NEC IVicrocomputers, Inc.

NEC Microcomputers,Inc.

CONTENTS

1. Numerical Index

2. Memories

Index
Selection Guide
Alternate Source Guide
3. Random Access Memories (RAMs)

Dynamic NMOS
Static NMOS
CMOS
4. Read Only Memories (ROMs)

Erasable/Reprogrammable
Mask Programmable
5. Microcomputers

Index
Selection Guide
Alternate Source Guide
6. μ СОМ-4 Microcomputers
μ COM-42
μ COM-43/44/45
μ COM-46
7. μ COM-8 Microcomputers

Processors
Single Chip Microcomputers
Peripherals
Microcomputer on a Board
8. Reference Section
Representatives and Distributors ROM Ordering Procedure

NUMERICAL INDEX

PRODUCT PAGE
MPD371 247
μ PD372 255
MPD379 263
μ PD410 51
μ PD411 9
μ PD411A 17
μ PD416 25
MPD421 67
μ PD443/6508 69
μ PD444/6514 78
μ PD445L 79
μ PD454 85
μ PD458 91
μ PD546 139
μ PD547 141
μ PD547L 143
μ PD548 127
MPD550 145
μ PD551 163
μ PD552 147
μ PD553 149
μ PD554 151
μ PD555 129
μ PD556 159
MPD650 153
μ PD651 155
μ PD652 157
μ PD765 271
μ PD780 167
μ PD2101AL 35
μ PD2102AL 41
μ PD2111AL 45
μ PD2114L 55
μ PD2147 60
μ PD2316E 103
μ PD2332 107
PRODUCT PAGE
μ PD2364 111
μ PD2716 99
μ PD4104 61
μ PD5101L 73
بPD8021 211
μ PD8035 225
μ PD8039 237
μ PD8041 217
μ PD8048 225
μ PD8049 237
μ PD8080AF 183
μ PD8085A 197
μ PD8155 289
μ PD8156 289
μ PB8212 297
μ PB8214 303
μ PB8216 309
μ PB8224 313
μ PB8226 309
μ PB8228 319
μ PB8238 319
μ PD8243 325
μ PD8251 331
μ PD8251A 331
μ PD8253 349
μ PD8255 357
μ PD8255A-5 357
μ PD8257 365
μ PD8259 373
μ PD8279-5 389
μ PD8355 399
μ PD8741 217
μ PD8748 225
μ PD8755A 399
TK-80A 405

MEMORY INDEX

RANDOM ACCESS MEMORIES

Dynamic NMOS RAMs PAGE
μ PD411 9
μ PD411A 17
μ PD416 25
Static NMOS RAMs
μ PD2101AL 35
MPD2102AL 41
μ PD2111AL 45
μ PD410 51
μ PD2114L 55
μ PD2147 60
μ PD4104 61
μ PD421 67
CMOS RAMs
μ PD443/6508 69
μ PD5101L 73
μ PD444/6514 78
μ PD445L 79
READ ONLY MEMORIES
Erasable/Reprogrammable ROMs
μ PD454 85
μ PD458 91
μ PD2716 99
Mask Programmable ROMs
μ PD2316E 103
μ PD2332 107
μ PD2364 111

MEMORY SELECTION GUIDE

DEVICE	SIZE	TECHNOLOGY	ACCESS TIME	CYCLE	SUPPLY VOLTAGES	PACKAGE	
	MATERIAL	PINS					

DYNAMIC RANDOM ACCESS MEMORIES

μ PD411	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	150 ns	380 ns	$+12,+5,-5$	D	22
μ PD411-4	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	135 ns	320 ns	$+15,+5,-5$	D	22
μ PD411A	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	200 ns	400 ns	$+12,+5,-5$	C	22
μ PD416	$16 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	120 ns	375 ns	$+12,+5,-5$	C/D	16

STATIC RANDOM ACCESS MEMORIES

μ PD443/6508	$1 \mathrm{~K} \times 1 \mathrm{TS}$	CMOS	200 ns	200 ns	+5	C/D	16
μ PD444/6514	$1 \mathrm{~K} \times 4 \mathrm{TS}$	CMOS	300 ns	300 ns	+5	C	18
$\mu \mathrm{PD} 445 \mathrm{~L}$	$1 \mathrm{~K} \times 4 \mathrm{TS}$	CMOS	450 ns	450 ns	+5	C	20
μ PD5101L	256×4 TS	CMOS	450 ns	450 ns	+5	C	22
μ PD410	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	80 ns	220 ns	+12, $+5,-5$	C/D	22
μ PD4104	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	85 ns	180 ns	+5	D	18
$\mu \mathrm{PD} 2114 \mathrm{~L}$	$1 \mathrm{~K} \times 4 \mathrm{TS}$	NMOS	200 ns	300 ns	+5	C	18
$\mu \mathrm{PD} 2147$	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	55 ns	55 ns	+5	D	18
$\mu \mathrm{PD} 421$ (F)	$1 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	85 ns	85 ns	+5	D	22

MASK PROGRAMMED READ ONLY MEMORIES

μ PD2316E	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C/D	24
μ PD2332	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C/D	24
μ PD2364	$8 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C/D	24

FIELD PROGRAMMABLE READ ONLY MEMORIES

μ PD2716 (F)	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	D	24
μ PD454	256×8 TS	NMOS	800 ns	800 ns	$+12,+5^{*}$	D	24
μ PD458	$1 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	$+12,+5^{*}$	D	28

Notes: (F) - Future Product

* - Read Mode

C - Plastic Package
D - Hermetic Package

MEMORY ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM2101 AM2101 AM2111 AM9060 AM9101 AM9102 AM9107 AM9111 AM9216	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \\ 2048 \times 8 \text { ROM } \\ \hline \end{array}$	μ PD2101AL μ PD2102AL μ PD2111AL μ PD411/ μ PD411A μ PD2101AL μ PD2102AL μ PD411/ μ PD411A μ PD2111AL μ PD2316E
EM\&M SEMI	$\begin{aligned} & 4200 \\ & 4300 \\ & 4402 \\ & 8108 \end{aligned}$	$\begin{aligned} & 4096 \times 1 \text { SRAM } \\ & 4096 \times 1 \text { SRAM } \\ & 4096 \times 1 \text { SRAM } \\ & 1024 \times 8 \text { SRAM } \end{aligned}$	μ PD410 μ PD410 μ PD410 μ PD421
FAIRCHILD	$\begin{aligned} & 2101 \mathrm{~L} \\ & 2102 \\ & 3538 \\ & \text { F16K } \end{aligned}$	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \end{array}$	μ PD2101AL μ PD2102AL μ PD2101AL μ PD416
FUJITSU	MB2114 MB8101 MB8107 MB8111 MB8116	$\begin{array}{r} 1024 \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \end{array}$	μ PD2114L μ PD2101AL μ PD411/ μ PD411A μ PD2111AL μ PD416
HARRIS	HM6501 HM6508 HM6514	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 1024 \times 4 \text { SRAM } \end{array}$	μ PD5101L μ PD443/6508 μ PD444/6514
INTERSIL	2616 IM6508A 7101 7111 7114 7116 $7280 / A$ IM7552	$\begin{array}{r} 2048 \times 8 \text { ROM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 1024 \times 4 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \\ 4096 \times 1 \text { DRAM } \\ 512 \times 1 \text { SRAM } \end{array}$	μ PD2316E μ PD443/6508 μ PD2101AL μ PD2111AL $\mu \mathrm{PD} 2114 \mathrm{~L}$ μ PD416 μ PD411/ μ PD411A μ PD2102AL
INTEL	2101 2102 2107 2111 2114 2117 2147 2316 E 2716 5101 8101 A 8102 A 8111 A	$\begin{gathered} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \\ 1024 \times 4 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \\ 4096 \times 1 \text { SRAM } \\ 2048 \times 8 \text { ROM } \\ 2048 \times 8 \text { EPROM } \\ 256 \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \end{gathered}$	μ PD2101AL μ PD2102AL μ PD411/ μ PD411A μ PD2111AL μ PD2114L MPD416 μ PD2147 μ PD2316E μ PD2716 μ PD5101L μ PD2101AL μ PD2102AL $\mu \mathrm{PD} 2111 \mathrm{AL}$

MEMORY ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
MOSTEK	MK32000 MK34000 MK36000 MK4102 MK4104 MK4116	$\begin{gathered} 4096 \times 8 \text { ROM } \\ 2048 \times 8 \text { ROM } \\ 8192 \times 8 \text { ROM } \\ 1024 \times 1 \text { SRAM } \\ 4096 \times 1 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \end{gathered}$	μ PD2332 μ PD2316E μ PD2364 μ PD2102AL μ PD4104 μ PD416
MOTOROLA	MCM2102 MCM2111 MCM6616 MCM68111 MCM68317	$\begin{array}{r} 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 16384 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \\ 2048 \times 8 \text { ROM } \end{array}$	μ PD2102AL μ PD2111AL μ PD416 $\mu \mathrm{PD} 2111 \mathrm{AL}$ μ PD2316E
NATIONAL	MM2101 MM2102A MM2111 MM5280A MM5281 MM74C920	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 4096 \times 1 \text { DRAM } \\ 256 \times 4 \text { SRAM } \end{array}$	μ PD2101AL μ PD2102AL μ PD2111AL μ PD411/ μ PD411A μ PD411/ μ PD411A μ PD5101L
SIGNETICS	$\begin{aligned} & 2101 \\ & 2102 \\ & 2111 \\ & 2316 \\ & 2601 \\ & 2611 \\ & 2680 \end{aligned}$	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 2048 \times 8 \text { ROM } \\ 256 \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \end{array}$	μ PD2101AL μ PD2102AL μ PD2111AL μ PD2316E μ PD2101AL μ PD2111AL μ PD411/ μ PD411A
T.I.	TMS2101 TMS2102 TMS4033 TMS4034 TMS4039 TMS4042 TMS4044 TMS4060 TMS4116 TMS4732	$\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 1024 \times 1 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 256 \times 4 \text { SRAM } \\ 1024 \times 4 \text { SRAM } \\ 4096 \times 1 \text { DRAM } \\ 16384 \times 1 \text { DRAM } \\ 4096 \times 8 \text { ROM } \end{array}$	μ PD2101AL μ PD2102AL μ PD2102AL μ PD2102AL μ PD2101AL μ PD2111AL μ PD2114L μ PD $411 / \mu$ PD411A μ PD416 μ PD2332

FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION

The μ PD4 11 Family consists of six 4096 words by 1 bit dynamic N -channel MOS RAMs. Thiey are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411 Family is designed using dynamic circuitry which reduces the standby power dissipation.
Reading iniformation from the memory is a non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.
FEATURES All of the'se products are guaranteed for operation over the 0 to $70^{\circ} \mathrm{C}$ temperature range.
Important features of the μ PD411 family are:

- Low Standby Power
- 4096 words $\times 1$ bit Organization
- A single low-capacitance high level clock input with solid ± 1 volt margins.
- Inactive Power/ 0.3 mW (Typ.)
- Power Supply: $+12,+5,-5 \mathrm{~V}$
- Easy Sy/stem Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Ceramic Dual-in-Line Package
- Replacement for INTEL'S 2107B, TI'S 4060 and Equivalent Devices.
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESH TIME
μ PD411-E	350 ns	800 ns	960 ns	1 ms
μ PD411	300 ns	470 ns	650 ns	2 ms
μ PD411-1	250 ns	470 ns	640 ns	2 ms
μ PD411-2	200 ns	400 ns	520 ns	2 ms
μ PD411-3	150 ns	380 ns	470 ns	2 ms
μ PD411-4	135 ns	320 ns	320 ns	2 ms

PIN CONFIGURATION

PIN NAMES

$A_{0} \cdot A_{11}$	Address Inputs
$A_{0} \cdot A_{5}$	Refresh Addresses
$C E$	Chip Enable
$\overline{C S}$	Chip Select
$D_{I N}$	Data Input
$\overline{D_{O U T}}$	Data Output
$\overline{W E}$	Write Enable
$\overline{V_{D D}}$	Power (+12V)
$V_{C C}$	Power (+5V)
$V_{S S}$	Ground
$V_{B B}$	Power
$N C$	No Connection

CE Chip Enable

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable its low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

$\overline{\text { Cs }}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

WE Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\overline{W E}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

$\mathrm{A}_{0}-\mathrm{A}_{11}$ Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

DOUT Data Output

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_{0} through A_{5} or by addressing every row with in any 2^{*}-millisecond period. Addressing any row refreshes all 64 bits in that row.
The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

```
* }\mu\mathrm{ PD411-E = 1 millisecond refresh period.
```


Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +20 Volts	-0.3 to +25 Volts (1)
All Input Voltages	-0.3 to +20 Volts	-0.3 to +25 Volts (1)
Supply Voltage VDD	-0.3 to +20 Volts	-0.3 to +25 Volts (1)
Supply Voltage VCC	-0.3 to +20 Volts	-0.3 to +25 Volts (1)
Power Dissipation	OW	1.5W

Note: (1) Relative to $V_{B B}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \top_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\prime \prime} \mathrm{C}, \mathrm{V}_{\mathrm{DC}}=+12 \mathrm{~V} \cdot 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \cdot 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$,
Except $V_{D D}=+15 \mathrm{~V}+5 \%$ for 411.4

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current	${ }^{\prime} \mathrm{LI}$	'	001	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH MAX }}$
CE Input Load Current	${ }^{1} \mathrm{LC}$		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {ILC MIN }}$ to $V_{\text {IHC }}$ MAX
Output Leakage Current for High Impedance State	${ }^{1} \mathrm{LO}$		0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{0}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$
VDD Supply Current during CE off	'DD OFF		20	200	μA	$C E=1.0 \mathrm{~V}$ to 0.6 V
VDD Supply Current during CE on	'DD ON.		35^{*}	60^{5}	mA	$C E=V_{\text {IHC }}, T_{a}=25^{\prime} \mathrm{C}$
Average $V_{D D}$ Current μ PD411-E μ PD411 μ PD 411 - 1 μ PD411-2 μ PD411-3 μ PD411.4	IDDAV IDD AV IDD AV IDDAV IDDAV IDD AV	\cdots	$\begin{aligned} & 29 \\ & 37 \\ & 37 \\ & 37 \\ & 41 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 65 \\ & 80 \end{aligned}$	mA mA mA mA mA mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ Cycle Time $=800$ ns Cycle Time $=470 \mathrm{~ns}$ Cycle Time $=470 \mathrm{~ns}$ Cycle Time $=400 \mathrm{~ns}$ Cycle Time $=380 \mathrm{~ns}$ Cycle Time $=320 \mathrm{~ns}$
$\vee_{\text {BB }}$ Supply Current (2)	${ }^{1} \mathrm{BB}$		5	100	$\mu \mathrm{A}$	
$V_{\text {CC }}$ Supply Current during CE off (3)	${ }^{\text {I CCC OFF }}$		0.01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=V_{\text {IH }}$
Input Low Voltage	$V_{\text {IL }}$	- 1.0	,	0.6	V	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.4 (4)		$\mathrm{V}_{\mathrm{CC}}+1$	V	
CE Input Low Voltage	$V_{\text {ILC }}$	-1.0		0.6	\checkmark	
CE Input High Voltage	$V_{\text {IHC }}$	$V_{D D-1}$	$V_{\text {DD }}$	$\mathrm{V}_{\text {DD }}{ }^{+1}$	V	
Output Low Voltage	V_{OL}	0		0.40	\checkmark	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4	.	$V_{\text {cc }}$	V	$\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}$

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
(2) The I_{BB} current is the sum of all leakage currents
(3) During CE on $V_{C C}$ supply current is dependent on output loading. V_{CC} is connected to output buffer only
(4) 3.5 V for $\mu \mathrm{PD} 411-\mathrm{E}$
(5) 65 mA for μ PD411-3 80 mA for μ PD411-4
(6) 41 mA for μ PD411-3

55 mA for μ PD4 $11-4$
$\mathrm{T}_{\mathrm{a}}=0^{\circ}-70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Capacitance, $\overline{\mathrm{CS}}$	CAD		4	6	pF	$V_{\text {IN }}=V_{\text {SS }}$
CE Capacitance	$\mathrm{C}_{\text {CE }}$		18	27	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
Data Output Capacitance	COUT		5	7	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
DIN and WE Capacitance	CIN		8	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted,
Except $\mathrm{V}_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

PARAMETER	SYMBOL	LIMITS												UNIT
		μ PD411.E		μ PD411		μ PD 411 -1		μ PD411-2		μ PD411-3		μ PD411.4		
		MIN	MAX											
Time Between Refresh --	treF		1		2		2		2		2		2	ms
Address to CE Set Up Time	${ }^{\text {t }} \mathrm{AC}$	0		0		0		0		0		0		ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	150		150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{CC}$	380		130		170		130		130		80		ns
CE Transition Time	t T	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{t} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	0	130	ns
Cycle Time	${ }^{\text {t }} \mathrm{C}$ Y	800		470		470		400		380		320		ns
CE on Time	${ }^{\text {t }} \mathrm{CE}$	380	3000	300	3000	260	3000	230	3000	210	3000	200	3000	ns
CE Output Delay	${ }^{\text {t }} \mathrm{CO}$		330		280		230		180		130		115	ns
Access Time	${ }^{\text {t }}$ ACC		350		300		250		200		150		135	ns
CE to $\overline{W E}$	${ }^{\text {t W }}$ L	40		40°		40		40		40		40		ns
$\overline{W E}$ to CE on	${ }^{\text {tw }}$ W	0		0		0		0		0		0		ns

WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted, Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

PARAMETER	SYMBOL	LIMITS												UNIT
		μ PD411-E		μ PD411		μ PD411-1		μ PD411-2		μ PD411-3		μ PD411-4		
		MIN	MAX											
Cycle Time	${ }^{\text {t }} \mathrm{CY}$	800		470		470		400		380		320		ns
Time Between Refresh	${ }^{\text {t REF }}$		1		2		2		2		2		2	ms
Address to CE Set Up Time	${ }^{\text {t }}$ AC	0		0		0		0		0		0		ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	150		150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{C}$	380		130		170		130		130		80		ns
CE Transition Time	${ }^{\text {T }}$	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{1} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	0	130	ns
CE on Time	${ }^{\text {t }} \mathrm{CE}$	380	3000	300	3000	260	3000	230	3000	210	3000	200	3000	ns
$\overline{W E}$ to CE off	tw	200		180		180		150		150		65		ns
CE to $\overline{W E}$	${ }^{\text {t }}$ CW	380		300		260		230		210		200		ns
DIN to WE Set Up(1)	${ }^{\text {t }}$ DW	0		0		0		0		0		0		ns
DIN Hold Time	${ }^{\text {t }} \mathrm{DH}$	40		40		40		40		40		40		ns
$\overline{W E}$ Pulse Width	tWP	200		180		180		150		100		65		ns

Note: (1) If $\overline{W E}$ is low before CE goes high then $D_{I N}$ must be valid when $C E$ goes high.

READ-MODIFY-WRITE CYCLE

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted,
Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for 411.4

PARAMETER	SYMBOL	LIMITS												UNIT
		μ PD411-E		μ PD411		μ PD 411 -1		μ PD411-2		μ PD411-3		μ PD411.4		
		MIN	MAX											
Read-Modify-Write (RMW) Cycle Time	${ }^{\text {tRWC }}$	960		650		640		520		470		320		ns
Time Between Refresh	tref		1		2		2		2		2		2	ms
Address to CE Set Up Time	${ }_{\text {t }}^{\text {AC }}$	0		0		0		0		0		0		ns
Address Hold Time	${ }^{t} \mathrm{AH}$	150		150		150		150		150		100		ns
CE Off Time	${ }^{\text {t }} \mathrm{C}$	380		130		170		130		130		80		ns
CE Transition Time	tT	0	40	0	40	0	40	0	40	0	40	0	40	ns
CE Off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	130	0	130	0	130	0	130	0	130	0	130	ns
CE Width During RMW	${ }^{\text {t CRW }}$	540	3000	480	3000	430	3000	350	3000	300	3000	200	3000	ns
$\overline{W E}$ to CE on	twC	0		0		0		0		0		0		ns
$\overline{W E}$ to CE off	tw	200		180		180		150		150		65		ns
$\overline{\text { WE Pulse Width }}$	tWP	200		180		180		150		100		65		ns
DIN to WE Set Up	${ }^{\text {t }}$ DW	0		0		0		0		0		0		ns
DIN Hold Time	${ }^{\text {t }} \mathrm{DH}$	40		40		40		40		40		40		ns
CE to Output Display	${ }^{t} \mathrm{CO}$		330		280		230		180		130		115	ns
Access Time	${ }^{\text {t }} \mathrm{ACC}$		350		300		250		200		150		135	ns

WRITE CYCLE

Notes (1) $V_{D D}-2 V$ is the reference level for measuring timing of $C E$
(2) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(3) $V_{\text {IHMIN }}$ is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}$,
' $\overline{W E}$ and $D_{I N}$.
(4) $V_{\text {ILMAX }}$ is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}$, $\overline{W E}$ and DiN.

READ-MODIFY-WRITE CYCLE

Note: (1) $\overline{W E}$ must be at $V_{I H}$ until end of t_{CO}

TYPICAL OPERATING CHARACTERISTICS (Except 411-4)

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$.
POWER CONSUMPTION
Typical power dissiption for each product is shown below.

	mW (TYP.)	CONDITIONS
μ PD411-E	350	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=800 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=380 \mathrm{~ns}$
μ PD411	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=300 \mathrm{~ns}$
μ PD411-1	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=260 \mathrm{~ns}$
μ PD411-2	450	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=230 \mathrm{~ns}$
μ PD411-3	550	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=380 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=210 \mathrm{~ns}$
μ PD411-4	660	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=320 \mathrm{~ns}, \mathrm{t} \mathrm{CE}=200 \mathrm{~ns}$

See above curves for power dissipation versus cycle time.

PACKAGE OUTLINE μ PD411D

ITEM	MILLIMETERS	INCHES
A	27.43 MAX	1.079 MAX
B	1.27 MAX	0.05 MAX
C	2.54 ± 0.1	0.10
D	0.42 ± 0.1	0.016
E	25.4 ± 0.3	1.0
F	1.5 ± 0.2	0.059
G	3.5 ± 0.3	0.138
H	3.7 ± 0.3	0.145
I	4.2 MAX	0.165 MAX
J	5.08 MAX	0.200 MAX
K	10.16 ± 0.15	0.400
L	9.1 ± 0.2	0.358
M	0.25 ± 0.05	0.009

4096 BIT DYNAMIC RAMS

DESCRIPTION The μ PD411A Family consists of four 4096 words by 1 bit dynamic N-channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The μ PD411A Family is designed using dynamic circuitry which reduces the standby power dissipation.
Reading information from the memory is non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.

FEATURES • Low Standby Power

- 4096 words $\times 1$ bit Organization
- A single low-capacitance high level clock input with solid ± 1 volt margins.
- Inactive Power 0.7 mW (Typ.)
- Power Supply $+12,+5,-5 \mathrm{~V}$
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Plastic or Cerdip Dual-in-Line Package
- Replacement for INTEL's 2107B, TI's 4060 and Equivalent Devices.
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE	REFRESH TIME
μ PD411A-E	350 ns	800 ns	960 ns	1 ms
μ PD411A	300 ns	470 ns	650 ns	2 ms
μ PD411A-1	250 ns	430 ns	600 ns	2 ms
μ PD411A-2	200 ns	400 ns	.520 ns	2 ms

PIN NAMES

$A_{0} \cdot A_{11}$	Address Inputs
$A_{0} \cdot A_{5}$	Refresh Addresses
$C E$	Chip Enable
$\overline{C S}$	Chip Select
$D_{\text {IN }}$	Data Input
$\overline{D_{O U T}}$	Data Output
$\overline{W E}$	Write Enable
$V_{D D}$	Power (+12V)
$V_{C C}$	Power (+5V)
$V_{S S}$	Ground
$V_{B B}$	(Powe. -5 V)
$N \mathrm{NC}$	No Connection

$\boldsymbol{\mu}$ PD411A

CE Chip Enable

FUNCTIONAL DESCRIPTION
A single external clock input is required. All read, write, refresh and read-modify-writeoperations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

$\overline{\text { CS }}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

WE Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\overline{W E}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

A0-A11 Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

DOUT Data Output

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs A_{0} through A_{5} or by addressing every row within any 2^{*}-millisecond period. Addressing any row refreshes all 64 bits in that row.
The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.

* $\mu \mathrm{PD} 411 \mathrm{~A}-\mathrm{E}=1$ millisecond refresh period.

