O	Data Bus. Bidirectional, three-state data bus.
DENO, DEN1 (*)	Out	Density. Specifies the density of a drive that can support more than one density. The output is a value corresponding to the selected data transmision rate.
		DEN0: When DR1 = 0 and DR0 = 1, the DEN0 output is 1. Otherwise it is 0.
		DEN1: When DR1 = 1 and DR0 = 1, the DEN1 output is 0. Otherwise it is 1.
		The values specified above are applicable when $ACTL = 1$ . The values are reversed when $ACTL = 0$ .
DIR (*)	Out	Direction. Specifies the seek direction.
		ACTL         DIR         Direction           0         0         Outward           0         1         Inward           1         0         Inward           1         0         Unward
DMAAK	In	DMA Acknowledge. Enables DMA cycle.
DMARQ	Out	DMA Request. Requests data transfer in DMA mode.
DR0-DR2	In	Data Rate. Sets data transfer rate in external mode.
DS0-DS3 (*)	Out	Drive Select. Selects up to four FDDs.
EMO-EM4 (*)	Out	Enable Motor. Controls FDD spindle motor on/off; also can be used as a general-purpose output port.
ENIDX (*)	In	Enable Index. Validates INDEX and RDATA signals from FDD.
ENPCS (*)	In	Enable Precompensation. This pin is usually connected to the LCT pin
ENRW	in	Enable Read Write. Validate $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals when MSEL = 1. When MSEL = 0, this signal is meaningless.
FLT (*)	In	Fault. Indicates FDD is faulty.
FLTR (*)	Out	Fault Reset. Releases FDD from fault state.



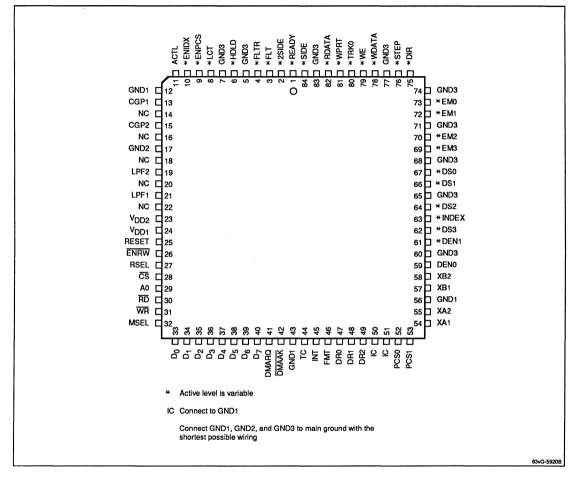
Pin Identification (c	cont)	
-----------------------	-------	--

Symbol	I/O	Signal Function
FMT	In	Format. Selects format in external mode.
		FMT Format
		0 IBM 1 ECMA/ISO
HDLD (*)	Out	Head Load. Sets drive head in the load state.
INDEX (*)	In	Indicates drive head is positioned at physica
		start point of track on the medium.
INT	Out	Interrupt Request. Requests main system to process transferred data and execution results.
LCT (*)	Out	Low Current. Indicates drive head has selected a cylinder on or after the 43rd.
LPF 1, LPF 2	Out	Lowpass Filter. Phase difference of main PLL devices.
MSEL	" In	Mode Select. Validates IBM-PC register and on- chip peripheral circuit.
PCS0, PCS1	In	Precompensation. Sets precompensation value in external or register mode.
RD	In	Read. This control signal causes the main system to read data from the $\mu\text{PD72069}$ to the data bus
rdata (*)	In	Read data (consists of clock and data bits) from FDD.
READY (*)	In	Indicates FDD is ready.
RESET	<b>in</b>	Sets µPD72069 to idle state. FDD interface outputs except for WDATA (undefined) are:
		ACTL Output 0 All low 1 All high
		For the main system, INT and DMARQ are set to low and $D_0$ - $D_7$ are set for input.
RSEL	<u>In</u>	Register Select. When MSEL = 1, used with CS and A0 to select register for IBM-PC (digital ou register or control register). Invalid when MSEL = 0
SIDE (*)	Out	Side Select. Selects double-sided drive head.
		ACTL SIDE Drive Head
		0 0 Head 0 0 1 Head 1
		1 0 Head 1
		1 1 Head 0
STEP (*)	Out	Generates seek pulses.
TC	In	Terminal Count. Terminates data transfer.
TRK0 (*)	In	Indicates drive head is positioned at cylinder 0.
WDATA (*)	Out	Write data (clock and data bits) to FDD.
WE (*)	Out	Requests FDD to write data.
WPRT (*)	In	Indicates medium is write-protected.
WR	ln.	Write. Control signal that allows the main system to write data bus data into $\mu$ PD72069.

### Pin Identification (cont)

Symbol	I/C	D Signal Function
XA1, XA2	In	Crystal A. For internal oscillator frequency control, a crystal resonator is connected to XA1 and XA2. For external clock input at XA1, XA2 is open.
		Frequency = 16 MHz
e ta se		
Symbol	1/0	Signal Function
XB1, XB2	In	Crystal B. For internal oscillator frequency control, a crystal resonator is connected to XB1 and XB2. For external clock input at XB1, XB2 is open. Frequency = 19.2 MHz
2SIDE (*)	In	Indicates a medium with two usable sides has been loaded into the FDD.
IC		Internal Connection. Connect to GND1
NC		No Connection.
GND1	÷.	Ground for digital devices.
GND2		Ground for analog devices.
GND3		Ground for buffers.
V _{DD1}	In	+5-volt power supply for digital devices.

(*) Active high when ACTL = 0; active low when ACTL = 1.


### Output Pin Reset Status

Pin	Reset Status
D ₀ -D ₇	Input
DMARQ, INT	Low
CGP1, CGP2, LPF1, LPF2, WDATA	Undefined
DIR, DS0-DS3, EM0-EM3, FLTR, HDLD, LCT, SIDE, STEP, WE	Low when ACTL =0; high when ACTL= 1.
DENO, DEN1	Output depends on the preset data transfer rates. Value set when ACTL = 0 is inverted when ACTL = 1, and vice versa.



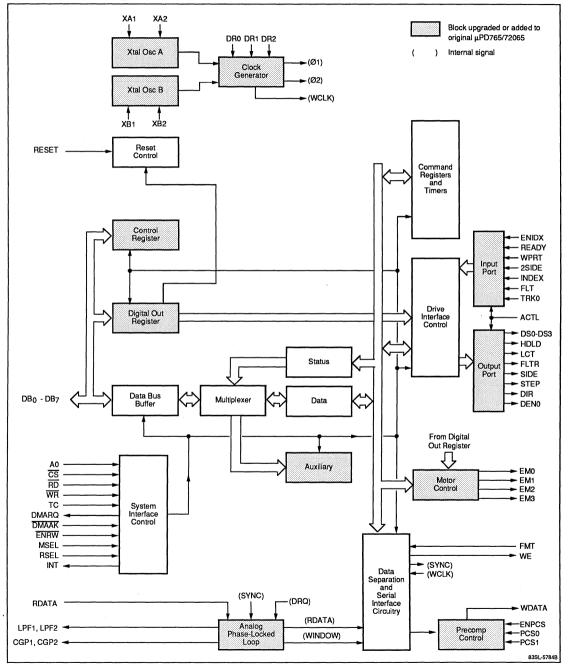
#### **Pin Configurations**

#### 84-Pin PLCC



5-107

Г




#### 100-Pin Plastic Miniflat

A HA HA HA HA A A A A A A A A A A A A A	
* ENIDX * ENIDX * LCT * LCT * LCT * LCT * LCT 6 ND3 6 ND3 6 ND3 6 ND3 6 ND3 6 ND3 6 ND3 8 GND3 6 ND3 8 GND3 8 GND3 8 GND3 8 CND4 1 CT 1 CT 1 CT 1 CT 1 CT 1 CT 1 CT 1 CT	
NC ロ 1 O 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
NC □ 3 78 □ NC NC □ 4 77 □ NC	
GND1 ☐ 6 75 ☐ ★EM0 CGP1 ☐ 7 74 ☐ ★EM1	
CGP2 ☐ 9 72 → ×EM2 NC ☐ 10 71 → ×EM3	
GND2 🗖 11 70 🗖 GND3	
NC ☐ 12 69 → ×DS0 LPF2 ☐ 13 68 → ×DS1	
LPF1 ☐ 15 66 → ×DS2 NC ☐ 16 65 → ×INDEX	
$V_{DD2} \square 17 \qquad 64 \square * DS3$	
VDD1         I         63         + DEN1           RESET         I         9         62         GND3	
RESET □ 19       62 □ GND3         ENWR □ 20       61 □ ★ DEN0	
CS □ 22 59 □ XB1 A0 □ 23 58 □ GND1	
WR         25         56         XA1           MSEL         26         55         PCS1	
NC ☐ 28 53 ☐ NC NC ☐ 29 52 ☐ NC	
$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	
D D D D D D D D D D D D D D D D D D D	
D D D D D D D D D D D D D D D D D D D	
* Active level is variable	
IC Connect to GND1	
Connect GND1, GND2, and GND3 to main ground with the	
shortest possible wiring	
	83vQ-5921B



#### µPD72069 Block Diagram



5-109

5



### **Absolute Maximum Ratings**

$T_A = +25^{\circ}C$	
Supply voltage, V _{DD}	-0.5 to +7.0 V
Voltage on any pin (except V _{DD} )	–0.5 to +7 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	65 to 150°C

## **Oscillator Specifications** $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions				
Low-level input voltage	VIL	-0.5		0.2 V _{DD}	v	Pins XB1	XA1,			
High-level input voltage	VIH	0.8 V _{DD}		V _{DD} + 0.5	v	_				
Clock cycle	Фсуа	62.2	62.5	63.8	ns	Pins XA2	XA1,			
	фсүв	51.8	52.08	52.3	ns	Pins XB2	XB1,			
Clock width, high/low	$\phi_{\theta}$	0.35		0.65	Фсүа, Фсүв		·			
Clock rise time	$\phi_{R}$			0.15	Фсүа, Фсүв					
Clock fall time	φ _F			0.15	Фсүа, Фсүв					

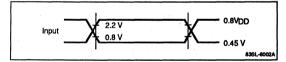
### **Analog PLL Characteristics**

Parameter	Symbol	Min	Тур	Max	Unit
VCO free-run frequency	fT	9.9	10.0	10.1	MHz
f _T power supply voltage coefficient	ftudd	-0.1	0	+0.1	%/V
f _T temperature coefficient	ftta	10	0	+ 10	ppm/°C
Capture range	fCTB	±7.5			%
Lock range	fста	±10			%
Capture range power supply voltage coefficient	fCTUD	-5	0	+5	%/V
Capture range temperature coefficient	^f ctta	-5	0	+5	ppm/°C
VCO jitter	t _{JIT}	0		2	ns
Peak shift margin	^t PFTM	80			%
Pull-in time	t _{PLIN}			20	bit

## AC Characteristics 1; 1 Mb/s $T_A = -10$ to $+70^{\circ}$ C; $V_{DD} = +5 V \pm 10\%$ ;

MFM data transfer rate = 1 Mb/s;  $\phi_{CYA}$  = 62.5 ns (16 MHz at XA1)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	2	tAR	0			ns	
A0, CS, DMAAK, ENRW hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	·
Data access time from RD ↑	2	t _{RD}			140	ns	
Data float delay time from RD ↑	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{RI}			400	ns	For data transfer in non-DMA mode
A0, CS, DMAAK, ENRW, RSEL setup time to WR	3	taw	0			ns	
A0, CS, DMAAK, ENRW, RSEL hold time from WR	3	t _{WA}	0			ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0			ns	
INT delay time from WR ↑	3	t _{WI}	e e		400	ns	For data transfer in non-DMA mode
DMARQ cycle time	4	t _{MCY}	6.5			μs	
$\overline{DMAAK}\downarrow$ response time from $DMARQ\downarrow$	4	t _{MA}	100			ns	
DMARQ delay time from $\overline{DMAAK}\downarrow$	4	t _{AM}			140	ns	
DMAAK pulse width	4	tAA	2	-		φ _{CYA}	
RD ↓ response time from DMARQ ↑	4	t _{MR}	62.5		1.1	ns	
$\overline{\text{WR}} \downarrow \text{response time from DMARQ} \uparrow$	4	t _{MW}	125			ns	· · · ·
WR/RD response time from DMARQ ↑	4	t _{MRW}			6	μs	
TC pulse width	4	t _{TC}	60			ns	
RESET pulse width	5	t _{RST}	30			фсуа	· · · ·
Clock hold time at standby	6	twc	32			фсуа	When external clock is input to XA1 pin
Clock setup time at standby release	6	tcw	16			фсуа	
START CLOCK command setup time to RESET STANDBY command	6	tws	16			фсуа	- 
INT response time from DMARQ ↓	7	t _{MI}	60		77	фсуа	
Time from INT to invalidate DMAAK	7	t _{IA}			1	фсуа	


#### AC Characteristics 1; 1 Mb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions	
Drive Side				,				
RDATA active-low time	8	tRDD	40			ns	·	
WDATA active-low time	8	twod		125		ns		
DS0-DS3 setup time to DIR	9	tDSD	9.5			μs	Note 2	
DIR setup time to STEP	9	tDST	0.5			μs	-	
DS0-DS3 hold time after STEP	9	tSTU	2.5			μs	-	
STEP active-low time	9	tSTP	3	3.5	4	μs	•	
DS0-DS3 hold time after DIR (Note 1)	9	tDDS	22.5			μ8		
DIR hold time after STEP	9	tSTD	12			μ8	-	
STEP cycle time	9	tsc	16.5			μ8	-	
FLTR active-low time	10	t _{FR}	4		5	μs	-	
INDEX low time	10	t _{IDX}	4			фсуа	-	

#### Notes:

- While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.
- (2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 9.5 μs is actually 9.450 μs.
- (3) See figure 1 for timing measurement voltage thresholds.

#### Figure 1. Voltage Threshold for Timing Measurements



## AC Characteristics 2; 500 kb/s $T_A = -10$ to +70°C; $V_{DD} = +5$ V ±10%;

MFM data transfer rate = 500 kb/s;  $\phi_{CYA}$  = 62.5 ns (16 MHz at XA1)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	2	tAR	0			ns	
A0, CS, DMAAK, ENRW hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	
Data access time from RD ↑	2	t _{RD}			140	ns	······································
Data float delay time from RD ↑	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{Ri}			400	ns	For data transfer in non-DMA mode
A0, CS, DMAAK, ENRW, RSEL setup time to WR	3	t _{AW}	0			ns	
A0, CS, DMAAK, ENRW, RSEL hold time from WR	3	twa	0			ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	twD	0			ns	
INT delay time from $\overline{WR}$ î	3	twi	114 ¹⁰	din di secondo di seco	400	ns	For data transfer in non-DMA mode
DMARQ cycle time	4	t _{MCY}	13			μs	
$\overline{DMAAK}\downarrow$ response time from $DMARQ\downarrow$	4	t _{MA}	200			ns	
DMARQ delay time from $\overline{\text{DMAAK}}\downarrow$	4	t _{AM}			140	ns	
DMAAK pulse width	4	t _{AA}	4			фсул	
RD ↓ response time from DMARQ ↑	4	t _{MR}	125	~		ns	
WR ↓ response time from DMARQ ↑	4	t _{MW}	250			ns	· · · · · · · · · · · · · · · · · · ·
WR/RD response time from DMARQ ↑	4	t _{MRW}			12	μs	
TC pulse width	4	tтс	60			ns	
RESET pulse width	5	t _{RST}	30			фсуа	
Clock hold time at standby	6	twc	64			фсуа	When external clock is input to XA1 pir
Clock setup time at standby release	6	tcw	32			фсуа	
START CLOCK command setup time to RESET STANDBY command	6	tws	32			фсуа	
INT response time from DMARQ↓	7	t _{MI}	120		154	фсуа	
Time from INT to invalidate DMAAK	7	t _{IA}			2	фсуа	

#### AC Characteristics 2; 500 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions		
Drive Side	×								
RDATA active-low time	8	t _{RDD}	40			ns	,		
WDATA active-low time	8	twpp		250		ns			
DS0-DS3 setup time to DIR	9	tDSD	19			μs	Note 2	•	
DIR setup time to STEP	9	tDST	1			μs	•		
DS0-DS3 hold time after STEP	9	tstu	5	·	·	μs	•		
STEP active-low time	9.	tSTP	6	7	8	μs	•		
DS0-DS3 hold time after DIR (Note 1)	9	tDDS	45			μs	-		
DIR hold time after STEP	9	tSTD	24			μs	•		
STEP cycle time	9	tsc	33			μs	•		
FLTR active-low time	10	tFR	8		10	μs	•		
INDEX low time	10	t _{IDX}	8			фсуа	•		

#### Notes:

(1) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.

(2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 19 μs is actually 18.950 μs.

(3) See figure 1 for timing measurement voltage thresholds.

## AC Characteristics 3; 250 kb/s $T_A = -10$ to $+70^{\circ}$ C; $V_{DD} = +5$ V $\pm 10\%$ ;

MFM data transfer rate = 250 kb/s;  $\phi_{CVA}$  = 62.5 ns (16 MHz at XA1)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	2	t _{AR}	0			ns	
A0, CS, DMAAK, ENRW hold time from RD	2	t _{RA}	0			ns	· · · · · · · · · · · · · · · · · · ·
RD pulse width	2	t _{RR}	200			ns	· ·
Data access time from RD ↑	2	t _{RD}		*********	140	ns	
Data float delay time from $\overline{\text{RD}}$ $\uparrow$	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{RI}			400	ns	For data transfer in non-DMA mode
A0, CS, DMAAK, ENRW, RSEL setup time to WR	3	tAW	0			ns	
A0, CS, DMAAK, ENRW, RSEL hold time from	3	twa	0			ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0			ns	
INT delay time from WR ↑	3	twi			400	ns	For data transfer in non-DMA mode
DMARQ cycle time	4	t _{MCY}	26			μs	
DMAAK ↓ response time from DMARQ ↓	4	t _{MA}	400			ns	
DMARQ delay time from $\overline{\text{DMAAK}}\downarrow$	4	t _{AM}			140	ns	
DMAAK pulse width	4	t _{AA}	8			ф _{СYA}	
RD ↓ response time from DMARQ ↑	4	t _{MR}	250			ns	1
WR ↓ response time from DMARQ ↑	4	t _{MW}	500			ns	
WR/RD response time from DMARQ ↑	4	t _{MRW}			6	μs	
TC pulse width	4	t _{TC}	60			ns	
RESET pulse width	5	t _{RST}	30			фсуа	
Clock hold time at standby	6	twc	128			фсуа	When external clock is input to XA1 pir
Clock setup time at standby release	6	tcw	64			фсуа	
START CLOCK command setup time to RESET STANDBY command	6	tws	64			фсуа	
INT response time from DMARQ ↓	7	t _{MI}	240		308	фсуа	
Time from INT to invalidate DMAAK	7	t _{IA}			4	фсуа	
						·····	



#### AC Characteristics 3; 250 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions	
Drive Side	·		2		· .			
RDATA active-low time	8	t _{RDD}	40			ns	بمبعد ومروارية فالمتعيدين والكف المستريب ويتعاقبهم	 
WDATA active-low time	8	twod		500		ns		
DS0-DS3 setup time to DIR	9	t _{DSD}	38			μs	Note 2	
DIR setup time to STEP	9	t _{DST}	2			μs	•	
DS0-DS3 hold time after STEP	9	tstu	10			μs	-	
STEP active-low time	9	tSTP	12	14	16	μs	•	
DS0-DS3 hold time after DIR (Note 1)	9	t _{DDS}	90			μs		
DIR hold time after STEP	9	tSTD	48			μs	-	
STEP cycle time	9	tsc	66			μs	•	
FLTR active-low time	10	t _{FR}	16		20	μs	•	
INDEX low time	10	t _{IDX}	16			фсуа	-	

#### Notes:

 While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.

(2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 38 μs is actually 37.950 μs.

(3) See figure 1 for timing measurement voltage thresholds.

## AC Characteristics 4; 600 kb/s $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5 \text{ V} \pm 10\%;$

MFM data transfer rate =	600 kb/s; φ _{CYA} = 62.5 n	ns, $\phi_{CYB} = 52.08$ ns (19.2 MHz at XB1)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side		·					
A0, CS, DMAAK, ENRW setup time to RD	2	t _{AR}	0			ns	
A0, CS, DMAAK, ENRW hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	
Data access time from RD ↑	2	t _{RD}			140	ns	
Data float delay time from RD ↑	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{RI}			400	ns	For data transfer in non-DMA mode
AO, CS, DMAAK, ENRW, RSEL setup time to WR	3	tAW	0			ns	
A0, CS, DMAAK, ENRW, RSEL hold time from WR	3	twa	0			ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0	,		ns	
INT delay time from WR ↑	3	twi	-		400	ns	For data transfer in non-DMA mode
DMARQ cycle time	4	t _{MCY}	10.8			μs	
DMAAK ↓ response time from DMARQ ↓	4	t _{MA}	166.7			ns	
DMARQ delay time from $\overline{\text{DMAAK}}\downarrow$	4	tAM			140	ns	
DMAAK pulse width	4	taa	4			фсув	
RD ↓ response time from DMARQ ↑	4	t _{MR}	104.2			ns	
WR ↓ response time from DMARQ ↑	4	t _{MW}	208.3			ns	
WR/RD response time from DMARQ ↑	4	tMRW			10	μs	
TC pulse width	4	t _{TC}	60			ns	
RESET pulse width	5	tRST	30			фсуа	
Clock hold time at standby	6	twc	64			фсув	When external clock is input to XB1 pin
Clock setup time at standby release	6	tcw	32			фсув	
START CLOCK command setup time to RESET STANDBY command	6	tws	32			фсув	• •
INT response time from DMARQ ↓	7	t _{MI}	120		154	фсув	
Time from INT to invalidate DMAAK	7	t _{IA}			2	фсув	

#### AC Characteristics 4; 600 kb/s (cont)

Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions		1 1	
Drive Side										 
RDATA active-low time	8	tRDD	40	• •		ns	· · · · · · · · · · · · · · · · · · ·			 
WDATA active-low time	8	twpp		208.3		ns		- 1		
DS0-DS3 setup time to DIR	9	tDSD	9.5	۰.		μs	Note 2			
DIR setup time to STEP	9	t _{DST}	0.5			μs	-			
DS0-DS3 hold time after STEP	9	tsтu	2.5			μs	-			
STEP active-low time	9	t _{STP}	3	3.5	4	μs	-			ж. 1
DS0-DS3 hold time after DIR (Note 1)	9	t _{DDS}	12			μs	-			
DIR hold time after STEP	9	tSTD	22.5			μs	<b>-</b>			
STEP cycle time	9	tsc	16.5			μs	-			
FLTR active-low time	10	t _{FR}	4		5	μs	-			с 
INDEX low time	10	tiDX	8			фсув				

#### Notes:

(1) While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.

(2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 9.5 μs is actually 9.450 μs.

(3) See figure 1 for timing measurement voltage thresholds.

# NEC

## AC Characteristics 5; 300 kb/s $T_A = -10$ to $+70^{\circ}$ C; $V_{DD} = +5 V \pm 10\%$ ;

MFM data transfer rate = 300 kb/s;  $\phi_{CYA}$  = 62.5 ns,  $\phi_{CYB}$  = 52.08 ns (19.2 MHz at XB1)

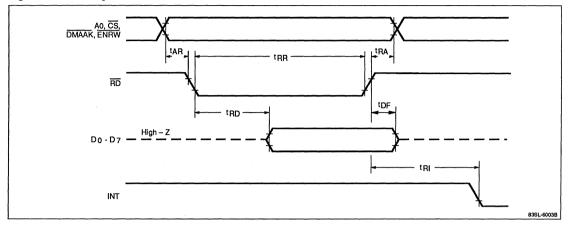
Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions
Main System Side							
A0, CS, DMAAK, ENRW setup time to RD	2	tAR	0			ns	
A0, CS, DMAAK, ENRW hold time from RD	2	t _{RA}	0			ns	
RD pulse width	2	t _{RR}	200			ns	·
Data access time from RD ↑	2	t _{RD}			140	ns	
Data float delay time from RD ↑	2	t _{DF}	10		85	ns	
INT delay time from RD ↑	2	t _{RI}			400	ns	For data transfer in non-DMA mode
A0, CS, DMAAK, ENRW, RSEL setup time to WR	3	taw	0			ns	
A0, CS, DMAAK, ENRW, RSEL hold time from	3	twa	0			ns	
WR pulse width	3	tww	200			ns	
Data setup time to WR	3	t _{DW}	100			ns	
Data hold time from WR	3	t _{WD}	0			ns	
INT delay time from ₩R ↑	3	t _{WI}			400	ns	For data transfer in non-DMA mode
DMARQ cycle time	4	t _{MCY}	21.7			μs	······································
$\overline{DMAAK}\downarrow$ response time from $DMARQ\downarrow$	4	t _{MA}	333.3	`		ns	
DMARQ delay time from $\overline{DMAAK}\downarrow$	4	t _{AM}			140	ns	
DMAAK pulse width	4	t _{AA}	8			фсув	
$\overline{\text{RD}} \downarrow \text{response time from DMARQ} \uparrow$	4	t _{MR}	208.3			ns	
WR ↓ response time from DMARQ ↑	4	t _{MW}	416.7			ns	
WR/RD response time from DMARQ ↑	4	t _{MRW}			20	μs	-
TC pulse width	4	tтс	60			ns	
RESET pulse width	5	t _{RST}	30			фсуа	
Clock hold time at standby	6	twc	128			фсув	When external clock is input to XB1 pir
Clock setup time at standby release	6	t _{CW}	64			фсув	
START CLOCK command setup time to RESET STANDBY command	6	tws	64			фсув	
INT response time from DMARQ ↓	7	t _{MI}	240		308	фсув	· · · · · · · · · · · · · · · · · · ·
Time from INT to invalidate DMAAK	7	t _{IA}			4	фсув	

#### AC Characteristics 5; 300 kb/s (cont)

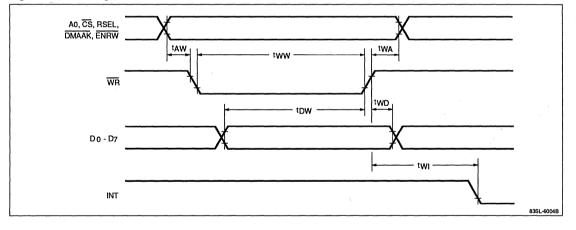
Parameter	Figure	Symbol	Min	Тур	Max	Unit	Conditions	
Drive Side								
RDATA active-low time	8	t _{RDD}	40			ns		 
WDATA active-low time	8	t _{WDD}		416.7		ns		
DS0-DS3 setup time to DIR	9	t _{DSD}	19			μs	Note 2	
DIR setup time to STEP	9	t _{DST}	1			μs		
DS0-DS3 hold time after STEP	9	t _{STU}	5			μS		
STEP active-low time	9	tSTP	6	7	8	μs		
DS0-DS3 hold time after DIR (Note 1)	9	t _{DDS}	24			μs		
DIR hold time after STEP	9	t _{STD}	45			μS		
STEP cycle time	9	tsc	33			μs	_	
FLTR active-low time	10	t _{FR}	8		10	μs		
INDEX low time	10	t _{IDX}	16			фсув	-	1 a

#### Notes:

 While the unit under test is performing a seek operation, the SENSE DEVICE STATUS command is being executed for the other devices.


(2) The minimum value for drive-side parameters is 50 ns less than the value expressed in μs. For example, 19 μs is actually 18.950 μs.

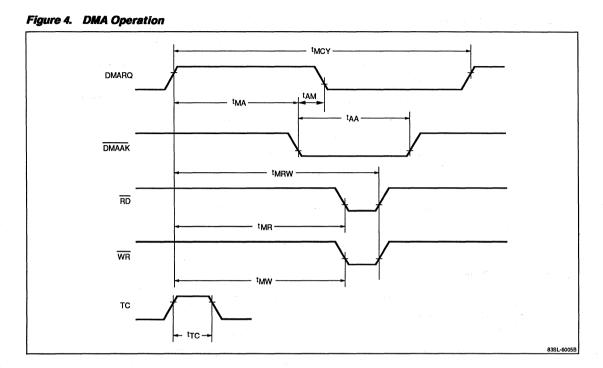
(3) See figure 1 for timing measurement voltage thresholds.



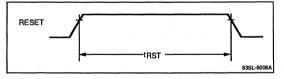

μPD72069

# Figure 2. Read Operation



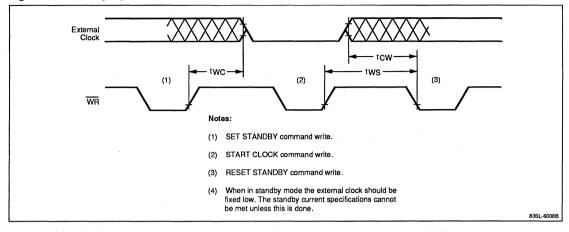

# Figure 3. Write Operation



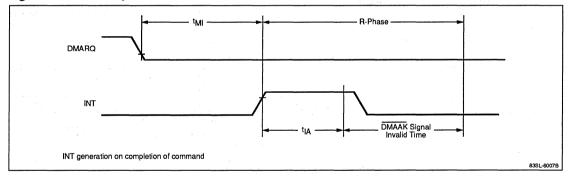

5

# μPD72069

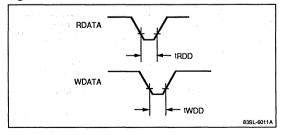





# Figure 5. Reset Operattion







#### Figure. 6 Standby Operation



# Figure 7. Overrun Operation



# Figure 8. RDATA and WDATA Waveforms





#### Figure 9. Seek Operation

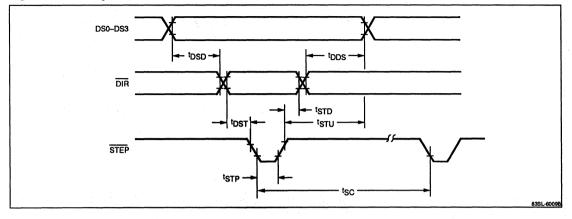
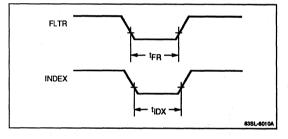




Figure 10. FLTR and INDEX Waveforms



#### µPD72067/68/69

Table 1 compares features of  $\mu PD72067, \, \mu PD72068, \, and \, \mu PDPD72069$ 

#### **Operation Modes**

Table 2 describes the external, internal, and register modes of the  $\mu \text{PD72069}$ 

### Commands

Table 3 describes the 15 commands and 10 subcommands of the  $\mu PD72069.$ 

#### Table 1. Feature Comparison, µPD72067/68/69

		μPD72067	μPD72068	μPD72069
FDD side external circuits	Data sampling VFO	Digital PLL	Digital PLL	Analog PLL
built-in	Write compensat	ير tion	<b>1</b>	-
	Motor control	10	-	-
	Decoder		-	1
	Driver		1	-
Corresponde speed data f	ence to high- transmission	500 kb/s	500 kb/s	1.0 Mb/s
* CPU side of circuits built		-	-	-

* Circuits corresponding to IBM-PC (Address, DMARQ, and INT)

#### Table 2. Operation Modes

Mode	Function	Remarks	
External	Sets the following parameters at the corresponding pins.	Part of the programs of	
	<ul> <li>Data transmission speed</li> </ul>	μPD765, 7265,	
	Write compensation value	72065, and 72066 should be	
	<ul> <li>Format (IBM/ECMA)</li> </ul>	modified	
	<ul> <li>Motor control</li> </ul>		
Internal	Sets the following parameters using the corresponding commands (software).	Part of the programs of µPD765, 7265,	
	<ul> <li>Data transmission speed</li> </ul>	72065, and 72066	
	<ul> <li>Write compensation value</li> </ul>	should be modified.	
	<ul> <li>Format (IBM/ECMA)</li> </ul>		
	Motor control		

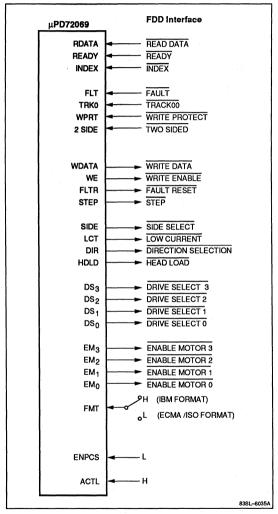
#### Table 2. Operation Modes (cont)

Mode	Function	Remarks
Register	Corresponds to IBM-PC.	A dedicated CPU side interface is built-in
		An FDD select (DS0-DS3) stop function is built-in.

#### Table 3. Commands and Subcommands

Command Name	Function	
Read Commands		
READ DATA	Specifies a sector and transfers its data to	
READ DELETED DATA	the host.	
READ ID	Reads a sector ID.	
READ DIAGNOSTIC	Checks the track format.	
SCAN EQUAL	Compares each sector data with host data	
SCAN LOW OR EQUAL	and detects a sector that satisfies the set condition.	
SCAN HIGH OR EQUAL		
Write Commands		
WRITE DATA	Specifies a sector and transfers its data to	
WRITE DELETED DATA	the host.	
WRITE ID	Writes the format of a track.	
Seek Commands		
RECALIBRATE	Moves the read/write head to the outermost track (track 0).	
SEEK	Moves the read/write head to the specified cylinder.	
Sense Commands		
SENSE INTER RUPT STATUS	Reads the interrupt factor (seek end/state change) in the $\mu$ PD72069.	
SENSE DEVICE STATUS	Reads the FDD status.	
Initialize Command		
SPECIFY	Defines a µPD72069 operation mode.	
Subcommands		
SET STANDBY	Drives the $\mu$ PD72069 in the standby status.	
RESET STANDBY	Releases the $\mu$ PD72069 from the standby status.	
SOF TWARE RESET	Initializes the $\mu$ PD72069.	

# Table 3. Commands and Subcommands (cont)


Function	
Sets the $\mu$ PD72069 in External Mode.	
Sets the $\mu$ PD72069 in Internal Mode and sets both data transmission rate and precompensation value.	
Control On/Off of the spindle motor.	
Selects either IBM or ECMA/ISO format.	
Starts the clock generator operation.	
Sets a data transmission rate.	
Sets a precompensation value.	



#### Interface With FDD

Figure 11 is a reference circuit diagram of the direct connections between the  $\mu$ PD72069 and a floppy-disk drive.

Figure 11.	μPD72069	to FDD	Interface
------------	----------	--------	-----------



#### System Bus

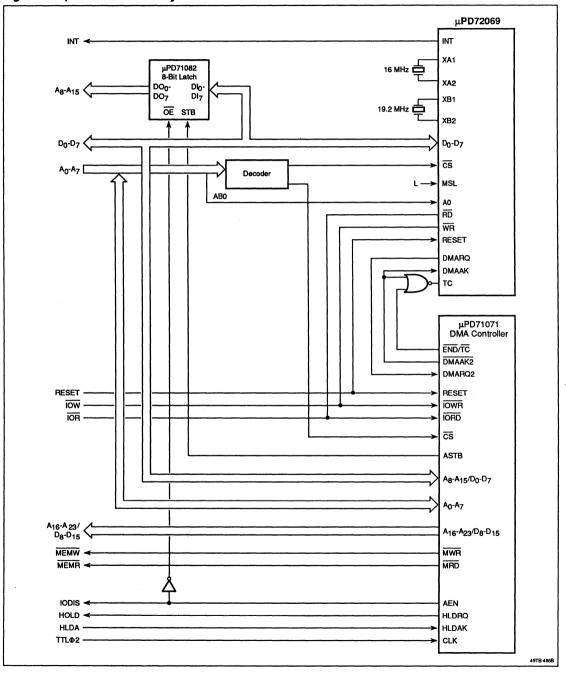

Table 4 lists the system clock XA or XB crystal appropriate for the selected floppy-disk drive

Figure 12 is a reference circuit diagram of the interface between the  $\mu$ PD72069 and a system bus for data transmission in Internal or External mode. To prevent misselection of I/O ports during DMA cycles, the Address Enable (AEN) output of  $\mu$ PD71071 inhibits other I/O ports.

#### Table 4. System Clock Frequencies

DR2-DR0	Mod Type	Data Rate (kb/s)	XA 16 MHZ	XB 19.2 MHz
000	FM	125	10	
	MFM	250	1	
001	FM	250	~	
	MFM	500	-	
010	FM	300		<b>1</b>
1 A.	MFM	600		100
011	FM	300		1
	MFM	600		1
100	FM	250	-	
	MFM	500	-	· · · · · · · · · · · · · · · · · · ·
101	FM	500	~	· ••••
	MFM	1 Mb/s	-	
1 10	FM	600		100
111	FM	300		1
	MFM	600		1

Figure 12. µPD72069 to Host System Interface



5

# μPD72069



# HARD-DISK CONTROLLERS

# Hard-Disk Controllers

# NEC

# Section 6 Hard-Disk Controllers µPD7261A/B 6-3 Hard-Disk Controllers 6-39 µPD7262 6-39 Enhanced Small-Disk Interface Controller 6-67 µPD72061 6-67 CMOS Hard-Disk Controller 6-69 yPD72111 6-69 Small Computer System Interface Controller 6-69

6-2



# Description

The µPD7261A and µPD7261B hard-disk controllers are intelligent microprocessor peripherals designed to control a number of different types of disk drives. They are capable of supporting either hard-sector or soft-sector disks and provide all control signals that interface the controller with either SMD disk interfaces or ST506-type drives. The sophisticated instruction set minimizes the software overhead for the host microprocessor. By using the DMA controller, the microprocessor needs only to load a few command bytes into the µPD7261A/7261B and all the data transfers associated with read, write, or format operations are done by the µPD7261A/7261B and the DMA controller. Extensive error reporting, verify commands, ECC, and CRC data error checking assure reliable controller operation. The µPD7261A/7261B provides internal address mark detection, ID verification, and CRC or ECC checking and verification. An eightbyte FIFO is used for loading command parameters and obtaining command results. This makes the structuring of software drivers a simple task. The FIFO is also used for buffering data during DMA read/write operations.

#### Features

- Flexible interface to various types of hard disk drives
- □ Programmable track format
- □ Controls up to 8 drives in SMD mode; up to 4 drives in ST506-type mode
- Parallel seek operation capability
- Multi-sector and multi-track transfer capability
- Data scan and data verify capability
- □ High-level commands, including:
- Read Data, Read ID, Write Data, Format, Scan Data, Verify Data, Verify ID, Check, Seek (normal or buffered), Recalibrate (normal or buffered), Read Diagnostic (SMD only), Specify, Sense Interrupt Status, Sense Unit Status, and Detect Error
- NRZ or MFM data format
- □ Maximum R/W CLK frequency:
- 12 MHz (7261A)
- --- 18 MHz (7261B-18)
- 23 MHz (7261B-23)
- Error detection and correction capability
- □ Simple I/O structure: compatible with most microprocessors
- □ All inputs and outputs except clock pins are TTLcompatible (clock pins require pullup)
- Data transfers under DMA control
- □ NMOS
- □ Single +5-volt power supply
- □ 40-pin ceramic DIP

# Pin Configuration

		_		
SYNC 🗖 1	$\bigcup$	o⊐ v _{cc}		
R/W DATA 🗖 2	3	9 🛛 ВТ1	(RGATE)	
R/W CLK 🗖 3	3	8 🗍 ВТО	(WGATE)	
RESET 🗖 4	3	7 CLK		
INT 🗖 5	3			
DREQ 🗖 6	3	5 🗖 SCT	(PCL)	
TC [] 7	3		(PCE)	
CS 🗖 8	3	3 🗖 <u>557G</u>	(DSD)	
RD [] 9	85 3	2 🗖 BDIR	(SKC)	
WR 🗖 10	uPD7261A/61B	1 🗋 TG3	(TRK0)	
A0 🗖 11	726	0 🗖 TG2	(READY)	
D0 🗖 12	ę ;	9 🗖 TG1	(WFLT)	
D1 🗖 13		8 🗍 BT2	(DS0)	
D2 🗖 14	2	7 873	(DS1)	
D3 🗖 15	2	6 🛛 BT4	(HS0)	
D4 🗖 16	:	5 🗋 BT5	(HS1)	
D5 🗖 17	2	4 🗋 вт6	(HS2)	
D6 🗖 18	2	3 🗋 ВТ7	(RWC)	
D7 🗖 19	2	2 D BT8	(STEP)	
GND 🗖 20	1	1 🗆 ВТ9	(DIR)	
Note: Clearly show			the STEOS made	
Note: Signals show	n in parentr	leses are used it	r the 31500 mode.	
				49-000954A

# **Ordering Information**

Device Number	Package Type	Max Freq. of Operation	
μPD7261AD	40-pin ceramic DIP	12 MHz	
µPD7261BD-18	40-pin ceramic DIP	18 MHz	
µPD7261BD-23	40-pin ceramic DIP	23 MHz	

# **Pin Identification**

No.	Symbol	Function
Host Interface		
4	RESET	Reset input
5	INT	Interrupt request output
6	DREQ	DMA request output
7	TC	Terminal count input
8	CS	Chip select input
9	RD	Read strobe input
10	WR	Write strobe input
11	A ₀	Register select input
12-19	D ₀ -D ₇	Data I / 0 bus
20	GND	Ground
37	CLOCK	External clock input
40	V _{CC}	+5 V power supply
SMD Interface		
· 1	SYNC	PLL synchronization output
2	R / W DATA	Read / write data I / 0
3	R/WCLK	Read / write clock input

#### **Pin Identification (cont)**

No.	Symbol	Function
SMD Interface (cont)		
21-28, 38, 39	BT9-BT0	Bit 9–0 outputs / Status inputs
29-31	TG1-TG3	Tag 1–3 output
32	BDIR	Bit direction output
33	SSTG	SR select tag output
34	USTG	Unit select tag output
35	SCT	Sector input
36	INDEX	Sector zero input
ST506-Type Interface	· · · · · · · · · · · · · · · · · · ·	
1	SYNC	PLL lock / Read clock enable output
2	R / W DATA	Read / write data I / 0
3	R/WCLK	Read / write clock input
21	DIR	Direction in output
22	STEP	Step pulse output
23	RWC	Reduced write current output
24-26	HS2-HS0	Head select outputs 2-
27, 28	DS1, DS0	Drive select outputs 1, (
29	WFLT	Write fault input
30	READY	Ready input
31	TRK0	Track zero input
32	SKC	Seek complete input
33	DSD	Drive selected input
34	PCE	Precomp early output
35	PCL	Precomp late output
36	INDEX	Index input
38	WGATE	Write gate output
39	RGATE	Read gate output

#### **Pin Functions — Host Interface**

# **RESET (Reset)**

When the RESET input is pulled high, it forces the device into an idle state. The device remains idle until a command is issued to the system.

# **INT (Interrupt Request)**

The  $\mu$ PD7261A/7261B pulls the INT output high to request an interrupt.

