1981 CATALOG

NEC Microcomputers,Inc. NEC

© 1981 NEC Microcomputers, Inc.
The information presented in this document is believed to be accurate and reliable. The information is subject to change without notice.

CONTENTS

FUNCTIONAL AND NUMERICAL INDEXES ROM ORDERING PROCEDURE

MEMORY SELECTION GUIDE AND ALTERNATE SOURCE GUIDE

RANDOM ACCESS MEMORIES

READ ONLY MEMORIES

MICROCOMPUTER SELECTION GUIDE AND ALTERNATE SOURCE GUIDE

SINGLE CHIP 4-BIT MICROCOMPUTERS

SINGLE CHIP 8-BIT MICROCOMPUTERS

MICROPROCESSORS

PERIPHERALS

BOARD PRODUCTS

NEC Microcomputers,Inc. 1981
 Product Catalog

NOTES

FUNCTIONAL INDEX

RANDOM ACCESS MEMORIES
Selection Guide 8
Alternate Source Guide 9
Dynamic NMOS RAMs μ PD411 11
μ PD411A 19
μ PD416 27
μ PD2118 37
μ PD4164 47
Static NMOS RAMs
μ PD4104 53
μ PD2114L 59
μ PD2147 65
μ PD2149 71
μ PD421 77
μ PD2167 81
Static CMOS RAMs
μ PD5101L 83
μ PD444/6514 89
μ PD445L 93
μ PD446 99
μ PD447 105
PROGRAMMABLE READ
ONLY MEMORIES
Selection Guide 8
Alternate Source Guide 9
ROM Ordering Procedure 111
Mask Programmable ROMs
μ PD2308A 113
μ PD2316E 117
μ PD2332A/B 121
μ PD2364 125
μ PD23128 129
Field Programmable ROMs
(Bipolar)
بPD406/426 133
بPD409/429 137
(U.V. Erasable)
μ PD2716 143
μ PD2732 149
Bipolar Field Programmable
Logic Arrays μ PD450 151
SINGLE CHIP
4-BIT MICROCOMPUTERS
Selection Guide 155
Microcomputer Alternate
Source Guide 157
ROM Ordering Procedure 1.11
μ COM-4 159
μ COM-43 169
μ PD546 173
μ PD553 175
μ PD557L 177
μ PD650 179
μ COM-44 181
μ PD547 185
μ PD547L 187
μ PD552 189
μ PD651 191
μ COM-45 193
μ PD550 195
μ PD550L 197
μ PD554 199
μ PD554L 201
μ PD652 203
Evaluation Chip μ PD556 205
μ COM-75 μ PD7502 209
μ PD7503 223
μ PD7507 225
μ PD7520 227
Evaluation Chip μ PD7500 237
SINGLE CHIP 8-BIT MICROCOMPUTERS
Selection Guide 155
Alternate Source Guide 157
ROM Ordering Procedure 111
μ PD7800 239
μ PD7801 251
μ PD 7802 277
μ PD8021 303
μ PD8022 309
μ PD8041 315
μ PD8041A/8741A 323
μ PD8048/8748/8035L 333
μ PD80C48/80C35 345
μ PD8049/8039L 357
MICROPROCESSORS
Selection Guide 155
Alternate Source Guide 157
μ PD780 367
μ PD8080AF 383
μ PD8085A 397
μ PD8086 411
PERIPHERALS
Selection Guide 155
Alternate Source Guide 157
μ PD765 423
μ PD781 443
μ PD782 455
μ PD3301 467
μ PD7001 475
μ PD7002 479
μ PD7201 483
μ PD7210 495
μ PD 7225 505
μ PD7227 517
μ PD7720 519
μ PD8155/8156 537
μ PB8212 545
μ PB8214 553
μ PB8216/8226 561
μ PB8224 565
μ PB8228 571
μ PD8243 577
μ PD8251/8251A 583
μ PD 8253/8253-5 601
μ PD8255/8255A-5 609
μ PD8257/8257-5 617
μ PD8259/8259-5 625
μ PD8259A 641
μ PD8279-5 659
μ PB8282/8283 669
μ PB8284 673
μ PB8286/8287 681
μ PB8288 687
μ PD8355/8755A 695
BOARD PRODUCTS
BP-0200 703
BP-0220 705
BP-0575 707
BP-2190 709

NUMERICAL INDEX

PRODUCT PAGE
μ COM-4 159
μ COM-43 169
μ COM-44 181
μ COM-45 193
μ PB406/426 133
μ PB409/429 137
μ PD411 11
μ PD411A 19
μ PD416 27
μ PD421 77
μ PD444/6514 89
μ PD445L 93
μ PD446 99
μ PD447 105
μ PB450 151
μ PD546 173
μ PD547 185
μ PD547L 187
μ PD550 195
μ PD550L 197
μ PD552 189
μ PD553 175
μ PD554 199
μ PD554L 201
μ PD556 205
μ PD557L 177
μ PD650 179
μ PD651 191
μ PD652 203
μ PD765 423
μ PD780 367
μ PD781 443
μ PD782 455
μ PD2114L 59
μ PD2118 37
μ PD2147 65
μ PD2149 71
μ PD2167 81
μ PD2308A 113
μ PD2316E 117
μ PD2332A/B 121
μ PD2364 125
μ PD2716 143
μ PD2732 149
μ PD3301 467
μ PD4104 53
μ PD4164 47
μ PD5101L 83
μ PD7001 475
PRODUCT
μ PD7002 479
μ PD7201 483
μ PD7210 495
μ PD7225 505
μ PD7227 517
μ PD7500 237
μ PD7502 209
μ PD7503 223
μ PD7507 225
μ PD7520 227
μ PD7720 519
μ PD7800 239
μ PD7801 251
μ PD7802 277
μ PD8021 303
μ PD8022 309
μ PD8041 315
μ PD8041A/8741A 323
μ PD8048/8748/8035L 333
μ PD80C48/80C35 345
μ PD8049/8039L 357
μ PD8080AF 383
μ PD8085A 397
μ PD8086 411
μ PD8155/8156 537
μ PB8212 545
μ PB8214 553
μ PB8216/8226 561
μ PB8224 565
μ PB8228 571
μ PD8243 577
μ PD8251/8251A 583
μ PD8253/8253-5 601
μ PD8255/8255A-5 609
μ PD8257/8257-5 617
μ PD8259/8259-5 625
μ PD8259A 641
μ PD8279-5 659
μ PB8282/8283 669
μ PB8284 673
μ PB8286/8287 681
μ PB8288 687
μ PD8355/8755A 695
μ PD23128 129
BP-0200 703
BP-0220 705
BP-0575 707
BP-2190 709

NOTES

MEMORIES
 2

MEMORY SELECTION GUIDE

DEVICE	SIZE	PROCESS	ACCESS		SUPPLY TIME	CYCLE	PACKAGE	
	VOLTAGE	MATERIAL	PINS					

DYNAMIC RANDOM ACCESS MEMORIES

μ PD411	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	150 ns	380 ns	$+12,+5,-5$	D	22
μ PD411-4	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	135 ns	320 ns	$+15,+5,-5$	D	22
μ PD411A	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	200 ns	400 ns	$+12,+5,-5$	C	22
μ PD416	$16 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	120 ns	320 ns	$+12,+5,-5$	C/D	16
μ PD2118	$16 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	100 ns	235 ns	+5	C/D	16
μ PD4164	$64 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	150 ns	270 ns	+5	C/D	16

STATIC RANDOM ACCESS MEMORIES

μ PD5101L	$256 \times 4 \mathrm{TS}$	CMOS	450 ns	450 ns	+5	C	22
μ PD444/6514	$1 \mathrm{~K} \times 4 \mathrm{TS}$	CMOS	200 ns	200 ns	+5	C	18
μ PD445L	$1 \mathrm{~K} \times 4 \mathrm{TS}$	CMOS	450 ns	450 ns	+5	C	20
μ PD446	$2 \mathrm{~K} \times 8 \mathrm{TS}$	CMOS	120 ns	120 ns	+5	C/D	24
μ PD447	$2 \mathrm{~K} \times 8 \mathrm{TS}$	CMOS	120 ns	120 ns	+5	C/D	24
μ PD4104	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	200 ns	310 ns	+5	C/D	18
μ PD2114L	$1 \mathrm{~K} \times 4 \mathrm{TS}$	NMOS	150 ns	150 ns	+5	C/D	18
μ PD2147	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	45 ns	45 ns	+5	D	18
μ PD2149	$1 \mathrm{~K} \times 4 \mathrm{TS}$	NMOS	35 ns	35 ns	+5	D	18
μ PD421	$1 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	150 ns	150 ns	+5	D	22
μ PD2167	$16 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	55 ns	55 ns	+5	D	20

MASK PROGRAMMED READ ONLY MEMORIES

μ PD2308A	$1 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C / D	24
$\mu \mathrm{PD} 2316 \mathrm{E}$	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
$\mu \mathrm{PD} 2316 \mathrm{E}-1$	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	350 ns	350 ns	+5	C	24
μ PD2332A/B	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
μ PD2332A/B-1	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	350 ns	350 ns	+5	C	24
μ PD2364	$8 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
μ PD23128	$16 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	250 ns	250 ns	+5	C	28

FIELD PROGRAMMABLE READ ONLY MEMORIES

(Bipolar)							
μ PB406	$1 \mathrm{~K} \times 4 \mathrm{OC}$	BIPOLAR	50 ns	50 ns	+5	C/D	18
$\mu \mathrm{PB} 426$	$1 \mathrm{~K} \times 4 \mathrm{TS}$	BIPOLAR	50 ns	50 ns	+5	C/D	18
$\mu \mathrm{PB} 409$	$2 \mathrm{~K} \times 8$ OC	BIPOLAR	50 ns	50 ns	+5	C/D	24
μ PB429	$2 \mathrm{~K} \times 8 \mathrm{TS}$	BIPOLAR	50 ns	50 ns	+5	C/D	24
(Bipolar Logic Array)							
μ PB450	9216 bit	BIPOLAR	200 ns	200 ns	+5	D	48
(U.V. Erasable)							
μ PD2716	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	D	24
μ PD2732	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	D	24

[^0]MEMORY ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	2716 27S33 8308 9016 9060 9107 9114 9124 9147 9216 AM91L14 AM91L24	$\begin{gathered} 2 \mathrm{~K} \times 8 \mathrm{EPROM} \\ 1 \mathrm{~K} \times 4 \text { PROM } \\ 1 \mathrm{~K} \times 8 \text { ROM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 4 \mathrm{~K} \times 1 \text { DRAM } \\ 4 \mathrm{~K} \times 1 \text { DRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 4 \mathrm{~K} \times 1 \text { SRAM } \\ 2 \mathrm{~K} \times 8 \text { ROM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \end{gathered}$	μ PD2716 μ PB426 μ PD2308A μ PD4 16 μ PD411/411A μ PD411/411A $\mu \mathrm{PD} 2114 \mathrm{~L}$ μ PD2114L μ PD2147 μ PD2316E μ PD444/ μ PD6514 μ PD444/ μ PD6514
$E M \& M$	$\begin{aligned} & 2114 \\ & 8108 \end{aligned}$	$1 \mathrm{~K} \times 4$ SRAM $1 \mathrm{~K} \times 8$ SRAM	μ PD2114L μ PD421
FAIRCHILD	$\begin{aligned} & 93453 \\ & 93511 \\ & \text { F2114 } \\ & \text { F2716 } \\ & \text { F16K } \end{aligned}$	$1 \mathrm{~K} \times 4$ PROM $2 \mathrm{~K} \times 8$ PROM 1K x 4 SRAM 2K x 8 EPROM $16 K \times 1$ DRAM	μ PB426 μ PB429 μ PD2114L μ PD2716 μ PD416
FUJITSU	7122 7138 MBM2147 MBM2716 MBM2732 MB8107 MB8114 MB8116 MB8216 MB8264 MB8308 MB8414	$\begin{gathered} 1 \mathrm{~K} \times 4 \text { PROM } \\ 2 \mathrm{~K} \times 8 \text { PROM } \\ 4 \mathrm{~K} \times 1 \text { SRAM } \\ 2 \mathrm{~K} \times 8 \mathrm{EPROM} \\ 4 \mathrm{~K} \times 8 \text { EPROM } \\ 4 \mathrm{~K} \times 1 \text { DRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 64 \mathrm{~K} \times 1 \text { DRAM } \\ 1 K \times 1 \text { ROM } \\ 1 K \times 4 \text { SRAM } \\ \hline \end{gathered}$	μ PB426 μ PB429 μ PD2147 μ PD2716 μ PD2732 μ PD411/ μ PD411A μ PD2114L μ PD416 μ PD416 μ PD4164 μ PD2308A μ PD444/6514
HARRIS	7643 76161 HM6501 HM6514	$\begin{array}{r} 1 \mathrm{~K} \times 4 \text { PROM } \\ 2 \mathrm{~K} \times 8 \text { PROM } \\ 256 \times 4 \text { SRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \end{array}$	μ PB426 μ PB429 μ PD5101L μ PD444/6514
HITACHI	HM4334 HM435101 HN462716 HN462732 HM472114 HM4716A HM4816 HM4864 HM4864 HM6116	$\begin{gathered} 1 \mathrm{~K} \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 2 \mathrm{~K} \times 8 \text { EPROM } \\ 4 \mathrm{~K} \times 8 \text { EPROM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 64 \mathrm{~K} \times 1 \text { DRAM } \\ 2 \mathrm{~K} \times 8 \text { SRAM } \end{gathered}$	MPD444/6514 μ PD5101L μ PD2716 μ PD2732 μ PD2114 μ PD416 μ PD2118 μ PD4164 μ PD4 164 μ PD446

MEMORY ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
HITACHI (CONT.)	HM6147 HM6148	4K $\times 1$ SRAM $1 \mathrm{~K} \times 4$ SRAM	μ PD2147 μ PD444/6514
INTEL	$\begin{aligned} & 2107 \\ & 2114 \\ & 2117 \\ & 2118 \\ & 2141 \\ & 2147 \\ & 2164 \\ & 2167 \\ & 2308 \mathrm{~A} \\ & 2316 \mathrm{E} \\ & 2332 \\ & 2364 \\ & 2716 \\ & 2732 \\ & 3625 \\ & 3636-1 \\ & 5101 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \mathrm{~K} \times 1 \text { DRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 4 \mathrm{~K} \times 1 \text { SRAM } \\ 4 \mathrm{~K} \times 1 \text { SRAM } \\ 64 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { SRAM } \\ 1 \mathrm{~K} \times 8 \text { ROM } \\ 2 \mathrm{~K} \times 8 \text { ROM } \\ 4 \mathrm{~K} \times 8 \text { ROM } \\ 8 \mathrm{~K} \times 8 \text { ROM } \\ 2 \mathrm{~K} \times 8 \mathrm{EPROM} \\ 4 \mathrm{~K} \times 8 \mathrm{EPROM} \\ 1 \mathrm{~K} \times 4 \text { PROM } \\ 2 \mathrm{~K} \times 8 \text { PROM } \\ 256 \times 4 \text { SRAM } \\ \hline \end{gathered}$	```\muPD411/\muPD411A \muPD2114L \muPD416 \muPD2118 \muPD4104 \muPD2147 \muPD4164 \muPD2167 \muPD2308A \muPD2316E \muPD2332A/B \muPD2364 \muPD2716 \muPD2732 \muPB426 \muPB429 \muPD5101L```
MITSUBISHI	M5K4164S	$64 \mathrm{~K} \times 1$ DRAM	μ PD4164
MMI	$\begin{aligned} & 63 S 1681 \\ & 63 S 441 \\ & 6353 \end{aligned}$	$2 \mathrm{~K} \times 8$ PROM $1 \mathrm{~K} \times 4$ PROM $1 \mathrm{~K} \times 4$ PROM	$\begin{aligned} & \mu \text { PB429 } \\ & \mu \text { PB426 } \\ & \mu \text { PB426 } \end{aligned}$
MOTOROLA	MCM2732 MCM4516/4517 MCM6665 7643	$2 \mathrm{~K} \times 8$ EPROM $16 \mathrm{~K} \times 1$ DRAM $64 \mathrm{~K} \times 1$ DRAM $1 \mathrm{~K} \times 4$ PROM	μ PD2732 μ PD2118 μ PD4164 μ PB426
NATIONAL	MM2732 NMC4164 NMC5295 74S573	$\begin{array}{r} 2 \mathrm{~K} \times 8 \text { EPROM } \\ 64 \mathrm{~K} \times 1 \text { DRAM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 1 \mathrm{~K} \times 4 \text { PROM } \end{array}$	μ PD2732 MPD4164 μ PD2118 μ PB426
OKI	MSM5114	$1 \mathrm{~K} \times 4$ SRAM	μ PD444/6514
RAYTHEON	29681	$2 \mathrm{~K} \times 8$ PROM	$\mu \mathrm{PB429}$
SIGNETICS	$\begin{aligned} & 82 \mathrm{~S} 137 \\ & 82 \mathrm{~S} 191 \end{aligned}$	1K x 4 PROM 2K $\times 8$ PROM	$\begin{aligned} & \mu \text { PB426 } \\ & \mu \text { PB429 } \end{aligned}$
T.I.	TMS4 164 TMS4516 TBP24S41 TBP28S166 74S476	$64 \mathrm{~K} \times 1$ DRAM 16K x 1 DRAM $1 \mathrm{~K} \times 4$ PROM 2K x 8 PROM 1K x 4 PROM	μ PD4164 μ PD2118 μ PB426 μ PB429 μ PB426
TOSHIBA	TMM4164 TC5516P	$\begin{array}{r} 64 K \times 1 \text { DRAM } \\ 2 K \times 8 \text { SRAM } \end{array}$	μ PD4164 μ PD447

FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION

The μ PD411 Family consists of six 4096 words by 1 bit dynamic N -channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411 Family is designed using dynamic circuitry which reduces the standby power dissipation.
Reading information from the memory is a non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.
FEATURES All of these products are guaranteed for operation over the 0 to $70^{\circ} \mathrm{C}$ temperature range.
Important features of the μ PD4 41 family are:

- Low Standby Power
- 4096 words $\times 1$ bit Organization
- A single low-capacitance high level clock input with solid ± 1 volt margins.
- Inactive Power/0.3 mW (Typ.)
- Power Supply: $+12,+5,-5 \mathrm{~V}$
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Ceramic Dual-in-Line Package
- Replacement for INTEL'S 2107B, TI'S 4060 and Equivalent Devices.
- 5 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESH TIME
μ PD411	300 ns	470 ns	650 ns	2 ms
μ PD411-1	250 ns	470 ns	640 ns	2 ms
μ PD411-2	200 ns	400 ns	520 ns	2 ms
μ PD411-3	150 ns	380 ns	470 ns	2 ms
μ PD411-4	135 ns	320 ns	320 ns	2 ms

$\mathrm{v}_{\mathrm{BB}}{ }^{1}$		22	v_{ss}
Ag^{-1}		21	A_{8}
$\mathrm{A}_{10}{ }^{\text {d }}$		20	
$\mathrm{A}_{11} \square_{4}$		19	A_{6}
CS 5		18	$V_{\text {D }}$
DIN 6	411	17	CE
DOUT ${ }^{\text {P }}$		16	NC
$\mathrm{A}_{0} \mathrm{C}_{8}$		15	
$\left.A_{1}\right]^{8}$		14	A_{4}
$\mathrm{A}_{2} \square_{10}$		13	A_{3}
$v_{c c} \square^{11}$		12	$\overline{W E}$

μ PD411

CE Chip Enable

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

$\overline{\mathrm{CS}}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

$\overline{W E}$ Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\overline{W E}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

A0-A11 Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

DOUT Data Output

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_{0} through A_{5} or by addressing every row within any 2 -millisecond period. Addressing any row refreshes all 64 bits in that row.

The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +20 Volts . . -0.3 to +25 Volts (1)
All Input Voltages	-0.3 to +20 Volts . . -0.3 to +25 Volts (1)
Supply Voltage VDD	-0.3 to +20 Volts . . -0.3 to +25 Volts (1)
Supply Voltage VCC	-0.3 to +20 Volts . . -0.3 to +25 Volts (1)
Power Dissipation	

Note: (1) Relative to $V_{B B}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for 4114.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current	ILI		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH }}$ MAX
CE Input Load Current	ILC		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {ILC }}$ MIN to $V_{\text {IHC }}$ MAX
Output Leakage Current for High Impedance State	ilo		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{0}=0 V \text { to } 5.25 \mathrm{~V} \end{aligned}$
VDD Supply Current during CE off	IDD OFF		20	200	$\mu \mathrm{A}$	$C E=1.0 \mathrm{~V}$ to 0.6 V
VDD Supply Current during CE on	IDD ON		35 (5)	60 (4)	mA	$C E=V_{1 H C}, T_{a}=25^{\circ} \mathrm{C}$
Average V_{DD} Current μ PD411 μ PD411-1 μ PD411-2 μ PD411-3 μ PD411-4	IDD AV IDDAV IDD AV IDDAV IDD AV		$\begin{aligned} & 37 \\ & 37 \\ & 37 \\ & 41 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 65 \\ & 80 \end{aligned}$	mA $m A$ mA mA mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ Cycle Time $=470 \mathrm{~ns}$ Cycle Time $=470 \mathrm{~ns}$ Cycle Time $=400 \mathrm{~ns}$ Cycle Time $=380 \mathrm{~ns}$ Cycle Time $=320 \mathrm{~ns}$
$\mathrm{V}_{\text {BB }}$ Supply Current (2)	I_{BB}		5	100	$\mu \mathrm{A}$	
$V_{C C}$ Supply Current during CE off (3)	ICC OfF		0.01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=V_{\text {IH }}$
Input Low Voltage	$V_{\text {IL }}$	1.0		0.6	v	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.4		$\mathrm{V}_{\mathrm{CC}}+1$	v	
CE Input Low Voltage	VILC	1.0		0.6	V	
CE Input High Voltage	$V_{\text {IHC }}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$	$V_{\text {DD }}$	$V_{D D^{+1}}$	v	
Output Low Voitage	V_{OL}	0		0.40	v	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
Output High Voltage	VOH	2.4		V cc	V	$1 \mathrm{OH}=2.0 \mathrm{~mA}$

Notes:
(1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
(2) The I_{BB} current is the sum of all leakage current.
(3) During CE on $V_{C C}$ supply current is dependent on output loading. $V_{C C}$ is connected to output buffer only.
(4) 65 mA for μ PD411-3

80 mA for μ PD411-4
(5) 41 mA for μ PD411-3

55 mA for μ PD4 $11-4$

CAPACITANCE

$T_{a}=0^{\circ}-70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Capacitance, $\overline{\text { CS }}$	$\mathrm{C}_{\text {AD }}$		4	6	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
CE Capacitance	${ }_{\text {CEE }}$		18	27	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
Data Output Capacitance	COUT		5	7	pF	$V_{\text {OUT }}=0 \mathrm{~V}$
DIN and WE Capacitance	$\mathrm{CIN}^{\text {I }}$		8	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

READ CYCLE

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted,
Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

PARAMETER	SYMBOL	LIMITS										UNIT
		μ PD411		μ PD411-1		μ PD411-2		μ PD411-3		μ PD411-4		
		MIN	MAX									
Time Between Refresh	tREF		2		2		2		2		2	ms
Address to CE Set Up Time	${ }^{\text {t }}$ AC	0		0		0		0	.	0		ns
Address Hold Time	${ }^{t} \mathrm{AH}$	150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{CC}$	130		170		130		130		80		ns
CE Transition Time	${ }^{\text {T }}$	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	ns
Cycle Time	${ }^{t} \mathrm{CY}$	470		470		400		380		320		ns
CE on Time	${ }^{\text {t }} \mathrm{CE}$	300	3000	260	3000	230	3000	210	3000	200	3000	ns
CE Output Delay	${ }^{t} \mathrm{CO}$		280		230		180		130		115	ns
Access Time	${ }^{\text {t }}$ ACC		300		250		200		150		135	ns
CE to $\overline{W E}$	twl	40°		40		40		40		40		ns
$\overline{W E}$ to CE on	twC	0		0		0		0		0		ns

WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted,
Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

PARAMETER	SYMBOL	LIMITS										UNIT
		μ PD411		μ PD411-1		μ PD411-2		μ PD411-3		μ PD411-4		
		MIN	MAX									
Cycle Time	${ }^{t} \mathrm{Cr}$	470		470		400		380		320		ns
Time Between Refresh	$t_{\text {REF }}$		2		2		2		2.		2	ms
Address to CE Set Up Time	${ }^{\text {t }}$ AC	0		0		0		0		0		ns
Address Hold Time	${ }^{\text {t }}$ A ${ }^{\text {H }}$	150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{CC}$	130		170		130		130		80		ns
CE Transition Time	t ${ }^{\text {t }}$	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	ns
CE on Time	${ }^{\text {t }} \mathrm{CE}$	300	3000	260	3000	230	3000	210	3000	200	3000	ns
$\overline{\text { WE }}$ to CE off	${ }^{\text {t }}$ W	180		180		150		150		65		ns
CE to $\overline{W E}$	${ }^{\text {c }}$ CW	300		260		230		210		200		ns
DIN to WE Set Up(1)	${ }^{\text {t }}$ DW	0		0		0		0		0		ns
Din Hold Time	${ }^{\text {t }} \mathrm{DH}$	40		40		40		40		40		ns
$\overline{\text { WE Pulse Width }}$	twp	180		180		150		100		65		ns

Note: (1) If $\overline{W E}$ is low before $C E$ goes high then $D_{I N}$ must be valid when $C E$ goes high.

READ - MODIFY - WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted, Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

PARAMETER	SYMBOL	LIMITS										UNIT
		μ PD411		μ PD411-1		μ PD411-2		μ PD411-3		μ PD411-4		
		MIN	MAX									
Read-Modify-Write (RMW) Cycle Time	${ }^{\text {t }}$ WWC	650		640		520		470		320		ns
Time Between Refresh	${ }_{\text {t }}$ REF		2		2		2		2		2	ms
Address to CE Set Up Time	${ }^{\text {t } A C}$	0		0		0		0		0		ns
Address Hold Time	${ }^{t} \mathrm{AH}$	150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{CC}$	130		170		130		130		80	.	ns
CE Transition Time	${ }^{\text {t }}$ T	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	ns
CE Width During RMW	${ }^{\text {t }}$ CRW	480	3000	430	3000	350	3000	300	3000	200	3000	ns
$\overline{W E}$ to CE on	tWC	0		0		0		0		0		ns
$\overline{W E}$ to CE off	${ }^{\text {W }}$ W	180		180		150		150		65		ns
$\overline{W E}$ Pulse Width	tWP	180		180		150		100		65		ns
DIN to WE Set Up	tow	0	!	0		0	-	0		0		ns
DIN Hold Time	${ }^{t} \mathrm{DH}$	40		40		40		40		40		ns
CE to Output Display	${ }^{\text {t }} \mathrm{CO}$		280		230		180		130		115	ns
Access Time	${ }^{\text {t }}$ ACC		300		250		200		150		135	ns

Notes (1) For refresh cycle row and column addresses must be stable : AC and remain stable for enture t_{AH} period
(2) $V_{O D} 2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(3) $\mathrm{V}_{S S}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(4) $\mathrm{V}_{\text {IHMIN }}$ is the reference level for measuring tuming of the addresses, $\overline{\mathrm{CS}}$. $\overline{W E}$ and $D_{I N}$
(5) $V_{I L}$ MAX is the reference level for measuring timing of the addresses, $\overline{C S}$. $\overline{W E}$ and $\mathrm{DIN}_{1 \mathrm{~N}}$
(6) $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{D}_{\mathrm{OUT}}}$.
(7) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ is the reterence level for measuring timing of $\overline{\mathrm{DOUT}^{2}}$

WRITE CYCLE

Notes (1) $V_{D O}-2 \mathrm{~V}$ is the reference level for measuring timing of $C E$
(2) $\mathrm{V}_{S S}+2 \mathrm{~V}$ is the reference level for measuring timing of $C E$
(3) $\mathrm{V}_{\text {IHMIN }}$ is the reterence level for measuring timing of the addresses, $\overline{\mathrm{CS}}$.
$\overline{W E}$ and $D_{I N}$
(4) VILMAX is the reference level for measuring timing of the addresses. $\overline{\mathrm{CS}}$ $\overline{W E}$ and $D_{I N}$.

READ-MODIFY-WRITE CYCLE

Note (1) $\overline{W E}$ must be at $V_{I H}$ until end of ' CO

TYPICAL OPERATING CHARACTERISTICS (Except 411-4)

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$.
POWER CONSUMPTION
Typical power dissiption for each product is shown below.

	$m W$ (TYP.)	CONDITIONS
μ PD411	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t} \mathrm{CE}=300 \mathrm{~ns}$
$\mu \mathrm{PD} 411-1$	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t} \mathrm{CE}=260 \mathrm{~ns}$
μ PD411-2	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=230 \mathrm{~ns}$
μ PD411-3	550	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=380 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=210 \mathrm{~ns}$
μ PD411-4	660	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=320 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=200 \mathrm{~ns}$

See above curves for power dissipation versus cycle time.

PACKAGE OUTLINE μ PD411D

(Plastic)

ITEM	MILLIMETERS	INCHES
A	27.43 MAX	1.079 MAX
B	1.27 MAX	0.05 MAX
C	2.54 ± 0.1	0.10
D	0.42 ± 0.1	0.016
E	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
G	3.5 ± 0.3	0.138
H	3.7 ± 0.3	0.145
I	4.2 MAX	0.165 MAX
J	5.08 MAX	0.200 MAX
K	10.16 ± 0.15	0.400
L	9.1 ± 0.2	0.358
M	0.25 ± 0.05	0.009

NOTES

4096 BIT DYNAMIC RAMS

DESCRIPTION The μ PD411A Famity consists of four 4096 words by 1 bit dynamic N-channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411A Family is designed using dynamic circuitry which reduces the standby power dissipation.
Reading information from the memory is non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether

FEATURES - Low Standby Power

- 4096 words $\times 1$ bit Organization
- A single low-capacitance high level clock input with solid ± 1 volt margins.
- Inactive Power 0.7 mW (Typ.)
- Power Supply $+12,+5,-5 \mathrm{~V}$
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Plastic Dual-in-Line Package
- Replacement for INTEL's 2107B, Tl's 4060 and Equivalent Devices.
- 3 Performance Ranges:

	ACCESS TIME	RN CYCLE	RMW CYCLE	REFRESH TIME
μ PD411A	300 ns	470 ns	650 ns	2 ms
μ PD411A-1	250 ns	430 ns	600 ns	2 ms
μ PD411A-2	200 ns	400 ns	520 ns	2 ms

PIN CONFIGURATION

PIN NAMES
$A_{0} \cdot A_{11}$ Address Inputs $A_{0}-A_{5}$ Refresh Addresses $C E$ Chip Enable $\overline{C S}$ Chip Select $D_{I N}$ Data Input $\overline{D_{O U T}}$ Data Output $\overline{W E}$ Write Enable $V_{D D}$ Power (+12V) $V_{C C}$ Power (+5V) $V_{S S}$ Ground $V_{B B}$ (Powe: -5 V) N_{IC} No Connection

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

$\overline{\mathbf{C S}}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

$\overline{W E}$ Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\bar{W} E$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

A0-A11 Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

$\overline{\text { DOUT Data Output }}$

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_{0} through A_{5} or by addressing every row within any 2 -millisecond period. Addressing any row refreshes all 64 bits in that row.
The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage (1)	. +20 to -0.3 Volts
All Input Voltages (1)	+20 to -0.3 Volt
Supply Voltage VDD (1)	+20 to -0.3 Vol
Supply Voltage VCC (1)	+20 to -0.3 Vo
Supply Voltage VSS (1)	. +20 to -0.3 Volt
Power Dissipation	

Note: (1) Relative to $V_{B B}$.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, V_{C C}=+5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. (1)	MAX.		
Input Load Current	ILI		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH }}$ MAX
CE Input Load Current	ILC		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {ILC }}$ MIN to $V_{\text {IHC }}$ MAX
Output Leakage Current for High Impedance State	ILO		0.01	± 10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{0}=0 V \text { to } 5.25 \mathrm{~V} \end{aligned}$
VDD Supply Current during CE off	IDD OFF		50	200	$\mu \mathrm{A}$	$C E=-1.0 \mathrm{~V}$ to 0.6 V
VDD Supply Current during CE on	IDD ON		35	50	mA	$C E=V_{\text {IHC }}, T_{a}=25^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Average VDD Current } \\ & \mu \text { PD } 411 \mathrm{~A} \\ & \mu \text { PD } 411 \mathrm{~A}-1 \\ & \mu \text { PD411A-2 } \end{aligned}$	IDD AV DD AV DD AV		$\begin{aligned} & 38 \\ & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$	mA mA mA	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ & \text { Cycle Time }=470 \mathrm{~ns} \\ & \text { Cycle Time }=430 \mathrm{~ns} \\ & \text { Cycle Time }=400 \mathrm{~ns} \end{aligned}$
VBB Supply Current (2)	IBB		5	100	$\mu \mathrm{A}$	
VCC Supply Current during CE off (3)	ICC OFF		0.01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=\mathrm{V}_{\text {IH }}$
Input Low Voltage	$V_{\text {IL }}$	-1.0		0.6	V	
Input High Voltage	VIH	2.4		$V_{C C}+1$	V	
CE Input Low Voltage	VILC	-1.0		0.6	V	
CE Input High Voltage	VIHC	VDD ${ }^{-1}$	VDD	$V_{D D}+1$	V	
Output Low Voltage	VOL	0		0.40	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
Output High Voltage	VOH	2.4		VCC	V	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and neminal power supply voltages.
(2) The IBB current is the sum of all leakage currents.
(3) During CE on VCC supply current is dependent on output loading.

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=+5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS ${ }^{13}$			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Address Capacitance	$C_{\text {AD }}$			6	pF	$V_{\text {IN }}=V_{\text {SS }}$
CS' Capacitance	$\mathrm{C}_{\text {CS }}$			6	pF	$V_{\text {IN }}=V_{\text {SS }}$
DIN Capacitance	$\mathrm{CiN}^{\text {N }}$			6	pF	$V_{\text {IN }}=V_{\text {SS }}$
$\overline{\text { DOUT }}$ Capacitance	COUT			7	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
$\overline{\text { WE Capacitance }}$	CWE			7	pF	$\mathrm{V}_{\text {IN }}=V_{\text {SS }}$
CE Capacitance	CCE1			27	pF	$V_{\text {IN }}=V_{\text {SS }}$
	CCE2			22	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$

READ CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		μ PD411A		μ PD4 11A-1		μ PD411A-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Time Between Refresh	treF		2		2		2	ms	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \mathrm{V}_{\text {ref }}=2.0 \text { or } 0.8 \text { Volts } \end{aligned}$
${ }^{2}$ Address to CE Set Up Time	${ }_{\text {t }}$ AC	0		0		0		ns	
Address Hold Time	${ }^{\text {ta }}$ H	150		150		150		ns	
CE Off Time	${ }^{\text {t CC }}$	130		130		130		ns	
CE Transition Time	tT	0	40	0	40	0	40	ns	
CE Off to Output High Impedance State	${ }^{\text {t CF }}$	0	130	0	130	0	130	ns	
Cycle Time	${ }^{t} \mathrm{CY}$	470		430		400		ns	
CE on Time	${ }_{\text {t }}$ CE	300	3000	260	3000	230	3000	ns	
CE Output Delay	${ }^{\text {t }} \mathrm{CO}$		280		230		180	ns	
Access Time	t ACC		300		250		200	ns	
CE to $\overline{W E}$	TWL	40		40		40		ns	
$\overline{W E}$ to CE on	twC	0		0		0		ns	

WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		μ PD411A		μ PD411A-1		μ PD411A.2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Cycle Time	${ }^{\text {t }} \mathrm{CY}$	470		430		400		ns	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \mathrm{V}_{\text {ref }}=2.0 \text { or } 0.8 \text { Volts } \end{aligned}$
Time Between Refresh	tref		2		2		2	ms	
Address to CE Set Up Time	tac	0		0		0		ns	
Address Hold Time	${ }^{\text {ta }}$ H	150		150		150		ns	
CE Off Time	tcc	130		130		130		ns	
CE Transition Time	TT	0	40	0	40	0	40	ns	
CE Off to Output High Impedance State	${ }^{\text {t }}$ CF	0	130	0	130	0	130	ns	
CE on Time	tCE	300	3000	260	3000	230	3000	ns	
$\overline{W E}$ to CE off	W	180		180		150		ns	
CE to $\overline{W E}$	tCW	300		260		230		ns	
DIn to WE Sei U' μ (1)	' DW	0		0		0		ns	
Din Hold Time	to	40		40		40		ns	
$\overline{\text { WE Pulse Width }}$	twP	180		180		150		ns	

Note:(1) If $\overline{W E}$ is low before CE goes high then DIN must be valid when CE goes high.
READ-MODIFY-WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		$\mu \mathrm{PD411A}$		μ PD411A-1		μ PD411A-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read-Modify-Write (RMW) Cycle Time	trwC	650		600		520		ns	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \mathrm{V}_{\text {ref }}=2.0 \text { or } 0.8 \mathrm{Volts} \end{aligned}$
Time Between Refresh	tref		2		2		2	ms	
Address to CE Set Up Time	tac	0		0		0		ns	
Address Hold Time	taH	150		150		150		ns	
CE Off Time	${ }^{\text {t }} \mathrm{C}$	130		130		130		ns	
CE Transition Time	TT	0	40	0	40	0	40	ns	
CE Off to Output High Impedance State	tCF	0	130	0	- 130	0	130	ns	
CE Width During RMW	tCRW	480	3000	430	3000	350	3000	ns	
WE to CE on	twC	0		0		0		ns	
WE to CE off	tw	180		180		150		ns	
WE Pulse Width	twp	180		180		150		ns	
Din to WE Set Up	tDW	0		0		0		ns	
Din Hold Time	tD	40		40		40		ns	
CE to Output Delay	${ }^{\text {t }} \mathrm{CO}$		280		230		180	ns	
Access Time	taCC		300		250		200	ns	

TIMING WAVEFORMS

READ AND REFRESH CYCLE (1)

READ-MODIFY-WRITE CYCLE

Notes: (1) For refresh cycle, row and column addresses must be stable tAC and remain stable for entire t_{AH} period.
(2) $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
(3) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(4) VIHMIN is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ and DIN.
(5) VILMAX is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ and DIN.
(6) $\mathrm{V}_{\mathrm{SS}}+2.0 \%$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$.
(7) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~J}$ is the reference level for measuring timing of DOUT .
(8) $\overline{W E}$ must be at $V_{I H}$ until end of tco.

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$

Typical power dissipation for each product is shown below.

	mW (TYP.)	CONDITIONS
μ PD411A	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{tCE}=300 \mathrm{~ns}$
μ PD411A-1	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=430 \mathrm{~ns}, \mathrm{t}$ CE $=260 \mathrm{~ns}$
μ PD411A-2	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{tCE}=230 \mathrm{~ns}$

See curve above for power dissipation versus cycle time.

CURRENT WAVEFORMS (1)

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	28.0 Max.	1.10 Max.
B	1.4 Max.	0.025 Max.
C	2.54	0.10
D	0.50	0.02
E	25.4	1.00
F	1.40	0.055
G	2.54 Min.	0.10 Min.
H	0.5 Min.	0.02 Min.
I	4.7 Max.	0.18 Max.
J	5.2 Max.	0.20 Max.
K	10.16	0.40
L	8.5	0.33
M	$0.25_{-0.05}^{+0.10}$	$0.01_{-0.002}^{+0.004}$

16384×1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the μ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES - 16384 Words $\times 1$ Bit Organization

- High Memory Density - 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies $+12 \mathrm{~V},-5 \mathrm{~V},+5 \mathrm{~V}$
- Low Power Dissipation; 462 mW Active (MAX), 40 mW Standby (MAX)
- Output Data Controlled by $\overline{\mathrm{CAS}}$ and Unlatched at End of Cycle
- Read-Modify-Write, $\overline{\mathrm{RAS}}$-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 5 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μ PD416	300 ns	510 ns	575 ns
μ PD416-1	250 ns	410 ns	465 ns
μ PD416-2	200 ns	375 ns	375 ns
μ PD416-3	150 ns	375 ns	375 ns
μ PD416-5	120 ns	320 ns	320 ns

PIN CONFIGURATION

$A_{0}-A_{6}$	Address Inputs
$\overline{\text { CAS }}$	Column Address Strobe
$\mathrm{D}_{\text {IN }}$	Data In
DOUT	Data Out
RAS	Row Address Strobe ${ }^{\text {e }}$
$\overline{\text { WRITE }}$	Read/Write
$\mathrm{V}_{\text {BB }}$	Power (-5V)
VCC	Power (+5 V)
$V_{\text {DD }}$	Power (+12 V)
$\mathrm{V}_{\text {SS }}$	Ground

BLOCK
DIAGRAM

Operating Temperature
Storage Temperature
All Output Voltages (1).
All Input Voltages (1)
Supply Voltages VDD, VCC, VSS (1). -0.5 to +20 Volts
Supply Voltages VDD, VCC (2) . -1.0 to +15 Volts
Short Circuit Output Current . 50 mA
Power Dissipation
1 Watt
Notes: (1) Relative to V_{BB}
(2) Relative to $V_{S S}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$,
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
Input Capacitance (A0-A6), DIN			4	5		
Input Capacitance RAS, CAS, $\overline{\text { WRITE }}$	$\mathrm{C}_{\text {I2 }}$		8	10	pF	
Output Capacitance (DOUT)	C_{0}		5	7	pF	

ABSOLUTE MAXIMUM RATINGS*
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (1) $, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	$V_{\text {DD }}$	10.8	12.0	13.2	V	(2)
Supply Voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V	(2) (3)
Supply Voltage	$\mathrm{V}_{\text {SS }}$	0	0	0	\checkmark	(2)
Supply Voltage	$V_{B B}$	-4.5	-5.0	-5.5	V	(2)
Input High (Logic 1) Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, WRITE	VIHC	2.7		7.0	V	(2)
Input High (Logic 1) Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ WRITE	$\mathrm{V}_{\text {IH }}$	2.4		7.0	V	(2)
Input Low (Logic 0) Voltage, all inputs	VIL	- 1.0		0.8	v	(2)
Operating $\mathrm{V}_{\text {DD }}$ Current	'DD1			35	mA	$\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ cycling: $t_{\text {R }}=t_{\text {R }} M$ Min. (4)
Standby V ${ }_{\text {DD }}$ Current	'0D2			1.5	mA	$\begin{aligned} & \overline{\mathrm{RAS}}=V_{\text {IHC }}, \text { DOUT } \\ & =\text { High Impedance } \end{aligned}$
Refresh $V_{D D}$ All Speeds except μ PD416-5	'DD3			25	mA	$\begin{aligned} & \overline{\mathrm{RAS}} \text { cycling, } \overline{\mathrm{CAS}}= \\ & \mathrm{V}_{1 \mathrm{HC}} ; \mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns} \text { (4) } \end{aligned}$
Current $\quad \mu$ PD416-5	'0D3			27	mA	
Page Mode $V_{D D}$ Current	'DD4			27	mA	$\overline{\overline{R A S}}=V_{I L}, \overline{\mathrm{CAS}}$ cycling: tpC $=$ 225 ns (4)
Operating V_{CC} Current	${ }^{1} \mathrm{CCl}$				$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling $\mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns} \text { (5) }$
Standby V ${ }_{\text {CC }}$ Current	${ }^{\prime} \mathrm{CC} 2$	- 10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\overline{R A S}}=V_{1 H C} \\ & \text { DOUT }=H_{1 g h} \\ & \text { Impedance } \end{aligned}$
Refresh $\mathrm{V}_{\text {CC }}$ Current	${ }^{1} \mathrm{CC} 3$	- 10		10	$\mu \mathrm{A}$	$\overrightarrow{R A S}$ cycling, $\overline{C A S} \cdot V_{I H C}$. trC : 375 ns
Page Mode $V_{C C}$ Current	' CC 4				$\mu \mathrm{A}$	$\overline{\text { RAS }} \cdot V_{\text {IL }}, \overline{\mathrm{CAS}}$ cycling. tPC 225 ns (5)
Operating V_{BB} Current	'BB1			200	$\mu \mathrm{A}$	$\overline{\text { RAS }} \overline{\text { CAS }}$ cycling tRC 375 ns
Standby $V_{B B}$ Current	'BB2			100	$\mu \mathrm{A}$	$\overline{R A S}=V_{1 H C}$. DOUT High Impedance
Refresh $V_{B B}$ Current	'BB3			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling, $\overline{C A S}=V_{1 H C}$. ${ }^{1}$ RC $=375 \mathrm{~ns}$
Page Mode V_{BB} Current	'BB4			200	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{RAS}}=V_{\text {IL }}, \overline{\mathrm{CAS}} \\ & \text { cycling; } \\ & \text { tPC }=225 \mathrm{~ns} \\ & \hline \end{aligned}$
Input Leakage (any input)	1/(L)	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{B B}=-5 \mathrm{~V}, O \mathrm{~V} \leqslant \\ & V_{I N} \leqslant+7 \mathrm{~V} . \end{aligned}$ all other pins not under test $=0 \mathrm{~V}$
Output Leakage	'O(L)	-10		10	$\mu \mathrm{A}$	DOUT is disabled, $O V \leqslant V_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$
Output High Voltage (Logic 1)	V_{OH}	2.4			V	${ }^{\prime}$ IOUT $=-5 \mathrm{~mA}$ (3)
Output Low Voltage (L.ogic 0)	V_{OL}			0.4	V	${ }^{\prime}$ OUT $=4.2 \mathrm{~mA}$

Notes: (1) T_{a} is specified here for operation at frequencies to $t_{R C} \geqslant t_{R C}(\mathrm{~min})$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.
(2) All voltages referenced to $V_{S S}$.
(3) Output voltage will swing from $V_{S S}$ to $V_{C C}$ when activated with no current loading. For purposes of maintaining data in standby mode, $V_{C C}$ may be reduced to $V_{S S}$ without affecting refresh operations or data retention. However the $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
(4) IDD1, IDD3, and IDD4 depend on cycle rate. See Figures 2,3 and 4 for IDD limits at other cycle rates.
(5) ICC1 and ICC4 depend upon output loading. During readout of high level data $V_{C C}$ is connected through a low impedance (135s typ) to data out. At all other times I CC consists of leakage currents only.

PARAMETER	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		μ PDA16		[PDD416-1		μ PD 416-2		μ PD416-3		μ PD 416-5			
		MIN	MAX										
Random read or write cycle time	${ }^{\text {t }}$ RC	510		410		375		320		320		ns	(3)
Read-write cycle time	trwC	575		465		375		375		320		ns	(3)
Page mode cycle time	tPC	330		275		225		170		160		ns	
$\frac{\text { Access tine from }}{\text { RAS }}$	${ }^{\text {traC }}$		300		250		200		150		120	ns	(4) (6)
$\frac{\text { Access time from }}{\text { CAS }}$	${ }^{\text {t }} \mathrm{CAC}$		200		165		135		100		80	ns	(5) (6)
Output buffer turn-off delay	toff	0	80	0	60	0	50	0	40	0	35	ns	(7)
Transition time (rise and fall)	${ }^{\prime}$	3	50	3	50	3	50	3	35	3	35	ns	(2)
$\overline{\overline{A A S}}$ precharge time	tRP	200		150		120		100		100		ns	
$\overline{\text { RAS pulse width }}$	tras	300	10,000	250	10.000	200	32,000	150	32,000	120	10,000	us	
$\overline{\text { RAS }}$ hold time	$t_{\text {RSH }}$	200		165		135		100		80		ns	
$\overline{\text { CAS }}$ pulse width	${ }^{\text {c CAS }}$	200	10,000	165	10,000	135	10,000	100	10,000	80	10,000	ns	
$\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time	$t^{\text {R }}$ CD	40	100	35	85	25	65	20	50	15	40	ns	(8)
$\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge tume	${ }^{\text {t CRP }}$	-20		-20		-20		-20		0		ns	
Row address set-up time	${ }^{\text {t }}$ ASR	0		0		0		0		0		ns	
Row address hold tume	${ }^{\text {TRAH }}$	40		35		25		20		15		ns	
Column address set-up time	- ${ }^{\text {ASC }}$	-10		-10		-10		-10		-10		ns	
Column address hold tume	${ }^{\text {t }} \mathrm{CAH}$	90		75		55		45		40		ns	
Column address hold time referenced to $\overline{\text { RAS }}$	${ }^{\text {t }}$ AR	190		160		120		95		80		ns	
Read command set-up time	trcs	0		0		0		0		0		ns	
Read command hold time	${ }^{\text {t }} \mathrm{RCH}$	0		0		0		0		0		ns	
Write command holc time	${ }^{\text {t }} \mathrm{WCH}$	90		75		55		45		40		ns	
Write command hold time referenced to $\overline{\text { RAS }}$	${ }^{\text {T W }}$ WCR	190		160		120		95		80		ns	
Write command pulse width	${ }^{t} \mathbf{W P}$	90		75		55		45		40		ns	
Write command to RAS lead time	trwl	120		85		70		50		50		ns	
Write command to $\overline{C A S}$ lead time	${ }^{\text {t }}$ CWL	120		85		70		50		50		ns	
Data-in set-up time	${ }^{\text {t }} \mathrm{OS}$	0		0		0		0		0		ns	(9)
Data-in hold tume	${ }^{1} \mathrm{OH}$	90		75		55		45		40		ns	(9)
Data-in hold time referenced to RAS	${ }^{\text {t DHR }}$	190		160		120		95		80		ns	
CAS precharge time (for page mode cycle only)	${ }^{t} \mathrm{CP}$	120		100		80		60		60	.	ns	
Refresh period	tref		2		2		2		2		2	ms	
$\overline{\text { WRITE command }}$ set-up time	${ }^{\text {t W }}$ WS	-20		-20		- 20		-20		0		ns	(10)
$\overrightarrow{\text { CAS to WRITE }}$ delay	${ }^{\text {t }}$ CWD	140		125		95		70		80		ns	(10)
$\overline{\text { RAS to WRITE }}$ delay	${ }^{\text {t RWD }}$	240		200		160		120		120		ns	(10)

Notes: (1) $A C$ measurements assume $t^{T}=5 \mathrm{~ns}$.
(2) $V_{I H C}(\min)$ or $V_{I H}(\min)$ and $V_{I L}(\max)$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$
(3) The specifications for $t_{R C}(\mathrm{~min})$ and $\mathrm{t}_{\mathrm{RWC}}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $10^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}} \leqslant 70^{\circ} \mathrm{C}$)
is assured.
(4) Assumes that $t_{R C D} \leqslant t_{R C D}(\max)$. If $t_{R C D}$ is greater than the maximum recommended value shown in this table, $t_{R A C}$ will increase by the amount that tRCD exceeds the values shown.
(5) Assumes that $t_{R C D} \geqslant t_{R C D}$ (max).
6) Measured with a load equivalent to 2 TTL loads and 100 pF
(7) IOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
(8) Operation within the tRCD (max) limit ensures that tRAC (max) can be met, tRCD (max) is specified as a reference point only, if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC
(9) These parameters are referenced to $\overline{C A S}$ leading edge in early write cycles and to $\overline{W R I T E}$ leading edge in delayed write or read-modify-write cycles.

10 'WCS. tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twCS $=$ (WCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) \geqslant trwD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell: if neither of the above sets of conditions is satisfied the conoition of the data out (at access time) is indeterminate

DERATING CURVES

CYCLE TIME tre (ns)

FIGURE 1
Maximum ambient temperature versus cycle rate for extended frequency operation. T_{a} (max) for operation at cycling rates greater than $2.66 \mathrm{MHz}\left({ }^{\mathrm{t}} \mathrm{CYC}<375 \mathrm{~ns}\right)$ is determined by $T_{a}(\max)\left[{ }^{\circ} \mathrm{C}\right]=70-9.0 x$ (cyc!e rate $[\mathrm{MHz}]-2.66$). For μ PD416-5, it is T_{a} (max) $\left[{ }^{\circ} \mathrm{C}\right]=70-9.0$ (cycle rate [MHz] - 3.125).

CYCLE TIME tRC (ns)

CYCLERATE $(\mathrm{MHz})=10^{3} / \mathrm{t} R \mathrm{C}(\mathrm{ns})$
FIGURE 2
Maximum IDD1 versus cycle rate for device operation at extended frequencies.

FIGURE 3
Maximum IDD3 versus cycle rate for device operation at extended frequencies.

FIGURE 4
Maximum ${ }^{\text {DD }}$, versus cycle rate for device operation in page mode.
READ CYCLE
TIMING WAVEFORMS

WRITE CYCLE
$\overline{\text { RAS }}$
$\overline{C A S}$
adoresses
RITE
in
Dout
RAS.
addresses
WRITE
Dout
o_{IN}

TIMING WAVEFORMS (CONT.)
" $\overline{\text { RAS }}$ ONLY" REFRESH CYCLE

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe ($\overline{\mathrm{RAS}}$), and the Column Address Strobe ($\overline{\mathrm{CAS}}$). The 7 bit row address is first applied and $\overline{\mathrm{RAS}}$ is then brought low. After the $\overline{\mathrm{RAS}}$ hold time has elapsed, the 7 bit column address is applied and $\overline{\mathrm{CAS}}$ is brought low. Since the column address is not needed internally until a time of ${ }^{t}$ CRD $M A X$ after the row address, this multiplexing operation imposes no penalty on access time as long as $\overline{C A S}$ is applied no later than ${ }^{\mathrm{t}}$ CRD MAX. If this time is exceeded, access time will be defined from $\overline{\text { CAS }}$ instead of $\stackrel{\rightharpoonup}{\text { RAS }}$.

For a write operation, the input data is latched on the chip by the negative going edge of $\overline{\text { WRITE }} \overline{\overline{C A S}}$, whichever occurs later. If $\overline{\text { WRITE }}$ is active before $\overline{\text { CAS }}$, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that $\overline{\mathrm{CAS}}$ goes high.

The page mode feature allows the μ PD4 16 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on $\overline{\text { RAS }}$ and strobing the new column addresses with $\overline{\mathrm{CAS}}$. This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, " $\overline{R A S}$ only" cycles can be used for simple refreshing operation.

Either $\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

In order to assure long ierm reliability, V_{BB} should be applied first during power up and removed last during power down.

ADDRESSING

DATA I/O

PAGE MODE

REFRESH

CHIP SELECTION

POWER SEQUENCING

PACKAGE OUTLINE μ PD416C

(Plastic)

ITEM	MILLIMETERS	INCHES
A	19.4 MAX.	0.76 MAX.
B	0.81	0.03
C	2.54	$0.10^{\text {h }}$
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
K	7.62	0.30
L	6.4	0.25
M	$0.25{ }_{-0.10}$	0.05

μ PD416D

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	20.5 MAX.	0.81 MAX.
B	1.36	0.05
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.5 MIN.	0.14 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.20 MAX.
K	7.6	0.30
L	7.3	0.29
M	0.27	0.01

NOTES

16384×1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

The μ PD2118 is a single +5 V power supply, 16384 word by 1 bit Dynamic MOS RAM. The μ PD2118 achieves high speed with low power dissipation by the use of single transistor dynamic storage cell design and advanced dynamic circuitry. This circuit design results in the minimizing of current transients typical of dynamic RAMS. This in turn results in high noise immunity of the μ PD2118 in a system environment. By using a multiplexing technique, the μ PD2118 can be packaged in an industry standard 16-Pin Dip utilizing 7 address input pins for the 14 address bits required. The two 7 bit address words are referred to as the ROW and COLUMN address. Two TTL clocks, ROW address strobe ($\overline{\mathrm{RAS}}$) and COLUMN address strobe ($\overline{\mathrm{CAS}}$) latch these two words into the μ PD2118. Non-critical timing requirements for $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ permit high systems performance without placing difficult constraints upon the multiplexing control circuitry.
The μ PD2118 has a three-state output controlled by $\overline{\mathrm{CAS}}$, independent of $\overline{\mathrm{RAS}}$. Following a valid read or read-modify-write cycle, data will be held in the output by holding $\overline{\mathrm{CAS}}$ low. Returning $\overline{\mathrm{CAS}}$ to a high state will result in the data out pin reverting to the high impedance mode. Use of this $\overline{C A S}$ controlled output means that the μ PD2118 can perform hidden refresh by holding $\overline{C A S}$ low to maintain latch data output while using $\overline{\mathrm{RAS}}$ to execute $\overline{\mathrm{RAS}}$-only-refresh cycles.
The use of single transistor storage cell circuitry requires that data be periodically refreshed. Refreshing can be accomplished by performing $\overline{\mathrm{RAS}}$-only-refresh cycles, hidden refresh cycles or normal read or write cycles on each of the 128 address combinations of A0 through A6 during a 2 ms period. The write cycle will refresh stored data on all bits of the selected row, except that the bit which is addressed will be modified to reflect the data input.

FEATURES

- Single +5 V Supply, $\pm 10 \%$ Tolerance
- Low Power: 138 mW Max Operating 16 mW Max Standby
- Low VDD Current Transients
- All Inputs, Including Clocks, TTL Compatible
- Non-Latched Output is Three-State
- RAS-Only-Refresh
- 128 Refresh Cycles Required
- Page Mode Capability
- CAS Controlled Output Allows Hidden Refresh

P/N	ACCESS TIME	R/W CYCLE	RMW CYCLE
μ PD2118	150 ns	320 ns	410 ns
μ PD2118-2	120 ns	270 ns	345 ns
μ PD2118-3	100 ns	235 ns	295 ns

PIN NAMES

$A_{0}-A_{6}$	ADDRESS INPUTS
$\overline{\mathrm{CAS}}$	COLUMN ADDRESS STROBE
$\mathrm{D}_{\text {IN }}$	DATA IN
$\mathrm{D}_{\mathrm{OUT}}$	DATA OUT
$\overline{W E}$	WRITE ENABLE
$\overline{R A S}$	ROW ADDRESS STROBE
V_{DD}	POWER (+5V)
$\mathrm{V}_{\text {SS }}$	GROUND

Ambient Temperature Under Bias . $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to +150 $+150^{\circ} \mathrm{C}$
Voltage On Any Pin Relative to VSS -2.0 to +7.5 V
Data Out Current . 50 mA
Power Dissipation .
*COMMENT: Stress above those listed under "'Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiiity.

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS READ, WRITE, AND READ MIODIFY WRITE CYCLES ${ }^{(1)}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER		SYMBOL	LIMITS			TEST CONDITIONS	NOTES	
		MIN	MAX	UNIT				
Input Load Current			'LI		10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$	
Output Leakage Current for High Impedance State		'LO		10	$\mu \mathrm{A}$	Chip Deselected $\overline{\mathrm{CAS}}$ at $V_{\text {IH }}, V_{\text {OUT }}=0$ to 5.5 V		
VDD Supply Current (Standby)		IDD1		3	mA	$\overline{\mathrm{CAS}}$ and $\overline{\mathrm{RAS}}$ at $\mathrm{V}_{1 H}$		
VDD Supply Current (Operating)	μ PD2118-3	IDD2		25	mA	TRC $=$ TRC Min	(2)	
	μ PD2118-2	IDD2		22	mA			
	$\mu \mathrm{PD} 2118.0$	'DD2		22	mA			
VDD Supply Current (RAS-Only Cycle)	μ PD2118-3	IDD3		20	mA	$T R C=T R C M i n$	(2)	
	μ PD2118-2	'DD3		18	mA			
	$\mu \mathrm{PD} 2118 \mathrm{o}$	'DD3		18	mA			
$V_{D D}$ Supply Current Page Mode, Maximum tpC Minimum tcas	μ PD2118-3	'DD4		20	mA		(2)	
	μ PD2118-2	IDD4		17	mA			
	$\mu \mathrm{PD} 2118$-0	'0D4		15	mA			
VDD Supply Current (Standby, Output Enabled)		' DD5		4	mA	$\overline{\text { CAS }}$ at $V_{\text {IL }}, \overline{\text { RAS }}$ at $V_{\text {IH }}$	(2)	
Input Low Voltage		$V_{\text {IL }}$	-2.0	0.8	\checkmark			
Input High Voltage		$V_{1 H}$	2.4	7.0	\checkmark			
Output Low Voltage		VOL		0.4	v	$1 \mathrm{OL}=4.2 \mathrm{~mA}$		
Output High Voltage		V_{OH}	2.4			$\mathrm{I}^{\mathrm{OH}}=-5 \mathrm{~mA}$		

Notes: (1) All voltages referenced to V_{SS}.
(2) IDD is dependent on output loading when the device output is selected. Specified IDD Max is measured with the output open.

CAPACITANCE ${ }^{(1)}$
$T_{a}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	TYP	MAX	UNIT
CI1	Address, Data In	3	5	pF
$\mathrm{CI2}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{WE}}$	4	7	pF
$\mathrm{CI3}$	$\overline{\mathrm{CAS}}$	6	10	pF
CO	Data Out	4	7	pF

NOTES: (1) Capacitance measured with Boonton meter or effective capacitance calculated from the Equation $C=\mid \Delta T / \Delta V$ with ΔV equal to $3 V$ and power supplies at nominal levels.
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted.
READ, WRITE, READ-MODIFY-WRITE AND REFRESH CYCLES

SYMBOL	PARAMETER	μ PD2118-3		$\mu \mathrm{PD} 2118$-2		μ PD2118-0		UNIT	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
trac	Access Time From $\overline{\text { RAS }}$		100		120		150	ns	(4) (5)
t CAC	Access Time From $\overline{\text { CAS }}$		50		65		80	ns	(4) (5) (6)
tref	Time Between Refresh		2		2		2	ms	
trp	$\overline{\text { RAS }}$ Precharge Time	110		120		135		ns	
${ }^{\text {t CPN }}$	$\overline{\mathrm{CAS}}$ Precharge Time (non-pagemode cycles)	50		55		70		ns	
${ }^{t} \mathrm{CRP}$	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time	0		0		0		ns	
${ }^{\text {trici }}$	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time	20	50	20	55	25	70	ns	(7)
${ }^{\text {trash }}$	$\overline{\mathrm{RAS}}$ Hold Time	65		85		105		ns	
${ }^{\text {t CSH }}$	$\overline{\text { CAS }}$ Hold Time	110		135		165		ns	
${ }^{t}$ ASR	Row Address Set-Up Time	0		0		0		ns	
${ }^{\text {traH }}$	Row Address Hold Time	10		10		15		ns	
${ }^{\text {t }}$ ASC	Column Address Set-Up Time	0		0		0		ns	
${ }^{\text {t }}$ CAH	Column Address Hold Time	15		15		20		ns	
${ }^{\text {t }}$ AR	Column Address Hold Time, to $\overline{\mathrm{RAS}}$	65		70		90		ns	
${ }^{\text {t }}$ T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	(8)
toff	Output Buffer Turn Off Delay	0	45	0	50	0	60	ns	
READ AND REFRESH CYCLES									
${ }^{\text {t }}$ RC	Random Read Cycle Time	235		270		320		ns	
tras	$\overline{\text { RAS Pulse Width }}$	115	10,000	140	10,000	175	10,000	ns	
${ }^{\text {t }}$ CAS	$\overline{\mathrm{CAS}}$ Pulse Width	60	10,000	80	10,000	95	10,000	ns	
${ }^{\text {tres }}$	Read Command Set-Up Time	0		0		0		ns	
${ }^{\text {tren }}$	Read Command Hold Time	0		0		0		ns	
WRITE CYCLE									
$t_{\text {R }}$	Random Write Cycle Time	235		270		320		ns	
tras	$\overline{\text { RAS }}$ Puise Width	115	10,000	140	10,000	175	10,000	ns	
${ }^{\text {t CAS }}$	CAS Pulse Width	60	10,000	80	10,000	95	10,000	ns	
twCs	Write Command Set-Up Time	0		0		0		ns	(9)
${ }^{\text {tWCH }}$	Write Command Hold Time	30		35		45		ns	
${ }^{\text {twCR }}$	Write Command Hold Time, to $\overline{R A S}$	80		90		115		ns	
${ }^{\text {twp }}$	Write Command Pulse Width	35		40		50		ns	
${ }^{\text {trwi }}$	Write Command to $\overline{\text { RAS }}$ Lead Time	70		90		110		ns	
${ }^{\text {t }} \mathrm{CWL}$	Write Command to $\overline{\mathrm{CAS}}$ Lead Time	65		85		100		ns	
${ }^{\text {tos }}$	Data-In Set-Up Time	0		0		0		ns	
${ }^{\text {t }} \mathrm{DH}$	Data-In Hold Time	30		35		45		ns	
${ }^{\text {t DHR }}$	Data-In Hold Time, to $\overline{\text { RAS }}$	80		90		115		ns	
READ-MODIFY-WRITE CYCLE									
${ }^{\text {t }}$ RWC	Read-Modify-Write Cycle Time	295		345		410		ns	
${ }^{\text {t RRW }}$	RMW Cycle $\overline{\mathrm{RAS}}$ Pulse Width	175	10,000	215	10,000	265	10,000	ns	
${ }^{\text {t CRW }}$	RMW Cycle $\overline{C A S}$ Pulse Width	120	10,000	155	10,000	185	10,000	ns	
trwo	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ Delay	100		120		150		ns	(9)
${ }^{\text {t CWD }}$	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ Delay	50		65		80		ns	(9)
PAGE MODE CYCLE									
tPC	Page Mode Read or Write Cycle	130		160		190		ns	
tPCM	Page Mode Read-Modify-Write	190		235		280		ns	
${ }^{\text {t }} \mathrm{C} P$	$\overline{\text { CAS Precharge Time, Page Cycle }}$	60		70		85		ns	
tr RM	$\overline{\text { RAS }}$ Pulse Width, Page Mode	125	10,000	150	10,000	175	10,000	ns	
${ }^{\text {t CAS }}$	$\overline{\mathrm{CAS}}$ Pulse Width	60	10,000	80	10,000	95	10,000	ns	

*NOTES: See page 7.

READ CYCLE
TIMING WAVEFORMS

WRITE CYCLE

READ-MODIFY-WRITE CYCLE

NOTES: See page 7.

$\overline{\text { RAS }}$

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

PAGE MODE READ-MODIFY-WRITE CYCLE

(1) All voltages referenced to $V_{\text {SS }}$.
(2) Eight cycles are required after power-up or prolonged periods greater than 2 ms of $\overline{\mathrm{RAS}}$ inactivity before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
(3) AC Characteristics assume $\mathrm{tT}_{\mathrm{T}}=5 \mathrm{~ns}$.
(4) Assume that $t_{R C D} \leqslant t_{R C D}$ (max). If $t_{R C D}$ is greater than $t_{R C D}\left(\right.$ max) , then $t_{R A C}$ will increase by the, amount that tRCD exceeds tRCD (max).
(5) Load $=2$ TTL loads and 100 pF .
(6) Assumes tRCD $\geqslant \mathrm{t}_{\mathrm{RCD}}(\max)$.
 If : RCD is greater than $t_{R C D}(\max)$ access time is $t_{R C D}{ }^{+} t_{C A C}$.
(8) IT is measured between $V_{I H}(\min)$ and $V_{I L}(\max)$.
(6) $\mathrm{t} . \mathrm{t}$. CWD and $\mathrm{t}_{\text {RWD }}$ are specified as reference points only. If twCS $\geqslant \mathrm{tWCS}(\mathrm{min})$ the cycle is an early \&. te cycle and the data out pin will remain high impedance throughout the entire cycle. If tcWD \geqslant t CWD and $t_{\text {RWD }} \geqslant t_{\text {RWD }}(\mathrm{min})$, the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
(10) (11) $V_{I H}$ min and $V_{I L}$ max are reference levels for measuring timing of input signals.
(12)(13) $\mathrm{V}_{\mathrm{OH}} \min$ and $V_{O L}$ max are reference levels for measuring timing of DOUT.
(14) tOFF is measured to IOUT < IILOI.
(15) t_{DS} and t_{DH} are referenced to $\overline{\mathrm{CAS}}$ or $\overline{W E}$, whichever occurs last.
(16) $\mathrm{t}_{\mathrm{RCH}}$ is referenced to the trailing edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{RAS}}$, whichever occurs first.
(17) ${ }^{t} \mathrm{CRP}$ requirements is only applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceeded by a CASonly cycle (i.e., for systems where CAS has not been decoded with RAS).

READ CYCLE A Read cycle is performed by maintaining Write Enable ($\overline{W E}$) high during a $\overline{R A S} / \overline{C A S}$ operation. The output pin of a selected device will remain in a high impedance state until valid data appears at the output at access time. Device access time, $t_{A C C}$, is the longer of the two calculated intervals $t_{A C C}=t_{R A C}$ or $t_{A C C}=t_{R C D}+t_{C A C}$.

Access time from $\overline{R A S}$, tRAC, and access time from $\overline{C A S}$, tCAC, are device parameters. Row to column address strobe delay time, tRCD, are system dependent timing parameters. For example, substituting the device parameters of the μ PD $2118-3$ yields $t_{A C C}=t_{R A C}=100 \mathrm{nsec}$ for $20 \mathrm{nsec} \leqslant t_{R C D} \leqslant 50 \mathrm{nsec}$, but $\mathrm{t} A C C=\mathrm{t}_{\mathrm{RCD}}+\mathrm{tCAC}=$ $t_{R C D}+50$ for $t_{R C D}>50$ nsec.

Note that if $20 \mathrm{nsec} \leqslant \operatorname{trCD} \leqslant 50 \mathrm{nsec}$ device access time is determined by the first equation and is equal to $t_{R A C}$. If $t_{R C D}>50 \mathrm{nsec}$, access time is determined by the second equation. This 30 nsec interval (shown in the tRCD inequality in the first equation) in which the falling edge of $\overline{\text { CAS }}$ can occur without affecting access time is provided to allow for system timing skew in the generation of $\overline{\mathrm{CAS}}$.

Each of the 128 rows of the μ PD2118 must be refreshed every 2 milliseconds to maintain data. Any memory cycle (read, write, or $\overline{\text { RAS }}$ only) refreshes the selected row as defined by the low order ($\overline{\mathrm{RAS}}$) addresses. Any Write cycle, of course, may change the state of the selected cell. Using a Read, Write, or Read-Modify-Write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

A $\overline{R A S}$-only refresh cycle is the recommended technique for most applications to provide for data retention. A $\overline{R A S}$-only refresh cycle maintains the DOUT in the high impedance state with a typical power reduction of 20% over a Read or Write cycle.
$\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ have minimum pulse widths as defined by tRAS and tCAS respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle once begun by bringing $\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ low must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle can not begin until the minimum precharge time, trp, has been met.

Data Output (DOUT), which has three-state capability, is controlled by $\overline{\mathrm{CAS}}$. During $\overline{\mathrm{CAS}}$ high state ($\overline{\mathrm{CAS}}$ at $V_{I H}$) the output is in the high impedance state. The following table summarizes the DOUT state for various types of cycles.

Type of Cycle	Dout State
Read Cycle	Data From Addressed Memory Cell
Early Write Cycle	$\mathrm{HI}-\mathrm{Z}$
$\overline{\mathrm{RAS}}$-Only Refresh Cycle	$\mathrm{HI}-\mathrm{Z}$
$\overline{\mathrm{CAS}}$-Only Cycle	$\mathrm{HI}-\mathrm{Z}$
Read/Modify/Write Cycle	Data From Addressed Memory Cell
Delayed Write Cycle	Indeterminate

HIDDEN REFRESH

A feature of the μ PD2118 is that refresh cycles may be performed while maintaining valid data at the output pin. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding $\overline{\mathrm{CAS}}$ at $V_{\text {IL }}$ and taking $\overline{\mathrm{RAS}}$ high and after a specified precharge period (trP) executing a "信-Only" refresh cycle, but with $\overline{\mathrm{CAS}}$ held low (see Figure below).

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

POWER ON The μ PD2118 requires no power on sequence. After the application of the $V_{D D}$ supply, or after extended periods of bias (greater than 2 ms) without clocks, the device must perform a minimum of eight (8) initialization cycles (any combination of cycles containing a $\overline{\mathrm{RAC}}$ clock such as $\overline{\mathrm{RAS}}$-only refresh) prior to normal operation.

The VDD current (IDD) requirement of the μ PD2118 during power on is, however, dependent upon the input levels of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$. If the input levels of these clocks are at $V_{I H}$ or $V_{D D}$, whichever is lower, the IDD requirement per device is IDD1 (IDD standby). If the input levels for the two clocks are lower than $\mathrm{V}_{\text {IH }}$ or V_{DD}, the IDD requirement will be greater than IDD1. For large systems, this current requirement for IDD could be substantially more than that for which the system has been designed. A system which has been designed assuming the majority of devices to be operating in the refresh/standby mode may produce sufficient IDD loading such that the power supply might current limit. To assure that the system will not experience such loading during power on, a pullup resistor for each clock input to VDD to maintain the nonselected current level (IDD1) for the power supply is recommended.

PACKAGE OUTLINE μ PD2118D

Cerdip		
ITEM	millimeters	inches
A	199 max	0784 MAX
8	106	0042
c	254	010
0	0.46 ± 0.10	0.018 ± 0.004
E	178	070
F	15	0059
G	254 MiN	010 MIN
H	05 MIN	0019 Min
1	458 max	0181 MAX
J	508 max	020 max
κ	762	030
1	64	025
M	$025 \cdot 010$	00098 ${ }^{0.00039}$

μ PD2118C

ITEM	millimeters	INCHES
A	194 MAX	076 MAX
B	081	003
C	254	010
0	05	002
E	1778	070
F	13	0051
G	254 MIN	010 MIN
H	05 MIN	002 MIN
1	405 MaX	016 max
J	455 Max	018 max
K	762	030
1	64	025
M	$0 . \begin{aligned} & +0.10 \\ & -0.05 \end{aligned}$	001

NOTES

65,536 x 1 BIT DYNAMIC RANDOM ACCESS MEMORY

μ PD $4164-1$
μ PD4164-2
μ PD4164-3

The NEC μ PD 4164 is a 65,536 words by 1 bit Dynamic N-Channel MOS RAM designed to operate from a single +5 V power supply. The negative-voltage substrate bias is internally generated - its operation is both automatic and transparent.
The μ PD4 164 utilizes a double-poly-layer N -channel silicon gate process which provides high storage cell density, high performance and high reliability.
The μ PD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assures that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield (low cost to user) while maintaining compatibility between Dynamic RAM generations.

FEATURES - High Memory Density

- Multiplexed Address Inputs
- Single +5 V Supply
- On Chip Substrate Bias Generator
- Access Time: μ PD4 $164-1$ - 250 ns
μ PD4 164-2 - 200 ns
μ PD4164-3-150 ns
- Read, Write Cycle Time: μ PD4164-1 - 410 ns

$$
\mu \text { PD4 164-2 - } 335 \text { ns }
$$

$$
\mu \text { PD4164-3-270 ns }
$$

- Low Power Dissipation: 250 mW (Active); 28 mW (Standby)
- Non-Latched Output is Three-State, TTL Compatible
- Read, Write, Read-Write; Read-Modify-Write, RAS Only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Input Capacitance
- 128 Refresh Cycles (A0-A6 Pins for Refresh Address)
- CAS Controlled Output Allows Hidden Refresh
- Available in Both Ceramic and Plastic 16 Pin Packages

PIN NAMES	
$A_{0}-A_{7}$	Address Inputs
$\overline{\text { RAS }}$	Row Address Strobe
$\overline{\text { CAS }}$	Column Address Strobe
$\overline{\text { WE }}$	Write Enable
$D_{\text {IN }}$	Data Input
$D_{\text {OUT }}$	Data Output
$V_{\text {CC }}$	Power Supply (+5V)
$V_{\text {SS }}$	Ground
NC	No Connection

Operating Temperature . $0^{\circ}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature (Ceramic Package)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages On Any Pin Except V_{CC}	-1 to +7 Volts (1)
Supply Voltage V_{CC}	0.5 to +7 Volts (1)
Short Circuit Output Current	50 mA
Power Dissipation	1 Watt

Note: (1) Relative to VSS
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL		LIMITS			UNIT	TEST CONDITIONS
			MIN	TYP	MAX		
Supply Voltage		$V_{\text {CC }}$	4.5	5.0	5.5	V	All Voltages Referenced to $V_{S S}$
		$\mathrm{V}_{\text {SS }}$	0	0	0	V	
High Level Input Voltage. ($\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}})$		VIHC	2.4		5.5	V	
High Level Input Voltage, All Inputs Except RAS, CAS, WE		VIH	2.4		5.5	V	
Low Level Input Voltage, All Inputs		VIL	-2.0		0.8	V	
Operating Current Average Power Supply Operating Current RAS, CAS Cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ (Min.)	ICC1	μ PD4164-1			45	mA	(2)
		μ PD4 164-2			50		
		μ PD4164-3			60		
Standby Current Power Supply Standby Current $\overline{\mathrm{RAS}}=\mathrm{V}_{1 \mathrm{HC}}$, $\mathrm{D}_{\text {OUT }}=\mathrm{Hi}$-Impedance)	ICC2				5.0	mA	
Refresh Current Average Power Supply Current, Refresh Mode; $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IHC}}$, $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ (Min.)	ICC3	μ PD4164-1			35	mA	(2)
		μ PD4164-2			40		
		μ PD4 164-3			45		
Page Mode Current Average Power Supply Current, Page Mode Operation $\overline{\text { RAS }}=\mathrm{V}_{\text {IL }} ; \overline{\mathrm{CAS}}$ Cycling $t_{P C}=$ tpC $^{(M i n .)}$	ICC4	μ PD4 164-1			35	mA	(2)
		μ PD4 164-2			40		
		μ PD4164-3			45		
Input Leakage Current Any Input $\mathrm{V}_{\text {IN }}=0$ to +5.5 Volts, All Other Pins Not Under Test = OV	II(L)		-10		10	$\mu \mathrm{A}$	
Output Leakage Current DOUT is Disabled, $\mathrm{V}_{\text {OUT }}=0$ to +5.5 Volts		${ }^{1} \mathrm{O}(\mathrm{L})$	-10		10	$\mu \mathrm{A}$	
Output Levels High Level Output Voltage (IOUT $=5 \mathrm{~mA}$) Low Level Output Voltage ($I_{\text {OUT }}=4.2 \mathrm{~mA}$)	VOH		2.4		$V^{C C}$	V	
		V_{OL}	0		0.4	V	

Notes: (1) T_{a} is specified here for operation at frequencies to $t_{R C} \geq t_{R C}(\min)$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met.
(2) ICC1, ICC3 and ICC4 depend on output loading and cycle rates. Specified rates are obtained with the output open.

PARAMETER	SYMBOL	LIMITS						UNIT	rest CONDITIONS
		μ PD4164-1		μ PD4164-2		μ PDA164-3			
		MIN	MAX	MIN	MAX	MIN	MAX		
Random Read or Write Cycle Time	${ }^{\text {tra }}$	410		335		270		ns	(5)
Read Write Cycle Time	${ }^{\text {trwC }}$	465		335		270		ns	(6)
Page Mode Cycle Time	tpC	275		225		170		ns	
Access Time from $\overline{\mathrm{RAS}}$	trac		250		200		150	ns	(6) (8)
Access Time from $\overline{\text { CAS }}$	tcac		165		135		100	ns	(7) (8)
Output Buffer Turn-Off Delay	toff	0	60	0	50	0	40	ns	(9)
Transition Time (Rise and Fall)	${ }^{\text {t }}$	3	50	3	50	3	50	ns	(4)
$\overline{\text { RAS Precharge Time }}$	trp	150		120		100		ns	
$\overline{\text { RAS Pulse Width }}$	tras	250	10,000	200	10,000	150	10,000	ns	
$\overline{\text { RAS }}$ Hold Time	trsh	165		135		100		ns.	
CAS Pulse Width	${ }^{\text {t CAS }}$	165	10,000	135	10,000	100	10,000	ns	
CAS Hold Time	${ }^{\text {t }}$ CSH	250		200		150		ns	
$\overline{\text { RAS }}$ to CAS Delay Time	$t_{\text {RCD }}$	35	85	30	65	25	50	ns	6
$\overline{\text { CAS }}$ to RAS Precharge Time	${ }^{\text {t CRP }}$	0		0		0		ns	
$\overline{\text { CAS Precharge Time }}$	${ }^{\text {t }}$ CPN	35		30		25		ns	
$\overline{\mathrm{CAS}}$ Precharge Time (For Page Mode Cycle Only)	${ }^{\text {t }} \mathrm{CP}$	100		80		60		ns	
$\overline{\text { RAS }}$ Precharge CAS Hold Time	${ }^{\text {t }}$ RPC	0		0		0		ns	
Row Address Set-Up Time	${ }^{t}$ ASR	0		0		0		ns	
Row Address Hold Time	trat	25		20		15		ns	
Column Address Set-Up Time	${ }^{\text {t }}$ ASC	0		0		0		ns	
Column Address Hold Time	${ }^{\text {t }}$ CAH	75		55		45		ns	
Column Address Hold Time Referenced to RAS	${ }^{\text {t }}$ AR	160		120		95		ns	
Read Command Set-Up Time	${ }^{\text {t }}$ RCS	0		0		0		ns	
Read Command Hold Time Referenced to RAS	${ }^{\text {trRH }}$	30		25		20		ns	(13)
Read Command Hold Time	${ }^{\text {t }}$ RCH.	0		0		0		ns	(3)
Write Command Hold Time	${ }^{\text {twCH }}$	75		55		45		ns	
Write Command Hold Time Referenced to RAS	'WCR	160		120		95		ns	
Write Command Pulse Width	twp	75		55		45		ns	
Write Command to RAS Lead Time	${ }^{\text {trw }}$ WL	100		55		45		ns	
Write Command to CAS Lead Time	${ }^{\text {t }}$ WWL	100		55		45		ns	
Data-In Set-Up Time	${ }^{\text {tos }}$	0		0		0		ns	(11)
Data-In Hold Time	${ }^{\text {t }} \mathrm{DH}$	75		55		45		ns	(11)
Data-In Hold Time Referenced to $\overline{\text { RAS }}$	TDHR	160		120		95		ns	
Refresh Period	${ }^{\text {tref }}$		2		2		2	ms	
WRITE Command Set-Up Time	twCs	-20		-20		-20		ns	(12)
CAS to WRITE Delay	${ }^{\text {t }}$ CWD	115		80		60		ns	(13)
RAS to WRITE Delay	$t_{\text {RWD }}$	200		145		110		ns	(13)

Notes: (1) T_{a} is specified here for operation at frequencies to $t_{R C}>t_{R C}(\mathrm{~min})$. Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any 8 दैAS cycles before proper device operation is achieved.
(3) $A C$ measurements assume $t_{T}=5$ ns.
(4) $V_{I H C}(\min)$ or $V_{I H}(\min)$ and $V_{I L}(\max)$ are reference levels for measuring timing of input signals. Aiso, transition $V_{\text {IHC }}(\min)$ or $V_{\text {IH }}(\min)$ and $V_{I L}(\max)$ are referen measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
(5) The spacifications for $\mathrm{t}_{\mathrm{RC}}(\mathbf{m i n})$ and trwf (min) are used only to indicate cycle times at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}}<70^{\circ} \mathrm{C}\right.$) is assured.
(6) Assumes that $\mathrm{t}_{\mathrm{RCS}}<\mathrm{t}_{\mathrm{RCD}}$ (max). If $\mathrm{t}_{\mathrm{RCS}}$ is greater than the maximum recommended value shown in this table, $t_{\text {RAC }}$ will increase by the amount that tRCD exceeds the values shown.
(7) Assumes that tricD $>$ trRCD $^{(\max)}$.
(8) Measured with a loed equivalent to 2 TTL loeds and 100 pF
(9) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage-ievels.
60 Operation within the $t_{R C D}(\max)$ limit ensures that $t_{\text {RAC }}$ (max) can be met, $t_{R C D}($ max $)$ is specified as a reference point only, if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controiled exclusively by tCAC-
(11) These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
(12) tWCS, t CWD and t RWD are restrictive operating parameters in read-write and read-modify-write cycles only. If twCS > (WCS (min), the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle. If t^{2}. from the selected cell. If neither of the above conditions are met the condition of the data out lat access time and until CAS goes back to V_{IH}) is indeterminate.
(13) Either tRRH or tRCH must be satisfied for a read cycle.

READ CYCLE
TIMING WAVEFORMS

TIMING WAVEFORMS (CONT.)
$\overline{\mathrm{RAS}}$

ADDRESSES
$\overline{\mathrm{CAS}}$

PAGE MODE READ CYCLE
$\overline{\mathrm{AAS}}$

RAS
$\overline{C A S}$
addresses
$\overline{\text { WRITE }}$
$D_{\text {in }}$

$$
\mathrm{T}_{\mathrm{a}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		TYP	MAX			
Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{7}\right), \mathrm{D}_{\text {IN }}$	C_{11}		5	6	pF	
Input Capacitance RAS, CAS, WRITE	C_{12}			10	pF	
Output Capacitance (DOUT)	C_{0}			7	pF	

Plastic
ITEM MILLIMETERS INCHES A 19.4 MAX. 0.76 MAX. B 0.81 0.03 C 2.54 0.10 D 0.5 0.02 E 17.78 0.70 F 1.3 0.051 G 2.54 MIN. 0.10 MIN. H 0.5 MIN. 0.02 MIN. I 4.05 MAX. 0.16 MAX J 4.55 MAX. 0.18 MAX. K 7.62 0.30 L 6.4 0.25 M $0.25{ }^{+0.10}$ 0.05

μ PD4164D

4096×1 STATIC NMOS RAM

DESCRIPTION The μ PD4104 is a high performance 4 K static RAM. Organized as 4096×1, it uses a combination of static storage cells with dynamic input/output circuitry to achieve high speed and low power in the same device. Utilizing NMOS technology, the μ PD4104 is fully TTL compatible and operates with a single $+5 \mathrm{~V} \pm 10 \%$ supply.

FEATURES - Fast Access Time -200 ns (μ PD4104-2)

- Very Low Stand-By Power - 28 mW Max.
- Low $V_{C C}$ Data Retention Mode to +3 Volts.
- Single $+5 \mathrm{~V} \pm 10 \%$ Supply.
- Fully TTL Compatible.
- Available in 18 Pin Plastic and Ceramic Dual-in-Line Packages.
- 3 Performance Ranges:

			SUPPLY CURRENT		
	ACCESS TIME	R/W CYCLE	ACTIVE	STANDBY	LOW VCC
μ PD4104	300 ns	460 ns	21 mA	5 mA	5 mA
μ PD4104-1	250 ns	385 ns	21 mA	5 mA	3.3 mA
μ PD4104-2	200 ns	310 ns	25 mA	5 mA	3.3 mA

$A_{0}-A_{11}$	Address Inputs
$\overline{C E}$	Chip Enable
$D_{I N}$	Data Input
$D_{\text {OUT }}$	Data Output
$V_{S S}$	Ground
$V_{C C}$	Power (+5V)
$\overline{W E}$	Write Enable

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . 1 to +7 Volts (1)
Power Dissipation . 1 Watt
Short Circuit Output Current . 50 mA

Note: (1) With respect to VSS
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Supply Voltage			$\mathrm{V}_{\text {cc }}$	4.5	5.0	5.5	V	(1)
Logic " 1 " Voltage All Inputs		$V_{\text {IH }}$	2.2	-3	7.0	V		
Logic " 0 " Voltage All Inputs		$V_{\text {IL }}$	-1.0		0.8	V		
Average V_{CC} Power Supply Current	μ PD4104	${ }^{\text {ICC1 }}$			21	mA	(2)	
	μ PD4104.1	ICC1			21	mA		
	μ PD4104-2	ICC1			25	mA		
Standby $\mathrm{V}_{\text {CC }}$ Power Supply Current		${ }^{\text {ICC2 }}$			5	mA	(3)	
Input Leakage Current (Any Input)		IIL	-10		10	$\mu \mathrm{A}$	(4)	
Output Leakage Current		IOL	-10		10	$\mu \mathrm{A}$	(3) (5)	
Output Logic " 1 " Voltage IOUT - $500 \mu \mathrm{~A}$		$\mathrm{VOH}^{\text {OH}}$	2.4			V		
Output Logic " 0 " Voltage IOUT 5 mA		V_{OL}			0.4	V		

PARAMETER	SYMBOL	LIMITS				
	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Input Capacitance	CIN		4	6	ρF	(7)
Output Capacitance	COUT		6	7	ρF	(7)

Notes: (1) All voltages referenced to V_{SS}
(2) ${ }^{\prime} \mathrm{CC} 1$ is related to precharge and cycle times. Guaranteed maximum values for $I_{C C 1}$ may be calculated by

$$
I_{\mathrm{CC}} 1 \text { Ima } \mid=\left(5 t_{\mathrm{p}}+13\left(\mathrm{t}_{\mathrm{C}}-\mathrm{t}_{\mathrm{p}}\right)+3420\right) \quad \mathrm{t}_{\mathrm{C}}
$$

where t_{p} and t_{C} are expressed in nanoseconds. Equation is referenced to the $\mathbf{- 2}$ device, other devices derate to the same curve.
(3) Output is disabled (open circuit), $\overline{C E}$ is at logic 1
(4) All device pins at 0 volts except pin under test at $0 . V_{I N}=5.5$ volts.
(5) $\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{OUT}} \leqslant+5.5 \mathrm{~V}$.
(6) During power up, $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished.
(7) Effective capacitance calculated from the equation C $1 \frac{\Delta t}{\Delta V}$ with ΔV equal to $3 V$ and $V_{C C}$ nominal.

ABSOLUTE MAXIMUM RATINGS*
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ ()

PARAMETER	SYMBOL	LIMITS						UNIT	test CONDITIONS
		4104		4104.1		4104-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read or Write Cycle Time	${ }^{t} \mathrm{C}$	460		385		310		ns	(8)
Random Access	${ }^{\text {t }}$ AC		300		250		200	ns	(3)
Chip Enable Pulse Width	${ }^{\text {t }}$ CE	300	10,000	250	10,000	200	10,000	ns	
Chip Enable Precharge Time	tp	150		125		100		ns	
Address Hold Time	${ }^{\text {t }}$ A ${ }^{\text {H }}$	165		135		110		ns	
Address Set-Up Time	${ }^{\text {t }}$ AS	0		0		0		ns	
Output Buffer Turn-Off Delay	toff	0	75	0	65	0	50	ns	(9)
Read Command Set-Up Time	trs	0		0		0		ns	(4)
Write Enable Set-Up Time	${ }^{\text {tws }}$	-20		-20		-20		ns	(4)
Data Input Hold Time Referenced to WE	${ }^{\text {t }}$ DIH	25		25		25		ns	
Write Enabled Pulse Width	${ }^{\text {tw }}$	90		75		60		ns	
Modify Time	${ }^{\text {m M }}$ M	0	10,000	0	10,000	0	10,000	ns	(5)
$\overline{\text { WE }}$ to $\overline{\mathrm{CE}}$ Precharge Lead Time	twPL	105		85		70		ns	(6)
Data Input Set-Up Time	tDS	0		0		0		ns	
Write Enable Hold Time	twh	225		185		150		ns	
Transition Time	t	5	50	5	50	5	50	ns	
Read-Modify-Write Cycle Time	trmw	565		470		380		ns	(10)

Notes: (1) All voltages referenced to V_{SS}
(2) During power up, $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after V_{CC} reaches 4.5 V , before a valid memory cycle can be accomplished.
(3) Measured with load circuit equivalent to 2 TTL loads and $\mathrm{CL}=100 \mathrm{pF}$.
(4) If $\overline{W E}$ follows $\overline{C E}$ by more than twS then data out may not remain open circuited.
(5) Determined by user. Total cycle time cannot exceed tCE max.
(6) Data-in set-up time is referenced to the later of the two falling clock edges $\overline{C E}$ or $\overline{W E}$.
(7) $A C$ measurements assume $t_{T}=5 \mathrm{~ns}$. Timing points are taken as $V_{I L}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$ on the inputs and $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ on the output waveform.
(8) ${ }^{t} \mathrm{C}={ }^{\mathrm{t}} \mathrm{CE}+\mathrm{tp}+2 \mathrm{t} \mathrm{T}$.
(9) The true level of the output in the open circuit condition will be determined totally by output load conditions. The output is guaranteed to be open circuit within tOFF.
(10) $t_{R M W}=t_{A C}+t_{W P L}+t_{p}+3 t_{T}+t_{M O D}$

STANDBY CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		4104		41041		$4104-2$			
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {CC }}$ In Standby	VPD	3.0		3.0		3.0		V	
Standby Current	IPD		5.0		3.3		3.3	mA	(1)
Power Supply Fall Time	$\mathrm{T}_{\text {F }}$	100		100		100		$\mu \mathrm{s}$	
Power Supply Rise Time	$T_{\text {R }}$	100		100		100		$\mu \mathrm{s}$	
Chip Enable Pulse $\overline{\mathrm{CE}}$ Width	TCE	300		250		200		$\mu \mathrm{s}$	
Chip Enable Precharge to Power Down Time	TPPD	150		125		100		ns	
"1" Level CE Min Level	$\mathrm{V}_{\text {IH }}$	2.2		2.2		2.2		V	
Standby Recovery Time	$\mathrm{T}_{\text {RC }}$	500		500		500		$\mu \mathrm{s}$	

Note: (1) Maximum value for V_{PD} minimum value $(=3 \mathrm{~V}$).

TIMING WAVEFORMS
POWER DOWN

WRITE CYCLE

READ-MODIFY-WRITE CYCLE
$\overline{C E}$

ADDRESSES
$\overline{W E}$

DIN

Dout

OPERATIONAL DESCRIPTION

READ CYCLE
The selection of one of the possible 4096 bits is made by virtue of the 12 address bits presented at the inputs. These are latched into the chip by the negative going edge of chip enable ($\overline{C E}$). If the write enable $(\overline{W E})$ input is held at a high level $\left(V_{I H}\right)$ while the $\overline{C E}$ input is clocked to a low level ($V_{I L}$), a read operation will be performed. At the access time ($\mathrm{t} A C$), valid data will appear at the output. Since the output is unlatched by a positive transition of $\overline{C E}$, it will be in the high impedance state from the previous cycle until the access time. It will go to the high impedance state again at the end of the current cycle when $\overline{\mathrm{CE}}$ goes high.

The address lines may be set up for the next cycle any time after the address hold time has been satisfied for the current cycle.

WRITE CYCLE

Data to be written into a selected cell is latched into the chîp by the later negative transition of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. If $\overline{\mathrm{WE}}$ is brought low before $\overline{\mathrm{CE}}$, the cycle is an "Early Write" cycle, and data will be latched by $\overline{\mathrm{CE}}$. If $\overline{\mathrm{CE}}$ is brought low before $\overline{\mathrm{WE}}$, as in a Read-Modify-Write cycle, then data will be latched by $\overline{\mathrm{WE}}$.

If the cycle is an "Early Write" cycle, the output will remain in the high impedance state. For a Read-Modify-Write cycle; the output will be active for the Modify and Write portions of the memory cycle until $\overline{\mathrm{CE}}$ goes high. If $\overline{W E}$ is brought low after $\overline{\mathrm{CE}}$ but before the access time, the state of the output will be undefined. The desired data will be written into the cell if data-in is valid on the leading edge of $\overline{W E}$, tDIH is satisfied, and $\overline{\mathrm{WE}}$ occurs prior to $\overline{\mathrm{CE}}$ going high by at least the minimum lead time (tWPL).

READ-MODIFY-WRITE

Read and Write cycles can be combined to allow reading of a selected location and then modifying that data within the same memory cycle. Data is read at the access time and modified during a period defined by the user. New data is written between $\overline{W E}$ low and the positive transition of $\overline{C E}$. Data out will remain valid until the rising edge of $\overline{C E}$. A minimum R-M-W cycle time can be calculated by $t_{R M W}=t A C+t M O D+t W P L+t P+$ 3 tT ; where $\mathrm{t}_{\mathrm{RMW}}$ is the cycle time, t_{AC} is the access time, $\mathrm{t}_{\mathrm{MOD}}$ is the user defined modify time, tWPL is the $\overline{W E}$ to $\overline{C E}$ lead time, $t P$ is the $\overline{C E}$ high time, and t_{T} is one transition time.

POWER DOWN MODE

In power down, data may be retained indefinitely by maintaining V_{CC} at +3 V . However, prior to $V_{C C}$ going below $V_{C C}$ minimum ($\leqslant 4.5 \mathrm{~V}$) $\overline{\mathrm{CE}}$ must be taken high $\left(\mathrm{V}_{1 \mathrm{H}}=2.2 \mathrm{~V}\right.$) and held for a minimum time period tPPD and maintained at $\mathrm{V}_{1 \mathrm{H}}$ for the entire standby period. After power is returned to $V_{C C} \min$ or above, $\overline{C E}$ must be held high for a minimum of $t_{R C}$ in order that the device may operate properly. See power down waveforms herein. Any active cycle in progress prior to power down must be completed so that $\mathrm{t}_{\mathrm{CE}} \mathrm{min}$ is not violated.

PACKAGE OUTLINES
 μ PD4104C

Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

Cerdip

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
G	1.2	0.06
H	2.5 MIN.	0.1 MIN.
I	0.5 MIN.	0.02 MIN.
J	4.6 MAX.	0.18 MAX.
K	5.1 MAX.	0.2 MAX.
L	7.62	0.3
M	6.7	0.25
		0.26

4096 BIT (1024 $\times 4$ BITS) STATIC RAM

DESCRIPTION The NEC μ PD2114L is a 4096 bit static Random Access Memory organized as 1024 words by 4 bits using N-channel Silicon-gate MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding. It therefore requires no clocks or refreshing to operate and simplifies system design. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The μ PD2114L is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. The μ PD2114L is placed in an 18-pin package for the highest possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip Select ($\overline{\mathrm{CS}}$) lead allows easy selection of an individual package when outputs are OR-Tied.

FEATURES - Access Time: Selection from 150-450 ns

- Single +5 Volt Supply
- Directly TTL Compatible - All Inputs and Outputs
- Completely Static - No Clock or Timing Strobe Required
- Low Operating Power - Typically $0.06 \mathrm{~mW} /$ Bit
- Identical Cycle and Access Times
- Common Data Input and Output using Three-State Output
- High Density 18 -pin Plastic and Ceramic Packages
- Replacement for 2114L and Equivalent Devices

PIN NAMES

$A_{0}-A_{9}$	Address Inputs
$\overline{W E}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	Data Input/Output
V_{CC}	Power (+5V)
GND	Ground

Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Load Current (All Input Pins)	${ }^{1} \mathrm{LI}$			10	$\mu \mathrm{A}$	$V_{\text {IN }}=0$ to 5.5 V
I/O Leakage Current	${ }^{1} \mathrm{LO}$			10	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V}$ to V_{CC}
Power Supply Current	${ }^{1} \mathrm{CC1}$			65	mA	$\begin{aligned} & V_{1 N}=5.5 \mathrm{~V}, 1_{1 / O}=0 \mathrm{~mA}, \\ & T_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC} 2$			70	mA	$\begin{aligned} & V_{1 N}=5.5 \mathrm{~V}, \mathrm{I}_{1 / O}=0 \mathrm{~mA}, \\ & T_{a}=0^{\circ} \mathrm{C} \end{aligned}$
Input Low Voltage	$V_{1 L}$	-0.5		0.8	V	
Input High Voltage	$V_{1 H}$	2.0		6.0	v	
Output Low Current	${ }^{\prime} \mathrm{OL}$	3.2			mA	$V_{\text {OL }}=0.4 \mathrm{~V}$
Output High Current	${ }^{1} \mathrm{OH}$			-1.0	mA	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
						$\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			8	pf	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$
Input Capacitance	CIN			5	pf	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

DC CHARACTERISTICS

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	Limits										UNIT	TEST CONDITIONS
		2114L		2114L. 1		2114L-2		2114L. 3		2114L.5			
		MIN	MAX										
READ CYCLE													
Read Cycle Time	${ }^{t} \mathrm{RC}$	450		300		250		200		150		ns	${ }^{T} T=t_{t}=t_{f}=10 \mathrm{~ns}$
Access Time	${ }^{t} A$.	450		300		250		200		150	ns	$C_{L}=100 \mathrm{pF}$
Chip Selection to Output Valid	${ }^{\text {t }} \mathrm{CO}$		120		100		80		70		60	ns	$\text { Load = } 1 \mathrm{~T} L \text { gate }$
Chip Selection to Output Active	${ }^{\circ} \mathrm{CX}$	20		20		20		20		20		ns	$\begin{aligned} & \text { Input Levels }=0.8 \\ & \text { and } 2.0 \mathrm{~V} \end{aligned}$
Output 3-State from Deselection	${ }^{\text {t }}$ OTO		100		80		70		60		50	ns	$V_{\text {ref }}=1.5 \mathrm{~V}$
Output Mold from Address Change	TOHA	50		50		50		50		50		ns	
WRITE CYCLE													
Write Cycle Time	${ }^{\text {tw }}$	450		300		250		200		150		ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$
Write Time	${ }^{\text {t }}$ W	200		150		120		120		80		ns	$C_{L}=100 \mathrm{pF}$
Write Release Time	${ }^{\text {t }}$ WR	0		0		0		0		0		ns	Load $=1 \mathrm{TTL}$ gate
Output 3-State from Write	${ }^{\text {t O }}$ OTw		100		80		70		60		50	ns	$\begin{aligned} & \text { Input Levels }=0.8 \\ & \text { and } 2.0 \mathrm{~V} \end{aligned}$
Data to Write Time Overlap	${ }^{\text {t }}$ DW	200		150		120		120		80		ns	$V_{\text {ref }}=1.5 \mathrm{~V}$
Data Hold from Write Time	${ }^{t} \mathrm{DH}$	0		0		0		0		0		ris	
Address to Write Setup Time	${ }^{\text {t }}$ AW	0		0		0		0		0		ns	

TIMING WAVEFORMS

NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE

NORMALIZED POWER SUPPLY CURRENT VS. SUPPLY VOLTAGE

OUTPUT SINK CURRENT VS
OUTPUT VOLTAGE

NORMALIZED ACCESS TIME VS AMBIENT TEMPERATURE

NORMALIZED POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE

PACKAGE OUTLINES μ PD2114LC

(PLASTIC)	
ITEM MILLIMETERS INCHES A 23.2 MAX. 0.91 MAX. B 1.44 0.055 C 2.54 0.1 D 0.45 0.02 F 20.32 0.8 G 1.2 0.06 H 2.5 MIN. 0.1 MIN. I 0.5 MIN. 0.02 MIN. J 4.6 MAX. 0.18 MAX. K 5.1 MAX. 0.2 MAX. L 7.62 0.3 M 0.7 0.26 0.01	

(CERDIP)

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
8	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
I	0.5 MIN.	0.02 MIN.
J	4.6 MAX.	0.18 MAX.
K	7.1 MAX.	0.2 MAX.
L	6.7	0.3
M	0.25	0.26
	0.01	

NOTES

4096×1 BIT STATIC RAM

The μ PD2147 is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit. Using a scaled NMOS technology, it incorporates an innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. The result is low standby power dissipation without the need for clocks, address setup and hold times. In addition, data rates are not reduced due to cycle times that are longer than access times.
$\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the μ PD2147 - the part automatically reduces its power requirements and remains in this lower power standby mode as long as $\overline{\mathrm{CS}}$ remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are deselected.
The μ PD2147 is placed in an 18 -pin ceramic package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supplv. The data is read out non-destructively and has the same polarity as the input data. A data input and a separate three-state output are used.

FEATURES - Scaled NMOS Technology

- Completely Static Memory - No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single +5 V Supply
- Automatic Power-Down
- High Density 18-Pin Package
- Directly TTL Compatible - All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Available in a Standard 18-Pin Ceramic Package
- 2 Performañce Ranges:

	MAX ACCESS TIME	SUPPLY CURRENT	
μ ACTIVE			
μ PD2147-2	70 ns	160 mA	20 mA
μ PD2147-5	55 ns	160 mA	20 mA

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{11}$	Address Inputs
$\overline{W E}$	Write Enable
$\overline{C S}$	Chip Select
DiN	Data Input
DOUT	Data Output
VCC	Rower (+5 V)
GND	Ground

TRUTH TABLE

$\overline{C S}$	$\overline{\text { WE }}$	MODE	OUTPUT	POWER
H	X	Nat Selected	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	DOUT	Active

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin -3.5 V to +7 Volts (1)
DC Output Current . 20 mA
Power Dissipation . 1.2 W

Note: (1) with respect to ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}_{;} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted. (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (2)	MAX		
Input Load Current (All Input Pins)	'LI		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=M a x, V_{I N}=G N D \text { to } \\ & V_{C C} \end{aligned}$
Output Leakage Current	\mid 'LO \mid		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & C S=V_{I H}, V_{C C}=M a x, \\ & V_{O U T}=G N D \text { to } V_{C C} \end{aligned}$
Operating Current	${ }^{1} \mathrm{Cc}$		120	150	mA	$\begin{aligned} & V_{C C}=M a x, \\ & C S=V_{I L}, \\ & \text { Outputs Open } \end{aligned}$
				160	mA	
Standby Current	ISB		12	20	mA	$\begin{aligned} & V_{C C}=\text { Min to Max, } \\ & \mathrm{CS}=V_{I H} \end{aligned}$
Peak Power-On Current	IPO (3)		25	50	mA	$\begin{aligned} & V_{C C}=G N D \text { to } V_{C C}=M i n, \\ & C S=\text { Lower of } V_{C C} \text { or } \\ & V_{I H} M i n \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-3.0		0.8	V	
Input High Voltage	$V_{\text {IH }}$	2.0		6.0	V	
Output Low Voltage	VOL			0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$
Output Short Circuit Current	'os	-150		+150	mA	$\mathrm{V}_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CC }}$

Notes: (1) The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
(2) Typical limits are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$, and specified loading.
(3) ICC exceeds isB maximum during power on. A pullup resistor to V_{CC} on the CS input is required to keep the device deselected: otherwise, power-on current approaches ICC active.

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$ (1)

PARAMETER	SYMBOL	LIMITS				
		TYP	MAX	UNIT	TEST CONDITIONS	
Input Capacitance				5	pF	$V_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			6	pF	VOUT $=0 \mathrm{~V}$

Note: (1) This parameter is sampled and not 100% tested.

AC TEST CONDITIONS

AC CHARACTERISTICS READ CYCLE

Input Pulse Levels \qquad Gnd to 3.0 Volts
Input Rise and Fall Times
Input and Output Timing Reference Levels . 1.5 Volts Output Load See Figure 1
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		μ PD2147-5		μ PD2147-3		μ PD2147-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle Time	$t_{R C}(1)$	45		55		70		ns	
Address Access Time	${ }^{\text {t } A A}$		45		55		70	ns	
Chip Select Access Time	${ }^{\text {t }}$ ACS 1		45		55		70	ns	
Chip Select Access Time	${ }^{\text {t }}$ ACS2		45		55		70	ns	
Output Hold From Address Change	${ }^{\text {t }} \mathrm{OH}$	5		5		5		ns	
Chip Select to Output in Low Z	${ }^{t} \mathrm{Cz}$ (2)	10		10		10		ns	(3)
Chip Deselection to Output in High Z	${ }_{\text {thz }}$ (2)	0	30	0	30	0	40	ns	(4)
Chip Selection to Power-Up Time	tPU	0		0		0		ns	
Chip Selection to Power-Down Time	${ }^{\text {tPD }}$		20		20	.	30	ns	

Figure 1

Notes: (1) All Read Cycle timings are referenced from the last valid address to the first transitioning address.
(2) At any given temperature and voltage condition, t_{HZ} max is less than $\mathrm{t}_{\mathrm{L} Z} \mathrm{~min}$. both for a given device and from device to device.
(3) Transition is measured $\pm \mathbf{2 0 0} \mathbf{~ m V}$ from steady state voltage with specified loading.
(4) Transition is measured at $V_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading.

TIMING WAVEFORMS

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		¢PD2147-5		μ PD2147.3		μ PD2147-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle Time (2)	*WC	45		55		70		ns	
Chip Select to End of Write	${ }^{\text {t }}$ W W	45		45		55		ns	
Address Valid to End of Write	${ }^{t}$ AW	45		45		55		ns	
Address Setup Time	${ }^{\text {t }}$ AS	0		0		0		ns	
Write Pulse Width	twP	25		25		40		ns	
Write Recovery Time	${ }^{\text {t W }}$ W	0		10		15		ns	
Data Valid to End of Write	tow	25		25		30		ns	
Data Hold Time	${ }^{\text {t }}$ D ${ }^{\text {r }}$	10		10		10		ns	
Write Enabled to Output with Z	${ }^{\text {twz }}$	0	25	0	25	0	35	ns	(3)
Output Active From End of Write	tow	0		0		0		ns	(4)

AC CHARACTERISTICS WRITE CYCLE

Notes: (1) All Read Cycle timings are referenced from the last valid address to the first transitioning address.
(2) At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZ}} \max$ is less than $\mathrm{t} L \mathrm{Z}$ min. both for a given device and from device to device.
(3) Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading.
(4) Transition is measured at $V_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{VOH}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading.
(5) WE is high for Read Cycles.
(6) Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}}$.
(7) Addresses valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

WRITE CYCLE NO. 2 ($\overline{C S}$ CONTROLLED) (5)

Notes: (1) If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.
(2) All Write Cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+\mathbf{2 0 0} \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}} \mathbf{- 2 0 0} \mathrm{mV}$ with specified loading.
(4) Transition is measured $\pm 200 \mathrm{~mW}$ from steady state voltage with specified loading.
(5) CS or $\overline{\mathrm{WE}}$ must be high during address transitions.

PACKAGE OUTLINE μ PD2147D

Ceramic		
ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

4096 (1024x4) BIT STATIC RAM

DESCRIPTION The μ PD2149 is a 4096-bit static Random Access Memory organized as 1024 words bv 4 -bits. Using a scaled NMOS technology, it incorporates an innovative design approach which provides the ease-of-use features associated with non-clocked static memories.

The μ PD2149 is encapsulated in an 18-pin ceramic package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The data is read out non-destructively and has the same polarity as the input data.

FEATURES - Completely Static Memory - No Clock or Timing Strobe Required

- Equal Access and Cycie Times, Faster Chip Select Access
- Single +5 V Supply
- High Density 18-Pin Package
- Directly TTL Compatible - All Inputs and Outputs
- Common Input and Output
- Three-State Output
- Access Time: $35-55$ ns MAX (From Address) 15-25 ns MAX (From Chip Select)
- Power Dissipation: 180 mA MAX

PIN NAMES

$A_{0} \cdot A_{9}$	Address Inputs
$\overline{W E}$	Write Enable
$\overline{C S}$	Chip Select
$1 / O_{1}-1 / O_{4}$	Data Input/Output
$V_{C C}$	Power (+5 V)
GND	Ground

TRUTH TABLE

$\overline{\text { CS }}$	$\overline{W E}$	MODE	I/O
H	X	Not Selected	High Z
L	L	Write	DIN
L	H	Read	DOUT

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$ (1)

PARAME TER	SYMBOL	LIMITS				
		TYP	MAX	UNIT	TEST CONDITIONS	
Input Capacitance				5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			7	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

AC TEST CONDITIONS Note: (1) This parameter is sampled and not 100% tested.
Input Pulse Levels . Gnd to 3.0V
Input Rise and Fall Times . 5 ns
Input and Output Timing Reference Levels . 1.5V
Output Load . See Figure 1

AC CHARACTERISTICS $\quad \mathrm{Ta}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted. READ CYCLE (1)

PARAMETER	SYMBOL	2149-2		2149-1		2149		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle Time	TRC	35		45		55		ns	
Access Time	T_{A}		35		45		55	ns	
Chip Selection to Output Valid	TCO		15		20		25	ns	
Chip Selection to Output Active	TCX	0		0		0		ns	
Output 3-State From Deselection	TOTD		10		15		20	ns	(2)
Output Hold From Address Change	TOH	0		0		0		ns	

Notes: (1) $\overline{W E}$ is high for read cycle.
(2) Transition is measured $\pm 500 \mathrm{MV}$ from steady state with load of Figure 2. This parameter is sampled and not 100% tested.

BLOCK DIAGRAM

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 V to +7 V (1)
DC Output Current . 20 mA
Power Dissipation 1.2 W

Note: (1) with respect to ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Input Leakage Current	ILI	-10	+10	$\mu \mathrm{A}$	$V_{\text {IN }}=G N D$ to $V_{C C}$
Ouput Leakage Current	${ }^{1} \mathrm{LO}$	-50	+50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CS}=\mathrm{V}_{\text {IH }} \\ & \mathrm{VOUT}=\mathrm{GND} \text { to } 4.5 \mathrm{~V} \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC}$		180	MA	$\mathrm{V}_{\text {IN }}=\mathrm{VCC}_{\text {c }} \mathrm{I} / \mathrm{O}=$ open
Input Low Voltage	$V_{\text {IL }}$	-0.5	0.8	\checkmark	
Input High Voltage	VIH	2.0	VCC	\checkmark	
Output Low Voltage	VOL		0.4	V	$1 \mathrm{OL}=8 \mathrm{MA}$
Output High Voltage	V OH	2.4		\checkmark	${ }^{1} \mathrm{OH}=-4 \mathrm{MA}$
Output Short Circuit Current	Ios	TBD	TBD	MA	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ to V_{CC}

Note: The operating temperature range is guaranteed with transverse air flow exceeding 400 feet per minute.

ABSOLUTE MAXIMUM RATINGS*
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	2149-2		2149-1		2149		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle Time	TWC	35		45		55		ns	
Write Time	TW		30		40		50	ns	(1)
Write Release Time	TWR	5		5		5		ns	
Data to Write	TDW	20		25		30		ns	
Output 3-State From Write	TOTW		10		15		20	ns	(2)
Data Hold From Write Time	TDH	5		5		5		ns	
Address to Write Setup Time	TAW	0		0		0		ns	

AC CHARACTERISTICS

 WRITE CYCLE

Figure 3

Notes: (1) T_{W} is measured from the latter of $\overline{C S}$ or $\overline{W E}$ going low to the earlier of $\overline{C S}$ or $\overline{W E}$ going high.
(2) Transition is measured +500 MV from steady state with load of Figure 3. This parameter is sampled and not 100% tested.
(3) $\overline{W E}$ or $\overline{\mathrm{CS}}$ must be high during all address transitions.

> READ CYCLE (1) (2)

TIMING WAVEFORMS

Notes: (1) $\overline{W E}$ is high for read cycle.
(2) $\overline{W E}$ or $\overline{\mathrm{CS}}$ must be high during all address transitions.

PACKAGE OUTLINE μ PD2149D

Ceramic

ITEM	Millimeters	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN .	0.02 MIN .
1	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

NOTES

8K BIT STATIC RAM

DESCRIPTION The NEC μ PD421 is a very high speed 8192 bit static Random Access Memory organized as 1024 words by 8 bits. Features include a power down mode controlled by the chip select input for an 80% power saving.

FEATURES • 1024×8-bit Organization

- Very Fast Access Time: 150/200/250/300/450 ns
- Single +5 V Power Supply
- Low Power Standby Mode
- N-Channel Silicon Gate Process
- Fully TTL Compatible
- 6-Device Static Cell
- Three State Common I/O
- Compatible with 8108 and Equivalent Devices
- Available in 22 Pin Ceramic Dual-in-Line Package

$\mathrm{A}_{6} \square^{1}$		22	$\square \mathrm{V}_{\text {cc }}$
$A_{5} \square^{2}$		21	$\mathrm{D}^{\text {A }}$
$\mathrm{A}_{4} \square_{3}$		20	$\square A_{8}$
$\mathrm{A}_{3} \square^{4}$		19	A_{9}
$A_{2} \square^{5}$	$\mu \mathrm{PD}$	18	$\square \overline{C s}$
$A_{1} \square^{6}$	421	17]WE
$A_{0} \square^{7}$		16	$\square 1 / \mathrm{O}_{8}$
$1 / O_{1} \square^{8}$		15	$\mathrm{l}_{1 / O_{7}}$
$1 / \mathrm{O}_{2} \square^{9}$		14	$\square 1 / 0_{6}$
$1 / \mathrm{O}_{3} \square^{10}$		13	$\square 1 / O_{5}$
GND \square^{11}		12	$\square 1 / O_{4}$

PIN NAMES
$\mathrm{A}_{0}-\mathrm{A}_{9}$ Address Inputs $\overline{\mathrm{WE}}$ Write Enable $\overline{\mathrm{CS}}$ Chip Select $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$ Data Input Output V_{CC} Power (+5V) GND Ground

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ABSOLUTE MAXIMUM
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	RATINGS*
Voltage on Any Pin	-0.5 to +7 Volts (1)	
Note: (1) With respect		

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
	MIN	TYP	MAX			

μ PD421
CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MAX			
Input/Output Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$		7	pF	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$
Input Capitance	C_{IN}		5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC CHARACTERISTICS

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS										UNIT
		μ PD421		μ PD421-1		μ PD421-2		μ PD421-3		μ PD421-5		
		MIN	MAX									
READ CYCLE												
Read Cycle Time	${ }^{\text {t }} \mathrm{RC}$	450		300		250		200		150		ns
Address Access Time	${ }^{t} A A$		450		300		250		200		150	ns
Chip Select Access Time	${ }^{\text {t }} \mathrm{ACS}$		450		300		250		200		150	ns
Output Hold from Address Change	${ }^{t} \mathrm{OH}$	10		10		10		10		10		ns
Chip Selection To Output in Low Z	${ }^{t}$ LZ	10		10		10		10		10		ns
Chip Deselection to Output in High Z	${ }^{t} \mathrm{HZ}$	0	100	0	80	0	70	0	60	0	50	ns
Chip Selection to Power Up Time	${ }^{\text {t P }}$	0		0		0		0		0		ns
Chip Deselection to Power Down Time	${ }_{\text {tPD }}{ }^{(1)}$		100		80		70		60		50	ns
WRITE CYCLE												
Write Cycle Time	${ }^{\text {tw }}$ W	450		300		250		200		150		ns
Chip Selection to End of Write	${ }^{t} \mathrm{CW}$	360		240		200		160		130		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	360		240		200		160		130		ns
Address Setup Time	${ }^{t} A S$	10		10		10		10		10		ns
Write Pulse Width	tWP	300		230		190		160		130		ns
Write Recovery Time	${ }^{t}$ WR	10		10		10		10		10		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	200		150		120		100		80		ns
Data Hold Time	${ }^{t} \mathrm{DH}$	10		10		10		10		10		ns
Write Enabled to Output in High Z	${ }^{t}$ WZ		100		80		70		60		50	ns
Output Active from End of Write	${ }^{\text {t OW }}$	10		10		10		10		10		ns

Note: (1) $\operatorname{ICC}\left(\mathrm{t}=\mathrm{t}_{\mathrm{PD}}\right)=1 / 2 \operatorname{ICC}$ Active.

PACKAGE OUTLINE μ PD421D

ITEM	millimeters	INCHES
A	27.43 Max .	1.079 Max.
B	1.27 Max.	0.05 Max.
c	2.54 ± 0.1	0.10
D	0.42 ± 0.1	0.016
E	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
6	3.5 ± 0.3	0.138
H	3.7 ± 0.3	0.145
1	4.2 Max.	0.165 Max .
J	5.08 Max.	0.200 Max .
K	10.16 ± 0.15	0.400
L	9.1 ± 0.2	0.358
M	0.25 ± 0.05	0.009

16,384 $\times 1$ BIT STATIC MOS RANDOM ACCESS MEMORY

The NEC μ PD 2167 is a 16,384 words by 1 bit Static MOS RAM. Fabricated with NEC's NMOS technology, it offers the user single power supply operation and fast access times in a standard 20 pin dual-in-line package. Its use of automatic power down circuitry minimizes system operating power requirements. Fully static circuitry throughout means the cycle time and access time are equal.

FEATURES - $16,384 \times 1$ Organization

- Fully Static Memory - No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single $+5 V$ Supply
- Automatic Power Down
- Directly TTL Compatible - All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time: 55 ns Max.
- Power Dissipation: 160 mA Max. (Active)

20 mA Max. (Standby)

- Available in a Standard 20 Pin Dual-in-line Package

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{13}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
D_{IN}	Data Input
$\mathrm{D}_{\mathrm{OUT}}$	Data Output
V_{CC}	Power (+5 V)
V_{SS}	Ground

TRUTH TABLE

$\overline{\text { CS }}$	$\overline{\text { WE }}$	MODE	OUTPUT	POWER
H	X	Not Selected	High Z	Standby
L	L	Write	High Z	Active
L	H	Pead	DOUT	Active

NOTES

1024 BIT (256x4) STATIC CMOS RAM

The μ PD5101L and μ PD5101L- 1 are very low power 1024 bit (256 words by 4 bits) static CMOS Random Access Memories. They meet the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.
All inputs and outputs of the μ PD5101L and μ PD5 101L- 1 are TTL compatible. Two chip enables $\left.\overline{C E}_{1}, C E_{2}\right)$ are provided, with the devices being selected when $\overline{C E}_{1}$ is low and CE_{2} is high. The devices can be placed in standby mode, drawing $10 \mu \mathrm{~A}$ maximum, by driving $\overline{\mathrm{CE}}_{1}$ high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving CE_{2} low.
The μ PD5101L and μ PD5101L-1 have separate input and output lines. They can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is nondestructively read out. Read mode is selected by placing a high on the R/W pin. Either device is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.
The μ PD5101L and μ PD5101L- 1 are fabricated using NEC's silicon gate complementary MOS (CMOS) process.

FEATURES - Directly TTL Compatible - All Inputs and Outputs

- Three-State Output
- Access Time - 650 ns (μ PD5101L); 450 ns (μ PD5101L-1)
- Single +5 V Power Supply
- CE_{2} Controls Unconditional Standby Mode
- Available in a 22 -pin Dual-in-Line Package

PIN CONFIGURATION

PIN NAMES

$D_{1}-D I_{4}$	Data Input
$A_{0}-A_{7}$	Address Inputs
R / W	Read/Write Input
$\overline{C E}_{1}, C E_{2}$	Chip Enables
$O D$	Output Disable
$D_{1}-\mathrm{DO}_{4}$	Data Output
$V_{C C}$	Power (+5 V)

Operating Temperature
Storage Temperature
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Voltage On Any Pin With Respect to Ground -0.3 Volts to $\mathrm{V}_{\mathrm{CC}}+0.3$ Volts Power Supply Voltage . - 0.3 to +7.0 Volts COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input High Leakage	ILIH (2)			1	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Low Leakage	LIIL (2)			-1	$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V}$
Output High Leakage	ILOH(2)			1	$\mu \mathrm{A}$	$\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Output Low Leakage	ILOL (2)			-1	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.0 \mathrm{~V}$
Operating Current	'CC1			22	mA	$\begin{array}{\|l\|} \hline V_{\text {IN }}=V_{\text {CC Except }} \overline{\mathrm{CE}} \\ \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \\ \hline \end{array}$
Operating Current	'CC2			27	mA	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.2 \mathrm{~V} \text { Except } \overline{\mathrm{CE}}_{1} \\ & \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \end{aligned}$
Standby Current	${ }^{1} \mathrm{CCL}$ (2)			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{1 N}=0 \text { to } 5.25 \mathrm{~V} \\ & C E_{2} \leqslant 0.2 \mathrm{~V} \\ & \hline \end{aligned}$
input Low Voltage	$V_{\text {IL }}$	-0.3		0.65	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.2		V_{CC}	V	
Output Low Voltage	V_{OL}			0.4	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH}_{\mathrm{OH}}$	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2}$	3.5			V	${ }^{\prime} \mathrm{OH}=-100 \mu \mathrm{~A}$

Notes: (1) Typical values at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Current through all inputs and outputs included in ICCL.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance (All Input Pins)	$C_{\text {IN }}$		4	8	pF	VIN-OV
Output Capacitance	COUT		8	12	pF	VOUT - OV

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101L			5101L-1				
		MIN	TYP	MAX	MIN	TVP	MAX		
Read Cycle	${ }^{t} \mathrm{RC}$	650			450			ns	Input pulse amplitude: 0.65 to 2.2 Volts
Access Time	${ }^{t} A$			650			450	ns	Input rise and fall
Chip Enable ($\overline{\mathrm{CE}}_{1}$) to Output	${ }^{t} \mathrm{CO} 1$			600			400	ns	times: 20 ns
Chip Enable (CE_{2}) to Output	${ }^{\mathrm{t}} \mathrm{CO} 2$			700			500	ns	Timing measurement reference level:
Output Disable to Output	${ }^{\text {t }}$ OD			350			250	ns	Output load: ITTL
Data Output to High Z State	${ }^{t} \mathrm{DF}$	0		150	0		130	ns	Gate and $C_{L}=100 \mathrm{pF}$
Previous Read Data Valid with Respect to Address Change	${ }^{\text {t }} \mathrm{OH} 1$	0			0			ns	
Previous Read Data Valid with Respect to Chip Enable	${ }^{\text {t }} \mathrm{OH} 2$	0			0			ns	

WRITE CYCLE

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101L			$5101 \mathrm{~L}-1$				
		MIN	TYP	MAX	MIN	TYP	MAX		
Write Cycle	${ }^{\text {tw }}$ W	650			450			ns	Input pulse amplitude:
Write Delay	${ }^{\text {t }}$ AW	150			130			ns	0.65 to 2.2 Volts
Chip Enable ($\overline{\mathrm{CE}}_{1}$) to Write	${ }^{\text {t }}$ CW1	550			350			' ns	Input rise and fall times: 20 ns
Chip Enable (CE_{2}) to Write	${ }^{\text {t CW2 }}$	550			350			ns	Timing measurement reference levei:
Data Setup	${ }^{\text {t }}$ DW	400			250			ns	1.5 Volt
Data Hold	${ }^{\text {t }} \mathrm{DH}$	100			50			ns	Output load: ITTL
Write Pulse	twp	400			250			ns	Gate and $C_{L}=$
Write Recovery	${ }^{\text {t }}$ WR	50			50			ns	100 pF
Output Disable Setup	${ }^{t}$ DS	150			130				

LOW VCC DATA RETENTION CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$V_{C C}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	+2.0			V	$\mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V}$
Data Retention Current	${ }^{1}$ CCDR			+10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=+2.0 \mathrm{~V} \\ & C E_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$
Chip Deselect Setup Time	${ }^{t} \mathrm{CDR}$	0			ns	
Chip Deselect Hold Time	${ }^{\text {t } R}$	${ }^{\text {t RC(1) }}$			ns	

Note: (1) trC $=$ Read Cycle Time

Notes: (1). Typical values are for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage. OD may be tied low for separate I/O operation.
During the write cycle, OD is "high" for common I/O and 'don't care" for separate I/O operation.

Notes

(1)	4.75 V
(2)	$\mathrm{V}_{C C D R}$
(3)	$\mathrm{V}_{1 \mathrm{H}}$
(4)	0.2 V

TYPICAL OPERATING CHARACTERISTICS

$t_{A}-C_{L}$

PACKAGE OUTLINE μ PD5101LC

5101LDS-12-80-CAT

NOTES

1024×4 BIT STATIC CMOS RAM

The μ PD444/6514 is a high-speed, low power silicon gate CMOS 4096-bit static RAM organized 1024 words by 4 bits. It uses DC stable (static) circuitry throughout and therefore requires no clock or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
$\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the μ PD444/6514 - the part automatically reduces its power requirements and remains in this low power standby mode as long as $\overline{\mathrm{CS}}$ is high. There is no minimum $\overline{\mathrm{CS}}$ high time for device operation, although it will determine the length of time in the power down mode. When $\overline{\mathrm{CS}}$ goes low, selecting the $\mu \mathrm{PD} 444 / 6514$, the μ PD444/6514 automatically powers up.
The μ PD $444 / 6514$ is placed in an 18 -pin plastic package for the highest possible density. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The μ PD444/6514 is pin-compatible with the μ PD2114L NMOS Static RAM.