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Voltage (1) . 20 to -0. 3 Volts
All Input Voltages (1) . 20 to - 0.3 Volts
Supply Voltage VDD (1) . 20 to - 0.3 Volts
Supply Voltage VCC (1) . 20 to -0.3 Volts
Supply Voltage VSS (1) +20 to -0.3 Volts
Power Dissipation 1.0W

Note: (1) Relative to V_{BB}.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

* $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. (1)	MAX.		
Input Load Current	ILI		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH }}$ MAX
CE Input Load Current	ILC		0.01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {ILC }}$ MIN to $\mathrm{V}_{\text {IHC }}$ MAX
Output Leakage Current for High Impedance State	ILO		0.01	± 10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{0}=0 V \text { to } 5.25 \mathrm{~V} \end{aligned}$
VDD Supply Current during CE off	IDD OFF		50	200	$\mu \mathrm{A}$	$C E=-1.0 \mathrm{~V}$ to 0.6 V
VDD Supply Current during CE on	IDD ON		35	50	mA	$C E=V_{1 H C}, T_{a}=25^{\circ} \mathrm{C}$
```Average VDD Current \muPD411A-E \muPD411A \muPD411A-1 \muPD411A-2```	$\begin{aligned} & \text { IDD AV } \\ & \text { IDD AV } \\ & \text { IDD AV } \\ & \text { IDD AV } \end{aligned}$		$\begin{aligned} & 25 \\ & 38 \\ & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \\ & 55 \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ & \text { Cycle Time }=800 \mathrm{~ns} \\ & \text { Cycle Time }=470 \mathrm{~ns} \\ & \text { Cycle Time }=430 \mathrm{~ns} \\ & \text { Cycle Time }=400 \mathrm{~ns} \end{aligned}$
$\mathrm{V}_{\text {BB }}$ Supply Current (2)	IBB		5	100	$\mu \mathrm{A}$	.
VCC Supply Current during CE off (3)	ICC OFF	-	0.01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=\mathrm{V}_{\text {IH }}$
Input Low Voltage	VIL	-1.0		0.6	V	
Input High Voltage	V IH	2.4		$V_{C C}+1$	V	
CE Input Low Voltage	VILC	-1.0		0.6	V	
CE Input High Voltage	VIHC	$V_{D D}-1$	VDD	$V_{D D}+1$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	0		0.40	$\checkmark$	${ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		$\mathrm{V}_{\mathrm{CC}}$	V	$\mathrm{I}^{\mathrm{OH}}=-2.0 \mathrm{~mA}$

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
(2) The I BB current is the sum of all leakage currents.
(3) During CE on $V_{C C}$ supply current is dependent on output loading.

CAPACITANCE
$T_{\mathbf{a}}=\mathbf{0}^{\circ} \mathbf{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Address Capacitance	CAD			6	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\overline{\text { CS }}$ Capacitance	$\mathrm{C}_{\text {CS }}$			6	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
DIN Capacitance	CIN			6	pF	$\mathrm{V}_{\text {IN }}=V_{\text {SS }}$
$\overline{\text { DOUT }}$ Capacitance	COUT			7	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
$\overline{W E}$ Capacitance	CWE			7	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
CE Capacitance	$\mathrm{C}_{\text {CE1 }}$			27	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
	$\mathrm{C}_{\text {CE2 }}$			22	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$

READ CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS								UNIT	TEST CONDITIONS
		$\mu$ PD411A-E		$\mu$ PD411A		$\mu$ PD411A-1		$\mu$ PD411A. 2			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Time Between Refresh	treF		1		2		2		2	ms	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{tf}=20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \mathrm{V}_{\text {ref }}=2.0 \text { or } 0.8 \mathrm{Volts} \end{aligned}$
Address to CE Set Up Time	$\mathrm{t}_{\mathrm{A}} \mathrm{C}$	0		0		0		0		ns	
Address Hold Time	${ }_{\text {t }} \mathrm{AH}$	150		150		150		150		ns	
CE Off Time	tcc	380		130		130		130		ns	
CE Transition Time	tT	0	40	0	40	0	40	0	40	ns	
CE Off to Output High Impedance State	tcF	0	130	0	130	0	130	0	130	ns	
Cycle Time	tcy	800		470		430		400		ns	
CE on Time	tCE	380	3000	300	3000	260	3000	230	3000	ns	
CE Output Delay	${ }^{\text {t }} \mathrm{CO}$		330		280		230		180	ns	
Access Time	tacc		350		300		250		200	ns	
CE to $\overline{W E}$	tWL	40		40		40		40		ns	
$\overline{W E}$ to CE on	tWC	0		0		0		0		ns	

WRITE CYCLE

PARAMETER	SYMBOL	LIMITS								UNIT	TEST CONDITIONS
		$\mu$ PD411A-E		$\mu \mathrm{PD} 411 \mathrm{~A}$		$\mu$ PD411A-1		$\mu \mathrm{PD} 411 \mathrm{~A}$ - 2			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Cycle Time	${ }_{\text {t }} \mathrm{C} Y$	800		470		430		400		ns	
Time Between Refresh	tREF		1		2		2.		2	ms	
Address to CE Set Up Time	tac	0		0		0		0		ns	
Address Hold Time	taH	150		150		150		150		ns	
CE Off Time	${ }_{\text {tec }}$	380		130		130		130		ns	
CE Transition Time	tT	0	40	0	40	0	40	0	40	its	$\mathrm{T}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
CE Off to Output High Impedance State	${ }^{\text {t C F }}$	0	130	0	130	0	130	0	130	ns	$C_{L}=50 \mathrm{pF}$
CE on Time	tCE	380	3000	300	3000	260	3000	230	3000	ns	Load $=1$ TTL Gate
$\overline{W E}$ to CE off	tw	200		180		180		150		ns	$V_{\text {ref }}=2.0$ or 0.8 Volts
CE to $\overline{W E}$	t CW	380		300		260		230		ns	
DIN to WE Set Ur (1)	tDW	0		0		0		0		ns	
DIN Hold Time	tDH	40		40		40		40		ns	
WE Pulse Width	twP	200		180		180		150		ns	

Note: (1) If $\overline{W E}$ is low before CE goes high then DIN must be valid when CE goes high.

READ-MODIFY-WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS								UNIT	TEST CONDITIONS
		$\mu$ PD411A-E		$\mu$ PD411A		$\mu$ PD411A- 1		$\mu$ PD411A-2			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Read-Modify-Write (RMW) Cycle Time	trwC	960		650		600		520		ns	
Time Between Refresh	tREF		1		2		2		2	ms	
Address to CE Set Up Time	${ }^{\text {t }}$ AC	0		0		0		0		ns	
Address Hold Time	${ }^{\text {ta }}$ H	150		150		150		150		ns	
CE Off Time	${ }_{\text {t }} \mathrm{C}$	380		130		130		130		n's	
CE Transition Time	t	0	40	0	40	0	40	0	40	ns	$t \mathrm{~T}=\mathrm{t}_{\mathrm{r}} \dot{=} \mathrm{t}=20 \mathrm{~ns}{ }^{*}$
CE Off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	130	0	130	0	130	0	130	ns	$C_{L}=50 \mathrm{pF}$
CE Width During RMW	tCRW	540	3000	480	3000	430	3000	350	3000	ns	Load $=1 \mathrm{TTL}$ Gate
$\overline{\text { WE }}$ to CE on	twC	0		0		0		0		ns	$V_{\text {ref }}=2.0$ or 0.8 V olts
$\overline{W E}$ to CE off	tw	200		180		180		150		ns	
WE Pulse Width	tWP	200		180		180		150		ns	
DIN to WE Set Up	tDW	0		0		0		0		ns	
DIN Hold Time	tDH	40		40		40		40		ns	
CE to Output Delay	${ }^{\text {c }} \mathrm{CO}$		330		280		230		180	ns	
Access Time	tacc		350		300		250		200	ns	

READ AND REFRESH CYCLE (1)


READ-MODIFY-WRITE CYCLE


Notes:
and column add
(2) $V_{D D}-2 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
(3) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(4) VIHMIN is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$ and DIN.
(5) VILMAX is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ and DIN.
(6) $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of DOUT.
(7) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$.
(8) WE must be at $V_{I H}$ until end of t CO .


TYPICAL OPERATING CHARACTERISTICS

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$
POWER CONSUMPTION

Typical power dissipation for each product is shown below.

	$\mathbf{m W}$ (TYP.)	CONDITIONS
$\mu$ PD411A-E	300 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=800 \mathrm{~ns}, \mathrm{t} C E=380 \mathrm{~ns}$
$\mu$ PD4.11A	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=300 \mathrm{~ns}$
$\mu$ PD411A-1	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=430 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=260 \mathrm{~ns}$
$\mu$ PD411A-2	460 mW	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{t} C E=230 \mathrm{~ns}$

[^0]


$\mu$ PD411AC (Plastic)		
ITEM	MILLIMETERS	INCHES
A.	28.0 Max.	1.10 Max.
B	1.4 Max.	0.025 Max.
C	2.54	0.10
D	0.50	0.02
E	25.4	1.00
F	1.40	0.055
G	2.54 Min.	0.10 Min.
H	0.5 Min.	0.02 Min.
I	4.7 Max.	0.18 Max.
J	5.2 Max.	0.20 Max.
K	10.16	0.40
L	8.5	0.33
M	$0.25_{-0.05}^{+0.10}$	$0.01_{-0.004}^{+0.002}$



$\mu$ PD411AD (Cerdip)		
ITEM	MILLIMETERS	INCHES
A	27.43 Max.	1.079 Max.
B	1.27 Max.	0.05 Max.
C	$2.54 \pm 0.1$	0.10
D	$0.42 \pm 0.1$	0.016
E	$25.4 \pm 0.3$	1.0
F	$1.5 \pm 0.2$	0.059
G	$3.5 \pm 0.3$	0.138
H	$3.7 \pm 0.3$	0.145
I	4.2 Max.	0.165 Max.
J	5.08 Max.	0.200 Max.
K	$10.16 \pm 0.15$	0.400
L	$9.1 \pm 0.2$	0.358
M	$0.25 \pm 0.05$	0.009

## $16384 \times 1$ BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The NEC $\mu$ PD416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The $\mu$ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the $\mu$ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES - 16384 Words $\times 1$ Bit Organization

- High Memory Density - 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies $+12 \mathrm{~V},-5 \mathrm{~V},+5 \mathrm{~V}$
- Low Power Dissipation; 462 mW Active (MAX), 20 mW Standby (MAX)
- Output Data Controlled by $\overline{\mathrm{CAS}}$ and Unlatched at End of Cycle
- Read-Modify-Write, $\overline{\text { RAS }}$-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 5 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
$\mu$ PD416	300 ns	510 ns	575 ns
$\mu$ PD416-1	250 ns	410 ns	465 ns
$\mu$ PD416-2	200 ns	375 ns	375 ns
$\mu$ PD416-3	150 ns	375 ns	375 ns
$\mu$ PD416-5	120 ns	320 ns	320 ns



$\mathrm{A}_{0}-\mathrm{A}_{6}$	Address Inputs
$\overline{\mathrm{CAS}}$	Column Address Strobe
$\mathrm{D}_{\text {IN }}$	Data In
$\mathrm{D}_{\mathrm{OUT}}$	Data Out
$\overline{\mathrm{RAS}}$	Row Address Strobe
$\overline{\text { WRITE }}$	Read/Write
$\mathrm{V}_{\text {BB }}$	Power ( -5 V )
$\mathrm{V}_{\mathrm{CC}}$	Power (+5V)
$\mathrm{V}_{\mathrm{DD}}$	Power (+12V)
$\mathrm{V}_{\text {SS }}$	Ground




COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$,
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		TYP	MAX			
Input Capacitance   $\left(A_{0}-A_{6}\right), D_{I N}$	$\mathrm{C}_{\mathrm{I} 1}$		4	5	pF	
Input Capacitance   $\overline{\text { RAS, }} \overline{\text { CAS }}, \overline{\text { WRITE }}$	$\mathrm{C}_{\mathrm{I} 2}$		8	10	pF	
Output Capacitance   (DOUT)	$\mathrm{C}_{0}$		5	7	pF	

$\mu$ PD416
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (1). $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	$V_{\text {DD }}$	10.8	12.0	13.2	V	(2)
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V	(2) (3)
Supply Voltage	$\mathrm{V}_{\text {SS }}$	0	0	0	V	(2)
Supply Voltage	$V_{B B}$	-4.5	-5.0	-5.5	V	(2)
Input High (Logic 1)   Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$,   WRITE	VIHC	2.7		7.0	V	(2)
Input High (Logic 1)   Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ $\overline{\text { VRITE }}$	$V_{\text {IH }}$	2.4		7.0	V	(2)
Input Low (Logic 0) Voltage, all inputs	VIL	- 1.0		0.8	V	(2)
Operating $\mathrm{V}_{\text {DD }}$ Current	'DD1			35	mA	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $t_{R C}=t_{R C} \operatorname{Min} \text {. (4) }$
Standby V ${ }_{\text {DD }}$ Current	'DD2			1.5	mA	$\begin{aligned} & \overline{\overline{R A S}}=V_{\text {IHC }}, \text { DOUT } \\ & =\text { High Impedance } \end{aligned}$
$\begin{array}{l\|l} \hline \text { Refresh } & \text { All Speeds } \\ \text { VDD } & \text { except } \mu \text { PD416-5 } \\ \hline \end{array}$	IDD3			25	mA	$\overline{\mathrm{RAS}}$ cycling, $\overline{\mathrm{CAS}}=$$V_{1 H C} ; \mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns} \text { (4) }$
Current $\quad \mu$ PD416-5	IDD3			27	mA	
Page Mode $V_{D D}$   Current	'DD4			27	mA	$\overline{\text { RAS }}=V_{I L}, \overline{\text { CAS }}$ cycling; tpC $=$ 225 ns (4)
Operating $\mathrm{V}_{\mathrm{CC}}$ Current	${ }^{1} \mathrm{CCO}$				$\mu \mathrm{A}$	$\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ cycling, $t_{R C}=375 \mathrm{~ns}(5)$
Standby $\mathrm{V}_{\mathrm{CC}}$ Current	${ }^{1} \mathrm{CC} 2$	- 10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{RAS}}=V_{1 H C} \\ & D_{O U T}=H_{1 g h} \\ & \text { Impedance } \end{aligned}$
Refresh $\mathrm{V}_{\text {CC }}$ Current	${ }^{1} \mathrm{CC} 3$	-10		10	$\mu \mathrm{A}$	$\overrightarrow{R A S}$ cycling, $\begin{aligned} & \overrightarrow{\mathrm{CAS}}=V_{1 H C} \\ & \mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns} \end{aligned}$
Page Mode $V_{C C}$ Current	' CC4				$\mu \mathrm{A}$	$\overline{\text { RAS }}=V_{I L}, \overline{C A S}$ cycling, tpe 225 ns (5)
Operating $\mathrm{V}_{\mathrm{BB}}$ Current	'BB1			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling, tRC 375 ns
Standby $\mathrm{V}_{\mathrm{BB}}$ Current	'BB2			100	$\mu \mathrm{A}$	$\overline{\overline{R A S}}=V_{1 H C}$. DOUT High Impedance
Refresh $V_{B B}$ Current	'BB3			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling, $\overline{C A S}=V_{1 H C}$   $t_{\text {RC }}=375 \mathrm{~ns}$
Page Mode $V_{B B}$ Current	'BB4			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}=V_{I L}, \overrightarrow{\mathrm{CAS}}$   cycling; $\mathrm{tPC}=225 \mathrm{~ns}$
Input Leakage (any input)	I/(L)	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{B B}=-5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \\ & V_{I N} \leqslant+7 \mathrm{~V} \text {. } \\ & \text { all other pins not } \\ & \text { under test }=0 \mathrm{~V} \end{aligned}$
Output Leakage	'O(L)	-10		10	$\mu \mathrm{A}$	DOUT is disabled, $0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$
Output High Voltage (Logic 1)	$\mathrm{V}_{\mathrm{OH}}$	2.4		.	V	$I_{\text {IUUT }}=-5 \mathrm{~mA}$ (3)
Output Low Voltage (Logic 0)	$\mathrm{V}_{\mathrm{OL}}$			0.4	V	$\mathrm{I}_{\text {OUT }}=4.2 \mathrm{~mA}$

Notes: (1) $T_{a}$ is specified here for operation at frequencies to $t_{R C}>t_{R C}(\mathrm{~min})$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.
(2) All voltages referenced to $V_{S S}$
(3) Output voltage will swing from $V_{S S}$ to $V_{C C}$ when activated with no current loading. For purposes of maintaining data in standby mode, $V_{\text {CC }}$ may be reduced to $V_{\text {SS }}$ without affecting refresh operations or data retention. However, the $\mathrm{VOH}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
(4) IDD1, IDD3, and IDD4 depend on cycle rate. See Figures 2,3 and 4 for IDD limits at other cycle rates.
(5) !CC1 and ICC4 depend upon output loading. During readout of high levet data $V_{C C}$ is connected through a low impedance ( $135 s 2 \mathrm{typ}$ ) to data out. At all other times ICC consists of leakage currents only.

CYCLE TIME t ${ }_{\text {RC }}$ ( ns )


FIGURE 1
Maximum ambient temperature versus cycle rate for extended frequency operation. $T_{a}$ (max) for operation at cycling rates greater than $2.66 \mathrm{MHz}\left({ }_{\mathrm{C}}^{\mathrm{CYC}}<375 \mathrm{~ns}\right)$ is determined by $T_{a}(\max )\left[{ }^{\circ} \mathrm{C}\right]=70-9.0 x$ (cycle rate $[\mathrm{MHz}]-2.66$ ). For $\mu$ PD416-5, it is $T_{a}(\max )\left[{ }^{\circ} \mathrm{C}\right]=70-9.0$ (cycle rate $[\mathrm{MHz}]-3.125)$.


FIGURE 2
Maximum IDD1 versus cycle rate for device operation at extended frequencies.

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 10 \%, V_{C C}=+5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$

## CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		$\mu$ PD416		$\mu$ PPD416-1		$\mu$ PD416.2		$\mu$ PD416-3		$\mu$ PDP416-5			
		MIN	MAX										
Random read or write cycle time	${ }^{\text {tRC }}$	510		410		375		375		320		ns	(3)
Read-write cycle time	tRwC	575		465		375		375		320		ns	(3)
Page mode cycle time	tPC	330		275		225		170		160		ns	
$\frac{\text { Access time from }}{\text { RAS }}$	trac		300		250		200		150		120	ns	(4) (6)
$\frac{\text { Access time from }}{\text { CAS }}$	${ }^{\text {t CAC }}$		200		165		135		100		80	ns	(5) (6)
Output buffer turn-off delay	torf	0	80	0	60	0	50	0	40	0	35	ns	(7)
Transition time (rise and fall)	${ }^{\text {t }}$	3	50	3	50	3	50	3	35	3	35	ns	(2)
$\overline{\text { RAS }}$ precharge time	trp	200		150		120		100		100		ns	
$\overline{\text { RAS }}$ pulse width	tras	300	10,000	250	10,000	200	32,000	150	32,000	120	10,000	ns	
$\overline{\text { RAS }}$ hold time	trsh	200		165		135		100		80		ns	
$\overline{\text { CAS }}$ pulse width	${ }^{\text {t CAS }}$	200	10,000	165	10,000	135	10,000	100	10,000	80	10,000	ns	
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ defay time	$t_{\text {trcD }}$	40	100	35	85	25	65	20	50	15	40	ns	(8)
$\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time	${ }^{\text {t CRP }}$	-20		-20		-20		-20		0		ns	
Row address set-up time	${ }^{\text {t ASR }}$	0		0		0		0		0		ns	
Row address hold time	${ }^{\text {trat }}$	40		35		25		20		15		ns	
Column address set-up time	${ }^{\text {t }}$ ASC	-10		-10		-10		-10		-10		ns	
Column address hold time	${ }^{\text {t CAH }}$	90		75		55		45		40		ns	
Column address hold time referenced to $\overline{\text { RAS }}$	${ }^{\text {t }}$ AR	190		160		120		95		80		ns	
Read command set-up time	tres	0		0		0		0		0		ns	
Read command hold time	${ }^{\text {trach }}$	0		0		0		0		0		ns	
Write command hold time	${ }^{\text {tw }}$ CH	90		75		55		45		40		ns	
Write command hold time referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {tw }}$ CR	190		160		120		95		80		ns	
Write command pulse width	${ }^{\text {tw }}$ P	90		75		55		45		40		ns	
Write command to RAS lead time	$t_{\text {trwL }}$	120		100		80		60		60		ns	
Write command to CAS lead time	${ }^{\text {t CWL }}$	120		100		80		60		60		ns	
Data-in set-up time	tDS	0		0		0		0		0		ns	(9)
Data-in hold time	tD ${ }^{\text {d }}$	90		75		55		45		40		ns	(9)
Data-in hold time referenced to $\overline{\text { RAS }}$	tohr	190		160		120		95		80		ns	
CAS precharge time (for page mode cycle only)	${ }^{\text {t }}$ P $P$	120		100		80		60		60		ns	
Refresh period	tref		2		2		2		2		2	ms	
$\overline{\text { WRITE }}$ command set-up time	${ }^{\text {tw }}$ cs	-20		-20		-20		-20		0		ns	(10)
$\overline{\text { CAS }}$ to $\overline{\text { WRITE }}$ delay	${ }^{\text {t CWO }}$	140		125		95		70		80		ns	(10)
$\overline{\text { RAS }}$ to WRITE delay	${ }^{\text {tRWD }}$	240		200		160		120		120		ns	(10)

Notes: (1) $A C$ measurements assume $t \mathrm{~T}=5$ ns.
(2) $\mathrm{V}_{I H C}(\mathrm{~min})$ or $\mathrm{V}_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels for measuring timing of input signals. Also, tranisition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
(3) The specifications for $t_{R C}(\mathrm{~min})$ and $\mathrm{t}_{\mathrm{RWC}}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}} \leqslant 70^{\circ} \mathrm{C}\right.$ ) is assured.
(4) Assumes that $t_{R C D} \leqslant t_{R C D}(\max )$. If $t_{R C D}$ is greater than the maxim. m recommended value shown in this table, $t_{R A C}$ will increase by the amount that $t_{R C D}$ exceeds the values shown
(5) Assumes that $t_{R C D} \geqslant t_{R C D}(\max )$.
(6) Measured with a load equivalent to 2 TTL loads and 100 pF
(7) IOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
(8) Operation within the $t_{R C D}$ ( $\max$ ) limit ensures that $t_{R A C}(\max )$ can be met, $\mathrm{t}_{R C D}(\max )$ is specified as a reference point only, if $\mathrm{t}_{R C D}$ is greater than the specified ${ }^{t} R C D$ (max) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
(9) These parameters are referenced to $\overline{C A S}$ leading edge in early write cycles and to $\overline{W R I T E}$ leading edge in delayed write or read-modify-write cycles.
(10) tWCS. ${ }^{\text {CWWD }}$ and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If tWCS $\geqslant$ tWCS (min), the cycle read from the selected cell; if neither of the above sets of conditions is satisfied the conaition of the data out (at access time) is indeterminate.



Note $\overline{\mathrm{CAS}} \cdot \mathrm{V}_{\text {IHC }}, \overline{\text { WRITE }}=$ Don't Care


PAGE MODE WRITE CYCLE

R $\overline{A S}$
$\overline{C A S}$
addresses
$\overline{\text { WRITE }}$
$D_{\text {IN }}$


The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe ( $\overline{\mathrm{RAS}}$ ), and the Column Address Strobe ( $\overline{\mathrm{CAS}}$ ). The 7 bit row address is first applied and $\overline{\mathrm{RAS}}$ is then brought low. After the $\overline{\mathrm{RAS}}$ hold time has elapsed, the 7 bit column address is applied and $\overline{\mathrm{CAS}}$ is brought low. Since the column address is not needed internally until a time of ${ }^{t}$ CRD MAX after the row address, this multiplexing operation imposes no penalty on access time as long as $\overline{\mathrm{CAS}}$ is applied no later than ${ }^{t}$ CRD MAX. If this time is exceeded, access time will be defined from $\overline{\mathrm{CAS}}$ instead of $\stackrel{\stackrel{1}{\text { RAS }}}{ }$

For a write operation, the input data is latched on the chip by the negative going edge of $\overline{\text { WRITE }}$ or $\overline{\text { CAS }}$, whichever occurs later. If WRITE is active before $\overline{\text { CAS }}$, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that $\overline{\mathrm{CAS}}$ goes high.

The page mode feature allows the $\mu$ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on RAS and strobing the new column addresses with $\overline{\mathrm{CAS}}$. This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, " $\overline{\mathrm{RAS}}$ only" cycles can be used for simple refreshing operation.

Either $\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

In order to assure long term reliability, $\mathrm{V}_{\mathrm{BB}}$ should be applied first during power up and removed last during power down.

DATA I/O

PAGE MODE

ADDRESSING

PACKAGE OUTLINE $\mu$ PD416C/D


$\mu$ PD416D
(Ceramic)

ITEM	MILLIMETERS	INCHES
A	20.5 MAX.	0.81 MAX.
B	1.36	0.05
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.5 MIN.	0.14 MIN.
H	0.5 MIN	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.20 MAX.
K	7.6	0.30
L	7.3	0.29
M	c.27	0.01

## 1024 BIT (256 X 4) STATIC MOS RAM WITH SEPARATE I/O

The $\mu \mathrm{PD} 2101 \mathrm{AL}$ is a 256 word by 4 bit static random access memory requiring no clocks or refreshing. It features high speed, low cost, and simplicity of interfacing.
It is directly TTL compatible in all respects; inputs, outputs, and a single +5 V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. The output disable function eliminates the need for bidirectional logic in a common I/O system. Output data is the same polarity as input data, and readout is non-destructive.

The $\mu$ PD2101AL family of devices offers access times from 450 ns to 250 ns with a typical standby mode power dissipation of only 36 mW .
The use of NEC's N -channel silicon gate MOS process, with its excellent protection from contamination, permits the use of a low cost 22 pin plastic package in providing a high performance, high reliability MOS circuit at a most cost effective price level. The

FEATURES - $256 \times 4$ Organizations to Meet Needs for Small System Memories

- Access Time - 250 to 450 nsec max
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input
- Low Standby Power - 36 mW typ.
- Low Cost Packaging - 22 Pin Plastic Dual-In-Line Configuration
- Low Operating Power
- Three-State Output - OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

PIN NAMES

$\mathrm{DI}_{1}$-DI 4	DATA INPUT	CE $_{2}$	CHIP ENABLE 2
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	ADDRESS INPUTS	OD	OUTPUT DISABLE
R/W	READ $/$ WRITE INPUT	$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	DATA OUTPUT
$\overline{C E}_{1}$	CHIP ENABLE 1	$\mathrm{~V}_{\mathrm{CC}}$	POWER $(+5 \mathrm{~V})$


OPERATION MODES				
$\overline{C E}_{1}$	$\mathrm{CE}_{2}$	OD	CHIP	OUTPUT MODE
0	1	0	Selected	Data Out
0	1	1		High   Impedance
Others			No-Selected	


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . .

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$+2.0$		$V_{C C}$	$N$	
Input Low Voltage	$V_{\text {IL }}$	-0.5		+0.8	V	
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	+2.4			V	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			+0.4	V	${ }^{\prime} \mathrm{OL}=+2.1 \mathrm{~mA}$
Input Leakage Current High	${ }^{\text {LIIH }}$			+10	$\mu \mathrm{A}$	$V_{1}=V_{C C}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
Output Leakage Current High	${ }^{\prime} \mathrm{LOH}$			+10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1}=+2.0 \mathrm{~V} \end{aligned}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+0.4 \mathrm{~V} \\ & \mathrm{CE}_{1}=+2.0 \mathrm{~V} \end{aligned}$
Power Supply Current	${ }^{\text {I CC1 }}$			+60	mA	$\begin{aligned} & \mathrm{V}_{1}=+5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC} 2$			$+70$	mA	$\begin{aligned} & V_{1}=+5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{a}}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$

## ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	LIMITS									UNIT
		$2101 \mathrm{AL}-4$			2101AL			2101AL-2			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Read Cycle Time	${ }^{\text {t } R C}$	450			350			250	:"		ns