#### **DREQ (DMA Request)**

The  $\mu$ PD7261A/7261B pulls the DREQ output high to request a DMA transfer between the disk controller and the memory.



# TC (Terminal Count)

The TC input goes low to signal the final DMA transfer.

# CS (Chip Select)

When the  $\overline{CS}$  input is low, it enables reading from or writing to the register selected by  $A_0$ .

# **RD** (Read Strobe)

When the RD strobe is low, data is read from the selected register.

# WR (Write Strobe)

When the WR input is low, data is written to the selected register.

### A₀ (Register Select)

The  $A_0$  input is connected to a non-multiplexed address bus line. When  $A_0$  is high, it selects the command or status register. When it is low, it selects the data buffer.

#### D₀-D₇ (Data Bus)

 $D_0$ - $D_7$  are connected to the system data bus.

# CLOCK (Clock)

The CLOCK input is the timing clock for the on-chip processor.

### **Pin Functions — SMD Interface**

#### SYNC (PLL Synchronization)

This output goes high after the read gate signal (BT1 when  $\overline{TG3} = 0$ ) is high and a given number of bytes (GPL2-2) has elapsed.

#### **R/W DATA (Read/Write Data)**

The R/W DATA pin outputs the write data to the drive, and inputs the read data from the drive.

#### R/W CLK (Read/Write Clock)

R/W CLK is the input for the read and write clocks.

#### BT9-BT0 (Bit 9-0)

BT9-BT0 output the bit signals, bit 9-0. The bit 9-0 outputs send cylinder and unit addresses to the drives. BT9-BT2 also act as inputs for status signals from the drives as shown in table 1.

Table 1. Bit and Control Information

No.	Bit	Control
21	BT9	Unit Selected
22	BT8	Seek End
23	BT7	Write Protected
24	BT6	
25	BT5	Unit Ready
26	BT4	On Cylinder
27	BT3	Seek Error
28	BT2	Fault

BT7-BT2 also read the device status 2 (SR7-SR2) and device type (DT7-DT2). The index and SCT pins read SR0, SR1 and DT0, DT1.

#### **BDIR (Bit Direction)**

The BDIR output determines whether pins 28-21 will output BT2-BT9 or input drive status signals.

# TG3-TG1 (Tag 3-1)

The  $\overline{TG}$  outputs define the use of the BT pins. When  $\overline{TG1}$  is low, BT9-BT0 output the cylinder address. When  $\overline{TG2}$  is low, BT7-BT0 select a head address. When  $\overline{TG3}$  is low, BT9-BT0 output control signals for the disk drive.

# SSTG (SR Select Tag)

When the SSTG output is low, BT7-BT2, INDEX and SCT will be inputting SR7-SR0 or DT7-DT0.

# USTG (Unit Select Tag)

When the USTG output is low, BT4-BT2 will be outputting a unit address.

# INDEX (Index)

The INDEX input goes high when the drive detects an index mark. INDEX also acts as the SR0 and DT0 input pin.

# SCT (Sector)

The SCT input goes high when the drive detects a sector mark. SCT also acts as the SR1 and DT1 input pin.

# Pin Functions — ST506-Type Interface

#### SYNC (Read Clock Enable)

SYNC indicates that a sync pattern has been detected and that synchronization has been achieved.

# R/W DATA (Read/Write Data)

The R/W DATA pin outputs the write data to the drive, and inputs the read data from the drive.

# R/W CLK (Read/Write Clock)

R/W CLK is the input for the read and write clocks.

# **DIR (Direction In)**

The DIR output determines the direction the read/write head will move in when it receives a step pulse. DIR high will cause the head to move inward, DIR low will move the head outward.

# STEP (Step Pulse)

STEP outputs the head step pulses.

#### **RWC (Reduced Write Current)**

The RWC output signals that the read/write head of the disk drive has selected a cylinder address larger than that specified in the SPECIFY command. This signal is used to reduce the write current.

# HS2-HS0 (Head Select 2-0)

The HS2-HS0 outputs select the head. Up to 8 read/ write heads can be selected per drive.

# DS1, DS0 (Drive Select 1,0)

The DS1 and DS0 outputs select one of up to 4 drives.

#### WFLT (Write Fault)

The WFLT input detects write faults.

#### READY (Ready)

The READY input detects the drive's ready state.

#### TRK0 (Track 0)

The TRK0 input signals that the head is at track 0.

#### SKC (Seek Complete)

The SKC input signals that a seek is complete.

#### DSD (Drive Selected)

The DSD input signals that the drive is selected.

# PCE (Precomp Early)

When the PCE output is high, early write precompensation is required.

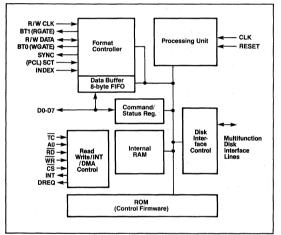
#### PCL (Precomp Late)

When the PCL output is high, late write precompensation is required.



#### **INDEX** (Index)

The INDEX input goes high when the drive detects the index mark.


# WGATE (Write Gate)

WGATE output goes high when the  $\mu\text{PD7261A}/\text{7261B}$  is writing data.

# **RGATE (Read Gate)**

The RGATE output goes high when the  $\mu$ PD7261A/ 7261B is reading from the disk.

#### **Block Diagram**



#### **Absolute Maximum Ratings**

Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C
Voltage on any pin with respect to ground, $V_{CC}$	-0.5 to +7.0 V*
Input voltage, V _I	-0.5 to +7.0 V*
Output voltage, V ₀	-0.5 to +7.0 V*

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device should not be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_A = 25°C

# **DC Characteristics**

*µPD7261B specifications are preliminary T_A = 0 to +70°C, V_{CC} = +5.0 V ±10% unless otherwise specified

			Test			
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage low	V _{IL1}	-0.5		+0.8	۷	All except CLK, R / W CLK
Input voltage low	V _{IL2}	-0.5		+0.6	۷	CLK, R/WCLK
Input voltage high	V _{IH1}	+2.0		V _{CC} +0.	5 V	All except CLK, R / W CLK
Input voltage high	V _{IH2}	+3.3		V _{CC} +0.	5 V	CLK, R/WCLK
Output voltage low	V _{OL}			+0.45	۷	$I_{0L} = +2.0 \text{mA}$
Qutput voltage high	V _{OH1}	+2.4			V	$I_{OH} = -100 \mu\text{A},$ all except pins 21–34
Output voltage high	V _{OH2}	+2.4			۷	$I_{OH} = -50 \mu A$ , pins 21–34
Input leakage current	ILI1			±10	μA	V _{IN} =V _{CC} to 0.45 V, all except pins 21–34
Input leakage current	I _{LI2}			- 500 (7261A)	μA	V _{IN} = V _{CC} to 0.45 V;
	. ,			- 700 (7261B)	μA	pins 21–34
Output leakage current	ILO			±10	μA	$V_{OUT} = V_{CC}$ to 0.45 V
Supply current	Icc	1	250	320	mA	-

#### Capacitance

 $T_A = 25^{\circ}C, V_{CC} = 0 V$ 

,,			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input capacitance	CIN			15	pF	(Note 1)	
Output capacitance	COUT			15	pF	(Note 1)	
Input / Output capacitance	C1/0			20	pF	(Note 1)	
Noto							

Note:

(1) f = 1 MHz, All unmeasured pins tied to GND.

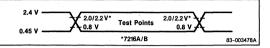
AC Characteristics  $T_A$  = 0 to +70 °C;  $V_{CC}$  = +5V  $\pm$  10%;  $C_L$  = 100 pF (50 pF for 7261B-23)

					mits	-		_	
	_		61A		1B-18		1 <b>B</b> -23		Test
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Processor Interface									
Clock cycle	t _{CY}	83		55		43		ns	
Clock time, low	t _{CL}	30		20		15		ns	
Clock time, high	t _{CH}	30		20		17		ns	
Clock rise time	t _{CR}		10		10		10	ns	
Clock fall time	t _{CF}		10		10		10	ns	
A ₀ , <del>CS</del> setup to <del>RD</del>	t _{AR}	0		0		0		ns	
$A_0, \overline{CS}$ hold from $\overline{RD}$	t _{RA}	0		0		0		ns	
RD pulse width	t _{RR}	200		100		100		ns	
Data delay from RD	t _{RD}		150		85		85	ns	
Output float delay	t _{RDF}	0	100	0	75	0	75	ns	
Data delay from $A_0$ , $\overline{CS}$	t _{AD}		150		85	- 4 <u></u>	85	ns	
A ₀ , CS setup to WR	t _{AW}	0		0		0		ns	
A ₀ , CS hold from WR	twA	0		0		0		ns	
WR pulse width	tww	200		100		100		ns	
Data setup to WR	t _{DW}	100		55		55		ns	
Data hold from WR	twp	5		5		5		ns	
Recovery time from RD, WR	t _{RV}	200		70		70		ns	
Reset pulse width	t _{RES}	100		100		100		t _{CY}	
TC pulse width	t _{TC}	100		100		80		ns	
INT delay from WR 1	twi		200		200		200	ns	-
DREQ delay from WR ↑	twrQ		250		125		125	ns	•
DREQ delay from RD ↑	t _{RRQ1}		250	·····	160		160	ns	During disk read
	TINGT								operation
DREQ delay from RD ↓	t _{RRQ2}		150		130		100	ns	After disk read operation
ST506-Type Interface									
R/W CLK cycle period	tRWCY	83		83		83	ns		
R/W CLK time, low	tRWCL	30		30		30	ns	,	
R/W CLK time, high	tRWCH	30		30		30	ns		
R/W CLK rise time	tRWCR		10		10		10	ns	
R/W CLK fall time	tRWCF		10		10		10	ns	
R/W DATA setup to R/W CLK		40		35		35		ns	
R/W DATA hold from R/W CLK	t _{RCRD}	5		5		5		ns	·····
R/W DATA delay from R/W CLK	twcwD	35	90	10	60	10	60	ns	
RGATE delay from R/W CLK	tRCRG	·····	300		300		300	ns	
WGATE delay from R/W CLK	twcwg		150		150		150	ns	
PCE / PCL delay from R/W CLK	tRWCPC	35	110	10	80	10	80	ns	

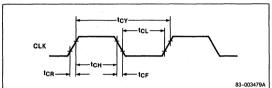


# **AC Characteristics (cont)**

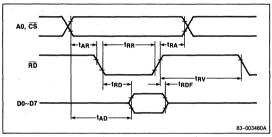
	·	72	61A		mits 1B-18	796	B-23			
Parameter	Symbol	Min Max		Min Max		Min Max		 Unit	Test Conditions	
ST506-Type Interface (cont)									Contactions	
DS0, DS1 setup to STEP	t _{DSST}	250		250		250		tcy	Normal seek mode	
DIR setup to STEP	tDIST	200		200		200		tcy		
STEP pulse width	tSTEP	69	85	69	85	69	85	t _{CY}		
DS0, DS1 hold from STEP	tSTDS	750		750		750		t _{CY}	Normal seek mode; polling mode	
DIR hold from STEP	tSTDI	750		750		750		t _{CY}		
DS0, DS1 hold from SKC	tSKDS	100		100		100		t _{CY}	Normal seek mode; nonpolling	
DIR hold from SKC	t _{SKDI}	100		100		100		t _{CY}	•	
DS0, DS1 setup to STEP	tDSSTB	250		250		250		t _{CY}	Buffered seek mode	
DIR setup to STEP	tDISTB	200		200		200		t _{CY}	•	
STEP pulse width	tSTEPB	69	85	69	85	69	85	t _{CY}	•	
STEP cycle period	tSTCY	500	660	500	660	500	660	t _{CY}	•	
DS0, DS1 hold from STEP	t _{STDSB}	200	,	200	r	200		t _{CY}	Buffered seek mode; polling mode	
DIR hold from STEP	tSTDIB	200		200		200		t _{CY}	•	
DS0, DS1 hold from SKC	t _{SKDSB}	100		100		100		t _{CY}	Buffered seek mode; nonpolling	
DIR hold from SKC	t _{SKDIB}	100		100		100		t _{CY}	• · ·	
Index pulse width	tIDXF	8		8		8		tRWCY		
SMD Interface										
R/W CLK cycle period	tRWCY	83		55		43		ns		
R/W CLK time, low	tRWCL	30		20		15		ns		
R/W CLK time, high	tRWCH	30		20		17		ns		
R/W CLK rise time	tRWCR		10		10		10	ns		
R/W CLK fall time	tRWCF		10		10		10	ns	-	
R/W DATA setup to R/W CLK	t _{RDRC}	40		35		35	ns			
R/W DATA hold from R/W CLK	trcrd	5		5		5		ns		
R/W DATA delay from R/W CLK	twcwd	35	90	10	60	10	50	ns		
BT1 delay from R/W CLK	tRCRG		300		300		300	ns		
BT0 delay from R/W CLK	twcwg		150	· · ·	150		150	ns	· · · · · · · · · · · · · · · · · · ·	
SYNC delay from R/W CLK	tRWCSY		150		150	,	150	ns		
BDIR setup to USTG	t _{BDUT}	60		60		60		tCY	Unit select operation	
BDIR hold from USTG	t _{UTBD}	15		15		15		t _{CY}	-	
Unit ADR setup to USTG	tUAUT	38	52	38	52	38	52	t _{CY}	-	
Unit ADR hold from USTG	t _{utua}	15		15		15		t _{CY}	· · · ·	
BDIR setup to TG1	t _{BDT1}	27	48	27	48	27	48	t _{CY}	Cylinder select operation	
BDIR hold from TG1	t _{T1BD}	60		60	· . ·	60		t _{CY}		


# **AC Characteristics (cont)**

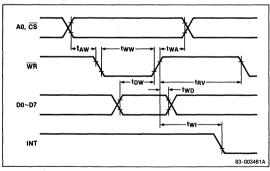
				L	mits				
		72	61A	726	1 <b>B</b> -18	726	IB-23	_	Test
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
SMD Interface (cont)									· · · · · · · · · · · · · · · · · · ·
CYL. ADR setup to TG1	t _{CAT1}	27	48	27	48	27	48	t _{CY}	Cylinder select operation
CYL. ADR hold from TG1	t _{T1CA}	24		24		24		tCY	-
TG1 pulse width	t _{TG1}	24	36	24	36	24	36	tcy	-
BDIR setup to TG2	t _{BDT2}	15		15		15		t _{CY}	Head select operation
BDIR hold from TG2	t _{T2BD}	70		70		70		tcy	-
HEAD ADR setup TG2	t _{HAT2}	15	70	15	70	15	70	t _{CY}	-
HEAD ADR hold from TG2	t _{T2HA}	24		24		24		t _{CY}	-
TG2, pulse width	t _{TG2}	24	36	24	36	24	36	t _{CY}	-
BDIR setup to TG3	t _{BDT3}	24		24		24		t _{CY}	RT2, FAULT CLR, SERVO, DATA STB control timing
BDIR hold from TG3	t _{T3BD}	24	36	24	36	24	36	t _{CY}	-
TG3, pulse width	t _{TG3}	56	100	56	100	56	100	t _{CY}	
BT2, 3, 4, 6, 7, 8 setup to TG3	t _{BTT3}		56		56		56	t _{CY}	- 
BT4, 6 hold from TG3	t _{T3BT1}	24		24		24		t _{CY}	-
BT2, 3, 7, 8 hold from $\overline{TG3}$	t _{T3BT2}	75		75		75		t _{CY}	-
BDIR delay from SSTG	tstbd	24		24		24		t _{CY}	Sense unit status timing
BDIR high time	t _{BDIR}	54	66	54	66	54	66	t _{CY}	-
BT9 setup to BDIR	t _{BTBD}	38	52	38	52	38	52	t _{CY}	-
BT9 hold from BDIR	t _{BDBT}	24	33	24	33	24	33	t _{CY}	
SSTG pulse width	tsstg		370		370		370	tcy	-
Index pulse width	t _{IDXH}	8		8		8			
SCT pulse width	tSCT	8		8		8			·



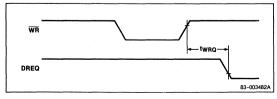

# Timing Waveforms — Host System Interface


AC Test Points (Except R/W CLK, CLK)

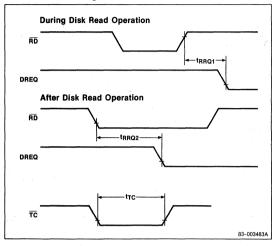



### CLK Waveform

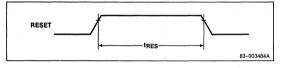



# Read Timing



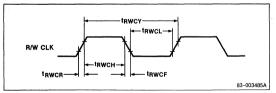

#### Write Timing



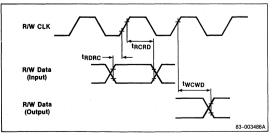

### DMA Write Timing



#### DMA Read Timing

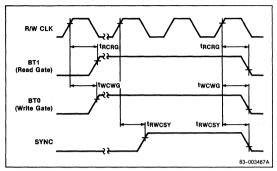



#### **Reset Waveform**

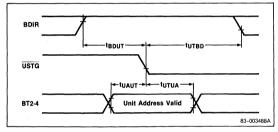



# Timing Waveforms — SMD Interface

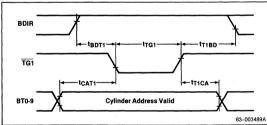
# **R/W CLK Waveform**



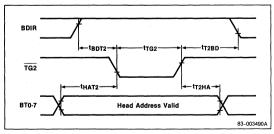

#### Data Read/Write Timing



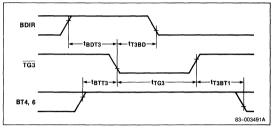

# Timing Waveforms - SMD Interface (cont)


#### **Read/Write Timing**

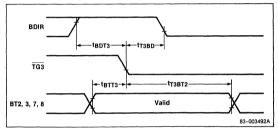



# **Unit Select Timing**




# Seek Timing

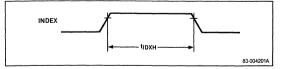



# **Head Select Timing**

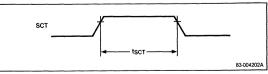


### Bit Bus Timing, Fault Clear/Return-to-Zero




#### Bit Bus Timing, Servo Offset/Data Strobe

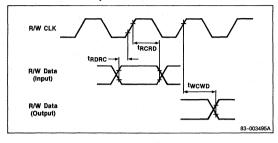



# Bit Bus 9 Timing

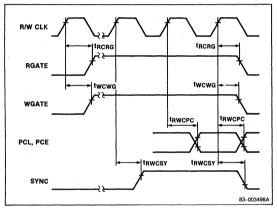


# Index Waveform

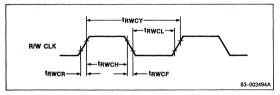



# Sector Waveform

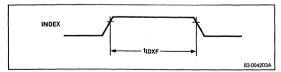




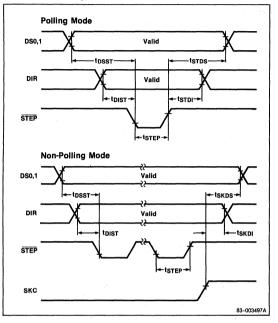

# Timing Waveforms --- ST 506-Type Interface


#### Data Read/Write Operation

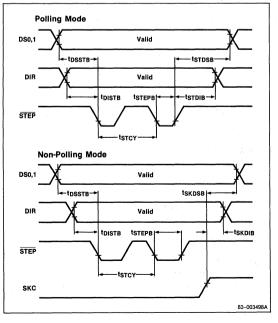



#### **Read/Write Operation**



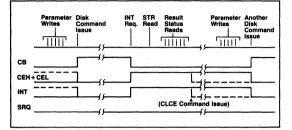

# **R/W CLK Waveform**



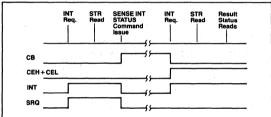

#### Index Waveform



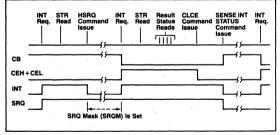
#### Normal Seek Operation




### **Buffered Seek Operation**




# Timing Waveforms — ST 506-Type Interface (cont)


#### Read/Write Sequence (Disk Command Issue)



#### Sense Interrupt Status Request When Controller Not Busy



# Sense Interrupt Status Request When Controller Busy



#### **High-Level Commands**

#### Specify

Allows user to select SMD or ST506-type mode data block length, ending track number, end sector number, gap length, track at which write current is reduced, ECC or CRC function, choice of polynomial, and polling mode enable.

#### Sense Interrupt Status

When a change of disk status occurs, the HDC will interrupt the host CPU. This command will reveal the cause of interrupt, such as seek end, disk ready change, seek error, or equipment check. The disk unit address is also supplied.

#### Sense Unit Status

The host CPU specifies the drive numbers and the HDC will return information such as write fault, ready, track 000, seek complete and drive selected, or for SMD units fault, seek error, on cylinder, unit ready, AM found, write protected, seek end, and unit selected.

#### **Detect Error**

Used after a read operation where ECC has been employed. The detect error command supplies the information needed to allow the host CPU to execute an error correction routine. (Only allowed when an actual correctable error is detected by the HDC.)

#### Recalibrate

Returns the disk drive heads to the home position or track 000 position. Has four modes of operation: SMD, normal, buffered, or nonpolling.



#### Seek

Moves the disk drive heads to the specified cylinder. As in recalibrate, seek has four modes of operation.

#### Format

This command is used to initialize the medium with the desired format which includes various gap lengths, data patterns, and CRC codes. This command is used in conjunction with the specify command.

#### Verify ID

Used to verify the ID bytes with data from memory. Performs the operation over a specified number of sectors.

#### **Read ID**

Used to verify the position of the read/write heads.

#### **Read Diagnostic**

Used in SMD mode only, the command allows the programmer to read a sector of data even if the ID portion of the sector is defective. Only one sector at a time can be read.

#### **Read Data**

Reads and transfers to the system memory the number of sectors specified. The HDC can read multiple sectors and multiple tracks with one instruction.

#### Scan

Compares a specified block of memory with specified sectors on the disk. The 7261A/7261B continues until a sector with matching data is found, until the sector count reaches zero, or the end of the cylinder is reached.

#### **Verify Data**

Makes a sector-by-sector comparison of data in the system memory by DMA transfer. As in read operation, multiple sectors and tracks may be verified with this commmand.

#### Write Data

Data from the system memory, transferred by DMA, is written onto the specified disk unit. As in the read command, data may be written onto successive sectors and tracks.

#### **Auxiliary Command**

Allows four additional functions to be executed: software reset, clear data buffer, mask interrupt request bit (masks interrupts caused by change of status of drives), and reset interrupt caused by command termination (used when no further disk commands will be issued, which would normally reset the interrupt).

#### **Command Operation**

There are three phases for most of the instructions that the  $\mu$ PD7261A/7261B can execute: command phase, execution phase, and result phase. During the command phase the host CPU loads preset parameters into the  $\mu$ PD7261A/7261B FIFO via the data bus and by successive write pulses to the part with A₀ and CS true low. Once the required parameter bytes are loaded the appropriate command is initiated by issuing a write pulse with A₀ high and CS low and the command code on the data bus.

The  $\mu$ PD7261A/7261B is now in the execution phase. This can be verified by examining the status register bit 7 (the controller busy bit). The execution phase is ended when a normal termination or an abnormal termination occurs. An abnormal termination can occur due to a read or write error, or a change of status in the addressed disk drive. A normal termination occurs when the command given is correctly completed. (This is indicated by bits in the status register.) The result phase is then entered. The host CPU may read various result parameters may be useful in determining the cause of an interrupt, or the location of a sector causing a read error, for example.

The chart shown in table 2 illustrates the preset parameters and result parameters that are associated with each command. The abbreviations are defined at the end of table 2.

Table 2. Preset Parameters and Result Status Byte
---------------------------------------------------

Disk	Command	Preset Parameters / Result Status								
Command	Code	1st	2nd	3rd	4th	5th	6th	7th	8th	
Detect error	0100X									
		EADH	EADL	EPT1	EPT2	EPT3				
Recalibrate	0101[B]									
		IST*								
Seek	0110[B]	PCNH	PCNL							
		IST*								
Format	0111(S)	PHN	(PSN)	SCNT	DPAT	GPL1	[GPL3]			
		EST	SCNT							
Verify ID	1000(S)	PHN	(PSN)	SCNT						
		EST	SCNT							
Read ID	1001(S)	PHN	(PSN)	SCNT					1	
		EST	SCNT							
(Read diagnostic)	1010X	PHN	PSN		2014	···· ····				
		EST								
Read data	1011X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	ana - Anna ana ana ana ana ana ana ana ana an	
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
Check	1100X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT		
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
Scan	1101X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT		
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
Verify data	1110X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT		
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
Write data	1111X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT		
		EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
Sense interrupt status	0001X	IST	:	9						
Specify	0010X	MODE	DTLH	DTLL	ETN	ESN	GPL2	(MGPL1) [RWCH]	[RWCL]	
Sense unit status	0011X									

Note:

(): These are omitted for soft-sector disks.

[]: These are omitted for hard-sector disks.

*: IST available as a result byte only when in nonpolling mode.

UST

B: Indicates buffered mode when set.

S: Indicates Skewed mode (SMD only) when set.

X: Indicates don't care.

#### **Mnemonic Definitions**

- EADH Error address, high byte
- EADL Error address, low byte
- EPT1 Error pattern, byte one
- EPT2 Error pattern, byte two
- EPT3 Error pattern, byte three
- PCNH Physical cylinder number, high byte

#### Mnemonic Definitions (cont)

- PCNL Physical cylinder number, low byte
- PHN Physical head number
- PSN Physical sector number
- SCNT Sector count
- DPAT Data pattern
- GPL1 Gap length one
- GPL3 Gap length three
- EST Error status byte
- FLAG Flag byte
- LCNH Logical cylinder number, high byte



### **Mnemonic Definitions (cont)**

LCNL	- L	ogi	cal	cylinder	number,	low	byte

- LHN Logical head number
- LSN Logical sector number
- IST Interrupt status byte
- MODE Mode
- DTLH Data length, high byte
- DTLL Data length, low byte
- ETN Ending track number
- ESN Ending sector number
- GPL2 Gap length two
- RWCL Write current cylinder, low byte
- RWCH Write current cylinder, high byte
- UST Unit status byte
- MGPL1 Modified gap length 1

# **Status Register**

This register is a read only register and may be read by asserting  $\overline{RD}$  and  $\overline{CS}$  with  $A_0$  high. The status register may be read at any time. It is used to determine controller status and partial result status. See table 3.

#### Table 3. Status Register Bits

	Pin	
No.	Name	Function
D ₇	CB (Controller busy)	Set by a disk command issue. Cleared when the command is completed. (This bit is also set by an external re- set signal or an RST command, but will be cleared at the completion of the reset function.) When this bit is set, a new disk command will not be ac- cepted.
D ₆ , D ₅	CEH, CEL (Command end)	CEH = 0 and CEL = 0 A disk command is in process, or no disk command is issued after the last reset signal or the last CLCE auxiliary command. Both the CEH and CEL bits are cleared by a disk command, a CLCE auxiliary command, or a reset signal.
		CEH = 0 and CEL = 1 Abnormal termination of a disk com- mand. Execution of a disk command was started, but was not successfully completed.
		CEH = 1 and CEL = 0 Normal termination of a disk com- mand. The execution of a disk command was completed and prop- erly executed.
		CEH = 1 and CEL = 1 Invalid command issue.

	Pin	
No.	Name	Function
D4	SRQ (Sense interrupt status request)	When a seek end, an equipment check condition, or a ready signal state change is detected, this bit is set requesting a sense interrupt status command be issued to take the de- tailed information. This bit is cleared by an issue of that command or by a reset signal.
D ₃	RRQ (Reset request)	Set when controller has lost control of the format controller (missing address mark, for example). An auxiliary RST command or RESET signal will clear this bit.
D ₂	IER (ID error)	Set when a CRC error is detected in the ID field. An auxiliary RST or an- other disk command will reset this bit.
D ₁	NCI (Not coincident)	Set if the controller cannot find a sec- tor on the cylinder which meets the comparison condition during the exe- cution of a scan command. This bit is also set if data from the disk does not coincide with the data from the sys- tem during a verify ID or a verify data command. This bit is cleared by a disk command or a reset signal.
D _O	DRQ (Data request)	During execution of write ID, verify ID, scan, verify data, or a write data com- mand, this bit is set to request that data be written into the data buffer. During execution of read ID, read di- agnostic, or read data command, this bit is set to request that data be read from the data buffer.

#### Table 3. Status Register Bits (cont)

# NEC

# **Error Status Byte**

This byte is available to the host at the termination of a read, write, or data verification command and provides additional error information to the host CPU. If the status register indicates a normal command termination, it can be assumed that the command was executed without error and it is not necessary to read this byte. When it is necessary to determine the cause of an error this byte may be read by issuing an  $\overline{RD}$  pulse with  $\overline{CS}$  and  $A_0$  low. The remaining result bytes associated with a particular command may be read by issuing additional  $\overline{RD}$  pulses. Data transfer from or to the FIFO is asynchronous and may occur at rates up to 2.5 Mbytes per second. See table 4.

#### Table 4. Error Status Bits

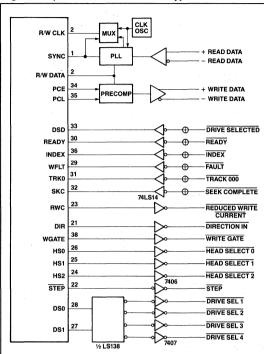
	Pin	
No.	Name	Function
D ₇	ENC (End of cylinder)	Set when the controller tries to access a sector beyond the final sector of a cylinder. Cleared by a disk command or an aux- iliary RST command.
D ₆	OVR (Overrun)	When set, indicates that the FIFO be- came full during a read operation, or empty during a write operation.
D ₅	DER (Data error)	A CRC or an ECC error was detected in the data field.
D ₄	EQC (Equipment check)	A fault signal from the drive has been detected or a track 0 signal has not been returned within a certain time in- terval after the recalibrate command was issued.
D ₃	NR (Not ready)	The drive is not in ready state.
D ₂	ND (No data)	The sector specified by ID parameters was not found on the track.
D ₁	NWR (Not writable)	Set if write protect signal is detected when the controller tries to write on the disk. It is cleared by a disk com- mand or by an auxiliary RST com- mand.
D ₀	MAM (Missing address mark)	This bit is set if during execution of read data, check, scan, or verify data commands, no address mark was found in the data field or if during exe- cution of a read ID or verify ID com- mand, no address mark was detected in the ID field.

# **Interrupt Status Byte**

This byte is made available to the host CPU by executing the Sense Interrupt Status command. This command should be issued only when the  $\mu$ PD7261A/7261B requests it, as indicated by bit D₄ of the status register. This byte reveals changes in disk drive status that have occurred. See table 5.

Table 5.	Interrupt	Status I	Bits
----------	-----------	----------	------

	Pin	
No.	Name	Function
D ₇	SEN (Seek end)	A seek end or seek complete signal has been returned after a seek or a re- calibrate command was issued.
D ₆	RC (Ready change)	The state of the ready signal from the drives has changed. The state itself is indicated by the NR bit.
$D_5$	SER (Seek error)	Seek error has been detected on seek end.
D4	EQC (Equipment check)	Identical to bit 4 of the error status byte.
D ₃	NR (Not ready)	Identical to bit 3 of the error status byte.
D ₂ -D ₀	UA ₂ -UA ₀ (Unit address)	The unit address of the drive which caused an interrupt request on any of the above conditions.


# **Drive Interface**

The  $\mu$ PD7261A/7261B has been designed to implement two of the more popular types of interfaces: the SMD (Storage Module Drive) and the floppy-like Winchester drive which has come to be known as the ST506 interface. The desired interface mode is selected by the Specify command.

# ST506-Type Interface

In the ST506 mode the  $\mu$ PD7261A/7261B performs MFM encoding and decoding at data rates to 6 MHz and provides all necessary drive interface signals. Included internally is circuitry for address mark detection, sync area recognition, serial-to-parallel-to-serial conversion, an 8-byte FIFO for data buffering, and circuitry for logical addressing of the drives. External circuitry required consists of control signal buffering, a delay network for precompensation, a phase-lock loop, a write clock oscillator and a differential transceiver for drive data. The floppy-like interface can be implemented with as few as 7 IC's using NEC's hard-disk interface chip, the  $\mu$ PD9306A, or with 12 to 14 SSI ICs. See figure 1.





#### Figure 1. µPD7261A/7261B ST506-Type Interface

#### **SMD** Interface

In the SMD mode the  $\mu$ PD7261A/7261B will support data rates to 10 MHz/15MHz in the NRZ format. All control functions necessary for an SMD interface are implemented on-chip with de-multiplexing of 8 data lines performed externally by a single 8-bit latch. A small amount of logic is required to multiplex the data and clock lines, and differential drivers and receivers are required to implement the actual interface. Depending on individual logic design and the number of drives used, the SMD interface may be implemented with as few as 12 ICs. See figure 2.

#### Note:

CLK (pin 37) frequency must be a minimum of 1.1 imes NRZ data rate.

#### **Internal Architecture**

The  $\mu$ PD7261A/7261B can be divided into three major internal logic blocks: command processor; format controller; microprocessor interface.

#### **Command Processor**

The command processor is an 8-bit microprocessor with its own instruction set, program ROM, scratchpad RAM, ALU, and I/O interface. Its major functions are:

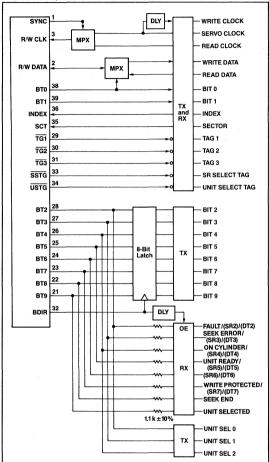



Figure 2. µPD7261A / 7261B SMD Interface

- □ To decode the commands from the host microcomputer that are received through the 8-bit data bus
- □ To execute seek and recalibrate commands
- □ To interface to the drives and read the drive status lines
- To load the format controller with the appropriate microcode, enabling it to execute the various read/ write data commands.

The command processor microprocessor is idle until it receives the command from the host microcomputer. It then reads the parameter bytes from the FIFO, and loads them into its RAM. The command byte is decoded and, depending on its opcode, the appropriate subroutine from the 2.6K internal ROM is selected and executed. Some of these commands are executed by the command processor without involvement of the format



controller. When data transfers to and from the disk are made, the command processor loads the appropriate microcode into the format controller, then relinquishes control. When the data transfer is complete, the command processor again takes control. One other important function that the command processor performs is managing the interface to the disk drives. The command processor contains an I/O port structure similar to many single-chip microcomputers in that the ports may be configured as input or output pins. Depending on the mode of operation selected by the Specify command, the command processor will use the bidirectional I/O lines for different functions.

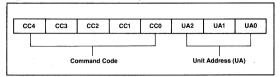
#### **Command Register**

This register is a write only register. It is selected when the  $A_0$  input is high and the  $\overline{CS}$  input is low. There are two kinds of commands: disk commands and auxiliary commands. Each command format is shown in figure 3.

An auxiliary command is accepted at any time and is immediately executed, while a disk command is ignored if the on-chip processor is busy processing another disk command. A valid disk command causes the processor to begin execution using the parameters previously loaded into the data buffer. Disk commands and the parameters needed are described in the Microprocessor Interface section.

3	Co	mm	and	Cod	es

		CC4-CC0			
0	0	0	0	Х	(Auxiliary Command)
0	0	0	1	Х	Sense int. status (Note 1)
0	0	1	0	Х	Specify (Note 1)
0	0	1	1	Х	Sense unit status
0	1	0,	0	X	Detect error (Note 1)
0	1	0	1	[B]	Recalibrate
0	1	· 1, 1	0	[B]	Seek
0	1	. 1	1	[S]	Format
1	0	0	0	[S]	Verify ID
.1	0	0	1	[S]	Read ID
1	0	1	0	X	Read diagnostic
- 1	0	. 1	1	Х	Read data
1	1	0	0	Х	Check
a <b>1</b>	1 ° -	0	1	Х	Scan
· 1	1	1	0	. Х	Verify data
1	1	1	1	Х	Write data

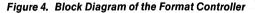

#### Note:

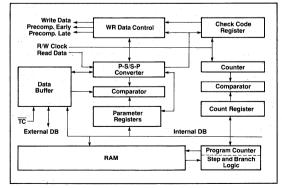
(1) The UA field is 000.

[B] Indicates buffered mode when set.

[S] Indicates skewed mode when set.

#### Figure 3. Disk Command Byte





#### **Format Controller**

The format controller is built with logic that enables it to execute instructions at very high speed: one instruction per single clock cycle. The major functions it performs are:

- Serial-to-parallel and parallel-to-serial data conversion
- CRC and ECC generation and checking
- □ MFM data decoding and encoding
- □ Write precompensation
- Address mark detection and generation
- ID field search in soft-sector format
- DMA data transfer control during read/write operations.

The major blocks in the format controller are the sequencer and the serial/parallel data handler. The sequencer consists of a writable control store (32 words by 16 bits), a program counter, branch logic, and the parameter register. The serial/parallel logic consists of a parallel-to-serial converter for disk write operations, a serial-to-parallel converter for disk read operations, precompensation logic for writing MFM data, comparator logic that locates sync fields, address marks, and ID fields. There is also comparator logic that is used during Verify Data commands. See figure 4.





#### Microprocessor Interface

**Read/Write Control.** The internal registers are selected as shown in truth table 6.

10010 0		g.0.01 00.	00000	10010
ĈŜ	A ₀	RD	WR	Selection
0	0	0	1	Data buffer register (Note 1)
0	0	1	0	Data buffer register (Note 1)
0	. 1	0	1	Status register
0	1	. 1	0	Command register
0	Х	1	1	Don't care
-1	Х	X	Х	Don't care
0	X	0	0	Inhibited

Table 6.	Reaister	Selection	Table
----------	----------	-----------	-------

Note:

 Preset parameters and result status information are written and read from the result status register in the HDC through this data buffer register.

**Interrupt.** The interrupt request line is activated or inactivated according to the following equation:

INT = CEH + CEL + SRQ • SRQM

This means that if either of the command end bits is set or if the sense interrupt status request bit is set (and the SRQM mask is not set), then an interrupt will be generated. The command end bits, CEH and CEL, are set by command termination.

The SRQ bit is set when an equipment check condition or a state change of the ready signal from the disk drives is detected. It is also set when a seek operation is completed. Under these conditions the INT line is activated unless the SRQM mask is set.

Both of the CEH and CEL bits are cleared by a disk command, but both bits may be cleared before the next disk command by issuing a CLCE auxiliary command.

The interrupt caused by the SRQ bit indicates that a sense interrupt status command should be issued by the host microprocessor so that it can determine the exact cause of the interrupt. However, the  $\mu$ PD7261A/7261B may be processing a disk command when the interrupt occurs. Since it is not possible to issue a disk command while the  $\mu$ PD7261A/7261B is busy, an HSRQ auxiliary command can be issued to set the SRQM (sense interrupt request mask) and mask the interrupt. The SRQM is reset upon completion of the disk command in progress.

**DMA Control.** When true, the DREQ pin and the DRQ (data request) bit of the status register indicate a request for data transfer between the disk controller and external memory. These are activated during execution of the following disk commands:

NEC

HDC - memory: Format, Verify ID, Scan, Verify Data, Write Data

HDC→ memory: Read ID, Read Diagnostic, Read Data

Data being read from a disk or external memory is temporarily stored in the data buffer (8 bytes maximum), and is transferred to external memory or a disk, respectively.

Data transfers are terminated externally by a reset signal or by a read or a write data operation coinciding with an active terminal count  $(\overline{\text{IC}})$  signal. They are also terminated internally when an abnormal condition is detected or all the data specified by the sector count parameter (SCNT) has been transferred.

Data transfers are accomplished by  $\overline{RD}$  or  $\overline{WR}$  signals to the  $\mu$ PD7261A/7261B when DREQ is active. During read operations, DREQ goes active when the FIFO contains three or more bytes. If the FIFO contains three bytes and an  $\overline{RD}$  pulse is issued, DREQ goes low within t_{RRQ1}. DREQ will stay active on the final sector until the final byte is extracted. In this case, DREQ goes low within t_{RRQ2}. During write operations DREQ is asserted as soon as a Write Data command is accepted. DREQ remains high until the FIFO contains six bytes, at which time it goes low within t_{WAI}. DREQ corresponds to FIFO almost-full and FIFO almost-empty as implemented in the  $\mu$ PD7261A/7261B. This has been done so that a fast DMA controller may actually overrun the FIFO by one or two bytes without harm.

#### Commands

#### Recalibrate

0101B		 4		
	IST*			

The read/write heads of the specified drive are retracted to the cylinder 0 position. IST is available as a result byte only if polling mode is disabled. See Specify.

Hard-Sector. An RTZ (Return to Zero) signal is asserted on the bit-6 line with the TAG-3 bit being set. Then the CEH bit of the status register is set indicating a normal termination of the command.

After this command is given, the HDC checks the seek end, unit ready, and fault lines of the drive continually until an active signal is detected on these lines. Then the SRQ bit of the status register is set indicating that a sense interrupt status command should be performed. Each bit of the IST (interrupt status) byte is set according to the result, in anticipation of the sense interrupt status command.

# NEC

**Soft-Sector.** There are four different ways to implement the Recalibrate command when the ST506 interface mode has been specified. Both polling and nonpolling modes of operation are provided, with both normal or buffered Recalibrate commands available in either mode.

Normal Mode with Polling. The CEH bit of EST is set to 1 immediately after the Recalibrate command is issued (a Recalibrate command may now be issued to another drive). The HDC now begins generating step pulses at the specified rate. The PCN for the drive is cleared and the TRK0 signal is checked while stepping pulses are sent to one or more drives. When TRK0 is asserted, the SEN (seek end) bit of the IST (interrupt status) byte is set and the SRQ bit of the status register is set. This causes an interrupt and requests that a sense interrupt status command be issued. If 1023 pulses have been sent and TRK0 is not asserted, then the SRQ bit is again set, but with the SER (seek error) and EQC (equipment check) bits of the IST byte set. The ready signal of each drive is checked before each step pulse is sent, and the Recalibrate command is terminated if the drive enters a notready state, whereby the NR bit of the IST byte is set to 1.

Normal Mode with Polling Disabled. Operation is similar to that in "Normal Mode with Polling", but the CEH and CEL bits of the status register are not set until either the SEN (seek end) or the SER (seek error) condition occurs. The SRQ bit is not set when polling is disabled, and the IST byte is now available as a result byte when the Recalibrate command is terminated (see "Preset Parameters and Result Status Bytes"). It is not possible to overlap Recalibrate operations in this mode.