Data retention is guaranteed to 2 volts on all parts. These devices are ideally suited for low power applications where battery operation or battery backup for nonvolatility are required.

FEATURES - Low Power Standby $-5 \mu \mathrm{~W}$ Typ.

- Low Power Operation
- Data Retention-2.0V Min.
- Capability of Battery Backup Operation
- Fast Access Time - $200-450 \mathrm{~ns}$
- Identical Cycle and Access Times
- Single +5 V Supply
- No Clock or Timing Strobe Required
- Completely Static Memory
- Automatic Power-Down
- Directly TTL compatible: All Inputs and Outputs
- Common Data Input and Output using Three-State Outputs
- Replacement for μ PD2114L and Equivalent Devices
- Available in a Standard 18 -Pin Plastic Package

	PIN NAMES
$A_{0}-\mathrm{A}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data Input/Output
VCC	Power (+5V)
GND	Ground

Plastic-

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.05
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS								UNIT	TEST CONDITIONS
		444/6514.3		444/6514.2		444/6514.1		444/6514			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
READ CYCLE											
Read Cycle	${ }^{\text {tRC }}$	200		250		300		450		ns	Input Puise Levels: +0.8 to +2.4 Volts input Rise and Fall Times: 10 ns input and Output Timing Levels: 1.5 Volt Output Load: 1 TTL Gate and $C_{L}=100 \mathrm{pF}$
Address Access Time	taA		200		250		300		450	ns	
Chip Select Access Time (1)	${ }^{\text {t }}$ ACS1		200		250		300		450	ns	
Chip Select Access Time (2)	${ }^{\text {t }}$ ACS2		250		300		350		500	ns	
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	50		50		50		50		ns	
Chip Selection to Output in Low Z	${ }^{1} \mathrm{LZ}$	20		20		20		20		ns	
Chip Deselection to Output in High Z	${ }^{\text {t }} \mathrm{Hz}$		60		70		80		100	ns	
WRITE CYCLE											
Write Cycle Time	'WC	200		250		300		450		ns	Input Pulse Levels: +0.8 to +2.4 Volts Input Rise and Fall Times 10 ns Input and Output Timing Levels: 1.5 Volt Output Load: 1 TTL Gate and $C_{L}=100 \mathrm{pF}$
Chip Selection to End of Write	${ }^{\text {c }}$ CW	180		230		250		350		ns	
Address Valid to End of Write	${ }^{\text {taw }}$	180		230		250		350		ns	
Address Setup Time	tas	0		0		0		0		ns	
Write Pulse Width	${ }^{\text {tw }}$ W	180		210		230		300		ns	
Write Recovery Time	'WR	0		0		0		0		ns	
Data Valid to End of Write	${ }^{\text {tow }}$	120		140		150		200		ns	
Data Hold Time	${ }^{\text {I }} \mathrm{DH}$	0		0		0		0		ns	
Write Enabled to Output in High Z	twz		60		70		80		100	ns	
Output Active from End of Write	tow	0		0		0		0		ns	

Notes. (1) Chip deselected for greater than 100 ns prior to selection.
(2) Chip deselected for a finite time that is less than 100 ns prior to sefection. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycie No. 1.1

LOW VCC DATA RETENTION CHARACTERISTICS

PARSMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Daw i: .: \quad Supply Vollage	$\mathrm{V}_{\text {CCDR }}$	2.0			V	$\begin{aligned} & \overline{C S}=V_{C C}, V_{I N}=V_{C C} \\ & \text { to GND } \end{aligned}$
Data Retention Supply Current	'CCDR		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=3 V, C S=V_{C C} \\ & V_{I N}=V_{C C} \text { to } G N D \end{aligned}$
Chip Deselect to Data Retention Time	${ }^{\text {t }} \mathrm{CDR}$	0			ns	
Operation Recovery Time	${ }^{t} \mathrm{R}$	trc(1)			ns	

Note: (1) trC $=$ Read Cycle Time

TIMING WAVEFORMS

Operating Temperature
Storage Temperature
All Input and Output Voltages
Supply Voltage
Supply Voltage
(1) With Respect to Ground

COMMENT Stress above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolũte maxımum ratıng conditıons for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.
\square

PARAMETER	SYMBOL	LIMITS												UNIT	TEST CONDITIONS
		444/6514.3			444/6514.2			444/6514-1			444/6514				
		MIN	TYP	MAX											
Input Leakage Current	${ }_{1} \mathrm{LI}$	-1.0		1.0	-1.0		10	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=G N D$ to $V_{C C}$
1/O Leakage Current	${ }^{\text {L }} \mathrm{O}$	-1.0		1.0	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}=V_{I H}, V_{1 / O}=G N D \\ & \text { to } V_{C C} \end{aligned}$
Operating Supply Current	'CCA1		19	35		15	35		12	35		9	35	mA	$\overline{\overline{C S}}=V_{I L}, V_{I N}=V_{C C} .$ Outputs Open
Operating Supply Current	'CCA2		23	${ }^{\circ} 0$		${ }^{19}$	40		15	40		12	40	mA	$\overline{C S}=V_{I L}, V_{I N}=2.4 \mathrm{~V}$ Outputs Open
Average Operating Supply Current	${ }^{\prime} \mathrm{CCA} 3$		10	20		9	20		8	20		7	20	mA	$V_{I N}=G N D \text { or } V_{C C} \text {. }$ Outputs Open $f=1 \mathrm{MHz}$. Dutv 50\%
Standby Supply Current	${ }^{\prime} \mathrm{Ccs}$			50	.		50			50			50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=V_{\mathrm{CC}}, V_{I N}=G N D \\ & \text { to } V_{\mathrm{CC}} \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-0.3		0.8	-0.3		0.8	-0.3		0.8	-0.3		0.8	V	
Input High Voltage	$V_{\text {IH }}$	2.4		$\mathrm{V}_{\text {CC }}+0.3$	2.4		$\mathrm{V}_{\mathrm{CC}}+0.3$	2.4		$\mathrm{v}_{\mathrm{cc}}+0.3$	2.4		$\mathrm{V}_{\mathrm{Cc}}+0.3$	\checkmark	
Output Low Voltage	$\mathrm{VOL}^{\text {O }}$			0.4			0.4			0.4			0.4	V	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			2.4			2.4			2.4			V	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$

$T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			10	pF	$V_{1 / O}=0 V$
Input Capacitance	CIN			5	pF	$V_{\text {IN }}=0 \mathrm{~V}$

Note: This parameter is periodically sampled and not 100% tested.

FULLY DECODED 4096 STATIC CMOS RAM

DESCRIPTION The μ PD445L is a very low power 4,096 bit (1024 words by 4 bits) static RAM fabricated with NEC's complementary MOS (CMOS) process. It has two chip enable inputs ($\overline{\mathrm{CE}}_{1}$, $C E_{2}$). Minimum standby current is drawn when $\overline{\mathrm{CE}}_{1}$ is at a high level, while inhibiting all address and control line transitions or, unconditionally when CE_{2} is at a low level. This device ideally meets the low power requirements of battery operated systems and battery back-up systems for non-volatility of data.

The μ PD445L uses fully static circuitry requiring no clocking. Output data is read out non-destructively by placing a high on the R/W pin and has the same polarity as input data. All inputs and outputs are directly TTL compatible. The device has common input/output data busses and an OD (Output Disable) pin for use in common I/O bus systems.

The μ PD445L is guaranteed to retain data with the power supply voltage as low as 2.0 volts.

FEATURES - Single +5V Power Supply

- Ideal for Battery Operation
- Low Standby Power for Data Retention
- Simple Memory Expansion - Chip Enable Inputs
- Access Time - 650 ns Max. (μ PD 445 L)
4.50 ns Max. (μ PD $445 \mathrm{~L}-1$)
- Directly TTL Compatible - All Inputs and Outputs
- Common Data Input and Output
- Static CMOS - No Clock or Refreshing Required
- 20 Pin Dual-In-Line Plastic Package

PIN NAMES

$A_{0} A_{9}$	Address Input
OD	Output Disable
R / W	Read/Write
$\overline{\mathrm{CE}}_{1}$	Chip Enable 1
CE_{2}	Chip Enable 2
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data Input/Output
V_{C}	Power Supply
GND	Ground

OPERATION MODES

$\overline{C E}_{1}$	$C E_{2}$	$O D$	Chip	Output Mode
0	1	0	Selected	Data Out
0	1	1		High Impedance
Others				

BLOCK DIAGRAM

Operating Temperature \square . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ All Output Voltages . -0.3 to VCC +0.3 Volts All Input Voltages . -0.3 to VCC +0.3 Volts Supply Voltage VCC -0.3 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ;+5 \mathrm{~V}: 10 \%$

PARAMETER	SYMBOL	L IMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	+2.2		\checkmark CC	V	
Input Low Voltage	$V_{\text {IL }}$	-0.3		+ 0.65	\checkmark	
Output High Voltage	$\mathrm{VOH}^{\text {OH }}$	+2.4			V	$1 \mathrm{OH}-1.0 \mathrm{~mA}$
	VOH 2	+3.5			V	$\mathrm{I}^{\mathrm{OH}}=100 \mu \mathrm{~A}$
Output Low Voltage	$\mathrm{VOL}^{\text {OL }}$			$+0.4$	V	$1 \mathrm{OL}=+2.0 \mathrm{~mA}$
Input Leakage Current High	ILIH			$+1.0$	$\mu \mathrm{A}$	$v_{1}-v_{C C}$
Input Leakage Current Low	ILIL	.		- 1.0	$\mu \mathrm{A}$	$V_{1}-O V$
Output Leakage Current High	íloh			+ 1.0	$\mu \mathrm{A}$	$\begin{aligned} & v_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \overline{\mathrm{CE}} \mathrm{E}_{1}=2.2 \mathrm{~V} \end{aligned}$
Outpui Leakage Current Low	'LOL			1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{O}}=0 \mathrm{~V} \\ & C E_{1}=2.2 \mathrm{~V} \end{aligned}$
Supply Current	'CC1		12	25	$m A$	Outputs Open $\begin{aligned} & V_{1}=V_{C C} \text { except } \\ & C E_{1} \leqslant 0.65 V \end{aligned}$
Supply Current	${ }^{1} \mathrm{CC} 2$		16	30	$m A$	Outputs Open $\begin{aligned} & \mathrm{V}_{1}=2.2 \mathrm{~V} \text { except } \\ & \mathrm{CE}_{1} \leq 0.65 \mathrm{~V} \end{aligned}$
Standby Current	${ }^{1} \mathrm{CCL}$			40	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=0 \text { to } 5.25 \mathrm{~V} \\ & \text { Except } C E_{2} \leq 0.2 \mathrm{~V} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER		LIMITS				TEST
		MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance			5	8	pF	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$
Output Capacitance	C_{O}		8	12	pF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V} \mathrm{CC}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		445L		445L-1			
		MIN	MAX	MIN	MAX		
Read Cycle Time	${ }^{\text {tr }}$ C	650		450		ns	
Access Time	${ }^{t}$ A		650		450	ns	Input Voltage Levels
Chip Enable ($\overline{\mathrm{CE}}_{1}$) to Output	${ }^{t} \mathrm{CO} 1$		600		400	ns	$V=+0.65$ to +2.2 V
Chip Enable ($C E_{2}$) to Output	${ }^{\mathrm{t}} \mathrm{CO} 2$		700		500	ns	Input Rise Time 20 ns
Output Enable to Output	${ }^{\text {t }} \mathrm{OD}$		350		250	ns	Input Fall Time 20 ns
Output Disable (OD) to Floating	${ }^{t} \mathrm{DF}$	0	150	0	130	ns	Timing Measurement Reference Level =
Data Output Hold Time	${ }^{\text {t }} \mathrm{OH} 1$	0		0		ns	Output Load
Chip Disable to Floating	${ }^{\text {t }} \mathrm{OH} 2$	0		0		ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
Address Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		300		300	ns	For Address change during Chip Enabled

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ WRITE CYCLE							
PARAMETER	SYMBOL	LIMITS				UNIT	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$
		445L		445L-1			
		MIN	MAX	MIN	MAX		
Write Cycle Time	${ }^{t} \mathrm{WC}$	650		450		ns	
Address Setup Time	${ }^{\text {t }}$ AW	150		130		ns	Input Voltage Levels
Chip Enable $\left(\overline{\mathrm{CE}}{ }_{1}\right)$ to Write End	${ }^{\text {t CW }} 1$	550		350		ns	Input Rise Time 20 ns
Chip Enable (CE 2) to Write End	${ }^{t} \mathrm{CW} 2$	550		350		ns	Input Fall Time 20 ns
Data Setup Time	${ }^{\text {t }}$ DW	400		250		ns	
Data Hold Time	${ }^{t} \mathrm{DH}$	100		50		ns	Timing Measu rement
Write Pulse Width	${ }^{t}$ WP	400		250		ns	Reference Level $=$
Address Hold Time	tWR	50		50		ns	+2.5V
Output Disable Setup Time	${ }^{t} \mathrm{DS}$	150		130		ns	
Address Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		300		300	ns	For Address change during Chip Enabled

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$V_{\text {CC }}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	+2.0			V	$C E_{2} \leqslant+0.2 \mathrm{~V}$
Data Retention Current	'CCDR			40	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=+2.0 \mathrm{~V} \\ & \mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V} \\ & \hline \end{aligned}$
Chip Deselect Setup Time	${ }^{\text {t }}$ CDR	0			ns	
Chip Deselect Hold Time	${ }^{\text {tR }}$	trc ${ }^{(1)}$			ns	

Note: (1) $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time

WRITE CYCLE

Note (1) Apply less than $\vee_{\text {CCDR }}$ to dill inputs for data retention mode

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	27.00	1.07
B	2.07	0.08
C	2.54	0.10
D	0.50	0.02
E	22.86	0.90
F	1.20	0.05
G	2.54 MIN	0.10 MIN
H	0.50 MIN	0.02 MIN
I	4.58 MAX	0.18
J	5.08 MAX	0.20
K	10.16	0.40
L	8.60	0.39
M	$0.25+0.10$	$0.01+0.004$

NOTES

2048 x 8 BIT STATIC CMOS RAM

DESCRIPTION The μ PD446 is a high speed，low power， 2048 word by 8 bit static CMOS RAM fabricated using an advanced silicon gate CMOS technology．A unique circuitry technique makes the μ PD446 a very low operating power device which requires no clock or refreshing to operate．Minimum standby power current is drawn by this device when $\overline{\mathrm{CE}}$ equals V_{CC} independently of the other input levels．

Data retention is guaranteed at a power supply voltage as low as 2 V ．
The μ PD446 is packaged in a standard 24 －pin dual－in－line package and is plug－in compatible with 16 K EPROMs．

FEATURES－Single＋5V Supply
－Fully Static Operation－No Clock or Refreshing required
－TTL Compatible－All Inputs and Outputs
－Common I／O Using Three－State Output
－$\overline{\mathrm{OE}}$ Eliminates Need for External Bus Buffers
－Max Access／Min Cycle Times Down to 120 ns
－Low Power Dissipation， 45 mA Max Active／ $100 \mu \mathrm{~A}$ Max Standby／ $10 \mu \mathrm{~A}$ Max Data Retention
－Data Retention Voltage－ 2 V Min
－Standard 24－Pin Plastic and Ceramic Packages
－Plug－in Compatible with 16K EPROMs

$\mathrm{A}_{7}{ }^{-1}$		24	$\square \mathrm{vcc}$
$\mathrm{A}_{6} \mathrm{C}_{2}$		23	A_{8}
$\mathrm{A}_{5}{ }^{\text {a }}$		22	$\square \mathrm{A} 9$
$\mathrm{A}_{4} \square_{4}$		21	$\square \overline{W E}$
$\mathrm{A}_{3} \square_{5}$		20	$\square \overline{\mathrm{OE}}$
$\mathrm{A}_{2}-6$	$\mu \mathrm{PD}$	19	$\square \mathrm{A}_{10}$
$\mathrm{A}_{1} \square_{7}$	446	18	$\square \overline{C E}$
$\mathrm{A}_{0} 8$		17	口1／08
1／01－9		16	曰1／07
1／02－10		15	口1／06
1／03－11		14	口1／05
GND－12		13	－1／04

PIN NAMES
$A_{0}-A_{10}$ Address Inputs $\overline{W E}$ Write Enable $\overline{O E}$ Output Enable $\overline{\mathrm{CE}}$ Chip Enable $\mathrm{I} / \mathrm{O1-1/O8}$ Data Input／Output V_{CC} Power（＋5V） GND Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathrm{WE}}$	MODE	I／O	$\mathbf{I C C}$
H	X	X	NOT SELECTED	HZ	STANDBY
L	H	H	NOT SELECTED	HZ	ACTIVE
L	L	H	READ	DOUT	ACTIVE
L	X	L	WRITE 2	DIN	ACTIVE

Supply Voltage
Input or Output Voltage Supplied 7.0V

Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T} \dot{\mathrm{a}}=25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	$\mu \mathrm{PD} 446.2$			$\mu \mathrm{PD} 446$-1			μ PD446			UNIT	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
Input High Voltage	$\mathrm{v}_{\mathrm{l}_{\mathrm{H}}}$	2.2		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & +0.3 \end{aligned}$	2.2		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.2		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	v	
Input Low Voltage	V_{1}	-0.3		0.8	-0.3		0.8	-0.3		0.8	v	
Input Leakage Current	${ }^{\prime} L_{1}$	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \sim V_{\text {cc }}$
1/O Leakage Current	'Lo	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{VI}_{\mathrm{I}} / \mathrm{O}=0 \sim \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
Operating Supply .Current	${ }^{\prime} C^{\prime} A_{1}$		30	45		25	38		20	30	mA	$V_{C S}=V_{I L} I_{I / O}=0$ MIN TCYCLE
	${ }^{\prime} \mathrm{CCA}_{2}$		5	10		5	10		5	10	mA	$v_{C S}=V_{I L} I_{I / O}=0$ DC CURRENT
Standby Current	${ }^{\text {ICCS }}$			100			100			100	$\mu \mathrm{A}$	$\begin{aligned} & v_{C S}=v_{C C} \\ & v_{\text {IN }}=0 \sim v_{C C} \end{aligned}$
Output High Voltage	$\mathrm{VOH}^{\text {O }}$	2.4			2.4			2.4			v	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
Output Low Voltage	$\mathrm{VOL}^{\text {I }}$			0.4			0.4			0.4	\checkmark	$1 \mathrm{OL}=2.0 \mathrm{~mA}$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		6	pF	$V_{I N}=0 V$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		8	pF	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS*
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS						UNIT
		μ PD446-2		μ PD446-1		μ PD446		
		MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle Time	${ }^{\text {tr }} \mathrm{C}$	120		150		200		ns
Address Access Time	${ }^{t} A A$		120		150		200	ns
Chip Enable Access Time	${ }^{t} A C S$		120		150		200	ns
Output Enable to Output Valid	toe		60		75		100	ns
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	20		20		20		ns
Chip Enable to Output in LZ	${ }^{\text {t CLZ }}$	10		10		10		ns
Output Enable to Output in LZ	tolz	10		10		10		ns
Chip Disable to Output in HZ	${ }^{\text {t }} \mathrm{CHZ}$		60		75		100	ns
Output Disable to Output in HZ	${ }^{\text {toher }}$		60		75		100	ns

$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
WRITE CYCLE

PARAMETER	SYMBOL	LIMITS						UNIT
		μ PD446-2		μ PD446-1		μ PD446		
		MIN	MAX	MIN	MAX	MIN	MAX	
Write Cycle Time	${ }^{\text {t }} \mathrm{WC}$	120		150		200		ns
Chip Enable to End of Write	${ }^{\text {t }} \mathrm{CW}$	100		125		170		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	100		125		170		ns
Address Setup Time	${ }^{t}$ AS	0		0		0		ns
Write Pulsewidth	${ }^{\text {t }}$ WP	100		125		170		ns
Write Recovery Time	${ }^{\text {t }}$ WR	0		0		0		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	60		75		100		ns
Data Hold Time	${ }^{\text {t }}$ DH	0		0		0		ns
Write Enable to Output in HZ	tWHZ		60		75		100	ns
Output Active from End of Write	tow	20		20		20		ns

LOW VCC DATA
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ RETENTION

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
VCC for Data Retention	$\mathrm{V}_{\text {CCDR }}$	$\begin{aligned} & v_{I N}=0 \sim v_{C C} \\ & v_{C E}=v_{C C} \end{aligned}$	2.0			v
Data Retention Current	ICCDR	$\begin{aligned} & v_{C C}=3.0 \mathrm{~V}, \\ & v_{I N}=0 \sim v_{C C} \\ & v_{\overline{C E}}=v_{C C} \end{aligned}$		0.1	10	$\mu \mathrm{A}$
Chip Deselection to Data Retention Time	${ }^{t} \mathrm{CDR}$		0			ns
Operation Recovery Time	${ }^{\text {R } R}$		${ }^{\text {r }} \mathrm{RC}$			ns

NOTES:
(1) $\overline{W E}$ is high for read cycles.
(2) Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
(3) Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.

WRITE CYCLE (1)

NOTES: (1) $\overline{W E}$ must be high during all address transition.
(2) A write occurs during the overlap of a low $\overline{C E}$ and a low $\overline{W E}$.
(3) tWR is measured from the earlier of $\overline{C E}$ or $\overline{W E}$ going high to the end of write cycle.
(4) If the CS low transition occurs simultaneously with or after the $\overline{W E}$ low transition, output buffers remain in a high impedance state.

TIMING WAVEFORMS (CONT.)

WRITE CYCLE (2)

Notes: (1) $\overline{W E}$ must be high during all address transition.
(2) A write occurs during the overlap of a low $\overline{C E}$ and a low $\overline{W E}$.
(3) tWR is measured from the earlier of $\overline{C E}$ or $\overline{W E}$ going high to the end of write cycle.
(4) If the CS low transition occurs simultaneously with or after the $\bar{W} E$ low transition, output buffers remain in a high impedance state.
(5) $\overline{O E}$ is continuously low $\left.\overrightarrow{(O E}-V_{I L}\right)$.

LOW VCC DATA RETENTION TIMING CHART

AC TEST CONDITIONS

Input Pulse Levels	0.8 V to 2.2 V
Input Rise and Fall Times	10 ns
Input and Output Timing Reference Levels	1.5 V
Output Load	$1 \mathrm{TTL}+100 \mathrm{pF}$

PACKAGE OUTLINE μ PD446C
(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25{ }_{-0.10}^{+0.05}$	$0.01{ }^{+0.004}-0.0019$

(CERDIP)

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
K	15.24	0.6
L	13.5	0.53
M	0.25	
		0.0 .10

2048×8 BIT STATIC CMOS RAM

DESCRIPTION

The μ PD447 is a high speed, low power, 2048 word by 8 bit static CMOS RAM fabricated using an advanced silicon gate CMOS technology. A unique circuitry technique makes the μ PD447 a very low operating power device which requires no clock or refreshing to operate.

Since the device has two chip enable inputs, it is suited for battery backup applications. Minimum standby power current is drawn by this device when CE2 equals V_{CC} independently of the other input levels.

Data Retention is guaranteed at a power supply voltage as low as 2 V .
The μ PD447 is packaged in a standard 24 -pin dual-in-line package and is plug-in compatible with 16 K EPROMs.

FEATURES

- Single +5 V Supply
- Fully Static Operation - No Clock or Refreshing required
- TTL Compatible - All Inputs and Outputs
- Common Data Input and Output Using Three-State Output
- Two Chip Enable Inputs for Battery Operation
- Max Access/Min Cycle Times Down to 120 ns
- Low Power Dissipation; 45 mA Max Active/ $100 \mu \mathrm{~A}$ Max Standby/ $10 \mu \mathrm{~A}$ Max Data Retention
- Data Retention Voltage - 2 V Min
- Standard 24 -Pin Plastic and Ceramic Packages
- Plug-in Compatible with 16K EPROMs

PIN NAMES	
$A_{0}-A_{10}$	Address Inputs
$\overline{\text { WE }}$	Write Enable
$\overline{\text { CE1- }} \overline{\text { CE2 }}$	Chip Enable Inputs
I/OJ-I/08	Data Input/Output
$V_{\text {CC }}$	Power (+5V)
GND	Ground

TRUTH TABLE

$\overline{\text { CE1 }}$	$\overline{\text { CE2 }}$	$\overline{\text { WE }}$	MODE	I/O	ICC
\mathbf{X}	H	X	NOT SELECTED	HZ	STANDBY
H	X	X	NOT SELECTED	HZ	ACTIVE
L	L	L	WRITE	DIN	ACTIVE
L	L	H	READ	DOUT	ACTIVE

Supply Voltage7.0 V

Input or Output Voltage Supplied . 0.3 to VCC +0.3 V
Storage Temperature Range . $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
COMMENT Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 V \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	test CONDITIONS	Limits									UNIT
			μ PD447-2			μ PD447. 1			$\mu \mathrm{PD} 447$			
			MIN	TYP	MAX -	MIN	TYP	MAX	MIN	TYP	MAX	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$		2.2		$v_{C C}+0.3$	2.2		$v_{C C}+0.3$	2.2		$v_{C C}+0.3$	v
Input Low Voltage	$V_{\text {IL }}$		-0.3		0.8	-0.3		0.8	-0.3		0.8	v
Input Leakage Current	ILI	$V_{\text {IN }}=0 \sim V_{C C}$	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$
1/O Leakage Current	'LO	$\begin{aligned} & v_{\overline{C E} 2}=V_{I H} \\ & v_{I / O}=0 \sim v_{C C} \end{aligned}$	-1.0		1.0	-1.0	.	1.0	-1.0		1.0	$\mu \mathrm{A}$
Operating Supply Current	${ }^{\prime} \mathrm{CCA}$,	$\begin{aligned} & V \overline{\mathrm{CE} 2}=V_{I L} \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \\ & \text { MIN TCYCLE } \end{aligned}$		30	45		25	39		20	30	mA
	${ }^{1} \mathrm{CCA} 2$	$\begin{aligned} & V_{\overline{C E} 2}=V_{I L} \\ & I_{1 / O}=0 \\ & D C \text { CURRENT } \end{aligned}$		5	10		5	10		5	10	mA
Standby Current	'ccs	$V_{\overline{C E}}=V_{C C}$ $V_{\text {IN }}=0 \sim V_{C C}$,	100			100			100	$\mu \mathrm{A}$
Output High Voltage	${ }^{\mathrm{OHH}}$	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			2.4			2.4			v
Output Low Voltage	VOL.	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.4			0.4			0.4	v

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$		6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		8	pF	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

READ CYCLE
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS						UNIT
		μ PD447-2		μ PD447-1		μ PD447		
		MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle Time	${ }^{\text {tr }}$ C	120		150		200		ns
Access Time	${ }^{t} \mathrm{~A}$		120		150		200	ns
Chip Enable (CE1) to Output Vaiid	${ }^{\text {t }} \mathrm{CO} 1$		60		75		100	ns
Chip Enable (CE2) to Output Valid	${ }^{\text {t }} \mathrm{CO} 2$		120		150		200	ns
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	20		20		20		ns
Chip Enable (CE1) to Output in LZ	${ }_{\text {t }}$ LZ1	10		10		10		ns
Chip Enable (CE2) to Output in LZ	t LZ2	10		10		10		ns
Chip Enable (CE1) to Output in HZ	${ }^{\text {t }} \mathrm{H} \mathrm{Z}$		60		75		100	ns
Chip Enable (CE2) to Output in HZ	thz2		60		75		100	ns

$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} \quad$ WRITE CYCLE

PARAMETER	SYMBOL	L.IMITS						UNIT
		μ PD 447-2		μ PD 447-1		$\mu \mathrm{PD447}$		
		MIN	MAX	MIN	MAX	MIN	MAX	
Write Cycle Time	${ }^{\text {t }}$ WC	120		150		200		ns
Chip Enable (CE1) to End of Write	${ }^{\text {t }} \mathrm{CW} 1$	100		125		170		ns
Chip Enable (CE2) to End of Write	${ }^{\text {t }}$ W2 2	100		125		170		ns
Address Setup Time	${ }^{\text {t }}$ AW	0		0		0		ns
Write Pulsewidth	tWP	100		125		170		ns
Write Recovery Time	${ }^{\text {t }}$ WR	0		0		0		ns
Write Enable to Output in HZ	${ }^{\text {tw }}$ L		60		75		100	ns
Output Active from End of Write	${ }^{\text {tow }}$	20		20		20		ns
Data Valid to End of Write	${ }^{\text {t }}$ W	60		75		100		ns
Data Hold Time	${ }^{\text {t }}$ D ${ }^{\text {r }}$	0		0		0		ns

LOW VCC DATA RETENTION
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$V_{\text {CC }}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	$\begin{aligned} & \mathrm{v}_{\mathrm{IN}}=0 \sim \mathrm{v}_{\mathrm{CC}}, \\ & \mathrm{v}_{\mathrm{CE} 2}=\mathrm{v}_{\mathrm{CC}} \end{aligned}$	2.0			v
Data Retention Current	ICCDR	$\begin{aligned} & v_{C C}=3.0 \mathrm{~V}, \\ & v_{\text {IN }}=0 \sim v_{C C} \\ & v_{\overline{C E 2}}=v_{C C} \end{aligned}$		0.1	10	$\mu \mathrm{A}$
Chip Disable to Data Retention Time	${ }^{\text {t }}$ CDR		0			ns
Operation Recovery Time	${ }^{t} R$		trc			ns

READ CYCLE TIMING CHART
TIMING WAVEFORMS

LOW VCC
DATA RETENTION TIMING CHART

Input Pulse Levels	0.8 V to 2.2 V
Input Rise and Fall Times	10 ns
Input and Output Timing Reference Levels	1.5 V
Output Load	$1 \mathrm{TTL}+100 \mathrm{pF}$

PACKAGE OUTLINE μ PD447C

μ PD447D

NOTES

ROM ORDERING PROCEDURE - MEMORIES AND MICROCOMPUTERS

The following NEC products fall under the guidelines set by the ROM Ordering Procedure:

μ PD2316E	μ PD8021	μ PD547L	μ PD651
μ PD2332A	μ PD8022	μ PD550	μ PD651G
μ PD2332A-	μ PD8041A	μ PD550L	μ PD652
μ PD2332B	μ PD8048	μ PD552	μ PD7502
μ PD2332B-1	μ PD80C48	μ PD553	μ PD7503
μ PD2364	μ PD8049	μ PD554	μ PD7507
μ PD23128	μ PD8355	μ PD554L	μ PD7520
μ PD7801	μ PD546	μ PD557L	μ PD7720

NEC Microcomputers, Inc., is able to accept mask patterns in a variety of formats to facilitate the transferral of ROM mask information. These are intended to suit various customer needs and minimize the turnaround time. Always enclose a listing of the code and the code submittal form. The following is a list of valid media for code transferral.

- PROM/EPROM equivalent to ROM parts
- Sample ROMs or ROM-based microcomputers
- NEC μ PD458 EEPROM
- Paper Tape
- Timesharing Files
- Other (Contact NEC Microcomputers, Inc., for arrangements.)

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Microcomputers, Inc. will return the ROM mask patterns to the customer in the most convenient format. Unprogrammed EPROMs, if sent with the ROM code, can be programmed and returned for verification.

Earth satellites and the world-wide GE Mark III timesharing systems provide reliable and instant communication of ROM patterns to the factory. Customers with access to GE-TSS may further reduce the turnaround time by transferring files directly to NEC Microcomputers, Inc.

The following is an example of a ROM mask transferral procedure. The μ PD8048 is used here; however, the process is the same for the other ROM-based products.

1. The customer contacts NEC Microcomputers' Sales Representative, concerning a ROM pattern for the μ PD 8048 that he would like to send.
2. Since an EPROM version of that part is available, the μ PD8748 is proposed as a code transferral medium, or a paper tape and listing may be used.
3. Two programmed μ PD8748's are sent to NEC Microcomputers, Inc. with a listing, a code submittal form, and a paper tape as back-up.
4. NEC Microcomputers, Inc. compares the media provided and enters the code into GS-TSS. The GE-TSS file is accessed at the NEC factory and a copy of the code is returned to NEC Microcomputers for verification. One of the μ PD8748's is erased and reprogrammed with the customer's code as the NEC factory has it. Both μ PD8748's and a listing are returned to the customer for his final verification.
5. Once the customer notifies NEC Microcomputers, Inc. in writing that the code is verified and provides the mask charge and hard copy of the purchase order, work begins immediately on developing his μ PD8048s.

Please contact your local Sales Representative for assistance with all ROM-based product orders.

NOTES

FULLY DECODED 8,192 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

FEATURES - Access Time 450 ns Max

- 1024 Words $\times 8$ Bits Organization
- Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply Voltage
- Directly TTL-Compatible - All Inputs and Outputs
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for 2308A
- Available in 24-pin plastic or ceramic packages

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{9}$	Address Inputs
$D_{0}-D_{7}$	Data Outputs
$C S_{1}-C S_{2}$	Programmable Chip Select Inputs

Voltage on Any Pin . -0.5 to +7.0 Volts (1)
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current (All Input Pins)	'LI			$+10$	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$
				-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Output Leakage Current	LOH			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$
Power Supply Current	${ }^{\text {I CC }}$		60	85	mA	
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	v	
Input "High" Voltage	$V_{\text {IH }}$	2.0		V_{CC}	v	
Output "Low" Voltage	V_{OL}			0.4	v	$\mathrm{I}^{\mathrm{OL}}=3.2 \mathrm{~mA}$
Output "High" Voltage	V_{OH}	+2.4			v	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$

Note: (1) Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN		5	7	pf	All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	COUT		7	10	pf	All Pins Except Pin Under Test Tied to AC Ground

AC CHARACTERISTICS

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \vee \mathrm{CC}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Address to Output Delay Time	${ }^{t} \mathrm{~A}$		350	450	ns	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\text {ref in }}=1 \mathrm{~V}, 2.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {ref out }}=0.8 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$ Output LOAD $=1$ TTL GATE $C_{L}=100 \mathrm{pf}$
Chip Select to Output Enable Delay Time	${ }^{\text {c }} \mathrm{CO}$			120	ns	
Chip Deselect to Output Data Float Delay Time	t ${ }^{\text {PF }}$	10		100	ns	
Previous Data Valid After Address Change	${ }^{t} \mathrm{OH}$	20			ns	

Note: (1) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$

TIMING WAVEFORMS

μ PD2308A

PACKAGE OUTLINES μ PD2308AC

Plastic

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.55 MAX
M	$0.25+0.10$	$0.01+0.004$

μ PD2308AD

Ceramic

ITEM	MILLIMETERS	INCHES
A	30.78 MAX.	1.23 MAX.
B	1.53 MAX.	0.07 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.125 MIN.
H	1.02 MIN.	0.04 MIN.
I	3.23 MAX.	0.13 MAX.
J	4.25 MAX.	0.17 MAX.
K	15.24 TYP.	0.60 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.010 ± 0.002

FULLY DECODED 16,384 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The NEC μ PD2316E is a high speed 16,384 bit mask programmable Read Only Memory organized as 2048 words by 8 bits. The μ PD2316E is fabricated with N -channel MOS technology.

The inputs and outputs are fully TTL compatible. The device operates with a single +5 V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and desired chip select code is fixed during the masking process.

FEATURES • High Speed - Access Times: μ PD2316E - 450 ns μ PD2316E-1 - 350 ns

- 2048 Words $\times 8$ Bits Organization
- Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Three Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for 2316E
- Available in 24-pin plastic or ceramic dual-in-line packages

$A_{7}-1$		24	V_{CC}
$A_{6} \square_{2}$		23	A_{8}
$A_{5} \square_{3}$		22	$\square \mathrm{Ag}_{9}$
$\mathrm{A}_{4} \square 4$		21	$\square \mathrm{CS}_{3}$
$\mathrm{A}_{3}-5$		20	$\square \mathrm{CS}_{1}$
$A_{2} \square_{6}$	$\mu \mathrm{PD}$	19	A_{10}
$\mathrm{A}_{1} \mathrm{C}_{7}$	2316E	18	CS_{2}
$\mathrm{A}_{0} \square_{8}$		17	$\square \mathrm{D}_{7}$
$\mathrm{D}_{0} \square^{9}$		16	D_{6}
$\mathrm{D}_{1} \square_{10}$		15	D_{5}
$\mathrm{D}_{2}-11$		14	D_{4}
GND 12		13	D_{3}

PIN NAMES

$A_{0}-A_{10}$	Address Inputs
$D_{0}-D_{7}$	Data Outputs
$C S_{1}-C S_{3}$	Programmable Chip Select Inputs

Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin -0.5 to +7.0 Volts (1)
Note:
(1) With Respect to Ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current (All Input Pins)	${ }^{\prime} \mathrm{LI}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Leakage Current	ILOH			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$
Power Supply Current	${ }^{\prime} \mathrm{CC}$		60	85	mA	
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	\checkmark	
Input "High" Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		VCC	v	
Output "Low" Voltage	V_{OL}			0.4	v	$\mathrm{IOL}=3.2 \mathrm{~mA}$
Output "High" Voltage	V_{OH}	+2.4			V	${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$

Note: (1) Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN		5	7	pf	All Pins Except Pin Under Test Tied to AC Ground Output Capacitance COUT
		7	10	pf	All Pins Except Pin Under Test Tied to AC Ground	

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu \mathrm{PD2316E}$		μ PD2316E-1			
		MIN.	MAX.	MIN.	MAX.		
Address to Output Delay Time	${ }^{t} A C C$		450		350	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {t }} \mathrm{CO}$		150		150	ns	$C_{L}=100 \mathrm{pF}$
Chip Deselect to Output Data Float Delay Time	${ }^{\text {t }}$ DF	0	150		100	ns	Load $=1 \mathrm{TTL}$ gate
Output Hold Time	${ }^{\text {'OH }}$	20		20		ns	$\mathrm{V}_{\text {IN }}=0.8$ to 2 V $V_{\text {ref }}$ Input $=1.5 \mathrm{~V}$ $V_{\text {ref }}$ Output $=0.45 / 2.2 \mathrm{~V}$

TIMING WAVEFORMS

PACKAGE OUTLINE μ PD2316EC
(Plastic)

ITEM	MILLIMETERS	
A	33 MAX	INCHES
B	2.53	0.1 MAX
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.55 MAX.
M	$0.25+0.10$	0.01 +0.004

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	30.78 MAX.	1.23 MAX.
B	1.53 MAX.	0.07 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.125 MIN.
H	1.02 MIN.	0.04 MIN.
I	3.23 MAX.	0.13 MAX.
J	4.25 MAX.	0.17 MAX.
K	15.24 TYP.	0.60 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.010 ± 0.002

FULLY DECODED 32,768 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The NEC μ PD2332A/B is a Fully Decoded 32,768 Bit Mask Programmable Read-Only Memory organized as 4,096 Words by 8 Bits. The μ PD2332A/B has two chip select inputs and the combination of "High"/"Low" levels of these inputs is maskprogrammable.

The μ PD2332A/B is fabricated with sophisticated N-channel MOS technology and features high speed and TTL compatibility for simple interface with bipolar circuits.

FEATURES • 4096 Words $\times 8$ Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Fully Static (No Clock or Refresh Required)
- Single +5 V Power Supply
- High Speed - Access Times: μ PD2332A/B -450 ns μ PD2332A/B-1 - 350 ns
- Three-State Output - OR-Tie Capability
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- Available in Either JEDEC Pinout: μ PD2332A or μ PD2332B
- N-Channel MOS Technology
- Available in 24 Pin Plastic or Ceramic Dual-in-Line Package

$A_{0}-A_{11}$	Address Inputs
$D_{0}-D_{7}$	Data Outputs
$C S_{1}-C S_{2}$	Programmable Chip Select Inputs

When ordering the μ PD2332A/B, specify a chip select combination of CS_{1} and CS_{2} from the following.

CS_{2}	CS_{1}
0	C
0	1
1	0
1	1

Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage On Any Pin . -0.5 to +7.0 Volts $^{(1)}$
Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
Input Load Current (All Input Pins)	${ }^{\text {L }}$ I			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to +5.5 V
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			+10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Output Leakage Current	${ }^{\text {LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$
Power Supply Current	${ }^{\text {c }} \mathrm{C}$		60	90	mA	All inputs 5.25 V Data Out Open
Input "Low" Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	V_{IH}	2.0		$\mathrm{v}_{\mathrm{CC}}+1.0 \mathrm{v}$	V	
Output "Low" Voltage	v_{OL}			0.40	V	3.2 mA
Output "High" Voltage	V_{OH}	2.4			V	$-200 \mu \mathrm{~A}$

DC CHARACTERISTICS

Note: (1) Typical Values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			15	pF	All Pins Except Pin Under Test Tied to AC Ground

CAPACITANCE

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}$		$\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}-1$			
		MIN.	MAX.	MIN.	MAX.		
Address to Output Delay Time	${ }^{t} \mathrm{ACC}$		450		350	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {t }} \mathrm{CO}$		150		150	ns	$C_{L}=100 \mathrm{pF}$
Chip Deselect to Output Data Float Delay Time	${ }^{\text {t }} \mathrm{DF}$	0	150		100	ns	Load $=1 \mathrm{TTL}$ gate
Output Hold Time	${ }^{\text {t }} \mathrm{OH}$	20		20		ns	$\begin{aligned} & V_{I N}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.45 / 2.2 \mathrm{~V} \end{aligned}$

μ PD2332A/B
TIMING WAVEFORMS

NOTES

FULLY DECODED 65,536 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

FEATURES - 8,192 Words $\times 8$-Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Single +5 V Power Supply
- High Speed - Access Time 450 ns Max.
- Three-State Output - OR-Tie Capability
- One Programmable Chip Select Input for Easy Memory Expansion
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Pin Compatible with MK36000
- Available in 24 Pin Ceramic or Plastic Dual-in-Line Package

PIN NAMES	
$A_{0}-A_{12}$	Address Inputs
$O_{1}-O_{8}$	Data Outputs
$C S$	Programmable Chip Select Input

Note:

With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Load Current (All Input Pins)	'LI'			+10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Leakage Current	'LOH			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\text {cc }}$
Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=0 \mathrm{~V}$
Power Supply Current	ICC		80	140	mA	
Input "Low' Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$	V	
Output "Low" Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output 'High' Voltage	V_{OH}	2.2			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$

Note: (1) Typical Values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

DC CHARACTERISTICS

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	Limits			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	COUT			15	pF	All Pins Except Pin Under Test Tied to AC Ground

AC CHARACTERISTICS

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address to Output Delay Time	${ }^{t} \mathrm{~A}$			450	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {t }} \mathrm{CO}$			150	ns	$C_{L}=100 \mathrm{pF}$
Chip Deselect to Output Data Float Delay Time	${ }^{\text {t }}$ DF	0		150	ns	Load = ITTL gate
Output Hold Time	${ }^{\text {tor }}$	20			ns	$\begin{aligned} & V_{\text {IN }}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.8 \text { to } 2.0 \mathrm{~V} \end{aligned}$

TIMING WAVEFORMS

PACKAGE OUTLINE μ PD2364C
(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	33 MAX .	1.3 MAX.
B	2.53 MAX.	0.1 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94 ± 0.1	1.1 ± 0.004
F	1.5 MIN.	0.059 MIN .
G	2.54 MIN .	0.1 MIN.
H	0.5 MIN .	0.02 MIN .
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24 TYP.	0.6 TYP.
L	13.2 TYP.	0.52 TYP.
M	$0.25_{-0.05}^{+0.10}$	$0.01 \begin{gathered}+0.004 \\ -0.0019\end{gathered}$

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	30.78 MAX.	1.21 MAX.
B	1.53 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.02 MIN.	0.04 MIN.
I	3.23 MAX.	0.13 MAX.
J	4.25 MAX.	0.17 MAX.
K	15.24 TYP.	0.60 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.010 ± 0.002

FULLY DECODED 128K BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The NEC μ PD23128 is a high speed 128 K bit mask programmable Read Only Memory organized as 16,384 words by 8 bits. The μ PD23128 is fabricated with N -channel MOS technology.

The inputs and outputs are fully TTL compatible. This device operates with a single +5 V power supply. The chip select input is programmable. An active high or low level chip select input can be defined and is fixed during the masking process.

FEATURES - 16,384 Words $\times 8$ Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Single +5 V Power Supply
- High Speed - Access Time 250 ns Max.
- Three-State Output - OR-Tie Capability
- One Programmable Chip Select Input for Easy Memory Expansion
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Pin Compatible with 2764
- Available in 28 Pin Ceramic or Plastic Dual-in-Line Package

PIN NAMES

$A_{0}-A_{13}$	Address Inputs
$O_{1}-O_{8}$	Data Outputs
$C S$	Programmable Chip Select
$O D$	Output Disable
$\overline{C E}$	Chip Enable

Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage On Any Pin . - 0.5 to +7.0 Volts (1)
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}} \mathrm{C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current (All Input Pins)	'LI			$+10$	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
				-10	$\mu \mathrm{A}$	$V_{\text {IN }}=O V$
Output Leakage Current	${ }^{\mathrm{LOH}}$			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	${ }^{\text {ILOL }}$			-10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=0 \mathrm{~V}$
Power Supply Current	${ }^{\prime} \mathrm{CC}$			100	mA	
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	V	
Output "Low' Voltage	$\mathrm{VOL}^{\text {O }}$			0.45	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
Output "High" Voltage	VOH	2.2			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS*

Note: (1) Typical ,Values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

PARAMETER	SYMBOL	LImits			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{IN}			10	pF	All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			15	pF	All Pins Except Pin Under Test Tied to AC Ground

AC CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Cycle Time	${ }^{t} \mathrm{CYC}$	350			ns	
Address Setup Time Referenced to $\overline{\mathrm{CE}}$	${ }^{t}$ AS	0			ns	
Address Hold Time Referenced to $\overline{\mathrm{CE}}$	${ }^{t} \mathrm{AH}$	50			ns	
$\overline{\text { CEPPulse Width }}$	${ }^{\text {t }} \mathrm{CE}$			250	ns	
OD Pulse Width	${ }^{\text {t }} \mathrm{OD}$			120	ns	
Access Time	${ }^{\text {t }}$ ACC			250	ns	${ }^{\text {t }}$ AS $=0 \mathrm{~ns}$
$\overline{C E}$ Precharge Time	${ }^{\text {t }} \mathrm{C}$	100			ns	
Output Turn-Off Delay	tDF	0		70	ns	

TIMING WAVEFORMS

PACKAGE OUTLINE μ PD23128C

Plastic

ITEM	MILLIMETERS	INCHES
A	33 MAX.	1.3 MAX.
B	2.53 MAX.	0.1 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94 ± 0.1	1.1 ± 0.004
F	1.5 MIN.	0.059 MIN.
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24 TYP.	0.6 TYP.
L	13.2 TYP.	0.52 TYP.
M	$0.25^{\text {+0.10 }}-0.05$	$0.01+0.004$

Ceramic

ITEM	MILLIMETERS	INCHES
A	30.78 MAX.	1.21 MAX.
B	1.53 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.02 MIN.	0.04 MIN.
I	3.23 MAX.	0.13 MAX.
J	4.25 MAX.	0.17 MAX.
K	15.24 TYP.	0.60 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.010 ± 0.002

4096-BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

Abstract

DESCRIPTION The $\mu \mathrm{PB406}$ and $\mu \mathrm{PB426}$ are high-speed, electrically programmable, fully-decoded 4096-bit TTL read-only memories. On-chip address decoding, two chip-enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The μ PB406 and μ PB426 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES - 1024 WORD X 4 BIT Organization (Fully Decoded)

- TTL Interface
- Fast Read Access Time: 50 ns max. (μ PB406-2, μ PB426-2)
- Medium Power Consumption: 500 mW TYP.
- Two Chip Select Inputs for Memory Expansion
- Open-Collector Output (μ PB406)/Three-State Outputs (μ PB426)
- Ceramic and Plastic 18-Lead Dual In-Line Packages
- Fast Programming Time: $200 \mu \mathrm{~s} / \mathrm{bit}$ TYP.
- Compatibility with: HPROM HM-7642/7643 type and Equivalent Devices (as a ROM)
- A.I.M. (Avalanche Induced Migration) Technology

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
$\mathrm{O}_{1}-\mathrm{O}_{4}$	Data Outputs
$\overline{\overline{\mathrm{CS}}_{1}}, \overline{\mathrm{CS}_{2}}$	Chip Selects
V_{CC}	Power (+5V)
GND	Ground

MPB406/426

Programming

A logic one can be permanently programmed into a selected bit location by using special equipment (programmer). First, the desired word is selected by the ten address inputs in TTL levels. Either or both of the two chip select inputs must be at a logic one (high). Secondly, a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, then is stopped.

Reading

To read the memory, both of the two chip select inputs should be held at logic zero (low). The outputs then correspond to the data programmed in the selected words. When either or both of the two chip select inputs are at logic one (high), all the outputs will be high (floating).

Operating Temperature $25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages -0.5 to +5.5 Volts
All Input Voltages -0.5 to +5.5 Volts
Supply Voltage V_{CC} -0.5 to +7.0 Volts
Output Currents 50 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PROGRAMMING SPECIFICATION

It is imperative that this specification be rigorously observed in order to correctly program the μ PB406 and μ PB426. NEC will not accept responsibility for any device found to be defective if it were not programmed according to this specification.

A typical programming operation is performed by first sensing, then programming, then sensing again to see if the word to be programmed has reached the desired state. Either or both of the two chip enable inputs must be at a logic one (high).

Sensing is accomplished by forcing a 20 mA current into the selected location via the output. The sense measurement is to ensure that the voltage required to force this 20 mA current is less than the reference voltage. If this condition is satisfied, then that bit location is in the logic " 1 " (high) state.

Programming is accomplished by forcing a 200 mA current into the selected bit via the output. This current pulse is applied for $7.5 \mu \mathrm{~s}$ and then the location is sensed before a second programming current pulse is applied. This process is continued until that location is altered to the " 1 " state. A bit is judged to be programmed when two successive sense readings $10 \mu \mathrm{~s}$ apart with no intervening programming pulse pass the limit. When this condition has been met, four additional pulses are applied, then the sense current is terminated.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	${ }^{\circ} \mathrm{C}$	
Programming Pulse Amplitude Clamp Voltage Ramp Rate (both in Rise and in Fall) Pulse Width Duty Cycle	$\begin{aligned} & 200 \pm 5 \% \\ & 28+0 \%-2 \% \\ & 70 \text { MAX. } \\ & 7.5 \pm 5 \% \\ & \\ & 70 \% \text { MIN. } \end{aligned}$	mA V $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$	15V point/ 150Ω load.
Sense Current Amplitude Clamp Voltage Ramp Rate Sense Current Interruption before and after address change	$\begin{aligned} & 20 \pm 0.5 \\ & 28+0 \%-2 \% \\ & 70 \text { MAX. } \end{aligned}$ 10 MIN.	mA V $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$	15V point/ 150Ω load.
Programming V_{CC}	$5.0+5 \%-0 \%$	V	
Maximum Sensed Voltage for programmed " 1 "	7.0 ± 0.1	V	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN.	$\mu \mathrm{s}$	

Figure 2 - Typical Output Voltage Waveform
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0			V	
Input Low Voltage	$V_{\text {IL }}$			0.8	V	
Input High Current	IIL			40	$\mu \mathrm{A}$	$V_{1}=2.7 \mathrm{~V}$
Input Low Current	$-\mathrm{IIL}$			0.5	mA	$\mathrm{V}_{1}=0.4 \mathrm{~V}$
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{0}=16 \mathrm{~mA}$
Output Leakage Current	'OFF1			40	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.25 \mathrm{~V}$
Output Leakage Current	-IOFF2	40			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$
Input Clamp Voltage	$-V_{\text {IC }}$			1.3	V	$I_{1}=-12 \mathrm{~mA}$
Power Supply Current	${ }^{\text {'cC }}$		100	150	mA	All Inputs Grounded
Output High Voltage(1)	V_{OH}	2.4			V	$\mathrm{I}_{0}=-2.4 \mathrm{~mA}$
Output Short Circuit Current(1)	-ISC	15		60	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

NOTE: (1) Applicable to μ PB426 only.
$T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

CHARACTERISTICS	SYMBOL	MIN	MAX	UNIT
Input Capacitance	CIN		8	pF
Output Capacitance	C OUT		10	pF

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V

PARAMETER	SYMBOL	$\mu \mathrm{PB406/426}$		¢PB406/426-1		нPB406/426-2		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Address Access Time	${ }^{\text {t }}$ A		70		60		50	ns	(1) (2) (3) (4)
Chip Select Access Time	${ }^{\text {taCs }}$		45		40		30	ns	
Chip Select Disabie Time	${ }^{\text {t }}$ DCS		45		40		30	ns	

Figure 1

Notes: (1) Output Load: See Figure 1.
(2) Input Waveform: 0.0 V for low level and 3.0 V for high level, less than 10 ns for both rise and fall times.
(3) Measurement References: 1.5 V for both inputs and outputs.
(4) C_{L} in Figure 1 includes jig and probe stray capacitances.

CERDIP

PACKAGE OUTLINE μ PB406/426D

2048 WORD BY 8 BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The μ PB409 and μ PB429 are high-speed, electrically programmable, fully-decoded 16384 bit TTL read only memories. On-chip address decoding, three chip enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The μ PB409 and μ PB429 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES • 2048 WORDS $\times 8$ BITS Organization (Fully Decoded)

- TTL Interface
- Fast Read Access Time :50 ns MAX
- Medium Power Consumption :500 mW TYP
- Three Chip Enable Inputs for Memory Expansion
- Open-Collector Outputs (μ PB409)
- Three-State Outputs (μ PB429)
- Ceramic 24-Lead Dual In-Line Package (μ PB409D, μ PB429D)
- Plastic 24-Lead Dual In-Line Package (μ PB409C, μ PB429C)
- Fast Programming Time $: 200 \mu \mathrm{~s} / \mathrm{bit}$ TYP
- Replaceable with :82S190/191

HM76160/76161, 3636
and Equivalent Type Devices

$A_{7} \square^{1}$		24	V_{CC}		
$A_{6}-$		23	$\square A_{8}$		
$A_{5} \square 3$		22	$\square A_{9}$		
$\mathrm{A}_{4}-4$		21	$\square \mathrm{A}_{10}$		
$\mathrm{A}_{3} \square_{5}$		20	$\square \overline{C E}_{1}$		NAMES
$A_{2} \square 6$	${ }_{\mu}^{\mu \mathrm{PB}}$	19	$\square \mathrm{CE}_{2}$	$A_{0}-A_{10}$	Address Inputs
$\mathrm{A}_{1} \square_{7}$	429	18	$\square \mathrm{CE}_{3}$	$\mathrm{CE}_{1}-\mathrm{CE}_{3}$	Chip Enable Inputs
$A_{0} \square 8$		17	$\square \mathrm{O}_{8}$	$\mathrm{O}_{1}-\mathrm{O}_{8}$	Data Outputs
$\mathrm{O}_{1} \square 9$		16	O_{7}		
$\mathrm{O}_{2} \square 10$		15	$\square \mathrm{O}_{6}$		
$\mathrm{O}_{3} \square^{11}$		14	O_{5}		
GND \square^{12}		13	O_{4}		

Supply Voltage	0.5 to +7.0V
Input Voltage	-0.5 to +5.5 V
Output Voltage	-0.5 to +5.5 V
Output Current	50 mA
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature	
Ceramic Package	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Plastic Package	.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0			V	
Input Low Voltage	$V_{\text {IL }}$			0.85	V	
Input High Current	$\mathrm{I}_{1 \mathrm{H}}$			40	$\mu \mathrm{A}$	$V_{1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input Low Current	$-1 / 2$			0.25	mA	$V_{1}=0.4 \mathrm{~V}, V_{C C}=5.5 \mathrm{~V}$
Output Low Voltage	VOL			0.45	V	$1 \mathrm{O}=16 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$
Output Leakage Current	IOFF1			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Output Leakage Current	-IOFF2			40	$\mu \mathrm{A}$	$V_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=5.5 \mathrm{~V}$
Input Clamp Voltage	$-V_{\text {IC }}$			1.3	V	$1_{1}=-18 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$
Power Supply Current	${ }^{\text {ICC }}$		100	160	mA	All inputs Grounded, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Output High Voltage*	V OH	2.4			V	$1 O^{=}-2.4 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$
Output Short Circuit Current*	${ }^{-1} \mathrm{SC}$	20		70	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

*Note: Applicable to μ PB429
$T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{f}}=2.5 \mathrm{~V}$

CHARACTERISTICS	SYMBOL	MIN	MAX	UNIT
Input Capacitance	CIN		8	pF
Output Capacitance	COUT		10	pF

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4: 5$ to 5.5 V (1)(2)(3)(4)

CHARACTERISTIC	SYMBOL	$\mu \mathrm{PB409-2}, \mu$ PB429-2		$\mu \mathrm{PB409-1}, \mathrm{\mu P8429-1}$		$\mu \mathrm{PB409}$, μ PB429		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Address Access Time	${ }^{1} A A$		50		60		70	ns
Chip Enable Access Time	${ }^{\text {t }}$ ACE		30		40		50	ns
Chip Enable Disable Time	${ }^{\text {t }}$ DCE		30		40		50	ns

ABSOLUTE
MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

FIGURE 1
NOTES:
(1) Output Load: See Fig. 1.
(2) Input Waveform: 0.0 V for low level and 3.0 V for high level, less than 10 ns for both rise and fall times
(3) Measurement References: 1.5 V for both inputs and outputs.
(4) C_{L} in Fig. 1 includes jig and probe stray capacitances.

OPERATION You can program only when the outputs are disabled by any one of the chip enable inputs. This insures that the output will not be damaged when you apply programming voltages.

Programming

You can permanently program a logic one into a selected bit location by using special equipment (programmer). First, disable the chip as described above. Second, apply a train of high-current programming pulses to the desired output. Apply an additional pulse train after the sensed voltage indicates that the selected bit is in the logic one state. Then, stop the pulse train.

Reading

To read the memory, enable the chip (i.e., $\mathrm{CE}_{1}=0, \mathrm{CE}_{2}=C E_{3}=1$). The outputs then correspond to the data programmed into the selected words. When the chip is disabled, all the outputs will be in a high impedance (floating) state.

It is imperative that this specification be rigorously observed in order to correctly program the μ PB409 and μ PB429. NEC will not accept responsibility for any device found to be defective if it was not programmed according to this specification.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	${ }^{\circ} \mathrm{C}$	
Programming Pulse Amplitude Clamp Voltage Ramp Rate (Both in Rise and in Fall) Pulse Width Duty Cycle	$\begin{aligned} & 200 \pm 5 \% \\ & 28+0 \%-2 \% \\ & 70 \text { MAX } \\ & 7.5 \pm 5 \% \\ & 70 \% \text { MIN } \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$	15V point/150 ${ }^{\text {l }}$ load
Sense Current Amplitude Clamp Voltage Ramp Rate Sense Current Interruption before and after address change	$\begin{aligned} & 20 \pm 0.5 \\ & 28+0 \%-2 \% \\ & 70 \text { MAX } \\ & 10 \text { MIN } \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$	15 V point/150 $\mathrm{S}^{\text {load }}$
Programming $V^{\text {CC }}$	$5.0+5 \%-0 \%$	V	
Maximum Sensed Voltage* for programmed " 1 "	7.0 ± 0.1	V	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN	$\mu \mathrm{s}$	

*A bit is judged to be programmed when two successive sense readings $10 \mu \mathrm{~s}$ apart with no intervening programming pulse pass the limit. When this condition has been met, four additional pulses are applied, then the sense current is terminated.

PROGRAMMING SPECIFICATION

[^1]
PACKAGE OUTLINE μ PB409C/429C

(Plastic)		
ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5: 0.1$	$0.02: 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	0.25	-0.10
		$0.01{ }^{+0.004}-0.0019$

	(Cerdip)	
ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
K	15.24	0.6
L	13.5	0.53
M	$0.255_{-0.05}^{+0.10}$	0.01

NOTES

16,384 (2K X 8) BIT UV ERASABLE PROM

DESCRIPTION The μ PD2716 is a 16,384 bit (2048×8 bit) Ultraviolet Erasable and Electrically Programmable Read-Only Memory (EPROM). It operates from a single +5 volt supply, making it jdeal for microprocessor applications. It offers a standby mode with an attendant 75% savings in power consumption, and is compatible with the $\mu \mathrm{PD} 2316 \mathrm{E}$ as a ROM. This allows for economical change-over to a masked ROM for production quantities, where desired.

The μ PD2716 features fast, simple one pulse prcgramming controlled by TTL level signals. Total programming time for all 16,384 bits is only 100 seconds.

FEATURES - Ultraviolet Erasable and Electrically Programmable

- Access Time - 450 ns Max
- Single Location Programming .
- Programmable with Single Pulse
- Low Power Dissipation Standby Mode
- Input/Output TTL Compatible for Reading and Programming
- Pin Compatible to μ PD2316E (16K ROM)
- Single +5 V Power Supply
- 24 Pin Ceramic DIP
- Three-State Outputs

TABLE 1. MODE SELECTION

MODE	$\overline{C E / P G M}$	$\overline{O E}$	Vpp	$V_{\text {cc }}$	OUTPUTS
Read	$V_{\text {IL }}$	VIL	+5	+5	DOUT
Standby	$V_{\text {IH }}$	Don't Care	+5	+5	High 2
Program	Pulsed $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	+25	+5	DIN
Program Verify	VIL	$V_{\text {IL }}$	+25	+5	DOUT
Program Inhibit	VIL	$\mathrm{V}_{\text {IH }}$	+25	+5	High 2

$V_{\text {IH }}$ and $V_{\text {IL }}$ are TTL high level ($" 1$ ') and TTL low level (" ${ }^{\prime \prime \prime}$) respectively.

erating Tempera	$10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage	. -0.3 to +6 Volts
Input Voltage	. -0.3 to +6 Volts
Supply Voltage $\mathrm{V}_{\text {cc }}$.	-0.3 to +6 Volts
Supply Voltage Vpp.	-0.3 to +26.5 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz}$

		LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Input Capacitance	CIN		4	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT		8	12	pF	V $_{\text {OUT }}=0 \mathrm{OV}$

READ MODE AND STANDBY MODE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}$ (1) $=+5 \mathrm{~V} \pm 5 \% ; V_{P P}$ (1) (2) $=V_{\mathrm{CC}} \pm 0.6 \mathrm{~V}$ (3)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Output High Voltage	V_{OH}	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Output Low Voltege	V_{OL}			0.45	v	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
Input High Voitage	$V_{\text {IN }}$	2.0		$\mathrm{V}_{\mathbf{c c}}+1$	v	
Input Low Voltage	$V_{\text {IL }}$	-0.1		0.8	v	
Output Leakage Current	ILO			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=5.25 \mathrm{~V}$
Input Leakage Current	IIL			10	$\mu \mathrm{A}$	$V_{\text {IN }}=5.25 \mathrm{~V}$
$V_{\text {Pp }}$ Current	${ }^{\prime}$ PP1			5	mA	$V_{\text {PP }}=5.85 \mathrm{~V}$
$V_{c c}$ Current (2)	${ }^{1} \mathrm{CCl}$		10	25	mA	$\overline{C E} / P G M=V_{1 H} \overline{O E}=V_{1 L}$ Standby Mode
	${ }^{1} \mathrm{CC2}$		57	100	mA	$\overline{\overline{C E} / P G M}=V_{I L} \overline{\mathrm{OE}}=V_{I L}$ Read Mode

Notes: (1) VCC must be applied simultaneously or before VPP and removed after VPP.
(2) VPP may be connected directly to $V_{C C}(+5 \mathrm{~V})$ at read mode and standby mode. The supply current would then be the sum of IPP1 and ICC (ICC1 or ICC2).
(3) The tolerance of 0.6 V allows the use of a driver circuit for switching the VPP supply pin from +25 V to +5 V .

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE

DC CHARACTERISTICS

DC CHARACTERISTICS (CONT.)

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$T_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}$ (1) $=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}$ (1)(4) $=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	max.		
Input High Voltage	$V_{\text {IH }}$	2.0		$\mathrm{v}_{\mathrm{cc}}+1$	\checkmark	
Input Low Voltage	V_{IL}	-0.1		0.8	v	
Input Leakage Current	I_{IL}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$
$V_{\text {PP }}$ Current	19P1			5	mA	$\overline{C E / P G M=V_{1 L}} \begin{aligned} & \text { Program Verity } \\ & \text { Program Inhibit } \end{aligned}$
	${ }^{1} \mathrm{PP} 2$			30	mA	$\overline{\text { CE/PGM }}=V_{1 H}$ Program Mode
$\mathrm{V}_{\text {cc }}$ Current'	'cc			100	mA	

AC CHARACTERISTICS
READ MODE AND STANDBY MODE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}{ }^{(1)}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}$ (1)(2) $=\mathrm{V}_{\mathrm{CC}} \pm 0.6 \mathrm{~V}^{(3)}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address to Output Delay	${ }^{\text {t }}$ ACC			450	ns	$\overline{C E} / P G M=\overline{O E}=V_{I L}$
$\overline{C E} /$ PGM to Output Delay	tCE			450	ns	$\overline{O E}=V_{I L}$
Output Enable to Output Delay	${ }^{\text {t }}$ OE			120	ns	$\overline{C E} /$ PGM $=V_{1 L}$
Output Enable High to Output Float	tDF	0		100	ns	$\overline{C E} / P G M=V_{I L}$
Address to Output Hold	${ }^{1} \mathrm{OH}$	0			ns	$\overline{\mathrm{CE}} / \mathrm{PGM}=\overline{\mathrm{OE}}=V_{I L}$

Test Conditions
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF} \quad$ Timing Measurement Reference Level: Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.8 to 2.2 V

Inputs: 1.0 V and 2.0 V Outputs: 0.8 V and 2.0 V

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}(1)=+5 \mathrm{~V} \pm 5 \% ; V_{P P}$ (1)(4) $=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time	tas	2			$\mu \mathrm{s}$	
$\overline{O E}$ Setup Time	tOES	2			$\mu \mathrm{s}$	
Data Setup Time	tDS	2			$\mu \mathrm{s}$	
Address Hold Time	${ }^{\text {ta }}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Hold Time	TOEH	2			$\mu \mathrm{s}$	
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	tDF	0		120	ns	$\overline{C E / P G M}=V_{\text {IL }}$
Output Enable to Output Delay	toE			120	ns	$\overline{C E} /$ PGM $=V_{\text {IL }}$
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Time	tPRT	5			ns	
Program Pulse Fall Time	tPFT	5			ns	

Test Conditions:
Input Pulse Levels 0.8 V to 2.2 V Output Timing Reference LeveL. . 0.8 V and 2 V Input Timing Reference Level. IV and 2V

Notes: (1) $\mathrm{V}_{\mathbf{C C}}$ must be appilied simultaneousiy or before V_{PP} and removed after V_{PP}.
(2) VPP may be connected directiv to $V_{C C}(+5 \mathrm{~V})$ at read mode and standby mode. The supply current would then be the sum of Ipp1 and ICC (ICC1 or ICC2).
(3) The tolerance of 0.6 V allows the use of a driver circuit for switching the V_{Pp} supply pin from +25 V to +5 V .
(4) During programming, program inhibit, and program verify, a maximum of +26 V should be applied to the VPp pin. Overshoot voltages to be generated by the VPp power suppiy should be limited to less than +26 V .

Notas: (1) $\overline{O E}$ may be delayed up to t $A C C{ }^{-}$t $O E$ after the falling edge of $\overline{C E} / P G M$ for read mode without impact on tACC
(2) tDF is specified from $\overline{O E}$ or $\overline{C E} / P G M$, whichever occurs first.

FUNCTIONAL The μ PD2716 operates from a single +5 V power supply and, accordingly, is ideal DESCRIPTION for use with +5 V microprocessors such as μ PD8085 and μ PD8048/8748.

Programming of the μ PD2716 is achieved with a single 50 ms TTL pulse. Total programming time for all 16,384 bits is only 100 sec . Due to the simplicity of the programming requirements, devices on boards and in systems may be programmed easily and without any special programmer.

The μ PD27 16 features a standby mode which reduces the power dissipation from a maximum active power dissipation of 525 mW to a maximum standby power dissipation of $\mathbf{1 3 2} \mathbf{~ m W}$. This results in a $\mathbf{7 5} \%$ savings with no increase in access time.

Erasure of the μ PD27 16 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms (A). It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD2716. Consequently, if the μ PD27 16 is to be exposed to these types of lighting conditions for long periods of time, the μ PD27.16 window should be masked to prevent unintentional erasure.

The recommended erasure procedure for the μ PD2716 is exposure to ultraviolet light with wavelengths of 2,537 Angstroms (A). The integrated dose (i.e., UV intensity x exposure time) for erasure should be not less than $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.

During erasure, the μ PD2716 should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes, the filters should be removed before erasure.

OPERATION The five operation modes of the μ PD2716 are listed in Table 1. The power supplies required are $a+5 \mathrm{~V} V_{C C}$ and a $V_{P P}$. The $V_{P P}$ power supply should be at +25 V during programming, program verification and program inhibit, and it should be at +5 V during read and standby. $\overline{C E} / P G M, \overline{O E}$ and VPP select the operation mode as shown in Table 1.

READ MODE When $\overline{C E} / P G M$ and $\overline{O E}$ are at low (0) level with $V_{P P}$ at +5 V , the READ MODE is set and the data is available at the outputs after toE from the falling edge of $\overline{O E}$ and t ACC after setting the address.

STANDBY MODE The μ PD27 16 is placed in the standby mode with the application of a high (1) level TTL signal to the $\overline{C E} / P G M$ and a $V_{P P}$ of +5 V . In this mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input. The active power dissipation is reduced by 75% from 525 mW to 132 mW .

PROGRAMMING Programming of the μ PD2716 is commenced by erasing all data and consequently MODE having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen bit location.

The μ PD2716 is placed in the programming mode by applying a high (1) level TTL signal to the $\overline{\mathrm{OE}}$ with V_{PP} at +25 V . The data to be programmed is applied to the output pins 8 bits in parallel at TTL levels.
Any location can be programmed at any time, either individually, sequentially or at random.
When multiple μ PD2716s are connected in parallel, except for $\overline{C E} / P G M$, individual μ PD2716s can be programmed by applying a high (1) level TTL pulse to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ input of the desired μ PD2716 to be programmed.
Programming of multiple μ PD2716s in parallel with the same data is easily accomplished. All the alike inputs are tied together and are programmed by applying a high (1) level TTL pulse to the $\overline{\mathbf{C E}} / \mathrm{PGM}$ inputs.

- PD2716

Programming of multiple μ PD2716s in parallel with different data is rendered more easily by the program inhibit mode. Except for $\overline{\mathrm{CE}} / \mathrm{PGM}$, all alike inputs (including $\overline{\mathrm{OE}}$) of the parallel μ PD2716s may be common. Programming is accomplished by applying a TTL level program pulse to the μ PD $2716 \overline{\mathrm{CE}} / \mathrm{PGM}$ input with V_{PP} at +25 V . A low level applied to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ of the other $\mu \mathrm{PD} 2716$ will inhibit it from being programmed.

A verify should be performed on the programmed bits to determine that the data was correctly programmed on all bits of the μ PD2716. The program verify can be performed with VPP at +25 V and $\overline{\mathrm{CE}} / \mathrm{PGM}$ and $\overline{\mathrm{OE}}$ at low (O) levels.
The data outputs of two or more μ PD2716s may be wire-ored together to the same data bus. In order to prevent bus contention problems between devices, all but the selected μ PD2716s should be deselected by raising the $\overline{\mathrm{OE}}$ input to a TTL high.

CERAMIC

ITEM	MILLIMETERS	INCH
A	33.5 MAX.	1.32 MAX.
B	2.78	1.1
C	2.54	0.1
D	0.46 ± 0.10	0.018 ± 0.004
E	27.94	1.10
F	1.3	0.05
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.020
I	5.0 MAX.	0.20
J	5.5 MAX.	0.216
K	15.24	0.60
L	13.5	0.53
M	$0.25+0.10$	$0.010+0.004$

32,768 (4K X 8) BIT UV ERASABLE PROM

DESCRIPTION The μ PD2732 is a 32,768 bit (4096×8 bit) Ultraviolet Erasable and Electrically Programmable Read-Only Memory (EPROM). It operates from a single +5 V supply, making it ideal for microprocessor applications. It features an output enable control and offers a standby mode with an attendant 80% savings in power consumption.
A distinctive feature of the $\mu \mathrm{PD} 2732$ is a separate output control, output enable ($\overline{\mathrm{OE}}$) from the chip enable control ($\overline{\mathrm{CE}})$. The $\overline{\mathrm{OE}}$ control eliminates bus contention in multiple-bus microprocessor systems. The μ PD 2732 features fast, simple one-pulse programming controlled by TTL-level signals. Total programming time for all 32,768 bits is only 210 seconds.
FEATURES - Ultraviolet Erasable and Electrically Programmable

- Access Time - 450 ns Max
- Single Location Programming
- Programmable with Single Pulse
- Low Power Dissipation: 150 mA Max Active Current, 30 mA Max Standby Current
- Input/Output TTL Compatible for Reading and Programming
- Single +5V Power Supply
- 24 Pin Ceramic DIP
- Three-State Outputs

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{11}$	Addresses
$\overline{\mathrm{OE}}$	Output Enable
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
$\overline{\mathrm{CE}}$	Chip Enable

MODE SELECTION

MODE	$\overline{C E}$	$\overline{O E} / V_{P P}$	v_{CC}	OUTPUTS
Read	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	DOUT
Standby	$\mathrm{V}_{\text {IH }}$	Don't Care	+5	High Z
Program	Pulsed $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$	VPP	+5	DIN
Program Verify	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	DOUT
Program Inhibit	$V_{1 H}$	$V_{P P}$	+5	High Z

BLOCK DIAGRAM

9216 BIT FIELD PROGRAMMABLE LOGIC ARRAY

DESCRIPTION The μ PB450 is a bipolar, 9, 216-bit field programmable logic array. It includes 24 input and 16 output lines, 72 product terms, input 2 -bit decoders, and 16 -bit feedback registers. This provides an extremely versatile organization. Interconnection of internal AND-OR arrays is performed electrically by the proven, avalanche induced migration method which is widely used in NEC Bipolar PROM technology.

FEATURES - 24 Input Terminals

- 16 Output Terminals with Latches
- 72 Product Terms
- 16 Feedback Loops with J-K Flip Flops
- 202704 Input Decoders
- 80×72 AND-Array Elements
- 72×48 OR-Array Elements
- Scan Path (Shift Register Mode) Capability of J-K Flip Flops
- TTL Compatible
- Single +5 V Supply
- 48 Pin Ceramic Dual-In-Line Package

111	1		48	$\square 123$
110	2		47	-122
19	3		46	- I_{21}
18	4		45	$\square 120$
17	5		44	- 119
16	6		43	- 18
15	7		42] 117
14	8		41	[16
13	9		40	- 115
I_{2}	10		39	- 114
I_{1}	11		38	[113
10	12	$\mu \mathrm{PB450}$	37	[112
GND	13		36	$\square V_{C c}$
ADE	14		35	\square QOT
O_{0}	15		34	D^{1}
O_{1}	16		33] O_{9}
O_{2}	17		32	[O_{10}
O_{3}	18		31	- O_{11}
O_{4}	19		30	$\square \mathrm{O}_{12}$
O_{5}	20		29	- O_{13}
O_{6}	21		28	$]_{14}$
O_{7}	22		27	\square^{15}
CE	23		26	$\square \mathrm{RESET}$
CKO_{0}	24		25	$\mathrm{P}^{-1} \mathrm{CK}_{1}$

PIN NAMES

$I_{0} \sim I_{23}$	Input
$\mathrm{O}_{0} \sim \mathrm{O}_{15}$	Outputs
$A D E$	Mode Control
QOT	Shift Register Output (Mode 2)
CE	Output and Mode Control
CKO	Output Latch Control
CK1	Feed Back Register Clock
RESET	Feed Back Register Reset
VCC	Power Supply (+5V)
GND	Ground

NOTES

MICROCOMPUTERS
 5

NOTES

MICROCOMPUTER SELECTION GUIDE
SINGLE CHIP 4-BIT MICROCOMPUTERS

DEVICE	PRODUCT	ROM	RAM	1/0	PROCESS	OUTPUT	FEATURES	$\begin{aligned} & \text { SUPPLY } \\ & \text { VOLTAGES } \end{aligned}$	PINS
μ PD546	μ COM-43	2000×8	96×4	35	PMOS	O.D.		-10	42
μ PD553	μ COM -43 H	2000×8	96×4	35	PMOS	O.D.	A	-10	42
μ PD557L	μ COM-43SL	2000×8	96×4	21	PMOS	O.D.	A	-8	28
μ PD650	μ COM-43C	2000×8	96×4	35	cmos	push-pull		+5	42
μ PD547	μ COM-44	1000×8	64×4	35	PMOS	O.D.		-10	42
μ PD547L	μ COM-44L	1000×8	64×4	35	PMOS	O.D.		-8	42
μ PD552	$\mu \mathrm{COM}-44 \mathrm{H}$	1000×8	64×4	35.	PMOS	O.D.	A	-10	42
μ PD651	μ COM-44C	1000×8	64×4	35	cMOS	push-pull		+5	42
μ PD550	μ COM-45	640×8	32×4	21	PMOS	O.D.	A	-10	28
μ PD550L	μ COM-45L	640×8	32×4	21	PMOS	O.D.	A	-8	28
μ PD554	μ COM-45	1000×8	32×4	21	PMOS	O.D.	A	-10	28
μ PD554L	μ COM-45L	1000×8	32×4	21	PMOS	O.D.	A	-8	28
μ PD652	μ COM-45C	1000×8	32×4	21	cmos	push-pull		+5	28
μ PD556	μ COM-43	External	96×4	35	PMOS	O.D.	C	-10	64
μ PD7500	μ COM-75	External	256×4	46	CMOS	O.D.	D	+2.7 to 5.5	64
μ PD7502	μ COM-75	2000×8	128×4	23	cmos	O.D.	E	+2.7 to 5.5	64
μ PD7503	μ COM-75	4000×8	224×4	23	cmos	O.D.	E	+2.7 to 5.5	64
μ PD7507	μ COM-75	2000×8	128×4	32	cmos	O.D.	E	+2.7 to 5.5	40
μ PD7520	μ COM-75	768×8	48×4	24	PMOS	O.D.	B	-6 to -10 variable	28

Notes: $A=-35 V$ VF Drive
B $\quad=\mu$ COM -4 Evaluation Chip
C $\quad=\mu$ COM-75 Evaluation Chip
D $=$ LCD Controller
E = LED Display Controller
O.D. = Open Drain

SINGLE CHIP 8-BIT MICROPROCESSORS

DEVICE	SPECIAL FEATURES	ROM	RAM	1/0	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
μ PD8021	Zero-Cross Detector	1024×8	64×8	21	NMOS	BD	3.6 MHz	+5V	28
$\mu \mathrm{PD} 8022$	On-Chip S/D Converter	2048×8	64×8	26	NMOS	BD	3.6 MHz	+5V	40
$\mu \mathrm{PD} 8035 \mathrm{~L}$	$\mu \mathrm{PD} 8048$ w/External Memory	External	64×8	27	NMOS	TS, BD	6 MHz	+5V	40
$\mu \mathrm{PD} 8039 \mathrm{~L}$	μ PD8049 w/External Memory	External	128×8	27	NMOS	TS, BD	11 MHz	+5V	40
μ PD8041	Peripheral Interface w/Slave Bus	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5V	40
μ PD8041A	Enhanced μ PD8041	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5V	40
$\mu \mathrm{PD} 8048$	Expansion Bus	1024×8	64×8	27	NMOS	TS, BD	6 MHz	+5V	40
$\mu \mathrm{PD8049}$	High Speed μ PD8048	2048×8	128×8	27	NMOS	TS, BD	11 MHz	+5V	40
μ PD8741A	UV-EPROM μ PD8041A	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5V	40
μ PD8748	UV-EPROM μ PD8048	1024×8	64×8	27	NMOS	TS, BD	6 MHz	+5V	40
μ PD7800	Development Chip	External	128×8	48	NMOS	TS, BD	4 MHz	+5V	64
μ PD7801	8080 Type Expansion Bus 64K Memory Address Space	4096×8	128×8	48	NMOS	TS, BD	4 MHz	+5V	64
μ PD7802	Expanded μ PD7801	6144×8	64×8	48	NMOS	TS, BD	4 MHz	+5V	64

MICROPROCESSORS

DEVICE	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
μ PD780	Microprocessor	8 -bit	NMOS	$3-$ State	4.0 MHz	+5	4
μ PD8080AF	Microprocessor	8 -bit	NMOS	$3-$ State	2.0 MHz	$+12 \pm 5$	40
μ PD8080AF-2	Microprocessor	8 -bit	NMOS	$3-$ State	2.5 MHz	$+12 \pm 5$	40
μ PD8080AF-1	Microprocessor	8 -bit	NMOS	$3-$ State	3.0 MHz	$+12 \pm 5$	40
μ PD8085A	Microprocessor	8 -bit	NMOS	$3-$ State	3.0 MHz	+5	40
μ PD8085A-2	Microprocessor	8 -bit	NMOS	$3-$ State	5.0 MHz	+5	40
μ PD8086	Microprocessor	16 -bit	NMOS	$3-$ State	5.0 MHz	+5	40

NEC Microcomputers,Inc.

MICROCOMPUTER SELECTION GUIDE
SYSTEM SUPPORT

DEvice	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY Voltages	PINS
$\mu \mathrm{PD} 765$	Double Sided/Double Density Floppy Disk Controller	8-bit	NMOS	3-State	8 MHz	+5	40
$\mu \mathrm{PD} 781$	Dot Matrix Printer Controller-Epson 500 Printer	8-bit	nMOS	3-State	6 MHz	+5	40
$\mu \mathrm{PD} 782$	Dot Matrix Printer Controller-Epson 200 Printer	8-bit	nMos	3-State	6 MHz	+5	40
μ PD3301	CRT Controller	8-bit	nMOS	3-State	3 MHz	+5	40
μ PD7001	8-Bit A/D Converter	8 -bit	cmos	Open Collector Serial	10 kHz Conversion Time	+5	16
μ PD7002	12-Bit A/D Converter	8-bit	cmos	3-State	400 Hz Conversion Time	+5	28
μ PD7201	Multi-Protocol Serial Controller	8-bit	nMos	3-State	3 MHz	+5	40
μ PD7210	IEEE Controller (Talker, Listener, Controller)	8-bit	NMOS	3-State	8 MHz	+5	40
μ PD7220	Graphic Display Controller	8-bit	nMos	3-State	6 MHz	+5	40
μ PD7225	Alpha Numeric LCD Controller	8-bit	cmos	-	-	+5	52
μ PD7227	Dot Matrix LCD Controller	8-bit	cmos	-	-	+5	64
μ PD7720	Signal Processor	16-bit	NMOS	3-State	8 MHz	+5	28
μ PD8155	256×8 RAM with I/O Ports and Timer	8-bit	nMos	3-State	-	+5	40
$\mu \mathrm{PD} 8155$-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
${ }_{\mu \text { PD8156 }}$	256×8 RAM with $1 / O$ Ports and Timer	8-bit	nMos	3-State	-	+5	40
μ PD8156-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
MPB8212	1/O Port	8-bit	Bipolar	3-State	-	+5	24
$\mu \mathrm{PB8214}$	Priority interrupt Controller	3-bit	Bipolar	Open Collector	3 MHz	+5	24
MP88216	Bus Driver Non-Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB8224}$	Clock Generator Driver	2 phase	Bipolar	High Level Clock	3 MHz	$+12 \pm 5$	16
$\mu \mathrm{PB8226}$	Bus Driver Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB8228}$	System Controler	8-bit	Bipolar	3-State	-	+5	28
μ PD8243	1/O Expander	4×4 bits	NMOS	3-State	-	+5	24
μ PD8251	Programmable Communications Interface (Async/Sync)	8 -bit	nmos	3-State	A-9.6K baud S.56K baud	+5	28
$\mu \mathrm{PD} 8251 \mathrm{~A}$	Programmable Communications interface (Async/Sync)	8-bit	NMOS	3-State	A-9.6K baud S-64K baud	+5	28
- ${ }^{\text {PD8253 }}$	Programmable Timer	8-bit	nmos	3-State	3.3 MHz	+5	24
μ PD8253.5	Programmable Timer	8-bit	NMOS	3-State	3.3 MHz	+5	24
uPD8255	Peripheral Interface	8 -bit	nMos	3-State	-	+5	40
μ PD8255A-5	Peripheral Interface	8-bit	NMOS	3-State	-	+5	40
MPD8257	Programmable DMA Controller	8 -bit	nMos	3-State	3 MHz	+5	40
μ PD8257.5	Programmable DMA Controlier	8 -bit	nMOS	3-State	3 MHz	+5	40
MPD8259	Programmable Interrupt Controller	8-bit	NMOS	3-State	-	+5	28
μ PD8259-5	Programmable Interrupt Controller	8-bit	nmos	3-State	-	+5	28
$\mu \mathrm{PD8279-5}$	Programmable Keyboard/ Display Interface	8-bit	NMOS	3-State	-	+5	40
$\begin{aligned} & \mu \mathrm{PB8282/} \\ & 8283 \end{aligned}$	8-Bit Latches		Bipolar	3-5tate	5 MHz	+5	20
$\mu \mathrm{PB8284}$	Clock Driver		Bipolar	3State	5 MHz	+5	18
$\begin{aligned} & \mu \text { P88286/ } \\ & 8287 \end{aligned}$	8-Bit Bus Transceivers		Bipolar	3State	5 MHz	+5	20
${ }_{\mu}{ }^{\text {P888288 }}$	Bus Controller		Bipolar	3State	5 MHz	+5	20
μ - ${ }^{\text {P }}$ (8355	2048×8 ROM with I/O Ports	8-bit	nMos	3-State	-	+5	40
$\mu \mathrm{PD} 8755 \mathrm{~A}$	2048×8 EPROM with I/O Ports	8-bit	nMos	3-State	-	+5	40

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM8080A/9080A AM8080A-2/9080A-2 AM8080A-1/9080A-1 AM8085A AM8155 AM8156 AM8212 AM8214 AM8216 AM8224 AM8226 AM8228 AM8251 AM8255 AM8257 AM8355 AM8048	Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) Microprocessor ($\mathbf{3 . 0} \mathrm{MHz}$) Programmable Peripheral Interface with 256×8 RAM Programmable Peripheral Interface with 256×8 RAM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Inverting Clock Generator/Driver Bus Driver, Non-Inverting System Controller Programmable Communications Interface Programmable Peripheral Interface Programmable DMA Controller Programmable Peripheral Interface with 2048×8 ROM Single Chip Microcomputer	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PD8085A μ PD8155 μ PD8156 μ PB8212 μ PB8214 μ PB8216 μ PB8224 μ PB8226 μ PB8228 μ PD8251 μ PD8255 μ PD8257 μ PD8355 μ PD8048
INTEL	8080 A $8080 \mathrm{~A}-2$ $8080 \mathrm{~A}-1$ 8021 8022 8035 L. 8039 L 8041 A 8048 8049 8085 A $8085 \mathrm{~A}-2$ 8086 $8155 / 8155-2$ $8156 / 8156-2$ 8212 8214 8216 8224 8226 8228 8243 8251	Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) Microcomputer with ROM Microcomputer with A/D Converter Microprocessor Microprocessor Programmable Peripheral Controller with ROM Microcomputer with ROM Microcomputer with ROM Microprocessor (3.0 MHz) Microprocessor (5.0 MHz) Microprocessor (16-Bit) Programmable Peripheral Interface with 256×8 RAM Programmable Peripheral Interface with 256×8 RAM 1/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Clock Generator/Driver Bus Driver, Inverting System Controller 1/O Expander Programmable Communications Interface (Async/Sync)	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PD8021 μ PD8022 μ PD8035L μ PD8039L μ PD8041A μ PD8048 μ PD8049 μ PD8085A μ PD8085A-2 μ PD8086 μ PD8155/8155-2 μ PD8156/8156-2 μ PB8212 μ PB8214 μ PB8216 μ PB8224 μ PB8226 μ PB8228 μ PD8243 μ PD8251

NEC Microcomputers, Inc.
MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
INTEL (CONT.)	8251A 8253 8253-5 8255 8255A 8255A-5 8257 8257-5 8259 8259-5 8272 8279-5 8282/8283 8284 8286/8287 8288 8355 8741A 8748 8755A	Programmable Communications Interface (Async/Sync) Programmable Timer Programmable Timer Programmable Peripheral Interface Programmable Peripheral Interface Programmable Peripheral Interface Programmable DMA Controller Programmable DMA Controller Programmable Interrupt Controller Programmable Interrupt Controller Double Sided/Double Density Floppy Disk Controller Programmable Keyboard/Display Interface 8-Bit Latches Clock Driver 8-Bit Transceivers Bus Controller Programmable Peripheral Interface with 2048×8 ROM Programmable Peripheral Controller with EPROM Microcomputer with EPROM Programmable Peripheral Interface with $2 \mathrm{~K} \times 8$ EPROM	μ PD8251A μ PD8253 μ PD8253-5 μ PD8255 μ PD8255A-5 μ PD8255A-5 μ PD8257 μ PD8257-5 μ PD8259 μ PD8259-5 μ PD765 μ PD8279-5 μ PB8282/8283 μ PB8284 μ PB8286/8287 μ PB8288 μ PD8355 μ PD8741A μ PD8748 μ PD8755A
NATIONAL	INS8048 INS8049 INS8080A INS8080A-2 INS8080A-1 8212 8214 8216 8224 8226 8228 INS8251 INS8253 INS8255 INS8257 INS8259	Microcomputer with ROM Microcomputer with ROM Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Clock Generator/Driver Bus Driver, Inverting System Controller Programmable Communications Interface Programmable Timer Programmable Peripheral Interface Programmable DMA Controller Programmable Interrupt Controller	μ PD8048 μ PD8049 μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PB8212 μ PB8214 μ PB8216 μ PB8224 μ PB8226 μ PB8228 μ PD8251 μ PD8253 μ PD8255 μ PD8257 μ PD8259
T.I.	TMS8080A TMS8080A-2 TMS8080A-1 SN74S412 SN74LS424 SN74S428	Microprocessor ($\mathbf{2 . 0 \mathrm { MHz } \text {) }) ~}$ Microprocessor (2.5 MHz) Microprocessor ($\mathbf{3 . 0} \mathrm{MHz}$) I/O Port (8-Bit) Clock Generator/Driver System Controller	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PB8212 μ PB8224 μ PB8228

4-BIT SINGLE CHIP MICROCOMPUTER FAMILY

DESCRIPTION
The μ COM-4 4-bit Microcomputer Family is a broad product line of 14 individual devices designed to fulfill a wide variety of design criteria. The product line shares a compatible architecture and instruction set. The architecture includes all functional blocks necessary for a single chip controller, including an ALU, Accumulator, Bytewide ROM, RAM, and Stack. The instruction set maximizes the efficient utilization of the fixed ROM space, and includes a variety of Single Bit Manipulation, Table Look-Up, BCD arithemetic, and Skip instructions.
The μ COM-4 Microcomputer Family includes seven different products capable of directly driving 35V Vacuum Fluorescent Displays. Four products are manufactured with a CMOS process technology. μ COM-4 Microcomputers are ideal for low-cost general purpose controller applications such as industrial controls, instruments, appliance controls, intelligent VF display drivers, and games.
The μ COM-4 Microcomputer Family can be broken down into 3 distinct groups according to their performance capabilities. These groups are distinguished by their ROM, RAM, and I/O capabilities, as follows.

μ COM-4 MICRO COMPUTER FAMILY	ROM	RAM	I/O	RELATIVE PERFORMANCE
μ COM-43	2000×8	96×4	$35(1)$	Highest
μ COM-44	1000×8	64×4	35	Medium
μ COM-45	$1000 \times 8(2)$	32×4	21	Lowest

Notes: (1) The μ PD557L has 21 I/O lines.
(2) The μ PD550 and μ PD550L have 640×8 ROMs.

FEATURES - Choice of ROM size: $2000 \times 8,1000 \times 8$, or 640×8

- Choice of RAM size: $96 \times 4,64 \times 4$, or 32×4
- Six 4-Bit Working Registers Available
- One 4-Bit Flag Register Available
- Powerful Instruction Set
- Choice of 80 or 58 Instructions
- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- BCD Arithmetic Capability
- Choice of 3-Level, 2-Level, or 1-Level Subroutine Stack
- Extensive I/O Capability
- Choice of 35 or 21 I/O Lines

		35 Lines	
- 4-Bit Input Ports	2	$\frac{21}{2}$ Lines	
- 4-Bit I/O Ports	2	2	
- 4-Bit Output Ports	4	2	
- 3-Bit Output Ports	1	-	
- 1-Bit Output Port	-	1	

- Programmable 6-Bit Timer Available
- Choice of Hardware or Testable Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- Choice of 42-pin DIP, 28-pin DIP, or 52-pin Flat Plastic Package

μ COM-4

Internal Registers

The ALU, the Accumulator, and the Carry Flag together comprise the central portion of the $\mu \mathrm{COM}-4$ Microcomputer Family architecture. The ALU performs the arithmetic and logical operations and checks for various results. The Accumulator stores the results generated by the ALU and acts as the major interface point between the RAM, the I/O ports, and the Data Pointer registers. The Carry F/F can be addressed directly, and can also be set during an addition. The $\mu \mathrm{COM}-43$ Microcomputers also have a Carry Save F/F for storage the value of the Carry F/F.

Data Pointer Registers

The DPH register and 4-bit DP ${ }_{L}$ register reside outside the RAM. They function as the Data Pointer, addressing the rows and columns of the RAM, respectively. They are individually accessible and the L register can be automatically incremented or decremented.

RAM

All μ COM-4 microcomputers have a static RAM organized into a multiple-row by 16-column configuration, as follows:

MICROCOMPUTER	RAM	ORGANIZATION	DP $_{H}$	DP $_{\mathrm{L}}$
μ COM-43	96×4	6 rows $\times 16$ columns	3	4
μ COM-44	64×4	4 rows $\times 16$ columns	2	4
μ COM-45	32×4	2 rows $\times 16$ columns	1	4

The $\mu \mathrm{COM}$-43 Microcomputers also have a 4-bit Flag register and six 4-bit working registers resident in the last row of the RAM. The extended $\mu \mathrm{COM}-43$ instruction set provides 10 additional instructions with which you can access or manipulate these seven registers.

ROM

The ROM is the mask-programmable portion of the μ COM-4 Microcomputer which stores the application program. It is organized as follows:

MICROCOMPUTER	ROM	ORGANIZATION	
		8	8
μ COM-44	1000×8	8	8
μ COM-45	1000×8	8	8

Note that the μ PD550 and μ PD550L of the μ COM-45 Microcomputer Family have a 640×8 ROM.

FUNCTIONAL

DESCRIPTION (CONT.)

Program Counter and Stack Register

The Program Counter is an 11-bit register in the μ COM-43 microcomputers, or a 10-bit register in μ COM- 44 and μ COM- 45 microcomputers, which contains the address of a particular instruction being executed. It is incremented during normal operation, but can be modified by various JUMP and CALL instructions. The Stack Register is a LIFO push-down stack register used to save the value of the Program Counter when a subroutine is called. It is organized as follows:

MICROCOMPUTER	STACK ORGANIZATION	ALLOWABLE SUBROUTINE CALLS
μ COM-43	3 words $\times 11$ bits	3 Levels
μ COM-44	1 word $\times 10$ bits	1 Level
μ COM-45	1 word $\times 10$ bits	1 Level

Note that the CMOS μ PD651 microcomputers of the μ COM-44 Microcomputer Family have a 2 -level Stack Register.

Interrupts

All μ COM-4 microcomputers are equipped with a software-testable interrupt which skips an instruction if the Interrupt F/F has been set. The TIT instruction resets the Interrupt F/F.

In addition, the $\mu \mathrm{COM}-43$ microcomputers have a hardware interrupt, which causes an automatic stack level shift and subroutine call when an interrupt occurs.

Interval Timer

The μ COM-43 microcomputers are equipped with a programmable 6 -bit interval timer which consists of a 6 -bit polynomial counter and a 6 -bit binary down counter. The STM instruction sets the initial value of the binary down counter and starts the timing. The polynomial counter decrements the binary down counter when 63 instruction cycles have been completed. When the binary down counter reaches zero, the timer F/F is set. The TTM instruction tests the timer F/F, and skips the next instruction if it is set.

Clock and Reset Circuitry

The Clock Circuitry for any μ COM-4 microcomputer can be implemented by connecting either an Intermediate Frequency Transformer (IFT) and a capacitor; or a Ceramic Resonator and two capacitors, to the CL_{0} and CL_{1} Inputs. The Power-On-Reset Circuitry for any μ COM- 4 microcomputer can be implemented by connecting a Resistor, a Capacitor, and a Diode to the RESET input.

μ COM-4

I/O Capability

The $\mu \mathrm{COM}-4$ microcomputer family has either 35 or 21 I/O lines, depending upon the individual part, for communication with and control of external circuitry. They are organized as follows:

Port A	PAO-3 $_{0}$	4-Bit Input
Port B	PB_{0-3}	4-Bit Input
Port C	PC_{0-3}	4-Bit Input/Output (VF Drive Possible)
Port D	PD_{0-3}	4-Bit Input/Output (VF Drive Possible)
Port E	PE_{0-3}	4-Bit Output (VF Drive Possible)
Port F	PF_{0-3}	4-Bit Output (VF Drive Possible)
Port G	PG_{0-3}	4-Bit Output (VF Drive Possible)
Port H	PH_{0-3}	4-Bit Output (VF Drive Possible)
Port I	PI_{0-2}	3-Bit Output (VF Drive Possible)

Development Tools

The NEC Microcomputers' NDS Development System is available for developing software service code, editing, and assembling source code into object code. In addition, the ASM-43 Cross Assembler is available for systems which support the ISIS-II (TM Intel Corp.) Operating System. The CASM-43 Cross Assembler is available for systems which support the CP/M (®) Digital Research Corp.) Operating System.

The EVAKIT-43P Evaluation Board is available for production device emulation and prototype system debugging. The SE-43P Emulation Board is available for demonstrating the final system design. The μ PD556B ROM-less Evaluation Chip is available for small pilot production.

FUNCTIONAL DESCRIPTION (CONT.)

The following abbreviations are used in the description of the μ COM-4 instruction set:

SYMBOL	EXPLANATION AND USE
Acc	Accumulator
ACC_{n}	Bit " n " of Accumulator
address	Immediate address
C	Carry F/F
C'	Carry Save F/F
data	Immediate data
D_{n}	Bit " n " of immediate data or immediate address
DP	Data Pointer
DPH	Upper Bits of Data Pointer
DPL	Lower 4 Bits of Data Pointer
FLAG	FLAG Register
INTE F/F	Interrupt Enable F/F
INT F/F	Interrupt F/F
P()	Parallel Input/Output Port addressed by the value within the brackets
P_{n}	Bit " n " of Program Counter
PA	Input Port A
PC	Input/Output Port C
PD	Input/Output Port D
PE	Output Port E
R	R Register
S	S Register
SKIP	Number of Bytes in next instruction when skip condition occurs
STACK	Stack Register
TC	6-Bit Binary Down Timer Counter
TIMER F/F	Timer F/F
W	W Register
X	X Register
Y	Y Register
Z	Z Register
()	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\leftrightarrow	Exchange
-	Complement
\forall	LOGICAL EXCLUSIVE OR

INSTRUCTION SET SYMBOL DEFINITIONS

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	cycles	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
			D7	D_{5}	D5	D4	D_{3}	D_{2}	D1	Do			
LOAD													
LI data	$A_{C C}+\mathrm{D}_{3-0}$	Load ACC with 4 bits of immediate data; execute succeeding LI instructions as NOP instructions	1	0	0	1	D_{3}	D_{2}	D_{1}	Do	1	1	String
L	Acc ¢ (DP)	Load ACC with the RAM contents addressed by DP	0	0	1	1	1	0	0	0	1	1	
LM data	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \end{aligned}$	Load ACC with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVE-OR Between DP H_{H} and 2 bits of Immediate Data; Store the result in DP ${ }_{H}$	0	0	1	1	1	0	D1	D0	1	1	
LDI data	$D P \leftarrow D_{6-0}$	Load DP with 7 bits of immediate data	0	D_{6}	D5	D4	D_{3}	D_{2}	D1	Do	2	2	
LDZ data	$\begin{aligned} & D P_{H} \leftarrow 0 \\ & D P_{L} \leftarrow D_{3-0} \end{aligned}$	Load DP ${ }_{H}$ with 0; Load DPL with 4 bits of immediate data	1	0	0	0	D3	D_{2}	D1	D_{0}	1	1	
Store													
5	$(D P) \leftarrow A C C$	Store ACC into the RAM location addressed by DP	0	0	0	0	0	0	1	0	1	1	
TRANSFER													
TAL	$D P_{L}-A C C$	Transfer Acc to DP ${ }_{\text {L }}$	0	0	0	0	0	1	1	1	1	1	
TLA	$A_{C C} \leftarrow D P_{L}$	Transfer DPL to ACC	0	0	0	1	0	0	1	0	1	1	
EXCHANGE													
x	$A C C \leftrightarrow(D P)$	Exchange A with the RAM contents addressed by DP	0	0	1	0	1	0	0	0	1	1	
XI	$\begin{aligned} & A C C \leftrightarrow(D P) \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \\ & \hline \end{aligned}$	Exchange Acc with RAM contents addressed by DP; increment $D P_{L}$; Skip if $D P_{L}=O H$	0	0	1	1	1	1	0	0	1	$1+5$	$D P_{L}=0 \mathrm{H}$
XD	$\begin{aligned} & A C C \curvearrowleft(D P) \\ & D P_{L} \leftarrow D P_{L}-1 \\ & \text { Skip if } D P_{L}=F H \\ & \hline \end{aligned}$	Exchange ACC with the RAM contents addressed by DP; decrement $D P_{L}$; Skip if $D P_{L}=F H$	0	0	1	0	1	1	0	0	1	$1+5$	DPL $=\mathrm{FH}$
XM data	$\begin{aligned} & A C C \leftrightarrows(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \end{aligned}$	Exchange ACC with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVEOR Between DP $_{H}$ and 2 bits of immediate data; store the results in DP_{H}	0	0	1	0	1	0	D1	Do	1	1	-
XMI data	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \end{aligned}$	Exchange Acc with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVEOR Between DP ${ }_{H}$ and 2 bits of immediate data; store the results in $D P_{\mathrm{H}}$ increment $D P_{\mathrm{L}}$; Skip if $D P_{L}=0 \mathrm{H}$	0	0	1	1	1	1	D1	Do	1	$1+5$	$D P_{L}=04$
XMD data	$\begin{aligned} & A C C \leftrightarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \\ & D P_{L} \leftarrow D P_{L}-1 \\ & \text { Skip if } D P_{L}=F H \end{aligned}$	Exchange Acc with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVEOR Between DP ${ }_{H}$ and 2 bits of immediate data; store the results in $D P_{H}$ decrement $D P_{L}$; Skip if $D P_{L}=F H$	0	0	1	0	1	1	D1	Do	1	$1+5$	$D P_{L}=F H$
ARITHMETIC													
AD	$A C C-A C C+(D P)$ Skip if overflow	Add the RAM contents addressed by DP to ACC; skip if overflow is generated	0	0	0	0	1	0	0	0	1	$1+s$	Overflow
ADC	ACC $-A_{C C}^{+(D P)+C}$ if overflow occurs, $c \leftarrow 1$	Add the RAM contents addressed by DP, and the Carry F/F to ACC; if overflow occurs, set carry F/F	0	0	0	1	1	0	0	1	1	1	
ADS	$A C C \leftarrow A C C+(D P)+C$ if overflow occurs, $\mathrm{C} \leftarrow 1$ and skip	Add the RAM contents addressed by DP and the carry F/F to ACC; if overflow occurs, set Carry F/F and skip	0	0	0	0	1	0	0	1	1	$1+5$	Overfiow
DAA	$A C C \leftarrow A C C+6$	Add 6 to Acc to Adjust Decimal for BCD Addition	0	0	0	0	0	1	1	0	1	1	
DAS	$A C C \leftarrow A C C+10$	Add 10 to AcC to Adjust Decimal for BCD Subtraction	0	0	0	0	1	0	1	0	1	1	

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								bytes	cycles	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
			D7	D_{6}	D5	D_{4}	D_{3}	D_{2}	D1	Do			
LOGICAL													
EXL	$A C C \leftarrow A C C \forall(D P)$	Perform a LOGICAL EXCLUSIVE-OR between the RAM contents addressed by DP and ACC; store the result in ACC	0	0	0	1	1	0	0	0	1	1	
accumulator													
CLA	${ }^{\text {A C C }}+0$	Clear AcC to zero	1	0	0	1	0	0	0	0	1	1	
CMA	ACC $-\overline{A_{C C}}$	Complement ACC	0	0	0	1	0	0	0	0	1	1	
CIA	$A_{C C} \leftarrow \overline{A_{C C}}+1$	Complement A ; Increment A	0	0	0	1	0	0	0	1	1	1	
CARRY FLAG													
CLC	$c \leftarrow 0$	Reset Carry F/F to zero	0	0	0	0	1	0	1	1	1	1	
STC	$\mathrm{c} \leftarrow 1$	Set Carry F/F to one	0	0	0	1	1	0	1	1	1	1	
TC	Skip if $\mathrm{C}=1$	Skip if Carry F/F is true	0	0	0	0	0	1	0	0	1	$1+5$	$c=1$
INCREMENT AND DECREMENT													
INC	$A C C \leftarrow A C C+1$ Skip if overflow	Increment A; Skip if overflow is generated	0	0	0	0	1	1	0	1	1	$1+5$	Overflow
DEC	$\left\lvert\, \begin{aligned} & A C C \leftarrow A C C-1 \\ & \text { Skip if underflow } \end{aligned}\right.$	Decrement A; Skip if underflow occurs	0	0	0	0	1	1	1	1	1	$1+5$	Underfiow
IND	$\begin{aligned} & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \end{aligned}$	$\begin{aligned} & \text { Increment } \begin{array}{l} \text { DP } \\ \text { Skip if } \\ \text { DP } \\ \hline \end{array}=0 \mathrm{H} \\ & \hline \end{aligned}$	0	0	1	1	0	0	1	1	1	$1+5$	$D P_{L}=0 \mathrm{H}$
DED	$\begin{aligned} & D P_{L} \leftarrow D P_{L}-1 \\ & \text { Skip if } D P_{L}=F H \\ & \hline \end{aligned}$		0	0	0	1	0	0	1	1	1	$1+5$	$D P_{L}=F H$
BIT MANIPULATION													
RMB data	$(\mathrm{DP})_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $\mathrm{D}_{1}-\mathrm{D}_{0}$) of RAM at the location addressed by DP to zero	0	1	1	0	1	0	D_{1}	Do	1	1	
SMB data	$(\mathrm{DP})_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of RAM at the location addressed by DP to one	0	1	1	1	1	0	D_{1}	Do	1	1	
REB data	$\mathrm{PE}_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of output Port E to zero	0	1	1	0	0	1	D_{1}	D_{0}	1	2	
SEB data	$\mathrm{PE}_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of output Port E to one	0	1	1	1	0	1	D_{1}	D_{0}	1	2	
RPB data	P(DPL) ${ }_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the output port addressed by DP L_{L} to zero	0	1	1	0	0	0	D_{1}	D_{0}	1	1	
SPB data	$\mathbf{P (D P} \mathrm{P}_{\text {L }} \mathrm{bit}^{\text {c-1 }}$	Set a single bit (denoted by $D_{1} D_{0}$) of the output port addressed by DPL	0	1	1	1	0	0	D_{1}	D_{0}	1	1	
JUMP, CALL AND RETURN													
JMP address	$\mathrm{P}_{10-0} \leftarrow \mathrm{D}_{10-0}$	Jump to the address specified by 11 bits of immediate data	$\begin{array}{\|l\|} \hline 1 \\ \mathrm{D}_{7} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{D}_{6} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ D_{5} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0 \\ \mathrm{D}_{4} \\ \hline \end{array}$	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{D}_{10} \\ \mathrm{D}_{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{D}_{9} \\ \mathrm{D}_{1} \\ \hline \end{array}$	$\begin{aligned} & D_{8} \\ & D_{0} \end{aligned}$	2	2	
JCP address	$\mathrm{P}_{5-0} \leftarrow \mathrm{D}_{5-0}$	Jump to the address within the current ROM page specified by 6 bits of immediate data	1	1	D5	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
JPA	$\begin{aligned} & P_{5-2} \leftarrow A_{C C} \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Jump to the address within the current ROM page modified by Acc	0	1	0	0	0	0	0	1	1	2	
CAL address	$\begin{aligned} & \text { Stack } \leftarrow P+2 \\ & P_{10-0} \leftarrow D_{10-0} \end{aligned}$	Store a return address ($P+2$) in the stack; call the subroutine program at the location specified by 11 bits of immediate data	$\begin{array}{\|l\|} \hline 1 \\ D_{7} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \\ \mathrm{D}_{6} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ D_{5} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & D_{9} \\ & D_{1} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{D}_{8} \\ \mathrm{D}_{0} \\ \hline \end{array}$	2	2	
CZP address	$\begin{aligned} & \text { Stack } \leftarrow P+1 \\ & P_{10-6} \leftarrow 00000 \\ & P_{5-2} \leftarrow D_{3-0} \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Store a return address ($\mathrm{P}+1$) in the stack; call the subroutine program at one of sixteen locations in Page 0 of Field 0 , specified by 4 bits of immediate data	1	0	1	1	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
RT RTS	$\begin{aligned} & \mathrm{P} \leftarrow \text { Stack } \\ & \mathrm{P} \leftarrow \text { Stack } \\ & \text { Skip unconditionally } \end{aligned}$	Return from Subroutine Return from Subroutine; skip unconditionally	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 2 \\ 1+s \end{gathered}$	Unconditional

INSTRUCTION SET (CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	cycles	SKIP CONDITION
			D7	D_{6}	D_{5}	D_{4}	D3	D_{2}	D1	D_{0}			
SKIP													
Cl data	Skip if $\mathrm{ACC}^{\text {c }}=\mathrm{D}_{3-0}$	Skip if ACC equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+5$	$\mathrm{AcC}^{\text {c }}$ - D_{3-0}
CM	Skip if $\mathrm{AcC}^{\text {c }}=$ (DP)	Skip if ACC equals the RAM contents addressed by DP	0	0	0	0	1	1	0	0	1	$1+5$	$A C C=(D P)$
CMB data	Skip if $\mathrm{AcC}_{\text {bit }}=(\mathrm{DP})_{\text {bit }}$	Skip if the single bit (denoted by $D_{1} D_{0}$) of $A c c$, is equal to the single bit (also denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of RAM addressed by DP	0	0	1	1	0	1	D_{1}	D_{0}	1	$1+5$	$\mathrm{A}_{\text {CC }}^{\text {bit }}$ $=(\mathrm{DP})_{\text {bit }}$
TAB data	Skip if $\mathrm{AcC}_{\text {bit }}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of $A C C$ is true	0	0	1	0	0	1	D_{1}	D_{0}	1	$1+5$	$\mathrm{Acc}_{\text {bit }}=1$
CLI data	Skip if DP ${ }_{L}=\mathrm{D}_{3-0}$	Skip if DP ${ }_{L}$ equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ D_{0} \\ \hline \end{array}$	2	$2+5$	$D P_{L}=D_{3-0}$
TMB data	Skip if (DP) ${ }_{\text {bit }}=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by DP is true	0	1	0	1	1	0	D_{1}	D_{0}	1	$1+\mathrm{S}$	$(\mathrm{DP})_{\text {bit }}=1$
TPA data	Skip if $\mathrm{PA}_{\text {bit }}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of Port A is true	0	1	0	1	0	1	D1	D_{0}	1	$1+5$	$\mathrm{PA}_{\text {bit }}=1$
TPB data	Skip if $\mathrm{P}(\mathrm{DP})_{\text {bit }}=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the input Port addressed by $D P_{\mathrm{L}}$ is true	0	1	0	1	0	0	D_{1}	D_{0}	1	$1+\mathrm{s}$	$\mathrm{P}(\mathrm{DPL})_{\text {bit }}=1$
INTERRUPT													
TIT	Skip if INT F/F = 1	Skip if Interrupt F / F is true; Reset Interrupt F/F	0	0	0	0	0	0	1	1	1	$1+s$	INT $F / F=1$
PARALLEL I/O													
IA	$A C C \leftarrow P A$	Input Port A to ACC	0	1	0	0	0	0	0	0	1	1	
IP	$A C C \leftarrow P\left(D P_{L}\right)$	Input the Port addressed by $D P_{L}$ to $A C C$	0	0	1	1	0	0	1	0	1	1	
OE	$\mathrm{PE} \leftarrow \mathrm{ACC}$	Output ACC to Port E	0	1	0	0	0	1	0	0	1	1	
OP	$\mathrm{P}\left(\mathrm{DP} \mathrm{L}^{\prime} \leftarrow \mathrm{A}_{\text {c }} \mathrm{C}\right.$	Output ACC to the port addressed by $D P_{L}$	0	0	0	0	1	1	1	0	1	1	
OCD	$\begin{aligned} & \mathrm{PD}_{3-0}-\mathrm{D}_{7-4} \\ & \mathrm{PC}_{3-0}-\mathrm{D}_{3-0} \end{aligned}$	Output 8 bits of immediate data to Ports C and D	$\begin{aligned} & 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{gathered} \hline 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ D_{0} \end{array}$	2	2	
CPU CONTROL													
NOP		Perform no operation; consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

μ COM-4

INSTRUCTION SET (CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE										
			D7	D_{6}	D_{5}	D4	D_{3}	D_{2}	D1	Do	bytes	crcles	CONDITION
TRANSFER													
TAW	W \leftarrow Acc	Transfer Acc to W	0	1	0	0	0	0	1	1	1	2	
TAZ	Z - ACC	Transfer ACC to \mathbf{Z}	0	1	0	0	0	0	1	0	1	2	
THX	$\mathrm{X} \leftarrow \mathrm{DP} \mathrm{H}_{\mathrm{H}}$	Transfer DP_{H} to X	0	1	0	0	0	1	1	1	1	2	
tLy	$\mathrm{Y} \leftarrow \mathrm{DP} \mathrm{L}_{\mathrm{L}}$	Transfer DPL to Y	0	1	0	0	0	1	1	0	1	2	
EXCHANGE													
XAW	Acc ${ }^{\text {W }}$ W	Exchange A_{CC} with W	0	1	0	0	1	0	1	1	1	2	
XAZ	$A_{\text {cc }} \leftrightarrow \mathrm{Z}$	Exchange $A_{C C}$ with Z	0	1	0	0	1	0	1	0	1	2	
XHR	$D P_{H} \leftrightarrow R$	Exchange DP_{H} with R	0	1	0	0	1	1	0	1	1	2	
XHX	$D P_{H} \rightarrow \mathrm{X}$	Exchange DP_{H} with X	0	1	0	0	1	1	1	1	1	2	
XLS	DP $\mathrm{L}_{\mathrm{L}} \leftrightarrow \mathrm{S}$ Register	Exchange DP ${ }_{\text {L }}$ with S Register	0	1	0	0	1	1	0	0	1	2	
XLY	$D P_{L} \leftrightarrow Y$	Exchange DP ${ }_{L}$ with Y	0	1	0	0	1	1	1	0	1	2	
Xc	$\mathrm{C} \leftrightarrow \mathrm{C}^{\prime}$	Exchange Carry F/F with Carry Save F/F	0	0	0	1	1	0	1	0	1	1	
flag													
SFB	$\mathrm{FLAG}_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $D_{1} D_{0}$) of FLAG Register to one	0	1	1	1	1	1	D_{1}	D_{0}	1	2	
RFB	$F L A G_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $D_{1} D_{0}$) of FLAG Register to zero	0	1	1	0	1	1	D_{1}	D_{0}	1	2	
FBT	Skip if $\mathrm{FLAG}_{\text {bit }}=1$	Skip if a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the FLAG Register is true	0	1	0	1	1	1	D_{1}	Do	1	$2+5$	$F L A G_{b i t}=1$
FBF	Skip if $\mathrm{FLAG}_{\text {bit }}=0$	Skip if a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the FLAG Register is false	0	0	1	0	0	0	D_{1}	Do	1	$2+5$	$F L A G_{\text {bit }}=0$
aCCUMULATOR													
RAR	$\begin{aligned} & A C C_{n-1} \leftarrow A C C_{n} \\ & C \leftarrow A C C_{0}(n=1 \rightarrow 3) \\ & A_{C C} \leftarrow C \end{aligned}$	Rotate Acc right through Carry F/F	0	0	1	1	0	0	0	0	1	1	
INCREMENT AND DECREMENT													
INM	$\begin{aligned} & (D P) \leftarrow(D P)+1 \\ & \text { Skip if }(D P)=O H \end{aligned}$	Increment the RAM contents addressed by DP; Skip if the contents $=\mathbf{O H}$	0	0	0	1	1	1	0	1	1	$1+5$	$(\mathrm{DP})=\mathrm{OH}$
DEM	$\begin{aligned} & (D P) \leftarrow(D P)-1 \\ & \text { Skip if }(D P)=F H \end{aligned}$	Decrement the RAM contents addressed by DP; skip if the contents $=\mathrm{FH}$	0	0	0	1	1	1	1	1	1	$1+s$	$(\mathrm{DP})=\mathrm{FH}$
TIMER													
STM	$\begin{aligned} & \text { TIMER F/F } \leftarrow 0 \\ & T C \leftarrow D_{5-0} \end{aligned}$	Reset Timer F/F to zero; Load Timer Counter with 6 bits of immediate data; Start timer	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	
TTM	Skip if TIMER $\mathrm{F} / \mathrm{F}=1$	Skip if Timer F/F is true	0	0	0	0	0	1	0	1	1	$1+s$	TIMER F/F $=1$
INTERRUPT													
EI	INTE F/F-1	Set Interrupt Enable F/F to one; Enable Interrupt	0	0	1	1	0	0	0	1	1	1	
DI	INTE F/F ¢0	Reset Interrupt Enable F/F to zero; Disabie Interrupt	0	0	0	0	0	0	0	1	1	1	

NOTES

4-BIT SINGLE CHIP MICROCOMPUTERS

DESCRIPTION The μ COM-43 4-bit single chip microcomputers described below comprise the highperformance end of the $\mu \mathrm{COM}-4$ Microcomputer Family. They are distinguished from other μ COM -4 products by their larger ROM and RAM, their extensive 35 line I/O capability, and the $\mathbf{2 2}$ additional instructions of the Instruction Set.

- 2000×8 ROM
- 96×4 RAM
- Six 4-Bit Working Registers
- One 4-Bit Flag Register
- 10μ s Instruction Cycle Time, Typical
- 80 Powerful Instructions
- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- Ten Transfer and Exchange Instructions for Working Registers
- Four Flag Instructions
- 3-Level Subroutine Stack
- Extensive I/O Capability
- Two 4-Bit Input Ports (μ PD557L has One)
- Two 4-Bit I/O Ports
- Four 4-Bit Output Ports (μ PD557L has Two)
- One 3-Bit Output Port (μ PD557L has One 1-Bit Output Port Instead)
- Programmable 6-Bit Timer
- Hardware Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In RESET Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- 42-Pin Plastic DIP (28-Pin for μ PD557L)
- Choice of 4 Different Products to Suit a Variety of Applications

Part \#	Technology	Power Supply	Package	Features
μ PD546	PMOS	-10 V	42 -pin DIP	
μ PD553	PMOS	-10 V	42 -pin DIP	35V Vacuum Fluorescent Display Drive
μ PD557L	PMOS	-8 V	28 -pin DIP	
μ PD650	CMOS	+5 V	42 -pin DIP	

μ COM-43
BLOCK DIAGRAM

Note: Block diagram above applies to μ PD546, μ PD553, and μ PD650 4-bit microcomputers. The
μ PD557L block diagram is similar to the above, except that $\mathrm{PB}_{0-3}, \mathrm{PG}_{1-3}, \mathrm{PH}_{0-3}$, and
Pl_{0-2} have been eliminated to accommodate the $\mu \mathrm{PD} 557 \mathrm{~L}$'s 28 -pin package.
μ COM-43 PACKAGE OUTLINES
42-PIN DIP
μ PD546C
Plastic

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\overline{\mathrm{I}}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	0.3 ± 0.1	0.01 ± 0.004

28-PIN DIP μ PD557LC

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

NOTES

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD546 is the original $\mu \mathrm{COM}-43$ 4-bit single chip microcomputer. It is manufactured with a standard PMOS process, allowing use of a single -10 V power supply. The μ PD546 provides all of the hardware features of the $\mu \mathrm{COM}-43$ family, and executes all 80 instructions of the $\mu \mathrm{COM}-43$ instruction set.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$P D_{0}-P_{3}$	Input/Output Port D
$P E_{0}-P E_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{Pl}_{0}-\mathrm{Pl}_{2}$	Output Port 1
$\overline{\text { INT }}$	Interrupt Input
$\mathrm{CL}_{\mathrm{O}}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
VSS	Power Supply Positive
TEST	Factory Test Pin (Connect to V_{SS})

ABSOLUTE.MAXIMUM RATINGS*	Operating Temperature Storage Temperature .	$\begin{array}{r} -10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$
	Supply Voltage.	. -15 to +0.3 Volts
	Input Voltages	. -15 to +0.3 Volts
	Output Voltages	. -15 to +0.3 Volts
	Output Current (Ports C through I, each bit)	-4 mA
	(Total, all ports)	. 25 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS
		MIN	TYP	MAX	UNIT	
Input Voltage High	$\mathrm{V}_{1} \mathrm{H}$	0		-2.0	V	Ports A through D, $\overline{\mathrm{INT}}$, RESET
Input Voltage Low	$V_{\text {IL }}$	-4.3		V_{GG}	v	Ports A through D, INT, RESET
Clock Voltage High	$\mathrm{V}_{\phi H}$	0		-0.8	\checkmark	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \mathrm{L}}$	-6.0		V_{GG}	v	CLo Input, External Clock
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$, RESET, $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	'LIL			-10	$\mu \mathrm{A}$	Ports A through D, īNT, RESET, $V_{1}=-11 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\prime} \mathrm{L} \phi \mathrm{H}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	v	Ports C through 1 . $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	VOH_{2}			-2.3	V	Ports C through I, ${ }^{\prime} \mathrm{OH}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-10	$\mu \mathrm{A}$	Ports C through 1 . $v_{O}=-11 \mathrm{~V}$
Supply Current	'GG		-30	-50	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}$	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High	${ }^{t}{ }_{\text {d }} \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }^{+} W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

CAPACITANCE

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD553 is a μ COM-43 4 -bit single chip microcomputer with high voltage outputs that can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD553 is manufactured with a standard PMOS process, allowing use of a single -10 V power supply. The $\mu \mathrm{PD} 553$ provides all of the hardware features of the $\mu \mathrm{COM}-43$ family, and executes all 80 instructions of the μ COM- 43 instruction set.

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	-15 to +0.3 Volts
Input Voltages (Port A, B, INT, RESET) (Ports C, D).	$\begin{aligned} & .-15 \text { to }+0.3 \text { Volts } \\ & .-40 \text { to }+0.3 \text { Volts } \end{aligned}$
Output Voltages	40 to +0.3 Volts
Output Current (Ports C through I, each bit)	2 m
(Total, all ports)	

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

- PD553

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	V_{1}	0		-3.5	V	Ports A through D, $\overline{\mathrm{INT}}$, RESET
Input Voltage Low	$V_{1 L_{1}}$	-7.5		V_{GG}	\checkmark	Ports A, B, INT, RESET
	$\mathrm{V}_{1 L_{2}}$	-7.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.8	v	CLo Input, External Clock
Clock Voitage Low	$\mathrm{V}_{\phi L}$	-6.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $\mathrm{V}_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	${ }^{\text {LLIL }} 1$			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$, RESET, $V_{1}=-11 \mathrm{~V}$
	${ }_{\text {LIL }}^{2}$			-30	$\mu \mathrm{A}$	Ports C, D, V1 $=-35 \mathrm{~V}$
Clock Input Leakage Current High				+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH			-2.0	V	Ports C through I, $\mathrm{IOH}=-8 \mathrm{~mA}$
Output Leakage Current Low	${ }^{\prime} \mathrm{LOL}_{1}$			-10	$\mu \mathrm{A}$	Ports C through I. $V_{O}=-11 \mathrm{~V}$
	${ }^{\prime} \mathrm{LOL}_{2}$			-30	$\mu \mathrm{A}$	Ports C through I, $V_{O}=-35 \mathrm{~V}$
Supply Current	'GG		-30	-50	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CI			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High	${ }^{\dagger}{ }_{\phi} W_{H}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\phi} W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

Abstract

DESCRIPTION The μ PD557L is a μ COM-43 4 -bit single chip microcomputer with high voltage outputs,and low power consumption. The outputs can be pulled to- 35 V for direct interfacing to vacuum fluorescent displays. The $\mu \mathrm{PD557L}$ is manufactured with a low-power-consumption PMOS process, allowing use of a -8 V , low current power supply. The $\mu \mathrm{PD} 557 \mathrm{~L}$ provides all of the hardware features of the $\mu \mathrm{COM}-43$ family, except that it has 21 I/O lines in a 28 -pin dual-in-line package to reduce device cost. The μ PD557L executes all 80 instructions of the $\mu \mathrm{COM}-43$ instruction set.