Access Time.	${ }^{t} \mathrm{~A}$			450			350			250	ns
Chip Enable to Output	${ }^{t} \mathrm{CO}$			180		"	$150^{\circ}$		$\cdots$	130	ns
Output Disable to Output	${ }^{\text {t }} \mathrm{OD}$			150			130	,		120	ns
Data Output to High Z State	${ }^{t} \mathrm{DF}^{*}$	0		130	0	$\because$	$115$	0		100	ns
Previous Read Data Valid After Change of Address	${ }^{\mathrm{O}} \mathrm{OH}$	40			40			40			ns

${ }^{*}$ tDF is with respect to the trailing edge of $\overline{C E}_{1}, C E_{2}$, or $O D$, whichever occurs first.

WRITECYCLE											
PARAMETER	SYMBOL	LIMITS									UNIT
		2101 AL-4			2101AL			2101 AL-2			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Write Cycle Time	twC	450			350			250			ns
Write Delay	${ }^{\text {t }}$ WW	20			20			20			ns
Chip Enable to Write	${ }^{\text {t }} \mathrm{CW}$	180			150			130			ns
Data Setup Time	tDW	180			150			130			ns
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	0			0			0			ns
Write Pulse Width	tWP	160			130			120			ns
Write Recovery	tWR	0			- 0			0			ns
Output Disable Setup	${ }^{\text {t }}$ S	20			20		$\cdots$	10	$\cdots$		ns

Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.

STANDBY CHARACTERISTICS	$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$						
	PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
			MIN.	TYP.(1)	MAX.		
	$\mathrm{V}_{\text {CC }}$ in Standby	$V_{\text {PD }}$	1.5		,	V	
			2.0			V	$2.0 \mathrm{~V} \leqslant \mathrm{VPD} \leqslant 5.25 \mathrm{~V}$
	CE1 Bias in Standby	CES	VPD			V	$1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{PD}}<2.0 \mathrm{~V}$
	Standby Current Drain	IPD1		24	36	mA	All Inputs $=\mathrm{V}_{\text {PD1 }}=1.5 \mathrm{~V}$
	Standby Current Drain	IPD2		30	45	mA	All Inputs $=\mathrm{V}_{\text {PD2 }}=2.0 \mathrm{~V}$
	Chip Deselect to Standby Time	${ }^{t} \mathrm{CP}$	0			ns	
	Standby Recovery Time	tr	$t_{R C}{ }^{(2)}$			ns	

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $t_{R}=t_{R C}$ (Read Cycle Time).

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Capacitance	CIN			8	pf	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$
Output Capacitance	COUT			12	pf	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$



Notes: (1) OD should be tied low for separate I/O operation.
(2) R/W is high for read operation.

WRITE CYCLE


Note: OD is a logical 1 for common I/O and "don't care" for separate I/O operation.


STANDBY WAVEFORMS

Input Pulse Levels
+0.8 V to +2.0 V AC CONDITIONS OF TEST
Input Pulse Rise and Fall Times
Timing Measurement Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5V
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 TTL + 100 pF

TYPICAL OPERATING CHARACTERISTICS

Icc Vs $\mathrm{T}_{\mathrm{a}}$



PACKAGE OUTLINE $\mu$ PD2101ALC


ITEM	MILLIMETERS	INCHES
A	28.0 MAX.	1.10 MAX.
B	1.4 MAX	0.025
C	2.54	0.10
D	0.50	0.02
E	25.4	1.00
F	1.40	0.055
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.7 MAX.	0.18 MAX.
J	5.2 MAX.	0.20 MAX.
K	10.16	0.40
L	$8: 5$	0.33
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01_{-0.004}^{+0.002}$

## 1024 BIT FULLY DECODED STATIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The $\mu$ PD2102AL is a 1024 words by one bit static Random Access Memory requiring no clocks or refreshing. A family of devices with maximum access times ranging from 250 ns to 450 ns meet the requirements of microcomputer memory applications where speed, low cost and easy interfacing are prime design objectives.

All $\mu$ PD2102AL inputs and outputs are TTL compatible: A single chip-enable ( $\overline{\mathrm{CE}}$ ) pin is provided for selection of an individual device in systems with OR-tied outputs. Output data is the same polarity as input data and is nondestructively read out. Only a single +5 volt supply is required. In standby mode, with the supply lowered to 1.5 volts, power dissipation is reduced to 42 mW max.

The $\mu$ PD2102AL family is fabricated using NEC's $N$-channel MOS silicon gate process, providing excellent contamination protection. This process permits the use of a low cost plastic package ( 16 pin ) and enables high performance, highly reliable MOS circuits to be produced.

FEATURES • Access Time - $\mu$ PD2102AL-2 - 250 ns Max
$\mu$ PD2102AL - 350 ns Max
$\mu$ PD2102AL-4 - 450 ns Max

- Single +5 Volts Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Low Power - Typically 150 mW
- Low Standby Power - 42 mW max
- Three-State Output - OR-TIE Capability
- Simple Memory Expansion - Chip Enable Input
- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs have Protection against Static Charge
- Low Cost Packaging - 16 Pin Plastic Dual-In-Line Configuration


PIN NAMES

$A_{0}-A_{9}$	Address Inputs
$R / W$	Read/Write
$\overline{C E}$	Chip Enable
$V_{C C}$	Power $(+5 \mathrm{~V})$



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . $10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature... . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7. Volts (1)
Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Leakage Current	'LI			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
I/O Leakage Current	${ }^{\text {LOHH}}$			+5	$\mu \mathrm{A}$	$\begin{aligned} & \hline \overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \\ & +2.4 \mathrm{~V} \text { to } \mathrm{VCC} \end{aligned}$
I/O Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$
Power Supply   Current	ICC1		30	70	mA	All Inputs $=5.25 \mathrm{~V}$, Data Out Open
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		+0.8	V	
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	20		$\mathrm{V}_{\text {cC }}$	V	$\cdots$
Output "Low"   Voltage	$\mathrm{V}_{\mathrm{OL}}$			+0.4	v	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
Output "High"	$\mathrm{V}_{\mathrm{OH}}$	2.4			$\checkmark$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Note: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage
$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	LIMITS		SYMBOL	MIN	TYP	MAX
Input Capacitance			3	5	pf	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	C OUT		7	10	pf	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS*
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}+5 \%$ unless otherwise noted

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		2102AL-4		2102AL		2102AL. 2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle	trc	450		350		250		ns	
Access Time	${ }^{t}$ A		450		350		250	ns	
Chip Enable to Output Time	${ }^{\text {t }} \mathrm{CO}$		230		180		130	ns	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=100 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{l}}=100 \mathrm{pF} \end{aligned}$
Previous Read   Data Valid in   Respect to Address	${ }^{\text {t }} \mathrm{OH} 1$	40		40		40		ns	$\begin{aligned} & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & V_{\text {ref }}=2.0 \text { or } 0.8 \mathrm{~V} \end{aligned}$
Previous Read Data Valid in Respect to Chip Enable	${ }^{\text {tohe }}$	0		0		0		ns	

WRITE CYCLE
$T_{\mathrm{a}}=-10 \mathrm{C}$ to $+70 \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \cdot 5 \%$ unless otherwise noted

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		2102AL-4		2102AL		2102AL-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle	twC	450		350		250		ns	
Address to Write Setup Time	${ }^{\text {t }}$ AW	20		20		20		ns	10
Write Pulse Width	tWP	300		250		180		ns	
Write Recovery Time	tWR	0		0		0		ns	Load $=1$ TTL Gate
Data Setup Time	${ }^{\text {t }}$ DW	300		250		180		ns	$V_{\text {ref }}=2.0$ or 0.8 V
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	0		0		0		ns	
Chip Enable to Write Setup Time	${ }^{t} \mathrm{CW}$	$300$		250	$\because$	180		ns	

TIMING WAVEFORMS

## READ CYCLE



STANDBY CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$\mathrm{V}_{\text {CC }}$ in Standby	$V_{P D}$	15			V	
$\overline{\mathrm{CE}}$ Bias in Standby	$v_{\text {CES }}$	20			v	$+20 \mathrm{~V} \mathrm{VPD}+525 \mathrm{~V}$
		$V_{P D}$			v	+1.5 V VPD +20 V
Standby Current Drain	IPD1		14	28	mA	All Inputs, VPD1 +1.5
Standby Current Drain	IPD2		18	38	mA	All Inputs, $\mathrm{VPD2}^{2-+2.0 \mathrm{~V}}$
Chip Deselect to Standby   Time	${ }^{\text {t }} \mathrm{CP}$	0			ns	
Standby Recovery Time	$t_{R}$	${ }^{\text {tre }}$ (1)		-	ns	

(1) TRC Read Cycle Time


## 1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE

DESCRIPTION
The $\mu$ PD 2111 AL is a 256 words by 4 bits static random access memory fabricated with N -channel MOS technology. It uses fully static circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Separate chip enable ( $\overline{\mathrm{CE}}$ ) leads allow easy selection of an individual package when outputs are OR-tied.

All members in the $\mu$ PD2111AL family feature a low standby power mode with the supply voltage being reduced to +1.5 V .

FEATURES - 256 Words $\times 4$ Bits Organization

- Common Data Ińput and Output
- Single +5 V Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Static MOS - No Clocks or Refreshing Required
- Access Time - 250 ns to 450 ns max.
- Simple Memory Expansion - Chip Enable Inputs
- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs have Protection Against Static Charge
- Low Cost Packaging - 18 Pin Plastic Dual-In-Line Configuration
- Three-State Output - OR-Tie Capability
- Low Standby Power


PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{7}$	Address Inputs
OD	Output Disable
RM	Read/Write Input
$\overline{\mathrm{CE}}_{1}$	Chip Enable 1
$\overline{\mathrm{CE}}_{2}$	Chip Enable 2
$\mathrm{I} / \mathrm{O}_{1} \cdot 1 / \mathrm{O}_{4}$	Data Input/Output

OPERATION MODES

$C E_{1}$	$C E_{2}$	OD	Chip Output Status	
0	1	0	Selected	Data Output
	High Z			
Others			1	1
Unselected	State			



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . .	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . . . . . . . . . . .	-0.5 to +7 Volts
All Input Voltages. . . . . . . . . . . . . . . . . . . . . .	-0.5 to +7 Volts
Supply Voltage $V_{\text {CC }}$. . . . . . . . . . . . . . . . . . .	-0.5 to +7 Volts

## ABSOLUTE MAXIMUM RATINGS*

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input High Voltage			V IH	+2.0		$\mathrm{V}_{\mathrm{CC}}$	$V$	
Input Low Voltage		VIL	-0.5		+0.8	V		
Output High Voltage	$2111 \mathrm{AL}-4$	VOH	+2.4			V	${ }^{1} \mathrm{OH}=-150 \mu \mathrm{~A}$	
	$\begin{aligned} & 2111 \mathrm{AL} \\ & 2111 \mathrm{AL}-2 \end{aligned}$		+2.4			V	${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$	
Output Low Voltage		$\mathrm{VOL}_{\text {OL }}$			+0,4	V	${ }^{\mathrm{OLL}}=+2.1 \mathrm{~mA}$	
Input Leakage Current High		ILIH			+10	$\mu \mathrm{A}$	$V_{1}=V_{C c}$	
Input Leakage Current Low		ILIL			-10	$\mu \mathrm{A}$	$V_{1}=O V$	
Output Leakage Current High		${ }^{1} \mathrm{LOH}$			+5	$\mu \mathrm{A} \cdot$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \overline{\mathrm{CE}}=+2.0 \mathrm{~V} \end{aligned}$	
Output Leakage Current Low		${ }^{\text {L LOL }}$			$-10$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+0.4 \mathrm{~V} \\ & \overline{\mathrm{CE}}=+2.0 \mathrm{~V} \end{aligned}$	
Power Supply Current	2111AL-4	${ }^{1} \mathrm{CC1}$			50	mA	$\begin{aligned} & V_{1}=+5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \end{aligned}$	
	2111AL   2111AL-2				55	mA		
Power Supply Current	2111AL-4	${ }^{1} \mathrm{CC} 2$			60	mA	$\begin{aligned} & V_{1}=+5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{a}}=-10 \mathrm{to}+70^{\circ} \mathrm{C} \end{aligned}$	
	2111AL   2111AL-2				65	mA		

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN 2			8	pf	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$
Output Capacitance	COUT			12	pf	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

## PACKAGE OUTLINE

 $\mu$ PD2111ALC

ITEM	MILLIMETERS	INCHES
A	22.5 MAX.	0.89
B	1.09	0.04
C	2.54	0.10
D	$0.50 \pm 0.10$	0.02
E	20.32	0.80
F	1.2 MIN.	0.05
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
K	7.62	0.30
L	6.4	0.25
M	$0.25-0.10$	0.01

## 4096 BIT HIGH SPEED STATIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The $\mu$ PD4 10 is a very high speed 4 K bit static random access memory. It is organized as 4096 words by 1 bit per word and fabricated using N channel silicon gate MOS technology.

All signals to the device are TTL compatible except for Chip Enable which is standard +12 Volt MOS level.

Circuit operation starts with the rising edge of CE. Data is latched and valid until falling edge of CE. Address and Chip Select signals are latched on-chip to simplify system timing requirements.

FEATURES - 4096 Words $\times 1$ Bit Organization

- Fully Decoded
- TTL Compatible (except CE)
- High Speed-Access Time: 80 ns max.
- Cycle Time: 220 ns min.
- Static Operation - No Refresh Required
- Standby Power: 75 mW max.
- Active Power: 470 mW typ.
- Supply Voltages: $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$
- Address Registers on the Chip
- Three State Output
- Standard 22 Pin Ceramic Dual-in-Line Package
- Pin Compatible with $\mu$ PD4 11 and Other 4K Dynamic RAMs

PIN CONFIGURATION


Rev/2


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts (1)
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Supply Voltage VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Supply Voltage VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W
Note: (1) Relative to $V_{B B}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions forextended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER		SYMBOL	LIMITS		UNIT	TEST CONDITIONS	
		MIN	MAX				
Input Leakage Current			${ }_{1} \mathrm{LI}$		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL MIN to }} \\ & V_{\text {IHMAX }} \end{aligned}$
CE Input Leakage Current		${ }^{1} \mathrm{LC}$		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {ILC MIN }} \\ & V_{\text {IHC }} \text { MAX } \end{aligned}$	
Output Leakage Current		'LO		10.	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CE}=\mathrm{V}_{\text {ILC }} \text { or } \\ & \mathrm{CS}=\mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$	
$V_{D D}$ Supply Current during CE off		IDDOFF		200	$\mu \mathrm{A}$	$C E=-1.0 \mathrm{~V}$ to 0.6 V	
VDD Supply Current during CE on		IDDON		20	mA	$C E=V_{1 H C}$	
Average $V_{D D}$ Current	$\mu$ PD410	IDDAV		24	mA		
	$\mu$ PD410-1	IDDAV		32.	mA		
	$\mu$ PD410-2	IDDAV		45	mA	Minimum Cycle Time	
	$\mu \mathrm{MPD410-3}$	IDDAV		45	$m A$		
	$\mu \mathrm{PD} 410-5$	IDDAV		45	mA		
$\mathrm{V}_{\text {BB }}$ Supply Current		$I_{\text {BB }}$		100	$\mu \mathrm{A}$		
$V_{C C}$ Supply Current during CE off		${ }^{\prime} \mathrm{CCOFF}$		15	mA	$\begin{aligned} & C E=V_{I L C} \text { or } \\ & C S=V_{I H} \end{aligned}$	
Average $\mathrm{V}_{\text {CC }}$ Current		ICCAV		21	mA	DOUT $=$ No load	
Input Low Voltage ${ }^{\text {a }}$		$V_{\text {IL }}$	-1.0	0.6	V		
Input High Voltage		$\mathrm{V}_{1 \mathrm{H}}$	2.4	$\vee^{\mathrm{CC}^{+1}}$	V	.	
CE Input Low Voltage		$\mathrm{V}_{\text {ILC }}$	-1.0	0.6	V		
CE Input High Voltage		$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\mathrm{DD}^{-1}}$	$\mathrm{V}_{\mathrm{DD}}+1$	V	$\cdots$	
Output Low Voltage		$\mathrm{V}_{\mathrm{OL}}$	0	0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	
Output High Voltage		VOH	2.4	$\mathrm{V}_{\mathrm{CC}}$	V	${ }^{1} \mathrm{OH}=2.0 \mathrm{~mA}$	

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Capacitance	$\mathrm{C}_{\text {AD }}$		4	6	pF	$V_{\text {IN }}=V_{S S}$
$\overline{\text { CS Capacitance }}$	$\mathrm{C}_{\text {CS }}$		4	6	pF	$V_{\text {IN }}=V_{\text {SS }}$
DIN Capacitance	CIN		8	10	pF	$V_{\text {IN }}=V_{S S}$
$\overline{\text { DOUT }}$ Capacitance	COUT		5	7	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
WE Capacitance	CWE		8	10	pf	$V_{\text {IN }}=V_{\text {SS }}$
CE Capacitance	$\mathrm{C}_{\text {CE }}$		18	27	pf	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

## BLOCK DIAGRAM

## ABSOLUTE MAXIMUM

 RATINGS*AC CHARACTERISTICS


READ, WRITE AND READ-MODIFY.WRITE													
Address to CE Set Up Time	${ }^{\text {t }}$ AC	0	,	- 0		0		0		$\cdots$		ns	
Address Hold Time	${ }^{\text {t }}$ AH.	90		70		50		50.	$\cdots$	50		ns	
CE Off Time	${ }^{\text {t CC }}$	190		140		90		90	$\because$	. 90		ns	
CE Transition Time	${ }^{\text {t }}$ T	0	40	0	40	0	40	-	40	0	40	ns	
CE off to Output High Impedance State	${ }^{\text {t }} \mathrm{CF}$	0	90	0	90	0	90	0	$90$			ns	-


Cycle Time	${ }^{1} \mathrm{CY}$	440		330		220		220	"	220		ns	${ }^{\text {t }}$ T - 10 ns
CE on Time	${ }^{\text {t }}$ CE	230	2000	170	2000	110	2000	110	2000	110	2000	ns	
CE Output Delay	${ }^{\text {t }} \mathrm{CO}$		190		140		90		80		$\begin{array}{r}70 \\ \times \\ \hline\end{array}$	ns	$\begin{aligned} & \text { Load }=50 \mathrm{pF}+17 \mathrm{TL} \text { : } \\ & \text { Ref }=2.0 \text { or } 0.8 \mathrm{~V} \\ & t_{\mathrm{ACC}}=t_{\mathrm{AC}} \\ & +{ }^{+} \mathrm{CCO}+\pi \mathrm{T} \end{aligned}$
Access   Time	${ }^{1} \mathrm{ACC}$		200		150		100		, 90		80	ns	
CE to WE	*WL	20		20		20		20		20		ns ${ }^{\text {² }}$	
$\overline{W E}$ to CE on,	twc	0		$\bigcirc 0$		0		0	.	0		ns	


Write													
Cycle Time	${ }^{1} \mathrm{CY}$	440		. 330		220		220		220		ns	$\mathrm{t} \mathrm{T}^{2}=10 \mathrm{~ns}$
CE on Time	tCE	230	2000	170.	2000	110	2000	110	2000	110	2000	ns	
$\overline{W E}$ to CE off	tw	130	I	100		70		70	,	70		ns	
CE to $\overline{W E}$	tcw	130		100		70		70		70.		ns	
DIN to WE Set Up	tow	0		0	\%	0		0		0		ns	
OIN Hold Time	${ }^{\text {to }}$ H	60		40		20		20		20		ns.	.
$\overline{\text { WE Pulse }}$ Width	twp	130		100		70		70		30	'	ns	


READ-MODIFY-WRITE													
Read-Modify. Write (RMW) Cycle Time	'trwC	560		420		280	-	280		280		ns	TT 10 ns
CE Width During RMW	${ }^{\text {t CRW }}$	350	2000	260	2000	170	2000	170	2000	170	2000	ns	
$\overline{W E}$ to CE on	twC	0		0		0		0		0		ns	
$\overline{W E}$ to CE off	'W	130		100		70		70		70		nis	
WE Pulse Width	twp	130		100		70		$7{ }^{\prime}$		70		ns	
DIN to $\overline{W E}$ Set Up	${ }^{\text {t }}$ W	0		0		0		0	.	0		ns	
$\begin{aligned} & \mathrm{D}_{1 \mathrm{~N}} \text { Hold } \\ & \text { Time } \end{aligned}$	${ }^{\text {t }} \mathrm{DH}$	60	,	40		20		20	$\because$	20	$\therefore$;	ns	- .
CE to Output Delay	${ }^{\text {t }} \mathrm{CO}$		190		140	.	90		80	.	70	ns	Load $=50 \mathrm{pF}+1 \mathrm{TTL}$, Ref -2.0 or 0.8 V
Access Time	${ }^{t} \mathrm{ACC}$		200		150		100		90		80		$\begin{aligned} & \mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC}} \\ & +\mathrm{t}^{\mathrm{CO}}+\mathrm{t} \mathrm{~T} \end{aligned}$

## PACKAGE OUTLINE $\mu$ PD410D



ITEM	MILLIMETERS	INCHES
A	27.43 Max.	1.079 Max.
B	1.27 Max.	0.05 Max.
C	$2.54 \pm 0.1$	0.10
D	$0.42 \pm 0.1$	0.016
E	$25.4 \pm 0.3$	1.0
F	$1.5 \pm 0.2$	0.059
G	$3.5 \pm 0.3$	0.138
H	$3.7 \pm 0.3$	0.145
I	4.2 Max.	0.165 Max.
J	5.08 Max.	0.200 Max.
K	$10.16 \pm 0.15$	0.400
L	$9.1 \pm 0.2$	0.358
M	$0.25 \pm 0.05$	0.009



## 4096 BIT (1024 $\times 4$ BITS) STATIC RAM

DESCRIPTION The NEC $\mu$ PD2114L is a 4096 bit static Random Access Memory organized as 1024 words by 4 bits using N -channel Silicon-gate MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding, and therefore requires no clocks or refreshing to operate and simplify system design. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The $\mu \mathrm{PD} 2114 \mathrm{~L}$ is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. The $\mu$ PD2114L is placed in an 18-pin package for the highest possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip Select ( $\overline{\mathrm{CS}}$ ) lead allows easy selection of an individual package when outputs are OR-Tied.

FEATURES - Access Time: Selection from $150-450 \mathrm{~ns}$

- Single +5 Volt Supply
- Directly TTL Compatible - All Inputs and Outputs
- Completely Static - No Clock or Timing Strobe Required
- Low Operating Power - Typically $0.06 \mathrm{~mW} / \mathrm{Bit}$
- Identical Cycle and Access Times
- Common Data Input and Output using Three-State Output
- High Density 18 -pin Plastic and Ceramic Packages
- Replacement for 2114L and Equivalent Devices


PIN NAMES

$\mathrm{A}_{0}-\mathrm{Ag}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data Input/Output
$\mathrm{V}_{\mathrm{CC}}$	Power $(+5 \mathrm{~V})$
GND	Ground

$\mu$ PD2114L
BLOCK DIAGRAM


Operating Temperature $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM RATINGS*
Voltage on any Pin . . . . . . . . . . . . . . . . . . . . . . 0.5 to +7 Volts (1)
Power Dissipation 1 Watt
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			12	pf	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$
Input Capacitance	CIN			5	pf	V IN $=0 \mathrm{~V}$

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Load Current (All Input Pins)	${ }^{1} \mathrm{~L}$ I			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V
I/O Leakage Current	${ }^{\prime} \mathrm{LO}$			10	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{i} / \mathrm{O}}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$
Power Supply Current	${ }^{1} \mathrm{CC} 1$			65	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC} 2$			70	mA	$\begin{aligned} & V_{I_{N}}=5.5 \mathrm{~V}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C} \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		6.0	V	
Output Low Current	${ }^{\text {I OL }}$	3.2			mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
Output High Current	${ }^{\mathrm{I}} \mathrm{OH}$			-1.0	mA	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
						$\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		2114L		2114L-1		2114L-2		2114L-3		2114L-5			
		MIN	MAX										
- ;	$\cdots$	\%.			READ CYCLE							;	
Read Crycle. Time	${ }^{t} \mathrm{RC}$	450	+	300	,	250		200		150		ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=10 \mathrm{~ns}$
Access Time	${ }^{t}$ A	:	450		300		250		200		150	$\mathrm{E}^{\text {ns }}$	$C L=100 p F$
Chip. Selection to Outpừt Valid	tco:	$\because$	120	.	100		80		70	$\because$	60	ns.	Load $=1 . \mathrm{TTL}$ gate
Chip Selection to Output Active	${ }^{t} \mathrm{C} \times$.	20		$20^{\circ}$	-	20	$\because \quad \therefore$	20		20		ns	Input Levels $=0.8$. and 2.0 V .
Output 3-State from Deselection	toto	.	100	.	80		70		60	-	50	ns	$V_{\text {ref }}=1.5 \mathrm{~V}$
Output Hold from Address Change	TOHA	50	.	50	,	50		50		50		ns	
4		.				RITE	CVCLE						
Write Cycle Time	${ }^{\text {t }} \mathrm{WC}$	450		300		250		200		150		ns	$\mathrm{T}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$
Write Time	tw	200		150		120		120		80		ns	$C_{L}=100 \mathrm{pF}$
Write Release Time	${ }^{t}$ WR	0		0		0		0		0		ns	$\text { Load }=1 \text { TTL gate }$
Output 3-State from Write	toTW		100		80	,	$70$		60	$\because$	50	ns	$\begin{aligned} & \text { Inpüt Levels }=0.8 \\ & \text { and } 2.0 \mathrm{~V} \end{aligned}$
Data to Write   Time Overlap	${ }^{\text {t }}$ DW	200		150	$\cdots$	120	.	120		80		ns	$V_{\text {ref }}=1.5 \mathrm{~V}$
Data Hold from Write Time	${ }^{t} \mathrm{DH}$	0	-	0	;	${ }^{*} 0$		0		0		ns	
Address to Write Setup Time	. ${ }^{\text {A }}$ AW	0		0   +	.	0	$\because$	0	-	0		ns	-

TIMING WAVEFORMS


Notes: (1) $\overline{W E}$ is high for Read Cycle
(2) tw is measured from the latter of $\overline{\mathrm{CS}}$ or $\overline{W E}$ going low to the earlier of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ going high.


NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE





OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE


PACKAGE OUTLINES $\mu$ PD2114LC/D

$\mu$ PD2114LC (Plastic)

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01



$\mu$ PD2114LD (Cerdip)		
ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

## 4096 X 1 BIT STATIC RAM

DESCRIPTION The $\mu$ PD2147 is a 4096 -bit static Random Access Memory organized as 4096 words by 1 bit using a high-performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features associated with nonclocked static memories and the reduced standby power dissipation associated with clocked static memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold times, nor reduced data rates due to cycle times that are longer than access times.
$\overline{\mathrm{CS}}$ controls the power-down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the $\mu$ PD2147 - the part automatically reduces its power requirements and remains in this low power standby mode as long as $\overline{\mathrm{CS}}$ remains high. This device feature results in system power savings as great as 85 percent in larger systems, where the majority of devices are deselected.
The $\mu$ PD2147 is placed in an 18 -pin package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The data is read out nondestructively and has the same polarity as the input data. A data input and a separate three-state output are used.

FEATURES - Completely Static Memory - No Clock or Timing Strobe Required

- Equal Access and Cycle Times
- Single +5 V Supply
- Automatic Power-Down
- Directly TTL Compatible - All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Available in Standard 18-Pin Ceramic Package