**Buffered Mode with Polling.** This mode operates in a manner similar to that described as "Normal Mode with Polling", but with the following differences:

(1) 1023 step pulses are sent at a high rate of speed (approximately  $50\,\mu s$  between pulses)

(2) After the required number of pulses are sent, the CEH bit is set, and then additional Recalibrate or Seek commands will be accepted for other drives

(3) The SRQ bit is set when the drive asserts SKC, which causes the SEN bit of the IST byte to be set

(4) If SEN is not set within the time it takes to send 1023 "normal" pulses (i.e., when in normal stepping mode), then SER and EQC of the IST byte are set.

Buffered Mode with Polling Disabled. 1023 stepping pulses are immediately sent after the Recalibrate command is issued. CEH and/or CEL is set when SEN or SER occurs. SEN is set when TRK0 from the addressed drive is asserted. SER is set if TRK0 is not asserted within the time required to send 1023 "normal" pulses. The Recalibrate command will be terminated abnormally if a not-ready condition occurs prior to SEN being set. The SRQ bit of the status register is not set. The IST byte (interrupt status) is available as a result byte when either CEH or CEL is set.

#### Seek

0440.0	PCNH PCNL
0110B	IST*

PCNH = Physical Cylinder Number, High Byte PCNL = Physical Cylinder Number, Low Byte

The read/write heads of the specified drive are moved to the cylinder specified by PCNH and PCNL. IST is available as a result byte only if polling mode is disabled. See Specify.

Hard-Sector. The contents of PCNH and PCNL are asserted on the BIT0 through BIT9 output lines of the SMD interface with the TAG1 control line being set. (The most significant six bits of PCNH are not used.) The CEH bit of the status register is then set, and the command is terminated normally.

The HDC then checks the seek end, unit ready and fault lines of the drive continually until an active signal is detected on these lines. The SRQ bit of the status register is then set requesting that a Sense Interrupt Status command be performed. Each bit of the IST (interrupt status) byte is set appropriately in anticipation of the Sense Interrupt Status command.

Soft-Sector (Normal Stepping, Polling Enabled). In this mode, the CEH bit of the status register is set to 1 as soon as the Seek command is issued. This allows a Seek or Recalibrate command to be issued to another drive. The HDC now sends stepping pulses at the specified rate and monitors the ready signal. Should the drive enter a not-ready state, the SER bit of the IST byte is set and the SRQ bit of the status register is set, causing an interrupt and requesting a Sense Interrupt Status command. When the drive asserts the seek complete (SKC) signal, the SEN bit of the IST byte is set and the SRQ bit of the the SR bit of the

**Soft-Sector (Normal Stepping, Polling Disabled).** Stepping pulses to the drive begin as soon as the Seek command is accepted. The ready signal is checked prior to each step pulse. If the drive enters a not-ready state the seek command is terminated abnormally (CEL = 1), and SER of the IST byte is set. If the seek operation is successful, the seek command will be terminated normally (CEH = 1) when the drive asserts SKC (seek complete). The SEN (seek end) bit of the IST byte is set and the IST (interrupt status) byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can seek operations be overlapped in this mode.



**Soft-Sector (Buffered Stepping, Polling Enabled).** As soon as the Seek command is accepted by the HDC, high-speed stepping pulses are generated. As soon as the required number of pulses are sent, CEH is set to 1, indicating a normal termination. Another Seek command in the same mode may now be issued. The drive is now controlling its own head positioner and asserts SKC when the target cyclinder is reached.) If the drive has not asserted SKC (seek complete) within the time it takes to send the required number of pulses in normal stepping mode, or if the drive enters a not-ready state, then the SER bit of the IST byte and the SEN bit of the IST byte is set, along with SRQ of the status register.

**Soft-Sector (Buffered Stepping, Polling Disabled).** In this mode, the appropriate number of high-speed stepping pulses are sent as soon as the Seek command is issued. If the drive enters a not-ready state, or if SKC (seek complete) is not asserted within the time it takes to send the required number of pulses in normal stepping mode, then the Seek command is terminated normally (generating an interrupt). The IST byte is available as a result byte and the appropriate bit is set; i.e., SER and EQC or NR (not ready). If the seek operation is successful, the Seek command is terminated normally (CEH = 1) and the SEN bit of the IST byte is set. The IST byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can seek operations be overlapped in this mode.

#### Format

01115		PHN	(PSN)	SCNT	DPAT	GPL1	(GPL3)	
		EST	SCNT					
PHN PSN	= P = P	hysical Ho hysical Se	ead Numb	er ber				

SCNT = Sector Count DPAT = Data Pattern GPL1 = Gap Length 1 GPL3 = Gap Length 3 EPT = Error Status

This command is used to write the desired ID and data format on the disk.

(1) When using hard-sector drives, this command will begin format-writing at the sector specified by PHN and PSN, which are loaded during command phase.

When soft-sector drives are specified, this command will begin format-writing at the sector immediately following the index pulse on the track specified by PHN.

In either case, data transmitted from the local memory by DMA operation is written into the ID field, and the data field is filled with the data constant specified by DPAT until DTL (data length) is zero. DTL is established during the specify command with DTLH and DTTL. The sector count, SCNT, is decremented by one at the end of the Format operation on each sector. The following bytes are required by the HDC for each sector: (FLAG), LCNH, LCNL, LHN, and LSN. FLAG is omitted on softsector drives. These bytes are transferred by DMA.

The format operation produces the various gaps with length as specified by GPL1, GPL2 (See Specify), and GPL3 (For soft-sector only.)

Note:

GPL3 may not exceed decimal value of 44.

(2) The above operation is repeated until SCNT is equal to zero. The execution of the command is terminated normally, when the content of SCNT is equal to zero and the second index pulse has occurred.

(3) When using a hard-sector drive, it is possible to write the ID field displaced from the normal position by 64 bytes by setting the skew bit of the command byte ((S) = 1). This is useful when defective media prevent writing in the normal area of the sector.

(4) Items 4, 5, and 8 of the Read Data and item 4 of the Write Data command are identical for this command. Refer to these items (which appear later in this section) for remaining format operation details.

#### Verify ID

1000S	PHN	(PSN)	SCNT	· .
10003	EST	SCNT		

PHN = Physical Head Number PSN = Physical Sector Number SCNT = Sector Count EST = Error Status

ID bytes of specified sectors are read and compared with the data that are accessed from local memory via DMA control. The first sector that is verified is specified by PHN and PSN when a hard-sector disk is used. For soft-sector disks, only PHN is given and the Verify ID command begins comparisons with the first physical sector on the track.

Byte comparisons continue as long as successful or until the sector count is zero or a CRC error is found.

When using a hard-sector drive, it is possible to have the HDC verify a skewed ID field by setting the skew bit of the command byte. Refer to the Format section, given earlier, for details.

#### Read ID

	PHN PSN SCNT					
1001S	EST	SCNT			a set i e	
PSN = P SCNT = S						

# μ**PD7261A/B**



ID bytes of specified sectors are read and transferred to local memory by DMA.

Hard-sector disks: Beginning with the sector specified by PHN and PSN, the ID bytes of each sector (FLAG, LCNH, LCNL, LHN, LSN) are read until an error is found or the SCNT has reached zero.

It is also possible to perform the above operation with skewed ID fields by setting the skew bit of the command byte. This will allow reading ID fields that have been shifted by 64 bytes by the Skewed Format command.

Soft-sector disks: This command will begin checking ID fields immediately following the index pulse and will continue until one valid ID field is read, or until the second index pulse is detected or SCNT = 0, whichever occurs first. Four bytes per soft sector are read: LCNH, LCNL, LHN, and LSN.

#### **Read Diagnostic**

1010X	PHN	PSN	
1010	EST		<i></i>

PHN = Physical Head Number PSN = Physical Sector Number EST = Error Status

This command is implemented only for hard-sector disks. The desired physical sector is specified, and the data field will be read even if the ID bytes of that sector contain a CRC error. Only one sector at a time may be read by this command.

# **Read Data**

1011X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
FLAG = FI	ag Byte, I gical Cyl	ead Numbe Iard-Secto inder Num inder Num	r ID Field ber, High	Byte	LHN LSN SCNT EST	= Loğic = Secto	al Head N al Sector or Number Status	Number

This command is used to read and transfer data via DMA from the disk to the local memory.

(1) The HDC reads data from the specified sector which is determined by the following preset parameters: FLAG (for hard-sector only), LCNH, LCNL, LHN, and LSN. The drive is selected by UA (unit address) in the command byte. The HDC then transfers the read data to the local memory via DMA operation.

(2) After reading each sector, the HDC updates the SCNT and LSN to point to the next sector, and repeats the above described operation until SCNT is equal to zero. During the above read operations, if LSN is equal to ESN, the HDC updates LSN, and continues the read operations after relocating the head (track) specified by LHN.

(3) The HDC abnormally terminates the execution of this command if SCNT is not equal to zero when the HDC reads out the data from the last sector (LSN = ESN and LHN = ETN). The ENC (end of cylinder) bit of EST (error status) is set to one in this situation.

(4) The HDC will terminate this command if a fault signal is detected while reading data. The HDC will set the EQC (equipment check) of the EST (error status) byte when this occurs.

(5) The HDC will terminate this command abnormally if the ready signal from the drive is not active or becomes not active while a Read Data command is being performed. The NR (not ready) bit of the EST (error status) register will be set to one in this case.

(6) The HDC will end this command abnormally if it cannot find an AM (address mark) (soft-sector mode) or a SYNC byte (hard-sector mode) of the ID field before four index pulses occur. Under these conditions, the RRQ (reset request) bit of the STR (status register) will be set. In order to perform further disk commands the HDC will have to be reset because the format controller is hung up looking for an AM or SYNC byte.

(7) ECC mode: If the HDC detects an ECC error during a read operation, it will execute the following operations: First, the HDC decides whether or not the error is correctable by checking the syndrome of the error pattern. If the error is correctable, the HDC terminates the command in the normal mode after setting the DER (data error) bit of EST register to one. The host system can input the error address and the error pattern information by issuing the Detect Error command. If it is not a correctable error, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.

CRC mode: If the HDC detects a CRC error on a sector during the read operation, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.

(8) If the HDC detects an overrun condition during a Read Data operation, the OVR (overrun) bit of the EST register is set. (An overrun condition occurs when the internal data FIFO is full, another data byte has been received from the disk drive, and a DMA service does not occur.) The command is then terminated in the abnormal mode.

(9) If the HDC cannot find the desired sector within the occurrence of three index pulses, the ND (no data) bit of the EST register is set to one and the command is terminated in the abnormal mode.

(10) If TC (terminal count) occurs during a Read Data command the DMA transfers to the local memory will stop. However, the HDC does continue the read operation until the end of the sector, if SCNT = 1.

# μ**PD7261A/B**



If SCNT is 2 or more, DMA transfers restart when SCNT is updated to the next sector, and will continue until SCNT is zero.

(11) If the Read Data command has been successfully completed, the result status will be set indicating such. and the result status bytes will be updated according to the number of sectors that have been read. The logical disk parameters-LSN, LHN, and LCN-are incremented as follows:

LSN is incremented at the end of each sector until the value of ESN is reached. LSN is then set to 0 and LHN is incremented. If LHN reaches the value of ETN, then LHN is cleared and LCN is incremented.

In other words, if a Read or Write operation is terminated normally, the various parameters will point to the next logical sector.

If the command is terminated in the abnormal mode, the result status bytes will indicate on which sector, cylinder, and head the error occurred.

(12) If the HDC cannot detect the address mark (softsector) or SYNC bytes (hard-sector) immediately following the VFO sync in the data field, the HDC will set the MAM (missing address mark) bit of the EST register to one, and will terminate the command in the abnormal mode.

#### Check

1100X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT
LAG = F CNH = L CNL = L HN = L SN = L	lag Byte, I ogical Cyl ogical Cyl ogical He	ead Numbe Hard-Secto Inder Num Inder Num ad Number Stor Number	or ID Field ber, High ber, Low E	Byte				

This command is used to confirm that the data previously written to the medium by the Write Data command contains the correct CRC or ECC.

(1) The HDC reads the data in the sector specified by FLAG (hard-sector only), LCNH, LCNL, LHN, and LSN. The Check command differs from the Read Data command in that no DMA transfers occur.

With the exception of the ECC mode, the Check command is the same as the Read Data command. Please refer to items 2, 3, 4, 5, 6, 7, 8, 11, and 12 of Read Data command for details.

(2) If in the ECC mode, the HDC detects only ECC errors and does not execute any error correction operation even if the ECC errors are correctable. No data transfers have been made, and there is no data to correct.

#### Scan

	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
1101X	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

ritysical riead Number Flag Byte, Hard-Sector ID Field Only Logical Cylinder Number, High Byte Logical Cylinder Number, Low Byte Logical Head Number Logical Sector Number FLAG

..... CNI

In executing the Scan command, the HDC reads the data from the sector specified by the preset parameters of the command phase. The HDC then compares this data with the data transmitted from the local memory. (The purpose of this command is to locate a sector that contains the same data as the local memory.)

This command will terminate successfully if the data from the disk and the data from the local memory are the same. If they are not, the HDC updates SCNT and LSN, and executes the abovementioned operation again.

If the HDC cannot locate a sector that satisfies the scan conditions, the NCI bit of the STR will be set. The HDC tries to compare data until the end of the cylinder has been reached, or until SCNT is zero.

(2) If the value of the LSN (logical sector number) is equal to that of ESN (ending sector number) after updating LSN, the HDC updates the contents of LHN (increasing by 1) and that of LSN (LSN = 0), and repeats the operation described in item 1 after selecting the next head.

(3) After comparing the data transferred from the host CPU with the data in the specified sectors, the result bytes (FLAG, which is only for hard-sector disks, LCNH, LCNL, LHN, and LSN) will be set equal to the sector location that satisfies the Scan command.

(4) The descriptions in 4, 5, 6, 8, and 9 of Read Data command, and items 3 and 4 of Verify Data command are identical for this command. Refer to these descriptions for additional details.

#### **Verify Data**

1110X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
1110A	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

Physical Head Number

Figg Byte, Hard-Sector ID Field Only Figg Byte, Hard-Sector ID Field Only Logical Cylinder Number, High Byte Logical Head Number Logical Sector Number Scates Number

1.0.0

or Numb

This command is used to verify data on the disk.

(1) The HDC reads the data from the specified sector. and compares the data transmitted from the local memorv via DMA with the data from the disk.

The sector is specified by FLAG (hard-sector only), LCNH, LCNL, LHN, and LSN, and the drive is selected by UA. If the data transmitted from the local memory is the same as that read from the sector, the HDC updates the contents of LSN and SCNT, and continues the abovementioned operation. After updating SCNT, if the value of SCNT is equal to zero, the HDC ends the execution of the command in the normal mode. If the value of LSN is equal to that of ESN after updating LSN, the HDC updates the contents of LHN and LSN, and the HDC continues the verify data operation after selecting the head (track) specified by LHN.

If the data transmitted from the local memory is not the same as that read from the sector, the HDC ends the execution of the command in the abnormal mode after setting the NCI (not coincident) bit of STR to one.

(2) If, after verifying the data on the last sector, the contents of SCNT are not equal to zero, the HDC terminates execution of the command abnormally after setting the ENC (end of cylinder) bit of the EST register to one.

(3) After verifying the data read from a sector, the HDC checks the CRC bytes (CRC mode) or the ECC bytes (ECC mode).

If the HDC detects a CRC or an ECC error on a sector, the HDC terminates execution of the command abnormally after setting the DER bit of the EST register to a one.

(4) After detecting an active  $\overline{TC}$  signal ( $\overline{TC} = 0$ ), the HDC executes the above operation by comparing the read data from the disk drive with the data 00 instead of the data from the main system until the end of the sector.

In the case of SCNT greater than one, when SCNT is updated, DMA transfers restart and disk data is compared against host data until SCNT is zero.

(5) After verification of the data on all the sectors, FLAG (hard sector only), LCNH, LCNL, LHN, and LSN are set to the values of FLAG, LCNH, LCNL, LHN, and LSN of the last verified sector.

(6) The descriptions in items 4, 5, 6, 8, 9, and 12 of the Read Data command are valid in this command. Please refer to these items for additional detail.

# Write Data

	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
1111X	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number FLAG = Flag Byte, Hard-Sector ID Field Only LCNH = Logical Cylinder Number, High Byte LCNL = Logical Cylinder Number, Low Byte LHN = Logical Head Number LSN = Logical Sector Number SCNT = Sector Number

ctor Number Fror Status

(1) This command is used to write data into the data field of the sectors specifed by FLAG (hard disks only), LCNH, LCNL, LHN, and LSN, and to write CRC bytes or ECC bytes according to each internally specified mode (CRC or ECC). The data is written to the disk via DMA transfer from the local memory.

(2) After writing data on a sector, the HDC updates the contents of SCNT and LSN, and repeats the above described Write Data operation until SCNT is equal to zero.

During the above Write Data operations, if LSN is equal to ESN, the HDC updates LHN and LSN, and continues the Write Data operations after selecting the new head (track) specified by LHN.

As described above, the HDC has the capability of multi-sector and multi-track write operations.

(3) The HDC abnormally terminates the execution of this command if the SCNT is not equal to zero when the HDC writes the data to the last sector (LSN = ESN and LHN = ETN). The ENC (end of cylinder) bit of EST (error status) register is set to one in this situation.

(4) If the write protected signal is active (high) at the beginning of the execution of this command, the HDC ends the execution of this command in the abnormal mode after setting the NWR (not writable) bit of the EST register to one.

(5) After detecting an active  $\overline{TC}$  signal ( $\overline{TC} = 0$ ), the HDC writes the data 00 to the sector, instead of the data from the host system.

In the case of SCNT of two or more, when SCNT is updated, the DMA transfers will restart and writing of host data will continue until SCNT = 0.

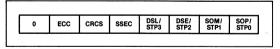
(6) In the ST506-type mode, the HDC will set the reduced write current output bit to a one when the cylinder number becomes greater than that specified by RWCH and RWCL. These parameters are loaded during execution of the Specify command.

The descriptions in items 4, 5, 6, 8, 9, and 11 of the Read Data command are applicable here also. Refer to these items for further detail.

#### Sense Interrupt Status

		<b>W</b>
0001X	IST	
	IST	

(1) The HDC transfers the new disk status to the host CPU at the end of a Seek or Recalibrate operation or the new disk status resulting from a change of state of the ready signal, which may occur at any time.


(2) If the Seek or Recalibrate command in progress is completed when this command is issued or if there has been no change of state of the ready signal from the drive, this command will be terminated abnormally.

#### Specify

0010X	MODE	DTLH	DTLL	ETN	ESN	GPL2	(MGPL1) [RWCH]	[RWCL]
DTLH = D	ode Byte; ata Length	, High By	te	Mode	-		÷,	
ETN = E	ata Length nding Traci nding Sect ap Length	k Number or Number	r					

The Specify command is used to set the operational mode of the HDC by presetting various parameters. Parameters such as MODE (figure 5, table 7), DTLH (figure 6), DTLL, ETN, ESN, GPL2, MGPL1/RWCH, and RWCL may be programmed into the HDC. This allows for a high degree of versatility. Data record length is programmable from 128 to 4095 bytes in soft-sector mode and 256 to 4095 bytes in hard-sector mode.

#### Figure 5. Mode Byte



#### Figure 6. DTLH Byte

1		CRC	PAD	POL	DTL11	DTL10	DTL9	DTL8
	=	Initial Val	ue of Poly	nomial Cou	nter, Eithe	er All Zeros	or All One	s
CRC [.] PAD	=	Selects ID	)/Data pa )/Data pa	nomial Cou d of 00H if ( d of 4EH if	) (	er All Zeros	or All One	<b>S</b>

#### Table 7. Mode Byte Bits

iable i	. Mode byte bits					
Bit Name		Specified Mode				
ECC	1 ECC is appended in dat	a field: (x ²¹ +1) (x ¹	¹ +x ² +1)			
EUU	0 CRC is appended in dat	a field				
0000	1 Generator polynomial: (x ¹⁶ +1)					
CRCS	0 Generator polynomial: (	x ¹⁶ +x ¹² +x ⁵ +1)				
1 Soft-sector disk (floppy-like interface), MFM data						
SSEC	0 Hard-sector disk (SMD	interface), NRZ da	ta			
*****	SSEC = 0		SSEC = 1			
DSL	Data strobe late	STP3	(Note 1)			
DSE	Data strobe early	STP2	(Note 1)			
SOM	Servo offset minus	STP1	(Note 1)			
SOP	Servo offset plus	STP0	(Note 1)			
Madai						

Note:

(1) Stepping rate for ST506 mode =  $(16-STP) \times 2110 \times t_{CY}$ 

Assuming a 10 MHz processor clock:  $F_H = 2.11 \text{ ms...O}_H = 33.76 \text{ ms}$ 

#### Sense Unit Status

#### Soft-Sector Mode

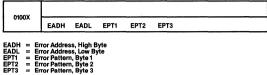
0011X		1		
JOIN	UST			

#### SMD Mode

		ن		
0011X	1		2	 5
UUIIX	UST		DS	 DT

The Sense Unit Status (SUS) command is used to transfer the Unit Status (UST) to the host. In the case of SMD mode the SUS command may also be used to transfer the Detail Status (DS) and Device Type (DT) by using the appropriate preset parameter value as shown above. No preset parameters are used in the soft-sector mode, although one is required in the SMD mode. Values other than 1, 2, or 5 do not produce valid results.

After result bytes are placed in FIFO, HDC generates a FAULT CLEAR when in SMD mode.


The DS and DT bytes are defined by the type of drives used. The UST is shown in table 8.

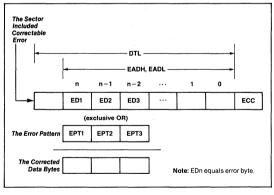
#### Table 8. Unit Status Byte

	Interface Type			
Bit	No.	SMD	ST506	
D ₇	Unit selected		0	
D ₆	Seek end		0	
D ₅	Write protected		0	
D ₄	0		Drive selected	
D ₃	Unit ready		Seek complete	
D ₂	On cylinder		Track 000	
D ₁	Seek error		Ready	
D ₀	Fault		Write fault	

# EC

# **Detect Error**



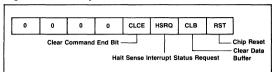

- EPT2 EPT3 =

This command is used to transfer the error pattern and the error address to the host CPU, when correctable errors have occurred during the execution of a Read Data command with the ECC mode enabled.

The error address (EADH and EADL) is calculated from the last data byte of the sector that contained a correctable error which was indicated by the status bit of the previous Read Data command with the ECC mode enabled. The error pattern is used for correcting the error data at the location where the error occurred. After receiving the error address and the error pattern, the host CPU can correct the error data by performing an exclusive-OR of the error pattern and the error data. See figure 7.

The result bytes are available to the host CPU within 100µs.





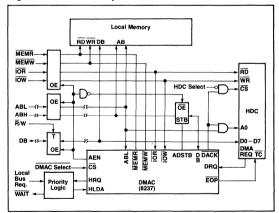

# Auxiliary Command

0000AAAA	

There are no preset parameters or result bytes associated with this command. The definitions of the 4 LSBs (AAAA) are given in figure 8 and table 9. The auxiliary command is accepted at any time and is immediately executed. The auxiliary command may be used to recover from certain types of error conditions, or to mask and clear interrupts.

#### Figure 8. Auxiliary Command




#### Table 9. Auxiliary Command Bits

Bit Name	Operation		
CLCE	Clears the CE bits of the status register, inactivating the interrupt request output caused by Command End condi- tion. This is used when no disk commands are going to be issued and it is desired to clear the interrupt.		
HSRQ	Deactivates the interrupt request output caused by Sense Interrupt Status Request condition until a Command End occurs. However, this command has no effect on the SRQ bit of the status register.		
CLB	Clears the data buffer.		
RST	This has the same effect as a reset signal on the Reset in- put. This function is used whenever the RRQ bit in the sta- tus register is set (indicating the format controller is hung up), or when a software reset is needed.		

#### System Example

Figure 9 shows an example of a local bus system.

Figure 9. Local Bus System



6



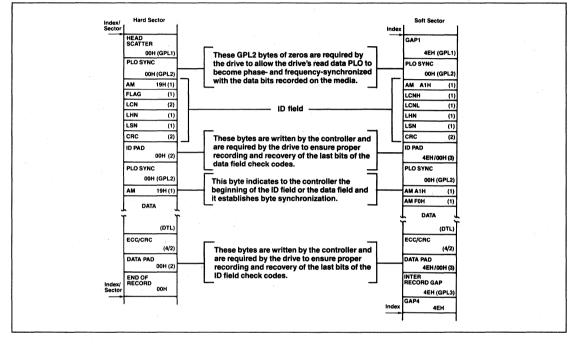
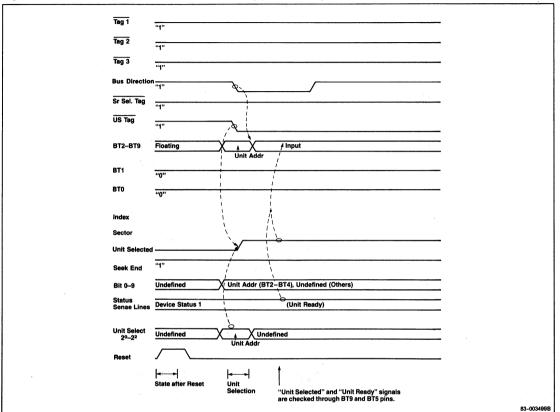

# **Track Format**

Figure 10 shows track format for hard- and soft-sectored disks.

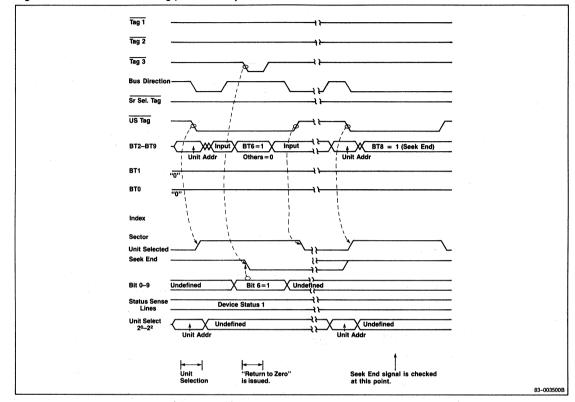
# **System Example Timing Diagrams**


Figures 11 through 22 show the interface timing (softsector and hard-sector) required to interface the hard disk drive.



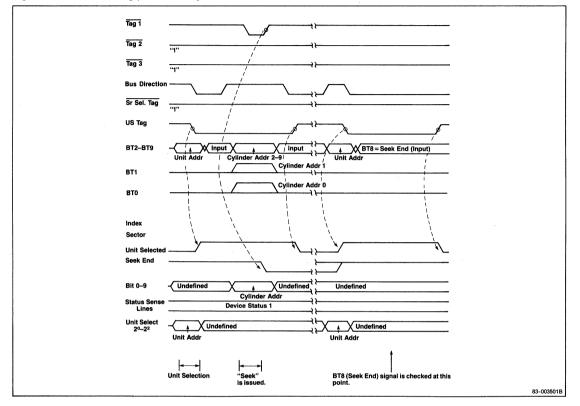


# NEC

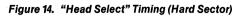

# μ**PD7261A/B**

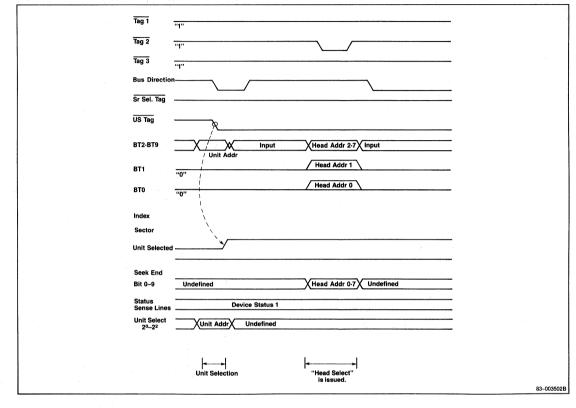


#### Figure 11. "Unit Selection" and "State Sense" Timing (Hard Sector)





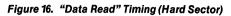



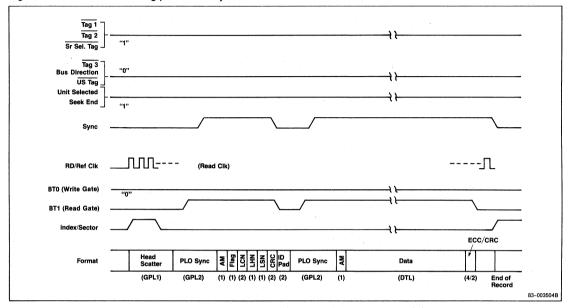




# Figure 13. "Seek" Timing (Hard Sector)

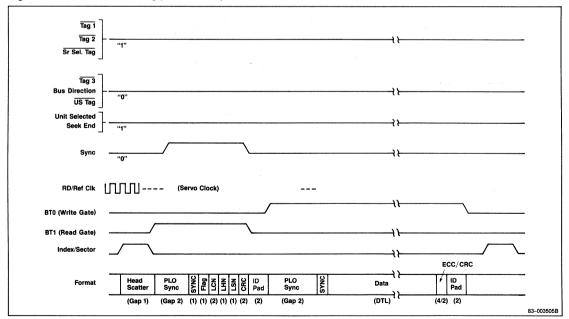




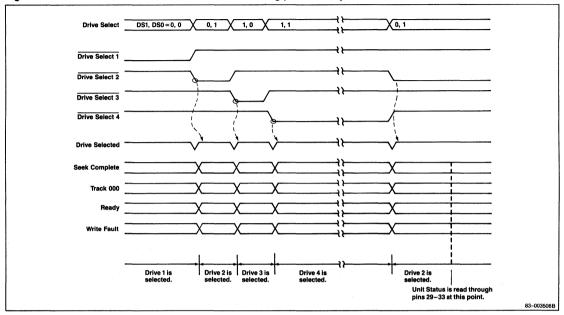


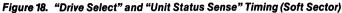




iguio io.	ent etatue conce	
	Tag 1	
	Tag 2	аңт (
	Tag 3	u <del>n</del> ,
	Bus Direction	
	Sr Sel. Tag	
	US Tag	"0" means that HDC is selecting One Unit.
	BT2-BT9	UST1 XBT9=0XX UST2 XXBT9=1XX L Device Type
	BT1	
	вто	
	Index	Index pulse SR0 DT1 Sector pulse
	Sector	/ SR1   / DT2
	Unit Selected	"1" means that a Unit is selected.
	Seek End	u <del>q</del> n
	Bit 0–9	ali 1's Bit 9=0 X Bit 9=1
	Status Sense Lines	Unit Status 1 (UST)
	Unit Select 2 ⁰⁻²²	Undefined
	On Cylinder	149 ¹¹
		Unit Status 1 Unit Status 2 is The Device Type is read is read through read through BT0-BT9, through BT0-BT9,
		BT0-BT9 pins. Index, Sector pins. Index, Sector pins. 83-003503B

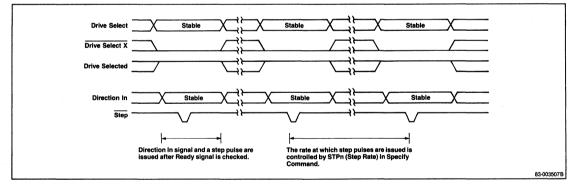

# Figure 15. "Unit Status Sense' Timing (Hard Sector)





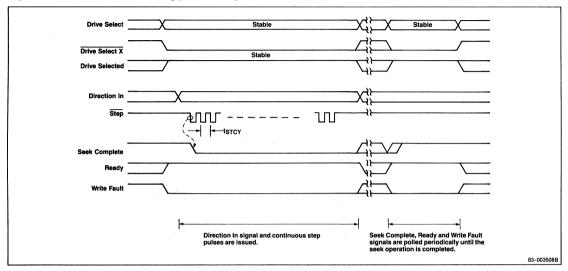



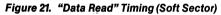


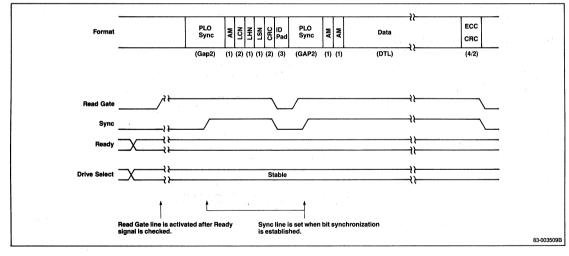







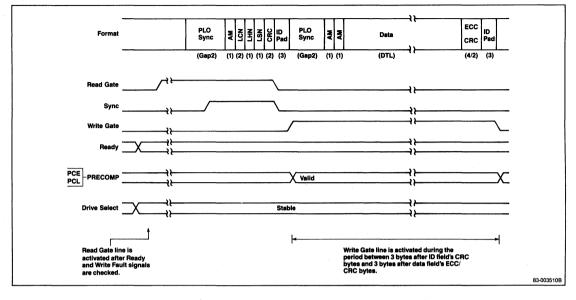



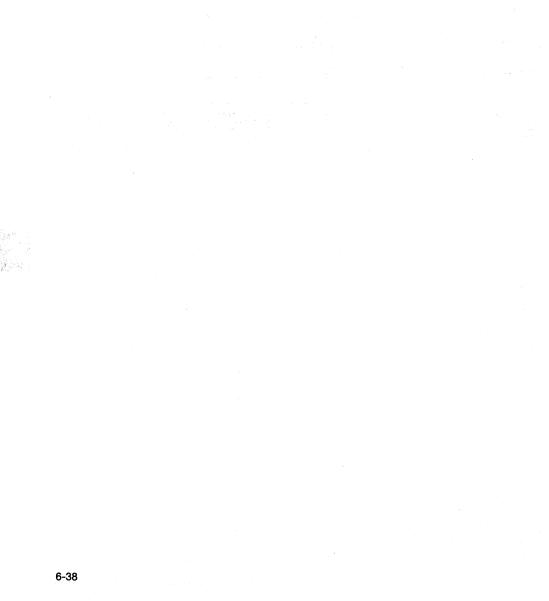












# Figure 22. "Data Write" Timing (Soft Sector)









# μPD7262 Enhanced Small-Disk Interface Controller

# Description

The  $\mu$ PD7262 enhanced small-disk interface controller (ESDIC) is a hard-disk drive (HDD) controller capable of supporting up to seven HDDs. It is a single-chip solution to ESDI controller design and conforms to ANSI Specification X3T9.3/1987, revision F.

Note: A control sequence that changes the state of the write gate (WGATE) signal to function as the write start signal for the ID field's phase-locked oscillator (PLO) area for hard-sector formatting is covered in the ANSI specification, but it is not supported by the µPD7262.

The  $\mu$ PD7262 can be controlled by a general bus like the one provided by the V-Series family. It has 27 powerful commands and its control interface significantly reduces host processor overhead for HDDs for both software and hardware. This simplifies interfacing.

The  $\mu$ PD7262 uses the group drive concept to control up to seven HDDs divided into a maximum of three groups. Each group may be designated arbitrarily according to common control parameters such as data length per sector, number of sectors per track, and error correction/ detection.

#### Features

- Serial mode ESDI-compatible
- Capable of controlling up to seven disk drives
- Supports up to 80 heads (5 groups of 16) for each disk drive
- Hard- and soft-sector interfacing
- Programmable track format
  - Variable byte synchronization patterns: ABSP and DBSP
  - Variable data length: 128 to 65,536 bytes/sector
  - Variable gap length Intersector gap
     PLO sync field
    - Format speed tolerance gap
- Selectable sector start signal:
- sector pulse/address mark found
- Maximum clock frequency
  - 18 MHz (7262-18)
  - 12 MHz (7262-12)
- 22 disk commands available
- Parallel seek operation capability
- Multisector, multitrack, and multicylinder functions
- Implied seek function
- Data scan/verify function

- Data read function from sectors with errors
- Skew function
- CRC/ECC selection
- NMOS technology
- □ Single +5 V power supply
- 40-pin ceramic DIP

#### Ordering Information

Part Number	Max Frequency	Package
μPD7262D18	18 MHz	40-pin ceramic DIP
μPD7262D12	12 MHz	

# **Pin Configuration**

#### 40-Pin Ceramic Dip



6.1.3

# **Pin Identification**

Symbol	I/O	Function							
Host Sys	tem In	iterface							
A ₀	In	Address 0 (register select); selects a register or the data FIFO.							
D ₀ -D ₇	I/O	Three-state bidirectional data bus.							
DMARQ	Out	DMA request							
INT	Out	Interrupt request; indicates completion of command execution by the $\mu$ PD7262 or completion of a seek operation by a disk drive.							
RD	In	Controls reading data or status from the µPD7262: active low.							
TC	In	Terminal count; indicates completion of data transfer; active low.							
WR	In	Controls writing data or commands to the $\mu$ PD7262; active low.							
Disk Driv	ve Inte	erface and a second							
AME	Out	Address mark enable; causes the disk drive to write or to search for an address mark.							
AMF	In	Address mark found; indicates the beginning of a sector in a soft-sector type of disk drive.							
ATT	In	Attention; requests receipt of the standard status byte issued by the disk drive.							
CMDC	In	Command complete; indicates that the disk drive has completed the execution of a serial command and is able to receive the next command.							
DS3-DS1	Out	Drive select 3, 2, 1; binary encoded outputs that select a disk drive.							
DSD	in	Drive selected; indicates that the disk drive specified with $DS_3DS_1$ is selected.							
HS3-HS0	Out	Head select 3, 2, 1, 0; binary encoded outputs that select a read/write head; see RW/COM below.							
INDEX	In	Indicates detection of the index mark in the drive.							
RCLK	ln.	Read clock that samples RDATA during read operations; also the reference clock that deter- mines the WCLK frequency during write operations.							
RDATA	In	Read data (NRZ) from the disk drive.							
READY	In	Indicates the disk drive's ready state.							
RGATE	Out	Read gate; signals the disk drive to read data.							
RW/COM	Out	Read-write/communicate; determines the func- tion of pins 25-28.							
		$\begin{array}{c c} FW/\overline{COM} \\ \hline Pin & 1 & 0 \\ 25 & HS_3 & XREQ \\ 26 & HS_2 & TxD \\ 27 & HS_1 & RxD \\ 28 & HS_0 & XACK \end{array}$							

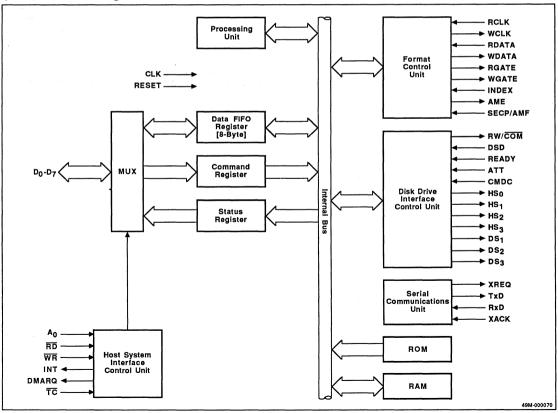
# NEC

# Pin Identification (cont)

Symbol	I/O	Function
RxD	ln	Receive data; receives configuration/status from the disk drive; see RW/COM above
SECP	lņ	Sector pulse; indicates the beginning of a sec- tor in a hard-sector type of disk drive.
TxD	Out	Transmit data; transmits a serial command to the disk drive; see R/W/COM above.
WCLK	Out	Write clock synchronized with WDATA.
WDATA	Out	Writes data (NRZ) to the disk drive.
WGATE	Out	Write gate; signals the disk drive to write data.
XACK	in	Transfer acknowledge; acknowledgment by the disk drive to a request for command or configuration/status transfer; see FW/COM above.
XREQ	Out	Transfer request; requests a command or con- figuration/status transfer by the disk drive; see RW/COM above.
Circuit C	control	
CLK	In	Single-phase system clock; the frequency must be between 0.7 and 1.8 times the RCLK fre- quency and the clock signal must be input con- tinuously.
RESET	In	Clears the internal circuits of the µPD7262.
TM	In	Test mode; this pin should be grounded for normal operation; the ground is removed for test mode operation.
GND	in	Ground.
V _{CC}	In	+5-volt power supply.

# **Standard Signal Names**

Tables 1 and 2 show the conversion between the µPD7262 pin symbols and the ESDI standard signal names.