PIN CONFIGURATION

ABSOLUTE MAXIMUM	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Supply Voltage.	. -15 to +0.3 Volts
	Input Voltages (Port A, $\overline{\mathrm{INT}}, \mathrm{RESET}$)	. 15 to +0.3 Volts
	(Ports C, D) -40 to +0.3 Volts
	Output Voltages	. -40 to +0.3 Volts
	Output Current (Ports C, D, each bit)	-4 mA
	(Ports E, F, G, each bit)	-25 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-2.5	V	Ports A, C, D, $\overline{\text { INT, RESET }}$
Input Voltage Low	$\mathrm{V}_{1} \mathrm{~L}_{1}$	-6.5		$\mathrm{V}_{\text {GG }}$	V	Ports A, INT, RESET
	$\mathrm{V}_{1 L_{2}}$	-6.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	v	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-5.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}$, RESET $V_{1}=-1 V$
Input Leakage Current Low	${ }^{\prime} \mathrm{LIL}_{1}$			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{N T}$, RESET $V_{1}=-9 V$
	${ }^{1} \mathrm{LIL}_{2}$			-30	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	IL ¢ ${ }^{\text {H }}$			+200	$\mu \mathrm{A}$	CLO Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{1} \mathrm{~L} \phi \mathrm{~L}$			-200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi L}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C through G, $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
	VOH_{2}			-4.0	V	Ports E, F, G, IOH $=-20 \mathrm{~mA}$
Output Leakage Current Low	ILOL_{1}			-10	$\mu \mathrm{A}$	Ports C through G, $v_{O}=-9 v$
	' LOL2			-30	$\mu \mathrm{A}$	Ports C through G, $V_{O}=-35 \mathrm{~V}$
Supply Current	'GG		-20	-36	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	kHz	
Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}$	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{t}{ }_{\phi} W_{H}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{\text {t }} \mathrm{W} \mathrm{W}_{\mathrm{L}}$	2.0		8.0	$\mu \mathrm{s}$	

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD650 is a μ COM-43 4-bit single chip microcomputer manufactured with a low-power-consumption CMOS process, allowing use of a single +5 V power supply. The μ PD650 provides all of the hardware features of the μ COM -43 family, and executes all 80 instructions of the μ COM- 43 instruction set.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{PI}_{0}-\mathrm{PI}_{2}$	Output Port I
INT	Interrupt Input
$\mathrm{CL}-\mathrm{CL} 1$	External Clock Signals
$R E S E T$	Reset
V_{CC}	Power Supply Positive
V_{SS}	Ground
TEST	Factory Test Pin (Connect to VCC

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0.7 VCC		V cc	V	Ports A through D, $\overline{\text { INT }}$ RESET
Input Voltage Low	$V_{\text {IL }}$	0		0.3 VCC	V	Ports A through D, $\overline{\text { INT }}$ RESET
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	v	CLo Input, External Clock
Clock Voitage Low	$\mathrm{V}_{\phi} \mathrm{L}$	0		$0.3 \mathrm{~V}_{\text {cc }}$	V	CLo Input, External Clock
input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A through D, $\overline{\text { INT }}$ RESET, $V_{1}=V_{C C}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A through $\mathrm{D}, \overline{\mathrm{INT}}$, RESET, $V_{1}=0 V$
Clock Input Laakage Current High	$\mathrm{I}_{\mathrm{L} \phi \mathrm{H}}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=\mathrm{V}_{\mathrm{CC}}$
Clock Input Leakage Current Low	'L¢L			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=0 \mathrm{~V}$
Output Voltage High	$\mathrm{V}_{\mathrm{OH}}{ }^{\text {r }}$	$V_{\text {cc }}-0.5$			V	Ports C through I , $\mathrm{IOH}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	VOH_{2}	$\mathrm{V}_{\mathrm{cc}}-2.5$			V	Ports C through I , $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
Output Voltage Low	VOL_{1}			+0.6	\checkmark	Ports E through I, ${ }^{\prime} \mathrm{OL}=+2.0 \mathrm{~mA}$
	VOL_{2}			+0.4	V	Ports E through I. $\mathrm{IOL}=+1.2 \mathrm{~mA}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	Ports $\mathrm{C}, \mathrm{D}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Supply Current	${ }^{\text {ICC }}$		$+0.8$	+2.0	mA	

$T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{S}$	EXTERNAL CLOCK
Clock Pulse Width High	${ }^{t_{\phi}} \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{S}$	
Clock Pulse Width Low	${ }^{t_{\phi}} \mathrm{W}_{\mathrm{L}}$	0.5		5.6	$\mu \mathrm{S}$	

CAPACITANCE

4-BIT SINGLE CHIP MICROCOMPUTERS

DESCRIPTION The μ COM-44 4-bit single chip microcomputers described below comprise the medium-performance portion of the $\mu \mathrm{COM}-4$ Microcomputer Family. They are distinguished from other $\mu \mathrm{COM}-4$ products by their ROM and RAM, and their extensive 35 line I/O capability.

FEATURES • 1000×8 ROM

- 64×4 RAM
- $10 \mu \mathrm{~s}$ Instruction Cycle Time, Typical
- 58 Powerful Instructions
- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- 1-Level Subroutine Stack (μ PD651 has a 2-Level Stack)
- Extensive I/O Capability
- Two 4-Bit Input Ports
- Two 4-Bit I/O Ports
- Four 4-Bit Output Ports
- One 3-Bit Output Port
- Software Testable Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In RESET Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- 42-Pin Plastic DIP
- Choice of 5 Different Products to Suit a Variety of Applications

Part \#	Technology	Power Supply	Package	Features
μ PD547	PMOS	-10 V	42 -pin DIP	
μ PD547L	PMOS	-8 V	42 -pin DIP	
μ PD552	PMOS	-10 V	42 -pin DIP	35V Vacuum Fluorescent Display Drive
μ PD651C	CMOS	+5 V	42-pin DIP μ PD651G	CMOS

μ COM-44 PACKAGE OUTLINES

42-PIN DIP μ PD547
μ PD547L
μ PD552
μ PD651C

52-PIN FLAT PLASTIC PACKAGE μ PD651G

NOTES

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD547 is the original μ COM-44 4-bit single chip microcomputer. It is manufactured with a standard PMOS process, allowing use of a single - 10 V power supply. The μ PD547 provides all of the hardware features of the $\mu \mathrm{COM}-44$ family, and executes all 58 instructions of the $\mu \mathrm{COM}-44$ instruction set.

PIN CONFIGURATION

PIN NAMES

PAO-PA3	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0} \cdot \mathrm{PC}_{3}$	Input/Output Port C
$P D_{0} \cdot P D_{3}$	Input/Output Port D
$P E_{0} \cdot P E_{3}$	Output Port E
$\mathrm{PFO}_{0} \mathrm{PF}_{3}$	Output Port F
PGo. PG_{3}	Output Port G
$\mathrm{PH}_{0} \cdot \mathrm{PH}_{3}$	Output Port H
$\mathrm{PlO}_{0} \mathrm{Pl}_{2}$	Output Port I
INT	Interrupt Input
$\mathrm{CL}_{0} \mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
$V_{\text {GG }}$	Power Supply Negative
$V_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to V_{SS})

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS
		MIN	TYP	MAX	UNIT	
Input Voltage High	$\mathrm{V}_{1 \mathrm{H}}$	0		-2.0	\checkmark	Ports A through D, $\overline{\mathrm{NT}}$, RESET
Input Voltage Low	$V_{\text {IL }}$	-4.3		V_{GG}	\checkmark	Ports A through D. $\overline{\mathrm{INT}}$. RESET
Clock Voltage High	$\mathrm{V}_{\phi H}$	0		-0.8	V	CL ${ }_{0}$ Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-6.0		V_{GG}	\checkmark	CL_{0} Input, External Clock
Input Leakage Current High	'LIM			+10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{NT}}$, RESET, $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\text { INT, }}$ RESET, $\mathrm{V}_{1}=-11 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\prime} \mathrm{L} \phi \mathrm{H}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime}$ L ϕ L			-200	$\mu \mathrm{A}$	CLoolnput, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	v	Ports C through I. $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	VOH_{2}			-2.3	\checkmark	Ports C through I, $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-10	$\mu \mathrm{A}$	Ports C through I, $v_{O}=-11 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{GG}$		-30	-50	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High		0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }_{\phi}{ }^{\text {W }} \mathrm{W}_{\mathrm{L}}$	0.5		5.6	$\mu \mathrm{s}$	

AC CHARACTERISTICS

4-BIT SINGLE CHIP MICROCOMPUTER

Abstract

DESCRIPTION The μ PD547L is a μ COM -444 -bit single chip microcomputer, manufactured with the low power consumption PMOS process, allowing use of a single -8 V power supply. The μ PD547L provides all of the hardware features of the $\mu \mathrm{COM}-44$ family, and executes all 58 instructions of the $\mu \mathrm{COM}-44$ instruction set.

PIN CONFIGURATION

CL, -1		42	CLO
PCo 2		41	$\square \mathrm{VGG}$
$\mathrm{PC}_{1}{ }^{-1}$		40	PBB_{3}
$\mathrm{PC}_{2}-4$		39	$\square \mathrm{PB}_{2}$
$\mathrm{PC}_{3}-5$		38	$\square \mathrm{PB} 1$
INT- 6		37	$\square \mathrm{PB} 0$
RESET 7		36	$\square^{1} \mathrm{PA}_{3}$
$P D_{0} 8$		35]PA2
PD, 9		34	$\mathrm{P}^{2} \mathrm{~A}_{1}$
$\mathrm{PD}_{2} \mathrm{~S}_{10}$	$\mu \mathrm{PD}$	33	$\square P A O$
$\mathrm{PD}_{3} \mathrm{P}_{11}$	547L	32	Pl_{2}
$\mathrm{PE}_{0} 12$	647	31	$\square \mathrm{Pl} 1$
$P E_{1} 13$		30	[PlO_{0}
$\mathrm{PE}_{2}-14$		29	PH_{3}
$\mathrm{PE}_{3} \mathrm{PE}^{15}$		28	PH_{2}
PFO 16		27	PH_{1}
PF1G17		26	PH_{0}
$\mathrm{PF}_{2} \square 18$		25	PPG_{3}
PF $\mathbf{y}^{\text {d }} 19$		24	PG_{2}
TEST		23	$\square^{P} \mathrm{PG}_{1}$
VSSIM21		22	$\square \mathrm{PGO}$

PIN NAMES

$P A_{0} \cdot P A_{3}$	Input Port A
$\mathrm{PB}_{0} \cdot \mathrm{~PB}_{3}$	Input Port B
$\mathrm{PC}_{0} \cdot \mathrm{PC}_{3}$	Input/Output Port C
$P D_{0} \cdot P D_{3}$	Input/Output Port D
$\mathrm{PE}_{0} \cdot \mathrm{PE}_{3}$	Output Port E
$\mathrm{PFO}_{0} \mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0} \cdot \mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0} \cdot \mathrm{PH}_{3}$	Output Port H
$\mathrm{Pl}_{0} \cdot \mathrm{Pl}_{2}$	Output Port 1
$\overline{\text { INT }}$	Interrupt Input
$\mathrm{CLO}_{0} \mathrm{CL}_{1}$	External Clock Signais
RESET	Reset
$V_{G G}$	Power Supply Negative
VSS	Power Supply Positive
TEST	Factory Test Pin (Connect to V_{SS})

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

μ PD547L

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: V_{G G}=-8 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS
		MIN	TYP	MAX	UNIT	
Input Voltage High	$V_{1 H}$	0		-1.6	\checkmark	Ports A through D, INT, RESET
Input Voltage Low	$V_{\text {IL }}$	-3.8		V_{GG}	V	Ports A through D, $\overline{\mathrm{INT}}$, RESET
Clock Voltage High	$\mathrm{V}_{\phi H}$	0		-0.6	v	CL_{0} Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \mathrm{L}}$	-5.0		v_{GG}	V	CL ${ }_{0}$ Input, External Clock
Input Leakage Current High	${ }^{\prime}$ LIH			+10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$. RESET, $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	'L.IL			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$. RESET, $V_{1}=-9 \mathrm{~V}$.
Clock Input Leakage Current High	${ }^{\text {L }}$ L ${ }^{\text {L }}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime}$ L ϕ L			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi L}=-9 \mathrm{~V}$
Output Voltage High	${ }^{\mathrm{V} \mathrm{OH}_{1}}$			-1.0	V	Ports C through I. $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	VOH_{2}			-2.3	v	Ports C through I, $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-10	$\mu \mathrm{A}$	Ports C through I . $v_{O}=-9 v$
Supply Current	IGG		-15	-25	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	Cl_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	C_{10}			15	pF	

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	t	100		180	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	EXTERNAL Clock
Clock Pulse Width High	${ }^{t} \mathrm{~W}^{+}{ }_{H}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\phi} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD552 is a μ COM-44 4-bit single chip microcomputer with high voltage outputs that can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD552 is manufactured with a standard PMOS process, allowing use of a single -10 V power supply. The μ PD552 provides all of the hardware features of the $\mu \mathrm{COM}-44$ family, and executes all 58 instructions of the $\mu \mathrm{COM}-44$ instruction set.

PIN CONFIGURATION

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{G G}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-3.5	V	Ports A through $D, \overline{I N T}$, RESET
Input Voltage Low	$\mathrm{V}_{1 L_{1}}$	-7.5		V_{GG}	\checkmark	Ports A, B, INT, RESET
	$\mathrm{V}_{1 \mathrm{~L}_{2}}$	-7.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.8	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-6.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	$\mathrm{I}_{\text {LIL }}{ }_{1}$			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{NT}}$, RESET, $V_{1}=-11 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{LIL}}^{2}$			-30	$\mu \mathrm{A}$	Ports C, D, V1 $=-35 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\prime} \mathrm{L} \phi \mathrm{H}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock input Leakage Current Low	${ }^{1} \mathrm{~L} \phi \mathrm{~L}$			-200	$\mu \mathrm{A}$	CL_{0} input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH			-2.0	V	Ports C through I. $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
Output Leakage Current Low	$\mathrm{I}_{\text {LOL }}$			-10	$\mu \mathrm{A}$	Ports C through I. $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{LOL}}^{2}$			-30	$\mu \mathrm{A}$	Ports C through I. $V_{\mathrm{O}}=-35 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{GG}$		-30	-50	mA	

DC CHARACTERISTICS

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	
Output Capacitance	CO_{0}			15	pF	$f=1 \mathrm{MHz}$
Input/Output Capacitance	ClO_{10}			15	pF	

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{t_{\phi} W_{H}}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Puise Width Low	${ }^{t} \phi W_{L}$	0.5		5.6	$\mu \mathrm{s}$,

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD651 is a μ COM-44 4-bit single chip microcomputer manufactured with a low-power-consumption CMOS process, allowing use of a single +5 V power supply. The μ PD651 provides all of the hardware features of the $\mu \mathrm{COM}-44$ family, except that it has two subroutine stack levels to enhance software development. The μ PD651 executes all 58 instructions of the $\mu \mathrm{COM}-44$ instruction set, and it is available either in a 42-pin Dual-in-line package (μ PD651C), or in a space-saving 52-pin Flat-package (μ PD651G) .

$\mathrm{PA}_{0} \cdot \mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$P E_{0}-P E_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0} \cdot \mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{Pl}_{0} \cdot \mathrm{PI}_{2}$	Output Port 1
INT	Interrupt Input
$\mathrm{CLO}_{0} \mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
v_{CC}	Power Supply Positive
VSS	Ground
TEST	Factory Test Pin (Connect to V_{CC})
NC	No Connection

Operating Temperature . $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . -0.3 to +7.0 Volts
Input Voltages (Port A through D, INT, RESET) -0.3 to +7.3 Volts
Output Voltages . -0.3 to +7.3 Volts
Output Current (Ports C through I, each bit) 2.5 mA
(Total, all ports) . 28 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent : damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{1 0 \%}$
PARAMETER SYMBOL

$T_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{VCC}_{\mathrm{CC}}=+5 \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		0.3	$\mu \mathrm{S}$	EXTERNAL CLOCK
Clock Pulse Width High	$t_{\phi} W_{H}$	0.5		5.6	$\mu \mathrm{S}$	
Clock Pulse Width Low	${ }_{t}{ }_{\text {W }} W_{L}$	0.5		5.6	$\mu \mathrm{S}$	

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance -	Co			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE

4-BIT SINGLE CHIP MICROCOMPUTERS

The μ COM-45 4-bit single chip microcomputers described below comprise the lower-performance portion of the $\mu \mathrm{COM}-4$ Microcomputer Family. They are distinguished from other μ COM -4 products by their smaller ROM and RAM, and their reduced 21 line I/O capability.

- 1000×8 ROM (μ PD550 and μ PD550L have 640×8 ROM)
- 32×4 RAM
- 10μ Instruction Cycle Time, Typical
- 58 Powerful Instructions
- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- 1-Level Subroutine Stack
- Extensive I/O Capability
- One 4-Bit Input Ports
- Two 4-Bit I/O Ports
- Two 4-Bit Output Ports
- One 1-Bit Output Port
- Software Testable Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In RESET Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- 28-Pin Plastic DIP
- Choice of 5 Different Products to Suit a Variety of Applications

Part \#	Technology	Power Supply	Package	Features
μ PD550	PMOS	-10 V	28 -pin DIP	
μ PD550L	PMOS	-8 V	28 -pin DIP	
μ PD554	PMOS	-10 V	28 -pin DIP	35V Vacuum Fluorescent
μ PD554L	PMOS	-8 V	28 -pin	Display Drive
μ PD652	CMOS	-15 V	28 -pin	

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD550 is a μ COM-45 4-bit single chip microcomputer with high voltage outputs that can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD550 is manufactured with a standard PMOS process, allowing use of a single -10 V power supply. The μ PD550 provides all of the hardware features of the $\mu \mathrm{COM}-45$ family, except that it has a 640×8 bit ROM to reduce device cost. The μ PD550 executes all 58 instructions of the $\mu \mathrm{COM}-45$ instruction set.

PIN CONFIGURATION

PIN NAMES

PA $_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0} \cdot \mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0} \cdot \mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0} \cdot \mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
$\overline{\mathrm{INT}}$	Interrupt Input
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PD550

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-2.0	V	Ports A, C, D, INT, RESET
Input Voltage Low	$V_{1 L_{1}}$	-4.3		VGG	V	Ports A, $\overline{\text { NT, }}$, RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	-4.3		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \text { L }}$	-6.0.		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $v_{1}=-1 V$
Input Leakage Current Low	${ }^{\prime} \mathrm{LIL}_{1} 1$			-10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-11 \mathrm{~V}$
	ILIL_{2}			-30	$\mu \mathrm{A}$	Ports C, D, $V_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	IL L H			+200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi} \mathrm{H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	IL¢L			-200	$\mu \mathrm{A}$	CL_{0} input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C, D, 1OH $=-2 \mathrm{~mA}$
	VOH_{2}			-2.5	V	Ports E, F, G, $1 \mathrm{OH}=-10 \mathrm{~mA}$
Output Leakage Current Low	ILOL_{1}			-10	$\mu \mathrm{A}$	Ports C through G , $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$
	ILOL_{2}			-30	$\mu \mathrm{A}$	Ports C through G, $V_{O}=-35 \mathrm{~V}$
Supply Current	IGG		-20	-40	mA	

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD550L is a μ COM-45 4-bit single chip microcomputer with high voltage outputs, and low power consumption. The outputs can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD550L is manufactured with a low-power-consumption PMOS process, allowing use of a -8 V , low current power supply. The μ PD550L provides all of the hardware features of the $\mu \mathrm{COM}-45$ family, except that it has a 640×8 bit ROM to reduce device cost. The μ PD550L executes all 58 instructions of the $\mu \mathrm{COM}-45$ instruction set.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
INT	Interrupt Input
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{VIH}_{\text {IH }}$	0		-1.6	V	Ports A, C, D, $\overline{\text { INT, RESET }}$
Input Voltage Low	$V_{1 L_{1}}$	-4.5		VGG	V	Ports A, INT, RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	-4.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi L}$	-5.0		VGG	V	CL_{0} Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, INTT, RESET $v_{1}=-1 v$
Input Leakage Current Low	${ }^{\text {L LIL }}$ \%			-10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $v_{1}=-9 v$
	${ }_{1} \mathrm{LIL}_{2}$			-30	$\mu \mathrm{A}$	Ports C, D, V1 $=-35 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\text {L }}$ ¢ LH			$+200$	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	$l_{\text {L }}^{\prime}$ L			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C, D, $\mathrm{OH}=-2 \mathrm{~mA}$
	VOH_{2}			-2.5	V	Ports E, F, G, IOH $=-10 \mathrm{~mA}$
Output Leakage Current Low	ILOL_{1}			-10	$\mu \mathrm{A}$	Ports C through G, $v_{0}=-9 v$
	${ }^{1} \mathrm{LOL}_{2}$			-30	$\mu \mathrm{A}$	Ports C through G, $V_{O}=-35 \mathrm{~V}$
Supply Current	'GG		-12	-24	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{t}{ }_{\phi} W_{H}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\phi} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

The μ PD554 is the standard μ COM-45 4-bit single chip microcomputer, with high voltage outputs that can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD554 is manufactured with a standard PMOS process, allowing use of a single - 10 V power supply. The μ PD554 provides all of the hardware features of the $\mu \mathrm{COM}-45$ family, and executes all 58 instructions of the $\mu \mathrm{COM}-45$ instruction set.

$\mathrm{CL}_{1} \square 1$		28	CLO_{0}
$\mathrm{PC}_{0} \square 2$		27	$V_{G G}$
$\mathrm{PC}_{1} \square 3$		26	RESET
$\mathrm{PC}_{2} \square 4$		25	INT
$\mathrm{PC}_{3} \square 5$		24	PA_{3}
$P_{0} \square 6$		23	$\square \mathrm{PA}_{2}$
$\mathrm{PD}_{1} \square 7$	$\mu \mathrm{PD}$	22	$\square \mathrm{PA}_{1}$
$\mathrm{PD}_{2} \square 8$	554	21	$\square \mathrm{PAO}$
$\mathrm{PD}_{3} \square 9$		20	PGo
$P E_{0} \square 10$		19	PF_{3}
$\mathrm{PE}_{1} \square 11$		18	PF_{2}
$\mathrm{PE}_{2} \square 12$		17	PF_{1}
$\mathrm{PE}_{3} \square_{13}$		16	PFo
VSS \square_{14}		15	\square TEST

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
INT	Interrupt Input
$\mathrm{CLO}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$V_{\text {IH }}$	0		-2.0	V	Ports A, C, D, INT, RESET
Input Voltage Low	$\mathrm{V}_{1 L_{1}}$	-4.3		$\mathrm{V}_{\text {GG }}$	\checkmark	Ports A, INT, RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	-4.3		-35	V	Ports C, D
Clock Voitage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$V_{\phi L}$	-6.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{N T}$, RESET $V_{1}=-1 V$
Input Leakage Current Low	'LILI			-10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-11 \mathrm{~V}$
	ILIL2			-30	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	I L $\phi \mathrm{H}$			+200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\text {¢H }}=0 \mathrm{~V}$
Clock Input Leakage Current Low	IL¢L			-200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	\checkmark	Ports C, D, $\mathrm{IOH}=-2 \mathrm{~mA}$
	VOH_{2}			-2.5	V	Ports E, F, G, IOH $=-10 \mathrm{~mA}$
Output Leakage Current Low	ILOL_{1}			-10	$\mu \mathrm{A}$	Ports C through G, $v_{0}=-11 \mathrm{~V}$
	$\mathrm{L}_{\mathrm{LOL}}^{2}$			-30	$\mu \mathrm{A}$	Ports C through G, $v_{0}=-35 \mathrm{~V}$
Supply Current	IGG		-20	-40	mA	- \because

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

parameter	sYmboL	LIMITS			UNIT	TESTCONDITIONS
		min	TYP	max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	
Input/Output Capacitance	c_{1}			15	pF	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{t}{ }_{\phi} \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\text {W }}{ }_{L}$	0.5		5.6	$\mu \mathrm{s}$	

4-BIT SINGLE CHIP MICROCOMPUTER

The μ PD554L is a μ COM-45 4-bit single chip microcomputer with high voltage outputs and low power consumption. The outputs can be pulled to -35 V for direct interfacing to vacuum fluorescent displays. The μ PD554L is manufactured with a low-power-consumption PMOS process, allowing use of a -8 V , low current power supply. The μ PD554L provides all of the hardware features of the μ COM-45 family, and executes all 58 instructions of the μ COM- 45 instruction set.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} T_{a}=25^{\circ} \mathrm{C}
$$

μ PD554L

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-1.6	v	Ports A, C, D, INT, RESET
Input Voltage Low	$\mathrm{V}_{1 \mathrm{IL}_{1}}$	-4.5		V_{GG}	V	Ports A, INT, RESET
	$\mathrm{V}_{1 \mathrm{IL}_{2}}$	-4.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \text { L }}$	-5.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-1 V$
Input Leakage Current Low	${ }^{\prime} \mathrm{LIL}_{1}$			-10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-9 V$
	$\mathrm{I}_{\text {LIL }}$			-30	$\mu \mathrm{A}$	Ports C, D, V $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\text {L }} \mathrm{L}$ ¢ H			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi} \mathrm{H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }_{\text {L }}^{\text {L }}$ L L			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C, D, $\mathrm{IOH}^{\prime}=-2 \mathrm{~mA}$
	VOH_{2}			-2.5	v	Ports E, F, G, IOH $=-10 \mathrm{~mA}$
Output Leakage Current Low	ILOL_{1}			-10	$\mu \mathrm{A}$	Ports C through G, $v_{O}=-9 v$
	ILOL_{2}			-30	$\mu \mathrm{A}$	Ports C through G, $V_{0}=-35 \mathrm{~V}$
Supply Current	IGG		-12	-24	mA	

$T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{\text {t }} \mathrm{W}_{\mathrm{H}}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }_{t}{ }^{+} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

AC CHARACTERISTICS

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD652 is a μ COM-45 4-bit single chip microcomputer manufactured with a low-power-consumption CMOS process, allowing use of a single +5 V power supply. The μ PD652 provides all of the hardware features of the $\mu \mathrm{COM}-45$ family, and executes all 58 instructions of the $\mu \mathrm{COM}-45$ instruction set.
PIN CONFIGURATION

[^2]$T_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	VIH	0.7 VCC		$V_{C C}$	V	Ports A, C, D, /- ${ }^{\text {NT, RESET }}$
Input Voltage Low	VIL	0		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	Ports A, C, D, $\overline{\text { NTT, RESET }}$
Clock Voltage High	$v_{\phi H}$	0.7 V Cc		$V_{C C}$	\checkmark	CL_{0} Input, External Clock
Clock Voltage Low	$V_{\phi L}$	0		0.3 VCC	\checkmark	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET, $V_{1}=V_{C C}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}$, RESET, $V_{1}=0 V$
Clock Input Leakage Current High	$\mathrm{I}_{\mathrm{L} \phi \mathrm{H}}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=\mathrm{V}_{C C}$
Clock Input Leakage Current Low	IL¢L			-200	$\mu \mathrm{A}$	CLO_{0} input, $\mathrm{V}_{\phi \mathrm{L}}=0 \mathrm{~V}$
Output Voltage High	VOH_{1}	$V_{C C}-0.5$			\checkmark	Ports C through G, $1 \mathrm{OH}=-1.0 \mathrm{~mA}$
	VOH_{2}	$V_{C C}-2.5$			\checkmark	Ports C through G, $\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}$
Output Voltage Low	VOL_{1}			+0.6	V	Ports E, F, G, IOL $=+2.0 \mathrm{~mA}$
	VOL_{2}			+0.4	\checkmark	Ports E, F, G, IOL $=+1.2 \mathrm{~mA}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{CC}$		+0.8	+2.0	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	CO_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	kHz	External Clock
Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}_{f}$	0		0.3	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }^{t}{ }_{\phi} W_{H}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\phi} W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

EVACHIP-43

DESCRIPTION The μ PD556 is an evaluation chip for the μ COM-43/44/45 single chip microcomputers. Designēd to be used for both hardware and software debugging, the EVACHIP-43 is functionally equivalent to the μ COM-43, except that it does not contain on-chip ROM. Instead, it is able to address external memory. In addition, in order to facilitate debugging, the μ PD556 is capable of displaying the contents of the internal accumulator and data pointer and of being single stepped.

When the μ PD556 is being used to evaluate μ COM-44/45 designs, the external memory capacity should be restricted to that of the respective.on-chip ROM and the instructions should be restricted to the 58 comprising the $\mu \mathrm{COM}-44 / 45$ instruction set.

FEATURES • 4-bit Parallel Processor

- Full 80 Instruction Set of μ COM-43
- $10 \mu \mathrm{~s}$ Instruction Cycle
- Capable of addressing $2 \mathrm{~K} \times 8$-bits of external program memory
- Single step capability
- Full Functionality of $\mu \mathrm{COM}-43$
- Single supply: -10V PMOS Technology
- Available in a 64-pin Ceramic Quad-in-Line Package

PIN NAMES

$\mathrm{PF}_{0} \mathrm{PF}_{3}$	Outpui Port F
$\mathrm{PG}_{0} \mathrm{PG}_{3}$	Outpur Port G
$\mathrm{PH}_{0} \mathrm{PH}_{3}$	Output Porit H
$\mathrm{Pl}_{0} \mathrm{Pl}_{2}$	Oupui Porl 1
$P A_{0} \cdot P_{A_{3}}$	Input Port A
$\mathrm{PB}_{0} \cdots \mathrm{~PB}_{3}$.	Input Port 8
$\mathrm{PC}_{0} \quad \mathrm{PC}_{3}$	Input/Outpui Port C
$\overline{\mathrm{NTT}}$	Interrupt input
RES	Reset
$P \mathrm{D}_{0} \cdot \mathrm{PD}_{3}$	Inpu / Oumut Port D
$P E_{0}-\mathrm{PE}_{3}$	Output Port E
BREAK	Hold Input
STEP	Single Step Input
$\mathrm{A}_{\text {cc }} / \mathrm{PC}$	Display ACC/PC Input
$\mathrm{P}_{0}-\mathrm{P}_{10}$	PC Output
$10-17$	Instruction input
$\mathrm{CLO}_{0}-\mathrm{CLI}_{1}$	External Clock Source
TEST	Tied to Vss (GND)

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage VGG	-15 to +0.3 Volts
All Input Voltages	-15 to +0.3 Volts
All Output Voltages	15 to +0.3 Volts
Output Current	-4mA (1)

Note: (1) All output pins.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	Cl_{1}			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pf	
Input/Output Capacitance	C_{10}			15	pf	

ABSOLUTE MAXIMUM RATINGS*

$\mathrm{T}_{\mathrm{a}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	V_{IH}	0		-2.0	\checkmark	Port A to D, 17 to 10 . BREAK, STEP, INT, RES, and $A C C / P C$
Input Low Voltage	VIL	-4.3		VGG	V	Port A to D, 17 to 10 . BREAK, STEP, INT, RES, and $A C C / P C$
Clock High Voltage	V_{OH}	0		-0.8	V	CL_{0} Input
Clock Low Voltage	V_{OL}	-6.0		$V_{G G}$	V	CL_{0} Input
Input Leakage Current High	${ }^{\prime}$ LIH			+10	$\mu \mathrm{A}$	Port A and $B, 17$ to 10 INT, RES, BREAK, STEP
				+30	$\mu \mathrm{A}$	ACC/PC, $V_{1}=-1 V$ Port C and $D, V_{1}=-1 V$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Port A and $B, 17$ to 10 INT, RES, BREAK, STEP
				-30	$\mu \mathrm{A}$	$\mathrm{ACC}^{2} / \mathrm{PC}, \mathrm{V}_{1}=-11 \mathrm{~V}$ Port C and $D, V_{1}=-11 \mathrm{~V}$
Clock Input Leakage High	${ }^{\prime} \mathrm{LOH}$			+200	$\mu \mathrm{A}$	CL_{0} input, $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$
Clock Input Leakage Low	ILOL			-200	$\mu \mathrm{A}$	$C L L_{0}$ Input, $\mathrm{V}_{\mathrm{OL}}=-11 \mathrm{~V}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-1.0	V	$\text { Port } \mathrm{C} \text { to } \mathrm{I}, \mathrm{P}_{10} \text { to } \mathrm{P}_{0}$ $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.3	\checkmark	$\text { Port } \mathrm{C} \text { to } \mathrm{I}, \mathrm{P}_{10} \text { to } \mathrm{P}_{0}$ $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-30	$\mu \mathrm{A}$	Port C to I, P_{10} to P_{0} $v_{0}=-11 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	

Note: (1) Relative to $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Frequency	f	150		440	KHz	
Clock Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	
Clock Pulse Width High	$\mathrm{t}_{\underline{\text { Q }} \text { WH }}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	$t \phi_{1}$ WL	0.5		5.6	$\mu \mathrm{s}$	
Input Setup Time	tis			5	$\mu \mathrm{s}$	
Input Hold Time	tin	0			$\mu \mathrm{s}$	
BREAK to STEP Interval	${ }^{\text {t }} \mathrm{BS}$	80			tcy	
STEP to RUN Interval	${ }^{\text {t }}$ SB	80			tcy	
STEP Pulse Width	tWS	12			tcy	
BREAK to ACC Interval	tBA	80			tcy	
ACC/PC Pulse Width	tWA	12			tcy	
STEP to ACC Interval	tSA1	80			tcy	
PC to STEP Overlap	${ }^{\text {t }}$ SA2			2	tcy	
PC to RUN Interval	${ }^{t} \mathrm{AB}$	0			$\mu \mathrm{s}$	
Acc/PC $\rightarrow \mathrm{P}_{10}{ }^{-} \mathrm{P}_{0}$ Delay	tDAP1			6	tcy	
	tDAP2			6	tcy	

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	41.5	1.634 MAX
B	1.05	0.042
C	2.54	0.1
D	0.5 ± 0.1	0.2 ± 0.004
E	39.4	1.55
F	1.27	0.05
G	5.4 MIN	0.21 MIN
I	2.35 MAX	0.13 MAX
J	24.13	0.95
K	19.05	0.75
L	15.9	0.626
M	0.25 ± 0.05	0.01 ± 0.002

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION

The μ PD7502 is a μ COM-75 4-bit single chip microcomputer with a 2048×8 ROM, a 128×4 RAM, a programmable 8 -bit timer/event counter, and 4 vectored, prioritized interrupts. It is also capable of directly driving a 24 -segment, 3 or 4 -backplane multiplexed Liquid Crystal Display (LCD). The μ PD7502 is manufactured with a low-power-consumption CMOS process, allowing use of a single power supply between 2.7 and 5.5 V , and providing programmable power-down capability. It has $23 \mathrm{I} / \mathrm{O}$ lines, organized into one 3-bit parallel port, five 4-bit parallel ports, and one 8-bit serial port. The μ PD7502 exesutes 92 instructions of the μ COM-75 instruction set, and it is available in a 64-pin plastic flat package.

FEATURES • 2048×8 Bit ROM

- 128×4 Bit RAM
- 15μ s Instruction Cycle Time
- 92 Powerful Instructions
- ROM Data Table Look-up Capability with LHLT and LAMT Instructions
- Subroutine Address Table Look-up Capability with CALT Instruction
- RAM Stack
- 4 General Purpose 4-Bit Registers (D, E, H and L)
- Extensive I/O Capability
- One 3-Bit Input Port
- One 4-Bit Input Port
- One 4-Bit Output Port
- Three 4-Bit I/O Ports, of which two are 8-Bit Byte Accessible
- One 8-Bit Serial I/O Port
- Programmable LCD Controller
- 24 Segment Outputs and 4-Backplane Outputs
- Can Directly Drive 3- or 4-Backplane Multiplexed LCDs
- Automatic Synchronization of Segment and Backplane Signals, Transparent

PIN NAMES	
$\mathrm{SO}_{0}-\mathrm{S}_{23}$	LCD Segment Outputs
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	LCD Backplane Outputs
$\mathrm{PO}_{3} / \mathrm{SI}$	Input Port $\mathrm{O}_{3} /$ Serial Input
$\mathrm{PO}_{2} / \mathrm{SO}$	Input Port O_{2} /Serial Output
$\mathrm{PO}_{1} / \overline{\mathrm{SCK}}$	Input Port $0_{1} /$ Serial Clock
$\mathrm{Pl}_{10} / \mathrm{INT}_{0}$	Input Port 10/Interrupt 0
INT1	Interrupt 1
$\mathrm{P} 10^{0} \cdot \mathrm{Pl}_{3}$	Input Port 1
$\mathrm{P}_{3} \mathrm{O}_{-} \cdot \mathrm{P}_{3}$	Output Port 3
$\mathrm{P}_{4} \mathrm{O} \cdot \mathrm{P}_{4}$	Input/Output Port 4
$\mathrm{P5}_{5} \cdot \mathrm{P5}_{3}$	Input/Output Port 5
$\mathrm{P}_{6}{ }_{0}$-P63	Input/Output Port 6
$\mathrm{X}_{1}, \mathrm{X}_{2}$	Crystal Clock Input, Output
$\mathrm{C}_{1}, \mathrm{C}_{2}$	System Clock Input, Output
RESET	Reset
$\mathrm{V}_{\text {LCD }} \cdot \mathrm{V}_{\mathrm{LCD}}{ }_{3}$	LCD Power Supply
VDD	Power Supply Positive
VSS	Ground

FUNCTIONAL DESCRIPTION

ROM
The μ PD7502 is equipped with a 2048×8 bit general purpose ROM, organized as one large, single field. It is accessible anywhere between addresses 000 H and 7FFH by the Program Counter. Several portions of the ROM are reserved for special operations, as follows:

Address	Function
000 H	Program start address after RESET Input
010 H	Timer/Counter Interrupt (INTT) Start Address
$\mathbf{O 2 O H}$	Serial Interface or External Interrupt (INTO/S) Start Address
030 H	External Interrupt (INT1) Start Address
$0 \mathrm{OCOH}-\mathrm{OCFH}$	LHLT Instruction Reference Table
$\mathrm{ODOH}-$ OFFH	CALT Instruction Reference Table

These ROM addresses can be used for other purposes if these features are not used.

RAM

The μ PD7502 is equipped with a 128×4 bit general purpose RAM. It is accessible between addressed 00 H and 7 FH by Direct Addressing with immediate data, by Register Pair Indirect Addressing, or by Stack Pointer Addressing. Two portions of the RAM are reserved for special operations, as follows:

Address	Function
$00 \mathrm{H}-17 \mathrm{H}$	LCD Segment Data
(Definable by Stack Pointer)	LIFO Stack Address Storage

In addition, there are four general purpose 4-bit registers, D, E, H, and L, which may be used individually, or as register pairs DE, DL, or HL, during program execution.

Clocks

The μ PD7502 can accept two different clock signals. Pins CL1 and CL2 can accept a simple RC input for the system clock. Pins X_{1} and X_{2} can accept a more accurate crystal, such as 32.768 kHz , for timer/event counter functions where clock accuracy is important to the application.

Timer/Event Counter

The timer of the μ PD7502 is an 8-bit Binary-Up counter. It is reset during execution of RESET, or the "Timer" instruction. During operation, the count register of the timer is incremented until it coincides with the value of the modulus register. At this point, the timer interrupt INT 个 becomes active, the count register is reset, and counting begins again. The count register can also be read at any time by executing the "TCNTAM" instruction.

The Event Counter of the μ PD7502 takes advantage of the Timer capabilities to measure external pulses occurring on pin X_{1}.

Interrupts

There are four interrupts available on the μ PD7502. Two of them are generated externally (INT 1 and INT0), and two of them are generated internally (Timer interrupt INTT, and SIO interrupt INTS).
Under software control, the four interrupts can be prioritized in any order. They can be controlled individually, or under a master control.

Stack Pointer

The Stack Pointer is a 7-bit register containing the leading address information of the LIFO stack, located in RAM. The Stack Pointer is decremented when CALL, CALT, PSHDE, or PSHHL instructions are executed, and incremented when RT, RTS, TRPSW, POPDE, or POPHL instructions are executed.

The Stack Pointer can be accessed by executing the TAMSP or TSPAM instructions.'

Serial I/O

The Serial I/O port of the μ PD7502 consists of an 8-bit, shift register, a 4-bit shift mode register, and a 3-bit counter. Data is output at the fall of the serial clock, with the MSB transferring first: Serial data input at the rise of the serial clock, with the MSB transferring first. The serial clock $\overline{\mathrm{SCK}}$ can be selected under software control from the internal system clock, an external clock signal, or the Timer-Out F/F.
The TSIOAM and TAMSIO instructions facilitate the I/O operations of the μ PD7502 SIO port. These instructions make it easy for the μ PD7502 to handle odd-sized data containing parity, start or stop bits.

LCD Controller

When direct LCD drive is required for an application, a portion of the RAM must be reserved for LCD segment data storage. This segment data is decoded by ROM table look-up instructions during program execution.
It must then be stored in the RAM, for direct access by the LCD Controller Hardware according to the following pattern:

Segment																									
вıt	so	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	s9	S_{10}	s_{11}	s_{12}	s_{13}	S_{14}	s_{15}	s_{16}	s_{17}	S_{18}	S_{19}	s_{20}	s_{21}	s_{22}	s_{23}	BACKPLANE
0																									como
1																									COM_{1}
2																									COM_{2}
3																									COM_{3}
$\begin{aligned} & \text { RAM } \\ & \text { ADDRESS } \end{aligned}$	00 H	01\%	02H	03H	04H	05H	06H	074	08H	09\%	ОАн	OBH	OCH	ODH	OEH	OFH	10H	11H	12H	13H	14H	15 H	16H	17H	

For applications using 3-backplane multiplexed LCDs, the third bit of each RAM location is not used, and it may be used for other general purpose storage.

Actual determination of functioning of the LCD Controller occurs when the Display Mode Register is set.

INSTRUCTION SET SYMBOL DEFINITIONS

The following abbreviations are used in the description of the μ PD7502

SYMBOL	EXPLANATION AND USE		
A	Accumulator		
address	Immediate address		
A_{n}	Bit " n " of Accumulator		
C	Carry Flag		
data	Immediate data		
D	Register D		
DE	Register Pair DE		
DL	Register Pair DL		
D_{n}	Bit " n " of immediate data or immediate address		
E	Register E		
H	Register H		
HL	Register pair HL		
IER	Interrupt Enable Register		
IME	Interrupt Master Enable F/F		
$1 \mathrm{NT}_{\mathrm{n}}$	Interrupt " n "		
L	Register L		
P()	Parallel Input/Output Port addressed by the value within the brackets		
PC_{n}	Bit " n " of Program Counter		
PSW	Program Status Word		
rp	Register Pair, selected by 3 bits of immediate data, $\mathrm{D}_{2}-0$, as follows:		
	D2 $\mathrm{D}_{1} \mathrm{D}_{0}$	rp	Additional Action
	$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}$	DL DE $\mathrm{HL}-$ $\mathrm{HL}+$ HL	none none decrement L; skip if $L=F H$ increment L; skip if $L=O H$ none
ROF	Request Flag		
S	Number of bytes in next instruction when skip condition occurs		
SIO	Serial I/O Shift Register		
SIOCR	Serial I/O Count Register		
SP	Stack Pointer		
TCR	Time Count Register		
TMR	Timer Modulo Register		
1)	The contents of RAM addressed by the value within the brackets		
[]	The contents of ROM addressed by the value within the brackets		
\leftarrow	Load, Store, or Transfer		
\rightarrow	Exchange		
-	Complement		
\wedge	LOGICAL AND		
\checkmark	LOGICAL OR		
\forall	LOGICAL Exclusive OR		

MNEMONIC	FUNCTION	description	INSTRUCTION CODE								BYTES	cycles	SKIP CONDITION
			D7	D_{6}	D_{5}	D_{4}	D3	D_{2}	D1	D_{0}			
LOAD													
LAI data	$A \leftarrow D_{3-0}$	Load A with 4 bits of immediate data 1	0	0	0	1	D_{3}	D_{2}	D_{1}	Do	1	1	String
LDI data	$\mathrm{D} \leftarrow \mathrm{D}_{3-0}$	Load D with 4 bits of iminediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & \hline 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} \hline 0 \\ D_{0} \end{gathered}$	2	2	
LEI data	$E \leftarrow \mathrm{D}_{3-0}$	Load E with 4 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	2	
LHI data	$\mathrm{H} \leftarrow \mathrm{D}_{3-0}$	Load H with 4 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	
LLI data	$\mathrm{L}-\mathrm{D}_{3-0}$	Load L with 4 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	2	
LAM ip	$A \leftarrow(r p)$	Load A with the RAM contents addressed by the register pair selected by 3 bits of immediate data	0	1	0	D_{2}	0	0	D_{1}	D_{0}	1	$1+s$	See explanation of "rp" in symbol definitions
LADR address	$A \leftarrow\left(D_{6-0}\right)$	Load A with the RAM contents addressed by 7 bits of immediate data		$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	
LDEI data	$D E \leftarrow D 7.0$	Load DE with 8 bits of immediate data	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{D}_{7} \\ \hline \end{array}$	$\begin{gathered} 1 \\ D_{6} \end{gathered}$	$\begin{gathered} \hline 0 \\ D_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	2	2	
LHLI data	$\mathrm{HL} \leftarrow \mathrm{D}_{7.0}$	Load HL with 8 bits of immediate data 2	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{D}_{7} \\ \hline \end{array}$	$\begin{gathered} 1 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{0} \end{aligned}$	2	2	String
LHLT address	$\begin{aligned} & H \leftarrow\left[t 0001100 \mathrm{D}_{\left.3-0^{\dagger}\right] \mathrm{H}}\right. \\ & \mathrm{L}-\left[10001100 \mathrm{D}_{\left.3-0^{\dagger}\right] \mathrm{L}}\right. \end{aligned}$	Load the upper 4 bits of ROM Table Data at address $0001100 \mathrm{D}_{3-0}$ to H ; Load the lower 4 bits of ROM Table Data at address $0001.100 \mathrm{D}_{3-0}$ to L 3	1	1	0	0	D_{3}	D_{2}	D_{1}	Do	1	2	
LAMT	$\begin{aligned} & A-\left[\uparrow P C_{10-6,0, C, A \dagger] H}\right. \\ & (H L) \leftarrow\left[\uparrow P C_{10-6}, 0, C, A \uparrow\right] L \end{aligned}$	Load the upper 4 bits of ROM Table Data at address $\mathrm{PC}_{10-6,0, \mathrm{C}, \mathrm{A}}$ to A : Load the lower 4 bits of ROM Table Data at address $\mathrm{PC}_{10-6,0, \mathrm{C}, \mathrm{A}}$ to the RAM location addressed by HL	0	1	0	1	1	1	1	0	1	2	String
Store													
ST	$(\mathrm{HL}) \leftarrow \mathrm{A}$	Store A into the RAM location addressed by HL	0	1	0	1	0	1	1	1	1	1	
transfer													
TAD	$D \leftarrow A$	Transfer A to D	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
TAE	$E \leftarrow A$	Transfer A to E	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
TAH	$H \leftarrow A$	Transfer A to H	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
TAL	$L \leftarrow A$	Transfer A to L	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
TDA	$A \leftarrow D$	Transfer D to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	2	2	
TEA	A - E	Transfer E to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	2	2	
THA	A ¢ H	Transfer H to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	2	2	
TLA	$A \leftarrow L$	Transfer L to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	2	2	
EXCHANGE													
XAD	A \sim D	Exchange A with D	0	1	0	0	1	0	1	0	1	1	
XAE	$A \leftrightarrow E$	Exchange A with E	0	1	0	0	1	0	1	1	1	1	
XAH	$A \rightarrow H$	Exchange A with H	0	1	1	1	1	0	1	0	1	1	
XAL	$A \leftrightarrow L$	Exchange A with L	0	1	1	1	1	0	1	1	1	1	
XAM rp	$A \leftrightarrow(\mathrm{r})$	Exchange A with the RAM contents addressed by the register pair selected by 3 bits of immediate data	0	1	0	D_{2}	0	1	D_{1}	Do	1	$1+s$	See explanation of "rp" in symbol definitions

INSTRUCTION SET
(CONT)
μ PD7502
(CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	Instruction code								BYTES	CYCLES	SKIPCONDITION
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D0			
XADR address	$A \leftrightarrow\left(D_{6.0}\right)$	Exchange A with the RAM contents addressed by 7 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} { }_{\mathrm{D}}^{0} \end{gathered}$	2	2	
XHDR address	$H \leftrightarrow\left(D_{6-0}\right)$	Exchange H with the RAM contents addressed by 7 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	2	
XLDR address	$L \leftrightarrow\left(\mathrm{D}_{6-0}\right)$	Exchange L with the RAM contents addressed by 7 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{2} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	2	2	
ARITHMETIC													
AISC data	$A \leftarrow A+D_{3-0}$ Skip if overflow	Add 4 bits of immediate data to A; Skip if overflow occurs	0	0	0	0	D_{3}	D_{2}	D_{1}	D_{0}	1	$1+5$	Overflow $=1$
ASC	$A \leftarrow A+(H L)$ Skip if overflow	Add the RAM contents addressed by HL to A; skip if overflow occurs	0	1	1	1	1	1	0	1	1	$1+5$	Overflow $=1$
ACSC	$A, C \leftarrow A+(H L)+C$ Skip if carry	Add the RAM contents addressed by HL and the carry flag to A; skip if carry is generated	0	1	1	1	1	1	0	0	1	$1+\mathrm{S}$	Carry Flag = 1
LOGICAL													
EXL	$A \leftarrow A \forall(H L)$	Perform a Logical EXCLUSIVE-OR between the RAM contents addressed by $H L$ and A; store the result in A	0	1	1	1	1	1	1	0	1	1	
ANL	$A \leftarrow A \wedge(H L)$	Perform a LOGICAL AND between A and the R.AM contents addressed by HL; store the result in A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	1	1	1	1 1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
ORL	$A \leftarrow A \vee(H L)$	Perform a LOGICAL OR between A and the RAM contents addressed by HL; store the result in A		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
ACCUMULATOR													
CMA	$A \leftarrow \bar{A}$	Complement A	0	1	1	1	1	1	1	1	1	1	
RAR	$\begin{aligned} & A_{n-1} \leftarrow A_{n}(n=1 \rightarrow 3) \\ & C \leftarrow A_{0} \\ & A_{3} \leftarrow C \end{aligned}$	Rotate A right through Carry Flag	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2.	2	
CARRY FLAG													
RC	$c \leftarrow 0$	Reset Carry Flag	0	1	1	1	1	0	0	0	1	1	
SC	$\mathrm{C} \leftarrow 1$	Set Carry Flag	0	1	1	1	1	0	0	1	1	1	
INCREMENT AND DECREMENT													
IES	$\begin{aligned} & E \leftarrow E+1 \\ & \text { Skip if } E=O H \end{aligned}$	Increment E; Skip if $\mathrm{E}=\mathrm{OH}$	0	1	0	0	1	0	0	1	1	$1+s$	$\mathrm{E}=\mathrm{OH}$
ILS	$\begin{aligned} & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Increment L; Skip if $\mathrm{L}=\mathrm{OH}$	0	1	0	1	1	0	0	1	1	$1+s$	$\mathrm{L}=\mathrm{OH}$
IDRS address	$\begin{aligned} & \left(D_{6-0}\right) \leftarrow\left(D_{6-0}\right)+1 \\ & \text { Skip if }\left(D_{6-0}\right)=0 H \end{aligned}$	Increment the RAM contents addressed by 7 bits of immediate data; Skip if the contents $=\mathrm{OH}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & D_{6} \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	$2+5$	$\left(\mathrm{D}_{6-0}\right)=0 \mathrm{H}$
DES	$\begin{aligned} & E \leftarrow E-1 \\ & \text { Skip if } E=F H \end{aligned}$	Decrement E ; Skip if $E=F H$	0	1	0	0	1	0	0	0	1	$1+5$	$\mathrm{E}=\mathrm{FH}$
DLS	$\begin{aligned} & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Decrement L; Skip if $L=F H$	0	1	0	1	1	0	0	0	1	$1+5$	$\mathrm{L}=\mathrm{FH}$
DDRS address	$\begin{aligned} & \left(D_{6-0}\right) \leftarrow\left(D_{6-0}\right)-1 \\ & \text { Skip if }\left(D_{6-0}\right)=F H \end{aligned}$	Decrement the RAM . contents addressed by 7 bits of immediate data; skip if the contents $=\mathrm{FH}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{0} \end{aligned}$	2	$2+5$	$\left(\mathrm{D}_{6-0}\right)=\mathrm{FH}$
BIT MANIPULATION													
RMB	$(\mathrm{HL})_{\text {bit }} \leftarrow 0$	Reset a single bit of RAM at the location addressed by HL, denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$, to zero	0	1	1	0	1	0	D1	D_{0}	1	1	
SMB	$(\mathrm{HL})_{\text {bit }} \leftarrow 1$	Set a single bit of RAM at the location addressed by HL, denoted by $D_{j}^{\prime \prime} D_{0}$, to one	0	1	1	0	1	1	D_{1}	D_{0}	1	1	

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYtes	crcles	SKIPCONDITION
			D7	D_{6}	D5	D_{4}	D_{3}	D_{2}	D1	D_{0}			
JUMP, CALL AND RETURN													
JMP address	$\mathrm{PC}_{10.0}-\mathrm{D}_{10-0}$	Jump to the address specified by 11 bits of immediate data	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} \mathrm{D}_{10} \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
JCP address	${ }^{P} C_{5.0}-\mathrm{D}_{5.0}$	Jump to the address specified by the higher-order bits PC 10.6 of the PC, and 6 bits of immediate data	1	0	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
JAM address	$\begin{aligned} & P C_{10-8} \leftarrow D_{2.0} \\ & P C_{7-4} \leftarrow A \\ & P C_{3.0} \leftarrow(H L) \end{aligned}$	Jump to the address specified by 3 bits of immediate data, A, and the RAM contents addressed by HL	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CALL address	$\begin{aligned} & (S P-1) \leftarrow P C_{7-4} \\ & (S P-2) \leftarrow P C_{3-0} \\ & (S P-3) \leftarrow P S W \\ & (S P-4) \leftarrow P C_{10-8} \\ & P C_{10-0}-D_{10-0} \\ & S P+S P-4 \\ & \hline \end{aligned}$	Store a return address in the stack; call the subroutine program at the location specified by 11 bits of immediate data	$\begin{array}{\|c\|} \hline 0 \\ D_{7} \end{array}$	$\begin{gathered} \hline 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & D_{9} \\ & D_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CALT address	$\begin{aligned} & (S P-1) \leftarrow P C_{7-4} \\ & (S P-2) \leftarrow P C_{3-0} \\ & (S P-3) \leftarrow P S W \\ & (S P-4) \leftarrow P C_{10-8} \\ & P C_{10} \leftarrow 0 \\ & P C_{9-7} \leftarrow 100011 D_{5-0} l_{7-5} \\ & P C_{6-5}-00 \\ & P C_{4-0} \leftarrow 100011 D_{5-0} I_{4-0} \\ & S P \leftarrow S P-4 \end{aligned}$	Store a return address in the stack; LOAD ROM Subroutine Address Table date at address $00011 \mathrm{D}_{5-0}$ to PC ; call the sub. routine program at the location specified by the PC	1	1	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	2	
RT	$\begin{aligned} & \mathrm{PC}_{10-8}-(\mathrm{SP}) \\ & \mathrm{PC}_{7-4} \leftarrow(\mathrm{SP}+3) \\ & \mathrm{PC}_{3-0}-(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	Return from Subroutine	0	1	0	1	0	0	1	1	1	1	
RTS	$\begin{aligned} & \hline \mathrm{PC}_{10-8}-(\mathrm{SP}) \\ & P C_{7-4}-(\mathrm{SP}+3) \\ & \mathrm{PC}_{3-0}-(\mathrm{SP}+2) \\ & \mathrm{SP}-\mathrm{SP}+4 \\ & \text { Skip unconditionally } \end{aligned}$	Return from Subroutine; skip unconditionally	0	1	0	1	1	0	1	1	1	$1+s$	Unconditional
RTPSW	$\begin{aligned} & \mathrm{PC}_{10-8}-(\mathrm{SP}) \\ & \mathrm{PC}_{7.4} \leftarrow(\mathrm{SP}+3) \\ & \mathrm{PC}_{3-0}-(\mathrm{SP}+2) \\ & \mathrm{PSW}^{2} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	Return from Subroutine and restore PSW	0	1	0	0	0	0	1	1	1	2	
stack													
PSHDE	$\begin{aligned} & \text { (SP-1)+D} \\ & (S P-2)-E \\ & S P-S P-2 \\ & \hline \end{aligned}$	Push DE on to stack	0	0 0	1	1	1	1	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
PSHHL	$\begin{aligned} & (S P-1) \leftarrow H \\ & (S P-2) \leftarrow L \\ & S P-S P-2 \end{aligned}$	Push HL on to stack	0 1	0 0	1	1	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2	
POPDE	$\begin{aligned} & E-(S P) \\ & D \leftarrow(S P+1) \\ & S P-S P+2 \end{aligned}$	POP DE off the stack	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	2	2	
POPHL	$\begin{aligned} & L \leftarrow(S P) \\ & H \leftarrow(S P+1) \\ & S P \leftarrow S P+2 \end{aligned}$	Pop HL off the stack	0 1	0	1	1	1	1	1	0 1	2	2	
TAMSP	$\begin{aligned} & \mathrm{SP}_{7-4} \leftarrow \mathrm{~A} \\ & \mathrm{SP}_{3-1} \leftarrow(\mathrm{HL})_{3-1} \end{aligned}$	Transfer A and RAM contents addressed by HL to stack	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
TSPAM	$\begin{aligned} & A-S P_{7-4} \\ & (\mathrm{HL})_{3-1}-S P_{3-1} \\ & (\mathrm{HL})_{0}+0 \end{aligned}$	Transfer stack to A and RAM contents addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
SKıP													
SKC	Skip if $\mathrm{C}=1$	Skip if Carry Flag is true	0	1	0	1	1	0	1	0	1	$1+s$	$\mathrm{C}=1$
SKMBT data	Skip if $(\mathrm{HL})_{\text {bit }}=1$	Skip if the single bit of the RAM location addressed by $H L$, denoted by $D_{1} D_{0}$, is true	0	1	1	0	0	1	D_{1}	D_{0}	1	1+s	$(\mathrm{HL})_{\text {bit }}=1$
SKABT data	Skip if $A_{\text {bit }}=1$	Skip if the single bit of A , denoted by $D_{1} D_{0}$, is true	0	1	1	1	0	1	D_{1}	Do	1	$1+\mathrm{s}$	$A_{\text {bit }}=1$
SKMBF data	Skip if (HL$)_{\text {bit }}=0$	Skip if the single bit of the RAM location addressed by $H L$. denoted by $D_{1} D_{0}$, is false	0	1	1	0	0	0	D_{1}	Do	1	$1+5$	$(\mathrm{HL})_{\text {bit }}=0$
SKAEM	Skip if $A=(H L)$	Skip if A equals the RAM contents addressed by HL	0	1	0	1	1	1	1	1	1	$1+5$	$A=(H L)$

INSTRUCTION SET (CONT.)

MNEMONIC	FUNCTION	description	INSTRUCTION CODE								bYtes	crcles	SKIP CONDITION
			D7	D_{6}	D_{5}	D_{4}	D	D_{2}	D_{1}	D0			
SKAEI data	Skip if $A=$ data	Skip if A equals 4 bits of immediate data	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+s$	$A=$ data
SKDEI data	Skip if $\mathrm{D}=$ data	Skip if D equals 4 bits of immediate data	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+s$	$\mathrm{D}=$ data
SKEEI data	Skip if $\mathrm{E}=$ data	Skip if E equals 4 bits of immediate data	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+5$	$E=$ data
SKHEI data	Skip if $\mathrm{H}=$ data	Skip if H equals 4 bits of immediate data	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{0} \end{aligned}$	2	$2+5$	$\mathrm{H}=$ data
SKLEI data	Skip if $L=$ data	Skip if Lequals 4 bits of immediate data	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	$2+5$	$L=$ data
timer													
tammod	$\begin{aligned} & \text { TMR }_{7-4} \leftarrow A \\ & \text { TMR }_{3-0} \leftarrow(H L) \end{aligned}$	Transfer A and the RAM contents addressed by HL to Timer Modulo Register	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1 1	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
TIMER	$\begin{aligned} & \text { TCR }_{7.0} \leftarrow 0 \\ & \text { INT }_{T} R Q F \leftarrow 0 \end{aligned}$	Start Timer Operation	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
tCNTAM	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{TCR}_{7-4} \\ & (\mathrm{HL}) \leftarrow \mathrm{TCR}_{3-0} \end{aligned}$	Transfer Timer Count Register to A and the RAM contents addressed by HL	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
INTERRUPT													
El data	IER - IER $\backslash D_{2-0}$ if $\mathrm{D}_{2-0}=0, \mathrm{IME} \leftarrow 1$	Enable Interrupt specified by 3 bits of immediate data. If the immediate data D_{2-0} is 0 , set the Interrupt Master Enable F/F.	0 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	2	
DI data	$\begin{aligned} & \text { IER }-I E R \wedge \overline{D_{2-0}} \\ & \text { if } D_{2-0}=0, I M E \leftarrow 0 \end{aligned}$	Disable Interrupt specified by 3 bits of immediate data. If the immediate data D_{2-0} is $\mathbf{0}$, reset the Interrupt Master Enable F/F.	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	2	
SKI data	$\begin{aligned} & \text { Skip if } I N T_{n} R Q F \wedge D_{2-0} \neq 0 \\ & I N T_{n}-R F Q \wedge \overline{D_{2-0}} \end{aligned}$	Test Interrupt Request Fiag specified by 3 bits of immediate data; skip if Interrupt Request Flag is true; Reset the Interrupt Request Flag.	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	$2+s$	INT n RFQ $=1$
SERIAL I/O													
tamsio	$\begin{aligned} & \mathrm{SIO}_{7-4}-\mathrm{A} \\ & \mathrm{SIO}_{3-0} \leftarrow(\mathrm{HL}) \end{aligned}$	Transfer A and the RAM contents addressed by HL to SIO Shift Register	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1	1	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
TSIOAM	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{SIO}_{7.4} \\ & (\mathrm{HL}) \leftarrow \mathrm{SIO}_{3.0} \end{aligned}$	Transfer SIO Shift Register data to A and the RAM contents addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1	1	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
SIO	$\begin{aligned} & \text { SIOCR }_{2-0} \leftarrow 0 \\ & \text { INTO/S ROF }^{2} \leftarrow 0 \end{aligned}$	Start Serial 1/O Operation	0 0	0	1	1	1 0	1 0	1 1	1	2	2	
parallel I/o													
IPL	$A \leftarrow P(L)$	Input the Port addressed by L to A	0	1	1	1	0	0	0	0	1	1	
IP address	$\mathrm{A} \leftarrow \mathrm{P}\left(\mathrm{D}_{3}-0\right)$	Input the Port addressed by 4 bits of immediate data to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	2	2	
1P1	$A \leftarrow P 1$	Input Port 1 to A	0	1	1	1	0	0	0	1	1	1	
IP54	$\begin{aligned} & A \leftarrow P 5_{3-0} \\ & (H L) \leftarrow P 4_{3-0} \end{aligned}$	Input Port 5 to A; Input Port 4 to the RAM location addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
OPL	$\mathrm{P}(\mathrm{L}) \leftarrow \mathrm{A}$	Output A to the port addressed by L	0	1	1	1	0	0	1	0	1	1	
OP address	$\mathrm{P}\left(\mathrm{D}_{3} \mathbf{0}\right)-\mathrm{A}$	Output A to the port addressed by 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \\ \hline \end{gathered}$	2	2	
OP3	P3 - A	Output A to Port 3	0	1	1	1	0	0	1	1	1	1	
OP54	$\begin{aligned} & P_{3}-0 \leftarrow A \\ & P 4_{3-0} \leftarrow(H L) \end{aligned}$	Output A to Port 5; Output the RAM contents addressed by HL to Port 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
ANP data	$\mathrm{P}\left(\mathrm{D}_{7} .4\right) \leftarrow \mathrm{P}\left(\mathrm{D}_{7.4}\right) \wedge \mathrm{D}_{3.0}$	Perform a LOGICAL AND between the port addressed by 4 bits of immediate data and an additional 4 bits of immediate data; output the result to the same port	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} 1 \\ D_{6} \end{gathered}$	$\begin{gathered} 0 \\ D_{5} \end{gathered}$		$\begin{aligned} & \hline 1 \\ & D_{3} \end{aligned}$		$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	
ORP	$P\left(D_{7-4}\right)-P\left(D_{7-4}\right) \vee D_{3-0}$	Perform a LOGICAL OR between the port addressed by 4 bits of immediate data and an additional 4 bits of immediate data; output the result to the same port	$\begin{aligned} & 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{gathered} 1 \\ D_{6} \end{gathered}$	$\begin{gathered} 0 \\ D_{5} \end{gathered}$		$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	2	
CPU CONTROL													
NOP		Perform no operation; consume one machine cycle	0	0	0	0	0	0	0	0	1	1	
HALT		Enter HALT Mode	$\begin{array}{\|l\|} 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	
stop		Enter STOP Mode	$\begin{array}{l\|l} 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Supply Voltage	-0.3 V to +7.0 V
All Input and Output Voltages.	-0.3V to +7.3V
Output Current (Device Total).	. $\mathrm{IOH}=\mathrm{mA}$
	. $\mathrm{IOL}=\mathrm{mA}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS	
		MIN	TYP	MAX			
Input Voltage	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	v	PORT, RESET, SI, $\overline{\text { SCK }, ~ i N T O, ~}{ }^{\text {INT }}$,	
	$V_{\text {IL }}$	0		0.3 VDD			
	${ }^{x^{\prime}}$	VDD -0.5		VDD	v	X_{1}, External Puise Input	
	$v_{x_{L}}$	0		0.5			
Clock Voltage	$v_{\phi_{H}}$	VDD -0.5		V_{DD}	v	CL1, External Clock	
	$V_{\phi_{L}}$	0		0.5			
Input Leakage Current	${ }^{\prime 2} \mathrm{LI}_{\mathrm{H}}$			1	$\mu \mathrm{A}$	PORT, RESET, SI,	$V_{\text {in }}=V_{\text {DL }}$
	${ }^{\prime} L_{\text {L }}{ }_{L}$			-1		$\overline{\text { SCK, }}$, ${ }^{\text {NT }}$, INT 1	$\mathrm{Vin}=0 \mathrm{~V}$
	${ }_{L} L_{X_{H}}$			10	$\mu \mathrm{A}$	x_{1}	$V_{\text {in }}=V_{\text {D }}$
	${ }^{\prime} \mathrm{LX}_{\mathrm{L}}$			-10			$\mathrm{Vin}=0 \mathrm{~V}$
Clock Leakage Current	${ }^{\prime} \mathrm{L}_{\mathrm{L}}^{\mathrm{H}} \mathrm{H}$			10	$\mu \mathrm{A}$	CL1	$V_{\text {in }}=V_{\text {D }}$
	${ }^{\prime} L_{\text {L }}$			-10			V in $=0 \mathrm{~V}$
Output Voltage					v	PORT, SO, SCR	
	V_{OH}	$V_{D D}-1.0$				$V_{D D}=5 \mathrm{~V} \pm 10 \%$. $\mathrm{IOH}=-1.0 \mathrm{~mA}$
		$V_{D D}-0.5$				$V_{D D}=2.7$ to 5.5 V	. $\mathrm{IOH}^{\text {a }}=-100 \mu \mathrm{~A}$
	V_{L}			0.4	v	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$. $1 \mathrm{OL}=1.6 \mathrm{~mA}$
				0.5		$V_{D D}=2.7$ to 5.5 V	, $\mathrm{IOL}=400 \mu \mathrm{~A}$
Output Leakage Current	${ }^{1} \mathrm{LO}_{\mathrm{H}}$			1	$\mu \mathrm{A}$	PORT, SO, $\overline{\text { SCK }}$ Output Into High Impedance	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$
	${ }^{\mathrm{L}} \mathrm{O}_{\mathrm{L}}$			-1			$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Output Impedance	$\mathrm{R}_{\text {COM }}$			5	k Ω	COM_{0} to COM_{3} (1)	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
			5	50			$V_{D D}=3 \mathrm{~V} \pm 10 \%$
	RSEG			20	k Ω	S_{0} to S_{23} (1)	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
			20				$V_{D D}=3 V \pm 10 \%$
Supply Current (All Outputs Open)	${ }^{\prime} \mathrm{DDO}_{0}$		400	900		Operating Mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
			200	400			$V_{D D}=3 \mathrm{~V} \pm 10 \%$
	${ }^{\prime} \mathrm{DD}_{\mathrm{H}}$		100	250	$\mu \mathrm{A}$	HALT Mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
			40	100			$V_{D D}=3 \mathrm{~V} \pm 10 \%$
	${ }^{\prime} \mathrm{DD}_{5}$		20	40		STOP Mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
			5	10			$V_{D D}=3 \mathrm{~V} \pm 10 \%$

Note: (1) $2.7 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{LCD}}<\mathrm{V}_{\mathrm{DD}}$

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS	
		MIN	TYP	MAX			
System Clock Frequency	${ }^{\prime}{ }_{\phi}$	90	130	170	kHz	$V_{D D}=5 \mathrm{~V} \pm 10 \%, C=33 \mathrm{pF}+5 \%, R=160 \mathrm{k} \Omega * 2 \%$	
		90	80	105		$V_{D D}=2.7$ to $5.5 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF} \pm 5 \%, \mathrm{R}=240 \mathrm{kS} \pm 2 \%$	
	${ }^{f} \phi_{E \times t}$	10	130	200	kHz	External Clock	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		10	80	120			$V_{D D}=3 V \pm 10 \%$
System Clock Rise and Fall Times				0.2	$\mu \mathrm{s}$	External Clock	
System Clock Pulse Width	${ }^{t} \phi_{W^{\prime}}{ }_{\text {H }}$	23		50	$\mu \mathrm{s}$	External Clock	$V_{D D}=5 V \pm 10 \%$
	${ }^{t^{+}{ }^{+} W_{L}}$	40		50			$\mathrm{V}_{\text {DD }}=2.7$ to 5.5 V
Count Clock Frequency	${ }^{f} \times$	25	32	50	kHz	Crystal Oscillator	
	${ }^{f_{x}{ }_{\text {Ext }}}$	DC	32	200	kHz	External Pulse Input	
Count Clock Pulse Rise and Fall Times	$\mathrm{trx}_{\text {r }} \mathrm{tffx}$			0.2	$\mu \mathrm{s}$	External Clock	
Count Clock Pulse Width	${ }^{t} \times W_{H}$	23			μs	External Pulse Input	
	${ }^{1} \times W_{L}$	23					
$\overline{\text { SCK }}$ Cycle	${ }^{t}{ }^{\text {Cr }}$ K	4.0			$\mu \mathrm{s}$	$\overline{\text { SCK }}$ Input	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		6.0					$V_{D D}=3 \mathrm{~V} \pm 10 \%$
$\overline{S C K}$ Pulse Width	${ }^{t} \mathrm{KW}{ }_{\mathrm{H}}$	1.8			$\mu \mathrm{s}$	$\overline{\text { SCK }}$ Input	$V_{\text {DD }}=5 \mathrm{~V}+10 \%$
	${ }^{t_{K} W_{L}}$	3.0					$V_{D D}=3 V+10 \%$
SI Setup Time	${ }_{1} \mathrm{I}$	300			ns	$V_{D D}=5 V \pm 10 \%$	
SI Hold Time	${ }_{1} / \mathrm{H}$	450			ns	$V_{D D}=5 \mathrm{~V} \leq 10 \%$	
SO Delay Time	${ }^{1} \mathrm{OD}$			850	ns	$V_{D D}=5 V \pm 10 \%$	
INTO Pulse Width	${ }^{1} \mathrm{O} W_{H}$	10			$\mu \mathrm{s}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	
	${ }^{{ }^{1}}{ }_{0} W_{L}$						
INT ${ }_{1}$ Pulse Width	${ }_{1}{ }_{1} W_{H}$	10			$\mu \mathrm{s}$	$V_{D D}=5 \mathrm{~V}: 10 \%$	
	${ }_{1}{ }_{1} W_{L}$						
Reset Pu!se Width	${ }^{t} \mathrm{RWW}_{\mathrm{H}}$	10			$\mu \mathrm{s}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	
	${ }^{\text {t }} \mathrm{RW}_{\mathrm{L}}$.						

CAPACITANCE $T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	LIMITS TYP	MAX	UNITS	CONDITIONS
Input Capacitance	C_{l}			20	pF	
Output Capacitance	C_{O}			20	pF	
System Clock Capacitance	C_{ϕ}			20	pF	

NOTES

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD7503 is a μ COM-75 4-bit single chip microcomputer with a 4096×8 ROM, a 224×4 RAM, a programmable 8 -bit timer/event counter, and 4 vectored, prioritized interrupts. It is also capable of directly driving a 24 -segment, 3 or 4 -backplane multiplexed Liquid Crystal Display (LCD). The μ PD7503 is manufactured with a low-power-consumption CMOS process, allowing use of a single power supply between 2.7 V and 5.5 V , and providing programmable power-down capability. It has $231 / 0$ lines, organized into one 3 -bit parallel port, five 4 -bit parallel ports, and one 8 -bit serial port. The μ PD 7503 executes 92 instructions of the μ COM -75 instruction set, and it is available in a 64 -pin plastic flat package.

FEATURES • 4096×8 Bit ROM

- 224×4 Bit RAM
- $15 \mu \mathrm{~s}$ Instruction Cycle Time
- 92 Powerful Instructions
- Table Look-up Capability with LHLT and LAMTL instructions
- Indirect indexed addressing with CALT instruction
- RAM Stack
- Extensive I/O Capability
- One 3-Bit Input Port
- One 4-Bit Input Port
- One 4-Bit Output Port
- Three 4-Bit I/O Ports, of which two are 8-Bit Byte Accessible
- One 8-Bit Serial I/O Port
- Programmable LCD Controller
- 24 Segment Outputs and 4-Backplane Outputs
- Can Directly Drive 3- or 4-Backplane Multiplexed LCDs
- Automatic Synchronization of Segment and Backplane

Signals, Transparent to Program Execution

- Programmable 8-Bit Timer/Event Counter with Crystal Clock Generator
- Vectored, Prioritized Interrupts
- 2 External
- 2 Internal (Timer and Serial I/O)
- Programmable Power-Down Operation with HALT and STOP Instructions
- Built-In System Clock Generator
- Built-In Reset Circuitry
- Single Power Supply, Variable from 2.7V to 5.5V
- `CMOS Technology
- 64-Pin Plastic Flat Package

PIN NAMES	
$\mathrm{SO}_{0} \cdot \mathrm{~S}_{23}$	LCD Segment Outputs
$\mathrm{COMO}_{0}-\mathrm{COM}_{3}$	LCD Backplane Outputs
P01/SCK	Input Port $0_{1} /$ Serial Clock
$\mathrm{PO}_{2} / \mathrm{SO}$	Input Port O_{2} /Serial Output
$\mathrm{PO}_{3} / \mathrm{SI}$	Input Port $\mathrm{O}_{3} /$ Serial Input
$\mathrm{Pl}_{0} / \mathrm{INT}_{0}$	Input Port 10/Interrupt 0
$\mathrm{P}_{10} \cdot \mathrm{Pl}_{3}$	Input Port 1
$\mathrm{P}_{3} \mathrm{P}^{-} \cdot \mathrm{P}_{3}$	Output Port 3
$\mathrm{P}_{4} \mathrm{O} \cdot \mathrm{P4}_{3}$	Input/Output Port 4
$\mathrm{P5}_{5} \cdot \mathrm{P5}_{3}$	Input/Output Port 5
$\mathrm{P}_{6} \mathrm{P}^{-\mathrm{P}^{1} 6_{3}}$	Input/Output Port 6
INT1	Interrupt 1
$\mathrm{X}_{1}, \mathrm{x}_{2}$	Crystal Clock Input, Output
C_{1}, C_{2}	System Clock Input, Output
RESET	Reset
$\mathrm{V}_{\mathrm{LCD}_{1}} \cdot \mathrm{~V}_{\mathrm{LCO}}^{3}$	LCD Power Supply
$V_{\text {DO }}$	Power Supply Positive
VSS	Ground
NC	No Connection

The μ PD 7503 executes the identical instruction set of the μ PD7502, with only two exceptions. First, all instructions referencing the 11 -bit Program Counter PC $10-0$ of the μ PD7502 will now refer to the 12 -bit Program Counter PC_{11-0} of the μ PD7503. Second, the LAMTL instruction below replaces the μ PD 7502 LAMT instruction.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	Crlces	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \\ \hline \end{gathered}$
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			
LOAD													
LAMTL	$A \leftarrow\left[\mathrm{PC}_{10-8, A,(H L)}\right]_{\mathrm{H}}$	Load the upper 4 bits of ROM Table Data at address $\mathrm{PC}_{10-8, \mathrm{~A},(\mathrm{HL})}$ to A ;	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	3	
	$(\mathrm{HL}) \leftarrow\left[\mathrm{PC}_{10.8} \mathbf{A},(\mathrm{HL})\right]_{L}$	Load the lower 4 bits of ROM Table Data at address $\mathrm{PC}_{10}-8, \mathrm{~A},(\mathrm{HL})$ to the RAM location addressed by HL.											

4-BIT SINGLE CHIP MICROCOMPUTER

Abstract

DESCRIPTION The μ PD7507 is a μ COM- 754 -bit single chip microcomputer with a 2048×8 ROM, a 128×4 RAM, a programmable 8 -bit timer/event counter, and 4 vectored, prioritized interrupts. The μ PD7507 is manufactured with a low power consumption CMOS process, allowing use of a single power supply between 2.7 V and 5.5 V , and providing programmable power-down capability. It has 32 I/O lines, organized into eight 4-bit parallel ports and one 8 -bit serial port. The μ PD7507 executes 92 instructions of the μ COM-75 instruction set, and it is available in a 40 pin dual-in-line package.

FEATURES • 2048×8 Bit ROM

- 128×4 Bit RAM
- 10μ s Instruction Cycle Time
- 92 Powerful Instructions
- Table Look-Up Capability with LHLT and LAMTL Instructions
- Indirect Indexed Addressing with CALT Instruction
- RAM Stack
- Extensive I/O Capability
- One 4-Bit Input Port
- Two 4-Bit Output Ports
- Four 4-Bit I/O Ports, of which two are 8-Bit Byte Accessible
- One 4-Bit I/O Port with Output Strobe
- One 8-Bit Serial I/O Port
- Programmable 8-Bit Timer/Event Counter with Crystal Clock Generator
- Vectored, Prioritized Interrupts
- 2 External
- 2 Internal (Timer and Serial I/O)
- Programmable Power-Down Operation with HALT and STOP Instructions
- Built-In System Clock Generator
- Built-In Reset Circuitry
- Single Power Supply, Variable from 2.7V to 5.5V
- CMOS Technology
- 40-Pin Dual-In-Line Package

PIN CONFIGURATION

$\mathrm{PO}_{0} / \mathrm{INT}_{0}$	Input Port $0_{0} /$ Interrupt 0
$\mathrm{PO}_{1} / \overline{\mathrm{SCK}}$	Input Port $0_{1} /$ Sarial Clock
$\mathrm{PO}_{2} / \mathrm{SO}$	Input Port $0_{2} /$ Serial Output
$\mathrm{PO}_{3} / \mathrm{SI}$	Input Port $\mathrm{O}_{3} /$ Serial Input
$\mathrm{P}_{10}-\mathrm{P}_{13}$	Input/Output Port 1
P20/STB	Output Port 20/Port 1 Strobe Output
P2 ${ }_{1} / \mathrm{T}_{\text {OUT }}$	Output Port 21/Timer Output
	Output Port 2
$\mathrm{P}_{3} \mathrm{P}_{-} \mathrm{P}_{3}$	Output Port 3
$\mathrm{P}_{4} \mathrm{O} \cdot \mathrm{P}_{4}$	Input/Output Port 4
$\mathrm{P5}_{5}-\mathrm{P5}_{3}$	Input/Output Port 5
P_{60} - $\mathrm{P}^{\text {P }} 3$	Input/Output Port 6
$\mathrm{P7}_{0}-\mathrm{P7}_{3}$	Input/Output Port 7
INT1	Interrupt 1
$\mathrm{C}_{1}, \mathrm{C}_{2}$	System Clock Input, Output
$\mathrm{X}_{1}, \mathrm{X}_{2}$	Crystal Clock Input, Output
RESET	Reset
$\mathrm{V}_{\text {DD }}$	Power Supply Positive
$\mathrm{V}_{\text {SS }}$	Ground

The μ PD7507 executes the identical instruction set of the μ PD7502, with the sole exception being that the LAMTL instruction below replaces the μ PD 7502 LAMT instruction.

MNEMONIC	Function	description	instruction code									BYTES	cylces	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \\ \hline \end{gathered}$
			D_{7}	D_{6}	D_{5}	D_{4}		3	D_{2}	D_{1}	D_{0}			
Load														
LAMTL	$\mathrm{A} \leftarrow\left[\mathrm{PC}_{10 \cdot 8, \mathrm{~A},(\mathrm{HLL}}\right)_{\mathrm{H}}$	Load the upper 4 bits of ROM Table Data at address $\mathrm{PC}_{10.8} \mathrm{~A},(\mathrm{HL})$ to A ;	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	3	
	$(H L)+\left[\mathrm{PG}_{10-8, \mathrm{~A},(\mathrm{HL}}\right)_{\mathrm{L}} \mathrm{L}$	Load the lower 4 bits of ROM Table Data at address $\mathrm{PC}_{10-8, \mathrm{~A},(\mathrm{HL})}$ to the RAM location addressed by HL												

PACKAGE OUTLINE μ PD7507C

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$
	0.05	0.002

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD7520 is a μ COM-75 4-bit single chip microcomputer with a Programmable Display Controller capable of directly driving a multiplexed 8 -segment, 8 -digit LED Display. It has a 768×8 ROM, a 48×4 RAM, and 24 I/O lines for communication with and control of external circuitry. The μ PD 7520 is manufactured with a lowpower consumption PMOS process, allowing use of a single power supply between -6 V and -10 V . The μ PD 7520 executes 47 instructions of the $\mu \mathrm{COM}-75$ instruction set, and is available in a low-cost 28 -pin plastic dual-in-line package.

FEATURES

- 768×8 Bit ROM
- 48×4 Bit RAM
- $20 \mu \mathrm{~s}$ Instruction Cycle Time, Typical
- 47 Powerful Instructions
- Table Look-Up Capability with LAMT Instruction
- 2-Level Subroutine Stack
- One 4-Bit Input Port
- One 4-Bit I/O Port
- One 2-Bit Output Port (Capable of Driving Piezo Element)
- Programmable Display Controller
- 6 LED Direct Digit Drive Outputs (8 Possible Using P40-1)
- 8 LED Direct Segment Drive Outputs
- Selection of a 4,5,6, or 8-Digit Display Strobe Cycle
- Can Directly Drive 8 -Segment, Multiplexed Displays, or up to an 8×8 Dot Matrix
- Automatic Synchronization of Segment and Digit Signals,

Transparent to Program Execution

- Segment Outputs also Function as Latched, 8-Bit Parallel Output Port
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single Power Supply, Variable from-6V to-10V
- Low Power Consumption: 45 mW , Typical
- P-Channel MOS Technology
- 28-Pin Plastic Dip

PIN NAMES

$\mathrm{S}_{0}-\mathrm{S}_{7}$	Segment Drive Output Port S
$\mathrm{T}_{0}-\mathrm{T}_{5}$	Digit Drive Output Port T
$\mathrm{P} 1_{0}-\mathrm{P} 1_{3}$	Input Port 1
$\mathrm{P} 3_{0}-\mathrm{P} 3_{1}$	Output Port 3
$\mathrm{P}_{0}-\mathrm{P} 4_{3}$	Input/Output Port 4
$C L K$	Clock Input
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Ground

DC CHARACTERISTICS

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS		
		MIN	TYP	MAX				
Input Voltage High	$\mathrm{V}_{\text {IH }}$			-2	V	Ports 1, 4, RESET		$V_{G G}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$
				-1.8				$\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10V
Input Voltage Low	VIL	$\mathrm{V}_{\mathrm{GG}}+1.5$			V	Ports 1, 4, RESET		$\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$
		$\mathrm{VGG}^{+0.8}$						$V_{G G}=-6 \mathrm{~V}$ to -10V
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$			-0.8	V	CLK, External Clock		
Clock Voltage Low	$V_{\phi L}$	-5.0			V	CLK, External Clock		
Input Current High	1/H	45		200	$\mu \mathrm{A}$	Port 1, RESET		$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$
		40		200				$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V
Input Leakage Current High	ILIH			+5	$\mu \mathrm{A}$	Port 4, $\mathrm{V}_{1}=0 \mathrm{~V}$		
Input Leakage Current Low	ILIL_{1}			-5	$\mu \mathrm{A}$	Port 1, RESET, $\mathrm{V}_{1}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-10 \mathrm{~V}$		
	$\mathrm{I}_{\text {LIL }}$			-5	$\mu \mathrm{A}$	Port 4, $\mathrm{V}_{1}=-10 \mathrm{~V}$		
Clock Current High	${ }^{\prime} \mathrm{H}$			0.5	mA	$\begin{aligned} & \text { CLK, External Clock, } V_{\phi H}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V} \end{aligned}$		
Clock Current Low	${ }^{\prime}$ ¢ L			-2.1	mA	CLK, External Clock, $\mathrm{V}_{\phi \mathrm{L}}=-5 \mathrm{~V}$,$\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$		
Output Voltage Low	V_{OL}	VGG+0.5			V	Port 3, No Load		
Output Current High	${ }^{\prime} \mathrm{OH}_{1}$	-1.0			mA	Port 3,	$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$	
		-0.6					$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$	
	IOH_{2}	-2.0			mA	Port 4,	$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$	
		-1.2					$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$	
	IOH_{3}	-5	-10		mA	Port S,	$\mathrm{V}_{\mathrm{O}}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$	
		-3	-6				$\mathrm{V}_{\mathrm{O}}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$	
		-1	-3				$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V	
	${ }^{\prime} \mathrm{OH}_{4}$	-24	-48		mA	Port T,	$\mathrm{V}_{0}=-2.0 \mathrm{~V}, \mathrm{VGG}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$	
		-13	-27				$\mathrm{V}_{\mathrm{O}}=-1.0$	$\mathrm{V}, \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$ (1)
		-9	-18				$\mathrm{V}_{\mathrm{O}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}$	
Output Current Low	${ }^{1} \mathrm{OL} \mathbf{1}_{1}$	1	2		mA	Port 3,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{GG}}+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$ (1)	
		0.1	0.2				$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{GG}}$	+ $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$
		0.3	0.6				$V_{0}=-4.5$	V, $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ (1)
		0.1	0.2				$V_{0}=-2.5$	$\mathrm{V}, \mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$
	L_{2}	4.5	9		mA	Port S,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{GG}}+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$	
		1	2				$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{GG}}+3.5 \mathrm{~V}, \mathrm{VGG}=-6 \mathrm{~V}$ to -10 V	
Output Leakage Current High	ILOH			+5	$\mu \mathrm{A}$	Ports 4, $\mathrm{T}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		
Output Leakage Current Low	ILOL			-5	$\mu \mathrm{A}$	Ports 4, T, $\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		
Supply Current	IGG		-5	-9.8	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V}$, No Load		

Note: (1) Current within 2.5 ms after turning to the low level $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$.

Internal Registers

The ALU, the Accumulator, and the Carry Flag together comprise the central portion of the μ PD7520 architecture. The ALU performs the arithmetic and logical operations, and checks for various results. The Accumulator stores the results generated by the ALU, and acts as the major interface point between the RAM, the I/O ports, and the H and L registers. The Carry Flag can be addressed directly, and can be set during an addition.

Data Pointer Registers

The 2-bit H register and 4-bit L register are two registers which reside externally to the 48×4 bit RAM. They function as the Data Pointer, addressing the rows and columns of the RAM, respectively. They are individually accessible, and the L register can be automatically incremented or decremented.

RAM
The μ PD 7520 has a static 48×4 bit RAM organized into 3 rows by 16 columns. The RAM is used for general purpose data storage or data transfers, and is also used to store Display Data for access by the segment latch of the Display Controller.

ROM

The ROM is the mask-programmable portion of the μ PD7520 which stores the application program. It is organized into a single 768×8 bit field. Execution of the program resident in the ROM is independent of field or page boundary limitations.

Program Counter and Stack Register

The Program Counter is a 10 -bit register which contains the address of a particular instruction being executed. It is incremented during normal operation, but can be modified by various JUMP and CALL instructions. The Stack Register is a LIFO push-down stack register used to save the value of the Program Counter when a subroutine is called. It is organized as 2 words $\times 10$ bits to accommodate 2 levels of subroutine calls.

FUNCTIONAL DESCRIPTION

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX			
Input Capacitance	c_{1}			15	pF	Port 1, RESET	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			20	pF	Ports 3, S, T,	
Input/Output Capacitance	ClO_{10}			20	pF	Port 4	
Clock Capacitance	C_{ϕ}			30	pF	CLK	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	${ }^{\text {fosc }}$	225	300	375	kHz	$\begin{aligned} & R_{f}=1 \mathrm{M} \Omega, V_{G G}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \\ & T_{a}=25^{\circ} \mathrm{C} \end{aligned}$
		180	300	450	kHz	$R_{f}=1 \mathrm{M} \Omega, \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$
	${ }^{\prime}{ }_{\phi}$	100		330	kHz	CLK, External Clock
Clock Rise and Fall Times	t_{r}, t_{f}			2	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }^{t} \mathrm{~W}_{\mathrm{H}}$	1.5		3	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t} \mathrm{~W}_{\mathrm{L}}$	1.5		3	$\mu \mathrm{s}$	

AC CHARACTERISTICS

The NEC Microcomputers' NDS Development System is available for the development of software source code, editing, and assembly into object code. In addition, the ASM-75 Cross Assembler is available for systems supporting the ISIS-II (TM Intel Corp.) Operating System, and the CASM-75 Cross Assembler is available for systems supporting the CP/M (® Digital Research Corp.) Operating System.
The EVAKIT-7520 Evaluation Board is available for production device evaluation and prototype system debugging.

Clock and Reset Circuitry

The Clock Circuitry for the μ PD7520 can be implemented by connecting a resistor from the CLK input to $V_{G G}$. The Power-On-Reset Circuitry for the μ PD7520 can be implemented by connecting a capacitor from the RESET input to V_{SS}.

I/O Capability

The μ PD7520 has 24 I/O lines for communication with and control of external circuitry. The Port configuration is selectable under software control via the Mode Select Register as follows:

Port 1	P^{10-3}	4-Bit Schmidt Input
Port 2	P20-1	2-Bit Latched Output Option, Accessible through Port T (T4-5)
Port 3	$\mathrm{P}^{3} \mathrm{O}-1$	2-Bit Latched Output
Port 4	P40-3	4-Bit Input/Latched Output
Port S	S_{0-7}	Latched 8-Bit Parallel/Segment Drive Output
Port T	T0-5	6-Bit High-Current/Digit Drive Output
	T6-7	Additional 2-Bit Digit Drive Output Option, Accessible through Port 4 (P40-1)

DISPLAY CONTROLLER BLOCK DIAGRAM

нPD7520

The Display Controller is the major feature of the μ PD7520. It automatically performs scan or display strobe operations which would otherwise require considerable software.

The Display Controller interfaces to a common-anode LED display without external components. Connections from the Display Controller to the display are made from Port S to the cathodes (segments), and from Port T to the anodes (digit enables). Up to 6 digits can be driven directly by the μ PD7520 in this manner. A total of 8 digit drives are available by using the two digit drives accessible through Port 40-1, and adding only two small driver transistors and four resistors externally. When Port T4-5 is not used to drive a display, it may be used as a high current driver, accessible through Port 20-1.
During operation, a 3-to-8 decoder selects which digit of a Display Buffer in the RAM will be multiplexed onto the display. The contents of the pair of RAM locations, corresponding to the digit chosen from the Display Buffer, are transferred to the 8 latched outputs of Port S, and the corresponding Port T digit drive is enabled. After 13 machine cycles have been completed, the digit drive is disabled, the decoder is updated to select the next digit of the Display Buffer to be multiplexed onto the display, and this cycle is repeated. Thus, the μ PD7520 program needs only to load the properly decoded display data into the Display Buffer and it immediately appears on the display. Operation in this manner is completely transparent to the μ PD7520, and requires no intervention once the proper display mode has been selected.
The use of a Mode Select Register enhances the utility of the Display Controller by allowing a choice of a $4,5,6$, or 8 digit display strobe cycle output, or a direct latched output. A choice can also be made between one of the two possible Display Buffers, resident in either Row 0 or Row 2 of the RAM.

The Mode Select Register (MSR) is a separate 4-bit register of the Display Controller which determines the function that the Display Controller will perform. The value of the MSR can range from 016 to F_{16}, and it can be modified by data in the Accumulator. This is accomplished by execution of the OPL (output-to-port) instruction, where L (the lower 4-bits of the data pointer) is set to the value B16 in order to address the MSR. Execution of this instruction transfers the contents of the Accumulator into the MSR, and the Display Controller begins operating according to the following table:

M3	M2	M_{1}	M_{0}	DISPLAY CONTROLLER OPERATION
0	0	0	0	Reset (S_{0-7} : High level) ; (T_{0-5} : OFF)
0	0	0	1	8-bit parallel output: $\mathrm{S}_{0-3} \leftarrow(0 E H) ; \mathrm{S}_{4-7} \leftarrow(0 \mathrm{FH})$; $\left(\mathrm{T}_{0-3}: \mathrm{OFF}\right)$
0	0	1	0	Not used
0	0	1	1	Not used
0	1	0	0	4-digit display (T_{0-3}); Segment data: $00 \mathrm{H}-07 \mathrm{H}$
0	1	0	1	5 -digit display (T_{0-4}); Segment data: $00 \mathrm{H}-09 \mathrm{H}$
0	1	1	0	6-digit display (T_{0-5}) ; Segment data: $00 \mathrm{H}-0 \mathrm{BH}$
0	1	1	1	8 -digit display (T_{0}-7) ; Segment data: $00 \mathrm{H}-0 \mathrm{FH}$
1	0	0	0	Not used
1	0	0	1	8-bit parallel output: $\mathrm{S}_{0-3} \leftarrow(2 \mathrm{EH}) ; \mathrm{S}_{4-7} \leftarrow(2 \mathrm{FH})$; $\left(\mathrm{T}_{0-3}\right.$: OFF)
1	0	1	0	Not used
1	0	1	1	Not used
1	1	0	0	4-digit display (T_{0-3}); Segment data: $20 \mathrm{H}-27 \mathrm{H}$
1	1	0	1	5 -digit display (T_{0-4}); Segment data: $20 \mathrm{H}-29 \mathrm{H}$
1	1	1	0	6 -digit display (T_{0}-5) ; Segment data: $20 \mathrm{H}-2 \mathrm{BH}$
1	1	1	1	8 -digit display (T_{0-7}) ; Segment data: $20 \mathrm{H}-2 \mathrm{FH}$

The MSB, M3, of the Mode Select Register defines the Row of RAM (0 or 2) to be used for the Display Buffer and M_{2} distinguishes between a digit strobe cycle output, or a direct latched output.

INSTRUCTION SET SYMBOL DEFINITIONS

The following abbreviations are used in the description of the μ PD7520 instruction set:

SYMBOL	EXPLANATION AND USE
A	Accumulator
address	Immediate address
C	Carry Flag
data	Immediate data
D_{n}	Bit " n " of immediate data or immediate address
H	Register H
HL	Register pair HL
L	Register L
P()	Parallel Input/Output Port addressed by the value within the brackets
PC n	Bit " n " of Program Counter
S	Number of bytes in next instruction when Skip Condition occurs
STACK	Stack Register
I $)$	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\leftrightarrow	Exchange
-	Complement
\forall	LOGICAL Exclusive-OR

INSTRUCTION SET

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE										SKIP
			D7	D6	D5	D_{4}	D_{3}	D_{2}	D1	D0	BYTES	cYCLES	CONDITION
LOAD													
LAI data	$A \leftarrow D_{3.0}$	Load A with 4 bits of immediate data; execute succeeding LAI instructions as NOP instructions	0	0	0	1	D_{3}	D_{2}	D1	Do	1	1	String
LHI data	$H \leftarrow D_{1-0}$	Load H with 2 bits of immediate data	0	0	1	0	1	0	D_{1}	D_{0}	1	1	
LHLI data	HL - D4-0	Load HL with 5 bits of immediate data; execute succeeding LHLI instructions as NOP instructions	1	1	0	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	String
LAMT	$\begin{aligned} & A \leftarrow\left[P C_{9-6}, 0, C, A\right]_{H} \\ & (H L) \leftarrow\left[P C_{9-6}\right. \\ & 0, C, A]_{L} \end{aligned}$	Load the upper 4 bits of ROM Table Data at address PC9-6, 0, C, A to A Load the lower 4 bits of ROM Table Data at address PC9-6, $0, C, A$ to the RAM location addressed by HL	0	1	0	1	1	1	1	0	1	2	
L	$A \leftarrow(H L)$	Load A with the contents of RAM addressed by HL	0	1	0	1	0	0	1	0	1	1	
LIS	$\begin{aligned} & A \leftarrow(H L) \\ & L=L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Load A with the contents of RAM addressed by HL; increment L; skip if $L=O H$	0	1	0	1	0	0	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
LDS	$\begin{aligned} & A \leftarrow(H L) \\ & L=L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Load A with the contents of RAM addressed by HL; decrement L; skip if $L=F H$	0	1	0	1	0	0	0	0	1	$1+5$	$L=F H$
LADR address	$A \leftarrow\left(D_{5-0}\right)$	Load A with the contents of RAM addressed by 6 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{0} \end{aligned}$	2	2	
STORE													
ST	$(H L) \leftarrow A$	Store A into the RAM location addressed by HL	0	1	0	1	0	1	1	1	1	. 1	
STII data	$\begin{aligned} & (H L) \leftarrow D_{3-0} \\ & L \leftarrow L+1 \end{aligned}$	Store 4 bits of immediate data into the RAM location addressed by HL; increment L	0	1	0	0	D_{3}	D_{2}	D_{1}	D_{0}	. 1	1	

INSTRUCTION SET (CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYtes	CYCLES	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
			D7	D6	D5	D4	D3	D2	D1	Do			
EXCHANGE													
XAH	$\begin{aligned} & A_{1-0} \leftrightarrow \mathrm{H}_{1-0} \\ & A_{3-2} \leftarrow 00 \mathrm{H} \\ & \hline \end{aligned}$	Exchange A with H	0	1	1	1	1	0	1	0	1	1	
XAL	$A \leftrightarrow L$	Exchange A with L	0	1	1	1	1	0	1	1	1	1	
X	$A \leftrightarrow(H L)$	Exchange A with the contents of RAM addressed by HL	0	1	0	1	0	1	1	0	1	1	
XIS	$\begin{aligned} & A \leftarrow(H L) \\ & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Exchange A with the contents of RAM addressed by HL : increment L; skip if $L=\mathbf{O H}$	0	1	0	1	0	1	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
XDS	$\begin{aligned} & A \leftrightarrow(H L) \\ & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Exchange A with the contents of RAM addressed by HL: decrement L; skip if $L=F H$	0	1	0	1	0	1	0	0	1	$1+5$	$\mathbf{L}=\mathbf{F H}$
XADR address	$\mathrm{A} \leftrightarrow\left(\mathrm{D}_{5-0}\right)$	Exchange A with the contents of RAM addressed by $\mathbf{6}$ bits of immediate data	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & \hline \mathbf{1} \\ & \mathbf{D}_{\mathbf{0}} \end{aligned}$	2	2	
ARITHMETIC AND LOGICAL													
AISC data	$A \leftarrow A+D_{3-0}$ Skip if overflow	Add 4 bits of immediate data to \mathbf{A}; Skip if overflow is generated	0	0	0	0	D3	D_{2}	D1	D_{0}	1	$1+5$	Overfiow
ASC	$A \leftarrow A+(H L)$ Skip if overflow	Add the contents of RAM addressed by HL to \mathbf{A}; skip if overflow is generated	0	1	1	1	1	1	0	1	1	$1+5$	Overfiow
ACSC	$A, C \leftarrow A+(H L)+C$ Skip if $\mathrm{C}=1$	Add the contents of RAM addressed by HL and the carry flag to A; skip if carry is generated	0	1	1	1	1	1	0	0	1	$1+5$	C=1
EXL	$A \leftarrow A \forall(H L)$	Perform a LOGICAL Exclusive-OR operation between the contents of RAM addressed by HL and A; store the result in A	0	1	1	1	1	1	1	0	1	1	
ACCUMULATOR AND CARRY FLAG													
CMA	$A \leftarrow \bar{A}$	Complement A	0	1	1	1	1	1	1	1	1	1	
RC	$C \leftarrow 0$	Reset Carry Flag	0	1	1	1	1	0	0	0	1	1	
SC	$C \leftarrow 1$	Set Carry Flag	0	1	1	1	1	0	0	1	1	1	
INCREMENT AND DECREMENT													
ILS	$\begin{aligned} & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Increment L; Skip if $\mathrm{L}=\mathbf{O H}$	0	1	0	1	1	0	0	1	1	$1+5$	$\mathrm{L}=\mathbf{O H}$
IDRS address	$\begin{aligned} & \left(D_{5-0}\right) \leftarrow\left(D_{5-0}\right)+1 \\ & \text { Skip if }\left(D_{5-0}\right)=O H \end{aligned}$	Increment the contents of RAM addressed by 6 bits of immediate data; Skip if the contents $=\mathbf{O H}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{0} \end{aligned}$	2	$2+5$	$\left(D_{5-0}\right)=0 \mathrm{H}$
DLS	$\begin{aligned} & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Decrement L; Skip if $\mathrm{L}=\mathrm{FH}$	0	1	0	1	1	0	0	0	1	$1+5$	$\mathrm{L}=\mathrm{FH}$
DDRS address	$\begin{aligned} & \left(D_{5-0}\right)-\left(D_{5-0}\right)-1 \\ & \text { Skip if }\left(D_{5-0}\right)=F H \end{aligned}$	Decrement the contents of RAM addressed by 6 bits of immediate data, skip if the contents = FH	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	1 \mathbf{D}_{4}		$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	$2+5$	$\left(D_{5-0}\right)=F H$
BIT MANIPULATION													
RMB data	$(\mathrm{HL})_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL to zero	0	1	1	0	1	0	D1	Do	1	1	
SMB data	$(\mathrm{HL})_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL to one	0	1	1	0	1	1	D1	D_{0}	1	1	
JUMP, CALL, AND RETURN													
JMP address	PC_{9-0} - Dg_{9-0}	Jump to the address specified by 10 bits of immediate data	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{D}_{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & D_{6} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{4} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \hline \end{aligned}$	2	2	
JAM data	$\begin{aligned} & \mathrm{PC}_{9-8} \leftarrow \mathrm{D}_{1-0} \\ & \mathrm{PC}_{7-4} \leftarrow \mathrm{~A} \\ & \mathrm{PC}_{3-0} \leftarrow(\mathrm{HL}) \end{aligned}$	Jump to the address specified by 2 bits of immediate data, A. and the RAM contents addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{0} \end{aligned}$	2	2	
JCP address	$\mathrm{PC}_{5-0} \leftarrow \mathrm{D}_{5-0}$	Jump to the address specified by the higher-order bits PC9-6 of the PC, and 6 bits of immediate data	1	0	D5	D4	D3	D_{2}	D1	Do	1	1	

INSTRUCTION SET

(CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	CYCLES	SKIPCONDITION
			D7	D6	D5	D4	D3	D_{2}	D1	D_{0}			
CALL address	$\begin{aligned} & \text { STACK } \leftarrow P C+2 \\ & \text { PC }_{9-0} \leftarrow D_{9-0} \end{aligned}$	Store a return address (PC + 2) in the stack; call the subroutine program at the location specified by 10 bits of immediate data	$\begin{aligned} & 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{6} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4}, \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & D_{9} \\ & D_{1} \end{aligned}$	$\begin{aligned} & D_{8} \\ & D_{0} \end{aligned}$	2	2	
CAL address	$\begin{aligned} & \text { STACK } \leftarrow \mathrm{PC}+1 \\ & \mathrm{PC}_{9-0} \leftarrow 01 \mathrm{D}_{4} \mathrm{D}_{3} \\ & 000 \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \end{aligned}$	Store a return address (PC +1) in the stack; call the subroutine program at one of the 32 special locations specified by 5 bits of immediate data	1	1	1	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
RT	PC ¢ STACK	Return from Subroutine	0	1	0	1	0	0	1	1	1	1	
RTS	PC \leftarrow STACK Skip unconditionally	Return from Subroutine; skip unconditionally	0	1	0	1	1	0	1	1	1	$1+\mathrm{S}$	Unconditional
SKIP													
SKC	Skip if $\mathrm{C}=1$	Skip if carry flag is true	0	1	0	1	1	0	1	0	1	$1+5$	$\mathrm{C}=1$
SKMBT data	Skip if (HL) bit $=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL is true	0	1	1	0	0	1	D_{1}	Do	1	$1+\mathrm{S}$	$(\mathrm{HL})_{\text {bit }}=1$
SKMBF data	Skip if $(\mathrm{HL})_{\text {bit }}=0$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HI is folse	0	1	1	0	0	0	D_{1}	D_{0}	1	$1+5$	$(\mathrm{HL})_{\text {bit }}=0$
SKABT data	Skip if $A_{\text {bit }}=1$	Skip if the single bit denoted by $D_{1} D_{0}$) of A is true	0	1	1	1	0	1	D_{1}	Do	1	$1+5$	$A_{\text {bit }}=1$
SKAEI data	Skip if $A=$ data	Skip if A equals 4 bits of immediata data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{0} \end{aligned}$	2	$2+5$	$A=$ data
SKAEM	Skip if $A=(H L)$	Skip if A equals the RAM contents addressed by HL	0	1	0	1	1	1	1	1	1	1+S	$A=(\mathrm{HL})$
PARALLEL I/O													
IPL	$A \leftarrow P(L)$	Input the Port addressed by L to A	0	1	1	1	0	0	0	0	1	1	
IP1	$A \leftarrow P 1$	Input Port 1 to A	0	1	1	1	0	0	0	1	1	1	
OPL	$\mathrm{P}(\mathrm{L}) \leftarrow \mathrm{A}$	Output A to the port addressed by L	0	1	1	1	0	0	1	0	1	1	
OP3	$\mathrm{P} 3 \leftarrow \mathrm{~A}_{1-0}$	Output the lower 2 bits of A to Port 3	0	1	1	1	0	0	1	1	1	1	
CPU CONTROL													
NOP		Perform no operation; consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	-10° to $+70^{\circ} \mathrm{C}$
Storage Temperature	-40° to $+125^{\circ} \mathrm{C}$
Supply Voltage	-15 to +0.3 Volts
Input Voltage	-15 to +0.3 Volt
Output Voltage	-15 to +0.3 Volt
Output Current (IOH Total)	-100
(1OL Total)	. . 90 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

PACKAGE OUTLINE μ PD7520C

PLASTIC

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$
	0.05	0.002

4-BIT MICROPROCESSOR $\mu P D 750 X$ EVALUATION CHIP

DESCRIPTION The μ PD7500 is a μ COM- 754 -bit microprocessor with a 256×4 RAM, a programmable 8 -bit timer/event counter, and 5 vectored, prioritized interrupts. It is capable of addressing 8,192 bytes of external memory, and also functions as the prototype Evaluation Chip for the μ PD 750 X family of 4 -bit single chip microcomputers. The μ PDD 7500 is manufactured with a low-power-consumption CMOS process, allowing use of a single power supply between 2.7 and 5.5 V , and providing programmable power-down capability. It has 46 I/O lines, organized into eight 4 -bit parallel ports, one 14 -bit parallel address/instruction port, and one 8 -bit serial port. The μ PD 7500 executes 102 instructions of the $\mu \mathrm{COM}-75$ instruction set, and it is available in a 64 pin quad-in-line package.
FEATURES

- 4-Bit Microprocessor
- Evaluation Chip for μ PD750X Family of 4-Bit Single Chip Microcomputers
- Addresses up to 8,192 Bytes of External Memory
- 256×4 Bit RAM
- 10μ Instruction Cycle Time
- 102 Powerful Instructions
- Table Look-up Capability with LHLT and LAMTL instructions
- Indirect indexed addressing with CALT instruction
- RAM Stack
- Extensive I/O Capability
- One 4-Bit Input Port
- Two 4-Bit Output Ports
- Four 4-Bit I/O Ports, of which two are 8-Bit Byte Accessible
- One 4-Bit I/O Port with Output Strobe
- One 14-Bit Address/Instruction Port
- One 8-Bit Serial I/O Port
- Programmable 8-Bit Timer/Event Counter with Crystal Clock Generator
- Vectored, Prioritized Interrupts
- 3 External
- 2 Internal (Timer and Serial I/O)
- Programmable Power-Down Operation with HALT and STOP Instructions
- Built-In System Clock Generator
- Built-In Reset Circuitry
- Single Power Supply, Variable from 2.7V to 5.5V
- CMOS LSI
- 64-Pin Quad-In-Line Package

PACKAGE OUTLINE μ PD7500B

Ceramic

ITEM	MILLIMETERS	INCHES
A	41.5	1.634 MAX
B	1.05	0.042
C	2.54	0.1
D	0.5 ± 0.1	0.2 ± 0.004
E	39.4	1.55
F	1.27	0.05
G	5.4 MIN	0.21 MIN
I	2.35 MAX	0.13 MAX
J	24.13	0.95
K	19.05	0.75
L	15.9	0.626
M	0.25 ± 0.05	0.01 ± 0.002

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER ROM-LESS DEVELOPMENT DEVICE

DESCRIPTION The NEC μ PD7800 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-channel Silicon Gate MOS Technology. Intended as a ROM-less development device for NEC μ PD7801/7802 designs, the μ PD7800 can also be used as a powerful microprocessor in volume production enabling program memory flexibility. Basic on-chip functional blocks include 128 bytes of RAM data memory, 8-bit ALU, 32 I/O lines, Serial I/O port, and 12-bit timer. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of 8080A/8085A peripheral and memory products. Total memory address space is 64 K bytes.

FEATURES - NMOS Silicon Gate Technology Requiring Single +5 V Supply.

- Single-Chip Microcomputer with On-Chip ALU, RAM and I/O
- 128 Bytes RAM
- 32 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five-Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 64K Byte Memory Address Range
- Wait State Capability
- Alternate Z80™ Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack Capabilities
- Fast 2μ s Cycle Time

PIN CONFIGURATION

- Bus Sharing Capabilities

PIN NO.	DESIGNATION	FUNCTION
1, 49-63	$\mathrm{AB}_{0}-\mathrm{AB}_{15}$	(Tri-State, Output) 16-bit address bus.
2	$\overline{\text { EXT }}$	(Output) EXT is used to simulate μ PD7801/7802 external memory reference operation. EXT distinguishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with $1 / O$ and memory.
11	INT_{0}	(Input, active high) Level-sensitive interrupt input.
12	INT1	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT_{2} is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a 1, INT $_{2}$ is rising edge sensitive. When $E S$ is set to $0, I N T_{2}$ is falling edge sensitive.
14	$\overline{\text { WAIT }}$	(Input, active low) $\overline{\text { WAIT }}$, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) $\overline{\mathrm{RD}}$ is used as a strobe to gate data from external devices on the data bus. $\overline{R D}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) $\overline{\text { RESET initializes the } \mu \text { PD7801. }}$
30	STB	(Output) Used to simulate μ PD7801 Port E operation, indicating that a Port E operation is being performed when active.
31	X 1	(Input) Clock Input
33-40	$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	(Output) 8-bit output port with latch capability.
41-48	$\mathrm{PB}_{0}-\mathrm{PB} 7$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

μ PD7800

Architecturally consistent with μ PD7801/7802 devices, the μ PD7800 uses a slightly different pin-out to accommodate for the address bus and lack of on-chip clock generator. For complete μ PD7800 functional operation, please refer to μ PD7801 product information. Listed below are functional differences that exist between μ PD7800 and μ PD7801 devices.

μ PD7800/7801 Functional Differences

"

1. The functionality of μ PD7801 Port E is somewhat different on the μ PD7800. Because the μ PD7800 contains no program memory, the address bus is made accessible to address external program memory. Thus, lines normally used for Port E operation with the μ PD7801 are used as the address bus on the μ PD7800. $A_{0} 0^{-}$ AB_{15} is active during memory access 0 through 4095.
2. Consequently Port E instructions (PEX, PEN, and PER) have different functionality.
PEX Instruction - The contents of B and C register are output to the address bus. The value 01 H is output to the data bus. STB becornes active.

PEN Instruction - B and C register contents are output to the address bus. The value 02 H is output to the data bus. STB becomes active.
PER Instruction - The address bus goes to the high impedance state. The value 04 H is output to the data bus. STB becomes active.
3. ON-CHIP CLOCK GENERATOR. The μ PD7800 contains no internal clock generator. An external clock source is input to the X_{1} input.
4. PIN 30. This pin functions as the $\times 2$ crystal connection on the μ PD7801. On the μ PD7800, pin 30 functions as a strobe output (STB) and becomes active when a Port E instruction is executed. This control signal is useful in simulating μ PD7801 Port E operation - indicating that a port E operation is being performed.
5. PIN 2. Functions as the Φ out clock output used for synchronizing system external memory and I/O devices, on the μ PD7801. On the μ PD7800, this pin is used to simulate external memory reference operation of the μ PD7801. $\overline{\text { EXT }}$ is used to distinguish between internal and external memory references and goes low when location 4096 through 65407 are accessed.

RECOMMENDED CLOCK DRIVE CIRCUIT

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin .-0.3 V to +7.0 V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10 \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	VIL	0		0.8	V	
Input High Voltage	VIH1	2.0		V_{CC}	V	Except $\overline{\text { SCK, }} \times 1$
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		V_{CC}	V	$\overline{\mathrm{SCK}}$, $\times 1$
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	VOH^{1}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	2.0			\checkmark	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=O V$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=V_{\text {CC }}$
Low Level Output Leakage Current	${ }_{\text {I LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC		110	200	mA	

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C}, \mathrm{V} C C=G N D=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at OV
Output Capacitance	C_{0}			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS			TEST CONDITIONS
		MIN	MAX	UNITS	
Xout Cycle Time	${ }^{t} \mathrm{CY} \times$	454	2000	ns	${ }^{\text {t }}$ CYX
X OUT Low Level Width	${ }^{t} \times X L$	212		ns	${ }^{t} \times \times \mathrm{L}$
XOUT High Level Width	${ }^{1} \times \times \mathrm{H}$	212		ns	${ }^{t} \times \times \mathrm{H}$

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\mathrm{RD}}$ L.E. $\rightarrow \mathrm{X}_{\text {OUT }}$ L.E.	${ }^{\text {t } R \mathrm{X}}$	20	.	ns	
Address (PE_{0-15}) \rightarrow Data Input	${ }^{\text {t } A D 1}$		$550+500 \times \mathrm{N}$	ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow Address	tRA	200(T3); 700(T4)		ns	
$\overline{\text { RD L.E. } \rightarrow \text { Data Input }}$	${ }^{\text {tRD }}$		$350+500 \times \mathrm{N}$	ns	
RD T.E. \rightarrow Data Hold Time	${ }^{\text {t }} \mathrm{RDH}$	0		ns	
$\overline{\mathrm{RD}}$ Low Level Width	${ }^{\text {t RR }}$	$850+500 \times N$		ns	
$\overline{\mathrm{RD}}$ L.E. $\rightarrow \overline{\text { WAIT }}$ L.E.	${ }^{\text {t }}$ RWT		450	ns	
Address (PE $_{0-15}$) \rightarrow WAIT L.E.	${ }^{\text {t } A W T 1}$		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from $X_{\text {OUT }}$ L.E.)	tWTS	- 180		ns	
WAIT Hold Time (Referenced from $\mathrm{X}_{\text {OUT L L.E.) }}$	${ }^{\text {t WTH }}$	0		ns	
M1 \rightarrow RD L.E.	${ }^{\text {t MR }}$	200		ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow M1	${ }^{\text {t }}$ RM	200		ns	$x=500 \mathrm{~ns}$
$1 \mathrm{O} / \overline{\mathrm{M}} \rightarrow \mathrm{RD}$ L.E.	${ }_{\text {t }} \mathrm{R}$	200		ns	
$\overline{R D}$ T.E. \rightarrow IO/M	${ }_{\text {t }}^{\text {R I }}$	200		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow WR L.E.	${ }^{\text {t }} \times \mathrm{W}$		270	ns	
Address (PE_{0-15}) \rightarrow $\mathrm{X}_{\text {OUT }}$ T.E.	${ }^{t} A x$		300	ns	
Address (PE 0-15) \rightarrow Data Output	${ }^{\text {t }}$ AD2	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \overline{\mathrm{WR}} \\ & \text { T.E. } \end{aligned}$	${ }^{\text {t }}$ WW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	tWD	150		ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \overline{W R} \text { L.E. } \end{aligned}$	${ }^{\text {t }}$ AW	400		ns	
$\overline{\text { WR T.E. } \rightarrow \text { Address }}$ Stabilization Time	twA	200		ns	
$\overline{\text { WR Low Level Width }}$	tWW	$600+500 \times N$		ns	
IO/M $\rightarrow \overline{\mathrm{WR}}$ L.E.	tiw	500		ns	
$\overline{\text { WR T.E. } \rightarrow \text { IO/M }}$	${ }^{\text {tWI }}$	250		ns	

AC CHARACTERISTICS (CONT.)

SERIALI/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t C M }}$	800		ns	$\overline{\text { SCK }}$ Input
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }^{\text {t }} \mathrm{KKL}$	350		ns	SCK Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	${ }^{\text {t K K H }}$	350		ns	SCK Input
		400		ns	SCK Output
SI Set-Up Time (referenced from SCK T.E.)	${ }^{\text {t }}$ SIS	140		ns	
SI Hold Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {tSIH }}$	260		ns	
	${ }^{\text {t K O }}$		180	ns	
$\overline{\text { SCS }}$ High \rightarrow SCK L.E.	${ }^{\text {t }}$ CSK	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS }}$ Low	${ }_{\text {t K CS }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	${ }^{\text {t }}$ KSA		260	ns	

PEN, PEX, PER OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
X_{1} L.E. $\rightarrow \overline{\mathrm{EXT}}$	${ }_{\text {t }}$ XE		250	ns	${ }^{\text {t }} \mathrm{C} Y \mathrm{X}=500 \mathrm{~ns}$
Address (AB_{0-15}) \rightarrow STB L.E.	${ }^{\text {t }}$ AST	200			
Data (DB_{0-7}) \rightarrow STB L.E.	${ }^{\text {t DST }}$	200			
STB Hold Time	tSTST	300			
STB \rightarrow Data	${ }^{\text {tSTD }}$	400			

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from $X_{\text {OUT }}$ L.E.)	$\mathrm{t}^{\text {HDS }} 1$	100		ns	
	tHDS_{2}	100		ns	
HOLD Hold Time (referenced from $\emptyset_{\text {OUT }}$ L.E.)	${ }^{\text {t }} \mathrm{HDH}$	100		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow HLDA	${ }^{\text {t }} \times \mathrm{HA}$		100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	${ }^{\text {t HABF }}$	-150	150	ns	
HLDA Low \rightarrow Bus Enable	${ }^{\text {t HABE }}$		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
$V_{O L}=0.8 \mathrm{~V}$
(3) L.E. $=$ Leading Edge, T.E. $=$ Trailing Edge
${ }^{\text {t}} \mathbf{C Y X}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{t} \mathrm{RX}$	(1/25) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {tra }}$ (T_{3})	(1/2) T-50	MIN	ns
$\mathrm{t}_{\mathrm{RA}}\left(\mathrm{T}_{4}\right)$	(3/2) T-50	MIN	ns
${ }^{\text {t }} \mathrm{RD}$	(1+N) T-150	MAX	ns
${ }^{\text {R R R }}$	$(2+N) T-150$	MIN	ns
${ }^{\prime}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {WWT }}{ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {m }}$ MR	(1/2) T-50	MIN	ns
${ }^{\text {tRM }}$	(1/2) T-50	MIN	ns
t/R	(1/2) T-50	- MIN	ns
${ }^{\text {t }} \mathrm{R}$ I	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ XW	(27/50) T	MAX	ns
${ }^{t} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	$(3 / 2+N) T-150$	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	(3/2+N) T-150	MIN	ns
${ }_{\text {t }} \mathrm{W}$	T	MIN	ns
${ }^{\text {t }}$ WI	(1/2) T	MIN	ns
${ }^{\text {t HABE }}$	(1/2) T-150	MAX	ns
${ }^{\text {t }}$ AST	(2/5) T	MIN	ns
${ }^{\text {t }}$ DST	(2/5) T	MIN	ns
${ }^{\text {t }}$ STST	(3/5) T	MIN	ns
${ }^{\text {t STD }}$	(4/5) T	MIN	ns

Notes: (1) $N=$ Number of Wait States
(2) $T={ }^{t} \mathrm{CYX}$
(3) Only above parameters are ${ }^{t} C Y X$ dependent
(4) When a crystal frequency other than 4 MHz is used (${ }^{t} \mathrm{CYX}{ }^{\prime}=500 \mathrm{~ns}$) the above equations can be used to calculate AC parameter
values.

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS

CLOCK TIMING

WRITE OPERATION

TIMING WAVEFORMS (CONT.)

PEN, PEX, PER OPERATION

HOLD OPERATION

NOTES

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER WITH 4K ROM

PRODUCT DESCRIPTION
The NEC μ PD7801 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-Channel Silicon Gate MOS technology.
The NEC μ PD7801 is intended to serve a broad spectrum of 8 -bit designs ranging from enhanced single chip applications extending into the multi-chip microprocessor range. All the basic functional blocks -4096×8 of ROM program memory, 128×8 of RAM data memory, 8 bit ALU, 48 I/O lines, Serial I/O port, 12-bit timer, and clock generator are provided on-chip to enhance stand-alone applications. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of the $8080 \mathrm{~A} / 8085 \mathrm{~A}$ peripherals and memory products. Total memory space can be increased to 64 K bytes.
The powerful 140 instruction set coupled with 4 K bytes of ROM program memory and 128 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the μ PD7801 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are on-chip.

FEATURES - NMOS Silicon Gate Technology Requiring + 5 V Supply

- Complete Sinale-Chip Microcomputer with On-Chip ROM; RAM and I/O - 4K Bytes ROM

$$
\text { - } 128 \text { Bytes RAM }
$$

- 48 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 60K Bytes External Memory Address Range
- On-Chip Clock Generator
- Wait State Capability
- Alternate Z80 TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack Capabilities
- Fast $2 \mu \mathrm{~s}$ Cycle Time
- Bus Sharing Capabilities

PIN NO.	DESIGNATION	FUNCTION
1, 49-63	$A B_{0}-A B_{15}$	(Tri-State, Output) 16-bit address bus.
2	$\overline{\text { EXT }}$	(Output) EXT is used to simulate μ PD7801/7802 external memory reference operation. EXT distinguishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8 -bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT_{0}	(Input, active high) Level-sensitive interrupt input.
12	INT1	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT_{2} is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When $E S$ is set to $0, I N T_{2}$ is falling edge sensitive.
14	$\overline{\text { WAIT }}$	(Input, active low) $\overline{\text { WAIT }}$, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) $\overline{R D}$ is used as a strobe to gate data from external devices onto the data bus. $\overline{R D}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) RESET initializes the μ PD7801.
30	STB	(Output) Used to simulate μ PD7801 Port E operation, indicating that a Port E operation is being performed when active.
31	X_{1}	(Input) Clock Input
33-40	PA0-PA7	(Output) 8-bit output port with latch capability.
41-48	$\mathrm{PB}_{0}-\mathrm{PB} 7$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

FUNCTIONAL DESCRIPTION

Memory Map

The μ PD7801 can directly address up to 64 K bytes of memory. Except for the on-chip ROM ($0-4095$) and RAM ($65,408-65,535$), any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the μ PD7801 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.

I/O Ports

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

Port A

Port A is an 8 -bit latched output port. Data can be readily transferred between the aiccumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to be either an Input
(Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8 -bit I/O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

	MODE $C_{n}=0$	MODE $\mathrm{C}_{\mathrm{n}}=\mathbf{1}$
PC_{0}	Output	Input
PC_{1}	Output	Input
PC_{2}	$\overline{\text { SCS } \text { Input }}$	Input
PC_{3}	SAK Output	Output
PC_{4}	To Output	Output
PC_{5}	IO/M Output	Output
PC_{6}	HLDA Output	Output
PC_{7}	HOLD Input	Input

Port E

Port \mathbf{E} is a 16 -bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the Per instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus - the PEN instruction sets this mode which allowis for memory expansion of up to 4 K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $P E_{8-15}$ and $P E_{0-7}$, respectively.

FUNCTIONAL DESCRIPTION (CONT.)

Timer Operation

TIMER BLOCK DIAGRAM

A programmable 12 -bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from $4 \mu \mathrm{~s}$ to $16 \mu \mathrm{~s}$ in duration. The timer consists of a prescaler which decrements a 12 -bit counter at a fixed $4 \mu \mathrm{~s}$ rate. Count pulses are loaded into the 12-bit down counter through timer register (TM0 and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TM0 and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (TO) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

Serial Port Operation

SERIAL PORT BLOCK DIAGRAM

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC μ PD7801 to serially interface with external devices.

Serial Transfers are synchronized with either the internal clock or an external clock input ($\overline{\mathrm{SCK}}$). The transfer rate is fixed at $1 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $1 \mathrm{Mbit} /$ second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external $\overline{\text { SCR }}$) is enabled when the Serial Chip Select Signal ($\overline{\mathrm{SCS}}$) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.

Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

Interrupt Structure

The μ PD7801 provides a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and non-maskable software interrupt. Each interrupt when activated branches to a designated memory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	5	Ext., Rising/Falling edge sensitive
SOFTI	96	1	Software Interrupt

FUNCTIONAL
 DESCRIPTION (CONT.)

RESET (Reset)

An active low-signal on this input for more than 4μ s forces the μ PD7801 into a Reset condition. $\overline{\operatorname{RESET}}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to $\mathrm{FFH}_{\mathrm{H}}$, and Port B becomes an input port.
- The contents of the MODE C register are set to FFH_{H}. Port C becomes an I/O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to FFFH and the timer F / F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE0-15), Data Bus ($\mathrm{DB}_{0}-7$), $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ go to a high impedance state.
Once the $\overline{\operatorname{RESET}}$ input goes high, the program is started at location 0000 H .
REGISTERS
The μ PD7801 contains sixteen 8 -bit registers and two 16 -bit registers.

PC
SP

B	C
D	E
H	L

$\left.\begin{array}{|c|c|}\hline \mathrm{V}^{\prime} & \mathrm{A}^{\prime} \\ \hline \mathrm{B}^{\prime} & \mathrm{C}^{\prime} \\ \hline \mathrm{D}^{\prime} & \mathrm{E}^{\prime} \\ \hline \mathrm{H}^{\prime} & \mathrm{L}^{\prime} \\ \hline\end{array}\right\}$ Alternate

General Purpose Registers (B, C, D, E, H, L)

There are two sets of general purpose registers (Main: B, C, D, E, H, L:
Alternate: $\left.B^{\prime}, C^{\prime}, D^{\prime}, H^{\prime}, L^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ($B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}$). Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, $D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ register-pairs. The contents of the BC, DE, and HL register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V -register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as 256×8-bit working registers for storing software flags, parameters and counters.

Accumulator (A)

All data transfers between the μ PD7801 and external memory or I/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)

The PC is a 16-bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the $P C$ to 0000 H .

Stack Pointer (SP)

The stack pointer is a 16-bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

Register Addressing
Register Indirect Addressing
Auto-Increment Addressing
Auto-Decrement Addressing

Working Register Addressing
Direct Addressing
Immediate Addressing
Immediate Extended Addressing

Register Addressing

The instruction opcode specifies a register r which contains the operand.

Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the. operand. The contents of the register pair is automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

ADDRESS MODES (CONT.) Auto-Decrement Addressing

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address' whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

$P C$	OPCODE		
$P C+1$	Low Address		
$P C+2$	High Address	\quad	operand
:---:			
1 byte		Low Operand	
:---:			
High Operand			
2 byte			

The two bytes following the opcode specify an address of a location containing the operand.