- Three Performance Ranges:

	ACCESS TIME	ACTIVE CURRENT	STANDBY CURRENT
$\mu$ PD2147	85 ns	160 mA	20 mA
$\mu$ PD2147-2	70 ns	160 mA	20 mA
$\mu$ PD2147-3	55 ns	180 mA	30 mA



$\mathrm{A}_{0} \cdot \mathrm{~A}_{11}$		Address Inputs		
$\overline{W E}$		Write Enable		
$\overline{\mathrm{CS}}$		Chip Select		
DIN		Data Input		
DOUT		Data Output		
$V_{C C}$		Power ( +5 V )		
GND		Ground		
TRUTH TABLE				
$\overline{W E}$		ODE	OUTPUT	POWER
X	Not	Selected	High Z	Standby
L	Write		High Z	Active
H	Read		DOUT	Active

## $4096 \times 1$ STATIC NMOS RAM

DESCRIPTION The $\mu$ PD4 104 is a high performance 4 K static RAM. Organized as $4096 \times 1$, it uses a combination of static storage cells with dynamic input/output circuitry to achieve high speed and low power in the same device. Utilizing NMOS technology, the $\mu$ PD4104 is fully TTL compatible and operates with a single $+5 \mathrm{~V} \pm 10 \%$ supply.

FEATURES • Fast Access Time - 85 ns ( $\mu$ PD4104-36)

- Very Low Stand-By Power - 28 mW Max.
- Low VCC Data Retention Mode to +3 Volts
- Single $+5 V \pm 10 \%$ Supply
- Fully TTL Compatible
- Available in 18 Pin Plastic and Ceramic Dual-in-Line Packages
- 5 Performance Ranges:

			SUPPLY CURRENT	
	ACCESS TIME	R/W CYCLE	ACTIVE	STANDBY
$\mu$ PD4104-30	300 ns	460 ns	21 mA	5 mA
$\mu$ PD4104-32	200 ns	310 ns	21 mA	5 mA
$\mu$ PD4104-33	150 ns	260 ns	40 mA	5 mA
$\mu$ PD4104-35	120 ns	230 ns	40 mA	5 mA
$\mu$ PD4104-36	85 ns	180 ns	40 mA	5 mA



PIN NAMES

$A_{0}-A_{11}$	Address Inputs
$\overline{\mathrm{CE}}$	Chip Enable
$\mathrm{D}_{\mathrm{IN}}$	Data Input
$\mathrm{D}_{\text {OUT }}$	Data Output
$\mathrm{V}_{\text {SS }}$	Ground
$\mathrm{V}_{\mathrm{CC}}$	Power (+5V)
$\overline{\mathrm{WE}}$	Write Enable



Voltage on Any Pin

Note: (1) With respect to VSS
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent domage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiiity.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Supply Voltage			$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	V	All Voltages Referenced to $V_{S S}$
Supply Voltage		$V_{\text {SS }}$	0	0	0	V		
Logic "1" Voltage All Inputs		$\mathrm{V}_{1 \mathrm{H}}$	2.2		7.0	V		
Logic "0" Voltage All Inputs		$\mathrm{V}_{\mathrm{IL}}$	$-1.0$		0.8	V		
Average $\mathrm{V}_{\mathrm{CC}}$ Power Supply Current	4104-30, 4104-32	${ }^{\text {I CC1 }}$			21	mA	(2)	
	4104-33, 4104-35, 4104-36	${ }^{1} \mathrm{CC} 1$			40	mA		
Standby V ${ }_{\text {CC }}$ Power Supply Current		${ }_{1} \mathrm{CC} 2$			5	mA	(3)	
Input Leakage Current (Any Input)		1 IL	-10		10	$\mu \mathrm{A}$	(4)	
Output Leakage Current		$\mathrm{I}_{\mathrm{OL}}$	-10		10	$\mu \mathrm{A}$	(3) (5)	
Output Logic "1" Voltage IOUT $=-500 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	.	
Output Logic "0' Voltage I OUT = 5 mA		VOL			0.4	V	.	


		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN 2		4	6	pF	$(7)$
Output Capacitance	COUT		6	7	pF	$(7)$

Notes: (1) All vol tages referenced to $V_{\text {SS }}$.
(2) $I^{C C} 1$ is related to precharge and cycle times. Guaranteed maximum values for ICC1 may be calculated by:

$$
{ }^{\prime} \mathrm{CC} 1(\mathrm{ma})=\left(5 \mathrm{t}_{\mathrm{p}}+13\left(\mathrm{t} \mathrm{C}-\mathrm{t}_{\mathrm{p}}\right)+3420\right) \div \mathrm{t}_{\mathrm{C}}
$$

where $\mathrm{t}_{\mathrm{p}}$ and t C are expressed in nanoseconds. Equation is referenced to the -3 device, other devices derate to the same curve.
(3) Output is disabled (open circuit), $\overline{C E}$ is at logic 1.
(4) All device pins at 0 volts except pin under test at $0<V_{I N} \leqslant 5.5$ volts.
(5) $0 V \leqslant V_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$.
(6) During power up, $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished
(7) Effective capacitance calculated from the equation $C=1 \frac{\Delta t}{\Delta V}$ with $\Delta V$ equal to 3 V and $V_{C C}$ nominal.

## AC CHARACTERISTICS (2) (7)

PARAMETER	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		4104.30		4104-32		4104-33		4104.35		4104:36			
		MIN	MAX										
Read or Write Cycle Time	${ }^{\text {t }}$ C	460		310		260		230		180		ns	(8)
Random Access	${ }^{t}{ }_{\text {AC }}$		300		200		150		120		85	ns	(3)
Chip Enabile Pulse Width	${ }^{\text {t }} \mathrm{CE}$	300	10,000	200	10,000	150	10,000	120	10,000	85	10,000	ns	
Chip Enable Precharge Time	tp	150		100	.	100		100		85		ns	
Address Hold Time.	${ }^{\text {t }} \mathrm{AH}$	165		110	.	95		75		60		ns	
Address Set-Up Time	${ }^{\text {t }}$ AS	0		0		0		0	$\therefore$	0		ns	
Output Buffer Turn-Off Delay	toff	0	75	0	50							ns	(9)
Read Command Set-Up.Time	tRS	0	:	0	.	0		0		0		ns	(4)
Write Enable Set-Up Time	tws	-20		-20		0		0		$\therefore 0$		ns	(4)
Data Input Hold Time Referenced to WE	toin	25		25		20		20	;	20		ns	
Write Enabled Pulse Width	tww	90		60		55		50		45		ns	
Modify Time	${ }^{\text {tMOD }}$	0	10,000	0	10,000	$\bigcirc$	10,000	0	10,000	0	10,000	ns	(5)
WE to CE Precharge Lead Time	tWPL	105		70		65		60	.	55		ns	(6)
Data Input Set-Up Time	${ }^{\text {t }}$ S S	0		0	.	0		0		0		ns	
Write Enable Hold Time	twh	225	7	150		115		90		65		ns	
Transition Time	${ }^{\text {t }}$ T	5.	50	5	50	5	50	5	50	5	50	ns	
Read-Modify-Write Cycle Time	: trmw	565		380		325		290	,	235		ns	(10)

Notes: (1) All voltages referenced to $V$ ss
(2) During power up. $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished.
(3) Measured with load circuit equivalent to 2 TTL loads and $C L=100 \mathrm{pF}$.
(4) If $\overline{W E}$ follows $\overline{C E}$ by more than wh then data out may not remain open circuited.
(5) Determined by user. Total cycle time cannot exceed tCE max.
(6) Data-in set-up time is referenced to the later of the two falling clock edges $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$.
(7) AC measurements assume $\mathrm{t}=5 \mathrm{~ns}$. Timing points are taken as $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$ on the inputs and $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V}$ on the output waveform.
(8) $\mathrm{t}_{\mathrm{C}}=\mathrm{t}_{\mathrm{CE}}+\mathrm{tp}+2 \mathrm{tT}$
(9) The true level of the output in the open carcuit condition will be determined totally by output load conditions. The output is guaranteed to be open circuit within tOFF.
(10) $t_{R M W}=t_{A C}+t_{W P L}+t_{P}+3 t_{T}+t_{M O D}$.

STANDBY CHARACTERISTICS

PARAMETER	SYMBOL	Limits										UNIT	TEST CONDITIONS
		410430		4104-32		4104-33		4104.35		4104-36			
		MIN	MAX										
$V_{\text {CC }}$ In Standby	$V_{P D}$	3.0		3.0		3.0		3.0		30		$\checkmark$	$\checkmark$
Standby Current	IPD		3.3	.	3.3		3.3		3.3		3.3	mA	(1)
Power Supply Fall Time	$\mathrm{T}_{\text {F }}$	100		100		100		100		100	.	$\mu \mathrm{s}$	
Power Supply Rise Time	$T_{\text {R }}$	100		100		100		100		100		$\mu \mathrm{s}$	
Chip Enable Pulse $\overline{\mathrm{CE}}$ Width	${ }^{\text {T }}$ CE	300		200		150		120		85.		$\mu \mathrm{s}$	
Chip Enable Precharge To Power Down Time	, TPPD ${ }^{*}$	. 150	$\therefore$	100		100	*	100		85		ns	
"1" Level CE Min Level	$V_{\text {IH }}$	2.2		2.2		2.2	-	2.2		2.2		V	
Standby Recovery Time.	TRC	500		500		500		500		500		$\mu \mathrm{s}$	

Note (1) Maximum value for IPD is guaranteed at $V_{P D}$ minimum value $(=3 \mathrm{~V})$



TIMING WAVEFORMS (CONT.)

WRITE CYCLE


READ-MODIFY-WRITE CYCLE
$\overline{C E}$

$\overline{W E}$

DIN

DOUT


## READ CYCLE

The selection of one of the possible 4096 bits is made by virtue of the 12 address bits presented at the inputs. These are latched into the chip by the negative going edge of chip enable ( $\overline{C E}$ ). If the write enable ( $\overline{W E}$ ) input is held at a high level ( $(\mathbb{V} \cdot \mid H)$ while the $\overline{\mathrm{CE}}$ input is clocked to a low level ( V L ) , a read operation will be performed. At the access time ( $\mathrm{t} A C$ ), valid data will appear at the output. Since the output is unlatched by a positive transition of $\overline{C E}$, it will be in the high impedance state from the previous cycle until the access time. It will go to the high impedance state again at the end of the current cycle when $\overline{\mathrm{CE}}$ goes high.

The address lines may be set up for the next cycle any time after the address hold time has been satisfied for the current cycle.

## WRITE CYCLE

Data to be written into a selected cell is latched into the chip by the later negative transition of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. If $\overline{\mathrm{WE}}$ is brought low before $\overline{\mathrm{CE}}$, the cycle is an "Early Write" cycle, and data will be latched by $\overline{\mathrm{CE}}$. If $\overline{\mathrm{CE}}$ is brought low before $\overline{\mathrm{WE}}$, as in a Read-Modify-Write cycle, then data will be latched by $\overline{W E}$.

If the cycle is an "Early Write" cycle, the output will remain in the high impedance state. For a Read-Modify-Write cycle; the output will be active for the Modify and Write portions of the memory cycle until $\overline{\mathrm{CE}}$ goes high. If $\overline{\mathrm{WE}}$ is brought low after $\overline{\mathrm{CE}}$ but before the access time, the state of the output will be undefined. The desired data will be written into the cell if data-in is valid on the leading edge of $\overline{W E}$, tDIH is satisfied and $\overline{W E}$ occurs prior to $\overline{C E}$ going high by at least the minimum lead time (tWPL).

## READ-MODIFY-WRITE

Read and Write cycles can be combined to allow reading of a selected location and then modifying that data within the same memory cycle. Data is read at the access time and modified during a period defined by the user. New data is written between $\overline{W E}$ low and the positive transition of $\overline{C E}$. Data out will remain valid until the rising edge of $\overline{C E} . A$ minimum R-M-W cycle time can be calculated by $t_{R M W}=t A C+t_{M O D}+t W P L+t P+$ 3 t ; where $\mathrm{t}_{\mathrm{RMW}}$ is the cycle time, $\mathrm{t}_{\mathrm{AC}}$ is the access time, $\mathrm{t}_{\mathrm{MOD}}$ is the user defined modify time, tWPL is the $\overline{W E}$ to $\overline{\mathrm{CE}}$ lead time, tP is the $\overline{\mathrm{CE}}$ high time, and $\mathrm{t} T$ is one transition time.

## POWER DOWN MODE

In power down, data may be retained indefinitely by maintaining $\mathrm{V}_{\mathrm{CC}}$ at +3 V . However, prior to $V_{C C}$ going below $V_{C C}$ minimum ( $\leqslant 4.5 \mathrm{~V}$ ) $\overline{C E}$ must be taken high $\left(V_{I H}=2.2 \mathrm{~V}\right)$ and held for a minimum time period tPPD and maintained at $V_{I H}$ for the entire standby period. After power is returned to $V_{C C} \min$ or above, $\overline{C E}$ must be held high for a minimum of $t_{R C}$ in order that the device may operate properly. See power down waveforms herein. Any active cycle in progress prior to power down must be completed so that tCE min is not violated.


PACKAGE OUTLINES $\mu$ PD4104C/D

Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01



ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN .	0.1 MIN .
H	0.5 MIN .	0.02 MIN .
1	4.6 MAX.	0.18 MAX .
$J$	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

## 8K BIT STATIC RAM

DESCRIPTION The NEC $\mu$ PD421 is a very high speed 8192 bit static Random Access Memory organized as 1024 words by 8 bits. Features include a power down mode controlled by the chip select input for an 80 percent power saving.

## FEATURES • $1024 \times 8$-Bit Organization

- Very Fast Access Time: $85 / 100 / 150 / 200$ ns
- Single +5 V Power Supply
- Low Power Standby Mode
- N-Channel Silicon Gate Process
- Fully TTL Compatible
- Six-Device Static Cell
- Three State Common I/O
- Compatible with 8108 and Equivalent Devices
- Available in a 22-Pin Dual-in-Line Package

PIN CONFIGURATION


## 1024 BIT CMOS RANDOM ACCESS MEMORY

DESCRIPTION The $\mu$ PD443/6508 is a high speed, low power, silicon gate CMOS 1024 bit static RAM organized as 1024 words by 1 bit. In all static states this RAM exhibits the microwatt power requirements typical of CMOS.

Inputs and three state output are TTL compatible. The basic part operates at 4 to 7 volts with a $+5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ access time of 200 ns and supply current of $100 \mu \mathrm{~A}$. Data retention is guaranteed to 3 V on all parts.

## FEATURES - Low Power Operation

- Excellent Speed Operation
- TTL Compatible on Inputs and Outputs
- Static Operation
- On-Chip Address Register
- Replacement for IM 6508 and Equivalent Devices
- Available in Standard 16 Pin Ceramic Package

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Input
CS	Chip Select
$\overline{\mathrm{WE}}$	Write Enable
$\mathrm{V}_{\mathrm{CC}}$	Power ( +5 V )
$\mathrm{D}_{\mathrm{I}}$	Data Input
$\mathrm{D}_{\mathrm{O}}$	Data Output



Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to VCC +0.5 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to VCC +0.5 Volts
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent : damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-2.0}$			V	
Logical " 0 " Input Voltage	$V_{\text {IL }}$	.		0.8	V	
Input Leakage	IIL	-1.0		1.0	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant V_{\text {CC }}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{v}_{\mathrm{CC}}-0.01$			V	IOUT $=0$
Logical " 1 " Output Voltage	$\mathrm{VOH}_{\mathrm{O}}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{OL} 2}$			GND+0.01	V	IOUT $=0$
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output Leakage	10	$-1.0$		1.0	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant \mathrm{~V}_{0} \leqslant \mathrm{~V}_{\text {CC }}$
Supply Current	${ }^{\text {I CC }}$		1.0	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$


PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{CiN}^{\text {N }}$		5.0	7.0	pF	
Output Capacitence	COUT		6.0	10.0	pF	

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu$ PD443/6508-1		$\mu$ PD 443/6508			
		MIN	MAX	MIN	MAX		
Access Time From CS	${ }^{t} \mathrm{AC}$		250		300	ns	
Output Enable Time	${ }^{t}$ EN		180		180	ns	
Output Disable Time	${ }^{\text {t DIS }}$		180		180	ns	
CS Pulse Width (Positive)	${ }^{t} \mathrm{CS}$	150		165		ns	
CS Pulse Width (Negative)	${ }^{t} \mathrm{CS}$	250		300		ns	$V_{\text {ref }}=50 \%$
Write Pulse Width (Negative)	tWP	165		165		ns	Load = 1 TTL Gate
Address Set Up Time	${ }^{\text {t }}$ ADDS	7	,	7		ns	
Address Hold Time	${ }^{1} \mathrm{ADDH}$	90		90		ns	$L=50 \mathrm{pF}$
Data Set Up Time	${ }^{\text {t }}$ DS	165		165	\%	ns	
Data Hold time	${ }^{\text {t }} \mathrm{DH}$	0		0		ns	

TIMING WAVEFORMS


Note: (1) The $\mu$ PD443/6508 output is active when CS is low.


Notes: (1) The $\mu$ PD443/6508 performs a write operation when $C S=W E=0$.
(2) The write operation is terminated on the positive.edge from CS.

OUTPUT ENABLE


Note: (1) $\mu \mathrm{PD} 443 / 6508$ output is high impedance when $\mathrm{CS}=1$ or $\overline{\mathrm{WE}}=0$.


ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
B	1.06	0.042
C	2.54	0.10
D	$0.46 \pm 0.10$	$0.018 \pm 0.004$
E	17.78	0.70
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
K	7.62	0.30
L	6.4	0.25
M	$0.25+0.10$	$0.0098+0.0039$

## 1024 BIT (256x4) STATIC CMOS RAM

DESCRIPTION

FEATURES

The $\mu$ PD5101L and $\mu$ PD5101L-1 are very low power 1024 bit ( 256 words by 4 bits) static CMOS Random Access Memories. They meet the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.

All inputs and outputs of the $\mu$ PD5101L and $\mu$ PD5 $101 \mathrm{~L}-1$ are TTL compatible. Two chip enables $\left.\overline{C E}_{1}, C E_{2}\right)$ are provided, with the devices being selected when $\overline{\mathrm{CE}}_{1}$ is low and $\mathrm{CE}_{2}$ is high. The devices can be placed in standby mode, drawing $10 \mu \mathrm{~A}$ maximum, by driving $\overline{\mathrm{CE}}_{1}$ high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving $\mathrm{CE}_{2}$ low.
The $\mu$ PD5101L and $\mu$ PD5101L-1 have separate input and output lines. They can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is nondestructively read out. Read mode is selected by placing a high on the R/W pin. Either device is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.
The $\mu$ PD5 101L and $\mu$ PD5101L-1 are fabricated using NEC's silicon gate complementary MOS (CMOS) process.


PIN NAMES

$D_{1}-D_{4}$	Data Input
$A_{0}-A_{7}$	Address Inputs
$R / W$	Read/Write Input
$\overline{C E}_{1}, C E_{2}$	Chip Enables
$O D$	Output Disable
$D_{1}-\mathrm{DO}_{4}$	Data Output
$V_{C C}$	Power (+5V)



Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect to Ground . . . . . . . -0.3 Volts to $\mathrm{V}_{\mathrm{CC}}+0.3$ Volts Power Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input High Leakage	ILIH (2)			1	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Low Leakage	ILIL (2)			-1	$\mu \mathrm{A}$	$V_{\text {IN }}=0 V$
Qutput High Leakage	${ }_{1} \mathrm{LOH}$ (2)			1	$\mu \mathrm{A}$	$\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$
Output Low Leakage	ILOL (2)			-1	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$
Operating Current	${ }^{1} \mathrm{CC} 1$			22	mA	$\begin{aligned} & V_{\text {IN }}=V_{\text {CC }} \text { Except } \overline{C E}_{1} \\ & \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \end{aligned}$
Operating Current	${ }^{1} \mathrm{CC} 2$			27	mA	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.2 \mathrm{~V} \text { Except } \overline{\mathrm{CE}}_{1} \\ & \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \end{aligned}$
Standby Current	ICCL (2)			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{1 N}=0 \text { to } 5.25 \mathrm{~V} \\ & C E_{2} \leqslant 0.2 \mathrm{~V} \\ & \hline \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-0.3		0.65	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.2		$\mathrm{V}_{\mathrm{CC}}$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.4	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2}$	3.5			V	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Notes:
(1) Typical values at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Current through all inputs and outputs included in $\mathrm{I} C C L$.

	LIMITS		PARAMETER	SYMBOL	MIN	TYP
Input Capacitance   (All Input Pins)			4	8	pF	VIN OV
Output   Capacitance	COUT		8	12	pF	VOUT OV

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101L			5101L-1				
		MIN	TYP	MAX	MIN	TYP	MAX		
Read Cycle	${ }^{\text {tr }} \mathrm{C}$	650			450			ns	Input pulse amplitude: 0.65 to 2.2 Volts
Access Time	${ }^{t} A$			650			450	ns	Input rise and fall
Chịp Enable ( $\overline{\mathrm{CE}}_{1}$ ) to Output	${ }^{\text {t }} \mathrm{CO} 1$			600			400	ns	times: 20 ns
Chip Enable ( $\mathrm{CE}_{2}$ ) to Output	${ }^{\mathrm{t}} \mathrm{CO} 2$			700	-		500	$\mathrm{ns}$	Timing measurement reference level:
Output Disable to Output	${ }^{t} \mathrm{OD}$			350		.	250	ns	Output load: ITTL
Data Output to High Z State	${ }^{t}$ DF	0		150	0		130	ns	Gate and $C_{L}=100 \mathrm{pF}$
Previous Read Data Valid with Respect to Address Change	${ }^{\mathrm{t}} \mathrm{OH} 1$	0			0			ns	-
Previous Read Data Valid with Respect to Chip Enable	${ }^{\mathrm{t}} \mathrm{OH} 2$	0			$0$	+		ns	

## WRITE CYCLE

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101L			5101L-1				
		MIN	TVP	MAX	MIN	TYP	MAX		
Write Cycle	twC	650			450			ns	Input pulse amplitude:
Write Delay	${ }^{\text {t }}$ AW	150			130			ns	0.65 to 2.2 Volts
Chip Enable ( $\overline{\mathrm{CE}}_{1}$ ) to Write	${ }^{\text {t }}$ CW1	550		,	350	-	.	ns	Input rise and fall times: 20 ns
Chip Enable ( $\mathrm{CE}_{2}$ ) to Write	${ }^{\text {t CWW }}$	550			350	'		ns	Timing measurement reference level:
Data Setup	${ }^{\text {t }}$ DW	400			250			ns	1.5 Volt
Data Hold	${ }^{\text {t }} \mathrm{DH}$	100			50			ns	Output load: ITTL
Write Pulse	tWP	400			250			ns	Gate and $\mathrm{C}_{\mathrm{L}}=$
Write Recovery	tWR	50			50			ns	100 pF
Output Disable Setup	${ }^{\text {t }}$ DS	150			130			$\because$	

LOW VCC DATA RETENTION $T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$V_{C C}$ for Data Retention	$V_{\text {CCDR }}$	$+2.0$			V	$\mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V}$
Data Retention Current	${ }^{1} \mathrm{CCDR}$			+10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C D R}=+2.0 \mathrm{~V} \\ & C E_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$
Chip Deselect Setup Time	${ }^{t} \mathrm{CDR}$	0			ns	
Chip Deselect Hold Time	${ }^{\text {t }}$ R	${ }^{\text {t R C }}$ (1)			ns	

Note: (1) tric $=$ Read Cycle Time

## READ CYCLE




Notes:
(1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $O D$ may be tied low for separate I/O operation.
(3) During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.


Notes: (1) 4.75 V
(2) $v_{C C D R}$
(3) $v_{I H}$
(4) 02 V

## TYPICAL OPERATING

 CHARACTERISTICS






PACKAGE OUTLINE $\mu$ PD5101LC


## 1K X 4 BIT STATIC CMOS RAM

DESCRIPTION The NEC $\mu$ PD444/6514 is a 4096 bit Random Access Memory fabricated using the NEC CMOS process. This yields devices with low operating power and standby currents of exceptionally low magnitude. These characteristics make the $\mu$ PD444/6514 ideal for applications requiring battery backup. In addition, the compatibility of the $\mu$ PD444/ 6514 with 2114-type devices affords the designer a higher degree of flexibility.

FEATURES • Low Power Operation<br>- Excellent Speed Operation ( 300 ns access time)<br>- TTL Compatible on Inputs and Outputs<br>- Completely Static Operation<br>- Single +5 V Supply<br>- Common Data Input and Output Using Three-State Outputs<br>- The Basic Part Operates at +4 V to +7 V<br>- Data Retention is Guaranteed to +2 V on All Parts<br>- Replacement for 2114 and Equivalent Devices

PIN CONFIGURATION


## NEC Microcomputers, Inc.

## FULLY DECODED 4096 STATIC CMOS RAM

The $\mu$ PD 445 L is a very low power 4,096 bit ( 1024 words by 4 bits) static RAM fabricater with NEC's complementary MOS (CMOS) process. It has two chip enable inputs ( $\overline{\mathrm{CE}}_{1}$, $\left.C E_{2}\right)$. Minimum standby current is drawn when $\overline{\mathrm{CE}}_{1}$ is at a high level, while inhibiting all address and control line transitions or, unconditionally when $\mathrm{CE}_{2}$ is at a low level. This device ideally meets the low power requirements of battery operated systems and battery back-up systems for non-volatility of data.

The $\mu$ PD445L uses fully static circuitry requiring no clocking. Output data is read out non-destructively by placing a high on the R/W pin and has the same polarity as input data. All inputs and outputs are directly TTL compatible. The device has common input/output data busses and an OD (Output Disable) pin for use in common I/O bus systems.

The $\mu$ PD445L is guaranteed to retain data with the power supply voltage as low as 2.0 volts.

FEATURES - Single +5 V Power Supply

- Ideal for Battery Operation
- Low Standby Power for Data Retention
- Simple Memory Expansion - Chip Enable Inputs
- Access Time - 650 ns Max. ( $\mu$ PD 445 L ) 4.50 ns Max. ( $\mu$ PD445L-1)
- Directly TTL Compatible - All Inputs and Outputs
- Common Data Input and Output
- Static CMOS - No Clocks Refreshing Required
- 20 Pin Dual-In-Line Plastic Package

PIN CONFIGURATION


PIN NAMES

$A_{0}-A 9$	Address Input
$O D$	Output Disable
$R / W$	Read/Write
$\overline{C E}_{1}$	Chip Enable 1
$C_{2}$	Chip Enable 2
$\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	Data Input/Output
$\mathrm{V}_{\mathrm{CC}}$	Power Supply
GND	Ground

OPERATION MODES

$\overline{C E}_{1}$	$C E_{2}$	$O D$	Chip	Output Mode
0	1	0		Data Out
0	1	1	Selected	
Others			Non-Selected	



Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ All Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VCC +0.3 Volts All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VCC +0.3 Volts Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$						
$\mathrm{Ta}_{\mathrm{a}}=-10$ to $+70^{\circ} \mathrm{C} ;+5 \mathrm{~V} \pm 10 \%$						
PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$+2.2$		$\mathrm{V}_{\mathrm{CC}}$	V	
Input Low Voltage	$V_{\text {IL }}$	-0.3		+ 0.65	V	.
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	+2.4			V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	+3.5			V	$1 \mathrm{OH}=.100 \mu \mathrm{~A}$
Output Low Voltage	VOL			+ 0.4	V	${ }^{\prime} \mathrm{OL}=+2.0 \mathrm{~mA}$
Input Leakage Current High	'LIH			$+1.0$	$\mu \mathrm{A}$	$V_{1}=V_{C C}$
Input Leakage Current Low	'LIL			- 1.0	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$
Output Leakage Current High	ILOH		-	+ 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1}=2.2 \mathrm{~V} \end{aligned}$
Output Leakage Current Low	ILOL			-- 1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{O}=0 \mathrm{~V}, \\ & C E_{1}=2.2 \mathrm{~V} \end{aligned}$