#### Table 1. Control Cable Connections With µPD7262

ESDI Signal Name					
Drive select 1-3					
Head select 2(0)-2(3)					
Transfer request					
Transfer acknowledge					
Command data					
Configuration/status data					
Ready					
Write gate					
Read gate					

Pin Symbol	ESDI Signal Name
WDATA	± NRZ write data
RDATA	± NRZ read data
RCLK	± Read/reference clock
WCLK	± Write clock
CMDC	Command complete
DSD	Drive selected
AME	Address mark enable
SECP	Sector pulse
AMF	Address mark found
INDEX	Index

Table 2. Data Cable Connections With "PD7262

#### µPD7262 Block Diagram





# Absolute Maximum Ratings

TA	=	+25	C

Operating temperature, TOPT	- 10.0 to +70°C
Storage temperature, T _{STG}	- 65.0 to + 150°C
Output voltage, V _O	-0.5 to +7.0 V
Input voltage, VI	-0.5 to +7.0 V
Supply voltage, V _{CC}	-0.5 to +7.0 V

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

# Capacitance

 $T_A = +25^{\circ}C; V_{CC} = GND = 0 V$ 

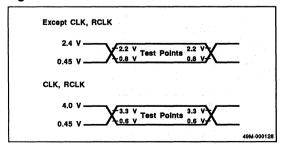
Parameter	Symbol	Тур	Max	Unit	Conditions
Input capacitance	CI		15	pF	f = 1 MHz; unmeasured pins
Output capacitance	Co		15	pF	tied to GND.
Input/output capacitance	C _{IO}		20	pF	

#### DC Characteristics

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage, low 1	V _{IL1}	- 0.5		+0.8	V	All except CLK, RCLK
Input voltage, Iow 2	V _{IL2}	- 0.5	2	+0.6	v	CLK, RCLK
Input voltage, high 1	V _{IH1}	+2.2		V _{CC} + 0.5	۷	All except CLK, RCLK
Input voltage, high 2	V _{IH2}	+3.3		V _{CC} + 0.5	۷	CLK, RCLK
Output voltage, low	V _{OL}		-	+0.4	v	l _{OL} = +2.0 mA
Output voltage, high 1	V _{OH1}	+2.4			v	$I_{OH} = -100 \ \mu A;$ all except pins 21-33
Output voltage, high 2	V _{OH2}	+2.4		: ·	V	l _{OH} = <i>–</i> 50 μA; pins 21-33
Input leakage current 1	lut			±10	μA	$V_{I} = 0.45 V to$ $V_{CC}$ ; all except pins 21-33
Input leakage current 2	ILI2			700	μΑ	$\begin{array}{l} V_{I} = 0.45 \ V \ to \\ V_{CC} \ ; \ pins \ 21-33 \end{array}$
Output leakage, current	ILO			±30	μA	$V_{O} = 0.45 V$ to $V_{CC}$
Supply current	ICC		250	350	mA	

AC Characteristics  $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5 \text{ V} \pm 10\%; \text{ see figure 1 for timing measurement thresholds.}$ 


	7262-18		62-18	7262-12				
Parameter	Figure	Symbol	Min	Max	Min	Max	 Unit	Conditions
Host System Interface				· ·				·
CLK cycle	2	tcy	55	10,000	83	10,000	ns	
CLK width, high	2	tан	20		30		ns	
CLK width, low	2	tal	20		30		ns	•
CLK rise time	2	tOR		10		10	ns	
CLK fall time	2	to⊧		10		10	ns	•
A ₀ setup to RD↓	5	t _{AR}	0		0		ns	-
A ₀ hold from RD↑	5	t _{RA}	0		0		ns	
RD pulse width	5	t _{RR}	100		100		ns	•
Data delay from A ₀	5	t _{AD}		85		85	ns	•
Data delay from RD↓	5	t _{RD}		85		85	ns	
Data float delay from RD↑	5	t _{RDF}	0	75	0	75	ns	•
A ₀ setup to ₩R↓	6	tAW	0		0		ns	•
A₀ hold from ₩R↑	6	twa	0		0		ns	•
WR pulse width	6	tww	100		100		ns	• * . *
Data setup to WR↑	6	t _{DW}	55		55		ns	
Data hold from ₩R↑	6	twp	5		5		ns	•
Recovery time from RD↑ or WR↑	5, 6	t _{EV}	70		70		ns	
INT delay from WR↑	6	tw		200	· · · · · · · · · · · · · · · · · · ·	200	ns	•
DMARQ delay from WR↑	8	twRQ		125		125	ns	•
DMARQ delay from RD↑	7	t _{RRQ1}		160		160	ns	During disk read operation
DMARQ delay from $\overline{RD}\downarrow$	7	t _{RR02}		100		120	ns	After disk read operation
TC pulse width	4	ţт	80		80		ns	
TC delay from RD↓ or WR↓	4	tRWT	80		80		ns	•
RD↑ or WR↑ delay from TC↓	4	tTRW	80	·····	80		ns	-
RESET pulse width	3	t _{RES}	100		100		tCY	-
Disk Drive Interface								an a
RCLK cycle	9	tRCY	55	10,000	83	10,000	ns	
RCLK width, high	9	trich	0.40	· · · · · · · · · · · · · · · · · · ·	0.40		tRCY	-
RCLK width, low	9	t _{ROL}	0.40		0.40		tRCY	-
RCLK rise time	9	tROR		8		. 8	ns	-
RCLK fall time	9	tROF		8		8	ns	-
Data setup to RCLK↑	9	t _{RDRC}	15	****	15		ns	-
Data hold from RCLK↑	9	tRORD	15		15		ns	-
WCLK cycle	10	twcy	0.95	1.05	0.95	1.05	tRCY	-
WCLK width, high	10	twor	0.25	0.75	0.25	0.75	tRCY	-
WCLK width, low	10	twoL	0.25	0.75	0.25	0.75	tRCY	- · ·



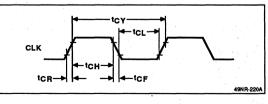
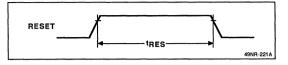
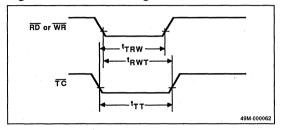
# AC Characteristics (cont)

and a second			72	62-18	72	62-12		
Parameter	Figure	Symbol	Min	Max	Min	Max	Unit	Conditions
Disk Drive Interface (con	t)					7		
WCLK rise time	10	1wor		10		10	ns	
WCLK fall time	10	twor		10		10	ns	
Data setup to WCLK↑	10	twowc	0.20		0.20		tRCY	
Data hold from WCLK↑	10	twowd	0.20		0.20		tRCY	
RGATE↑ delay from AMF↑	13	t _{AFRG}		300		300	ns	
AME↓ delay from AMF↓	13	TAFAE	0		0		ns	
SECP pulse width	12	tSEPF	400		400		ns	
INDEX pulse width	11	tidxe	400		400		ns	
WGATE setup to AME↑	16	<b>t</b> WGAE	440		440		ns	
WGATE hold from AME	16	tABNG	440		440		ns	
WGATE mask time	16	twgw	8		8		^t RCY	Immediately after ADF PAD field
Communication setup RW/COM↓	17	toc	830		830		ns	
HS ₁ -HS ₀ float delay from RW/COM↓	17	ton₽		50	•	50	ns	
HS ₃ -HS ₀ output delay from RW/COM↑	17	trwn		50		50	ns	
TxD setup to XREQ	14	TDXR	50		50		ns	1-bit transmit
TxD hold from XREQ	14	\$xrid	0	2 t _{CY} + 400	0	2 t _{CY} + 400	ns	
XACK delay from XREQ	14	txfixat	0		0		ns	al de la companya de La companya de la comp
XREQ delay from XACK	14	^t XAXFIT	50	19 t _{CY} + 300	50	19 t _{CY} + 300	ns	
RxD setup to XACK	15	t _{RDXA}	50		50		ns	1-bit receive
RxD hold from XACK	15	txARD	0		0		ns	
XACK delay from XREQ	15	TXRXAR	0		0		ns	
XREQ delay from XACK	15	txaxrr	50	19 t _{CY} + 300	50	19 t _{CY} + 300	ns	n an Arthur Airte an Airte Airte an Airte an Airte

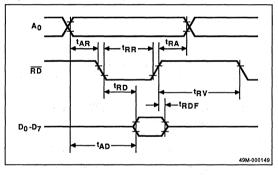
# Figure 1. AC Test Points



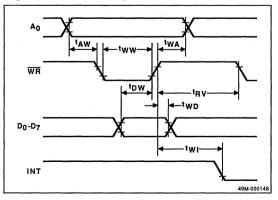
# Figure 2. CLK Pulse Timing





Figure 3. Reset Pulse Timing




# Figure 4. TC Pulse Timing



# Figure 5. Read Timing



# Figure 6. Write Timing





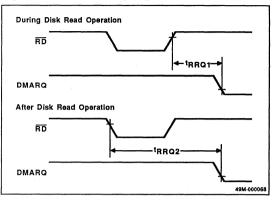
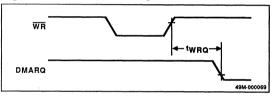




Figure 8. DMA Write Timing



# Figure 9. Data Read Timing

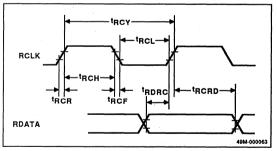
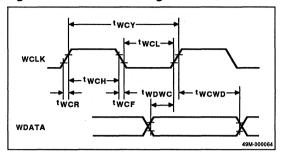
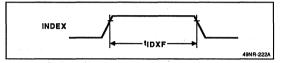







Figure 10. Data Write Timing












Figure 13. Address Mark Found/Read Gate Timing

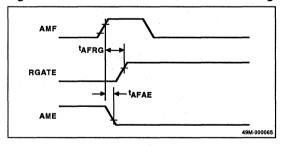



Figure 14. One-Bit Transfer Timing (to Drive)

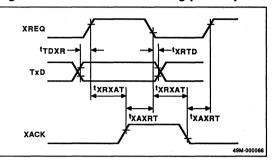
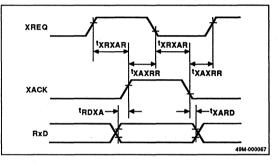




Figure 15. One-Bit Transfer Timing (from Drive)





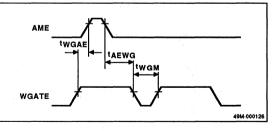
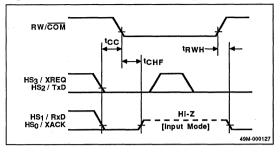






Figure 17. Communications Timing



# ARCHITECTURE

Refer to the block diagram of the  $\mu$ PD7262.

# **Processing Unit**

The processing unit decodes commands sent from the host system to control internal units, such as the format control unit, and then generates the result status.

# Read Only Memory (ROM)

The ROM contains the firmware necessary for executing commands sent from the host system.

# Random Access Memory (RAM)

The RAM is used to temporarily store parameters required by the firmware for command execution.

# **Command Register**

The host system sends disk commands and subcommands via the data bus to the command register. The command register is selected by signal  $A_0$  going high and signal WR going low. The contents of the data bus can then be transferred into the command register. The host system cannot read data in the command register. It is a write-only register.

# Status Register (STR)

The status register reports the internal status of the  $\mu$ PD7262 to the host system. Data from the host system cannot be transferred into the read-only status register. Status register selection is performed when signal A₀ goes high and signal RD goes low, enabling the register contents to be output onto the data bus. The host system can select and read the contents of the status register any time. The status register can be cleared to

00H by the CHIP RESET subcommand or by the RESET signal. Status register bits D7-D0 are described in Table 3.

Table 3.	Status	Reaister	(STR)	<b>Bit Definitions</b>
10.010 01	~ · · · · · · · · · · · · · · · · · · ·	110910101	10	mu mound

Bit	Status Name	Function
D7	Controller Busy (C B)	Indicates that the $\mu$ PD7262 is executing a disk command. The CB bit is set upon disk command execution and cleared where execution is completed. While the CB bit is set, the host system cannot send a new disk command.
D6, D5	Command End (CEH, CEL)	Indicates that the disk command execu- tion is completed. Both CEH and CEL bit can be cleared by a reset signal, by send ing the next disk command or clear com mand end bit, or by a chip reset subcom mand from the host system. Combination of the different states of bits D6,D5 ar listed below.
		(0,0) indicates no disk command has bee sent from the host system during dis command execution or after a reset signa input or clear command end bit or chi reset subcommand.
		(0,1) indicates disk command executio was aborted.
		(1,0) indicates disk command executio was successful.
		(1,1) indicates the disk command ser from the host system is invalid for any of the following reasons.
		<ul> <li>The group assign command is not ser after reset.</li> </ul>
		• G1,G0 = 0,0 is specified by the specified command.
		<ul> <li>A command word high (CWH) or command word low (CWL) not supporte by the send command is specified.</li> </ul>
		<ul> <li>An internal information selection (IIS not specified by the get internal info mation command is specified.</li> </ul>
D4	Sense Seek Request (SRQ)	When a disk drive seek operation is com pleted, bit D4 is set to request a sens seek status command from the host system. This bit is not reset by a mask SR interrupt subcommand.
D3	Reset Request (RRQ)	When set, bit D3 requests an immediat reset of the $\mu\text{PD7262}.$



(com)	1	
Bit	Status Name	Function
D2	ID/Data Error (IDE)	Bit D2 is set when a CRC error is detected in the ID field during execution of an ID field read command (read ID, verify ID). Bit D2 is also set when a CRC/ECC error is detected in the data field during execution of a data field read command (read data, check, scan, verify data, read diagnostic).
D1	Not Coincident (NCI)	Bit D1 is set if the ID or data transferred from the host system does not match that on the sector during execution of the verify ID or verify data command, or if sector data that matches the data transferred from the host system cannot be detected during execution of the scan command.
DO	Interface Fault (IFLT)	Bit D0 indicates that a transfer of 17 bits of serial communications data from the fall- ing edge of XREQ to the rising edge of the 17th XACK has not occurred within a spec- ified time period 480 x TIME x COMT, or indicates a timeout of the CMDC signal.

Table 3. Status Register (STR) Bit Definitions (cont)

# Data FIFO Register

The data FIFO (first-in, first-out) 8 x 8-bit register is used to store temporarily—asynchrouous with the system clock—commands, parameters, read/write data, and the result status transferred between the  $\mu$ PD7262 and the host system.

When executing a disk command, the  $\mu$ PD7262 first loads the parameters, then clears the data FIFO register before executing the command. The data FIFO register can store only eight bytes of data; the ninth and successive bytes are not accepted if the FIFO is full.

#### Host System Interface Control Unit

This unit controls the interface between the host system and the  $\mu$ PD7262.

**Read/Write Control.** The read/write control circuit selects the command/status register or data FIFO register by decoding the read (RD), write (WR), and address ( $A_0$ ) signals, which are output from the host system. The internal registers are selected as shown in table 4.

#### Table 4. Register Selection

RD	WR	Function
0	1	Read data FIFO register
1	0	Write data FIFO register
0	. 1	Read status register
1	0	Write command register
1	1	Non-select
	RD           0           1           0           1           0           1           1           1           1	RD         WR           0         1           1         0           0         1           1         0           0         1           1         0           1         0           1         1           1         1

Interrupt Request Control. The interrupt request control circuit outputs the interrupt request (INT) to the host system.

When disk command execution terminates, or when the SRQ bit in the status register is set, this control circuit sets the INT signal to active (high) level. The INT signal returns to inactive (low) level when the host system writes a clear command end bit subcommand to the  $\mu$ PD7262.

Note that the INT signal caused by SRQ cannot be reset with the clear command end bit subcommand; the sense interrupt status command should be used to reset INT.

DMA Request Control. The DMA request control circuit processes DMA requests (DMARQ) to the host system.

During disk command execution, when a DMA transfer is required between the memory and the  $\mu$ PD7262, or between the memory and the disk drive via the  $\mu$ PD7262, this control circuit sets the DMARQ signal to active (high) level. The conditions under which this control circuit sets the DMARQ signal active are defined as follows according to the number of bytes of data stored in the data FIFO register.

- (1) μPD7262 → memory data transfer: Read ID, read diagnostic, and read data commands. When data is being sent to the memory after it is read from the data FIFO register, the DMARQ signal is set active. The DMARQ signal is also set active when a single byte remains in the data FIFO register immediately before normal termination of a command; that is, directly before an interrupt is generated.
- (2) Memory → μPD7262 data transfer: Write format, verify ID, scan, verify data, and write data commands. When data is sent to the data FIFO register after being read from memory, if the data FIFO register contains 6 or fewer bytes of data, the DMARQ signal is set active.



The DMARQ will not become active when one of the following conditions occurs.

- (1) Disk command execution is aborted (abnormal termination).
- (2) Data in all sectors specified by the sector count parameter (SCNT) has been transferred by a successful command execution (normal termination).
- (3) Terminal count signal (TC) from the host system is set active.

TC Control. The terminal count control circuit halts operation of the host system control unit in accordance with the terminal count input  $(\overline{TC})$  from the host system.

# **Disk Drive Interface Control Unit**

Under control of the processing unit, the disk drive interface control unit outputs head and unit addresses as well as control signals.

Signals indicating the status of the disk drive are directly input to this unit.

# **Serial Communications Unit**

Under control of the processing unit, the serial communications unit performs data transfers to or from a disk drive in handshaking mode. Also, the serial communications unit generates and checks parity.

# Format Control Unit

Under control of the processing unit, the format control unit writes data to the disk drive or reads data from the disk drive according to the specified track format. The unit provides the following functions:

- Encoding/decoding of FM and MFM data
- Phase-shift compensation during read operation
- Serial-to-parallel or parallel-to-serial conversion
- Address mark writing and detection
- Data transfer control
- Check code generation, error detection, and correction

#### RESET

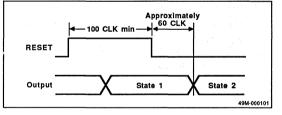

If 100 or more CLK cycles are continuously input to the CLK and RCLK pins while the RESET pin is high, the  $\mu$ PD7262 clears all its internal registers and enters the idle state.

Table 5 indicates the status of the input/output pins during the reset state and 60 CLK cycles after the reset has been released. See figure 18.

Table 5. Effect of Reset of	on I/O	PIn Status
-----------------------------	--------	------------

Pin Reset, Symbol State 1		After Reset, State 2
WDATA	High impedance	High impedance
INT	Low	Low
DMARQ	Low	Low
WCLK	CLK output	CLK output
D ₇ -D ₀	High impedance	High Impedance
RW	High	High
DS3-DS1	High	High
HS ₃ /XREQ	High	Low
HS ₂ /TxD	High	Low
HS ₁ /RxD	High	Low
HS0/XACK	High	Low
AME	Low	Low
WGATE	Low	Low
RGATE	Low	Low

#### Figure 18. Reset State Timing



# ERROR DETECTION AND CORRECTION

The  $\mu$ FD7262 has a cyclic redundancy check (CRC) function and two error correction code (ECC) functions as shown in table 6.

Function	Polynomial Generator Formula	Bytes/ Sector
CRC	$X^{16} + X^{12} + X^5 + 1$	2
ECC 32 bits	$(X^{21} + 1) (X^{11} + X^2 + 1)$	4
56 bits	$\begin{array}{c} (X^{22} + 1) \ (X^{11} + X^7 + X^6 + X + 1) \\ (X^{11} + X^9 + X^7 + X^6 + X^5 + X + 1) \\ (X^{12} + X^{11} + X^{10} + X^9 + X^8 + \\ X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X + 1) \end{array}$	7



Each ECC function has its own error correction function, the performance of which is shown in table 7. In cases where the error burst length exceeds the 11-bit maximum, the detection performance of the 56-bit ECC is better than that of the 32-bit ECC by a factor of  $10^{7}$ .

Table 7.	ECC Error	Correction	<b>Performance</b>

Maximum Sector Data Length	
5369 bytes	
64K bytes	

#### **SKEW FUNCTION**

When the skew (SK) function is specified in the disk command parameter during access of a hard-sector disk, the  $\mu$ PD7262 shifts the address area. This area, located after the address byte sync pattern (ABSP), is delayed 64 bytes, thus stretching the Gap 1 Length (GP1L).

This function is effective when a media defect exists in the address area of a disk. However, the sector length is decreased by 64 bytes. A sector formatted in this manner must be accessed in the skew access mode.

#### COMMANDS

The  $\mu$ PD7262 has 22 disk commands for data read/write, seek, serial communications operations, etc., Four subcommands are used for controlling the internal status of the  $\mu$ PD7262. The controller is always ready to accept a subcommand. However, if the  $\mu$ PD7262 executes a disk command while already busy (CB = 1), it disables other disk commands.

Disk subcommands must be executed individually, not as a group.

#### **Disk Command Operation Phases**

The  $\mu$ PD7262 executes disk commands sent from the host system in three distinct phases.

**Command Phase (C-Phase).** When the  $\mu$ PD7262 is in the idle state (CB = 0), the host system sends command parameters to the data FIFO register in the order specified for each command. It then writes the command code to the command register. The following disk commands have no command parameters: detect error, sense unit status, sense seek status, and recalibrate.

**Execution Phase (E-Phase).** The  $\mu$ PD7262 executes the disk commands specified by the command parameters.

**Result Phase (R-Phase).** The  $\mu$ PD7262 places the result information into the data FIFO register. After reading the contents of the status register, the host system reads the number of result bytes specified for the disk command, as required by the user, from the data FIFO register.

For certain disk command operations—such as read, write, and scan—a value that was updated during command execution will be set into an R-phase parameter with the same name as the parameter in the C-phase so that it may be used by subsequent commands. The following commands have no result parameters: specify 0, 1, and 2.

#### **Disk Command Set**

The 22 commands and four subcommands are described in the following tables.

Table	Description
8	Disk command groups
9	Disk command operations
10	Disk command parameters
11	Disk subcommands

#### Table 8. Disk Command Groups

Group	Command	Description
Initialize	Group assign	Assigns group numbers to each of seven drives
	Specify 0	Sets the timer constants.
	Specify 1, Specify 2	Sets operation parameters for the drive group.
	Get internal information	Reads set parameters specified by group assign and specify 0-2 com- mands.
Send	Send	Sends serial commands to the specified drive.
	Send extended	Sends serial commands to the specified drive (used when ESDI command is expanded).
Sense	Sense seek status	Reads the completion status of seek operations at drives.
	Sense unit status	Reads the drive status.

Group	Command	Description						
Seek	Recalibrate	Positions the read/write head to track 0.						
	Physical seek	Positions the read/write head to a specified physical cylinder.						
	Logical seek	Positions the read/write head to a specified logical cylinder.						
Vrite	Write track format	Writes track format for each trac to a maximum of 65,536 tracks.						
	Write sector format	Specifies a starting sector and writes format on each sector to a maximum of one track.						
	Write data	Specifies a sector and transfers the host processors data for that sector.						

# Table 8. Disk Command Groups (cont)

Table 8.	Disk Comm	and Groups (cont)
Group	Command	Description
Read	Read ID	Transfers the sector ID to the host processor.
	Read data	Specifies a sector and transfers the sector data to the host processor.
	Read diagnostic	Transfers data to the host proces- sor without reading ID.
	Verify ID	Verifies ID on the track with the host processor's data.
	Check	Specifies a sector to check for sec- tor data error.
	Scan	Compares data sector-by-sector with host processor's data to de- tect the matching sector.
Error handling	Detect error	Generates error correction code (ECC) information.

							Paran	neters					
Command	Phase	A ₀	R/W	D7	D6	D5	D4	D3	D2	D1	DO		Remarks
Group	Command	0	W			-	G	N1			-		
assign	-	0	w				GI	12	parama			-	
	· · ·	0	w	· .			G	13				'	
	-	0	w				G	N4				-	
	-	0	w	·			G	N5				-	
	-	0	w				G	N6				-	
	-	0	w		· · · · ·		G	N7				- 	
		1	w	0	0	1	0	0	1	0	0	-	
	Result	1	R				S	ſR				-	
		- 0	R				E	ST					
Specify 0	Command	0	w		-		TI	ΛE					2
		0	W				CC	MT					
	-	0	w				CE	тн				-	
		0	W				CE	TL	· .			-	
	-	1	W	0	0	1	0	1	0	0	0		
	Result	1	R				S	<b>R</b>				-	
Specify 1	Command	0	w				мс	DE				See fig	ure 19.
		0	w				DT	LH				1.1	
	-	0	w				DT	'LL				-	
	-	0	w				ES	5N				-	
	-	0	w				CC	ЭН		· .		-	
	-	0	W				C	)L				-	
		1	w	0	0	1	0	1	0	G1	GO		
	Result	1	R				S	rr R				-	



					1.0		Paran	neters				
Command	Phase	A	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Remarks
Specify 2	Command	0	w				AB	SP				·
		0	W				DE	SP				
		0	W				Gl	키니		n National		na an a
		0	W				PL	OL	\$	1 - 1 - 1 - 1 1 - 1		
		0	W				GF	P2L			*	
		0	W				Eł	ΗN	,			EHN byte can be omitted.
		1	W	0	. 0	1	0	1	1	G1	G0	
	Result	1	R				S	TR		1.4		a a chuir an
Get	Command	0	W				1	S			Sale i .	See figure 20.
internal information		1	W	0	0	1	0	0	0	0	0	
······································	Result	1	R				S	TR			s	IIS determines the number of bytes
		0	R				· II	F1				
		0	R				- 11	=2				and the second secon
		0	R				10	F3	1. 18 A			a de la companya de La companya de la comp La companya de la comp
		0	R	1			11	-4				
		0	R				11	-5		en e		
		0	R					F6				
		0	R				11	F7				
Send	Command	0	W		· ·	~	CI	νн	· . ·	-		See figure 21.
		0	W				C	WL				
		1	W	0	0	1	1	··· 1·	DS3	DS2	DS1	
	Result	1	R	·			S	TR				
		0	R				E	ST				
		0	R				RD	тн	с			Specified depending on CWH.
		0	R				R	DTL				
Send	Command	0	W		~		TM	IOD			-	See figure 22.
extended		0	W				CI	NH				
		0	w			· · ·	C	WL				
		1	W	0	1	. 0	0	1	DS3	DS2	DS1	
	Result	1	R				S	TR	· ·			
		0	R				E	ST				
		0	R		- 0		RD	тн				Specified depending on TMOD.
		0	R				R	DTL				· · · · · · · · · · · · · · · · · · ·
Sense	Command	1	W	~0	0	0	1	0	0	0	0	
seek	Result	1	R	- Andre			S	TR				
status		0	R		· .	······	s	CST				•
		0	R				SE	EST				•
		0	R				SI	3ST				•

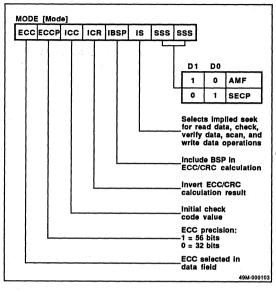
							Param	neters				
Command	Phase	A ₀	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Remarks
Sense unit	Command	1	W	0	0	1	1	0	DS3	DS2	DS1	······································
status	Result	1	R				ST	R				-
	-	0	R				ES	ST				-
	-	0	R				D	ST				See figure 23.
	-	0	R				SS	тн				-
	-	0	R				SS	TL				
Recalibrate	Command	1	w	0	1	0	1	0	DS3	DS2	DS1	
	Result	1	R				S	R				<b></b>
	-	0	R				E	ST				_
Physical	Command	0	w	0	0	0	0		PC	NH		
seek	-	0	w				PC	NL				-
		1	w	0	1	1	0	0	DS3	DS2	DS1	-
	Result	1	R				S	R				_
		0	R				E	ST	<u>a. a</u>		· .	-
Logical	Command	0	w				LC	NH				
seek	-	0	w				LC	NL	······································		·····	-
	-	0	w				TC	эн				TCOH and TCOL can be
	-	0	w				TC	OL				⁻ omitted
	-	- 1	w	0	1	1	0	1	DS3	DS2	DS1	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
	Execution				· · · · · · · · · · · · · · · · · · ·							Seek operation
	Result	1	R				S	R				
	-	0	R				E	ST		- 'ax - <u>ar</u> - an		-
Write track	Command	0	w				Pł	IN				
format		0	W				TC	гн				_
	-	0	w				тс	TL				-
	· · · · ·	0	w				DF	AT				-
	-	1	w	0	1	1	1	0	DS3	DS2	DS1	
	Execution	0	W			a an an						Transfers IDs of the sectors on the track.
	Result	1	R				S	R				
	-	0	R				E	ST				-
	-	0	R		·····		PH	IN				-
		0	R				TC	гн				-
	-	0	R				тс	TL		· · ·		-
	-	0	R				DF	AT				-



							Parar	neters				
Command	Phase	Ao	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Remarks
Write	Command	0	W	0	0	0	0	0	1	FA	SK	
sector format		0	W				P	HN				
		0	W				P	SN				
		0	w				D	PAT				
		0	W				S	СТ				
		1	W	0	1	1	1	0	D\$3	DS2	DS1	
	Execution	0	w									Transfers IDs of the specified sectors.
	Result	1	R				S	TR				
		0	R				E	ST				
		0	R				P	HN				
		0	R				P	SN				
		0	R				D	PAT		. '		
		0	R				S	СТ				
Verify ID	Command	0	W				P	HN				
		0	W				P	SN				
		0	W				SC	тн				
		0	W				S	CTL				
		1	W	1	0	0	0	SK	D\$3	DS2	DS1	
	Execution	0	W	- 19-1 -			4					Compares ID
	Result	1	R				S	TR				
		0	R				E	ST				
		0	R				P	HN				
		0	R				P	SN				
		0	R				SC	тн				•
		0	R				S	CTL				
Read ID	Command	0	W				P	HN				
		0	W				P	SN				•
		0	W				SC	тн				•
		0	W					CTL				•
		1	w	1	0	0	1	SK	DS3	DS2	DS1	•
	Execution	0	R									Transfers ID
	Result	1	R	·····			S	TR				<u></u>
		0	R					ST				• 
			R		*****			HN				• · · · · · · · · · · · · · · · · · · ·
		0	R					SN				•
			R					стн		······		
			R					CTL				•

							Param	eters				
Command	Phase	A ₀	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Remarks
Read data	Command	0	w				LC	NH				
	-	0	w				LC	NL				-
	-	<u>`</u> 0	w			1	LH	IN				-
	-	0	w				LS	N				-
	-	0	W				FL	AG				-
	-	0	w				SC	гн				<b>-</b> .
	-	0	W				SC	TL				-
	-	0	w				PH	IN				PHN byte can be omitted,
		1	w	1	0	1	1	EC	DS3	DS2	DS1	
	Execution	0	R									Transfers data
	Result	1	R			- <u> </u>	ST	'n				
	-	0	R				ES	БТ				-
	-	0	R				LC	NH	******			If sector execution is success-
	-	0	R				LC	NL				full, the logical parameters point to the next sector. If sec-
	. –	0	R				LH	IN				tor execution is not successful
		0	R				LS	N		· · · · · · · · · · · · · · · · · · ·		the logical parameters point to the aborted sector.
		0	R			е., ; ;	FL	AG			· · · · · · · · · · · · · · · · · · ·	
		0	R				SC	тн				_
		0	R				SC	πL				•
Detect	Command	1	w	0	1	0	0	0	0	0	0	
error	Result	1	R				ST	'n				~
	. –	0	R		,		EAG	ЭН				See figure 24.
	-	0	R				EA	)L				-
	-	0	R				EP	T1				See figure 25.
	-	0	R				EP	T2				-
	-	0	R				EP	ТЗ				-
Verify data	Command	0	W				LC	NH				
	-	0	w				LC	NL				-
	-	0	w				LH	IN				-
	-	0	W				LS	N				-
	-	0	w				FL	AG				<b>—</b>
	-	0	w				SC	тн				-
	-	0	W				SC	TL				-
	-	0	W		Le		PH	IN				PHN byte can be omitted
	-	1	W	1	<b>1</b> · _	1	0	0	DS3	DS2	DS1	
	Execution	0	w									Compares data




							Param	eters				
Command	Phase	Ao	R/W	D7	D6	D5	D4	D3	D2	D1	DO	Remarks
erify data	Result	1	R				ST	R				
cont)	-	0	R				ES	Т				<b>-</b>
	-	0	R				LCN	NH				-
	-	0	R				LCI	NL				
	-	0	R				LH	N				•• •
	-	0	R				LS	N				-
	-	0	R				FL/	G				-
	- - 5 -	0	R				SC	гн				-
	-	0	R				SC	TL				-
Check	Command	0	w				LCI	NH				
	-	0	w			······································	LCI	NL				
	-	0	w		,		LH	N				
	- <u>-</u>	0	w				LS	Ň				-
		0	W		· .		FL/	G				
1		0	w				SC	ГН				-
		0	W				SC	TL				-
		0	w		·		PH	N				PHN byte can be omitted.
		1	w	1	1	0	0	0	DS3	DS2	DS1	
	Execution					1.1						Data check
	Result	1	R				ST	R				
	-	0	R				ES	т				
		0	R				LCI	NН				-
	-	0	R				LCI	NL				-
		Ó	R				LH	N				<b>-</b>
	-	0	R				LS	N				-
	-	0	R				FL/	G				-
		0	R				SC	ГН				
		0	R				SC	TL				-
Scan	Command	0	w				LCI	ŇН				
	-	0	w		·		LCI	NL				<b></b> .
		0	w				LH	N				-
	-	0	W				LS	N			· ·	-
	-	0	w				FL/	\G				- 
	na san san san san san san san san san s	0	W				SC	ГН		· · ·		-
		0	W				SC	TL				
		0	w			·	PH	IN				PHN byte can be omitted
	-	1	w	1	1	0	1	0	DS3	DS2	DS1	
	Execution	0	w									Compares data

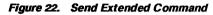
# Table 9. Disk Command Operations (cont)

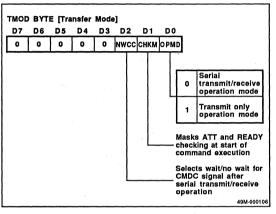
							Parameters				_
Command	Phase	A ₀	R/W	D7	D6	D5	D4 D3	D2	D1	DO	Remarks
Scan (cont)	Result	1	R				STR				Last sector to be compared. In
		0	R				EST				the case of NCI, the next to the last sector is to be compared.
		0	R				LCNH				_
		0	R				LCNL				
	_	0	R				LHN				-
	-	0	R		•		LSN				
		0	R				FLAG				_
	_	0	R				SCTH				_
		0	R				SCTL				-
Read	Command	0	W				PHN				
diagnostic		0	W				PSN				-
		0	W				SCTH				
	· _	0	w				SCTL				_
	-	1	w	1	0	1	0 SK	DS3	DS2	DS1	
	Execution	0	R				·				Transfers data
	Result	1	R				STR				-
		0	R				EST				-
	· · · · ·	0	R				PHN				_
	· ·	0	R				PSN				e
	_	0	R				SCTH				_
		0	R				SCTL				
Write data	Command	0	W				LCNH				_
	_	0	w				LCNL				_
	-	0	W				LHN				
	-	0	W				LSN				_
	-	0	w				FLAG				_
	-	0	w				SCTH				_
	_	0	W				SCTL				•
	_	0	W				PHN				PHN byte can be omitted
		1	W	1	1	1	1 0	DS3	DS2	DS1	
	Execution	0	w								Transfers data
	Result	1	R				STR				_
	-	0	R				EST				_
	_	0	R				LCNH				_
		0	R				LCNL				-
	-	0	R				LHN				
	-	0	R				LSN				_
	-	0	R				FLAG				_
	-	0	R				SCTH				
	-	0	R				SCTL				-








#### Figure 20. Get Internal Information Command


			I	IS				IIF	
D7	D6	D5	D4	D3	D2	D1	DO	Contents	# of Bytes
0	0	0	0	x	x	X	x	Group Assign Parameters	7
0	0	0	1	X	x	0	0	Specify 0 Parameters	4.
0	0	0	1	x	x	G1	G0	Specify 1 Parameters	6
0	0	1	0	х	x	G1	G0	Specify 2 Parameters	6
								·	

49M-000104

#### Figure 21. Send Command Word High, Low (CWH, CWL)

	CW	'H		CWL										
D15	Ď12	D11	D8	D7	D6	D 5	D 4	D 3	D 2	D1	DO			
Comm funct		Comma modif		0	0	0	0	0	0	0	0			
Comm			mma	nd	para	met	ər							









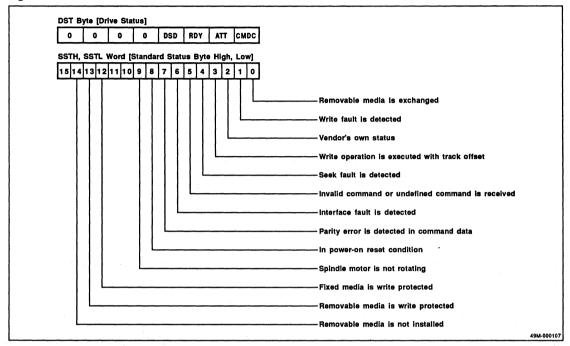
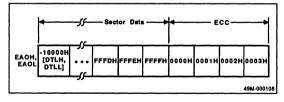
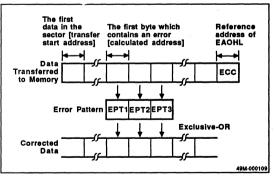





Figure 24. Detect Error Command; Error Address Offset (EAO)







# Table 10. Disk Command Parameters

Parameter	Function
ABSP (Address byte sync pattern)	Specifies the pattern to be synchronized with bytes in an address area.
CETH/CETL (Command end timer high or low)	Specifies the maximum time to wait for the CMDC signal after a serial command is sent to a disk drive. Timer: ts x (CETH, CETL). (If CETH, CETL = 0000, timer = ts x 65,536.)
COH/COL (Cylinder offset high or low)	Specifies the offset value to determine the cylinder to be seeked in an implied or logical seek operator. (COH, COL): 0000 — FFFF.
COMT (Communications timer)	Specifies the maximum time for checking a protocol error during serial communications. Time = ts x COMT (If COMT = 00, time = ts x 256).
CWH/CWL (Command word high or low)	Specifies a $\mu\text{PD7262}$ serial command code which is sent to a disk drive when executing the send or send extended command.
DBSP (Data byte sync pattern)	Specifies the pattern to sychronize with the bytes in a data area.
DPAT (Data pattern)	Specifies the data pattern to be written to the data field when formatting a sector.
DST (Drive status byte)	Indicates the status of the disk drive status signal.
DS1, DS2, DS3 (Drive select 1, 2, 3)	Specifies a disk drive number.
DTL H/DTLL (Data length high or low)	Specifies the length of a data field. (DTLH, DTLL): 0080 — FFFF (If DTLH, L = 0000, number of bytes = 65,536).
EAOH/EAOL (Error address offset high or low)	Indicates the location of a correctable ECC error by using an offset value from the first ECC byte to the first byte of the ECC error.
EC (Error correction)	Specifies whether or not to generate the ECC error correction pattern when the read data command is executed. When EC = 1, correction pattern is generated.
EHN (End head number)	Specifies the number of the last read/write head to be selected. EHN: 00 $-$ 4F.
EPT1, EPT2, EPT3 (Error pattern 1, 2, 3)	Three-byte data pattern used to correct an ECC error byte.
ESN (End sector number)	Specifies the last sector number within a track. ESN: $0 - FF$ .
EST (Error status byte)	Indicates the status of the completion of a disk command execution.
FA (Format Address Area)	Specifies formatting to be performed only in the address areas. For hard sector: from lead- ing edge of sector pulse to end of address pad. For soft sector: from beginning of ISG to end of address area.
FLAG (Flag)	Specifies the FLAG pattern within the IDs.
G0, G1 (Group 0, 1)	Specifies a group to set parameters for specify 1 or specify 2 command execution. (Binary encoded.)
GN1-7 (Group number)	Each byte specifies a group number 1, 2, or 3 corresponding to drive 1 through 7, respectively. An FF value indicates that the drive is not connected.
GP1L (Gap 1 length)	Specifies the length of Gap 1 (portion that follows leading edge of index pulse in LSG).
GP2L (Gap 2 length)	Specifies the length of Gap 2 FSTG + (portion that precedes leading edge of index pulse in ISG).
IIF 1-7 (Internal information 1-7)	Indicates parameters for operations set in the $\mu$ PD7262.
IIS (Internal information selection)	Specifies parameters for operations to be read from the $\mu$ PD7262.

#### Table 10. Disk Command Parameters (cont)

Parameter	Function				
LCNH/LCNL (Logical cyclinder number high or low)	Indicates a logical cylinder number on the media.				
LHN (Logical head number)	Indicates a logical head number on the media.				
LSN (Logical sector number)	Indicates a logical sector number on the media.				
MODE (Mode)	Specifies the operation mode of the $\mu$ PD7262.				
PCNH/PCNL (Physical cylinder number high or low)	Specifies the seek destination cylinder of a physical seek operation. These parameters are retained in the $\mu$ PD7262 after execution of a command.				
PHN (Physical head number)	Specifies the physical head number (PHN $\leq$ EHN).				
PLOL (PLO length)	Specifies the PLO SYNC length.				
PSN (Physical sector number)	Indicates a physical sector number.				
RDT H/RDTL (Returned data high or low)	Indicates the result status that a drive sends back to the $\mu$ PD7262 in response to a serial command.				
SBST (Seek busy status byte)	Indicates a drive that is in a seek operation. Bits 1-7 correspond to drives 1-7, respectively.				
SCST (Seek complete status byte)	Indicates a drive that has completed a seek operation. Bits 1-7 correspond to drives 1-7, respectively.				
SCT/SCTH/SCTL (Sector count/sector count high or low)	Indicates the number of sectors to be processed. If SCT = 00, number of sectors = 256. If SCT H, SCTL = 0000, number of sectors = 65,536.				
SEST (Seek error status byte)	Indicates a drive in which a seek error has occurred. Bits 1-7 correspond to drives 1-7, respectively.				
SK (Skew)	Specifies a skew access operation for hard sector only; see "SKEW FUNCTION" section.				
SST H/SSTL (Standard status byte high or low)	Indicates the standard status of a drive.				
STR (Status register)	Indicates the internal status of the µPD7262.				
TCT H, TCTL (Temporary count high or low)	Indicates the number of tracks to be formatted. If TCTH, TCTL = 0000, then number of tracks = 65,536.				
TCOH/TCOL (Temporary cylinder offset high or low)	Indicates a temporary offset for a logical cylinder number to determine the cylinder to be seeked.				
TIME (Time)	Sets the internal reference time (ts) for ESDIC operation. ts = $480 \text{ CLK x}$ time. (if time = 0, ts = $480 \text{ CLK x} 256$ ).				
TMOD (Transfer mode)	Specifies the serial communications transmit/receive mode.				

# Table 11. Disk Subcommands

Subcommand	Description	D7	D6	D5	D4	D3	D2	D1	DO
Chip reset Resets the μPD7262.		0	0	0	0	0	0	0	1
Clear data FIFO	Clears the FIFO data.	0	0	0	0	0	0	1	0
Mask SRQ interrupt	sk SRQ interrupt Masks SRQ interrupt.		0	0	0	0	1	Ó	0
Clear command end bit Clears a disk command executio (completion condition).		0	0	0	0	1	0	0	0

# **Result Status**

The result status provides information with which the  $\mu$ PD7262 informs the host system of the conditions

#### Table 12. Error Status Byte (EST)

Bit No.	Name	Contents					
D7	MS/C (Missing seek/ correctable error)	MS is selected when the IDE bit of STR is set to 0, and C is selected when the IDE is 1.					
£ ,		<ul> <li>When IDE = 0</li> <li>0 Indicates that an error has occurred in implied seek or multicylinder operation.</li> <li>1 Indicates that there is no implied seek or multicylinder operation, or that they were executed normally.</li> </ul>					
		When IDE = 1         0       A noncorrectable error has occurred.         1       A correctable error has occurred.					
D6	OVR (Overrun)	Indicates that the data FIFO has overflowed or underflowed during data transfer operation.					
D5	DBY (Drive busy)	Indicates an attempt to transmit a serial command to a disk drive that is executing a serial command.					
D4	ATN (Attention)	Indicates detection of an ATT signal from a disk drive.					
D3	NR (Not ready)	Indicates that the disk drive is not in the ready state.					
D2	ND (Not data)	Indicates that the specified sector is not found.					
D1	PE (Parity error)	Indicates that a parity error was detected during serial communications.					
DO	MBSP (Missing BSP)	Indicates that the specified BSP is not found.					

# **APPLICATIONS**

# Interfacing With the System Bus

Figure 26 shows an example of how the  $\mu$ PD7262 interfaces with the system bus. The following types of devices are used.

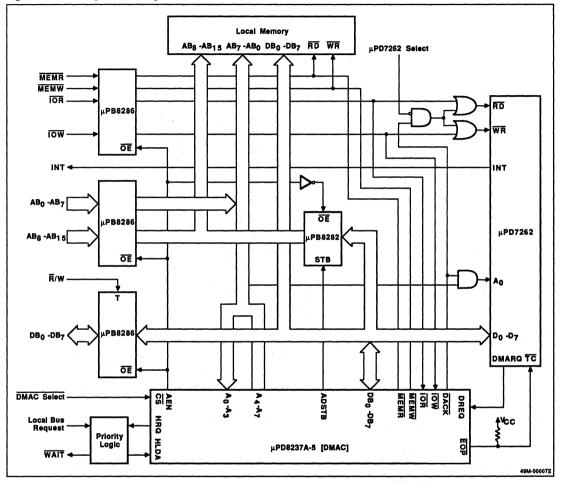
μPD71071 DMA controller μPD71082 8-bit latch μPD71086 8-bit bus transceiver

To prevent access by an external bus during the DMA cycle, the AEN signal of the  $\mu$ PD71071 is used to disable the bus transceivers.