Immediate Addressing
PC
OPCODE
PC +1
OPERAND

Immediate Extended Addressing

$P C$	OPCODE
$P C+1$	Low Operand
$P C+2$	High Operand

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
r1	B, C, D, E, H, L
r2	A, B, C
sr	PA PB PC MK MB MC TM0 TM1 S
sr1	PA PB PC MK
sr2	PA PB PC MK
rp	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D-, H-
rpa1	B, D, H
wa	8 bit immediate data
word	16 bit immediate data
byte	8 bit immediate data
bit	3 bit immediate data
f	F0, F1, F2; FT, FS,

Notes: 1. When special register operands sr, sr1, sr2 are used; $\mathrm{PA}=$ Port $\mathrm{A}, \mathrm{PB}=$ Port B , PC=Port C, MK=Mask Register, MB=Mode B Register, MC=Mode C Register, TM0 = Timer Register 0, TM1 = Timer Register 1, $\mathrm{S}=$ Serial Register.
2. When register pair operands $r p, r p 1$ are used; $S P=$ Stack Pointer, $B=B C$, $D=D E, H=H L, V=V A$.
3. Operands $\mathrm{rPa}, \mathrm{rPa} 1$, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes.
$B=(B C), D=(D E), H=(H L)$
$D^{+}=(D E)^{+}, H^{+}=(H L)^{+}, D^{-=}=(D E)^{-}, H^{-}=(H L)^{-}$.
4. When the interrupt operand f is used; $F 0=$ INTF0, $F 1=I N T F 1, F 2=I N T F 2$, FT=INTFT, FS=INTFS.

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
8-BIT DATA TRANSFER							
MOV	r1, A	1	4	$r 1 \leftarrow A$			
MOV	A, r1	1	4	$A \leftarrow r 1$			
MOV	sr, A	2	10	$\mathbf{s r} \leftarrow \mathrm{A}$			
MOV	A, sr1	2	10	$A \leftarrow s r 1$			
MOV	r, word	4	17	$r \leftarrow$ (word)			
MOV	word, r	4	17	(word) $\leftarrow \mathrm{r}$			
MVI	r, byte	2	7	r - byte			
MVIW	wa, byte	3	13	$(\mathrm{V}, \mathrm{wa}) \leftarrow$ byte			
MVIX	rpa1, byte	2	10	$($ rpa1) ¢byte			
STAW	wa	2	10	$(V, w a) \leftarrow A$			
LDAW	wa	2	10	$A \leftarrow(V, w a)$			
STAX	rpa	1	7	$(r p a) \leftarrow A$			
LDAX	rpa	1	7	$A \leftarrow(\mathrm{rpa})$			
EXX		1	4	Exchange register sets			
EX		1	4	$V, A \leftrightarrow V, A$			
BLOCK		1	13 (C+1)	$(D E)^{+} \leftarrow(H L)+, C \leftarrow C-1$			
16-BIT DATA TRANSFER							
SBCD	word	4	20	(word) $\leftarrow C$, (word +1$) \leftarrow \mathrm{B}$			
SDED	word	4	20	$($ word $) \leftarrow E,($ word +1$) \leftarrow D$			
SHLD	word	4	20	(word) $\leftarrow \mathrm{L}$, (word +1$) \leftarrow \mathrm{H}$			
SSPD	word	4	20	$($ word $) \leftarrow S P_{L}$, (word +1$) \leftarrow S P_{H}$			
LBCD	word	4	20	C ¢ (word) , B ¢ (word + 1)			
LDED	word	4	20	$E \leftarrow($ word $), ~ D \leftarrow($ word +1$)$			
LHLD	word	4	20	$L \leftarrow$ (word), $\mathrm{H} \leftarrow$ (word + 1)			
LSPD	word	4	20	$S P_{L} \leftarrow($ word $), S P_{H} \leftarrow($ word +1$)$			
PUSH	rp1	2	17	$(S P-1) \leftarrow r p 1_{H},(S P-2) \leftarrow r p 1_{L}$			
POP	rp1	2	15	$\begin{aligned} & r p 1 L \leftarrow(S P) \\ & r p 1_{H} \leftarrow(S P+1), S P \leftarrow S P+2 \end{aligned}$			
LXI	rp, word	3	10	rp \leftarrow word			
TABLE		1	19	$\begin{aligned} & C \leftarrow(P C+2+A) \\ & B \leftarrow(P C+2+A+1) \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	CLOCK CYCLES	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
ARITHMETIC							
ADD	A, r	2	8	$A \leftarrow A+r$		\downarrow	\pm
ADD	r, A	2	8	$r \leftarrow r+A$		\ddagger	\downarrow
ADDX	rpa	2	11	$A \leftarrow A+(\mathrm{rpa})$		\downarrow	\downarrow
ADC	A, r	2	8	$A-A+r+C Y$		\ddagger	\ddagger
ADC	r, A	2	8	$r \leftarrow r+A+C Y$		\downarrow	\ddagger
ADCX	rpa	2	11	$A \leftarrow A+(r p a)+C Y$		\downarrow	\ddagger
SUB	A, r	2	8	$A \leftarrow A-r$		\ddagger	\ddagger
SUB	r, A	2	8	$r \leftarrow r-A$		\ddagger	\uparrow
SUBX	rpa	2	11	$A \leftarrow A-(r p a)$		\downarrow	\downarrow
SBB	A, r	2	8	$A \leftarrow A-r-C Y$		\ddagger	\ddagger
SBB	r, A	2	8	$r \leftarrow r-A-C Y$		\ddagger	\downarrow
SBBX	rpa	2	11	$A \leftarrow A-(r p a)-C Y$		\ddagger	\uparrow
ADDNC	A, r	2	8	$A \leftarrow A+r$	No Carry	\ddagger	\uparrow
ADDNC	r, A	2	8	$r \leftarrow r+A$	No Carry	\ddagger	\dagger
ADDNCX	rpa	2	11	$A \leftarrow A+(r p a)$	No Carry	\ddagger	\downarrow
SUBNB	A, r	2	8	$A \leftarrow A-r$	No Borrow	\uparrow	\uparrow
SUBNB	r, A	2	8	$r \leftarrow r-A$	No Borrow	\ddagger	\ddagger
SUBNBX	rpa	2	11	$A \leftarrow A-(r p a)$	No Borrow	\ddagger	\ddagger
LOGICAL							
ANA	A, r	2	8	$A \leftarrow A \wedge r$			\ddagger
ANA	r, A	2	8	$r \leftarrow r \wedge A$			\downarrow
ANAX	rpa	2	11	$A \leftarrow A \wedge$ (rpa)			\ddagger
ORA	A, r	2	8	$A \leftarrow A \vee r$			\downarrow
ORA	r, A	2	8	$r \leftarrow r \vee A$			\uparrow
ORAX	rpa	2	11	$A \leftarrow A \vee(r p a)$			\downarrow
XRA	A, r	2	8	$A \leftarrow A \forall r$			\ddagger
XRA	r, A	2	8	$A \leftarrow r \forall A$			\downarrow
XRAX	rpa	2	11	$A \leftarrow A \forall(r p a)$			\ddagger
GTA	A, r	2	8	$A-r-1$	No Borrow	\ddagger	\ddagger

		NO.	CLOCK		SKIP	FLAGS
	MNEMONIC	OPERANDS	BYTES	CYCLES	OPERATION	CONDITION

LOGICAL (CONT.)

GTAX	rpa	2	11	A - (rpa) - 1	No Borrow	\pm	\ddagger
LTA	A, r	2	8	A-r	Borrow	\downarrow	\downarrow
LTA	r, A	2	8	$r-A$	Borrow	\pm	\downarrow
LTAX	rpa	2	11	A - (rpa)	Borrow	\downarrow	\pm
ONA	A, r	2	8	$A \wedge r$	No Zero		\ddagger
ONAX	rpa	2	11	A \wedge (rpa)	No Zero		\ddagger
OFFA	A, r	2	8	$\mathrm{A} \wedge \mathrm{r}$	Zero		\ddagger
OFFAX	rpa	2	$=11$	$A \wedge$ (rpa)	Zero		\pm
NEA	A, r	2	8	A - r	No Zero	\downarrow	\downarrow
NEA	r, A	2	8	$r-A$	No Zero	\pm	\ddagger
NEAX	rpa	2	11	A - (rpa)	No Zero	\pm	\ddagger
EQA	A, r	2	8	A - r	Zero	\downarrow	\uparrow
EQA	r, A	2	8	$r-A$	Zero	\pm	\pm
EQAX	rpa	2	11	A - (rpa)	Zero	\pm	\ddagger

IMMEDIATE DATA TRANSFER (ACCUMULATOR)

XRI	A, byte	2	7	$A \leftarrow A \forall$ byte			\pm
ADINC	A, byte	2	7	$A \leftarrow A+$ byte	No Carry	\ddagger	1
SUINB	A, byte	2	7	$A \leftarrow A$ - byte	No Borrow	\pm	\pm
ADI	A, byte	2	7	$A \leftarrow A+$ byte		\pm	\downarrow
ACl	A, byte	2	7	$A \leftarrow A+$ byte $+C Y$		\ddagger	\downarrow
SUI	A, byte	2	7	$A \leftarrow A$ - byte		\pm	\uparrow
SBI	A, byte	2	7	$A \leftarrow A-b y t e-C Y$		\pm	\downarrow
ANI	A, byte	2	7	$A \leftarrow A \wedge$ byte			\downarrow
ORI	A, byte	2	7	$A \leftarrow A \vee$ byte			\uparrow
GTI	A, byte	2	7	A - byte-1	No Borrow	\ddagger	\pm
LTI	A, bxte	2	7	A - byte	Borrow	\pm	\pm
ONI	A, byte	2	7	A \wedge byte	No Zero		\pm
OFFI	A, byte	2	7	A^ byte	Zero		\pm
NEI	A, byte	2	7	A-byte	No Zero	\ddagger	\pm
EQI	A, byte	2	7	A - byte	Zero	\ddagger	\pm

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER							
XRI	r, byte	3	11	$r \leftarrow r \forall$ byte			\uparrow
ADINC	r, byte	3	11	$r \leftarrow r+$ byte	No Carry	\ddagger	\uparrow
SUINB	r, byte	3	11	$r \leftarrow r$-byte	No Borrow	\ddagger	\uparrow
ADI	r, byte	3	11	$r \leftarrow r+$ byte		1	\uparrow
ACl	r, byte	3	11	$r \leftarrow r+$ byte $+C Y$		\ddagger	\uparrow
SUI	r, byte	3	11	$r \leftarrow r$-byte		\ddagger	\ddagger
SBI	r, byte	3	11	$r \leftarrow r-b y t e-c y$		\downarrow	\ddagger
ANI	r, byte	3	11	$r \leftarrow r$ ^byte		\ddagger	\ddagger
ORJ	r, byte	3	11	$r \leftarrow r \vee$ byte			\downarrow
GT:	r, byte	3	11	r-byte - 1	No Borrow	\ddagger	\uparrow
LTI	r, byte	3	11	r-byte	Borrow	\ddagger	\downarrow
ONI	r, byte	3	11	$\mathrm{r} \wedge$ byte	No Zero		\uparrow
OFFI	r, byte	3	11	r^byte	Zero		\ddagger
NEI	r, byte	3	11	r-byte	No Zero	\ddagger	\downarrow
EQI	r, byte	3	11	r-byte	Zero	\downarrow	\downarrow
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER)							
XRI	sr2, byte	3	17	sr2 $-\mathrm{sr} 2 \forall$ byte			\uparrow
ADINC	sr2, byte	3	17	sr2 \leftarrow sr2 + byte	No Carry	\ddagger	\uparrow
SUINB	sr2, byte	3	17	sr2 -sr 2 - bvte	No Borrow	\ddagger	\dagger
ADI	sr2, byte	3	17			\downarrow	\uparrow
ACl	sr2, byte	3	17	sr2 - sr2 + byte + C Y		\ddagger	\ddagger
SUI	sr2, byte	3	17	sr2 -sr 2 - byte		\downarrow	\downarrow
SBI	sr2, byte	3	17	sr2 - sr2-byte - CY		\downarrow	\ddagger
ANI	sr2, byte	3	17	sr2 -sr 2 ^byte			\ddagger
ORI	sr2, byte	3	17	sr2 - sr2 Vbyte			\ddagger
GTI	sr2, byte	3	14	sr2-byte -	No Borrow	\ddagger	\uparrow
LTI	sr2, byte	3	14	sr2 - byte	Borrow	\ddagger	\downarrow
ONI	sr2, byte	3	14	sr2^ byte	No Zero		\pm

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{array}{\|c\|c\|} \text { CLOCK } \\ \text { CYCLES } \end{array}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	Z
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER) (CONT.)							
OFFI	sr2, byte	3	14	sr2^byte	Zero		\uparrow
NEI	sr2, byte	3	14	sr2 - byte	No Zero	\pm	\downarrow
EQI	sr2, byte	3	14	sr2-byte	Zero	\downarrow	\uparrow
WORKING REGISTER							
XRAW	wa	3	14	$A \leftarrow A \forall(V, w a)$			\pm
ADDNCW	wa	3	14	$A \leftarrow A+(V, w a)$	No Carry	\downarrow	\downarrow
SUBNBW	wa	3	14	$A \leftarrow A-(V, w a)$	No Borrow	\uparrow	\ddagger
ADDW	wa	3	14	$A \leftarrow A+(V, w a)$		\ddagger	\ddagger
ADCW	wa	3	14	$A \leftarrow A+(V, w a)+C Y$		\downarrow	\pm
SUBW	wa	3	14	$A \leftarrow A-(V, w a)$		\ddagger	\ddagger
SBBW	wa	3	14	$A \leftarrow A-(V, w a)-C W$		\downarrow	\pm
ANAW	wa	3	14	$A \leftarrow A \wedge(V, w a)$			\downarrow
ORAW	wa	3	14	$A \leftarrow A \vee(V, w a)$			\uparrow
GTAW	wa	3	14	$A \leftarrow(V, w a)-1$	No Borrow	\pm	\ddagger
LTAW	wa	3	14	$A-(V, w a)$	Borrow	\pm	\pm
ONAW	wa	3	14	$A \wedge(V, w a)$	No Zero		\downarrow
OFFAW	wa	3	14	$A \wedge(V, w a)$	Zero		\downarrow
NEAW	wa	3	14	A - (V, wa)	No Zero	\uparrow	\pm
EQAW	wa	3	14	$A-(V, w a)$	Zero	\pm	\downarrow
ANIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa $) \wedge$ byte			\ddagger
ORIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa $) \vee$ byte			\downarrow
GTIW	wa, byte	3	13	(V, wa) - byte - 1	No Borrow	\pm	\downarrow
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	\pm	\dagger
ONIW	wa, byte	3	13	(V, wa) \wedge byte	No Zero		\downarrow
OFFIW	wa, byte	3	13	(V, wa) \wedge byte	Zero		\ddagger
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	\downarrow	\ddagger
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	1	\downarrow
INCREMENT/DECREMENT							
INR	r2	1	4	$r 2 \leftarrow x^{2}+1$	Carry		\pm
INRW	wa	2	13	$(V$, wa $) \leftarrow(V$, wa $)+1$	Carry		\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						Cr	z
INCREMENT/DECREMENT (CONT.)							
DCR	r2	1	4	$\mathrm{r} 2 \leftarrow \mathrm{r} 2-1$	Borrow		1
DCRW	wa	2	13	$(V$, wa $) \leftarrow(V, w a)-1$	Borrow		t
INX	rp	1	7	$r p \leftarrow r p+1$			
DCX	rp	1	7	$r p \leftarrow r p-1$			
DAA		1	4	Decimal Adjust Accumulator		\downarrow	t
STC		2	8	$C Y \leftarrow 1$		1	
CLC		2	8	$C Y \leftarrow 0$		0	
ROTATE AND SHIFT							
RLD		2	17	Rotate Left Digit			
RRD		2	17	Rotate Right Digit			
RAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow C Y, C Y \leftarrow A_{7}$		\downarrow	
RCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{Cm}, \mathrm{C}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\dagger	
RAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow C Y, C Y \leftarrow A_{0}$		\downarrow	
RCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}, \mathrm{C}_{7} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\downarrow	
SHAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow 0, C Y \leftarrow A_{7}$		\downarrow	
SHCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{CM}, \mathrm{C}_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\pm	
SHAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow 0, C Y \leftarrow A_{0}$		\ddagger	
SHCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}_{\mathrm{m}} \mathrm{C}_{7} \leftarrow \mathrm{O}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\dagger	
JUMP							
JMP	word	3	10	$\mathrm{PC} \leftarrow$ word			
JB		1	4	$P C_{H} \leftarrow \mathrm{~B}, \mathrm{PC} \mathrm{C}_{L} \leftarrow \mathrm{C}$			
JR	word	1	13	$\mathrm{PC} \leftarrow \mathrm{PC}+1+\mathrm{jdisp} 1$			
JRE	word	2	13	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp			
CALL							
CALL	word	3	16	$\begin{aligned} & (S P-1) \leftarrow(P C-3)_{H},(S P-2) \leftarrow \\ & (P C-3)_{L}, P C \leftarrow \text { word } \end{aligned}$			
CALB		1	13	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2) \leftarrow \\ & (P C-1)_{L}, P C_{H} \leftarrow B, P_{L} \leftarrow C \end{aligned}$			
CALF	word	2	16	$\begin{aligned} & (S P-1)-(\mathrm{PC}-2)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}-2)_{\mathrm{L}} \\ & \mathrm{PC} 15 \sim 11 \leftarrow 00001, \mathrm{PC} 10 \sim 0 \leftarrow \mathrm{fa} \end{aligned}$			
CALT	word	1	19	$\begin{aligned} & (S P-1)-(P C-1)_{H},(S P-2) \leftarrow(P C-1)_{L} \\ & P_{L} \leftarrow(128-2 t a), P_{H} \leftarrow(129+2 \mathrm{ta}) \end{aligned}$			
SOFTI		1	19	$\begin{aligned} & (S P-1) \leftarrow P S W, S P-2,(S P-3) \leftarrow P C \\ & P C \leftarrow 0060_{H}, S I R Q \leftarrow 1 \end{aligned}$			

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	CLOCK CYCLES	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	2
RETURN							
RET		1	11	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P-2 \end{aligned}$			
RETS		1	$11+a$	$\begin{aligned} & P C_{L} \leftarrow(S P), P C H \leftarrow(S P+1) \\ & S P \leftarrow S P+2, P C \leftarrow P C+n \end{aligned}$			
RETI		1	15	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & P S W \leftarrow(S P+2), S P \leftarrow S P+3, S I R Q \leftarrow 0 \end{aligned}$			
SKIP							
BIT	bit, wa	2	10	Bit test	$\begin{aligned} & \text { V, walbit } \\ & =11 \end{aligned}$		
SKC		2	8	Skip if Carry	$C Y=1$		
SKNC		2	8	Skip if No Carry	$C Y=0$		
SKZ		2	8	Skip if Zero	$z=1$		
SKNZ		2	8	Skip if No Zero	$Z=0$		
SKIT	f	2	8	Skip if INT $X=1$, then reset INT X	$f=1$		
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	$f=0$		

CPU CONTROL

NOP		1	4	No Operation			
EI		2	8	Enable Interrupt			
DI		2	8	Disable Interrupt			
HLT		1	6	Halt			
SIO		1	4	Start (Trigger) Serial I/O			
STM		1	4	Start Timer			

Program Status Word (PSW) Operation

\ddagger Flag affected according to result of operation
1 Flag set
0 Flag reset

- Flag not affected

ABSOLUTE MAXIMUM	Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Voltage On Any Pin	-0.3 V to +7.0V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

DC CHARACTERISTICS
 -10 to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	VIL	0		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH1 }}$	2.0		$V_{C C}$	V	Except $\overline{\mathrm{SCK}}, \times 1$
	V1H2	3.8		$V_{\text {cc }}$	V	$\overline{\text { SCK, }} \times 1$
Output Low Voltage	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	VOH^{1}	2.4			V	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$
	VOH_{2}	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	'LIH			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {CC }}$ Power Supply Current	${ }^{\text {ICC }}$		110	200	mA	

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=\mathrm{GND}=0 \mathrm{~V}$

| | | LIMITS | | | $\begin{array}{c}\text { TEST } \\ \text { PARAMETER }\end{array}$ | SYMBOL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$)$ MIN

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
X1 Input Cycle Time	${ }^{\text {t }} \mathrm{CYX}$	227	1000	ns	
X1 Input Low Level Width	tXXL	106		ns	
X1 Input High Level Width	${ }^{\mathrm{t}} \times \times \mathrm{H}$	106		ns	
$\phi_{\text {OUT }}$ Cycle Time	${ }^{\text {t }}$ CY ${ }_{\text {¢ }}$	454	2000	ns	
$\phi_{\text {OUT Low Level Width }}$	${ }^{\text {t }}$ ¢ ${ }_{\text {L }}$	150		ns	
$\phi_{\text {OUT }}$ High Level Width	$\mathrm{t}_{\phi \phi}{ }^{\text {H }}$	150		ns	
¢OUT R ise/Fall Time	$\mathrm{tr}_{\mathrm{r}, \mathrm{t}}{ }^{\text {f }}$		40	ns	

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\text { RD L.E. }} \rightarrow$ ¢OUT L.E.	${ }^{\text {t }} \mathrm{R} \phi$	100		ns	
Address (PE0-15) \rightarrow Data Input	${ }^{\text {t } A D 1}$		$550+500 \times N$	ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow Address	tRA	200(T3); 700(T4)		ns	
$\overline{\text { RD L.E. }} \rightarrow$ Data Input	tRD		$350+500 \times \mathrm{N}$	ns	
RDT.E. \rightarrow Data Hold Time	${ }^{\text {t R DH }}$	0		ns	
RD Low Level Width	${ }_{\text {t } R R}$	$850+500 \times N$		ns	
$\overline{\mathrm{RD}}$ L.E. \rightarrow WAIT' L.E.	${ }^{\text {t }}$ RWT		450	ns	
Address (PE0-15) \rightarrow WAIT L.E.	t AWT1		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from ϕ OUT L.E.)	tWTS	290		ns	
WAIT Hold Time (Referenced from ϕ OUT L.E.)	${ }^{\text {t WTH }}$	0		ns	
M1 \rightarrow RD L.E.	${ }^{\text {t MR }}$	200		ns	
RD T.E. \rightarrow M1	trM	200		ns	ns
$10 / \mathrm{M} \rightarrow$ RD L.E.	${ }_{\text {I IR }}$	200		ns	
$\overline{R D}$ T.E. \rightarrow IO/M	${ }^{\text {t }}$ RI	200		ns	
¢OUT L.E. \rightarrow WR L.E.	${ }^{\text {t }}$ ¢ W	40	125	ns	
Address $\left(\mathrm{PE}_{0-15}\right) \rightarrow$ ФOUT T.E.	${ }^{t} \mathrm{~A} \phi$	100	300	ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \text { Data Output } \\ & \hline \end{aligned}$	${ }^{\text {t }} \mathrm{AD} 2$	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \overline{W R} \\ & \text { T.E. } \end{aligned}$	tDW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	tWD	150		ns	
$\begin{aligned} & \text { Address }\left(P E_{0-15}\right) \rightarrow \\ & \overline{W R} \text { L.E. } \end{aligned}$	tAW	400		ns	
WR T.E. \rightarrow Address Stabilization Time	tWA	200		ns	
$\overline{\text { WR Low Level Width }}$	twW	$600+500 \times \mathrm{N}$		ns	
10/M \rightarrow WR L.E.	tiw	500		ns	
WR T.E. \rightarrow IO/M	tWI	250		ns	

SERIALI/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t }} \mathrm{CYK}$	800		ns	$\overline{\text { SCK }}$ Input
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }_{\text {t }}^{\text {KKL }}$	350		ns	$\overline{S C K}$ Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	${ }^{\text {t }} \mathrm{KKH}$	350		ns	SCK Input
		400		ns	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {t }}$ SIS	140		ns	
SI Hold Time (referenced from $\overline{\text { SCK T.E.) }}$	${ }^{\text {tSIH}}$	260		ns	
$\overline{\text { SCK }}$ L.E. \rightarrow SO Delay Time	${ }_{\text {t }} \mathrm{KO}$		180	ns	
$\overline{\text { SCS }}$ High $\rightarrow \overline{\text { SCK }}$ L.E.	${ }^{\text {t CSS }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS Low }}$	${ }^{\text {t K CS }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	${ }^{\text {t K S }}$ (260	ns	

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	${ }^{\text {t }}$ HDS 1	200		ns	${ }^{\mathrm{t}} \mathrm{CY}$ ¢ ${ }^{\text {a }} 500 \mathrm{~ns}$
	${ }^{\text {t }} \mathrm{HDS}_{2}$	200		ns	
HOLD Hold Time (referenced from ØOUT L.E.)	${ }^{t} \mathrm{HDH}$	0		ns	
$\emptyset_{\text {OUT L.E. } \rightarrow \text { HLDA }}$	${ }^{\text {t }}$ DHA	110	100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	${ }^{\text {t }} \mathrm{HABF}$	-150	150	ns	
HLDA Low \rightarrow Bus Enable	${ }^{\text {t }} \mathrm{HABE}$		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

$$
\mathrm{VOL}_{\mathrm{OL}}=0.8 \mathrm{~V}
$$

(3) L.E. $=$ Leading Edge, T.E. $=$ Trailing Edge
${ }^{\mathrm{t}}{ }^{\mathrm{C}} \mathrm{Y}_{\phi}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {tr }}$ ¢	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {tra }}$ (T_{3})	(1/2) T-50	MIN	ns
${ }^{\text {R } R A ~}\left(T_{4}\right)$	(3/2) T-50	MIN	ns
${ }^{\text {t }} \mathrm{RD}$	$(1+N) T-150$	MAX	ns
${ }^{\text {t } R \text { R }}$	$(2+N) T-150$	MIN	ns
${ }^{\text {t }}$ WWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}$ AWT ${ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t } R M}$	(1/2) T-50	MIN	ns
$\mathrm{t}_{1} \mathrm{R}$	(1/2) T-50	MIN	ns
tRI	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ ¢ W	(1/4) T	MAX	ns
${ }^{t}$ A ϕ	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	$(3 / 2+N) T-150$	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
${ }^{\text {t W W }}$	$(3 / 2+N) T-150$	MIN	ns
tiw	T	MIN	ns
${ }^{\text {t W I }}$	(1/2) T	MIN	ns
${ }^{\text {t HABE }}$	(1/2) T-150	MAX	ns

Notes: (1) $N=$ Number of Wait States
(2) $T={ }^{t} \mathrm{CY} \phi$
(3) Only above parameters are ${ }^{\mathrm{C}} \mathrm{CY}_{\phi}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t}_{\mathrm{C}} \mathrm{Y}_{\phi}=500 \mathrm{~ns}$) the above equations can be used to calculate $A C$ parameter values.

CLOCK TIMING

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS

TIMING WAVEFORMS (CONT.)

WRITE OPERATION

μ PD7801

(Plastic)		
ITEM	MILLIMETERS	INCHES
A	418 MAX	165
B	122	005
C	254	01
D	$05 \cdot 01$	$002 \cdot 0004$
E	3937	155
H	127	005
G	675	027
H	93	037
I	36	014
J	351	138
K	300	118
L	165	065
M	$025: 005$	$001: 0002$

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER WITH 6K ROM

The NEC μ PD7802 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-Channel Silicon Gate MOS technology.
The NEC μ PD7802 is intended to serve a broad spectrum of 8-bit designs ranging from enhanced single chip applications extending into the multi-chip microprocessor range. All the basic functional blocks -6144×8 of ROM program memory, 64×8 of RAM data memory, 8 -bit ALU, 48 1/O lines, Serial I/O port, 12-bit timer, and clock generator are provided on-chip to enhance standalone applications. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of the 8080A/8085A peripherals and memory products. Total memory space can be increased to 64 K bytes.

The powerful 140 instruction set coupled with 6 K bytes of ROM program memory and 64 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the μ PD 7802 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are on-chip.

FEATURES

- NMOS Silicon Gate Technology Requiring +5V Supply
- Complete Single-Chip Microcomputer with On-Chip ROM, RAM and I/O
- 6K Bytes ROM
- 64 Bytes RAM
- 48 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 58 K Bytes External Memory Address Range
- On-Chip Clock Generator
- Wait State Capability
- Alternate Z80 TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack Capabilities
- Fast 2μ s Cycle Time
- Bus Sharing Capabilities

PIN NO.	DESIGNATION	FUNCTION
1, 49-63	$A B_{0}-A B_{15}$	(Tri-State, Output) 16-bit address bus.
2	ϕ OUT	(Output) ϕ OUT provides a prescaled output clock for use with external I/O devices or memories. ϕ OUT frequency is $\mathrm{f}_{\mathrm{XTAL}} / 2$.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8 -bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT0	(Input, active high) Level-sensitive interrupt input.
12	INT_{1}	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT_{2} is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When ES is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive.
14	WAIT	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as $\overline{\text { WAIT }}$ is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{\mathrm{WR}}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) $\overline{\mathrm{RD}}$ is used as a strobe to gate data from external devices onto the data bus. $\overline{R D}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\mathrm{SCK}}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) $\overline{\text { RESET initializes the } \mu \text { PD7801. }}$
30	X_{2}	(Output) Oscillator output.
31	X_{1}	(Input) Clock Input
$33-40$	$\mathrm{PAO}_{0} \cdot \mathrm{PA} 7$	(Output) 8-bit output port with latch capability.
41.48	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

FUNCTIONAL DESCRIPTION

Memory Map

The μ PD7802 can directly address up to 64 K bytes of memory. Except for the on-chip ROM (0-6144) and RAM $(65,471-65,535)$, any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the μ PD7802 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the Internal ROM area.

μ PD7802

I/O PORTS

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

Port A

Port A is an 8-bit latched output port. Data can be readily transferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and Logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to be either an Input (Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8 -bit I/O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

	MODE $\mathrm{C}_{\boldsymbol{n}}=\mathbf{0}$	MODE $\mathrm{C}_{\boldsymbol{n}}=\mathbf{1}$
PC_{0}	Output	Input
PC_{1}	Output	Input
PC_{2}	$\overline{\text { SCS Input }}$	Input
PC_{3}	SAK Output	Output
PC_{4}	To Output	Output
PC_{5}	IO/M Output	Output
PC_{6}	HLDA Output	Output
PC_{7}	HOLD Input	Input

Port E

Port E is a 16 -bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the PER instruction sets this mode for use with external I/O or memory expansion (up to 60K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus - the PEN instruction sets this mode which allows for memory expansion of an additional 4 K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $P E_{8-15}$ and $P E_{0-7}$, respectively.

FUNCTIONAL DESCRIPTION (CONT.)

TIMER OPERATION

TIMER BLOCK DIAGRAM

A programmable 12 -bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from 4μ s to 16 ms in duration. The timer consists of a prescaler which decrements a 12 -bit counter at a fixed 4μ s rate. Count pulses are loaded into the 12 -bit down counter through timer register (TMO and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TMO and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (TO) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

SERIAL PORT OPERATION

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC μ PD7802 to serially interface with external devices.

Serial Transfers are synchronized with either the internal clock or an external clock input ($\overline{\mathrm{SCK}}$). The transfer rate is fixed at $1 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $1 \mathrm{Mbit} /$ second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external $\overline{\text { SCR }}$) is enabled when the Serial Chip Select Signal ($\overline{\mathrm{SCS}}$) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.

Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

INTERRUPT STRUCTURE

The μ PD7802 provides a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and a non-maskable software interrupt. Each interrupt when activated branches to a designated memory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	5	Ext., Rising/Falling edge sensitive
SOFTI	96	Software Interrupt	

FUNCTIONAL DESCRIPTION (CONT.)

RESET (Reset)

An active low-signal on this input for more than 4μ s forces the μ PD7802 into a Reset condition. $\overline{\operatorname{RESET}}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to $\mathrm{FFH}_{\mathrm{H}}$, and Port B becomes an input port.
- The contents of the MODE C register are set to FFH. Port C becomes an I / O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to $\mathrm{FFFH}_{\mathrm{H}}$ and the timer F / F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE $0-15$), Data Bus (DB0-7), $\overline{R D}$, and $\overline{W R}$ go to a high impedance state.

Once the RESET input goes high, the program is started at location 0000 H .
REGISTERS The μ PD7802 contains sixteen 8 -bit registers and two 16 -bit registers,

	15
PC	

$\left.\begin{array}{|c|c|}\hline 0 & A \\ \hline \text { V } & \text { C } \\ \hline B & E \\ \hline D & L \\ \hline H & \\ \hline\end{array}\right\}$ Main
$\left.\begin{array}{|c|c|}\hline V^{\prime} & A^{\prime} \\ \hline B^{\prime} & C^{\prime} \\ \hline D^{\prime} & E^{\prime} \\ \hline H^{\prime} & L^{\prime} \\ \hline\end{array}\right\}$ Alternate

General Purpose Registers (B, C, D, E, H, L)

There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: $\left.B^{\prime}, C^{\prime}, D^{\prime}, H^{\prime}, L^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ($\left.B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}\right)$. Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, $D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ register-pairs. The contents of the $B C, D E$, and $H L$ register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V-register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as 256×8-bit working registers for storing software flags, parameters and counters.

Accumulator (A)

All data transfers between the μ PD7802 and external memory or I/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)

The PC is a 16 -bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the $P C$ to 0000 H .

Stack Pointer (SP)

The stack pointer is a 16 -bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

Register Addressing	Working Register Addressing
Register Indirect Addressing	Direct Addressing
Auto-Increment Addressing	Immediate Addressing
Auto-Decrement Addressing	Immediate Extended Addressing

Register Addressing

The instruction opcode specifies a register r which contains the operand.

Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the operand. The contents of the register pair is automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

Immediate Extended Addressing

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

PC	OPCODE		
$P C+1$	Low Address		
$P C+2$	High Address	\quad	operand
:---:			
1 byte		Low Operand	
:---:			
High Operand			
2 Memory			

The two bytes following the opcode specify an address of a location containing the operand.
Immediate Addressing

PC
$\mathrm{PC}+1$
Immediate Extended Addressing
PC

PC + 1
$P C+2$

OPCODE
OPERAND

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
$r 1$	B, C, D, E, H, L
$r 2$	A, B, C
sr	PA PB PC MK MB MC TM0 TM1 S
sr1	PA PB, PC MK
sr2	PA PB PC MK
$r p$	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D-, H-
rpa1	B, D, H
wa	8 bit immediate data
word	16 bit immediate data
byte	8 bit immediate data
bit	3 bit immediate data
f	F0, F1, F2, FT, FS,

Notes: 1. When special register operands sr, sr1, sr2 are used; $\mathrm{PA}=$ Port $\mathrm{A}, \mathrm{PB}=$ Port B , PC=Port $\mathrm{C}, \mathrm{MK}=$ Mask Register, MB=Mode B Register, MC=Mode C Register, TMO = Timer Register 0, TM1 = Timer Register 1, $\mathrm{S}=$ Serial Register.
2. When register pair operands $r p, r p 1$ are used; $S P=$ Stack Pointer, $B=B C$, $D=D E, H=H L, V=V A$.
3. Operands $\mathrm{rPa}, \mathrm{rPa} 1$, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes.
$B=(B C), D=(D E), H=(H L)$
$\mathrm{D}^{+=(\mathrm{DE})^{+}, \mathrm{H}+=(\mathrm{HL})^{+}, \mathrm{D}^{-}=(\mathrm{DE})^{-}, \mathrm{H}=(\mathrm{HL})^{-} \text {. } . ~ . ~}$
4. When the interrupt operand f is used; $F 0=$ INTF0, $F 1=I N T F 1, F 2=I N T F 2$, $F T=I N T F T, F S=$ INTFS .

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { CLOCK } \\ \text { CYCLES } \end{array}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	2
8-BIT DATA TRANSFER							
MOV	r1, A	1	4	$r 1 \leftarrow A$			
MOV	A, r 1	1	4	$A \leftarrow r 1$			
MOV	sr, A	2	10	$s \mathrm{r} \leftarrow \mathrm{A}$			
MOV	A, sr 1	2	10	A-sr1			
MOV	r, word	4	17	$r \leftarrow($ word $)$			
MOV	word, r	4	17	(word) -r			
MVI	r, byte	2	7	r-byte			
MVIW	wa, byte	3	13	(V, wa) - byte			
MVIX	rpa1, byte	2	10	(rpal) ¢byte			
STAW	wa	2	10	$(V, w a) \leftarrow A$			
LDAW	wa	2	10	$A \leftarrow(V, w a)$			
STAX	rpa	1	7	$(r p a) \leftarrow A$			
LDAX	rpa	1	7	$A \leftarrow(r p a)$			
EXX		1	4	Exchange register sets			
EX		1	4	$V, A \leftrightarrow V, A$			
BLOCK		1	13 (C+1)	$(D E)^{+} \leftarrow(H L)^{+}, C \leftarrow C-1$			
16-BIT DATA TRANSFER							
SBCD	word	4	20	$($ word $) \leftarrow C$, $($ word +1$) \leftarrow \mathrm{B}$			
SDED	word	4	20	$($ word $) \leftarrow E,($ word +1$) \leftarrow D$			
SHLD	word	4	20	$($ word $) \leftarrow L, ~($ word +1$) \leftarrow H$			
SSPD	word	4	20	$($ word $) \leftarrow S P_{L}$, (word +1$) \leftarrow S P_{H}$			
LBCD	word	4	20	$\mathrm{C} \leftarrow($ word $), \mathrm{B} \leftarrow($ word +1$)$			
LDED	word	4	20	$E \leftarrow($ word $), D \leftarrow($ word +1$)$			
LHLD	word	4	20	$L \leftarrow($ word $), \mathrm{H} \leftarrow($ word +1$)$			
LSPD	word	4	20	$\mathbf{S P} \mathbf{L}_{L} \leftarrow$ (word), $\mathbf{S P} \mathbf{H}^{\text {c }} \leftarrow($ word +1$)$			
PUSH	rp1	2	17	$(S P-1) \leftarrow \mathrm{rP}^{1} \mathrm{H},(\mathrm{SP}-2) \leftarrow \mathrm{rP}_{1} \mathrm{~L}$			
POP	rp1	2	15	$\begin{aligned} & r p 1_{L} \leftarrow(S P) \\ & r p 1_{H} \leftarrow(S P+1), S P \leftarrow S P+2 \end{aligned}$			
LXI	rp, word	3	10	rp ¢ word			
TABLE		1	19	$\begin{aligned} & C \leftarrow(P C+2+A) \\ & B \leftarrow(P C+2+A+1) \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	2
ARITHMETIC							
ADD	A, r	2	8	$A \leftarrow A+r$		\downarrow	\downarrow
ADD	r, A	2	8	$r \leftarrow r+A$	-	\downarrow	\downarrow
ADDX	rpa	2	11	$A \leftarrow A+(r p a)$		\downarrow	\downarrow
ADC	A, r	2	8	$A \leftarrow A+r+C Y$		\uparrow	\downarrow
ADC	r, A	2	8	$r \leftarrow r+A+C Y$		\downarrow	\uparrow
ADCX	rpa	2	11	$A \leftarrow A+(r p a)+C Y$		\downarrow	\downarrow
SUB	A, r	2	8	$A \leftarrow A-r$		\downarrow	\pm
SUB	r, A	2	8	$r \leftarrow r-A$		\downarrow	\uparrow
SUBX	rpa	2	11	$A \leftarrow A-(r p a)$		\downarrow	\uparrow
SBB	A, r	2	8	$A \leftarrow A-r-C Y$		\ddagger	\downarrow
SBB	r, A	2	8	$r \leftarrow r-A-C Y$		\downarrow	\uparrow
SBBX	rpa	2	11	$A \leftarrow A-(r p a)-C Y$		\downarrow	\pm
ADDNC	A, r	2	8	$A \leftarrow A+r$	No Carry	\downarrow	\ddagger
ADDNC	r, A	2	8	$r \leftarrow r+A$	No Carry	\ddagger	\ddagger
ADDNCX	rpa	2	11	$A \leftarrow A+(r p a)$	No Carry	\downarrow	\downarrow
SUBNB	A, r	2	8	$A \leftarrow A-r$	No Borrow	\uparrow	\uparrow
SUBNB	r, A	2	8	$r \leftarrow r-A$	No Borrow	\pm	\downarrow
SUBNBX	rpa	2	11	$A \leftarrow A-(r p a)$	No Borrow	\downarrow	\ddagger
LOGICAL							
ANA	A, r	2	8	$A \leftarrow A \wedge r$			\ddagger
ANA	r, A	2	8	$r \leftarrow r \wedge A$			\uparrow
ANAX	rpa	2	11	$A \leftarrow A \wedge($ rpa $)$			\ddagger
ORA	A, r	2	8	$A \leftarrow A \vee r$			\downarrow
ORA	r, A	2	8	$r \leftarrow r \vee A$			\uparrow
ORAX	rpa	2	11	$A \leftarrow A \vee(\mathrm{rpa})$			\uparrow
XRA	A, r	2	8	$A \leftarrow A \forall r$			\uparrow
XRA	r, A	2	8	$A \leftarrow r \forall A$			\ddagger
XRAX	rpa	2	11	$A \leftarrow A \forall$ (rpa)			\ddagger
GTA	A, r	2	8	$A-r-1$	No Borrow	\downarrow	\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO.BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
LOGICAL (CONT.)							
GTAX	rpa	2	11	A-(rpa)-1	No Borrow	\ddagger	\pm
LTA	A, r	2	8	$A-r$	Borrow	\downarrow	\downarrow
LTA	r, A	2	8	$r-A$	Borrow	\downarrow	\downarrow
LTAX	rpa	2	11	A - (rpa)	Borrow	\downarrow	\downarrow
ONA	A, r	2	8	Aへ ${ }^{\text {r }}$	No Zero		\downarrow
ONAX	rpa	2	11	$A \wedge(\mathrm{rpa})$	No Zero		1
OFFA	A, r	2	8	$A \wedge r$	Zero		\downarrow
OFFAX	rpa	2	11	$A \wedge(\mathrm{rpa})$	Zero		\uparrow
NEA	A, r	2	8	A-r	No Zero	\ddagger	\uparrow
NEA	r, A	2	8	$r-A$	No Zero	\pm	\pm
NEAX	rpa	2	11	A - (rpa)	No Zero	\pm	\uparrow
EQA	A, r	2	8	A-r	Zero	\downarrow	\uparrow
EQA	r, A	2	8	$r-A$	Zero	\ddagger	\downarrow
EQAX	rpa	2	11	A - (rpa)	Zero	\dagger	1
IMMEDIATE DATA TRANSFER (ACCUMULATOR)							
XRI	A, byte	2	7	$A \leftarrow A \forall$ byte			\pm
ADINC	A, byte	2	7	$A \leftarrow A+$ byte	No Carry	\ddagger	\downarrow
SUINB	A, byte	2	7	$A \leftarrow A-b y t e$	No Borrow	\ddagger	\pm
ADI	A, byte	2	7	$A \leftarrow A+$ byte		\ddagger	\ddagger
ACl	A, byte	2	7	$A \leftarrow A+$ byte $+C Y$		\ddagger	\pm
SUI	A, byte	2	7	$A \leftarrow A$ - byte		\pm	\pm
SBI	A, byte	2	7	$A \leftarrow A-$ byte - CY		\ddagger	\ddagger
ANI	A, byte	2	7	$A \leftarrow A \wedge$ byte			\pm
ORI	A, byte	2	7	$A \leftarrow A \vee$ byte			\ddagger
GTI	A, byte	2	7	A - byte - 1	No Borrow	\pm	\ddagger
LTI	A, byte	2	7	A - byte	Borrow	\pm	\ddagger
ONI	A, byte	2	7	A \wedge byte	No Zero		\ddagger
OFFI	A, byte	2	7	Aヘ byte	Zero		\ddagger
NEI	A, byte	2	7	A - byte	No Zero	\ddagger	\ddagger
EQI	A, byte	2	7	A-byte	Zero	\pm	\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER							
XRI	r, byte	3	11	$r \leftarrow r \forall$ byte			\uparrow
ADINC	r, byte	3	11	$r \leftarrow r+$ byte	No Carry	\ddagger	\downarrow
SUINB	r, byte	3	11	$r \leftarrow r$-byte	No Borrow	\ddagger	\ddagger
ADI	r, byte	3	11	$r \leftarrow r+$ byte		\uparrow	\uparrow
ACl	r, byte	3	11	$r \leftarrow r+$ byte $+C Y$		\uparrow	\downarrow
SUI	r, byte	3	11	$r \leftarrow r$-byte		\uparrow	\pm
SBI	r, byte	3	11	$r \leftarrow r$-byte - CY		\ddagger	\uparrow
ANI	r, byte	3	11	$r \leftarrow r \wedge$ byte		\ddagger	\pm
ORJ	r, byte	3	11	$r \leftarrow r v$ byte			\downarrow
GTI	r, byte	3	11	r-byte-1	No Borrow	\downarrow	\uparrow
LTI	r, byte	3	11	r-byte	Borrow	\uparrow	\uparrow
ONI	r, byte	3	11	$r \wedge$ byte	No Zero		\uparrow
OFFI	r, byte	3	11	r A byte	Zero		\downarrow
NEI	r, byte	3	11	r-byte	No Zero	\uparrow	\uparrow
EQI	r, byte	3	11	r-byte	Zero	\downarrow	\ddagger
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER)							
XRI	sr2, byte	3	17	sr2 -sr2 \forall byte			\ddagger
ADINC	sr2, byte	3	17	sr2 \leftarrow sr2 + byte	No Carry	\uparrow	\ddagger
SUINB	sr2, byte.	3	17	sr2 - sr2 - byte	No Borrow	\downarrow	\dagger
ADI	sr2, byte	3	17	sr2 \leftarrow sr2 + byte		\ddagger	\ddagger
ACl	sr2, byte	3	17	$\mathbf{s r} 2 \leftarrow \mathrm{sr} 2+$ byte +CY		\uparrow	\downarrow
SUI	sr2, byte	3	17	sr2 \leftarrow sr2 - byte		\downarrow	\downarrow
SBI	sr2, byte	3	17	sr2 - sr2 - byte - CY		\ddagger	\pm
ANI	sr2, byte	3	17	sr2 \leftarrow sr2 \wedge - byte			\ddagger
ORI	sr2, byte	3	17	sr2 $\leftarrow \mathrm{sr} 2 \mathrm{~V}$ byte			\pm
GTI	sr2, byte	3	14	sr2-byte - 1	No Borrow	\ddagger	\pm
LTI	sr2, byte	3	14	sr2 - byte	Borrow	\ddagger	\pm
ONI	sr2, byte	3	14	sr2^ byte	No Zero		\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{gathered} \text { CLOCK } \\ \text { CYCLES } \end{gathered}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER) (CONT.)							
OFFI	sr2, byte	3	14	sr2^byte	Zero		\pm
NEI	sr2, byte	3	14	sr2 - byte	No Zero	\ddagger	\ddagger
EQI	sr2, byte	3	14	sr2-byte	Zero	\ddagger	\ddagger
WORKING REGISTER							
XRAW	wa	3	14	$A \leftarrow A \forall(V, w a)$			\ddagger
ADDNCW	wa	3	14	$A \leftarrow A+(V, w a)$	No Carry	\ddagger	\ddagger
SUBNBW	wa	3	14	$A \leftarrow A-(V, w a)$	No Borrow	\uparrow	\ddagger
ADDW	wa	3	14	$A \leftarrow A+(V, w a)$		\ddagger	\ddagger
ADCW	wa	3	14	$A \leftarrow A+(V, w a)+C Y$		\downarrow	\ddagger
SUBW	wa	3	14	$A \leftarrow A-(V, w a)$		\ddagger	\ddagger
SBBW	wa	3	14	$A \leftarrow A-(V, w a)-C W$		\downarrow	\downarrow
ANAW	wa	3	14	$A \leftarrow A \wedge(V, w a)$			\uparrow
ORAW	wa	3	14	$A-A \vee(V, w a)$			\uparrow
GTAW	wa	3	14	$A \leftarrow(V, w a)-1$	No Borrow	\downarrow	\ddagger
LTAW	wa	3	14	$A-(V, w a)$	Borrow	\ddagger	\ddagger
ONAW	wa	3	14	$A \wedge(V, w a)$	No Zero		\ddagger
OFFAW	wa	3	14	$A \wedge(V, w a)$	Zero		\ddagger
NEAW	wa	3	14	$A-(V, w a)$	No Zero	\ddagger	\uparrow
EQAW	wa	3	14	A-(V,wa)	Zero	\ddagger	\uparrow
ANIW	wa, byte	3	16	$(V, w a) \leftarrow(V, w a) \wedge$ byte			\downarrow
ORIW	wa, byte	3	16	$(V, w a) \leftarrow(V, w a) \vee$ byte			\ddagger
GTIW	wa, byte	3	13	(V, wa)-byte-1	No Borrow	\ddagger	\ddagger
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	\uparrow	\ddagger
ONIW	wa, byte	3	13	(V, wa) ^ byte	No Zero		\ddagger
OFFIW	wa, byte	3	13	(V, wa) ^ byte	Zero		\downarrow
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	\ddagger	\ddagger
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	1	\ddagger
INCREMENT/DECREMENT							
INR	r2	1	4	$r 2 \leftarrow r 2+1$	Carry		\ddagger
INRW	wa	2	13	$(V$, wa $) \leftarrow(V, w a)+1$	Carry		\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	Z
INCREMENT/DECREMENT (CONT.)							
DCR	r2	1	4	$r 2 \leftarrow r 2-1$	Borrow		\uparrow
DCRW	wa	2	13	$(V, w a) \leftarrow(V, w a)-1$	Borrow		\downarrow
INX	rp	1	7	$r p-r p+1$			
DCX	rp	1	7	$r p \leftarrow r p-1$			
DAA		1	4	Decimal Adjust Accumulator		\downarrow	\ddagger
STC		2	8	$C Y \leftarrow 1$		1	
CLC		2	8	$C Y \leftarrow 0$		0	
ROTATE AND SHIFT							
RLD		2	17	Rotate Left Digit			
RRD		2	17	Rotate Right Digit			
RAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow C Y, C Y \leftarrow A_{7}$		\downarrow	
RCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{Cm}, \mathrm{C}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\downarrow	
RAR		2	8	$A_{m}-1 \leftarrow A m, A_{7} \leftarrow C Y, C Y \leftarrow A_{0}$		\downarrow	
RCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}_{\mathrm{m}}, \mathrm{C}_{7} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\uparrow	
SHAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow 0, C Y \leftarrow A_{7}$		\downarrow	
SHCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{CM}, \mathrm{C}_{0} \leftarrow \mathrm{O}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\downarrow	
SHAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow 0, C Y \leftarrow A_{0}$		\downarrow	
SHCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}_{\mathrm{m}} \mathrm{C}_{7} \leftarrow \mathrm{O}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\downarrow	
JUMP							
JMP	word	3	10	PC ¢ word			
JB		1	4	$\mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{C}$			
JR	word	1	13	$\mathrm{PC} \leftarrow \mathrm{PC}+1+\mathrm{jdisp} 1$			
JRE	word	2	13	$P C \leftarrow P C+2+j d i s p$			
CALL							
CALL	word	3	16	$\begin{aligned} & (S P-1) \leftarrow(P C-3)_{H},(S P-2) \leftarrow \\ & (P C-3)_{L}, P C \leftarrow \text { word } \end{aligned}$			
CALB		1	13	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2) \leftarrow \\ & (P C-1)_{L}, P C_{H} \leftarrow B, P C_{L} \leftarrow C \end{aligned}$			
CALF	word	2	16	$\begin{aligned} & (S P-1) \leftarrow(P C-2)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}-2)_{\mathrm{L}} \\ & \mathrm{PC} 15 \sim 11 \leftarrow 00001, \mathrm{PC} 10 \sim 0 \leftarrow f \mathrm{fa} \end{aligned}$			
CALT	word	1	19	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2) \leftarrow(P C-1)_{L} \\ & P C_{L} \leftarrow(128-2 t a), P_{H} \leftarrow(129+2 \mathrm{ta}) \end{aligned}$			
SOFTI		1	19	$\begin{aligned} & (S P-1) \leftarrow P S W, S P-2,(S P-3) \leftarrow P C \\ & P C \leftarrow 0060_{H}, S I R Q \leftarrow 1 \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	2
RETURN							
RET		1	11	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P-2 \end{aligned}$			
RETS		1	11+a	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2, P C \leftarrow P C+n \end{aligned}$			
RETI		1	15	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & P S W \leftarrow(S P+2), S P \leftarrow S P+3, S I R Q \leftarrow 0 \end{aligned}$			
SKIP							
BIT	bit, wa	2	10	Bit test	$\begin{aligned} & \text { (V, walbit } \\ & =1) \end{aligned}$		
SKC		2	8	Skip if Carry	$C Y=1$		
SKNC		2	8	Skip if No Carry	$C Y=0$		
SKZ		2	8	Skip if Zero	$z=1$		
SKNZ		2	8	Skip if No Zero	$\mathrm{Z}=0$		
SKIT	f	2	8	Skip if INT $X=1$, then reset INT X	$f=1$		
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	$f=0$		
CPU CONTROL							
NOP		1	4	No Operation			
EI		2	8	Enable Interrupt			
DI		2	8	Disable Interrupt			
HLT		1	6	Halt			
SERIAL PORT CONTROL							
SIO		1	4	Start (Trigger) Serial I/O			
STM		1	4	Start Timer			
INPUT/OUTPUT							
IN	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B_{1} A B_{7-0} \leftarrow \text { byte } \\ & A \leftarrow D B_{7-0} \end{aligned}$			
OUT	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B, A B_{7-0} \leftarrow \text { byte } \\ & D B_{7-0} \leftarrow A \end{aligned}$			
PEX		2	11	$\mathrm{PE}_{15-8} \leftarrow \mathrm{~B}, \mathrm{PE}_{7-0} \leftarrow C$			
PEN		2	11	$\mathrm{PE}_{15-12} \leftarrow \mathrm{~B}_{7-4}$			
PER		2	11	Port E AB Mode			

Program Status Word (PSW) Operation

[^3]ABSOLUTE MAXIMUM Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS* Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin . -0.3 V to +7.0 V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
-10 to $+70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	0		0.8	V	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.0		V_{cc}	V	Except SCK, X1
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		$\mathrm{V}_{\text {cc }}$	V	$\overline{\text { SCK, }}$ X1
Output Low Voltage	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$1 \mathrm{OH}^{\prime}=-100 \mu \mathrm{~A}$
	VOH^{2}	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	I LOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {CC }}$ Power Supply Current	ICC		110	200	mA	

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at 0 V
Output Capacitance	Co_{0}			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
X1 Input Cycle Time	${ }^{t} \mathrm{CYX}$	227	1000	ns	
X1 Input Low Level Width	${ }^{\text {t }} \times$ XL	106		ns	
X1 Input High Level Width	${ }^{\mathbf{T} \times \times \mathrm{H}}$	106		ns	
ϕ OUT Cycle Time	${ }^{\text {t }}$ CY ${ }_{\text {¢ }}$	454	2000	ns	
¢OUT Low Level Width		150		ns	
$\phi_{\text {OUT }}$ High Level Width	${ }^{\text {t }}$ ¢ ${ }_{\text {r }}$ H	150		ns	
$\phi_{\text {OUT }}$ R ise/Fall Time	$\mathrm{tr}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$		40	ns	

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\mathrm{RD}}$ L.E. \rightarrow OOUT L.E.	${ }^{\mathbf{t}} \mathrm{R} \boldsymbol{\phi}$	100		ns	
Address (PE ${ }_{0-15}$) \rightarrow Data Input	${ }^{\text {t }} \mathrm{AD1}$		$550+500 \times \mathrm{N}$	ns	
$\overline{\text { RD T.E. } \rightarrow \text { Address }}$	tRA	200(T3); 700(T4)		ns	
$\overline{R D}$ L.E. \rightarrow Data Input	tRD		$350+500 \times N$	ns	
$\overline{R D}$ T.E. \rightarrow Data Hold Time	${ }^{\text {tRDH }}$	0		ns	
$\overline{R D}$ Low Level Width	tRR	$850+500 \times N$		ns	
$\overline{\mathrm{RD}}$ L.E. \rightarrow WAIT L.E.	${ }^{\text {t }}$ RWT		450	ns	
Address $\left(\mathrm{PE}_{0-15}\right) \rightarrow$ WAIT L.E.	tAWT1		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from ©OUT L.E.)	tWTS	290		ns	
WAIT Hold Time (Referenced from фOUT L.E.)	tWTH	0		ns	
M1 \rightarrow RD L.E.	${ }^{\text {t MR }}$	200		ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow M1	${ }^{\text {t RM }}$	200		ns	ns
$10 / \bar{M} \rightarrow$ RD L.E.	IIR	200		ns	
$\overline{R D}$ T.E. \rightarrow IO/M	${ }_{\text {t }}^{\text {R }}$ I	200		ns	
ϕ OUT L.E. \rightarrow WR L.E.	${ }^{t}{ }_{\phi} \mathrm{W}$	40	125	ns	
Address (PE 0-15) \rightarrow фOUT T.E.	${ }^{\text {t } A \phi}$	100	300	ns	
Address $\left(\mathrm{PE}_{0-15}\right) \rightarrow$ Data Output	tAD2	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \overline{W R} \\ & \text { T.E. } \end{aligned}$	tDW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	tWD	150		ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0.15}\right) \rightarrow \\ & \text { WR L.E. } \end{aligned}$	tAW	400		ns	
WR T.E. \rightarrow Address Stabilization Time	tWA	200		ns	
WR Low Level Width	twW	$600+500 \times \mathrm{N}$		ns	
10/M \rightarrow WR L.E.	tIW	500		ns	
WR T.E. \rightarrow IO/M	tWI	250		ns	

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t }}$ CYK	800		ns	$\overline{\text { SCK }}$ Input
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }^{\text {t }}$ KKL	350		ns	$\overline{\text { SCK }}$ Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	${ }^{\text {t K K H }}$	350		ns	SCK Input
		400		ns	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {t SIS }}$	140		ns	
SI Hold Time (referenced from $\overline{\text { SCK }}$ T.E.)	tSin	260		ns	
$\overline{\text { SCK }}$ L.E. \rightarrow SO Delay Time	${ }^{\text {t }} \mathrm{KO}$		180	ns	
SCS High $\rightarrow \overline{\text { SCK }}$ L.E.	${ }^{\text {t }}$ CSK	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS Low }}$	tKCS	100		ns	
$\overline{\text { SCK }}$ T.E. \rightarrow SAK Low	${ }^{\dagger}$ KSA		260	ns	

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	${ }^{\text {t HDS }} 1$	200		ns	${ }^{t} \mathrm{CY} \mathrm{C}^{\prime}=500 \mathrm{~ns}$
	thDS 2	200		ns	
HOLD Hold Time (referenced from øOUT L.E.)	${ }^{\text {t }} \mathrm{HDH}$	0		ns	
$\varnothing_{\text {OUT L.E. }} \rightarrow$ HLDA	${ }^{t}$ DHA	110	100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	thABF	-150	150	ns	
HLDA Low \rightarrow Bus Enable	${ }^{\text {thabe }}$		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

$$
\mathrm{VOL}=0.8 \mathrm{~V}
$$

(3) L.E. $=$ Leading Edge, T.E. $=$ Trailing Edge
${ }^{\text {t }}{ }^{\mathbf{C Y}}{ }_{\phi}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {tR }} \boldsymbol{\phi}$	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {r }}$ A $\left(T_{3}\right)$	(1/2) T-50	MIN	ns
${ }^{\text {R }}$ A $\left(T_{4}\right)$	(3/2) T-50	MIN	ns
${ }^{\text {t } R D}$	$(1+N) T-150$	MAX	ns
${ }^{\text {t R R }}$	$(2+N) T-150$	MIN	ns
${ }^{\text {t }}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {PWT }}{ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t }} \mathrm{RM}$	(1/2) T-50	MIN	ns
${ }^{\prime} / \mathrm{R}$	(1/2) T-50	MIN	ns
$t_{\text {RI }}$	(1/2) T-50	MIN	ns
	(1/4) T	MAX	ns
${ }^{t} A \phi$	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	(3/2 + N) T-150	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	$(3 / 2+N) T-150$	MIN	ns
tIW	T	MIN	ns
${ }^{\text {tw }}$	(1/2) T	MIN	ns
thabe	(1/2) T-150	MAX	ns

Notes: (1) $N=$ Number of Wait States
(2) $T={ }^{t} \mathrm{CY} \phi$
(3) Only above parameters are ${ }^{\mathrm{t}} \mathrm{C} Y_{\phi}$ dependent
(4) When a crystal frequency other than 4 MHz is used (${ }^{2} \mathrm{CY}_{\phi}=500 \mathrm{~ns}$) the above equations can be used to calculate $A C$ parameter values.

CLOCK TIMING

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS (CONT.)

WRITE OPERATION

-active only when io/īiu is enableo.

BENT LEADS

(Unit:mm)

7802DS-12-80-CAT

NOTES

SINGLE CHIP 8-BIT MICROCOMPUTER

DESCRIPTION The NEC μ PD8021 is a stand alone 8-bit parallel microcomputer incorporating the following features usually found in external peripherals. The μ PD8021 contains: $1 \mathrm{~K} \times 8$ bits of mask ROM program memory, 64×8 bits of RAM data memory, 21 1/O lines, an 8 -bit interval timer/event counter, and internal clock circuitry.

FEATURES - 8 -Bit Processor, ROM, RAM, I/O, Timer/Counter
- Single +5 V Supply (+4.5 V to +6.5 V)
- NMOS Silicon Gate Technology
- $8.38 \mu \mathrm{~s}$ Instruction Cycle Time
- All Instructions 1 or 2 Cycles
- Instructions are Subset of μ PD8048/8748/8035
- High Current Drive Capability - 2 I/O Pins
- Clock Generation Using Crystal or Single Inductor
- Zero-Cross Detection Capability
- Expandable I/O Using $\mu 8243$'s
- Available in 28 Pin Plastic Package

PIN CONFIGURATION

Rev/1

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin
-0.5 to +7 Volts (1)
Power Dissipation.
1 Watt
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.5		+ 0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2)	VIH	2.0		$V_{C C}$	V	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$\begin{aligned} & \text { Input High Voltage } \\ & \text { (All Except XTAL 1, XTAL 2) } \end{aligned}$	$\mathrm{V}_{1 \mathrm{H} 1}$	3.0		$V_{\text {cc }}$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}$
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
Output Low Voltage ($\mathrm{P}_{10}, \mathrm{P}_{11}$)	$\mathrm{V}_{\text {OL } 1}$			2.5	V	$1 \mathrm{OL}=7 \mathrm{~mA}$
Output High Voltage (All Unless Open Drain)	V_{OH}	2.4			V	$\mathrm{I}^{\mathrm{OH}}=50 \mu \mathrm{~A}$
Output Leakage Current (Open Drain Option - Port 0)	IOL			-10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant \mathrm{~V}_{\mathrm{SS}} \\ & +0.45 \mathrm{~V} \end{aligned}$
VCC Supply Current	Icc			60	mA	

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Cycle Time	TCY	8.38		50.0	$\mu \mathrm{s}$	$\begin{aligned} & 3.58 \mathrm{MHz} \text { XTAL (1) } \\ & \text { for } \mathrm{T}_{\mathrm{CY}} \text { Min. } \end{aligned}$
Oscillator Frequency Variation (Resistor Mode)	Δ_{F}	-20		+20	\%	$\mathrm{F}=2.5 \mathrm{MHz}$ (1)

Note: (1) Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} / 4.3 \mathrm{~K}$

PIN		FUNCTION
NO.	SYMBOL	
$\begin{gathered} 1-2 \\ 26-27 \end{gathered}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{23} \\ & \text { (Port 2) } \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{23}$ comprise the 4-bit bi-directional I/O port which is also used as the expander bus for the μ PD8243.
3	PROG	PROG is the output strobe pin for the μ PD8243.
4-11	$\begin{aligned} & \mathrm{P}_{00} \mathrm{P}_{07} \\ & \text { (Port 0) } \end{aligned}$	One of the two 8-bit quasi bi-directional I/O ports.
12	ALE	Address Latch Enable output (active-high). Occurring once every 30 input clock periods, ALE can be used as an output clock.
13	T1	Testable input using transfer functions JT1 and JNT1. T 1 can be made the counter/timer input using the STRT CNT instruction. T1 also provides zero-cross sensing for low-frequency $A C$ input signals.
14	VSS	Processor's ground potential.
15	XTAL 1	One side of frequency source input using resistor, inductor, crystal or external source. (non-TTL compatible $\mathrm{V}_{1 \mathrm{H}}$).
16	XTAL 2	The other side of frequency source input.
17	RESET	Active high input that initializes the processor and starts the program at location zero.
18-25	$P_{10}-P_{17}$ (Port 1)	The second of two 8-bit quasi bi-directional I/O ports.
28	V_{Cc}	+5V power supply input.

FUNCTIONAL DESCRIPTION
The NEC μ PD8021 is a single component, 8-bit, parallel microprocessor using N -channel silicon gate MOS technology. The self-contained $1 \mathrm{~K} \times 8$-bit ROM, 64×8-bit RAM, 8 -bit timer/counter, and clock circuitry allow the μ PD8021 to operate as a single-chip microcomputer in applications ranging from controllers to arithmetic processors.

The instruction set, a subset of the μ PD8048/8748/8035, is optimum for high-volume, low cost applications where I/O flexibility and instruction set power are required. The μ PD8021 instruction set is comprised mostly of single-byte instructions with no instructions over two bytes.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	$\begin{aligned} & \text { FLAG } \\ & \text { C } \end{aligned}$
			D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			
DATA MOVES													
MOV ${ }_{\text {, }}$ = data	$(\mathrm{A}) \leftarrow$ data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1	
MOV A, @ Rr	$(A) \leftarrow((R r)) ; r=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	r	1	1	
MOVRr, = data	$(\mathrm{Rr}) \leftarrow$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{~d}_{2} \end{gathered}$	$\stackrel{r}{d_{1}}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2	
MOVRr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	r	r	1	1	
MOV @ Rr, A	$((R r)) \leftarrow(A) ; r=0-1$	Move Indirect Accumulator Contents into data merriory location.	1	0	1	0	0	0	0	r	1	1	
MOV @ Rr, = data	$((R r))-$ data; $r=0-1$	Move Immediate the specified data into data memory.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2	
MOVP A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1	
$\mathrm{XCH} \mathrm{A}$,	$(\mathrm{A}) \geqq(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	r	1	1	
XCH A, @ Rr	$(A) \rightleftarrows((R r)) ; r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1	
XCHD A, @ Rr	$(A 0-3) \rightleftarrows((R r)) 0-3)) ;$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1	
FLAGS													
CPL C	$(\mathrm{C}) \leftarrow$ NOT (C)	Complement Content of carry bit.	1	0	1	0	0	1	1	1	1	1	\bullet
CLR C	(C) $\leftarrow 0$	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-
INPUT/OUTPUT													
ANLD Pp, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { AND }(\mathrm{A} \mathrm{O}-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1	
IN A, Pp	$(\mathrm{A}) \leftarrow\left(P_{p}\right) ; p=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	p	2	1	
MOVD A, Pp	$\begin{aligned} & \left(\begin{array}{l} \text { A } 0-3) \leftarrow\left(P_{p}\right) ; p=4-7 \\ (A-7) \leftarrow 0 \end{array}\right. \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	p	p	2	1	
MOVD P_{p}, A	$\left(P_{p}\right) \leftarrow A 0-3 ; p=4-7$	Move contents of Accumulator to designated port (4-7).	0	0	1	1	1	1	p	p	1	1	
ORLD Prp ${ }^{\text {a }}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { OR }\left(\begin{array}{ll} A & 0-3) \\ p=4-7 \end{array}\right. \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	p	1	1	
OUTLP P_{p}, A	$\left(P_{p}\right) \leftarrow(A) ; p=1-2$	Output contents of Accumulator to designated port (1-2).	0	0	1	1	1	0	p	p	1	1	
REGISTERS													
INC Rr	$(R r) \leftarrow(R r)+1 ; r=0-7$	Increment by 1 contents of designated reyisier.	0	0	0	1	1	r	r	r	1	1	
INC @ Rr	$\begin{aligned} & ((R r)) \leftarrow((R r))+1 \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1	
SUBROUTINE													
CALL addr	$\begin{aligned} & ((\text { SP })) \leftarrow(P C),(\text { PSW } 4-7) \\ & (S P)-(S P)+1 \\ & (P C 8-10) \leftarrow \text { addr } 8-10 \\ & (P C \quad 0-7) \leftarrow \text { addr } 0-7 \\ & (P C \text { 11) } \leftarrow \text { DBF } \end{aligned}$	Call designated Subroutine.	$\begin{aligned} & a_{10} \\ & a_{7} \end{aligned}$	$\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$	$\begin{array}{r} 1 \\ \text { a2 } \end{array}$	0	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
RET	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1	
TIMER/COUNTER													
MOV A, T	$(\mathrm{A}) \leftarrow(\mathrm{T})$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1	
MOV T, A	$(\mathrm{T}) \leftarrow(\mathrm{A})$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1	
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1	
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1	
STRT T		Start Count for Timer.	0	1	0	1	0	1	0	1	1	1	
MISCELLANEOUS													
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1	

Notes: (1) Instruction Code Designations r and p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical.Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions

SYMBOL	DESCRIPTION
A	The'Accumulator
addr	Program Memory Address (12 bits)
c	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
P	"In-Page" Operation Designator
P_{p}	Port Designator ($\mathrm{p}=1,2$ or 4-7)
Rr	Register Designator ($\mathrm{r}=0,1$ or 0-7)

SYMBOL	DESCRIPTION
T	Timer
$\cdot T_{1}$	Testable Flag 1
\mathbf{X}	External RAM
$=$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
(x)	Contents of External RAM Location
$(x))$	Contents of Memory Location Addressed by the Contents of External RAM Location
\leftarrow	Replaced By

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								crcles	bytes	$\begin{aligned} & \text { FLAG } \\ & \mathbf{C} \end{aligned}$
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D1	D0			
ACCUMULATOR													
ADD $A_{1}=$ data	$(A) \leftarrow(A)+$ data	Add immediate the specified Data to the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d o \end{gathered}$	2	2	-
Add A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add contents of designated register to the Accumulator.	0	1	1	0	1	r	r	r	1	1	-
ADD A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect the contents the data memory location to the Accumulator.	0	1	1	0	0	0	0	r	1	1	-
ADDC $A,=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+$ data	Add immediate with carry the specified data to the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	\bullet
ADDC A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator.	0	1	1	1	1	r	r	r	1	1	-
ADDC A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+((\operatorname{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect with carry the contents of data memory location to the Accumulator.	0	1	1	1	0	0	0	r	1	1	-
ANL $A,=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A})$ AND data	Logical and specified Immediate Data with Accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	
ANL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical and contents of designated register with Accumulator.	0	1	0	1	1	r	r	r	1	1	
ANL A, @ Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical and Indirect the contents of data memory with Accumulator.	0	1	0	1	0	0	0	r	1	1	
CPL A	$(\mathrm{A}) \leftarrow \operatorname{NOT}(\mathrm{A})$	Complement the contents of the Accumulator.	0	0	1	1	0	1	1	1	1	1	
CLRA	$(\mathrm{A}) \leftarrow 0$	CLEAR the contents of the Accumulator.	0	0	1	0	0	1	1	1	1	1	
DA A		DECIMAL ADJUST the contents of the Accumulator.	0	1	0	1	0	1	1	1	1	1	-
DEC A	$(A)-(A)-1$	DECREMENT by 1 the Accumulator's contents.	0	0	0	0	0	1	1	1	1	1	
INC A	$(A) \leftarrow(A)+1$	Increment by 1 the Accumulator's contents.	0	0	0	1	0	1	1	1	1	1	
ORL A, = data	$(A) \leftarrow(A) O R$ data	Logical OR specified immediate data with Accumulator	$\begin{gathered} 0 \\ \mathrm{~d} 7 \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ \text { do } \end{gathered}$	2	2	
ORL A, Rr	$\begin{aligned} & (A) \leftarrow(A) O R(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical OR contents of designated register with Accumulator.	0	1	0	0	1	r	r	r	1	1	
ORLA@Rr	$\begin{aligned} & (A) \leftarrow(A) \text { OR }((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator.	0	1	0	c	0	0	0	r	1	1	
RLA	$\begin{aligned} & (A N+1) \leftarrow(A N) \\ & \left(A_{0}\right) \leftarrow\left(A_{7}\right) \\ & \text { for } N=0-6 \end{aligned}$	Rotate Accumulator left by 1 -bit without carry.	1	1	1	0	0	1	1	1	1	1	
RLCA	$\begin{aligned} & (A N+1) \leftarrow(A N) ; N=0-6 \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{7}\right) \end{aligned}$	Rotate Accumulator left by 1 -bit through carry.	1	1	1	1	0	1	1	1	1	1	-
RR A	$\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit without carry.	0	1	1	1	0	1	1	1	1	1	
RRC A	$\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{7}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit through carry.	0	1	1	0	0	1	1	1	1	1	-
SWAP A	$\left(A_{4.7}\right) \geq\left(A_{0}-3\right)$	Swap the 24-bit nibbles in the Accumulator.	0	1	0	0	0	1	1	1	1	1	
XRL A, data	$(\mathrm{A}) \leftarrow(\mathrm{A}) \times \mathrm{OR}$ data	Logical XOR specified immediate data with Accumulator.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d 4 \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	
XRLA, Rr	$\begin{aligned} & (A) \leftarrow(A) \times O R(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical XOR contents of designated register with Accumulator.	1	1	0	1	1	r	r	r	1	1	
XRL A, @ Rr	$\begin{aligned} & (A) \leftarrow(A) \text { XOR }((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical XOR Indirect the contents of data memory location with Accumulator.	1	1	0	1	0	0	0	r	1	1	
BRANCH													
DJNZ Rr, addr	$\begin{aligned} & (R r) \leftarrow(R r)-1 ; r=0-7 \\ & \text { If }(R r) \neq 0 \\ & (P C 0-7)+\text { addr } \end{aligned}$	Decrement the specified register and test contents.	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	1 9	0 	1 a_{3}	$\stackrel{r}{a_{2}}$	$\begin{gathered} r \\ \mathbf{a}_{1} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{a}_{0} \end{gathered}$	2	2	
JC addr	(PC 0-7) \leftarrow addr if $\mathrm{C}=1$ $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ if $\mathrm{C}=0$	Jump to specified address if carry flag is set.	$\begin{gathered} 1 \\ a 7 \end{gathered}$			$\begin{gathered} 1 \\ a_{4} \end{gathered}$		$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
JMP addr	$\begin{aligned} & (\text { PC } 8-10) \leftarrow \text { addr } 8-10 \\ & (\text { PC 0-7) addr } 0-7 \\ & \text { (PC 11) } \leftarrow \text { DBF } \end{aligned}$	Direct Jump to specified address within the $\mathbf{2 K}$ address block.		$\begin{aligned} & \text { ag } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$	0 04	0 a3	$\begin{gathered} 1 \\ \text { a2 } \end{gathered}$	0 a_{1}	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2	
JMPP @ A	$(\mathrm{PCO}-7) \leftarrow((\mathrm{A}) 1$	Jump indirect to specified address with address page.	1	0	1	1	0	0	1	1	2	1	
JNC addr	(PC 0-7) addr if $\mathrm{C}=0$ $(P C) \leftarrow(P C)+2$ if $C=1$	Jump to specified address if carry flag is low.	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	1 95	0 94	0 93	$\begin{gathered} 1 \\ \mathrm{a} 2 \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
JNT1 addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } \mathrm{T} 1=0 \\ & (P C) \leftarrow(P C)+2 \text { if } T 1=1 \end{aligned}$	Jump to specified address if Test 1 is low.	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$		$\begin{gathered} 0 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$	$\begin{gathered} 1 \\ \text { a2 } \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { ao } \end{gathered}$	2	2	
JNZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is non-zero.	$\begin{gathered} 1 \\ a 7 \end{gathered}$			1 9	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a 0 \end{gathered}$	2	2	
JTF addr	$\begin{aligned} & (P C O-7) \leftarrow \text { addr if } T F=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T F=0 \end{aligned}$	Jump to specified address if Timer Flag is set to 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$		1 a_{4}	0 ${ }^{3}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$		$\begin{gathered} 0 \\ \mathrm{a} 0 \end{gathered}$	2	2	
JT1 addr	$\begin{aligned} & (\mathrm{PCO}-7) \leftarrow \text { addr if } \mathrm{T} 1=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jump to specified address if Test 1 is a 1.	$\begin{gathered} 0 \\ 07 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	0 a5	1 ${ }^{4} 4$	0 a3	1 a_{2}	1 a_{1}	0 90	2	2	
JZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	0 as	0 94	0 0	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2	

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

SINGLE CHIP 8－BIT MICROCOMPUTER WITH ON－CHIP AID CONVERTER

DESCRIPTION The NEC μ PD8022 is designed for low cost，high volume applications requiring large ROM space，analog to digital conversion capability，a capacitive touchpanel keyboard interface and／or a power line time base．The μ PD8022 satisfies these requirements by integrating on one chip，an 8 －bit μ PD8 821 type processor with 2 K of ROM，a 2 channel 8 －bit A／D converter，a high impedance comparator input port，and a zero crossing detector．

FEATURES－ 8 －Bit Processor，ROM，RAM，I／O and Clock Generator
－Single +5 V Supply（ 4.5 V to 6.5 V ）
－NMOS Silicon Gate Technology
－ $2 \mathrm{~K} \times 8$ ROM， 64×8 RAM， 26 I／O Lines
－On Chip 8－Bit A／D Converter with 2 Input Channels
－ $8.3 \mu \mathrm{~s}$ Instruction Cycle Timer
－Instructions are a Subset of μ PD8048；Superset of μ PD8021
－Internal Timer／Event Counter
－External and Timer／Counter Interrupts
－On－Chip Zero－Cross Detector
－High Impedance Comparator Port with Variable Threshold
－Clock Generator Using a Crystal or Single Inductor
－High Current Drive Capability on 2 I／O Pins
－Expandable I／O Utilizing the μ PD8243
－Available in 40 －Pin Plastic Dual－In－Line Package

${ }^{P} 26$	\sim	$40 \square^{\text {V }}$ cc
${ }^{\text {P27 }}$		$39 \square^{P^{25}}$
$\mathrm{AV}^{\text {cc }}$		$38 . \mathrm{P}_{24}$
$v_{\text {aref }}$		37 万PROG
AN1		$36 \square^{P^{23}}$
${ }^{\text {ANO }}$		${ }^{35} \square^{P_{22}}$
$\mathrm{AV}^{\text {S }}$		$34 \square^{P_{21}}$
${ }^{\text {To }}$－ 8		${ }_{33} \mathrm{P}^{20}$
$\mathrm{V}_{\text {TH }} 9$		${ }_{32} \square^{P_{17}}$
${ }^{\text {PO }} 10$	$\mu \mathrm{PD}$	${ }_{31} \mathrm{P}{ }_{16}$
${ }^{1} \mathrm{C}_{1}{ }_{11}$	8022	${ }_{30} \mathrm{P}^{15}$
${ }^{2} \mathrm{C}_{12}$		${ }_{29}{ }^{\text {P }}{ }_{14}$
$\mathrm{P}_{3}{ }^{13}$		28 D P_{13}
$\mathrm{P}_{4} \mathrm{O}_{14}$		27 日 P_{12}
$\mathrm{P}_{5}{ }^{\text {15 }}$		$26 . \mathrm{P}_{11}$
$\mathrm{P}_{6} \mathrm{Cl}_{16}$		25 P ${ }_{10}$
${ }^{\text {P }}$－ 17		24 Reset
ALE 18		23.10 TAL 2
$\mathrm{T}_{1} 19$		22 日xtal 1
$\mathrm{vss}^{\text {［20 }}$		21_{21} SUBST

Operating Temperature
. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM
Storage Temperature (Plastic Package) . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation . 1 Watt
RATINGS*

DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	VIL	-0.5		0.8	V	V_{TH} Floating
Input Low Voltage (Port 0)	VIL1	-0.5		$\mathrm{V}_{\mathrm{TH}^{-0.1}}$	V	
Input High Voltage (All except XTAL 1, RESET)	$\mathrm{V}_{\text {IH }}$	2.0		V_{CC}	V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \pm 10 \% \\ & V_{\text {TH }} \text { Floating } \\ & \hline \end{aligned}$
Input High Voltage (All except XTAL 1, RESET)	VIH1	3.0		V_{CC}	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & \pm 1 \mathrm{~V} \\ & V_{\mathrm{TH}} \text { Floating } \end{aligned}$
Input High Voltage (Port 0)	V1H2	$\mathrm{V}_{\mathrm{TH}}{ }^{+0.1}$		V_{CC}	V	
Input High Voltage (RESET, XTAL 1)	V1H3	3.0		VCC	V	
Port 0 Threshold Voltage	$V_{\text {TH }}$	0		$0.4 \mathrm{~V}_{\mathrm{CC}}$	V	
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output Low Voltage $\left(P_{10}, P_{11}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$			0.25	V	${ }^{1} \mathrm{OL}=7 \mathrm{~mA}$
Output High Voltage (All unless open drain option for Port 0)	V_{OH}	2.4			V	${ }^{1} \mathrm{OH}=50 \mu \mathrm{~A}$
Input Current (T1)	'L1			± 200	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{1 N} \\ & \geqslant \mathrm{~V}_{\mathrm{SS}}+0.45 \mathrm{~V} \end{aligned}$
Output Leakage Current (Open drain option for Port 0)	'Lo			± 10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{I N} \\ & \geqslant V_{S S}+0.45 V \end{aligned}$
$V_{\text {cc }}$ Supply Current	${ }^{\prime} \mathrm{CC}$			100	mA	

PIN		FUNCTION
NO.	SYMBOL	
8	T_{0}	Active low interrupt input if enabled. Also testable using the conditional jump instructions JTO and JNTO.
19	T_{1}	Zero-cross detector input. After executing a STRT CNT instruction this becomes the event counter input. Also testable using the conditional jump instructions JT1 and JNT1. Optional ROM mask pull-up resistor available.
6	ANO	Analog input to the A/D converter after execution of the SEL ANO instruction.
5	AN1	Analog input to the A/D converter after execution of the SEL AN1 instruction.
22	XTAL 1	Input for internal oscillator connected to one side of a crystal or inductor. Serves as an external frequency input also (Non-TTL compatible $\mathrm{V}_{1 H}$).
23	XTAL 2	Input for internal oscillator connected to the other side of a crystal or inductor. This pin is not used when employing an external frequency source.
37	PRoG	Strobe output for the μ PD8243 1/O expander.
18	$\dot{\text { Ale }}$	Active high address latch enable output occurring once every instruction cycle. Can be used as an output clock.
24	RESET	Active high input that initializes the processor to a defined state and starts the program at memory location zero.
40	V_{Cc}	+5 V power supply.
3	$\mathrm{AV}_{\mathrm{CC}}$	+5V A/D converter power supply.
20	$\mathrm{V}_{\text {SS }}$	Power supply ground potential.
7	$\mathrm{AV}_{\text {SS }}$	A/D converter power supply ground potential. Sets conversion range lower limit.
4	$V^{\text {REF }}$	Reference voltage for A/D converter. Sets conversion range upper limit.
9	$\mathrm{V}_{\text {TH }}$	Port 0 comparator threshold reference input.
21	SUBST	Substrate connection used with bypass capacitor to $\mathrm{V}_{\text {SS }}$ for substrate voltage stabilization and improvement of A / D accuracy.
10-17	$\mathrm{P}_{00} \mathrm{P}_{07}$	Port 0.8 -bit open drain I / O port with comparator inputs. The reference threshold is set via V_{TH}. Optional ROM mask pull-up resistors available.
25-32	$\mathrm{P}_{10}{ }^{-\mathrm{P}_{17}}$	Port 1.8-bit quasi-bidirectional port. TTL compatible.
$\begin{array}{\|c\|} \hline 1.2 \\ 33-36 \\ 38-39 \\ \hline \end{array}$	$\mathrm{P}_{20}{ }^{-\mathrm{P}_{27}}$	Port 2. 8-bit quasi-bidirectional port. TTL compatible. $\mathrm{P}_{20}{ }^{-\mathrm{P}_{23}}$ also function as an I/O expander port for the μ PD8243.

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Cycle Time	${ }^{t} \mathrm{C} Y$	8.38		50.0	$\mu \mathrm{s}$	3.58 MHz XTAL for ${ }^{t} \mathrm{CY}$ min.
Zero-Cross Detection Input (T1)	$V_{T 1}$	1		3	$V A C_{p p}$	AC coupled
Zero-Cross Accuracy	A $2 C$			± 135	mV	60 Hz Sine Wave
Zero-Cross Detection Input Frequency (T1)	FT1	0.06		1	kHz	
Port Control Setup Before Falling Edge of PROG	${ }^{\text {c }}$ P	0.5			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Port Control Hold After Falling Edge of PROG	${ }^{\text {tPC }}$	0.8			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
PROG to Time P2 Input Must be Valid	tPR			1.0	$\mu \mathrm{s}$	$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{CY}}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Setup Time	tpp	7.0			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Hold Time	${ }^{\text {t P }}$	8.3			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Input Data Hold Time	tPF	0		150	$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
PROG P.ulse Width	tpp	8.3			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{C}^{\prime}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
ALE to Time P2 Input Must be Valid	${ }^{\text {tPRL }}$			3.6	$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{C}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Setup Time	tPL	0.8			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{C}^{\prime}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Hold Time	${ }^{\text {t }}$ LP	1.6			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Input Data Hold Time	${ }^{\text {tPFL }}$	0			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
ALE Pulse Width	${ }^{\text {t L L }}$	3.9		23.0	$\mu \mathrm{S}$	${ }^{\mathrm{t}} \mathrm{C} Y=8.38 \mu \mathrm{~s}$ for min .

PORT 2 TIMING
TIMING WAVEFORM

A/D CONVERTER CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, A V_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, A V_{S S}=0 \mathrm{~V}$
$A V_{C C} / 2 \leqslant V_{A R E F} \leqslant A V_{C C}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Resolution		8			BITS	
Switch Point Accuracy	ASP		$\pm 1 / 2$		LSB	(2.)
Absolute Accuracy	${ }^{\text {A AB }}$		± 1		LSB	
Sample Setup Before Falling Edge of ALE	${ }^{\text {t }} \mathrm{SS}$		0.20		${ }^{t} \mathrm{C} Y$	(1)
Sample Hold After Falling Edge of ALE	${ }^{\text {t }} \mathrm{SH}$		0.10		${ }^{t} \mathrm{C} Y$	(1)
Input Capacitance (ANO, AN1)	$C_{\text {AD }}$		1		pF	
Conversion Time	${ }^{\text {t }}$ CNV	4		4	${ }^{\text {t }} \mathrm{C} \mathrm{Y}$	
Conversion Range		$A V_{S S}$		\checkmark AREF	\checkmark	
Reference Voltage	$V_{\text {AREF }}$	AV $\mathrm{CC}^{\prime} / 2$		AV C C	V	

Note: (1) The analog signal on ANO and AN1 must remain constant during the sample time ${ }^{\mathrm{t}} \mathrm{SS}{ }^{+}{ }^{\mathrm{S}} \mathrm{SH}$.
(2)

TIMING WAVEFORM

The instruction set of the μ PD8022 is a subset of the μ PD8048 instruction set except for three instructions, SEL ANO, SEL AN1, and RAD, which are unique to the μ PD8022. The μ PD8022 instruction set is also a superset of the μ PD8021, meaning that the μ PD8022 will execute ALL of the μ PD8021 instructions PLUS some additional instructions which are listed below. For a summary of the μ PD8021 instruction set, please refer to that section. Symbols used below are defined in the same manner as in that section. Also note that the instructions listed below do not affect any
status flags.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
JTO addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \\ & \mathrm{TO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=0 \end{aligned}$	Jump to specified address if TO is high	0 a7	0 a_{6}	1 a5	1 a4	0 a3	1 a_{2}	1 a 1	0 a_{0}	2	2
JNTO addr	$\begin{aligned} & \left(\mathrm{PC} \mathrm{C}_{0-7}\right) \leftarrow \text { addr if } \\ & \mathrm{TO}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=1 \end{aligned}$	Jump to specified address if TO is low	0 a7	0 a6	1 a5	0 a4	0 ${ }^{3}$	$\begin{aligned} & 1 \\ & \mathrm{a}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{a}_{1} \end{aligned}$	0 ao	2	2
RAD	$(\mathrm{A}) \leftarrow(\mathrm{CRR})$	Move to A the contents of the A / D conversion result register (CRR)	1	0	0	0	0	0	0	0	2	1
SEL ANO		Select ANO as the input for the A/D converter	1	0	0	0	0	1	0	1	1	1
SEL AN1		Select AN1 as the input for the A/D converter	1	0	0	1	0	1	0	1	1	1
EN I		Enable the external interrupt input TO	0	0	0	0	0	1	0	1	1	1
DIS I		Disable the external interrupt input TO	0	0	0	1	0	1	0	1	1	1
EN TCNTI		Enable internal timer/ counter interrupt	0	0	1	0	0	1	0	1	1	1
DIS TCNTI		Disable internal timer/ counter interrupt	0	0	1	1	0	1	0	1	1	1
RETI	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Return from interrupt and re-enable interrupt input logic	1	0	0	1	0	0	1	1	2	1

PACKAGE OUTLINE μ PD8022C

UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE - 8-BIT MICROCOMPUTER

$$
\begin{array}{ll}
\text { DESCRIPTION } & \begin{array}{l}
\text { The } \mu \text { PD8041 is a programmable peripheral interface intended for use in a wide range } \\
\text { of microprocessor systems. Functioning as a totally self-sufficient controller, the }
\end{array} \\
& \mu \text { PD8041 contains an } 8 \text {-bit CPU, } 1 \mathrm{~K} \times 8 \text { program memory, } 64 \times 8 \text { data memory, } 1 / 0 \\
\text { lines, counter/timer, and clock generator in a } 40 \text {-pin DIP. The bus structure, data regis- } \\
\text { ter, and status register enable easy interface to } 8048,8080 \mathrm{~A}, \text { or } 8085 \mathrm{~A} \text { based systems. }
\end{array}
$$

FEATURES - Fully Compatible with 8048, 8080A and 8085A Bus Structure

- 8-Bit CPU with $1 \mathrm{~K} \times 8$ ROM, 64×8 RAM, 8 -Bit Timer/Counter, 18 I/O Lines
- 4-Bit Status and 8-Bit Data Register for Asynchronous Slave-to-Master Interface
- Interrupt, DMA, or Polled Operation
- Expandable I/O
- Two Interrupts
- 40-Pin Plastic or Ceramic DIP
- Single +5 V Supply

PIN CONFIGURATION

PIN		
NO.	SYMBOL	FUNCTION
1,39	$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable input pins using conditional transfer functions JT0, JNT0, JT1, JNT1. T 1 can be made the counter/ timer input using the STRT CNT instruction.
2	X_{1}	One side of the crystal input for external oscillator or frequency source.
3	X_{2}	The other side of the crystal input.
4	$\overline{\text { RESET }}$	Active-low input for processor initialization. RESET is also used for power down.
5	$\overline{\text { SS }}$	Single Step input (active-low). SS together with SYNC output allows the μ PD8041 to "single-step" through each instruction in program memory.
6	$\overline{C S}$	Chip Select input (active-low). CS is used to select the appropriate μ PD8041 on a common data bus.
7	EA	External Access input (active-high) is used for ROM verification.
8	$\overline{R D}$	Read strobe input (active-low). RD will pulse low when the master processor reads data and status words from the DATA BUS BUFFER or Status Register.
9	A_{0}	Address input which the master processor uses to indicate if a byte transfer is a command or data.
10	$\overline{W R}$	Write strobe input (active-low). WR will pulse low when the master processor writes data or status words to the DATA BUS BUFFER or Status Register.
11	SYNC	The SYNC output pulses once for each μ PD8041 instruction cycle. It can function as a strobe for external circuitry. SYNC can also be used together with SS to "single-step" through each instruction in program memory.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	The 8-bit, bi-directional, tri-state DATA BUS BUFFER lines by which the μ PD8041 interfaces to the 8 -bit master system data bus.
20	VSS	Processor's ground potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{27}$	PORT 2 is the second of two 8-bit, quasi-bi-directional I/O ports. $\mathrm{P}_{20}-\mathrm{P}_{23}$ contain the four most significant bits of the program counter during external memory fetches. $\mathrm{P}_{20}-\mathrm{P}_{23}$ also serve as a 4 -bit I/O bus for the μ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	Program Pulse. PROG is used as an output strobe for the μ PD8243.
26	VDD	VDD is +5 V for normal operation of the μ PD8041. VDD is also the Low Power Standby input.
27-34	$\mathrm{P}_{10} \mathrm{P}_{17}$	PORT 1 is the first of two 8 -bit quasi-bi-directional I/O ports.
40	VCC	Primary power supply. VCC must be +5 V for the operation of the μ PD8041.

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
DBB READ					
CS, A_{0} Setup to $\overline{\mathrm{RD}} \downarrow$	tAR	0		ns	
CS, AO Hold after $\overline{\mathrm{RD}} \uparrow$	tRA	0		ns	
RD Pulse Width	tRR	250		ns	tcY $=2.5 \mu \mathrm{~s}$
CS, A0 to Data Out Delay	${ }_{\text {t } A D}$		150	ns	
RD \downarrow to Data Out Delay	tRD		150	ns	
RD \uparrow to Data Float Delay	tDF	10	100	ns	
Recovery Time between	tRV	1		$\mu \mathrm{s}$	
Reads and/or Writes					
Cycle Time	tcy	2.5		$\mu \mathrm{s}$	6 MHz Crystal
DBB WRITE					
CS, A0 Setup to WR \downarrow	tAW	0		ns	
CS, AO Hold after $\overline{W R} \uparrow$	tWA	0		ns	
WR Pulse Width	twW	250		ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
Data Setup to $\overline{W R} \uparrow$	tDW	150		ns	
Data Hold after $\overline{W R} \uparrow$	tWD	0		ns	

The μ PD8041 is a programmable peripheral controller intended for use in master/slave configurations with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}, 8086$ as well as most other 8 -bit and 16 -bit microprocessors. The μ PD8041 functions as a totally self-sufficient controller with its own program and data memory to unburden the master CPU effectively from I/O. handling and peripheral control functions. The μ PD8041 is an intelligent peripheral device which connects directly to the master processor bus to perform control tasks which offload main system processing and more efficiently distribute processing functions.

READ OPERATION - DATA BUS BUFFER REGISTER

WRITE OPERATION - DATA BUS BUFFER REGISTER

	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	FLAGS							
MNEMONIC			D7	D6	D5	D4	D3	D2	D1	Do			c	AC	FO	F1	IBF	OBF		
INPUT/OUTPUT																				
ANL Pp, = data	$\begin{aligned} & \left(P_{p}\right) \cdot\left(P_{p}\right) \text { AND data } \\ & p=12 \end{aligned}$	Logical and immediate specified data with designated port (1 or 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} p \\ d_{0} \end{gathered}$	2	2								
ANLD Pp, A	$\begin{aligned} & (P p)-(P p) \text { AND }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & p 47 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1								
IN A, Pp	$(\mathrm{A})=\left(\mathrm{Pp}^{\prime}\right) ; \mathrm{P}-12$	Input data from designated port (1) 2) into Accumulator.	0	0	0	0	1	0	p	p	2	1								
IN A, DBB	$(\mathrm{A})-(\mathrm{DBB})$	Input strobed DBB data into Accumulator and clear IBF	0	0	1	0	0	0	1	0	1	1								
MOVD A, Pp	$\left.\begin{array}{l} \left(\begin{array}{lll} \text { A } 0 & 3 \end{array}\right)-(P p): p=4 \quad 7 \\ \left(\begin{array}{l} \text { A } \end{array}\right. \\ 7 \end{array}\right)-0 \text { (}$	Move contents of designated port (4 7) into Accumulator.	0	0	0	0	1	1	p	p	2	1								
MOVD Pp. A	$(P \mathrm{P})-\mathrm{AO} \quad 3: \mathrm{P}=4 \quad 7$	Move contents of Accumulator to designated port (4 7).	0	0	1	1	1	1	p	p	1	1								
ORLD Pp, A	$\begin{aligned} & \left(P_{p}\right)-\left(P_{p}\right) \text { OR }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & p=4 \quad 7 \end{aligned}$	Logical or contents of Accumulator with designated port (4)7).	1	0	0	0	1	1	p	ρ	1	1								
ORL Pp, = data	$\left(P_{p}\right) \cdot\left(P_{p}\right) \text { OR data }$ $\rho=1 \quad 2$	Logical or Immediate specified data with designated port (1-12)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d 6 \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d 4 \end{gathered}$	$\begin{gathered} 1 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \text { do } \end{gathered}$	2	2								
OUT DBB, A	(DBB) (A)	Output contents of Accumulator on to DBB and set OBF.	0	0	0	0	0	0	1	0	1	1								
OUTL Po. A	$(P p) \cdot(A) ; p=1 \quad 2$	Output contents of Accumulator to designated port (1) 2).	0	0	1	1	1	0	p	p	1	1								
REGISTERS																				
DECRr (Rr)	$\left(R_{r}\right)-\left(R_{r}\right) \quad 1, r=0 \quad 7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r	r	'	1	1								
${ }_{\text {INC }} \mathrm{Rr}_{\text {r }}$	$\left(R_{r}\right) \cdot\left(R_{r}\right)+1, r=0 \quad 7$	Increment by 1 contents of designated register	0	0	0	1	1	r	'	'	1	1								
INC@Rr	$\begin{aligned} & \left(\\| R_{r}\right) \cdot\left(\\| R_{r}\right)+1 . \\ & r=0 \quad 1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1								
SUBROUTINE																				
CALL addr		Call designated Subroutine	$\begin{aligned} & a_{10} \\ & a_{7} \end{aligned}$		$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	1 a_{4}	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2								
RET	$\begin{aligned} & (S P) \cdot(S P) \\ & (P C) \cdot((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1								
RETR	$\begin{aligned} & (S P)=(S P) \quad 1 \\ & \text { (PC) }=(\text { (SP) }) \\ & (P S W 4 \quad 7)=(\text { (SP) }) \end{aligned}$	Return from Subroutine restoring Prograin Status Word.		0	0	1	0	0	1	1	2	1								
TIMER/COUNTER																				
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output.	0	0	1	0	0	1	0	1	1	1								
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	0	1	1	0	1	0	1	1	1								
mov A, T	(A). (T)	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1								
MOV T, A	(T) - (A)	Move content: of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1								
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1								
STRT こNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1								
STRT T		Start Count for Timer.	0	1	0	1	0	1	0	1	1	1								
MISCELLANEOUS																				
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1								

Notes (1) Instruction Code Designations r and p form the binary representation of the Registers and Ports invoived.
(2) The dot under the appropriate.flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
$\mathrm{F}_{0}, \mathrm{~F}_{1}$	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator
IBF	Input Buffer Full Flag

SYMBOL	DESCRIPTION
P_{p}	Port Designator ($p=1,2$ or 4-7)
PSW	Program Status Word
Rr	Register Designator ($\mathrm{r}=0,1$ or 0-7)
SP	Stack Pointer
T	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Flags 0,1
X	External RAM
\#	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contents of Memory Location Addressed by the Contents of External RAM Location.
\leftarrow	Replaced By
OBF	Output Buffer Full
DBB	Data Bus Buffer

μ PD8041

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$\begin{gathered} 0.25+0.1 \\ -0.05 \end{gathered}$	$\begin{array}{r} +0.004 \\ 0.010+0.002 \\ \hline \end{array}$

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE - 8-BIT MICROCOMPUTER

DESCRIPTION The μ PD8041A/8741A is a programmable peripheral interface intended for use in a wide range of microprocessor systems. Functioning as a totally self-sufficient controller, the μ PD8041A/8741A contains an 8 -bit CPU, $1 \mathrm{~K} \times 8$ program memory, 64×8 data memory, I/O lines, counter/timer, and clock generator in a 40-pin DIP. The bus structure, data registers, and status register enable easy interface to $8048,8080 \mathrm{~A}$ or 8085 A based systems. The μ PD8041A's program memory is factory mask programmed, while the μ PD8741A's program memory is UV EPROM to enable user flexibility.
FEATURES - Fully Compatible with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}$ and 8086 Bus Structure

- 8 -Bit CPU with $1 \mathrm{~K} \times 8$ ROM, 64×8 RAM, 8 -Bit Timer/Counter, 18 I/O Lines
- 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface
- Interchangeable EPROM and ROM Versions
- Interrupt, DMA or Polled Operation
- Expandable I/O
- 40-Pin Plastic or Ceramic Dip
- Single +5 V Supply

PIN		FUNCTION
NO.	SYMBOL	
1,39	$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable input pins using conditional transfer functions JT0, JNT0, JT1, JNT1. T 1 can be made the counter/timer input using the STRT CNT instruction. The PROM programming and verification on the μ PD8741A uses T_{0}.
2	X_{1}	One side of the crystal input for external oscillator or frequency source.
3	X_{2}	The other side of the crystal input.
4	$\overline{\text { RESET }}$	Active-low input for processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming, verification, and power down.
5	$\overline{\mathrm{SS}}$	Single Step input (active-low). $\overline{\text { SS }}$ together with SYNC output allows the μ PD8741A to "single-step" through each instruction in program memory.
6	$\overline{C S}$	Chip Select input (active-low). $\overline{\mathrm{CS}}$ is used to select the appropriate $\mu \mathrm{PD} 8041 \mathrm{~A} / 8741 \mathrm{~A}$ on a common data bus.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the μ PD8041A/8741A to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	Read strobe input (active-low). $\overline{R D}$ will pulse low when the master processor reads data and status words from the DATA BUS BUFFER or Status Register.
9	A_{0}	Address input which the master processor uses to indicate if a byte transfer is a command or data.
10	$\overline{W R}$	Write strobe input (active-low). $\overline{W R}$ will pulse low when the master processor writes data or status words to the DATA BUS BUFFER or Status Register.
11	SYNC	The SYNC output pulses once for each μ PD8041A/8741A instruction cycle. It can function as a strobe for external circuitry. SYNC can also be used together with $\overline{\mathrm{SS}}$ to "single-step" through each instruction in program memory.
12-19	$D_{0}-D_{7} B \cup S$	The 8-bit, bi-directional, tri-state DATA BUS BUFFER lines by which the μ PD8041A/8741A interfaces to the 8 -bit master system data bus.
20	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20} \mathrm{P}_{27}$	PORT 2 is the second of two 8 -bit, quasi-bi-directional I/O ports. $\mathrm{P}_{20}-\mathrm{P}_{23}$ contain the four most significant bits of the program counter during external memory fetches. $\mathrm{P}_{20}-\mathrm{P}_{23}$ also serve as a 4 -bit I/O bus for the μ PD8243, INPUT/ OUTPUT EXPANDER. $\mathrm{P}_{24}-\mathrm{P}_{27}$ can be used as port lines or can provide Interrupt Request (IBF and OBF) and DMA handshake lines (DRG and DACK).
25	PROG	Program Pulse. PROG is used in programming the μ PD8741A. It is also used as an output strobe for the μ PD8243.
26	$V_{\text {DD }}$	V_{DD} is the programming supply voltage for programming the μ PD8741A. It is +5 V for normal operation of the μ PD8041A/8741A. $V_{\text {DD }}$ is also the Low Power Standby input for the ROM version.
27-34	$\mathrm{P}_{10} \mathrm{P}^{-\mathrm{P}_{17}}$	PORT 1 is the first of two 8-bit quasi-bi-directional I/O ports.
40	V_{CC}	Primary power supply. $V_{\text {CC }}$ must be +5 V for programming and operation of the μ PD8741A and for the operation of the μ PD8041A.

FUNCTIONAL
DESCRIPTION
The μ PD8041A/8741A is a programmable peripheral controller intended for use in master/slave configurations with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}, 8086$ - as well as most other 8 -bit and 16 -bit microprocessors. The μ PD8041A/8741A functions as a totally self-sufficient controller with its own program and data memory to effectively unburden the master CPU from I/O handling and peripheral control functions. The μ PD8041A/8741A is an intelligent peripheral device which connects directly to the master processor bus to perform control tasks which off load main system processing and more efficiently distribute processing functions.

The μ PD8041A/8741A features several functional enhancements to the earlier μ PD8041 part. These enhancements enable easier master/slave interface and increased functionality.

1. Two Data Bus Buffers. Separate Input and Output data bus buffers have been provided to enable smoother data flow to and from master processors.

2. 8-Bit Status Register. Four user-definable status bits, $\mathrm{ST}_{4}-\mathrm{ST}_{7}$, have been added to the status register. $\mathrm{ST}_{4}-\mathrm{ST}_{7}$ bits are defined with the MOV STS, A instruction which meves accumulator bits 4-7 to bits 4-7 of the status register. $\mathrm{ST}_{0}-\mathrm{ST}_{3}$ bits are not affected.

MOV STS, A Instruction OP Code 90H
3. $\overline{R D}$ and $\overline{W R}$ inputs are edge-sensitive. Status bits IBF, OBF, F1 and INT are affected on the trailing edge at $\overline{R D}$ or $\overline{W R}$.

μ PD8041A/8741A

4. P_{24} and P_{25} can be used as either port lines or Buffer Status Flag pins. This feature allows the user to make OBF and IBF status available externally to interrupt the master processor. Upon execution of the EN Flags instruction, P_{24} becomes the OBF pin. When a " 1 " is written to P_{24}, the OBF pin is enabled and the status of OFB is output. A " 0 " written to P_{24} disables the OBF pin and the pin remains low. This pin indicates valid data is available from the μ PD8041A/8741A. EN Flags instruction execution also enables P_{25} indicate that the μ PD8041A/8741A is ready to accept data. A " 1 " written to P_{25} enables the IBF pin and the status of IBF is available on P25. A " 0 " written to P_{25} disables the IBF pin.

EN Flags Instruction Op code - F5H.
5. P_{26} and P_{27} can be used as either port lines or-DMA handshake lines to allow DMA interface. The EN DMA instruction enables P_{26} and P_{27} to be used as DRQ (DMA Request) and $\overline{\mathrm{DACK}}$ (DMA acknowledge) respectively. When a " 1 " is written to P_{26}, DRQ is activated and a DMA request is issued. Deactivation of DRQ is accomplished by the execution of the EN DMA instruction, $\overline{D A C K}$ anded with $\overline{R D}$, or $\overline{D A C K}$ anded with $\overline{W R}$. When EM DMA has been executed, P_{27} ($\overline{\mathrm{DACK}}$) functions as a chip select input for the Data Bus Buffer registers during DMA transfers.
EN DMA Instruction Op Code - E5H.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*	Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	Storage Temperature (Plastic Package)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Voltage on Any Pin	-0.5 to +7 Volts (1)
	Power Dissipation 1.5 Watt

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
Note: (1) With respect to ground.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: V_{D D}=V_{C C}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All except X_{1} and X_{2})	$V_{\text {IL }}$	-0.5		+0.8	V	
$\begin{array}{\|l} \hline \text { Input Low Voltage } \\ \left(X_{1} \text { and } X_{2}, \overline{\text { RESET }}\right) \\ \hline \end{array}$	VIL1	-0.5		0.6	V	
Input High Voltage \qquad (All except $\mathrm{X}_{1}, \mathrm{X}_{2}, \overline{\text { RESET }}$)	$\mathrm{V}_{1 \mathrm{H}}$	2.0		V_{cc}	V	
Input High Voltage ($\mathrm{X}_{1}, \mathrm{X}_{2}, \overline{\text { RESET }}$)	$\mathrm{V}_{\mathrm{IH} 1}$	3.8		V_{CC}	V	
Output Low Voltage (D0-D7, SYNC)	VOL			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output Low Voltage (All other outputs except PROG)	VOL1			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL 2			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output High Voltage ($\mathrm{D}_{0}-\mathrm{D}_{7}$)	VOH	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Output High Voltage (All other outputs)	VOH	2.4			V	$\mathrm{IOH}^{\prime}=-50 \mu \mathrm{~A}$
Input Leakage Current ($T_{0}, T_{1}, \overline{R D}, \overline{W R}, \overline{C S}, E A, A_{0}$)	IIL			± 10	$\mu \mathrm{A}$	$\begin{aligned} & v_{S S} \leqslant v_{\text {IN }} \leqslant \\ & v_{C C} \end{aligned}$
Output Leakage Current ($D_{0}-D_{7}$; High Z State)	IOL			± 10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}}+0.45 \leqslant \\ & \mathrm{v}_{\mathrm{IN}} \leqslant \mathrm{v}_{\mathrm{CC}} \end{aligned}$
V DD Supply Current	IDD			15	mA	
Total Supply Current	ICC + IDD			125	mA	
Low Input Source Current $\left(\mathrm{P}_{10}-\mathrm{P}_{17} ; \mathrm{P}_{20}-\mathrm{P}_{27}\right)$	ILI			0.5	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
Low Input Source Current (SS; RESET)	${ }^{\prime}$ LII			0.2	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNITS	TEST CONDITIONS
		μ PD8041A		μ PD8741A			
		MIN	MAX	MIN	MAX		
DBB READ							
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{RD}} \downarrow$	${ }^{t}$ AR	0		60		ns	
$\overline{C S}, A_{0}$ Hold after $\overline{R D} \uparrow \uparrow$	trA	0		30		ns	
$\overline{\mathrm{RD}}$ Pulse Width	trR	250		300	$2 \times \mathrm{tcy}$	ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
$\overline{C S}, A_{0}$ to Data Out Delay	${ }^{t} A D$		225		370	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\mathrm{RD}}+$ to Data Out Delay	tRD		225		200	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\mathrm{RD}} \uparrow$ to Data Float Delay	tDF		100		140	ns	
Cycle Time	tcy	2.5	15	2.5	15	$\mu \mathrm{s}$	6 MHz Crystal
DBB WRITE							
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{WR}} \downarrow$	${ }^{\text {t }}$ AW	0		60		ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{W R} \uparrow$	tWA	0		30		ns	
$\overline{\text { WR Pulse Width }}$	tww	250		300	$2 \times t \mathrm{CY}$	ns	${ }^{\text {t }} \mathrm{CY} \mathrm{Y}=2.5 \mu \mathrm{~s}$
Data Setup to $\overline{\mathrm{WR}} \uparrow$	tDW	150		250		ns	
Data Hold after $\overline{W R} \uparrow$	tWD	0		30		ns	

INSTRUCTION SET

INSTRUCTION SET (CONT.)

	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	flags						ST4.7				
MNEMONIC			D7	D6	D5	D4	D3	02	D1	Do			c	AC	Fo	F1	1BF	OBF					
INPUT/OUTPUT																							
ANL Pp, $=$ data	$(P \rho)$ - ($\mathrm{P} \mathrm{\rho} \mathrm{p})$ AND data $p=12$	Logical and Immediate specified data with designated port (1 or 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} p \\ d o \end{gathered}$	2	2											
ANLD Pd. A	$\begin{aligned} & \left(P_{p}\right)-\left(\begin{array}{lll} \left(P_{p}\right) \\ p=4 \\ 7 \end{array}\right) \text { AND }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & \hline \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1											
IN A. Pp	(A) - (Pp): $p=12$	input data from designated port (1) 2) into Accumulator.	0	0	0	0	1	0	p	p	2	1											
IN A. D88	$(A)-(D B B)$	Input strobed DBB deta into Accumulator and clear IBF	0	0	1	0	0	0	1	0	1	1					-						
MOVD A. Pp	$\begin{aligned} & \left.\binom{A}{0}-3\right)-\left(P_{p}\right): P=4-7 \\ & (A 4)-0 \end{aligned}$	Move contents of designated port (4 7) into Accumulator.	0	0	0	0	1	1	ρ	p	2	1											
MOVO Pp. A	$\left(P_{p}\right)-A 0 \cdot 3: p=47$	Move contents of Accumulator to designated port (4) 7)	0	0	1	1	1	1	p	p	1	1											
ORLD Pp, A	$\begin{aligned} & \left(P_{\rho}\right)-\left(P_{\rho}\right) \text { OR }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & p=47 \end{aligned}$	Logical or contents of Accumulator with designated port (4 7).	1	0	0	0	1	1	p	p	1	1											
ORL Pp. $=$ deta	$\begin{aligned} & \left(P_{\rho}\right)-\left(P_{p}\right) O R \text { data } \\ & \rho=12 \end{aligned}$	Logical or Immediate specified data with designated port (1 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} \circ \\ \mathrm{d}_{0} \end{gathered}$	2	2											
OUT DBB, A	(DBB) (A)	Output contents of Accumulator onto OBB and set OBF.	0	0	0	0	0	0	1	0	1	1						-					
OUTL Pp, A	$(P \rho) \cdot(A) . p=1 \quad 2$	Output contents of Accumulator to designated port (1 2).	0	0	1	1	1	0	p	p	1	1											
REGISTERS																							
DECRr (Rr)	$\left(R_{r}\right)-\left(R_{r}\right) \quad 1 . r=0 \quad 7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r		r	1	1											
INC Rr	$\left(R_{r}\right) \cdots\left(R_{r}\right)+1: r=0 \quad 7$	increment by 1 contents of designated register	0	0	0	1	1	'	r	'	1	1											
INC@Rr	$\begin{aligned} & (\\|R\\|)-(\\|R+\\|)+1 . \\ & r=0,1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	'	1	1											
SUBROUTINE																							
CALL addr		Call designated Subroutine.	$\begin{aligned} & a_{10} \\ & \text { a7 } \end{aligned}$	$\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$		$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2											
RET	$\begin{aligned} & (S P)-(S P){ }^{(P)}{ }^{1} \\ & ((S P)) \end{aligned}$	Return from Subroutine without restoring Prograin Status word.	1	0	0	0	0	0	1	1	2	1											
RETR		Return from Subioutine restosiny Progratn Status Word.	1	0	0	1	0	0	1	1	.2	1											
TIMER/COUNTER																							
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output	0	0	1	0	0	1	0	1	1	1											
DIS TCNTI		Disable Internal interrupt Flaç for Timer/Counter output.	0	0	1	1	0	1	0	1	1	1											
MOV A, T	(A) - (T)	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1											
movt, A	(T) - (A)	Move content: of Accumulator into Timet/Counter.	0	1	1	0	0	0	1	0	1	1											
STOP TCNT		Stop Count for Event Counter	0	1	1	0	0	1	0	1	1	1											
STRT ENT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1											
STRT T		Start Count for Timer	0	1	0	1	0	1	0	1	1	1											
miscellaneous																							
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1											

Notes (1) Instruction Code Designations rana p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
FO, F1	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator
IBF	Input Buffer Full Flag

SYMBOL	DESCRIPTION
P_{p}	Port Designator ($\mathrm{p}=1,2$ or $4-7$)
PSW	Program Status Word
Rr	Register Designator ($\mathrm{r}=0,1$ or $0-7$)
SP	Stack Pointer
T	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Flags 0,1
X	External RAM
$\#$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
(x)	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed by the Contents of External RAM Location. \leftarrow
Replaced By	
DBB	Output Buffer Full
	Data Bus Buffer

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$13.5+0.2$	$0.531+0.008$
M	0.30 ± 0.1	0.012 ± 0.004

μ PD8048 FAMILY OF SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION The μ PD8048 family of single chip 8-bit microcomputers is comprised of the μ PD8048, μ PD8748 and μ PD8035L. The processors in this family differ only in their internal program memory options: The μ PD8048 with $1 \mathrm{~K} \times 8$ bytes of mask ROM, the μ PD8748 with $1 \mathrm{~K} \times 8$ bytes of UV erasable EPROM and the μ PD8035L with external memory.

FEATURES - Fully Compatible With Industry Standard 8048/8748/8035

- NMOS Silicon Gate Technology Requiring a Single +5 V Supply
- 2.5μ s Cycle Time. All Instruction 1 or 2 Bytes
- Interval Timer/Event Counter
- 64×8 Byte RAM Data Memory
- Single Level Interrupt
- 96 Instructions: 70% Single Byte
- 27 I/O Lines
- Internal Clock Generator
- 8 Level Stack
- Compatible With 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40 Pin Packages

The NEC μ PD8048, μ PD8748 and μ PD8035L are single component, 8 -bit, parallel microprocessors using N-channel silicon gate MOS technology. The μ PD8048/8748/ 8035L efficiently function in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.
The μ PD8048/8748/8035L instruction set is comprised of 1 and 2 byte instructions with over 70% single-byte and requiring only 1 or 2 cycles per instruction with over 50% single-cycle.
The μ PD8048 series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The μ PD8048 contains the following functions usually found in external peripheral devices: 1024×8 bits of ROM program memory; 64×8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; oscillator and clock circuitry.
The μ PD8748 differs from the μ PD8048 only in its 1024×8-bit UV erasable EPROM program memory instead of the 1024×8-bit ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.
The μ PD8035L is intended for applications using external program memory only. It contains all the features of the μ PD8048 except the 1024×8-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

PIN		FUNCTION
NO.	SYMBOL	
1	T_{0}	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to T_{0} using the ENTO CLK instruction. T_{0} can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $V_{I H}$).
3	XTAL 2	The other side of the crystal input.
4	RESET,	Active low input for processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming verification and powerdown (non TTL compatible $\mathrm{V}_{1 \mathrm{H}}$).
5	$\overline{\overline{S S}}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). INT will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{INT}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN becomes }}$ active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{\text { WR }}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$D_{0}-D_{7}$ BUS	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode. During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7} B U S$, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{gathered} P_{20}-P_{27} \\ \text { PORT } 2 \end{gathered}$	Port 2 is the second of two 8 -bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $P_{20}-P_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4 -bit I/O bus for the $\mu \mathrm{PD} 8243$, INPUT/OUTPUT EXPANDER.
25	PROG	Program Pulse. A +25 V pulse applied to this input is used for programming the μ PD8748. PROG is also used as an output strobe for the μ PD8243.
26	VDD	Programming Power Supply. VDD must be set to +25 V for programming the μ PD8748, and to +5 V for the ROM and PROM versions for normal operation. VDD functions as the Low Power Standby input for the μ PD8048.
27-34	$\begin{gathered} P_{10}-P_{17} \\ \text { PORT }_{1} \end{gathered}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	V_{CC}	Primary Power Supply. VCC must be +5 V for programming and operation of the μ PD8748, and for operation of the μ PD8035L and μ PD8048.

Operating Temperature
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . - 0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation . 1.5 W

Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

* $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$)	V_{IH}	2.0		VCC	v	
Input High Voltage (RESET, XTAL 1, XTAL 2)	$\mathrm{V}_{1} \mathrm{H} 1$	3.8		VCC	V	
Output Low Voltage (BUS)	VOL			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, PSEN, ALE)	$\mathrm{V}_{\text {OL1 }}$			0.45	V	$1 \mathrm{OL}=1.8 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\text {OL2 }}$			0.45	V	$1 \mathrm{OL}=1.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs)	VOL3			0.45	V	${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$
Output High Voltage (BUS)	VOH	2.4			V	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$
Output High Voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, PSEN, ALE)	VOH^{\prime}	2.4			V	${ }^{\prime} \mathrm{OH}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	$\mathrm{IOH}=-40 \mu \mathrm{~A}$
Input Leakage Current (T_{1}, INT)	IIL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Input Leakage Current $\left(P_{10}-P_{17}, P_{20}-P_{27}, E A, \overline{S S}\right)$	IIL1			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	${ }^{1} \mathrm{OL}$			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Power Down Supply Current	'DD		7	15	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	IDD + ICC		60	135	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{DD}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
V DD Program Voltage High-Level	$\mathrm{V}_{\text {DOH }}$	24.0		26.0	V	
VDD Voltage Low-Level	VDDL	4.75		5.25	v	
PROG Voltage High-Level	VPH	21.5		24.5	V	
PROG Voltage Low-Level	VPL			0.2	V	
EA Program or Verify Voltage High-Level	VEAH	21.5		24.5	V	
EA Voltage Low-Level	VEAL			5.25	V	
VDD High Voltage Supply Current	IDD			30.0	mA	
PROG High Voltage Supply Current	IPROG			16.0	mA	
EA High Voltage Supply Current	'EA			1.0	mA	

ABSOLUTE MAXIMUM RATINGS*

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: V_{C C}-V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST (1) CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }_{\text {t }}$ L	400			ns	
Address Setup before ALE	tAL	120			ns	
Address Hold from ALE	tha	80			ns	
Control Pulse Width ($\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}})$	${ }^{\text {t }} \mathrm{CC}$	700			ns	
Data Setup before WR	${ }^{\text {tow }}$	500			ns	
Data Hold after $\overline{W R}$	twD	120			ns	$C_{L}=20 \mathrm{pF}$
Cycle Time	${ }^{t} \mathrm{CY}$	2.5		15.0	$\mu \mathrm{s}$	$6 \mathrm{MHz} \times$ XAL
Data Hold	${ }^{\text {t }} \mathrm{DR}$	0		200	ns	
$\overline{\text { PSEN, }}, \overline{\mathrm{RD}}$ to Data In	${ }_{\text {t } R D}$			500	ns	
Address Setup before WR	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data In	${ }^{t} A D$			950	ns	
Address Float to $\overline{\text { RD }}, \overline{\text { PSEN }}$	${ }^{\text {t }}$ AFC	0			ns	
Control Pulse to ALE	${ }^{\text {t }}$ CA	10			ns	

Notes:
(1) For Control Outputs: $C_{L}=80 \mathrm{pF}$

For Bus Outputs: $C_{L}=150 \mathrm{pF}$
${ }^{t} \mathrm{C} Y=2.5 \mu \mathrm{~s}$
PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Controi Setup before Falling Edge of PROG	${ }^{t} \mathrm{CP}$	110			ns	
Port Control Hold after Falling Edge of PROG	tpc	100			ns	
$\widehat{\text { PROG to Time P2 Input must be }}$ Valid	${ }^{\text {tPR }}$			810	ns	
Output Data Setup Time	${ }^{t} \mathrm{DP}$	250			ns	
Output Data Hold Time	${ }^{\text {t P D }}$	65			ns	
Input Data Hold Time	tPF	0		150	ns	
$\overline{\text { PROG Pulse Width }}$	tpp	1200			ns	
Port 2 1/O Data Setup	${ }_{t} \mathrm{P}_{\mathrm{L}}$	350			ns	
Port 2 I/O Data Hold	t LP	150			ns	

PROGRAMMING SPECIFICATIONS $-\mu$ PD8748
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{DD}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time before RESET \uparrow	taw	4 tCY				
Address Hold Time after RESET \uparrow	tWA	4 t CY				
Data In Setup Time before $\overline{\text { PROG }} \uparrow$	tow	4 t CY				
Data In Hold Time after $\overline{\text { PROG }} \downarrow$	twD	:4 tCY				
RESET Hold Time to VERIFY	tPH	4 t CY				
$V_{\text {DD }}$	tVDDW	4 t CY				
VDD Hold Time after PROG \downarrow	tVDDH	0				
Program Pulse Width	${ }^{\text {t }}$ PW	50		60	ms	
Test 0 Setup Time before Program Mode	tw	4 t CY				
Test 0 Hold Time after Program Mode	twT	4 t CY				
Test 0 to Data Out Delay	$t 00$			4 t cy		
$\overline{\text { RESET Pulse Width to Latch }}$ Address	tww	4 t CY				
VDD and PROG Rise and Fall Times	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	0.5		2.0	$\mu \mathrm{s}$	
Processor Operation Cycle Time	tcy	5.0			$\mu \mathrm{s}$	
	$t_{\text {RE }}$	4 t CY				

TIMING WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL MEMORY

READ FROM EXTERNAL DATA MEMORY

ALE

WRITE TO EXTERNAL MEMORY

TIMING WAVEFORMS (CONT.)