Supply Current	ICC1		12	25	mA	$\begin{aligned} & \text { Outputs Open } \\ & V_{1}=V_{C C} \text { except } \\ & C E_{1} \leqslant 0.65 V \end{aligned}$
Supply Current	'CC2		16	30	mA	Outputs Open $V_{1}=2.2 \mathrm{~V}$ except $\overline{C E}_{1} \leqslant 0.65 \mathrm{~V}$
Standby Current	${ }^{1} \mathrm{CCL}$			40	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=0 \text { to } 5.25 \mathrm{~V} \\ & \text { Except } C E_{2} \leqslant 0.2 \mathrm{~V} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

READ CYCLE
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		445L		445L-1			
		MIN	MAX	MIN	MAX		
Read Cycle Time	${ }_{\text {t }} \mathrm{C}$	650		450		ns	
Access Time	${ }^{\text {t }}$ A		650		450	ns	Input Voltage Levels
Chip Enable $\left(\overline{\mathrm{CE}}_{1}\right)$ to Output	tCO1	.	600		400	ns	$\mathrm{V}=+0.65$ to +2.2 V
Chip Enable (CE2) to Output	tco2		700		500	ns	Input Rise Time 20 ns
Output Enable to Output	tod		350		250	ns	Input Fall Time 20 ns
Output Disable (OD) to Floating	${ }^{\text {t }}$ F	0	150	0 :	130	ns	Timing Measurement Reference Level =
Data Output   Hold Time	${ }^{\text {tor }} 1$	0		0		ns	$\begin{aligned} & \text { +1.5V } \\ & \text { Output Load } \end{aligned}$
Chip Disable to Floating	${ }^{\text {toh2 }}$	0	$\cdots$	0		ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
Address Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		300		300	ns	For Address change during Chip Enabled

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		445L		445L-1			
		MIN	MAX	MIN	MAX		
Write Cycle Time	${ }^{\text {tw }}$ c	650		450		ns	
$\begin{array}{\|l\|} \hline \text { Address Setup } \\ \text { Time } \\ \hline \end{array}$	${ }^{\text {t }}$ W	150		130		ns	Input Voltage Levels $V_{1}=+0.65 \text { to }+2.2 \mathrm{~V}$
Chip Enable $\left(\overline{\mathrm{CE}}_{1}\right)$ to Write End	${ }^{\text {t }} \mathrm{CW} 1 .$.	550		. 350		ns	Input Rise Time 20 ns
Chip Enable (CE2) to Write End	${ }^{\text {t }}$ W2	550		350		ns	Input Fall Time 20 ns
Data Setup Time	t ${ }^{\text {b }}$	400		250		ns	
Data Hold Time	${ }^{\text {t }}$ D. H	100		50		ns	Timing Measurement
Write Pulse Width	twp	400		250		ns	Reference Level $=$
Address Hold Time	tWR	50	$\cdot$	50		ns	$+1.5 \mathrm{~V}$
Outpu't Disable Setup Time	tDS	150		130		ns	
Address Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	$\therefore$ 。	300		300	ns	For Address change during Chip Enabled

LOW VCC DATA RETENTION
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$
		MIN	TYP	MAX		
$\mathrm{V}_{\text {CC }}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	+2.0			$\checkmark$	$\mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V}$
Data Retention Current	İCDR			40	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=+2.0 \mathrm{~V} \\ & C E_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$
Chip Deselect Setup Time	${ }^{\text {t CDR }}$	0			ns	
Chip Deselect Hold Time	th	trc ${ }^{1}$			ns	

Note: (1) tRC $=$ Read Cycle Time


TIMING WAVEFORMS

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}
$$

		LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance	$\mathrm{C}_{\mathrm{I}}$		5	8	pF	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$
Output Capacitance	$\mathrm{C}_{\mathrm{O}}$		8	12	pF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

PACKAGE OUTLINE $\mu$ PD445LC


ITEM	MILLIMETERS	INCHES
A	27.00	1.07
B	2.07	0.08
C	2.54	0.10
D	0.50	0.02
E	22.86	0.90
F	1.20	0.05
G	2.54 MIN	0.10 MIN
H	0.50 MIN	0.02 MIN
I	4.58 MAX	0.18
J	5.08 MAX	0.20
K	10.16	0.40
L	8.60	0.39
M	$0.25+0.10$	$0.01+0.004$

## FULLY DECODED 2048 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The $\mu$ PD454 EEPROM, a 256 Words $\times 8$ Bits Read Only Memory, is designed for rapid development of microcomputer systems. The ability to electrically program, erase, and reprogram the $\mu$ PD454 provides a fast and convenient means of debugging both hardware and software designs.

The $\mu$ PD454 is pin for pin compatible with NEC's $\mu$ PD464 mask programmed ROM.

- Electrically Erasable and Programmable
- Fully Decoded, 256 Words x 8 Bits Organization
- Access Time 800 ns Max
- Low Power: 245 mW (Typ.) in Read Operation 670 mW (Typ.) in Programming Operation
- Fast Programming and Érasure Speed
- Low Power for Programming and Erasure
- Static, No Clock Required
- Input/Output TTL Compatible for Read and Programming Operation
- Three-State Output, OR-Tie Capability
- N-Channel MOS Fabrication
- Two Power Supplies, +12 V and +5 V for Read Operation
- 24 Pin Ceramic DIP

$\overline{\text { CS }} 1$		24	$\mathrm{V}_{\mathrm{CC}}$
$\mathrm{A}_{0} \mathrm{O}_{2}$		23	$\square \mathrm{D}_{0}$
$\mathrm{A}_{1} \square_{3}$		22	口 $\mathrm{D}_{1}$
$\mathrm{A}_{2} \square 4$		21	$\square \mathrm{D}_{2}$
$\mathrm{A}_{3} \square^{5}$	$\mu \mathrm{PD}$	20	$\square D_{3}$
$\mathrm{A}_{4} \square 6$	454	19	$\square \mathrm{D}_{4}$
$\mathrm{A}_{5} \square^{7}$		18	$\square \mathrm{D}_{5}$
$\mathrm{A}_{6} \square^{8}$		17	$\square \mathrm{D}_{6}$
$\mathrm{A}_{7} \square^{9}$		16	$\square \mathrm{D}_{7}$
$\mathrm{P}_{\mathrm{G}} \mathrm{C}_{10}$		15	$\square V_{C G}$
$\mathrm{v}_{\text {CL }} \mathrm{C}_{11}$		14	$\square V_{D D}$
$\mathrm{V}_{\mathrm{BB}}{ }^{12}$		13	$\square \mathrm{V}_{\text {SS }}$



Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +11 Volts ${ }^{(1)}$
All Input Voltages	. -0.3 to +11 Volts ${ }^{(1)}$
Supply Voltage VDD	-0.3 to +15 Volts ${ }^{(1)}$
Supply Voltage VCC	-0.3 to +7 V olts ${ }^{(1)}$
Supply Voltage $\mathrm{V}_{\mathrm{BB}}$	. VSS to-7 Volts ${ }^{(2)}$
Supply Voltage PG	0.3 to +30 Volts ${ }^{(1)}{ }^{(2)}$
Supply Voltage VCL	-0.3 to +43 Volts ${ }^{(1)}$ (2)
Supply Voltage VCG	-44 to +30 Volts ${ }^{(1)}{ }^{(2)}$

## ABSOLUTE MAXIMUM RATINGS*

Notes: (1) Relative to $V_{B B}$.
(2) Data in the memory cell is not guaranteed to be preserved.

Specifies ratings which will not cause permanent damage to the device.
COMMENT: Stress above those listed under "Absolute Maximum Ratings"' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		TYP	MAX			
Input Capacitance	CIN			10	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	COUT			15	pF	$\mathrm{f}=1 \mathrm{MHz}$

$\mu$ PD454
PIN DEFINITION

PIN			FUNCTION
NO.	SYMBOL	NAME	
1	$\overline{\mathrm{CS}}$	CHIP SELECT	Chip selection, active low
2-9	$\mathrm{A}_{0}-\mathrm{A}_{7}$	ADDRESS BUS	Memory address
10	$\mathrm{P}_{\mathrm{G}}$	+26V (TYP) Power Supply	Power supply for programming operation
11	${ }^{\prime} V_{\text {CL }}$	+36V (TYP) Power Supply	Power supply for erasing operations
12	$V_{\text {BB }}$	Substrate Power Supply	Power supply
13	$\mathrm{V}_{\text {SS }}$	GROUND	Ground Reference
14	$V_{\text {DD }}$	+12V Power Supply	Power supply for read operations
15	VCG	-44 to +30 Power Supply	Power supply for control of programming and erasure operations
16-23	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Input/Output	Data In for programming operations. Data Output for read operations.
24	$\checkmark \mathrm{CC}$	+5V Power Supply	Power supply for read operations

## SUPPLY VOLTAGES

Typical values. Unit - Voltage.

MODE	$V_{\text {DD }}(14)$	$V_{C C}(24)$	$V_{B B}(14)$	$P_{G}(10)$	$V_{C L}(11)$	$V_{C G}(15)$	$V_{S S}(13)$
Read	+12	+5	0	0	0	0	0
Program	0	0	2	+26	0	+26	0
Erase	0	0	5	0	+36	40	Open
Verify "0"	+12	+5		0	0	+3	0
Verify "1"	+12	+5		0	0	-3	0


	$\mathrm{A}_{0.7}$	$v_{\text {cc }}$	- +5 V
	0	$\overline{\mathrm{Cs}}$	- $\overline{\mathrm{CS}}$
(OUT)			
(2)	$v_{\text {SS }}$	VDO	- +12V
	${ }^{\text {cG }}$	$\mathrm{V}_{\mathrm{CL}}$	
	$V_{B B}$	PG	- 0 V



Notes:
(1) Either High or Low Level, or Open. $R_{C G}=10 \mathrm{k} \Omega \pm 10 \%, 1 / 4 \mathrm{~W}$ $R_{C L}=200 \Omega: 10 \%, 10 \mathrm{~W}$
(2) R Ray be left connected in Read Mode

## PACKAGE OUTLINE $\mu$ PD454D



ITEM	MILLIMETERS	INCHES
A	32.5 MAX	1.28 MAX
B	2.28	0.09
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.165 MAX
J	5.2 MAX	0.205 MAX
K	15.24	0.6
L	13.9	0.55
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

$T_{\mathrm{a}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$,
$\mathrm{V}_{\mathrm{BB}}=\mathrm{P}_{\mathrm{G}}=\mathrm{V}_{\mathrm{CL}}=\mathrm{V}_{\mathrm{CG}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	3.0		Vcc	V	
Input Low Voltage	VIL	0		0.7 .	V	
Output High   Voltage	$\mathrm{V}_{\mathrm{OH}}$	3.5			V	$\mathrm{I}^{\mathrm{O}} \mathrm{OH}=-2.0 \mathrm{~mA}$
Output Low Voltage	VOL			0.5	V	$\mathrm{I}_{\mathrm{OL}}=1.7 \mathrm{~mA}$
Input Leakage Current High	${ }^{\text {LIIH }}$			+10	$\mu \mathrm{A}$	$V_{1}=+3.0 \mathrm{~V}$
Input Leakage Current Low	${ }^{\prime}$ LIL			-10	$\mu \mathrm{A}$	$V_{1}=+0.7 \mathrm{~V}$
Output Leakage Current High	${ }^{\prime} \mathrm{LOH}$			+100	$\mu \mathrm{A}$	$\begin{aligned} & \hline \overline{C S}=" 1 " \\ & V_{\mathrm{O}}=3.5 \mathrm{~V} \\ & \hline \end{aligned}$
Output Leakage Current Low	${ }^{\text {I LOL }}$			-10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=" 1 " \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$
$V_{\text {DD }}$ Supply Current	${ }^{1} \mathrm{DD}$		20		mA	.
$V_{\text {CC }}$ Supply Current	${ }^{1} \mathrm{CC}$			0.3	mA	with no load

$T_{a}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$,
$V_{B B}=P_{G}=V_{C L}=V_{C G}=V_{S S}=0 V$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Access Time	${ }^{t} \mathrm{ACC}$			800	ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
$\overline{\mathrm{CS}}$ to Output On Delay	${ }^{\text {t }} \mathrm{CD}$ (on)			200	ns	
$\overline{\mathrm{CS}}$ to Output Off Delay	${ }^{\text {t }} \mathrm{CD}$ (off)	0		200	ns	
Output Hold Time	${ }^{\mathrm{t}} \mathrm{OH}$	0			ns	



## READ OPERATION

DC CHARACTERISTICS

PROGRAMMING OPERATION

Before the $\mu$ PD454 is programmed the device must be erased. All bit locations must contain a zero ( 0 ). The $\mu$ PD454 programming procedure is word by word one word at a time.

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CL}}=0 \mathrm{~V} . \mathrm{CS}=$ Either HIGH or LOW level.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Input High   Voltage	$\mathrm{V}_{\mathrm{IH}}$	3.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
Input Low   Voltage	$\mathrm{V}_{\mathrm{IL}}$	0		0.7	V	
Supply Voltage	$\mathrm{V}_{\mathrm{BB}}$	-1.9	-2.0	-2.1	V	
Supply Voltage	$\mathrm{P}_{\mathrm{G}}$	25	26	27	V	
Supply Voltage	$\mathrm{V}_{\mathrm{CG}}$	25	26	27	V	through $\mathrm{R}_{\mathrm{CG}}$
Supply Current   $\left(\mathrm{V}_{\mathrm{BB}}\right)$	$\mathrm{I}_{\mathrm{BB}}$		-8		mA	
Supply Current   $\left(\mathrm{P}_{\mathrm{G}}\right)$	$\mathrm{I}_{\mathrm{G}}$		+25		mA	
Supply Current   $\left(\mathrm{V}_{\mathrm{CG}}\right)$	$\mathrm{I}_{\mathrm{CG}}$			+10	$\mu \mathrm{~A}$	

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CL}}=0 \mathrm{~V} . \overline{\mathrm{CS}}=$ Either HIGH or LOW level..

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time	${ }^{\text {t }}$ ASW	10			$\mu \mathrm{s}$	
Address Hold Time	${ }^{\text {t }}$ AHW	10			$\mu \mathrm{s}$	
Write Data Width	twow	20		100	ms	per one word
$V_{\text {BB }}$ Setup Time	$\mathrm{T}^{\text {BS }}$	1.0			$\mu \mathrm{s}$	
$\mathrm{V}_{\mathrm{BB}}$ Hold Time	$\mathrm{T}_{\mathrm{BH}}$	1.0			$\mu \mathrm{s}$	
$\mathrm{P}_{\mathrm{G}}, \mathrm{V}_{\mathrm{CG}}$ Setup Time	${ }^{\text {TPS }}$	10		,	$\mu \mathrm{s}$	

TIMING WAVEFORMS

$\mu$ PD454
$T_{a}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{P}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\overline{\mathrm{CS}}, \mathrm{A}_{0}-\mathrm{A}_{7}$ and $\mathrm{D}_{0}-\mathrm{D}_{7}=$ Either HIGH or LOW level, or non-connected

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	$\mathrm{V}_{\mathrm{BB}}$	-4.75	-5.0	-5.25	V	
Supply Voltage	$\mathrm{V}_{\mathrm{CL}}$	+35	+36	+37	V	through $\mathrm{R}_{\mathrm{CL}}$
Supply Voltage	$\mathrm{V}_{\mathrm{CG}}$	-39	-40	-41	V	through $\mathrm{R}_{\mathrm{CG}}$
Supply Current   $\left(\mathrm{V}_{\mathrm{BB}}\right)$	$\mathrm{I}_{\mathrm{BB}}$			-235	mA	Initial peak   current. See   timing chart.
Supply Current   $\left(\mathrm{V}_{\mathrm{CL}}\right)$	I CL			-235	mA	
Supply Current   $\left(\mathrm{V}_{\mathrm{CG}}\right)$	ICG			-20	$\mu \mathrm{~A}$	

$T_{a}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{P}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\overline{\mathrm{CS}}, \mathrm{A}_{0}-\mathrm{A}_{7}$ and $\mathrm{D}_{0}-\mathrm{D}_{7}=$ Either HIGH or LOW level, or non-connected

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Clear Time	T $_{\text {CL }}$			60	sec	
$\mathrm{V}_{\text {BB }}$ Setup Timie	T $_{\mathrm{BS}}$	0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{BB}}$ Hold Time	$\mathrm{T}_{\mathrm{BH}}$	0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CG}}$ Setup Time	T $_{\mathrm{CS}}$	1.0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CG}}$ Hold Time	$\mathrm{T}_{\mathrm{CH}}$	1.0			$\mu \mathrm{~s}$	


*Erasure operation clears all 2048 bits to Logic " 0 " simultaneously.

## FULLY DECODED 8192 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The $\mu$ PD458 is an Electrically Erasable and Reprogrammable Read Only Memory (EEPROM), organized as 1024 words by 8 bits.

The $\mu$ PD458 is fabricated with N-channel MOS technology and is packaged in a 28 pin ceramic DIP.

FEATURES - Electrically Erasable and Reprogrammable

- Fully Decoded, 1024 Words $\times 8$ Bits Organization
- Access Time - 450 ns max.
- Fast Programming and Erasure Speed
- Simple Worst-case Verification of Programmed Data and Erasure
- Static, No Clock Required
- Input/Output TTL Compatible for Read and Programming Operation
- Three-State Output, OR-Tie Capability
- N-Channel MOS
- Two Power Supplies, +12 V and +5 V for Read
- 28 Pin Ceramic DIP

PIN CONFIGURATION



BLOCK DIAGRAM

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +11 Volts ${ }^{(1)}$
All Input Voltages	-0.3 to +11 Volts ${ }^{(1)}$
Supply Voltage VDD	-0.3 to +15 Volts ${ }^{(1)}$
Supply Voltage VCC	-0.3 to +7 Volts ${ }^{(1)}$
Supply Voltage VBB	. $\mathrm{VSS}^{\text {do }}$ to 7 Volts ${ }^{(2)}$
Supply Voltage PG	0.3 to +30 Volts ${ }^{(1)}{ }^{(2)}$
Supply Voltage VCL	-0.3 to +43 Volts ${ }^{(1)}$ (2)
Supply Voltage VCG	-44 to +30 Volts ${ }^{(1)}{ }^{(2)}$

Notes: (1) Relative to $V_{B B}$.
(2) Data in the memory cell is not guaranteed to be preserved.

Specifies ratings which will not cause permanent damage to the device.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIIN	-		10	pF	$f=1 \mathrm{MHz}$
Output Capacitance	COUT	,	-.	15	pF	$f=1 . \mathrm{MHz}$

SUPPLY VOLTAGES Typical values. Unit - Voltage.

MODE	$\mathbf{V}_{\mathbf{D D}}(23)$	$\mathbf{V}_{\mathbf{C C}}(\mathbf{2 8 )}$	$\mathbf{V}_{\mathbf{B B}}{ }^{(14)}$	$\mathbf{P}_{\mathbf{G}}(15)$	$\mathbf{V}_{\mathbf{C L}}(16)$	$\mathbf{V}_{\mathbf{C G}}{ }^{(13)}$	$\mathbf{V}_{\mathbf{S S}}(12)$
Read	+12	+5	0	0	0	0	0
Program	0	0	-2	+26	0	+26	0
Erase	0	0	-5	0	+36	-40	0 or
Open							
Verify "0"	+12	+5		0	0	+3	0
Verify "1"	+12	+5		0	0		0



Notes: $\quad{ }^{*}=$ Either High or Low Level, or Open.
(1) $R_{C G}$ and $R_{C L}$ are Protection Resistors
$R_{C G}=10 \mathrm{k} \Omega \pm 10 \%, 1 / 4 \mathrm{~W}$
$R_{C L}=200 \Omega \pm 10 \%, 10 \mathrm{~W}$
(2) RCG may be left connected in Read Mode.

PIN IDENTIFICATION

PIN		INPUT/ OUTPUT	FUNCTION
NO.	SYMBOL		
$\begin{aligned} & 1-8 \\ & 26,27 \\ & \hline \end{aligned}$	$A_{0}-A_{9}$	Input	Address Input...
24	$\overline{\mathrm{CS}}$	Input	Chip Select Input (Active Low)
$\begin{aligned} & 9-11 \\ & 17-21 \end{aligned}$	$\mathrm{O}_{1}-\mathrm{O}_{8}$	Output	Data Out for Read Operation
		Input	Data Input for Programming Operation
15	$\mathrm{P}_{\mathrm{G}}$	Power Supply	Power Supply for Programming Operation
16	$\mathrm{V}_{\text {CL }}$	Power Supply	Power Supply for Erasure Operation
13	$\mathrm{V}_{\text {CG }}$	Power Supply	Power Supply for Control Gate for Programming and Erasure Operation
14	$\mathrm{V}_{\mathrm{BB}}$	" Power Supply	Power Supply for Substrate Bias
23	$V_{D D}$	Power Supply	+12V Power Supply for Read Operation
28	$\mathrm{V}_{\text {CC }}$	Power Supply	+5V Power Supply for Read Operation
12	$\mathrm{V}_{\text {SS }}$	GND	Ground Reference

## $\mu$ PD458

$\mathrm{T}_{\mathrm{a}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$,
$\mathrm{V}_{\mathrm{BB}}=\mathrm{P}_{\mathrm{G}}=\mathrm{V}_{\mathrm{CL}}=\mathrm{V}_{\mathrm{CG}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	3.0		VCC	V	
Input Low Voltage	VIL	0		0.7	V	"
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	3.5			V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.5	V	$1 \mathrm{OL}=1.7 \mathrm{~mA}$
Input Leakage Current High	${ }^{\text {L LIH }}$		.	+10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+3.0 \mathrm{~V}$
Input Leakage Current Low	I LIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+0.7 \mathrm{~V}$
Output Leakage Current High	${ }^{1} \mathrm{LOH}$			+20	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=" 1 " \\ & \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{~V} \end{aligned}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=" 1 " \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$
$V_{\text {DD }}$ Supply Current	${ }^{\text {I DD }}$		55	80	mA	
$\mathrm{V}_{\mathrm{CC}}$ Supply Current	${ }^{1} \mathrm{CC}$		20	30	mA	with no load

$T_{a}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$,
$\mathrm{V}_{\mathrm{BB}}=\mathrm{P}_{\mathrm{G}}=\mathrm{V}_{\mathrm{CL}}=\mathrm{V}_{\mathrm{CG}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Access Time	${ }^{\mathrm{t}}$ ACC			450	ns	
$\overline{\mathrm{CS}}$ to Output   On Delay	${ }^{\mathrm{t}} \mathrm{CD}$ (on)			200	ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
$\overline{\mathrm{CS}}$ to Output   Off Delay	${ }^{\mathrm{t}} \mathrm{CD}$ (off)	0		200	ns	
Output Hold   Time	${ }^{\mathrm{t} O H}$	0			ns	



READ OPERATION
DC CHARACTERISTICS

AC CHARACTERISTICS

TIMING WAVEFORMS

Programming is performed word by word and one word at a time. Address and an 8 bit programming word for that address should be input at the same time. High level data " 1 " given through one of Data Input terminals $\left(\mathrm{O}_{1}-\mathrm{O}_{8}\right)$ writes a high level data " 1 " into the memory cell specified with the address input and its bit position.
After erasure, all memory cells of the $\mu$ PD458 contain cleared data " 0 ". By this programming operation, only the memory cells which contain data " 0 " are programmed to high level data " 1 " by high level input. Thus before normal programming operation, the $\mu$ PD458 should undergo erasure operation to clear all bits to " 0 ".
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CL}}=0 \mathrm{~V}$. $\overline{\mathrm{CS}}=$ Either HIGH or LOW level.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	3.0		5.25	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	0		0.7	V	
Supply Voltage	$V_{B B}$	-1.9	-2.0	-2.1	V	
Supply Voltage	$\mathrm{P}_{\mathrm{G}}$	25	26	27	V	
Supply Voltage	$\mathrm{V}_{\text {CG }}$	25	26	27	V	through $\mathrm{R}_{\mathrm{CG}}$
Supply Current ( $V_{\text {BB }}$ )	${ }^{\text {I BB }}$		-8	-15	mA	
Supply Current $\left(\mathrm{P}_{\mathrm{G}}\right)$	${ }^{\prime} \mathrm{G}$		$+30$	+50	mA	
Supply Current $\left(V_{C G}\right)$	${ }^{\text {ICG }}$			+20	$\mu \mathrm{A}$	

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time	${ }^{\text {t }}$ ASW	10			$\mu \mathrm{s}$	
Address Hold Time	${ }^{t}$ AHW	10			$\mu \mathrm{s}$	
Write Data Width	${ }^{\text {t }}$ WW	40		100	ms	per one word
$V_{\text {BB }}$ Setup Time	$\mathrm{T}_{\mathrm{BS}}$	1.0			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {BB }}$ Hold Time	$\mathrm{T}_{\mathrm{BH}}$	1.0			$\mu \mathrm{s}$	
$\mathrm{P}_{\mathrm{G}}, \mathrm{V}_{\mathrm{CG}}$ Setup Time	$\mathrm{T}_{\text {PS }}$	10			$\mu \mathrm{s}$	

TIMING WAVEFORMS

$T_{a}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{D D}=V_{C C}=P_{G}=0 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$ or Open
$\overline{\mathrm{CS}}, \mathrm{A}_{0}-\mathrm{A}_{9}$ and $0_{1}-0_{8}=$ Either HIGH or LOW level, or non-connected

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	$V_{\text {BB }}$	$-4.75$	-5.0	$-5.25$	V	
Supply Voltage	$\mathrm{V}_{\mathrm{CL}}$	+35	+36	+37	V	through $\mathrm{R}_{\mathrm{CL}}$
Supply Voltage	$\mathrm{V}_{\text {CG }}$	-39	-40	-41	V	through R CG
Supply Current $\left(\mathrm{V}_{\mathrm{BB}}\right)$	${ }^{\prime} \mathrm{BB}$			-240	mA	Initial peak current. See
Supply Current $\left(V_{C L}\right)$	${ }^{1} \mathrm{CL}$			+240	mA	timing chart.
Supply Current $\left(V_{\mathrm{CG}}\right)$	${ }^{1} \mathrm{CG}$			-20	$\mu \mathrm{A}$	

$T_{a}=25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{P}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ or Open
$\overline{\mathrm{CS}}, \mathrm{A}_{0}-\mathrm{A}_{9}$ and $0_{1}-0_{8}=$ Either HIGH or LOW level, or non-connected

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN.	TYP	MAX		
Clear Time	$T_{\mathrm{CL}}$		60		sec	
$\mathrm{V}_{\text {BB }}$ Setup Time	$\mathrm{T}_{\mathrm{BS}}$	0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{BB}}$ Hold Time	$\mathrm{T}_{\mathrm{BH}}$	0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CG}}$ Setup Time	$\mathrm{T}_{\mathrm{CS}}$	1.0			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CG}}$ Hold Time	$\mathrm{T}_{\mathrm{CH}}$	1.0			$\mu \mathrm{~s}$	



Note: The supply currents $\mathrm{I}_{\mathrm{BB}}$ and $\mathrm{I}_{\mathrm{CL}}$ diminish to almost zero within $\mathrm{T}_{\mathrm{CL}}$.
*Erasure operation clears all 8192 bits to Logic " 0 " simultaneously.

APPENDIX PROM PROGRAMMER DESIGN

To insure integrity and retention of data programmed in the $\mu$ PD458, the following requirements are specified for the $\mu$ PD458 supply voltage and current levels. The PROM. PROGRAMMER should be designed such that voltages provided to the PROM socket be within the range specified on any occasion including power on/off to the programmer, power on/off to the $\mu$ PD458, and in READ, WRITE or ERASE operation. Surge or noise voltages beyond the specified range are to be avoided.

Setting $V_{D D}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%$ and $V_{C G}=+3 \mathrm{~V} \pm 0.1 \mathrm{~V}$ after erasure and comparing data read from the $\mu$ PD458 with zero effectively tests for proper erasure.

Setting $V_{D D}=+12 V \pm 5 \%, V_{C C}=+5 V \pm 5 \%$ and $V_{C G}=-3 V \pm 0.1 V$ after programming and comparing data read from the $\mu$ PD458 with the desired data coupled with erase verification, provides a simple test of worst-case temperature and long-term data retention.

Under normal Read Mode conditions, $V_{C G}$ should either be grounded directly or held at $O \mathrm{~V} \pm 0.1 \mathrm{~V}$ through $\mathrm{R}_{\mathrm{CG}} . R_{\mathrm{CG}}$ is required when any non-zero voltage is applied to $V_{\text {CG }}$.

SYMBOL	LIMITS (2)									UNIT	TEST CONDITIONS
	READ			PROGRAM			ERASE				
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$V_{\text {DD }}$	+11.4	+12	+12.6	-0.3	0	+0.3	-0.3	0	+0.3	V	
$\mathrm{V}_{\mathrm{CC}}$	+4.75	+5	+5.25	-0.3	0	+0.3	-0.3	0	+0.3	V	
$V_{\text {cG }}$	-0.1	0	+0.1	+25	+26	+27	-39	-40	-41	$v$	
$V_{B B}$	-0.1	0	+0.1	-1.9	-2.	-2.1	-4.75	-5	-5.25	V	
$\mathrm{P}_{\mathrm{G}}$	-0.3	0	+0.3	+25	+26	+27	-0.3	0	+0.3	V	
$\mathrm{V}_{\mathrm{CL}}$	-0.1	0	+0.1	-0.1	0	+0.1	+35	+36	+37	$\checkmark$	
${ }^{1} \mathrm{CC}$		+20	+30			-0.2			-0.2	mA	(1)
IDD		+55	+80			-0.2			-0. 2	$m A$	(1)
${ }^{\text {I CG }}$			+10			+20			-20	$\mu \mathrm{A}$	(1)
IBB			-0.2		-8	-15			-240	mA	(1)
IPG			-0.2		+30	+50			-0.2	mA	(1)
${ }^{\text {I CL }}$			-0.5			-10			+240	mA	(1)

Notes: (1) At typical supply voltage
(2) All voltages relative to $V S S=0 \mathrm{~V}$.

PACKAGE OUTLINE $\mu$ PD458D


ITEM	MILLIMETERS	INCHES
A	36.0 MAX.	1.41 MAX.
B	1.5 MAX.	0.059 MAX
C	2.54	0.1
D	$0.50 \pm 0.1$	$0.02 \pm 0004$
E	33.0	1.299
F	1.27	0.05
G	3.2 MIN.	0.126 MIN
H	1.0 MIN	0.04 MIN
I	3.3 MAX.	0.13 MAX.
J	5.2 MAX.	0.20 MAX.
K	15.3	0.60
L	13.9	0.55
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$



## 16K ULTRAVIOLET ERASABLE PROM

The $\mu$ PD2716 is a 16,384 -bit Ultraviolet Erasable and Electrically Programmable Read Only Memory. Organized as 2048 words $\times 8$ bits, it operates from a single +5 volt powe supply, making it ideal for microprocessor applications. It is pin-for-pin compatible with the $\mu$ PD2316E, allowing economical changeover to a masked ROM for production quantities.

The $\mu$ PD 2716 features fast, simple, one pulse programming, controlled by TTL level signals. Total programming time for all $16,38: 4$ bits is only 100 seconds.

## FEATURES

- Access Time -450 ns Max
- 2048 Words x 8 Bits Organization
- Single +5 V Supply
- Pin Compatible with $\mu$ PD2316E Masked ROM
- Fast Programming
- TTL Level Controls for Reading and Programming
- Available in a 24 Pin Ceramic Package