# Interfacing With the Disk Drive

Figure 27 shows an example of the interface between the  $\mu$ PD7262 and hard-disk drive. In the example, the external data selector and demultiplexer combination is used to:

following a disk command execution. The first result status byte is the error status byte (table 12), which


indicates the condition of command termination.

- Separate the read/write head select signals
- Output data when executing a read/write disk command
- Control the different signals associated with the serial commands.

The demultiplexer and multiplexer combination provides signals that the disk drives can input or output independent of the drive select signals.



Figure 26. Example of the System Bus Interface





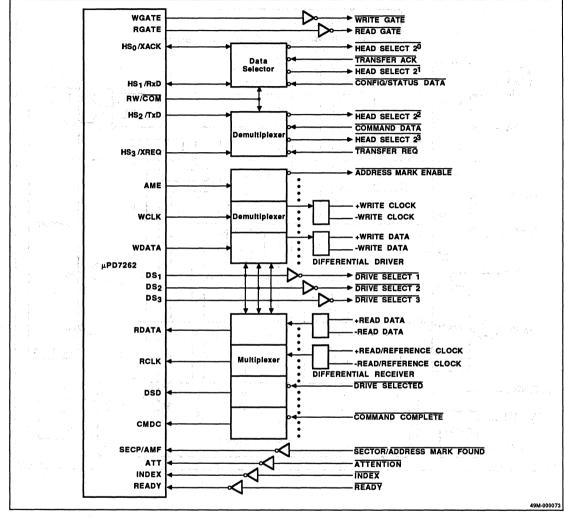
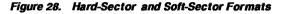
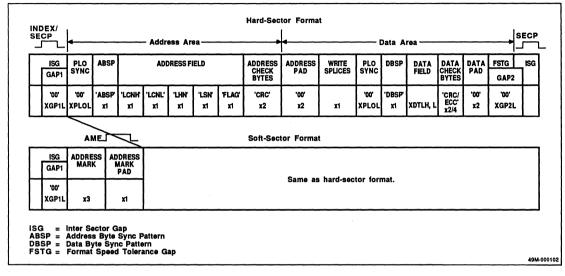





Figure 27. Example of the Interface Between the µPD7262 and a Hard-Disk Drive

# SECTOR FORMATS

Figure 28 shows the hard-sector and soft-sector formats for a hard-disk drive.





6



6-66



#### Description

The  $\mu$ PD72061 is a hard-disk controller featuring low power consumption and high-speed data transfers. Based on the  $\mu$ PD7261A/B, it provides control signals for interfacing SMD/SMD-E and ST506/412 type drives. The sophisticated instruction set minimizes the software overhead for the host microprocessor and gives the user flexibility in selecting operating parameters.

The DMA interface signals of the  $\mu$ PD72061 facilitate multisector and multitrack data transfers. Extensive error reporting, verify commands, and CRC/ECC data error checking assure reliable controller operation.

An 8-byte FIFO is used for loading command parameters and obtaining command results. This makes structuring of drivers a simple task. The FIFO also buffers data during DMA read/write operations.

#### **Features**

- Flexible interface supports SMD/SMD-E and ST506/412 type drives
- Programmable track format
- Controls up to eight drives in SMD-type mode, four drives in ST506-type mode

- Parallel seek operation
- Multisector and multitrack transfer
- Data scan and data verify
- High-level commands, including:
  - Read Data, Write Data, Scan Data, Verify Data
  - Read ID, Verify ID
  - Check, Seek (normal or buffered), Specify
  - Read Diagnostic (SMD only), Detect Error
  - Format
- NRZ or MFM format
- Read/write clock frequency: 24 MHz max
- Error detection and correction
- $\square$  µPD7261A/B compatible
- □ Single +5-volt power supply
- 40-pin plastic DIP, 52-pin plastic miniflat, 52-pin PLCC

#### **Ordering Information**

Part Number	Package				
μPD72061C	40-pin plastic DIP				
μPD72061GC-3B6	52-pin plastic miniflat				
μPD72061L	52-pin PLCC				







# μPD72111 Small Computer System Interface Controller

#### Description

The  $\mu$ PD72111 is a small computer system interface controller (SCSIC) conforming to ANSI X3T9.2/82-2 Rev.17B. The  $\mu$ PD72111 SCSI controller offers a true 16-bit CPU data bus but also can be interfaced to an 8-bit CPU data bus.

The  $\mu$ PD72111 contains functions for controlling the sequence between bus phases so that host processor overhead can be reduced. In addition, single-ended type bus drivers/receivers are internally provided on the SCSI bus side so that system size can be reduced.

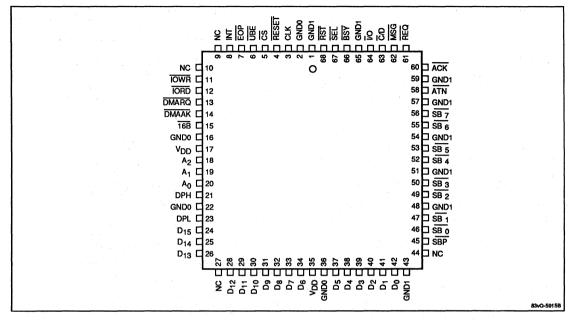
The  $\mu$ PD72111 was developed utilizing NECs 1.2- $\mu$ m CMOS process technology for low power consumption. It operates from a single 5-volt supply and is available in plastic DIP, PLCC, and miniflat packages.

#### Features

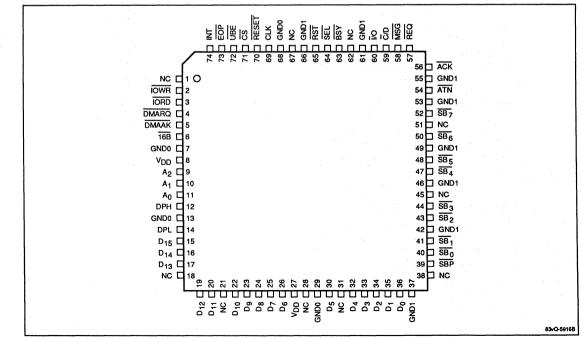
- Conforms to ANSI X3T9.2 Rev.17B
  - Arbitration function
  - Disconnection/reconnection function
  - Parity generation and check function
- Two different data transfer modes
  - Synchronous: 4.0 Mbytes/second max; offset value selectable from 1 to 8
  - Asynchronous: 4.0 Mbytes/second max target
- I6 commands reduce host CPU load; automatic execution of standard operation as SCSI controller can be performed by a single command
- Operates as initiator or target
- Internal single-ended type SCSI bus drivers (48-mA) and Schmitt-type receivers
- CPU data bus width selectable (16 bits or 8 bits)
- Programmed transfer or DMA transfer selectable
- Internal 24-bit transfer counter
- FIFO-type data buffers on SCSI bus side and CPU bus side

#### **Ordering Information**

Part No.	Package
μPD72111CW	64-pin plastic shrink DIP (750 mil)
μPD72111L	68-pin PLCC
μPD72111GJ-5BJ	74-pin plastic miniflat


#### **Pin Configurations**

#### 64-Pin Plastic Shrink DIP (750 mil)


GND1		$\sim$	64	RST	
GND0			63 L	SEL	
CLK	<b>д</b> з		62	<u>BSY</u>	
RESET	₫4		61	GND1	
CS			60 L	JĪO	
UBE	<b>G</b> 6		59 E	∃ C/D	
EOP			58	] MSG	
	ds –		57	] REQ	
.=	<b>D</b> 9		56		
IORD	<b>[</b> 10		55	] GND1	
	<b>C</b> 11		54	ATN	
DMAAK	<b>C</b> 12		53	GND1	
16B	<b>[</b> 13		52	] SB7	
	<b>C</b> 14		51	] SB6	
	<b>[</b> 15		50	GND1	
-	<b>[</b> 16		49	] SB5	
•	<b>[</b> 17		48	3 SB4	
•	<b>[</b> 18		47 F	GND1	
	L 19		46 E	SB3	
GND0	<b>Q</b> 20		45	SB ₂	
DPL	<b>2</b> 1		44 E	GND1	
D ₁₅	C 22		43	SB1	
14	23		42 E	SB0	
	24		41 E	SBP	
	<b>25</b>		40 E	GND1	
	26		39		
	<b>2</b> 7		38	] D ₁	
			37	] D ₂	
Ŭ	29		36	] D3	
			35	] D ₄	
D ₆			34	] D ₅ ] GND0	
VDD	32		33	_ GND0	
					83vQ-5913A



#### 68-Pin PLCC



#### 74-Pin Plastic Miniflat



# **Pin Identification**

BSY

Ĉ/D

ī/0

I/O

I/O

I/O

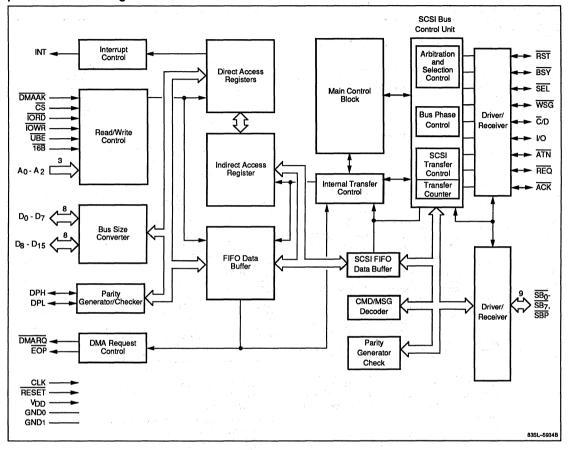
Symbol	I/O	Signal Function				
CPU In	terfa	ce Pins				
A ₀ -A ₂	In	Address bus, bits 0-2. Specifies direct access register to be accessed.				
CS	In	Chip Select. Enables internal register accessing.				
D ₀ -D ₁₅	I/O	Data bus, bits 0-15. Function depends on bus mode.				
		16-Bit Bus Mode				
		$\begin{array}{llllllllllllllllllllllllllllllllllll$				
		8-Bit Bus Mode				
		D ₀ -D ₇ 8 data bits D ₈ -D ₁₅ High-impedance state				
DMAAK	ln.	DMA Acknowledge. DMA service enable signal input.				
DMARQ	Out	DMA Request. DMA service signal output.				
DPH	I/O	Data Parity High. In 16-bit bus mode, parity bit for data bits $\rm D_8-D_{15}.$ In 8-bit bus mode, this pin becomes high impedance.				
DPL	I/O	Data Parity Low. Parity bit for data bits D ₀ -D ₇ .				
EOP	Out	End of Process. Open-drain output that terminates DMA service data transfer.				
INT	Out	Interrupt Request. Open-drain output to CPU.				
IORD	In	I/O Read. Enables CPU to read contents of $\mu$ PD72111 internal register.				
IOWR	In _.	I/O Write. Enables CPU to write data to $\mu$ PD72111 internal register.				
UBE	In	Upper Byte Enable. In 16-bit bus mode, indicates that upper 8 bits of data bus are valid; UBE and address $A_0$ determine how internal register is accessed.				
		A0 UBE Register Access				
		0 0 16-bit units (D ₀ -D ₁₅ ) 0 1 8-bit units (D ₀ -D ₇ )				
		1 0 8-bit units (D ₈ -D ₁₅ ) 1 1 Not allowed				
16B	In	16-Bit Bus. Selects bus mode: 0 = 16-bit; 1 = 8-bit.				
SCSI II	nterf	ace Pins				
ACK	I/O	Acknowledge. Indicates that initiator has accepted the target information transfer request.				
ATN	I/O	Attention. Indicates that initiator is requesting the message-out phase.				

Busy. Indicates that another SCSI device is

currently using the bus.

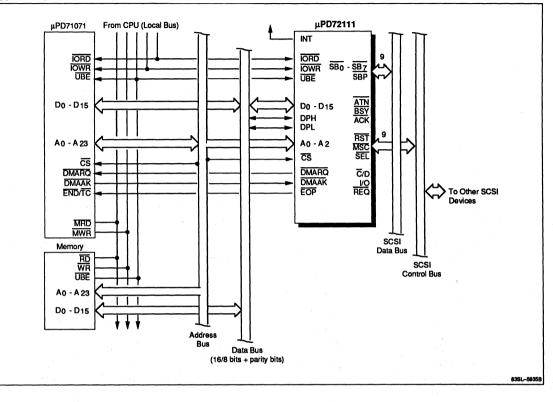
Command/Data.

Input/Output.


Symbol	1/0	Signal	Function	i É	
MSG	1/0	Messag	je.		
		Combi bus ph		i these sig	nals determine the SCS
		MSG	C/D	ī/O	Bus Phase
		1	1	$\frac{\sqrt{3}}{1}$	Data-out
		i	i	ò	Data-in
		1	0	1	Command
		1	0	0	Status
		0	0	1	Message-out
		0	0	0	Message in
REQ	1/0	Reque	sts transfe	er of targe	et information.
RST	1/0	immed		eases SC	is detected, μPD72111 CSI bus, sets INT pir le state.
SB ₀ - SB ₇	I/O	SCSI	lata bus, l	bits 0-7.	
SBP	1/0	Parity	bit for SC	SI data b	us.
SEL	I/O	Indicat execut		e select/re	select operation is being
Other I	Pins				
	Pins In	Extern	al clock.		
CLK		Extern System			
CLK	In		n reset.		
CLK RESET GND0	In In	System Ground	n reset.	round (0 ^v	V).
Other I CLK RESET GND0 GND1 V _{DD}	In In -	System Ground Driver/	n reset. I (0 V).	·····	vj.

- (1) Each SCSI interface pin has an open-drain driver and a Schmitt receiver so that the  $\mu$ PD72111 can be directly connected to a single-end SCSI bus.
- (2) After reset, the status of each output pin and each I/O pin is high-impedance except:

DMARQ	High level
EOP	High level
INT	Low level




# µPD72111 Block Diagram





# **Typical System Configuration**



6



# **Internal Blocks**

Name	Description
SCSI bus driver/receiver	Open-drain driver for a single-end SCSI bus and a Schmitt-type receiver.
Arbitration/ selection control	Controls execution sequence of arbitration, selection, and reselection phases; consists of a timing generator and a sequencer.
Bus phase control	Outputs a signal that specifies bus phase type; also monitors bus phase to detect a transition.
SCSI transfer control	Controls data transfer operation on the SCSI bus in each data transfer phase: data-in, data- out, status, message-in, and message-out.
	Controls SCSI protocol according to REQ and ACK signals.
	Controls data transfer execution/termination according to SCSI FIFO status.
· · · · ·	Contains a 24-bit transfer counter that manages the amount of transfer data on the SCSI bus.
SCSI FIFO data buffer	Eight-bit, eight-stage asynchronous FIFO that adjusts difference between data transfer timing of internal and external SCSI buses; also used for queuing received data for synchronous data transfer.
Command/ message decoder	Decodes received command and message; generates decoded signal that specifies the next sequence.
SCSI parity generator/ checker	Generates parity that will be attached to data output to SCSI data bus; or checks parity attached to data read out from SCSI data bus.
Main control	Sequencer that controls microprogram, operation of each block, and control sequence.
Internal transfer control	Controls data transfer between SCSI FIFO and FIFO or between registers in the indirect access register block.
	Controls 8-bit/16-bit conversion when host CPU is set to 16-bit bus mode.
Direct access registers	Comprises registers that can be directly accessed from host CPU, such as command register, status register, etc.
Indirect access registers	Comprises registers that cannot be directly accessed from host CPU, but that can be accessed through the window in the direct access register.
FIFO data buffer	This 16-bit, eight-stage asynchronous FIFO increases usage rate of host bus. In 8-bit mode, only the lower 8 bits are used; in 16-bit mode, accessing in 8-bit units is not possible.
Interrupt control	Sets/resets interrupt request signal.
Read/write control	Controls read/write operation of various internal registers; also controls 8-bit accessing in 16-bit mode.
Bus-size converter	Converts bus size according to bus mode.

Name	Description				
Host parity generator/ checker	Generates parity that will be attached to data output to CPU data bus; or checks parity attached to data read out from CPU data bus.				
DMA request control	Generates DMA service request signal (DMARQ) according to FIFO status; also controls termina- tion of command operation by EOP signal.				

# **Absolute Maximum Ratings**

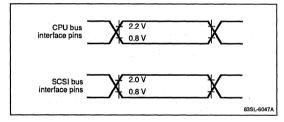
TA =	+25°C
------	-------

Supply voltage, V _{DD}	-0.5 to +7.0 V
Input voltage, VI	-0.5 to V _{DD} + 0.5 V
Output voltage, VO	-0.5 to V _{DD} + 0.5 V
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C

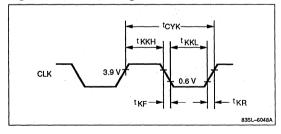
DC Characteristics  $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%$ 

Parameter	Symbol	Min	Max	Unit	Conditions
Low-level	V _{IL1}	0	0.8	۷	Other than CLK
input voltage	VIL2	0	0.6	V	CLK
High-level	V _{IH1}	2.2		1 <b>V</b> 2	CPU bus
input voltage	VIH2	2.0		V	SCSI bus
	V _{IH3}	3.9		v	CLK
Input hysteresis	V _{HI}	0.2		v	SCSI bus
Low-level	V _{OL1}	·	0.4	۷	I _{OL1} = 2.5 mA; CPU bus
output voltage	V _{OL2}		0.4	۷	$I_{OL2} = 48.0 \text{ mA}; \text{SCSI bus}$
High-level output voltage	V _{OH}	2.4		v	l _{OH} = -400 μA; CPU bus
Low-level input	ILIL1		-10	μA	V _I = 0 V; CPU bus
leakage current	ILIL2		-1.0	mA	V _I = 0 V; SCSI bus
High-level input	ILIH1		10	μA	$V_1 = V_{DD}$ ; CPU bus
leakage current	ILIH2		0.1	mA	$V_I = V_{DD}$ ; SCSI bus
Low-level output leakage current	LOL		-10	μA	V _I = 0 V; CPU bus

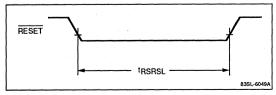
# **DC Characteristics (cont)**


Parameter	Symbol	Min	Max	Unit	Conditions
High-level output	ILOH1		10	μA	$V_{O} = V_{DD}$ ; CPU bus
leakage current	ILOH2		0.25	mA	$V_{O} = V_{DD}$ ; SCSI bus
Supply current	l _{DD}		100	mA	At 16 MHz

#### Capacitance


 $T_A = +25^{\circ}C; V_{DD} = 0 V; f = 1 Mhz$ 

item	Symbol Min	Max	Unit	Conditions
Input capacitance	Ci	20	pF	CPU bus; unmeasured pins at 0 V.
Output capacitance	Co	20	pF	
Input/output	CIO1	20	pF	-
capacitance	C _{IO2}	100	pF	SCSI bus; unmeasured pins at 0 V.


# Figure 1. Voltage Thresholds for Timing Measurements



#### Figure 2. Clock Timing







AC Characteristics; CPU Bus Interface  $T_A = -10$  to  $+70^{\circ}$ C;  $V_{DD} = +5.0$  V ±10%; see figure 1 for timing measurement voltage thresholds

Parameter	Symbol	Min	Max	Unit	Conditions
Clock (figure 2)					
CLK input cycle time	ţСЛК	60		ns	
CLK input high-level width	tккн	25		ns	
CLK input low-level width	^t ĸĸ∟	25		ns	· · · · · · · · · · · · · · · · · · ·
CLK input rise time	t _{KR}		10	ns	
CLK input fall time	^t KF		10	ns	
Reset (figure 3)					
RESET low-level width	^t RSRSL	16		tсук	
CPU Bus Read (figure 4)					
CS set time to IORD ↓	tSCSR	20		ns	
CS hold time from IORD ↑	^t HRCS	0		ns	
Address set time to IORD ↓	^t SAR	20		ns	
Address hold time from IORD ↑	^t HRA	0		ns	
DMAAK set time to IORD ↓	t _{SDAR}	20		ns	1 - 1 
DMAAK hold time from IORD ↑	^t HRDA	Q	1	ns	
IORD low-level width	^t RRL	80		ns	
IORD ↑ to data output delay time	^t ord		50	ns	
IORD ↑ to data float time	[‡] FRD	0	50	ns	
IORD ↑ to DMARQ ↑ delay time	^t ordq		80	ns	
CPU Bus Write (figure 5)					
CS set time to IOWR ↓	tscsw	20		ns	
CS hold time from IOWR ↑	tHWCS	0		ns	
Address set time to $\overline{\text{IOWR}}\downarrow$	^t SAW	20		ns	
Address hold time from IOWR ↑	4+wa	0		ns	-
DMAAK set time to IOWR ↓	^t SDAW	20		ns	
DMAAK hold time from IOWR ↑	^t hwda	0		ns	
IOWR low-level width	^t ₩WL	80		ns	
Data set time to IOWR ↑	t _{SDW}	20		ns	
Data hold time from IOWR ↑	t+wD	0		ns	
IOWR ↑ to DMARQ ↑ delay time	towda		80	ns	
Other CPU Bus (figure 6)					
IOWR ↑ to IORD ↓	t _{RVW}	80		ns	

# AC Characteristics; CPU Bus Interface (cont)

Parameter	Symbol	Min	Max	Unit	Conditions
IORD ↑ to IORD ↓ or IOWR ↓ recovery time	t _{RVR}	80		ns	
$\overline{\text{IORD}} \uparrow \text{to } \overline{\text{EOP}} \downarrow \text{delay time}$	t _{DREP}		40	ns	•
$\overline{\text{IOWR}} \uparrow \text{to } \overline{\text{EOP}} \downarrow \text{delay time}$	tOWEP		40	ns	
$\overline{\text{IORD}}\uparrow$ to INT $\downarrow$ delay time	t _{DRI}		40	ns	
IOWR ↑ to INT ↓ delay time	t _{DWI}		40	ns	
INT low-level width	t _{IIL}	2		^t СҮК	. ¹

#### AC Characteristics; SCSI Bus Interface

 $T_A = -10$  to  $+70^{\circ}$ C;  $V_{DD} = +5.0$  V  $\pm 10\%$ ; see figure 1 for timing measurement voltage thresholds

Parameter	Symbol	Min N	lax Unit Co	nditions
Arbitration (figure 7)				
Bus free detection to BSY response time	t _{DBFBY}	14	^t CYK	· ·
BSY ↓ to ID output delay time	^t DBYID	0	ns	t.
BSY ↓ to SEL ↓ delay time	^t DBYSL	36	ţсук	

#### Selection as initiator (figure 8)

		and the second sec
SEL ↓ to ID output delay time	t _{DSLID1} 20	tсүк
SEL ↓ to ACK, ATN output delay time	t _{DSLAK} 20	[†] СҮК
ACK, ATN output to BSY ↑ delay time	t _{DAKBY} 2	^t СҮК
BSY $\uparrow$ to BSY ↓ input valid delay time	t _{DBYBY1} 8	^t СҮК
BSY ↓ to SEL ↑ output delay time	t _{DBYSL1} 2	^t сук

#### Selection as target (figure 9)

BSY hold time from SEL ↓	tHSLBY1	0	ns	
ID set time from BSY 1	^t SIDBY	0	ns	
$\overrightarrow{\text{BSY}} \uparrow \text{to } \overrightarrow{\text{BSY}} \downarrow \text{output delay till}$	me t _{DBYBY2}	10	tсук	
ID hold time from BSY ↓	tHBYID1	0	ns	
SEL hold time from BSY ↓	tHEYSL1	0	ns	
ATN set time to SEL ↑	tSATSL	0	ns	
SEL ↑ to target output delay time	^t DSLTG	2	тсук	

#### Reselection as initiator (figure 10)

BSY hold time from $\overline{\text{SEL}}\downarrow$	tHSLBY2	0	ns	
ID set time to BSY ↑	^t SIDBY	0	ns	
Ī/O set time to BSY ↑	^t SIOBY	0	ns	

Parameter	Symbol	Min	Max Unit Conditions
SEL ↑ to ATN output delay time	^t dslat	2	tсүк
$\overrightarrow{\text{BSY}} \uparrow \text{to } \overrightarrow{\text{BSY}} \downarrow \text{output}$ delay time	^t овувуз	10	tсүк
ID hold time from $\overrightarrow{\text{BSY}}\downarrow$	theyid2	0	ns
SEL hold time from $\overline{\text{BSY}}\downarrow$	tHBYSL2	0	ns
SEL ↑ to BSY ↑ output delay time	^t dslby	2	ţсүк
Reselection as target (figu	re 11)		· · · ·
$\overline{\text{SEL}}\uparrow$ to ID output delay time	tDSLID2	20	tсук
SEL ↓ to target output delay time	tosltg	0	ns
ID output to Ī/O output delay time	^t DIDIO	0	ns
$\overline{\text{I/O}}$ input to $\overline{\text{BSY}}\uparrow$ output delay time	^t DIOBY	2	tсук
$\overrightarrow{\text{BSY}}\uparrow$ to $\overrightarrow{\text{BSY}}\downarrow$ input valid delay time	^t DBYBY4	8	<b>†СҮК</b>
$\overrightarrow{\text{BSY}} \downarrow \text{to } \overrightarrow{\text{SEL}} \uparrow \text{output delay} \\ \text{time}$	^t OBYSL2	2	tсук

Reception as initiator in asynchronous mode; data-in, status, and message-in phases (figure 12)

$\overline{\text{SEL}}\uparrow$ to phase input valid delay time	t _{DSLPH1}	0	ns
$\bar{I}/O\downarrow$ to data float delay time	t _{FIOD1}	0	
Phase set time to $\overline{\text{REQ}}\downarrow$	tSPHRQ1	400	ns
Data set time to $\overline{\text{REQ}}\downarrow$	tSDRQ1	5	ns
$\overrightarrow{\text{REQ}} \downarrow \text{to } \overrightarrow{\text{ACK}} \downarrow \text{output delay} \\ \text{time}$	^t DRQAK1	0	ns
Data hold time from $\overline{ACK} \downarrow$	tHAKD1	0	ns
REQ hold time from ACK ↓	tHAKRQ1	0	ns
REQ ↑ to ACK ↑ output delay time	^t DRQAK2	1	tсук
Phase hold time from ACK ↑	tHAKPH1	0	ņs

Transfer as target in asynchronous mode; data-in, status, and message-in phases (figure 13)

SEL ↑ to phase output delay time	t _{DSLPH2} 2	^t сук
$\overline{I/O}\downarrow$ to data output delay time	t _{DIOD1} 0	ns
Phase set time to REQ ↓	t _{SPHRQ2} 500	ns
Data hold time to REQ ↓	t _{SDRQ2} 55	ns i
$\overrightarrow{\text{REQ}} \downarrow \text{to } \overrightarrow{\text{ACK}} \downarrow \text{ input valid} \\ \text{delay time}$	t _{DRQAK3} 0	ns
$\overrightarrow{\text{ACK}}\downarrow$ to $\overrightarrow{\text{REQ}}\uparrow$ output delay time	tDAKRQ1 1	ţсук
Data hold time from $\overline{ACK} \downarrow$	t _{HAKD2} 0	ns

# AC Characteristics; SCSI Bus Interface (cont)

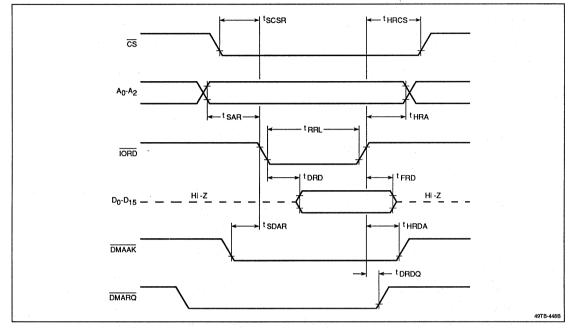
Parameter	Symbol Min Max U	nit Conditions
ACK hold time from REQ ↑	tHRQAK1 0	ns
$\overrightarrow{ACK} \uparrow$ to $\overrightarrow{REQ} \downarrow$ output delay time	t _{DAKRQ2} 1 to	сук
Phase hold time from ACK ↑	tHAKPH2 1 to	УК

# Transfer as initiator in asynchronous mode; data-out, command, and message-in phases (figure 14)

$\overline{\text{SEL}}\uparrow$ to phase input delay time	t _{DSLPH3}	0	ns
$\tilde{I}/O\uparrow$ to data output delay time	tDIOD2	0	, ns
Phase set time to $\overline{\text{REQ}}\downarrow$	t _{SPHRQ3}	400	ns
Data set time to $\overline{ACK}\downarrow$	tSDAK1	55	ns
$\overline{REQ} \downarrow$ to $\overline{ACK} \downarrow$ output delay time	^t DRQAK4	1	^t сүк
Data hold time from REQ ↑	tHRQD1	0	ns
$\overline{\text{REQ}}$ hold time from $\overline{\text{ACK}}\downarrow$	thakrq2	0	ns
REQ ↑ to ACK ↑ output delay time	^t DRQAK5	1	tсүк
Phase hold time from ACK ↑	^t накрнз	0	ns

# Reception as target in asynchronous mode; data-out, command, and message-out phases (figure 15)

SEL ↑ to phase output delay time	t _{DSLPH4} 2	тсүк	
$\bar{I}$ /O ↑ to data float delay time	t _{FIOD2} 0	ns	
Phase set time to $\overline{\text{REQ}}\downarrow$	t _{SPHRQ4} 500	ns	
Data set time to $\overline{ACK}\downarrow$	t _{SDAK2} 5	ns	
$\overline{REQ} \downarrow$ to $\overline{ACK} \downarrow$ input valid delay time	t _{DRQAK6} 0	ns	
$\overrightarrow{ACK} \downarrow$ to $\overrightarrow{REQ} \uparrow$ output delay time	tDAKRQ3 1	[†] СҮК	
Data hold time from REQ ↑	t _{HRQD2} 0	ns	
ACK hold time from REQ ↑	thrqak2 55	ns	
ACK hold time from REQ ↑	t _{HRQAK2} 55	ns	
$\overrightarrow{\text{ACK}} \uparrow \text{to } \overrightarrow{\text{REQ}} \downarrow \text{output delay}$ time	t _{DAKRQ4} 1	tсук	
Phase hold time from ACK ↑	t _{HAKPH4} 1	tсүк	


# Reception as initiator in synchronous mode; data-in phase (figure 16)

$\overline{\text{SEL}}\uparrow$ to phase input delay time	^t DSLPH5	0	ns
$\bar{I}/O\downarrow$ to data float delay time	t _{FIOD3}	0	ns
Phase set time to $\overline{\text{REQ}}\downarrow$	tSPHRQ5 4	100	ns
Data set time to $\overline{\text{REQ}}\downarrow$	tSDRQ3	5	ns
Data hold time from $\overline{\text{REQ}}\downarrow$	tHRQD3	5	ns
REQ input low-level width	tROROL1	50	ns
$\overline{REQ} \uparrow to \ \overline{REQ} \downarrow recovery time$	t _{RVRQ1}	2	tсук
ACK output low-level width	takakl1	2	tсүк

-		Max Unit Conditions
t _{HAKPH5}	0	ns
	mod	le; data-in phase
tDSLPH6	2	ţсук
tDIOD3	0	ns
	500	ns
	55	ns
	125	ns
	2	^t СҮК
	50	ns
	2	tсук
tHAKPH6	1	tсүк
chronou	s m	ode; data-out
^t DSLPH7	0	ns
tDIOD4	0	ns
tSPHRQ7	400	ns
tSDAK3	55	ns
tHAKD3	125	ns
tRQRQL3	50	ns
t _{RVRQ2}	2	^t сук
t _{akakl} 3	2	tсук
t _{HAKPH7}	0	ns
chronou	s m	ode; data-out
^t DSLPH8	2	^t сүк
^t FIOD4	0	ns
tSPHRQ8	500	ns
t _{SDAK4}	5	ns
tHAKD4	5	ns
tROROL4	2	^t сүк
^t akakl4	50	ns
t _{rvak2}	125	ns
thakph8	1	tсүк
e 20)		
^t FSLID		4t _{CYK} ns +50
free (fig	jure	21)
t _{DIDSL}	320	0 t _{CYK}
	IDDLPH6           IDDLPH6           IDDLPH6           IDDLPH6           ISPHRQ6           ISPHRQ6           ISPHRQ6           ISPHRQ6           ISPHRQ6           ISPHRQ6           ISPHRQ6           IARAKL2           IAKAKL2           IAKAKL2           IAKAKL2           ISPHRQ7           IDDD4           ISPHRQ7           IDD04           ISPHRQ7           ISDAK3           IAKAK13           IAKAK13           IAKAK13           IAKAK14           ISDAK4           IAKAK14           IAKAK14           IAKAK14           IAKAK14           IAKAK14           IAKAK24           IAKAK24           IAKAK24           IAKAK14           IAKAK14           IAKAK14           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKAK24           IAKA	Imponuus         Imponus           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         500           Ibilobis         125           Ibilobis         125           Ibilobis         2           Ibilobis         2           Ibilobis         2           Ibilobis         2           Ibilobis         2           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         0           Ibilobis         125           Ibilobis         0           Ibilobis         125           Ibilobis         125           Ibilobis         120           Ibilobis         125           Ibilobis         125           Ibilobis         125           Ibilobis         12           Ibilobis         12           Ibilobis         12           Ibilobis         12           Ibilobis<









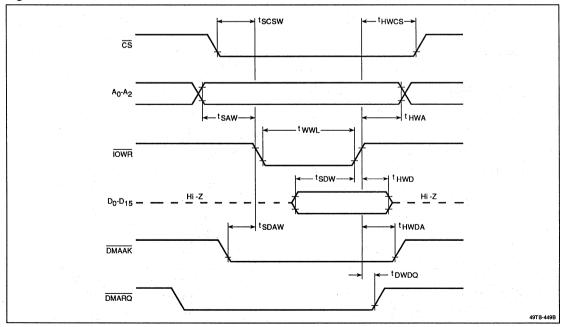
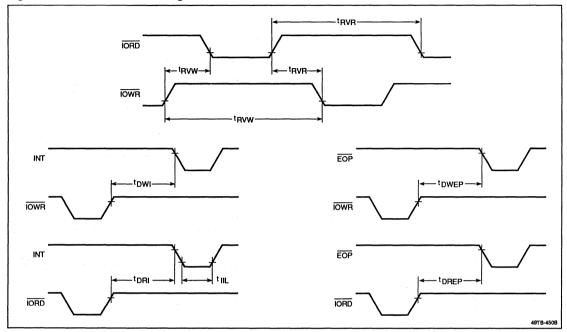
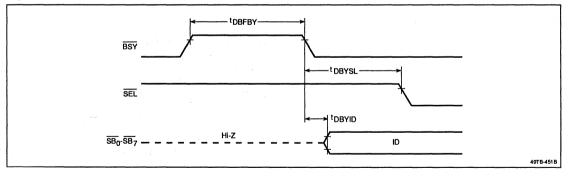
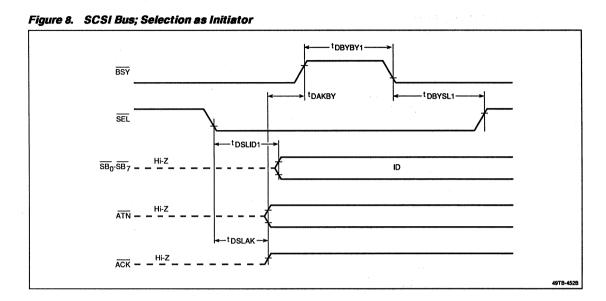
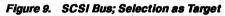
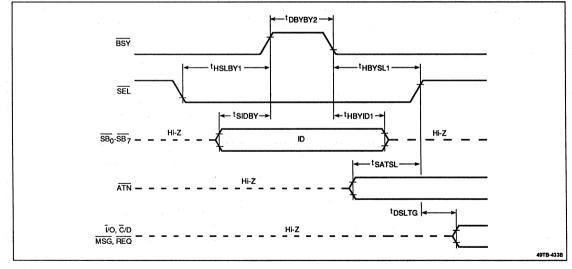






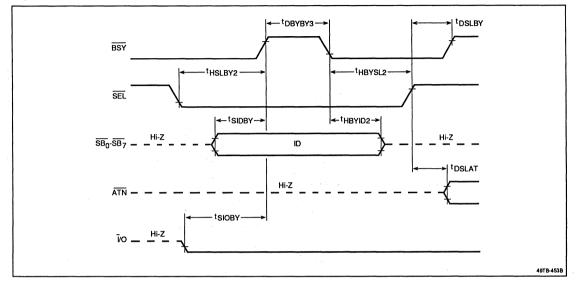

Figure 6. Other CPU Bus Timing



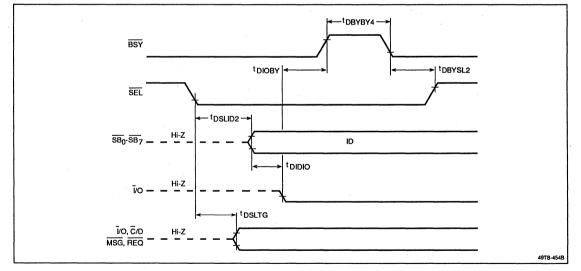




6




















6



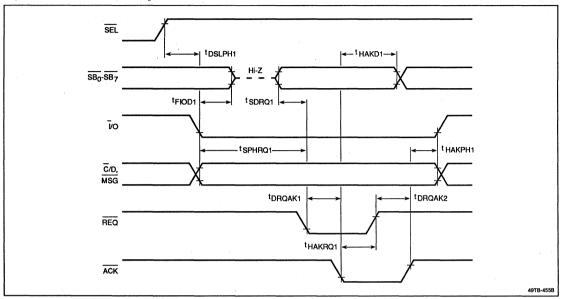
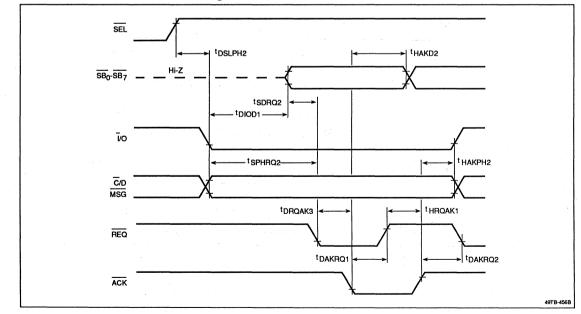




Figure 12. SCSI Bus; Reception as Initiator





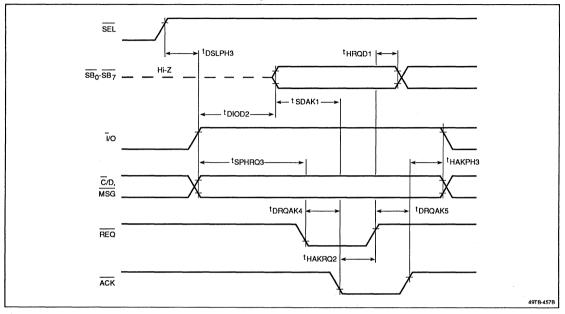
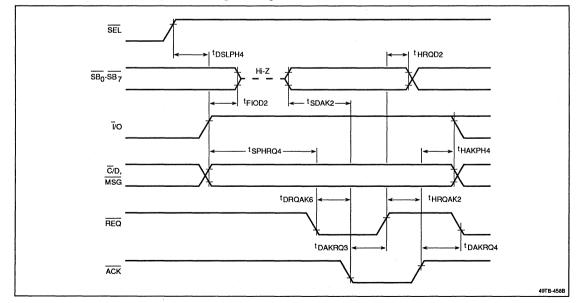
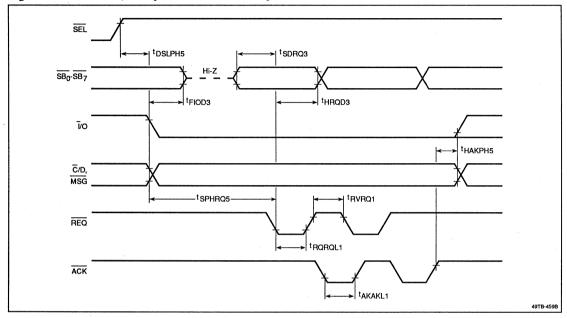
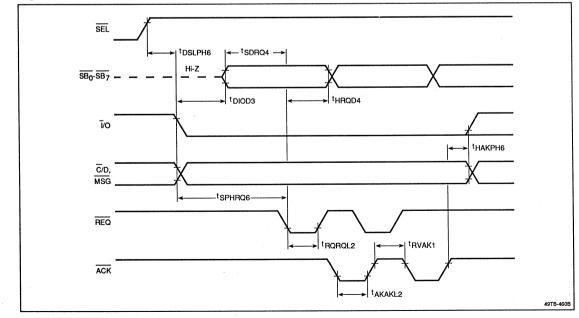





Figure 14. SCSI Bus; Transfer as Initiator in Async Mode

Figure 15. SCSI Bus; Reception as Target in Async Mode





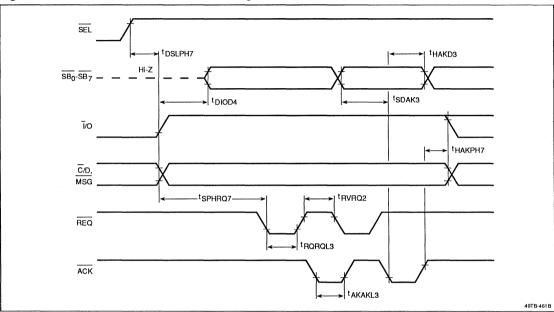
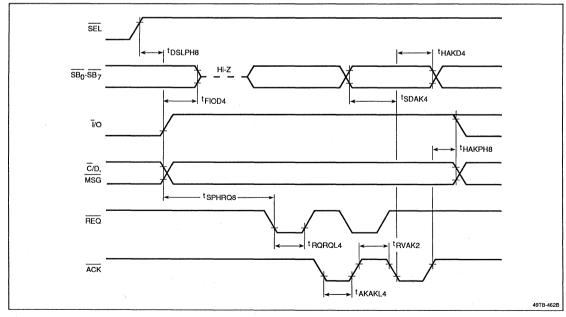

**EC** 

Γ

Figure 16. SCSI Bus; Reception as Initiator in Sync Mode

Figure 17. SCSI Bus; Transfer as Target in Sync Mode



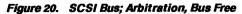


Figure 18. SCSI Bus; Transfer as Initiator in Sync Mode

Figure 19. SCSI Bus; Reception as Target in Sync Mode



6





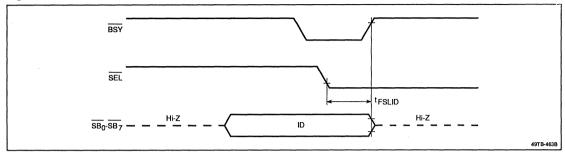
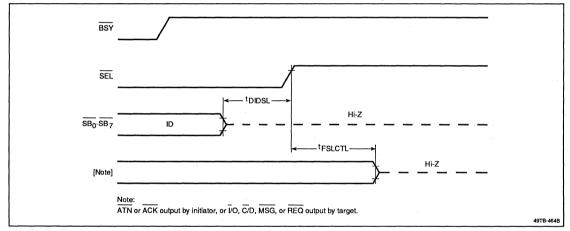




Figure 21. SCSI Bus; Selection/Reselection, Bus Free



#### DIRECT ACCESS REGISTERS

Table 1 lists the 10 internal registers that can be directly accessed from the host CPU. The register address is specified by pins  $A_2$ - $A_0$ .