PORT 2 TIMING

PROGRAM/VERIFY TIMING (μ PD8748 ONLY)

VERIFY MODE TIMING (μ PD8048/8748 ONLY)

XTAL or external) at ine XTAL 1 and XTAL 2 inputs.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{BYTES} \& \multicolumn{4}{|c|}{flags} \\
\hline \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{Di}_{1}\) \& \(\mathrm{D}_{0}\) \& \& \& C \& AC \& F0 \& F1 \\
\hline \multicolumn{17}{|c|}{ACCUMULATOR} \\
\hline ADD A, \# data \& \((A) \leftarrow(A)+\) data \& Add Immediate the specified Data to the Accumulator. \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& - \& \& \& \\
\hline ADD A, Rr \& \[
\begin{aligned}
\& (A)-(A)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add contents of designated register to the Accumulator. \& \& 1 \& 1 \& 0 \& 1 \& r \& \(r\) \& r \& 1 \& 1 \& - \& \& \& \\
\hline ADD A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add Indirect the contents the data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& - \& \& \& \\
\hline ADDC A, \# data \& \((\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+\) data \& Add Immediate with carry the specified data to the Accumulator. \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& - \& \& \& \\
\hline ADDC A, Rr \& \[
\begin{aligned}
\& (A)-(A)+(C)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add with carry the contents of the designated register to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& - \& \& \& \\
\hline ADDC A, @ Rr \& \[
\begin{aligned}
\& (A)-(A)+(C)+((\text { Rr })) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add Indirect with carry the contents of data memory location to the Accumulator. \& 0 \& 1. \& 1 \& 1 \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& - \& \& \& \\
\hline ANL \(\mathrm{A}_{1}=\) data \& \((A)-(A)\) AND data \& Logical and specified Immediate Data with Accumulator. \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{~d}_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline ANL A, Rr \& \[
\begin{aligned}
\& (A)-(A) \text { AND }\left(R_{r}\right) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical and contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 1 \& \& r \& r \& r \& 1 \& 1 \& \& \& \& \\
\hline ANL A, @ Rr \& \[
\begin{aligned}
\& (A)-(A) \text { AND }((\operatorname{Rr})) \\
\& \text { for } r=0 \quad 1
\end{aligned}
\] \& Logical and Indirect the contents of data memory with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& \& \& \& \\
\hline CPL A \& \((A)-N O T(A)\) \& Complement the contents of the Accumulator. \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline CLR A \& \((\mathrm{A})-0\) \& CLEAR the contents of the Accumulator. \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline DA A \& \& DECIMAL ADJUST the contents of the Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \\
\hline DEC A \& (A) ... (A) 1 \& DECREMENT by 1 the accumulator's contents. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline INC A \& \((\mathrm{A})-(\mathrm{A})+1\) \& Increment by 1 the accumulator's contents. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline ORL \(A_{\text {, }}=\) data \& \((A)-(A) O R\) data \& Logical OR specified immediate data with Accumulator \& \[
\begin{gathered}
0 \\
d_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline ORL A, Rr \& \[
\begin{aligned}
\& \text { (A) }-(A) \text { OR (Rr) } \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical ORcontents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 1 \& r \& \(r\) \& r \& 1 \& 1 \& \& \& \& \\
\hline ORL A, @ Rr \& \[
\begin{aligned}
\& (A)-(A) O R(\mid R()) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical OR Indirect the coritents of data memory location with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& \\
\hline RL A \& \[
\begin{aligned}
\& (A N+1)-(A N) \\
\& \left(A_{0}\right)-\left(A_{7}\right) \\
\& \text { for } N=0-6
\end{aligned}
\] \& Rotate Accumulator left by 1-bit without carry. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline RLC A \& \[
\begin{aligned}
\& (A N+1) \leftarrow(A N) ; N=0-6 \\
\& \left(A_{0}\right) \leftarrow(C) \\
\& (C) \leftarrow\left(A_{7}\right)
\end{aligned}
\] \& Rotate Accumulator left by \(\mathbf{1 - b i t}\) through carry. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \\
\hline RR A \& \[
\begin{aligned}
\& (A N)-(A N+1) ; N=0-6 \\
\& (A 7)-\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1-bit without carry. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline RRC A \& \[
\begin{aligned}
\& (A N)-(A N+1) ; N=0-6 \\
\& (A 7)-(C) \\
\& (C)-\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1 -bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \\
\hline SWAP A \& \[
\left(A_{4-7}\right) \rightleftarrows\left(A_{0}-3\right)
\] \& Swap the 24 -bit nibbles in the Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline XRL A, \#data \& \((A)-(A) X O R\) data \& Logical XOR specified immediate data with Accumulator. \& \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline XRL A, Rr \& \[
\begin{aligned}
\& (A)-(A) \text { XOR (Rr) } \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical XOR contents of designated register with Accumulator. \& \[
1
\] \& \[
1
\] \& 0 \& 1 \& \[
1
\] \& r \& r \& \(r\) \& 1 \& 1 \& \& \& \& \\
\hline XRL A, @ Rr \& \[
\begin{aligned}
\& (A)-(A) \times O R((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical XOR Indirect the contents of data memory location with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& \& \& \& \\
\hline \multicolumn{17}{|c|}{BRANCH} \\
\hline DJNZ Rr, addr \& \[
\begin{aligned}
\& \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 ; r=0-7 \\
\& \text { If }(R r) \neq 0 \text { : } \\
\& (P C 0-7) \leftarrow \text { addr }
\end{aligned}
\] \& Decrement the specified register and test contents. \& \[
\begin{gathered}
1 \\
\text { a7 }
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{3}
\end{gathered}
\] \& \[
a_{2}
\] \& \[
\begin{gathered}
r \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
r \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JBb addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } \mathrm{Bb}=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0
\end{aligned}
\] \& Jump to specified address if Accumulator bit is set. \& \& \[
\begin{aligned}
\& b_{1} \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& b_{0} \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JC addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } C=1 \\
\& (P C) \leftarrow(P C)+2 \text { if } C=0
\end{aligned}
\] \& Jump to specified address if carry flag is set. \& \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JF0 addr \& \begin{tabular}{l}
(PC \(0-7) \leftarrow\) addr if.FO \(=1\) \\
\((P C)-)(P C)+2\) if \(F O=0\)
\end{tabular} \& Jump to specified address if Flag FO is set. \& \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JF1 addr \& \begin{tabular}{l}
(PC \(0-7) \leftarrow\) addr if \(F 1=1\) \\
\((P C)-(P C)+2\) if \(F 1=0\)
\end{tabular} \& Jump to specified address if Flag F1 is set, \& \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JMP addr \& (PC 8-10) - addr 8-10 (PC 0-7) \(-\operatorname{addr} 0-7\) (PC 11) • DBF \& Direct Jump to specıfied address within the \(\mathbf{2 K}\) address block. \& \& \[
\begin{aligned}
\& \text { ag } \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{8} \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JMPP @ A \& \((P \cdot C 0-7) \leftarrow(1(A))\) \& Jump indirect to specified address with with address page. \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& \(2 \cdot\) \& 1 \& \& \& \& \\
\hline JNC addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } C=0 \\
\& (P C)-(P C)+2 \text { if } C=1
\end{aligned}
\] \& Jump to specified address if carry flag is low. \& 1
9

7 \& $$
\begin{gathered}
1 \\
a 6
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline JNI addr \& $$
\begin{aligned}
& (P C 0-7) \leftarrow \text { addr if } 1=0 \\
& (P C)+(P C)+2 \text { if } 1=1
\end{aligned}
$$ \& Jump to specified address if interrupt is low. \& 1

a \& 0
96 \& 0
a_{5} \& 0

4 \& 0

a_{3} \& \[
$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline
\end{tabular}

MNEMONIC	FUNCTION	DESCRIPTION	InStruction code								CYCLES	BYTES	Flags				
			D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			C	AC	Fo	F1	
BRANCH (CONT.)																	
JN TO addr	(PC 0 - 7) - addr if TO $=0$ $(\mathrm{PC}) \cdot(\mathrm{PC})+2$ if $\mathrm{TO}=1$	Jump to specified address if Test 0 is low.	0 a	0 a_{6}	1 a_{5}	0 a_{4}	0 a_{3}	1 a_{2}	1 a_{1}	0 a_{0}	2	2					
JNT1 addr	(PC 0-7)-addr if T1 $=0$ (PC) - $(\mathrm{PC})+2$ if $\mathrm{T} 1=1$	Jump to specified address if Test 1 is low	0 97	1 96						0 90	2	2					
JNZ addr	$\begin{aligned} & (\mathrm{PC} 0 \\ & (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } \mathrm{A}=0 \end{aligned}$	Jump to specified address if accumulator is non-zero.	$\begin{gathered} 1 \\ 37 \end{gathered}$	$\begin{gathered} 0 \\ a_{G} \end{gathered}$	$\begin{gathered} 0 \\ \text { a } \end{gathered}$	1 94		1 a_{2}	1 3	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2					
JTF addr	(PC $0 \quad 7) *$ addr if $T F=1$ $(\mathrm{PC}) \cdot(\mathrm{PC})+2 \mathrm{f} T \mathrm{TF}=0$	Jump to specified address if Timer Flag is set to 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$					1 31	0 a_{0}	2	2					
JTO addr	(PC $0 \quad 7)-$ addr if $T 0=1$ $(\mathrm{PC})-(\mathrm{PC})+2 \mathrm{ff}$ TO $=0$	Jump to specified address if Test 0 is a	0 0	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2					
JT1 addr	$\begin{aligned} & (\mathrm{PCO} \quad 7) \cdot \text { addr if } T 1=1 \\ & \text { (PC) } \cdot(\mathrm{PC})+2 \text { if } T 1 \quad 0 \end{aligned}$	Jump to specified address if Test 1 is a $\mathbf{1}$.	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{a}_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2					
$J Z$ addr	$\begin{aligned} & (\mathrm{PC} 0-7) \cdot \text { addr if } \mathrm{A}=0 \\ & (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } \mathrm{A} \quad 0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{array}{r} 1 \\ a 6 \\ \hline \end{array}$	$\begin{gathered} 0 \\ a \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a 2 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ { }^{0} 0 \\ \hline \end{gathered}$	2	2					
CONTROL																	
EN I		Enable the External Interrupt input.	0	0	0	0	0	1	0	1	1	1					
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	1					
ENTO CLK		Enable the Clock Output pin TO.	0	1	1	1	0	1	0	1	1	1					
SEL MBO	(DBF) - 0	Select Bank 0 (locations $0 \quad 2047$) of Program Memory.	1	1	1	0	0	1	0	1	1	1					
SEL MB1	(DBF) . 1	Select Bank 1 (locations 2048 4095) of Program Memory.	1	1	1	1	0	1	0	1	1	1					
SEL RBO	$(B S) \cdot 0$	Select Bank 0 (locations 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1					
SEL RB1	(BS) 1	Select Bank 1 (locations 24 31) of Data Memory.	1	1	0	1	0	1	0	1	1	1					
DATA MOVES																	
MOV A, data	(A) - data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2					
MOV A, RI	(A). (Rr), 0 O	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	,	'	,	1	1					
MOV A, \&Rr	\|A	. ($(\mathrm{R} r)$); $r=0 \quad 1$	Move Indirect the contents of data memory location into the Accumulato	1	1	1	1	0	0	0	,	1	1				
MOV A, PSW	(A). (PSW)	Move contents of the Program Status Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1					
MOV Rr, . data	$\left(R_{1}\right) \cdot$ data, $\mathrm{r}-07$	Move Immediate the specified data into the designated iegister	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	${ }^{\prime} \mathrm{d}_{2}$	$\begin{gathered} \prime \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{d}_{0} \end{gathered}$	2	2					
MOV Rı, A	$(\mathrm{Rr}) \cdot(\mathrm{A}) ; \mathrm{r}=0 \mathrm{l}$	Move Accumulator Contents into the designated register.	1	0	1	0	1	,	'	,	1	1					
MOV @ Rr, A	$((\mathrm{Rr})$) (A$) ; r-0 \quad 1$	Move Indirect Accumulator Contents into data memory location	1	0	1	0	0	0	0	'	1	1					
MOV @ Rr, : data	(1Rr)\| data: 01	Move immediate the specified data into data memory.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	${ }^{1}$	2	2					
MOV PSW. A	(PSW) - (A)	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1					
MOVP A.@A	$\begin{aligned} & (P C O \quad 7) \cdot(A) \\ & (A) \cdot(1 P C) \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1					
MOVP3 A, @ A	$\begin{aligned} & (P C 0 \\ & (P C) \cdot(A) \\ & (P C \quad 10) \cdot 011 \\ & (A) \cdot(\mid P C) \mid \end{aligned}$	Move Piogram data in Page 3 into the Accumulator.	1	1	1	0	0	0	1	1	2	1					
MOVX A, @R	(A). (Rr$)$), r 0 1	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1					
MOVX@R, A	$((R r)) \cdot(A) . r-01$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1					
$\mathrm{XCHA} . \mathrm{Rr}$	$(\mathrm{A}) \approx\left(\mathrm{Rr}_{\mathrm{r}}\right) ; r=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	1	'	'	1	1					
XCH A, @ Rr	(A). (($\left.\left.\mathrm{R}_{\mathrm{r}}\right)\right): r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	${ }^{\prime}$	1	1					
XCHD A.@Rr	$\begin{aligned} & \left.\left.(A 0-3)=\left(\left(R_{r}\right)\right) 0-3\right)\right) \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	'	1	1					
FLAGS																	
CPL C	(C) - NOT (C)	Complement Content of carry bit.	1	0	1	0	0	1	1	1	1	1	-				
CPL FO	(FO) : NOT (FO)	Complement Content of Flag FO.	1	0	0	1	0	1	0	1	1	1			-		
CPLF1	(F1). NOT (F1)	Complement Content of Flag F1	1	0	1	1	0	1	0	1	1	1				-	
CLR C	(C) - 0	Clear content of carry bit to 0	1	0	0	1	0	1	1	1	1	1	-				
CLR FO	(FO) - 0	Clear content of Flag 0 to 0 .	1	0	0	0	0	1	0	1	1	1			-		
CLRF1	(F1) . 0	Clear content of Flag 1 to 0 .	1	0	1	0	0	1	0	1	1	1				-	

Notes (1) Instruction Code Designations r and p form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
Fo. F1 2	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator

SYMBOL	DESCRIPTION
P_{p}	Port Designator $(p=1,2$ or $4-7)$
PSW	Program Status Word
$R r$	Register Designator $(r=0,1$ or $0-7)$
$S P$	Stack Pointer
T	Timer
$T F$	Timer Flag
T_{0}, T_{1}	Testable Flags 0,1
X	External RAM
	Prefix for Immediate Data
$@$	Prefix for Indirect Address
S	Program Counter's Current Value
(x)	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed by the Contents of External RAM Location.
-	Replaced By

LOGIC SYMBOL

PACKAGE OUTLINES μ PD8048C μ PD8035LC

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8048D μ PD8748D μ PD8035LD

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5	2.03
B	1.62	0.06
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26	1.9
F	1.02	0.04
G	3.2	0.13
H	1.0	0.04
I	3.5	0.14
J	4.5	0.18
K	15.24	0.6
L	14.93	0.59
M	0.25 ± 0.05	0.01 ± 0.0019

NOTES

CMOS SINGLE CHIP 8-BIT MICROCOMPUTER

The NEC μ PD80C48 is a true stand alone 8 -bit microcomputer fabricated with CMOS technology. The μ PD80C48 contains all the functional blocks - 1 K bytes ROM, 64 bytes RAM, 27 I/O. lines, on-chip 8-bit Timer/Event counter, on-chip clock gen-erator-to enable its use in stand alone applications. For designs requiring extra capability the μ PD80C48 can be expanded using industry standard μ PD8080A/ μ PD8085A peripherals and memory products. The μ PD80C 35 differs from the μ PD80C48 only in that the μ PD80C35 contains no internal program memory (ROM).

Compatible with the industry standard 8048, 8748, and 8035, the CMOS fabricated μ PD80C48 provides significant power consumption savings in applications requiring low power and portability. In addition to the inherent power savings gained through CMOS technology, the NEC μ PD80C48 features Halt and Stop modes to further minimize power drain.

FEATURES - 8 -Bit CPU, ROM, RAM, I/O in a Single Package

- Hardware/Software Compatible with Industry Standard 8048, 8748, 8035 Products
- $1 \mathrm{~K} \times 8$ ROM
- 64×8 RAM
- 27 I/O Lines
- $2.5 \mu \mathrm{~s}$ Cycle Time (6 MHz Crystal)
- All Instructions 1 or 2 Cycles
- 97 Instructions: 70% Single Byte
- Internal Timer/Event Counter
- Two Interrupts (External and Timer)
- Easily Expandable Memory and I/O
- Bus Compatible with 8080A/8085A Peripherals
- CMOS Technology Requiring a Single +5 V Supply
- Available in 40 -Pin DIP
- Effective Low Power Standby Functions
- Halt Mode
- 2 mA Typical Supply Current
- Maintains Internal Logic Values and Control Status
- Initiated by Halt Instruction
- Released by External Interrupt or Reset
- Stop Mode
- $20 \mu \mathrm{~A}$ Maximum Supply Current
- Disables Internal Clock Generation and Internal Logic
- Maintains RAM
- Initiated via Hardware (VD)
- Released via Reset

BLOCK DIAGRAM

PIN		FUNCTION
No.	SYMBOL	
1	T_{0}	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is. available to T_{0} using the ENTO CLK instruction. T_{0} can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $\mathrm{V}_{1 H}$).
3	XTAL 2	The other side of the crystal input.
4	$\overline{\text { RESET }}$	Active low input for processor initialization. $\overline{\text { RESET }}$ is also used for Halt/Stop Mode release (non TTL compatible $V_{I H}$).
5	$\overline{\overline{s s}}$	Single Step input (active-low). $\overline{5}$ s together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). $\overline{\mathrm{NT}}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{NT}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{\text { WR }}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode. During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7} B U S$, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27}: \\ & \text { PORT } \end{aligned}$	Port 2 is the second of two 8 -bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4 -bit I/O bus for the $\mu \mathrm{PD} 8243$. INPUT/OUTPUT EXPANDER.
25	PROG	PROG is used as an output strobe for the μ PD8243.
26	VDD	Power Supply; +5 V during normal operation for ROM. VDD is also used in the stop mode. By forcing $V_{D D}$ low during a reset, processor enters the stop mode.
27-34	$\begin{aligned} & \mathrm{P}_{10}-\mathrm{P}_{17}: \\ & \text { PORT } 1 \end{aligned}$	Port 1 is one of two 8 -bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	v_{CC}	Primary Power Supply. V_{CC} must be +5 V for operation of the μ PD80C48 and μ PD80C35.

Operating Temperature
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . VCC -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Supply Voltage . VSS - 0.3 to +10V
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.3		0.8	v	
Input High Voltage (All Except XTAL 1, XTAL 2, RESET)	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-2}$		V_{cc}	V	
Input High Voltage (RESET, XTAL 1, XTAL 2)	V_{1+1}	VCC^{-1}		V_{cc}	v	
Output Low Voltage (BUS, RD, WR, PSEN, ALE)	$\mathrm{VOL}_{\text {O }}$			0.45	v	${ }^{\prime} \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs Except PROG)	$\mathrm{V}_{\text {OL1 }}$			0.45	v	${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\mathrm{OL} 2}$			0.45	v	
Output High Voltage (BUS, RD, WR, PSEN, ALE)	VOH	2.4			v	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			v	$\mathrm{I}^{\mathrm{OH}}=-50 \mu \mathrm{~A}$
Input Current (Port 1, Port 2)	IILP	-160			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {IL }}$
Input Current ($\overline{\mathrm{SS}}, \overline{\mathrm{RESET}}$)	IILC	-40			$\mu \mathrm{A}$	$V_{\text {IN }} \leqslant V_{\text {IL }}$
Input Leakage Current ($T_{1}, E A, I N T$)	I/L		± 1		$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	${ }^{\text {IOL }}$		± 1		$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Total Supply Current	${ }^{100}+1 \mathrm{Cc}$			10	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} 6 \mathrm{MHz}$
Halt Power Supply Current	${ }^{\text {I C C }}$		2		mA	6 MHz
Stop Mode Supply Current	'cc			20	$\mu \mathrm{A}$	6 MHz

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST (1) CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	t LL	400			ns	
Address Setup before ALE	${ }^{\text {t }}$ AL	150			ns	
Address Hold from ALE	tha	80			ns	
Control Pulse Width ($\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	${ }^{\text {t }}$ C	900			ns	
Data Setup before $\overline{W R}$	${ }^{\text {tow }}$	500			ns	
Data Hold after WR	tWD	120			ns	$C_{L}=20 \mathrm{pF}$
Cycle Time	${ }^{t} \mathrm{CY}$	2.5		15.0	$\mu \mathrm{s}$	$6 \mathrm{MHz} \times$ XAL
Data Hold	${ }^{t} \mathrm{DR}$	0		200	ns	
$\overline{\text { PSEN, }}, \overline{\mathrm{RD}}$ to Data In	tRD			500	ns	
Address Setup before $\overline{W R}$	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data In	${ }^{t} A D$			950	ns	
Address Float to $\overline{R D}, \overline{\text { PSEN }}$	${ }^{t} A F C$	0			ns	

Notes: (1) For Control Outputs: $C_{L}=80 \mathrm{pF}$
For Bus Outputs: $C_{L}=150 \rho F$

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS (CONT.)
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Controi Setup defore Falling Edge of $\overline{\text { PROG }}$	${ }^{t} \mathrm{CP}$	110			ns	
Port Control Hold after Falling Edge of $\overline{\text { PROG }}$	tpe	140			ns	
$\overline{\text { PROG to Time P2 Input must be }}$ Valid	tPR			810	ns	
Output Data Setup Time	tDP	220			ns	
Output Data Hold Time	${ }^{\text {tPD }}$	65			ns	
Input Data Hold Time	tPF			150	ns	
FROG Pulse Width	tpp	1510			ns	
Port $21 / \mathrm{O}$ Data Setup	${ }^{t} \mathrm{P}$ L	400			ns	
Port 2 I/O Data Hold	${ }^{\text {t }}$ LP	150			ns	

TIMING WAVEFORMS

1) HALT MODE (WHEN EI)

2) STOP MODE

INSTRUCTION FETCH FROM EXTERNAL. MEMORY

NEW FEATURES

STOP MODE

The NEC μ PD80C48/ μ PD80C35 contains all the functional features of the industry standard 8048/8035. The power down mode of the μ PD8048 is replaced with two additional power standby features for added power savings. Depending on desired power consumption savings and internal logic status maintenance, the Halt Mode or Stop Mode may be used.

Halt Mode

The μ PD80C48/80C35 includes a Halt instruction (01 H) - an addition to the standard 8048 instruction set. Upon execution of the Halt instruction, the μ PD80C48 enters a Halt mode where the internal clocks and internal logic are disabled. The oscillator, however, continues its operation. The state of all internal logic values and control status prior to the halt state is maintained. Under the Halt mode of operation, power consumption is less than 10% of normal μ PD80C48 operation, and 1% of 8048 operation.

The Halt mode is released through either of two methods: an active input on the INT line or a reset operation. Under the Interrupt Release mode, if interrupts are enabled (EI Mode), the INT input restarts the internal clocks to the internal logic. The μ PD80C48 then executes the interrupt service routine.
If interrupts are disabled (DI Mode), an $\overline{\text { INT }}$ active signal causes the program operation to resume, beginning from the next sequential address after the Halt instruction.

A RESET input causes the normal reset function which starts the program at address OH .

Note: The V CC range under Halt mode must be maintained at $+5 \mathrm{~V} \pm 10 \%$, as in normal operation.

Stop Mode

The Stop mode provides an additional power consumption savings over the Halt mode of operation. The Stop mode is initiated by forcing VDD to the low state during a $\overline{R E S E T}$ low. While in the Stop mode, oscillator operation is discontinued and only the contents of RAM are maintained.

The μ PD80C48 is released from the Stop mode when $V_{D D}$ is forced high during a RESET low. Clock generation is then restarted. When oscillator stabilization is achieved, $\overline{\operatorname{RESET}}$ is pulled high and the program is restarted from location 0.

Note: To insure reliable Stop mode operation, when releasing the Stop mode $\mathrm{V}_{\text {DD }}$ must be brought back up to $+5 \mathrm{~V} \pm 10 \%$. The $\mathrm{V}_{\text {DD }}$ pin must be protected against noise conditions since it controls oscillator operation. As under normal operation $V_{C C}$ should be maintained at $+5 \mathrm{~V} \pm 10 \%$. RESET must be held low after oscillation stoppage until it is desired that the oscillator be restarted.

INSTRUCTION SET (CONT.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{BYTES} \& \multicolumn{4}{|c|}{FLAGS} \\
\hline \& \& \& D7 \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{D}_{1}\) \& \(\mathrm{D}_{0}\) \& \& \& c \& AC \& FO \& F1 \\
\hline \multicolumn{17}{|c|}{BRANCH (CONT.)} \\
\hline JNTO addr \& (PC 0 - 7) \(\cdots\) addr if TO \(=0\) \((\mathrm{PC})--(\mathrm{PC})+2\) if \(\mathrm{TO}=1\) \& Jump to specified address if Test 0 is low. \& 0
9 \& 0
\(a_{6}\) \& 1
\({ }^{1} 5\) \& 0
9 \& a \({ }^{0}\) \& 1
\({ }^{1} 2\) \& 1
\(a_{1}\) \& \[
\begin{gathered}
0 \\
a 0
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JNT1 addr \& \begin{tabular}{l}
(PC 0-7)-addr if \(T 1=0\) \\
\((\mathrm{PC}) \cdot(\mathrm{PC})+2\) If \(\mathrm{T} 1=1\)
\end{tabular} \& Jump to specified address if Test 1 is low. \& \& \& \& 0
9
4 \& 0
\(a_{3}\) \& 1
\(a_{2}\) \& 1
\(a_{1}\) \& 0
0 \& 2 \& 2 \& \& \& \& \\
\hline JNZ addı \& \begin{tabular}{l}
(PC 0-7)- addr if \(A=0\) \\
\((P C) \cdot(P C)+2\) if \(A=0\)
\end{tabular} \& Jump to specified address if accumulator is non-zero. \& \& \[
\begin{gathered}
0 \\
a 6
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a } 0
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JTF addr \& \begin{tabular}{l}
(PC 0--7) - addr if TF = 1 \\
\((P C) \cdot(P C)+2\) if \(T F=0\)
\end{tabular} \& Jump to specified address if Timer Flag is set to 1 . \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 6
\end{gathered}
\] \& 0
\(a_{5}\) \& 1
3
4 \& 0
\(a_{3}\) \& 1
\(a_{2}\) \& 1
\(a_{1}\) \& 0
\(a_{0}\) \& 2 \& 2 \& \& \& \& \\
\hline JTO addr \& (PC 0-7)-addr if TO = 1 \((\mathrm{PC})-(\mathrm{PC})+2\) if \(\mathrm{TO}=0\) \& Jump to specified address if Test 0 is a \& 0
97 \& 0
96 \& 1
95 \& \begin{tabular}{c}
1 \\
\(a_{4}\) \\
\\
\hline
\end{tabular} \& 0
\(a_{3}\) \& 1
\(a_{2}\) \& 1
\(a_{1}\) \& 0
\(a_{0}\)
0 \& 2 \& 2 \& \& \& \& \\
\hline JT1 addr \& \begin{tabular}{l}
(PCO 7) - addr if \(T 1=1\) \\
\((\mathrm{PC}) \cdot(\mathrm{PC})+2\) if \(\mathrm{T} 1-0\)
\end{tabular} \& Jump to specified address if Test 1 is a 1. \& \[
\begin{gathered}
0 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& 0

0 \& 1
34 \& 0
a3 \& 1
a_{2} \& 1

a_{1} \& $$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$ \& 2 \& 2 \& \& \& \&

\hline JZ addr \& $$
\begin{aligned}
& (P C 0-7) \cdots \operatorname{addr} \text { if } A=0 \\
& (P C) \cdot(P C)+2 \text { if } A \cdot 0 \\
& \hline
\end{aligned}
$$ \& Jump to specified address if Accumulator is 0 . \& \[

$$
\begin{array}{r}
1 \\
a 7 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{6} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0 \\
a_{5} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{4} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{1} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0} \\
\hline
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline \multicolumn{17}{|c|}{CONTROL}

\hline ENI \& \& Enable the External Interrupt input. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline DIS I \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline ENTO CLK \& \& Enable the Clock Output pin TO. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline Sel Mbo \& (DBF) - 0 . \& Select Bank 0 (locations 0 2047) of Program Memory. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL MB1 \& (DBF) . 1 \& Select Bank 1 (locations 2048 4095) of Program Memory. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL Rbo \& (BS) - 0 \& Select Bank 0 (tocations 0-7) of Data Memory. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL RB1 \& (BS) . 1 \& Select Bank 1 (locations 24 31) of Data Memory. \& \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline HALT \& \& Initiate Halt State \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{DATA MOVES}

\hline MOV A, .. data \& (A) - data \& Move Immediate the specified data into the Accumulator. \& $$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$ \& \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 0
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline MOV A, Rr \& (A). (Rr), r : 0 \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline MOV A, © R R \& (A). ($\left.\left.\mathrm{R}_{\mathrm{r}}\right)\right)^{\prime} \mathrm{r}=0 \quad 1$ \& Move Indirect the contents of data memory tocation into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline MOV A. PSW \& (A). (PSW) \& Move contents of the Program Status Word in to the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOVRr, - data \& (Rr) - data; r-0 7 \& Move Immediate the specified data into the designated register. \& $$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

\mathrm{d}_{2}

\] \& \[

$$
\begin{gathered}
r \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{r} \\
\mathrm{~d}_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline MOV R1, A \& $(\mathrm{Rr}) \times(\mathrm{A}), \mathrm{r}-0 \quad 7$ \& Move Accumulator Contents into the designated register. \& 1 \& 0 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline MOV © Rr, A \& $((\mathrm{Rr}) \cdot(\mathrm{A}): r=0 \quad 1$ \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ${ }^{\prime}$ \& 1 \& 1 \& \& \& \&

\hline MOV@Rr, . data \& (Rr) $)$ data. r 01 \& Move Immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

\mathrm{d}_{0}
\] \& 2 \& 2 \& \& \& \&

\hline MOV PSW. A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOVPA, @ A \& (PC 0 7). (A) (A) - (PC$)$) \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline MOVP3 A. © A \& $$
\begin{array}{ll}
(P C 0 & 7) \cdot(A) \\
(P C 8 & 10) \cdot \\
(A) \cdot(1 P C))
\end{array}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline MOVX A.@R \& (A) - ((Rr)), r-0 1 \& Move Indirect the contents of external data memory into the Accumulator. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& $\stackrel{ }{ }{ }^{+}$ \& 2 \& 1 \& \& \& \&

\hline MOVX@R, A \& $((R r)) \cdot(A) ; r \cdot 0 \quad 1$ \& Move Indirect the contents of the Accumulator into external data memory. \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \&

\hline XCH A, Rr \& $(\mathrm{A}) \div(\mathrm{Rr}): r=0-7$ \& Exchange the Accumulator and designated regrster's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline XCH A, @Rr \& (A) $\cdot \cdot\left(\left(R_{r}\right)\right) ; r=0 \quad 1$ \& Exchange Indirect contents of Accumulator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& \uparrow \& 1 \& 1 \& \& \& \&

\hline XCHD A.@Rr \& $$
\begin{aligned}
& \left.\left.\left(\begin{array}{lll}
(A 0 & 3
\end{array}\right) \div((\mathrm{R})) 0-3\right)\right): \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4-bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{FLAGS}

\hline CPL C \& (C). NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CPL FO \& (FO) - NOT (FO) \& Complement Content of Flag FO. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline CPL F1 \& (F1). NOT (F1) \& Complement Content of Flag F1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& -

\hline CLR C \& (C) - 0 \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CLR FO \& (FO) - 0 \& Clear content of Flag 0 to 0. \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \&

\hline CLR F1 \& (F1). 0 \& Clear content of Flag 1 to 0 . \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \bullet

\hline
\end{tabular}

LOGIC SYMBOL

PACKAGE OUTLINES μ PD80C48C μ PD80C35C

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	0.25+$\quad 0.05$	$0.010+0.004$
0.0		

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$13.5+0.2$	$0.531+0.008$
M	0.25	0.010

NOTES

HIGH PERFORMANCE SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION The NEC μ PD8049 and μ PD8039L are single chip 8-bit microcomputers. The processors differ only in their internal program memory options: the $\mu \mathrm{PD} 8049$ has $2 \mathrm{~K} \times 8$ bytes of mask ROM and the μ PD8039L has external program memory. Both of these devices feature new, high performance 11 MHz operation.
FEATURES - High Performance 11 MHz Operation
- Fully Compatible with Industry Standard 8049/8039
- Pin Compatible with the μ PD8048/8748/8035
- NMOS Silicon Gate Technology Requiring a Single $+5 \mathrm{~V} \pm 10 \%$ Supply
- $1.36 \mu \mathrm{~s}$ Cycle Time. All Instructions 1 or 2 Bytes
- Programmable Interval Timer/Event Counter
- $2 \mathrm{~K} \times 8$ Bytes of ROM, 128×8 Bytes of RAM
- Single Level Interrupt
- 96 Instructions: 70 Percent Single Byte
- 27 I/O Lines
- Internal Clock Generator
- Expandable with 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40-Pin Packages

PIN CONFIGURATION

μ PD8049/8039L

The NEC μ PD8049 and μ PD8039L are high performance, single component, 8 -bit parallel microcomputers using N-channel silicon gate MOS technology. The μ PD8049

FUNCTIONAL DESCRIPTION and μ PD8039L function efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and BCD arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions.

The μ PD8049 and μ PD8039L instruction set is comprised of 1 and 2 byte instructions with over 70 percent single-byte. The instruction set requires only 1 or 2 cycles per instruction with over 50 percent single-cycle.

The μ PD8049 and μ PD8039L microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The μ PD8049 contains the following functions usually found in external peripheral devices: 2048×8 bits of mask ROM program memory; 128×8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; and oscillator and clock circuitry.

The μ PD8039L is intended for applications using external program memory only. It contains all the features of the μ PD8049 except the 2048×8-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

PIN		FUNCTION
NO.	SYMBOL	
1	T_{0}	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to T_{0} using the ENTO CLK instruction. T_{0} can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal, LC, or external frequency source. (Non-TTL compatible $\mathrm{V}_{1 \mathrm{H}}$.)
3	XTAL 2	The other side of the crystal or LC frequency source. For external sources, XTAL 2 must be driven with the logical complement of the XTAL 1 input.
4	$\overline{\text { RESET }}$	Active low input from processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming verification and power-down (non-TTL compatible $V_{(H)}$).
5	$\overline{\mathrm{SS}}$	Single Step input (active-low). $\overline{\text { SS }}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). $\overline{\text { INT }}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{INT}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	READ strobe outputs (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{W R}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	8-bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$ can be latched in a static mode. During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS, controlled by $A L E, \overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27}: \\ & \mathrm{PORT}_{2} \end{aligned}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4-bit I/O bus for the μ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	PROG is used as an output strobe for μ PD8243's during I/O expansion. When the μ PD8049 is used in a stand-alone mode the PROG pan can be allowed to float.
26	$V_{\text {DD }}$	$V_{D D}$ is used to provide +5 V to the 128×8 bit RAM section. During normal operation $V_{C C}$ must also be +5 V to provide power to the other functions in the device. During stand-by operation $V_{D D}$ must remain at +5 V while V_{CC} is at ground potential.
27-34	$\begin{aligned} & \mathrm{P}_{10}-\mathrm{P}_{17}: \\ & \text { PORT } 1 \\ & \hline \end{aligned}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	V_{CC}	Primary Power supply. V_{CC} is +5 V during normal operation.

Operating Temperature
Strat Ter (Plastic Packe) $05^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . - 0.5 to +7 Volts (1)
Power Dissipation 1.5 W

Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$)	$V_{\text {IH }}$	2.0		VCC	V	
$\begin{aligned} & \text { Input High Voltage } \\ & (\overline{R E S E T}, \text { XTAL 1, XTAL 2) } \end{aligned}$	$\mathrm{V}_{1} \mathrm{H}_{1}$	3.8		VCC	v	
Output Low Voltage (BUS, $\overline{\mathrm{RD}}$. WR, PSEN, ALE)	VOL			0.45	V	'OL $=2.0 \mathrm{~mA}$
Output Low Voitage (All Other Outputs Except PROG)	VOL1			0.45	v	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	v	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output High Voltage (BUS, $\overline{R D}$, $\overline{W R}, \overline{\text { PSEN }}, \mathrm{ALE})$	VOH	2.4			v	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	VOH 1	2.4			V	${ }^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$
Input Leakage Current (T1, EA, INT)	IIL		\because	± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	IOL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\mathrm{IN}} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Power Down Supply Current	IDD		25	50	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	$1 \mathrm{DD}+\mathrm{ICC}$		100	170	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*

PORT \#1
PORT \#2
READ
WRITE

PROGRAM STORE ENABLE

ADDRESS LATCH ENABLE PORT EXPANDER STROBE

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$T_{a}: 0^{\prime} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }^{\text {t L L }}$	150			ns	
Address Setup before ALE	${ }^{\text {t }}$ AL	70			ns	
Address Hold from ALE	tha	50			ns	
Control Puise Width ($\overline{\mathrm{PSEN}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	${ }^{\text {t }} \mathrm{C}$	300			ns	
Data Setup before $\overline{W R}$	${ }^{t}$ DW	250			ns	
Data Hold after $\overline{\mathrm{WR}}$	twD	40			ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (3)
Cycle Time	${ }^{t} \mathrm{CY}$	1.36		15.0	$\mu \mathrm{s}$	
Data Hold	tDR	0		100	ns	
$\overline{\text { PSEN, }} \overline{\mathrm{RD}}$ to Data In	${ }^{\text {tRD }}$			200	ns	
Address Setup before $\overline{W R}$	${ }^{\text {t }}$ AW	200			ns	
Address Setup before Data In	${ }^{\text {t }}$ AD			400	ns	
Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$	${ }^{\text {t }}$ AFC	-40			ns	

Notes:
(1) For Control Outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
(2) For Bus Outputs: $C_{L}=150 \mathrm{pF}$
(3) ${ }^{\mathrm{t}} \mathrm{CY}=1.36 \mu \mathrm{~s}$

PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Control Setup before Falling Edge of PROG	${ }^{\text {t }} \mathrm{CP}$	100			ns	
Port Control Hold after Falling Edge of PROG	tpe	60			ns	
PROG to Time P2 Input must be Valid	tPR			650	ns	
Output Data Setup Time	${ }^{\text {t }} \mathrm{DP}$	200			ns	
Output Data Hold Time	${ }^{\text {tPD }}$	20			ns	
Input Data Hold Time	tpf	0		150	ns	
PROG Pulse Width	tpp	700			ns	
Port $21 / \mathrm{O}$ Data Setup	${ }^{\text {tP }}$ L	150			ns	
Port 2 I/O Data Hold	${ }^{\text {t }}$ P	20			ns .	

TIMING WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL MEMORY
μ PD8049/8039L

READ FROM EXTERNAL DATA MEMORY

WRITE TO EXTERNAL MEMORY

PORT 2 TIMING

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE*} \& \multirow[b]{2}{*}{CVCLES} \& \multirow[b]{2}{*}{BYTES} \& \multicolumn{4}{|c|}{Flags}

\hline \& \& \& D_{7} \& D_{6} \& D_{5} \& D_{4} \& D_{3} \& D_{2} \& D_{1} \& D_{0} \& \& \& c \& AC \& FO \& F1

\hline \multicolumn{17}{|c|}{BRANCH (CONT.)}

\hline JNTO addr \& $$
\begin{aligned}
& (P C 0-7) \cdots \text { addr if } T O=0 \\
& (P C) \cdots(P C)+2 \text { if } T O=1
\end{aligned}
$$ \& Jump to specified address if Test $\mathbf{0}$ is low. \& 0
97 \& 0
a_{6} \& 1
a_{5} \& 0
34 \& 0
a_{3} \& 1
a_{2} \& 1
a_{1} \& 0
a_{0} \& 2 \& 2 \& \& \& \&

\hline JNT1 addr \& $$
\begin{aligned}
& (P C 0-7)-\text { addr if } T 1=0 \\
& (P C)-(P C)+2 \text { if } T 1-1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& \& \& \& \& \& 1

2 \& 1
a_{1} \& 0
a_{0} \& 2 \& 2 \& \& \& \&

\hline JNZ addr \& $$
\begin{aligned}
& \text { (PC } 0 \quad 7) \cdot \text { addr if } A \neq 0 \\
& (P C) \cdot(P C)+2 \text { if } A \quad 0
\end{aligned}
$$ \& Jump to specified address if accumulator is non-zero. \& \& \[

$$
\begin{gathered}
0 \\
a 6
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
25
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
\mathrm{a} 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline JTF addr \& | (PC 0.7) - addr if TF = 1 |
| :--- |
| (PC) - (PC) +2 if TF 0 | \& Jump to specified address if Timer Flag is set to 1. \& \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{1}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline JTO addr \& | (PC 0-7) - addr if TO = 1 |
| :--- |
| $(P C)-(P C)+2$ if TO $=0$ | \& Jump to specified address if Test 0 is a . \& \& \& 1

a_{5} \& \& \& 1
32 \& 1
a_{1} \& 0
0 \& 2 \& 2 \& \& \& \&

\hline JT1 addr \& $$
\begin{array}{ll}
(P C O & 7) \cdot \operatorname{addr} \text { if } \mathrm{T} 1=1 \\
(\mathrm{PC}) \cdot & (\mathrm{PC})+2 \text { if } \mathrm{T} 1 \quad 0
\end{array}
$$ \& Jump to specified address if Test 1 is a 1. \& \& \& \& \& \& 1

$\times 2$ \& 1
a_{1} \& -

0 \& 2 \& 2 \& \& \& \&

\hline JZ addr \& | ($\mathrm{PC} 0-\mathrm{P}$) $\cdot \cdot$ addr if $\mathrm{A}=0$ |
| :--- |
| $(\mathrm{PC}) \cdot(\mathrm{PC})+2$ if $\mathrm{A}: 0$ | \& Jump to specified address if Accumulator is 0 . \& | 1 |
| :---: |
| 97 | \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{1}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0} \\
\hline
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline \multicolumn{17}{|c|}{CONTROL}

\hline ENI \& \& Enable the External Interrupt input. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline DIS I \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline ENTO CLK \& \& Enable the Clock Output pin TO. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL Mbo \& (DBF) 0 \& Select Bank 0 (locations 0 2047) of Program Memory. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL MB1 \& (DBF) . 1 \& Select Bank 1 (locations 2048 4095) of Program Memory. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL RBO \& (BS) - 0 \& Select Bank 0 (locations 0-7) of Data Memory. \& \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL RB1 \& (BS) - 1 \& Select Bank 1 (locations 24 31) of Data Memory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{DATA MOVES}

\hline MOV A, = data \& (A) . ${ }^{\text {data }}$ \& Move Immediate the specified data into the Accumulator. \& \& \& \[
$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline MOV A, Rr \& (A) - (Rr):r-0 7 \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline MOV A, @ Rr \& (A). ($(\mathrm{R} r)$) $r=0 \quad 1$ \& Move Indirect the contents of data memory location into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& $\cdot 1$ \& 1 \& \& \& \&

\hline MOV A. PSW \& (A). (PSW) \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOV Rr, = data \& (Rr) . data; $r=07$ \& Move Immediate the specified data into the designated register. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{r} \\
\mathrm{~d}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
r \\
d_{1}
\end{gathered}
$$

\] \& \[

\stackrel{r}{\mathrm{~d}}
\] \& 2 \& 2 \& \& \& \&

\hline MOV Rr, A \& $(R r)-(A) ; r=0 \quad 7$ \& Move Accumulator Contents into the designated register. \& 1 \& 0 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline MOV@Rr, A \& $((\operatorname{Rr}))-(A): r=0 \cdot 1$ \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline MOV @ Rr, = data \& ((Rr)) - data: $r=0 \quad r$ \& Move Immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
r \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline MOV PSW, A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1. \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOVP A, @ A \& $$
\begin{aligned}
& (P C O \quad 7) \cdot(A) \\
& (A) \cdot((P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline MOVP3 A, @ A \& $$
\begin{aligned}
& (P C 0 \\
& (P C) \cdot(A) \\
& (P C \quad 10)-011 \\
& (A) \cdot((P C))
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline MOVX A, @R \& (A) -- ((Rr)); $r=0 \quad 1$ \& Move Indirect the contents of external data memory into the Accumulator. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \&

\hline MOVX@R, A \& $(\mid R r) \mid-(A) ; r=0 \quad 1$ \& Move Indirect the contents of the Accumulator into external data memory. \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \&

\hline $\mathrm{XCHA}, \mathrm{Rr}$ \& $(A) \rightleftarrows(R r): r=0-7$ \& Exchange the Accumulator and designated register's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \&

\hline XCH A.@Rr \& $(A) \rightarrow(\mid R r)) ; r=0-1$ \& Exchange Indirect contents of Accumulator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& $$
1
$$ \& \& \& \&

\hline XCHD A, @ Rr \& $$
\begin{aligned}
& (A 0-3) \leftrightarrows((\mathrm{Rr})) 0-3)) \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4-bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{FLAGS}

\hline CPLC \& (C) - NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CPL FO \& (FO) - NOT (FO) \& Complement Content of Flag FO. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \&

\hline CPL. F1 \& (F1) - NOT (F1) \& Complement Content of Flag F1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& -

\hline CLR C \& (C) - 0 \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CLR Fo \& (F0)-0 \& Clear content of Flag 0 to 0. \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \&

\hline CLRF1 \& (F1) 0 \& Clear content of Flag 1 to 0. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& -

\hline
\end{tabular}

μ PD8049/8039L

PACKAGE OUTLINES μ PD8049C μ PD8039LC

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

8-BIT N-CHANNEL MICROPROCESSOR COMPLETELY Z80 ${ }^{\text {TM }}$ COMPATIBLE

The μ PD780 and μ PD780-1 processors are single-chipmicroprocessors developed from third-generation technology. Their increased computational power produces higher system through-put and more efficient memory utilization, surpassing that of any second-generation microprocessor. The single voltage requirement of the μ PD780 and μ PD780-1 processors makes it easy to implement them into a system. All output signals are fully decoded and timed to either standard memory or peripheral circuits. An N -channel, ion-implanted, silicongate MOS process is utilized in implementing the circuit.

The block diagram shows the functions of the processor and details the internal register structure. The structure contains 26 bytes of Read/Write (R/W) memory available to the programmer. Included in the registers are two sets of six general purpose registers, which may be used individually as 8 -bit registers, or as 6 -bit register pairs. Also included are two sets of accumulator and flag registers.

Through a group of exchange instructions the programmer has access to either set of main or alternate registers. The alternate register permits foreground/background mode of operation, or may be used for fast interrupt response. A 16 -bit stack pointer is also included in each processor, simplifying implementation of multiple level interrupts, permitting unlimited subroutine nesting, and simplifying many types of data handling.
The two 16 -bit index registers simplify implementation of relocatable code and manipulation of tabular data. The refresh register automatically refreshes external dynamic memories. A powerful interrupt response mode uses the I register to form the upper 8 bits of a pointer to an interrupt service address table, while the interrupting apparatus supplies the lower 8 bits of the pointer. An indirect call will then be made to service this address.

FEATURES - Single Chip, N-Channel Silicon Gate Processor

- 158 Instructions - Including all 78 of the 8080A Instructions, Permitting Total Software Compatibility
- New 4-, 8-, and 16-Bit Operations Featuring Useful Addressing Modes such as Indexed, Bit and Relative
- 17 Internal Registers
- Three Modes of Rapid Interrupt Response, and One Non-Maskable Interrupt
- Directly Connects Standard Speed Dynamic or Static Memories, with Minimum Support Circuitry
- Single-Phase +5 Volt Clock and 5 VDC Supply
- TTL Compatibility
- Automatic Dynamic RAM Refresh Circuitry
- Available in Plastic Package

$\mathrm{A}_{11}{ }^{1}$		40	$\square \mathrm{A}_{10}$
$\mathrm{A}_{12} \mathrm{G}$		39	- A_{9}
$\mathrm{A}_{13}{ }^{3}$		38	A_{8}
$\mathrm{A}_{14}{ }^{\text {a }}$		37] A_{7}
$\mathrm{A}_{15} 5$		36	$\square A_{6}$
¢ 6		35	$\square A_{5}$
$\mathrm{D}_{4} \mathrm{C}$		34	$\square A_{4}$
$\mathrm{D}_{3} \square^{8}$		33	$\square \mathrm{A}_{3}$
$\mathrm{D}_{5} \square^{-1}$		32	A_{2}
$\mathrm{D}_{6} \mathrm{l}_{10}$	$\mu \mathrm{PD}$	31	- A_{1}
+5v 11	780/	30	A_{0}
$\mathrm{D}_{2} \mathrm{~S}_{12}$	780-1	29	GND
$\mathrm{D}_{7} \square^{13}$		28] $\overline{\mathrm{RFSH}}$
$\mathrm{D}_{0}{ }^{14}$		27	\bar{M}_{1}
$\mathrm{D}_{1} 15$		26] $\overline{\mathrm{RESET}}$
INT 16		25] BUSRO
NMI 17		24	\square WAIT
HALT 18		23] BUSAK
MREO 19		22	$\square \overline{W R}$
IORO C-20		21	$\overline{\mathrm{RD}}$

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{gathered} 1-5 \\ 30-40 \end{gathered}$	$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Bus	3-State Output, active high. Pins $\mathrm{A}_{0}-\mathrm{A}_{15}$ constitute a 16 -bit address bus, which provides the address for memory and I/O device data exchanges. Memory capacity 65,536 bytes. $A_{0}-\mathrm{A}_{7}$ is also needed as refresh cycle.
$\begin{gathered} 7-10, \\ 12-15 \end{gathered}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus	3-State input/output, active high. Pins $\mathrm{D}_{0}-\mathrm{D}_{7}$ compose an 8 -bit, bidirectional data bus, used for data exchanges with memory and I/O devices.
27	\bar{M}_{1}	Machine Cycle One	Output, active low. $\overline{\mathrm{M}}_{1}$ indicates that the machine cycle in operation is the op code fetch cycle of an instruction execution.
19	$\overline{\text { MREQ }}$	Memory Request	3-State output, active low. $\overline{\mathrm{MREQ}}$ indicates that a valid address for a memory read or write operation is held in the address.
20	$\overline{\text { IORQ }}$	Input/Output Request	3-State output, active low. The I/O request signal indicates that the lower half of the address bus holds a valid address for an I/O read or write operation. The $\overline{\text { ORO }}$ signal is also used to acknowledge an interrupt command, indicating that an interrupt response vector can be placed on the data bus.
21	$\overline{\mathrm{RD}}$	Memory Read	3-State output, active low. $\overline{\mathrm{RD}}$ indicates that the processor is requesting data from memory or an 1/O device. The memory or I/O device being addressed should use this signal to gate data onto the data bus.

PIN			FUNCTION
NO.	SYMBOL	NAME	
22	$\overline{W R}$	Memory Write	3-State output, active low. The memory write signal indicates that the processor data bus is holding valid data to be stored in the addressed, memory or 1/O device.
28	$\overline{\text { RFSH }}$	Refresh	Output, active low. $\overline{\text { RFSH }}$ indicates that a refresh address for dynamic memories is being held in the lower 7 -bits of the address bus. The $\overline{M R E O}$ signal should be used to implement a refresh read to all dynamic memories.
18	$\overline{\text { HALT }}$	Halt State	Output, active low. $\overline{\text { HALT }}$ indicates that the processor has executed a HALT software instruction, and will not resume operation until either a non-maskable or a maskable (with mask enabled) interrupt has been implemented. The processor will execute NOP's while halted, to maintain memory refresh activity.
24	$\overline{\text { WAIT }}$	Wait	Input, active low. $\overline{\mathrm{WAIT}}$ indicates to the processor that the memory or I/O devices being addressed are not ready for a data transfer. As long as this signal is active, the processor will reenter wait states.
16	$\overline{\text { INT }}$	Interrupt Request	Input, active low. The $\overline{\mathrm{INT}}$ signal is produced by I/O devices. The request will be honored upon completion of the current instruction, if the interrupt enable flip-flop (IFF) is enabled by the internal software. There are three modes of interrupt response. Mode 0 is identical to 8080 interrupt response mode. The Mode 1 response is a restart location at 0038_{H}. Mode 2 is for simple vectoring to an interrupt service routine anywhere in memory.
17	$\overline{\mathrm{NMI}}$	Non-Maskable Interrupt	Input, active low. The non-maskable interrupt has a higher priority than $\overline{\mathrm{INT}}$. It is always acknowledged at the end of the current instruction, regardless of the status of the interrupt enable flip-flop. When the $\overline{\text { NMI }}$ signal is given, the μ PD 780 processor automatically restarts to losation 0066 H .
26	$\overline{\text { RESET }}$	Reset	Input, active low. The $\overline{\operatorname{RESET}}$ signal causes the processor to reset the interrupt enable flip-flop (IFF), clear PC and I and R registers, and set interrupt to 8080A mode. During the reset time, the address bus and data bus go to a state of high impedance, and all control output signals become inactive, after which processing continues at 0000 H .
25	BUSRQ	Bus Request	Input, active low. $\overline{\text { BUSRQ }}$ has a higher priority than $\overline{\text { NMI, and is always honored at the end of the current }}$ machine cycle. It is used to allow other devices to take control over the processor address bus, data bus signals; by requesting that they go to a state of high impedance.
23	$\overline{\text { BUSAK }}$	Bus Acknowledge	Output, active low. $\overline{B U S A K}$ is used to inform the requesting device that the processor address bus, data bus and 3-state control bus signals have entered a state of high impedance, and the external device can now take control of these signals.

$\boldsymbol{\mu P D 7 8 0}$

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ABSOLUTE MAXIMUM
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	RATINGS*
Voltage on any Pin	-0.3 to +7 Volts (1)	
Power Dissipation	. 1.5 W	

Note: (1) With Respect to Ground.

COMMENT: Stress above' those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Clock Input Low Voltage			$V_{\text {ILC }}$	-0.3		0.45	v	
Clock Input High Voltage		$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\text {cc }}-0.6$		$\mathrm{V}_{\text {cc }}+0.3$	V		
Input Low Voltage		V_{1}	-0.3		0.8	V		
Input High Voltage		$\mathrm{V}_{1 \mathrm{H}}$	2.0		V_{Cc}	V		
Output Low Voltage		VOL			0.4	V	$1 \mathrm{OL}=1.8 \mathrm{~mA}$	
Output High Voltage		VOH	2.4			\checkmark	$1 \mathrm{OH}=-250 \mu \mathrm{~A}$	
Power Supply Current	μ PD780	${ }^{\text {ICC }}$			150	mA	$\mathrm{t}_{\mathrm{c}}=400 \mathrm{~ns}$	
	μ PD780-1	${ }^{\text {ICC }}$		90	200	mA	$\mathrm{t}_{\mathrm{c}}=250 \mathrm{~ns}$	
Input Leakage Current		' LI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	
Tri-State Output Leakage Current in Float		${ }^{\text {L LOH }}$			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=2.4$ to $V_{\text {CC }}$	
Tri-State Output Leakage Current in Float		'LOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	
Data Bus Leakage Current in Input Mode		'Lo			± 10	$\mu \mathrm{A}$	$0<V_{\text {IN }} \leqslant V_{\text {CC }}$	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	C_{ϕ}			35	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input Capacitance	CIN			5	pF	Unmeasured Pins
Output Capacitance	COUT			10	pF	Returned to Ground

AC CHARACTERISTICS
$T_{a}=0$ C to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \cdot 5 \%$, unless otherwise specified.

LOAD CIRCUIT FOR OUTPUT

Instruction Op Code Fetch

The contents of the program counter (PC) are placed on the address bus at the start of the cycle. $\overline{M R E Q}$ goes active one-half clock cycle later, and the falling edge of this signal can be used directly as a chip enable to dynamic memories. The memory data should be enabled onto the processor data bus when $\overline{R D}$ goes active. The processor takes data with the rising edge of the clock state T_{3}. The processor internally decodes and executes the instruction, while clock states T_{3} and T_{4} of the fetch cycle are used to refresh dynamic memories. The refresh control signal $\overline{\mathrm{RFSH}}$ indicates that a refresh read should be done to all dynamic memories.

Memory Read or Write Cycles

This diagram illustrates the timing of memory read or write cycles other than an op code fetch (M_{1} cycle). The function of the $\overline{\mathrm{MREQ}}$ and $\overline{\mathrm{RD}}$ signals is exactly the same as in the op code fetch cycle. When a memory write cycle is implemented, the $\overline{M R E O}$ becomes active and is used directly as a chip enable for dynamic memories, when the address bus is stable. The $\overline{W R}$ line is used directly as a R/W pulse to any type of semiconductor memory, and is active when data on the data bus is stable.

TIMING WAVEFORMS (CONT.)

Input or Output Cycles

This illustrates the timing for an I/O read or I/O write operation. A single wait-state (TW) is automatically inserted in I/O operations to allow sufficient time for an I/O port to decode its address and activate the $\overline{\text { WAIT }}$ line, if necessary.

Interrupt Request/Acknowledge Cycle

The processor samples the interrupt signal with the rising edge of the last clock at the end of any instruction. A special M_{1} cycle is started when an interrupt is accepted. During the M_{1} cycle, the $\overline{\text { IORQ (instead of } \overline{M R E Q} \text {) signal becomes active, indicating }}$ that the interrupting device can put an 8 -bit vector on the data bus. Two wait states (TW) are automatically added to this cycle. This makes it easy to implement a ripple priority interrupt scheme.

INSTRUCTION SET The following summary shows the assembly language mnemonic and the symbolic operation performed by the instructions of the $\mu \mathrm{PD} 780$ and $\mu \mathrm{PD} 780-1$ processors. The instructions are divided into 16 categories:

Miscellaneous Group
Rotates and Shifts
Bit Set, Reset and Test
Input and Output Jumps
Calls
Restarts
Returns

8-Bit Loads
16-Bit Loads
Exchanges
Memory Block Moves
Memory Block Searches
8-Bit Arithmetic and Logic
16-Bit Arithmetic
General Purpose Accumulator and Flag Operations

The addressing Modes include combinations of the following:

Indexed
Register
Implied
Register Indirect

Immediate
Immediate Extended
Modified Page Zero
Relative
Extended

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8080AF 8-BIT N-CHANNEL MICROPROCESSOR FAMILY

DESCRIPTION	The μ PD8080AF is a complete 8 -bit parallel processor for use in general purpose digital computer systems. It is fabricated on a single LSI chip using N -channel silicon gate MOS process, which offers much higher performance than conventional micro- processors ($1.28 ~$ s s minimum instruction cycle). A complete microcomputer system is formed when the μ PD8080AF is interfaced with I/O ports (up to 256 input and 256 output ports) and any type or speed of semiconductor memory. It is available in a 40 pin ceramic or plastic package.
FEATURES	- 78 Powerful Instructions
	- Three Devices - Three Clock Frequencies
	μ PD8080AF -2.0 MHz
	μ PD8080AF-2 - 2.5 MHz
	μ PD8080AF-1 - 3.0 MHz

μ PD8080AF

The μ PD8080AF contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The μ PD8080AF also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.
The μ PD8080AF utilizes a 16 -bit address bus to directly address 64 K bytes of memory, is TTL compatible (1.9 mA), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.
The μ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The μ PD8080AF also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
This processor is designed to greatly simplify system design. Separate 16 -line address and 8 -line bidirectional data buses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All buses, including the control bus, are TTL compatible.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data buses.
The μ PD8080AF has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.
NEC offers three versions of the μ PD8080AF. These processors have all the features of the μ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz . These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1 \\ & 25-27, \\ & 29-40 \end{aligned}$	$\mathrm{A}_{15}-\mathrm{A}_{0}$	Address Bus loutput threestate)	The address bus is used to address memory (up to 64 K 8 -bit words) or specify the I/O device number (up to 256 input and 256 output devices). A_{0} is the least significant bit.
2	VSS	Ground (input)	Ground
3-10	D_{7} - D_{0}	Data Bus (input/ output three-state)	The bidirectional data bus communicates between the processor, memory, and I / O devices for instructions and data transfers. During each sync time, the data bus contains a status word that describes the current machine cycle. D_{0} is the least significant bit.
11	$V_{B B}$	VBB Supply Voltage (input)	$-5 \mathrm{~V} \pm 5 \%$
12	RESET	Reset (input)	If the RESET signal is activated, the program counter is cleared. After RESET, the program starts at location 0 in memory. The INTE and HLDA flip-flops are also reset. The flags, accumulator, stack pointer, and registers are not cleared. (Note: External synchronization is not required for the RESET input signal which must be active for a minimum of 3 clock periods.)
13	HOLD	Hold (input)	HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the μ PD8080AF address and data buses as soon as the μ PD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions: - The processor is in the HALT state. - The processor is in the T_{2} or T_{W} stage and the READY signal is active. As a result of entering the HOLD state, the ADDRESS BUS ($\left.A_{15}-A_{0}\right)$ and DATA BUS ($\left.D_{7}-D_{0}\right)$ are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin.
14	INT	Interrupt Request (input)	The μ PD8080AF recognizes an interrupt request on this line at the end of the current instruction or while halted. If the μ PD8080AF is in the HOLD state, or if the Interrupt Enable flip-flop is reset, it will not honor the request.
15	ϕ_{2}	Phase Two (input)	Phase two of processor clock.
16	INTE (1)	Interrupt Enable (output)	INTE indicates the content of the internal interrupt enable flipflop. This flip-flop is set by the Enable (EI) or reset by the Disable (DI) interrupt instructions and inhibits interrupts from being accepted by the processor when it is reset. INTE is automatically reset (disabling further interrupts) during T_{1} of the instruction fetch cycle (M_{1}) when an interrupt is accepted and is also reset by the RESET signal.
17	DBIN	Data Bus In (output)	DBIN indicates that the data bus is in the input mode. This signal is used to enable the gating of data onto the μ PD8080AF data bus from memory or input ports.
18	$\overline{W R}$	Write (output)	$\overline{W R}$ is used for memory WRITE or I/O output control. The data on the data bus is valid while the $\overline{W R}$ signal is active ($\overline{W R}=0$).
19	SYNC	Synchronizing Signal (output)	The SYNC signal indicates the beginning of each machine cycle.
20	VCC	$V_{C C}$ Supply Voltage (input)	$+5 \mathrm{~V} \pm 5 \%$
21	HLDA	Hold Acknowledge (output)	HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: - T_{3} for READ memory or input operations. - The clock period following T3 for WRITE memory or OUTPUT operations. In either case, the HLDA appears after the rising edge of ϕ_{1} and high impedance occurs after the rising edge of ϕ_{2}.
22	ϕ_{1}	Phase One (input)	Phase one of processor clock.
23	READY	Ready (input)	The READY signal indicates to the μ PD8080AF that valid memory or input data is available on the μ PD8080AF data bus. READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the μ PD8080AF does not receive a high on the READY pin, the μ PD8080AF enters a WAIT state for as long as the READY pin is low. (READY can also be used to single step the processor.)
24	WAIT	Wait (output)	The WAIT signal indicates that the processor is in a WAIT state.
28	VDD	VDD Supply Voltage (input)	$+12 \mathrm{~V} \pm 5 \%$

Note. (1) After the El instruction, the μ PD8080AF accepts interrupts on the second instruction following the EI. This allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

μ PD8080AF

Operating Temperature
Storage Temperature (Ceramic Package). $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) . -0.3 to +20 Volts
All Input Voltages (1) . -0.3 to +20 Volts

Power Dissipation . 1.5W
Note: (1) Relative to $V_{B B}$.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V},:$
unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Low Voltage	VILC	$\mathrm{V}_{\text {SS }}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
Clock Input High Voltage	VIHC	9.0		$V_{D D}+1$	v	-
Input Low Voltage	$V_{\text {IL }}$	VSS - 1		VSS +0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	3.3		$\mathrm{V}_{\text {CC }}+1$	V	
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{OLL}=1.9 \mathrm{~mA}$ on all outputs
Output High Voltage	VOH	3.7			V	$\mathrm{I}^{\mathrm{OH}}=-150 \mu \mathrm{~A}$ (2)
Avg. Power Supply Current (VDD)	I'DD(AV)		40	70	mA	
Avg. Power Supply Current (VCC)	ICC(AV)		60	80	mA	${ }^{\text {t }}$ Y Y min
Avg. Power Supply Current (V_{BB})	IBB(AV)		0.01	1	mA	
Input Leakage	IIL			± 10 (2)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Clock Leakage	${ }^{\text {ICL}}$			± 10 (2)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {CLOCK }} \leqslant \mathrm{V}_{\text {DD }}$
Data Bus Leakage in Input Mode	IDL (1)			$\begin{aligned} & -100 \\ & -2 \end{aligned}$	$\begin{gathered} \mu A \\ m A \end{gathered}$	$\begin{aligned} & \mathrm{V}_{S S} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
Address and Data Bus Leakage During HOLD	${ }^{\prime} \mathrm{FL}$			$\begin{aligned} & +10 \\ & -100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR }} / \text { DATA } \end{aligned}=V_{S S}+0.45 \mathrm{~V}$

TYPICAL SUPPLY CURRENT VS.
TEMPERATURE, NORMALIZED (3)

Notes: (1) When DBIN is high and $V_{I N}>V_{\text {IH }}$ internal active pull-up resistors will be switched onto the data bus.
(2) Minus (-) designates current flow out of the device.
(3) ΔI supply $/ \Delta T_{a}=-0.45 \% /{ }^{\circ} \mathrm{C}$ 。

$$
T_{a}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} .
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	C \varnothing		17	25	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ Unmeasured Pins Returned to VSS
Input Capacitance	CIN		6	10	pF	
Output Capacitance	COUT		10	20	pF	

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS μ PD8080AF
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{\mathrm{t}} \mathrm{Cr}^{\text {(}}$ (3)	0.48		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		50	nsec	
$\phi 1$ Pulse Width	${ }^{\text {t }}$ ¢ 1	60			nsec	
$\phi 2$ Pulse Width	${ }^{\text {t }}$ ¢ 2	220			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }}$ 1 1	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }}$ 2 2	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }}$ 3	80			nsec	
Address Output Delay From $\phi 2$	${ }^{\text {t }}$ DA (2)			200	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	tDD (2)			220	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{W R}$, WAIT, HLDA)	${ }^{\text {t }}$ DC (2)			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {t }} \mathrm{DF}$ (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }_{\text {t }}$ (1)			${ }^{\text {t }}$ DF	nsec	
Data Setup Time During $\phi 1$ and DBIN	${ }^{\text {t }}$ DS1	30			nsec	
Data Setup Time to $\phi 2$ During DBIN	${ }^{\text {t DS2 }}$	150			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }}$ DH (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	IIE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	${ }^{\text {t }}$ RS	120			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {t }} \mathrm{HS}$	140			nsec	
INT Setup Time During $\phi 2$ (During $\phi 1$ in Halt Mode)	tis	120			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{t} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	
Address Stable Prior to $\overline{W R}$	tAW (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{W R}, \\ & H L D A, D B I N \end{aligned}$
Output Data Stable Prior to $\overline{\mathrm{WR}}$	tDW (2)	(6)			nsec	
Output Data Stable From $\overline{\text { WR }}$	twD (2)	(7)			nsec	
Address Stable from WR	tWA (2)	(7)			nsec	
HLDA to Float Delay	t_{HF} (2)	(8)			nsec	
$\overline{\text { WR }}$ to Float Delay	twF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{t} \mathrm{AH}^{(2)}$	-20			nsec	

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. $\mathrm{t}_{\mathrm{DH}}=50 \mathrm{~ns}$ or t_{DF}, whichever is less.
(2) Load Circuit.

(3) Actual $t_{C Y}=t_{D}+t_{r \phi 2}+t_{\phi 2}+t_{\phi \phi 2}+t_{D 2}+t_{r \phi 1}>t_{C Y} M i n$.

TYPICAL \triangle OUTPUT DELAY VS.

μ PD8080AF

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period		0.32		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	t_{r}, t_{f}	0		25	nsec	
$\phi 1$ Pulse Width	${ }_{\text {t }}^{\text {¢ }}$ 1	50			nsec	
$\phi 2$ Pulse Width	${ }_{\text {t }}{ }_{\text {¢ }}$	145			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }} 1$	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }}$ 2	60			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }}$ 3	60			nsec	
Address Output Delay From $\phi 2$	tDA (2)			150	nsec	$C_{L}=50 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t DD }}$ (2)			180	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{\text { WR }}$, WAIT, HLDA)	tDC (2)			110	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {t }} \mathrm{DF}$ (2)	25		130	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{\text {t }}$ I 1 (1)			tDF	nsec	
Data Setup Time During $\phi 1$ and DBIN	${ }^{\text {t }}$ DS1	10			nsec	
Data Setup Time to $\phi 2$ During DBIN	tDS2	120			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {to }}$ (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	IIE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	trs	90			nsec	
HOLD Setup Time to $\phi 2$	thS	120			nsec	
INT Setup Time During $\phi 2$ (for all modes)	tis	100			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	
Address Stable Prior to $\overline{\mathrm{WR}}$	${ }^{\text {taw }}$ (2)	(5)			nsec	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}= 50 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ & \mathrm{C}_{\mathrm{L}}= 50 \mathrm{pF}: \overline{\text { WR },} \\ & H L D A, \text { DBIN } \end{aligned}$
Output Data Stable Prior to $\overline{\text { WR }}$	tow (2)	(6)			nsec	
Output Data Stable From WR	twD (2)	(7)			nsec	
Address Stable from $\overline{\mathrm{WR}}$	twA (2)	(7)			nsec	
HLDA to Float Delay	${ }^{\text {t HF (2) }}$	(8)			nsec	
$\overline{\text { WR }}$ to Float Delay	${ }^{\text {t }}$ WF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{t}{ }^{\prime} H^{(2)}$	-20			nsec	

Notes Continued:

(4) The following are relevant when interfacing the μ PD8080AF to devices having $\mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}$.
a. Maximum output rise time. from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns}$ at $C_{L}=$ SPEC.
b. Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ at $C_{L}=$ SPEC.
a. Maximum output rise time, from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns}$ at $C_{L}=S P E C$.
b. Output delay when measured to $3.0 \mathrm{~V}=S P E C+60 \mathrm{~ns}$ at $C_{L}=S P E C$.
c. If $C_{L} \neq$ SPEC, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>$ CSPEC, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $^{\text {S }}$
$C_{L}<$ CSPEC.

AC CHARACTERISTICS μ PD8080AF-1

AC CHARACTERISTICS μ PD8080AF-2
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{t} \mathrm{CY}$ (3)	0.38		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	${ }_{t}{ }_{\text {r }}, t_{f}$	0		50	nsec	
$\phi 1$ Pulse Width	${ }^{+}{ }_{\square} 1$	60			nsec	
$\phi 2$ Pulse Width	${ }_{\text {t }}^{\text {¢ }}$ 2	175			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{t} \mathrm{D} 1$	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }} \mathrm{D} 2$	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }}$, 3	70			nsec	
Address Output Delay From $\phi 2$	${ }^{\text {t DA }}$ (2)			175	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t }}$ (D (2)			200	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{W R}$, WAIT, HLDA)	${ }^{\text {t }}$ DC (2)			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {I }}$ DF (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{\text {t }}$ DI (1)			${ }^{\text {t }}$ DF	nsec	
Data Setup Time During $\phi 1$ and DBIN	${ }^{\text {t }}$ DS 1	20			nsec	
Data Setup Time to $\$ 2$ During DBIN	tos2	130			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{1} \mathrm{DH}$ (1)	(1)			nsec	
INTE Output Delay From $\dagger 2$	IIE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	${ }^{t}$ RS	90			nsec	
HOLD Setup Time to $\phi 2$	${ }^{t} \mathrm{HS}$	120			nsec	
INT Setup Time During $\phi 2$ (for all modes)	${ }^{1} \mathrm{~S}$	100			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{t} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	,
Address Stable Prior to WR	${ }^{\text {t } A W ~(2) ~}$	(5)			nsec	$\begin{gathered} C_{L}=100 \mathrm{pF}: \text { Address, } \\ \text { Data } \end{gathered}$
Output Data Stable Prior to WR	${ }^{1}$ DW (2)	(6)			nsec	
Output Data Stable From $\overline{W R}$	twD (2)	(7)			nsec	
Address Stable from $\overline{W \mathrm{WR}}$	'WA (2)	(7)			nsec	
HLDA to Float Delay	${ }^{1} \mathrm{HF}$ (2)	(8)			nsec	$\begin{aligned} C_{L}= & 50 \mathrm{pF}: \overline{W R}, \\ & \text { HLDA, DBIN } \end{aligned}$
$\overline{W R}$ to Float Delay	tWF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{1} \mathrm{AH}$ (2)	-20			nsec	

Notes Continued:

Device	${ }^{\text {taw }}$
μ PD8080AF	
μ PD8080AF-2	$2 \mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-130$
μ PD8080AF-1	

(6)

Device	${ }^{{ }^{\mathrm{t}} \mathrm{DW}}$
μ PD8080AF	${ }^{\mathrm{t}} \mathrm{C} Y-{ }^{\mathrm{t}} \mathrm{D} 3-{ }^{\mathrm{t}_{\mathrm{r}}(2-170}$
μ PD8080AF-2	${ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-170$
μ PD8080AF-1	${ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-150$

(7) If not HLDA, $\mathrm{t}_{\mathrm{W}}=\mathrm{t}_{\mathrm{W}} \mathrm{FA}=\mathrm{t}_{\mathrm{D}} \mathrm{C}+\mathrm{t}_{\mathrm{r} \phi 2}+10 \mathrm{~ns}$. If HLDA, $\mathrm{t} W \mathrm{D}=\mathrm{t} W A=\mathrm{t} W \mathrm{~F}$.
(8) $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
(9) $\mathrm{t}_{\mathrm{WF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$.

Notes:
(1) INTE F/F IS RESET IF INTERNAL INT F/F IS SET.
(2) INTERNAL INT F/F IS RESET IF INTE F/F IS RESET.
(3) IF REQUIRED, T_{4} AND T_{5} ARE COMPLETED SIMULTANEOUSLY WITH ENTERING HOLD STATE.

TIMING WAVEFORMS (5) (Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " = 8.0V, " 0 " $=1.0 \mathrm{~V}$; INPUTS " 1 " = $3.3 \mathrm{~V}, \quad " 0$ " $=0.8 \mathrm{~V}$; OUTPUTS " 1 " $=2.0 \mathrm{~V}$, " 0 " $=0.8 \mathrm{~V}$.)

tes: (1) Data in must be stable for this period during DBIN • T3. Both tDS1 and tDS2 must be satisfied.
(2) Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
(3) Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and $T_{W H}$ when in hold mode. (External synchronization is not required.)
(4) Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following.instruction. (External synchronization is not required.)
(5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
(6) Timing measurements are made at the following reference voltages: $C L O C K " 1 "=8.0 \mathrm{~V}, " 0$ " $=1.0 \mathrm{~V}$; INPUTS " 1 " $=3.3 \mathrm{~V}$; " 0 " $=0.8 \mathrm{~V}$. OUTPUTS " $1 "=2.0 \mathrm{~V}, \quad " 0=0.8 \mathrm{~V}$.

μ PD8080AF

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability 'to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.
Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.
In addition to the four testable flags, the μ PD8080AF has another flag (ACY) that is not directly testable, it is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the μ PD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.
Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the μ PD8080AF instruction set.
The special instruction group completes the μ PD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data in the μ PD8080AF is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D_{7}	D_{6}	D_{5}	D4	4	D_{3}	D_{2}	D1		0
MSB			TA	A	WOR				SB

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions

Two Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Three Byte instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

OP CODE
Jump, call or direct load and store instructions
LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions
Immediate mode or I/O instructions

One to five machine cycles ($\mathrm{M}_{1}-\mathrm{M}_{5}$) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ($T_{1}-T_{5}$). During $\phi_{1} \cdot$ SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.
Execution times and machine cycles used for each type of instruction are shown below.

Machine Cycle Symbol Definition

Underlined ($X X Y Z(\mathbb{N})$) indicates machine cycle is executed if condition is True.

STATUS INFORMATION DEFINITION

SYMBOLS	DATA BUS BIT	DEFINITION
INTA (1)	D0	Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart or CALL instruction onto the data bus when DBIN is active.
WO	D1	Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function ($\overline{\mathrm{WO}}=0$). Otherwise, a READ memory or INPUT operation will be executed.
STACK	D_{2}	Indicates that the address bus holds the pushdown stack address from the Stack Pointer.
HLTA	D3	Acknowledge signal for HALT instruction.
OUT	D4	Indicates that the address bus contains the address of an output device and the data bus will contain the output data when $\overline{W R}$ is active.
M_{1}	D5	Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instruction.
INP (1)	D6	Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active.
MEMR (1)	D7	Designates that the data bus will be used for memory read data.

Note: (1) These three status bits can be used to control the flow of data onto the μ PD8080AF data bus.

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.028 MAX.
B	1.62 MAX.	0.064 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.2 MIN.	0.047 MIN.
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.019 MIN.
I	5.22 MAX.	0.206 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24 TYP.	0.600 TYP.
L	13.2 TYP.	0.520 TYP.
M	$0.25 \mathrm{TO.1}$	0.010+0.004

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

μ PD8085A SINGLE CHIP 8-BIT N.CHANNEL MICROPROCESSOR

DESCRIPTION
The μ PD8085A is a single chip 8 -bit microprocessor which is 100 percent software compatible with the industry standard 8080A. It has the ability of increasing system performance of the industry standard 8080A by operating at a higher speed. Using the μ PD8085A in conjunction with its family of ICs allows the designer complete flexibility with minimum chip count.
FEATURES - Single Power Supply: +5 Volt, $\pm 10 \%$
- Internal Clock Generation and System Control
- Internal Serial In/Out Port.
- Fully TTL Compatible
- Internal 4-Level Interrupt Structure
- Multiplexed Address/Data Bus for Increased System Performance
- Complete Family of Components for Design Flexibility
- Software Compatible with Industry Standard 8080A
- Higher Throughput: μ PD8085A -3 MHz
μ PD8085A-2 - 5 MHz
- Available in Either Plastic or Ceramic Package

PIN CONFIGURATION

$x_{1}{ }^{\text {d }}$		40	v_{Cc}
\times_{2}		39	$\square \mathrm{HOLD}$
RO-		38	HLDA
SOD		37	\square CLK (OUT)
SID		36	ص RESETIN
TRAP		35	$\square \mathrm{READY}$
RST 7.5		34	$\square 10 / \bar{M}$
RST 6.5		33	$\square \mathrm{S}_{1}$
RST 5.5		32	ص-
INTR 10	$\mu \mathrm{PD}$	31	$\square \overline{\mathrm{WR}}$
INTA ${ }^{1}$	8085A	30	$\square \mathrm{ALE}$
$A D_{0} 12$		29	D_{0}
$A D_{1}{ }^{13}$		28	A_{15}
$A D 2{ }^{14}$		27	$\square \mathrm{A}_{14}$
$\mathrm{AD}_{3}{ }^{15}$		26	P_{13}
$\mathrm{AD}_{4}{ }^{16}$		25	A_{12}
$A D_{5} \mathrm{~S}^{1}$		24	$\mathrm{P}^{\mathrm{A}_{11}}$
$\mathrm{AD}_{6}{ }^{18}$		23	A_{10}
$\mathrm{AD}_{7} \mathrm{C}_{19}$		22	- A_{9}
$\mathrm{v}_{\text {SS }}{ }^{20}$		21] A_{8}

μ PD8085A

The μ PD8085A contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The μ PD8085A also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The μ PD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.

The μ PD8085A also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
The μ PD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pins for advanced functions in the processor and peripheral chips while providing increased system speed and less critical timing functions. All signals to and from the μ PD8085A are fully TTL compatible.

The internal interrupt structure of the μ PD8085A features 4 levels of prioritized interrupt with three levels internally maskable.

Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.
The μ PD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/IO instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.
On chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
1.2	$\mathrm{x}_{1}, \mathrm{X}_{2}$	Crystal in	Crystal, RC, or external clock input
3	Ro	Reset Out	Acknowledge that the processor is being reset to be used as a system reset
4	SOD	Serial Out Data	1 -bit data out by the SIM instruction
5	SID	Serial In Data	1 -bit data into ACC bit 7 by the RIM instruction
6	Trap	Trap Interrupt Input	Highest priority nonmaskable restart interrupt
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	RST 7.5 RST 6.5 RST 5.5	Restart Interrupts	Priority restart interrupt inputs, of which 7.5 is the highest and 5.5 the lowest priority
10	INTR	Interrupt Request In	A general interrupt input which stops the PC from incrementing, generates $\overline{\text { NTA }}$, and samples the data bus for a restart or call instruction
11	$\overline{\text { INTA }}$	Interrupt Acknowledge	An output which indicates that the processor has responded to INTR
12.19	$A D_{0}-A D_{7}$	Low Address/Data Bus	Multiplexed low address and data bus
20	$\mathrm{V}_{\text {SS }}$	Ground	Ground Reference
21-28	$A_{8}-A_{15}$	High Address Bus	Nonmultiplexed high 8-bits of the address bus
29,33	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Status Outputs	Outputs which indicate data bus status: Halt, Write, Read, Fetch
30	ALE	Address Latch Enable Out	A signal which indicates that the lower 8 -bits of address are valid on the $A D$ lines
31.32	$\overline{W R}, \overline{R D}$	Write/Read Strobes Out	Signals out which are used as write and read strobes for memory and $1 / O$ devices
34	$10 / \bar{M}$	I/O or Memory Indicator	A signal out which indicates whether $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ strobes are for $1 / \mathrm{O}$ or memory devices
35	Ready	Ready Input	An input which is used to increase the data and address bus access tumes (can be used for slow memory)
36	$\overline{\text { Reset }} \overline{\text { In }}$	Reset Inout	An input which is used to start the processor activity at address 0 , resetting IE and HLDA flip.flops
37	CLK	Clock Out	System Clock Output
38, 39	HLDA, HOLD	Hold Acknowledge Out and Hold Input Request	Used to request and indicate that the processor should relinquish the bus for DMA activity. When hold is acknowledged, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, 10 / \overline{\mathrm{M}}$, Address and Data busses are all 3 -stated.
40	$v_{\text {cC }}$	5 V Supply	Power Suppiy Input

ABSOLUTE MAXIMUM RATINGS*

Operating Temperatur	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +7 Volts
All Input Voltages	-0.3 to +7 Volts
Supply Voltage VCC.	-0.3 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{-} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.5$		$\mathrm{V}_{\text {SS }}+0.8$	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$ on all outputs
Output High Voltage	$\mathrm{VOH}^{\text {OH}}$	2.4			\checkmark	${ }^{\prime} \mathrm{OH}=-400 \mu \mathrm{~s}$ (1)
Power Supply Current (VCC)	ICC(AV)			170	mA	${ }^{\text {t }} \mathrm{CY}$ min
Input Leakage	$1 / 12$			± 10 (1)	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$
Output Leakage	1 Lo			± 10 (1)	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
Input Low Level, Reset	$V_{\text {ILR }}$	-0.5		+0.8	\checkmark	
Input High Level, Reset	$V_{\text {IHR }}$	2.4		$v_{C C}+0.5$	V	
Hysteresis, Reset	V_{HY}	0.25			V	

Note: (1) Minus (-) designates current flow out of the device
$T_{8}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu \mathrm{PD8085A}$		μ PD8085A-2			
		MIN	MAX	MIN	MAX		
CLK Cycle Period	TCYC	320	2000	200	2000	ns	$\begin{aligned} & T_{C Y C}=320 \mathrm{~ns} \\ & C_{L}=150 \mathrm{pF} \end{aligned}$
CLK Low Time	t_{1}	80		40		ns	
CLK High Time	t_{2}	120		70		ns	
CLK Rise and Fall Time	t_{r}, t_{f}		30		30	ns	
Address Valid Before Trailing Edge of ALE	${ }^{\text {t }} \mathrm{AL}$	110		50		ns	
Address Hold Time After ALE	tLA	100		50		ns	
ALE Width	the	140		80		ns	
ALE Low During CLK High	${ }_{\text {t LCK }}$	100		50		ns	Output Voltages$\begin{aligned} & V_{\mathrm{L}}=0.8 \mathrm{Volts} \\ & V_{H}=2.0 \mathrm{Volts} \end{aligned}$
Training Edge of ALE to Leading Edge of Control	${ }^{\text {t }}$ LC	130		60		ns	
Address Fioat After Leading Edge of $\overline{\text { READ (}} \overline{\mathrm{INTA}}$)	${ }^{\text {t AFR }}$		0		0	ns	
Valid Address to Valid Data In	${ }^{t} A D$		575		350	ns	Input Voltages $V_{\mathrm{L}}=0.8 \mathrm{Volts}$ $\mathrm{V}_{\mathrm{H}}=1.5$ Volts at 20 ns rise and fall times
$\overline{\text { READ (}}$ ($\overline{\text { INTA }}$) to Valid Data	${ }^{\text {tr }}$ D		300		150	ns	
Data Hold Time After READ (INTA)	${ }^{\text {t RDH }}$	0		0		ns	
Training Edge of READ to Re-Enabling of Address	trat	150		90		ns	
Address ($\mathrm{A}_{8} \cdot \mathrm{~A}_{15}$) Valid After Control (1)	${ }^{\text {t }} \mathrm{CA}$	120		60		ns	For outputs where $C_{L}=150$ pf, correct as follows:$25 \mathrm{pf} \leqslant \mathrm{CL}<150 \mathrm{pf}$$-0.10 \mathrm{~ns} / \mathrm{pf}$
Data Valid to Training Edge of WRITE	tow	420		230		ns	
Data Valid After Training Edge of WRITE	twD	100		60		ns	
Width of Control Low ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{NTTA}}$)	${ }^{\text {t C C }}$	400		230		ns	
Training Edge of Control to Leading Edge of ALE	${ }^{\text {t }} \mathrm{CL}$	50		25		ns	
READY Valid from Address Valid	tARY		220		100	ns	$\begin{aligned} & 150 \mathrm{pf}<\mathrm{CL} \leqslant \\ & 300 \mathrm{pf}+0.30 \mathrm{~ns} / \mathrm{pf} \end{aligned}$
READY Setup Time to Leading Edge of CLK	${ }^{\text {t R P }}$ S	110		100		ns	
READY Hold Time	$t_{\text {try }}$	0		0		ns	Outputs measured with only capacitive load
HLDA Valid to Training Edge of CLK	${ }_{\text {t }}$ HACK	110		40		ns	
Bus Float After HLDA	thabF		210		150	ns	
HLDA to Bus Enable	${ }^{\text {t }}$ HABE		210		150	ns	
ALE to Valid Data In	${ }_{\text {t LDR }}$		460		270	ns	
Control Training Edge to Leading Edge of Next Control	${ }^{\text {tr }} \mathrm{V}$	400		220		ns	
Address Valid to Leading Edge of Control	${ }^{\text {t }}$ AC	270		115		ns	
HOLD Setup Time to Training Edge of CLK	thDS	170		120		ns	
HOLD Hold Time	${ }^{\text {t }} \mathrm{HDOH}$	0		0		ns	
INTR Setup Time to Leading Edge of CLK (M1, T1 only). Also RST and TRAP	tins	160		150		ns	
INTR Hold Time	${ }_{\text {tin }}$	0		0		ns	
X_{1} Falling to CLK Rising	tXKR	30	120	30	100	ns	
X_{1} Falling to CLK Falling	${ }^{\text {TKF }}$	30	150	30	110	ns	
Leading Edge of Write to Data Valid	${ }^{\text {t WDL }}$		40		20		

Note: (1) $10 / \bar{M}, S O, S I$

CLOCK TIMING

READ OPERATION

TIMING WAVEFORMS (CONT.)

HOLD OPERATION

INTERRUPT TIMING

Note:(1) $10 / \bar{M}$ is also floating during this time.

PROCESSOR STATE
TRANSITION DIAGRAM

Notes: (1) BI indicates that the bus is idle during this machine cycle.
(2) CK indicates the number of clock cycles in this machine cycle.

As stated, the timing for the μ PD8085A may be generated in one of three ways; crystal, RC, or external clock. Recommendations for these methods are shown below.

RC

1.6 MHz Input Frequency Parallel Resonant Crystal

EXTERNAL

1-6 MHz 25-50\% DC X_{2} not used

Note: (1) Input frequency must be twice the internal operating frequency.

STATUS OUTPUTS The Status Outputs are valid during ALE time and have the following meaning:

	S1	SO
Halt	0	0
Write	0	1
Read	1	0
Fetch	1	1

These pins may be decoded to portray the processor's data bus status.

The μ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART 5.5, 6.5 and 7.5 , and TRAP, a nonmaskable restart.

PRIORITY	INTERRUPT	RESTART ADDRESS
Highest	TRAP	24_{16}
\mid	RST 7.5	$3 C_{16}$
\mid	RST 6.5	34_{16}
1	RST 5.5	$2 C_{16}$
Lowest	INTR	

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising edge. TRAP, the highest priority interrupt, is nonmaskable and is set on the rising edge or positive level. It must make a low to high transition and remain high to be seen, but it will not be generated again until it makes another low to high transition.

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.

The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:

Note: After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the μ PD8085A has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the μ PD8085A. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the μ PD8085A instruction set.
Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the μ PD8085A instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.
Data in the μ PD8085A is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
MSB	DATA WORD	LSB					

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions								OP CODE	TYPICAL INSTRUCTIONS Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions
D_{7}	D_{6}	D_{5}	D4	D_{3}	D_{2}	D1	D_{0}		
Two Byte Instructions									
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	OP CODE OPERAND	Immediate mode or $1 / O$ instructions
D7	D_{6}	D_{5}	D4	D_{3}	D_{2}	D_{1}	D_{0}		
Three Byte Instructions								OP CODE	Jump, call or direct load and store instructions
D7	D_{6}	D_{5}	D4	D_{3}	D_{2}	D_{1}	D_{0}		
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	LOW ADDRESS OR OPERAND 1	
D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HIGH ADDRESS OR OPERAND 2	

INSTRUCTION SET
TABLE

INSTRUCTION CYCLE

 TIMESOne to five machine cycles ($\mathrm{M}_{1}-\mathrm{M}_{5}$) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ($\mathrm{T}_{1}-\mathrm{T}_{5}$).
Machine cycles and clock states used for each type of instruction are shown below.

INSTRUCTION TYPE	MACHINE CYCLES EXECUTED MIN/MAX	CLOCK STATUS MIN/MAX
ALU R	1	4
CMC	1	4
CMA	1	4
DAA	1	4
DCR R	1	4
DI	1	4
EI	1	4
INR R	1	4
MOV R, R	1	4
NOP	1	4
ROTATE	1	4
RIM	1	4
SIM	1	4
STC	1	4
XCHG	1	4
HLT	1	5
DCX	1	6
INX	1	6
PCHL	1	6
RET COND.	1/3	6/12
SPHL	1	6
ALU 1	2	7
ALU M	2	7
JNC	2/3	7/10
LDAX	2	7
MVI	2	7
MOV M, R	2	7
MOV R, M		7
STAX	2	7
CALL COND.	2/5	9/18
DAD	3	10
DCR M	3	10
IN	3	10
INR M	3	10
JMP	3	10
LOAD PAIR	3	10
MVIM	3	10
OUT	3	10
POP	3	10
RET	3	10
PUSH	3	12
RST	3	12
LDA	4	13
STA	4	13
LHLD	5	16
SHLD	5	16
XTHL	5	16
CALL	5	18

A minimum computer system consisting of a processor, ROM, RAM, and I/O can be built with only $3-40$ pin packs. This system is shown below with
μ PD8085A FAMILY MINIMUM SYSTEM CONFIGURATION its address, data, control busses and I/O ports.

PACKAGE OUTLINE μ PD8085AC

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8085AD

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

NOTES

16 BIT MICROPROCESSOR

DESCRIPTION The μ PD8086 is a 16 -bit microprocessor that has both 8 -bit and 16 -bit attributes. It has a 16 -bit wide physical path to memory for high performance. Its architecture allows higher throughput than the $5 \mathrm{MHz} \mu$ PD8085A-2.

FEATURES - Can Directly Address 1 Megabyte of Memory

- Fourteen 16-Bit Registers with Symmetrical Operations
- Bit, Byte, Word, and Block Operations
- 8 and 16-Bit Signed and Unsigned Arithmetic Operations in Binary or Decimal
- Multiply and Divide Instructions
- 24 Operand Addressing Modes
- Assembly Language Compatible with the μ PD8080/8085
- Complete Family of Components for Design Flexibility

Operating Temperature . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to +150 $+1.0^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground - 1.0 to +7 V
Power Dissipation . 2.5 W

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL			UNITS	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	VIL	-0.5	+0.8	V	
Input High Voltage	VIH	2.0	$V_{C C}+0.5$	V	
Output Low Voltage	VOL		0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Power Supply Current μ PD8086/ μ PD8086-2	I'c		$\begin{aligned} & 340 \\ & 350 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Input Leakage Current	ILI		± 10	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
Output Leakage Current	ILO		± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
Clock Input Low Voltage	VCL	-0.5	+0.6	V	
Clock Input High Voltage	V_{CH}.	3.9	$V_{C C}+1.0$	V	
Capacitance of Input Buffer (All input except $\left.\mathrm{AD}_{0}-\mathrm{AD}_{15}, \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}\right)$	CIN		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$
Capacitance of I/O Buffer ($A D_{0}-A D_{15}, \overline{R Q} / \overline{G T}$)	ClO_{10}		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$

MINIMUM COMPLEXITY	PARAMETER	SYMBOL	μ PD8086		${ }_{4}$ PD8086-2 (Preliminary)		UNITS	TEST CONDITIONS
			MIN	MAX	MIN	MAX		
SYSTEM	CLK Cycle Period - μ PD8086	TCLCL	200	500	125	500	ns	
	CLK Low Time	TCLCH	(2/3 TCLCL) -15		(2/3 TCLCL) - 15		ns	
	CLK High Time	TCHCL	(1/3 TCLCL $)+2$		$(1 / 3$ TCLCL) +2		ns	
	CLK Rise Time	TCH1CH2		10		10	ns	From 1.0 V to 3.5 V
	CLK Fall Time	TCL2CL1		10		10	ns	From 3.5 V to 1.0 V
	Data In Setup Time	TDVCL	30		20		ns	
	Data in Hold Time	TCLDX	10		10		ns	
	RDY Setup Time into μ PD8284 (1) (2)	TR1VCL	35		35		ns	
	RDY Hold Time into μ PD8284 (1) (2)	TCLR1X	0		0		ns	
	READY Setup Time into μ PD8086	TRYHCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
	READY Hold Time into μ PD8086	TCHRYX	30		20		ns	
	READY Inactive to CLK (3)	TRYLCL	-8		-8		ns	
	HOLD Setup Time	THVCH	35		20		ns	
	INTR, NMI, TEST Setup Time (2)	TINVCH	30		15		ns	

TIMING RESPONSES	TIMING RESPONSES							
	PARAMETER	SYMBOL	μ PD8086		¢PD8086-2 (Preliminary)		UNITS	TEST CONDITIONS
			MIN	MAX	MIN	MAX		
	Address Valid Delay	TCLAV	10	110	10	60		$\begin{aligned} & C_{L}=20-100 \text { pF for } \\ & \text { all } \mu \text { PD8086 Outputs } \\ & \text { (In addition to } \\ & \mu \text { PD8086 self-load) } \end{aligned}$
	Address Hold Time	TCLAX	10		10		ns	
	Address, Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
	ALE Width	TLHLL	TCLCH-20		TCLCH-10		ns	
	ALE Active Dolay	TCLLH		80		50	ns	
	ALE Inactive Delay	TCHLL		85		55	ns	
	Address Hold Time to ALE Inactive	TLLAX	TCHCL-10		TCHCL-10		ns	
	Data Valid Delay	TCLDV	10	110	10	60	ns	
	Data Hold Time	TCHDX	10		10		ns	
	Data Hold Time After WR	TWHDX	TCLCH-30		TCLCH-30		ns	
	Control Active Delay 1	TCVCTV	10	110	10	70	ns	
	Control Active Delay 2	TCHCTV	10	110	10	60	ns	
	Control Active Delay	TCVCTX	10	110	10	70	ns	
	Address Float to READ Active.	TAZRL	0		0		ns	
	$\overline{R D}$ Active Delay	TCLRL	10	165	10	100	ns	
	$\overline{R D}$ Inactive Delay	TCLRH	10	150	10	80	ns	
	$\overline{R D}$ Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
	HLDA Valid Delay	TCLHAV	10	160	10	100	ns	
	RD Width	TRLRH	2 TCLCL-75		2TCLCL-50		ns	
	WR Width	TWLWH	2TCLCL-60		2 TCLCL-40		ns	
	Address Valld to ALE Low	TAVAL	TCLCH-60		TCLCH-40		ns	

(3) Applies only to $\mathbf{T} 2$ state. (8 ns into T 3)
μ PD8086

Minimum Complexity

Systems (Con't.) (5)

NOTES: (1) All signals switch between $V_{O H}$ and $V_{O L}$ unless otherwise specified.
(2) RDY is sampled near the end of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted.
(3) Two INTA cycles run back-to-back. The μ PD8086 local ADDR/Data Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
(4) Signals at μ PD8284 are shown for reference only.
(5) All timing measurements are made at 1.5 V unless otherwise noted.

TIMING WITH μ PB8288 BUS CONTROLLER

PARAMETER	SYMBOL	$\mu \mathrm{PDP} 086$		μ PD8086-2 (Preliminary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
CLK Cycle Period - μ PD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) -15		(2/3 TCLCL) -15		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2		(1/3 TCLCL) +2		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 1.0 V to 3.5 V
CLN Fall Trme	TCL2CL1		10		10	ns	From 3.5 V to 1.0 V
Data in Setup Time	TDVCL	30		20		ns	
Data in Hold Time	TCLDX	10		10		ns	
RDY Setup Time into μ PD8284 (1) (2)	TR1VCL	35		35		ns	
RDY Hold Time into μ PD8284 (1). (2)	TCLR1X	0		0		ns	
READY Setup Time into μ PD8086	TRYHCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
READY Hold Time into μ PD8086	TCHRYX	30		20		ns	
READY inactive to CLK (4)	TRYLCL	-8	\cdots	-8		ns	
Setup Time for Recognition (INTR, NMI, TEST) (2)	TINVCH	30		15		ns	
$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time	TGVCH	30		15		ns	
$\overline{\mathrm{RO}}$ Hold Time into μ PD8086	TCHGX	40		30		ns	

TIMING RESPONSES

PARAMETER	SYMBOL	यPD8086		[PD88086-2 (Preliminary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Command Active Delay (See Note 1)	TCLML	10	35	10	35	ns	$\begin{aligned} & C_{L}=20-100 \mathrm{pF} \text { for } \\ & \text { all } \mu \mathrm{PD} 8086 \text { Outputs } \\ & \text { (In addition to } \\ & \mu \mathrm{PD} 8086 \text { self-load) } \end{aligned}$
Command Inactive Delay (See Note 1)	TCLMH	10	35	10	35	ns	
READY Active to Status Passive (See Note 3)	TRYHSH		110		65	ns	
Status Active Delay	TCHSV	10	110	10	60	ns	
Status Inactive Delay	TCLSH	10	130	10	70	ns	
Address Valid Delay	TCLAV	10	110	10	60	ns	
Address Hold Time	TCLAX	10		10		ns	
Address Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
Status Valid to ALE High (See Note 1)	TSVLH		15		15	ns	
Status Valid to MCE High (See Note 1)	TSVMCH		15		15	ns	
CLK Low to ALE Valid (See Note 1)	TCLLH		15		15	ns	
CLK Low to MCE High (See Note 1)	TCLMCH		15		15	ns	
ALE Inactive Delay (See Note 1)	TCHLL		15		15	ns	
MCE Inactive Delay (See Note 1)	TCLMCL		15		15	ns	
Data Valid Delay	TCLDV	10	110	10	60	ns	
Data Hold Time	TCHDX	10		10		ns	
Control Active Delay (See Note 1)	TCVNV	5	45	5	45	ns	
Control Inactive Delay (See Note 1)	TCVNX	10	45	10	45	ns	
Address Float to Read Active	TAZRL	0		0		ns	
RD Active Delay	TCLRL	10	165	10	100	ns	
RD Inactive Delay	TCLRH	10	150	10	80	ns	
RD Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
Direction Control Active Delay (See Note 1)	TCHDTL		50		50	ns	
Direction Control Inactive Delay (See Note 1)	TCHDTH		30		30	ns	
GT Active Delay	TCLGL	0	85	0	50	ns	
$\overline{\text { GT Inactive Delay }}$	TCLGH	0	85	0	50	ns	
$\overline{\mathrm{RD}}$ Width	TRLRH	2TCLCL-50		2TCLCL-50		ns	

NOTES: (1) Signal at μ PB8284 or μ PB8288 shown for reference only.
(2) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

Applies only to T3 and wait states.
(4) Applies only to T2 state (8 ns into T3)

MAXIMUM MODE SYSTEM
With μ PB8288 Bus Controller

TIMING WAVEFORMS

Maximum Mode System Using
μ PB8288 Controller (7)

8

NOTES: (1) All signals switch between V_{OH} and V_{OL} unless otherwise specified.
(2) RDY is sampled near the and of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted.
(3) Cascade address is valid between first and second INTA cycle.
(4) Two INTA cycles run beck-to-back. The 8086 local ADDR/Data Bus is floating during both INTA cycles. Control for pointer address is shown for socond INTA cycle.
(5) Signals at 8284 or $\mathbf{8 2 8 8}$ are shown for reference only
(6) The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the active high 8288 CEN.
(7) All timing measurements are made at 1.5 V unless otherwise noted.
(8) Status inactive in state just prior to T_{4}.

ASYNCHRONOUS SIGNAL RECOGNITION

BUS LOCK SIGNAL TIMING

REQUEST/GRANT SEQUENCE TIMING*

NOTE: (1) The coprocessor may not drive the buses outside the region shown without risking contention.
*for Maximum Mode only

Cerdip

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER

DESCRIPTION

FEATURES

The μ PD765 is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Doubie Density format (MFM) including double sided recording. The μ PD765 provides control signals which simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Interface.
Hand-shaking signals are provided in the μ PD 765 which make DMA operation easy to incorporate with the aid of an external DMA Controller chip, such as the μ PD8257. The FDC will operate in either DMA or Non-DMA mode. In the Non-DMA mode, the FDC generates interrupts to the processor every time a data byte is available. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the μ PD765 and DMA controller.

There are 15 separate commands which the μ PD765 will execute. Each of these commands require multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data	Scan High or Equal	Write Deleted Data
Read ID	Scan Low or Equal	Seek
Read Deleted Data	Specify	Recalibrate (Restore to Track 0)
Read a Track	Write Data	Sense Int^rrupt Status
Scan Equal	Format a Track	Sense Drive Status

Address mark detection circuitry is internal to the FDC which simplifies the phase locked loop ana read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The μ PD765 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.

- IBM Compatible in Both Single and Double Density Recording Formats
- Programmable Data Record Lengths: $128,256,512$, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drive Up to 4 Floppy Disks
- Data Scan Capability - Will Scan a Single Sector or an Entire Cylinder's Worth of Data Fields, Comparing on a Byte by Byte Basis, Data in the Processor's Memory with Data Read from the Diskette
- Data Transfers in DMA or Non-DMA Mode
- Parallel Seek Operations on Up to Four Drives
- Compatible with Most Microprocessors Including 8080A, 8085A, μ PD780 (Z80 ${ }^{\text {TM }}$)
- Single Phase 8 MHz Clock
- Single +5 Volt Power Supply
- Available in 40 Pin Plastic Dual-in-Line Package

RESET 1			V_{CC}
$\overline{R D}$ C		39] $\overline{\text { WW/SEEK }}$
WR - 3		38	LCT/DIR
$\overline{\mathrm{CS}} 4$		37	FR/STP
$A_{0} 5$		36] HDL
$\mathrm{DB}_{0} \square^{6}$		35	PROY
$\mathrm{DB}_{1} \square_{7}$		34	WP/TS
DB_{2} - 8		33	FLT/TR ${ }_{C}$
$\mathrm{DB}_{3}-9$	$\mu \mathrm{PD}$	32	$\mathrm{F}^{\mathrm{P}} \mathrm{S}_{0}$
DB_{4} - 10	765	31	$\square \mathrm{PS}_{1}$
DB_{5} - 11		30	WDA
DB_{6}-12		29	U s_{0}
$\mathrm{DB}_{7}-13$		28	习us ${ }_{1}$
DRO. 14		27	二ho
DACK 15		26	MFM
TC-16		25	we
10×17		24	vco
INT 18		23	$\square \mathrm{RD}$
CLK-19		22	RDW
GNDC 20		21	w wok

Operating Temperat	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.5 to +7 Volts
All Input Voltages	-0.5 to +7 Volts
Supply Voltage VCC	-0.5 to +7 Volts
Power Dissipation	

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	${ }^{1} \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		V_{CC}	V	${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {IL }}(\mathbf{\Phi}$)	-0.5		0.65	V	
Input High Voltage (CLK + WR Clock)	$\mathrm{V}_{1 H}(\Phi)$	2.4		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC			150	mA	
Input Load Current	ILI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
(All Input Pins)				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

DC CHARACTERISTICS

PIN			INPUT/ OUTPUT	$\begin{gathered} \text { CONNECTION } \\ \text { TO } \end{gathered}$	FUNCTION
NO.	SYMBOL	NAME			
1	RST	Reset	Input	Processor	Places FDC in idle state. Resets output lines to FDD to " 0 " (low). Does not effect SRT, HUT or HLT in Specify command. If RDY pin is heid high during Reset, FDC will generate interrupt 1.25 ms later. To clear this interrupt use Sense Interrupt Status command.
2	$\overline{\text { RD }}$	Read	Input (1)	Processor	Control signal for transfer of date from FDC to Data Bus, when " 0 " (low).
3	$\overline{\text { WR }}$	Write	Input (1)	Processor	Control signal for transfer of data to FDC via Data Bus, when " 0 " (low).
4	$\overline{\text { CS }}$	Chip Select	Input	Processor	IC selected when " 0 " (low), allowing $\overline{\mathrm{AD}}$ and $\overline{W R}$ to be enabled.
5	Ao	Data/Status Reg Select	Input (1)	Processor	Selects Data Reg ($A_{0}=1$) or Status Reg ($A_{0}=0$) contents of the FDC to be sent to Data Bus.
6.13	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Data Bus	Input/(1) Output	Processor	Bi-Directional 8-Bit Data Bus.
14	DRO	Data DMA Request	Output	DMA	DMA Request is being made by FDC when DRQ='1".
15	$\overline{\text { DACK }}$	DMA Acknowledge	Input	DMA	DMA cycle is active when " 0 " (low) and Controller is performing. DMA transfer.
16	TC	Terminal Count	Input	DMA	Indicates the termination of a DMA transfer when " 1 " (high). It terminates data transfer during Read/W-ite/Scan command in DMA or interrupt míde.
17	IDX	Index	Input	FDD	Indicates the beginning of a disk track.
18	INT	Interrupt	Output	Processor	Interrupt Request Generreted by FDC.
19	CLK	Clock	Input		Single Phase 8 MHz Squarewave Clock.
20	GND	Ground			D.C. Power Return.
21	WCK	Write Clock	Input		Write data rate to FDC. $F M=500 \mathrm{kHz}$, MFM $=1 \mathrm{MHz}$, with a pulse width of 250 ns for both FM and MFM.
22	RDW	Read Data Window	Input	Phase Lock Loop	Generated by PLL, and used to sample data from FDD.
23	RDD	Read Data	Input	FDD	Read data from FDD, containing clock and data bits.
24	VCO	VCO Sync	Output	Phase Lock Loop	Inhibits VCO in PLL when " 0 " (low), enables VCO when " 1 ".
25	WE	Write Enable	Output	FDD	Enables write data into FDD.
26	MFM	MFM Mode	Output	Phase Lock Loop	MFM mode when " 1 ", FM mode when " 0 ".
27	HD	Head Select	Output	FDD	Head 1 selected when " 1 " (high), Head 0 selected when " 0 " (low).
28,29	$U S_{1}, \cup S_{0}$	Unit Select	Output	FDD	FDD Unit Selected.
30	WDA	Write Date	Output	FDD	Serial clock and data bits to FDD.
31,32	$\mathrm{PS}_{1}, \mathrm{PS} 0$	Precompensation (pre-shift)	Output	FDD	Write precompensation status during MFM mode, Determines early, late, and normal times.
33	FLT/TRO	Fault/Track 0	Input	FDD	Senses FDD fault condition, in Réad/ Write mode; and Track 0 condition In Seek mode.
34	WP/TS	Write Protect/ Two-Side	Input	FDD	Senses Write Protect status in Read/Write mode; and Two Side Medis in Seek mode.
35	RDY	Ready	Input	FDD	Indicates FDD is ready to send or recelve data.
36	HDL	Head Load	Output	FDD	Commind which ceuses read/write head in FDD to contact diskette.
37	FR/STP	Fit Reset/Step	Output	FDD	Resets fault F.F. in FDD in Reed/Write mode, contains step pulses to move heed to another cylinder in Seek mode.
38	LCT/DIR	Low Current/ Direction	Output	FDD	Lowers Write current on Inner tracks in Read/Write mode, determines direction. head will step in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal.
39	RW/SEEK	Read Write/SEEK	Output	FDD	When " 1 " (high) Seak mode selected and when " 0 " (low) Read/Write mode selected.
40	$V_{C C}$	+5V			D.C. Power.

Note: (1) Disabled when CS=1.
CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Capacitance	$\mathrm{C}_{\text {IN(}}$ ($)$			20	pF	All Pins Except Pin Under Test Tied to AC Ground
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$			10	pF	
Output Capacitance	$\mathrm{COUT}^{\text {O }}$			20	pF	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Clock Period	$\Phi_{\text {CY }}$	120	125	500	ns	
Clock Active (High)	Φ_{0}	40			ns	
Clock Rise Time	Φ_{r}			20	ns	
Clock Fall Time	Φ_{f}			20	ns	
$A_{0}, \overline{C S}, \overline{\mathrm{DACK}}$ Set Up Time to $\overline{\mathrm{RD}} \downarrow$	TAR	0			ns	
$A_{0}, \overline{\text { CS }}, \overline{\text { DACK }}$ Hold Time from $\overline{\mathrm{RD}} \uparrow$	TRA	0			ns	
$\overline{R D}$ Width	TRR	250			ns	
Data Access Time from $\overline{\mathrm{RD}} \downarrow$	$T_{\text {RD }}$			200	ns	$C_{L}=100 \mathrm{pf}$
DB to Float Delay Time from $\overline{\mathrm{RD}} \uparrow$	TDF	20		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$A_{0}, \overline{C S}, \overline{\text { DACK }}$ Set Up Time to $\overline{W R} \downarrow$	TAW	0			ns	
$A_{0}, \overline{C S}, \overline{\text { DACK }}$ Hold Time to $\overline{W R} \uparrow$	TWA	0			ns	
WR Width	TWW	250			ns	
Data Set Up Time to $\overline{W R} \uparrow$	TDW	150			ns	
Data Hold Time from WR \uparrow	TWD	5			ns	
INT Delay Time from $\overline{\text { RD }} \uparrow$	TRI			500	ns	
INT Delay Time from $\overline{W R} \uparrow$	TWI			500	ns	
DRQ Cycle Time	TMCY	13			$\mu \mathrm{s}$	
DRQ Delay Time from DACK \downarrow	$\mathrm{T}_{\text {AM }}$			200	ns	
TC Width	TTC	1			$\phi \mathrm{CY}$	
Reset Width	TRST	14			$\phi_{C Y}$	
WCK Cycle Time	TCY		$\begin{array}{\|l\|} \hline 2 \text { or } 4(2) \\ 1 \text { or } 2 \\ \hline \end{array}$		$\mu \mathrm{s}$	$\begin{aligned} & M F M=0 \\ & M F M=1 \end{aligned}$
WCK Active Time (High)	T_{0}	80	250	350	ns	
WCK R ise Time	T_{r}			20	ns	
WCK Fall Time	T_{f}			20	ns	
Pre-Shift Delay Time from WCK \uparrow	T_{CP}	20		100	ns	
WDA Delay Time from WCK \uparrow	TCD	20		100	ns	
RDD Active Time (High)	TRDD	40			ns	
Window Cycle Time	TwCy		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\mu \mathrm{s}$	$\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$
Window Hold Time to/from RDD	TRDW TWRD	15			ns	
	TUS	12			$\mu \mathrm{s}$	
SEEK/RW Hold Time to LOW CURRENT/ DIRECTION \uparrow	TSD	7			$\mu \mathrm{s}$	
LOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP \uparrow	TDST	1.0			$\mu \mathrm{s}$	
US $_{0,1}$ Hold Time from FAULT RESET/STEP \uparrow	TSTU	5.0			$\mu \mathrm{s}$	8 MHz Clock Period
STEP Active Time (High)	TSTP		5.0		$\mu \mathrm{s}$	
STEP Cycle Time	$T_{S C}$	33	(3)	(3)	$\mu \mathrm{s}$	
FAULT RESET Active Time (High)	TFR	8.0		10	$\mu \mathrm{s}$	
Write Data Width	TWDD	T0-50			ns	
US $\mathbf{0 , 1}_{1}$ Hold Time After SEEK	TSU	15			$\mu \mathrm{s}$	
Seek Hold Time from DIR	TDS	30			$\mu \mathrm{s}$	8 MHz Clock Period
DIR Hold Time after STEP	TSTD	24			$\mu \mathrm{s}$	
Index Pulse Width	TIDX	625			$\mu \mathrm{s}$	
$\overline{R D}+$ Delay from DRQ	TMR	800			ns	
$\overline{\text { WR }} \downarrow$ Delay from DRQ	TMW	250			ns	8 MHz Clock Period
$\overline{W E}$ or $\overline{R D}$ Response Time from DRQ \uparrow	TMRW			12	$\mu \mathrm{s}$	

Notes: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of $\mathbf{4}$ and $\mathbf{2}$ are applied to Mini-floppy.
(3) Under Software Control. The range is from 1 ms to 16 ms at $\mathbf{8 M H z}$ Clock Period, and 2 to 32 ms at 4 MHz Clock Period.

FDD READ OPERATION

The μ PD765 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8-bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and is used to facilitate the transfer of data between the processor and μ PD765.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and A_{0} is shown below.

A_{0}	$\overline{\mathrm{RD}}$	$\overline{\mathrm{W} / \mathrm{R}}$	FUNCTION
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
DB_{0}	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{1}	FDD 1 Busy	$\mathrm{D}_{1} \mathrm{~B}$	FDD number 1 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{2}	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	FDD number 2 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{3}	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{4}	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
DB_{5}	Execution Mode	EXM	This bit is set only during execution phase in non-DMA mode. When DB5 goes low, execution phase has ended, and result phase was started. It operates only during NON-DMA mode of operation.
DB_{6}	Data Input/Output	DIO	Indicates direction of data transfer between FDC and Data Register. If DIO $=$ " $1 " \prime$ then transfer is from Data Register to the Processor. If DIO = " 0 ", then transfer is from the Processor to Data Register.
DB_{7}	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the Processor. Both bits DIO and ROM should be used to perform the hand-shaking functions of "ready" and "direction" to the processor.

The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus. The max time between the last RD or WR during command or result phase and DIO and RQM getting set or reset is $12 \mu \mathrm{~s}$. For his reason every time Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The max time from the trailing edge of the last RD in the result phase to when DB4 (FDC Busy) goes low is $12 \mu \mathrm{~s}$.

Notes: A - Data register ready to be written into by processor
B - Data register not ready to be written into by processo
C] - Data register ready for next data byte to be read by the processor
D - Data register not ready for next data byte to be read by processor

PACKAGE OUTLINE μ PD765C

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$
		0.05

Command Phase: The FDC receives all information required to perform a particular operation from the processor.

Execution Phase: The FDC performs the operation it was instructed to do
Result Phase: After completion of the operation, status and other housekeeping information are made available to the processor.

Note: (1) Symbois used in this table are described at the end of this section.
(2) A_{0} should equal binary 1 for all operations.
(3) $x=$ Don't care, usually made to equal binary 0 .

COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
A_{0}	Address Line 0	A_{0} controls selection of Main Status Register ($A_{0}=0$) or Data Register ($\mathrm{A}_{0}=1$)
C	Cylinder Number	C stands for the current/selected Cylinder (track) number 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a Sector.
$\mathrm{D}_{7} \cdot \mathrm{D}_{0}$	Data Bus	8-bit Data Bus, where D_{7} stands for a most significant bit, and D_{0} stands for a least significant bit.
DTL	Data Length	When N is defined as $00, D T L$ stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder. During Read or Write operation FDC will stop date transfer after a sector \# equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1, as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ($\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a read or write operation has occurred (16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multi-Track	If MT is high, a multi-track operation is to be performed. If MT $=1$ after finishing Read/Write operation on side 0 FDC will automatically start searching for sector 1 on side 1.

SYMBOL	NAME	DESCRIPTION
N	Number	$\begin{array}{l}\text { N stands for the number of data bytes } \\ \text { written in a Sector. }\end{array}$
NCN	New Cylinder Number	$\begin{array}{l}\text { NCN stands for a new Cylinder number, } \\ \text { which is going to be reached as a result of the } \\ \text { Seek operation. Desired position of Head. }\end{array}$
ND	Non-DMA Mode	$\begin{array}{l}\text { ND stands for operation in the Non-DMA Mode. }\end{array}$
PCN	$\begin{array}{l}\text { Present Cylinder } \\ \text { Number }\end{array}$	$\begin{array}{l}\text { PCN stands for the Cylinder number at the com- } \\ \text { pletion of SENSE INTERRUPT STATUS } \\ \text { Command. Position of Head at present time. }\end{array}$
R	Record	$\begin{array}{l}\text { R stands for the Sector number, which will } \\ \text { be read or written. }\end{array}$
RNW	Read/Write	$\begin{array}{l}\text { R/W stands for either Read (R) or Write (W) } \\ \text { signal. }\end{array}$
SC	Sector	$\begin{array}{l}\text { SC indicates the number of Sectors per } \\ \text { Cylinder. }\end{array}$
SK	Skip	Step Rate Time
SRT	$\begin{array}{l}\text { SK stands for Skip Deleted Data Address Mark. }\end{array}$	
SRT stands for the Stepping Rate for the FDD.		
(1 to 16 ms in 1 ms increments.) Stepping Rate		
applies to all drives, (F = 1 ms, E = 2 ms, etc.).		

COMMAND SYMBOL DESCRIPTION (CONT.)

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to Data Register, CPU should wait for 12μ s before reading MSR. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the μ PD765. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the μ PD765. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's ($D 6=1$ and $D 7=1$) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the μ PD765 is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the μ PD765 is in the NON-DMA Mode, then the receipt of each data byte (if μ PD765 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT = 1). The generation of a Read signal $(\overline{R D}=0)$ or Write signal ($\overline{W R}=0$) will reset the Interrupt as well as output the Data onto the Data Bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$) for MFM and $27 \mu \mathrm{~s}$ for FM mode, then it may poll the Main Status Register and then bit D7 (RQM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the μ PD765 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The μ PD765 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a $\overline{\mathrm{DACK}}=0$ (DMA Acknowledge) and a $\overline{R D}=0$ (Read signal). When the DMA Acknowledge signal goes low $(\overline{\mathrm{DACK}}=0)$ then the DMA Request is reset $(\mathrm{DRQ}=0)$. If a Write Command has been programmed then a $\overline{W R}$ signal will appear instead of $\overline{R D}$. After the Execution Phase has been completed (Terminal Count has occurred) or EOT sector was read/ written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT $=0$).
It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The μ PD 765 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The μ PD765 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after completing a command. The particular command which has been executed determines how many of the Status Registers will be read.
The bytes of data which are sent to the μ PD 765 to form the Command Phase, and are read out of the μ PD765 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the μ PD765, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the μ PD765 is ready for a new command.

POLLING FEATURE OF THE μ PD 765

After the Specify command has been sent to the μ PD765, the Unit Select line USO and US1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the μ PD7 765 polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the μ PDD765 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the μ PD765 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands.

μ PD765

READ DATA

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number (" R ") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.

After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command.
The amount of data which can be handled with a single command to the FDC depends upon MT (multitrack), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.

Multi-Track MT	MFM/FM MF	Bytes/Sector N	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskette
0	0	00	$(128)(26)=3,328$	26 at Side 0
0	1	01	$(256)(26)=6,656$	or 26 at Side 1
1	0	00	$(128)(52)=6,656$	26 at Side 1
1	1	01	01	$(256)(52)=13,312$

Table 1. Transfer Capacity
The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1, Side 0 and completing at Sector L, Side 1 (Sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data Command, the head is not unioaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.
If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and $\overline{6}$ set to 0 and 1 respectively.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ($S K=0$), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If $S K=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when $S K=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every 27μ s in the FM Mode, and every 13μ s in the MFM Mode, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for C, H, R, and N , when the processor terminates the Command.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	0	Less than EOT	NC	NC	$R+1$	NC
	0	Equal to EOT	C+1	NC	$R=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	C+1	NC	$R=01$	NC
1	0	Less than EOT	NC	NC	$R+1$	NC
	0	Equal to EOT	NC	LSB	$R=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	C + 1	LSB	$R=01$	NC

Notes: 1 NC (No Change): The same value as the one at the beginning of command execution.
2 LSB (Least Significant Bit): The least significant bit of H is complemented.

WRITE DATA

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified Head Settling Time (defined in the Specify Command), and begins reading ID Fields. When all four bytes loaded during the command (C, H, R, N) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.

After writing data into the current sector, the Sector Number stored in " R " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) riag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7^{\prime} and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity - Head Unload Time Interval
- EN (End of Cylinder) Flag - ID Information when the processor terminates command (see Table 2)
- ND (No Data) Flag - Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode, and every $13 \mu \mathrm{~s}$ in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

WRITE DELETED DATA

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

READ DELETED DATA

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field (and SK = 0 (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If $S K=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

READ A TRACK

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.
This command terminates when number of sectors read is equal to EOT. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status Register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)
μ PD765

READ ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID Field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase

FORMAT A TRACK

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and N (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

The processor must send new values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N to the $\mu \mathrm{PD} 765$ for each sector on the track. If FDC is set for DMA mode, it will issue 4 DMA requests per sector. If it is set for interrupt mode, it will issue four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$ and N load for each sector. The contents of the R register is incremented by one after each sector is formatted, thus, the R register contains a value of R when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.

If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.

Table 3 shows the relationship between N, SC, and GPL for various sector sizes:

		8' STANDARD FLOPPY					5 $1 / 4 \%$ MINI FLOPPY				
FORMAT	SECTOR SIZE	N	SC	GPL (1)	GPL (2)	REMARKS	SECTOR SIZE	N	SC	GPL 1	GPL (2)
FM Mode	128 bytes/Sector	00	${ }^{1} \mathrm{~A}_{(16)}$.$^{07}(16)$	${ }^{1 B}{ }_{(16)}$	IBM Diskette 1	128 bytes/Sector	00	12	07	09
	256	01	${ }^{\circ} \mathrm{F}_{(16)}$	$\mathrm{OE}_{(16)}$	$2{ }^{2}(16)$	IBM Diskette 2	128	00	10	10	19
	512	02	08	$1 B_{(16)}$	$3{ }^{\text {A }}$ (16)		256	01	08	18	30
FM Mode	1024 bytes/Sector	03	04	47	8A		512	02	04	46	87
	2048	04	02	C8	FF		1024	03	02	C8	FF
	4096	05	01	C8	FF		2048	04	01	C8	FF
MFM Mode	256	01	${ }^{1 A}(16)$	$\mathrm{OE}_{(16)}$	${ }^{36}(16)$	IBM Diskette 2D	256	01	12	OA	OC
	512	02	${ }^{0} F_{(16)}$	${ }^{18}(16)$	${ }^{54}(16)$		256	01	10	20	32
	1024	03	08	${ }^{35}(16)$	${ }^{74}(16)$	IBM Diskette 2D	512	02	08	2A	50
	2048	04	04	99	FF		1024	03	04	80	Fo
	4096	05	02	C8	FF		2048	04	02	C8	FF
	8192	06	01	C8	FF		4096	05	01	C8	FF

Table 3
Note: (1) Suggested values of GPL in Read or Write Commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) In MFM mode FDC can perform a read operation only with 128 bytes/sector. $(\mathrm{N}=00)$

SCAN COMMANDS

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of $D_{F D D}=$ DProcessor,$D_{F D D} \leqslant D_{\text {Processor }}$, or $D_{F D D} \geqslant$ Dprocessor. The hexidicernial byte of FF either from memory or from FDD can be used as a mask byte because it always meet the condition of the compare. Ones complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremental ($R+S T P \rightarrow R$), and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 $=$ SN	BIT 3 $=$ SH	
Scan Equal	0	1	DFDD $=$ DProcessor
	1	0	
	0	1	DFDD $=$ DProcessor
	0	0	DFDD $<$ DProcessor
	1	0	DFDD $>$ DProcessor
Scan High or Equal	0	1	DFDD $=$ DProcessor
	0	0	DFDD $>$ DProcessor
	1	0	DFDD $<$ DProcessor

Table 4

If the FDC encounters a Deleted Data Address Mark on one of the sectors (and $\mathrm{SK}=0$), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If SK = 1, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case ($S K=1$), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (MultiTrack) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=02, \mathrm{MT}=0$, the sectors are numbered sequentially 1 through 26 , and we start the Scan Command at sector 21 ; the following will happen. Sectors 21,23 , and 25 will be read, then the next sectol (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~S}$ (FM Mode) or $13 \mu \mathrm{~s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

SEEK

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. FDC has four independent Present Cylinder Registers for each drive. They are clear only after Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN $<$ NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.) The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{D}_{0} \mathrm{~B}-\mathrm{D}_{3} \mathrm{~B}$ in Main Status Register are set during seek operation and are clear bv Sense Interrupt Status command.
During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once. No other command could be issue for as long as FDC is in process of sending Step Pulses to any drive.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Reaister 0 are set to 0 and 1 respectivelv. If the time to write 3 bytes of seek command exceeds $150 \mu \mathrm{~s}$, the timing between first two Step Pulses may be shorter then set in the Specify command by as much as 1 ms .

PD765

recalibrate

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulse have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1s (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the SEEK Command, also applies to the RECALIBRATE Command.

SENSE INTERRUPT STATUS

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
e. Write Data Command
b. Read a Track Command
f. Format a Cylinder Command
c. Read ID Command
g. Write Deleted Data Command
d. Read Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in NON-DMA Mode, DB5 in Main Status Register is high. Upon entering Result Phase this bit gets clear. Reason 1 and 4 does not require Sense Interrupt Status command. The interrupt is cleared by reading/writing data to FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This command when issued resets the interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the interrupt.

SEEK END BIT 5	INTERRUPT CODE		CAUSE
	BIT 6	BIT 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	
1	1	0	Abnormal Termination of Seek or Recalibrate Command

Table 5

Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).

Issuing Sense Interrupt Status Command without interrupt pending is treated as an invalid command.

SPECIFY

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of $\mathbf{1 6 ~ \mathrm { ms }} \mathbf{0 1} \mathbf{0}=\mathbf{1 6} \mathrm{ms}, 02=32 \mathrm{~ms} \ldots$. OF = 240 ms). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms ($F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, \mathrm{D}=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms} \mathbf{0} 01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6 \mathrm{~ms} \ldots 7 \mathrm{~F}=$ 254 ms).

The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND $=1$) the NON-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

SENSE DRIVE STATUS

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

INVALID

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the μ PD765 during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high (" 1 ") indicating to the processor that the μ PD765 is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find a 80 hex indicating an invalid command was received.

A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.

In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

STATUS REGISTER IDENTIFICATION

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 0			
D_{6}	Interrupt Code	IC	$D_{7}=0 \text { and } D_{6}=0$ Normal Termination of Command, (NT). Command was completed and properly executed.
			$D_{7}=0 \text { and } D_{6}=1$ Abnormal Termination of Command, (AT). Execution of Command was started, but was not successfully completed.
			$D_{7}=1 \text { and } D_{6}=0$ Invalid Command issue, (IC). Command which was issued was never started.
			$\mathrm{D}_{7}=1$ and $\mathrm{D}_{6}=1$ Abnormal Termination because during command execution the ready signal from FDD changed state.
D5	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
D4	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
D_{3}	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, th is flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
D_{2}	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
D1	Unit Select 1	US 1	These flags are used to indicate a Drive Unit
Do	Unit Select 0	US 0	Number at Interrupt
STATUS REGISTER 1			
D_{7}	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
D_{6}			Not used. This bit is always 0 (low).
D5	Data Error	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
D_{4}	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set.
D3			Not used. This bit always 0 (low).
D_{2}	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1 (CONT.)			
D_{1}	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D_{0}	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
D7			Not used. This bit is always 0 (low).
D_{6}	Control Mark	CM	During executing the READ DATA or SCAN Command, if the FDC encounters a Sector which contains a Deleted Data Address Mark, th is flag is set.
D5	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
D4	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of C on the medium is different from that stored in the IDR, this flag is set.
D3	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, th is flag is set.
D_{2}	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D1	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of C on the medium is different from that stored in the IDR and the content of C is FF, then this flag is set.
D_{0}	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
D7	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
D6	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D5	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
D4	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
D3	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D_{2}	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D1	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D0	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

NOTES

It is suggested that you utilize the following applications notes:
(1) \#8 - for an example of an actual interface, as well as a "theoretical" data separator.
(2) \#10 - for a well documented example of a working phase lock loop.

DOT MATRIX PRINTER CONTROLLER

DESCRIPTION The μ PD781 is an LSI Dot Matrix Printer Controller chip which contains all the circuitry and control functions for interfacing an 8-bit processor to the Epson model 512,522 , and 542 Dot Matrix Printers. These printers are capable of printing 40 columns per row with a 5×7 dot matrix. The μ PD781 is ideally suited for low-cost Electronic Cash Registers (ECR) and Point of Sale (POS) systems because it frees the processor from direct control of the printer and simplifies I/O software.

There are nine separate instructions which the μ PD781 will execute. Each of these instructions requires only a single 8 -bit byte from the processor to be executed. Upon receipt of the instruction the μ PD781 assumes control of the printer, increments the print head, activates the print solenoids, performs line feed on either receipt or journal registers (or both), and performs these operations for an entire print line of 40 columns.