```
Operating Temperature . - \(-10^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\)
Storage Temperature. \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
All Input Voltages . +6 to -0.3 Volts 1
All Output Voltages . +6 to -0.3 Volts (1)
Supply Current VPP . +26.5 to -0.3 Volts (2)
```

Notes: (1) With Respect to Ground.
(2) With Respect to Ground During Program.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		4	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT		8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: (1) This parameter is only sampled and is not $100 \%$ tested.

The recommended erasure procedure is to illuminate the window with a ultraviolet lamp which has a wavelength of 2537 angstroms ( $\AA$ ). The distance should be one inch from the window to the lamp. Erasure time will be from 19 to 45 minutes depending on the type of ultraviolet lamp. The arnount of time required can be expressed as the total amount of ultraviolet energy inciident to the window, expressed in watt-seconds per square centimeter. The $\mu$ PD 2716 requires an integrated dosage (ultraviolet intensity $x$ exposure time) of 15 watt-seconds $/ \mathrm{cm}^{2}$. This erase energy includes sufficient guardband to ensure complete erasure of alll bits.

## BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

## CAPACITANCE (1)

ERASURE OPERATION
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; (1) (2) $; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \pm 0.6 \mathrm{~V}$ (3)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(4)	MAX		
Input Load Current	'LI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
Output Leakage Current	ILO			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
V Pp Current	IPP1 ${ }^{(2)}$			12	mA	$\mathrm{VPP}=5.85 \mathrm{~V}$
$\mathrm{V}_{\text {CC }}$ Current (Standby)	$1 \mathrm{CC1} 1^{(2)}$		10	25	mA	$\overline{C E}=V_{I H}, \overline{O E}=V_{I L}$
$\mathrm{V}_{\text {CC }}$ Current (Active)	ICC2 ${ }^{2}$ )		57	100	mA	$\overline{C E}=\overline{C E}=V_{I L}$
Input Low Voltage	VIL	-0.1		0.8	V	
Input High Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.2			V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$

AC CHARACTERISTICS

PARAMETER	symbol	LIMITS			UNIT	TEST (6) CONDITIONS
		MIN	TYP (4)	MAX		
Address to Output Delay	${ }^{\text {t }}$ ACC			450	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{1 L}$
$\overline{\mathrm{CE}}$ to Output Delay	${ }^{\text {t }} \mathrm{CE}$			450	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{1} \mathrm{~L}$
Output Enable to Output Delay	toe			140	ns	$\overline{C E}=V_{\text {fl }}$
Output Enable High to Output Float	${ }^{\text {t }} \mathrm{DF}$	0		100	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
Address to Output Hold	${ }^{\text {t }}$ D ${ }^{\text {d }}$	0			ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{1 L}$

Notes: (1) $V_{C C}$ must be applied simultaneously or before VPP and removed simultaneously or after Vpp.
(2) $V_{P P}$ may be connected directly to $V_{C C}$ except during programming. The supply current would then be the sum of ICC and IPP1.
(3) The tolerance of 0.6 V allows the use of a driver circuit for switching the VPP supply pin from $V_{C C}$ in read to 25 V for programming.
(4) Typical values are for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
(5) This parameter is only sampled and is not $100 \%$ tested.
(6) AC Test Conditions: Output Load: 1 TTL gate and $C_{L}=100$

Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$
Input Pulse Levels: 0.8 V to 2.2 V
Timing Measurement Reference Level:
Inputs: 1 V and 2 V
Outputs: 0.8 V and 2 V

TIMING WAVEFORMS ①


Notes: (1) $\overline{O E}$ may be delayed up to $t_{A C C}-{ }^{-1} \mathrm{OE}$ after the falling edge of $\overline{C E}$ without impact on ${ }^{t} \mathrm{ACC}$.
(2) ${ }^{t} D F$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

## $\mu$ PD2716

Initially, and after each erasure, all bits of the $\mu$ PD2.716 are in the " 1 " state. Information is introduced by selectively programming " 0 " into the desired bit locations. A programmed " 0 " can only $:=$, changed to a " 1 " by UV erasure.
The $\mu$ PD2716 is programmed by applying a 50 ms , TTL programming pulse to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ pin with the $\overline{\mathrm{CE}}$ input high and the VPP supply at $25 \mathrm{~V} \pm 1 \mathrm{~V}$. Any location may be programmed at any time - either individually, sequentially, or randomly. The programming time for a single bit is only 50 ms and for all bits is approximately 100 seconds for the $\mu$ PD2716.

CAUTION: The $V_{C C}$ and $V_{P P}$ supplied must be sequenced on and off such that $V_{C C}$ is applied simultane ously or before VPP and removed simultaneously or after VPP to prevent damage to the $\mu$ PD2716. The maximum allowable voltage during programming which may be applied to the VPP with respect to ground is +26 V . Care must be taken when switching the VPP supply to prevent overshoot exceeding the 26 V maximum specification. For convenience in programming, the $\mu$ PD2716 may be verified with the VPP supply at $25 \mathrm{~V} \pm$ 1 V . During normal read operation, however, VPp must be at $\mathrm{V}_{\mathrm{CC}}$.
$T_{a} 25^{\circ} \mathrm{C} \cdot 5 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}+5^{\circ} \mathrm{c}$ (2) $: \mathrm{V}_{\mathrm{PP}}=25 \mathrm{~V}!1 \mathrm{~V}$ (2) (3)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Curnent (for Any Input)	'LI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} / 0.45$
VPP Supply Current	IPP1			12	mA	$\overline{C E} /$ PGM $=V_{\text {IL }}$
VPp Supply Current During Programming Pulse	IPP2			30	mA	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{\mathrm{IH}}$
$V_{\text {CC }}$ Supply Cur rent	ICC			100	mA	
Input Low Level	$V_{\text {IL }}$	0.1		0.8	V	
Input High Level	V IH	2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	.

$T_{a}=25^{\circ} \mathrm{C}: 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ (2) $; V_{P P}=25 \mathrm{~V} \pm 1 \mathrm{~V}$ (2) (3)

PARAMETER	SYMBOL	LIMITS			UNITS	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS (4) } \\ \hline \end{gathered}$
		MIN	TYP	MAX		
Address Setup Time	tAS	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Setup Time	toes	2			$\mu \mathrm{s}$	
Data Setup Time	tDS	2			$\mu \mathrm{s}$	
Address Hold Time	${ }^{t} \mathrm{AH}$	2			$\mu \mathrm{s}$	
$\overline{\text { OE Hold Time }}$	toen	2			$\mu \mathrm{s}$	
Data Hold Time	tDH	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	tDF	0		120	ns	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{\text {IL }}$
Output Enable to Output Delay	toE			120	ns	$\overline{C E} / P G M=V_{I L}$
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Time	tPRT	5			ns	
Program Pulse Fall Time	IPFT	5			ns	'

Notes: (1) NEC Microcomputer's standard product warranty applies only to devices programmed to specifications described herein.
(2) $V_{C C}$ must be applied simultaneously or before VPP. and removed simultaneously or after Vpp. The $\mu$ PD 2716 must not be inserted into or removed from a board with $V_{\text {pp }}$ at $25 \pm 1 \mathrm{~V}$ to prevent damage to the device.
(3) The maximum allowable voltage which may be applied to the $V_{P P}$ pin during programming is +26 V . Care must be taken when switching the $\mathrm{V}_{\mathrm{pp}}$ supply to prevent overshoot exceeding this 26 V maximum specification.
(4) AC Test Conditions:



PROGRAMMING OPERATION

DC CHARACTERISTICS ©

AC CHARACTERISTICS (1)

TIMING WAVEFORM

# FULLY DECODED 16,384 BIT MASK PROGRAMMABLE READ ONLY MEMORY 

DESCRIPTION

FEATURES - Access Time 450 ns Max

- 2048 Words $\times 8$ Bits Organization
- Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Three Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for 2316E
- Available in 24 -pin plastic or ceramic packages


PIN NAMES

$A_{0}-A_{10}$	Address Inputs
$D_{1}-D_{8}$	Data Outputs
$\mathrm{CS}_{1}-\mathrm{CS}_{3}$	Programmable Chip Select Inputs



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0 Volts $(1)$
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \pm 5 \%$ unless otherwise noted.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current (All Input Pins)	${ }^{\prime} \mathrm{L}$ I			+10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
				-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Output Leakage Current	ILOH			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	ILOL			-20	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=0 \mathrm{~V}$
Power Supply Current	ICC		70	120	mA	
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	+2.4		$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	V	
Output "Low" Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output "High" Voltage	$\mathrm{V}_{\mathrm{OH}}$	$+2.4$			V	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input   Capacitance	$\mathrm{CIN}^{\text {I }}$		5	10	pf	All Pins Except Pin Under Test Tied to AC Ground
Output   Capăcitance	COUT	$\therefore$	10	15	pf	All Pins Except Pin Under Test Tied to AC Ground

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address to Output Delay Time	${ }^{t} A$			450	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {c }} \mathrm{CO}$			120	ns	$V_{\text {ref out }}=0.8 \mathrm{~V}, 2 \mathrm{~V}$
Chip Deselect to Output   Data Float Delay   Time	${ }^{\text {t }}$ DF	10		100	ns	Output LOAD $=1$ TTL GATE $C_{L}=100 \mathrm{pf}$

TIMING WAVEFORMS


## $\mu$ PD2316E



PACKAGE OUTLINE $\mu$ PD2316EC/D

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$


$\mu$ PD2316ED (Ceramic)

ITEM	MILLIMETERS	INCHES
A	32.5 MAX	1.28 MAX
B	2.28	0.09
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.165 MAX
J	5.2 MAX	0.205 MAX
K	15.24	0.6
L	13.9	0.55
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

## FULLY DECODED 32,768 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The NEC $\mu$ PD2332 is a Fully Decoded 32,768 Bit Mask Programmable Read-Only Memory organized as 4,096 Words by 8 Bits. The $\mu$ PD 2332 has two chip select inputs and the combination of "High"/"Low" levels of these inputs is mask-programmable.

The $\mu$ PD2332 is fabricated with sophisticated N -channel MOS technology and features high speed and TTL compatibility for simple interface with bipolar circuits.

## FEATURES - 4096 Words'x 8 Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Fully Static (No Clock or Refresh Required)
- Single +5 V Power Supply
- High Speed - Access Time 450 ns Max.
- Three-State Output - OR-Tie Capability
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- N-Channel MOS Technology
- Pin Compatible with TI TMS4732
- 24 Pin Plastic or Ceramic Dual-in-Line Package


PIN NAMES	
$A_{0}-A_{11}$	Address Inputs
$O_{1}-O_{8}$	Data Outputs
$C S_{1}-C S_{2}$	Programmable Chip Select Inputs

When ordering the $\mu \mathrm{PD} 2332$, specify a chip select combination of $\mathrm{CS}_{1}$ and $\mathrm{CS}_{2}$ from the following.

$\mathrm{CS}_{2}$	$\mathrm{CS}_{1}$
0	0
0	1
1	0
1	1



Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7.0 Volts $^{(1)}$

Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
Input Load Current (All Input Pins)	${ }^{1} \mathrm{LI}$			10	$\mu \mathrm{A}$	f
Output Leakage Current	${ }^{\text {LOH }}$			+10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	${ }_{\text {LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$
Power Supply Current	${ }^{\text {I CC }}$		55	110	mA	All inputs 5.25V Data Out Open
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	V	
Output "Low" Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output "High" Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.2			V	${ }^{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Note: (1) Typical Values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TYP.
	MAX:	UNIT CONDITIONS				
Input Capacitance	CIN			10	pF	All Pins Except Pin Under   Test Tied to AC Ground
Output Capacitance	COUT			15	pF	All Pins Except Pin Under   Test Tied to AC Ground

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Address to Output Delay Time	${ }^{t}$ A			450	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {t }} \mathrm{CO}$			150	ns	$C_{L}=100 \mathrm{pF}$
Chip Deselect to Output Data Float Delay Time	${ }^{\text {t }}$ F	0		150	ns	Load $=1 T T L$ gate
Output Hold Time	${ }^{\text {t }} \mathrm{OH}$	20			ns	$\begin{aligned} & V_{I N}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.45 / 2.2 \mathrm{~V} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

TIMING WAVEFORMS

PACKAGE OUTLINE $\mu$ PD2332C/D


$\mu$ PD2332D (Ceramic)

ITEM	MILLIMETERS	INCHES
A	32.5 MAX	1.28 MAX
B	2.28	0.09
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.20 MIN	0.047 MIN
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.165 MAX
J	5.2 MAX	0.205 MAX
K	15.24	0.6
L	13.9	0.55
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$


ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$



# FULLY DECODED 65,536 BIT MASK PROGRAMMABLE READ ONLY MEMORY 

The NEC $\mu$ PD 2364 is a high speed 65,536 bit mask programmable Read Only Memory organized as 8,192 words by 8 bits. The $\mu$ PD2364 is fabricated with $N$-channel MOS technology.

The inputs and outputs are fully TTL compatible. This device operates with a single +5 V power supply. The chip select input is programmable. Any of active high or low level chip select input can be defined and desired chip select code is fixed during the masking process.

FEATURES - 8,192 Words $\times 8$ Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Single +5 V Power Supply
- High Speed - Access Time 450 ns Max.
- Three-State Output - OR-Tie Capability
- One Programmable Chip Select Input for Easy Memory Expansion
- On-Chip Address Fully Decoded
- All Inputss Protected Against Static Charge
- Pin Compatible with MK36000
- Available in $\mathbf{2 4}$ Pin Ceramic or Plastic Dual-in-Line Package



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ RATINGS*
Supply Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7.0 Volts (1)
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input Load Current (All Input Pins)	15			+10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
				-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Output Leakage Current	${ }^{1} \mathrm{LOH}$			+10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=0 \mathrm{~V}$
Power Supply Current	${ }^{\text {I CC }}$		80	140	mA	
Input "Low" Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	$\checkmark$	
Output "Low" Voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
Output " 'High" Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.2			$\checkmark$	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$

Note: (1) Typical Values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

## CAPACITANCE

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER		LIMITS		SYMBOL	MIN	TYP
			TEST CONDITIONS			
Input Capacitance				10	pF	All Pins Except Pin Under   Test Tied to AC Ground
Output Capacitance	COUT			15	pF	All Pins Except Pin Under   Test Tied to AC Ground

## AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address to Output Delay Time	${ }^{t} A$			450	ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
Chip Select to Output Enable Delay Time	${ }^{\text {t }} \mathrm{CO}$			150	ns	$C_{L}=100 \mathrm{pF}$
Chip Deselect to Output Data Float Delay Time	${ }^{\text {t }}$ DF	0		150	ns	Load $=1$ TTL gate
Output Hold Time	${ }^{1} \mathrm{OH}$	20			ns	$\begin{aligned} & V_{\text {IN }}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.8 \text { to } 2.0 \mathrm{~V} \end{aligned}$

TIMING WAVEFORMS



PACKAGE OUTLINE $\mu$ PD2364C/D

Plastic

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01_{-0.05}^{+0.004}$



Ceramic

ITEM	MILLIMETERS	INCHES
A	30.78 Max	1.21 Max
B	1.42	0.06
C	2.54	0.10
D	$0.46 \pm 0.8$	$0.018 \pm 0.03$
E	27.94	1.10
F	1.02	0.04
G	3.2 Min	0.13 Min
H	1.02	0.04
I	3.23	0.13
J	4.25 Max	0.17 Max
K	15.24	0.60
L	14.93	0.59
M	$0.25 \pm 0.05$	$0.010 \pm 0.002$

NOTES

## MICROCOMPUTER INDEX

$\mu$ COM-4 ..... PAGE
$\mu$ COM-42 ..... 123
$\mu$ PD548 ..... 127
$\mu$ PD555 ..... 129
$\mu$ COM-43/44/45 ..... 133
$\mu$ PD546 ..... 139
$\mu$ PD547 ..... 141
$\mu$ PD547L ..... 143
$\mu$ PD550 ..... 145
$\mu$ PD552 ..... 147
$\mu$ PD553 ..... 149
$\mu$ PD554 ..... 151
$\mu$ PD650 ..... 153
$\mu$ PD651 ..... 155
$\mu$ PD652 ..... 157
$\mu$ PD556 ..... 159
$\mu \mathrm{COM}-46$ ..... 163
$\mu$ PD551 ..... 163
$\mu$ COM- 8
Processors
$\mu$ PD780 ..... 167
$\mu$ PD8080AF ..... 183
$\mu$ PD8085A ..... 197
Single Chip Microcomputers
$\mu$ PD8021 ..... 211
$\mu$ PD8041/8741 ..... 217
$\mu$ PD8048/8748/8035 ..... 225
$\mu$ PD8049/8039 ..... 237
Peripherals
$\mu$ PD371 ..... 247
$\mu$ PD 372 ..... 255
$\mu$ PD 379 ..... 263
MPD. 765 ..... 271
$\mu$ PD8155/8156 ..... 289
$\mu$ PB8212 ..... 297
$\mu$ PB82.14 ..... 303
$\mu$ PB8216/8226 ..... 309
$\mu$ PB8224 ..... 313
$\mu$ PB8228/8238 ..... 319
$\mu$ PD8243 ..... 325
$\mu$ PD8251/8251A ..... 331
$\mu$ PD8253 ..... 349
$\mu$ PD8255/8255A-5 ..... 357
$\mu$ PD8257 ..... 365
$\mu$ PD8259 ..... 373
$\mu$ PD8279-5 ..... 389
$\mu$ PD8355/8755A ..... 399
Microcomputer on a Board
TK-80A ..... 405
$\mu$ COM-4 MICROCOMPUTER SELECTION GUIDE

DEVICE	PRODUCT	ROM	RAM	1/0	TECHNOLOGY	OUTPUT	SUPPLY VOLTAGES	PINS
$\mu$ PD548	$\mu$ COM-42 CPU	$1920 \times 10$	$96 \times 4$	35	PMOS	-35V, O.D.	-10	42
$\mu$ PD546	$\mu \mathrm{COM}-43 \mathrm{CPU}$	$2000 \times 8$	$96 \times 4$	35	PMOS	-10V; O.D.	-10	42
$\mu$ PD553	$\mu$ COM-43H CPU	$2000 \times 8$	$96 \times 4$	35	PMOS	-35V, O.D.	-10	42
$\mu$ PD650	$\mu$ COM-43C CPU	$2000 \times 8$	$96 \times 4$	35	CMOS	push-pull	+5	42
$\mu$ PD547	$\mu \mathrm{COM}$-44 CPU	$1000 \times 8$	$64 \times 4$	35	PMOS	-10V, O.D.	-10	42
$\mu$ PD547L	$\mu$ COM-44L CPU	$1000 \times 8$	$64 \times 4$	35	PMOS	-10V, O.D.	-8	42
$\mu$ PD552	$\mu$ COM-44H CPU	$1000 \times 8$	$64 \times 4$	35	PMOS	-35V, O.D.	-10	42
$\mu$ PD651	$\mu$ COM-44C CPU	$1000 \times 8$	$64 \times 4$	35	CMOS	push-pull	+5	42
$\mu$ PD550	$\mu \mathrm{COM}-45 \mathrm{CPU}$	$640 \times 8$	$32 \times 4$	21	PMOS	-35V, O.D.	-10	28
$\mu$ PD554	$\mu$ COM-45 CPU	$1000 \times 8$	$32 \times 4$	21	PMOS	-35V, O.D.	-10	28
$\mu$ PD652	$\mu$ COM-45C CPU	$1000 \times 8$	$32 \times 4$	21	CMOS	push-pull	+5	28
$\mu$ PD551	$\mu \mathrm{COM}-46 \mathrm{CPU}$ with A/D	$1000 \times 8$	$64 \times 4$	28	PMOS	-10V, O.D.	-10	40
$\mu$ PD555	$\mu \mathrm{COM}-42$ EVACHIP	-	$96 \times 4$	35	PMOS	-10V, O.D.	-10	64
$\mu$ PD556	$\mu$ COM-43 EVACHIP	-	$96 \times 4$	35	PMOS	-10V, O.D.	-10	64

Notes:
O.D. = Open Drain

H = High Negative Voltage Outputs
$C=$ CMOS
L = Low Power

## $\mu$ COM-8 MIC:ROCOMPUTER SELECTION GUIDE

## MICROPROCESSORS

DEVICE	PRODUCT	SIZ.E	TECHNOLOGY	OUTPUT	CYCLE	SUPPLY   VOLTAGES	PINS
$\mu$ PD780	Microprocessor	8-bit	NMOS	3 -State	2.5 MHz	+5	40
$\mu$ PD780-1	Microprocessor	8-bit	NMOS	3 -State	4.0 MHz	+5	40
$\mu$ PD8085A	Microprocessor	8 -bit	NMOS	3 -State	3.0 MHz	+5	40
$\mu$ PD8080AF	Microprocessor	8 -bit	NMOS	$3-S t a t e$	2.0 MHz	$+12 \pm 5$	40
$\mu$ PD8080AF-2	Microprocessor	8-bit	NMOS	3 -State	2.5 MHz	$+12 \pm 5$	40
$\mu$ PD8080AF-1	Microprocessor	8-bit	NMOS	3 -State	3.0 MHz	$+12 \pm 5$	40

## SINGLE CHIP MICROCOMPUTERS

DEVICE	PRODUCT	ROM	RAM	1/0	TECHNOLOGY	SIZE	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
$\mu$ PD8021	Microcomputer	$1024 \times 8$	$64 \times 8$	21	NMOS	8-bit	3-State	3 MHz	+5	28
$\mu$ PD8035	Microcomputer	External	$64 \times 8$	27	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8039	Microcomputer	External	$128 \times 8$	27	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8041	Microcomputer	$1024 \times 8$	$64 \times 8$	18	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8048	Microcomputer	$1024 \times 8$	$64 \times 8$	27	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8049	Microcomputer	$2048 \times 8$	$128 \times 8$	27	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8741	Microcomputer	$1024 \times 8$ (UV)	$64 \times 8$	18	NMOS	8-bit	3-State	6 MHz	+5	40
$\mu$ PD8748	Microcomputer	$1024 \times 8$ (UV)	$64 \times 8$	27	NMOS	8-bit	3-State	6 MHz	+5	40

## $\mu$ COM-8 MICROCOMPUTER SELECTION GUIDE

SYSTEM SUPPORT

DEVICE	PRODUCT	SIZE	TECHNOLOGY	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
$\mu$ PD371	Tape Cassette Controller	8-bit	NMOS	3-State	2 MHz	$+12 \pm 5$	42
$\mu \mathrm{PD} 372$	Floppy Disk Controller	8-bit	NMOS	3-State	2 MHz	+12 $\pm 5$	42
$\mu \mathrm{PD} 379$	Synchronous Receiver/ Transmitter	8-bit	NMOS	3-State	800K baud	$+12 \pm 5$	42
$\mu$ PD765	Double Sided/Double Density Floppy Disk Controller	8-bit	NMOS	3-State	8 MHz	+5	40
$\mu$ PD8155	$256 \times 8$ RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
$\mu$ PD8156	$256 \times 8$ RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
$\mu$ PB8212	I/O Port	8-bit	Bipolar	3-State	-	+5	24
$\mu$ PD8214	Priority Interrupt Controller	3-bit	Bipolar	Open Collector	3 MHz	+5	24
$\mu \mathrm{PB} 8216$	Bus Driver Non-Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB} 8224$	Clock Generator Driver	2 phase	Bipolar	High Level Clock	3 MHz	$+12 \pm 5$	16
$\mu \mathrm{PB} 8226$	Bus Driver Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB} 8228$	System Controller	8-bit	Bipolar	3-State		+5	28
$\mu \mathrm{PB} 8238$	System Controller	8-bit	Bipolar	3-State	-	+5	28
$\mu$ PD8243	I/O Expander	$4 \times 4$ bits	NMOS	3-State	-	+5	24
$\mu$ PD8251	Programmable Communications Interface (Async/Sync)	8-bit	NMOS	3-State	A-9.6K baud S-56K baud	+5	28
$\mu$ PD8251A	Programmable Communications Interface (Async/Sync)	8-bit	NMOS	3-State	A-9.6K baud S-64K baud	+5	28
$\mu$ PD8253	Programmable Timer	8-bit	NMOS	3-State	3.3 MHz	+5	24
$\mu$ PD8253-5	Programmable Timer	8-bit	NMOS	3-State	3.3 MHz	+5	24
$\mu \mathrm{PD} 8255$	Peripheral Interface	8-bit	NMOS	3-State	-	+5	40
$\mu$ PD8255A-5	Peripheral Interface	8-bit	NMOS	3-State	-	+5	40
$\mu$ PD8257	Programmable DMA Controller	8-bit	NMOS	3-State	3 MHz	+5	40
$\mu$ PD8257-5	Programmable DMA Controller	8-bit	NMOS	3-State	3 MHz	+5	40
$\mu$ PD8259	Programmable Interrupt Controller	8-bit	NMOS	3-State	-	+5	28
$\mu$ PD8259-5	Programmable Interrupt Controller	8-bit	NMOS	3-State	-	+5	28
$\mu$ PD8279-5	Programmable Keyboard/   Display Interface	8-bit	NMOS	3-State	-	+5	40
$\mu \mathrm{PD} 8355$	$2048 \times 8$ ROM with I/O Ports	8-bit	NMOS	3-State	-	+5	40
$\mu$ PD8755A	$2048 \times 8$ EPROM with I/O Ports	8-bit	NMOS	3-State	-	+5	40

## $\mu C O M-8$ MICROCOMPUTER SELECTION GUIDE

MEMORY SUPPORT

DEVICE	PRODUCT	SIZE	TECHNOLOGY	OUTPUT	ACCESS TIME	SUPPLY VOLTAGES	PINS
$\mu$ PD2316E	Mask ROM	$2048 \times 8$	NMOS	3-State	450 ns	+5	24
$\mu \mathrm{PD} 2332$	Mask ROM	$4096 \times 8$	NMOS	3-State	450 ns	+5	24
$\mu$ PD2364	Mask ROM	$8192 \times 8$	- NMOS	3-State	450 ns	+5	24
$\mu$ PD 454	Electrically   Erasable   Programmable   ROM	$256 \times 8$	NMOS	3-State	800 ns	+12 + 5*	24
$\mu$ PD458	Electrically   Erasable   Programmable   ROM	$1024 \times 8$	NMOS	3-State	450 ns	$+12+5^{*}$	28
$\mu \mathrm{PD} 2716$	UV Erasable Programmable ROM	$2048 \times 8$	NMOS	3-State	450 ns	+5	24
$\mu$ PD411	Dynamic RAM	$4096 \times 1$	NMOS	3-State	150-350 ns	$+12 \pm 5$	22
$\mu \mathrm{PD} 411 \mathrm{~A}$	Dynamic RAM	$4096 \times 1$	NMOS	3-State	200-350 ns	$+12 \pm 5$	22
$\mu$ PD416	Dynamic RAM	$16384 \times 1$	NMOS	3-State	$120-350 \mathrm{~ns}$	+12 $\pm 5$	16
$\mu \mathrm{PD} 2101 \mathrm{AL}$	Static RAM	$256 \times 4$	NMOS	3-State	$250-450 \mathrm{~ns}$	+5	22
$\mu \mathrm{PD} 2102 \mathrm{AL}$	Static RAM	$1024 \times 1$	NMOS	3-State	250-450 ns	+5	16
$\mu \mathrm{PD} 2111 \mathrm{AL}$	Static RAM	$256 \times 4$	NMOS	3-State	250-450 ns	+5	18
$\mu \mathrm{PD} 2114 \mathrm{~L}$	Static RAM	$1024 \times 4$	NMOS	3-State	200-450 ns	+5	18
$\mu \mathrm{PD} 4104$	Static RAM	$4096 \times 1$	NMOS	3-State	$85-300 \mathrm{~ns}$	+5	18
$\mu$ PD421	Static RAM	$1024 \times 8$	NMOS	3-State	$85-100 \mathrm{~ns}$	+5	22
$\mu$ PD443/6508	Static RAM	$1024 \times 1$	CMOS	3-State	200 ns	+5	16
$\mu$ PD5101L	Static RAM	$256 \times 4$	CMOS	3-State	$450-800 \mathrm{~ns}$	+5	22
$\mu$ PD444/6514	Static RAM	$1024 \times 4$	CMOS	3-State	300 ns	+5	18
$\mu$ PD445L	Static RAM	$1024 \times 4$	CMOS	3-State	450-650 ns	+5	20

Note: * - Read Mode

## MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIRTION	NEC REPLACEMENT
AMD	AM8080A/9080A   AM8080A-2/9080A-2   AM8080A-1/9080A-1   AM8085A   AM8155   AM8156   AM8212   AM8214   AM8216   AM8224   AM8226   AM8228   AM8238   AM8251   AM8255   AM8257   AM8355   AM8048	Microprocessor ( 2.0 MHz )   Microprocessor ( 2.5 MHz )   Micropracessor ( 3.0 MHz )   Microprocessor ( 3.0 MHz )   Programmable Peripheral Interface with $256 \times 8$ RAM   Programmable Peripheral Interface with $256 \times 8$ RAM   I/O Port (8-Bit)   Priority Interrupt Controller   Bus Driver, Inverting   Clock Generator/Driver   Bus Driver, Non-Inverting   System Controller   System Controller   Programmable Communications Interface   Programmable Peripheral Interface   Programmable DMA Controller   Programmable Peripheral Interface   with $2048 \times 8$ ROM   Single Chip Microcomputer	$\mu$ PD8080AF $\mu$ PD8080AF-2 $\mu$ PD8080AF-1 $\mu$ PD8085A $\mu$ PD8155   $\mu$ PD8156   $\mu$ PB8212   $\mu$ PB8214   $\mu$ PB8216   $\mu$ PB8224   $\mu$ PB8226   $\mu$ PB8228   $\mu$ PB8238   $\mu$ PD8251   $\mu$ PD8255   $\mu$ PD8257   $\mu$ PD8355   $\mu$ PD8048