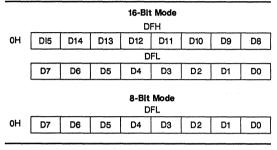
Address A ₂ -A ₀	R/W	Symbol	<b>Register Name</b>
000	R/W	DFL	Data FIFO
001	R/W	DFH	•
010	R	CST	Controller status
011	R/W	ADR	Address
100	R/W	WIN1	Window
101	R/W	WIN2	-
110	R	TP	Terminated phase
	W	DID	Destination ID

#### Table 1. Direct Access Registers (cont)

Address A ₂ -A ₀	R/W	Symbol	Register Name
111	R	IST	Interrupt status
	w	CMD	Command

#### **Data FIFO Register**

The 16-bit data FIFO register (figure 22) is used to write or read data (including command, status, and message data) accessed through the SCSI bus.


In the 8-bit mode, only the lower 8-bit DFL register at address 0H is used. The contents of the upper 8-bit DFH register at address 1H are fixed to 00H.

In the 16-bit mode, the register is accessed to/from address 0H with signals  $A_0 = 0$  and  $\overline{UBE} = 0$ . When data is sent to the SCSI data bus, the DFL contents are output

first, followed by the DFH contents. When data is sent, the first byte fills DFL and the second byte fills DFH.

The data FIFO register empties when a RESET signal is input, the CHIP RESET command is executed, or the CLEAR FIFO command is executed.

#### Figure 22. DFL and DFH Registers



#### **Controller Status Register**

The 8-bit CST register (figure 23) indicates the operating condition of the  $\mu$ PD72111. This is a read-only register; data written to CST becomes invalid.

The value of the CST register becomes 82H when a RESET signal is input or the CHIP RESET command is executed.

#### **Address Register**

When accessing an indirect access register, the address should be set to the 8-bit ADR register and the window register (WIN1, WIN2) accessed. Bit 7 of ADR (figure 24) specifies the mode and bits 5-0 specify the address of the indirect access register.

In the auto-increment mode, each access automatically increments the contents of the lower 6 bits of ADR (+1 for the 8-bit bus mode, +2 for the 16-bit bus mode).

The ADR register is reset to 00H by a RESET signal or by execution of the CHIP RESET command.

#### Figure 23. CST Register

		001	negn	5101				
	7		DFH					
2H	CBSY	INTRQ	CST1	CSTO	ATNC	FFUL	FEMP	DRQ
CBS	1	μPD	72111 (	Comma	nd Exec	ution S	itatus	
0					omman	d or exe	cuting a	type
			mmand	-		~		
		Dusy	(exect	lang ty	be B or (	C comm	iano)	
INTR	Q	CPU	Interr	upt Rec	luest			
0		Not	generat	ed				
1		Gen	erated					
CST1	, CSTO	μPD	μPD72111 Operating Condition					
0	0			ed state				
0	1		tor stat					
1	0	Targ	et state	1				
ATNC		ATN	Pin Sta	atus				
0		Inac	tive(hig	h level)				
1		Activ	ve (low	level)				
FFUL	, FEMP	FIFC	) State					
0	0			nor emp	oty			
0	1		Empty					
1	0	Full	Full					
DRQ		DFL	DFH R	egister				
0		Acce	essing D	OFL/DFH	is disa	bled		
1		Writi	ng to o	r readin	g from [	OFL/DFI	l is requ	ested

#### Figure 24. ADR Register

	7		Read/Write							
зн	AINC	0	ADR5	ADR4	ADR3	ADR2	ADR1	ADRO		
AINC	Mode	for Acc	cessing	an Ind	irect Ac	cess R	egister			
0 1		Normal mode (address in not automatically updated Auto-increment mode (address is automatically updated)								
ADR5	-ADR0	Indi	rect Ac	cess Re	gister	Address	В			
0000	000	00H	00H							
: 111111		: 3FH				•				

#### Window Register

The window register (figure 25) comprises two 8-bit registers used as a window for accessing the indirect access registers. With the  $\mu$ PD72111 in the 8-bit mode, WIN1 and WIN2 are accessed to/from addresses 4H and 5H, respectively.



In the 16-bit mode, WIN1 and WIN2 function as one 16-bit register accessed to/from address 4H. WIN1 and WIN2 hold the least- and most-significant bytes of the word, respectively. According to the settings of signals  $A_0$  and UBE, either or both registers can be accessed.

A ₀	UBE	Address	Register Accessed
0	0	4H	WIN1, WIN2
0	1	4H	WIN1
1	0	5H	WIN2

#### Figure 25. WIN1 and WIN2 Registers

	16-Bit Mode WIN2									
4H	DI5	D14	D13	D12	D11	D10	D9	D8		
	WIN1									
	D7	D6	D5	D4	D3	D2	D1	D0		
	8-Bit Mode WIN1									
4H	D7	D6	D5	D4	D3	D2	D1	D0		

411	0/	00	05	04	03	02		00
				W	N2			
5H	D7	D6	D5	D4	D3	D2	D1	D0

#### **Terminated Phase Register**

The 8-bit TP register (figure 26) indicates the phase executed when a command execution is terminated.

The TP register is reset to 00H by a RESET signal or by execution of the CHIP RESET command.

#### **Destination ID Register**

Bits 2-0 of the DID register (figure 27) set the ID of the target to be selected or the initiator to be reselected. Bit 7 of DID can be set to mask the interrupt request signal (INT). The INTRQ bit of the CST register (figure 23) indicates whether the INT signal was generated or not.

Zeros must be written to bits 6-3 of the DID register.

#### Figure 26. TP Register

Fig	uie 20	. IF ne	yısı	<i>C1</i>	~			
	7			Read	Only			0
6H	TP7	TP6	TP5	TP4	TP3	TP2	TP1	TP0
		-						
TP7-		Command		Executi		50		
	0001	SCSI RESI	ET	SCSI re				
0001	0001	SELECT		Arbitrati	on		· · · ·	
0001	0010			Target s	election			
0010	0001	TRANSFER	۹ 	Informa	tion trar	nsfer		
0011	0001	AUTO		Arbitrati	ion			
0011	0010	INITIATOR		Target s	election	i.		
0011	0011			Identify	messag	e trans	mit	·
0011	0100			Comma	nd tran	smit		
0011	0101			Data tra	insmit/re	eceive		
0011	0110			Status r	eceive			
0011	0111			Command complete message receive				
0100	0001	RESELECT	-	Arbitrati	ion	×		
0100	0010			Initiator	reselect	tion		
0101	0001	RECEIVE		Informa	tion rec	eive	1	
0110	0001	SEND		Informa	tion trar	nsmit	· .	
0111	0001	AUTO		Selected	d waiting	g · · · ·		
0111	0010	TARGET		Identify	messag	e receiv	/8	
0111	0011			Comma	nd rece	ive	a .	
1000	0001	RE-RECEN	/E	Arbitrati	ion	15.1		
1000	0010			Initiator	reselect	tion		
1000	0011			Identify	messag	e trans	mit	······
1000	0100			Data re	ceive			
1001	0001	RE-SEND	• •	Arbitrat	ion			na series de la composición de la compo La composición de la c
1001	0010			Initiator	reselect	tion	1	*
1001	0011			Identify	messag	e trans	mit	
1001	0100			Data tra	insmit			· · · · ·

#### Figure 27. DID Register

7

6H	INTM	0	0	0	0	DID2	DID1	DID0		
INTM	Interi	upt Re	quest \$	Signal I	Mask Fi	unction				
0		Does not mask interrupt request (INT signal is output when interrupt is generated								
1	Masks	s interr		est (IN		is not o	utput ev	/en if		
DID2-	DIDO	Set	ting ID	ofSCS	I Devic	e To Be	Selecte	d		
000		0								
:		:								
111		7								

Write Only

0

#### Interrupt Status Register

The read-only IST register (figure 28) indicates the cause of the interrupt request. If the current contents of IST are not read out, they are retained and IST is not updated for new interrupt generation.

Similarly, if the previous contents were not read out, IST would not have been dated for the current interrupt; however, the current interrupt data would be retained elsewhere internally.

Bit 7 of the IST register indicates the group of the interrupt request generation source. The contents of bits 6-0 depend on the value of bit 7.

The IST register is reset to 00H by a RESET signal or by execution of the CHIP RESET command.

#### **Command Register**

The 8-bit CMD register (figure 29) is used by the CPU to write commands to the  $\mu$ PD72111. Commands are described later in table 3.

# **INDIRECT ACCESS REGISTERS**

The 27 registers listed in table 2 can be directly accessed by the CPU through a window in a direct access register. The register address is specified by the lower 6 bits of the ADR register (figure 24).

#### Table 2. Indirect Access Registers

lavis L.	muneci Access negisia s						
Address	R/W	Symbol	Register Name				
00H	R	TST	Target status				
01H	R	SBST	SCSI bus status				
02H	R	SID	Source ID				
03H	R/W	MSG	Message				
04H thru 0FH	R/W	CDB00 thru CDB11	Command descriptor block				
10H	R/W	TMOD	Transfer mode				
11H	R	CTCL.	Current counter (lower 8 bits)				
	w	BTCL	Base counter (lower 8 bits)				
12H	R	CTCM	Current counter (middle 8 bits)				
	w	BTCM	Base counter (middle 8 bits)				
13H	R	CTCH	Current counter (upper 8 bits)				
	w	BTCH	Base counter (upper 8 bits)				
14H thru 1FH			Reserved				
20H	R/W	BFTOUT	Bus free timeout				
21H	R/W	SRTOUT	Selection/reselection timeout				
22H	R/W	RATOUT	REQ/ACK handshake timeout				
23H	R/W	CDBL	Command descriptor block length				

#### Table 2. Indirect Access Registers (cont)

Address	R/W	Symbol	Register Name
24H	R/W	MOD	Mode
25H	R/W	PID	Physical ID
26H thru 3F	н		Reserved

R = Read only; W = Write only; R/W = Read/Write



#### Figure 28. IST Register

	7		+ 1 - 4	-	Write	Only			. (
7H	SRI	IST	6 18	ST5	IST4	IST3	IST2	IST1	ISTO
SRI	Inte	rrupt	Requ	est '	Гуре				
0						comma	nd term	ination	
1	•	rupt r			or abori used by	) service	reques	t issued	l to
SRI	IS	T6-IS	TO	In	terrupt	Reque	st Gene	eration	Source
0	000	AT	000	С	omman	d norma	al termin	nation	
0	000	AT	001	С	omman	d break			
0	001	AT	000	In	valid co	mmand			
0	010	AT	000	FI	FO over	run/und	errun		
0	010	AT	001	S	ynchron	ous offs	et error		
0	010	AT	010	S	CSI bus	parity	error		
0	010	AT	011	С	PU bus	parity e	rror		
0	010	AT	100	В	us free t	ime-out	error		
0	010	AT	101	S	election	/reselec	tion tim	eout err	or
0	010	AT	110	R	EQ/ACK	timeou	t error		
0	011	0	000	D	ata-out	phase e	rror		
0	011	0	001	D	ata-in p	hase err	or		
0	011	0	010	С	omman	d phase	error		
0	011	0	011	S	tatus pł	nase erro	or		
0	011	0	110	Μ	lessage-	out pha	se error		
0	011	0	111	Μ	lessage-	in phase	error		
0	100	AT	000	U	nsuppo	rted SC	SI comr	nand gr	oup
1	000	0	000	R	eset				
1	000	0	001	S	CSI res	et condi	tion occ	urred	
1	001	0	000	D	isconne	cted			
1	001	0	001	R	eselecte	d			
1	001	AT	010	S	elected				
1	010	0	000	D	ata-out	phase s	tarted		
1	010	0	001	D	ata-in p	hase sta	arted		
1	010	0	010	С	omman	d phase	started	1	
1	010	0	011	S	tatus pł	nase sta	rted		
1	010	0	110	N	lessage-	out pha	se start	ed	
1	010	0	111	N	lessage-	in phas	e starte	d	
. 1	100	AT	000	N	lessage	received	1		

AT bit is valid in target mode only. It shows whether attention condition has occurred (AT  $\,=\,$  1) or not (AT  $\,=\,$  0).

#### Figure 29. CMD Register

	7			Write	Only			0
7H	CMD7	CMD6	CMD5	CMD4	CMD3	CMD2	CMD1	CMD0

#### Target Status Register

The TST register (figure 30) stores the status byte of the target received in the status phase during execution of the AUTO INITIATOR command.

#### Figure 30. TST Register

	7 Read Only	
00H	TST	

#### SCSI Bus Status Register

The SBST register (figure 31) indicates the status of each signal on the SCSI control bus.

#### Figure 31. SBST Register

7				Read	Only		.,	
01H	BSY	SEL	REQ	ACK	ATN	MSG	C/D	I/O
Statu	s of Eac	h Pin	· .	· · · · · · · · · · · · · · · · · · ·	8 - K. J.	- <u>Sec</u>	•	
0		ive (high e(low lev						

# **Source ID Register**

The read-only SID register (figure 32) stores the ID of the last SCSI device that selected the  $\mu$ PD72111. Bits 6-3 are always read out as zeros.

#### Figure 32. SID Register

7			Read Only							
02H [	S/R 0 0 0 0 SID2 SID1									
S/R	μPD7	2111 S	elect/Re	eselect	Operat	ion				
0	Has neither been selected nor reselected (contents of SID2-SID0 are invalid)									
	SID2	-SID0 ar	e invali	d)						
1		been sel		'	ted (co	ntents c	of SID2-	SIDO		
1 SID2- SID0	Has t are v	been sel	ected o	r reselec	· · · · · ·					
	Has t are v	been sel alid)	ected o	r reselec	· · · · · ·					
SIDO	Has t are v	been sel alid)	ected o	r reselec	· · · · · ·					

#### **Message Register**

The MSG register (figure 33) sets transmit messages or stores receive messages when the  $\mu$ PD72111 is transmitting or receiving.

#### Figure 33. MSG Register

	7 Read/Write	0
03H	MSG	

# **Command Descriptor Block**

The 12 CDB registers (figure 34) set/store the command descriptor blocks of SCSI commands.

#### Figure 34. CDB Registers

	7 Read/Write 0
04H	CDB00
05H	CDB01
06H	CDB02
07H	CDB03
08H	CDB03
09H	CDB04
OAH	CDB06
OBH	CDB07
0CH	CDB08
ODH	CDB09
0EH	CDB10
OFH	CDB11

#### **Transfer Mode Register**

The TMOD register (figure 35) sets the mode for data transfer. Zero must be written to bit 3.

#### **Current Counter**

The 24-bit CTC register (figure 36) counts the number of data bytes transferred in the information transfer phase. This is a read-only register; data cannot be written to it.

During execution of an information transfer command, the CTC counter is loaded with the values in the BTC base counter. The values loaded from BTC to CTC are controlled by count select bits C1 and C0 of the command code (table 5).

#### Figure 35. TMOD Register

7			Read	/Write			
	YNC TPD2	TPD1	TPD0	0	TOF2	TOF1	TOFO
SYNC	Data Transf	er Mode	)				
0 1	Asynchronou Synchronous						
TPD2- TPD0	Cycles for S	iync Mo	de	Trans	fer Rate	ə (at 16	MHz)
000	16 clock cycl	es		1.00 N	lbytes/s		
001							
010	4 clock cycle	S		4.00 N	lbytes/s		
011	6 clock cycle	S		2.67 N	lbytes/s		
100	8 clock cycle	S		2.00 N	lbytes/s	1	
101	10 clock cycl	es		1.60 N	lbytes/s		
110	12 clock cycl	es	÷	1.33 N	Abytes/s	;	
111	14 clock cyc	es		1.14 N	lbytes/s	;	
TOF2- TOF0	REQ, ACK F	Puise Of	fset Va	lue for	Sync N	lode	
000			1				
: 111			: 8				

#### Figure 36. CTC Register

	7 Read Only 0
11H	CTCL
12H	СТСМ
13H	СТСН

#### Base Counter

The 24-bit BTC register (figure 37) sets the number of data transfer bytes to be loaded into the CTC current counter. This is a write-only register; the contents cannot be read out. The count values written to BTC are controlled by count select bits C1 and C0 of the command code. (table 5).

#### **Bus Free Timeout Register**

The BFTOUT register (figure 38) sets the bus free timeout. If 00H is written to this register, the timeout detection function will not operate.



#### Figure 37. BTC Register

	7 Write Only	0
11H	BTCL	
12H	ВТСМ	
13H	ВТСН	

BTCH	BTCM	BTCL	Number of Data Transfer Bytes
00H	00H	00H	0
:	:	:	:
00H	00H	FFH	255
00H	01H	00H	256
:	:	:	;
00H	FFH	FFH	65,535
01H	00H	00H	65,536
:	:	:	:
FFH	FFH	FFH	16,777,215

#### Figure 38. BFTOUT Register

7	Read/Write
20H	BFTOUT
BF TOUT	Bus Free Timeout (at 16 MHz)
00H	No timeout detection is performed
01H	8.192 ms
:	:
FFH	2088.928 ms

# Selection/Reselection Timeout Register

The SRTOUT register (figure 39) sets the timeout for the selection or reselection operation. If 00H is written to this register, the timeout detection function will not operate.

7	7 Read/Write	0
21H	SRTOUT	

SRTOUT	Selection/Reselection Timeout (at 16 MHz)
00H	No timeout detection is performed
01H	8.192 ns
:	:
FFH	2088.928 ms

# **REQ/ACK** Handshake Timeout Register

The RATOUT register (figure 40) sets the timeout for handshake operation of  $\overline{\text{REQ}}$  and  $\overline{\text{ACK}}$  signals during information transfer. If 00H is written to this register, the timeout detection function will not operate.

#### Figure 40. RATOUT Register

	7 Read/Write 0	)
22H	RATOUT	

RATOUT	REQ/ACK Timeout (at 16 MHz)	
00H	No timeout detection is performed	
01H	128 µs	 
:	:	
FFH	32,640 μs	 

#### **Command Descriptor Block Length Register**

The CDBL register (figure 41) sets parameters for the group 6 and group 7 SCSI commands (vendor unique) of the SCSI specifications by using the AUTOINITIATOR command and the AUTO TARGET command.

#### Figure 41. CDBL Register

7			Read	/Write			0
CL73	CL72	CL71	CL70	CL63	CL62	CL61	CL60
-CL70	Grou	up 7 S(	CSI Cor	nmand;	CDB L	ength	
				1 byt	e		
:							
				12 byt	es		
	Does	s not su	ipport g	roup 7 S	SCSI co	mmand	s
	- (gen	erates	unsuppo	orted gr	oup con	nmand	error)
-CL60		Group	6 SCS	I Comm	and; C	DB Len	gth
-CL60		Group	6 SCS	I Comm 1 byt		DB Len	gth
-CL60		Group	6 SCS			DB Len	gth
-CL60	· · · · · · · · · · · · · · · · · · ·	Group	6 SCS		0	DB Leng	gth
-CL60	Does			1 byt	0 08		
-CL60		s not si	upport g	1 byt : 12 byt	es SCSI co	mmand	s
-CL60		s not si	upport g	1 byt : 12 byt roup 6 \$	es SCSI co	mmand	s
	CL73	CL73 CL72 CL70 Grou	CL73 CL72 CL71 CL70 Group 7 St	CL73 CL72 CL71 CL70 CL70 Group 7 SCSI Cor CL70 Group 7 SCSI Cor CL70 Group 7 SCSI Cor CL70 (generates unsupport g	CL73 CL72 CL71 CL70 CL63 CL70 Group 7 SCSI Command; 1 byt : 12 byt Does not support group 7 S (generates unsupported group 7 S	CL73 CL72 CL71 CL70 CL63 CL62 CL70 Group 7 SCSI Command; CDB L 1 byte : 12 bytes Does not support group 7 SCSI co	CL73 CL72 CL71 CL70 CL63 CL62 CL61 CL70 Group 7 SCSI Command; CDB Length 1 byte :

#### **Mode Register**

The MOD register (figure 42) sets the  $\mu$ PD72111 operation mode.

#### Figure 42. MOD Register

	7			Read	/Write			C	)
24H	DMA	HPS	DHP	DSP	NAM	SIM	RAEN	SAEN	

DMA	Data T	Data Transfer Mode (in data-in/data-out phase)					
0	Progra	Program I/O mode					
1	DMA n	node					
HPS	DHP	CPU Bus Parity					
0	0	Odd parity					
1	0	Even parity					
x	1	Disable parity					
DSP	SCSI	Bus Parity					
0	Enable	e (even parity only)					
1	Disable	e parity					
NAM	SIM	Bus Arbitration Execution					
0	x	Arbitration mode					
1	0	Non-arbitration mode (non-single-initiator mode)					
1	1	Non-arbitration mode (single-initiator mode)					
RAEN	Respo	nse (when reselected as initiator by target)					
0	Does r	not respond					
1	Respo	Responds					
SAEN	Respo	Response (when reselected as target by initiator)					
0	Does r	not respond					
1	Respo	nds					

#### **Physical ID Register**

The PID register (figure 43) sets the  $\mu$ PD72111's own physical ID on the SCSI system. Zeros must be written to bits 6-3.

#### Figure 43. PID Register

				-					
7	7	Read/Write							
25H	FEN	0	0	0	0	PID2	PID1	PID0	
FEN	Cont	roller O	peratic	n					
0	Does	not ope	rate as	initiator					
1	Opera	ates as i	nitiator						
PID2- PID0	μPD7	'2111's (	Own ID	Number	•				
000	0								
:	:								
111	7								

#### COMMANDS

#### Descriptions

The CPU controls the  $\mu$ PD72111 with the 16 commands described in table 3. Commands are listed in groups according to mode—initiator/target, initiator, and target.

# **Command Code**

Table 4 gives the command code, status, and type for each command.

**Command Bits.** Symbols for command bits in table 4 are explained below.

Symbol	Function
C1, C0	Count select bits
AT	ATN signal status selection bit. (1 means
	the initiator is requesting the message-out phase.)
MG, CD	Transfer information specification bits

The function of count select bits C1 and C0 is to specify the value loaded to the current transfer counter. This can reduce the overhead of modifying the transfer counter. See table 5.

Status. Table 4 specifies the status in effect when the command is issued. Symbols are explained below.

Symbol	Status
D	Disconnect
1	Initiator
т	Target

**Type.** Table 4 classifies commands as type A, B, or C according to the execution status defined under "µPD72111 Processing" below.

#### Table 3. Command Functions

Mode	Command Name	Mnemonic	Function
Initiator or Target	CHIP RESET	CRST	Resets µPD72111 using software.
	BREAK	BRK	Discontinues command execution.
	DISCONNECT	DIS	Releases SCSI bus.
	CLEAR FIFO	CLRF	Clears FIFO
	SCSI RESET	SRST	Resets SCSI bus.
Initiator	SET ATN	SETAT	Sets ATN signal.
	RESET ACK	RSTAK	Resets ACK signal.
	SELECT	SEL	Selects a target.
	TRANSFER	TFR	Sends/receives data (in initiator mode).
	AUTO INITIATOR	AIN	Automatically executes initiator standard operation.
Target	RESELECT	RSEL	Reselects initiator
	RECEIVE	REC	Receives data (in target mode).
	SEND	SND	Sends data (in target mode).
	AUTO TARGET	ATG	Automatically executes target standard operation.
	RE-RECEIVE	RREC	Reselects> Continuous execution of data-receive operation (in target mode)
	RE-SEND	RSND	Reselects $\rightarrow$ Continuous execution of data-send operation (in target mode)

#### Table 4. Command Codes

Command Name			Co	mn	nand C	ode			Status	Туре
CHIP RESET	0	0	0	0	0	0	0	0	D, I, T	A
BREAK	0	0	0	0	. 0	` <b>0</b>	0	1	D, I, T	Α
DISCONNECT	0	0	0	0	0	0	1	0	D, I, T	Α
CLEAR FIFO	0	0	0	0	0	1	0	1	D, I, T	A
SCSI RESET	0	0	0	0	1	0	0	0	D, I, T	в
SET ATN	0	0	0	0	0	0	1	1	I	Α
RESET ACK	0	0	0	0	0	1	0	0	I	A
SELECT	0	0	0	1	AT	0	0	0	D	В
TRANSFER	C1	CO	0	1	0	0	1	0	· I	В
AUTO INITIATOR	C1	CO	0	1	AT	1	0	0	D	С
RESELECT	0	0	1	0	0	0	0	0	D	В
RECEIVE	C1	CO	1	0	1	MG	CD	0	т	В
SEND	C1	CO	1	0	1	MG	CD	1	Т	в
AUTO TARGET	0	0	1	1	0	0	0	0	D	С
RE-RECEIVE	C1	CO	1	1	1	0	0	0	D	С
RE-SEND	C1	CO	1	1	1	0	0	1	D	С

#### Table 5. Loading the Current Transfer Counter

C1	CO	Load (	Operation	Counting Range
0	0	CTCH/M/L	← BTCH/M/L	0 to 16,776,960 bytes in 1-byte units
0	1	CTCH/M CTCL	← BTCH/M ← 00H	0 to 16,776,960 bytes in 256-byte units

#### Table 5. Loading the Current Transfer Counter

C1	CO	Load (	Operation	Counting Range
1	0	CTCH/M CTCL	← 0000H ← BTCL	0 to 256 bytes in I-byte units
1	1	CTCH/M/L	← 000001H	Single-byte only

#### μPD72111 PROCESSING

Processing by the  $\mu$ PD72111 is in either of two categories:

- Command processing initiated by a command from the CPU
- Response processing executed by the SCSI bus status transition

#### **Command Processing**

Command processing operations differ depending on the command executed.

Type A Command. Except for CHIP RESET, the command is immediately executed. Then, a new command is awaited.

CHIP RESET Command. The  $\mu$ PD72111 is immediately reset, after which an interrupt request is generated.

**Type B and C Commands.** The issued command is synchronized with the system clock and executed. After the command is executed, an interrupt is generated.

# **Response Processing**

When selected or reselected by another device, response processing for the device is executed. If the bus status changes during information transfer, the bus phase after the transition is detected and reported. The  $\mu$ PD72111 generates an interrupt upon completing the response processing.

# HOST CPU PROCESSING

Processing by the host CPU for the  $\mu$ PD72111 is in either of two categories.

- Command issuance processing by request from the CPU side. See figure 44.
- Interrupt processing generated when the operation specified by the command is completed, or the SCSI bus status changes. See figure 45.



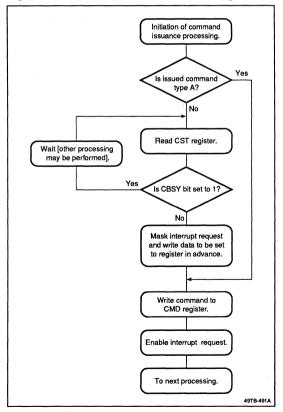
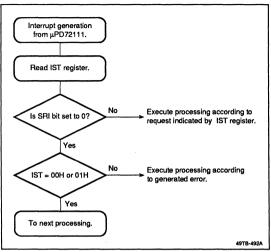




Figure 45. Interrupt Processing Flow





ana∰ an Araba an Araba Araba Araba an Araba Araba an Araba

(1) A second se second sec

# NEC

# LCD CONTROLLERS

# **LCD Controllers**

NEC	
-----	--

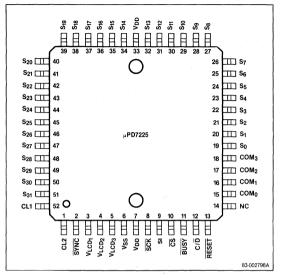
Section 7 LCD Controllers	
μ <b>PD7225</b> CMOS, Intelligent Alphanumeric LCD Controller/Driver	7-3
μPD7227 CMOS, Intelligent Dot-Matrix LCD Controller/Driver	7-13
μ <b>PD7228/28A</b> CMOS, Intelligent Dot-Matrix LCD Controller/Driver	7-21



# μPD7225 CMOS, Intelligent, Alphanumeric LCD Controller/Driver

# Description

The  $\mu$ PD7225 is an intelligent peripheral device designed to interface most microprocessors with a wide variety of alphanumeric LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 32 segments and is easily cascaded for larger LCD applications. The  $\mu$ PD7225 communicates with a host microprocessor through an 8-bit serial interface. It includes a 7-segment numeric and a 14-segment alphanumeric segment decoder to reduce system software requirements. The  $\mu$ PD7225 is manufactured with a low power consumption CMOS process allowing use of a single power supply between 2.7 V and 5.5 V. It is available in a space-saving 52-pin plastic flat package.


# Features

- □ Single chip LCD controller with direct LCD drive
- □ Low cost serial interface to most microprocessors
- Compatible with
  - 7-segment numeric LCD configurations up to 16 digits
  - 14-segment alphanumeric LCD configurations up to 8 characters
- Selectable LCD drive configuration:
   Static, biplexed, triplexed, or quadruplexed
- □ 32-segment drivers
- □ Cascadable for larger LCD applications
- Selectable LCD bias voltage configuration:
   Static, 1/2 or 1/3
- □ Hardware logic blocks reduce system software requirements
  - 8-bit serial interface
  - Two 32  $\times$  4-bit static RAMs for display data and blinking data storage
  - Programmable segment decoding capability:
    - 16-character, 7-segment numeric decoder
       64-character, 14-segment USASCII alphanumeric decoder
  - Programmable segment blinking capability
  - Automatic synchronization of segment drivers with sequentially multiplexed backplane drivers
- □ Single power supply, variable from 2.7 V to 5.5 V
- Low power consumption CMOS technology
- □ Extended 40°C to +85°C temperature range available

# **Ordering Information**

Part Number	Package Type	Max Frequency of Operation
µPD7225G-00	52-pin plastic miniflat	1 MHz

# **Pin Configuration**



#### **Pin Identification**

No.	Symbol	Function
1	CL2	System clock output
2	SYNC	Synchronization port
3–5	V _{LCD1} - V _{LCD3}	LCD bias voltage supply inputs
6	V _{SS}	Ground
7, 33	V _{DD}	Power
8	SCK	Serial clock input
9	SI	Serial input
10	CS	Chip select
11	BUSY	Busy output
12	C/D	Command or data select input
13	RESET	Reset input
14	NC	No connection
15–18	COM0-COM3	LCD backplane driver outputs
19-32, 34-51	S ₀ -S ₃₁	LCD segment driver outputs
52	CL1	System clock input

#### μ**PD7225**



#### **Pin Functions**

#### COM0-COM3

LCD backplane driver outputs.

#### S0-S31

LCD segment driver outputs.

#### VLCD1-VLCD3

LCD bias voltage supply inputs to the LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across  $V_{DD}$ .

#### SI

Serial input from the microprocessor.

#### SCK

Serial clock input. Synchronizes 8-bit serial data transfer from the microprocessor to the  $\mu$ PD7225.

#### BUSY

Handshake output indicates the  $\mu$ PD7225 is ready to receive the next data byte.

#### C/D

Command/data select input. Distinguishes serially input data byte as a command or as display data.

#### CS

Chip select input. Enables the  $\mu$ PD7225 for data input from the microprocessor. When CS is deselected, the display can be updated.

#### SYNC

Synchronization port. For multichip operation, tie all SYNC lines together.

#### CL1

System clock input. Connect CL1 either to CL2 with a 180  $k\Omega$  resistor, or to an external clock source.

#### CL2

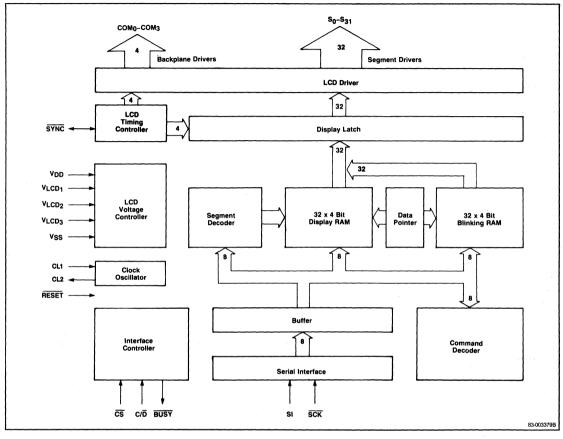
System clock output. Connect CL2 to CL1 with a  $180 \text{ k}\Omega$  resistor, or leave open.

#### RESET

Reset input. R/C circuit or pulse initializes the  $\mu$ PD7225 after power-up.

#### VDD

Power supply positive. Apply single voltage ranging from 2.7 to 5.5 V for proper operation.


#### Vss

Ground.

# NEC

μ**PD7225** 

#### **Block Diagram**





#### **Absolute Maximum Ratings**

$T_{A} = 2$	5°C
-------------	-----

Power supply voltage, V _{DD}	-0.3 V to +7 V
Input voltage, VI	-0.3 V to V _{DD} +0.3 V
Output voltage, V ₀	-0.3 V to V _{DD} +0.3 V
Operating temperature, T _{OPT}	- 10°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

**Comment:** Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **DC Characteristics**

 $T_A = -10^{\circ}C \text{ to } +70^{\circ}C, V_{DD} = +5 \text{ V} \pm 10\%$ 

			Limits	6		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage Iow	VIL	0		0.3 V _{DD}	V	
Input voltage high	VIH	0.7 V _{DD}		V _{DD}	V	· ·
Output voltage	V _{OL1}			0.5	٧	$\overline{\text{BUSY}}$ , $I_{0L} = 100 \mu\text{A}$
low	V _{OL2}			1.0	۷	I _{OL} =900μA, SYNC
Output voltage high	V _{OH}	V _{DD} -0.5			V	$\overline{\text{BUSY}}, \overline{\text{SYNC}}, \\ I_{\text{OH}} = -10 \mu\text{A}$
Input leakage current low	ILIL			-2	μA	$V_{1L} = 0 V$
Input leakage current high	ILIH			2	μA	$V_{H} = V_{DD}$
Output leakage	LOL			-2	μA	$V_{0L} = 0 V$
current	LOH			2	μA	$V_{OH} = V_{DD}$
Output short circuit current	los			- 300	μA	$\overline{\text{SYNC}}$ , $V_{\text{OS}} = 1.0 \text{ V}$
Backplane driver output impedance	R _{COM}		5	7	kΩ	COM ₀ -COM ₃ , V _{DD} ≥V _{LCD} (Note 1)
Segment driver output impedance	R _{SEG}		7	14	kΩ	S ₀ −S ₃₁ , V _{DD} ≥V _{LCD} (Note 1)
Supply current	I _{DD}		100	250	μA	CL1 external clock, $f_{\phi} = 200 \text{ kHz}$

#### Note:

(1) Applies to static-, 1/2-, and 1/3-LCD bias voltage schemes.

#### **DC Characteristics (cont)**

 $T_A = -0^{\circ}C$  to  $+70^{\circ}C$ ,  $V_{DD} = +2.7$  V to 5.5 V

			Limits	S		Test			
Parameter	Symbol	Min	Тур	Max	Unit	Conditions			
Input voltage	V _{IL1}	0		0.3 V _{DD}	٧	Except SCK			
low	V _{IL2}	0		0.2 V _{DD}	۷	SCK			
Input voltage	V _{IH1}	0.7 V _{DD}		V _{DD}	٧	Except SCK			
high	V _{IH2}	0.8 V _{DD}		V _{DD}	۷	SCK			
Output voltage	V _{OL1}			0.5	٧	$\overline{\text{BUSY}}$ , $I_{0L} = 100 \mu\text{A}$			
low	V _{0L2}	· .		0.5	۷	l _{OL} =400μA, SYNC			
Output voltage high	V _{OH}	V _{DD} -0.75			V	$\overline{\text{BUSY}}, \overline{\text{SYNC}}, \\ I_{\text{OH}} = -7\mu\text{A}$			
Input leakage current low	ILIL			-2	μA	V _{IL} =0V			
Input leakage current high	I _{LIH}			2	μA	$V_{IH} = V_{DD}$			
Output leakage	LOL			- 2	μA	$V_{0L} = 0 V$			
current	1LOH			2	μA	$V_{OH} = V_{DD}$			
Output short circuit current	los			- 200	μA	$\overline{\text{SYNC}}, V_{0S} = 0.5 \text{ V}$			
Backplane driver output impedance	R _{COM}		6		kΩ	COM ₀ -COM ₃ , V _{DD} ≥V _{LCD} (Note 1)			
Segment driver output impedance	R _{SEG}		12	· .	kΩ	S ₀ -S ₃₁ , V _{DD} ≥V _{LCD} (Note 1)			
Supply current	I _{DD}		30	100	μΑ	CL1 external clock, $V_{DD} = 3.0 V \pm 10\%$ $f_{\phi} = 140 \text{ kHz}$			

Note:

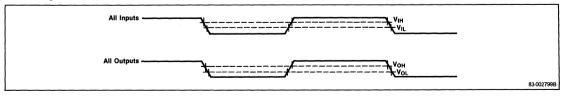
(1) Applies to static-, 1/2-, and 1/3-LCD bias voltage schemes.

#### Capacitance

 $T_A = 25 \,^{\circ}C$ ,  $f_{\phi} = 1 \,\text{MHz}$ 

			Limits			Test		
Parameter	Symbol	Min	Тур	Max	Unit	Conditions(1)		
Input capacitance	Cl			10	pF			
Output	C ₀₁			20	pF	Except BUSY		
capacitance	C ₀₂			15	pF	BUSY		
I/O capacitance	C _{IO}			15	pF	SYNC		
Clock capacitance	Сф			30	pF	CL1 input		

Note:

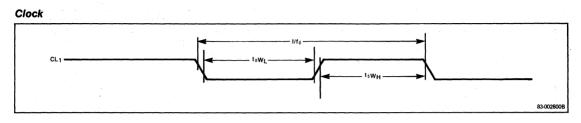

(1) All unmeasured pins returned to 0 V.

#### **AC Characteristics**

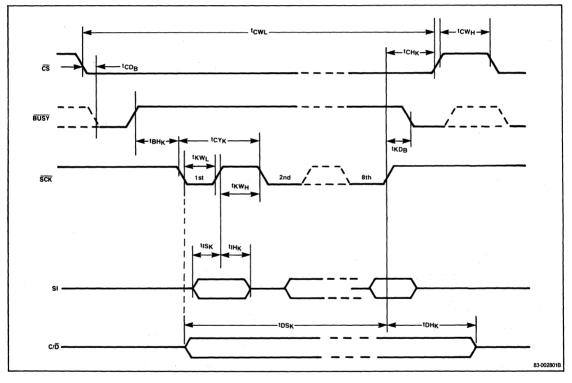
 $T_A =$  - 10 °C to +70 °C,  $V_{DD} =$   $+5\,V\pm10\%$ 

			Limits			Test				Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Clock frequency	fφ	50		200	kHz		Clock frequency	fø	50		140	kHz	
	fosc	85	130	175	kHz	$R = 180 k\Omega + 5\%$		fosc	50	100	140	kHz	$R = 180 k\Omega + 5\%$ , $V_{DD} = 3.0 V \pm 10\%$
Clock pulse width low	t∳w∟	2		16	μs	CL1, external clock	Clock pulse	t _{¢WL}	3		16	μs	CL1, external cloc
Clock pulse width high	^t фwн	2		16	μs	CL1, external clock	width low Clock pulse	t _{øwn}	3		16	μs	CL1, external cloc
SCK cycle	t _{CYK}	900			ns		width high						
SCK pulse width	t _{KWL}	400			ns		SCK cycle	tCYK	4			μs	
low							SCK pulse width low	t _{KWL}	1.8			μS	
SCK pulse width high		400			ns	·	SCK pulse width	t _{KWH}	1.8	een an thas each faire		μs	
BUSY 1 to SCK I hold time	tвнк	0			ns		BUSY 1 to SCK	t _{BHK}	0			ns	
SI setup time to SCK ↑	t _{ISK}	100			ns		hold time SI setup time to	t _{ISK}	1	-		μs	
SI hold time	tillk	200			ns		SCK 1						
after SCK 1							SI hold time after SCK ↑	^t інк	1			μs	
8th SCK ↑ to BUSY ↓ delay time	t _{KDB}			3	μs	C _L = 50 pF	8th SCK ↑ to BUSY ↓ delay	t _{KDB}			5	μs	$C_L = 50  pF$
CS ↓ to BUSY ↓	tCDB	· · · · · · · · · · · · · · · · · · ·		1.5	μS	$C_{1} = 50  \text{pF}$	time						
delay time				1.0	μυ		CS ↓ to BUSY ↓ delay time	t _{CDB}			5	μS	C _L = 50 pF
C / D setup time to 8th SCK ↑	t _{DSK}	9			μs		C / D setup time	t _{DSK}	18	<u></u>		μS	
C / D hold time after 8th SCK ↑	t _{DHK}	1			μs		to 8th SCK ↑ C / D hold time	tDHK	1			μs	
CS hold time after 8th SCK ↑	t _{CHK}	1			μs		after 8th SCK ↑	tснк	1			μs	
CS pulse width	t _{CWL}	8/f _¢			μs		after 8th SCK 1						
low		0./4					CS pulse width low	tCWL	8 / f _¢			μs	
CS pulse width high	t _{CWH}	8 / f _¢			μs	······	CS pulse width high	tCWH	8 / f _¢			μs	
	•						SYNC load	CL			50	pF	$f_{\phi} = 200 \text{ kHz}$

#### **AC Timing Characteristics**




capacitance


### μ**PD7225**



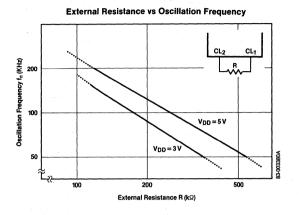
#### **Timing Waveforms**

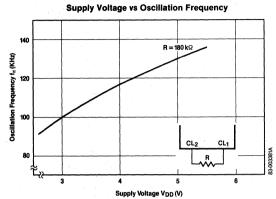


#### Serial Interface



#### Instruction Set (Note 1)


		Hex	Operation Code										
Command	Description	Code	D7	D ₆	D5	D4	D3	D ₂	D ₁	Do			
Mode Set	Initialize the μPD7225, including selection of: 1) LCD drive configuration 2) LCD bias voltage configuration 3) LCD frame frequency	40-5F	0	1	0	d ₄	d ₃	d ₂	d ₁	d ₀			
Unsynchronous Data Transfer	Synchronize display RAM data transfer to display latch with CS	30	0	0	1	1	0	0	0	0			
Synchronous Data Transfer	Synchronize display RAM data transfer to display latch with LCD drive cycle	31	0	0	1	1	0	0	0	1			
Interrupt Data Transfer	Interrupt display RAM data transfer to display latch	38	0	0	1	1	1	0	0	0			
Load Data Pointer	Load data pointer with 5 bits of immediate data	E0-FF	1	1	1	d4	d3	d ₂	d ₁	d ₀			
Clear Display RAM	Clear the display RAM and reset the data pointer	20	0	0	1	0	0	0	0	0			
Write Display RAM	Write 4 bits of immediate data to the display RAM location addressed by the data pointer; increment data pointer	D0-DF	1	1	0	1	d3	d ₂	d ₁	d ₀			
AND Display RAM	Perform a logical AND between the display RAM data addressed by the data pointer and 4 bits of immediate data; write result to same display RAM location. Increment data pointer	90-9F	1	0	0	1	d3	d2	d ₁	d ₀			
OR Display RAM	Perform a logical OR between the display RAM data addressed by the data pointer and 4 bits of immediate data; write result to same display RAM location; increment data pointer	B0-BF	1	0	1	1	d3	d ₂	d ₁	d ₀			
Enable Segment Decoder	Start use of the segment decoder	15	0	0	0	1	0	1	0	1			
Disable Segment Decoder	Stop use of the segment decoder	14	0	0	0	1	0	1	0	0			
Enable Display	Turn on the LCD	11	0	0	0	1	0	0	0	1			
Disable Display	Turn off the LCD	10	0	0	0	1	0	0	0	0			
Clear Blinking RAM	Clear the blinking RAM and reset the data pointer	00	0	0	0	0	0	0	0	0			
Write Blinking RAM	Write 4 bits of immediate data to the blinking RAM location addressed by the data pointer; increment data pointer	CO-CF	1	1	0	0	d3	d2	d ₁	d ₀			
AND Blinking RAM	Perform a logical AND between blinking RAM data addressed by the data pointer and 4 bits of immediate data; write result to same blinking location; increment data pointer	80-8F	1	0	0	0	d ₃	d ₂	d ₁	d ₀			
OR Blinking RAM	Perform a logical OR between blinking RAM data addressed by the data pointer and 4 bits of immediate data; write result to same blinking location; increment data pointer	A0-AF	1	0	1	0	d ₃	d ₂	d ₁	d ₀			
Enable Blinking	Start segment blinking at the frequency specified by 1 bit of immediate data	1A-1B	0	0	0	1	1	0	1	d ₀			
Disable Blinking	Stop segment blinking	18	0	0	0	1	1	0	0	0			


Note:

(1) Details of operation and application examples can be found in the µPD7225 Intelligent Alphanumeric LCD Controller/Driver Technical Manual.