The μ PD781 contains its own on-board character generator of 96 symbols. It contains a 40 column printer buffer and is capable of supplying status information to the host processor on both the controller itself as well as the printer. Characters to be printed are written into the μ PD781 by the processor, and after the receipt of 40 characters the entire row is printed out with a single print command.

FEATURES - Compatible with most Microprocessors including 8080A, 8085A, μ PD780 (Z80TM)

- Capable of Interfacing to Epson Model 512, 522, or 542 Printers
- Print Technique - Serial Dot Matrix
- Print Font -5×7 Dot Matrix
- Column Print Capacity: 40 Columns for Model 512 and 522; 18 Columns for Receipt and 18 Columns for Journal-Model
- Buffer Capacity: 40 Columns - Model 512 and 522; 2 to 18 Columns - Model 542
- 96 Character Set (Alphanumerics Plus Symbols)
- Print Speed - Approximately 3 Lines/sec (Bidirectional Printing)
- Paper Feed: Independent or Simultaneous; Receipt and Journal Feed; Fast Feed.
- Stamp Drive Output - Also Ćutter Drive Output and Slip Release for Model 522.
- Sense Printer Status: Validation (Left/Right) Sensor - Model 512 and 522; TOF, BOF Sensor - Model 542; Low Paper Detector - Model 512 and 522
- On-Board 6 MHz Oscillator (External Crystal Required)
- Operates from a Single +5 V Power Supply (NMOS Technology)
- Available in 40-Pin Plastic Package

RL 1		40	$\square \vee_{C C 1}$
$\times_{1} \square 2$		39	RR
$x_{2}-3$		38	TIM
RESET 4		37	$\overline{\mathrm{PR}}_{7}$
$\mathrm{VCC3}^{-5}$		36	$\overline{\mathrm{PR}}_{6}$
cs 6		35	$\overline{P R}_{5}$
$\mathrm{vSS2}^{-1}$		34	$\overline{\text { PFR }}$
RD-8		33	$\overline{\text { PFJ }}$
C/D 9		32	STM
WR 10	$\mu \mathrm{PD}$	31	$\overline{S L R}$
$\mathrm{OPEN}_{1}-11$	781	30	MTD
$\mathrm{D}_{0} \square 12$		29	$\square \mathrm{NE}$
$\mathrm{D}_{1} \square 13$		28	VDL/TOF
$\mathrm{D}_{2} \square_{14}$		27	$\square \mathrm{VDR} / \mathrm{BOF}$
$\mathrm{D}_{3} \square_{15}$		26	$\square \mathrm{V}_{\mathrm{CC} 2}$
$\mathrm{D}_{4} \square 16$		25	OPEN_{2}
$\mathrm{D}_{5} \square_{17}$		24	$\square^{\square} \overline{P R}_{4}$
$\mathrm{D}_{6} \square_{18}$		23	$\square^{-P_{3}}$
$\mathrm{D}_{7} \square_{19}$		22	$\square \overline{P R}_{2}$
$\mathrm{v}_{\mathrm{SS} 1} \square_{20}$		21	$\square \overline{P R}_{1}$

PIN NAMES

RL	Reset Signal (L)
RR	Reset Signal (R)
$\mathrm{X}_{1}, \mathrm{X}_{2}$	Crystal Inputs
RESET	Reset
$\overline{\text { CS }}$	Chip Select
$\overline{\text { RD }}$	Read
C/D	Command/Data
$\overline{W R}$	Write
D_{0-7}	Data Bus
$\overline{P R}_{1}-\mathrm{PR}_{7}$	Print Solenoids
VDR/BOF	Validation (R)/BOF Sensor
VDL/TOF	Validation (L)/TOP Sensor
NE	Low Paper Detector
MTD	Motor Drive
$\overline{\text { SLR }}$	Slip Release
STM	Stamp
$\overline{\text { PFJ }}$	Paper Feed Journal
$\overline{\text { PFR }}$	Paper Feed Receipt
TIM	Timing Signal

PIN			1/0	FUNCTION
NUMBER	sYmboL	NAME		
2,3	$\mathrm{x}_{1}, \mathrm{x}_{2}$	External Crystal Input	1	This is a connection to external crystal (Frequency: 6 MHz). X_{1} could also be used as input for external oscillator.
4	$\overline{\text { RESET }}$	Reset	1	The Reset signal initializes the μ PD781. When $\overline{\text { RESET }}=0$, the buffer and register contents are: Bus Buffer - (IOM-1, IOB=PSR=0). Column Buffer - All characters in this buffer become 20(16) (ASCII). Column Buffer Pointer - It indicates the left side of the buffer. Column Capacity - 40 columns. Print Head - Current Position.
6	$\overline{\text { cs }}$	Chip Select	1	If the Chip Select is 0 when the data bus becomes active, it enables the transfer of data between the processor and the μ PD781 via the data bus. If it is 1 , the data bus goes into High-Impedance state inactive). However, the operation of the printer is not affected when $\overline{\mathrm{CS}}=1$.
8	$\overline{\mathrm{RD}}$	Read	1	The Read Control Signal is used to read controller status or printer status to the host processor. When $\overline{\mathrm{RD}}=1$, status information is presented.
10	$\overline{\text { wR }}$	Write	1	The Write Control Signal is used to write commands or print data to the μ PD781. When $\overline{W R}=0$, data on the data bus is written into the μ PD781.
9	c/ $\overline{\text { D }}$	Command/ Data Select	1	The C / \bar{D} Select is used to indicate what kind of data is being input/output on the data bus by the host processor. When $\mathrm{C} / \overline{\mathrm{D}}=1$ in Read Operation, it is a Controller Status and in Write Operation it gives commands. When $\mathrm{C} / \overline{\mathrm{D}}=0$ in Read Operation it is a Printer Status and in Write Operation it is print data.

PIN IDENTIFICATION

PIN IDENTIFICATION (CONT.)

	PIN			
NUMBER	SYMBOL	NAME	$1 / 0$	FUNCTIO
12-19	D_{0-7}	Data Bus	1/0 3-State	It is an 8-bit bi-directional data bus and is used to transfer the data between the host processor and the μ PD781.
$\begin{aligned} & 5,26, \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC} 1-3}$	DC Power		These are connected to +5 V power supply.
7,20	$V_{\text {SS } 1-2}$	Signal Ground		
11,25	OPEN_{1-2}	No Connection		These pins must be open. Do not connect them to $+5 \mathrm{~V}, \mathrm{GND}$ or any other signals.
$\begin{aligned} & 21-24, \\ & 35-37 \end{aligned}$	$\overline{\mathrm{PR}}_{1} \cdot \overline{\mathrm{PR}}_{7}$	Print Solenoid	0	These are drive signals for the print solenoids. When these signals are 0 , the print solenoid should be activated. They are synchronized with the timing signal (TIM), which is issued from the printer.
38	$\overline{\text { TIM }}$	Timing Signal	1	The timing signal is issued from the printer. It is used to generate and synchronize all the basic printer operations such as paper feed, paper cut, etc.
1	RL	Reset Signal Left	1	The reset signal ($R \mathrm{~L}=1$) is issued by the printer and indicates that the print-head is positioned at the left margin.
39	RR	Reset Signal Right	1	The reset signal ($R R=1$) is issued by the printer and indicates that the print-head is positioned at the right margin.
30	$\overline{\text { MTD }}$	Motor Drive	0	The motor drive signal is issued to the printer, and is active during low state.
34	$\overline{\text { PFR }}$	Paper Feed Receipt	0 0	This is the drive signal for the paper feed magnet and is active during low state. In Model 512 and 542 it is used as a paper feed magnet drive signal, and in Model 522 it is used as a receipt paper feed magnet drive signal.
33	$\overline{\text { PFJ }}$	Paper Feed Journal	0	This is the drive signal for the journal paper feed and is active during low state. It is used only with Model 522, and is not used at all in Model 512 and 542.
32	$\overline{\text { STM }}$	Stamp	0	This is the drive signal for both the stamp magnet and the paper cutter and is active during the low state. This signal is used only with Model 522. If partial-cut or stamp and full-cut are required, they may be implemented by using the Fast Feed command which is synchronized with each timing pulse before it is output. This signal is not used in the Model 512 and 542.
31	$\overline{S L R}$	Slip Release	0	This is the drive signal for the slip release magnet and is active during low state. It is used only with Model 542, and is active only during the Print command or Fast Feed command. This signal is not used in the Model 512 and 522.
27	VDR/BOF	Validation Right/BOF Sensor (1)	I	In Model 512 and 522, the Validation Right signal (VDR) is used to detect when the print-head is located at the right side of the paper. In Model 542, the BOF Sensor signal ($B O F$) is used to detect the end of the paper.
28	VDL/TOF	Validation Left/TOF Sensor (1)	1	In Model 512 and 522, the Validation Left signal (VDL) is used to detect when the print-head is located at the left side of the paper. In Model 542, the TOF Sensor signal (TOF) is used to detect the top of the paper.
29	NE	Low Paper Detector(1)	1	This signal is used to indicate a low paper condition and is active in high state.

Note: (1) The VDR/BOF, VDL/TOF and NE signals are available on the data bus when a Printer Status is requested by the host processor. The μ PD781 passes these signals onto the host processor.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin
-0.5 to +7 Volts ${ }^{(1)}$
Note: (1) With Respect to Ground.
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS} 1-2}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage (All except XTAL 1, XTAL 2, RESET)	V_{1+1}	2.0		VCC	V	
Input High Voltage (XTAL 1, XTAL 2, RESET)	$\mathrm{V}_{1} \mathrm{H} 2$	3.5		V_{CC}	V	
Input Low Voltage (All except XTAL 1, XTAL 2)	VIL	-0.5		0.8	V	
Output High Voltage (D_{0-7})	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Output High Voitage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	${ }^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$
Output Low Voltage (D_{0-7})	VOL1			0.45	V	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs except D_{0-7})	VOL2			0.45	V	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$
Low Input Source Current (VDR/BOF, VDL/TOF, NE, TIM)	'LI]			0.4	mA	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$
Low Input Source Current ($\overline{\mathrm{RESET}}$)	${ }^{\prime} \mathrm{L} .12$			-0.2	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
Input Leakage Current (RL, RR, $\overline{R D}, \overline{W R}, \overline{C S}, C / \bar{D})$	IIL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current (D_{0-7}, High Impedance State)	${ }^{\text {IOL }}$.		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}+0.45 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Total Supply Current (ICC1 ${ }^{+}$ ICC2 + ICC3)	${ }^{\text {I CC }}$		65	135	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS $\quad T_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\text {SS } 1-2}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ OPERATION						
$\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Setup to $\overline{\mathrm{RD}} \downarrow$	${ }^{t} A R$	0			ns	D_{0-7} Input
CS, C/D Hold After $\overline{\mathrm{RD}} \uparrow$	${ }^{\text {t }}$ RA	0			ns	
$\overline{\mathrm{RD}}$ Pulse Width	${ }^{\text {t }}$ RR	250		5000	ns	
$\overline{C S}, \mathrm{C} / \overline{\mathrm{D}}$ to Data Out Delay	${ }^{t}$ AD			180	ns	
$\overline{\mathrm{RD}} \downarrow$ to Data Out Delay	${ }^{t} R D$			180	ns	
RD \uparrow to Data Float Delay	${ }^{t}$ DF	10		100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
Recovery Time Between Reads And/Or Write	${ }^{t} \mathrm{R} V$	1			$\mu \mathrm{s}$	
WRITE OPERATION						
CST, C/D Setup to $\overline{W R} \downarrow$	${ }^{t}$ AW	0			ns	D_{0-7} Output$C_{L}=100 \mathrm{pF}$
$\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Hold After $\overline{\mathrm{WR}} \uparrow$	twA	0			ns	
$\overline{\text { WR Pulse Width }}$	twW	250		5000	ns	
Data Setup to $\overline{W R} \uparrow$	${ }^{\text {t }}$ DW	150			ns	
Data Hold After $\overline{W R} \uparrow$	${ }^{t}$ WD	0			ns	
PRINT OPERATION						
$\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PR}}_{1-7} \downarrow$ Delay	${ }^{1}$ TP			167.5	$\mu \mathrm{s}$	6 MHz Crystal
$\overline{\mathrm{PR}}_{1-7}$ Pulse Width	tpp		600		$\mu \mathrm{s}$	
$\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PFJ}}, \overline{\mathrm{PFR}} \downarrow$ Delay	tTF1			140	$\mu \mathrm{s}$	
$\overline{\text { TIM }} \downarrow$ to $\overline{\mathrm{PFJ}}, \overline{\mathrm{PFR}} \uparrow$ Delay	tTF2			127.5	$\mu \mathrm{s}$	
$\overline{\text { TIM }} \downarrow$ to $\overline{\text { SLR }} \downarrow$ Delay	tTR1			60	$\mu \mathrm{s}$	
$\overline{T I M} \downarrow$ to $\overline{S L R} \uparrow$ Delay	tTR2			50	$\mu \mathrm{s}$	
$\overline{\text { TIM }} \downarrow$ to $\overline{\text { STM }} \downarrow$ Delay	${ }^{\text {t }}$ TS1			72.5	$\mu \mathrm{s}$	
$\overline{\text { TIM }} \downarrow$ to $\overline{\text { STM }} \uparrow$ Delay	${ }^{\text {t }}$ TS2			37.5	$\mu \mathrm{s}$	

PACKAGE OUTLINE μ PD781C

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MiN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$\begin{gathered} 0.25+0.1 \\ -0.05 \\ \hline \end{gathered}$	$\begin{array}{r} 0.010+0.004 \\ -0.002 \end{array}$

PRINT OPERATION

All transfer of information between the μ PD781 and the host processor is via the data bus, and the four (4) control signals, $\overline{C S}, C / \bar{D}, \overline{W / R}$ and $\overline{R D}$. The four control signals determine what type of data transfer will occur on the data bus.

$\overline{\mathrm{CS}}$	$\mathrm{C} / \overline{\mathrm{D}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WIR}}$	DATA BUS	OPERATION
0	0	0	0	-	Inhibited
0	0	1	0	Print Data	Write Data into Column Buffer
0	0	0	1	Printer Status	Read Printer Status
0	0	1	1	-	No Operation
0	1	0	0	-	Inhibited
0	1	1	0	Command	Write Command for Printer
0	1	0	1	Controller Status	Read Controller Status
0	1	1	1	-	No Operation
1	X	X	X	-	Disable μ PD781

Before issuing any new command or loading new data into the column buffer, the host processor should check the controller status bits IOM, IOB and PSR. No new operation should be performed if IOB bit indicates that the μ PD781 is busy.

Controller Status Register

Printer Status Register

COMMAND		DATA BUS							
		DB7	DB6	DB5	DB4	DB_{3}	DB2	DB1	DB_{0}
Initialize		0	0	0	L/R	\times	x	x	x
Request Printer Status		0	0	1	\times	x	x	x	x
Printer Format		0	1	b_{1}	bo	\times	\times	\times	\times
Increment Column Printer		0	1	1	1	n3	n2	n1	no
Print	Model 512 and 542	1	0	0	0	x	LF	x	SR
	Model 522	1	0	a1	a	LFJ	LFR	\times	\times
Fast Feed		1	1	c1	${ }^{\text {co }}$	n3	n2	n1	no
Write Print Data		x	d_{6}	d5	d4	d3	${ }^{\text {d }} 2$	d_{1}	do

Note: X = Not Acceptable

IOM - Input/Output Buffer Mode

The IOM flag indicates the direction of data on the data bus. If IOM=1 data is from processor to μ PD781 (write into μ PD781). If IOM $=0$ data is from μ PD781 to processor (read from μ PD781). Immediately after reading printer status, IOM goes from 0 to 1.

IOB - Input/Output Buffer Busy
The IOB flag indicates when the I/O buffer is busy and an operation is in process. If $I O B=1 \mathrm{I} / \mathrm{O}$ buffer is busy and no new command should be performed. If $\mathrm{IOB}=0$ μ PD781 is ready to accept new command.

PSR - Printer Status Ready

The PSR flag indicates that the printer status may be read by the processor. If $\mathrm{PSR}=1$ printer status is ready to be read by processor. If $\mathrm{PSR}=0$ printer status is not ready.

PRINTER STATUS REGISTER

R - Location of Print Head
$\mathrm{R}=1$ Print Head located at left side of carriage.
$R=0$ Print Head located at right side of carriage.

\mathbf{R}	$\mathrm{S}(1)$	$\mathrm{T}(1)$	$\mathrm{U}(1)$	OPERATION
x	x	x	1	Detection of R/BOF Sensor
x	x	1	x	Detection of L/TOF Sensor
x	1	x	x	Detection of Low Paper (NE)

Note: (1) These bits could have other meanings depending on the signals connected to pins 27, 28, 29.

INITIALIZE COMMAND

This command is similar to the RESET command, but it also allows to position the print head.

L/R - Print Head Left/Right Side
$L / R=1$ Print Head is positioned at the left side.
$L / R=0$ Print Head is positioned at the right side.

Contents of column buffer is set to 20 hexadecimal (equal to blank), reset condition.

REQUEST PRINTER STATUS COMMAND

This command will latch the status of the printer in the internal register. It must be followed by a Printer Status Read Operation. No other command will be accepted until the printer status is read.

This command sets the controller for the appropriate printer model.
$\mathrm{b}_{1}, \mathrm{~b}_{0}$ - Format for Column Buffer

\mathbf{b}_{1}	\mathbf{b}_{0}	COLUMN FORMAT	MODE L PRINTER	COMMENTS
0	0	40 columns	512 or 542	Column Buffer Set at 40 Column
0	1	18 columns	522	Both Receipt and Journal Print Identical 18 Column
1	0	2×18 columns	522	Receipt and Journal Print Separate 18 Columns, With Receipt First and Journal Second

INCREMENT COLUMN POINTER COMMAND
The column pointer within the buffer is incremented to the right by the binary value indicated by n_{0} through n_{3}. In the case of the 2×18 column format for the Model 522, the pointer can only move within the receipt or journal side, depending upon which side it is presently located.

PRINT COMMAND

The entire column buffer is printed and after the print operation is complete the contents of the buffer are reset to 20 hexidecimal (blank). During the execution of the print command no other commands are executed.

Models 512 and 542

LF	SR	OPERATION
0	0	Print Only
0	1	After Printing Perform Slip Release Only
1	0	After Printing Perform Line Feed Only
1	1	After Printing Perform Both Line Feed and Slip Release

Model 522

a_{1}	a_{0}	
0	1	Print Receipt Only
1	0	Print Journal Only
1	1	Print Receipt and Journal

Model 522

LFJ	LFR	OPERATION
0	0	Print Only
0	1	After Printing Perform Line Feed on Receipt Only
1	0	After Printing Perform Line Feed on Journal Only
1	1	After Printing Perform Line Feed on Both Receipt and Journal

The binary number indicated by n_{0} through n_{3} determines the number of continuous line feeds which will be performed. After the last line feed, the contents of the column buffer is reset to 20 hexadecimal (blank). During this operation no other commands are accepted.

$\mathbf{c 1}$	$\mathbf{c o}$	OPERATION	MODEL
0	0	Performs Fast Feed Only	$512,522,542$
0	1	After Fast Feed, Perform Partial Cut	522
1	0	After Fast Feed, Perform Stamp and Full Cut	522
1	1	After Fast Feed, Perform Slip Release	542

After each character is written into the column buffer, the column printer is incremented by one. Do not exceed the column capacity defined in the printer format command. The following table defines the relationship between print data (d_{0} through d_{6}) and the character set.

				$\begin{gathered} \text { (MSB) } \\ d_{6} \end{gathered}$	0	0	1	1	1	1
				d5	1	1	0	0	1	1
				d_{4}	0	1	0	1	0	1
d3	d_{2}	d_{1}	$\begin{gathered} \text { (LSB) } \\ \mathrm{d}_{0} \end{gathered}$		2	3	4	5	6	7
0	0	0	0	0		\%	- ${ }_{\text {a }}^{0}$	${ }_{8}^{800}$	8	
0	0	0	1	1	8	嵒	¢్¢mm	\%	come	
0	0	1	0	2	88	$\begin{gathered} 0_{0}^{\infty} \\ 0^{\circ} \\ \hline 80 \end{gathered}$		\%	\%88 ${ }^{\circ}$	88\%8
0	0	1	1	3	\% \%	$\begin{aligned} & \operatorname{cog}_{0}^{\infty} 8 \\ & 0_{0}^{\circ} 8 \end{aligned}$	${ }_{8}^{\infty}{ }_{80}$	${ }_{8}^{8000}$	${ }_{\text {cosk }}^{8}$	com
0	1	0	0	4	$\begin{aligned} & \text { \%\% \% } \\ & \text { \%్kno } \end{aligned}$	\%\%\%	${ }_{8}^{\infty}{ }^{\circ} 8$	mom	-	${ }_{\text {¢ }}^{8}$ 。
0	1	0	1	5	$\begin{aligned} & \$_{\circ^{\circ}} \\ & \mathrm{o}_{\infty}^{\circ} \end{aligned}$			${ }_{80}^{88}$	mog	
0	1	1	0	6		${ }_{\text {\% }}^{\infty}$	${ }_{8}^{\infty}$	88	\%209	(0×0
0	1	1	1	7	\% ${ }_{8}^{6}{ }^{\circ}$	$\begin{gathered} \text { cogeg } \\ 8^{\circ} \end{gathered}$	\%om	\%8\%	¢	(0088
1	0	0	0	8	\% ${ }_{\text {wosf }}$		\%¢쨔	8808 888	-	\%
1	0	0	1	9		${ }_{\substack{80088 \\ 0}}^{\infty}$	\%	888	${ }^{8080}$	${ }^{8}$
1	0	1	0	A	\%\%్ళㅇํ		\% ${ }_{0}^{8}$	(0008	${ }_{0}^{\infty} \times 008$	$8_{8}^{\circ} 8$
1	0	1	1	B	\%	\&oor			\%	${ }_{\text {\% }}^{80 \infty}$
1	1	0	0	C	${ }^{98}$	\% 0^{8}	${ }_{8000}$	\% ${ }_{\text {8, }}^{8}$	-	- ${ }_{\text {con }}^{8}$
1	1	0	1	D	0000	\%	\%888	\% 8_{6}^{6}		${ }^{\circ}{ }^{\circ} 8$
1	1	1	0	E	8	$\stackrel{8}{800}$	\%\%\%	$80^{8} 0^{\circ}$	\%	\%
1	1	1	1	F	$0^{\circ}{ }^{\circ}$	${ }_{\infty}^{\infty} 0^{8}$	$8_{\infty}^{\infty} 8$	\%omif	808 ∞ 0	\%omo

Power-on Reset

Initialize the μ PD781. (Reset the Column Buffer and set the Print-Head at the left/ right side.)

Check the Bus Buffer Status.

Indicate the format of the Column Buffer. (40 columns, 18 columns $\times 1$, 18 columns $x \quad 2$.)

Check the Bus Buffer Status.

Write up to maximum number of characters into the column buffer.

Check the Bus Buffer Status.

Print the entire contents of the column buffer. Indicate "Line Feed" or "Slip Release."

DOT MATRIX PRINTER CONTROLLER

DESCRIPTION
The μ PD782 is an LSI Dot Matrix Printer Controller chip which contains all the circuitry and control functions for interfacing an 8-bit processor to the Epson Model 210, 220 and 240 Dot Matrix Printers. These printers are capable of printing up to 31 columns per row with 7×7 dot matrix. The μ PD782 is ideally suited for low-cost Electronic Cash Registers (ECR) and Point of Sale (POS) systems because it frees the processor from direct control of the printer and simplifies I/O software.
There are nine separate instructions, which the μ PD782 will execute. Each of these instructions requires a single 8 -bit byte from the processor to be executed. Upon receipt of the instruction, the μ PD782 assumes the control of the printer, increments the position of the print head, activates the print solenoids, performs line feeds in either receipt or journal mode (or both), and performs all these operations for an entire print line.
The μ PD 782 contains its own on-board character generator of 96 symbols. It contains a 31 column printer buffer and is capable of supplying status information to the host processor on both the controller itself as well as the printer. After the character buffer is loaded from the host processor the entire row is printed out with a single print command.
FEATURES • Compatible with most Microprocessors !ncluding 8080A, 8085A, Z-80 TM and others

- Capable of Interfacing to Epson Model 210, 210 S, 220 and 240 Printers
- Print Technique - Serial Dot Matrix
- Print Font - 7×7 Dot Matrix
- Column Print Capacity
- Model 210-31 Characters with 1 Dot Spacing; 26 Characters with 2 Dot Spacing
- Model 210S - 28 Characters with 1 Dot Spacing; 23 Characters with 2 Dot Spacing
- Model 220-14+14 Characters in Receipt/Journal Mode; 31 Characters in Normal Mode
- Model 240-31 Characters
- 96 Character Set (Alphanumerics Plus Symbols)
- Print Speed - Approximately 3 Lines/Sec.
- Paper Feed Receipt and Journal; Fast Feed
- Paper Release and Ink Ribbon Change-Over Outputs
- Motor Error and Write Request Interrupt
- On-Board 6 MHz Oscillator (External Crystal Required)
- Operates from a Single +5 V Power Supply (NMOS Technology)
- Available in 40 Pin Plastic Package

PIN NAMES

$\overline{\mathrm{RIN}}$	Reset In
$\mathrm{X}_{1} \times_{2}$	Crystal Inputs
$\overline{\mathrm{RESET}}$	Reset
$\mathrm{V}_{\mathrm{CC}} 1-3$	DC Power
$\mathrm{V}_{\text {SS1 }}-2$	Signal Ground
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{RD}}$	Read
$\mathrm{C} / \overline{\mathrm{D}}$	Command/Data
$\overline{\mathrm{WR}}$	Write
$\mathrm{OPEN}_{1}-2$	No Connection
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus
$\overline{\mathrm{PR}} \overline{\mathrm{P}}_{1}-\overline{\mathrm{PR}} 7$	Print Solenoids
$\overline{\mathrm{INT}}$	Interrupt
$\overline{\mathrm{STM}}$	Stamp
$\overline{\mathrm{RBN}} / \overline{\mathrm{PRS}}$	Ribbon/Paper Release
$\overline{\mathrm{PFJ}}$	Paper Feed Journal
$\overline{\mathrm{PFR}}$	Paper Feed Receipt
NE	Low Paper Detector
$\mathrm{VDJ/BOF}$	Validation J/BOF Sensor
$\mathrm{VDR} / \mathrm{BOF}$	Validation R/BOT Sensor
$\overline{\mathrm{MTD}}$	Motor Drive
$\overline{\mathrm{TIM}}$	Timing Signal

PIN			1/O	FUNCTION
NUMBER	SYMBOL	NAME		
1	$\overline{R I N}$	Reset in	1	This pin should be connected to the R Sensor from the printer so that it is activelow.
2,3	x_{1}, x_{2}	External Crystal Input	1	This is a connection to external crystal (Frequency: 6 MHz). X_{1} could also be used as input for external oscillator.
4	$\overline{\text { RESET }}$	Reset	1	The Reset signal initializes the μ PD782 When $\overline{\text { RESET }}=0$, the buffer and register contents are: Bus Buffer - (IOM-1, IOB=PSR=0). Column Buffer - All characters in this buffer become 20(16) Column Buffer Pointer - It indicates the left side of the buffer.
$\begin{aligned} & 5,26 \\ & 40 \end{aligned}$	${ }^{\text {cCl }}$-3	DC Power		These are connected to +5 V power supply.
6	$\overline{\mathrm{CS}}$	Chip Select	1	If the Chip Select is 0 when the data bus becomes active, it enables the transfer of data between the processor and the μ PD782 via the data bus. If it is 1 , the data bus goes into High-Impedance state (inactive). However, the operation of the printer is not affected when $\overline{C S}=1$.
7,20	$\mathrm{V}_{\text {SS1-2 }}$	Signal Ground		
8	$\overline{\mathrm{RD}}$	Read	1	The Read Control Signal is used to read controller status or printer status to the host processor. When $\overline{\mathrm{RD}}=0$, status information is presented.
9	C / \bar{D}	Command/ Data Select	1	The C / \bar{D} Select is used to indicate what kind of data is being input/output on the data bus by the host processor. When $C / \bar{D}=1$ in Read Operation, it is a Controller Status and in Write Operation it gives commands. When $\mathrm{C} / \overline{\mathrm{D}}=0$ in Read Operation it is a Printer Status and in Write Operation it is print data.

PIN IDENTIFICATION

 (CONT.)| PIN | | | 1/0 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | NAME | | |
| 10 | $\overline{W R}$ | Write | 1 | The Write Control Signal is used to write commands or print data to the μ PD782. When $\overline{W R}=0$, data on the data bus is written into the μ PD782. |
| 12-19 | D_{0-7} | Data Bus | 1/0 3-State | It is an 8-bit bi-directional data bus and is used to transfer the data between the host processor and the μ PD782. |
| 11,25 | OPEN_{1-2} | No Connection | | These pins must be open. Do not connect them to $+5 \mathrm{~V}, \mathrm{GND}$ or any other signals. |
| $\begin{aligned} & 21-24, \\ & 35-37 \end{aligned}$ | $\overline{\mathrm{PR}}_{1} \cdot \overline{\mathrm{PR}}_{7}$ | Print
 Solenoid | 0 | These are drive signals for the print solenoids. When these signals are 0 , the print solenoid should be activated. They are synchronized with the timing signal ($\overline{\mathrm{TIM}}$), which is issued from the printer. |
| 39 | $\overline{\text { TIM }}$ | Timing Signal | 1 | The timing signal is issued from the printer. It is used to generate and synchronize all the basic printer operations such as paper feed, paper cut, etc. |
| 27 | $\overline{\text { INT }}$ | Interrupt | 0 | There are two reasons for this signal to go low. One is when the μ PD782 is ready to receive data into the Data Buffer. It gets reset after the first byte of data is loaded. The other reason is the motor error during the printing or line feed. It will get set if the paper is jammed or if the print solenoid is kept on for more than 20 ms . It gets clear by the initialize command. |
| 28 | $\overline{\text { STM }}$ | Stamp | 0 | Stamp output for Model M-220 printer. After the stamp command is given, this signal goes low for 200 ms . |
| 29 | $\overline{\mathrm{RBN}} / \overline{\mathrm{PRS}}$ | Ribbon/ Paper Release | 0 | This is low active signal. For Model 210 and 210 it will select red ribbon. For Model 240 it will cause slip release. It is activated by print command. |
| 30 | $\overline{\text { PFJ }}$ | Paper
 Feed Journal | 0 | This is the drive signal for the journal paper feed for Model 220 and for normal paper feed for other models. It is a low active signal. |
| 31 | $\overline{\text { PFR }}$ | Paper
 Feed
 Receipt | 0 | This is the drive signal for the receipt paper feed for Model 220 and should b = left open for other models. |
| 32 | NE | Low
 Paper Detector | 1 | This signal indicates a low paper condition in Model 220 and is active high. |
| 33,34 | VDR/TOF
 VDJ/TOB | Validation Sensors | 1 | These signals indicate the position of the print head in the printer.
 For Model 220 - right and left position.
 For Model 240 - top and bottom. |
| 38 | $\overline{\text { MTD }}$ | Motor Drive | 0 | This signal activates the motor in the printer and is active low. |

Operating Temperature . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin . 0.5 to +7 Volts(1)
Note: (1) With Respect to Ground.
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS} 1-2}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage (All except XTAL 1 , XTAL 2, RESET)	$\mathrm{V}_{1 \mathrm{H} 1}$	2.0		VCC	V	
Input High Voltage (XTAL 1, XTAL 2, RESET)	$V_{1 H 2}$	3.5		V_{CC}	V	
Input Low Voltage (All except XTAL 1, XTAL 2)	VIL	-0.5		0.8	V	
Output High Voltage (D_{0-7})	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	$\mathrm{I}^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$.
Output Low Voltage $\left(D_{0-7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs except D_{0-7})	V OL2			0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Low Input Source Current (VDR/BOF, VDL/TOF, NE, TIM)	'LI]			0.4	mA	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$
Low Input Source Current ($\overline{\mathrm{RESET}}$)	'LI2			-0.2	mA	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$
Input Leakage Current (RL, RR, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}})$	IIL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current (D_{0-7}, High Impedance State)	${ }^{\prime} \mathrm{OL}$			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}+0.45 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Total Supply Current (ICC1 ${ }^{+}$ ${ }^{\prime} \mathrm{CC} 2+$ ICC3 $^{\prime}$	${ }^{\prime} \mathrm{CC}$		65	135	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

ITEM	Millimeters	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54: 0.1$	0.10 ± 0.004
D	0.5 ± 0.1	$0.019 \div 0004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
1	13.2	0.520
M	$\begin{gathered} 0.25+0.1 \\ 0.05 \end{gathered}$	$0.010+\begin{array}{r} 0.004 \\ 0.002 \end{array}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

PACKAGE OUTLINE μ PD782C
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}_{\mathrm{SS}-2}=0 \mathrm{~V}$

TIMING WAVEFORMS

TIMING WJAVEFORMS (CONT.)

LINE FEED OPERATION
$\overline{\text { TIM }}$
TIM
$\overline{R R}_{1} \sim \overline{P R}_{7}$
$\overline{\text { PFJ, }} \overline{\text { PFR }}$
$\overline{S L R}$

STAMP OPERATION

RIN

TIM
$\overline{\text { STM }}$

MOTOR ENABLE

TIM
$\overline{M T D}$

All transfer of information between the μ PD782 and the host processor is via the data bus, and the four (4) control signals, $\bar{C} \bar{S}, C / \bar{D}, \overline{W R}$ and $\overline{R D}$. The four control signals determine what iype of data transfer will occur on the data bus.

$\overline{\mathrm{CS}}$	$\mathrm{C} / \overline{\mathrm{D}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	DATA BUS	OPERATION
0	0	0	0	-	Inhibited
0	0	1	0	Print Data	Write Data into Column Buffer
0	0	0	1	Printer Status	Read Printer Status
0	0	1	1	-	No Operation
0	1	0	0	-	Inhibited
0	1	1	0	Command	Write Command for Printer
0	1	0	1	Controller Status	Read Controller Status
0	1	1	1	-	No Operation
1	X	X	X	-	Disable μ PD782

Before issuing any new command or loadıng new data into the column buffer, the host processo, should check the controller status bits IOM, IOB and PSR. No new operation should be performed if IOB bit indicates that the μ PD782 is busy

CONTROLLER STATUS REGISTER

x	x	x	x	x	$10 M$	$10 B$	$P S R$

PRINTER STATUS REGISTER

S	T	V	X	X	X	X	M

COMMAND	DATA BUS							
	DB7	DB_{6}	DB5	DB4	DB_{3}	DB2	DB1	DB_{0}
Initialize	0	0	0	1	0	0	0	0
Request Printer Status	0	0	0	0	X	X	X	\times
Printer Format	0	1	a	b_{4}	b3	b_{2}	b1	bo
Increment Column Printer	0	0	1	n4	n3	n2	n 1	no
Print	1	0	LFJ	LFR	\times	R	ST	SL
Fast Feed	1	1	k1	ko	m3	m2	m1	mo
Write Print Data	X	d_{6}	d5	d_{4}	d3	d_{2}	d_{1}	do

Note: $\mathrm{X}=$ Don't Care

IOM - Input/Output Buffer Mode
The IOM flag indicates the direction of data on the data bus. If IOM=1 data is from processor to μ PD782 (write into μ PD782). If IOM $=0$ data is from μ PD782 to processor (read from μ PD782). Immediately after reading printer status, IOM goes fıom 0 to 1.

IOB - Input/Output Buffer Busy
The IOB flag indicates when the I/O buffer is busy and an operation in in process. If $I O B=1 \mathrm{I} / \mathrm{O}$ buffer is busy and no new command should be performed. If $I O B=0 \mu P D 782$ is ready to accept new command.

PSR - Printer Status Ready
The PSR flag indicates that the printer status may be read by the processor. If PSR $=1$ pinter status is ready to be read by processor. If PSR $=0$ printer status is not ready.

PRINTER STATUS REGISTER

S	T	V	M	OPERATION
1	X	X	X	Status of the input pin 34
X	1	X	X	Status of the input pin 33
X	X	1	X	Status of the input pin 32
X	X	X	1	Motor Error $-\mu$ PD782 will suspend output to $\overline{\text { PR }} 1 \cdot \overline{\mathrm{PR}} 7$ solenoids and turn the motor off. Cleared by the initialize command.

INITIALIZE COMMAND

This command is the same as RESET signal. It clears the Data Buffer (set to blank 20H), set the Data Buffer Pointer to the left side. It also resets the motor error flag, and clears interrupt.

REQUEST PRINTER STATUS COMMAND

Abstract

This command will latch the status of the input pins 32,33 and 34 in the Printer Status Register. It must be followed by a Printer Status Read Operation. No other command will be accepted until the printer status is read.

PRINTER FORMAT COMMAND

This command sets the controller for the appropriate printer model and controls the format and timing of printing and line feed for different models of Epson printer. It should be issued after initialize command but before any other command.
$a=0-1$ dot spacing between characters
$a=1-2$ dot spacing between characters - only for Model 210 and 210 S

b_{4}	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$	MODEL PRINTER
1	1	1	1	0	M-210
1	1	1	0	1	M-210S
0	1	0	1	1	M-220 -- Journal/Receipt mode (14 + 14 characters)
1	1	0	1	1	M-220 - One line print (31 characters)
1	0	1	1	1	$M-240$

INCREMENT DATA BUFFER POINTER COMMAND

The Data Buffer Pointer is incremented to the right by the binary value indicated by no through n_{4}. In case of Model 220 in journal/receıpt mode the pointer can only move with in the receipt or journal side depending upon which side it is presently located.

PRINT COMMAND

The entire Data Buffer is printed and after the print operation is completed the contents of the buffer are reset to 20 H (blank). During the execution of the print command no other commands are allowed.

Model 220

LFJ	LFR	OPERATION
0	0	After printing both receipt or journal line feed
0	1	After print performs line feed on receipt side only
1	0	After print performs line feed on journal side only
1	1	Print only
ST	1	No stamp
	0	The receipt side performs line feed 11 times after printing a line and the stamp solenoid is activated

Model 210, 210S

LFJ	R	OPERATION
0	X	After printing performs line feed
1	X	Print only
X	0	Print ribbon set to red
X	1	Print ribbon set to black

Model 240

LFJ	SL	OPERATION
0	X	After printing performs line feed
1	X	Print only
X	0	After print performs slip release (only 29 char- acters allowed in data buffer)
X	1	No slip release

FAST FEED COMMAND

The binary number indicated by m_{3} through m_{0} determines the number of continuous line feeds which is performed.

For Model 220

k1	k $_{0}$	
0	0	OPERATION
0	1	Receipt and Journal line feed
1	0	Receipt line feed only

After each character is written into the column buffer, the column printer is incremented by one. Do not exceed the column capacity defined in the printer format command. The following table defines the relationship between print data (d_{0} through d_{6}) and the character set.

				$\begin{gathered} \text { (MSB) } \\ d_{6} \end{gathered}$	0	0	1	1	1	1
				d5	1	1	0	0	1	1
				d4	0	1	0	1	0	1
d_{3}	d_{2}	d_{1}	d_{0}		2	3	4	5	6	7
0	0	0	0	0		\%-mion	-	${ }_{8}^{\infty}$	\%	¢
0	0	0	1	1	8	\%	${ }_{\text {ctamg }}{ }^{\infty}$	\%osis		\%exo
0	0	1	0	2	88			\%osmo	\%\%ำ	8888
0	0	1	1	3	\%\% \%		$\underbrace{\infty}_{8 \infty}$		${ }_{\text {a }}^{\text {a }}$	combiom
0	1	0	0	4	\%\%	\%\%\%		\%	\%	\% ${ }_{\text {\% }}$
0	1	0	1	5				8_{808}^{88}	con	\% ${ }_{\text {\% }}^{8}$
0	1	1	0	6		-	${ }_{\text {\% }}^{\infty}$	$8{ }^{8}$	\% ${ }^{8}$	- ${ }_{0}^{\infty}$
0	1	1	1	7	\% ${ }_{8}^{6}{ }^{\text {a }}$	$\begin{gathered} \text { cox } \\ 8_{8}^{88} \end{gathered}$		\%888	Mikio	\%os8
1	0	0	0	8	¢ ${ }_{\text {cos }}$		\% \%	8808 $80^{8} 8$		-
1	0	0	1	9	$\begin{gathered} 00000 \\ 00000 \end{gathered}$		\%	88	${ }_{\substack{800 \\ 88}}$	${ }^{8} 8$
1	0	1	0	A	\%\%\%ㅇํㅇ	como	\% ${ }_{\text {\% }}^{0}$	coxos 8000 80,	${ }_{0}^{00008}$	$8{ }^{\circ} 8$
1	0	1	1	B	¢	800\%	\% ${ }_{8}^{\circ} 0^{\circ}$		${ }_{\text {888 }}^{8}$	${ }_{8}^{8000}$
1	1	0	0	C	${ }^{\circ} 8$	$\bigcirc^{\circ}{ }^{8}$	${ }_{80}^{8}$	8		mox ${ }^{\infty}$
1	1	0	1	D	0000		\% 8 8\%	888		${ }^{\circ}{ }_{8} 8$
1	1	1	0	E	88		\%\%\%	¢ $0^{\circ} 0^{\circ}$	\% ${ }_{8}^{2080}$	min 888
1	1	1	1	F	$0^{0^{\circ}}$	${ }^{\infty}{ }_{00}{ }^{8}$	$8_{808}^{\infty 08}$	${ }_{\text {cosem }}$	808 mos	\%os

Power-on Reset

Initialize the μ PD782. (Reset the Column Buffer and set the Print-Head at the left side.)

Check the Bus Buffer Status.

Indicate the format of the Column Buffer. Set the controller mode for the printer model.

Check the Bus Buffer Status.

Write up to maximum number of characters into the column buffer.

Check the Bus Buffer Status.

Print the entire contents of the column buffer. Indicate "Line Feed" or "Slip Release."

NOTES

PROGRAMMABLE CRT CONTROLLER

DESCRIPTION
The μ PD3301 is an LSI chip designed for use in CRT controllers. It contains a synchronous signal generator, row buffer, and attribute memory. This CRT controller is capable of handling not only black and white CRT, but also color CRT. The μ PD3301 provides control signals which simplify the design of the external circuitry needed in the systems. Thus, this device is a versatile controller that relieves the main CPU (and users) of many of the control burdens associated with implementing a CRT interface.
There are 8 separate commands which the μ PD3301 will execute. Some of these commands require multiple bytes to fully specify the operation which the processor wishes the CRT controller to perform. The following commands are available:

- RESET
- STOP DISPLAY
- START DISPLAY
- SET INTERRUPT MASK
- READ LIGHT PEN
- loAd Cursor position
- RESET INTERRUPT
- RESET COUNTERS
- Programmable Screen and Character Format Capabilities;
-. Characters per Row (up to 80 characters/row)
- Lines per Character (up to 32 lines/character)
- Rows per Frame (up to 64 rows/frame)
- Horizontal Retrace Time
- Vertical Retrace Time
- Blinking Time
- DMA Control Mode
- Cursor Control Mode
- Three Independent Visual Field Attribute Modes such as; - Transparent Attribute Color Mode
- Transparent Attribute Black and White Mode
- Non-Transparent Attribute Black and White Mode
- 12 Independent Field Attribute Functions such as;
- Vertical Line
- Blue
- Blinking
- Over-Line - Red
- Reverse Video
- Under-Line
- General Purpose
- Secret
- High-Light
- Green
- Light Pen Detection
- Maximum 256 Different Characters Control Capability
- Fully Bus Compatible with 8080
- 3 MHz Single Clock Input
- Single Power Supply, +5V N-MOS Technology
- Available in 40 pin Plastic and Ceramic Dual-In-Line Packages

PIN NAMES
PIN CONFIGURATION

VRTC 1	40	$V_{C C}(+5 \mathrm{~V})$	VRTC	Vertical Retrace
RVV 2	39	$\square \mathrm{SL}_{0}$	RVV	Reverse Video
CSR 5	38	$\square L C_{0}$	CSR	Cursor
L PEN 4	37	$\square L_{1}$	LPEN	Light Pen
INT 5	36	$\square L_{2}$	INT	Interrupt
DRQ 6	35	$\square^{-1} C_{3}$	DRQ	DMA Request
DACK \square	34	$\square \mathrm{VSP}$	DACK	DMA Acknowledge
$A_{0}-8$	33	SL_{12}	A0	Address Bus 0
RD 9	$\mu \mathrm{PD} \quad 32$	$\square_{\text {GPA }}$	$\overline{\mathrm{RD}}$	Read
WR $\square 10$	330131	HLGT	$\overline{W R}$	Write
CS 11	30	$\square \mathrm{CC}_{7}$	$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{DB}_{0}-12$	29	$\square \mathrm{CC}_{6}$	$\mathrm{DB}_{0.7}$	Data Bus 0 to 7
$\mathrm{DB}_{1} \square_{13}$	28	arC_{5}	HRTC	Horizontal Retrace
$\mathrm{DB}_{2} \square 14$	27	$\square \mathrm{CC}_{4}$	C CLK	Character Clock
$\mathrm{DB}_{3} \square 15$	26	$\square \mathrm{CC}_{3}$	CC_{0-7}	Character Codes 0 to 7
$\mathrm{DB}_{4} \square 16$	25	$\square \mathrm{CC}_{2}$	HLGT	High-light
$\mathrm{DB}_{5} \square 17$	24	$\square \mathrm{CC}_{1}$	GPA	General Purpose Attribute
$\mathrm{DB}_{6} \square 18$	23	$\square \mathrm{CCO}_{0}$	SL12	Slit Line 12
$\mathrm{DB}_{7} \square 19$	22	$\square \mathrm{CCLK}$	VSP	Video Suppression
GND 20	21	HRTC	LC_{0-3}	Line Counter 0 to 3
			SL_{0}	Slit Line 0

Character Counter ,

Counts the characters in a row, up to the number of the characters defined in Characters/Row.

Row Buffer

Consists of a dual RAM buffer. Each buffer can store up to 80 characters. During a DMA operation, the characters are written into the Row Buffer. One of the buffers is used for display. Each character in the buffer is read with Character Clock (C CLK), and the data appears in CC_{0-7}. At the same time, the data on the next row is written into another buffer by DMA control.

Buffer Input/Output Controlier

- Writes the characters into the Row Buffer, up to the number defined by Characters/Row.
- Outputs the data from the Row Buffer to CC_{0-7}.
- Writes the attributes and special control character codes into the FIFO, up to the number defined by Attributes/Row.
- Reads the attribute codes from the FIFO and transfers them to the video circuit.
- In case of Non-Transparent Attribute Mode, it distinguishes an ordinary character code from an attribute code among the character data read from the Row Buffer.

FIFO (First Input, First Output)

Consists of a dual RAM buffer. Each buffer can store up to 20 characters. By DMA operation, attribute codes and special control characters are written into the FIFO. One of the buffers is used for display. Whenever the read flag bit for FIFO is detected, an attribute code is read and transferred to the video circuit. And at the same time, the attribute codes in the next row are written into the rest of the buffers (another buffer) by DMA operation.

Counts the events of Rasters/Line, up to the number indicated by Lines/Character.

Raster Timing and Video Control

- Outputs the HRTC based on the Character Counter during the time indicated by Horizontal Retrace Time.
- Outputs the VRTC based on Row Counter which counts up the contents, row by row, during the time indicated by Vertical Retrace Time.
- Outputs HLGT, RVV, VSP, SLo, SL12. GPA based on attribute codes transferred from the Buffer Output Controller.
- Outputs the CSR based on the Blinking Time etc. at the position indicated by Cursor Address.

Light Pen Register

Memorizes a row address and column address when the L PEN signal is input. By using READ LIGHT PEN instruction, the CPU can read the contents.

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . -0.5 to +7 Volts
All Input Voltages . 0.5 to +7 Volts

Supply Voltage VCC . - 0.5 to +7 Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.2		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		V_{CC}	V	$\mathrm{DB}_{0-7}: \mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A},$ All Others: $-80 \mu \mathrm{~A}$
Low Level Input Leakage	$1 / 12$			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=a V$
High Level Input Leakage	1 IH			+10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$
Low Level Output Leakage	IOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
High Level Output Leakage	${ }^{\mathrm{I}} \mathrm{OH}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Power Supply Current	${ }^{1} \mathrm{CC}$		90		mA	

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MAX			
Input Capacitance	CIN		10	pF	$\mathrm{fc}=1 \mathrm{MHz}$, All Pins Except Pin Under Test Tied to AC Ground
Output Capacitance	COUT		20	pF	

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS		UNIT	TEST CONDITIONS	
		MIN	MAX				
Clock Cycle Time	μ PD3301-1		${ }^{t} \mathrm{C} Y$	0.5	10	$\mu \mathrm{s}$	
	μ PD3301-2	${ }^{t} \mathrm{C} Y$	0.38	10	$\mu \mathrm{s}$		
Clock High Level		${ }^{\text {t }} \mathrm{CH}$	150		ns		
Clock Low Level		${ }^{t} \mathrm{CL}$	150	1000	ns		
Clock Rise Time		${ }^{t} \mathrm{CR}$	5	30	ns		
Clock Fall Time		${ }^{t} \mathrm{CL}$	5	30	ns		
Output Delay from C CLK \uparrow		${ }^{\text {t }} \mathrm{CO} 1$	0	150	ns	$\begin{aligned} & 1 \mathrm{TTL}+15 \mathrm{pF}: \\ & \text { HRTC, CC } 0-7 \end{aligned}$	
Output Delay from C CLK \uparrow	μ PD3301-1	${ }^{\mathrm{t}} \mathrm{CO} 2$		400	ns	$1 \mathrm{TTL}+15 \mathrm{pF}$: Except HRTC, CC0.7	
	μ PD3301-2	${ }^{t} \mathrm{CO} 2$		300	ns		
Command Cycle Time		${ }^{t} \mathrm{E}$	${ }^{2 \mathrm{t}} \mathrm{CY}+200$		ns	${ }^{\mathrm{t}} \mathrm{C} Y \geqslant 400 \mu \mathrm{~s}$	
		${ }^{\text {t }}$ E	1		$\mu \mathrm{s}$	${ }^{\text {t }} \mathrm{C} Y<400 \mu \mathrm{~s}$	
$A_{0}, \overline{\mathrm{CS}}$ Set Up Time to $\overline{W R}$		${ }^{\text {t }}$ AW	0		ns		
$A_{0}, \overline{\mathrm{CS}}$ Hold Time to $\overline{W R}$		tWA	0		ns		
WR Pulse Width		twW	200		ns		
Data Set Up Time to $\overline{W R}$		${ }^{\text {t }}$ DW	150		ns		
Data Hold Time to WR		twD	30		ns		
$\overline{\text { DACK } \downarrow \text { Set Up Time to } \overline{W R}}$		${ }^{\text {t }}$ KW	0		ns		
$\overline{\text { DACK } \uparrow \text { Hold Time to } \overline{W R}}$		${ }^{\text {t W }}$ K	0		ns		
DRQ Delay from $\overline{\text { DACK }} \downarrow$		${ }^{t} \mathrm{KQ}$	0	250	ns	$1 \mathrm{TTL}+50 \mathrm{pF}$	
INT Delay from WR \uparrow		${ }^{t}$ WI	${ }^{t} \mathrm{CY}+20$	${ }^{2 t} \mathrm{C}_{\text {c }}+300$	ns	$1 \mathrm{TTL}+50 \mathrm{pF}$	
INT Delay from C CLK \uparrow		${ }^{t} \mathrm{Cl}$		300	ns	$1 \mathrm{TTL}+50 \mathrm{pf}$	
$A_{0}, \overline{C S}$ Set Up Time to $\overline{R D}$		${ }^{\text {t }} \mathrm{AR}$	0		ns		
$A_{0}, \overline{C S}$ Hold Time to $\overline{R D}$		${ }^{t} \mathrm{RA}$	0		ns		
$\overline{\mathrm{RD}}$ Pulse Width		${ }^{t} R \mathrm{R}$	300		ns		
Data Access Time from $\overline{\mathrm{RD}} \downarrow$		${ }^{t} \mathrm{RD}$	0	250	ns	$C_{L}=100 \mathrm{pF}$	
Data Float Delay from $\overline{\mathrm{RD}} \uparrow$		${ }^{t} \mathrm{DR}$		150	ns	$C_{L}=100 \mathrm{pF}$	
		20		ns	$C_{L}=15 \mathrm{pF}$		

CLOCK AND OUTPUT DELAY

TIMING WAVEFORMS

TIMING WAVEFORMS (CONT.)

DMA, INTERRUPT AND WRITE OPERATION

The data is transferred from the external memory which contains the information about characters and attributes to the Row Buffer under the control of μ PD8257 DMA Controller. The data read from the Row Buffer are Video Control Outputs and ROM Address Signal Outputs toward External Character Generator. The μ PD3301 also outputs horizontal and vertical retrace signals.

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.028 MAX.
B	1.62 MAX.	0.064 MAX.
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.2 MIN.	0.047 MIN .
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.019 MIN .
I	5.22 MAX.	0.206 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24 TYP.	0.600 TYP.
L	13.2 TYP.	0.520 TYP.
M	$0.25 \begin{aligned} & +0.1 \\ & -0.05 \end{aligned}$	0.010 ${ }^{+0.004} \begin{array}{r}\text {-0.002 }\end{array}$

μ PD3301D

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

NOTES

8-BIT SERIAL OUTPUT A/D CONVERTER

DESCRIPTION	The μ PD7001 is a high performance, low power 8 -bit CMOS A/D converter which contains a 4 channel analog multiplexer and a digital interface circuit for serial data I/O. The A/D converter uses a successive approximation as a conversion technique.
	A/D conversion system can be easily designed with the μ PD 7001 including all circuits for A/D convertion. The μ PD 7001 can be directly connected to 8 -bit or 4-bit microprocessors.
FEATURES	- Single chip A/D Converter
	- Resolution: 8 Bit
	- A Channel Analog Multiplexer
	- Serial Data Transmission
- High Input Impedance: $1,000 \mathrm{M} \Omega$	
- Single +5 V Power Supply	
- Low Power Operation	

PIN CONFIGURATION

(TOP VIEW)

PIN NAMES	
EOC ${ }^{*}$	End of Conversion
DL	Analog Channel Data Load
SI	Serial Data Input
$\overline{\text { SCK }}$	Serial Data Clock
SO*	Serial Data Output
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{CL}_{0}, \mathrm{CL}_{1}$	Successive Approximation Clock
$\mathrm{V}_{\text {SS }}$	Digital Ground
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	Analog Inputs
AG	Analog Ground
$V_{\text {REF }}$	Reference Voltage Input
$V_{\text {DD }}$	$+5 \mathrm{~V}$

*Open Drain

μ PD7001

The 4 channel analog inputs are selected by the 2 -bit signal which is applied to a serial input and latched with a DL signal. The converted 8 -bit digital signals are output from an open collector serial output (SO). The serial digital signals are synchronized with an external clock signal applied to a $\overline{S C K}$ terminal. The internal sequence controller controls A / D conversion by initiating a conversion cycle at a rise of the Chip Select (CS). At the final step of each A/D conversion cycle the converted data is transmitted to an 8 -bit shift register and immediately the next conversion cycle is started. This results in storage of the newest data in a shift register. At the final step of the first A / D conversion cycle, an end of conversion signal ($\overline{\mathrm{EOC}}$) is output indicating that the converted data is stored in a shift register. At a low level (active) of the chip select, the sequence controller and $\overline{E O C}$ are reset and the A/D conversion is stopped.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

Operating Temperature	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Analog Input Voltage	-0.3 to $V_{\text {DD }}+0.3$ Volts
Reference Input Voltage	-0.3 to $V_{D D}+0.3$ Volts
Digital Input Voltage	-0.3 to +12 Volts
Max. Pull-up Voltage	. +12 Volts
Supply Voltages	-0.3 to +7 Volts
Power Dissipation	200 mW

COMMENT: Stres above lise damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*
$T_{a}=25 \pm 2^{\circ} \mathrm{C} ; \mathrm{f}^{\mathrm{f}} \mathrm{CK}=400 \mathrm{kHz} ; V_{D D}=+5 \mathrm{~V}$; (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
EOC Hold Time	tHECS	0			$\mu \mathrm{s}$	$\overline{E O C}$ to $\overline{C S}$
CS Setup Time	${ }^{\text {t }}$ SCSK	12.5			$\mu \mathrm{s}$	$\overline{\text { CS }}$ to $\overline{\text { SCK }}$, (1)
Address Data Setup Time	tsik	150			ns	
Address Data Hold Time	${ }_{\text {thKI }}$	100			ns	
High Level Serial Clock Pulse Width	tWHK	400			ns	
Low Level Serial Clock Pulse Width	tWLK	400			ns	
Data Latch Hold Time	${ }^{\text {t HKDL }}$	200			ns	$\overline{\text { SCK }}$ to DL
Data Latch Pulse Width	tWHDL	200			ns	
Serial Data Delay Time	${ }^{\text {t }}$ OKO			500	ns	$\begin{aligned} & \overline{\mathrm{SCK}} \text { to } \mathrm{SO}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K},(2) \\ & \mathrm{CL}=30 \mathrm{pF} \end{aligned}$
Delay Time to Floating SO	${ }^{\text {t }}$ FCSO			250	ns	CS to High Impedance SO
CS Hold Time	${ }^{\text {t }} \mathrm{HKCS}$	200			ns	

Notes: (1) At a low level of $\overline{C S}$ the data is exchanged with external digital circuit and at a high level of $\overline{\mathrm{CS}}$ the μ PD7001 performs A/D conversion and does not accept any external digital signal. However, 5 pulses of internal clock are needed before digital data output and then the μ PD 7001 remains at the previous state of high level $\overline{\mathrm{CS}}$.
The rating corresponds to the 5 pulses of clock signial. ${ }^{\mathrm{t}} \mathrm{SCSK}(\mathrm{Min})=.5 / \mathrm{f} \mathrm{CK}$
(2) The serial data delay time depends on load capacitance and pull-up resistance.

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=25 \pm 2^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{CK}}=400 \mathrm{kHz}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Resolution			8		Bit	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Non Linearity				0.8	\%FSR	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{R E F}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Full-Scale Error				2	LSB	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Full-Scale Error Temp. Coefficient			30		ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Zero Error				2	LSB	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\mathrm{REF}}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Zero Error Temp. Coefficient			30		ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Total Unadjusted Error 1	T.U.E. 1		,	2	LSB	$\begin{aligned} & V_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Total Unadjusted Error 2	T.U.E. 2			2	LSB	$\begin{aligned} & V_{D D}=4.5 \text { to } 5.5 \mathrm{~V} \\ & V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$
Analog Input Voltage	V_{1}	0		$V_{\text {REF }}$	V	(1)
Analog Input Resistance	R_{1}		1000		$\mathrm{M} \Omega$	$V_{1}=0$ to $V_{D D}$
Conversion Time	${ }^{t}$ CONV		140		$\mu \mathrm{s}$	(2)
Clock Frequency Range	${ }^{\text {f }}$ CK	0.01	0.4	0.5	MHz	
Clock Frequency Distribution	${ }^{\triangle f} \mathrm{CK}$		± 5	± 20	\%	$\begin{aligned} & \mathrm{R}=27 \mathrm{~K} \Omega, \mathrm{C}=47 \mathrm{pF} \\ & (\mathrm{f} \mathrm{CK}=0.4 \mathrm{MHz}) \end{aligned}$
Serial Clock Frequency	${ }^{\text {f SCK }}$			1	MHz	(3)
High Level Voltage	$\mathrm{V}_{\text {IH }}$	3.6			V	
Low Level Voltage	$\mathrm{V}_{\text {IL }}$			1.4	V	
Digital Input Leakage Current	II		1.0	10	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to +12 V
Low Level Output Voltage	V_{OL}			0.4	V	${ }^{1} \mathrm{OL}=1.7 \mathrm{~mA}$
Output Leakage Current	'L		1.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}$
Power Dissipation	P_{d}		5	15	mW	

Notes: (1) All digital outputs are put at a high level when $V_{1}>V_{\text {REF }}$.
(2) The A / D conversion is started with $C S$ going to a high level and at the final step of the first A / D conversion the EOC is at a low.
The conversion time is:
tCONV $=14 \times 4 \times 1 /$ C $C K$
(3) For fSCK $>500 \mathrm{kHz}$, the load capacitor (stray capacitance included) and the pull-up resistor which are connected to serial output are required to be not more than 30 pF and $4 \mathrm{~K} \Omega$ respectively.

Notes: (1) The address set can be performed simultaneously with the digital data outputting.
(2) Analog Multiplexer Channel Selections:

Analog Input Address	$\mathrm{D}_{\mathbf{0}}$	$\mathrm{D}_{\mathbf{1}}$
$\mathrm{A}_{\mathbf{0}}$	L	L
$\mathrm{A}_{\mathbf{1}}$	H	L
$\mathrm{A}_{\mathbf{2}}$	L	H
A_{3}	H	H

(3) Rise and fall time of the above waveforms should not be more than 50 ns .

PACKAGE OUTLINE μ PD7001C

(PLASTIC)
ITEM MILLIMETERS INCHES A 19.4 MAX. 0.76 MAX. B 0.81 0.03 C 2.54 0.10 D 0.5 0.02 E 17.78 0.70 F 1.3 0.051 G 2.54 MIN. 0.10 MIN. H 0.5 MIN. 0.02 MIN. I 4.05 MAX. 0.16 MAX. J 4.55 MAX. 0.18 MAX. K 7.62 0.30 L 6.4 0.25 M 0.25 ${ }^{\text {+ }} \mathbf{- 0 . 1 0}$

12-BIT BINARY A/D CONVERTER

DESCRIPTION The μ PD7002 is a high performance, low power, monolithic CMOS A/D converter designed for microprocessor applications. The analog input voltage is applied to one of the four analog inputs. By loading the input register with the multiplexer channel and the desired resolution (8 or 12 bits) the integrating A / D conversion sequence is started. At the end of conversion $\overline{\mathrm{EOC}}$ signal goes low and if connected to the interrupt line of microprocessor it will cause an interrupt. At this point the digital data can be read in two bytes from the output registers. The μ PD7002 also features a status register that can be read at any time.

FEATURES - Single Chip CMOS LSI

- Resolution: 8 or 12 Bits
- 4 Channel Analog Multiplexer
- Auto-Zeroscale and Auto-Fullscale Corrections without any External Components
- High Input Impedance: $1000 \mathrm{M} \Omega$
- Readout of Internal Status Register Through Data Bus
- Single +5 V Power Supply
- Interfaces to Most 8-Bit Microprocessors
- Conversion Speed: 5 ms
- Power Consumption: 20 mW
- Available in a 28 Pin Plastic Package

$\mathrm{T}_{\mathrm{a}}=25 \pm 2{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+2.50 \mathrm{~V}, \mathrm{f}^{\mathrm{CK}}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Resolution			12		Bits	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & V_{R E F}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$
Non Linearity			0.05	0.08	\%FSR	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$
Fullscale Error			0.05	0.08	\%FSR	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$
Zeroscale Error			0.05	0.08	\%FSR	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \\ & \hline \end{aligned}$
Fullscale Temperature Coefficient			10		PPM $/{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$
Zeroscale Temperature Coefficient			10		PPM $/{ }^{\circ} \mathrm{C}$	$V_{D D}=5 \mathrm{~V}$
Analog Input Voltage Range	$V_{1 A}$	0		$\mathrm{V}_{\text {REF }}$	V	
Analog Input Resistance	$\mathrm{R}_{1 /}$		1000		$\mathrm{M} \Omega$	$\mathrm{V}_{\text {IA }}=\mathrm{V}_{\text {SS }}$ to $V_{\text {DD }}$
Total Unadjusted Error 1	T.U.E. 1		0.05	0.08	\%FSR	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.25 \text { to } 2.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$
Total Unadjusted Error 2	T.U.E. 2		0.05	0.08	\%FSR	$\begin{aligned} & V_{\text {REF }}=2.5 \mathrm{~V}, \\ & V_{D D}=4.75 \text { to } 5.25 \mathrm{~V} \end{aligned}$
Clock Input Current	${ }^{1} \times 1$		5	50	$\mu \mathrm{A}$	
Clock Input High Level	$\mathrm{V}_{\text {XIH }}$	$V_{\text {DD }}{ }^{-1.4}$			V	
Clock Input Low Level	$V_{\text {XIL }}$			$\mathrm{V}_{\text {SS }}+1.4$	V	
High Level Input Voltage	$\mathrm{V}_{\text {IH }}$	2.2			V	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
High Level Output Voltage	V_{OH}	3.5			V	$\begin{aligned} & I_{0}=-1.6 \mathrm{~mA} \\ & T_{a}=-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	$\begin{aligned} & T_{0}=+16 \mathrm{~mA} \\ & T_{\mathrm{a}}=-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Digital Input Leakage Current	$1 /$		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$
High-Z Output Leakage Current	'Leak		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$
Power Dissipation	Pd		15	25	mW	${ }^{\mathrm{f}} \mathrm{CK} \leqslant 1 \mathrm{MHz}$

ABSOLUTE MAXIMUM
 RATINGS*

Operating Temperature
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature
$65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Input Voltages . 0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ Volts
Power Supply . 0.3 to +7 Volts
Power Dissipation . 300 mW
Analog GND Voltage
$\mathrm{V}_{\mathrm{SS}} \pm 0.3$ Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
AC CHARACTERISTICS
$T_{a}=25^{\circ} \pm 2^{\circ} \mathrm{C} ; V_{D D}=+5 \pm 0.25 \mathrm{~V} ; V_{\text {REF }}=2.5 \mathrm{~V} ; \mathrm{f} \mathrm{CK}=1 \mathrm{MHz} ; \mathrm{C}_{\text {INT }}=0.033 \mu \mathrm{~F}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Conversion Speed (12 bit)	${ }^{\text {t COONV }}$	8.5	10	15	ms	${ }^{\mathrm{f}} \mathrm{CK}=1 \mathrm{MHz}$
Conversion Speed (8 bit)	${ }^{\text {t }}$ CONV	2.4	4	5	ms	${ }^{\mathrm{f}} \mathrm{CK}=1 \mathrm{MHz}$
Clock Frequency Range	${ }^{\text {f }} \mathrm{CK}$	0.1	1	3	MHz	
Integrating Capacitor Value	$\mathrm{C}_{\text {INT }}{ }^{*}$	0.029			$\mu \mathrm{F}$	$\begin{aligned} & \mathrm{V}_{\text {REF }}=2.50 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz} \end{aligned}$
Address Setup Time $\overline{C S}, A_{0}, A_{1}$, to $\overline{W R}$	${ }^{\text {t }}$ AW	50			ns	
Address Setup Time $\overline{C S}, A_{0}, A_{1}$, to $\overline{R D}$	${ }^{t}$ AR	50			ns	
Address Hold Time $\overline{W R}$ to CS, A_{0}, A_{1}	tWA	50			ns	
Address Hold Time $\overline{R D}$ to CS, A_{0}, A_{1}	${ }^{t} \mathrm{RA}$	50			ns	
Low Level $\overline{W R}$ Pulse Width	${ }^{\text {t W W }}$	400			ns	
Low Level $\overline{R D}$ Pulse Width	${ }^{\text {t R R }}$	400			ns	
Data Setup Time Input Data to $\overline{W R}$	tow	300			ns	
Data Hold Time $\overline{W R}$ to Input Data	two	50			ns	
Output Delay Time $\overline{R D}$ to Output Data	${ }^{t} \mathrm{RD}$			300	ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
Delay Time to High Z Output $\overline{R D}$ to Floating Output	${ }^{\text {t }} \mathrm{DF}$			150	ns	

${ }^{*} \mathrm{C}_{1 \mathrm{NT}}{ }^{(\mu \mathrm{F})(\mathrm{Min})=0.029 / \mathrm{f}_{\mathrm{CK}}}{ }^{(\mathrm{MHz})}$
TIMING WAVEFORMS

CONTROL TERMINALS					MODE	INTERNAL FUNCTION	DATA INPUT-OUTPUT TERMINALS
$\overline{\text { CS }}$	$\overline{\mathrm{RD}}$	$\overline{\text { WR }}$	A_{1}	A_{0}			
H	\times	x	\times	\times	Not selected		High impedance
L	H	H	x	x	Not selected	-	
L	H	L	L	L	Write mode	Data latch A/D start	Input status, $\mathrm{D}_{1}, \mathrm{D}_{0}=\mathrm{MPX}$ address $D_{3}=8$ bit/12 bit conversion designation.(1) $D_{2}=$ Flag Input
L	H	L	L	H	Not selected	-	High impedance
L	H	L	H	L	Not selected	-	
L	H	L	H	H	Test mode	Test status	Input status (2)
L	L	H	L	L	Read mode	Internal status	$\begin{aligned} & D_{7}=\overline{E O C}, D_{6}=\overline{B U S Y}, D_{5}=M S B, \\ & D_{4}=2 \text { nd } \cdot M S B, D_{3}=8 / 12, \\ & D_{2}=\text { Flag Output } D_{1}=M P X, \\ & D_{0}=M P X \end{aligned}$
L	L	H	L	H	Read mode	High data byte	$D_{7}-D_{0}=$ MSB -8th bit
L	L	H	H	L	Read mode	Low data byte	$D_{7}-D_{4}=9$ th -12 th bit, $D_{3}-D_{0}=L$
L	L	H	H	H	Read mode	Low data byte	

Notes: (1) Designation of number of conversion bits: 8 bit $=\mathrm{L} ; 12$ bit $=\mathrm{H}$
(2) Test Mode: Used for inspecting the device. The data input-output terminals assume an input state and are connected to the A/D counter. Therefore, the A/D conversion data read out after this is meaningless.

CONTROL TERMINAL FUNCTIONS

PACKAGE OUTLINE μ PD7002C

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

MULTI-PROTOCOL SERIAL CONTROLLER

The μ PD7201 is a dual-channel multi-function peripheral controller designed to satisfy a wide variety of serial data communication requirements in microcomputer systems. Its basic function is a serial-to-parallel, parallel-to-serial converter/controller and within that role it is configurable by systems software so its "personality" can be optimized for a given serial data communications application.
The μ PD7201 is capable of handling asynchronous and synchronous byte-oriented protocols such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device can also be used to support virtually any other serial protocol for applications other than data communications.
The μ PD 7201 can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for general-purpose I/O.
FEATURES

- Two Fully Independent Duplex Serial Channels
- Four Independent DMA Channels for Send/Received Data for Both Serial Inputs/Outputs
- Programmable Interrupt Vectors and Interrupt Priorities
- Modem Controls Signals
- Variable, Software Programmable Data Rate, Up to 880 K Baud at 3 MHz Clock
- Double Buffered Transmitter Data and Quadruply Buffered Received Data
- Programmable CRC Algorithm
- Selection of Interrupt, DMA or Polling Mode of Operation
- Asynchronous Operation:
- Character Length: 5, 6, 7 or 8 Bits
- Stop Bits: 1, 1-1/2,2
- Transmission Speed: $\times 1, \times 16, \times 32$ or $\times 64$ Clock Frequency
- Parity: Odd, Even, or Disable
- Break Generation and Detection
- Interrupt on Parity, Overrun, or Framing Errors
- Monosync, Bisync, and External Sync Operations:
- Software Selectable Sync Characters
- Automatic Sync Insertion
- CRC Generation and Checking
- HDLC and SDLC Operations:
- Abort Sequence Generation and Detection
- Automatic Zero Insertion and Detection
- Address Field Recognition
- CRC Generation and Checking
- I-Field Residue Handling
- N-Channel MOS Technology
- Single +5 V Power Supply; Interface to Most Microprocessors Including 8080, 8085, 8086 and Others.
- Single Phase TTL Clock
- Available in Plastic and Ceramic Dual-in-Line Packages

NO.	PIN		DESCRIPTION
	SYMBOL	NAME	
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7}$	System Data Bus (bidirectional, 3-state)	The system data bus transfers data and commands between the processor and the μ PD7201. D_{0} is the least significant bit.
25	B / \bar{A}	Channel A or B Select (input, High selects Channel B)	This input defines which channel is accessed during a data transfer between the processor and the μ PD7201.
24	C / \bar{D}	Control or Data Select (input, High selects Control)	This input defines the type of information transfer performed between the processor and the μ PD7201. A High at this input during a processor write to or read from the μ PD7201 causes the information on the data bus to be interpreted as a command for the channel selected by B / \bar{A}. A low at C / \bar{D} means that the information on the data bus is data.
23	$\overline{C S}$	Chip Select (input, active Low)	A low level at this input enables the μ PD7201 to accept command or data inputs from the processor during a write cycle, or to transmit data to the processor during a read cycle.
1	CLK	System Clock (input)	The μ PD7201 uses standard TTL clock.
22	$\overline{\mathrm{RD}}$	Read (input active Low)	If $\overline{R D}$ is active, a memory or I/O read operation is in progress. $\overline{R D}$ is used with C / \bar{D}, $\mathrm{B} / \overline{\mathrm{A}}$ and $\overline{\mathrm{CS}}$ to transfer data from the $\mu \mathrm{PD} 7201$ to the processor or the memory.
21	$\overline{W R}$	Write (input, active Low)	The $\overline{W R}$ signal is used to control the transfer of either command or data from the processor or the memory to the μ PD7201.
2	RESET	Reset (input, active Low)	A low $\overline{R E S E T}$ disables both receivers and transmitters, forces $T \times D A$ and $T \times D B$ marking, forces the modem controls high and disables all interrupts. The control registers must be rewritten after the μ PD7201 is reset and before data is transmitted or received. $\overline{\text { RESET }}$ must be active for a minimum of one complete CLK cycle.
10,38	$\overline{\text { RTSA }}, \overline{\text { RTSB }}$	Request to Send (outputs, active Low)	When the $\overline{R T S}$ bit is set, the $\overline{\mathrm{RTS}}$ output goes Low. When the $\overline{\mathrm{RTS}}$ bit is reset in the Asynchronous mode, the output goes High after the transmitter is empty. In Synchronous modes, the RTS pin strictly follows the state of the RTS bit. Both pins can be used as general-purpose outputs.
10,33	$\overline{\text { SYNCA }}$, $\overline{\text { SYNCB }}$	Synchronization (inputs/outputs, active Low)	These pins can act either as inputs or outputs. In the Asynchronous Receive mode, they are inputs similar to $\overline{C T S}$ and $\overline{D C D}$. In this mode, the transitions on these lines affect the state of the Sync/Hunt status bits in Read Register 0. In the External Sync mode, these lines also act as inputs. When external synchronization is achieved, $\overline{S Y N C}$ must be driven Low on the second rising edge of $\overline{R \times C}$ after that rising edge of $\overline{R \times C}$ on which the last bit of the sync character was received. In other words, after the sync pattern is detected, the external logic must wait for two full Receive Clock cycles to activate the $\overline{S Y N C}$ input. Once $\overline{S Y N C}$ is forced Low, it is wise to keep it Low until the processor informs the external sync logic that synchronization has been lost or a new message is about to start. Character assembly begins on the rising edge of $\overline{R \times C}$ that immediately precedes the falling edge of $\overline{\text { SYNC }}$ in the External Sync mode. In the Internal Synchronization mode (Monosync and Bisync), these pins act as outputs that are active during the part of the receive clock $\overline{(R \times C)}$ cycle in which sync characters are recognized. The sync condition is not latched, so these outputs are active each time a sync pattern is recognized, regardless of character boundaries.
26,31	$\overline{\text { DTRA }}$, $\overline{\text { DTRB }}$	Data Terminal Ready (outputs, active Low)	These outputs follow the state programmed into the DTR bit. They can also be programmed as general-purpose outputs.

SERIAL DATA A
channel a clock
MODEM CONTROLS A

Operating Temperature
0° to $+70^{\circ} \mathrm{C}$
Storage Temperature . -65° to $+125^{\circ} \mathrm{C}$ Voltage on Any Pin . - 0.5 to +7 Volts (1)

Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	VIL	-0.5	+0.8	V	
Input High Voltage	VIH	+2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}		+0.45	V	$\mathrm{I} \mathrm{OL}=+2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	+2.4		V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$
Input Leakage Current	IIL		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Leakage Current	IOL		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V
VCC Supply Current	ICC		180	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	C_{IN}		10	pF	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		15	pF Unmeasured pins	
Returned to GND					

DC CHARACTERISTICS

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS		UNIT
		MIN	MAX	
Clock Cycle	${ }^{\text {t }} \mathrm{C}$	250	4000	ns
Clock High Width	${ }^{\text {t }}$ CH	105	2000	ns
Clock Low Width	${ }_{\text {t }}$	105	2000	ns
Clock Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}$	0	30	ns
Address Setup to $\overline{\mathrm{RD}}$	tAR	0		ns
Address Hold from $\overline{\mathrm{RD}}$	tra	0		ns
$\overline{\mathrm{RD}}$ Pulse Width	${ }_{\text {tr }}$	250		ns
Data Delay from Address	${ }^{\text {t }}$ AD		200	ns
Data Delay from $\overline{\mathrm{RD}}$	trd		200	ns
Output Float Delay	tDF	10	100	ns
Address Setup to WR	taw	0		ns
Address Hold from WR	twa	0		ns
$\overline{\mathrm{WR}}$ Pulse Width	tww	250		ns
Data Setup to WR	tDw		150	ns
Data Hold from $\overline{W R}$	twD	0		ns
$\overline{\text { PRO }}$ Delay from $\overline{\text { INTA }}$	tIAPO		200	ns
	tPIN	0		ns
$\overline{\text { PRI }}$ Hold from $\overline{\text { NTA }}$	tIP	0		ns
$\overline{\text { INTA }}$ Pulse Width	tII	250		ns
$\overline{\text { PRO }}$ Delay from $\overline{\text { PRI }}$	tPIPO		100	ns
Data Delay from INTA	tid		200	ns
Request Hold from $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	${ }^{\text {t }} \mathrm{CO}$		150	ns
$\overline{\text { HAl }}$ Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	t LR	300		ns
$\overline{\mathrm{HAI}}$ Hold from $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	${ }_{\text {tr }}$	0		ns
$\overline{\text { HAO }}$ Delay from HAT	thino		100	ns
Recovery Time Between Controls	trv	300		ns
WAIT Delay from Address	tcw		120	ns
Data Clock Cycle	${ }^{\text {t }}$ DCY	400		ns
Data Clock Low Width	${ }^{\text {t }}$ DCL	180		ns
Data Clock High Width	toch	180		ns
Tx Data Delay	t'D		300	ns
Data Set up to $\overline{\mathrm{RxC}}$	tDS	0		ns
Data Hold from $\overline{\mathrm{RxC}}$	tDH	140		ns
$\overline{\text { INT }}$ Delay Time from $\overline{T \times C}$	tITD		$4 \sim 6$	tcy
$\overline{\text { INT }}$ Delay Time from $\overline{\mathrm{RxC}}$	tIRD		$7 \sim 11$	tcy
Low Pulse Width	tPL	200		ns
High Pulse Width	tPH	200		ns
External $\overline{\mathrm{INT}}$ from $\overline{\mathrm{CST}}, \overline{\mathrm{DCD}}, \overline{\mathrm{SYNC}}$	tIPD		500	ns
Delay from $\overline{\mathrm{R} \times \mathrm{C}}$ to $\overline{\mathrm{SYNC}}$	tDRxC		100	ns

WRITE CYCLE

INTA CYCLE

DMA CYCLE

TRANSMIT DATA CYCLE
$\overline{T x C}$

Notes: (1) INTA signal acts as $\overline{R D}$ signal.
(2) $\overline{\mathrm{PRI}}$ and $\overline{\mathrm{HAI}}$ signals act as $\overline{\mathrm{CS}}$ signal.

TIMING WAVEFORMS (CONT.)
$\overline{\mathrm{RxC}}$
$R \times D$
$\overline{\text { INT }}$

READ/WRITE CYCLE
(SOFTWARE BLOCK TRANSFER MODE)
$C / \bar{D}, B / \bar{A}, \overline{C S}$
$\overline{R D} / \overline{W R}$
$\overline{\text { WAITA/B }}$

SYNC PULSE GENERATION (EXTERNAL SYNC MODE)

D_{7}	\mathbf{D}_{6}	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$

READ REGISTER 1 (1)

READ REGISTER 2

Notes: (1) Used with Special Receive Condition Mode.
(2) Variable if "Status Affects Vector" is programmed.

WRITE REGISTER 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline D7 \& D_{6} \& D5 \& D_{4} \& D_{3} \& D_{2} \& D1 \& Do \&

\hline \& \& $$
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$ \& $$
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& 1 \\
& 1 \\
& 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
$$ \& $$
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1
\end{aligned}
$$ \& \& \& 1
0
1

T (SD
STA
ESE
ON
OT/D
ET
ERR \&

\hline 0 \& 0 \& \multicolumn{7}{|l|}{NULL CODE}

\hline 0 \& 1 \& \multicolumn{7}{|l|}{RESET R×CRG CHECKER}

\hline 1 \& 0 \& \multicolumn{7}{|l|}{RESET T× CRC GENERATOR}

\hline 1 \& 1 \& \multicolumn{7}{|l|}{RESET Tx UNDERRUN/EOM LATCH}

\hline
\end{tabular}

WRITE REGISTER 1

W'RITE REGISTER 2
(CHANNEL B)

WRITE REGISTER 3

D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
								- Rx ENABLE - SYNC CHARACTER LOAD INHIBIT - ADDRESS SEARCH MODE (SDLC) - Rx CRC ENABLE - ENTER HUNT PHASE - AUTO ENABLES
0	0		BI	S/CH	ARA	ACTE		
0	1		7 BIT	TS/CH	ARA	ACTE		
1	0	Rx	6 BIT	TS/CH	ARA	ACTER		
1	1		8 BIT	TS/CH	HARA	CTE		

WRITE REGISTER 4

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
			$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mid \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 8 \text { B } \\ & 16 \\ & 16 \\ & \text { SD } \\ & \text { EX } \end{aligned}$		1 SYN 1 S 11 2 S SNC SYNC ODE	PARITY ENABLE PARITY EVEN/ODD NC MODES ENABLE TOP BIT/CHARACTER /2 STOP BITS/CHARACTER TOP BITS/CHARACTER CHARACTER ChARACTER (01111110 FLAG) SYNC MODE
0	0	X 1 CLOCK MODE					
0	1	X 16 CLOCK MODE					
1	0	X 32 CLOCK MODE					
1	1	X64 CLOCK MODE					

W/RITE REGISTER 5

WRITE REGISTER 6

WRITE REGISTER 7

(1)

Note: (1) For SDLC it must be programmed to " 01111110 " for flag recognition.

WR2s BITS IN CH. A $D_{5} \quad D_{4} \quad D_{3}$	PRIN	MODE	CONTENTS ON DATA BUS DRIVEN BY THE μ PD7201 AT EACH INTA SEQUENCE		
			Ist INTA	$$	$D_{4} \quad D_{3} \quad D_{2} \quad D_{1} \quad D_{0}$
$\emptyset \times 1$	x	Non-vectored	High-Z	High-Z	High-Z
$1 \emptyset \square$	\emptyset	8085 Master	1		$\emptyset \quad \emptyset \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
$1 \emptyset \emptyset$	1	8085 Master	$\begin{array}{llllllll}1 & 1 & \emptyset & \emptyset & 1 & 1 & \emptyset & 1\end{array}$	High-Z	High-Z
$1 \quad 1$	\emptyset	8085 Slave	High-Z		$\emptyset \quad \emptyset \quad \emptyset \quad 0 \quad 0 \quad 0 \quad \emptyset \quad 0$
$1 \quad 1$	1	8085 Slave	High-Z	High-Z	High-Z
$11 \emptyset$	\emptyset	8086	High-Z		
110	1	8086	High-Z	High-Z	

[^4]
INTELLIGENT GPIB INTERFACE CONTROLLER

DESCRIPTION The μ PD7210 TLC is an intelligent GPIB Interface Controller designed to meet all of the functional requirements for Talkers, Listeners, and Controllers as specified by the IEEE Standard 488-1978. Connected between a processor bus and the GPIB, the TLC provides high level management of the GPIB to unburden the processor and to simplify both hardware and software design. Fully compatible with most processor architectures, Bus Driver/Receivers are the only additional components required to implement any type of GPIB interface.

FEATURES

- All Functional Interface Capability Meeting IEEE Standard
- SH1 (Source Handshake)
- AH1 (Acceptor Handshake)
- T5 or TE5 (Talker or Extended Talker)
- L3 or LE3 (Listener or Extended Listener)
- SR1 (Service Request)
- RL1 (Remote Local)
- PP1 or PP2 (Parallel Port (Remote or Local Configuration))
- DC1 (Device Clear)
- DT1 (Device Trigger)
- C1-5 (Controller (All Functions))
- Programmable Data Transfer Rate
- 16 MPU Accessible Registers - 8 Read/8 Write
- 2 Address Registers
- Detection of MTA, MLA, MSA (My Talk/Listen/Secondary Address)
- 2 Device Addresses
- EOS Message Automatic Detection
- Command (IEEE Standard 488-78) Automatic Processing and Undefined Command Read Capability
- DMA Capability
- Programmable Bus Transceiver I/O Specification (Works with T.I./Motorola/Intel)
- 1 to 8 MHz Clock Range
- TTL Compatible
- N Channel MOS
- +5V Single Power Supply
- 40-Pin Plastic DIP
- 8080/85/86 Compatible

PIN	NAME	1/0	DESCRIPTION
1	T/R1	0	Transmit/Receive Control - Input/Output Control Signal for the GPIB Bus Transceivers.
2	T/R2	0	Transmit/Receive Control - The function of T/R2, T/R3 are determined by the value of TRM1, TRM0 of the address mode register.
3	CLK	1	Clock - (1-8 MHz) Reference Clock for generating the state change prohibit times T1, T6, T7, T9 specified in IEEE Standard 488-1978.
4	RST	1	Reset - Resets 7210 to an idle state when high (active high).
5	T/R3	0	Transmit/Receive Control - Function determined by TRM1 and TRM0 of address mode register (See T/R2).
6	DRQ	0	DMA Request -7210 requests data transfer to the computer system, becomes low on input of DMA acknowledge signal $\overline{\text { DACK }}$.
7	$\overline{\text { DACK }}$	1	DMA Acknowledge - (Active Low) Signal connects the computer system data bus to the data register of the 7210.
8	$\overline{\mathrm{CS}}$	1	Chip Select - (Active Low) Enables access to the register selected by RSO-2 (read or write operation).
9	$\overline{\mathrm{RD}}$	1	Read - (Active Low) Places contents of read register specified by RSO-2 - on D0-7 (Computer Bus).
10	$\overline{W R}$	1	Write - (Active Low) writes data on DO-7 into the write register specified by RSO-2.
11		0	Interrupt Request - (Active High/Low) Becomes active due to any 1 of 13 internal interrupt factors (unmasked) active state software configurable, active high on chip reset.
12-19	D0-7	1/0	Data Bus -8 bit bidirectional data bus, for interface to computer system.
20	GND		Ground.
21-23	RSO-2	1	Register Select - These lines select one of eight read (write) registers during a read (write) operation.
24	$\overline{\mathrm{IFC}}$	1/0	Interface Clear - Control line used for clearing the interface functions.
25	$\overline{R E N}$	1/O	Remote Enable - Control line used to select remote or local control of the devices.
26	$\overline{\text { ATN }}$	1/O	Attention - Control line which indicates whether data on DIO lines is an interface message or device dependent message.
27	$\overline{\text { SRO }}$	1/O	Service Request - Control line used to request the controller for service.
28-35	$\overline{\text { DIO1-8 }}$	1/O	Data Input/Output - 8 bit bidirectional bus for transfer of message on the GPIB.
36	$\overline{\text { DAV }}$	1/0	Data Valid - Handshake line indicating that data on DIO lines is valid.
37	$\overline{\text { NRFD }}$	1/O	Ready for Data - Handshake line indicating that device is ready for data.
38	$\overline{\text { NDAC }}$	I/O	Data Accepted - Handshake line indicating completion of message reception.
39	$\overline{\mathrm{EOI}}$	1/O	End or Identify - Control line used to indicate the end of multiple byte transfer sequence or to execute a parallel polling in conjunction with ATN.
40	VCC		+5 V DC - Technical Specifications: +5 V ; NMOS; 500 MW ; 40 Pins; TTL Compatible; $1-8 \mathrm{MHz}$.

BLOCK DIAGRAM

9

н PD7210

The IEEE Standard 488 describes a "Standard Digital Interface for Programmable Instrumentation" which, since its introduction in 1975, has become the most popular means of interconnecting instruments and controllers in laboratory, automatic test and even industrial applications. Refined over several years, the 488-1978 standard, also known as the General Purpose Interface Bus (GPIB), is a highly sophisticated standard providing a high degree of flexibility to meet virtually most all instrumentation requirements. The μ PD7210 TLC implements all of the functions that are required to interface to the GPIB. While it is beyond the scope of this document to provide a complete explanation of the IEEE 488 Standard, a basic description follows:

The GPIB interconnects up to 15 devices over a common set of data control lines. Three types of devices are defined by the standard: Talkers, Listeners, and Controllers, although some devices may combine functions such as Talker/Listener or Talker/Controller.
Data on the GPIB is transferred in a bit parallel, byte serial fashion over 8 Data I/O lines (D101 - D108). A 3 wire handshake is used to ensure synchronization of transmission and reception. In order to permit more than one device to receive data at the same time, these control lines are "Open Collector" so that the slowest device controls the data rate. A number of other control lines perform a variety of functions such as device addressing, interrupt generation, etc.

The μ PD7210 TLC implements all functional aspects of Talker, Listener and Controller functions as defined by the 488-1978 Standard, and on a single chip.

The μ PD7210 TLC is an intelligeit controller designed to provide high level protocol
GENERAL management of the GPIB, freeing the host processor for other tasks. Control of the TLC is accomplished via 16 internal registers. Data may be transferred either under program control or via DMA using the TLC's DMA control facilities to further reduce processor overhead. The processor interface of the TLC is general in nature and may be readily interfaced to most processor lines.

In addition to providing all control and data lines necessary for a complete GPIB implementation, the TLC also provides a unique set of bus transceiver controls permitting the use of a variety of different transceiver configurations for maximum flexibility.

INTERNAL REGISTERS

The TLC has 16 registers, eight of which are read and 8 write.

DATA REGISTERS

The data registers are used for data and command transfers between the GPIB and the microcomputer system.

DATA IN (OR)

DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO

Holds data sent from the GPIB to the computer

BYTE OUT (OW) | $B O 7$ | $B 06$ | $\mathrm{BO5}$ | $\mathrm{BO4}$ | BO 3 | BO | $\mathrm{BO1}$ | BOO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Holds information written into it for transfer to the GPIB

INTERRUPT REGISTERS

The interrupt registers are composed of interrupt status bits, interrupt mask bits, and some other noninterrupt related status bits.

	AD							
STATUS 1 [1R]	CPT	APT	DET	END	DEC	ERR	DO	DI
INTERRUPT								
STATUS 2 [2R]	INT	SRQ1	LOK	REM	CO	LOKC	REMC	ADSC
	WRITE							
INTERRUPT								
MASK 1 [1W]	CPT	APT	DET	END	DEC	ERR	DO	DI
INTERRUPT								
MASK 2 [2W]	0	SRQ1	DMAO	DMAI	CO	LOKC	REMC	ADSC

There are thirteen factors which can generate an interrupt from the μ PD7210, each with their own status bit and mask bit.

The interrupt status bits are always set to one if the interrupt condition is met. The interrupt mask bits decide whether the INT bit and the interrupt pin will be active for that condition.

Interrupt Status Bits

INT	OR of All Unmasked Interrupt Status Bits
CPT	Command Pass Through
APT	Address Pass Through
DET	Device Trigger
END	End (END or EOS Message Received)
DEC	Device Clear
ERR	Error
DO	Data Out
DI	Data In
SRQI	Service Request Input
LOKC	Lockout Change
REMC	Remote Change
ADSC	Address Status Change
CO	Command Output

Non Interrupt Status Bits

LOK	Lockout
REM	Remote/Local
DMAO	Enable/Disable DMA Out
DMAI	Enable/Disable DMA In

SERIAL POLL REGISTERS

READ

SERIAL POLL STATUS [3R]

S8	PEND	S6	S5	S4	S3	S2	S1

WRITE
SERIAL POLL MODE [3W]

S8	rSV	S6	S5	S4	S3	S2	S1

The Serial Poll Mode register holds the STB (status byte: S8, S6-S1) sent over the GPIB and the local message rsv (request service). The Serial Poll Mode register may be read through the Serial Poll Status register. The PEND is set by rSV = 1, and cleared by NPRS $\cdot \overline{\mathrm{rSv}}=1$ (NPRS = Negative Poll Response State).

ADDRESS MODE/STATUS REGISTERS

ADDRESS STATUS [4R]
ADDRESS MODE [4W]

CIC	$\overline{A T N}$	SPMS	LPAS	TPAS	LA	TA	MJMN
ton	IOn	TRM1	TRM0	0	0	ADM1	ADM0

The Address Mode register selects the address mode of the device and also sets the mode for T/R3 and T/R2 the transceiver control lines.
The TLC is able to automatically detect two types of addresses which are held in address registers 0 and 1. The addressing modes are outlined below.

ADDRESS MODES

| ton | lon | ADM1 | ADM0 | ADDRESS
 MODE | CONTENTS OF
 ADDRESS (0)
 REGISTER | CONTENTS OF
 ADDRESS (1)
 REGISTER |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | Talk only
 mode | Address Identification Not Necessary | |
| 0 | 1 | 0 | 0 | Listen only
 mode | Not Used | |
| 0 | 0 | 0 | 1 | Address mode 1 | Major talk address
 or Major listen
 address | Minor talk address
 or Minor listen
 address |
| 0 | 0 | 1 | 0 | Address mode 2 | Primary address
 (talk or listen) | Secondary address
 (talk or listen) |
| 0 | 0 | 1 | 1 | Address mode 3 | Primary address
 (major talk or
 major listen) | Primary address
 (minor talk or
 minor listen) |

Notes: A1 - Either MTA or MLA reception is indicated by ccincidence of either address with the received address. Interface function T or L.
A2 - Address register $0=$ primary, Address register $1=$ secondary, interface function TC or LC.

A3 - CPU must read secondary address via Command Pass Through Register. TE or LC Command.

ADDRESS STATUS BITS

$\overline{\text { ATN }}$	Data Transfer Cycle (device in CSBS)
LPAS	Listener Primary Addressed State
TPAS	Talker Primary Addressed State
CIC	Controller Active
LA	Listener Addressed
TA	Talker Addressed
MJMN	Sets minor T/L address Reset = Major T/L address
SPMS	Serial Poll Mode State

ADDRESS REGISTERS

ADDRESS 0 [6R]
ADDRESS 1 [7R]
ADDRESS 0/1 [6W]

X	DT0	DL0	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
EOI DT1 DL1 AD5-1 AD4-1 AD3-1 AD2-1 AD1-1ARS DT DL AD5 AD4 AD3 AD2 AD1							

Address settings are made by writing into the address $0 / 1$ register. The function of each bit is described below.

ADDRESS 0/1 REGISTER BIT SELECTIONS

ARS - Selects which address register 0 or 1
DT - Permits or Prohibits address to be detected as Talk
DL - Permits or Prohibits address to be detected as Listen
AD5 - AD1 - Device address value
EOI - Holds the value of EOI line when data is received
COMMAND PASS THROUGH REGISTER
COMMAND PASS

THROUGH [5R] | CPT7 | CPT6 | CPT5 | CPT4 | CPT3 | CPT2 | CPT1 | CPT0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The CPT register is used such that the CPU may read the DIO lines in the cases of undefined command, secondary address, or parallel poll response.

END OF STRING REGISTER
END OF STRING [7W]

EC 7	EC 6	EC 5	EC 4	EC 3	EC 2	EC 1	EC 0

This register holds either a 7 or 8 bit EOS message byte used in the GPIB system to detect the end of a data block. Aux Mode Register A controls the specific use of this register.

AUXILIARY MODE REGISTER

AUXILIARY
MODE [5W]

CNT2	CNT1	CNT0	COM4	COM3	COM2	COM1	COM0

μ PD7210

This is a multipurpose register. A write to this register generates one of the following operations according to the values of the CNT bits.

CNT								
2	1	0	4	3	C_{2}	1	0	OPERATION
0	0	0	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}	Issues an auxiliary command specified by C_{4} to C_{0}.
0	0	1	0	$\mathrm{~F}_{3}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{0}$	The reference clock frequency is specified and $T_{1}, T_{6}, T_{7}, T_{9}$ are determined as a result.
0	1	1	U	S	P_{3}	P_{2}	P_{1}	Makes write operation to the parallel poll register.
1	0	0	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Makes write operation to the aux. (A) register.
1	0	1	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	Makes write operation to the aux. (B) register.
1	1	0	0	0	0	E_{1}	E_{0}	Makes write operation to the aux. (E) register.

AUXILIARY COMMANDS $000 \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$

INTERNAL COUNTER $0010 F_{3} F_{2} F_{1} F_{0}$
The internal counter generates the state change prohibit times ($T_{1}, T_{6}, T_{7}, T_{9}$) specified in the IEEE std 488-1978 with reference to the clock frequency.

AUXILIARY A REGISTER $100 A_{4} A_{3} A_{2} A_{1} A_{0}$

Of the 5 bits that may be specified as part of its access word, two bits control the GPIB data receiving modes of the 7210 and 3 bits control how the EOS message is used.

A_{1}	A_{0}	DATA RECEIVING MODE
$\mathbf{0}$	$\mathbf{0}$	Normal Handshake Mode
$\mathbf{0}$	$\mathbf{1}$	RFD Holdoff on all Data Mode
1	$\mathbf{0}$	RFD Holdoff on End Mode
1	$\mathbf{1}$	Continuous Mode

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$			FUNCTION
A_{2}	0	Prohibit	Permits (prohibits) the setting of the END bit by reception of the EOS message.
	1	Permit	
A3	0	Prohibit	Permits (prohibits) automatic transmission of END message simultaneously with the transmission of EOS message TACS.
	1	Permit	
A4	0	7 bit EOS	Makes the 8 bits/7 bits of EOS register the valid EOS message.
	1	8 bit EOS	

AUXILIARY B REGISTER 1

The Auxiliary B Register is much like the A Register in that it controls the special operating features of the device.

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$	FUNCTION		
B0	1	Permit	Permits (prohibits) the detection of undefined command. In other words, it permits (prohibits) the setting of the CPT bit on reception of an undefined command.
	0	Prohibit	
B1	1	Permit	Permits (prohibits) the transmission of the END message when in serial poll active state (SPAS).
	0	Prohibit	
B2	1	T_{1} (high-speed)	T_{1} (high speed) as T_{1} of handshake after transmission of 2nd byte following data transmission.
	0	T_{1} (low-speed)	
B3	1	INT	Specifies the active level of INT pin.
	0	INT	
B4	1	1st $=$ SRQS	SROS indicates the value of 1 st level local message (the value of the parallel poll flag is ignored).$\begin{aligned} & \text { SROS }=1 \ldots 1 \text { st }=1 . \\ & \text { SRQS }=0 \ldots 1 \text { st }=0 . \end{aligned}$
	0	$\begin{aligned} & \text { 1st = Parallel } \\ & \text { Poll Flag } \end{aligned}$	The value of the parallel poll flag is taken as the 1st local message.

μ PD7210

AUXILIARY EREGISTER $110000 E_{1} E_{0}$

This register controls the Data Acceptance Modes of the TLC.

BIT FUNCTION E_{0} 1 Enable DAC Holdoff by initiation of DCAS 0 Disable E_{1} 1 Enable DAC Holdoff by initiation of DTAS 0 Disable

The Parallel Poll Register defines the parallel poll response of the μ PD7210.

PROGRAMMABLE LCD CONTROLLER/DRIVER

DESCRIPTION
The μ PD7225 is a programmable peripheral device containing all the circuitry necessary for interfacing a microprocessor to a wide variety of alpha-numeric Liquid Crystal Displays (LCDs). The display controller hardware automatically synchronizes the drive signals for any static or multiplexed LCD containing up to 4 backplanes, and up to 32 segments. The μ PD7225 is fully compatible with most microprocessors, and communicates with them through a 2 -line, 8 -bit Serial port. It can be easily configured into multiple chip designs for larger LCD applications. In addition, the μ PD7225 includes on board 8 -segment Numeric and 15 -segment Alpha-Numeric decoders, and programmable blinking capabilities. The μ PD7225 is manufactured with a low-power single 5 V CMOS process, and is available in a 52 -pin plastic flat package.

FEATURES - Single Chip LCD Controller

- Direct LCD Drive
- Selectable Backplace Drive Configuration
- Static; 2-, 3-, or 4-Backplane Multiplexed
- Programmable Display Configurations
- 8-Segment Numeric - up to 16 Characters
- 15-Segment Alpha-Numeric - up to 8 Characters
- 32-Segment Drive Lines
- Selectable Display Bias Configuration
- Static; $1 / 2$ or $1 / 3$
- Automatic Synchronization of Segment and Backplane Drive Lines
- Dual 32×4 Bit RAMs for Display Data Storage
- Programmable Display Data Addressing
- Individual Segment
- 16-Character, 8-Segment Numeric Decoder
- 64-Character, 15-Segment Alpha-Numeric Decoder
- Programmable Blinking Capability
- Individual Segment, Individual Character, or Entire Display
- 8-Bit Serial Interface
- Compatible with most 4-Bit, 8-Bit, and 16-Bit Microprocessors
- Fully Cascadable for Larger LCD Applications
- Single +5 V Power Supply
- CMOS Technology
- 52-Pin Plastic Flat Package

PIN CONFIGURATION

PIN DESCRIPTION	
SYMBOL	DESCRIPTION
$\mathrm{S}_{0}-\mathrm{S}_{31}$	LCD Segment Drive Outputs
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	LCD Backplane Drive Outputs
$\mathrm{V}_{\text {SS }}$	Ground
$\mathrm{V}_{\text {DD }}$	Power Supply Positive
$\mathrm{V}_{\mathrm{LCD}} \cdot \mathrm{V}_{\mathrm{LCD}}$	LCD Power Supply
$\overline{\text { SCK }}$	Serial Clock Input
SI	Serial Input
$\overline{\mathrm{CS}}$	Chip Select
C/D	Command/Data Select
$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System Clock Input, Output
$\widehat{\text { SYNC }}$	Synchronization Signal 1/O Port for multuple chip \qquad
BUSY	Busy Output
RESET	Reset Input
NC	No Connection

0	1	0	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	$40-5 F$

The MODE SET command sets up the Backplane Drive Configuration, the Display Bias Voltage Configuration, and the A/C Drive Frequency for the μ PD7225.

The Backplane Drive Configuration is defined as follows:

D_{3}	D_{2}	Backplane Drive Configuration
0	1	Static (1-Backplane)
1	1	2-Backplane Multiplexed
1	0	3-Backplane Multiplexed
0	0	4-Backplane Multiplexed

The Display Bias Voltage Configuration is defined as follows:

D_{4}	Display Bias Voltage Configuration
0	$1 / 3$ (three voltage)
1	$1 / 2$ (two voltage)
X	Static (single voltage; default when $D_{3} D_{2}=00$)

The A/C Drive Frequency is defined as follows:

D_{1}	D_{0}	A/C Drive Frequency
0	0	${ }^{f} / 2^{7} \mathrm{~Hz}$
0	1	$\mathrm{f}_{\mathrm{c}} / 2^{8} \mathrm{~Hz}$
1	0	$\mathrm{f}_{\mathrm{c}} / 2^{9} \mathrm{~Hz}$
1	1	$\mathrm{f}_{\mathrm{c}} / 2^{11} \mathrm{~Hz}$

Note: LCD Frame Frequency $=$| A/C Drive Frequency |
| :---: | \# of active Backplane Drive lines

2. UNSYNCHRONOUS DATA
TRANSFER

$$
\begin{array}{|llllllll}
\hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

The Normal Transfer of data from the Display Data RAM to the segment output latches latches occurs with the rising edge of CS. The UNSYNCHRONOUS DATA TRANSFER command implements this mode of data transfer, and also disables the SYNCHRONOUS DATA TRANSFER operation.
3. SYNCHRONOUS DATA TRANSFER

| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

Data can also be transferred from the Display Data RAM to the segment output latches with the rising edge of f_{c}. The SYNCHRONOUS DATA TRANSFER command implements this mode of data transfer, and also disables the UNSYNCHRONOUS DATA TRANSFER operation.

Occasionally, the Host microprocessor system may experience events, such as prioritized Hardware interrupts, that may disrupt communications with the μ PD7225. Display Data transfers to the μ PD7225 may be interrupted, without disrupting the μ PD7225 internal display data protocol, by issuing an INTERRUPT DATA TRANSFER command at the beginning of the interrupt service routine. Display data updating may be resumed in an orderly fashion after the interrupt service routine is completed.
5. CLEAR Display Data

0	0	1	0	0	0	0	0	20

All locations in the Display Data RAM are set to zero by executing the CLEAR DISPLAY DATA command. The Data Pointer is also cleared, and set to its initial location.
6. CLEAR BLINKING DATA

$$
\begin{array}{|llllllll|l}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 00 \\
\hline
\end{array}
$$

All locations in to Blinking Data RAM are set to zero by executing the CLEAR BLINKING DATA command. The Data Pointer is also cleared, and set to its initial location.
7. LOAD DATA

POINTER | 0 | 0 | 0 | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} | $E 0-F F$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

To access a particular location in either the Display Data RAM, or the BLINKING DATA RAM the Data Pointer must be given the corresponding address of that location. The LOAD DATA POINTER command transfers 5 bits of immediate data to the Data Pointer.

8. WRITE DISPLAY

 DATA| 1 | 1 | 0 | 1 | D_{3} | D_{2} | D_{1} | D_{0} | DO-DF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The WRITE DISPLAY DATA command transfers 4 bits of immediate data to the Display Data RAM location addressed by the Data Pointer. After the transfer is complete, the Data Pointer is automatically incremented.
9. WRITE BLINKING DATA

1	1	0	0	D_{3}	D_{2}	D_{1}	D_{0}	$C 0-C F$

The WRITE BLINKING DATA command transfers 4 bits of immediate data to the Blinking Data RAM location addressed by the Data Pointer. After the transfer is complete, the Data Pointer is automatically incremented.
10. ENABLE DISPLAY

0	0	0	1	0	0	0	1	11

The ENABLE DISPLAY command turns on the LCD, and starts the automatic display controller hardware of the μ PD7225.

The DISABLE DISPLAY command turns off the LCD, and stops the automatic display controller hardware of the μ PD7225.
12. ENABLE BLINKING

0	0	0	1	1	0	1	D_{0}	$1 A-1 B$

If a particular LCD application requires blinking several segments, the appropriate information must have been transferred to the Blinking Data RAM previously. The ENABLE BLINKING command selects the Blinking frequency according to the value of D_{0}, and turns the Blinking feature on.

D_{0}	Blinking Frequency
0	$\mathrm{f}_{\mathrm{c}} / 2^{16} \mathrm{~Hz}$
1	$\mathrm{f}_{\mathrm{c}} / 2^{17} \mathrm{~Hz}$

13. DISABLE BLINKING

$$
\begin{array}{|llllllll|l|}
\hline 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 18 \\
\hline
\end{array}
$$

The DISABLE BLINKING command turns the Blinking feature OFF.
14. ENABLE SEGMENT DECODER

0	0	0	1	0	1	0	1	15

The μ PD7225 has an internal 8 -segment Numeric data decoder, and an internal 15 -segment Alpha-Numeric data decoder. These decoders can be used for automatic display data addressing, by the Host microprocessor to absorb some of the system overhead required to decode display data for the μ PD7225.

The ENABLE SEGMENT DECODER command implements this mode of display data addressing. Upon execution, display data received by the μ PD7225 is diverted to one of the segment decoders. The segment decoder then writes display data to the Display Data RAM. The distinction between 8 -segment decoding and 15 -segment decoding is made by the MSB of the display data:

MSB	Decoding Selected
0	8 -segment Numeric
1	15-segment Alpha-Numeric

15. DISABLE SEGMENT DECODER

The DISABLE SEGMENT DECODER command stops the segment decode addressing, and enables the transfers of Display Data from the Host microprocessor directly to the Display Data RAM.
16. OR DISPLAY DATA

1	0	1	1	D_{3}	D_{2}	D_{1}	D_{0}	$B 0-B F$

The OR DISPLAY DATA command performs a LOGICAL OR between the Display Data addressed by the Data Pointer, and 4 bits of immediate data. The result is written to the same Display Data location, and the Data Pointer is automatically incremented.
17. AND DISPLAY DATA

1	0	0	1	D_{3}	D_{2}	D_{1}	D_{0}	$90-9 F$

The AND DISPLAY DATA command performs a LOGICAL AND between the Display Data addressed by the Data Pointer, and 4 bits of immediate data. The result is written to the same Display Data location, and the Data Pointer is automatically incremented.
18. OR BLINKING DATA

1	0	1	0	D_{3}	D_{2}	D_{1}	D_{0}	$A 0-A F$

The OR BLINKING DATA command performs a LOGICAL OR between the Blinking Data addressed by the Data Pointer, and 4 bits of immediate data. The result is written to the same Blinking Data location, and the Data Pointer is automatically incremented.
19. AND BLINKING DATA

1	0	0	0	D_{3}	D_{2}	D_{1}	D_{0}	$80-8 F$

The AND BLINKING DATA command performs a LOGICAL AND between the Blinking Data addressed by the Data Pointer, and 4 bits of immediate data. The result is written to the same Blinking Data location, and the Data Pointer is automatically incremented.

COMMAND	description	INSTRUCTION CODE								
		BINARY								
		D7	D_{6}	D_{5}	D_{4}	D3	D_{2}	D_{1}	D_{0}	HEX
1. Mode Set	Set up Driving Mode of LCD. including: 1) Backplane drive 2) Display Bias 3) LCD Frame Frequency	0	1	0	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	40.5F
2. Unsychronous Data Transfer	Synchronize writing of display data with CS	0	0	1	1	0	0	0	0	30
3. Synchronous Data Transfer	Synchronize writing of display data with LCD Frame Frequency	0	0	1	1	0	0	0	1	31
4. Interrupt Data Transfer	Interrupt writing of display data	0	0	1	1	1	0	0	0	38
5. Clear Display Data	Clear the Display Data RAM and the Data Pointer	0	0	1	0	0	0	0	0	20
6. Clear Blinking Data	Clear the Blinking Data RAM and the Data Pointer	0	0	0	0	0	0	0	0	00
7. Load Data Pointer	Load Data Pointer with 5 Bits of Immediate Data	1	1	1	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	EO-FF
8. Write Display Data	Write 4 Bits of Immediate Data to the Display Data Location addressed by the Data Pointer: Increment Data Pointer	1	1	0	1	D_{3}	D_{2}	D_{1}	D_{0}	DO-DF
9. Write Blinking Data	Write 4 Bits of Immediate Data to the Blinking Data Location addressed by the Data Pointer; Increment Data Pointer	1	1	0	0	D_{3}	D_{2}	D_{1}	D_{0}	co.cF
10. Enable Display	Start Automatic LCD Controller Hardware	0	0	0	1	0	0	0	1	11
11. Disable Display	Stop Automatic LCD Controller Hardware	0	0	0	1	0	0	0	0	10
12. Enable Blinking	Start the Blinking Operation at the Frequency Specified by 1 Bit of Immediate Data	0	0	0	1	1	0	1	D_{0}	1A-1B
13. Disable Blinking	Stop Blinking Operation	0	0	0	1	1	0	0	0	18
14. Enable Segment Decoder	Select 8 -Segment Numeric or 15-Segment Alphanumeric Decoder Addressing	0	0	0	1	0	1	0	1	15
15. Disable Segment Decoder	Stop Segment Decoder Addressing; Return to individual segment addressing	0	0	0	1	0	1	0	0	14
16. OR Display Data	Perform a Logical OR between the Display Data addressed by the Data Pointer and 4 Bits of Immediate Data; Write Results to same Display Data Location; Increment Data Pointer	1	0	1	1	D_{3}	D_{2}	D_{1}	Do	B0-BF
17. AND Display Data	Perform a Logical AND between the Display Data addressed by the Data Pointer and 4 Bits of Immediate Data; Write Result to same Display Data Location; Increment Data Pointer	1	0	0	1	D_{3}	D_{2}	D_{1}	D_{0}	90.9F
18. OR Blinking Data	Perform a Logical OR between Blinking Data addressed by the Data Pointer and 4 Bits of Immediate Data; Write Result to same Blinking Data Location; Increment Data Pointer	1	0	1	0	D_{3}	D_{2}	D_{1}	Do	AO-AF
19. AND Blinking Data	Perform a Logical AND between Blinking Data addressed by the Data Pointer and 4 Bits of Immediate Data; Write Result to same Location; Increment Data Pointer	1	0	0	0	D_{3}	D_{2}	D_{1}	Do	80-8F

9

Power Supply \qquad
All Inputs and Outputs with Respect to VSS -0.3 V to VDD +0.3 V
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
Supply Current	IDD		100		$\mu \mathrm{A}$	No Load
Input High Voltage	VIH	0.7 V DD		VDD	V	$\frac{\mathrm{SI}, \overline{\mathrm{SCK}}}{\overline{\mathrm{RESET}}}, \mathrm{C} / \overline{\mathrm{D}}, \overline{\mathrm{CS}}, \overline{\mathrm{SYNC}},$
Input Low Voltage	VIL	0		0.3 VDD	V	$\frac{\mathrm{SI}, \overline{\mathrm{SCK}}}{\overline{\mathrm{RESET}}}, \mathrm{C} / \overline{\mathrm{D}}, \overline{\mathrm{CS}}, \overline{\mathrm{SYNC}},$
Clock High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V	CL1, External Clock
Clock Low Voltage	$\mathrm{V}_{\phi \text { L }}$	0		0.3 VDD	V	CL_{1}, External Clock
High Level Leakage Current	'LIH			10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{SI}, \overline{\mathrm{SCK}}, \mathrm{C} / \overline{\mathrm{D}}, \overline{\mathrm{CS}}, \overline{\mathrm{RESET}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$
Low Level Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{S I}, \overline{\mathrm{SCK}}, \mathrm{C} / \overline{\mathrm{D}}, \overline{\mathrm{CS}}, \overline{\mathrm{RESET}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \end{aligned}$
High Level Output Voltage	V_{OH}	$V_{D D}-0.5$			V	$\overline{\text { BUSY }}, \mathrm{I}^{\mathrm{OH}}=-10 \mu \mathrm{~A}$
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$			0.5	V	$\begin{aligned} & \overline{\text { SYNC }, ~ \overline{B U S Y}, ~} \mathrm{IOL}=550 \mu \mathrm{~A}, \\ & V_{D D}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
High Level Output Current	${ }^{1} \mathrm{OH}$			-180	$\mu \mathrm{A}$	$\begin{aligned} & \overline{S Y N C}, V_{O}=0.5, \\ & V_{D D}=5.5 \mathrm{~V}, \mathrm{~T}_{a}=25^{\circ} \mathrm{C} \end{aligned}$

$$
2.7 \leqslant \mathrm{~V}_{\mathrm{LCD}} \leqslant \mathrm{~V}_{\mathrm{DD}}
$$

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
Backplane Drive	$\mathrm{R}_{\text {COM }}$		2		$k \Omega$	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$, Display Bias $=1 / 3$ or Static
Output Impedance					$k \Omega$	$\begin{aligned} & \mathrm{COM}_{0}-\mathrm{COM}_{3} \\ & \text { Display } \mathrm{Bias}=1 / 2 \end{aligned}$
Segment Drive Output Impedance	RSEG		11		k Ω	$\overline{S_{0}-S_{31}}$

ABSOLUTE MAXIMUM RATINGS*

DC ELECTRICAL CHARACTERISTICS

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	Cl_{1}				pF	$\frac{S I, \overline{S C K}}{R E S E T}, C / \bar{D}, \overline{C S},$
Output Capacitance	Co_{0}				pF	$\mathrm{CL}_{2}, \mathrm{BUSY}, \mathrm{COM}_{\mathrm{O}}$ $\mathrm{COM}_{3}, \mathrm{~S}_{0}-\mathrm{S}_{31}$
Input/Output Capacitance	ClO_{1}				pF	SYNC
Clock Capacitance	CCLK				pF	CL1

AC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	${ }_{\text {f }}$		200		kHz	$R_{f}=k \Omega$
Clock Cycle	${ }^{t} \mathrm{Cr}_{\phi}{ }_{\text {¢ }}$		5		$\mu \mathrm{S}$	External Clock
Clock Pulse Width High	${ }^{\text {t }}{ }^{\prime} \phi_{H}$				$\mu \mathrm{S}$	External Clock
Clock Pulse Width Low	${ }^{t} W_{\phi} L_{L}$				$\mu \mathrm{S}$	External Clock
$\overline{\text { SCK Cycle }}$	${ }^{t} \mathrm{C}^{\text {r }}$ K	1			$\mu \mathrm{S}$	
SCK Pulse Width High	${ }^{t} \mathrm{WK}_{\mathrm{H}}$				nS	
$\overline{\text { SCK Pulse Width }}$ Low	${ }^{t} \mathbf{W K} \mathrm{~L}_{\mathrm{L}}$				$n S$	
$\overline{\text { SCK }}$ Hold Time	${ }^{\text {H }} \mathrm{HK}_{\mathrm{B}}$	0			nS	after $\overline{B \cup S Y \dagger}$
SI Setup Time	${ }^{\text {t }} \mathrm{SI}_{\mathrm{K}}$	250			nS	to $\overline{\mathrm{SCK}} \uparrow$
SI Hold Time	${ }^{\text {t }} \mathrm{HK}{ }^{\prime}$	200			nS	after $\overline{\text { SCK } \uparrow}$
$\overline{\text { BUSY } \downarrow}$ Delay Time	${ }^{t} \mathrm{DBC}$	1			$\mu \mathrm{S}$	after $\overline{\mathrm{CS} \downarrow}$
$\overline{\text { BUSY } \downarrow \text { Delay }}$ Time	${ }^{\text {t }}$ (K_{B}			3	$\mu \mathrm{S}$	after 8 th $\overline{\text { SCK } \uparrow}$
C / \bar{D} Setup Time	${ }^{\text {t }}{ }^{\text {d }}$ K K	9			$\mu \mathrm{S}$	to 8th $\overline{\text { SCK } \uparrow}$
C/ $\overline{\mathrm{D}}$ Hold Time	${ }^{\text {tHK }}$ D	1			$\mu \mathrm{S}$	after 8th $\overline{\text { SCK } \uparrow}$
$\overline{\mathrm{CS}}$ Setup Time	${ }^{\text {t }} \mathrm{SC}_{\mathrm{K}}$				$\mu \mathrm{S}$	to 1st $\overline{\text { SCK } \downarrow}$
$\overline{\text { CS Hold Time }}$	${ }^{\text {thK }}$	1			$\mu \mathrm{S}$	after 8th $\overrightarrow{\text { SCK } \dagger}$
High Level CS Pulse Width	${ }^{\text {W WH }}$ C	$8{ }^{t} \mathrm{CY}_{\phi}$			$\mu \mathrm{S}$	
Low Level $\overline{\mathrm{CS}}$ Pulse Width	${ }^{\text {tWLC }}$	$8{ }^{\text {t }} \mathrm{CY}_{\phi}$			$\mu \mathrm{S}$	

CLOCK WAVE FORM

SERIAL INTERFACE TIMING
μ PD7225G PACKAGE DIMENSION

NOTES

PROGRAMMABLE LCD CONTROLLER/DRIVER

DESCRIPTION The μ PD7227 is a programmable peripheral device containing all the circuitry necessary for interfacing a microprocessor to a wide variety of dot matrix Liquid Crystal Displays (LCDs). The display controller hardware automatically synchronizes the drive signals for a multiplexed dot matrix LCD containing up to 16 rows and up to 48 columns. The μ PD7227 is fully compatible with most microprocessors, and communicates with them through a 3 -line, 8 -bit serial I/O port. It can be easily configured into multiple chip designs for larger LCD applications, and includes an ASCII 5×7 dot matrix decoder to simplify alphanumeric display data decoding. The μ PD7227 is manufactured with a low-power single 5V CMOS process, and is available in a 64-pin plastic flat package.

FEATURES • Single Chip LCD Controller

- Direct LCD Drive
- Selectable 8- or 16-Backplane Multiplexed Drive
- Programmable Display Configurations
- 8-Row by 40-Column Dot Matrix
- Cascadable into
- 16-Row Multiplexed Backplane Applications
- 40-Column Drive Applications
- Selectable Display Bias Configuration
- Automatic Synchronization of Row and Column Drive Lines
- Dual 40×8 Bit RAMs for Display Data Storage
- Programmable Display Data Addressing
- Individual Dot
- 64-Character ASCII 5×7 Dot Matrix Decoder
- 8-Bit Serial Interface
- Compatible with most 4-Bit, 8-Bit, and 16-Bit Microprocessors
- Fully Cascadable for Larger LCD Applications
- Single +5 V Power Supply
- CMOS Technology
- 64-Pin Plastic Flat Package

SYMBOL	DESCRIPTION
$\mathrm{COL}_{0} \mathrm{COL}_{39}$	LCD Column Drive Outputs
$\mathrm{ROW}_{0}-\mathrm{ROW}_{7}$	LCD Row/Column Drive Outputs
$\mathrm{V}_{\text {SS }}\left(\mathrm{V}_{\mathrm{LCD}}{ }^{\text {a }}\right.$)	Ground
$\mathrm{V}_{\mathrm{LCD}_{1}} \mathrm{~V}_{\mathrm{LCD}_{4}}$	LCD Power Supply
$\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{LCD}_{5}}\right)$	Power Supply Positive
$\overline{\text { SCK }}$	Serial Clock Input
SI	Serial Input
SO/ $\overline{\text { BUSY }}$	Serial Output/Busy Output
$\overline{C E}$	Chip Select
C/D	Command Data Select
SYNC	Synchronization Signal I/O Port for cascaded applications
CL	System Clock Input
RESET	Reset Input
NC	No Connection

μ PD7227G PACKAGE DIMENSIONS

DIGITAL SIGNAL PROCESSOR

Abstract

DESCRIPTION The NEC μ PD 7720 Signal Processing Interface (SPI) is an advanced architecture microcomputer optimized for signal processing algorithms. Its speed and flexibility allow the SPI to efficiently implement signal processing functions in a wide range of environments and applications.

The NEC SPI is the state of the art in signal processing today, and for the future.

APPLICATIONS	- Speech Synthesis and Analysis - Digital Filtering - Fast Fourier Transforms (FFT) - Dual-Tone Multi-Frequency (DTMF) Transmitters/Receivers - High Speed Data Modems - Equalizers - Adaptive Control - Sonar/Radar Image Processing - Numerical Processing
PERFORMANCE BENCHMARKS	- Second Order Digital Filter (BiQuad) - $2.25 \mu \mathrm{~s}$ - \quad INE/COS of Angles - FFAW to Linear Conversion - 32 Point Complex 64 Point Complex
FEATURES	- Fast Instruction Execution - 250 ns - 16 Bit Data Word - Multi-Operation Instructions for Optimizing Program Execution - Large Memory Capacities - Program ROM - Coefficient ROM - Data RAM $\begin{aligned} & 512 \times 23 \text { Bits } \\ & 510 \times 13 \text { Bits } \\ & 128 \times 16 \text { Bits } \end{aligned}$ - Fast (250 ns) $16 \times 16-31$ Bit Multiplier - Dual Accumulators - Four Level Subroutine Stack for Program Efficiency - Multiple I/O Capabilities - Serial - Parallel - DMA - Compatible with Most Microprocessors, Including: - μ PD8080 - μ PD8085 - μ PD8086 - μ PD780 (Z80TM ${ }^{*}$) - Power Supply +5 V - Technology NMOS - Package - 28 Pin Dip

- μ PD8080
- μ PD8085
- μ PD8086
- Power Supply +5 V
- Technology NMOS
- Package - 28 Pin Dip
* Z80 is a trademark of Zilog Corporation.

Fabricated in high speed NMOS, the μ PD7720 SPI is a complete 16 -bit microcomputer on a single chip. ROM space is provided for program and coefficient storage, while the on-chip RAM may be used for temporary data, coefficients and results. Computational power is provided by a 16-bit Arithmetic/Logic Unit (ALU) and a separate 16×16 bit fully parallel multiplier. This combination allows the implementation of a "sum of products" operation in a single 250 nsec instruction cycle. In addition, each arithmetic instruction provides for a number of data movement operations to further increase throughput. Two serial I/O ports are provided for interfacing to codecs and other serially-oriented devices while a parallel port provides both data and status information to conventional $\mu \mathrm{P}$ for more sophisticated applications. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a stand alone microcomputer.

Memory is divided into three types, Program ROM, Data ROM, and Data RAM. The 512×23 bit words of Program ROM are addressed by a 9-bit Program Counter which can be modified by an external reset, interrupt, call, jump, or return instruction.

The Data ROM is organized in 512×13 bit words and is also addressed through a 9-bit ROM pointer (RP Reg.) which may be modified as part of an arithmetic instruction so that the next value is available for the next instruction. The Data ROM is ideal for storing the necessary coefficients, conversion tables and other constants for all your processing needs.

The Data RAM is 128×16 bit words and is addressed through a 7 -bit Data Pointer (DP Reg.). The DP has extensive addressing features that operate simultaneously with arithmetic instructions so that no added time is taken for addressing or address modification.

PIN IDENTIFICATION

| PIN | NAME | I/O | FUNCTION |
| :--- | :--- | :--- | :--- |$|$| No Connection. |
| :--- |
| 1 |

General

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multipler, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add, or other arithmetic operation, and move data between internal registers in a single instruction cycle.

ALU

The ALU is a 16 -bit 2 's complement unit capable of executing 16 distinct operations on virtually any of the SPI's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators (ACCA/ACCB)

Associated with the ALU are a pair of 16-bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction (except NOP). In addition to Zero Result, Sign Carry, and Overflow Flags, the SPI incorporates auxilliary Overflow and Sign Flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as 3 successive additions or subtractions.

FLAG A	SA1	SA0	CA	ZA	OVA1	OVA0
FLAG B	SB1	SB0	CB	ZB	OVB1	OVB0

ACC A/B FLAG REGISTERS

Sign Register (SGN)

When OVA1 (or OVB1) is set, the SA1 (or SB1) bit will hold the corrected sign of the overflow. The SGN Register will use SA1 (SB1) to automatically generate saturation constants $7 \mathrm{FFFH}(+)$ or $8000 \mathrm{H}(-)$ to permit efficient limiting of a calculated valve.

Multiplier

Thirty-one bit results are developed by a 16×16 bit 2 's complement multiplier in 250 ns . The result is automatically latched in 2-16-bit registers M\&N (LSB in N is zero) at the end of each instruction cycle. The ability to have a new product available and to be able to use it in each instruction cycle, provides significant advantages in maximizing processing speed for real time signal processing.

Stack

The SPI contains a 4-level program stack for efficient program usage and interrupt handling.

Interrupt

A single level interrupt is supported by the SPI. Upon sensing a high level on the INT terminal, a subroutine call to location 100 H is executed. The El bit of the status register is automatically reset to 0 thus disabling the interrupt facilities until reenabled under program control.