INTEL	$\begin{aligned} & 8080 A \\ & 8080 A-2 \\ & 8080 A-1 \\ & 8021 \\ & 8035 \\ & 8039 \\ & 8041 \\ & \\ & 8048 \\ & 8049 \\ & 8085 \\ & 8155 \\ & \\ & 8156 \\ & 8212 \\ & 8214 \\ & 8216 \\ & 8224 \\ & 8226 \\ & 8228 \\ & 8238 \\ & 8243 \end{aligned}$	Microprocessor ( 2.0 MHz )   Microprocessor ( 2.5 MHz )   Microprocessor (3.0 MHz)   Microcomputer with ROM   Microprocessor   Microprocessor   Programmable Peripheral Controller   with ROM   Microcomputer with ROM   Microcomputer with ROM   Microprocessor   Programmable Peripheral Interface with $256 \times 8$ RAM   Programmable Peripheral Interface   with $256 \times 8$ RAM   I/O Port (8-Bit)   Priority Interrupt Controller   Bus Driver, Non-Inverting   Clock Generator/Driver   Bus Driver, Inverting   System Controller   System Controller   1/O Expander	$\mu$ PD8080AF   $\mu$ PD8080AF-2   $\mu$ PD8080AF-1   $\mu$ PD8021   $\mu$ PD8035   $\mu$ PD8039   $\mu$ PD8041   यPD8048   यPD8049   $\mu$ PD8085A   $\mu$ PD8155   $\mu$ PD8156   $\mu$ PB8212   $\mu$ PB8214   $\mu$ PB8216   $\mu$ PB8224   $\mu$ PB8226   $\mu$ PB8228   $\mu$ PB8238   $\mu$ PD8243

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
INTEL (CONT.)	8251	Programmable Communications Interface (Async/Sync)	$\mu \mathrm{PD} 8251$
	8251A	Programmable Communications Interface (Async/Sync)	$\mu$ PD8251A
	8253	Programmable Timer	$\mu$ PD8253
	8253-5	Programmable Timer	$\mu$ PD8253-5
	8255	Programmable Peripheral Interface	$\mu$ PD8255
	8255A	Programmable Peripheral Interface	$\mu$ PD8255A-5
	8255A-5	Programmable Peripheral Interface	$\mu$ PD8255A-5
	8257	Programmable DMA Controller	$\mu$ PD8257
	8257-5	Programmable DMA Controller	$\mu$ PD8257-5
	8259	Programmable Interrupt Controller	$\mu \mathrm{PD} 8259$
	8259-5	Programmable Interrupt Controller	$\mu$ PD8259-5
	8279-5	Programmable Keyboard/Display Interface	$\mu$ PD8279-5
	8355	Programmable Peripheral Interface with $2048 \times 8 \text { ROM }$	$\mu$ PD8355
	8741	Programmable Peripheral Controller with EPROM	$\mu$ PD8741
	8748	Microcomputer with EPROM	$\mu \mathrm{PD} 8748$
	8755A	Programmable Peripheral Interface with 2K x 8 EPROM	$\mu$ PD8755A
NATIONAL	INS8080A	Microprocessor ( 2.0 MHz )	$\mu$ PD8080AF
	INS8080A-2	Microprocessor ( 2.5 MHz )	$\mu$ PD8080AF-2
	INS8080A-1	Microprocessor ( 3.0 MHz )	$\mu \mathrm{PD} 8080 \mathrm{AF}-1$
	8212	I/O Port (8-Bit)	$\mu \mathrm{PB} 8212$
	. 8214	Priority Interrupt Controller	$\mu$ PB8214
	8216	Bus Driver, Non-Inverting	$\mu \mathrm{PB} 8216$
	8224	Clock Generator/Driver	$\mu \mathrm{PB} 8224$
	8226	Bus Driver, Inverting	$\mu \mathrm{PB} 8226$
	8228	System Controller	$\mu \mathrm{PB} 8228$
	8238	System Controller	$\mu \mathrm{PB8238}$
	INS8251	Programmable Communications Interface	$\mu$ PD8251
	INS8253	Programmable Timer	$\mu$ PD8253
	INS8255	Programmable Peripheral Interface	$\mu$ PD8255
	INS8257	Programmable DMA Controller	$\mu$ PD8257
	INS8259	Programmable Interrupt Controller	$\mu$ PD8259
T.I.	TMS8080A	Microprocessor ( 2.0 MHz )	$\mu$ PD8080AF
	TMS8080A-2	Microprocessor ( 2.5 MHz )	$\mu$ PD8080AF-2
	TMS8080A-1	Microprocessor ( 3.0 MHz )	$\mu$ PD8080AF-1
	SN74S412	1/O Port (8-Bit)	$\mu$ PB8212
	SN74LS424	Clock Generator/Driver	$\mu$ PB8224
	SN74S428	System Controller	$\mu \mathrm{PB} 8228$
	SN74S438	System Controller	$\mu \mathrm{PB} 8238$

## $\mu$ COM-42 4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ COM-42 (Part No. $\mu$ PD548) is a single chip microcomputer that is ideally suited for Electronic Cash Register (ECR), Point of Sale (POS) and Electronic Scale applications.

Containing a 4-bit Parallel ALU, ROM for program storage and RAM for data storage, the $\mu$ COM-42 provides an economical and simple solution to many Vending/Calculating requirements.

Because of its extensive instruction set and five input/output ports, the $\mu \mathrm{COM}-42$ is capable of controlling an $8 \times 4$ keyboard, an 8 digit display and low cost ECR-type printers.

Finally, the on-chip RAM space can be augmented by an external CMOS RAM for applications requiring low power data retention.

FEATURES - Stand Alone 4-bit Microcomputer

- All 72 Instructions are Single Byte
- $10 \mu \mathrm{sec}$ Instruction Cycle
- $1920 \times 10$-Bit Program Memory (ROM)
- $96 \times 4$-Bit Data Memory (RAM)
- 4-Level Stack
- 2 Interrupt Request Lines
- I/O Compatible with TTL
- 10 Discrete Output Ports ( $F_{0}-\mathrm{Fg}_{9}$ )
- Two 8-Bit Output Ports ( $\left.\mathrm{U}_{0}-\mathrm{U}_{7}, \mathrm{R}_{0} \cdot \mathrm{R}_{7}\right)$
- One 4-Bit Input Port $\left(\mathrm{K}_{0}-\mathrm{K}_{3}\right)$
- One 4-Bit Input/Output Port ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ )
- One Single Bit Testable Input Port ( $\mathrm{K}_{4}$ )
- Single Phase TTL Level Clock ( 200 KHz Max.)
- Single Supply, - 10V PMOS Technology
- 42 Pin Plastic Dual-in-Line Package



The 11-bit program counter is composed of two sections, a 4-bit page register and a 7 -bit polynomial counter. The page register selects one page out of 15 , each consisting of 128 words addressed by the 7 -bit polynomial counter. The contents of the page register are independent of the operation of the polynomial counter, so that it is not affected by polynomial counter overflow.

## Stack Register

In order to store the program counter contents upon an interrupt or subroutine call, four 11-bit stack registers are provided to enable a combination of subroutine calls and interrupt nesting to four levels. The stack register is a LIFO (Last in, First-Out) type.

## ROM (Read Only Memory)

The on-chip ROM consists of 1,920 words of ten bits each and is divided into 15 pages. A page is selected by the page register, the upper four bits of the program counter. Each page consists of 128 words addressed by the polynomial counter, the lower seven bits of the program counter.

## RAM (Data Memory)

The data memory is a $96 \times 4$-bit RAM addressed by a 7 -bit data pointer (DP). The RAM is divided into six rows of 164 -bit columns each. The 7 -bit data pointer consists of an upper 3-bit register (DPH) which selects the row address and a lower 4-bit register (DPL) which selects the column address.


Data memory $(96 \times 4)$

## Internal Registers

The Accumulator (ACC) is connected with the ALU and the carry flip-flop (C) and is able to perform either binary or decimal arithmetic by testing the decimal addition flip-flop (DAF) and the decimal subtraction flip-flop (DSF). Constants are loaded into the ACC as immediate data from ROM and variable data are loaded from or exchanged with RAM. The ACC is also connected with the temporary register (TR), the parallel I/O port S and the parallel input port K. The TR is an auxiliary register used for temporary storage of 4 -bit data. The Q register is an 8 -bit serial-in/parallel-out shift register designed for display digit strobing and generation of printer hammer triggers.

## I/O Ports

The R port is an 8 -bit parallel port that may be loaded from the Q register for digit strobing or loaded with the 4-bit TR and the 4-bit DPL for external RAM addressing. The $U$ port is an 8 -bit parallel port that is loaded with immediate data. It is usually used for outputting segment information for display and digit information for key scanning. The K port is a 4-bit input port that is usually used for key scan input. The K4 port is a single bit port that is testable by software. The S port is a 4-bit parallel I/O port that is typically used as the data bus to external RAM. The F port consists of ten discrete output lines that can be individually set or reset under program control.

## Interrupt Ports

Two interrupt input lines, IA and IB, are available to accept an interrupt request when interrupts are enabled. IA has a higher priority level than IB. Thus when concurrent interrupts occur on both IA and IB only the IA interrupt is accepted and both are disabled. But a single IB interrupt disables only the IB interrupt and leaves IA enabled.

INSTRUCTION SET The $\mu$ COM -42 has a powerful 72,10 -bit word, instruction set. All instructions are single words. There are a number of multi-function instructions which reduce the number of program steps. In addition, automatic data pointer modification, single word subroutine calls and N -way branch capability all help improve operation speed and reduce ROM requirements. The $\mu \mathrm{COM}-42$ instruction set is summarized below.

MNEMONIC	CYCLES	DESCRIPTION	CONDITIONS FOR SKIP
CMA	1	$A_{C C} \cdot(\bar{A} C \bar{C})$	
CIA	1	$A_{C C} \cdot\left(\overline{A_{C C}}\right)+1$	
INA	1/2	$A_{C C} \cdot\left(A_{C C}\right)+1$	Carry : 1
DEA	$1 / 2$	$\mathrm{A}_{\mathrm{CC}} \cdot\left(\mathrm{A}_{\mathrm{CC}}\right)-1$	Borrow 11
RFC	1	C. 0	
SFC	1	C. 1	
DSM	1	Decimai Subtract Mode	
DAM	1	Decimal Add Mode	
AD	1/2	$A_{C C} \cdot\left(A_{C C}\right)+\|D P\|$	Carry - 1
ADC	1	$A_{C C}, C \cdot\left(A_{C C}\right)+(D P)+(C)$	
ADI	1/2	$A_{C C} \cdot\left(A_{C C}\right)+I_{3} I_{2} 1_{1} I_{0}$	Carry = 1
LM	1	$\begin{aligned} & \mathrm{ACC}_{\mathrm{CC}} \cdot(\mathrm{DP} \mid \\ & \mathrm{DP}_{\mathrm{H}} \cdot\left(\mathrm{DP} \mathrm{H}_{\mathrm{H}}\right) \forall \mathrm{M}_{2} M_{1} M_{0} \end{aligned}$	
XM	1	$\begin{aligned} & \left(A_{C C}\right) \cdot[D P] \\ & D P_{H} \cdot\left(D P_{H}\right) \forall M_{2} M_{1} M_{0} \end{aligned}$	
XMI	1/2	$\begin{aligned} & \left(A_{C C}\right) \cdot(D P) \\ & D P_{H} \cdot\left(D P_{H}\right) \forall M_{2} M_{1} M_{0} \\ & D P_{L} \cdot\left(D P_{L}\right)+1 \end{aligned}$	$\left(D P_{L}\right)=8$ or $\left(D P_{L}\right)-0$
XMD	1/2	$\begin{aligned} & \left(A_{C C}\right)-(D P), D P_{H} \cdot\left(D P_{H}\right) \\ & M_{2} M_{1} M_{0} \cdot D P_{L} \cdot\left(D P_{L}\right)-1 \end{aligned}$	$\left(D P_{L}\right)=F$ or $\left(D P_{L}\right)-7$
LI	1	Acc. $I_{3} I_{2} I_{1} I_{0}$	
LDI	1	DP. $1_{6}{ }^{-10}$	
IND	1/2	$D P_{L} \cdot\left(D P_{L}\right)+1$	$\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)=8$ or $\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)=0$
DED	1/2	$D P_{L}+\left(D P_{L}\right)-1$	$\left(D P_{L}\right)-F$ or $\left(D P_{L}\right)-7$
$\times \mathrm{DP}$	1	( DP ) $\cdots\left(D P^{\prime}\right)$	
ZAG	1	$000 D P_{L} \cdot(\mathrm{DP})$	

## $\mu$ COM-42

MNEMONIC	CYCLES	description	CONDITIONS FOR SKIP
XTA	1	( $A C C) \leftrightarrow$ (TR)	
LTI	1	$T R \leftarrow I_{3} I_{2} l_{1} 1_{0}$	
as1	1	$a_{n+1}+a_{n}, a_{0}+1$	
aso	1	$a_{n+1}+a_{n}, Q_{0}+0$	
SB	1	[DP, $\left.\mathrm{B}_{1}, \mathrm{~B}_{0}\right] \leftarrow 1$	
RB	1	[DP, $\left.\mathrm{B}_{1}, \mathrm{~B}_{0}\right] \leftarrow 0$	
SBT	1/2	Skip if [DP, $\left.\mathrm{B}_{1}, \mathrm{~B}_{0}\right]=1$	$\mathrm{B}_{1} \mathrm{~B}_{0}=1$
SC	1/2	Skip if ( C ) $=1$	(C) $=1$
SEM	1/2	Skip if ( $\mathrm{A} C \mathrm{C}^{\text {c }}$ ) [DP]	( $A_{C C}$ ) $=$ [ $\mathrm{DPP}^{\text {] }}$
SEI	1/2	Skip if ( $\mathrm{ACCC}^{\text {l }}$ ) $\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	$\left(A_{C C}\right)=I_{3} I_{2} I_{1} I_{0}$
SK4	1/2	Skip if $\mathrm{K}_{4}=1$	$\mathrm{K}_{4}=1$
JPT	1	$\mathrm{PC} \leftarrow(T R), \mathrm{P}_{6-0}$	
JPA	1	$\begin{aligned} & P_{6-4} \leftarrow P_{6-4} \\ & P C_{3-0} \leftarrow P_{3-0} V(A C C) \end{aligned}$	
JCP	1	$\mathrm{PC}_{6-0} \leftarrow \mathrm{P}_{6-0}$	
CAL	1	$\begin{aligned} & \text { [STACK] } \leftarrow(\mathrm{PC}) \\ & \mathrm{PC} \leftarrow 1000 \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \end{aligned}$	
RT	1	$P C \leftarrow[S T A C K]$	
RTS	2	$\begin{aligned} & \hline P C \leftarrow[S T A C K] \\ & P C \leftarrow(P C)+1 \\ & \hline \end{aligned}$	
EIA	1	Enable IA port	
DIA	1	Disable IA port	
EIB	1	Enable IB port	
DIB	1	Disable IB port	
OIU	1	$\begin{aligned} & U_{7-0}-17-0 \\ & R_{7-0}-(Q 7-0) \end{aligned}$	
ERO	1	Enable R pori	
DRO	1	Disabie R port	
ORR	1	R - ( Q )	
OTR	1	$\left.\mathrm{R}_{7-4}-(T \mathrm{R}), \mathrm{R}_{3}-0-(\mathrm{PP})^{\prime}\right)$	
SFS	1	$\mathrm{s}+(\mathrm{AcC})$	
RFS	1	S port Input Mode	
Is	1	$\mathrm{AcC}^{-5}$	
1 K	1	$\mathrm{A}_{\mathrm{Cl}}+\mathrm{K}$	
RF1	1	$\mathrm{F}_{1}-0$	
SF 1	1	$F_{1}$-1	
RF2	1	$\mathrm{F}_{2}-0$	
SF2	1.	$\mathrm{F}_{2}-1$	
RF3	1	$\mathrm{F}_{3}-0$	
SF3	1	$\mathrm{F}_{3}$-1	
RF4	1	$\mathrm{F}_{4}-0$	
SF4	1	$\mathrm{F}_{4}$-1	
RF5	1	$\mathrm{F}_{5}-0$	
SF5	1	$\mathrm{F}_{5}$-1	
RF6	1	$\mathrm{F}_{6} \times 0$	
SF6	1	$\mathrm{F}_{6}+1$	
RF7	1	$\mathrm{F}_{7} \leftarrow 0$	
SF7	1	$\mathrm{F}_{7}-1$	
RF8	1	$\mathrm{F}_{8}+0$	
SF8	1	$\mathrm{F}_{8}$ ¢ 1	
RF9,	1	$\mathrm{F}_{9} \leftarrow 0$	
SF9	1	$\mathrm{F}_{9} \leftarrow 1$	
RFO	1	$\mathrm{F}_{0}+0$	
SFO	1	$\mathrm{F}_{0}-1$	
NOP	1	No Operation	

## $\mu$ COM- 42 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD548 is the only version of the $\mu$ COM-42. This PMOS, -10 volt part is designed to have TTL-level compatible inputs and was specifically designed for external RAM expansion. As a $\mu$ COM-42, it includes $1920 \times 10$ ROM, $96 \times 4$ RAM and $35 \mathrm{I} / \mathrm{O}$ lines in a 42 pin plastic dual-in-line package.

ABSOLUTE MAXIMUM
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	0		- 2.0	V	
Input Low Voltage	VIL	-4.3		VGG	V	.
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			- 3.0	V	$\mathrm{I}^{\mathrm{OH}}=-4 \mathrm{~mA} \mathrm{(1)}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2}$			- 1.0	V	$\mathrm{I} \mathrm{OH}=-1 \mathrm{~mA}$   (for S port outputs)
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	$V_{1}=-1 V$
Input Leakage Current Low	ILIL			-30	$\mu \mathrm{A}$	$V_{1}=-36 \mathrm{~V}$
Output Current High	${ }^{\mathrm{IOH}}$	-1.0			mA	$\mathrm{V}_{\mathrm{OH}}=-1 \mathrm{~V}$
Output Leakage Current Low	ILOL1			-30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=-36 \mathrm{~V}$
Output Leakage Current Low	ILOL2			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}$   (for S port outputs)
Supply Current	${ }^{\prime} \mathrm{GG}$		-30	-60	mA	

AC CHARACTERISTICS $\quad T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	${ }_{\text {f }}$ ¢	100		200	KHz	
Clock Pulse Width	t $\phi$ w	2.25			$\mu \mathrm{s}$	
Clock Rise-Fall Time	tr, tf			0.5	$\mu \mathrm{s}$	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST   CONDITIONS
Capacitance, Any   Input Except S	$\mathrm{C}_{\mathrm{I}}$			15		
Capacitance, Any   Output Except S	$\mathrm{C}_{\mathrm{O}}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
S Port   Capacitance	$\mathrm{C}_{\mathrm{IO}}$			15	pF	



CLOCK WAVEFORM


ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## EVACHIP-42

DESCRIPTION The $\mu$ PD555 is a system evaluation chip designed to support both hardware and softwart debugging of the $\mu$ COM-42 ( $\mu$ PD548) one-chip microcomputer system.

The $\mu$ PD555 and the $\mu$ PD548 have the same functionality in all aspects except that the $\mu$ PD555 does not contain a read only memory, but provides addressing capability to external memory and HOLD function for step-by-step operation.

FEATURES • 4-Bit Parallel Processor

- Powerful 72 Instruction Set Including Decimal/Binary Arithmetic Operations
- $10 \mu$ s Instruction Cycle Time
- Addressing Capability up to 1920 Words by 10 -Bits of External Program Memory
- 96 Words by 4-Bit Data Memory On Chip
- 4-Level Subroutines
- Two Interrupt Input Lines (IA and IB)
- HOLD Capability
- A Variety of Input/Output Ports -
- 10 Discrete Output Ports ( $\mathrm{Fg}_{\mathrm{g}} \mathrm{F}_{0}$ )
- Two 8-Bit Output Ports ( $\left.U_{7}-U_{0}, R_{7}-R_{0}\right)$
- 4-Bit Input Port ( $\mathrm{K}_{3}-\mathrm{K}_{0}$ )
- 4-Bit Input/Output Port $\left(\mathrm{S}_{3}-\mathrm{S}_{0}\right)$

I/O Level Compatible with $\mu$ PD5101

- 1-Bit Test Input Line
- P-Channel MOS
- Open Drain Output
- Single Power Supply: -10 V
- Available in a 64 Pin Ceramic Dual-in-Line Package



Uperating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 20 to +0.3 Volts
All Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -20 to +0.3 Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$C_{1}$			15	pf	$f=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{Co}_{0}$			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{0}$			15	pf	

ABSOLUTE MAXIMUM RATINGS*
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
High Level Input Voltage	$\mathrm{V}_{\text {IH }}$	0		$-2.0$	V	
Low Level Input Voltage	VIL1	-4.3			V	S, $\phi, 19-0$
	VIL2	-7.0			V	Except S, $\phi, 19 \mathrm{O}$
High Level Input   Leakage Current	ILIH			$+10$	$\mu \mathrm{A}$	$V_{1}=-1 \mathrm{~V}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=-11 \mathrm{~V}$
High Level Output Current	IOH	-1.0			mA	$\mathrm{V}_{\mathrm{O}}=-1 \mathrm{~V}$, except Sport
Low Level Output Leakage Current	I LOL1			-30	$\mu \mathrm{A}$	$V_{O}=-11 \mathrm{~V}$   except S port
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$			-1.75	V	$\begin{aligned} & \mathrm{IOH}=-100 \mu \mathrm{~A} \text {, } \\ & \text { S port } \end{aligned}$
Low Level Output Leakage Current	I LOL2			-10	$\mu \mathrm{A}$	$V_{O}=-5 V$   S port
Power Supply Current	IGG		-30	-60	mA	

AC CHARACTERISTICS $T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	${ }^{\text {f }}$ ${ }^{\prime}$	100		200	KHz	
Clock Pulse Width	${ }^{\text {t }}$ ¢ w	2.25			,	
Clock Rise and Fall Times	$\mathrm{tr}, \mathrm{tf}$			0.5	$\mu \mathrm{s}$	
Input Setup Time from Output	tis			2.5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{~K} \Omega \end{aligned}$



LOAD CIRCUIT



PACKAGE OUTLINE $\mu$ PD555D

ITEM	MILLIMETERS	INCHES
A	82.0 MAX	3.23 MAX
B	1.6	0.063
C	2.54	0.1
D	$0.43 \pm 0.1$	$0.017 \pm 0.004$
E	78.8	3.1
F	1.27	0.05
G	3.2 MIN	0.13 MIN
H	1.3 MIN	0.05 MIN
I	3.9	0.154
J	5.2 MAX	0.205 MAX
K	22.96	0.904
L	20.3	0.8
M	$0.3 \pm 0.1$	$0.012 \pm 0.004$

## NEC Microcomputers, Inc.

## $\mu$ COM-43/44/45 4-BIT SINGLE CHIP MICROCOMPUTERS

The $\mu \mathrm{COM}-43$ Family consists of three device types designed to offer a full range of cost/performance tradeoffs. All three devices shäre compatible hardware and instruction set. The $\mu$ COM-43 Family is designed for general purpose controller applications and offers ideal devices for industrial controls, appliance controls, games, etc.
All three devices contain the functional blocks' necessary to enable their use for both industrial and non-industrial controller applications: These blocks include: a 4-bit parallel ALU; \&-bit wide ROM for program storage; 4-bit wide RAM for data storage; stack register for subroutines; extensive I/O; and an on-chip clock generator.

The instruction set of the $\mu$ COM-43 Family is designed to perform controller-oriented functions and for efficient use of the fixed program memory space. The instruction set includes a number of multifunction instructions, powerful !/O instructions including single bit manipulation, and test-and-skip instructions for conditional processing.
The three device types comprising the $\mu$ COM- 43 Family are differentiated by ROM/ RAM size and I/O lines. The $\mu$ COM- 43 has $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines. The $\mu$ COM- 44 has $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines. The $\mu$ COM- 45 has $1000 \times 8$ or $640 \times 8$ ROM, $32 \times 4$ RAM and 21 I/O lines. In addition, the $\mu$ COM- 43 has real hardware interrupt, 3 level stack and programmable timer, while the $\mu$ COM-44/45 have pseudo-interrupt capability and a single level stack.

FEATURES - Stand Alone 4-Bit Microcomputers for Control Applications

- Powerful Instruction Set Capable of: Binary Addition; Decimal Addition and Subtraction; Logical Operations
- $10 \mu \mathrm{~s}$ Instruction Cycle
- Choice of ROM Size: $2000 \times 8-\mu$ COM-43
$1000 \times 8-\mu$ COM -44
$1000 \times 8-\mu$ СОМ-45
$640 \times 8$
- Choice of RAM Size: $\quad 96 \times 4-\mu$ COM -43

$$
64 \times 4-\mu \text { COM }-44
$$

$$
32 \times 4-\mu \text { COM }-45
$$

- Choice of I/O Power: 35 lines - $\mu$ COM- 43

35 lines - $\mu$ COM-44
21 lines - $\mu$ COM-45

- All Capable of Single Bit Manipulation and 4-Bit Parallel Processing.
- Interrupt Capability
- On-Chip Clock Generator
- Open Drain Outputs
- Choice of PMOS or CMOS Technology, Both Requiring Single Supplies
- Available in 42 Pin or 28 Pin Plastic Dual-in-Line Packages


$\mathrm{CL}_{1} \square 1$
$\mathrm{PC}_{0} \square$
$\mathrm{PC}_{1} \square$
$\mathrm{PC}_{2} \square$
$\mathrm{PC}_{3} \square$
$\mathrm{PD}_{0} \square$



BLOCK DIAGRAM $\mu$ COM-43

## BLOCK DIAGRAMS

 $\mu$ COM-44
$\mu$ COM-45

FUNCTIONAL DESCRIPTION


## Program Counter

The 11 -bit program counter ( 10 -bit for $\mu \mathrm{COM}-44 / 45$ ) is organized as a 3 -bit register (2-bit for $\mu \mathrm{COM}-44 / 45$ ) and an 8 -bit binary up-counter (lower eight bits). The contents of the upper register specify one of the fields of the ROM. The 8 -bit binary counter is divided so that the contents of the higher two bits specify one of four pages in a field and the lower six bits specify one of 64 addresses in a page. The contents of the lower eight bits of the program counter ( 8 -bit binary up-counter) are simply incremented to execute the instructions sequentially. In a field, a page is automatically extended to the next one and four pages ( 256 bytes) are automatically executed.

## Stack Register

The stack register is a last-in-first-out (LIFO) push down stack register organized as 3 words $\times 11$ bits ( 1 word $\times 10$ bits for $\mu$ COM-44/45). This register is used to save the contents of the program counter (return address) when a subroutine is called or an interrupt is acknowledged.

## ROM (Read-Only Memory)

The user's application program is stored in the 8 -bit wide mask programmable read-only memory (ROM). The ROM is organized into fields and pages. The 2000 word ROM of the $\mu$ COM- 43 has eight fields, the 1000 word ROM of the $\mu$ COM- $44 / 45$ has four fields and the 640 word ROM of the low-end $\mu$ COM -45 has two fields. Each field is divided into four pages of 64 words each, and each word consists of eight bits.

## $\mu$ COM-43/44/45

## RAM (Data Memory)

The RAM is organized in a multi-row by 16 column configuration. It is addressed by a data pointer of which the higher bits (DPH) address the row and the lower bits (DPL) address the column. The exact RAM size for each device is shown below.

	RAM	ROW/COLUMN   ORGANIZATION	DPH	DPL
$\mu$ COM-43	$96 \times 4$	$6 \times 16$	3	4
$\mu$ COM-44	$64 \times 4$	$4 \times 16$	2	4
$\mu$ COM-45	$32 \times 4$	$2 \times 16$	1	4

## Internal Registers

The ALU (Arithmetic Logic Unit) and the ACC (Accumulator) form the heart of the $\mu \mathrm{COM}-43$ Family microcomputer system. The ALU performs arithmetic and logical operations and tests for operation results. The result of an operation by the ALU is stored in the ACC and in the carry F/F. The ACC is a 4 -bit register which stores ALU results and other data to be processed. The carry $F / F$ is a single bit flip-flop which indicates when a carry bit is generated during addition.

## Flag Register ( $\mu \mathrm{COM}-43$ Only)

A 4-bit word in the RAM can be specifically used as a software controlled general purpose flag register. The individual flag bits can be set or reset and tested for either a 1 or a 0 . This can be done directly without modifying the RAM data pointer.

## Working Registers ( $\mu$ COM-43 Only)

There are six words in RAM that can be used as 4-bit general purpose working registers. These registers can be directly manipulated without modification of the data pointer and are used for data transfer and exchange between the data pointer and the working register, and between the ACC and the working register.

## Programmable Interval Timer ( $\mu$ COM-43 Only)

The $\mu$ COM-43 contains a software programmable interval timer composed of a 6 -bit polynomial counter and a 6 -bit programmable binary counter.
The initial setting of the timer is done using the timer set instruction STM, with the timer starting to count at the end of the STM instruction execution. The STM instruction contains six binary bits of immediate data which is loaded in the 6 -bit programmable binary counter upon STM instruction execution. By varying the 6 -bit immediate data, one of 64 time intervals can be programmed.

## I/O Ports

The $\mu$ COM-43/44 have 35 input/output ports ( $\mu$ COM-45 has 21 ) for communication with and control of the external world. These ports are organized into nine input/output ports (A to I). Eight ports (A to $H$ ) are composed of four bits each and the last port (I) is composed of three bits.

Input Ports	$(4$ bits each $): A, B(1)$
Input/Output Ports	$(4$ bits each $): C, D$
Output Ports	$(4$ bits each $): E, F, G(2), H(1)$
Output Ports	$(3$ bits $): 1$ (1)

Notes: (1) Not on $\mu \mathrm{COM}-45$.
(2) G Port on $\mu \mathrm{COM}-45$ is a single line.