# **Operating Characteristics** $T_A = 25 \,^{\circ}C$





Supply Voltage vs Supply Current



#### 7-Segment Numeric Data Decoder Character Set

		Deco	ded Display RAN	Data			
			Triplexed		Quadru		
Display Byte		Dis	splay RAM Addre	SS	Display RAM Address		
(HEX)	Character	n +2	n+1	n	n+1	n	
00	<b>B</b> .	3	5	3	D	7	
01	<b>a</b> .	0	0	3	0	6	
02	8.	2	7	1	E	3	
03	B	0	7	3	А	7	
04	<u>B</u> .	1	2	3	3	6	
05	<b>B</b> .	1	7	2	В	5	
06	<b>B</b> .	3	7	2	F	5	
07	<u> </u>	0	1	3	0	7	
08	<b>B</b> .	3	7	3	F	7	
09	B	1	7	3	В	7	
0A	Ð.	3	2	0	2	0	
0B	<b>B</b> .	3	7	0	F	1	
0C	<b>B</b> .	3	5	0	D	- 1	
OD		0	6	0	А	0	
0E	<b>D</b> .	2	6	2	E	4	
OF	A	0	0	0	0	0	

µPD7225

NEC

Display Byte (HEX)		n+3		ay RAM iress n +1	n	Display Byte (HEX)		n + 3	Displa Add n +2	y RAM ress n+1	n	Display Byte (HEX)		n + 3		ress n+1	n	Display Byte (HEX)	Char.	n+3	Displa Add n +2	ress n +1	I
A0	×.	0	0	0	0	BO	X.	4	7	E	2	CO		A	7	С	0	DO		2	3	6	
A1			Inv	alid		B1		0	6	0	0	C1	×.	2	7	6	4	D1	×.	0	7	E	
A2			Inv	valid		B2		2	3	С	4	C2	X.	8	7	8	5	D2	X.	2	3	6	
A3			Inv	valid		В3		2	7	8	4	С3		0	1	E	0	D3		1	5	8	
A4			Inv	valid		B4	X.	2	6	2	4	C4	X.	8	7	8	1	D4	X.	8	1	0	
A5			Inv	alid		B5	W.	2	5	A	4	C5		2	1	E	4	D5	₩.	0	6	E	
A6			Inv	alid		B6		2	5	E	4	C6		2	1	6	4	D6	X.	4	0	6	
A7	X.	0	0	. 0	2	B7	×.	0	7	0	0	C7	W.	0	5	E	4	D7	X.	4	6	6	
A8	X.	0	0	0	A	B8	×.	2	7	E	4	C8	X.	2	6	6	4	D8	X.	5	0	0	
A9	X.	5	0	0	0	B9		2	7	A	4	C9	X.	8	1	8	1	D9	X.	9	0	0	
AA		F	0	0	F	BA			Inva	alid	1.11	CA	X.	0	6	С	0	DA		4	1	8	
AB		A	0	0	5	BB			Inva	alid		СВ	X.	2	0	6	A	DB			Inv	alid	
AC			Inv	alid		BC	X.	4	0	8	2	CC		0	0	E	0	DC	N.	1	0	0	_
AD	×.	2	0	0	4	BD		2	0	8	4	CD		1	6	6	2	DD	NA).		Invi	alid	
AE			Inv	alid		BE	X.	1	0	8	8	CE	N.	1	6	6	8	DE			invi	alid	
AF	Ŵ	4	0	0	2	 BF			Inva	alid		CF	X	0	7	Е	0	DF			Inv	alid	

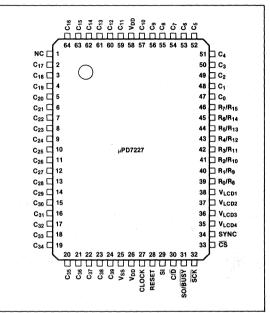


#### PD7227µPD7227 CMOS, Intelligent, Dot-Matrix LCD Controller/Driver

#### Description

The  $\mu$ PD7227 intelligent dot-matrix LCD controller/ driver is a peripheral device designed to interface most microprocessors with a wide variety of dot matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 40 columns, and is easily cascaded up to 16 rows and 280 columns. The  $\mu$ PD7227 is equipped with several hardware logic blocks, such as an 8-bit serial interface, ASCII character generator, 40 x 16 static RAM with full read/write capability, and an LCD timing controller; all of which reduce microprocessor system software requirements. The  $\mu$ PD7227 is manufactured with a single 5 V CMOS process, and is available in a space-saving 64-pin plastic flat package.

#### Features


□ Single-chip LCD controller with direct LCD drive

- □ Compatible with most microprocessors
- Eight row drives
  - Designed for dot-matrix LCD configurations up to 280 dots
  - Designed for 5 x 7 dot-matrix character LCD configuration up to 8 characters
  - Cascadable to 16 row drives
- □ 40 column drives
  - Cascadable to 280 column drives
- Hardware logic blocks reduce system software requirements
  - 8-bit serial interface for communication
  - ASCII 5 x 7 dot-matrix character generator with 64-character vocabulary
  - 40 x 16-bit static RAM for data storage, retrieval, and complete back-up memory capability.
  - Voltage controller generates LCD bias voltages
  - Timing controller synchronizes column drives with sequentially-multiplexed row drives
- □ Single +5 V power supply
- CMOS technology

#### **Ordering Information**

Part Number	Package Type	Max Frequency of Operation
µPD7227G-12	64-pin plastic miniflat	1000 kHz

#### **Pin Configuration**



#### **Pin Identification**

No.	Symbol	Function
1	NC	No connection
2-24, 47-57, 59-64	C ₀ -C ₃₉	LCD column driver outputs
25	V _{SS}	Ground
26, 58	V _{DD}	Power
27	CLOCK	System clock input
28	RESET	Reset input
29	SI	Serial input
30	C/D	Command or data select input
31	S0/BUSY	Serial output or busy output
32	SCK	Serial clock input
33	CS	Chip select input
34	SYNC	Synchronization port
35-38	V _{LCD1} -V _{LCD4}	LCD bias voltage supply inputs
39-46	R ₀ /R ₈ -R ₇ /R ₁₅	LCD row driver outputs

# NEC

#### **Pin Functions**

#### C₀-C₃₉

LCD column driver outputs.

#### R0/8-R7/15

LCD row driver outputs.

#### VLCD1-VLCD4

LCD bias voltage supply inputs to the LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across VDD.

#### SI

Serial input from the microprocessor.

#### SO/BUSY

Serial output from the  $\mu$ PD7227 to the microprocessor when in read mode and C/D is low. When BUSY (active low), handshake output indicates the  $\mu$ PD7227 is ready to receive/send the next data byte.

#### SCK

Serial clock input. Synchronizes 8-bit serial data transfer between the microprocessor and  $\mu$ PD7227.

#### **Block Diagram**

#### C/D

Command/data select input. Distinguishes serially input data byte as a command or as display data.

#### CS

Chip select input. Enables the  $\mu\text{PD7227}$  for communication with the microprocessor.

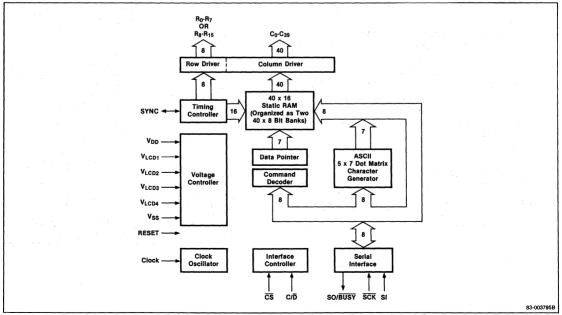
#### SYNC

Synchronization port. For multichip operation, tie all SYNC lines together and configure with the MODE SET command.

#### CLOCK

System clock input. Connect to external clock source.

#### RESET


Reset input. RC circuit or pulse initializes the  $\mu$ PD7227 after power-up.

#### VDD

Power supply positive. Apply single voltage 5 V  $\pm$  10% for proper operation.

#### Vss

Ground.



#### **Absolute Maximum Ratings**

 $T_A = 25^{\circ}C$ 

Power supply, V _{DD}	-0.3 V to +7.0 V
All inputs and outputs with respect to $V_{\mbox{CC}}$	-0.3 V to V _{DD} +0.3 V
Storage temperature, T _{STG}	-65°C to +150°C
Operating temperature, T _{OPT}	- 10°C to +70°C

**Comment:** Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Capacitance

 $T_A = 25^{\circ}C, V_{DD} = 0V$ 

		Li	imits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	CI		10	pF	fø = 1 MHz
Output capacitance	C ₀		25	рF	Unmeasured pins
Input/output capacitance	C _{IO}		15	pF SYNC	returned to ground.

#### **DC Characteristics**

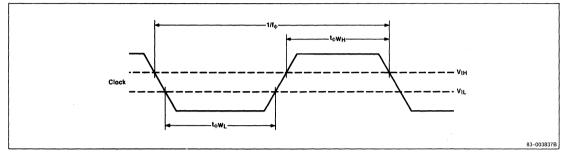
 $T_A = -10^{\circ}C$  to  $+70^{\circ}C$ ,  $V_{DD} = +5.0V \pm 10\%$ 

		L	imits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage, high	VIH	0.7 V _{DD}		V _{DD}	۷	
Input voltage, low	VIL	0		0.3 V _D	Dν	
Input leakage current, high	I _{LIH}			+10	μAV	IH = V _{DD}
Input leakage current, low	ILIL			-10	μAV	IH = 0V
Output voltage, high	V _{OH1}	V _{DD} -0.5				0/BUSY, _{DH} = -400 μA
	V _{0H2}	V _{DD} -0.5		-		YNC, _{DH} = -100 μA
Output voltage, low	V _{OL1}			0.45		0/BUSY, $D_L = +1.7 mA$
				0.45		YNC, _{)L} = +100 μΑ
Output leakage current, high	ILOH			+10	μAV	$_{OH} = V_{DD}$
Output leakage current, low	ILOL			-10	μAV	_{0L} = 0V
LCD operating voltage	V _{LCD}	3.0		V _{DD}	r L	-row nultiplexed CD drive onfiguratior
			V _{DD}		n	6-row nultiplexed CD drive onfiguration
Row drive output impedance	R _{ROW}		4	8	kΩ	
Column drive output impedance	R _{COLUM}	N	10	15	kΩ	
Supply current	IDD		200	400	μAf	0 = 400  KHz

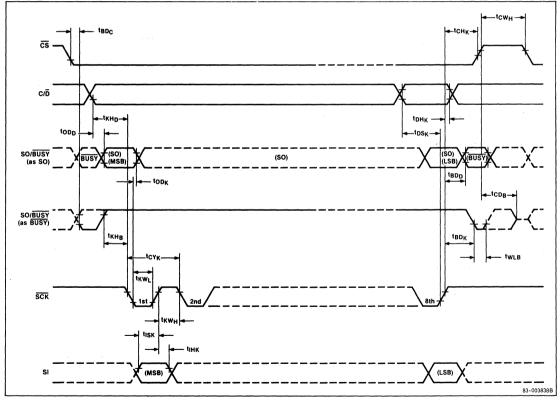


#### **AC Characteristics**

 $T_A = -10^{\circ}C \text{ to } + 70^{\circ}C, V_{DD} = +5.0V \pm 10\%$ 


		Lim	its		Test
Parameter	Symbol	Min ^e	Max	Unit	Conditions
Clock frequency	fø	100	1000	KHz	
Clock pulse width high	t _{∳WH}	400		ns	
Clock pulse width low	t _{∳WL}	400		ns	
SCK cycle	tсук	0.9		μs	
SCK pulse width high	^t кwн	400		ns	
SCK pulse width low	t _{KWL}	400		ns	
SCK hold time after BUSY1	tкнв	0		ns	
SI setup time to SCK1	t _{ISK}	100		ns	
SI hold time after SCK1	tiнк	250		ns	ja se t
SO delay time after SCK↓	t _{odk}		320	ns	C _{LOAD} = 50 pF
SO delay time after C/D↓	todd		2	μS	
SCK hold time after C/D↓	t _{KHD}	2		μS	
BUSY delay time after 8th SCK†	t _{BDK}		3	μs	C _{LOAD} = 50 pF
BUSY delay time after C/Dt	t _{BDD}		2	μS	
BUSY delay time after CS↓	t _{BDC}		2	μS	
C/D setup time to 8th SCKt	t _{DSK}	2		μS	
C/D hold time after 8th SCK↑	t _{DHK}	2		μS	
CS hold time after 8th SCK1	t _{СНК}	2		μS	
CS pulse width high	t _{CWH}	2/fø		μS	
CS↑ delay time to BUSY floating	t _{CDB}	2		μS	C _{LOAD} = 50 pF
SYNC load capacitance	C _{LOADS}		100	рF	
BUSY low level width	t _{WLB}	18	64	1/fø	C _{LOAD} = 50 pF




μ**PD7227** 

#### **Timing Waveforms**

#### Clock Waveform



#### Serial Interface





### **Command Summary**

					Inst	ruction Cod	<b>e</b>			
						Binary				
Command	Description	D ₇	D ₆	D ₅	D4	D3	D2	D1	D ₀	HEX
Mode Set	Initialize the μPD7227, including selection of 1. LCD drive configuration 2. Row driver port function 3. RAM bank 4. SYNC port function	0	<b>0</b> .	0	1	1	D ₂	D ₁	D ₀	18-1F
Frame Frequency Set	Set LCD frame frequency	0	0	0	1	0	D2	D ₁	D ₀	10-14
Load Data Pointer	Load data pointer with 7 bits of immediate data	1	D ₆	D5	D4	D ₃	D ₂	D ₁	D ₀	80-E7
Write Mode	Write display byte in serial register to RAM location ad- dressed by data pointer; modify data pointer	0	1	1	0	0	1	D ₁	D ₀	64-67
Read Mode	Load RAM contents address- ed by data pointer into serial register for output; modify data pointer	0	1	1	0	0	0	D ₁	D ₀	60-63
AND Mode	Perform a logical AND be- tween the display byte in the serial register and the RAM contents addressed by data pointer; write result to same RAM location; modify data pointer	0	1	1	0	1	1	D ₁	D _O	6C-6F
OR Mode	Perform a logical OR be- tween the display byte in the serial register and the RAM contents addressed by data pointer; write result to same RAM location; modify data	0	1	1	. 0	1	0	D ₁	D ₀	68-6B
Character Mode	pointer Decode display byte in serial register into 5 x 7 character with character generator; write character to RAM loca- tion addressed by data pointer; increment data pointer by 5	0	1	1	1	0	0	1	0	72
Set Bit	Set single bit of RAM loca- tion addressed by data pointer; modify data pointer	0	1	0	D4	D ₃	D2	D ₁	D _O	40-5F
Reset Bit	Reset single bit of RAM loca- tion addressed by data pointer; modify data pointer	0	0	1	D4	D3	D2	D ₁	D ₀	20-3F
Enable Display	Turn on the LCD	0	0	0	0	1	0	0	1	09
Disable Display	Turn off the ICD	0	0	0	0	1	0	0	0	08

Further details of operation can be found in the µPD7227 intelligent dot-matrix LCD controller/driver technical manual.

r

### 5 × 7 Character Set as Generated in $\mu$ PD7227

								0	0	1	1									0	0	1	1
								1	1	0	0									1	1	0	0
								0	1	0	1									0	1	0	1
D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
				o	0	0	0				0000 0000 0000 0000 0000 0000 0000 0000 0000					1	0	0	0			• • • • • • • • • • • • • • • • • • •	
				0	0	0	1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000								1	0	0	1				
				0	0	1	0	0 • 9 • 0 L • L • 0 C • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1	0	1	0		0 • • • 0 Ö		0000
				0	0	1	1									1	0	1	1			• 1 0 0 • • 0 0 • 0 • 0 0 • 0 • 0 0 0	
				0	1	0	0			• 0 0 • 0 • 0 0 0 • • 0 0 0 •						1	1	0	0			• 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0	
				0	1	0	1									1	1	0	1				
				0	1	1	0									1	1	1	0				
				0	1	1	1									1	1	1	1	00000			0000

## μ**PD7227**







#### Description

The  $\mu$ PD72228/28A controller/driver is a peripheral CMOS device designed to interface most microprocessors with a wide variety of dot-matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 50 columns or 16 rows by 42 columns.

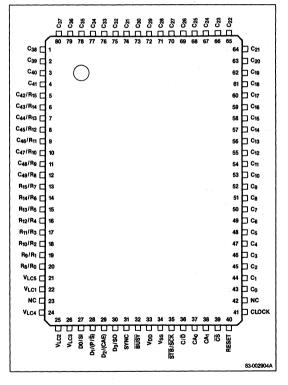
The  $\mu$ PD7228/28A has a standby function to conserve power. It is equipped with an 8-bit serial interface, a 4-bit parallel interface, character generators, a 50 x 16 static RAM with full read/write capability, and an LCD timing controller, all of which reduce microprocessor system software requirements.

The  $\mu$ PD7228/28A operates with a single +5-volt power supply and is available in a space-saving 80-pin plastic miniflat package.

#### Features

- □ LCD direct drive
- 8-or 16-line multiplexing drive possible with singlechip
  - 8-line multiplexing: 400 (50 x 8) dots
  - 16-line multiplexing: 672 (42 x 16) dots
- 8-line or 16-line multiplexing drive with n chip configuration
  - 8-line multiplexing: n x 400 (n x 50 x 8) dots
  - 16-line multiplexing: n x 800 (n x 50 x 16) dots
- RAM: 2 x 50 x 8 bits for display data storage
- Programmer designated dot (graphics) display
- 5 x 7 dot-matrix display by on-chip character generator
  - ASCII (alphanumerics, others): 96 characters
  - JIS (Japan Industrial Standard), Katakana and others: 64 characters.
- Cursor operating command
- □ 8-bit serial interface compatible with  $\mu$ PD7500,  $\mu$ COM-87/87LC
- $\square$  4-bit parallel interface compatible with  $\mu$ PD7500,  $\mu$ COM-84/84C
- □ Standby function
- CMOS technology
- □ Single +5-volt power supply
- □ Extended -40 to +85°C temperature range  $(\mu$ PD7228A)

#### **Ordering Information**


Part No.	Package
μPD7228G-12	80-pin plastic miniflat
μPD7228AG-12 (Note 1)	80-pin plastic miniflat

#### Notes:

 µPD7228A version has extended temperature range and LCD voltage range.

#### **Pin Configuration**

#### 80-Pin Plastic Miniflat



#### Pin Identification

Finitentineation	
Symbol	Function
C0-C41	LCD column drive outputs
C42-C49/R15-R8	LCD column/row drive outputs
R ₁₅ -R ₈ /R ₇ -R ₈	LCD row drive outputs
V _{LCI} -V _{LC5}	LCD power supply
NC	No connection
D ₀ /S _i	Data bus 0/Serial input
D ₁ (P/S)	Data bus 1 (Parallel/serial select)
D ₂ (CAE)	Data bus 2 (Chip address enable)
D ₃ /SO	Data bus 3/Serial output
SYNC	Synchronization signal input/output
BUSY	Busy signal output
V _{DD}	Power supply
V _{SS}	Ground
STB/SCK	Strobe/Serial clock input
C/D	Command/data select input
CA ₀ , CA ₁	Chip address select inputs
CS	Chip select input
RESET	Reset signal input
CLOCK	System clock input

#### **PIN FUNCTIONS**

#### D₀-D₃ (Data Bus)

In parallel interface mode,  $D_0$ - $D_3$  are input/output pins for 4-bit parallel data. Data on these lines is read at the rising edge of STB. The 4 bits read on the first STB are loaded into the highest 4 bits of the serial/parallel register. The 4 bits read on the second STB are loaded into the lowest 4 bits of the register.

The contents of the serial/parallel register are output to these pins on the falling edge of  $\overline{STB}$ . As in the above case, the high-order 4 bits correspond to the first  $\overline{STB}$ , and the low-order 4 bits to the second  $\overline{STB}$ .

In serial interface mode,  $D_0$  is a serial data input pin and  $D_3$  is a serial data output pin.  $D_1$  selects serial or parallel interface mode ( $P/\overline{S}$ ), and  $D_2$  is the chip address enable pin (CAE).

#### SI Serial Data-In (Input Common to D₀)

In serial interface mode, SI inputs serial data. Data on SI is loaded into the serial/parallel register at the rising edge of SCK. The first data loaded is the most significant bit. To eliminate noise errors, SI uses the Schmitt-trigger input.

#### SO Serial Data-Out (Output Common to D₃)

In serial interface mode, SO is an output pin for serial data. The contents of the serial/parallel register are output to the SO pin, beginning with the most significant bit, on the falling edge of SCK.

#### P/S Parallel/Serial Select (Input Common to D₁)

This pin sets parallel interface mode if it is high at the falling edge of RESET (at reset release). If it is low at the falling edge of RESET, it selects serial interface mode. The Schmitt-trigger prevents noise errors.

#### CAE Chip Address Enable (Input Common to D₂)

This pin is used only during serial interface mode; that is, when  $P/\overline{S}$  is low at the falling edge of RESET. To enable chip addressing, the CAE line must be high at the falling edge of RESET. In parallel interface mode (when  $P/\overline{S}$  is high at the falling edge of RESET), the chip addressing function is enabled regardless of the logic state of CAE at the falling edge of RESET. The Schmitt-trigger input prevents noise errors.

#### CA0-CA1 (Chip Address)

These input pins allow you to address the  $\mu$ PD7228/28A in a multichip configuration used for driving logic displays. During parallel interface mode, CA₀ and CA₁ are compared to chip address data sent from the CPU regardless of CAE status during a reset.

However, during serial interface mode,  $CA_0$  and  $CA_1$  are compared with chip address data from the CPU only when CAE enables chip addressing.

In multichip configurations, the device is selected if  $\overline{CS} = 0$  and  $CA_0$  and  $CA_1$  match the chip address generated by the CPU. This address is the low 2 bits of the first 8-bit data input after  $\overline{CS} = 0$ .

In serial interface mode, if chip address selection is not used, connect  $CA_0$  and  $CA_1$  to ground.

#### **CS** (Chip Select)

 $\overline{\text{CS}}$  is an active-low chip select input pin. When you are not using the chip address selection function, the STB/  $\overline{\text{SCK}}$  and  $C/\overline{\text{D}}$  inputs are enabled if a low input is sent to  $\overline{\text{CS}}$ .

When you are using the chip address select function, if  $\overline{CS}$  is brought low and the chip address data matches CA₀-CA₁, then  $\overline{STB}/\overline{SCK}$  and C/D are enabled.

When  $\overline{\text{CS}}$  is made high,  $D_0$ - $D_3$  and  $\overline{\text{BUSY}}$  are placed in a high-impedance state. The Schmitt-trigger input prevents noise errors.

#### μPD7228/28A



#### STB/SCK (Strobe/Serial Clock)

In parallel interface mode, this is the strobe signal input pin  $(\overline{STB})$  for 4-bit parallel input and output data, In serial interface mode, this is the serial clock input pin  $(\overline{SCK})$  for serial input and output data.

#### C/D (Command/Data)

This pin specifies whether the parallel or serial input is a command or data. Bring  $C/\overline{D}$  high to input a command, and low to input data.

In parallel interface mode, the contents of  $C/\overline{D}$  are latched at the rising edge of the second  $\overline{STB}$ . Perform any changes to the  $C/\overline{D}$  input before the falling edge of the first  $\overline{STB}$ . When outputting data, hold  $C/\overline{D}$  low, whether serial or parallel.

In serial interface mode, the contents of  $C/\overline{D}$  are latched at the rising edge of the eighth  $\overline{SCK}$ .

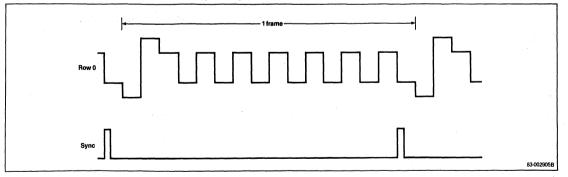
The Schmitt-trigger input prevents noise errors.

#### **BUSY** (Busy)

This pin outputs a busy signal to the CPU to warn that the  $\mu$ PD7228/28A is internally busy. When this signal is low, the CPU cannot read/write the  $\mu$ PD7228/28A.

In the parallel interface mode,  $\overline{\text{BUSY}}$  is forced low at the rising edge of the second  $\overline{\text{STB}}$ . In the serial interface mode,  $\overline{\text{BUSY}}$  is forced low at the rising edge of the eighth  $\overline{\text{SCK}}$ .

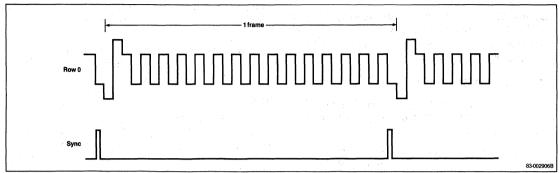
If a chip is deselected  $(\overline{CS} = high or chip address data does not match), the <math display="inline">\overline{BUSY}$  pin is placed in the high-impedance state.


#### SYNC (Synchronous)

In a multichip configuration, the SYNC signal synchronizes the phases of the LCD drive ac signals (row/ column signal) among all the  $\mu$ PD7228/28A's within the frame period. It uses the row drive signal as a common signal.

If one chip is designated master, its SYNC pin is in output mode and the remaining chips are made slaves. Their SYNC pins are put in input mode. The SMM command selects input or output mode. The master chip outputs a SYNC pulse in the last cycle of each frame. The slave chip reads the SYNC pulse from its own SYNC input for synchronization with the master chip.

In a single-chip configuration, set the SYNC pin in the input or output mode. If you choose input mode, connect the SYNC pin to  $V_{SS}$ ; conversely, if you choose output mode, the SYNC pin must be open.


Figures 1 and 2 show the output timing for the SYNC pulse in 8- and 16-line multiplexing.



#### Figure 1. SYNC Signal in 8-Line Multiplexing







#### C₀-C₄₁ (Column)

These pins output the column drive signals for the LCD.

#### C42-C49/R15-R8 (Column/Row)

These pins are column drive outputs ( $C_{42}$ - $C_{49}$ , 50 x 8 mode) or row drive outputs ( $R_{15}$ - $R_{8}$ , 42 x 16 mode), according to the SMM command.

#### R₁₅-R₈/R₇-R₀ (Row)

These pins are row drive outputs for rows  $R_{15}$ - $R_8$  or  $R_7$ - $R_0$ , according to the SMM command.

#### V_{LC1}-V_{LC5} (LCD Drive Voltage Supply)

These are reference voltage input pins for determining the voltage level of the LCD column/row drive signals.

#### CLOCK (Clock)

This is the external clock input pin.

#### **RESET (Reset)**

This is the active-high reset signal input pin. It has priority over all operations. You can also use it to release standby mode and begin low power data retention.

#### V_{DD} (Power Supply)

This is a positive power supply pin.

#### V_{SS} (Ground)

This is ground (GND).

#### COMMANDS FOR µPD7228/28A

The  $\mu$ PD7228/28A has 16 types of commands, each command consisting of one byte (8 bits).

Figure 3 shows the character codes and display patterns.

#### μPD7228/28A

#### Figure 3. Character Codes and Display Patterns

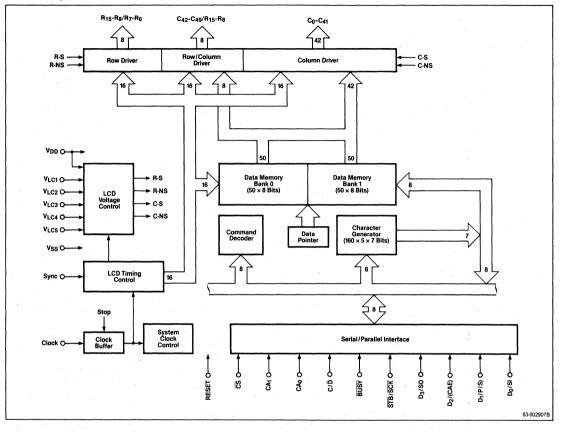
7 4	0			3																
					0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	$\backslash$	$\backslash$	$\backslash$	$\langle \rangle$	0	0	0	0	1	1	1	1	Ó	0	0	0	1	1	1	1
$\langle \rangle$	$\backslash$	$\backslash$	$\backslash$	$\backslash$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
·	<u> </u>	$\sum$	$\sum$	<u> </u>	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	0	0	1	0			::			::					::::		::		::	
	0	0	1	1			· · · · ·							·	:: ::	:: ::				•••••
ASCII	0	1	0	0																
ASCII	0	1	0	1	[.]			::						:: :	· · · ·		·			
	0	1	1	0	••			:	:			•;	 							::
	0	1	1	1		•	:	·	·:.	÷	::			: :					···,·	
	1	0	1	0			:	:	·.,	::										::::
JIS	1	0	1	1	••••									•					•	·
Katakana	1	1	0	0					ŀ.				 					···.		
	1	1	0	1	···· ····		:							: :.:					•••	

#### Notes:

 The character generator transfers 7-bit dot patterns five times to the five contiguous addresses of data memory.

(2) ASCII Characters, 96 (20H-7FH)

Upper case	26
Lower case	26
Numbers	10
Symbols	34
JIS Characters 6	4 (A0H-DE


(3) JIS Characters, 64 (A0H-DFH) Katakana 55 Symbols 9

(4) Because the character generator does not use bit 7 of data memory, dot R7 in 8 time-division mode and dots R7 and R15 in 16 time-division mode, corresponding to the most significant bits, can be used as cursor independent of the character generator. Use the cursor manipulation commands WRCURS and CLCURS.

83-002913B



#### **Block Diagram**



#### **Absolute Maximum Ratings** 000

I _A = 25°C	
Supply voltage, V _{DD}	-0.3 V to +7 V
Input voltage, V _i	-0.3 V to V _{DD} +0.3 V
Output voltage, V _O	-0.3 V to V _{DD} +0.3 V
LCD operating voltage, V _{LCD} (7228A)	4.5 to 12.5 V
Operating temperature, T _{OPT}	
7228	-10 to +70°C
7228A	-40 to +85°C

#### Capacitance

$I_A = 25^{\circ}C; V_{DC}$	) = 0 v; t =	1 MH2	z	
Parameter	Symbol	Min	Tvp	Max

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	CI			10	pF	Return
Output capacitance	Co			25	pF	unmeasured pins to 0 V.
I/O capacitance	CIO			15	pF	Na den

#### **DC Characteristics**

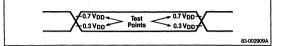
 $T_A = -10 \text{ to } + 70^{\circ}\text{C V}_{DD} = +5 \text{ V} \pm 10\%$ 

		μP	D7228	3	μPI	07228	A		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Input voltage, high	V _{IH1}	0.7 V _{DD}		V _{DD}	0.7 V _{DD}		V _{DD}	۷	Except SCK
	V _{IH2}	0.8 V _{DD}		V _{DD}	0.8 V _{DD}		VDD	۷	SCK
Input voltage, low	VIL	0		0.3 V _{DD}	0		0.3 V _{DD}	۷	
Output voltage, high	V _{OH1}	V _{DD} - 0.5			V _{DD} - 0.5			۷	$\overline{\text{BUSY}}$ , D ₀ -D ₃ ; I _{OH} = -400 $\mu$ A
	V _{OH2}	V _{DD} - 0.5			V _{DD} - 0.5			۷	SYNC; $I_{OH} = -100 \ \mu A$
Output voltage, low	V _{OL1}			0.45			0.5	۷	$\overline{\text{BUSY}}$ , $D_0$ - $D_{3}$ ; $I_{OL} = 1.7 \text{ mA}$
	V _{OL2}			0.45			0.5	٧	SYNC; $I_{OL} = 100 \ \mu A$
Input leakage current, high	I _{LIH}			10			10	μA	$V_i = V_{DD}$
Input leakage current, low	LIL			-10			10	μA	$V_{I} = 0 V$
Output leakage current, high	LOH			10			10	μA	$V_{O} = V_{DD}$
Output leakage current, low	LOL			-10			-10	μA	$V_{I} = 0 V$
LCD operating voltage	V _{LCD}	3.0		V _{DD}	4.5		12.5	v	
Row output impedance	RROW		4	8		8	16	kΩ	
Row/column output impedance	RROW/COL		5	10		7.5	20	kΩ	
Column output impedance	R _{COL}		10	15		15	30	kΩ	
Supply current	I _{DD1}		200	400		250	600	μA	Operating mode; f _C = 400 kHz
	I _{DD2}			20			25	μA	Stop mode; CLK = 0 V

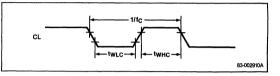
#### **AC Characteristics**

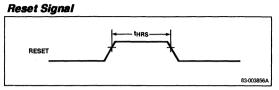
 $T_A = -10$  to  $+70^{\circ}$ C;  $V_{DD} = +5 V \pm 10\%$ 

			μPD7228			μPD7228	A	Unit	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max		Conditions
Common Operation									
Clock frequency	fc	100		1 100	100		1100	kHz	
Clock pulse width, high	twhc	350			350			ns	
Clock pulse width, low	t _{WLC}	350			350			ns	
RESET pulse width, high	tHRS	4			4			μs	
BUSY delay time from $\overline{CS} \downarrow$	tDCSB			2			3	μs	$C_L = 50 \text{ pF}$
$\overline{CS}$ $\uparrow$ delay time to $\overline{BUSY}$ floating	tDCSBF			4			5	μs	$C_L = 50 \text{ pF}$
CS high-level time	twncs	4			4			μs	
SYNC load capacitance	CLSY			100			100	pF	· ,
Data setup time to RESET $\downarrow$	tSDR	0			0			μs	
Data hold time from RESET $\downarrow$	t _{HRD}	4			5			μs	
Serial Interface Operation									
SCK cycle	tсүк	0.9			0.9			μs	
SCK pulse width, high	twнк	400			400			ns	
SCK pulse width, low	^t wLK	400			400			ns	
SCK hold time from BUSY 1	t _{НВК}	0			0			ns	
SI setup time to SCK ↑	tsik	100			120			ns	
SI hold time from SCK ↑	t _{HKI}	250			270			ns	

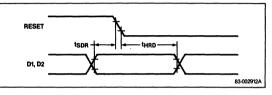

#### AC Characteristics (cont)

a a the transmission of the	· · · ·		μPD7228			μPD7228	A	Unit	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max		Conditions
SO delay time from SCK↓	tDKO			320			350	ns	C _L = 50 pF
BUSY delay time from eighth SCK ↑	t _{DKB}			3			4	μs	
BUSY low-level time	twLB	18		64	18		64	1/f _C	
C/ $\overline{D}$ setup time to first $\overline{SCK} \downarrow$	tSDK	0			0			μs	
C/D hold time from eighth SCK ↑	ŧнкр	2			3			μs	
CS hold time from eighth SCK ↑	t _{HKCS}	2			5			μs	
Parallel Interface Operation							1		
Input command setup time to STB ↓	t _A	100			120			ns	C _L = 80 pF
Input command hold time from STB↓	t _B	90			1 10			ns	C _L = 20 pF
Input data setup time to STB ↑	tc	230			250			ns	C _L = 80 pF
Input data hold time from STB ↑	to	50			70			ns	C _L = 20 pF
Output data delay time	tACC	90		650	90		750	ns	C _L = 80 pF
Output data hold time	ţн	0		150	0		150	ns	$C_L = 20 \text{ pF}$
STB pulse width low	tSL	700			700			ns	
STB high-level time	tsн	1			1			μs	·
STB hold time from BUSY ↑	t _{HBS}	0			0			μs	
BUSY delay time from second STB ↑	^t DSB			3			4	μs	
C/ $\overline{D}$ setup time to first $\overline{STB} \downarrow$	t _{SDS}	0		1. A.	0			μs	
C/D hold time from second STB ↑	tHSD	2			3			μs	
CS hold time from second STB ↑	tHSCS	2			3			μs	

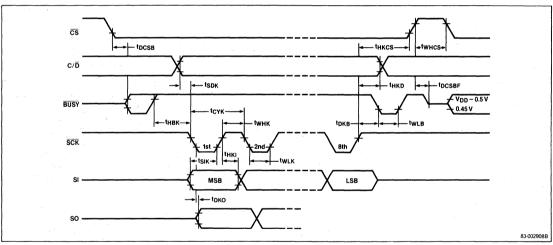

# NEC


#### **Timing Waveforms**





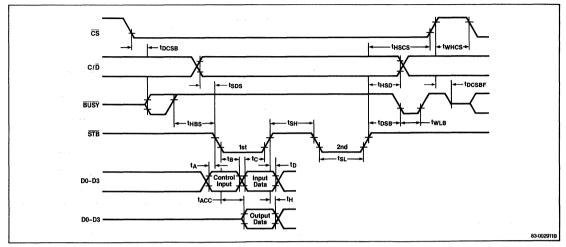

#### Clock Waveform






#### Interface




#### Serial Interface



#### μPD7228/28A



#### Parallel Interface



#### **Command Summary**

Mnemonic	Operation				Instructi	on Cod	e			Hex Code
SFF	Set frame frequency	0	0	0	1	0	F ₂	F ₁	Fo	10H-14H
SMM	Set multiplexing mode	0	0	0	1	1	M ₂	M ₁	Mo	18H-1FH
DISP OFF	Display off	0	0	Q	0	1	0	0	0	08H
DISP ON	Display on	0	0	0	0	1	0	0	1	09H
LDPI	Load data pointer with immediate	1	D ₆	D ₅	D ₄	D ₃	D2	D ₁	D ₀	80H-B1H, C0H-F1H
SRM	Set read mode	0	1	1	0	0	0	4	lo	60H-63H
SWM	Set write mode	0	1	1	0	0	1	4	lo	64H-67H
SORM	Set OR mode	0	1	1 1	0	1	0	1	lo	68H-6BH
SANDM	Set AND mode	0	1	1	0	1	1	4	lo	6CH-6FH
SCML	Set character mode with left entry	0	1	1	1	0	0	0	1	71H
SCMR	Set character mode with right entry	0	1	1	1	0	0	1	0	72H
BRESET	Bit reset	0	0	1	B ₂	B ₁	B ₀	J1	Jo	20H-3FH
BSET	Bit set	0	1	0	B ₂	B ₁	B ₀	J1	Jo	40H-5FH
CLCURS	Clear cursor	0	1	1	1	1	1	0	0	7CH
WRCURS	Write cursor	0	1	1	1	1	1	0	1	7DH
STOP	Set stop mode	0	0	0	0	0	0	0	1	01H

B2-B0 Specifies a data memory bit

D₆-D₀ Immediate data

 $F_{2} \cdot F_{0} \qquad \mbox{Specifies frame frequency as a submultiple of clock} \\ frequency \qquad \mbox{frequency}$ 

I₁-I₀ Specifies modification of data pointer contents after byte data is processed

J₁-J₀ Specifies modification of data pointer contents after bit is set or reset

 $\begin{array}{lll} M_2\text{-}M_0 & \text{Specifies data memory bank, number of rows, functions} \\ \text{of row/column drivers, and SYNC pin mode} \end{array}$ 

# NEC

# **MEMORIES FOR GRAPHICS APPLICATIONS**

# Memories for Graphics Applications



Section 8 Memories for Graphics Applications				
μ <b>PD41264/42273/42274</b> Dual-Port Graphics Buffers	8-3			
μ <b>PD42101/42102/42505</b> CMOS Line Buffers	8-5			
μ <b>PD42270</b> NTSC Field Buffer	8-9			
μPD43501 1,024-Channel Time-Division Switch	8-11			



#### μPD41264/42273/42274 Dual-Port Graphics Buffers

#### Description

NEC's dual-port graphics buffers are equipped with a 4-bit random access port and a 4-bit serial read port. On each device, the random access port is used by the host CPU to read or write data addressed in any desired order. The serial read port is connected to an internal data register through a serial read output circuit.

The random access port also has a write-per-bit capability that allows each of the four data bits to be individually selected or masked for a write cycle. Furthermore, a flash write option with write-per-bit control on the  $\mu$ PD42274 is provided by the FWE pin and enables data in the color register to be written to a selected row in the random access port.

The devices feature fully asynchronous dual access, except when transferring stored graphics data from a selected row of the storage array to the data register. During a data transfer, the random access port requires a special timing cycle using a transfer clock; the serial read port, however, continues to operate normally. Following the clock transition of a data transfer, the serial read output data changes from an old line to a new line and the starting location on the new line is addressable in the data transfer cycle.