INPUT/OUTPUT

General
The NEC SPI has 3 communication ports; 2 serial and one 8 -bit parallel, each with their own control lines for interface handshaking. The parallel port also includes DMA control lines (DRQ and $\overline{\mathrm{DACK}}$) for high speed data transfer and reduced processor overhead. A general purpose 2 bit output (see Figure 1) port, rounds out a full complement of interface capability.

Serial I/O
Two shift registers (SI, SO) that are software-configurable to 8 or 16 bits and are externally clocked (SCK) provide simple interface between the SPI and serial peripherals such as, A/D and D/A converters, codecs, or other SPIs.

(1) Data clocked out on falling edge of SCK.
(2) Data clocked in on rising edge of SCK.
(3) Broken line denotes consecutive sending of next data.

The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status. Data transfer is handled through a 16-bit Data Register (DR) that is softwareconfigurable for double or single byte data transfers. The port is ideally suited for operating with 8080,8085 and 8086 processor buses and may be used with other processors and computer systems.

PARALLEL R/W OPERATION

$\overline{\mathbf{C S}}$	A_{0}	$\overline{W R}$	$\overline{\mathbf{R D}}$	OPERATION
1	x	x	x	
X	X	1	1	

(1) Eight MSBs or 8 LSBs of data register (DR) are used depending on DR status bit (DRS).
The condition of $\overline{\text { DACK }}=0$ is equivalent to $A_{0}=\overline{C S}=0$.

Status Register (SR)
MSB

RQM	USF1	USFO	DRS	DMA	DRC	SOC	SIC	EI	0	0	0	0	0	P1	PO

The status register is a 16 -bit register in which the 8 most significant bits may be read by the system's MPU for the latest I/O and processing status.

RQM - (Request for Master): A read or write from DR to IDB sets ROM = 1. An Ext read (write) resets RQM $=0$.

USF1 - (User Flag 1):
USFO - (User Flag 0):
DRS - (DR Status):

DMA- (DMA Enable)

DRC - (DR Control)
SOC - (SO Control):
SIC - (SI Control) :
EI - (Enable Interrupt):
P0/P1 (Ports 0 and 1):

General purpose flags which may be read by an external processor for user defined signalling

For 16 bit DR transfers $(D R C=0) D R S=1$ after first 8 bits have been transferred, DRS $=0$ after all 16 bits

DMA $=0$ (Non DMA transfer mode) $D M A=1$ (DMA transfer mode)
$D R C=0$ (16 bit mode), $D R C=1$ (8 bit mode)
$S O C=0$ (16 bit mode), SOC $=1$ (8 bit mode)
SIC $=0$ (16 bit mode), SIC = 1 (8 bit mode)
$\mathrm{EI}=0$ (interrupts disabled), $\mathrm{EI}=1$ (interrupts enabled)
P0 and P1 directly control the state of output pins PO and P1

INSTRUCTIONS The SPI has 3 types of instructions all of which are one word, 23 bits long and execute in 250 ns .
A) Arithmetic/Move-Return ($O P=00 / R T=01$)

	2221	$20 \quad 19 \quad 18$	$17 \quad 16 \quad 15$	14	$13 \quad 12$	$11 \quad 10 \quad 9$	8	7	65	4	3	2	1
OP	00	P. SELECT	ALU	A s L	DPL	DPH.M			SRC			DS	
RT	01	Same as OP instruction											

There are two instructions of this type, both of which are capable of executing all ALU functions listed in Table 2 on the value specified by the ALU input (i.e., P select field see Table 1).

Table 1. OP, RT

	P-Select Field		
Mnemonic	$D_{20} \quad D_{19}$	ALU Input	
RAM	0	0	RAM
IDB	0	1	${ }^{*}$ Internal Data Bus
M	1	0	M Register
N	1	1	N Register

*Any value on the on-chip data bus. Value may be selected from any of registers listed in Table 7 source register selections.

Table 2. OP, RT

Mnemonic	ALU Field				ALU Function	$\begin{aligned} & \text { Flag A } \\ & \text { Flag B } \end{aligned}$	SA1	SAO	CA	ZA	OVA1	OVAO
	D18	D17	D16	D15			SB1	SB0	CB	2B	OVB1	OVBO
NOP	0	0	0	0	No Operation		-	-	-	-	-	-
OR	0	0	0	1	OR		\emptyset	\downarrow	\uparrow	\emptyset	\emptyset	0
AND	0	0	1	0	AND		0	\downarrow	\downarrow	0	\emptyset	0
XOR	0	0	1	1	Exclusive OR		\emptyset	\downarrow	\downarrow	0	\emptyset	\emptyset
SUB	0	1	0	0	Subtract		\downarrow	\uparrow	\downarrow	\uparrow	\downarrow	0
ADD	0	1	0	1	ADD		\ddagger.	\downarrow	\downarrow	\ddagger	\uparrow	1
SBB	0	1	1	0	Subtract with Borrow		\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	1
ADC	0	1	1	1	Add with Carry		\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	1
DEC	1	0	0	0	Decrement ACC		\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	1
INC	1	0	0	1	Increment ACC		\downarrow	\uparrow	\downarrow	\downarrow	\uparrow	\downarrow
CMP	1	0	1	0	Complement ACC (1's Complement)		\uparrow	\uparrow	\downarrow	0	\emptyset	0
SHR1	1	0	1	1	1-bit R-Shift		\downarrow	\downarrow	\downarrow	\emptyset	\emptyset	\emptyset
SHL1	1	1	0	0	1-bit L-Shift		\downarrow	\downarrow	\downarrow	0	0	0
SHL2	1	1	0	1	2-bit L-Shift		\emptyset	\downarrow	\uparrow	0	\emptyset	\emptyset
SHL4	1	1	1	0	4-bit L-Shift		\emptyset	\downarrow	\downarrow	0	\emptyset	0
XCHG	1	1	1	1	8-bit Exchange		\emptyset	\downarrow	\downarrow	\emptyset	\emptyset	0

\uparrow Affected by result

- No affect
- Reset

Table 3. OP, RT

Mnemonic	ASL Field	Acc Selection
	D14	
	0	ACC A
ACCB	1	ACC B

Table 4. OP, RT

	DP $_{\text {L F Field }}$		
Mnemonic	\mathbf{D}_{13}	\mathbf{D}_{12}	DP $_{3}$-DP
DPNOP	0	0	No Operation
DPINC	0	1	Increment DP
DPDEC	1	0	Decrement DP
DPCLR	1	1	Clear DPL

Table 5. OP, RT

Table 6. OP,RT

Mnemonic	RPDCR	
	D_{8}	Operation
	0	No Operation
RPDEC	1	Decrement RP

Besides the arithmetic functions these instructions can also modify (1) the RAM Data Pointer DP, (2) the Data ROM Pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register (the possible source and destination registers are listed in Tables 7 and 8 respectively). The difference in the two instructions of this type is that one executes a subroutine or interrupt return at the end of the instruction cycle while the other does not.

Table 7. OP, RT

	SRC Field				
Mnemonic	D_{7}	D_{6}	D_{5}		
Specified Register					
NON	0	0	0	0	NO Register
A	0	0	0	1	ACC A (Accumulator A)
B	0	0	1	0	ACC B (Accumulator B)
TR	0	0	1	1	TR Temporary Register
DP	0	1	0	0	DP Data Pointer
RP	0	1	0	1	RP ROM Pointer
RO	0	1	1	0	RO ROM Output Data
SGN	0	1	1	1	SGN Sign Register
DR	1	0	0	0	DR Data Register
DRNF	1	0	0	1	DR Data No Flag (1)
SR	1	0	1	0	SR Status
SIM	1	0	1	1	SI Serial in MSB (2)
SIL	1	1	0	0	SI Serial in LSB (3)
K	1	1	0	1	K Register
L	1	1	1	0	L Register
MEM	1	1	1	1	RAM

(1) DR to IDB RQM not set. IN DMA DRO not set.
(2) First bit in goes to MSB, last bit to LSB.
(3) First bit in goes to LSB, last bit to MSB (bit reversed).

Table 7 - List of Registers Specified by the Source Field (SRC)

Table 8. OP, RT, LDI

Mnemonic	DST Field				Specified Register
	D_{3}	D_{2}	D1	D_{0}	
@NON	0	0	0	0	NO Register
@A	0	0	0	1	ACC A (Accumulator A)
@ ${ }^{\text {B }}$	0	0	1	0	Acc B (Accumulator B)
@TR	0	0	1	1	TR Temporary Register
@DP	0	1	0	0	DP Data Pointer
@RP	0	1	0	1	RP ROM Pointer
@DR	0	1	1	0	DR Data Register
@SR	0	1	1	1	SR Status Register
@SOL	1	0	0	0	SO Serial Out LSB (1)
@SOM	1	0	0	1	SO Serial Out MSB (2)
@K	1	0	1	0	K (Mult)
@KLR	1	0	1	1	IDB \rightarrow K ROM \rightarrow L (3)
@KLM	1	1	0	0	Hi RAM \rightarrow K IDB \rightarrow L (4)
@L	1	1	0	1	L (Mult)
@NON	1	1	1	0	NO Register
@MEM	1	1	1	1	RAM

(1) LSB is first bit out.
(2) MSB is first bit out.
(3) Internal data bus to K and ROM to L register.
(4) Contents of RAM address specified by $\mathrm{DP}_{6}=1$ (i.e., $1, \mathrm{DP}_{5}$, $D P_{4},-D P_{0}$) is placed in K register. IDB is placed in L.
Table 8 - List of Registers Specified by the Destination Field (DST)
B) Jump/Call/Branch
16
$15 \quad 14$ 13 $12 \quad 11$ $\begin{array}{lllllll}10 & 9 & 8 & 7 & 6 & 5 & 4\end{array}$ $\begin{array}{llll}3 & 2 & 1 & 0\end{array}$

10	BRCH	CND	NA	

JP Instruction Field Specifications

Three types of execution address modification instructions are accommodated by the processor and are listed in Table 9. All of the instructions, if unconditional or the specified condition is true, take their next program execution address from the Next Address field (NA), otherwise PC = PC +1 .

Table 9. Branch Field Selections (BRCH)

20	19	18	Instruction
1	0	0	Uncondition jump
1	0	1	Subroutine call
0	1	0	Condition jump

For the conditional jump instruction, the condition field specifies the jump condition. Table 10 lists all the instruction mnemonics of the J/C/B OP codes.
The SPI offers all the execution modification instructions necessary for efficient, data, I/O and arithmetic control.

Table 10. Condition Field Specifications

Mnemonic	BRCH/CND Fields								Conditions
	D_{20}	D_{19}	D_{18}	D17	D_{16}	D_{15}		D_{13}	
JMP	1	0	0	0	0	0	0	0	No Condition
CALL	1	0	1	0	0	0	0	0	No Condition
JNCA	0	1	0	0	0	0	0	0	$C A=0$
JCA	0	1	0	0	0	0	0	1	$C A=1$
JNCB	0	1	0	0	0	0	1	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	$C B=1$
JNZA	0	1	0	0	0	1	0	0	$\mathrm{ZA}=0$
JZA	0	1	0	0	0	1	0	1	$\mathrm{ZA}=1$
JNZB	0	1	0	0	0	1	1	0	$\mathrm{ZB}=0$
JZB	0	1	0	0	0	1	1	1	$\mathrm{ZB}=1$
JNOVAO	0	1	0	0	1	0	0	0	OVA0 $=0$
Jovao	0	1	0	0	1	0	0	1	OVAO $=1$
JNOVB0	0	1	0	0	1	0	1	0	OVB0 $=0$
JoVBo	0	1	0	0	1	0	1	1	OVB0 $=1$
JNOVA1	0	1	0	0	1	1	0	0	OVA1 $=0$
JoVA1	0	1	0	0	1	1	0	1	OVA1 $=1$
JNOVB1	0	1	0	0	1	1	1	0	OVB1 $=0$
JOVB1	0	1	0	0	1	1	1	1	OVB1 $=1$
JNSAO	0	1	0	1	0	0	0	0	SAO $=0$
JSAO	0	1	0	1	0	0	0	1	SAO $=1$
JNSB0	0	1	0	1	0	0	1	0	SBO $=0$
JSBO	0	1	0	1	0	0	1	1	SBO $=1$
JNSA1	0	1	0	1	0	1	0	0	SA1 $=0$
JSA1	0	1	0	1	0	1	0	1	SA1 $=1$
JNSB1	0	1	0	1	0	1	1	0	SB1 $=0$
JSB1	0	1	0	1	0	1	1	1	SB1 $=1$
JDPLO	0	1	0	1	1	0	0	0	DP ${ }_{\text {L }}=0$
JDPLF	0	1	0	1	1	0	0	1	$D P_{L}=F(H E X)$
JNSIAK	0	1	0	1	1	0	1	0	SI ACK $=0$
JSIAK	0	1	0	1	1	0	1	1	SI ACK $=1$
JNSOAK	0	1	0	1	1	1	0	0	SO ACK $=0$
JSOAK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM $=0$
JROM	0	1	0	1	1	1	1	1	RQM $=1$

*BRCH or CND values not in this table are prohibited.

んPD7720

C) Load Data (LDI)

22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

11	ID	DST

The Load Data instruction will take the 16 -bit value contained in the Immediate Data field (ID) and place it in the location specified by the Destination field (DST) (see Table 8).

Load Data Field Specifications

INSTRUCTION EXECUTION TIMING
ABSOLUTE MAXIMUM Voltage (VCc Pin) -0.5 to +7.0 Volts (1)
RATINGS* Voltage, Any Input -0.5 to +7.0 Volts (1)
Voltage, Any Output -0.5 to +7.0 Volts (1)
Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: (1) With respect to GND.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent : damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10 \sim+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
Input Low Voltage	VIL	-0.5		0.8	V	
Input High Voitage	V IH	2.0		$\mathrm{V}_{\text {CC }}+0.5$	V	
CLK Low Voltage	$V_{\phi L}$	-0.5		0.45	V	
CLK High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	3.5		$\mathrm{V}_{\text {CC }}+0.5$	V	
Output Low Voltage	VOL			0.45	V	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	V OH	2.4			V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
Input Load Current	ILIL			-10	$\mu \mathrm{A}$	$V_{1 N}=O V$
Input Load Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=V_{\text {CC }}$
Output Float Leakage	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Output Float Leakage	${ }_{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.47 \mathrm{~V}$
Power Supply Current	ICC		200	280	mA	

CAPACITANCE

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK, SCK Input Capacitance	C_{ϕ}			20	pF	
Input Pin Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$
Output Pin Capacitance	COUT			20	pF	

$\mathrm{T}_{\mathrm{a}}=-10 \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK Cycle Time	$\phi_{C Y}$	125		2000	ns	
CLK Pulse Width	ϕ_{D}	50			ns	
CLK Rise Time	ϕ R			20	ns	
CLK Fall Time	ϕ_{F}			20	ns	
Address Setup Time for $\overline{\mathrm{RD}}$	tAR	0			ns	
Address Hold Time for $\overline{\mathrm{RD}}$	tRA	0			ns	
RD Pulse Width	t_{RR}	200			ns	
Data Delay from $\overline{\mathrm{RD}}$	${ }^{\text {t R D }}$			150	ns	$C_{L}=100 \mathrm{pF}$
Read to Data Floating	${ }^{\text {t }}$ DF	20		100	ns	$C_{L}=100 \mathrm{pF}$
Address Setup Time for $\overline{W R}$	t AW	0			ns	
Address Hold Time for $\overline{\text { WR }}$	twA	0			ns	
$\overline{\text { WR Pulse Width }}$	tWW	200			ns	
Data Setup Time for $\overline{W R}$	tDW	150			ns	
Data Hold Time for $\overline{W R}$	tWD	0			ns	
DRQ Delay	${ }^{\text {t }}$ AM			150	ns	$C_{L}=100 \mathrm{pF}$
SCK Cycle Time	${ }^{\text {t }}$ SCY	480		DC	ns	
SCK Pulse Width	${ }^{\text {t SCK }}$	230			ns	
SCK Rise/Fall Time	$t_{\text {RSC }}$			20	ns	
SORQ Delay	tDRQ	30		150	ns	$C_{L}=100 \mathrm{pF}$
$\overline{\text { SOEN Setup Time }}$	tsoc	50			ns	
$\overline{\text { SOEN Hold Time }}$	${ }^{\text {t CSO }}$	10	;		ns	
SO Delay	tDCK			150	ns	
SO Delay from SORQ	tDZRQ	*				
SO Delay from SCK	tDZSC	*				
SO Delay from $\overline{\text { SOEN }}$	${ }^{\text {t }}$ DZE	*				
$\overline{\text { SOEN }}$ to SO Floating	${ }^{\text {t H Z }}$	*			:	
SCK to SO Floating	tHZSC	*				
SORO to SO Floating	thZRO	*				
$\overline{\text { SIEN, SI Setup Time }}$	${ }^{t} \mathrm{DC}$	50			ns	
SIEN, SI Hold Time	${ }^{t} \mathrm{CD}$	20			ns	
$\mathrm{P}_{0}, \mathrm{P}_{1}$ Delay	t DP			300	ns	
RST Pulse Width	${ }^{\text {t RST }}$	4			$\phi_{C Y}$	
INT Pulse Width	tINT	8			$\phi C Y$	

[^5]CLOCK

WRITE OPERATION

AO, $\overline{C S}, \overline{\text { DACK }}$

DMA OPERATION

SERIAL TIMING

TIMING WAVEFORMS (CON'T.)

RST

INT

μ PD8155
 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

Abstract

DESCRIPTION The μ PD8155 and μ PD8156 are μ PD8085A family components having 256×8 Static RAM, 3 programmable I/O ports and a programmable timer. They directly interface to the multiplexed μ PD8085A bus with no external logic. The μ PD8155 has an active low chip enable while the μ PD8156 is active high.

FEATURES - 256×8-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt, $\pm 10 \%$
- Directly interfaces to the μ PD8085A and μ PD8085A-2
- Available in $\mathbf{4 0}$ Pin Plastic Packages

- μ PD8155: $\overline{C E}$
μ PD8156: CE

The μ PD8155 and μ PD8156 contain 2048 bits of Static RAM organized as 256×8. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the μ PD8085A as a chip select.

The two general purpose 8-bit ports (PA and PB) may be programmed for input or output either in interrupt or status mode. The single 6 -bit port (PC) may be used as control for PA and PB or general purpose input or output port. The μ PD8155 and μ PD8156 are programmed for their system personalities by writing into their Command/Status Registers (C/S) upon system initialization.

The timer is a single 14 -bit down counter which is programmable for 4 modes of operation; see Timer Section.

Operating Temperature. Storage Temperature (Prastic Package). $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Voltage on Any Pin . - 0.3 to +7 Volts ${ }^{(1)}$ Voltage on Any Pin
Power Dissipation 1.5 W

Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION
μ PD8155/8156

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 39,38,37 \end{aligned}$	$\begin{aligned} & \mathrm{PC}_{3}, \mathrm{PC}_{4}, \mathrm{PC}_{5} \\ & P C_{2}, P C_{1}, P C_{0} \end{aligned}$	Port C	Used as control for PA and PB or as a 6-bit general purpose port
3	TIMER IN	Timer Clock In	Clock input to the 14 -bit binary down counter
4	RESET	Reset In	From μ PD8085A system reset to set PA, PB, PC to the input mode
6	TIMER OUT	Timer Counter Output	The output of the timer function
7	$10 / \bar{M}$	I/O or Memory Indicator	Selects whether operation to and from the chip is directed to the internal RAM or to I/O ports
8	CE/ $/ \overline{\mathrm{CE}}$	Chip Enable	Chip Enable Input. Active low for μ PD8155 and active high for μ PD81 56
9	$\overline{\mathrm{RD}}$	Read Strobe	Causes Data Read
10	\bar{W}	Write Strobe	Causes Data Write
11	ALE	Address Low Enable	Latches low order address in when valid
12-19	$A D_{0}-A D_{7}$	Low Address/Data	3-State address/data bus to interface directly to μ PD8085A
20	$\mathrm{V}_{\text {SS }}$	Ground	Ground Reference
21-28	$P A_{0}-P A_{7}$	Port A	General Purpose 1/O Port
29-36	$\mathrm{PB}_{0}-\mathrm{PB} 7$	Port B	General Purpose 1/O Port
40	$\mathrm{V}_{\text {CC }}$	5 Volt Input	Power Supply

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input Low Voltage			VIL	-0.5		0.8	V	
Input High Voltage		VIH	2.0		$\mathrm{V}_{\text {cc }}+0.5$	V		
Output Low Voltage		VOL			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$	
Output High Voltage		VOH	2.4			V	$\mathrm{IOH}=400 \mu \mathrm{~A}$	
Input Leakage		IIL			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$	
Output Leakage Current		ILO			± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{V}_{\text {CC }} \end{aligned}$	
VcC Supply Current		ICC			180	mA		
Chip Enable Leakage	μ PD81 55	IIL (CE)			+100	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {cc }}$ to $0 V$	
	μ PD8156	IIL (CE)			-100	$\mu \mathrm{A}$		

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		8155/8156		8155-2/8156-2			
		MIN	MAX	MIN	MAX		
Address to Latch Set Up Time	${ }^{\text {t }}$ AL	50		30		ns	
Address Hold Time after Latch	${ }^{\text {t }}$ LA	80		30		ns	
Latch to READ/WRITE Control	${ }_{\text {t }} \mathrm{LC}$	100		40		ns	
Valid Data Out Delay from READ Control	${ }_{\text {t }}^{\text {R }}$ D		170		140	ns	
Address Stable to Data Out Valid	${ }^{\text {t }}$ AD		400		330	ns	
Latch Enable Width	${ }_{\text {t }} \mathrm{LL}$	100		70		ns	
Data Bus Float After READ	${ }^{\text {t }}$ RDF	0	100	0	80	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }} \mathrm{CL}$	20		10		ns	
READ/WRITE Control Width	${ }^{\text {t }}$ CC	250		200		ns	
Data In to WRITE Set Up Time	tow	150		100		ns	
Data In Hold Time After WRITE	twD	0		0		ns	
Recovery Time Between Controls	tr V	300		200		ns	150 pF Load
WRITE to Port Output	twp		400		300	ns	
Port Input Setup Time	tPR	70		50		ns	
Port Input Hold Time	${ }_{\text {tR }}$	50		10		ns	
Strobe to Buffer Full	tSBF		400		300	ns	
Strobe Width	${ }^{\text {t }}$ S S	200		150		ns	
READ to Buffer Empty	${ }^{\text {t }}$ RBE		400		300	ns	
Strobe to INTR On	${ }_{\text {T }} \mathrm{S}_{1}$		400		300	ns	
READ to INTR Off	${ }_{\text {trol }}$		400		300	ns	
Port Setup Time to Strobe	tPSS	50		0		ns	
Port Hold Time After Strobe	tPHS	120		100		ns	
Strobe to Buffer Empty	${ }^{\text {t }}$ SBE		400		300	ns	
WRITE to Buffer Full	tWBE		400		300	ns	
WRITE to INTR Off	twi		400		300	ns	
TIMER-IN to TIMER-OUT Low	tTL		400		300	ns	
TIMER-IN to TIMER-OUT High	tTH		400		300	ns	
Data Bus Enable from READ Control	${ }^{\text {tr }}$ RDE	10		10		ns	

READ CYCLE

WRITE CYCLE

STROBED INPUT MODE

The Command Status Register is an 8 -bit register which must be programmed before the μ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 (X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address $X X X X X 000$. The pattern returned will be a 7 -bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

TM2	TM1	IEB	IEA	PC $_{2}$	PC_{1}	PB	PA

where:

TM2-TM1	Define Timer Mode
IEB	Enable Port B Interrupt
IEA	Enable Port A Interrupt
$\mathrm{PC}_{2} \cdot \mathrm{PC}_{1}$	Define Port C Mode
$\mathrm{PB} / \mathrm{PA}$	Define Port B / A as In or Out (1)

The Timer mode of operation is programmed as follows during command status write:

TM2	TM1	TIMER MODE
0	0	Don't Affect Timer Operation
0	1	Stop Timer Counting
1	0	Stop Counting after TC
1	1	Start Timer Operation

Interrupt enable status is programmed as follows:

IEB/IEA	INTERRUPT ENABLE PORT B/A
0	No
1	Yes

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

PC $_{2}$	PC $_{1}$	PORT C MODE
0	0	ALT 1
0	1	ALT 3
1	0	ALT 4
1	1	ALT 2

The function of each pin of port \mathbf{C} in the four possible modes is outlined as follows:

PIN	ALT 1	ALT 2	ALT 3 (2)	ALT 4 (2)
PCO	IN	OUT	A INTR	A INTR
PC1	IN	OUT	A BF	A BF
PC2	IN	OUT	A STB	A STB
PC3	IN	OUT	OUT	B INTR
PC4	IN	OUT	OUT	B BF
PC5	IN	OUT	OUT	B STB

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; 1 = Output
In ALT 3 and ALT 4 mode the control signals are initialized as follows:

CONTROL	INPUT	OUTPUT
STB (Input Strobe)	Input Control	Input Control
INTR (Interrupt Request)	Low	High
BF (Buffer Full)	Low	Low

COMMAND STATUS READ

$T I$	$I N T E$ B	B $B F$	INTR B	INTE A	A $B F$	INTR

Where the function of each bit is as follows:

TI	Defines a Timer Interrupt. Latched high at TC and reset after reading the CS register or starting a new count.
INTE B/A	Defines If Port B/A Interrupt is Enabled. High = enabled.
B/A BF	Defines If Port B/A Buffer is Full-Input Mode or Empty-Output Mode. High $=$ active.
INTR B/A	Port B/A Interrupt Request. High $=$ active.

The programming address summary for the status, ports, and timer are as follows:

I/O Address	Number of Bits	Function
$X X X X \times 000$	8	Command Status
$X X X \times \times 001$	8	$P A$
$X X X X \times 010$	8	$P B$
$X X X \times \times 011$	6	PC
$X X X X \times 100$	8	Timer-Low
$X X X X \times 101$	8	Timer-High

TIMER The Internal Timer is a 14 -bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

M2	M1	Operation
0	0	High at Start, Low During Second Half of Count
0	1	Square Wave (Period = Count Length, Auto Reload at TC)
1	0	Single Pulse at TC
1	1	Single Pulse at TC with Auto Reload

Programming the timer requires two words to be written to the μ PD8155/8156 at I/O address $\mathrm{XXXXX100}$ and $\mathrm{XXXXX101}$ for the low and high order bytes respectively. Valid count length must be between $\mathbf{2}_{H}$ and $3 F F F_{H}$. The bit assignments for the high and low programming words are as follows:

Word	Bit Pattern								I/O Address
High Byte	M2	M1	T13	T12	T11	T10	T9	T8	XXXXX101
Low Byte	T7	T6	T5	T4	T3	T2	T1	TO	XXXXX100

The control of the timer is performed by TM2 and TM1 of the Command Status Word.
Note that counting will be stopped by a hardware reset and a START command must be issued via the Command Status Register to begin counting. A new mode and/or count length can be loaded while counter is counting, but will not be used until a START command is issued.

When using the timer of the 8155/8156 care must be taken if the timer input is an external, nonsynchronous event. To sync this signal to the system clock the flip-flop shown should be used.

PACKAGE OUTLINE μ PD8155C μ PD8156C

Plastic		
ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

EIGHT-BIT INPUT/OUTPUT PORT

Abstract

DESCRIPTION The μ PB8212 input/output port consists of an 8 -bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

FEATURES - Fully Parallel 8-Bit Data Register and Buffer

- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current - 0.25 mA Max.
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080A Processor
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count
- Available in 24 -pin Plastic and Cerdip Packages

$\overline{D S}_{1} \square^{1}$		24	V_{cc}
mo ${ }^{2}$		23	$\overline{\text { INT }}$
$\mathrm{DO}_{1} \mathrm{C}^{3}$		22	DI_{8}
$\mathrm{DO}_{1} \square_{4}$		21	DO_{8}
$\mathrm{DI}_{2} \mathrm{C}_{5}$		20	Di_{7}
$\mathrm{DO}_{2} \mathrm{O}^{6}$	${ }_{\mu}$ PB 8212	19	DO_{7}
$\mathrm{Di}_{3} \square_{7}$		18	DI_{6}
$\mathrm{DO}_{3} \square^{8}$		17	DO_{6}
$\mathrm{Di}_{4} \mathrm{O}_{9}$		16	DI_{5}
$\mathrm{DO}_{4} \mathrm{D}^{10}$		15	DO_{5}
stb 11		14	$\overline{\text { CLR }}$
GND \square^{12}		13	DS_{2}

STB	MD	$\left(\overline{\mathrm{DS}}_{\mathbf{1}} \cdot \mathrm{DS}_{\mathbf{2}}\right)$	DATA OUT EQUALS
0	0	0	Three-State
1	0	0	Three-State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
$\mathbf{1}$	0	1	Data In
0	1	1	Data In
1	1	1	Data In

$\overline{\mathrm{CLR}}$	$\left(\overline{\mathrm{DS}}_{\mathbf{1}} \cdot \mathrm{DS}_{\mathbf{2}}\right)$	$\mathbf{S T B}$	$\mathbf{S R}(2)$	$\overline{\mathrm{NT}}$
0	0	0	1	1
0	1	0	1	0
1	0	0	3	$(3$
1		0	1	1
1	0		0	0
1	1	0	1	0
1	1		0	0

Notes: (1) $\overline{C L R}$ resets data latch sets SR flip-flop. (No effect on output buffer)
(2) Internal SR flip-flop
(3) Previous data remains
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . -0.5 to +7 Volts
All Input Voltages . -1.0 to +5.5 Volts
Output Currents . 125 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Load Current ACK, DS 2 , CR, DI_{1} - DI 8 Inputs	${ }^{\prime} \mathrm{F}$		-0.14	-0.25	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current MD Input	If		-0.25	-0.75	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current $\overline{\mathrm{DS}}_{1}$ Input	IF		-0.26	-1.0	mA	$V_{F}=0.45 \mathrm{~V}$
Input Leakage Current ACK, DS, CR, DI_{1} - DI Inputs	IR			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Leakage Current MD Input	$I_{\text {R }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Leakage Current $\overline{\mathrm{DS}}_{1}$. Input	${ }^{\prime} \mathrm{R}$			40	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Forward Voltage Clamp	V_{C}		-0.85	-1.3	V	$I^{\prime}=-5 \mathrm{~mA}$
Input "Low" Voltage	VIL			0.85	V	
Input "High" Voltage	VIH	2.0			V	
Output "Low" Voltage	V OL		0.26	0.45	V	$1 \mathrm{OL}=15 \mathrm{~mA}$
Output "High" Voltage	VOH	3.65	4.0		V	$1 \mathrm{OH}=-1 \mathrm{~mA}$
Short Circuit Output Current	ISC	-15	-38	-75	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$
Output Leakage Current High Impedance State	10			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}$
Power Supply Current	ICC		103	130	mA	

CAPACITANCE (1) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BI}} \mathrm{AS}=2.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		7	12	pF	$\overline{\mathrm{DS}}_{1}$, MD
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$		4	9	pF	$\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$
Output Capacitance	COUT		6	12	pF	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$

Note: (1) This parameter is periodically sampled and not 100% tested

AC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Pulse Width	${ }^{\text {tpw }}$	30			ns	Input Pulse Amplitude $=2.5 \mathrm{~V}$ Input Rise and Fall Times $=5 \mathrm{~ns}$ Between 1V and 2V Measurement made at 1.5 V with 15 mA (1) and 30 pF Test Load (2)
Data To Output Delay	${ }^{\text {tpd }}$		20	30	ns	
Write Enable To Output Delay	${ }^{\text {twe }}$			40	ns	
Data Setup Time	${ }^{\text {t }}$ set	15			ns	
Data Hold Time	th	20			ns	
Reset to Output Delay	tr_{r}			40	ns	
Set To Output Delay	ts			30	ns	
Output Enable/Disable Time	t_{e} / t_{d}			45	ns	
Clear To Output Delay	t_{c}			55	ns	

Notes: (1) $R_{1}=300 \Omega / 10 \mathrm{~K} \Omega ; R_{2}=600 \Omega / 1 \mathrm{~K} \Omega$
(2) $R_{1}=300 \Omega ; R_{2}=600 \Omega$

нPB8212

Data Latch

The 8 flip-flops that compose the data latch are of a " D " type design. The output (Q) of the flip-flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low.

The data latch is cleared by an asynchronous reset input ($\overline{\mathrm{CLR}}$).
(Note: Clock (C) Overrides Reset (CLR).)

Output Buffer

The outputs of the data latch (Q) are connected to three-state, non-inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch (Q) or disabling the buffer, forcing the output into a high impedance state (three-state).
This high-impedance state allows the designer to connect the μ PB8212 directly to the microprocessor bi-directional data bus.

Control Logic

The μ PB8212 has four control inputs: $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, \mathrm{MD}$ and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip-flop.

$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$ (Device Select)

These two inputs are employed for device selection. When $\overline{\mathrm{DS}}_{1}$ is low and DS_{2} is high $\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{C L R}$ input (active low). When the (SR) flipflop is set it is in the non-interrupting state.
The output (Q) of the (SR) flip-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{\mathrm{DS}}{ }_{1} \cdot \mathrm{DS}_{2}$). The output of the "NOR" gate ($\overline{\mathrm{INT}}$) is active low (interrupting state) for connection to active low input priority generating circuits.

MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.

When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\mathrm{DS}_{1} \cdot \mathrm{DS}_{2}$).
When MD is in the input mode (low) the output buffer state is determined by the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

STB is employed as the clock (C) to the data latch for the input mode ($M D=0$) and to synchronously reset the service request flip-flop (SR).
Note that the SR flip-flop triggers on the negative edge of STB which overrides $\overline{C L R}$.

TEST CIRCUIT
Note: (1) Including Jig and Probe Capacitance

PACKAGE OUTLINE μ PB8212C

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$
		-0.0019

(CERDIP)

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
K	15.24	0.6
L	13.5	0.53
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01{ }_{-0.004}^{+0.002}$

NOTES

PRIORITY INTERRUPT CONTROLLER

The μ PB8214 is an eight-level priority interrupt controller. Designed to simplify interrupt driven microcomputer systems, the $\mu \mathrm{PB} 8214$ requires a single +5 V power supply and is packaged in a 24 pin plastic Dual-in-line package.

The μ PB8214 accepts up to eight interrupts, determines which has the highest priority and then compares that priority with a software created current status register. If the incoming requires is of a higher priority than the interrupt currently being serviced, an interrupt request to the processor is generated. Vector information that identifies the interrupting device is also generated.

The interrupt structure of the microcomputer system can be expanded beyond eight interrupt levels by cascading μ PB8214s. The μ PB8214's interrupt and vector information outputs are open collector and control signals are provided to simplify expansion of the interrupt structure.

FEATURES • Eight Priority Levels

- Current Status Register and Priority Comparator
- Easily Expanded Interrupt Structure
- Single +5 Volt SupplyOperating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output and Supply Voltages -0.5 to +7 Volts
All Input Voltages 1.0 to +5.5 Volts
Output Currents 100 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

ABSOLUTE MAXIMUM

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
Input Clamp Voltage (all inputs)	V_{C}			-1.0	V	$\mathrm{I}^{\mathrm{C}}=5 \mathrm{~mA}$
Input Forward Current: ETLG input all other inputs	IF		$\begin{aligned} & -.15 \\ & -.08 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.5 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
Input Reverse Current: ETLG input all other inputs	${ }^{\prime} \mathrm{R}$			$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input LOW Voltage: all inputs	$\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Input HIGH Voltage: all inputs	VIH	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Power Supply Current	ICC		90	130	mA	(2)
Output LOW Voltage: all outputs	V OL		. 3	. 45	V	$1 \mathrm{OL}=10 \mathrm{~mA}$
Output HIGH Voltage: ENLG output	V OH	2.4	3.0		V	$1 \mathrm{OH}^{\prime}=1 \mathrm{~mA}$
Short Circuit Output Current: ENLG output	IOS	20	-35	-55	mA	$\mathrm{V}_{\text {OS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.0 \mathrm{~V}$
Output Leakage Current: $\overline{\mathrm{NT}}$ and $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$	ICEX			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$

CAPACITANCE (3) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
Input Capacitance	CIN		5	10	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$
Output Capacitance	COUT		7	12	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\mathrm{f}=1 \mathrm{mHz}$

AC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
$\overline{\text { CLK }}$ Cycle Time	tcy	80	50		ns	Input pulse amplitude: 2.5 Volts
$\overline{\text { CLK }}$, ECS, $\overline{\text { NT Pulse Width }}$	tPW	25	15		ns	
INTE Setup Time to $\overline{\text { CLK }}$	tiss	16	12		ns	
INTE Hold Time after CIK	tish	20	10		ns	
ETLG Setup Time to CLK	tETCS ${ }^{(4)}$	25	12		ns	Input rise and fall times: 5 ns between 1 and 2 Volts
ETLG Hold Time After $\overline{\text { CLK }}$	${ }_{\text {IETCH }}{ }^{(4)}$	20	10		ns	
ECS Setup Time to CLK	tECCS (4)	80	50		ns	
ECS Hold Time After $\overline{\text { CLK }}$	${ }^{\text {T ECCH }}{ }^{(5)}$	0			ns	
ECS Setup Time to CLK	tecrs (5)	110	70		ns	
$\overline{\text { ECS }}$ Hold Time After CLK	TECRH ${ }^{(5)}$	0				Output loading of 15 mA and 30 pF .
ECS Setup Time to $\overline{\text { CLK }}$.	tECSS (4)	75	70		ns	
$\overline{\text { ECS }}$ Hold Time After CLK	tECSH ${ }^{(4)}$	0			ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to $\overline{\mathrm{CLK}}$	tDCs (4)	70	50		ns	
$\overline{\text { SGS }}$ and $\overline{\bar{B}_{0}}-\overline{B_{2}}$ Hold Time After $\overline{\text { CLK }}$	tDCH (4)	0			ns	Speed measurements taken at the 1.5 Volts levels.
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Setup Time to $\overline{\mathrm{CLK}}$	tres (5)	90	55		ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After $\overline{\mathrm{CLK}}$	tren (5)	0			ns	
	tics	55	35		nis	
$\overline{\text { CLK }}$ to INT Propagation Delay	${ }^{\text {t }} \mathrm{Cl}$		15	25	ns	
$\overline{\bar{R}_{0}}-\overline{\bar{R}_{7}}$ Setup Time to INT	tris (6)	10	0		ns	
$\overline{\bar{R}_{0}}-\overline{R_{7}}$ Hold Time After INT	trin (6)	35	20		ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ to $\overline{\bar{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	tra		80	100	ns	
$\overline{\mathrm{ELR}}$ to $\overline{\bar{A}_{0}}-\overline{A_{2}}$ Propagation Delay	tela		40	55	ns	
ECS to $\overline{\bar{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	tECA		100	120	ns	
ETLG to $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$ Propagation Delay	teTA		35	70	ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to ECS	tDECS (6)	15	10		ns	
$\overline{\text { SGS }}$ and $\overline{\bar{B}_{0}}-\overline{\mathrm{B}_{2}}$ Hold Time After $\overline{\mathrm{ECS}}$	TDECH (6)	15	10		ns	
$\overline{R_{0}}-\overline{\bar{R}_{7}}$ to ENLG Propagation Delay	tren		45	70	ns	
ELTG to ENLG Propagation Delay	teTEN		20	25	ns	
$\overline{\text { ECS }}$ to ENLG Propagation Delay	tecrn		85	90	ns	
ECS to ENLG Propagation Delay	teCSN		35	55	ns	

Notes: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}, \overline{\mathrm{SGS}}, \overline{\mathrm{CLK}}, \overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{4}}$ grounded, all other inputs and all outputs open.
(3) This parameter is periodically sampled and not 100% tested.
(4) Required for proper operation if INTE is enabled during next clock pulse.
(5) These times are not required for proper operation but for desired change in interrupt flip-flop.
(6) Required for new request or status to be properly loaded.

General

The μ PB8214 is an LSI device designed to simplify the circuitry required to implement an interrupt driven microcomputer system. Up to eight interrupting devices can be connected to a μ PB8214, which will assign priority to incoming interrupt requests and accept the highest. It will also compare the priority of the highest incoming request with the priority of the interrupt being serviced. If the serviced interrupt has a higher priority, the incoming request will not be accepted.

A system with more than eight interrupting devices can be implemented by interconnecting additional μ PB8214s. In order to facilitate this expansion, control signals are provided for cascading the controllers so that there is a priority established among the controllers. In addition, the interrupt and vector information outputs are open collector.

Priority Encoder and Request Latch

The priority encoder portion of the μ PB8214 accepts up to eight active low interrupt requests $\left(\overline{R_{0}}-\overline{R_{7}}\right)$. The circuit assigns priority to the incoming requests, with $\overline{R_{7}}$ having the highest priority and $\overline{R_{0}}$ the lowest. If two or more requests occur simultaneously, the μ PB8214 accepts the one having the highest priority. Once an incoming interrupt request is accepted, it is stored by the request latch and a three-bit code is output. As shown in the following table, the outputs, ($\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$) are the complement of the request level (modulo 8) and directly correspond to the bit pattern required to generate the one by te RESTART (RST) instructions recognized by an 8080A. Simultaneously with the $\overline{A_{0}}-\overline{A_{2}}$ outputs, a system interrupt request (INT) is output by the μ PB8214. It should be noted that incoming interrupt requests that are not accepted are not latched and must remain as an input to the μ PB8214 in order to be serviced.

Interrupt Control Circuitry

The μ PB8214 contains two flip-flops and several gates which determine whether an accepted interrupt request to the μ PB8214 will generate a system interrupt to the 8080A. A condition gate drives the D input of the interrupt flip-flop whenever an interrupt request has been completely accepted. This requires that: the ETLG (Enable This Level Group) and INTE (Interrupt Enable) inputs to the μ PB8214 are high; the $\overline{E L R}$ input is low; the incoming request must be of a higher priority than the contents of the current status register; and the μ PB8214 must have been enabled to accept interrupt.requests by the clearing of the interrupt disable flip-flop.

Once the condition gate drives the D input of the interrupt flip-flop high, a system interrupt ($\overline{\mathrm{NT}}$) to the 8080A is generated on the next rising edge of the $\overline{\mathrm{CLK}}$ input to the μ PB8214. This $\overline{\mathrm{CLK}}$ input is typically connected to the $\phi 2$ (TTL) output of an 8224 so that 8080A set-up time specifications are met. When INT is generated, it sets the interrupt disable flip-flop so that no additional system interrupts will be generated until it is reset. It is reset by driving $\overline{\mathrm{ECS}}$ (Enable Current Status) low, thereby writing into the current status register.

It should be noted that the open collector $\overline{1 N T}$ output from the μ PB8214 is active for only one clock period and thus must be externally latched for inputting to the 8080A. Also, because the $\overline{\mathrm{INT}}$ output is open collector, when μ PB8214's are cascaded, an $\overline{\text { INT }}$ output from any one will set all of the interrupt disable flipflops in the array. Each μ PB8214's interrupt disable flip-flop must then be cleared individually in order to generate subsequent system interrupts.

FUNCTIONAL DESCRIPTION

FUNCTIONAL DESCRIPTION (CONT.)

PRIORITY REQUEST		RST	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
		1	1	$\overline{A_{2}}$	$\overline{A_{1}}$	$\overline{A_{0}}$	1	1	1		
LOWEST	\bar{r}_{0}		7	1	1	1	1	1	1	1	1
	F_{1}	6	1	1	1	1	0	1	1	1	
	F_{2}	5	1	1	1	0	1	1	1	1	
	F_{3}	4	1	1	1	0	0	1	1	1	
	F_{4}	3	1	1	0	1	1	1	1	1	
	R_{5}	2	1	1	0	1	0	1	1	1	
\dagger	$\overline{R_{6}}$	1	1	1	0	0	1	1	1	1	
HIGHEST	$\overline{R_{7}}$	$0 \times$	1	1	0	0	0	1	1	1	

*CAUTION: RST 0 will vector the program counter to tocation 0 (zero) and invoke the same routine as the "RESET" input to 8080 A .

Current Status Register

The current status register is designed to prevent an incoming interrupt request from overriding the servicing of an interrupt with higher priority. Via software, the priority level of the interrupt being serviced by the microprocessor is written into the current status register on $\overline{B_{0}}-\overline{B_{2}}$. The bit pattern written should be the complement of the interrupt level.
The interrupt level currently being serviced is written into the current status register by driving ECS (Enable Current Status) low. The μ PB8214 will only accept interrupts with a higher priority than the value contained by the current status register. Note that the programmer is free to use the current status register for other than as above. Other levels may be written into it. The comparison may be completely disabled by driving $\overline{\text { SGS }}$ (Status Group Select) low when $\overline{E C S}$ is driven low. This will cause the μ PB8214 to accept incoming interrupts only on the basis of their priority to each other.

Priority Comparator

The priority comparator circuitry compares the level of the interrupt accepted by the priority encoder and request latch with the contents of the current status register. If the incoming request has a priority level higher than that of the current status register, the $\overline{\mathrm{INT}}$ output is enabled. Note that this comparison can be disabled by loading the current status register with $\overline{\mathrm{SGS}}=0$.

Expansion Control Signals

A microcomputer design may often require more than eight different interrupts. The μ PB8214 is designed so that interrupt system expansion is easily performed via the use of three signals: ETLG (Enable This Level Group); ENLG (Enable Next Level Group); and ELR (Enable Level Read). A high input to ETLG indicates that the μ PB8214 may accept an interrupt. In a typical system, the ENLG output from one μ PB8214 is connected to the ETLG input of another μ PB8214, etc. The ETLG of the μ PB8214 with the highest priority is tied high. This configuration sets up priority among the cascaded μ PB8214's. The ENLG output will be high for any device that does not have an interrupt pending, thereby allowing a device with lower priority to accept interrupts. The ELR input is basically a chip enable and allows hardware or software to selectively disable/enable individiual μ PB8214's. A low on the $\overline{E L R}$ input enables the device.

PACKAGE OUTLINE μ PB8214C

(PLASTIC)

ITEM	millmetens	mowes
A	33 max .	1.28
8	2.53	0.1
c	2.51	0.1
0	0.5 ± 0.1	$0.06: 0.06 \pi$
E	27.m	1.1
F	1.6	0.0
G	32 mmm .	0.125 Min.
H	0.5 mm .	0.02 miN .
1	5.22 max.	0.205 MAX .
J	5.72 max.	0.225 MAX
k	15.24	0.6
L	13.2	0.52
M	0.25:0.1	0.01 ± 0.004

NOTES

4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V}(\mathrm{VOH})$, and for high capacitance terminated bus structures, the DB outputs provide a high 55 mA (IOL) capability.

- Data Bus Buffer Driver for μ COM-8 Microprocessor Family
- Low Input Load Current - 0.25 mA Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to μ COM-8 Microprocessor Family
- Three State Outputs
- Reduces System Package Count
- Available in 16 pin packages: Cerdip and Plastic

PIN NAMES

- PB8216/8226

Microprocessors like the μ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.
The μ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

Bi-Directional Driver

Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive (55 mA). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability (3.65 V) so that direct interface to the 8080A processor is achieved with an adequate amount of noise immunity (650 mV worst case).

Control Gating $\overline{C S}, \overline{\text { DIEN }}$

The $\overline{\mathrm{CS}}$ input is used for device selection. When $\overline{\mathrm{CS}}$ is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the $\overline{\text { DIEN }}$ input.

The $\overline{\text { DIEN }}$ input controls the data flow direction (see Block'Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.

The μ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAMS

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0{ }^{\circ} \mathrm{C}$ to $+70^{\prime \prime} \mathrm{C}, \mathrm{VCC}^{-}+5 \mathrm{~V} \cdot 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST.CONDITIONS	
		MIN	TYP (1)	MAX				
Input Load Curient DIEN, $\overline{C S}$			IF 1			-0.5	mA	$V_{F}=0.45$
Input Load Current All Other Inputs		IF 2			-0.25*	mA	$V_{F}=0.45$	
Input Leakage Current $\overline{\text { DIEN }}, \overline{\mathrm{CS}}$		'R1			20	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$	
Input Leakage Curtent DI Inputs		${ }^{1} \mathrm{R} 2$			10	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$	
Input Forward Voltage Clamp		V_{C}			-1.0	V	${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$	
Input "Low" Voltage		VIL			0.95	V		
Input "High' Voltage		$\mathrm{V}_{\text {IH }}$	2.0			V		
Output Leakage Curient (3.State)	DO	10			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 / 5.25 \mathrm{~V}$	
	DB	10			100			
Power Supply Current	8216	${ }^{1} \mathrm{CC}$			130	mA		
	8226	${ }^{1} \mathrm{CC}$			120	mA		
Output "Low" Voltage		$\mathrm{V}_{\mathrm{OL} 1}$			0.48	V	$\begin{aligned} & \text { DO Outputs } 1 \mathrm{OL}=15 \mathrm{~mA} \\ & \text { DB Outputs } I_{\mathrm{OL}}=25 \mathrm{~mA} \end{aligned}$	
Output "Low" Voltage	8216	$\mathrm{V}_{\text {OL2 }}$			0.7	V	DB Outputs $1 \mathrm{OL}=55 \mathrm{~mA}$	
	8226	$\mathrm{V}_{\mathrm{OL} 2}$			0.7	V	DB Outputs $1 \mathrm{OH}=50 \mathrm{~mA}$	
Output "High" Voltage		$\mathrm{VOH1}$	3.65			V	DO Cutputs $1 \mathrm{OH}=-1 \mathrm{~mA}$	
Output "High" Voltage		VOH_{2}	2.4			V	DB Outputs $1 \mathrm{OH}=-10 \mathrm{~mA}$	
Output Short Circuit Current		IOS	-15		-65	mA	DO Outputs $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	
		1 OS	-30		-120	mA	DB Outputs $\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$	

Note: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

CAPACITANCE (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			8	pF	$\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{a}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{MHz} \end{aligned}$
Output Capacitance	COUT1			10 (2)	pF	
Output Capacitance	COUT2			18 (3)	pF	

Notes: (1) This parameter is periodically sampled and not 100% tested.
(2) DO Output.
(3) DB Output.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input to Output Delay DO Outputs			tPD1			25	ns	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega(4) \end{aligned}$
Input to Output Delay DB Outputs	8216	tPD2			30	ns	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & \mathrm{R}_{2}=180 \Omega 4 \end{aligned}$	
	8226	tPD2			25	ns		
Output Enable Time	8216	${ }^{\text {t }}$ E			65	ns	(2) (4)	
	8226	tE			54	ns		
Output Disable Time		tD			35.	ns	(3) (4)	

Notes: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) DO Outputs, $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$. (3) DO Outputs, $C_{L}=5 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=5 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$.
(4). Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.

TEST CIRCUIT
Cerdip

ITEM	MILLIMETERS	INCHES
A	199 MAX	0784 MAX
B	106	0042
C	254	010
D	046.010	$0018 \quad 0004$
E	1778	070
F	15	0059
G	254 MIN	010 MIN
H	05 MIN	0019 MIN
I	458 MAX	0181 MAX
J	508 MAX	020 MAX
K	762	030
L	64	025
M	025.010	0009.00039

PACKAGE OUTLINE μ PB8216C/D μ PB8226C/D
AC CHARACTERISTICS

TIMING WAVEFORMS

Plastic

ITEM	MILLIMETERS	inches
A	194 MAX	076 MAX
B	081	003
c	254	010
0	05	002.
E	1778	070
F	13	0051
G	254 MIN	010 MiN
H	05 MIN	002 MIN
1	405 MAX	016 MAX
1	455 MAX	018 Max
K	762	$\bigcirc 30$
1	64	025
M	$\begin{array}{r} .010 \\ 025 \\ \hline 005 \\ \hline \end{array}$	001

CLOCK GENERATOR AND DRIVER FOR 8080A PROCESSORS

DESCRIPTION The μ PB8224 is a single chip clock generator and driver for 8080A processors. The clock frequency is determined by a user specified crystal and is capable of meeting the timing requirements of the entire 8080A family of processors. MOS and TTL level clock outputs are generated.

Additional logic circuitry of the μ PB8224 provides signals for power-up reset, an advance status strobe and properly synchronizes the ready signal to the processor. This greatly reduces the number of chips needed for 8080A systems.

The μ PB8224 is fabricated using NEC's Schottky bipolar process.

- Crystal Controlled Clocks
- Oscillator Output for External Timing
- MOS Level Clocks for 8080A Processor
- TTL Level Clock for DMA Activities
- Power-up Reset for 8080A Processor
- Ready Synchronization
- Advanced Status Strobe
- Reduces System Package Count
- Available in 16-pin Cerdip and Plastic Packages

The clock generator circuitry consists of a crystal controlled oscillator and a divide-by-nine counter. The crystal frequency is a function of the 8080A processor speed and is basically nine times the processor frequency, i.e.:

$$
\text { Crystal frequency }=\frac{9}{{ }^{t} C Y}
$$

where $t^{t} \mathrm{CY}$ is the 8080A processor clock period.
A series resonant fundamental mode crystal is normally used and is connected across input pins XTAL1 and XTAL2. If an overtone mode crystal is used, an additional LC network, AC coupled to ground, must be connected to the TANK input of the μ PB8224 as shown in the following figure.

The formula for the LC network is:

$$
\mathrm{LC}=\left(\frac{1}{2 \pi \mathrm{~F}}\right)^{2}
$$

where F is the desired frequency of oscillation.
The output of the oscillator is input to the divide-by-nine counter. It is also buffered and brought out on the OSC pin, allowing this stable, crystal controlled source to be used for derivation of other system timing signals. The divide-bynine counter generates the two non-overlapping processor clocks, ϕ_{1} and ϕ_{2}, which are buffered and at MOS levels, a TTL level ϕ_{2} and internal timing signals.

The ϕ_{1} and ϕ_{2} high level outputs are generated in a 2-5-2 digital pattern, with ϕ_{1} being high for two oscillator periods, ϕ_{2} being high for five oscillator periods, and then neither being high for two oscillator periods. The TTL level ϕ_{2}, ϕ_{2} (TTL), is normally used for DMA activities by gating the external device onto the 8080A bus once a Hold Acknowledge (HLDA) has been issued.

Additional Logic

In addition to the clock generator circuitry, the μ PB8224 contains additional logic to aid the system designer in the proper timing of several interface signals.
The STSTB signal indicates, at the earliest possible moment, when the status signals output from the 8080A processor are stable on the data bus. $\overline{\text { STSTB }}$ is designed to connect directly to the μ PB8228 System Controller and automatically resets the μ PB8228 during power-on Reset.
The $\overline{\text { RESIN }}$ input to the μ PB8224 is used to automatically generate a RESET signal to the 8080A during power initialization. The slow rise of the power supply voltage in an external RC network is sensed by an internal Schmitt Trigger. The output of the Schmitt Trigger is gated to generate an 8080A compatible RESET. An active low manual switch may also be attached to the RC circuit for manual system reset.
The RDYIN input to the μ PB8224 accepts an asynchronous "wait request" and generates a READY output to the 8080A that is fully synchronized to meet the 8080 A timing requirements.

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature .
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages (TTL) . 0.5 to +7 Volts
All Output Voltages (MOS) . -1.0 to +13.5 Volts
All Input Voltages . -1.5 to +7 Volts
Supply Voltage VCC . -0.5 to +7 Volts
Supply Voltage VDD . 0.5 to +13.5 Volts
Output Currents . 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Current Loading	I_{F}			-0.25	mA	$V_{F}=0.45 \mathrm{~V}$
Input Leakage Current	I_{R}			10	$\mu \mathrm{A}$	$V_{R}=525 \mathrm{~V}$
Input Forward Clamp Voitage	V_{C}			-1.0	V	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$
Input "Low" Voltage	V_{IL}			0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & 2.6 \\ & 2.0 \\ & \hline \end{aligned}$			V	Reset Input All Other Inputs
RESIN Input Hysteresis	$\mathrm{V}_{\text {IH }} \cdot \mathrm{V}_{\text {IL }}$	0.25			v	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
Output "Low" Voltage	V_{OL}			$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	v v	(ϕ_{1}, ϕ_{2}), Ready, Reset, $\overline{\text { STSTB }}$ ${ }^{\mathrm{t}} \mathrm{OL}=25 \mathrm{~mA}$ All Other Inputs $\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
Output "High" Voltage ϕ_{1}, ϕ_{2} READY, RESET All Other Outputs	V_{OH}	$\begin{aligned} & 9.4 \\ & 3.6 \\ & 2.4 \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$
Output Short Circuit Current (All Low Voltage Outputs Only)	${ }^{1} \mathrm{Sc}{ }^{(1)}$	-10		-60	mA	$\begin{aligned} & v_{O}=0 \mathrm{~V} \\ & v_{C C}=5.0 \mathrm{~V} \end{aligned}$
Power Supply Current	ICC			115	mA	
Power Supply Current	${ }^{1} \mathrm{DD}$			15	mA	

Note: (1) Caution, ϕ_{1} and ϕ_{2} output drivers do not have short circuit protection
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN 2			8	pF	

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS (1)			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ϕ_{1} Pulse Width	$t_{¢} 1$	$\frac{2 \mathrm{t} C Y}{9}-20 \mathrm{~ns}$			ns	$C_{L}=20 \mathrm{pF}$ to 50 pF
ϕ_{2} Pulse Width	${ }^{\text {t }}$ ¢ 2	$\frac{5 t}{5} \mathrm{CY}-35 \mathrm{~ns}$				
ϕ_{1} to ϕ_{2} Delay	${ }^{\text {t }}$ 1 1	0				
ϕ_{2} to ϕ_{1} Delay	${ }^{t} \mathrm{D} 2$	$\frac{{ }^{2 t} \mathrm{C} Y}{9}-14 \mathrm{~ns}$				
ϕ_{1} to ϕ_{2} Delay	${ }^{\text {t }} \mathrm{D} 3$	$\frac{2{ }^{2} \mathrm{CY}}{9}$		$\frac{2 \mathrm{t}}{} \frac{\mathrm{Cr}}{9}+20 \mathrm{~ns}$		
ϕ_{1} and ϕ_{2} Rise Time	${ }^{\text {t }}$ R			20		
ϕ_{1} and ϕ_{2} Fall Time	${ }^{t} \mathrm{~F}$			20		
ϕ_{2} to ϕ_{2} (TTL) Delay	${ }^{t} \mathrm{D} \phi 2$	-5		+15	ns	$\begin{aligned} & \phi_{2} \mathrm{TTL}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=300 \Omega 2 \\ & \mathrm{R}_{2}=600 \mathrm{~s} 2 \end{aligned}$
S_{2} to STSTS Datay	\% 035	$\frac{6 t \mathrm{CY}}{9}-30 \mathrm{~ns}$		$\frac{6: C r}{9}$	ns	
STSTB Pulse Width	tPW	${ }^{t} \mathrm{C} Y$ 9 -15 ns				$\overline{\text { STSTB }}, \mathrm{CL}=15 \mathrm{pF}$
RDYIN Setup Time to STSTB	${ }^{\text {t }}$ DRS	$50 \mathrm{~ns}-\frac{4 \mathrm{t}_{\mathrm{C} Y}}{9}$			ns	$\begin{aligned} & R_{1}=2 K \\ & R_{2}=4 K \end{aligned}$
RDYIN Hold Time After $\overline{\text { STSB }}$	${ }^{\text {t }}$ DRH	$\frac{4 t^{4} \mathrm{CY}}{9}$				
READY or RESET to ϕ_{2} Delay	${ }^{t}$ DR	$\frac{4{ }^{4} \mathrm{CY}}{9}-25 \mathrm{~ns}$			ns	Ready and Reset $\begin{aligned} C L & =10 \mathrm{pF} \\ R_{1} & =2 K \\ R_{2} & =4 K \end{aligned}$
Crystal Frequency	${ }^{\dagger}$ CLK		$\frac{9}{t_{C y}}$		MHz	
Maximum Oscillating Frequency	${ }^{\text {f MAX }}$			27	MHz	

Note: (1) ${ }^{\mathrm{t}} \mathrm{CY}$ represents the processor clock period

TEST CIRCUIT

Voltage Measurement Points: ϕ_{1}, ϕ_{2} Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .

TIMING WAVEFORMSEquivalent Resistance

Note: (1) With tank circuit use 3 rd overtone mode.

μ PB8224D

(CERDIP)		
ITEM	MILLIMETERS	INCHES
A	199 MAX	0784 MAX
B	106	0042
C	254	010
D	$046 \cdot 010$	$0018 \cdot 0004$
E	1778	070
F	15	0059
G	2.54 MIN	0.10 MIN
H	05 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
K	7.62	0.30
L	6.8	0.27
M	$0.25+010$	$0.0098+0.0039$

NOTES

8080A SYSTEM CONTROLLER AND BUS DRIVER

DESCRIPTION

The μ PB8228/8238 is a single chip controller and bus driver for 8080A based systems. All the required interface signals recessary to connect RAM, ROM and I/O components to a μ PD8080A are generated.

The μ PB8228/8238 provides a bi-directional three-state bus driver for high TTL fan-out and isolation of the processor data bus from the system data bus for increased noise immunity.

The system controller portion of the $\mu \mathrm{PB} 8228 / 8238$ consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any additional components.

Two devices are provided: the μ PB8228 for small systems without tight write timing constraints and the μ PB8238 for larger systems.

FEATURES - System Controller for 8080A Systems

- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- μ PB8228 for Small Memory Systems
- μ PB8238 for Large Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology

PIN CONFIGURATION

NC: No Connection

D_{7} - D_{0}	Data Bus (Processor Side)
DB7-DB0	Data Bus (System Side)
I/OR	1/O Read
I/OW	1/O Write
MEMR	Memory Read
MEMW	Memory Write
DBIN	DBIN (From Processor)
INTA	Interrupt Acknowledge
HLDA	HLDA (From Processor)
WR	WR (From Processor)
BUSEN	Bus Enable Input
STSTB	Status Strobe (From μ PB8224)
$\mathrm{V}_{\text {CC }}$	+5V
GND	0 Volts

μ PB8228/8238

Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the $\mu \mathrm{PB} 8228 / 8238$ exceeds the minimum input voltage requirements (3.0 V) of the μ PD8080A. On the system side, the driver is capable of adequate drive current (10 mA) for connection of a large number of memory and I/O devices to the bus. Signal flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

Status Latch

The Status Latch in the μ PB8228/8238 stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.
$\overline{M E M / R}, \overline{I / O R}$ and $\overline{I N T A}$ are generated by gating the DBIN signal from the processor with the contents of the status latch. $\overline{\mathrm{I} O R}$ is used to enable an I/O input onto the system data bus. $\overline{\mathrm{MEM} / \mathrm{R}}$ is used to enable a memory input.
$\overline{I N T A}$ is normally used to gate an interrupt instruction onto the system data bus. When used with the μ PD8080A processor, the μ PB8228/8238 will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the μ PB8228/8238 will internally generate an INTA pulse for those machine cycles.
The μ PB8228/8238 also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the $\overline{\operatorname{NTA}}$ output (pin 23) of the $\mu \mathrm{PB} 8228 / 8238$ through a 1 K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.
$\overline{M E M / W}$ and $\overline{/ / O W}$ are generated by gating the $\bar{W} \bar{R}$ signal from the processor with the contents of the status latch. $\overline{1 / O W}$ indicates that an output port write is about to occur. $\overline{M E M / W}$ indicates that a memory write will occur.
The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the BUSEN pin of the $\mu \mathrm{PB} 8228 /$ 8238. Normal operation is performed with BUSEN low.

BLOCK DIAGRAM
ABSOLUTE
MAXIMUM RATINGS*
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . -0.5 to +7 Volts
All Input Voltages . -1.5 to 5.5 Volts
Output Currents . 100 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Clamp Voltage, All Inputs	V_{C}			-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{I} \mathrm{CC}=-5 \mathrm{~mA}$
Input Load Current, $\overline{\text { STSTB }}$	If			500	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 V \\ & V_{F}=0.45 V \end{aligned}$
D_{2} and D_{6}				750	$\mu \mathrm{A}$	
$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{4}, \mathrm{D}_{5}$, and D_{7}				250	$\mu \mathrm{A}$	
All Other Inputs				250	$\mu \mathrm{A}$	
Input Leakage Current, $\overline{\text { STSTB }}$	I_{R}			100	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{R}=5.0 \mathrm{~V} \end{aligned}$
DB_{0} through DB7				20	$\mu \mathrm{A}$	
All Other Inputs				100	$\mu \mathrm{A}$	
Input Threshold Voltage, All Inputs	$V_{\text {TH }}$	0.8		2.0	\checkmark	$V_{C C}=5 \mathrm{~V}$
Power Supply Current	${ }^{1} \mathrm{CC}$			190	mA	$V_{\text {CC }}=5.25 \mathrm{~V}$
Output Low Voltage, D_{0} through D_{7}	$\mathrm{VOL}^{\text {OL }}$			0.45	\checkmark	$\mathrm{V}_{\text {CC. }}=4.75 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
All Other Outputs				0.48	V	${ }^{\prime} \mathrm{OL}=10 \mathrm{~mA}$
Output High Voltage, D_{0} through D_{7}	V_{OH}	3.6			V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
All Other Outputs		2.4			\checkmark	${ }^{1} \mathrm{OH}=-1 \mathrm{~mA}$
Short Circuit Current, All Outputs	Ios	15		90	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Off State Output Current, All Control Outputs	${ }^{1} \mathrm{O}$ (off)			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$
				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$
INTA Current	IINT			5	mA	(See Figure below)

INTA TEST CIRCUIT

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			12	pF	$\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}$,
Output Capacitance Control Signals	Cout			15	pF	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$,
I/O Capacitance (D or DB)	$\mathrm{Cl}_{1 / 0}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$

NOTE: This parameter is periodically sampled and not 100% tested.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYF	MAX		
Width of Status Strobe	tPW	22			ns	- '
Setup Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	'SS	8			ns	
Hold Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	${ }^{\text {t }}$ SH	5			ns	
Delay from STSTB to any Control Signal	${ }^{1} \mathrm{DC}$	20		60	ns	$C_{L}=100 \mathrm{pF}$
Delay from DBIN to Control Outputs	tRR			30	ns	$C_{L}=100 \mathrm{pF}$
Delay from DBIN to Enable/ Disable 8080A Bus	tre			45	ns	$C_{L}=25 \mathrm{pF}$
Delay from System Bus to 8080A Bus during Read	${ }^{\text {tr }}$ D			30	ns	$C_{L}=25 \mathrm{pF}$
Delay from $\overline{W R}$ to Control Outputs	tWR	5		45	ns	$C_{L}=100 \mathrm{pF}$
Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after STSTB	tWE		-	30	ns	$C_{L}=100 \mathrm{pF}$
Delay from 8080A Bus $\mathrm{D}_{0}-\mathrm{D}_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ during Write	tWD	5		40	ns	$C_{L}=100 \mathrm{pF}$
Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$	${ }^{t} \mathrm{E}$			30	ns	$C_{L}=100 \mathrm{pF}$
HLDA to Read Status Outputs	tHD			25	ns	
Setup Time, System Bus inputs to HLDA	${ }^{\text {t }} \mathrm{DS}$	10			ns	
Hold Time, System Bus Inputs to HLDA	${ }^{t} \mathrm{DH}$	20			ns	$C_{L}=100 \mathrm{pF}$

TEST CIRCUIT

AC CHARACTERISTICS

TIMING WAVEFORMS

STATUS WORD CHART

(Plastic)

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	05 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	36.2 MAX.	1.43
B	1.59 MAX.	0.06
C	2.54	0.1
D	0.46 ± 0.05	0.02 ± 0.004
E	33.02	1.3
F	1.02	0.04
G	3.2 MIN.	0.13
H	1.0	0.04
I	3.5	0.14
J	4.5	0.18
K	15.24	0.6
L	14.93	0.59
M	0.25 ± 0.05	0.01 ± 0.002

INPUT/OUTPUT EXPANDER FOR μ PD8048/8748/8035

Abstract

DESCRIPTION The μ PD8243 input/output expander is directly compatible with the μ PD8048 family of single-chip microcomputers. Using NMOS technology the μ PD8243 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD8243 interfaces to the μ PD8048 family through a 4 -bit I/O port and offers four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple μ PD8243's to be added using the bus port.

The bi-directional I/O ports of the μ PD8243 act as an extension of the I/O capabilities of the μ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES • Four 4-Bit I/O Ports

- Fully Compatible with μ P.D8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5 V Supply
- Direct Extension of Resident μ PD8048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a $24-$ Pin Plastic Package

μ PD8243

General Operation

The I/O capabilities of the μ PD8048/8748/8035 can be enhanced in four 4-bit I/O port increments using one or more μ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port 2 ($\mathrm{P}_{20}-\mathrm{P}_{23}$) forms the 4-bit bus through which the μ PD8243 communicates with the host processor. The PROG output from the μ PD8048/8748/8035 provides the necessary timing to the μ PD8243. There are two 4 -bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple μ PD8243's can be used for additional I/O. The output lines from the μ PD8048/8748/8035 can be used to form the chip selects for the additional μ PD8243's.

Power On Initialization

Applying power to the μ PD8243 sets ports $4-7$ to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{CC} drops below 1 V . The table below shows how the 4 -bit nibbles on Port 2 correspond to the μ PD8243 operations.

Port Address			Op-Code		
P_{21}	P_{20}	Address Code	P_{23}	P_{22}	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The Port $\left(4,5,6\right.$, or 7) that was selected by the Port address $\left(P_{21}-P_{20}\right)$ is returned to the tri-state mode, and Port 2 is switched to the input mode.

Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD8243. The MOVD P_{p}, A instruction from the μ PD8048/8748/8035 writes the new data directly to the specified port $(4,5,6$, or 7$)$. The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.

The data remains latched at the selected port following the logical manipulation until new data is written to that port.

BLOCK DIAGRAM

PIN IDENTIFICATION

PIN		FUNCTION

Operating Temperature

Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin - 0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation . 1 W

Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	,	$\mathrm{V}_{C C}+0.5$	V	
Qutput Low Voltage (Ports 4-7)	$\mathrm{V}_{\text {OL1 }}$			0.45	V	$1 \mathrm{OL}=5 \mathrm{~mA}$ (1)
Output Low Voltage (Port 7)	$\mathrm{V}_{\mathrm{OL} 2}$			1	V	$\mathrm{IOL}=20 \mathrm{~mA}$
Output Low Voltage (Port 2)	$\mathrm{V}_{\mathrm{OL} 3}$			0.45	V	$1 \mathrm{OL}=0.6 \mathrm{~mA}$
Output High Voltage (Ports 4-7)	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			\checkmark	$\mathrm{I}^{\mathrm{OH}}=100 \mu \mathrm{~A}$
Sum of All IOL From 16 Outputs	${ }^{1} \mathrm{OL}$			100	mA	5 mA Each Pin
Input Leakage Current (Ports 4-7)	I/LI	-10		20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Input Leakage Current (Port 2, $\overline{C S}$, PROG)	1/L2	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
$\mathrm{V}_{\text {CC }}$ Supply Current	${ }^{\prime} \mathrm{CC}$		10	20	mA	

Note: (1) Refer to graph of additional sink current drive.

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Code Valid Before PROG	${ }^{\text {t }}$ A	100			ns	80 pF Load
Code Valid After PROG	${ }^{\text {t }}$ B	60			ns	20 pF Load
Data Valid Before PROG	${ }^{\text {t }}$ C	200			ns	80 pF Load
Data Valid After PROG	${ }^{\text {t }}$	20			ns	20 pF Load
Port 2 Floating After PROG	${ }_{\text {t }}$	0		150	ns	20 pF Load
PROG Negative Pulse Width	${ }^{\text {t }}$ K	900			ns	
Ports 4.7 Valid After PROG	tpo			700	ns	100 pF Load
Ports 4-7 Valid Before/After PROG	${ }^{\text {t }}$ LP1	100			ns	
Port 2 Valid After PROG	${ }^{t} \mathrm{ACC}$			750	ns	80 pF Load
$\overline{\text { CS }}$ Valid Before/After PROG	${ }^{\text {t }} \overline{\mathrm{CS}}$	50			ns	

ABSOLUTE MAXIMUM RATINGS*

CURRENT SINKING CAPABILITY (1)

Note: (1) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The μ PD8243 is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously. The current sinking curve shows how the individual I/O tine drive increases if all the I/O lines are not fully loaded.

PACKAGE OUTLINES μ PD8243C

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	$0.02: 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25{ }^{+0.10}$	$0.01{ }^{+0.004}$

NOTES

PROGRAMMABLE COMMUNICATION INTERFACES

DESCRIPTION
The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8080A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.

FEATURES - Asynchronous or Synchronous Operation

- Asynchronous:

Five 8-Bit Characters
Clock Rate $-1,16$ or $64 \times$ Baud Rate
Break Character Generation
Select 1, 1-1/2, or 2 Stop Bits
False Start Bit Detector
Automatic Break Detect and Handling (μ PD8251A)

- Synchronous:

Five 8-Bit Characters
Internal or External Character Synchronization
Automatic Sync Insertion
Single or Double Sync Characters

- Baud Rate (1X Mode) - DC to 56K Baud (μ PD8251)
- DC to 64K Baud (μ PD8251A)
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080A/8085/ μ PD780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply, $\pm 10 \%$
- Separate Device Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
- N-Channel MOS Technology

PIN CONFIGURATION

PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (8 bits)
C/ $\overline{\mathbf{D}}$	Control or Data is to be Written or Read
$\overline{\text { RD }}$	Read Data Command
$\overline{\text { WR }}$	Write Data or Control Command
$\overline{\text { CS }}$	Chip Enable
CLK	Clock Pulse (TTL)
RESET	Reset
$\overline{\text { TXC }}$	Transmitter Clock (TTL)
TxD	Transmitter Data
$\overline{\mathbf{R X C}}$	Receiver Clock (TTL)
RxD	Receiver Data
RxRDY	Receiver Ready (has character for 8080)
TxRDY	Transmitter Ready (ready for char. from 8080)
$\overline{\text { DSR }}$	Data Set Ready
DTR	Data Terminal Ready
SYNDET	Sync Detect
SYNDET/BD	Sync Detect/Break Detect
ATS	Request to Send Data
$\overline{\text { CTS }}$	Clear to Send Data
TXE	Transmitter Empty
VCc	+5 Volt Supply
GND	Ground

μ PD8251/8251A

The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with most 8 -bit processors. Operation of the μ PD8251 and μ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251 or μ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The μ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080, 8085, and μ PD 780 (Z80 ${ }^{\text {TM }}$). The additional features and enhancements of the μ PD8251A over the μ PD8251 are listed below.

1. The data paths are double-buffered with separate I/O registers for control, status, Data In and Data Out. This feature simplifies control programming and minimizes processor overhead.
2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
3. The Receiver is prevented from starting when in "break" state by a refined $R x$ initialization. This also prevents a disconnected USART from causing unwanted interrupts.
4. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
5. The T_{x} Disable command is prevented from halting transmission by the T_{x} Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
6. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through a flip-flop which clears itself upon a status read.
7. The possibility of a false sync detect is minimized by:

- ensuring that if a double sync character is programmed, the characters be contiguously detected.
- clearing the Rx register to all Logic 1s (VOH) whenever the Enter Hunt command is issued in Sync mode.

8. The $\overline{R D}$ and $\overline{W R}$ do not affect the internal operation of the device as long as the μ PD8251A is not selected.
9. The μ PD8251A Status can be read at any time, however, the status update will be inhibited during status read.
10. The μ PD8251A has enhanced $A C$ and $D C$ characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
11. Baud rate from DC to $64 K$.

$\mathbf{C} / \overline{\mathbf{D}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	
0	0	1	0	μ PD8251 $/ \mu$ PD8251A \rightarrow Data Bus
0	1	0	0	Data Bus $\rightarrow \mu$ PD8251 $/ \mu$ PD8251A
1	0	1	0	Status \rightarrow Data Bus
1	1	0	0	Data Bus \rightarrow Control
X	X	X	1	Data Bus $\rightarrow 3$-State
X	1	1	0	

TM:Z80 is a registered trademark of Zilog.

FUNCTIONAL DESCRIPTION
μ PD8251A FEATURES AND ENHANCEMENTS

BLOCK DIAGRAM

ABSOLUTE MAXIMUM	Operating Temperature	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Ali Output Voltages	-0.5 to +7 Volts
	All Input Voltages	-0.5 to +7 Volts
	Supply Voltages	-0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS					UNIT	TEST CONDITIONS
		$\mu \mathrm{PD8251}$			[PPD8251A			
		MIN	TYP	MAX	MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	0.5	0.8	\checkmark	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		V_{CC}	2.0	V_{CC}	V	
Output Low Voltage	VOL			0.45		0.45	V	$\begin{aligned} & \mu \mathrm{PD} 8251: \quad \mathrm{IOL}=1.7 \mathrm{~mA} \\ & \mu \mathrm{PD8251A:} \mathrm{IOL}=2.2 \mathrm{~mA} \end{aligned}$
Output High Voltage	VOH	2.4			2.4		V	μ PD8251: $\quad \mathrm{IOH}^{2}=-10 \mathrm{C} \mu \mathrm{A}$ $\mu \mathrm{PD} 8251 \mathrm{~A}: 1 \mathrm{OH}=-400 \mu \mathrm{~A}$
ta Bus Leakage				-50		-10		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
a Bus Leakage				10		10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
Input Load Current	IIL			10		10	$\mu \mathrm{A}$	At 5.5 V
Power Supply Current	${ }^{\prime} \mathrm{CC}$		45	80		100	mA	μ PD8251A: All Outputs $=$ Logic 1

CAPACITANCE $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \mathrm{V} \mathrm{VCC}=\mathrm{GND}=\mathrm{OV}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{CIN}^{\text {N }}$			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
1/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to GND