Refreshing is accomplished by means of RAS-only refresh cycles or by normal read or write cycles. Automatic internal refreshing, by means of either hidden refreshing or the CAS before RAS timing and on-chip internal refresh circuitry, is also available. The transfer of a row of data from the storage array to the data register also refreshes that row automatically.

All inputs and outputs, including clocks, are TTL- compatible. All address and data-in signals are latched onchip to simplify system design. Data-out is unlatched to allow greater system flexibility.

#### Features

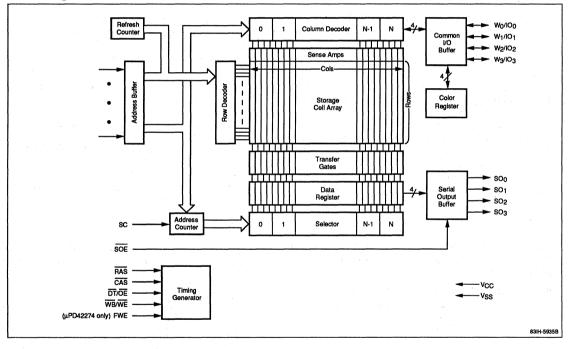
- Two data ports: random access and serial read
- Dual-port accessibility except during data transfer
- Addressable start of serial read operation
- Real-time data transfer
- Random access port
  - Two main clocks: RAS and CAS
  - Multiplexed address inputs

- Direct connection of I/O and address lines allowed by OE to simplify system design
- Read, early write, late write, read-write/readmodify-write, RAS-only refresh, and fast-page capabilities
- Automatic internal refreshing by means of the CAS before RAS on-chip address counter
- Hidden refreshing by means of CAS-controlled output
- Write-per-bit capability regarding four I/O bits
- Write bit selection multiplexed on IO0-IO3
- RAS-activated data transfer
  - Same cycle time as for random access
  - Row data transferred to data register as specified by row address inputs
  - Starting location of following serial read operation specified by column address inputs
  - Transfer of data on one row to the data register, and the starting location of the serial read circuit, activated by a low-to-high transition of DT
  - Data transfer during real-time or standby operation of serial port
- Fast serial read operation by means of serial control pins
  - Serial data output on SO0-SO3
  - Direct connection of multiple serial outputs for extension of data length

#### Ordering Information

Part Number	Row Access Time (max)	Serial Access Time (max)	Package	
μPD41264C-12	120 ns	40 ns	24-pin	
C-15	150 ns	60 ns	plastic DIP	
μPD41264V-12	120 ns	40 ns	24-pin	
V-15	150 ns	60 ns	plastic ZIP	
µPD42273LE-10	100 ns	30 ns	28-pin	
LE-12	120 ns	40 ns	plastic SOJ	
μPD42273V-10	100 ns	30 ns	28-pin	
V-12	120 ns	40 ns	plastic ZIP	
μPD42274LE-10	100 ns	30 ns	28-pin	
LE-12	120 ns	40 ns	plastic SOJ	
μPD42274V-10	100 ns	30 ns	28-pin	
V-12	120 ns	40 ns	plastic ZIP	

Contact your NEC sales representative for copies of the complete data sheets.


### μPD41264/42273/42274



#### **Comparison of Dual-Port Graphics Buffers**

Features	μPD41264	μPD42273	μPD42274
Density	256K	1 Meg	1 Meg
Organization	64K x 4	256K x 4	256K x 4
Serial data register	256 x 4	512 x 4	512 x 4
Refresh period	4 ms	8 ms	8 ms
Refresh addresses	256	512	512
Flash write	No	No	Yes
Process	NMOS	CMOS	CMOS
Pins	24	28	28

#### **Block Diagram**





#### μPD42101/42102/42505 CMOS Line Buffers

#### Description

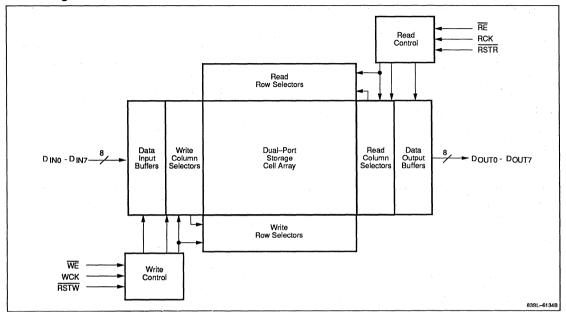
NEC's dual-port line buffers are fabricated with a silicongate CMOS process and can execute asynchronous read and write cycles at high speed. They also can be used as a time axis converter or a digital delay line of up to the length of the line buffer (at maximum frequency, the minimum delay line length is 10 bits).

Applications include NTSC and PAL digital television systems, image processing in facsimile machines, plain paper copiers, video systems, and other optical scanners; time base correction in video playback systems; and data communication buffering in multiprocessor systems and local area networks.

#### Features

- Dual-port operation
- Image processing and data communications systems applications
- Asynchronous and simultaneous read/write operation

#### **Ordering Information**


Device		Read Cycle Time (min)	Write Cycle Time (max)	Package
μPD4210	1C-3	34 ns	34 ns	24-pin
	C-2	34 ns	69 ns	plastic DIP
	C-1	69 ns	69 ns	-
μPD4210	1G-3	34 ns	34 ns	24-pin
	G-2	34 ns	69 ns	<ul> <li>plastic miniflat</li> </ul>
	G-1	69 ns	69 ns	-
μPD4210	2C-3	28 ns	28 ns	24-pin
	C-2	28 ns	56 ns	plastic DIP
	C-1	56 ns	56 ns	-
μPD4210	2G-3	28 ns	28 ns	24-pin
	G-2	28 ns	28 ns	<ul> <li>plastic miniflat</li> </ul>
	G-1	56 ns	56 ns	-
μPD4250	5C-50	50 ns	50 ns	24-pin
	C-75	75 ns	75 ns	plastic DIP
	C-50H	50 ns	50 ns	-
	C-75H	75 ns	75 ns	-
μPD4250	5V-50	50 ns	50 ns	28-pin
	V-75	75 ns	75 ns	plastic ZIP
	V-50H	50 ns	50 ns	-
	V-75H	75 ns	75 ns	-

Contact your NEC sales representative for copies of the complete data sheets.

#### µPD42101/42102/42505



#### **Block Diagram**



#### Comparison of Dual-Port Line Buffers

Features	μPD42101	μPD42102	μPD42505
Organization	910 x 8	1135 x 8	5048 x 8
Speeds (ns)	34 or 69	28 or 56	50 or 75
4f _{sc} digital television system	NTSC	PAL	
Maximum digital delay (clocks)	910	1135	5048

#### **OPERATION**

#### **Reset Cycle**

NEC's line buffers require the initialization of internal circuits using the RSTW/RSTR reset signals before starting operation as a time axis converter or a digital delay line.

A reset cycle can be executed at anytime and does not depend on the state of  $\overline{RE}$  or  $\overline{WE}$ . However,  $\overline{RSTW}$  and  $\overline{RSTR}$  must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.

#### Write/Read Cycle

Write and read cycles are synchronized to their respective WCK/RCK inputs and executed individually when WCK or RCK is high and  $\overline{WE}$  or  $\overline{RE}$  is low. Write data must satisfy the setup and hold times as specified from the

rising edge of WCK. New data written to a particular address is available for reading after 1/2 write cycle + 500 ns (maximum).

The access time of the read cycle is measured from the rising edge of RCK, either by  $t_{ACR}$  for an access during the first cycle directly after a reset begins, or by  $t_{AC}$  for an access under other conditions. Stored data is read non-destructively; data can be repeatedly read within a prescribed time of 5 ms maximum (20 ms maximum for H versions).

#### **Time Axis Conversion**

In order to use these line buffers as time axis converters, write and read cycles must be controlled independently. First, write/read ports are initialized separately using the reset signals. Then, write cycles are executed in synchronization with WCK and write data is stored sequentially from address 0 of the device. Afterward, when a read cycle is executed in synchronization with RCK, stored data can be read sequentially from address 0.

Since write and read cycles can be executed independently, data loaded at one arbitrary drive frequency can be read at another arbitrary drive frequency. In this sense, the line buffer functions as a time axis converter.



#### **Digital Delay Line**

NEC's line buffers can also easily be used as digital delay lines. After initializing the internal circuits using simultaneous RSTW/RSTR signals, write/read cycles are executed simultaneously by supplying the same pulse to the write clock (WCK) and read clock (RCK). The write data is always read after the full line delay if neither write nor read operation has been inhibited. This is the essential delay line function.

If either  $\overline{WE}$  or  $\overline{RE}$  is set at a nonselected (high) level for several cycles while the other is maintained at a selected (low) level, the delay line length can differ from the line length.

For example, if only  $\overline{WE}$  is set to a high level (write disable) for a small number of cycles, read cycles are executed continuously and the delay line length is large. Alternatively, if only  $\overline{RE}$  is set to a high level (read disable) for a small number of cycles, write cycles are executed

continuously and the delay line length is small. Note that the minimum delay line length is 10 bits (for maximum frequency operation) and the maximum is the length of the line buffer.

A data delay of less than the line length can also be obtained by applying the RSTW and RSTR signals at different times. For example, data is loaded for "m" cycles after RSTW and then this data is read after supplying RSTR. In the case, since write data can be read from the beginning after a delay of "m" cycles, the device can be used as an "m-bit" digital delay line.

The RSTW/RSTR reset signals can also be simultaneously loaded at every 1H (horizontal line) period. In this case, write data loaded in the previous line cycle is read out from the beginning as read data after the reset. Therefore, a delay line length can be obtained according to the length of the reset signals supplied.

# μPD42101/42102/42505





#### μ**PD42270** NTSC Field Buffer

### **Preliminary Information**

#### Description

The  $\mu$ PD42270 is a field buffer designed for NTSC TV applications and for other applications where serial data is needed. Equipped with four planes of 263-line by 910-bit storage, the  $\mu$ PD42270 can execute serial write and read cycles on any of the 263 lines. Within a line, four planes of 910 bits each may be written or read at the NTSC sampling rate of 4f_{SC}.

Each of the four planes in the  $\mu$ PD42270 is equipped with two ports, one each for the write and read data registers. Each of the registers is split into two 455-bit segments, but functions as if it were organized as one scan line of 910 bits. Independent control of write and read operation makes it possible for the device to operate synchronously or asynchronously at a clock frequency of 14.3 MHz or higher.

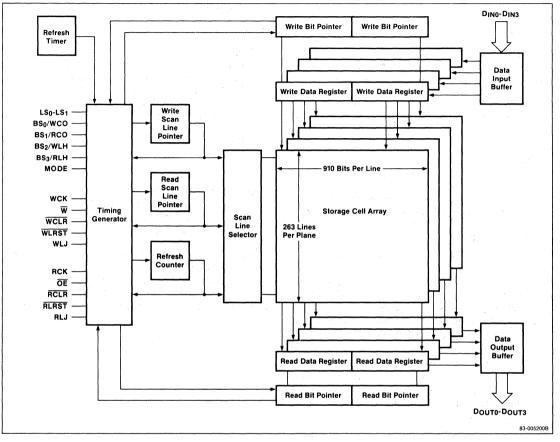
The synchronous option simplifies interframe luminance (Y) and chrominance (C) separation and interfield noise reduction and makes it easy to obtain a one-field delay line for digital TV and VCR applications requiring NTSC  $4f_{SC}$  sampling. To obtain a very long delay, field length can be configured from 260 to 263 lines and line length of the last line from 896 to 910 bits.

The asynchronous option is useful in applications such as frame synchronization and time base correction, where line jump, line hold, line reset and pointer clear functions are required to support special effects in TV field processing.

Regular refreshing of the device's dynamic storage cells is performed automatically by an internal arbitration circuit. All inputs and outputs, including clocks, are TTL-compatible. The  $\mu$ PD42270 is packaged in a 400-mil, 28-pin plastic DIP and is guaranteed for operation at -20 to +70 °C.

#### **Ordering Information**

Part Number	Access Time (max)	Cycle Time (min)	Package
µPD42270C-60	40 ns	60 ns	28-pin plastic DIP


#### Features

- □ Three functional blocks
  - Four 263-line x 910-bit storage planes
  - 910-bit write register for each plane
- 910-bit read register for each plane
- Two data ports: serial write and serial read
- Asynchronous operation
  - Dual-port accessibility
  - Carry-out capability to indicate position of scan line
  - Line jump, line hold, line reset, and pointer clear functions
- □ Synchronous operation
  - Variable field length: 260 to 263 lines
  - Variable last line length: 896 to 910 bits
- □ Automatic refreshing
- □ CMOS technology
- □ Fully TTL-compatible inputs, outputs, and clocks
- □ Three-state outputs
- □ Single +5-volt ±10% power supply
- □ On-chip substrate bias generator
- Standard 400-mil, 28-pin plastic DIP packaging

## μ**PD42270**



## **Block Diagram**



**NEC** NEC Electronics Inc.

### µPD43501 1,024-Channel Time-Division Switch

## **Preliminary Information**

#### Description

The  $\mu$ PD43501 is a time-switch device designed for use in a high-performance digital communications network. Features include a time-switch function by which up to 1,024 channels can be exchanged using a 16-bit data width, and a tone output function by which an 8-bit tone signal can be output to an arbitrary channel.

Two planes of 1-kword by 8-bit storage area and one plane of 1-kword by 10-bit control storage area for the time-switch function enable the  $\mu$ PD43501 to realize switching modes in which arbitrary 1,024 or 512 input channels can be connected to arbitrary 1,024 or 512 output channels. The configuration of the tone signal output section, one plane of 64-word by 8-bit tone storage area and one plane of 1-kword by 8-bit tone control storage area, allows the device to output up to 64 different tone signals to an arbitrary output channel as 8-bit voice/tone data.

#### **Ordering Information**

Part Number	Data Transfer Rate (max)	Package
μPD43501R	8.192 Mbps	132-pin ceramic pin grid array (PGA)

#### Features

- □ Separate switch storage and control storage to allow construction with one VLSI device of a nonblocking switching network having a maximum capacity of 1,024 channels
- □ Selectable operation
  - 1,024 by 1,024 serial input and output
  - 1,024 by 1,024 parallel input and output
    - 16.384 MHz operating frequency
    - 8.192 Mbps data transfer rate
  - 512 by 512 parallel input and output
    - 8.192 MHz operating frequency
    - 4.096 Mbps data transfer rate
- □ Switching flexibility
  - 8- or 16-bit data width
- n by 64 kbps connection
- Tone signal output function
- □ 8 by 8 space switch for an 8.192 Mbps, 128-channel multiplexed line
- □ CPU interfaces for the control storage and tone control storage
- □ Low power consumption: 1000 mW (typ)
- □ TTL-compatible inputs and outputs
- □ 132-pin ceramic pin grid array packaging

#### **Switching Functions**

#### Mode 0

In this mode, the  $\mu$ PD43501 inputs eight 128-channel multiplexed lines from ports SI₀₀ through SI₀₇ (or from CI₀₀ through CI₀₇) and outputs eight 128-channel multiplexed lines to ports SO₀₀ through SO₀₇ (or CO₀₀ through CO₀₇). Refer to figure 1 for a functional pin diagram.

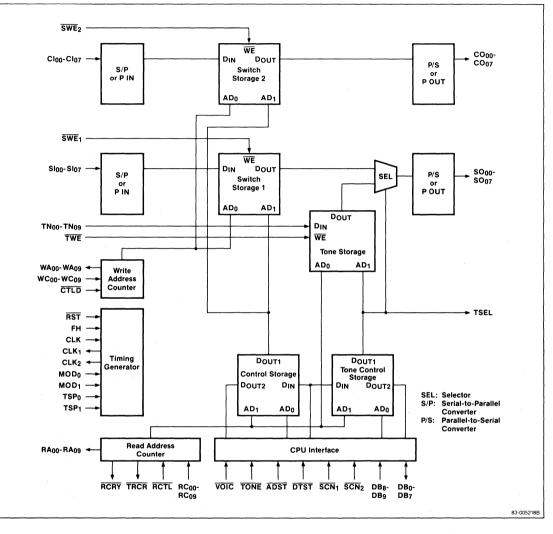
Serial input data from the input ports first is converted to parallel data by the serial-to-parallel converters in the receive section, and then multiplexed and sent to the input section of the switch storage area. Since the write address counter is synchronized with input data, the write address of the switch storage area corresponds to the time slot number of the input signal. Writing multiplexed data to the switch address specified by the write address counter causes input data in the time slot corresponding to the switch address always to be stored at that address (figure 2).

Conversely, a control storage address corresponds to an output-side time slot number, and the data in control storage indicates the switch storage address, i.e., the input-side time slot number is stored at the control storage address corresponding to the output-side time slot to which the input-side is transferred.

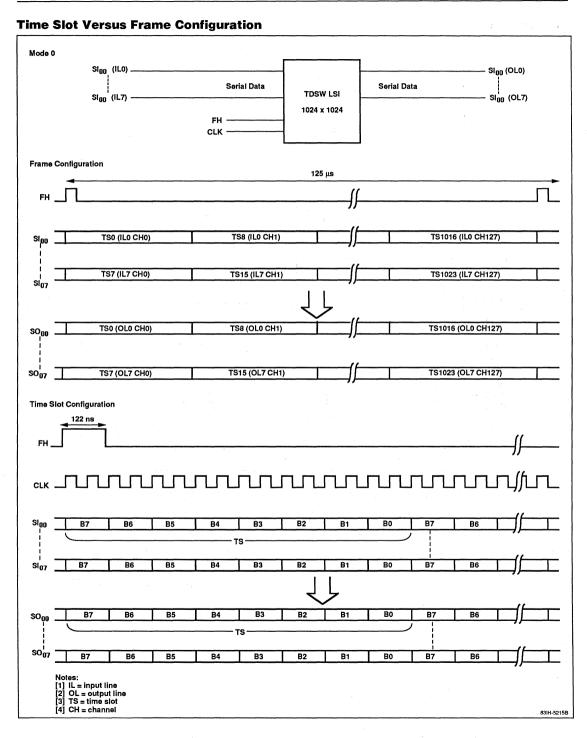
The address signal is sent from the read address counter to control storage in synchronization with each output-side time slot. Data read out by this operation is then sent to the switch storage area as the address signal, and the data in the specified address (input-side time slot) is then read out on the output side and switched. Switched data is sent to the parallel-toserial converters in the transmission section, where it is converted to serial data and then output to the appropriate output ports.

With this switching function, the data in an arbitrary time slot on the input side can be output as data in an arbitrary time slot on the output side. Furthermore, in addition to the time division switch function, a space switch function enables switching time slots on any of the eight input ports to be output on any of the eight output ports. This means that a nonblocking 8 x 8 space switch for 128-channel multiplexed lines can be realized.

#### Mode 1


Mode 1 makes it possible for the  $\mu$ PD43501 to input 512-channel multiplexed lines (4.096 Mbps by 8 bits), 8 bits in parallel, and output 512-channel multiplexed lines, 8 bits in parallel. The input signals received on the input ports are sent to the switch storage area in parallel, after which the same switching functions described in Mode 0 are then performed.

#### Mode 2


In Mode 2, the  $\mu$ PD43501 inputs 1,024-channel multiplexed lines (8.192 Mbps by 8 bits), 8 bits in parallel, and outputs 1,024-channel multiplexed lines, 8 bits in parallel. The input signals received on the input ports are sent to the switch storage area in parallel, after which the same switching functions described in Mode 0 are performed.



#### **Block Diagram**







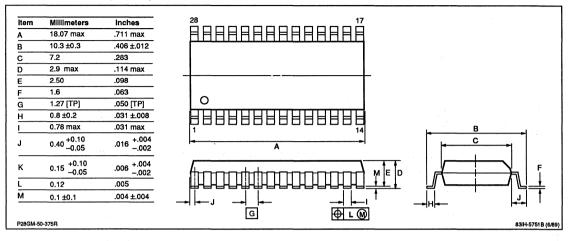
# NEC

## PACKAGE DRAWINGS

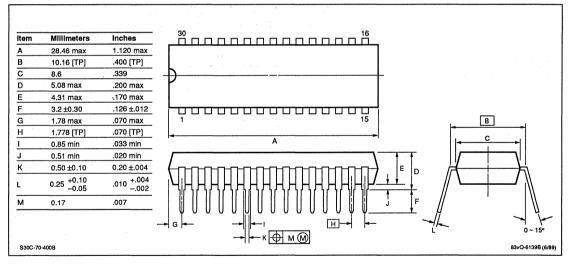
#### Section 9 Package Drawings

i donage blamingo	
Package/Device Cross-Reference	9-3
28-Pin Plastic SOP (375 mil)	9-5
30-Pin Plastic Shrink DIP (400 mil)	<del>9</del> -5
40-Pin Plastic DIP (600 mil)	9-6
40-Pin Ceramic DIP With Side-Brazed Leads (600 mil)	<del>9</del> -7
40-Pin Cerdip (600 mil)	9-8
44-Pin PLCC	9-9
48-Pin Plastic DIP (600 mil)	9-10
52-Pin Plastic Miniflat (3.5-mm leads)	9-11
52-Pin Plastic Miniflat (1.8-mm leads)	9-12
52-Pin PLCC	9-13
64-Pin Plastic Miniflat	9-14
64-Pin Plastic Shrink DIP (750 mil)	9-15
68-Pin PLCC	9-16
74-Pin Plastic Miniflat	9-17
80-Pin Plastic Miniflat (2.35-mm leads)	9-18
80-Pin Plastic Miniflat (1.8-mm leads)	9-19
84-Pin PLCC	9-20
94-Pin Plastic Miniflat	9-21
100-Pin Plastic Miniflat	9-22
132-Pin Ceramic PGA	9-23



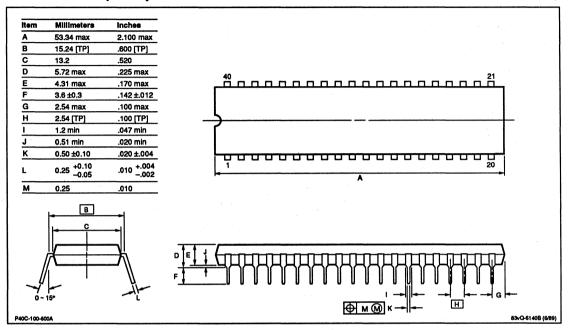

#### Package/Device Cross-Reference

Package	Device, µPD
28-Pin Plastic SOP (375 mil)	71065G
30-Pin Plastic Shrink DIP (400 mil)	71066CT
40-Pin Plastic DIP (600 mil)	765AC2 765B 7201AC
	72001C 72001C-11 72020C-8
	72061 C 72065C 72065BC
40-Pin Ceramic DIP With Side-Brazed Leads (600 mil)	7201AD 7220AD 7220AD-1 7220AD-2
	7261AD 7261BD-18 7261BD-23
40-Pin Cerdip (600 mil)	7262D12 7262D18
44-Pin PLCC	72065L 72065BL
48-Pin Plastic DIP (600 mil)	72067C
52-Pin Plastic Miniflat (3.5-mm leads)	7225G-00 72065G
52-Pin Plastic Miniflat (1.8-mm leads)	72001GC-3B6 72001GC-3B6-11 72020GC-8-3B6 72061GC-3B6
	72065GC 72065BGC-3B6 72067GC-3B6

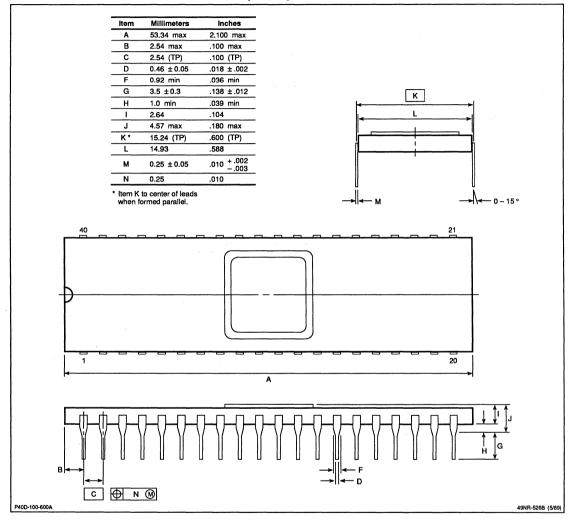

Package	Device, µPD
52-Pin PLCC	72001L
	72001L-11
	72061L
	72067L
64-Pin Plastic Miniflat	7227G-12
64-Pin Plastic Shrink DIP (750 mil)	72111CW
	72185CW
68-Pin PLCC	72022L
	72111L
	72185L
74-Pin Plastic Miniflat	72111GJ-5BJ
80-Pin Plastic Miniflat (2.35-mm leads)	7228G-12
	7228AG-12
80-Pin Plastic Miniflat (1.8-mm leads)	72022GF-3B9
	72068GF-3B9
84-Pin PLCC	72068L
	72069L
	72120L
	72123L
94-Pin Plastic Miniflat	72120J-5BG
	72123GJ-5BG
100-Pin Plastic Miniflat	72069GF-3BA
132-Pin Ceramic PGA	72123R



#### 28-Pin Plastic SOP (375 mil)

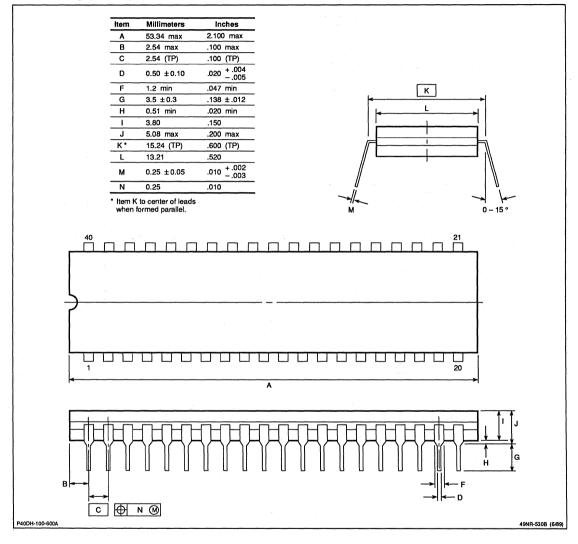



#### 30-Pin Plastic Shrink DIP (400 mil)





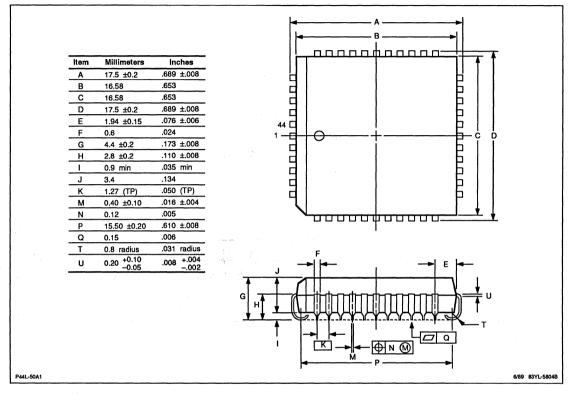

#### 40-Pin Plastic DIP (600 mil)





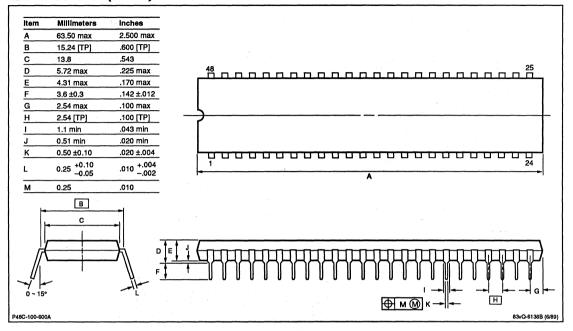






#### 40-Pin Cerdip (600 mil)

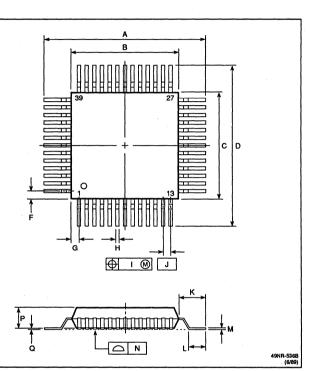


## NEC


## **Package Drawings**

#### 44-Pin PLCC

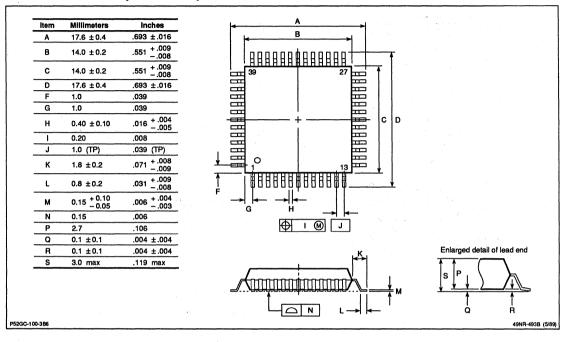





#### 48-Pin Plastic DIP (600 mil)



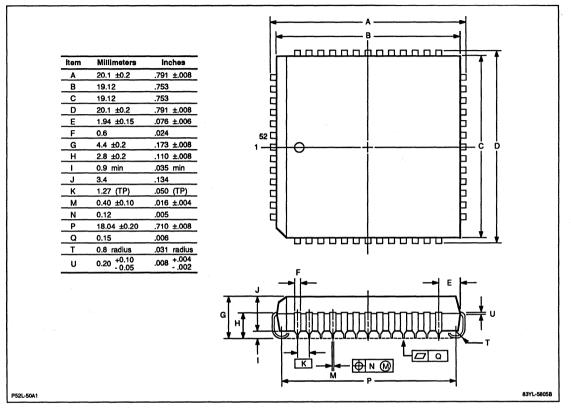
#### 52-Pin Plastic Miniflat (3.5-mm leads)


ltem	Millimeters	Inches
Α	21.0 ± 0.4	.827 ±.016
В	14.0 ± 0.2	.551 + .009 008 -
с	14.0 ± 0.2	.551 + .009 008 -
D	$21.0 \pm 0.4$	.827 ±.016
F	1.0	.039
G	1.0	.039
н	0.40 ± 0.10	.016 + .004 005
I	0.20	.008
J	1.0 (TP)	.039 (TP)
к	3.5 ±0.2	.138 + .008 009
L	2.2 ±0.2	.087 <mark>+ .009</mark> 008
м	0.15 + 0.10 - 0.05	.006 + .004 003
N	0.15	.006
Р	2.6 ^{+ 0.2} - 0.1	.102 + .009
Q	0.1 ±0.1	.004 ±.004
	1. j. 1	



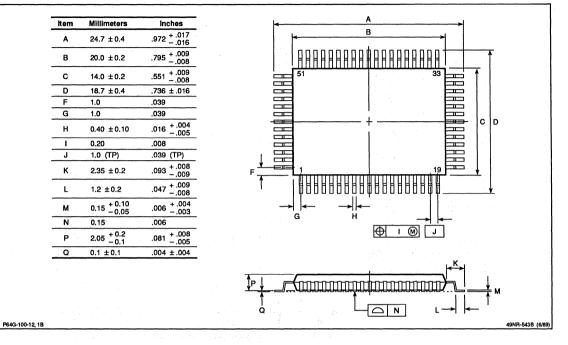
P52G-100-00




#### 52-Pin Plastic Miniflat (1.8-mm leads)

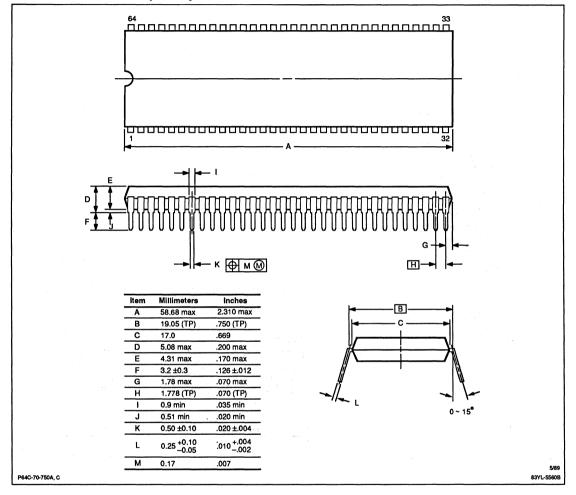





#### 52-Pin PLCC

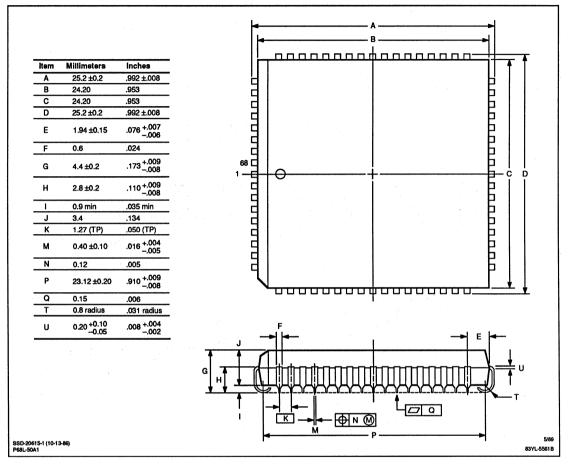
NEC





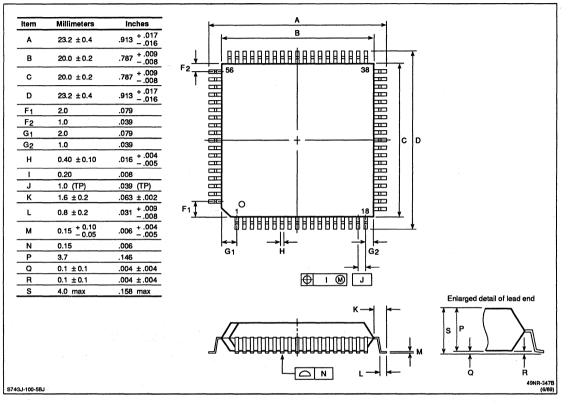

#### 64-Pin Plastic Miniflat






#### 64-Pin Plastic Shrink DIP (750 mil)



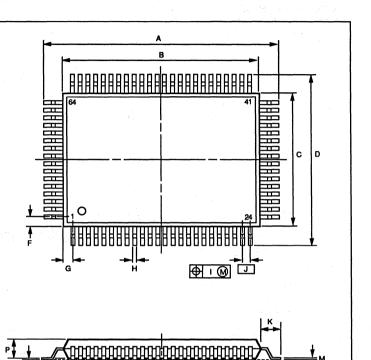



68-Pin PLCC





#### 74-Pin Plastic Miniflat





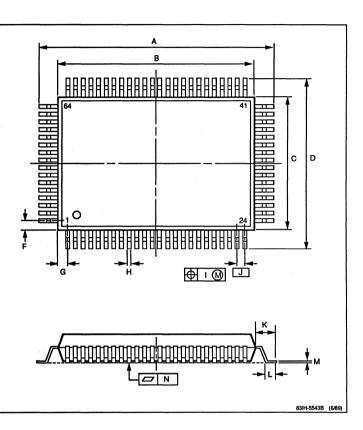

83SL-6222B (6/

#### 80-Pin Plastic Miniflat (2.35-mm leads)

tem	Millimeters	Inches
Α	24.7 ±0.4	.972±.016
в	20.0 ±0.2	.787 +.009
C	14.0 ±0.2	.551 +.009 008
D	18.7 ±0.4	.736 ±.016
F	1.0	.039
G	0.8	.031
н	0.35 ±0.10	.014 +.004 005
I	0.15	.006
J	0.8 (TP)	.031 (TP)
к	2.35 ±0.2	.093 +.009 008008
L	1.2 ±0.2	.047 +.009 008
м	0.15 +0.10	.006 +.004
N	0.15	.006
Р	2.05 +0.2	.081 +.008
R	0.1 ±0.1	.004 ±.004



R

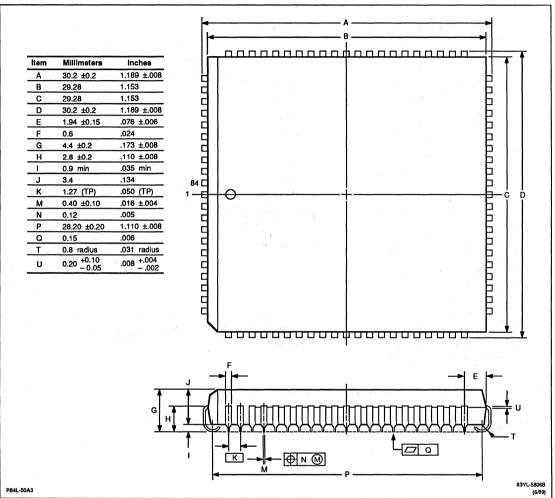

P80G-80-12

9-18

NEC

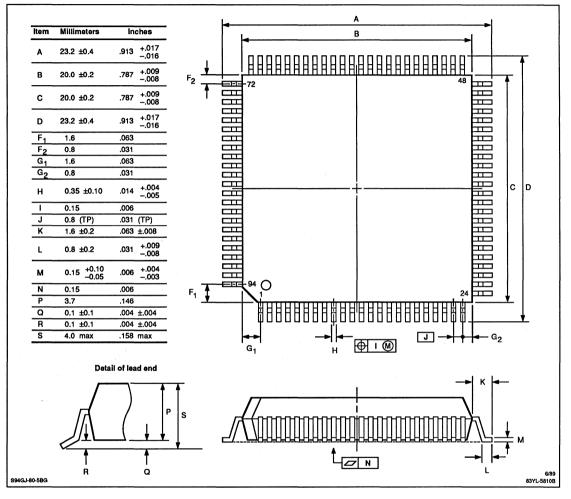
#### 80-Pin Plastic Miniflat (1.8-mm leads)

ltem	Millimeters	Inches
Α	23.6 ±0.4	.929 ±.016
в	20.0 ±0.2	.787 +.009 008
С	14.0 ±0.2	.551 +.009 008
D	17.6 ±0.4	.693 ±.016
F	1.0	.039
G	0.8	.031
н	0.35 ±0.10	.014 +.004 005
1	0.15	.006
J	0.8 (TP)	.031 (TP)
к	1.8 ±0.2	.071 +.009 008
L	0.8 ±0.2	.031 +.009 008
м	0.15 +0.10 -0.05	.006 +.004
N	0.15	.006
Р	2.7	.106
Q .	0.1 ±0.1	.004 ±.004
R	0.1 ±0.1	.004 ±.004
s	3.0 max	.118 max



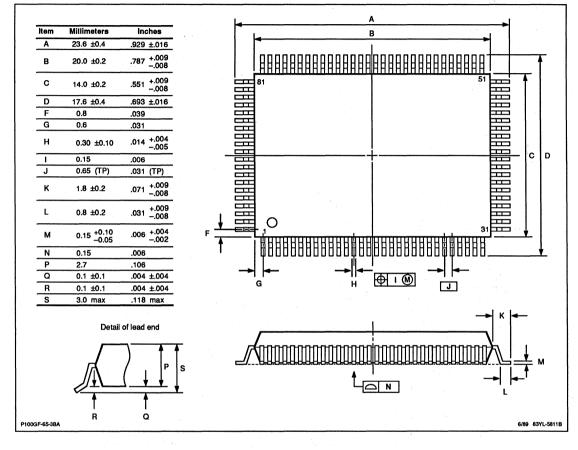

Pin Detail




¢.

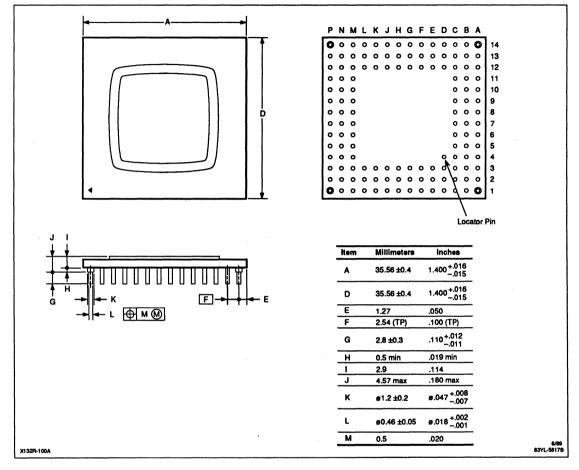







#### 94-Pin Plastic Miniflat






#### 100-Pin Plastic Miniflat





#### 132-Pin Ceramic PGA



#### FIELD SALES OFFICES

#### NORTHEAST REGION

One Natick Executive Park Natick, MA 01760 TEL: 508-655-8833 FAX: 508-655-1605

200 Perinton Hills Office Park Fairport, NY 14450 TEL: 716-425-4590 FAX: 716-425-4594

2 Jefferson St. Suite 103 Poughkeepsie, NY 12601 TEL: 914-452-4747 FAX: 914-471-2853

Two Jericho Plaza Jericho, NY 11753 TEL: 516-932-5700 FAX: 516-932-5710

Six Neshaminy Interplex Suite 203 Trevose, PA 19047 TEL: 215-638-8989 FAX: 215-638-1794

#### SOUTH CENTRAL REGION 16475 Dallas Parkway

Suite 380 Dallas, TX 75248 TEL: 214-931-0641 FAX: 214-931-1182

FAX: 404-447-8228 901 Lake Destiny Drive Suite 320 Maitland, FL 32751 TEL: 407-875-1145

FAX: 407-875-0962 2525 Meridian Parkway Suite 320 Durham, NC 27713 TEL: 919-544-4132 FAX: 919-544-4109

SOUTHEAST REGION

Norcross, GA 30092

TEL: 404-447-4409

Suite 210

6625 The Corners Parkway

#### MIDWEST REGION

1500 West Shure Drive Suite 250 Arlington Heights, IL 60004 TEL: 312-577-9090 FAX: 312-577-2147

340 E. Big Beaver Road Suite 210 Troy, MI 48083 TEL: 313-680-0506 FAX: 313-680-1015

1550 East 79th Street Suite 805 Bloomington, MN 55425 TEL: 612-854-4443 FAX: 612-854-1346

Busch Corporate Center 6480 Busch Blvd., Suite 121 Columbus, OH 43229 TEL: 614-436-1778 FAX: 614-436-1769

30050 Chagrin Blvd. Suite 320 Pepper Pike, OH 44124 TEL: 216-831-0067 FAX: 216-831-0758

#### NORTHWEST REGION

401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL: 415-965-6200 FAX: 415-965-6683

Two Lincoln Center 10220 S.W. Greenburg Road Suite 125 Portland, OR 97223 TEL: 503-245-1600 FAX: 503-245-3716

14001 East Iliff Avenue Suite 411 Aurora, CO 80014 TEL: 303-755-6353 FAX: 303-755-6728

#### SOUTHWEST REGION

200 E. Sandpointe, Bldg. 8 Suite 460 Santa Ana, CA 92707 TEL: 714-546-0501 FAX: 714-432-8793

Encino Office Park Two 6345 Balboa Blvd. Suite 240 Encino, CA 91316 TEL: 818-342-3111 FAX: 818-342-0842





401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415-960-6000 TLX 3715792 For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-632-3531 DOC NO. 50051 ©1989 NEC Electronics Inc./Printed in U.S.A.