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		μ PD8251		μ PD8215A			
		MIN	MAX	MIN	MAX		
READ							
Address Stable before $\overline{\mathrm{READ}}$, ($\overline{\mathrm{CS}}, \overline{\mathrm{C} / \overline{\mathrm{D}} \text {) }}$	${ }^{\text {tar }}$	50		0		ns	
Address Hold Time for READ, (CS, CD)	tra	5		0		ns	
READ Pulse Width	${ }^{\text {tr R }}$	430		250		ns	,
Data Delay from $\overline{\text { READ }}$	tro		350		200	ns	$\begin{aligned} & \mu \text { PD8251: } C_{L}=100 \mathrm{pF} \\ & \mu \text { PD8251A: } C_{L}=150 \mathrm{pF} \end{aligned}$
$\overline{\text { READ to Data Fioating }}$	tDF	25	200	10	100	ns	$\begin{array}{ll} \mu \mathrm{PD} 8251 & C_{L}=100 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}$
WRITE							
Address Stable before WRITE	IAW	20		0		ns	
Address Hold Time for WRITE	twa	20		0		ns	
WRITE Pulse Width	${ }^{\text {t }}$ WW	400		250		ns	
Data Set.Up Time for WRITE	${ }^{\text {t }} \mathrm{DW}$	200		150		ns	
Data Hold Time for WRTTE	two	40		0		ns	
Recovery Time Between WRITES (2)	trv	6		6		${ }^{\text {c }} \mathrm{C}$	
OTHER TIMING							
Clock Period (3)	${ }^{1} \mathrm{CY}$	0.420	1.35	0.32	1.35	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }_{\text {to }} \mathrm{W}$	220	0.7 t CY	120	${ }^{1} \mathrm{Cr} .90$	ns	
Clock Pulse Width Low	${ }^{\circ} \mathrm{OW}$			90		ns	
Clock Rise and Fall Time	${ }_{\text {tr.t }}$	0	50	5	20	ns	
T×D Delay from Falling Edge of T×C			1		1	$\mu \mathrm{s}$	$\mu \mathrm{PD} 8251 \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Rx Data Set. Up Time to Sampling Pulse	${ }^{\text {t }}$ SR S^{\prime}	2		2		$\mu \mathrm{s}$	
R× Data Hold Time to Sampling Pulse	thRx	2		2		$\mu \mathrm{s}$	
Transmitter Input Clock Frequency $1 \times$ Baud Rate 16x Baud Rate $64 \times$ Baud Rate	${ }^{\text {f }}$ TX	DC	56		64	kH_{2}	
		DC	520		310	kH_{2}	
		DC	520		615	$\mathrm{kH2}_{2}$	
```Transinitter inpui Clock Pulse Width \(1 \times\) Baud Rate 16X and 64X Baud Rate```	'TPW	12		$\frac{12}{1}$		${ }^{\text {t } \mathrm{CY}} \mathrm{CY}$	
		1		1		${ }^{\text {t }} \mathrm{CY}$	
Transmitter Input Clock Pulse Delay   1× Baud Rate   16X and $64 \times$ Baud Rate	${ }^{\text {tTPD }}$	15		$\frac{15}{3}$		${ }_{\text {tey }}$	
		3		3		${ }^{\text {t }} \mathrm{CY}$	
Receiver Input Clock Frequency   $1 \times$ Baud Rate   16× Baud Rate   $64 \times$ Baud Rate	${ }^{\text {fRx }}$	DC	56		64	kHz	
		DC	520		310	$\mathrm{kHz}^{\text {k }}$	
		DC	520		615	kHz	
Receiver Input Clock Pulse Width   1X Baud Rate   16 X and $64 \times$ Baud Rate	trPW	12		12		${ }_{\text {tey }}^{\text {tey }}$	
Recerver Input Clock Pulse Delay 1X Baud Rate 16 X and 64 X Baud Rate	${ }^{\text {tRPD }}$	15		$\frac{15}{3}$		tor	
TxRDY Delay from Center of Data Bit	${ }^{\text {T }}$ x $\times$		16		8	${ }^{\text {t }} \mathrm{CY}$	$\mu \mathrm{PD} 8251 . C_{L}=50 \mathrm{pF}$
RxROY Delay from Center of Data Bit Internal SYNDET Delay from Center of Data Bit	$\begin{aligned} & \text { trx } \\ & \text { tis } \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { ty } \mathrm{CY} \\ & \text { tcy } \end{aligned}$	
External SYNDET Set-Up Time before Falling Edge of $\overline{R_{x} C}$	'ES		16.		16	${ }^{1} \mathrm{C} Y$	
TxEMPTY Delay from Center of Data Bit	${ }^{\text {T T X }}$ E		16		20	${ }^{1} \mathrm{CY}$	${ }_{\mu}$ PD8251. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Control Delay from Rising Edge of WRITE (TXE, DTR, RTS)	${ }^{\text {tw }}$ (		16		8	${ }^{t} \mathrm{CY}$	
Control to READ Set Uo Time ( $\overline{\text { DSR }}, \overline{\mathrm{CTS}}$ )	${ }^{\text {t }} \mathrm{CR}$		16		20	${ }^{1} \mathrm{Cr}$	

Notes: (1) $A C$ timings measured at $V_{O H}=2.0, \mathrm{~V}_{\mathrm{OL}}=0.8$, and with load circuit of Figure 1
(2) This recovery time is tor initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY $=1$.
(3) The $T x C$ and $R x C$ frequencies have the following limitations with respect to CLK.

For $1 \times$ Baud Rate, ${ }^{\prime} T x$ or ${ }^{\prime} R_{x} \leqslant 1 /\left(30 t^{t} \mathrm{CY}\right)$
For 16 X and 64 X Baud Rate, ' $T X$ or $\mathrm{f}_{\mathrm{Rx}} \leqslant 1 /(4.5$ tCy)
(4) Reset Pulse Width $=6 \mathrm{t}^{\mathrm{C}} \mathrm{CY}$ minimum.'


Figure 1.


Typical $\Delta$ Output Delay Versus $\Delta$ Capacitance ( pF )


SYSTEM CLOCK INPUT


WRITE DATA CYCLE (PROCESSOR $\rightarrow$ USART)



TIMING WAVEFORM (CONT.)

## WRITE CONTROL OR OUTPUT PORT CYCLE

(PROCESSOR $\rightarrow$ USART)


READ CONTROL OR INPUT PORT CYCLE
(PROCESSOR $\leftarrow$ USART)

NOTES:
(1) $T_{W C}$ includes the response tuming of a control byte.
(2) $T_{C R}$ includes the effect of $C T S$ on the $T_{X E N B L}$ circuitry


TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

TIIMING WAVEFORM (CONT.)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)


EXAMPLE FORMAT = 5 BIT CHARACTER WITH PARITY ANO 2 SYNC CHARACTERS

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)


RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

Notes: (1) Internal sync, 2 sync characters, 5 bits, with parity. (2) External sync, 5 bits, with parity.

PIN			FUNCTION
NO.	SYMBOL	NAME	
1, 2,   27, 28   5-8	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Gommand words, and Status.
26	$\mathrm{V}_{\text {CC }}$	$V_{\text {CC }}$ Supply Voltage	+ 5 volt supply
4	GND	Ground	Ground
Read/Write Control Logic			This logic block accepts inputs from the processor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device functional definition are located in the Read/ Write Control Logic.
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is $6{ }^{t} \mathrm{CY}$.
20	CLK	Clock Pulse	The CLK input provides for internal device timing and is usually connected to the Phase 2 (TTL) output of the $\mu$ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	$\overline{W R}$	Write Data	A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus.
13	$\overline{\mathrm{RD}}$	Read Data	A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read.
12	C/D̄	Control/Data	The Control/Data input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus. $0=$ Data; $1=$ Control.
11	$\overline{\mathrm{CS}}$	Chip Select	A "zero" on this input enables the USART to read from or write to the processor.
Modem Control			The $\mu$ PD8251 and $\mu$ PD8251A have a set of control inputs and outputs which may be used to simplify the interface to a Modem.
22	$\overline{\text { DSR }}$	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information. The $\overline{\mathrm{DSR}}$ input is normally used to test Modem Data Set Ready condition.
24	$\overline{\text { DTR }}$	Data Terminal Ready	The Data Termınal Ready output can be controlled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
23	$\overline{\text { RTS }}$	Request to Send	The Request to Send output can be controlled via the Command word. The $\overline{R T S}$ output is normally used to drive the Modem Request to Send line.
17	$\overline{\text { CTS }}$	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TXEN bit in the Command instruction register is enabled (one).

TRANSMIT BUFFER
The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

## PIN IDENTIFICATION (CONT.)

PIN			FUNCTION
NO.	SYMBOL	NAME	
Transmit Control Logic			The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	T×RDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TXRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets TxRDY, on the leading edge.
18	T×E	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further characters to transmit. $T \times E$ is automatically reset upon receiving a data character from the processor. In half-duplex, TXE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE.   In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.
9	$\overline{\mathrm{T} \times \mathrm{C}}$	Transmitter Clock	The Transmitter Clock controls the serial character transmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 x, 16 x$, or $64 x$ the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate.   Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T \times C}$.
19	$T \times D$	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

$\mu$ PD8251 AND $\mu$ PD8251A
INTERFACE TO 8080
STANDARD SYSTEM BUS


The Receive Buffer accepts serial data input at the $\overline{\mathrm{RxD}}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the $\mu$ PD8251 and $\mu$ PD8251A set the extra bits to "zero."

PIN			FUNCTION
NO.	SYMBOL	NAME	
Receiver Control Logic			This block manages all activities related to incoming data.
14	$R \times R D Y$	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check RxRDY using a Status Read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets RxRDY.
25	$\overline{\mathrm{R} \times \mathrm{C}}$	Receiver Clock	The Receiver Clock determines the rate at which the incoming character is received. In the Asynchronous mode, the $\overline{R \times C}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Syn. chronous mode the $\overline{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 x$ the Baud Rate.   Unlike $\overline{T \times C}$, data is sampled by the $\mu$ PD8251 and $\mu$ PD8251A on the rising edge of $\overline{R \times C}$. (1)
3	$R \times D$	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.
16	SYNDET ( $\mu$ PD8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The $\mu$ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the $\mu$ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the $\mu$ PD8251 to start assembling data character on the next falling edge of $\overline{R \times C}$. The length of the SYNDET input should be at least one $\overline{\mathrm{R} \times \mathrm{C}}$ period, but may be removed once the $\mu$ PD8251 is in SYNC.
16	SYNDET/BD ( $\mu$ PD8251A)	Sync Detect/   Break Detect	The SYNDET/BD pin is used in both Synchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.

PIN IDENTIFICATION (CONT.)

Note: (1) Since the $\mu$ PD8251 and $\mu$ PD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. $\overline{R \times C}$ and $\overline{T \times C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
$\begin{array}{lll}\text { Examples: } & \text { If the Baud Rate equals } 110 \text { (Async): } & \text { If the Baud Rate equals } 300: \\ & \overline{R \times C} \text { or } \overline{T \times C} \text { equals } 110 \mathrm{~Hz}(1 x) & \overline{R \times C} \text { or } \overline{T \times C} \text { equals } 300 \mathrm{~Hz}(1 \times) \mathrm{A} \text { or } \mathrm{S} \\ & \overline{R \times C} \text { or } \overline{T \times C} \text { equals } 1.76 \mathrm{KHz}(16 x) & \overline{R \times C} \text { or } \overline{T \times C} \text { equals } 4800 \mathrm{~Hz}(16 x) \mathrm{A} \text { onl }\end{array}$ $\overline{R x C}$ or $\overline{T x C}$ equals $7.04 \mathrm{KHz}(64 x) \quad \overline{R x C}$ or $\overline{T \times C}$ equals $19.2 \mathrm{KHz}(64 x) \mathrm{A}$ only

OPERATIONAL DESCRIPTION

USART PROGRAMMING

A set of control words must be sent to the $\mu$ PD8251 and $\mu$ PD8251A to define the desired mode and communications format. The control words will specify the BAUD rate factor ( $1 \mathrm{x}, 16 \mathrm{x}, 64 \mathrm{x}$ ), character length ( 5 to 8 ), number of STOP bits (1, 1-1/2, 2) Asynchronous or Synchronous mode, SYNDET (IN or OUT), parity, etc.

After receiving the control words, the $\mu \mathrm{PD} 8251$ and $\mu \mathrm{PD} 8251 \mathrm{~A}$ are ready to commun icate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, T×RDY is automatically reset.

Concurrently, the $\mu$ PD8251 and $\mu$ PD8251A may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset R×RDY.

Note: The $\mu$ PD8251 and $\mu$ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction ( $R \times E$ ). A dummy read is recommended to clear faulty R×RDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The $\mu$ PD8251 and $\mu$ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\mathrm{CTS}}$ (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words.

The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ( $C / \bar{D}=1$ ) followed by a software reset command instruction ( 40 Hex ) can be used to initialize the $\mu$ PD8251 and $\mu$ PD8251A.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION
This control word specifies the general characteristics of the interface regarding the Synchronous or Asynchronous mode, BAUD rate factor, character length, parity, and number of stop bits. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

## $\mu$ PD8251/8251A



The second SYNC character is skipped if MODE instruction has programmed the $\mu$ PD8251 and $\mu$ PD8251A to single character Internal SYNC Mode. Both SYNC characters are skıpped if MODE instruction has programmed the $\mu$ PD8251 and $\mu$ PD8251A to ASYNC mode.

The $\mu$ PD8251 and $\mu$ PD8251A can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components (one asynchronous and the other synchronous) which share the same support circuits and package. Although the format definition can be changed at will or "on the fly", the two modes will be explained separately for clarity.

When a data character is written into the $\mu$ PD8251 and $\mu$ PD8251A, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on $\overline{\mathrm{CTS}}$ and TXEN, the character may be transmitted as a serial data stream at the $T \times D$ output. Data is shifted out by the falling edge of $\overline{T \times C}$ at $\overline{T \times C}, \overline{T \times C} / 16$ or $\overline{T \times C} / 64$, as defined by the Mode Instruction.

If no data characters have been loaded into the $\mu$ PD8251 and $\mu$ PD8251A, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The $R \times D$ input line is normally held "high" (marking) by the transmitting device. A falling edge at $R \times D$ signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the $R \times D$ pin with the rising edge of $\overline{R \times C}$. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input character is loaded into the parallel Data Bus Buffer of the $\mu$ PD8251 and $\mu$ PD8251A and the R×RDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.


PROCESSOR BYTE (5-8 BITS/CHAR)


TRANSMISSION FORMAT


PROCESSOR BYTE (5-8 BITS/CHAR) (3)


## RECEIVE FORMAT

(i) Generated by $\mu$ PD8251/8251A
(2) Does not appear on the Data Bus.
(3) If character length is defined as 5,6 , or 7 bits, the unused bits are set to "zero."

## $\mu$ PD8251/8251A

As in Asynchronous transmission, the TXD output remains "high" (marking) until the $\mu$ PD8251 and $\mu$ PD8251A receive the first character (usually a SYNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send (CTS) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{T_{x C}}$ and the same rate as $\overline{T_{x C}}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at $T \times D$ continue at the $\overline{T \times C}$ rate or SYNC will be lost. If a data character is not provided by the processor before the $\mu$ PD8251 and $\mu$ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the $\mu$ PD8251 and $\mu$ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit

## SYNCHRONOUS

 RECEIVEIncoming data on the RxD input is sampled on the rising edge of $\overline{\mathrm{RxC}}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the $\mu$ PD8251 and $\mu$ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{RxC}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.


MODE INSTRUCTION FORMAT SYNCHRONOUS MODE

## TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE

## PROCESSOR BYTES (5-8BITS CHAR)



ASSEN:IRLED SERIAL DATA OUTPUT (T, D)


TRANSMIT FORMAT


## COMMAND INSTRUCTION FORMAT

After the functional definition of the $\mu$ PD8251 and $\mu$ PD8251A has been specified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.
After the Möde Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" ( $C / \bar{D}=1$ ) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the $\mu$ PD8251 and $\mu$ PD8251A to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.
STATUS READ FORMAT
It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The $\mu$ PD8251 and $\mu$ PD8251A have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/D input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the $\mu$ PD8251 and $\mu$ PD8251A to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 16 clock periods in the $\mu$ PD8251 and 28 clock periods in the $\mu$ PD8251A.

PARITY ERROR When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

OVERRUN ERROR

FRAMING ERROR

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note: (1) ASYNC mode on!y.



ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD


ASYNCHRONOUS INTERFACE TO TELEPHONE LINES


SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE


## $\mu$ PD8251/8251A



PACKAGE OUTLINES $\mu$ PD8251C $\mu$ PD8251AC

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN.
H	0.5 MIN	0.02 MIN.
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$



Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	$48.26 \pm 0.1$	$1.9 \pm 0.004$
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	$0.25 \pm 0.05$	$0.01 \pm 0.0019$

## PROGRAMMABLE INTERVAL TIMER

DESCRIPTION

EATURES

The NEC $\mu$ PD8253-5 contains three independent, programmable, multi-modal 16-bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The $\mu$ PD8253-5 interfaces directly to the busses of the processor as an array of I/O ports.

The $\mu$ PD8253-5 can generate accurate time delays under the control of system software. The three independent 16 -bit counters can be clocked at rates from DC to 4 MHz . The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the $\mu$ PD8253-5 in microprocessor based systems are:

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller
- NEC Now Supplies $\mu$ PD8253-5 to all $\mu$ PD8253 Requirements
- Three Independent 16-Bit Counters
- Clock Rate: DC to 4 MHz
- Count Binary or BCD
- Single +5 Volt Supply, $\pm 10 \%$
- 24 Dual-In-Line Plastic Package


PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (8-Bit)
CLK N	Counter Clock Inputs
GATE N	Counter Gate Inputs
OUT N	Counter Outputs
$\overline{\mathrm{RD}}$	Read Counter
$\overline{W R}$	Write Command or Data
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{A}_{0}, A_{1}$	Counter Select
$\mathrm{V}_{\mathrm{CC}}$	+5 Volts
GND	Ground

## Data Bus Buffer

The 3-state, 8-bit, bi-directional Data Bus Buffer interfaces the $\mu$ PD8253-5 to the 8080AF/8085A microprocessor system. It will transmit or receive data in accordance with the INput or OUTput instructions executed by the processor. There are three basic functions of the Data Bus Buffer.

1. Program the modes of the $\mu$ PD8253-5.
2. Load the count registers.
3. Read the count values.

## Read/Write Logic

The Read/Write Logic controls the overall operation of the $\mu$ PD8253-5 and is governed by inputs received from the processor system bus.

## Control Word Register

Two bits from the address bus of the processor, $A_{0}$ and $A_{1}$, select the Control Word Register when both are at a logic " 1 " (active-high logic). When selected, the Control Word Register stores data from the Data Bus Buffer in a register. This data is then used to control:

1. The operational MODE of the counters.
2. The selection of $B C D$ or Binary counting.
3. The loading of the count registers.

## $\overline{\mathrm{RD}}$ (Read)

This active-low signal instructs the $\mu$ PD8253-5 to transmit the selected counter value to the processor.

## $\overline{W R}$ (Write)

This active-low signal instructs the $\mu$ PD8253-5 to receive MODE information or counter input data from the processor.
$A_{1}, A_{0}$
The $A_{1}$ and $A_{0}$ inputs are normally connected to the address bus of the processor. They control the one-of-three counter selection and address the control word register to select one of the six operational MODES.

## $\overline{\mathrm{CS}}$ (Chip Select)

The $\mu$ PD8253-5 is enabled when an active-low signal is applied to this input. Reading or writing from this device is inhibited when the chip is disabled. The counter operation, however, is not affected.
Counters \#0, \#1, \#2
The three identical, 16 -bit down counters are functionally independent allowing for separate MODE configuration and counting operation. They function as Binary or BCD counters with their gate, input and output line configuration determined by the operational MODE data stored in the Control Word Register. The system software overhead time can be reduced by allowing the control word to govern the loading of the count data.
The programmer, with READ operations, has access to each counter's contents. The $\mu$ PD8253-5 contains the commands and logic to read each counter's contents while still counting without disturbing its operation.
The following is a table showing how the counters are manipulated by the input signals to the Read/Write Logic.

$\overline{\mathbf{C S}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	FUNCTION
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Lad Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation, 3-State
1	X	X	X	X	Disable, 3-State
$\mathbf{0}$	1	1	X	X	No-Operation, 3-State

$\mu$ PD8253-5

## BLOCK DIAGRAM



Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device realiability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V} \mathrm{CC}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	$V$	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	${ }^{1} \mathrm{OL}=2.2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Load Current	1 IL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Float Leakage Current	IOFL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V
$V_{\text {CC }}$ Supply Current	${ }^{1} \mathrm{CC}$			140	mA	

$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	${ }^{\mathrm{f}} \mathrm{c}=1 \mathrm{MHz}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to $\mathrm{V}_{\mathrm{SS}}$.

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	(2) LIM			MITS			UNIT	TEST CONDITIONS
		$\mu \mathrm{PD8253}$			$\mu$ PD8253-5				
		MIN	TYP	MAX	MIN	TYP	MAX		
READ									
Address Stable Before $\overline{\text { READ }}$	${ }^{\text {taR }}$	50			0	.		ns	
Address Hold Time for READ	tra	5			0			ns	
$\overline{\text { READ Pulse Width }}$	${ }_{\text {tr }}$	400			250			ns	
Data Delay from READ	tr			300			170	ns	$\mathrm{CL}=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floating	${ }^{\text {t }} \mathrm{DF}$	25		125	25		100	ns	$\mathrm{CL}=100 \mathrm{pF}$
WRITE									
Address Stable Before $\overline{\text { WRITE }}$	${ }^{\text {t }}$ AW	20			0			ns	
Address Hold Time for WRITE	twa	20			0			ns	
WRITE Pulse Width	tww	400			250			ns	
Data Set Up Time for WRITE	t DW	200			150			ns	
Data Hold Time for WRITE	twD	40			0			ns	
Recovery Time Between WRITES	${ }^{\text {t } R V}$	1			1			$\mu \mathrm{s}$	
CLOCK AND GATE TIMING									
Clock Period	${ }^{\text {t CLK }}$	300		DC	250		DC	ns	
High Pulse Width	tPWH	200			160			ns	
Low Pulse Width	tPWL	100			90			ns	
Gate Pulse Width High	${ }^{\text {t GW }}$	150			150			ns	
Gate Set Up Time to Clock 1	${ }_{\text {t GS }}$	100			100			ns	
Gate Hold Time After Clock $\dagger$	${ }^{\text {t GH }}$	50			50			ns	
Low Gate Width	${ }^{\text {t GL }}$	100			100			ns	
Output Delay from Clock !	${ }^{1} \mathrm{OD}$			300			300	ns	$C L=100 \mathrm{pF}$
Output Delay from Gate	todg			300			300	ns	$C L=100 \mathrm{pF}$

Notes: (1) AC Timing Measured at $\mathrm{VOH}_{\mathrm{OH}}=2.2 \mathrm{~V} ; \mathrm{VOL}_{\mathrm{OL}}=0.8 \mathrm{~V}$.
(2) Data for comparison only, NEC supplies $\mu$ PD8253-5 only.


AC CHARACTERISTICS (1)

TIMING WAVEFORMS


PROGRAMMING THE $\mu$ PD8253-5

The programmer can select any of the six operational MODES for the counters using system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data $\left(A_{0}, A_{1}=11\right)$.

## CONTROL WORD FORMAT

$\mathrm{D}_{\mathbf{7}}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
SC 1	$\mathrm{SC0}$	RL 1	RLO	M 2	M 1	$\mathrm{M0}$	BCD

SC - Select Counter

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Invalid

RL - Read/Load

RL1	RL0	
0	0	Counter Latching Operation
1	0	Read/Load Most Significant Byte Only
0	1	Read/Load Least Significant Byte Only
1	1	Read/Load Least Significant Byte First, Then Most   Significant Byte

BCD

0	Binary Counter, 16-Bits
1	BCD Counter, 4-Decades

M-Mode

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
$X$	1	0	Mode 2
$X$	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

## $\mu$ PD8253-5

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted Control Words. The following is a summary of the MODE operations.

## Mode 0: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT low. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will remain low until the terminal count sets it high. It will remain in the high state until the trailing edge of the second $\overline{W R}$ pulse loads in COUNT data. If data is loaded during the counting process, the first $\overline{W R}$ stops the count. Counting starts with the new count data triggered by the falling clock edge after the second WR. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.


## Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the trailing edge of GATE. The OUTPUT is set high again at the terminal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the One-Shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.


## Mode 2: Rate Generator

The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.


Note: (1) All internal counter events occur at the falling edge of the associated clock in all modes of 606 operation.

OPERATIONAL MODES (1)
(Cont.)

Mode 3: Square Wave Generator
MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{N+1}{2}$ clock cycles; Low Period $\rightarrow \frac{N-1}{2}$ clock periods, where $N$ is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.
The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.


## Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loading of new data, the OUTPUT is held high and counting is inhibited.
The OUTPUT is held high for the duration of GATE. The counters are reset and counting begins from the full data value after GATE is removed.


Mode 5: Hardware Triggered Strobe
Loading MODE 5 sets OUTPUT high. Counting begins when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT wi'l pulse low for one clock period. Subsequent trigger pulses will restart the counting ser;uence with the OUTPUT pulsing low on terminal count following the last rising ecige of the trigger input (Reference bottom half of timing diagram).


PACKAGE OUTLINE $\mu$ PD8253C $\mu$ PD8253-5C


Plastic

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01+0.004$

# PROGRAMMABLE PERIPHERAL INTERFACES 

## DESCRIPTION

The $\mu$ PD8255 and $\mu$ PD8255A- 5 are general purpose programmable INPUT/OUTPUT devices designed for use with the 8080A/8085A microprocessors. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bidirectional Bus mode, (MODE 2), uses the 8 lines of Port A for a bidirectional bus, and five lines from Port C for bus control signals. The $\mu$ PD8255 and $\mu$ PD8255A-5 are packaged in 40 pin plastic dual-in-line packages.

FEATURES - Fully Compatible with the 8080A/8085 Microprocessor Families

- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- $8-2 \mathrm{~mA}$ Darlington Drive Outputs for Printers and Displays ( $\mu$ PD8255)
- 8 - 4 mA Darlington Drive Outputs for Printers and Displays ( $\mu$ PD 8255A-5)
- LSI Drastically Reduces System Package Count
- Standard 40 Pin Dual-In-Line Plastic and Ceramic Packages

$\mathrm{PA}_{3} \square 1$		40	$\mathrm{PA}_{4}$
$\mathrm{PA}_{2}-2$		39	$\mathrm{PA}_{5}$
$P A_{1}-3$		38	$\mathrm{PA}_{6}$
$P A_{0} \square 4$		37	$\mathrm{PA}_{7}$
$\overline{R D} \square 5$		36	$\overline{W R}$
$\overline{C S} \square$		35	RESET
GND $\square$		34	$D_{0}$
$A_{1} \square 8$		33	$\mathrm{D}_{1}$
$A_{0} \square 9$		32	$\mathrm{D}_{2}$
$\mathrm{PC}_{7} \square 10$	$\begin{aligned} & \mu \text { PD } \\ & 8255 / \end{aligned}$	31	$D_{3}$
$\mathrm{PC}_{6}-11$	8255A-5	30	$\mathrm{D}_{4}$
$\mathrm{PC}_{5} \square 12$		29	$\mathrm{D}_{5}$
$\mathrm{PC}_{4}-13$		28	$D_{6}$
$\mathrm{PC}_{0}{ }^{14}$		27	$\mathrm{D}_{7}$
$\mathrm{PC}_{1} \square 15$		26	$\mathrm{V}_{\mathrm{CC}}$
$\mathrm{PC}_{2} \square_{16}$		25	$\mathrm{PB}_{7}$
$\mathrm{PC}_{3} \square 17$		24	$\mathrm{PB}_{6}$
$\mathrm{PB}_{0} \square 18$		23	$\mathrm{PB}_{5}$
$\mathrm{PB}_{1} \square 19$		22	$\mathrm{PB}_{4}$
$\mathrm{PB}_{2} \square 20$		21	$\mathrm{PB}_{3}$

PIN NAMES

$\mathrm{D}_{7} \cdot \mathrm{D}_{0}$	Data Bus (Bı-Directional)
RESET	Reset input
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{RD}}$	Read Input
$\overline{W R}$	Write Input
$A_{0}, A_{1}$	Port Address
$\mathrm{PA}_{7} \cdot \mathrm{PA}_{0}$	Port A (Bit)
$\mathrm{PB}_{7}-\mathrm{PB}_{0}$	Port B (Bit)
$\mathrm{PC}_{7} \cdot \mathrm{PC}_{0}$	Port C (Bit)
$\mathrm{V}_{\mathrm{CC}}$	+5 Volts
GND	0 Volts

## $\mu$ PD8255/8255A-5

## General

The $\mu$ PD8255 and $\mu$ PD8255A-5 Programmable Peripheral Interfaces (PPI) are designed for use in 8080A/8085A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A/8085A data and control busses with the $\mu$ PD8255 and $\mu$ PD8255A-5. The $\mu$ PD8255 and $\mu$ PD8255A- 5 are functionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

## Data Bus Buffer

The 3-state, bidirectional, eight bit Data Bus Buffer ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) of the $\mu$ PD8255 and $\mu$ PD8255A-5 can be directly interfaced to the processor's system Data Bus ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ). The Data Bus Buffer is controlled by execution of IN and OUT instructions by the processor. Control Words and Status information are also transmitted via the Data Bus Buffer.

## Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.

Chip Select, $\overline{\mathbf{C S}}$, pin 6
A Logic Low, VIL, on this input enables the $\mu$ PD8255 and $\mu$ PD8255A- 5 for communication with the 8080A/8085A.
Read, $\overline{\mathrm{RD}}, \operatorname{pin} 5$
A Logic Low, VIL, on this input enables the $\mu$ PD8255 and $\mu$ PD8255A- 5 to send Data or Status to the processor via the Data Bus Buffer.

Write, $\overline{\mathrm{WR}}, \operatorname{pin} 36$
A Logic Low, $\mathrm{V}_{\text {IL }}$, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.

Port Select 0, $\mathrm{A}_{0}$, pin 9
Port Select 1, $A_{1}$, pin 8
These two inputs are used in conjunction with $\overline{C S}, \overline{R D}$, and $\overline{W R}$ to control the selection of one of three ports on the Control Word Register. $A_{0}$ and $A_{1}$ are usually connected to $A_{0}$ and $A_{1}$ of the processor Address Bus.
Reset, pin 35
A Logic High, $\mathrm{V}_{\mathbf{I H}}$, on this input clears the Control Register and sets ports $\mathrm{A}, \mathrm{B}$, and C to the input mode. The input latches in ports $\mathrm{A}, \mathrm{B}$, and C are not cleared.

## Group I and Group II Controls

Through an OUT instruction in System Software from the processor, a control word is transmitted to the $\mu$ PD8255 and $\mu$ PD8255A-5. Information such as "MODE," "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.
Each group (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and in turn controls its associated I/O ports.

Group I - Port A and upper Port C (PC7- $\mathrm{PC}_{4}$ )
Group II - Port B and lower Port C ( $\mathrm{PC}_{3}-\mathrm{PC}_{0}$ )
While the Control Word Register can be written into, the contents cannot be read back to the processor.

Ports A, B, and C
The three 8 -bit I/O ports (A, B, and C) in the $\mu$ PD8255 and $\mu$ PD8255A- 5 can all be configured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the $\mu$ PD8255 and $\mu$ PD8255A- 5 is further enhanced by special features unique to each of the ports.

Port $A=A n 8$-bit data output latch/buffer and data input latch.
Port $B=A n 8$-bit data input/output latch/buffer and an 8 -bit data input buffer.
Port $\mathrm{C}=\mathrm{An} 8$-bit output latch/buffer and a data input buffer (input not latched).
Port C may be divided into two independent 4-bit control and status ports for use with Ports A and B.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
Supply Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		$\mu$ PD8255			$\mu$ PD8255A 5				
		MIN	TYP	MAX	MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{v}_{\text {SS }}-0.5$		0.8	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2		$\mathrm{V}_{\mathrm{CC}}$	2		$\mathrm{V}_{\mathrm{CC}}$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			04			045	V	(2)
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			24			v	(3)
Darlington Drive Current	${ }^{1} \mathrm{OH}(1)$	1	2	4	-1		-4	mA	$\mathrm{VOH}_{\mathrm{OH}}=15 \mathrm{~V}, \mathrm{R}_{\text {EXT }} 75012$
Power Supply Current	${ }^{1} \mathrm{CC}$		40	120			120	mA	$\mathrm{V}_{\mathrm{CC}}-+5 \mathrm{~V}$, Output Open
Input Leakage Current	'LIH			10			10	$\mu \mathrm{A}$	$V_{\text {IN }}-V_{\text {CC }}$
Input Leakage Current	ILIL			-10			-10	$\mu \mathrm{A}$	$V_{\text {IN }} 04 \mathrm{~V}$
Output Leakage Current	${ }_{\text {ILOH }}$			10			$\pm 10$	$\mu \mathrm{A}$	$V_{\text {OUT }}-V_{\text {CC }}$ C $\overline{C S}=20 \mathrm{~V}$
Output Leakage Current	${ }^{\text {ILOL }}$			-10			-10	$\mu \mathrm{A}$	VOUT-04V, CS 20 V

Notes: (1) Any set of eight (8) outputs from etther Port A, B, or C can source 2 mA into 15 V for $\mu$ PD8255, or 4 mA into 1.5 V tor $\mu$ PD8255A. 5
(2) For $\mu$ PD8255 1 OL 17 mA

For $\mu$ PD8255A-5 IOL 25 mA for DB Port. 17 mA for Peripheral Ports
(3) For $\mu \mathrm{PD} 8255$ : $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ for DB Port; $50 \mu \mathrm{~s}$ for Peripheral Ports For $\mu$ PD8255A 5 : $\mathrm{IOH}=-400 \mu \mathrm{~A}$ for dB Port; $-200 \mu \mathrm{~s}$ for Peripheral Ports.

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$
1/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to $\mathrm{V}_{\mathrm{SS}}$

## $\mu$ PD8255/8255A-5

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		\#PD8255		- ${ }^{\text {PPD8255A-5 }}$			
		MIN	MaX	MIN	MAX		
READ							
Address Stable Before $\overline{\text { REAC }}$	${ }^{\text {t }}$ AR	50		0		$n$	
Address Stable After AEAD	tra	0		0		$n s$	
FEAD Pulse Wiath	tRR	405		300		m	
Data Valid From AEAB	trd		295		200	ns	$\begin{aligned} & 8265: C_{L}=100 \mathrm{pF} \\ & 8255 \mathrm{~A} \cdot \mathrm{~S}: \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$
Data Flost After REAB	${ }^{\text {to }} \mathrm{F}$	10	150	10	100	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \\ & \hline \end{aligned}$
Time Between $\overline{\text { READS }}$ and/or WRITES	trv	850		850		$n 8$	(2)
WRITE							
Address Stable Before WRITE	taw	20		0		$n s$	
Address Stable After Whitte	TWA	20		20		ns	
Write Pulse Width	tww	400		300		n 4	
Data Valid To WRITE (LE.)	tow	10		100		$n s$	
Dats Valid After WhiYt	two	35		30		$n s$	
OTHER TIMING							
$\overline{W R}=0$ To Outwut	**		500		350	ns	$\begin{aligned} & 8255: C_{L}=50 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
Peripheral Data Before RD	tiR	0		0		ns	
Peripheral Data After RD	$t_{\text {HR }}$	50		0		ns	
$\overline{\text { ACK }}$ Pulse Width	${ }_{\text {tak }}$	500		300		ns	
STB Pulse Width	${ }^{\text {t }}$ ST	350		500		$n s$	
Per. Data Before T.E. Of STB	tPs	60		0		ns	
Per. Deta After T.E. Of $\overline{\text { STB }}$	tPH	150		180		ns	
$\overline{\text { ACK }}=0$ To Output	${ }^{\text {tad }}$		400		300	ns	$\begin{aligned} & \text { 8255: } C_{L}=50 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
ACM $=0$ To Output Fioat	${ }^{\text {t K }}$	20	300	20	250	$n s$	$8255\left\{\begin{array}{l} C_{L}=50 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}\right.$
	WOB		300		650	ns	
$\overline{\text { ACK }}=0 \mathrm{TO}_{0} \overline{\mathrm{OBF}}-1$	${ }^{\text {' }} \mathrm{AOB}$		450		350	$n 3$	
STE $=0$ TO 18F= 1	${ }_{\text {tSIB }}$		450		300	ns	CL
$\overline{\mathrm{RD}}=1$ TO IBF $=0$	trib		360		300	$n$	CL
$\overline{R D}=0$ To INTR $=0$	trit		450		400	ns	
$\overline{\text { STB }}=1$ TO INTR - 1	${ }^{\text {IS }}$ IT		400		300	ns	8255A.5: $C_{L}=150 \mathrm{pF}$
$\overline{\text { ACK }}$ - 1 TO INTR $=1$	${ }^{\text {tait }}$		400		350	ns	
Wh - 0 TO INTR = 0	+WIT		850		850	ns	

Notes: (1) Period of Reset pulse must be at least $50 \mu \mathrm{~s}$ during or after power on. Subsequent Reset pulse can be 500 ns min.
(2)


TIMING WAVEFORMS (CONT.) MODE 1


MODE 2


Note: (1) Any sequence where $\overline{W R}$ occurs before $\overline{A C K}$ and $\overline{S T B}$ occurs before $\overline{R D}$ is permissible. $(I N T R=I B F \cdot \overline{M A S K} \cdot \overline{S T B} \cdot \overline{R D}+\overline{O B F} \cdot \overline{M A S K} \cdot \overline{A C K} \cdot \overline{W R})$
(2) When the $\mu$ PD8255A- 5 is set to Mode 1 or $2, \overline{\mathrm{OBF}}$ is reset to be high (logic 1 ).

## $\mu$ PD8255/8255A-5

The $\mu$ PD8255 and $\mu$ PD8255A- 5 can be operated in modes ( 0,1 or 2 ) which are selected
MODES by appropriate control words and are detailed below

- MODE 0 provides for basic Input and Output operations through each of the ports
$\mathrm{A}, \mathrm{B}$, and C . Output data is latched and input data follows the peripheral. No "handshaking" strobes are needed.
16 different configurations in MODE 0
Two 8 -bit ports and two 4 -bit ports
Inputs are not latched
Outputs are latched
MODE 1 provides for Strobed Input and Output operations with data transferred through Port A or B and handshaking through Port C .
Two I/O Groups (I and II)
Both groups contain an 8 -bit data port and a 4 -bit control/data port Both 8 -bit data ports can be either Latched Input or Latched Output MODE 2 provides for Strobed bidirectional operation using $\mathrm{PA}_{0}-7$ as the bidirectional latched data bus. $\mathrm{PC}_{3}-7$ is used for interrupts and "handshaking" bus flow controls similar to Mode 1 . Note that $\mathrm{PB}_{0-7}$ and $\mathrm{PC}_{0-2}$ may be defined as Mode 0 or 1 , input or output in conjunction with Port $A$ in Mode 2.
An 8-bit latched bidirectional bus port ( $\mathrm{PA}_{0}-7$ ) and a 5 -bit control port ( $\mathrm{PC}_{3}-7$ ) Both inputs and outputs are latched

An additional 8 -bit input or output port with a 3-bit control port

INPUT OPERATION (READ)						
$A_{1}$	$A_{0}$	$\overline{R D}$	$\overline{\mathbf{W R}}$	$\overline{\mathrm{CS}}$		
0	0	0	1	0	PORT $A \longrightarrow$ DATA BUS	
0	1	0	1	0	PORT $B \longrightarrow$ DATA BUS	
1	0	0	1	0	PORT $C \longrightarrow$ DATA BUS	


OUTPUT OPERATION (WRITE)						
$A_{1}$	$A_{0}$	$\overline{R D}$	$\overline{W R}$	$\overline{\text { CS }}$		
0	0	1	0	0	DATA BUS $\rightarrow$ PORT A	
0	1	1	0	0	DATA BUS $\rightarrow$ PORT B	
1	0	1	0	0	DATA BUS $\rightarrow$ PORTC	
1	1	1	0	0	DATA BUS $\rightarrow$ CONTROL	


DISABLE FUNCTION						
$A_{1}$	$A_{0}$	$\overline{\text { RD }}$	$\overline{\text { WR }}$	$\overline{\mathrm{CS}}$		
$\times$	$\times$	$\times$	$\times$	1	DATA BUS $\rightarrow$   HIGH Z STATE	
$\times$	$\times$	1	1	0	DATA BUS   HIGH Z STATE	

NOTES. (1) $x$ means "DO NOT CARE."
(2) All conditions not listed are illegal and should be avoided.


## PACKAGE OUTLINE $\mu$ PD8255C $\mu$ PD8255AC/D-5



Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$
	0.05	



Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	$48.26 \pm 0.1$	$1.9 \pm 0.004$
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	$0.25 \pm 0.05$	$0.01 \pm 0.0019$

## NOTES

## PROGRAMMABLE DMA CONTROLLER

DESCRIPTION
The $\mu$ PD8257-5 is a programmable four-channel Direct Memory Access (DMA) controller. It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the $\mu$ PD8257-5 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the $\mu$ PD8257-5 so that the system bus may be acquired by the generation of a single HOLD command to the 8080A. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other $\mu$ PD8257-5 devices for systems requiring more than four DMA channels.

FEATURES • NEC Now Supplies $\mu$ PD8257-5 to $\mu$ PD8257 Requirements

- Four Channel DMA Controller
- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5 V Supply $\pm 10 \%$
- Expandable
- 40 Pin Plastic Dual-In-Line Package


## PIN CONFIGURATION



$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature -0.5 to +7 Volts (1)
Voltage on Any Pin
Power Dissipation 1 Watt

Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	Voits	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	Volts	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	Volts	$\mathrm{I}^{\mathrm{OL}}=1.7 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		$\mathrm{V}_{\mathrm{CC}}$	Volts	${ }^{\prime} \mathrm{OH}^{\prime}=-150 \mu \mathrm{~A}$ for AB ,   DB and AEN   ${ }^{1} \mathrm{OH}^{\prime}=-80 \mu \mathrm{~A}$ for others
HRQ Output High Voltage	$\mathrm{V}_{\mathrm{HH}}$	3.3		$\mathrm{V}_{\mathrm{CC}}$	Volts	${ }^{\mathrm{OH}}{ }^{\prime}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\text {CC }}$ Current Drain	${ }^{1} \mathrm{CC}$			120	mA	
Input Leakage	1 IL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Output Leakage During Float	${ }^{1} \mathrm{OFL}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}{ }^{(1)}$

Note: (1) $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {OUT }}>\mathrm{GND}+0.45 \mathrm{~V}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Capacitance	$\mathrm{C}_{I N}$			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{I / O}$			20	pF	Unmeasured pins   returned to GND

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

AC CHARACTERISTICS BUS PARAMETERS
$\mu$ PD8257-5 PERIPHERAL (SLAVE) MODE $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{VV} \pm 10 \% ; \mathrm{GND}=\mathrm{ov}$ (1)

PARAMETER	SYMBOL	(2) LIM			mits			UNIT	TEST CONDITIONS
		HPD8257			$\mu \mathrm{PD8257.5}$				
		MIN	TYP	MAX	MIN	TYP	MAX		
READ									
Adr or $\overline{\mathrm{CS}}$ S Stup to $\overline{\mathrm{Rd}} \downarrow$	$\mathrm{T}_{\text {AR }}$	0			0			ns	
Adr or $\overline{\mathrm{CS}}$ Hold from $\overline{\text { Rdt }}$	$T_{\text {ra }}$	0			0			ns	
Data Access from $\overline{\text { Rd. }}$	TrDE	0		300	0		170	ns	$C_{L}=100 \mathrm{pF}$
DB $\rightarrow$ Float Delay from $\overline{\mathrm{Rd}}$ t	Trof	20		150	20		100	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\overline{\text { Rd Width }}$	TRW	250			250			ns	
WRITE									
$\overline{\mathrm{CS}}$ S Setup to $\overline{\mathrm{W}} \mathrm{t}$	${ }^{\text {T }}$ cw	300			300			ns	
$\overline{\text { CS } t ~ H o l d ~ f r o m ~} \overline{\overline{W r}_{t} t}$	Twc	20			20			ns	
Adr Setup to Wri.	TAW	20			20			ns	
Adr Hold from $\overline{\mathrm{Wr}} \mathrm{t}$	TWA	0			0			as	
Data Setup to $\overline{\mathrm{Wr}}$ t	Tow	200			200			ns	
Data Hold from $\bar{W}+1$	Two	0			0			ns	
Wr Width	${ }^{\text {Twws }}$	200			200			ns	
Other timing									
Reset Pulse Width	TrSTW	300			300			ns	
Power Supply $t$ ( $\mathrm{V}_{\mathrm{CC}}$ ) Setup to Reset.	$\mathrm{T}_{\text {RSTO }}$	500			500			$\mu \mathrm{s}$	
Signal Rise Time	$\mathrm{T}_{\mathrm{r}}$			20			20	ns	
Signal Fall Time	$\mathrm{T}_{\mathrm{f}}$			20			20	ns	
Reset to First IOWR	TRSTS	2			2			${ }^{\text {t }} \mathrm{C} Y$	

Note: (1) All timing measurements are made at the following reference voltages unless specified otherwise. Input " 1 " at $2.0 \mathrm{~V}, " 0$ " at 0.8 V , Output " 1 " at $2.0 \mathrm{~V}, " 0$ " at 0.8 V .
(2) Data for comparison only.

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

READ TIMING


WRITE TIMING

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		(8) $\mu$ PD8257		$\mu$ PD8257.5			
		MIN	MAX	MIN	MAX		
Cycle Time (Period)	TCY	0.320	4	0.250	4	$\mu \mathrm{s}$	
Clock Active (High)	$\mathrm{T}_{\theta}$	120	. 8 T CY	30	.8TCY	ns	
DRQ $\uparrow$ Setup to $\theta+$ (SI, S4)	TOS	120		120			
DRQ $\downarrow$ Hold from HLDA $\uparrow$	$\mathrm{TOH}^{\text {O}}$	0		0			(4)
HRQ $\uparrow$ or $\downarrow$ Delay from $\theta \uparrow$ (SI, S4) (measured at 2.0 V )	TDO		160		160	ns	(1)
HRQ $\dagger$ or + Delay from $\theta \uparrow$ (SI, S4) (measured at 3.3 V )	TDQ1		250		250	ns	(3)
HLDAt or $\downarrow$ Setup to $\theta+$ (SI, S4)	THS	100		100		ns	
AEN $\uparrow$ Delay from $\theta \backslash$ (S1)	TAEL		300		250	ns	(1)
AEN + Delay from $\theta \uparrow$ (SI)	TAET		200		200	ns	(1)
Adr (AB) (Active) Delay from AEN $\dagger$ (S1)	TAEA	20		20		ns	(4)
Adr (AB) (Active) Delay from $\theta \uparrow$ (S1)	$\mathrm{T}_{\text {FAAB }}$		250		250	ns	(2)
Adr (AB) (Float) Delay from $\theta \uparrow$ (SI)	TAFAB		150		150	ns	(2)
Adr (AB) (Stable) Delay from $\theta \uparrow$ (S1)	$\mathrm{T}_{\text {ASM }}$		250		250	ns	(2)
Adr (AB) (Stable) Hold from $\theta \uparrow$ (S1)	$\mathrm{T}_{\text {AH }}$	TASM-50		TASM-50			(2)
Adr (AB) (Valid) Hold from $\overline{\text { Rd } \uparrow}$ ( $\mathrm{S} 1, \mathrm{~S} 1$ )	TAHR	60		60		ns	(4)
Adr (AB) (Valid) Hold from $\overline{\text { Wrt }}$ (S1, SI)	TAHW	300		300		ns	(4)
Adr (DB) (Active) Delay from $\theta \uparrow$ (S 1 )	TFADB		300		250	ns	(2)
Adr (DB) (Float) Delay from $\theta \uparrow$ (S2)	TAFDB	TSTT ${ }^{+20}$	250	TSTT ${ }^{+20}$	170	ns	(2)
Adr (DB) Setup to Adr Stb $\downarrow$ (S1-S2)	TASS	100		100		ns	(4)
Adr (DB) (Valid) Hold from Adr Stb $\downarrow$ (S2)	TAHS	50		50		ns	(4)
Adr Stb $\dagger$ Delay from $\theta \uparrow$ (S1)	TSTL		200		200	ns	(1)
Adr Stb $\downarrow$ Delay from $\theta \dagger$ (S2)	TSTT		140		140	ns	(1)
Adr Stb Width (S1-S2)	TSW	$\mathrm{T}^{\text {CTY-100 }}$		$\mathrm{T}_{\text {CY-100 }}$		ns	(4)
$\overline{\text { Rd }} \downarrow$ or $\overline{\mathrm{Wr}}$ (Ext) \& Delay from Adr Stb $+(\mathbf{S 2 )}$	TASC	70		70		ns	(4)
$\overline{\mathrm{Rd}} \downarrow$ or $\overline{\mathrm{Wr}}$ (Ext) $\downarrow$ Delay from Adr (DB) (Float) (S2)	TDBC	20		20		ns	(4)
DACK $\uparrow$ or $\downarrow$ Delay from $\theta \downarrow$ (S2, S1) and TC/Mark $\uparrow$ Delay from $\theta \uparrow(\mathrm{S} 3)$ and TC/Mark $\downarrow$ Delay from $\theta \uparrow$ (S4)	TAK		250		250	ns	(1) (5)
$\overline{\mathrm{Rd}} \downarrow$ or $\overline{W_{r}}($ Ext $) \downarrow$ Delay from $\theta \uparrow$ (S2) and $\overline{W r} \downarrow$ Delay from $\theta \uparrow$ (S3)	TDCL		200		200	ns	(2) (6)
$\overline{\mathrm{Rd}} \ddagger$ Delay from $\theta+(\mathrm{S} 1, \mathrm{SI})$ and $\bar{W} \uparrow \uparrow$ Delay from $\theta \uparrow$ (S4)	TDCT		200		200	ns	(2) (7)
$\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Active) from $\theta \uparrow$ (S1)	TFAC		300		250	ns	(2)
$\overline{\mathrm{Rd}}$ or $\overline{W r}$ ( Float ) from $\theta \uparrow$ (SI)	TAEC		150		150	ns	(2)
$\overline{\mathrm{Rd}}$ Width (S2-S1 or SI)	TRWM	$\begin{aligned} & 2 \mathrm{~T}_{\mathrm{CY}}{ }^{+} \\ & \mathrm{T}_{\theta}-50 \\ & \hline \end{aligned}$		$\begin{aligned} & 2 T_{C Y+} \\ & T_{\theta-50} \end{aligned}$		ns	(4)
$\overline{W r}$ Width (S3-S4)	TWWM	TCY-50		TCY-50		ns	(4)
$\overline{W_{r}}$ (Ext) Width (S2-S4)	TWWME	2TCY-50		$2 \mathrm{~T}_{C Y}-50$		ns	(4)
READY Set Up Time to $\theta \uparrow$ (S3, Sw)	TRS	30		30		ns	
READY Hold Time from $\theta \uparrow$ (S3, Sw)	TRH	20		20		ns	

Notes: (1) Load $=1 \mathrm{TTL}$
(2) Load $=1 \mathrm{TTL}+50 \mathrm{pF}$
(3) Load $=1 \mathrm{TTL}+\left(\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K}\right), \mathrm{VOH}_{\mathrm{OH}}=3.3 \mathrm{~V}$
(4) Tracking Specification
(5) $\Delta T_{A K}<50 \mathrm{~ns}$
(6) $\Delta T_{\text {DGL }}<50 \mathrm{~ns}$
(7) $\Delta T_{D C T}<50 \mathrm{~ns}$
(8) Data for comparison only

## TIMING WAVEFORMS DMA (MASTER) MODE



FUNCTIONAL DESCRIPTION

The $\mu$ PD8257-5 is a programmable, Direct Memory Address (DMA) device. When used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080A/8085A based systems. Once initialized by an 8080A/8085A CPU, the $\mu$ PD8257-5 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occurs within the $\mu$ PD8257-5.

- It acquires control of the system bus (placing 8080A/8085A in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16-bit memory address word is generated with the aid of an 8212 in the following manner:

The $\mu$ PD8257-5 outputs the least significant eight bits ( $A_{0}-A_{7}$ ) which go directly onto the address bus.
The $\mu$ PD8257-5 outputs the most significant eight bits ( $\mathrm{A}_{8}-\mathrm{A}_{1} 5$ ) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

- The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.

Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request (DRQ ${ }_{n}$ ). The $\mu$ PD8257-5 retains control of the system bus as long as $D R Q_{n}$ remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.

There are three different modes of operation:

- DMA read, which causes data to be transferred from memory to a peripheral;
- DMA write, which causes data to be transferred from a peripheral to memory; and
- DMA verify, which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the $\mu$ PD8257-5: The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.

Internally the $\mu$ PD8257-5 contains six different states (S0, S1, S2, S3, S4 and SW). The duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests ( $D R Q_{n}$ ), then the $\mu$ PD8257-5 enters the S0 state. During state S0 a Hold Request (HRQ) is sent to the 8080A/8085A and the $\mu$ PD8257-5 waits in S0 until the 8080A/8085A issues a Hold Acknowledge (HLDA) back. During S0, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line ( $\overline{\mathrm{DACK}}_{\mathrm{n}}$ ) with the highest priority is driven low, selecting that particular peripheral for the DMA cycle. The DMA Request line $\left(\mathrm{DRQ}_{n}\right)$ must remain high until either a DMA Acknowledge $\overline{\mathrm{DACK}}_{n}$ ) or both $\overline{\mathrm{DACK}}_{n}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst model).

The DMA cycle consists of four internal states; S1, S2, S3 and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the $\mu$ PD8257-5 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the $\mu$ PD8257-5 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the $\mu$ PD8257-5 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time ( $\mathrm{t}_{\mathrm{RS}}$ ), write setup , time (tDW), read data access time (tRD) and HLDA setup time (tos) should all be carefully observed during the handshaking mode between the $\mu$ PD8257-5 and the 8080A/8085A.

During DMA write cycles, the I/O Read ( $\overline{\mathrm{I} / O \mathrm{R}}$ ) output is generated at the beginning of state S 2 and the Memory Write ( $\overline{\mathrm{MEMW}}$ ) output is generated at the beginning of S3. During DMA read cycles, the Memory Read ( $\overline{M E M R}$ ) output is generated at the beginning of state S 2 and the I/O Write $(\overline{\mathrm{I} / \mathrm{OW})}$ goes low at the beginning of state S3. No Read or Write control signals are generated during DMA verify cycles.


Notes: (1) HRQ is set if $D R Q_{n}$ is active.
(2) HRQ is reset if $D R Q_{n}$ is not active.

DMA OPERATION

DMA OPERATION STATE DIAGRAM

TYPICAL $\mu$ PD8257-5 SYSTEM INTERFACE SCHEMATIC


9

## $\mu$ PD8257-5



ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

## PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION The NEC $\mu$ PD8259-5 is a programmable interrupt controller directly compatible with the 8080A/8085A/ $\mu$ PD780(Z80TM). It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to sixty-four levels with the addition of other $\mu$ PD8259-5's. The user is offered a selection of priority algorithms to tailor the priority processing to meet his systems requirements. These algorithms can be dynamically modified during operation, expanding the versatility of the microprocessor system.

FEATURES - NEC now Supplies $\mu$ PD8259-5 to $\mu$ PD8259 Requirements

- Eight Level Priority Controller
- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5 V Supply $\pm 10 \%$ (No Clocks)
- Full Compatibility with 8080 A
- $\mu$ PD8259-5 Compatible with 8085A Speeds
- Available in 28 Pin Plastic and Ceramic Packages


## PIN CONFIGURATION




Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts © 1 C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W
Note: $\square$ With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{v}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\checkmark$	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	"		0.45	V	${ }^{\prime} \mathrm{OL}=2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			$\checkmark$	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Interrupt Output-	$\mathrm{V}_{\text {OH-INT }}$	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
High Voltage		3.5			V	${ }^{1} \mathrm{OH}=-50 \mu \mathrm{~A}$
Input Leakage Current	$\mathrm{I}_{1 \mathrm{~L}}$			-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
for $\mathrm{IR}_{0-7}$				10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current for other Inputs	$\mathrm{I}_{1}$			$\pm 10$	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$
Output Leakage Current	ILOL			- 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
$V_{\text {CC }}$ Supply Current	$\mathrm{I}_{\mathrm{CC}}$			85	mA	

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{C}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured Pins Returned to VSS

## AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS				UNIT	test CONDITIONS
		(2) 8259		8259.5			
		MIN	MAX	MIN	MAX		
READ							
	${ }^{\text {t AR }}$	50		0		ns	
$\overline{\mathrm{CS}} / \mathrm{A}_{0}$ Stable After $\overline{\mathrm{RD}}$ or $\overline{\mathrm{INTA}}$	tra	50		0		ns	
$\overline{\text { RD Pulse Width }}$	trR	420		250		ns	
Data Valid From $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$	trD		300		150	ns	(1)
Data Float After $\overline{\mathrm{RD}} / \overline{\mathrm{NTNA}}$	${ }^{\text {t }}$ D	20	200	20	100	ns	(1)
WRITE							
$A_{0}$ Stable Before $\bar{W}$	${ }^{\text {t }}$ AW	50		0		ns	
$A_{0}$ Stable After $\bar{W} \mathbf{R}$	twa	20		0		ns	
$\overline{\text { CS }}$ Stable Before $\overline{\text { WR }}$	${ }_{\text {t }} \mathrm{CW}$	50				ns	
	twc	20				ns	
$\overline{\text { WR Pulse Width }}$	tww	400		250		ns	
Data Valid to $\overline{\mathrm{WR}}$ (T.E.)	tow	300		150		ns	
Data Valid After $\overline{\text { WR }}$	two	40		0		ns	
OTHER							
Width of Interrupt Request Pulse	$\mathrm{t}_{\text {IW }}$	100		100		ns	
INT $\uparrow$ After IR $\uparrow$	tint	400		250		ns	
Cascade Line Stable After $\overline{\text { INTA }} \uparrow$	${ }_{1} \mathrm{C}$	400		300		ns	

Note: (1) For $\mu$ PD8259: $C_{L}=100 \mathrm{pf}$; for $\mu$ PD8259-5: $C_{L}=150 \mathrm{pf}$
(2) Data for Comparison only

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)
The interrupt request register and in-service register store the in-coming interrupt request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.

A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the $\mu$ PD8259-5 is set high. The IR input line must remain high until the first INTA input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming $\overline{\text { INTA }}$ sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine until it is reset by the programmed End-of-Interrupt (EOI) command.

## PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first INTA pulse.

## DATA BUS BUFFER

The 3-state, 8-bit, bi-directional data bus buffer interfaces the $\mu$ PD8259-5 to the processor's system bus. It buffers the Control Word and Status Data transfers between the $\mu$ PD8259-5 and the processor bus.

## READ/WRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

## CHIP SELECT (CS)

The $\mu$ PD8259-5 is enabled when an active-low signal is received at this input. Reading or writing of the $\mu$ PD8259-5 is inhibited when it is not selected.

## WRITE ( $\overline{W R}$ )

This active-low signal instructs the $\mu$ PD8259-5 to receive Command Data from the processor.

## READ ( $\overline{\mathrm{RD}}$ )

When an active-low signal is received on the $\overline{\mathrm{RD}}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

## INTERRUPT (INT)

The interrupt output from the $\mu$ PD8259-5 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080/8085 input voltage and timing requirements.

## INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

FUNCTIONAL DESCRIPTION
(CONT.)

## INTERRUPT ACKNOWLEDGE (INTA)

The interrupt acknowledge signal is usually received from the 8228 (system controller for the 8080A). The system controller generates three INTA pulses to signal the 8259-5 to issue a 3 -byte CALL instruction onto the data bus.

## A0

$A_{0}$ is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{R D}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ inputs.

$\mu$ PD8259 BASIC OPERATION						
$\mathrm{A}_{0}$	D4	D3	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	PROCESSOR INPUT OPERATION (READ)
0 1			$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & I R R, \text { ISR or IR } \rightarrow \text { Data Bus (1) } \\ & \text { IMR } \rightarrow \text { Data Bus } \end{aligned}$
						PROCESSOR OUTPUT OPERATION (WRITE)
0	0	0	1	0	0	Data Bus $\rightarrow$ OCW2
0	0	1	1	0	0	Data Bus $\rightarrow$ OCW3
0	1	X	1	0	0	Data Bus $\rightarrow$ ICW1
1	X	X	1	0	0	Data Bus $\rightarrow$ OCW1, ICW2, ICW3 (2)
DISABLE FUNCTION						
X	X	X	1	1	0	Data Bus $\rightarrow$ 3-State
X	X	X	X	X	1	Data Bus $\rightarrow$ 3-State

Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the $\mu$ PD8259-5 aligns these commands in the proper order.

CASCADE BUFFER/COMPARATOR. (For Use in Multiple $\mu$ PD8259-5 Array.)
The ID's of all $\mu$ PD8259-5's are buffered and compared in the cascade buffer/comparator. The master $\mu$ PD8259-5 will send the ID of the interrupting slave device along the CASO, 1,2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two INTA pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

## SLAVE PROGRAM ( $\overline{\mathbf{S P}}$ ). (For Use in Multiple $\mu$ PD8259 Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple $\mu$ PD8259-5's in a master-plus-slaves array. The master controls the slaves through the CASO, 1, 2 lines. The SP input to the device selects the CASO-2 lines as either outputs $(S P=1)$ for the master or as inputs ( $S P=0$ ) for the slaves. For one device only the $S P$ must be set to a logic " 1 " since it is functioning as a master.



READ STATUS/POLL MODE


Note: IR must stay "high" at least until the leading edge of 1st INTA.
INPUT WAVEFORMS FOR AC TESTS


## DETAILED OPERATIONAL DESCRIPTION

The $\mu$ PD8259-5 derives its versatility from its programmable interrupt modes and its ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the $\mu$ PD8259-5 interacts with the processor.

1. An interrupt or interrupts appearing on $\mathrm{R}_{0-7}$ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the $\mu$ PD8259-5 will resolve the priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an INTA to the $\mu$ PD8259-5 when it receives the INT.
4. The INTA input to the $\mu$ PD8259-5 from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the $\mu$ PD8259-5 to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more INTA pulses to the $\mu$ PD8259-5.
6. The two INTA pulses signal the $\mu$ PD8259-5 to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second INTA releases the high-order 8-bits.
7. The $\mu$ PD8259-5's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the $\mu$ PD8259-5 at the end of an interrupt service routine to reset the ISR bit and allow the $\mu$ PD8259-5 to service the next interrupt.

PROGRAMMING THE Two types of command words are required from the processor to fully define the $\mu$ PD8259-5 operating modes of the $\mu$ PD8259-5.

## 1. Initialization Command Words (ICWs)

Each $\mu$ PD8259-5 in the interrupt array must be initialized prior to normal operation. The initialization is performed by a 2 or 3-byte sequence clocked by $\overline{W R}$ pulses. Figure 1 shows this sequence. (Refer to Figure 2 for bit definitions.)

2. Operation Command Words (OCWs)

The operation command words are used to program the various interrupt algorithms listed below:

- Fully Nested Mode
- Rotating Priority Mode
- Special Mask Mode
- Polled Mode

Once the $\mu$ PD8259-5 has been initialized, OCWs can be written at any time.
When $A_{0}=0$ and $D_{4}=1$ in a command to the $\mu$ PD8259-5, together with CS $=0$, it is recognized as Initialization Command Word 1. This is the start of the initialization sequence and causes the following to occur:

- The Interrupt Request edge-sense circuitry is reset so that an input must make a low-to-high transition to generate its interrupt.
- The initialization sequence clears Interrupt Mask Register to all unmasked and resets the Special Mask Mode and Status Read Flip-Flops.
- IR7 input is set to priority 7.

There are eight equally-spaced base vector addresses in memory for the eight interrupt inputs. The interval between the base vector addresses can be programmed to be either four or eight requiring 32 or 64 bytes in memory, respectively. The following shows how the address format is mapped onto the Data bus.


$\mathrm{A}_{15}$	$\mathrm{~A}_{14}$	$\mathrm{~A}_{13}$	$A_{12}$	$\mathrm{~A}_{11}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$

DEFINED BY ICW2
The $\mu$ PD8259-5 automatically defines $A_{0-4}$ with a separate address for each interrupt input. The base vector addresses $\mathrm{A}_{15-6}$ are programmed by ICW1 and ICW2. A5 is either defined by the $\mu$ PD8259-5 if the address interval is eight or must be user-define the interval is 4 . The 8 -byte CALL interval is consistent with 8080A processor RESTART instruction software. The 4-byte CALL interval can be used for a compact jump table. Refer to Figure 4 for a table of address formats.
The following is an example of an interrupt acknowledge sequence. The $\mu$ PD8259-5 has been programmed for a CALL address (base vector address) interval of eight ( $F=0$ ) and there is an interrupt appearing on IR4. The 3-byte sequence is strobed out to the Data bus by three INTA pulses.

	D7	D6	D5	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	CALL CODE
1ST INTA	1	1	0	0	1	1	0	1	
2ND $\overline{\text { INTA }}$	$A_{7}$	$\mathrm{A}_{6}$	1	0	0	0	0	0	LOWER ROUTINE ADDRESS (FROM FIGURE 4)
3RD $\overline{\text { INTA }}$	A15	A14	$A_{13}$	A 12	A 11	A 10	A9	A8	HIGHER ROUTINE ADDRESS

INITIALIZATION COMMAND WORD 3 (ICW3) (1)

It is only necessary to program ICW3 when there are multiple $\mu$ PD8259-5's in the interrupt array, i.e., $\mathrm{S}=\mathbf{0}$. There are two types of ICW3s. The first is for programming the master $\mu$ PD8259-5. The second is for the slaves.

1. ICW3-Master $\mu$ PD8259-5. A " 1 " is set in $\mathrm{S}_{0} 0-7$ for each corresponding slave in the interrupt array. The $\mathrm{S}_{0-7}$ bits, together with $\overline{\mathrm{SP}}=1$, instructs the cascade buffer/ comparator to send the ID of the interrupting slave on the CAS0,1,2 lines.
2. ICW3-SLAVE $\mu$ PD8259-5(s). Bits D7-D3 are "don't care" bits and have no effect on ICW3. The ID of each slave is programmed by bits $\mathrm{D}_{0-2}$ (ID $\mathrm{D}_{0,1,2}$ ). Once the master $\mu$ PD8259-5 has sent out the first byte of the CALL sequence, the slave device(s) with their $\overline{\mathrm{SP}}$ inputs set to Logic 0 , compare their IDs appearing on the CAS0,1,2 lines through the cascade buffer/comparator. The slave whose ID matches the CAS0, 1,2 code then issues bytes 2 and 3 of the CALL sequence.

## OPERATIONAL COMMAND WORDS (OCWs)

Once the $\mu$ PD8259-5 has been programmed with Initialization Command Words, it can now be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the $\mu$ PD8259-5 can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCWs.

## INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic "1." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the $\mu$ PD8259-5 has acknowledged an interrupt, i.e., the $\mu$ PD8259-5 has sent an INT signal to the processor and the system controller has sent it an INTA signal, the interrupt input, although it is masked, will inhibit lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

## FULLY NESTED MODE

The fully nested mode is the $\mu$ PD8259-5's basic operating mode. It will operate in this mode after the initialization sequence, requiring no Operation Command Words for formatting. Priorities are set IR 0 through IR7 with IR ${ }_{0}$ the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, the corresponding ISR bit is set, and the vector address is output to the Data bus. The EOI command resets the corresponding ISR bit at the end of its service routine.

Notes: (1) Reference Figure 2
(2) Reference Figure 3

## ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

## 1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities 0-7 to the interrupt request input lines. Interrupt line IRO is set to the highest priority and $I_{7}$ to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " $R$ " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0 ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines $\mathrm{R}_{2}$ and $\mathrm{IR}_{5}$.

Before Interrupts are Serviced:

	IS7	$\mathrm{IS}_{6}$	IS5	$\mathrm{IS}_{4}$	$\mathrm{IS}_{3}$	IS2	IS1	$\mathrm{IS}_{0}$
In-Service Register	0	0	1	0	0	1	0	0

Highest Priority
Priority Status
Register


According to the Priority Status Register, $\mathrm{IR}_{2}$ has a higher priority than $\mathrm{IR}_{5}$ and will be serviced first.
After Servicing:


Priority Status
Register

IR2	$\mathrm{IR}_{1}$	IRO	$\mathrm{IR}_{7}$	IR6	IR5	IR4	

At the completion of $\mathbf{R}_{2}$ 's service routine the corresponding $\operatorname{In}$-Service Register bit, $I S_{2}$ is reset to " 0 " by the preprogrammed EOI command. $1 \mathrm{R}_{2}$ is then assigned the lowest priority level in the Priority Status Register. The $\mu$ PD8259-5 is now ready to service the next highest interrupt, which in this case, is $\mathrm{R}_{5}$.
2. Specific Rotate Mode

The priorities are set by programming the lowest level through OCW2. The $\mu$ PD8259-5 then automatically assigns the highest priority. If, for example, IR3 is set to the lowest priority (bits $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{0}$ form the binary code of the bottom priority level), then IR4 will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW2 in the following manner: set Rotate Priority bit " $R$ " to a logic " 1, " program EOI to a logic " 0, " SEOI to a logic " 1 " and $L_{2}, L_{1}, L_{0}$ to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by $L_{2}, L_{1}, L_{0}$ is reset.

Priority

## 3

OPERATIONAL COMMAND WORDS (CONT.)

## END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)

The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate $\operatorname{In}$-Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0, " the $\mu$ PD8259-5 is ready to service the next interrupt

Two types of EOIs are available to clear the appropriate ISR bit depending on the $\mu$ PD8259-5's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command will automatically reset the highest priority ISR bit of those set. The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 " s . Both the EOI and SEOI bits of OCW3 must be set to a logic " 1 " with $L_{2}, L_{1}, L_{0}$ forming the binary code of the ISR bit to be reset.

## SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW1 to a logic " 1 " will inhibit lower priority interrupts from being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic "1." Once the SMM is set, the $\mu$ PD8259-5 remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

## POLLED MODE

In the Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. The Poll Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{R D}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overline{R D}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. The Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
I	X	X	X	X	$\mathrm{W}_{2}$	$\mathrm{~W}_{1}$	$\mathrm{~W}_{0}$

where: $I=1$ if there is an interrupt requesting service
$=0$ if there are no interrupts
$\mathrm{W}_{2-0}$ forms the binary code of the highest priority level of the interrupts requesting service
The Poll Mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required offering a saving in ROM space. The Poll Mode can also be used to expand the number of interrupts beyond 64.

The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing $\overline{\mathrm{RD}}$ command.

READING $\mu$ PD8259-5 STATUS

## INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. Once it has been acknowledged, the highest priority in-service bit is reset. (Note that the Interrupt Mask Register has no effect on the IRR.) A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0 ."

## IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{R D}$ command. Both ERIS and RIS should be set to a logic "1."

## INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overline{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{R D}$ is asserted with $A_{0}$ at a logic "1."
A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode where bits P and ERIS of OCW3 are set to a logic " 1 ."

If more than eight interrupt levels are required, multiple $\mu$ PD8259-5's can be cascaded with one master and up to eight slaves, to accommodate up to 64 levels of interrupt.

CASCADING MULTIPLE $\mu$ PD8259-5's

As shown in Figure 5, the master device directs the appropriate slave to release its CALL address through its three cascade lines (CASO,1,2).
The INT output of the slave devices go to the IR inputs of the master device. The master $\mu$ PD8259-5's INT output is connected to the processor's control bus. When the slave device signals the master that it has acknowledged an interrupt, the master issues an 8080A CALL Op-code at the first INTA pulse. The master then signals that slave device (via CASO,1,2) to issue the appropriate CALL address during the second and third INTA pulses.

The slave address code is present on cascade lines $0,1,2$ (active-high logic) from the trailing edge of the first $\overline{\mathrm{NTA}}$ to the trailing edge of the third $\overline{\mathrm{INTA}}$. Each device in the $\mu$ PD8259-5 array must be individually initialized and can be programmed in different operating modes. Two End-of-Interrupt commands must be issued for the master and its corresponding slave. An address decoder is used to drive the Chip Select inputs for each $\mu$ PD8259-5 in the array. The Slave Program ( $\overline{\mathrm{SP})}$ input must be held at a logic " " 0 " level for each slave device and held at logic " 1 " level for the master. The SP input selects the Cascade lines as either inputs ( $S P=0$ ) or outputs ( $S P=1$ ).

INITIALIZATION COMMAND WORD FORMAT

## OPERATION COMMAND WORD FORMAT



FIGURE 3


SUMMARY OF OPERATION COMMAND WORD PROGRAMMING

INTERVAL $=4$									INTERVAL $=8$							
	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
$\mathrm{IR}_{7}$	$A_{7}$	$A_{6}$	$A_{5}$	1	1	1	0	0	$A_{7}$	$A_{6}$	1	1	1	0	0	0
$\mathrm{IR}_{6}$	$A_{7}$	$A_{6}$	$A_{5}$	1	1	0	0	0	$A_{7}$	$A_{6}$	1	1	0	0	0	0
$\mathrm{IR}_{5}$	$A_{7}$	$A_{6}$	$\mathrm{A}_{5}$	1	0	1	0	0	$A_{7}$	$\mathrm{A}_{6}$	1	0	1	0	0	0
$\mathrm{IR}_{4}$	$A_{7}$	$A_{6}$	$A_{5}$	1	0	0	0	0	$A_{7}$	$A_{6}$	1	0	0	0	0	0
$\mathrm{IR}_{3}$	$A_{7}$	$A_{6}$	$A_{5}$	0	1	1	0	0	$A_{7}$	$A_{6}$	0	1	1	0	0	0
$\mathrm{IR}_{2}$	$A_{7}$	$A_{6}$	$A_{5}$	0	1	0	0	0	$A_{7}$	$A_{6}$	0	1	0	0	0	0
$\mathrm{IR}_{1}$	$A_{7}$	$A_{6}$	$A_{5}$	0	0	1	0	0	$A_{7}$	$A_{6}$	0	0	1	0	0	0
$\mathrm{IR}_{0}$	$A_{7}$	$A_{6}$	$A_{5}$	0	0	0	0	0	$A_{7}$	$A_{6}$	0	0	0	0	0	0

FIGURE 4

Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all $\mu$ PD8259-5's.


INSTRUCTION SET

Instruction Number	Mnemonic	$\mathrm{A}_{0}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$	Operation Description
1	ICW1 A	0	$A_{7}$	$\mathrm{A}_{6}$	$A_{5}$	1	0	1	1	0	Byte 1 Initialization, Format $=4$, Single
2	ICW1 B	0	A 7	$A_{6}$	$A_{5}$	1	0	1	0	0	Byte 1 Initialization, Format $=4$, Not Single
3	ICW1 C	0	A 7	$A_{6}$	$A_{5}$	1	0	0	1	0	Byte 1 Initialization, Format $=8$, Single
4	ICW1 D	0	$A_{7}$	$A_{6}$	$\mathrm{A}_{5}$	1	0	0	0	0	Byte 1 Initialization, Format $=8$, Not Single
5	ICW2	1	$A_{15}$	$A_{14}$	$\mathrm{A}_{13}$	$A_{12}$	$A_{11}$	$A_{10}$	Ag	A8	Byte 2 Initialization (Address No. 2)
6	ICW3 M	1	$\mathrm{S}_{7}$	$\mathrm{s}_{6}$	$\mathrm{S}_{5}$	$\mathrm{S}_{4}$	$\mathrm{S}_{3}$	$\mathrm{S}_{2}$	$\mathrm{s}_{1}$	$\mathrm{s}_{0}$	Byte 2 Initialization MASTER
7	ICW3 s	1	0	0	0	0	0	$\mathrm{s}_{2}$	$\mathrm{s}_{1}$	$\mathrm{s}_{0}$	Byte 3 Initialization SLAVE
8	OCW1	1	M7	M6	M5	$M_{4}$	$M_{3}$	$\mathrm{M}_{2}$	$\mathrm{M}_{1}$	$M_{0}$	Load Mask Register, Read Mask Register
9	Ocw 2 E	0	0	0	1	0	0	0	0	0	Non-Specific EOI
10	OCW2 SE	0	0	1	1	0	0	$\mathrm{L}_{2}$	$L_{1}$	Lo	Specific EOI, $L_{2}, L_{1}, L_{0}$ Code of IS to be Reset
11	OCW2 RE	0	1	0	1	0	0	0	0	0	Rotate at EOI (Auto Mode)
12	OCW2 RSE	0	1	1	1	0	0	$L_{2}$	4	Lo	Rotate at EOI (Specific Mode). $L_{2}, L_{1}, L_{0}$ Code of Line to be Reset and Selected as Bottom Priority.
13	OCW2 RS	0	1	1	0	0	0	$\mathrm{L}_{2}$	$L_{1}$	Lo	$L_{2}, L_{1}, L_{0}$ - Code of Bottom Priority Line.
14	OCW3 P	0	-	0	0	0	1	1	0	0	Poll Mode
15	OCW3 RIS	0	-	0	0	0	1	0	1	1	Read IS Register
16	OCW3 RR	0	-	0	0	0	1	0	1	0	Read Requests Register
17	OCW3 SM	0	-	1	1	0	1	0	0	0	Set Special Mask Mode
18	OCW3 RSM	0	-	1	0	0	1	0	0	0	Reset Special Mask Mode

Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all $\mu$ PD8259-5's.

(Plastic)

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	$0 . \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX..
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	


(Ceramic)

ITEM	MILLIMETERS	INCHES
A	36.2 MAX.	1.43 MAX.
B	1.59 MAX.	0.06 MAX.
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.46 \pm 0.01$	$0.02 \pm 0.004$
E	$33.02 \pm 0.1$	$1.3 \pm 0.004$
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	$0.25 \pm 0.05$	$0.01 \pm 0.002$

PACKAGE OUTLINE $\mu$ PD8259-5C
$\mu$ PD8259-5D

## PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION
The NEC $\mu$ PD8259A is a programmable interrupt controller directly compatible with the 8080A/8085A/8086/8088 microprocessors. It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to 64 levels with the addition of other $\mu$ PD8259As. The user is offered a selection of priority algorithms to tailor the priority processing to meet his system requirements. These can be dynamically modified during operation, expanding the versatility of the system. The $\mu$ PD8259A is completely upward compatible with the $\mu$ PD8259-5, so software written for the $\mu$ PD8259-5 will run on the $\mu$ PD8259A.

FEATURES

- Eight Level Priority Controller
- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- Full Compatibility with $8080 \mathrm{~A} / 8085 \mathrm{~A} / 8086 / 8088$
- Available in 28 Pin Plastic and Ceramic Packages

$\overline{C S} \square$	28	$V_{C C}$		
	27	$A_{0}$	PIN NAMES	
$\overline{R D} \square$	26	$\overline{\text { INTA }}$		
$\mathrm{D}_{7} \square 4$	25	IR7	$D_{7}-D_{0}$	Data Bus (Bi-Directional)
$\mathrm{D}_{6} \square 5$	24	IR6	$\overline{R D}$	Read Input
$\mathrm{D}_{5} \mathrm{C}_{6}$	23	IR5	$\overline{W R}$	Write Input
	22		$A_{0}$	Command Select Address
		IR4	CAS2 - CASO	Cascade Lines
$D_{3} \square 8$	8259A $\begin{array}{r}21 \\ 20\end{array}$	IR3	$\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$	Slave Program Input? Enable Buffer
D1	19	IR1	INT	Interrupt Output
			INTA	Interrupt Acknowledge Input
- 11	18	IRO	IRO-IR7	Interrupt Request Inputs
ASO $\square 12$	17	INT	CS	Chip Select
CAS1 13	16	$\overline{S P} / \overline{E N}$		
GND 14	15	CAS 2		



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to +150 $+1.0^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{C C}+0.5 \mathrm{~V}$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	${ }^{\prime} \mathrm{OL}=2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Interrupt Output-   High Voltage	VOH -INT	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		3.5			V	${ }^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$
Input Leakage Current for $\mathrm{IR}_{0-7}$	$I_{1 L}\left(1 R_{0.7}\right)$			-300	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
				10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current for other Inputs	$\mathrm{I}_{1}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Leakage Current	$\mathrm{I}_{\mathrm{LOL}}$			- 10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
$V_{\text {CC }}$ Supply Current	$\mathrm{I}_{\mathrm{CC}}$			100	mA	

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{C}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured Pins Returned to V $\dot{S} \dot{S}$

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ ( $\left.\mu \mathrm{PD} 8259 \mathrm{~A}\right)$

PARAMETER	SYMBOL	$\mu$ PD8259A		$\mu$ PD8259A-2		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{AO} / \overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{INTA}} \downarrow$	${ }^{\text {t AHRL }}$	0		0		ns	
AO/ $\overline{C S}$ Hold after $\overline{\mathrm{RD}} / \overline{\mathrm{INTA}} \uparrow$	${ }^{\text {t RHAX }}$	0		0		ns	
$\overline{\mathrm{RD}}$ Pulse Width	${ }^{\text {t } R L R H}$	235		160		ns	
AO/ $\overline{C S}$ Setup to $\overline{W R} \downarrow$	${ }^{\dagger}$ AHWL	0	.	0		ns	
AO/ $\overline{C S}$ Hold after $\overline{W R} \uparrow$	tWHAX	0		0		ns	
$\overline{\text { WR }}$ Pulse Width	tWLWH	290		190		ns	
Data Setup to $\overline{\mathrm{WR}} \uparrow$	tDVWH	240		160		ns	
Data Hold after $\overline{W R} \uparrow$	tWHDX	0		0		ns	
Interrupt Request Width (Low)	tJLJH	100		100		ns	(1)
Cascade Setup to Second or Third INTA $\downarrow$ (Slave Only)	${ }^{\text {t CVIAL }}$	55		40		ns	
End of $\overline{\mathrm{RD}}$ to Next Command	trHRL	160		160		ns	
End of $\overline{W R}$ to Next Command	tWHRL	190		190		ns	

Note: (1) This is the low time required to clear the input latch in the edge triggered mode.

PARAMETER	SYMBOL	$\mu$ PD8259A		$\mu \mathrm{PDD0259A-2}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Data Valid from $\overline{\mathrm{RD}} / \overline{\text { INTA }} \downarrow$	trLDV		200		120	ns	C of Data Bus $=100 \mathrm{pF}$   C of Data Bus   Max Test $C=100 \mathrm{pF}$   Min Test $C=15 \mathrm{pF}$
Data Float after $\overline{\mathrm{RD}} / \overline{\mathrm{NTTA}} \uparrow$	${ }^{\text {t }}$ RHDZ		100		85	ns	
Interrupt Output Delay	${ }^{\text {t }} \mathrm{HH} \mathrm{H}$		350		300	ns	
Cascade Valid from First INTA $\downarrow$ (Master Only)	tIA'HCV		565		360	ns	$\begin{aligned} & \mathrm{C}_{\text {INT }}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{CASCADE}}=100 \mathrm{pF} \end{aligned}$
Enable Active from $\overline{\mathrm{RD}} \downarrow$ or $\overline{\text { INTA }} \downarrow$	${ }^{\text {t RLEL }}$		125		100	ns	
Enable Inactive from $\overrightarrow{\mathrm{RD}} \uparrow$ or $\overline{\mathrm{INTA}} \uparrow$	${ }^{\text {tr }}$ REEH		150		150	ns	
Data Valid from Stable Address	tAHDV		200		200	ns	
Cascade Valid to Valid Data	${ }^{t}$ CVDV		300		200	ns	

## $\mu$ PD8259A

## INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupt request register and in-service register store the in-coming interrupt request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.

A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the $\mu$ PD8259 is set high. The IR input line must remain high until the first $\overline{\mathrm{NTA}}$ input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming $\overline{\text { INTA }}$ sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine until it is reset by the programmed End-of-Interrupt (EOI) command.

## PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first $\overline{\text { INTA }}$ pulse.

## DATA BUS BUFFER

The 3 -state, 8 -bit, bi-directional data bus buffer interfaces the $\mu$ PD8259 to the processor's system bus. It buffers the Control Word and Status Data transfers between the $\mu$ PD8259 and the processor bus.

## READ/WRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

## CHIP SEL.ECT ( $\overline{\text { CS }})$

The $\mu$ PD8259 is enabled when an active-low signal is received at this input. Reading or writing of the $\mu$ PD8259 is inhibited when it is not selected.

## WRITE ( $\overline{W R}$ )

This active-low signal instructs the $\mu$ PD8259 to receive Command Data from the processor.

READ ( $\overline{\mathrm{RD}}$ )
When an active-low signal is received on the $\overline{R D}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

## INTERRUPT (INT)

The interrupt output from the $\mu$ PD8259 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080A/8085A/ 8086/8088.

## INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

## FUNCTIONAL DESCRIPTION (CONT.)

## INTERRUPT ACKNOWLEDGE (INTA)

INTA pulses cause the $\mu$ PD8259A to put vectoring information on the bus. The number of pulses depends upon whether the $\mu$ PD8259A is in $\mu$ PD8085A mode or 8086/ 8088 mode.

## A0

$A_{0}$ is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{\mathrm{RD}}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ inputs.


Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the $\mu$ PD8259A aligns these commands in the proper order.

## CASCADE BUFFER/COMPARATOR. (For Use in Multiple $\mu$ PD8259 Array.)

The ID's of all $\mu$ PD8259A's are buffered and compared in the cascade buffer/comparator. The master $\mu$ PD8259A sends the ID of the interrupting slave device along the CASO, 1, 2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two $\overline{\mathrm{NTA}}$ pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

## SLAVE PROGRAM ( $\overline{\mathbf{S P}}$ ). (For Use in Multiple $\mu$ PD8259A Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple $\mu$ PD8259A's in a master-plus-slaves array. The master controls the slaves through the CASO, 1, 2 lines. The $\overline{S P}$ input to the device selects the CASO-2 lines as either outputs ( $\overline{\mathrm{SP}}=1$ ) for the master or as inputs ( $\overline{\mathrm{SP}}=0$ ) for the slaves. For one device only the $\overline{\mathrm{SP}}$ must be set to a logic " 1 " since it is functioning as a master.


READ/INTA MODE


OTHER TIMING


TIMING WAVEFORMS
(CONT.)


DETAILED OPERATIONAL DESCRIPTION

The sequence used by the $\mu$ PD8259A to handle an interrupt depends upon whether an 8080A/8085A or 8086/8088 CPU is being used.

The following sequence applies to 8080A/8085A systems:
The $\mu$ PD8259A derives its versatility from programmable interrupt modes and the ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the $\mu$ PD8259A interacts with the processor.

1. An interrupt or interrupts appearing on $\boldsymbol{R}_{0-7}$ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the $\mu$ PD8259A will resolve the priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an INTA to the $\mu$ PD8259A when it receives the INT.
4. The $\overline{\mathrm{NTA}}$ input to the $\mu$ PD8259A from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the $\mu$ PD8259A to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more INTA pulses to the $\mu$ PD8259A.
6. The two INTA pulses signal the $\mu$ PD8259A to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second INTA releases the high-order 8-bits.
7. The $\mu$ PD8259A's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the $\mu$ PD8259A at the end of an interrupt service routine to reset the ISR bit and allow the $\mu$ PD8259A to service the next interrupt.

For $8086 / 8088$ systems the first three steps are the same as described above, then the following sequence occurs:
4. During the first $\overline{I N T A}$ from the processor, the $\mu$ PD8259A does not drive the data bus. The highest priority ISR bit is set and the corresponding IRR bit is reset.
5. The $\mu$ PD8259A puts vector onto the data bus on the second INTA pulse from the 8086/8088.
6. There is no third INTA pulse in this mode. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse, or it remains set until an EOI command is issued.

8080A/8085A MODE
For these processors, the $\mu$ PD8259A is controlled by three INTA pulses. The first
INTERRUPT SEQUENCE INTA pulse will cause the $\mu$ PD8259A to put the CALL op-code onto the data bus. The second and third INTA pulses will cause the upper and lower address of the interrupt vector to be released on the bus.

CALL CODE | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |

IR	Interval $=\mathbf{4}$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	A5	1	1	1	0	0
6	A7	A6	A5	1	1	0	0	0
5	A7	A6	A5	1	0	1	0	0
4	A7	A6	A5	1	0	0	0	0
3	A7	A6	A5	0	1	1	0	0
2	A7	A6	A5	0	1	0	0	0
1	A7	A6	A5	0	0	1	0	0
0	A7	A6	A5	0	0	0	0	0


IR	Interval $=8$							
	D7	D6	D5	D4	D3	D2	D1	00
7	A7	A6	1	1	1	0	0	0
6	A7	A6	1	1	0	0	0	0
5	A7	A6	1	0	1	0	0	0
4	A7	A6	1	0	0	0	0	0
3	A7	A6	0	1	1	0	0	0
2	A7	A6	0	1	0	0	0	0
1	A7	A6	0	0	1	0	0	0
0	A7	A6	0	0	0	0	0	0


D7	D8	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

In this mode only two INTA pulses are sent to the $\mu$ PD8259A. After the first $\overline{\text { INTA }}$ pulse, the $\mu$ PD8259A does not output a CALL but internally sets priority resolution. If it is a master, it sets the cascade lines. The interrupt vector is output to the data bus on the second INTA pulse.

	D7	D6	D5	D4	D3	D2	D1	D0
1R7	T7	T6	T5	T.4	T3	1	1	1
IR6	T7	T6	T5	T4	T3	1	1	0
IR5	T7	T6	T5	T4	T3	1	0	1
IR4	T7	T6	T5	T4	T3	1	0	0
IR3	T7	T6	T5	T4	T3	0	1	1
IR2	T7	T6	T5	T4	T3	0	1	0
IR1	T7	T6	T5	T4	T3	0	0	1
IRO	T7	T6	T5	T4	T3	0	0	0

## ICW1 AND ICW2

A5-A 15. Page starting address of service routines. In an 8085A system, the 8 request levels generate CALLs to 8 locations equally spaced in memory. These can be programmed to be spaced at intervals of 4 or 8 memory locations, thus the 8 routines occupy a page of 32 or 64 bytes, respectively.

The address format is 2 bytes long ( $A_{0}-A_{15}$ ). When the routine interval is $4, A_{0}-A_{4}$ are automatically inserted by the $\mu$ PD8259A, while $\mathrm{A}_{5}-\mathrm{A}_{15}$ are programmed externally. When the routine interval is $8, A_{0}-A_{5}$ are automatically inserted by the $\mu$ PD8259A, while $A_{6}-A_{15}$ are programmed externally.
The 8 -byte interval maintains compatibility with current software, while the 4 -byte interval is best for a compact jump table.

In an MCS-86 system, T7-T3 are inserted in the five most significant bits of the vectoring byte and the $\mu$ PD8259A sets the three least significant bits according to the interrupt level. A10-A5 are ignored and ADI (Address Interval) has no effect.

LTIM: If LTIM $=1$, then the $\mu$ PD8259A operates in the level interrupt mode. Edge detect logic on the interrupt inputs is disabled.
ADI: CALL address interval. $A D I=1$ then interval $=4 ; A D I=0$ then interval $=8$.
SNGL: Single. Means that this is the only $\mu$ PD8259A in the system. If SNGL $=$ 1 no ICW3 is issued.
IC4: If this bit is set - ICW4 has to be read. If ICW4 is not needed, set $1 C 4=0$.

## ICW3

This word is read only when there is more than one $\mu$ PD8259A in the system and cascading is used, in which case $\mathrm{SNGL}=0$. It will load the 8 -bit slave register. The functions of this register are:
a. In the master mode (either when $S P=1$, or in buffered mode when $M / S=1$ in ICW4) a " 1 " is set for each slave in the system. The master then releases byte 1 of the call sequence (for 8085A system) and enables the corresponding slave to release bytes 2 and 3 (for 8086/8088 only byte 2 ) through the cascade lines.
b. In the slave mode (either when $\mathrm{SP}=0$, or if $\mathrm{BUF}=1$ and $\mathrm{M} / \mathrm{S}=0$ in ICW4) bits 2-0 identify the slave. The slave compares its cascade input with these bits and if they are equal, bytes 2 and 3 of the CALL sequence (or just byte 2 for $8086 / 8088$ ) are released by it on the Data Bus.

## ICW4

SFNM: If SFNM = 1 the special fully nested mode is programmed.
BUF: If BUF $=1$ the buffered mode is programmed. In buffered mode $\overline{S P} / \overline{E N}$ becomes an enable output and the master/slave determination is by M/S.
$\mathrm{M} / \mathrm{S}$ : If buffered mode is selected: $\mathrm{M} / \mathrm{S}=1$ means the $\mu \mathrm{PD} 8259 \mathrm{~A}$ is programmed to be a master, M/S = 0 means the $\mu$ PD8259A is programmed to be a slave. If $B U F=0, M / S$ has no function.
AEOI: If AEOI = 1 the automatic end of interrupt mode is programmed.
$\mu \mathrm{PM}: \quad$ Microprocessor mode: $\mu \mathrm{PM}=0$ sets the $\mu \mathrm{PD} 8259 \mathrm{~A}$ for 8085A system operation, $\mu \mathrm{PM}=1$ sets the $\mu$ PD8259A for 8086 system operation.

## $\mu$ PD8259A



OPPERATIONAL COMMAND WORDS (OCW's) (2)

Once the $\mu$ PD8259A has been programmed with Initialization Command Words, it can be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the $\mu$ PD8259A can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCWs.

## INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic " 1 ." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the $\mu$ PD8259A has acknowledged an interrupt, i.e., the $\mu$ PD8259A has sent an INT signal to the processor and the svstem controller has sent it an INTA signal, the interrupt input, although it is masked, inhibits lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

## FULLY NESTED MODE

The fully nested mode is the $\mu$ PD8259A's basic operating mode. It will operate in this mode after the initialization sequence, without requiring Operation Command Words for formatting. Priorities are set $\mathrm{IR}_{0}$ through $\mathrm{IR}_{7}$, with $\mathrm{IR}_{0}$ the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, sets the corresponding IR bit, and outputs the vector address to the Data bus. The EOI command resets the corresponding ISR bits at the end of its service routines.

## ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

## 1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities 0-7 to the interrupt request input lines. Interrupt line IR 0 is set to the highest priority and IR7 to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " $R$ " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0 ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines $\mathrm{IR}_{\mathbf{2}}$ and $\mathrm{IR}_{5}$.
Before Interrupts are Serviced:

	$\mathrm{IS}_{7}$	6		$\mathrm{S}_{4}$	S3	$\mathrm{S}_{2}$	$\mathrm{S}_{1}$	ISO
In-Service Register	0	0	1	0	0	1	0	0

Highest Priority
Priority Status
Register

$I R_{7}$	$I R_{6}$	$I R_{5}$	$I R_{4}$	$I R_{3}$	$I R_{2}$	$I R_{1}$	$I R_{0}$

According to the Priority Status Register, $\mathrm{IR}_{2}$ has a higher priority than $\mathrm{IR}_{5}$ and will be serviced first.

After Servicing:

	$\mathrm{IS}_{7}$	$\mathrm{IS}_{6}$	$\mathrm{IS}_{5}$	$\mathrm{IS}_{4}$	$\mathrm{IS}_{3}$	$\mathrm{IS}_{2}$	$\mathrm{IS}_{1}$	$\mathrm{IS}_{0}$
	In-Service Register	0	0	1	0	0	0	0

Highest Prinrity
Priority Status
Register

$\mathrm{IR}_{2}$	$I R_{1}$	$\mathrm{IR}_{0}$	$\mathrm{IR}_{7}$	$\mathrm{IR}_{6}$	$\mathrm{IR}_{5}$	$\mathrm{IR}_{4}$	$\mathrm{IR}_{3}$

At the completion of $\mathrm{IR}_{2}$ 's service routine the corresponding In -Service Register bit, $I S_{2}$ is reset to " 0 " by the preprogrammed EOI command. $I R_{2}$ is then assigned the lowest priority level in the Priority Status Register. The $\mu$ PD8259A is now ready to service the next highest interrupt, which in this case, is $\mathrm{R}_{5}$.
2. Specific Rotate Mode

The priorities are set by programming the lowest level through OCW2. The $\mu$ PD8259A then automatically assigns the highest priority. If, for example, IR3 is set to the lowest priority (bits $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{0}$ form the binary code of the bottom priority level), then $\mathrm{IR}_{4}$ will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW2 in the following manner: set Rotate Priority bit " $R$ " to a logic " 1, " program EOI to a logic " 0 ," SEOI to a logic " 1 " and $L_{2}, L_{1}, L_{0}$ to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by $L_{2}, L_{1}, L_{0}$ is reset.

END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)
The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate In-Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0, " the $\mu$ PD8259A is ready to service the next interrupt.

Two types of EOIs are available to clear the appropriate ISR bit depending on the $\mu$ PD8259A's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command automatically resets the highest priority ISR bit of those set. The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 " s . Both the EOI and SEOI bits of OCW3 must be set to a logic " 1 " with $L_{2}, L_{1}, L_{0}$ forming the binary code of the ISR bit to be reset.

## SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW 1 to a logic " 1 " inhibits lower priority interrupts from being acknowiedged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic " 1. ." Once the SMM is set, the $\mu$ PD8259A remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

## POLLED MODE

In Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. Poil Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{R D}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overline{R D}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
I x x x x $\mathrm{w}_{2}$ $\mathrm{w}_{1}$	$\mathrm{w}_{0}$						

where: $\mathrm{I}=1$ if there is an interrupt requesting service $=0$ if there are no interrupts
$\mathrm{W}_{2-0}$ forms the binary code of the highest priority level of the interrupts requesting service
Poll Mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required, thus saving in ROM space. Poll Mode can also be used to expand the number of interrupts beyond 64.


INITIALIZATION COMMAND WORD FORMAT


NOTE 1: SLAVE ID IS EQUAL TO THE CORRESPONDING MASTER IR INPUT.

The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing $\overline{\mathrm{RD}}$ command.

## INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. The highest priority in-service bit is reset once it has been acknowledged. (Note that the Interrupt Mask Register has no effect on the IRR.) A WR command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0 ."

## IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{R D}$ command. Both ERIS and RIS should be set to a logic "1."

## INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overline{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{R D}$ is asserted with $A_{0}$ at a logic " 1. ."

A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode when bits $P$ and ERIS of OCW3 are set to a logic "1."

## OPERATION COMMAND WORD FORMAT




SUMMARY OF 8259A INSTRUCTION SET


SUMMARY OF OPERATION COMMAND WORD PROGRAMMING


LOWER MEMORY INTERRUPT VECTOR ADDRESS

INTERVAL = 4									INTERVAL $=8$							
	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Do	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Do
$1 \mathrm{IR}_{7}$	$A_{7}$	$A_{6}$	$A_{5}$	1	1	1	0	0	$A_{7}$	$A_{6}$	1	1	1	0	0	0
$\mathrm{IR}_{6}$	$A_{7}$	$A_{6}$	$A_{5}$	1	1	0	0	0	$A_{7}$	$A_{6}$	1	1	0	0	0	0
$1 R_{5}$	$A_{7}$	$A_{6}$	$\mathrm{A}_{5}$	1	0	1	0	0	$A_{7}$	$A_{6}$	1	0	1	0	0	0
$\mathrm{IR}_{4}$	$A_{7}$	$A_{6}$	$A_{5}$	1	0	0	0	0	$A_{7}$	$A_{6}$	1	0	0	0	0	0
$\mathrm{IR}_{3}$	$A_{7}$	$A_{6}$	$A_{5}$	0	1	1	0	0	$A_{7}$	$A_{6}$	0	1	1	0	0	0
$\mathrm{iR}_{2}$	$A_{7}$	$A_{6}$	$A_{5}$	0	1	0	0	0	$A_{7}$	$\mathrm{A}_{6}$	0	1	0	0	0	0
$\mathrm{IR}_{1}$	$A_{7}$	$A_{6}$	$A_{5}$	0	0	1	0	0	$A_{7}$	$A_{6}$	0	0	1	0	0	0
$\mathrm{IR}_{0}$	$A_{7}$	$A_{6}$	$A_{5}$	0	0	0	0	0	$A_{7}$	$A_{6}$	0	0	0	0	0	0

FIGURE 4
Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all $\mu$ PD8259As.



PACKAGE OUTLINE $\mu$ PD8259AC
(Plastic)

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX .
B	2.49	0.098
c	2.54	0.10
0	$05 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN .
H	0.5 MiN .	0.02 MIN .
1	5.22 MAX.	0.205 MAX .
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
1	13.2	0.52
M	$\begin{array}{r} 0.25+0.10 \\ -0.05 \\ \hline 0 . \end{array}$	$\begin{gathered} 0.01+0.004 \\ 0.0 .002 \\ \hline \end{gathered}$


(Ceramic)

ITEM	MILLIMETERS	INCHES
A	36.2 MAXX	1.43 MAX.
B	1.59 MAX.	0.06 MAX.
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.46 \pm 0.01$	$0.02 \pm 0.004$
E	$33.02 \pm 0.1$	$1.3 \pm 0.004$
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	$0.25 \pm 0.05$	$0.01 \pm 0.002$

## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

The $\mu$ PD8279-5 is a programmable keyboard and display Input/Output device. It provides the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed as $16 \times 8$ or a dual $16 \times 4$ and loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128 . General sensors or strobed keys may also be used. Keystrokes are stored in an 8 character FIFO and can be either 2 key lockout or N key rollover. Keyboard entries generate an interrupt to the processor.

- Programmable by Processor
- 32 HEX or 16 Alphanumeric Displays
- 64 Expandable to 128 Keyboard
- Simultaneous Keyboard and Display
- 8 Character Keyboard - FIFO
- 2 Key Lockout or N Key Rollover
- Contact Debounce
- Programmable Scan Timer
- Interrupt on Key Entry
- Single +5 Volt Supply, $\pm 10 \%$
- Fully Compatible with 8080A, 8085A, $\mu$ PD 780 (Z80TM)
- Available in 40 Pin Plastic Package

PIN CONFIGURATION


PIN NAMES

$\mathrm{DB}_{0.7}$	Data Bus (Bi-directional)
CLK	Clock Input
RESET	Reset Input
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{RD}}$	Read Input
$\overline{W R}$	Write Input
$\mathrm{A}_{0}$	Buffer Address
IRO	Interrupt Request Output
SL0.3	Scan Lines
RL0.7	Return Lines
SHIFT	Shift Input
CNTL/STB	Control/Strobe Input
OUT A0.3	Display (A) Outputs
OUT $\mathrm{B}_{0-3}$	Display (B) Outputs
BD	Bland Display Output

## $\mu$ PD8279-5

The $\mu$ PD8279-5 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The $\mu$ PD8279-5 is designed to directly interface the microprocessor bus. The microprocessor must program the operating mode to the $\mu$ PD8279-5, these modes are as follows:

## Output Modes

- 8 or 16 Character Display
- Right or Left Entry


## Input Modes

- Scanned Keyboard with Encoded $8 \times 8 \times 4$ Key Format or Decoded $4 \times 8 \times 8$ Scan Lines.
- Scanned Sensor Matrix with Encoded $8 \times 8$ or Decoded $4 \times 8$ Scan Lines.
- Strobed Input.


Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.5 to +7 Volts(1)
All Input Voltages	-0.5 to +7 Volts(1)
Supply Voltages	-0.5 to +7 Volts(1)
Power Dissipation	1W


PIN			DESCRIPTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 6,7,8 \\ & 38,39 \end{aligned}$	R L-0.7	Return Lines	Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They also serve as an 8 -bit input in the Strobed Input mode.
3	CLK	Clock	Clock from system used to generate internal timing.
4	IRQ	Interrupt   Request	Interrupt Request. In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected.
9	Reset	Reset Input	A high signal on this pin resets the $\mu$ PD8279-5.
10	$\overline{\mathrm{R}}$	Read Input	Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus.
11	$\overline{W R}$	Write Input	
12.19	DB0.7	Data Bus	Bi-Directional data bus. All data and commands between the processor and the $\mu$ PD8279-5 are transmitted on these lines.
20	VSS	Ground Reference	Power Supply Ground
21	$A_{0}$	Buffer Address	Buffer Address. A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data.
22	$\overline{\mathrm{CS}}$	Chip Select	Chip Select. A low on this pin enables the interface functions to receive or transmit.
23	$\overline{B D}$	Blank Display Output	Blank Display. This output is used to blank the display during digit switching or by a display blanking command.
24.27	OUT A0-3	Display A Outputs	These two ports are the outputs for the $16 \times 4$ display refresh registers. The data from these outputs is synchronized to the scan lines ( $\mathrm{SL}_{0}-\mathrm{SL}_{3}$ ) for multiplexed digit displays. The two 4-bit ports may be blanked independently. These two ports may also be considered as one 8-bit port.
28.31	OUT B0.3	Display B Outputs	
32-35	SL0.3	Scan Lines	Scan Lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded ( 1 of 16) or decoded (1 of 4).
36	Shift	Shift Input	The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low.
37	CNTL/STB	Control/   Strobe Input	For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in Strobed input mode (Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low.
40	$\mathrm{V}_{\mathrm{CC}}$	+5V Input	Power Supply Input

## $\mu$ PD8279-5

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}_{\mathrm{S}}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage for Shift, Control and Return Lines	VIL1	-0.5		1.4	V	
Input Low Voltage (Others)	VIL2	-0.5		0.8	V	
Input High Voltage for Shift, Control and Return Lines	VIH1	2.2			V	
Input High Voltage (Others)	$\mathrm{V}_{1} \mathrm{H} 2$	2.0			V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
Output High Voltage on Interrupt Line	$\mathrm{V}_{\mathrm{OH}}$	3.5			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Current on Shift,	IIL1			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Control and Return Lines				-100	$\mu \mathrm{A}$	$V_{\text {IN }}=0 V$
Input Leakage Current (Others)	1 IL2			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Float Leakage	IOFL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V
Power Supply Current	ICC			120	mA	


PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN 2	5		10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$
Output Capacitance	COUT	10		20	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$

CAPACITANCE

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	Limits			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ						
Address Stable Before $\overline{\text { READ }}$	taR	0			ns	
Address Hold Time for $\overline{\mathrm{RE}} \overline{\mathrm{D}}$	tra	0			ns	
$\overline{\text { READ Pulse Width }}$	trR	250			ns	
Data Delay from READ	trD			150	ns	$C_{L}=150 \mathrm{pF}$
Address to Data Valid	${ }_{\text {t }}$ d			250	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floating	tDF	10		100	ns	
Read Cycle Time	trey	1			$\mu \mathrm{s}$	
WRITE						
Address Stable Before WRITE	taw	0			ns	
Address Hold Time for WRITE	tWA	0			ns	
WRITE Pulse Width	tWW	250			ns	
Data Set Up Time for WRITE	tDW	150			ns	
Data Hold Time for WRITE	two	0			ns	
OTHER						
Clock Pulse Width	$\mathrm{t}_{\phi} \mathrm{W}$	120			ns	
Clock Period	${ }^{\text {t }} \mathrm{CY}$	320			ns	

## GENERAL TIMING

Keyboard Scan Time:	5.1 ms
Keyboard Debounce Time:	10.3 ms
Key Scan Time:	$80 \mu \mathrm{~s}$
Display Scan Time:	10.3 ms


Digit-on Time:	$480 \mu \mathrm{~s}$
Blanking Time:	$160 \mu \mathrm{~s}$
Internal Clock Cycle:	$10 \mu \mathrm{~s}$



WRITE


CLOCK INPUT


The following is a description of each section of the $\mu$ PD8279-5. See the block diagram for functional reference.

## 1/O Control and Data Buffers

Communication to and from the $\mu$ PD8279-5 is performed by selecting $\overline{C S}, A_{0}, \overline{R D}$ and $\overline{W R}$. The type of information written or read by the processor is selected by $A_{0}$. $A$ logic 0 states that information is data while a 1 selects command or status. $\overline{R D}$ and $\overline{W R}$ select the direction by which the transfer occurs through the Data Buffers. When the chip is deselected ( $\overline{\mathrm{CS}}=1$ ) the bi-directional Data Buffers are in a high impedance state thus enabling the $\mu$ PD8279-5 to be tied directly to the processor data bus.

## Timing Registers and Timing Control

The Timing Registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide by N scaler which may be programmed to match the processor cycle time. The scaler must take a value between 2 and 31 in binary. A value which scales the internal frequency to 100 KHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix and display scans.

## Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode the scan lines are active high and in the decoded mode they are active low.

## Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned sampling for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

## FIFO/Sensor RAM and Status

This section is a dual purpose $8 \times 8$ RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRO is generated until the change is acknowledged.

## Display Address Registers and Display RAM

The Display Address Register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to auto-increment after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

The commands programmable to the $\mu \mathrm{PD} 8279-5$ via the data bus with $\overline{\mathrm{CS}}$ active (0) and $A_{0}$ high are as follows:

## Keyboard/Display Mode Set

0	0	0	$D$	$D$	$K$	$K$	$K$
MSB							

Display Mode:

DD		
0	0	$8-8$-bit character display - Left entry
0	1	
1	0	$16-8$ bit character display - Left entry
1	1	8.8 bit character display - Right entry
$16-8$ bit character display - Right entry		

Note: (1) Power on default condition
Keyboard Mode:

## KKK

0	0	0	Encoded Scan - 2 Key Lockout
0	0	1	Decoded Scan -2 Key Lockout
0	1	0	Encoded Scan $-N$ Key Rollover
0	1	1	Decoded Scan - N Key Rollover
1	0	0	Encoded Scan-Sensor Matrix
1	0	1	Decoded Scan-Sensor Matrix
1	1	0	Strobed Input, Encoded Display Scan
1	1	1	Strobed Input, Decoded Display Scan


Program Clock							
0	0	1	$P$	$P$	$P$	$P$	$P$

Where PPPPP is the prescaler value between 2 and 31 this prescaler divides the external clock by PPPPP to develop its internal frequency. After reset, a default value of 31 is generated.

## Read FIFO/Sensor RAM

| 0 | 1 | 0 | $A 1$ | $X$ | $A$ | $A$ | $A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad A_{0}=0$

$A_{1}$ is the auto-increment flag. AAA is the row to be read by the processor. The read command is accomplished with ( $\overline{\mathrm{CS}} \cdot \mathrm{RD} \cdot \overline{\mathrm{AO}}$ ) by the processor. If $\mathrm{A}_{1}$ is 1 , the row select counter will be incremented after each read. Note that auto-incrementing has no effect on the display.

Read Display RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & A & A & A & A & A \\
\hline
\end{array} \quad A 0=0
$$

Where $A_{1}$ is the auto-increment flag and AAAA is the character which the processor is about to read.

## Write Display RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & \mathrm{~A} 1 & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} \\
\hline
\end{array}
$$

where $A A A A$ is the character the processor is about to write.
Display Write Inhibit Blanking

1	0	1	$X$	IW	IW	BL	BL
$A$			$A$	$B$	$B$		

Where IWA and IWB are Inhibit Writing nibble A and B respectively, and BLA, BLB are blanking. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This is accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8-bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (1).

| Clear |  |  |  |  |  |  | COMMAND OPERATION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | $C_{D}$ | $C_{D}$ | $C_{D}$ | $C_{F}$ | $C_{A}$ |


$C_{D}$	$C_{D}$	$C_{D}$	
1	0	$X$	All zeros
1	1	0	$A B=2016$
1	1	1	All ones
0	$X$	$X$	Disable clear display

This command is used to clear the display RAM, the FIFO, or both. The CD options allow the user the ability to clear the display RAM to either all zeros or all ones.
$\mathrm{C}_{\mathrm{F}}$ clears the FIFO.
$\mathrm{C}_{\mathrm{A}}$ clears all.
Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.
$C_{F}$ will set the FIFO empty flag and reset IRQ. The sensor matrix mode RAM pointer will then be set to row 0 .
$C_{A}$ is equivalent to $C_{F}$ and $C_{D}$. The display is cleared using the display clear code specified and resets the internal timing logic to synchronize it.

## End Interrupt/Error Mode Set

1	1	1	$E$	$X$	$X$	$X$	$X$

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM.
In $N$ key rollover, setting the $E$ bit to 1 allows for operating in the special Error mode. See Description of FIFO status.

FIFO Status

DU	S/E	O	U	F	N	N	N

Where: $D_{U}=$ Display Unavailable because a clear display or clear all command is in progress.
S/E = Sensor Error flag due to multiple closure of switch matrix.
$0=$ FIFO Overrun since an attempt was made to push too many characters into the FIFO.
$U=$ FIFO Underrun. An indication that the processor tried to read an empty FIFO.
$F=$ FIFO Full Flag.
NNN = The Number of characters presently in the FIFO.
The FIFO Status is Read with $A_{0}$ high and $\overline{C S}, \overline{R D}$ active low.
The Display not available is an indication that the $C_{D}$ or $C_{A}$ command has not completed its clearing. The S/E flags are used to show an error in multiple closures has occurred. The O or U , overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

## Data Read

Data can be read during $A_{0}=0$ and when $\overline{C S}, \overline{R D}$ are active low. The source of the data is determined by the Read Display or Read FIFO commands.

## Data Write

Data is written to the chip when $A_{0}, \overline{C S}$, and $\overline{W R}$ are active low. Data will be written into the display RAM with its address selected by the latest Read or Write Display command.

## Data Format



In the Scanned Key mode, the characters in the FIFO correspond to the above format where CNTL and SH are the most significant bits and the SCAN and return lines are the scan and column counters.

| $\mathrm{RL}_{7}$ | RL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In the Sensor Matrix mode, the data corresponds directly to the row of the sensor RAM being scanned. Shift and control (SH, CNTL) are not used in this mode.

## Control Address Summary

A0
DATA
MSB LSB

0	0	0	D	D	K	K	K Keyboard Display Mode Set


0	0	1	P	P	P	P	P


0	0	1	0	$A_{1}$	$X$	$A$	$A$	$A$

Read FIFO/Sensor RAM
0

0	1	1	$A_{1}$	$A$	$A$	$A$	$A$

Read Display RAM

1	0	0	$A_{1}$	$A$	$A$	$A$	$A$

Write Display RAM


1


Clear

1	1	1	$E$	$X$	$X$	$X$	$X$

End Interrupt/Error Mode Set
1

DU	S/E	O	U	F	N	N	N

FIFO Status

## PACKAGE OUTLINE

 $\mu$ PD8279-5C
(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$
0.0 .002		

NOTES

## OCTAL LATCH

$$
\begin{aligned}
& \text { DESCRIPTION } \begin{array}{l}
\text { The } \mu \text { PB8282/8283 are } 8 \text {-bit latches with tri-state output buffers. The } 8282 \text { is non- } \\
\text { inverting and the } 8283 \text { inverts the input data. These devices are ideal for demuxing } \\
\text { the address/data buses on the } 8085 \text { A/8086 microprocessors. } \\
\text { The } 8282 / 8283 \text { are fabricated using NEC's Schottky bipolar process. }
\end{array} .
\end{aligned}
$$

FEATURES - Supports 8080, 8085A, 8048, 8086 Family Systems

- Transparent During Active Strobe
- Fully Parallel 8-Bit Data Register and Buffer
- High Output Drive Capability ( 32 mA ) for Driving the System Data Bus
- Tri-State Outputs
- 20-Pin Package


PIN NAMES
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$ DATA IN   $\mathrm{DO}_{0} \mathrm{DO}_{7}$ DATA OUT   $\overline{\mathrm{OE}}$ OUTPUT ENABLE   STB STROBE

FUNCTIONAL The $\mu$ PB8282/8283 are 8-bit latches with tri-state output buffers. Data on the inputs DESCRIPTION is latched into the data latches on a high to low transition of the STB line. When STB is high, the latches appear transparent. The OE input enables the latched data to be transferred to the output pins. When OE is high, the outputs are put in the tri-state condition. OE will not cause transients to appear on the data outputs.


Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +7 V
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0 V to 5.5V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	min	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage	$\mathrm{V}_{\mathrm{C}}$		-1	V	$\mathrm{IC}=-5 \mathrm{~mA}$
Power Supply Current	${ }^{\prime} \mathrm{C}$		160	mA	
Forward Input Current	IF		-0.2	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse input Current	$I_{R}$		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$		0.50	$\checkmark$	$1 \mathrm{OL}=32 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	$\mathrm{IOH}^{\prime}=-5 \mathrm{~mA}$
Output Off Current	IOFF		$\pm 50$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=0.45$ to 5.25 V
Input Low Voltage	$V_{\text {IL }}$		0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ (
Input High Voltage	$V_{\text {IH }}$	2.0		V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}(1) \\ & F=1 \mathrm{MHz} \end{aligned}$
Input Capacitance	$\mathrm{CiN}_{\text {IN }}$		12	pF	$\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$

Notes:(1) Output Loading $\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

## AC CHARACTERISTICS

Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Loading: Outputs $-\mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{IOH}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input to Output Delay   -Inverting   -Non-Inverting	TIVOV		$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
STB to Output Delay   -Inverting   -Non-Inverting	TSHOV		$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Disable Time	TEHOZ		25	ns
Output Enable Time	TELOV	10	50	ns
Input to STB Setup Time	TIVSL	0		ns
Input to STB Hold Time	TSLIX	25		ns
STB High Time	TSHSL	15		ns

TIMING WAVEFORMS



3-STATE TO VOL


3-STATE TO $\mathrm{V}_{\mathrm{OH}}$


SWITCHING

## PACKAGE OUTLINES $\mu$ PB8282C $\mu$ PB8283C



Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01



Cerdip

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
H	2.5 MIN.	0.1 MIN.
I	0.5 MIN.	0.02 MIN.
J	4.6 MAX.	0.18 MAX.
K	5.1 MAX.	0.2 MAX.
L	7.62	0.3
M	0.7	0.26
		0.01

## CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS


#### Abstract

DESCRIPTION The $\mu$ PB8284 is a clock generator and driver for the 8086 and 8088 microprocessors This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.


FEATURES - Generate System Clock for the 8086 and 8088

- Frequency Source can be a Crystal or a TTL Signal
- MOS Level Output for the Processor
- TTL Level Output for Peripheral Devices
- Power-Up Reset for the Processor
- READY Synchronization
- +5V Supply
- 18 Pin Package


## PIN CONFIGURATION

## PIN NAMES



[^6]PIN IDENTIFICATION

NO.	SYMBOL	NAME	FUNCTION
1	CSYNC	Clock Synchronization	An active high signal which allows multiple 8284s to be synchronized. When CYSNC is low, the internal counters count and when high the counters are reset. CYSNC should be grounded when the internal oscillator is used.
2	PCLK	Peripheral Clock	A TTL level clock for use with peripheral devices. This clock is onehalf the frequency of CLK.
3,7	$\overline{\text { AEN }} 1, \overline{\text { AEN }} 2$	Address Enable	This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, $\overline{\mathrm{AEN}}$ inputs are to be grounded.
4,6	RDY1, RDY2	Bus Ready	This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read.
5	READY	Ready	The READY signal to the microprocessor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaranteed hold time to the processor has been met.
8	CLK	Processor Clock	This is the MOS level clock output of $33 \%$ duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency.
10	RESET	Reset	This is used to initialize the processor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation.
11	$\overline{\text { RES }}$	Reset In	This Schmitt trigger input is used to determine the timing of RESET out via an RC circuit.
12	OSC	Oscillator Output	This TTL level clock is the output of the oscillator circuit running at the crystal frequency.
13	F/C	Frequency Crystal Select	$F / \overline{\mathrm{C}}$ is a strapping option used to determine where CLK is generated. A low is for the EFI input, and a high is for the crystal.
14	EFI	External Frequency In	A square wave in at three times the CLK output. A TTL level clock to generate CLK.
16, 17	$\mathrm{x}_{1}, \mathrm{x}_{2}$	Crystal In	A crystal is connected to these inputs to generate the processor clock. The crystal chosen is three times the desired CLK output.
15	TNK	Tank	This is used for overtone type crystals. (See diagram below.)
18	VCC	VCC	$+5 \mathrm{~V}$



## ABSOLUTE MAXIMUM RATINGS*

```
Operating Temperature \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
All Output and Supply Voltages. - 0.5 V to +7V
All Input Voltages . - 1.0 V to +5.5V
```

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

DC CHARACTERISTICS

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Forward Input Current	$I_{F}$		-0.5	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	$\mathrm{I}_{\mathrm{R}}$		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Forward Clamp Voltage	$\mathrm{V}_{\mathrm{C}}$		-1.0	V	$\mathrm{IC}=-5 \mathrm{~mA}$
Power Supply Current	ICC		140	mA	
Input Low Voltage	$\mathrm{V}_{12}$		0.8	V	$\mathrm{VCC}=5.0 \mathrm{~V}$
Input High Voltage	$\mathrm{V}_{1 / \mathrm{H}}$	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Reset Input High Voltage	$\mathrm{V}_{1 \mathrm{H}_{\mathrm{R}}}$	2.6		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Output Low Voltage	VOL		0.45	V	$5 \mathrm{~mA}=1 \mathrm{OL}$
Output High Voltage CLK Other Outputs	VOH	$\begin{aligned} & 4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\left.\begin{array}{l} -1 \mathrm{~mA} \\ -1 \mathrm{~mA} \end{array}\right\} \mathrm{I}_{\mathrm{OH}}$
$\overline{\mathrm{RES}}$ Input Hysteresis	$V_{1 H_{R}}{ }^{-} \mathrm{V}_{1 L_{R}}$	0.25		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide by three counter which receives its input from either the crystal or TTL source (EFI Pin) depending on the state of the F/C input strapping. There is also a clear input (C SYNC) which is used for either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a $33 \%$ duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a $50 \%$ duty cycle for use as a peripheral clock signal. This clock is at one half of the processor clock speed.

Reset timing is provided by a Schmitt Trigger input ( $\overline{\mathrm{RES}}$ ) and a flip-flop to synchronize the reset timing to the falling edge of CLK. Power-on reset is provided by a simple RC circuit on the $\overline{R E S}$ input.

There are two READY inputs, each with its own qualifier ( $\overline{\operatorname{AEN} 1}, \overline{\mathrm{AEN} 2}$ ). The unused $\overline{A E N}$ signal should be tied low.

The READY logic in the 8284 synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.


TANK INSERT
CIRCUIT DIAGRAM

The tank input to the oscillator allows the use of overtone mode crystals. The tank circuit shunts the crystal's fundamental and high overtone frequencies and allows the third harmonic to oscillate. The external LC network is connected to the TANK input and is AC coupled to ground.

Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST   CONDITIONS
External Frequency High Time	TEHEL	20		ns	$90 \%-90 \% \mathrm{~V}_{\text {IN }}$
External Frequency Low Time	TELEH	20		ns	$10 \%-10 \% \mathrm{~V}_{\text {IN }}$
EFI Period	TELEL	TEHEL + TELEH $+\delta$		ns	(1)
XTAL Frequency		12	25	MHz	
RDY1, RDY2 Set-Up to CLK	TRIVCL	35		ns	
RDY1, RDY2 Hold to CLK	TCLR1X	0		ns	
AEN1, AEN2 Set-Up to RDY1, RDY2	TAIVR1V	15		ns	
AEN1, AEN2 Hold to CLK	TCLA1X	0		ns	
CSYNC Set-Up to EFI	TYHEH	20		ns	
CSYNC Hold to EFI	TEHYL	20		ns	
CSYNC Width	TYHYL	2 TELEL		ns	
RES Set-Up to CLK	TIIHCL	65		ns	(2)
RES Hold to CLK	TCLIIH	20		ns	(2)

TIMING RESPONSES

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
CLK Cycle Period	TCLCL	125		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2.0		ns	Figure 3 and Figure 4
CLK Low Time	TCLCH	(2/3 TCLCL) - 15.0		ns	Figure 3 and Figure 4
CLK R ise and Fall Time	$\begin{aligned} & \mathrm{TCH1CH2} \\ & \mathrm{TCL} 2 \mathrm{CL} 1 \end{aligned}$		10	ns	1.0 V to 3.5 V
PCLK High Time	TPHPL	TCLCL -20		ns	
PCLK Low Time	TPLPH	TCLCL-20		ns	
Ready Inactive to CLK (4)	TRYLCL	-8		ns	Figure 5 and Figure 6
Ready Active to CLK (3)	TRYHCH	(2/3 TCLCL) - 15.0		ns	Figure 5 and Figure 6
CLK To Reset Delay	TCLIL		40	ns	
CLK to PCLK High Delay	TCLPH		22	ns	
CLK to PCLK Low Delay	TCLPL		22	ns	
OSC to CLK High Delay	TOLCH	-5	12	ns	
OSC to CLK Low Delay	TOLCL	2	20	ns	

Notes: (1) $\delta=E F I$ rise ( 5 ns max) $+E F I$ fall ( 5 ns max).
(2) Set up and hold only necessary to guarantee recognition at next clock.

Applies only to T3 and TW states.
Applies only to $T 2$ states.
TIMING WAVEFORMS*

*ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.


FIGURE 2 CLOCK HIGH AND LOW TIME


FIGURE 3 READY TO CLK


FIGURE 4
READY TO CLK


OUTPUT
NOTES: (1) $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
(2) $C_{L}=30 \mathrm{pF}$
(3) $\mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND JIG CAPACITANCE

## PACKAGE OUTLINES

 $\mu$ PB8284C

Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
$E$	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
J	4.6 MAX.	0.18 MAX.
K	5.1 MAX.	0.2 MAX.
L	7.62	0.3
M	0.7	0.26
		0.01

$\mu$ PB8284D


Cerdip		
ITEM	MILLIMETERS	INCHES
$A$	23.2 MAX.	0.91 MAX.
$B$	1.44	0.055
C	2.54	0.1
$D$	0.45	0.02
$E$	20.32	0.8
$F$	1.2	0.06
$G$	2.5 MIN.	0.1 MIN.
$H$	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
$J$	5.1 MAX.	0.2 MAX.
K	7.62	0.3
$L$	6.7	0.26
M	0.25	0.01

NOTES

## 8-BIT BUS TRANSCEIVER

DESCRIPTION The 8286 and 8287 are octal bus transceivers used for buffering microprocessor bus lines. Being bi-directional, they are ideal for buffering the data bus lines on 8 or 16 bit microprocessors. Each B output is capable of driving 32 mA low or 5 mA high.

FEATURES • Data Bus Buffer Driver for $\mu$ COM-8 (8080, 8085A, 780) and $\mu \mathrm{COM}-16$ (8086) families

- Low Input Load Current --. 0.2 mA max.
- High Output Drive Capability for Driving System Data Bus
- Tri-State Outputs
- 20 Pin Package with Fully Parallel 8-Bit Transceivers

PIN CONFIGURATIONS


PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Local Bus Data
$\mathrm{B}_{0}-\mathrm{B}_{7}$	System Bus Data
OE	Output Enable
T	Transmit



$\overline{O E}$	$\mathbf{T}$	RESULT
0	0	$\mathrm{~B} \rightarrow \mathrm{~A}$
0	1	$\mathrm{~A} \rightarrow \mathrm{~B}$
1	0	A and B   1
1	HIGH   IMPEDANCE	



COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*

## DC CHARACTERISTICS

PARAMETER		SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage		$\mathrm{V}_{\mathrm{C}}$		-1	$\checkmark$	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	-8287	ICC		130	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
	-8286	${ }^{1} \mathrm{Cc}$		160		
Forward Input Current		$I_{\text {F }}$		-0.2	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current		${ }^{\prime} \mathrm{R}$		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage	- B Outputs   - A Outputs	VOL		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=32 \mathrm{~mA} \\ & \mathrm{IOL}=10 \mathrm{~mA} \end{aligned}$
Output High Voltage	- B Outputs   - A Outputs	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Output Off Current Output Off Current		IOFF IOFF		$\begin{aligned} & I_{F} \\ & I_{R} \end{aligned}$		$\begin{aligned} & V_{\text {OFF }}=0.45 \mathrm{~V} \\ & V_{\text {OFF }}=5.25 \mathrm{~V} \end{aligned}$
Input Low Voltage	$\begin{array}{\|l} -A \text { Side } \\ \hline-B \text { Side } \end{array}$	$V_{\text {IL }}$		0.8	V	$\begin{array}{ll} V_{C C}=5.0 \mathrm{~V} & (1) \\ V_{C C}=5.0 \mathrm{~V} & (1) \end{array}$
Input High Voltage		$\mathrm{V}_{\text {IH }}$	2.0		V	$\begin{align*} & V_{C C}=5.0 \mathrm{~V}  \tag{1}\\ & F=1 \mathrm{MHz} \end{align*}$
Input Capacitance	$\begin{aligned} & \text { - A Side } \\ & \text { - B Side } \\ & \hline \end{aligned}$	$\mathrm{Cl}_{\text {IN }}$		$\begin{aligned} & 16 \\ & 22 \end{aligned}$	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$



CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$		5	8	pF	$\mathrm{v}_{1}=0 \mathrm{~V}$
Output Capacitance	$\mathrm{C}_{0}$		8	12	pF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

AC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	MAX	UNITS
TIVOV	Input to Output Delay   Inverting   Non-Inverting		25	ns
	Transmit/Receive Hold Time	TEHOZ		ns
TEHTV	Transmit/Receive Setup	30		ns
TTVEL	Output Disable Time		25	ns
TEHOZ	Output Enable Time	10	50	ns
TELOV				

Notes: See waveforms and test load circuit.
B Outputs - $1 \mathrm{OL}=32 \mathrm{~mA}, \mathrm{IOH}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$
A Outputs - IOL $=10 \mathrm{~mA}, \mathrm{IOH}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$



B OUTPUT


B OUTPUT


A OUTPUT


A OUTPUT


B OUTPUT


MOS microprocessors like the 8080/8085A/8086 are generally capable of driving a single TTL load. This also applies to MOS memory devices. While sufficient for minimum type small systems on a single PC board, it is usually necessary to buffer the microprocessor and memory signals when a system is expanded or signals go to other PC boards.
These octal bus transceivers are designed to do the necessary buffering.

## Bi-Directional Driver

Each buffered line of the octal driver consists of two separate tri-state buffers. The B side of the driver is designed to drive 32 mA and interface the system side of the bus to $1 / 0$, memory, etc. The $A$ side is connected to the microprocessor.

Control Gating, $\overline{\mathbf{O E}}, \mathbf{T}$
The $\overline{\mathrm{OE}}$ (output enable) input is an active low signal used to enable the drivers selected by $T$ on to the respective bus.
T is an input control signal used to select the direction of data through the transceivers. When $T$ is high, data is transferred from the $A_{0}-A_{7}$ inputs to the $B_{0}-B_{7}$ outputs, and when low, data is transferred from $B_{0}-B_{7}$ to the $A_{0}-A_{7}$ outputs.

PACKAGE OUTLINE $\mu$ PD8286C $\mu$ PD8287C


Plastic

ITEM	MILLIMEIERS	INCHES
A	232 MAX	0.91 MAX.
B	144	0055
c	2.54	01
D	045	0.02
E	20.32	08
F	1.2	006
G	2.5 MIN .	0.1 MIN
H	0.5 MIN	002 MIN
1	4.6 MAX.	0.18 MAX
J	5.1 MAX.	0.2 MAX
K	76 ?	03
1	6.7	026
M	0.25	0.01



Cerdip

ITEM	MILLIMETERS	INCHES
$A$	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
G	1.2	0.06
H	2.5 MIN.	0.1 MIN.
I	0.5 MIN.	0.02 MIN.
J	5.6 MAX.	0.18 MAX.
K	7.62	0.2 MAX.
L	6.7	0.3
	0.25	0.26
		0.01

NOTES

## $\mu$ PD8086/8088 CPU SYSTEM BUS CONTROLLER


#### Abstract

DESCRIPTION The $\mu$ PB8288 bus controller is for use in medium to large $\mu$ PD8086/8088 systems. This 20-pin bipolar component provides command and control timing generation, plus bipolar drive capability and optimal system performance. It provides both MultibusTM command signals and control outputs for the microprocessor system. There is an option to use the controller with a multi-master system bus and separate I/O bus.


FEATURES - System Controller for $\mu$ PD8086/8088 Systems

- Bipolar Drive Capability
- Provides Advanced Commands
- Tri-State Output Drivers
- Can be used with an I/O Bus
- Enables Interface to One or Two Multi-Master Buses
- 20-Pin Package


PIN NAMES

SO-S2	Status Input Pins
CLK	Clock
ALE	Address Latch Enable
DEN	Data Enable
DT/R	Data Transmit/Receive
$\overline{\text { AEN }}$	Address Enable
CEN	Command Enable
IOB	I/O Bus Mode
$\overline{A I O W C}$	Advanced I/O Write
$\overline{\text { IOWC }}$	I/O Write Command
$\overline{\text { IORC }}$	I/O Read Command
$\overline{\text { AMWC }}$	Advanced Memory Write
$\overline{\text { MWTC }}$	Memory Write Command
$\overline{\text { MRDC }}$	Memory Read Command
$\overline{\text { INTA }}$	Interrupt Acknowledge
MCE/ $\overline{\text { PDEN }}$	Master Cascade/Peripheral   Data Enable


PIN			FUNCTION
NO.	SYMBOL	NAME	
1	IOB	I/O Bus Mode	Sets mode of $\mu$ PB8288, high for the I/O bus mode and low for the system bus mode.
2	CLK	Clock	The clock signal from the $\mu$ PB8284 clock generator synchronizes the generation of command and control signals.
3, 19, 18	$\overline{s_{0}}, \overline{s_{1}}, \overline{S_{2}}$	Status Input Pins	The $\mu$ PB8288 decodes these status lines from the $\mu$ PB8086 to generate command and control signals. When not in use, these pins are high.
4	DT/ $\bar{R}$	Data Transmit/Receive	This signal is used to control the bus transceivers in a system. A high for writing to I/O or memory and a low for reading data.
5	ALE	Address Latch Enable	This signal is used for controlling transparent D type latches (4PB8282/ 8283). It will 'strobe in the address on a high to low transition.
6	$\overline{\text { AEN }}$	Address Enable	In the I/O system bus mode, AEN enables the command outputs of the $\mu$ PB8288 105 ns after it becomes active. If AEN is inactive, the command outputs are tri-stated.
7	$\overline{\text { MRDC }}$	Memory Read Command	This active low signal is for switching the data from memory to the data bus.
8	$\overline{\text { AMWC }}$	Advanced Memory Write Command	This is an advanced write command which occurs early in the machine cycle, with timing the same as the read command.
9	$\overline{\text { MWTC }}$	Memory Write Command	This is the memory write command to transfer data bus to memory, but not as early as $\overline{\text { AMWC. (See timing }}$ waveforms.)
11	$\overline{\text { IOWC }}$	I/O Write Command	This command is for transferring information to 1/O devices.
12	$\overline{\text { AIOWC }}$	Advanced I/O Write Command	This write command occurs earlier in the machine cycle than IOWC.
13	$\overline{\text { IORC }}$	I/O Read Command	This signal enables the CPU to read data from an I/O device.
14	$\overline{\text { INTA }}$	Interrupt Acknowledge	This is to signal an interupting device to put the vector information on the data bus
15	CEN	Command Enable	This signal enables all command and control outputs. If CEN is low, these outputs are inactive.
16	DEN	Data Enable	This signal enables the data transceivers onto the bus.
17	$\frac{\text { MCE }}{\text { PDEN }}$	Master Cascade Enable Peripheral Data Enable	Dual function pin system. MC/E - In the bus mode, this signal is active during an interrupt sequence to read the cascade address from the master interrupt controller onto the data bus. PDEN - In the I/O bus mode, it enables the transceivers for the I/O bus just as DEN enables bus transceivers in the system bus mode.


ABSOLUTE MAXIMUM
RATINGS*

OPERATING TEMPERATURE
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

All Output and Supply Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +7 V

All Input Voltages ${ }^{1}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0 V to +5.5V

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W

Note:(1) With Respect to Ground.
C̄OMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The three status lines ( $\overline{\mathrm{SO}}, \overline{\mathrm{S} 1}, \overline{\mathrm{~S} 2}$ ) from the $\mu \mathrm{PD} 8086 \mathrm{CPU}$ are decoded by the command logic to determine which command is to be issued. The following chart shows the

$\overline{S_{2}}$	$\mathrm{S}_{1}$	$\overline{S_{0}}$	$\mu$ PD8086 State $\quad \mu$	${ }_{\mu \text { PB8288 }}$ Command
0	0	0	Interrupt Acknowledge	e INTA
0	0	1	Read I/O Port	$\overline{\text { IORC }}$
0	1	0	Write I/O Port	IOWC, AIOWC
0	1	1	Halt	None
1	0	0	Code Access	$\overline{\text { MRDC }}$
1	0	1	Read Memory	$\overline{\text { MRDC }}$
1	1	0	Write Memory	$\overline{\text { MWTC }}$, $\overline{\text { MMWC }}$
1	1	1	Passive	None

There are two ways the command is issued depending on the mode of the $\mu$ PB8288.
The I/O bus mode is enabled if the IOB pin is pulled high. In this mode, all I/O command lines are always enabled and not dependent upon $\overline{\operatorname{AEN}}$. When the processor sends out an I/O command, the $\mu$ PB8288 activates the command lines using PDEN and $D T / \bar{R}$ to control any bus transceivers.

This mode is advantageous if I/O or peripherals dedicated to one microprocessor are in a multiprocessor system, allowing the $\mu$ PB8288 to control two external buses. No waiting is required when the CPU needs access to the I/O bus, as an $\overline{\text { AEN }}$ low signal is needed to gain normal memory access.

If the IOB pin is tied to ground, the $\mu$ PB8288 is in the system bus mode. In this mode, commario signals are dependent upon the AEN line. Thus the command lines are activated 105 ns after the $\overline{\mathrm{AEN}}$ line goes low. In this mode, there must be some bus arbitration logic to toggle the $\overline{\mathrm{AEN}}$ line when the bus is free for use. Here, both memory and $\mathrm{I} / \mathrm{O}$ are shared by more than one processor, over one bus, with both memory and I/O commands waiting for bus arbitration.

Among the command outputs are some advanced write commands which are initiated early in the machine cycle and can be used to prevent the CPU from entering unnecessary wait states.

The $\overline{\text { INTA }}$ signal acts as an I/O read during an interrupt cycle. This is to signal the interrupting device that its interrupt is teing acknowledged, and to place the interrupt vector on the data bus.

The control outputs of the $\mu$ PB8288 are used to control the bus transceivers in a system $\mathrm{DT} / \overline{\mathrm{R}}$ determines the direction of the data transfer, and DEN is used to enable the outputs of the transceiver. In the IOB mode the MCE/ $\overline{P D E N}$ pin acts as a dedicated data enable signal for the I/O bus.

The MCE signal is used in conjunction with an interrupt acknowledge cycle to control the cascade address when more than one interrupt controller (such as a $\mu$ PD8259A) is used. If there is only one interrupt controller in a system, MCE is not used as the INTA signal gates the interrupt vector onto the processor bus. In multiple interrupt controller systems, MCE is used to gate the $\mu$ PD8259 A's cascade address onto the processors local bus, where ALE strobes it into the address latches. This occurs during the first INTA cycle. During the second INTA cycle the addressed slave $\mu$ PD8259A gates its interrupt vector onto the processor bus.
The ALE signal occurs during each machine cycle and is used to strobe data into the address latches and to strobe the status ( $\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1,} \overline{\mathrm{~S} 2}$ ) into the $\mu$ PB8288. ALE also occurs during a halt state to accomplish this.

The CEN (Command Enable) is used to control the command lines. If pulled high the $\mu$ PB8288 functions normally and if grounded all command lines are inactive.
$V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Input Clamp Voltage	$\mathrm{V}_{\mathrm{C}}$		-1	$\checkmark$	$\mathrm{I}^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	I'c		230	mA	
Forward Input Current	$I_{F}$		-0.7	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	$I_{R}$		50	$\mu \mathrm{A}$	$V_{R}=V_{C C}$
$\begin{array}{\|l} \text { Output Low Voltage - Command Outputs } \\ \text { Control Outputs } \end{array}$	$\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
Output High Voltage - Command Outputs   Control Outputs	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$		0.8	V	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0		V	
Output Off Current	IOFF		100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=0.4$ to 5.25 V

AC CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
CLK Cycle Period	TCLCL	125		ns	
CLK Low Time	TCLCH	66		ns	
CLK High Time	TCHCL	40		ns	
Status Active Setup Time	TSVCH	65		ns	
Status Active Hold Time	TCHSV	10		ns	
Status Inactive Setup Time	TSHCL	55		ns	
Status Inactive Hold Time	TCLSH	10		ns	

TIMING RESPONSES

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
Control Active Delay	TCVNV	5	45	ns	$\begin{aligned} & \overline{M R D C} \\ & \overline{\text { IORC }} \end{aligned}$
Control Inactive Delay	TCVNX	10	45	ns	
ALE MCE Active Delay (from CLK)	TCLLH, TCLMCH		15	ns	
ALE MCE Active Delay (from Status)	TSVLH, TSVMCH		15	ns	
ALE Inactive Delay	TCHLL		15	ns	
Command Active Delay	TCLML	10	35	ns	MWTC   IOWC   INTA   $\overline{\text { AMWC }}$   $\overline{\text { AIOWC }}$
Command Inactive Delay	TCLMH	10	35	ns	
Direction Control Active Delay	TCHDTL		50	ns	
Direction Control Inactive Delay	TCHDTH		30	ns	
Command Enable Time	TAELCH		40	ns	
Command Disable Time	TAEHCZ		40	ns	
Enable Delay Time	TAELCV	105	275	ns	Other $\quad\left\{\begin{array}{l}\mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA} \\ \mathrm{IOH}^{\prime}=-1 \mathrm{~mA}\end{array}\right.$
AEN to DEN	TAEVNV		20	ns	Other $\quad\left\{\begin{array}{l}\mathrm{OH}=-1 \mathrm{~mA}\end{array}\right.$
CEN to DEN, PDEN	TCEVNV		20	ns	$C_{L}=80 \mathrm{pF}$
CEN to Command	TCELRH		TCLML	ns	


notes:
(1.) ADDRESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOSES.
(2.) LEADING EDGE OF ALE AND MCE IS DETERMINED BY THE FALLING
edge of clk or status going active, whichever occurs last.
(3.) ALL TIMING MEASUREMENTS ARE MADE AT 1.5 V UNLESS SPECIFIED otherwise.


DEN, $\overline{P D E N}$ QUALIFICATION TIMING

## $\mu$ PB8288 ADDRESS ENABLE ( $\overline{\mathrm{AEN}}$ ) TIMING (3-STATE ENABLE/DISABLE)



TEST LOAD CIRCUITS



COMMAND OUTPUT TEST LOAD


CONTROL OUTPUT TEST LOAD


PACKAGE OUTLINES $\mu$ PB8288C

Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
$D$	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
$H$	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
$J$	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01


$\mu$ PB8288D

Cerdip		
ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
$J$	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

## 16,384 BIT ROM WITH I/O PORTS 16,384 BIT EPROM WITH I/O PORTS*


#### Abstract

DESCRIPTION The $\mu$ PD8355 and the $\mu$ PD8755A are $\mu$ PD8085A Family components. The $\mu$ PD8355 contains $2048 \times 8$ bits of mask ROM and the $\mu$ PD8755A contains $2048 \times 8$ bits of mask EPROM for program development. Both components also contain two general purpose 8 -bit $1 / O$ ports. They are housed in 40 pin packages, are designed to directly interface to the $\mu$ PD8085A, and are pin-for-pin compatible with each other.


FEATURES - $2048 \times 8$ Bits Mask ROM ( $\mu$ PD8355)

- 2048 X 8 Bits Mask EPROM ( $\mu$ PD8755A)
- 2 Programmable I/O Ports
- Single Power Supplies: +5 V
- Directly Interfaces to the $\mu$ PD8085A
- Pin for Pin Compatible
- $\mu$ PD8755A: UV Erasable and Electrically Programmable
- $\mu$ PD8335 Available in Plastic Package
- $\mu$ PD8755A Available in Ceramic Package




## $\mu$ PD8355/8755A

The $\mu$ PD8355 and $\mu$ PD8755A contain 16,384 bits of mask ROM and EPROM respectively, organized as $2048 \times 8$. The 2048 word memory location may be selected anywhere within the 64 K memory space by using the upper 5 bits of address from the $\mu$ PD8085A as a chip select.

The two general purpose I/O ports may be programmed input or output at any time. Upon power up, they will be reset to the input mode.


Note: (1) $V_{D D}$ applies to $\mu$ PD8755A only.
Operating Temperature ( $\mu$ PD8355) . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ( $\mu$ PD8755A) . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin ( $\mu$ PD8355). . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts (1)
( $\mu$ PD8755A) . . . . . . . . . . . . . . . . . . . $\quad-0.5$ to +7 Volts (1)
Power Dissipation 1.5 W

Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ (1)
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$ (1)
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	v	$1 \mathrm{OL}=2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$
Input Leakage	IIL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Leakage Current	ILO			$\pm 10$	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC			180	mA	

Note: (1) These conditions apply to $\mu$ PD8355 only.

PIN			FUNCTION
NO.	SYMBOL	NAME	
1,2	$\overline{\mathrm{CE}}, \mathrm{CE}$	Chip Enables	Enable Chip activity for memory or I/O
3	CLK	Clock Input	Used to Synchronize Ready
4	Reset	Reset Input	Resets PA and PB to all inputs
5 (1)	NC	Not Connected	
5 (2)	VDD	Programming   Voltage	Used as a programming voltage, tied to +5 V normally
6	Ready	Ready Output	A tri-state output which is active during data direction register loading
7	10/M	I/O or Memory Indicator	An input signal which is used to indicate I/O or memory activity
8	IOR	1/O Read	I/O Read Strobe In
9	$\overline{\mathrm{RD}}$	Memory Read	Memory Read Strobe In
10	$\overline{\text { IOW }}$	I/O Write	I/O Write Strobe In
11	ALE	Address Low Enable	Indicates information on Address/Data lines is valid
12-19	$A D_{0}-A D_{7}$	Low Address/Data Bus	Multiplexed Low Address and Data Bus
20	$V_{S S}$	Ground	Ground Reference
21.23	A8-A10	High Address	High Address inputs for ROM reading
24-31	$\mathrm{PA}_{0}-\mathrm{PA} 7$	Port A	General Purpose I/O Port
32.39	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose I/O Port
40	$\mathrm{V}_{\mathrm{CC}}$	5 V Input	Power Supply

> Notes: (1) $\mu$ PD8355
> (2) $\mu$ PD8755A

I/O PORTS I/O port activity is controlled by performing I/O reads and writes to selected I/O port numbers. Any activity to and from the $\mu$ PD8355 requires the chip enables to be active. This can be accomplished with no external decoding for multiple devices by utilizing the upper address lines for chip selects. (1) Port activity is controlled by the following I/O addresses:

$A D_{1}$	$A D_{0}$	PORT SELECTED	FUNCTION
0	0	$A$	Read or Write PA
0	1	$B$	Read or Write PB
1	0	$A$	Write PA Data Direction
1	1	$B$	Write PB Data Direction

Since the data direction registers for PA and PB are each 8 -bits, any pin on PA or PB may be programmed as input on output ( $0=\mathrm{in}, 1=$ out ).

Note: (1) During ALE time the data/address lines are duplicated on $\mathrm{A}_{15}$-A8.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Cycle Time	${ }^{\text {t }} \mathrm{CrC}$	320			ns	$C_{\text {LOAD }}=150 \mathrm{pF}$
CLK Pulse Width	$\mathrm{T}_{1}$	80			ns	
CLK Pulse Width	$\mathrm{T}_{2}$	120			ns	
CLK Rise and Fall Time				30	ns	
Address to Latch Set Up Time	${ }^{\text {t }}$ AL	50			ns	150 pF Load
Address Hold Time After Latch	tha	80			ns	
Latch to READ/WRITE Control	the	100			ns	
Valid Data Out Delay from READ Control	${ }^{t} \mathrm{RD}$			$\frac{170 \text { (1) }}{150(2)}$	ns	
Address Stable to Data Out Valid	${ }^{t} A D$			400	ns	
Latch Enable Width	${ }^{t}$ LL	100			ns	
Data Bus Float After READ	${ }^{\text {tRDF }}$	0		100	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }} \mathrm{CL}$	20			ns	
READ/WRITE Control Width	${ }^{\text {t }} \mathrm{CC}$	250			ns	
Data In to WRITE Set Up Time	${ }^{\text {t }}$ W ${ }^{\text {d }}$	150			ns	
Data In Hold Time AfteI WRITE	${ }^{\text {tw }}$ D	103			ns	
WRITE to Port Output	${ }^{\text {tw }}$ W			400	ns	
Port Input Set Up Time	tpR	50			ns	
Port Input Hold Time	$t_{\text {R } P}$	50			ns	
READY HOLD TIME	trym	0		$\frac{160(1)}{120(2)}$	ns	
ADDRESS (CE) to READY	${ }^{\text {t ARY }}$			160	ns	
Recovery Time Between Controls	trv	300			ns	
Data Out Delay from READ Control	trde	10			ns	

Notes. (1) $\mu$ PD8355 (3) 30 ns tor $\mu$ PD8755A (2) $\mu$ PD8755A

ROM READ, I/O READ AND WRITE (1)


PROM READ, I/O READ AND WRITE (2)

(3) CE must remain low for the entire cycle

TIMING WAVEFORMS (CONT.)

CLOCK


WAIT STATE TIMING (READY $=0$ )


I/O PORT INPUT MODE
 BUS _ _ _ _ _


OUTPUT MODE:


Erasure of the $\mu$ PD8755A occurs when exposed to ultraviolet light sources of wavelengths less than $4000 \AA$. It is recommended, if the device is exposed to room fluorescent lighting or direct sunlight, that opaque labels be placed over the window to prevent exposure. To erase, expose the device to ultraviolet light at $2537 \AA$ at a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ (intensity X expose time). After erasure, all bits are in the logic 1 state. Logic 0 's must be selectively programmed into the desired locations. It is recommended that NEC's PROM programmer be used for this application.

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MiN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25-0.1$	$0.010+0.004$


(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	$48.26 \pm 0.1$	$1.9 \pm 0.004$
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	$0.25 \pm 0.05$	$0.01 \pm 0.0019$

## BOARD PRODUCTS 10

NOTES

## NEC Microcomputers,Inc. BP-0200

## 16K CMOS RAM Board

## STANDARD FEATURES

- 16K Bytes of Read/Write Memory Utilizing the NEC $\mu$ PD444/6514 CMOS RAM for Both 8-Bit Byte and 16-Bit Data Words
- Minimum of 7 Days ( 168 Hrs .) of Continuous Battery Back-Up
- On-Board Batteries and Battery Charger with Short Circuit and Overcharge Protection
- Test Points Provided for Battery Status
- Provision for $\mathrm{A} / \mathrm{C}$ Low Line Input
- Memory Inhibit Allows Paging of 2 or More Boards to the Same Address Block
- Memory Deselect in 2 K Byte Blocks
- Supports Both 16 -Bit and 20 -Bit Addressing


## DESCRIPTION

The BP-0200 interfaces directly to any Multibus ${ }^{\text {TM }}$ system. The board contains 16 K bytes of read/write memory utilizing NEC Microcomputers, Inc.'s $\mu$ PD444/6514 CMOS RAM memory components.
The BP-0200 contains jumpers to allow the user to locate memory anywhere in a one megabyte field along any 16 K boundary starting at $00000_{\mathrm{H}}$, (i.e., $04000_{\mathrm{H}}, 08000_{\mathrm{H}}$, $0 \mathrm{COOO} H$, etc.). The board contains a memory inhibit function which allows 2 or more of the CMOS RAM boards to be used in a paging technique. Memory, for systems flexibility, can be deselected by jumpers in 2 K byte blocks.
The BP-0200 operates as a slave to the processor but contains its own power source in case of power failure. The BP-0200 NiCd batteries supply a minimum of 7 days of battery back-up, when the batteries are fully charged. The
on-board batteries can be disconnected and power fail sense circuits disabled for battery changing or for storage.
The BP-0200 has an input port which can test the status of Memory Inhibit, Battery Level, Power Fail Sense, and Power Fail Memory Inhibit. The BP-0200 Output port can control Memory Inhibit of the 16K RAM and can reset Power Fail Sense.
If AC power fails or drops below 103/203 VAC, the system power supply should raise AC Power Low (ACLO) to initiate an orderly power-down sequence. The processor is immediately interrupted so that it may store machine status. Approximately 3.8 milliseconds after the Power Fail Interrupt, all further access is denied to the BP-0200 RAM until system power is restored.
The BP-0200 is a powerful memory expansion module that allows the user the highest degree of confidence in maintaining critical data during power outages or shortages.


## SPECIFICATIONS

## Word Size

- 8 or 16 bit data bus Software controlled


## Memory Size

- 16K bytes (8K words)
- NEC $\mu$ PD444/6514


## Memory Addressing

- 20 bit addressing capability


## Address Selection

- Jumper selectable along 16 K boundaries starting at $00000_{\mathrm{H}}\left(00000_{\mathrm{H}}\right.$ 04000, 08000 . . FCOOO)


## Memory Response Time

- Read Access: 450 ns Max.
- Read Cycle: 600 ns Max.


## Bus Compatibility

- Interface: TTL compatible
- $P_{1}: 86$ pin, double-sided, 0.156 inch centers.
- $P_{2}: 60$ pin, double-sided, 0.100 inch centers.

Physical Characteristics

- Width: $\quad 12.00 \mathrm{in} .(30.48 \mathrm{~cm})$
- Height: $6.75 \mathrm{in} .(17.15 \mathrm{~cm})$
- Thickness: $0.50 \mathrm{in} .(1.27 \mathrm{~cm})$
- Weight: 376.00 grams

Power Requirements (Operational)

- $V_{C C}=+5 \mathrm{~V} \pm 5 \%$
- ${ }^{\text {I }} \mathrm{CC}=0.9 \mathrm{~A}$ Typ, 1.2A Max.

Battery Power Requirements

- $\mathrm{V}_{\text {BAT }}=3.6 \mathrm{~V}$ (Nominal)
- $I_{\text {BAT }}=200 \mu \mathrm{~A}$ Max.


## Battery Characteristics

- Type: AAA-size NiCd (3 pcs.)
- Capacity: 180 mA hours
- Voltage: 3.6 V nominal


## Battery Charge Time

- 14 hours for full charge ( 180 mA hours), full overcharge and short circuit protection.


## Data Retention

- 168 hours following removal of +5 V bus power.

Environmental Requirements

- Operating Temp.: $32^{\circ}$ to $131^{\circ} \mathrm{F}$ $\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
- Relative Humidity: to $90 \%$ without condensation.

Applicable Literature

- BP-0200 User's Manual


## BLOCK DIAGRAM



STANDARD FEATURES

$\square$ 16K Bytes of Read/Write Memory utilizing NEC $\mu$ PD444/6514 CMOS RAM for Both 8-Bit Byte and 16-Bit Data Words.Sockets (8) for either industry standard 2716's or 2732's.
$\square$ EPROM address decoding via Bi polar fusable link PROMs.Provision for $A / C$ low line input and 5 volt power fail detect.On Board batteries and battery charger with short circuit and overcharge protection for CMOS and back-up.
$\square$ Memory inhibit allows paging of 2 or more boards to the same address block.Supports 16 bit and 20 bit addressing.

## DESCRIPTION

The BP-0220 is a member of the NEC Microcomputers family of MultibusTM boards. The BP-0220 interfaces directly to any Multibus system to expand RAM/ROM memory capacity.
The BP-0220 contains 16 K bytes of static Read/Write memory utilizing NEC Microcomputers $\mu$ PD444/6514 CMOS RAM memory devices, and in addition, contains sockets for either 8-2716 or 8-2732 industry standard EPROMS (user supplied). The BP-0220 memory may be located, through jumper selection, anywhere in a onemegabyte field beginning on any 16 K address boundary. Memory address decoding is accomplished by $2-\mu \mathrm{PB} 403 /$ 74S287 Fuseable Link PROMs. The user has the option of selecting from NEC's four choices of preprogrammed PROMS or creating address decoding patterns on a pair of supplied blank PROMS. The EPROM may be addressed at the same memory location as the CMOS RAM, allowing shadowing techniques to be used. Shadowing allows the user to utilize the EPROMs for initial program start without committing valuable memory space.

The BP-0220 operates as a slave to the processor, but contains its own power source for the CMOS RAM in case of power failure. The power source is provided by three NiCd batteries mounted on the board, which provide a minimum of seven days of battery back-up at full charge. The onboard batteries can be disconnected and power fail sense circuits disabled for battery changing or storage.
The BP-0220 has an on-board status port which the CPU may read for the condition of Memory Inhibit, Battery Voltage Level, Power Fail Sense, and Power Fail Memory Inhibit. The CPU may also write into a status port to control Memory Inhibit of the RAM/EPROM or reset the power fail sense latch. Test points are provided at the edge of the BP-0220 to allow easy monitoring of battery voltage levels.
The BP-0220 16K CMOS RAM/EPROM board provides the maximum in systems memory flexibility and capability by providing both RAM and EPROM on one board. This configuration enables the user to have the highest degree of confidence in maintaining critical data during power outages or shortages.


## SPECIFICATIONS

## Word Size

- 8 or 16 bit data bus Software controlled
Memory Capacity
- RAM -16 K Bytes ( 8 K words)
- ROM - Using eight $\mu$ PD2716 or $\mu$ PD2316E 16K Bytes ( 8 K words)
- ROM - Using eight $\mu$ PD2732 or $\mu$ PD2332 32K Bvtes (16K words)
Memory Addressing
- 16 and 20 bit addressing capability

Address Selection

- Via $2 \mu$ PB403 Fusable Link PROMs ( $256 \times 4$ ) or 2 SN74S287

Memory Response Time

- RAM Response Time Read Access: 450 ns Max. Read Cycle: 600 ns Max.
- ROM Response Time: $\mu$ PD2716
Read Access: 700 ns Max. Read Cycle: 850 ns Max. $\mu$ PD2316E
Read Access: 700 ns Max.
Read Cycle: 850 ns Max. $\mu$ PD2732
Read Access: 700 ns Max. Read Cycle: 850 ns Max. $\mu$ PD2332
Read Access: 700 ns Max. Read Cycle: 850 ns Max.
Note: The 150 ns difference between Read Access and Read Cycle times are due to bus timing requirements for command set up and hold times. Memory Access is defined from Address True to Data Valid. Memory Response is defined as Memory Read/Write to Data Valid.

Bus Compatibility

- Interface: Multibus compatible
- $P_{1}: 86$ pin, double-sided, 0.156 inch centers.
- $P_{2}: 60$ pin, double-sided, 0.100 inch centers.


## Physical Characteristics

- Width: $12.00 \mathrm{in} .(30.48 \mathrm{~cm})$
- Height: 6.75 in. $(17.15 \mathrm{~cm})$
- Thickness: $0.50 \mathrm{in} .(1.27 \mathrm{~cm})$
- Weight: 376.00 grams

Power Requirements (Operational)

- $V_{C C}=+5 \mathrm{~V} \pm 5 \%$
- $I_{C C}=1.0$ A Typ, 1.3A Max.

Battery Power Requirements

- $\mathrm{V}_{\mathrm{BAT}}=3.6 \mathrm{~V}$ (Nominal)
- $i_{B A T}=200 \mu \mathrm{~A}$ Max.


## Battery Characteristics

- Type: AAA-size NiCd (3 pcs.)
- Capacity: 180 mA hours
- Voltage: 3.6 V nominal


## Battery Charge Time

- 14 hours for full charge ( 180 mA hours), full overcharge and short circuit protection.


## Data Retention

- 168 hours following removal of +5 V bus power.


## Environmental Requirements

- Operating Temp.: $32^{\circ}$ to $131^{\circ} \mathrm{F}$ $\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
- Relative Humidity: to $90 \%$ without condensation.


## Applicable Literature

- BP-0220 User's Manual



## NEC Microcomputers, Inc.

## Five-Channel Serial Communication Controller

## STANDARD FEATURES

- Five Individually Configurable, Asynchronous Communication Channels
- Full Multibus TM Compatibility


## INTRODUCTION

The BP-0575, another member of the NEC Microcomputer family of MultibusTM -compatible board products, is a versatile 5-channel asynchronous serial communications controller with both EIA RS232 and optically isolated current loop interface.capabilities. The board is designed to be plugged into any standard Multibus ${ }^{\text {TM }}$ backplane and to operate with 8 or 16 -bit microprocessors.

The board accepts data from the host processor in parallel data format and transmits serially to terminals, modems, or printers. The BP-0575 accepts serial data over its duplex channels and transfers it to the host processor in parallel format. Also processor-to-processor, bi-directional, serial communication can be implemented between systems equipped with BP-0575's.
The major functional element in the BP-0575 is the NEC $\mu$ PD8251A Programmable Communications Interface Chip. NEC manufactures and is the leading world-wide supplier of this industry standard component. One NEC $\mu$ PD8251A

- Jumper-Selectable I/O Address
- EIA Modem Control Support
- Field-Proven NEC $\mu$ PD8251A USARTs



## BP-0575

## SPECIFICATIONS

## Bus Compatibility

- Interface: TTL-compatible.
- P1:86 pin, double-sided, 0.156 inch centers.
- P2: Not Used

Physical Characteristics

- Width: $\quad 12.00 \mathrm{in}$. $(30.48 \mathrm{~cm})$
- Height: $6.75 \mathrm{in} .(17.15 \mathrm{~cm})$
- Thickness: $0.50 \mathrm{in} .(1.27 \mathrm{~cm})$
- Weight: 398.00 grams


## Power Requirements (Operational)

- $V C C=+5 V \pm 5 \%$
- ICC = 0.9A Typ, 1.2A Max.


## Voltage

- $V_{C C}=+5 V$
- $V_{D D}=+12 \mathrm{~V}$
- $V_{A A}=-12 \mathrm{~V}$
- IT = 1.9A Max.

Environmental Requirements

- Operating Temp.: $0^{\circ}$ to $55^{\circ} \mathrm{C}$
- Relative Humidity: to $90 \%$ without condensation.


## Interfaces - RS232C

- EIA standard RS232C signals provided and supported
- Carrier Detect
- Clear to Send
- Data Set Ready
- Data Terminal Ready
- Request to Send
- Receive Data
- Transmit Data

Applicable Literature

- BP-0575 User's Manual


## BLOCK DIAGRAM



## NEC Microcomputers, Inc.

## Floppy Disk Controller/RAM

## STANDARD FEATURES

The BP-2190 is a complete floppy disk controller with on-board RAM and the following features:

- Occupies a single card slot
- Handles up to four double-sided standard $8^{\prime \prime}$ or three mini $514^{\prime \prime}$ floppy disk drives
- Drives may be a mixture of single- or doubledensity types (software programmable)
- IBM compatible soft-sector recording format in both single- and double-density modes
- Performs fifteen different READ, SCAN, WRITE, FORMAT, SEEK, SENSE and SPECIFY commands with minimal processor overhead
- $48 \mathrm{~K} \times 8$ of on-board, automatically refreshed dynamic RAM
- Dual-ported memory allows direct DMA data transfers to/from disk without processor intervention
- On-board priority logic arbitrates simultaneous memory accesses by disk, system bus or refresh logic


## DESCRIPTION

The NEC Microcomputers BP-2190 Floppy Disk Controller/RAM is a dual-purpose board. It combines a floppy disk controller (FDC) capable of controlling up to four $8^{\prime \prime}$ standard or three $51_{4}^{\prime \prime}$ mini-floppy disk drives with up to 48 kilobytes of dual-ported RAM. Dual-porting makes the RAM available both to the disk for DMA data transfers and to the host processor for data storage and program execution. The BP-2190 can be paired with any compatible single-board computer to make a very powerful two-board, floppy disk based computer system.


With on-board RAM and all necessary Direct Memory Access Control (DMAC) logic, the BP-2190 is a complete interface between the drives and any Multibus ${ }^{\top}{ }^{T M}$ single-board computer system. It provides a powerful facility for the control of disk data transfers, and many of its features have been included specifically to minimize processor overhead. All disk data transfers are under control of the FDC ( $\mu$ PD765) and DMAC ( $\mu$ PD8257) and are independent of the processor. Once a disk transfer has been requested by the processor, the FDC and DMAC work together to obtain the proper data and transfer it to/from the on-board memory through one of its dual ports. When the transfer is complete, the FDC notifies the processor by generating an interrupt.
A single READ or WRITE command allows the transfer of a single sector, multiple sectors, an entire track or even an entire cylinder's worth of data (one track on both sides of the diskette). READ and WRITE operations may be performed on normal and/or deleted data fields.

Execution of a FORMAT A TRACK command allows an entire track to be formatted in one diskette revolution. The FDC supplies all information for formatting in either single- or double-density, except for 4 bytes in each ID field. The DMA controller fetches these 4 bytes/sector, thus allowing the user to have non-sequential numbered sectors. SEEK and RECALIBRATE operations can occur on up to four drives simultaneously.

Between FDC commands trom the processor, the BP-2190 automatically polls all drive Ready lines; if one changes state (usually due to a door opening or closing), the BP-2190 notifies the processor via an interrupt. This allows the processor to keep track of which drives are on-line or off-line.

In addition to programmable selection of operating mode, key time intervals are selectable under software control. Head load time ( 2 to 254 ms ), head unload time ( 16 to 240 ms ) and stepping rate ( 1 to 16 ms ) are programmable. For mini-floppies these times are automatically doubled. Either singledensity (FM) or double-density (MFM), singlesided or double-sided reading/writing can be selected under software control.

An on-board crystal-controlled oscillator is the master clock for all board timing requirements.

The data recovery circuit, which separates raw data into Data Window and RD Data signals, is capable of handling wide peak shift variations. Precompensation circuitry is also employed during doubledensity recording in order to improve performance.

## OPTIONS

The BP-2190's powerful jumper option structure accommodates most floppy disk drives on the market. Along with the standard features, the BP2190's on-board jumpers allow selection of:

- Standard or Mini-Floppy Drives
- Internal or External Clock
- Generate/Receive/Ignore Bus Clock
- Memory Bank Base Addresses
- FDC I/O Port Base Address
- Memory Protect/Disable
- Interrupt Line (1 of 9)
- Reset at Power-Up, by Software Command or External Switch Closure
- XACK/ and/or AACK/ Acknowledgements

In addition, four radial HEAD LOAD signals are provided, as are four general-purpose software controlled output lines useful for controlling minifloppy motors, Drive-In-Use lights, door locks, etc.

## ON-BOARD MEMORY

The on-board memory is implemented with NEC $\mu$ PD416 dynamic RAMs. Its dual-port architecture allows either disk data transfers to take place under DMA control, or for the host processor to have access to the memory. All disk data transfers occur between the drive and the on-board RAM.

Each of the three memory banks of 16 K are base address selectable at $0000 \mathrm{H}, 4000 \mathrm{H}, 8000 \mathrm{H}$ or COOOH . Facilities are provided to deselect the entire memory either under hardware or software control. This feature is especially useful when system initialization ROMs are required to have the same base address as used by RAM.
RAM refresh logic is provided, as well as priority circuits which arbitrate simultaneous disk, bus and/ or refresh memory access requests.

## SOFTWARE DISK DRIVERS

A complete set of I/O Driver routines is supplied with the BP-2190 board. A complete, heavily commented source listing is provided in 8080 assembly language so that the user can easily understand and modify, if necessary, the software to fit his particular application.

[^7]

Included in the software routines are READ, WRITE, FORMAT, SEEK, RECALIBRATE and DRIVE STATUS commands. These commands allow multiple sector READs and WRITEs to occur under DMA control. Drive-related parameters such as head load time, head unload time, stepping rate, drive number, etc., are set up or controlled via a convenient I/O parameter block.
These software driver programs allow a first-time user of floppy disk systems to get his BP-2190 board "on the air" in minimum time. The serious OEM may wish to modify or to totally revamp the supplied software, and the accompanying documentation makes this task easy to do.

## PROGRAMMING

Eight I/O Ports (relocatable via jumpers) are required to program the BP-2190. While most of the instructions are very simple single-byte transfers, the DMA controller ( $\mu$ PD8257) and the FDC Controller ( $\mu$ PD765) require multi-byte transfers from the processor. These bytes may be supplied in an asynchronous manner. However, once the request for the disk transfer has been made, the operations of loading the head, finding the proper sector and transferring it to the on-board RAM occur automatically with no processor intervention. After the disk transfer has been completed, an interrupt is generated and the processor must read out the results of the disk transfer. This read-out is typically a multi-byte transfer.

## OPERATION

Most floppy disk controller operations are performed in three stages: the Command Phase, the Execution Phase and the Result Phase. Each command is initiated by a multi-byte transfer from the processor, after which the BP-2190 executes the command in true asynchronous fashion. It signals completion of the command via an interrupt to the processor, which then reads the information presented in the FDC's Result Status registers.

As an example, the reading of a sector on one of four drives into a specific block of on-board RAM would involve the following:

PHASE	PROCESSOR   READ/WRITE	FUNCTION OF   INSTRUCTION(S)
Command	W	Specify memory starting address   and block length to DMA.
	W	Specify a Sector Read, select   drive
	W	Specify (current) track, head,   sector number and bytes/sector
	Declare track's final sector   number and gap length	
	R	Head is loaded, specified sector   is located, data is recovered,   reassembled and written into   specified memory block - all   with no further intervention by   processor. Completion is sig-   naled by an interrupt.
	R	Read status registers to deter-   mine success of execution phase,
source of error if execution		
failed.		

## BP-2190

## FDC STATUS REGISTERS

The FDC on the BP- 2190 contains five status registers which supply the processor with extensive information about disk transfers. One of these, the Main Status Register, may be read by the processor at any time. It indicates whether any of the FDDs are in Seek Mode (FDDO, 1, 2 or 3 Busy), whether the FDC has a Read/Write operation in process (FDC Busy), and whether the FDC is ready to transfer commands from or results to the processor.
The other four status registers are only available after an FDC operation has been completed. Three of these are presented after each Read or Write operation and supply detailed information on how the data transfer progressed. The fourth indicates the condition of the FDD itself.

## COMMAND SUMMARY

## Memory

- Memory Read (processor reads a single byte of data from memory)
- Memory Write (processor writes a single byte of data into memory)

	Disk
- Read Data	- Write Data
- Read Deleted Data	- Write Deleted Data
- Read Track	- Format Track
- Read ID	- Scan Equal
- Seek	- Scan High or Equal
- Recalibrate	- Scan Low or Equal
- Sense Interrupt Status	
- Sense Drive Status	
- Specify (Head Load and Unload Times, Step Rates)	
- Set/Reset Auxiliary Outputs (e.g., Motor On/Off)	

## I/O

- DMA Data Channel
- External Control
- DMA RAM Refresh
- FDC Status Channel
- FDC Data
- DMA Mode


## MULTIBUS ${ }^{\text {TM }}$ COMPATIBILITY

The BP-2190 is fully compatible with all mechanical and electrical requirements of Intel iSBC ${ }^{\text {TM }}$ and National BLC Multibus ${ }^{\text {TM }}$ systems. It will also operate as a loworder 8-bit slave on the expanded Multibus ${ }^{\text {TM }}$ (such as required by the 16 -bit Intel iSBC ${ }^{T M} 86 / 12$ ). The BP-2190 conforms to all Multibus ${ }^{\top M}$ voltage level, current level and timing requirements, and is ready to plug in and run as supplied.

TM: iSBC is a trademark of Intel Corporation

## SPECIFICATIONS

## Media

- Flexible diskette, $8^{\prime \prime}$ standard or $514^{\prime \prime}$ mini
- One or two surfaces per diskette
- 77 tracks per surface ( $8^{\prime \prime}$ ), 35 tracks per surface ( $51 / 4^{\prime \prime}$ )
- 128/256/512/1024/2048/4096 bytes per sector singledensity
- 256/512/1024/2048/4096/8192 bytes per sector double-density
Transfer Rate: Rates are in kilobits per second

DENSITY	DIAMETER	
	$51 / 4$	8
Single	125	250
Double	250	500

## Physical Characteristics

- Mounting - occupies one chassis or card cage slot
- Height -6.75 in ( 171.5 mm )
- Width - 12.00 ( 304.8 mm )
- Depth - $0.5 \mathrm{in}(12.7 \mathrm{~mm})$

DC Power Requirements

- $+12 \mathrm{~V} \pm 5 \% ; 150 \mathrm{~mA}$
- $+5 \mathrm{~V} \pm 5 \% ; 1.3 \mathrm{Amps}$
- $-5 \mathrm{~V} \pm 5 \% ; 6 \mathrm{~mA}$


## Environment

- Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
- Non-operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Humidity - up to $90 \%$ RH, non-condensing


## Documentation Supplied

- UM-2190 Users' Manual


## DRIVES

The BP-2190 directly interfaces with the following drives. Other types may require modification or additional interface circuitry and/or software.

MANU-   FACTURER	$\mathbf{8}^{\prime \prime}$ FLOPPY   DRIVES	5.25' MINI-   FLOPPY DRIVES
BASF	-	6106,6108
Caldisk	143 M	-
Memorex	$550 / 552$	-
MFE	$500 / 700$ Series	-
Micropolis	-	$1015-1,2,4 ; 1016-2,4 ;$
Persci	$70,270,288$	-
Pertec	FD5x4,FD650	FD200,FD250
Qume	Datatrak-8	
Siemens	FDD 200-8,100-8	FD200-5,FD100-5
Shugart Assoc.	SA800,850	SA400,SA450

## NEC Quality Assurance Procedures

One of the important factors contributing to the final quality of our memory and microcomputer components is the attention given to the parts during the manufacturing process. All Production Operations in NEC follow the procedures of MIL Standard 883A. Of particular importance to the reliability program are three areas that demonstrate NEC's commitment to the production of components of the highest quality.
I. Burn-In - All memory and microcomputer products are dynamically burned in at an ambient temperature sufficient to bring the junction to a temperature of $150^{\circ} \mathrm{C}$. The duration of the burn-in is periodically adjusted to reflect the production history and experience of NEC with each product. 100\% of all NEC memory and microcomputer products receive an operational burn-in stress.
II. Electrical Test - Memory and microcomputer testing at NEC is not considered a statistical game where the device is subjected to a series of pseudo random address and data patterns. Not only is this unnecessarily time consuming,
but it does not effectively eliminate weak or defective parts.
NEC's test procedures are based on the internal physical and electrical organization of each device and are designed to provide the maximum electrical margin for solid board operation.

For further information on NEC's testing procedures see your
local NEC representative.
III. After completion of all $100 \%$ test operations, production lots are held in storage until completion of two groups of extended sample testing: an operating life test and a series of environmental tests. Upon successful completion of these tests, the parts are released from storage and sent to final Q.A. testing.

NEC


11

# NEC Microcomputers, Inc. NEC 

NEC REGIONAL SALES OFFICES:
EASTERN REGION
275 Broadhollow Road, Route 110
Melville, NY 11747
TEL: 516-293-5660
TWX: 510-224-6090
MIDWESTERN REGION
5105 Tollview Drive, Suite 190
Rolling Meadows, IL 60008
TEL: 312-577-9090
TWX: 910-233-4332
NORTHEASTERN REGION
21-G Olympia Avenue
Woburn, MA 01801
TEL: 617-935-6339
TWX: 710-348-6515
NORTHWESTERN REGION
20480 Pacifica Drive, Suite E
Cupertino, CA 95014
TEL: 408-446-0650
OHIO VALLEY REGION
19675 West Ten Mile Road
Southfield. MI 48075
TEL: 313-352-3770
SOUTHWESTERN REGION
1940 West Orangewood Avenue, Suite 205
Orange, CA 92668
TEL: 714-937-5244.
TWX: 910-593-1629
FAX: 714-639-1100
SOUTH CENTRAL REGION
16475 Dallas Parkway. Suite 290
Dallas. TX 75248
TEL: 214-931-0641
SOUTHEASTERN REGION
Vantage Point Office Center. Suite 209
4699 North Federal Highway
Pompano Beach, FL. 33064
TEL: 205-785-8250


[^0]:    Notes: O.C. $=$ Open Collector
    C - Plastic Package
    D - Hermetic Package
    TS - 3-State

[^1]:    

[^2]:    ABSOLUTE MAXIMUM RATINGS*
    $\qquad$
    Operating Temperature $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
    Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
    Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 7.0V
    
    Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 to 7.3V
    Output Current (Ports C through G, each bit) . . . . . . . . . . . . . . . . . . . . -2.5 mA
    (Total, all ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -28.0 mA
    COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
    ${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

[^3]:    $\ddagger$ Flag affected according to result of operation
    1 Flag set
    0 Flag reset

    - Flag not affected

[^4]:    (*) 3rd $\overline{\mathrm{NTAA}}$ is 8085 Mode

[^5]:    *To be specified

[^6]:    *TM - Multibus is a trademark of Intel Corporation.

[^7]:    TM: Multibus is a trademark of Intel Corporation