FUNCTIONAL DESCRIPTION (CONT.)

In order to provide flexible and efficient use of these I/O ports, a variety of input/ output instructions are provided which enable single bit set/reset, single bit test and conditional skip, 4 -bit parallel input/output and 8 -bit immediate parallel output. The I/O instructions are divided into two types, the ones dedicated to specific ports and the ones that use the 4-bit data in the DPL to select a desired port. The former include such instructions as IA and OE that specifically access port A and E, respectively. The latter require that a 4 -bit code assigned to the desired port be loaded into the DPL using data pointer manipulation instructions prior to I/O instruction execution.

The $\mu$ COM- 43 has an 80 instruction set. The $\mu$ COM $-44 / 45$ have a 58 instruction subset of the $\mu \mathrm{COM}-43$. The majority of the 22 instruction difference is related to added hardware features of the $\mu \mathrm{COM}-43$. The instruction set is summarized below.


MNEMONIC	BYTES	CYCLES	DESCRIPTION	CONDITION FOR SKIP
$x 4 x$	1	$2$		35
- $2 \mathrm{cr} \mathrm{rax}^{2}$	- 1	$2$	$=(y)-\operatorname{brL}$	27-2
1H2	$\sqrt{6+5}$	$\sqrt{2}$	$x-\left(0 r_{1}+1\right.$	
T1Y	$1$	$2$	$Y=\left(D P_{L}\right)$	
$\times \wedge 2$	$1$	$2$	(R1-(Acc)	(x)
xay	25 1	$2$	$(w)=(A C C)$	
$142$	$1$	2	$2-2 \operatorname{lacct}$	
TAM	$1+18 \times$	$42$	$\omega \text {-(AcC) }$	
$x H R$	$1$	$152$	$(\mathrm{P})=(\mathrm{DPH})$	$485$
XLS	(2) 1	$2$	(S) (0PEI	
SMB	1	1	$\left[\left(D P, B_{1} B_{0}\right)\right] \leftarrow 1$	
RMB	1	1	$\left[\left(D P, B_{1} B_{0}\right)\right] \leftarrow 0$	$\cdots$
TMB	1	1/2-3	skip if $\left[\left(D^{\prime}, B_{1} B_{0}\right)\right]=1$	$\left[\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)\right]=1$
TAB	1	1/2-3	skip if $\left(A_{C C}\left(B_{1} B_{0}\right)\right)=1$	$\left(A_{C C}\left(B_{1} B_{0}\right)\right)=1$
CMB	1	1/2-3	skip if ( $\left.\mathrm{ACCC}\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)\right)=\left[\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)\right]$	$\left(A_{C C}\left(B_{1} B_{0}\right)\right)=\left[\left(D P, B_{1} B_{0}\right)\right]$
SFE	$1$	$2$	FLACTB1BO	
Ree	$\text { ex } 1$	$5$	$\operatorname{FA} 616,6 n+0$	P
$58 x$	$=15$		$\text { skip } 1 \text { f LAG }(E) B 0) 1=1$	
	- 4			
CM	1	1/2*3	skip if (ACC) $=[(\mathrm{DP})]$	$\left(A_{C C}\right)=[(D P)]$
Cl	2	2/3-4	skip if (ACC) $=1_{3} I_{2} l_{1} l_{0}$	$(A C C)=l_{3} l_{2} l_{1} l_{0}$
CLI	2	2/3-4	skip if ( $D P_{L}$ ) $=13 l_{2} 1_{1} 10$	$\left(D P_{L}\right)=13121910$
TC	1	1/2-3	skip if (C)=1	$(\mathrm{C})=1$
TIT	1	1/2-3	skip if (INT F/F) $=1$; INT F/F $\leftarrow 0$	(INT F/F) $=1$
JCP	1	1	$\mathrm{PC}_{5-0}-\mathrm{P}_{5}-\mathrm{P}_{0}$	
JMP	2	2	$\mathrm{PC}-\mathrm{P}_{10}{ }^{-P_{0}}$	
JPA	1	2	$\mathrm{PC}_{5-0} \leftarrow \mathrm{~A}_{3} A_{2} A_{1} A_{0} 00$	
E1			14TE K F	
$01$	20.0. ${ }^{2}$		2- THTEFTFT0	
CZP	1	1	$\begin{aligned} & \text { STACK } \leftarrow(P C) \\ & \mathrm{PC} \leftarrow 00000 \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} 00 \end{aligned}$	
CAL	2	2	STACK $\leftarrow(P C) ; P C \leftarrow P_{10} 0^{-P_{0}}$	
RT	1	2	PC-(STACK)	
RTS	1	3-4	PC-(STACK); PC-(PC)+1,2	Unconditional
- S\%emis	$28$	$5$	- MM F $4=0, T(14=R-510$	
-	$2{ }^{2}$	$5$		
SEB	1	2	PORT E $\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)-1$	
REB	1	1	PORTE ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)-0$	
SPB	1	1	PORT ( $\left.\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 1$	
RPB	1	1	PORT ( $\left.\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 0$	
TPA	1	2/3-4	skip if (PORT $\left.A\left(\mathrm{~B}_{1} \mathrm{~B}_{0}\right)\right)=1$	$\left(\operatorname{PORT~A~}\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)\right)=1$
TPB	1	1/2-3	skip if (PORT (DL $\left.L_{L}, \mathrm{~B}_{1} \mathrm{~B}_{0}\right)$ ) $=1$	$\left(\mathrm{PORT}\left(\mathrm{DP}_{L}, \mathrm{~B}_{1} \mathrm{~B}_{0}\right)=1\right.$
OE	1	2	PORT E-( $\mathrm{A}_{\mathrm{CC}}$ )	
OP	1	1	PORT ( $\mathrm{DP}_{L}$ )-( $\mathrm{A}_{C C}$ )	
OCD	2	2	PORT C, D- $17-10$	
IA	2	2	ACC-(PORT A)	
IP	1	1	$\mathrm{A}_{\mathrm{CC}}{ }^{-(P O R T}$ ( $\mathrm{DP}_{\mathrm{L}}$ ))	
NOP	1	1	No Operation	

These instructions apply only to the $\mu$ COM-43.

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD546 is the standard version of the $\mu$ COM-43. This PMOS, -10 volt part is designed to have TTL-level compatible inputs and is easily interfaced to external static RAM. As a $\mu$ COM-43, it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM <br> RATINGS*

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voitages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	V IH	0		-2.0	V	Ports $A$ to $D, \overline{\mathrm{NNT}}$, RES
Input Low Voltage	$V_{\text {IL }}$	-4.3		$\mathrm{V}_{\mathrm{GG}}$	V	Ports A to D, INT, RES
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports $A$ and $B$, INT, RES, TEST $V_{1}=-1 V$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports $A$ and $B$, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$
I/O Leakage Current High	1 OH			+30	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 V$
I/O Leakage Current Low	1 IOL			$-30$	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
Output Voltage	VOH 1			-1.0	V	Ports C to I $\mathrm{OH}=-1.0 \mathrm{~mA}$
	VOH2			-2.3	V	Ports C to I ${ }^{1} \mathrm{OH}=-3.3 \mathrm{~mA}$
Output Leakage Current	IOL			-10	$\mu \mathrm{A}$	Ports C to I $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	
Oscillator Frequency	F	150		440	KHz	$\cdots$

## $\mu$ PD546

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	$\mathrm{C}_{\mathrm{I}}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{\mathrm{O}}$			15	pf	
Input/Output Capacitance	$\mathrm{C}_{10}$			15	pf	

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD546C

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\overline{\mathrm{I}}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

# $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER 

## ABSOLUTE MAXIMUM RATINGS*

The $\mu$ PD547 is thê standard version of the $\mu$ COM -44 . This PMOS, -10 volt part is designed to have TTL-level compatible inputs and is easily interfaced to external static RAM. As a $\mu$ COM-44, it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line packáge.

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage.	-15 to +0.3 Volts
Input Voltages	-15 to +0.3 Volts
Output Voltages	-15 to +0.3 Volts
Output Current.	-4 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{\lambda}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{G G}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	ViH	0		-2.0	V	Ports $A$ to $D, \overline{I N T}$, RES
Input Low Voltage	VIL	-4.3		$\mathrm{V}_{\mathrm{GG}}$	V	$\begin{aligned} & \text { Ports A to D, } \\ & \text { INT, RES } \end{aligned}$
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A and B, INT, RES, TEST $V_{1}=-1 V$
Input Leakage Current Low	ILIL			$-10$	$\mu \mathrm{A}$	Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$
I/O Leakage Current High	1 OH			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 \mathrm{~V}$
I/O Leakage Current Low	110 L			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
O 1 tput Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			$-1.0$	V	Ports C to I $\mathrm{O} \mathrm{OH}=-1.0 \mathrm{~mA}$
	$\mathrm{V}^{\text {OH2 }}$	-		-2.3	V	Ports C to I $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current	${ }^{1} \mathrm{OL}$			-10	$\mu \mathrm{A}$	Ports C to 1 $v_{\mathrm{O}}=-11 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	
Oscillator Frequency	F	150		440	KHz	

## $\mu$ PD547

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Input Capacitance	$\mathrm{C}_{\mathrm{I}}$			15	pf	
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
Input/Output Capacitance	$\mathrm{C}_{\mathrm{IO}}$			15	pf	

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD547C

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD547L is a low power version of the $\mu$ COM-44. It is a modified PMOS device requiring a - 8 volt power supply with a reduced supply current specification. As a $\mu$ COM-44, it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM

RATINGS*
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 mA
CDMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-8 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	0		-1.6	$\checkmark$	Ports A to D, $\overline{\mathrm{INT}}$, RES
Input Low Voltage	$V_{\text {IL }}$	$-3.8$		$\mathrm{V}_{\mathrm{GG}}$	v	Ports A to D, INT RES
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports $\bar{A}$ and $B$, INT, RES, TEST $v_{1}=-1 v$
Input Leakage Current Low	'LIL			-10	$\mu \mathrm{A}$	Ports A and B, INT, RES, TEST $V_{1}=-9 \mathrm{~V}$
I/O Leakage Current High	I OOH			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 V$
I/O Leakage Current Low	IIOL			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-9 V$
Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-1.0	v	$\begin{aligned} & \text { Ports C to } 1 \\ & I_{\mathrm{OH}}=-0.7 \mathrm{~mA} \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.3	V	$\begin{aligned} & \hline \text { Ports C to } 1 \\ & I_{\mathrm{OH}}=-2.6 \mathrm{~mA} \end{aligned}$
Output Leakage Current	${ }^{\text {IOL }}$			-10	$\mu \mathrm{A}$	$\begin{aligned} & \text { Ports } \mathrm{C} \text { to } 1 \\ & \mathrm{~V}_{0}=-9 \mathrm{~V} \end{aligned}$
Supply Current	IGG		-15	-25	mA	
Oscillator Frequency	F	100		180	KHz	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{Cl}_{1}$			15	pf	$f=1 \mathrm{MHz}$
Output Capacitance	Co			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD547LC

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\mathbf{I}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD550 is the $640 \times 8$ ROM version of the $\mu$ COM -45 . This PMOS, -10 volt part features both TTL-level compatible inputs as well as outputs calpable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $32 \times 4$ RAM and 21 I/O lines in a 28 pin plastic dual-inline package.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature .	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	-15 to +0.3 Volts
Input Voltages (Port A, $\overline{\mathrm{NNT}}, \mathrm{RES}, \mathrm{TEST}$ )	-15 to +0.3 Volts
(All Other Inputs)	-40 to +0.3 Volts
Output Voltages	-40 to +0.3 Volts
Output Current (Ports C, D)	-4 mA
(Ports E, F, G)	-15 mA
(Total Current)	-60 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
DC/AC CHARACTERISTICS
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$
		MIN	TYP	MAX		
Input High Voltage	$V_{1 H}$	0		-2.0	V	Ports A, C, D, $\overline{I N T}$, RES
Input Low Voltage	$V_{\text {IL1 }}$	-4.3		$\mathrm{V}_{\mathrm{GG}}$	V	Ports A, $\overline{\text { INT, RES }}$
	VIL2	-4.3		-35	V	Port C and D
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, $\overline{\mathrm{INT}}$, RES, TEST $V_{1}=1 V$
Input Leakage Current Low	'LIL1			-10	$\mu \mathrm{A}$	Ports A, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$
	'LIL2			-30	$\mu \mathrm{A}$	Port A $V_{1}=-35 \mathrm{~V}$
I/O Leakage Current High	${ }^{1} \mathrm{OH}$			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 \mathrm{~V}$
1/O Leakage Current Low	IIOL1			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
	11 OL 2			$-30$	$\mu \mathrm{A}$	Ports C and D $V_{1}=-35 V$
Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-1.0	V	Ports C and D $I_{O}=-2 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.5	V	Ports E, F, G $\mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA}$
Output Leakage Current	IOL1			-10	$\mu \mathrm{A}$	$\begin{aligned} & \text { Ports C, D, E, F, G } \\ & V_{O}=-11 \mathrm{~V} \end{aligned}$
	IOL2	.		$-30$	$\mu \mathrm{A}$	Ports C, D, E, F, G $V_{O}=-35 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{GG}$		-20	-40	mA	
Oscillator Frequency	F	150		440	KHz	

## $\mu$ PD550

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$C_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{Co}_{0}$			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	



CLOCK WAVEFORM


PACKAGE OUTLINE $\mu$ PD550C

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

## DESCRIPTION

The $\mu$ PD552 is a high negative output version of the $\mu$ COM -44 . This PMOS, -10 volt part is designed with outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-44, it includes $1000 \times$ 8 ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voltages (Port A, INT, RES, TEST) . . . . . . . . . . . . . . . . . - 15 to +0.3 Volts
(All Other Inputs). . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Current (Each Output Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . -12 mA
(Total Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -60 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

## DC/AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1+4}$	0		-3.5	V	Ports A to D, $\overline{\mathrm{INT}}$, RES
Input Low Voltage	$V_{\text {IL } 1}$	-7.5		$V_{\text {GG }}$	v	Ports A and B , INT, RES
	$V_{\text {IL2 }}$	-7.5		-35	V	Ports C and D
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports $A$ and $B$, INT, RES, TEST $V_{1}=-1 V$
Input Leakage Current Low	'LIL1			-10	$\mu \mathrm{A}$	Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$
	'LIL2			-30	$\mu \mathrm{A}$	Ports A and B $V_{1}=-35 \mathrm{~V}$
I,'O Leakage Current High	1 OH			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 V$
I/O Leakage Current Low	'IOL1			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
	! 10 L 2			-30	$\mu \mathrm{A}$	Ports C and D $V_{1}=-35 \mathrm{~V}$
Output Voltage	${ }^{-} \mathrm{OH}$			-2.0	V	Ports C to I $\mathrm{I} O \doteq-8 \mathrm{~mA}$
Output Leakage Current	IOL1			-10	$\mu \mathrm{A}$	Ports C to 1 $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$
	IOL2			-30	$\mu \mathrm{A}$	Ports C to I $V_{O}=-35 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	
Oscillator Frequency	F	150		440	KHz	

## $\mu$ PD552

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

CAPACITANCE


CLOCK WAVEFORM


PACKAGE OUTLINE $\mu$ PD552C

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

# $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER 

DESCRIPTION The $\mu$ PD553 is a high negative output version of the $\mu \mathrm{COM}-43$. This PMOS, -10 volt part is designed with outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu \mathrm{COM}-43$, it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.


COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	0		-3.5	$\checkmark$	Ports $A$ to $D, \overline{I N T}$, RES
Input Low Voltage	VIL1	-7.5		VGG	V	Ports $A$ and $B$, INT, RES
	VIL2	-7.5		-35	V	Ports C and D
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports $A$ and $B$, INT, RES, TEST $V_{1}=-1 V$
Input Leakage Current Low	'LIL1			-10	$\mu \mathrm{A}$	Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$
	ILIL2			-30	$\mu \mathrm{A}$	Ports A and B $V_{1}=-35 \mathrm{~V}$
I/O Leakage Current High	IOH			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 V$
I/O Leakage Current Low	IIOL1			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
	I'OL2			-30	$\mu \mathrm{A}$	Ports C and D $V_{1}=-35 \mathrm{~V}$
Output Voltage	$\mathrm{V}_{\mathrm{OH}}$			-2.0	V	Ports C to I $\mathrm{I}_{\mathrm{O}} \doteq-8 \mathrm{~mA}$
Output Leakage Current	IOL1			-10	$\mu \mathrm{A}$	Ports C to 1 $V_{O}=-11 \mathrm{~V}$
	IOL2			-30	$\mu \mathrm{A}$	Ports C to I $V_{O}=-35 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	
Oscillator Frequency	F	150		440	KHz	

## $\mu$ PD553

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{Cl}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

CAPACITANCE


CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD553C

ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD554 is the $1000 \times 8$ ROM version of the $\mu$ COM -45 . This PMOS,-10 volt part features both TTL-level compatible inputs as well as outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $32 \times 4$ RAM and 21 I/O lines in a 28 pin plastic, dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	-15 to +0.3 Volts
Input Voltages (Port A, $\overline{\mathrm{N} T}, \mathrm{RES}, \mathrm{TEST}$ )	-15 to +0.3 Volts
(All Other Inputs) . .	-40 to +0.3 Volts
Output Voltages	-40 to +0.3 Volts
Output Current (Ports C, D)	-4 mA
(Ports E, F, G).	-15 mA
(Total Current)	. -60 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	0		-2.0	$\checkmark$	Ports A, C, D, INT, RES
Input Low Voltage	$V_{\text {IL } 1}$	-4.3		$\mathrm{V}_{\mathrm{GG}}$	V	Ports A, INT, RES
	VIL2	-4.3		-35	V	Port C and D
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A, INT, RES, TEST $V_{1}=1 \mathrm{~V}$
Input Leakage Current Low	'LIL1			-10	$\mu \mathrm{A}$	Ports A, $\overline{\text { NT }}$, RES TEST $V_{1}=-11 \mathrm{~V}$
	'LIL2			$-30$	$\mu \mathrm{A}$	Port A $V_{1}=-35 \mathrm{~V}$
I/O Leakage Current High	1 OH			+10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-1 V$
1/O Leakage Current Low	110 L 1			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
	11 OL 2	-		-30	$\mu \mathrm{A}$	Ports C and D $V_{1}=-35 V$
Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-1.0	V	$\begin{aligned} & \text { Ports } \mathrm{C} \text { and } \mathrm{D} \\ & \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} \\ & \hline \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.5	V	Ports E, F, G $\mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA}$
Output Leakage Current	IOL1			-10	$\mu \mathrm{A}$	Ports C, D, E, F, G $V_{O}=-11 \mathrm{~V}$
	IOL2			-30	$\mu \mathrm{A}$	Ports C, D, E, F, G $\mathrm{V}_{\mathrm{O}}=-35 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{GG}$		-20	-40	mA	
Oscillator Frequency	F	150		440	KHz	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}_{4}=1 \mathrm{MHz}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD554C

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD650 is a CMOS version of the $\mu$ COM-43. It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperature range. As a $\mu$ COM-43, it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

ABSOLUTE MAXIMUM RATINGS*	Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	Storage Temperature . .	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Supply Voltage	-0.3 to +7.0 Volts
	Input Voltages	-0.3 to +7.0 Volts
	Output Voltages	-0.3 to +7.0 Volts
	Output Current (Each Output Bit)	$\ldots . .2 .5 \mathrm{~mA}$

Output Current (Each Output Bit) 2.5 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$V_{C C}$	V	Ports A to D, $\overline{\text { INT, RES }}$
Input Low Voltage	$V_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\text {CC }}$	V	Ports A to D, $\overline{\text { INT, RES }}$
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports $A$ and $B, \overline{I N T}$, RES $\left(v_{1}=v_{C C}\right)$
Input Leakage Current Low	'LIL	$\cdots$		-10	$\mu \mathrm{A}$	Ports A and $\mathrm{B}, \overline{\mathrm{NT}}$, RES $\left(V_{1}=0 V\right)$
I/O Leakage Current High	$\mathrm{I}_{1 \mathrm{OH}}$			+10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}\left(\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$
I/O Leakage Current Low	IIOL			-10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}\left(\mathrm{V}_{0}=0 \mathrm{~V}\right)$
Output High Voltage 1	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V	Ports C and D $\left(I_{\mathrm{OH}}=-1 \mathrm{~mA}\right)$
		$\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$			V	$\begin{aligned} & \text { Ports E and I } \\ & (1 \mathrm{OH}=-0.6 \mathrm{~mA}) \end{aligned}$
Output High Voltage 2	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{CC}}-2.5$			V	Ports C to I ( $1 \mathrm{OH}=-2 \mathrm{~mA}$ )
Output Low Voltage	VOL1			0.6	V	$\begin{aligned} & \hline \text { Ports E to I } \\ & \left(I_{\mathrm{OL}}=2 \mathrm{~mA}\right) \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$			0.4	V	$\begin{aligned} & \text { Ports E to } 1 \\ & (1 \mathrm{OL}=7.2 \mathrm{~mA}) \\ & \hline \end{aligned}$
Supply Current	${ }^{\text {c CC }}$		0.8	2.0	mA	
Clock High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	$0.7 \mathrm{~V}_{\mathrm{Cc}}$		$\mathrm{V}_{\text {CC }}$	V	CLO, Ext. Clk.
Clock Low Voltage	$\mathrm{V}_{\phi} \mathrm{L}$	0		$0.3 \mathrm{~V}_{C C}$	$\checkmark$	CLO, Ext. Clik.
Clock Leakage Current High	${ }^{\prime} \mathrm{L} \phi \mathrm{H}$			200	$\mu \mathrm{A}$	CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right)$
Clock Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLO, Ext. Clik. $\left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right)$
Clock Frequency	f	150		440	KHz	
Clock Rise and Fall Times	tr, tf	0		0.3	$\mu \mathrm{s}$	Ext. Clk.
Clock Pulse Width	${ }^{t}{ }_{\phi} \mathrm{W}$	0.5		5.6	$\mu \mathrm{s}$	Ext. Clk.

## - PD 650

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
I/O Capacitance	$\mathrm{ClO}^{\prime}$			15	pf	



OV - - - - -


ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\overline{\text { I }}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION

## ABSOLUTE MAXIMUM RATINGS*

The $\mu$ PD651 is a CMOS version of the $\mu$ COM-44. It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperature range. As a $\mu$ COM-44, it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

Operating Temperature
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 to +7.0 Volts
Output Current (Each Output Bit) 2.5 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$V_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{Cc}}$		$V_{C C}$	V	Ports A to D, İNT, RES
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	0	.	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	Ports $A$ to D, INT, RES
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=V_{C C}\right)$
Input Leakage Current Low	'LIL			-10	$\mu \mathrm{A}$	Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=0 \mathrm{~V}\right)$
I/O Leakage Current High	1 OH			+10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}\left(\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$
I/O Leakage Current Low	110 L			-10	$\mu \mathrm{A}$	Ports $C$ and $D\left(V_{0}=O_{V}\right)$
Output High Voltage 1	VOH	$\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$			V	Ports C and D $\left(I_{\mathrm{OH}}=-1 \mathrm{~mA}\right)$
		$\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$		.	V	Ports E to I $(1 \mathrm{OH}=-1 \mathrm{~mA})$
Output High Voltage 2	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{CC}}-2.5$			V	Ports C to I $(1 \mathrm{OH}=-2 \mathrm{~mA})$
Output Low Voltage	$\mathrm{V}_{\text {OL1 }}$			0.6	V	Ports E to I $\left(I_{\mathrm{OL}}=2 \mathrm{~mA}\right)$
	$\mathrm{V}_{\mathrm{OL} 2}$			0.4	V	$\begin{aligned} & \text { Ports E to I } \\ & \left(I_{\mathrm{OL}}=1.2 \mathrm{~mA}\right) \end{aligned}$
Supply Current	${ }^{1} \mathrm{CC}$		0.8	2.0	mA	
Clock High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	$0.7 \mathrm{~V}_{\mathrm{Cc}}$		$\mathrm{V}_{\mathrm{CC}}$	V	CLO, Ext. Clk.
Clock Low Voltage	$\mathrm{V}_{\phi L}$	0		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	CLO, Ext. CIk.
Clock Leakage Current High	${ }^{1} \mathrm{~L} \phi \mathrm{H}$			200	$\mu \mathrm{A}$	CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right)$
Clock Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right)$
Clock Frequency	$f$	150		440	KHz	
Clock Rise and Fall Times	tr, tf	0		0.3	$\mu \mathrm{s}$	Ext. CIk.
Clock Pulse Width	${ }^{t} \phi$ W	0.5		5.6	$\mu \mathrm{s}$	Ext. Clk.

## $\mu$ PD651

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}=+5 \mathrm{~V} \pm 10 \%$.

## CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{Cl}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
I/O Capacitance	$\mathrm{ClO}_{0}$			15	pf	



CLOCK WAVEFORM
ov - ----


ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\overrightarrow{\mathrm{I}}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD652 is a CMOS version of the $\mu$ COM-45. It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperâture range. As a $\mu$ COM-45, it includes $1000 \times 8$ ROM, $32 \times 4$ RAM, and 21 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage.	-0.3 to +7.0 Volts
Input Voltages	-0.3 to +7.0 Volts
Output Voltages	-0.3 to +7.0 Volts
,	

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$V_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}$	V	Ports A, C, D, INT, RES
Input Low Voltage	$V_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	Ports A, C, D, INT, RES
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}$, RES $\left(v_{1}=v_{C C}\right)$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}$, RES $\left(V_{1}=0 V\right)$
I/O Leakage Current High	1 OH			+10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}\left(\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$
I/O Leakage Current Low	IIOL			-10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}\left(\mathrm{V}_{0}=0 \mathrm{~V}\right)$
Output High Voltage 1	${ }^{\text {VOH1 }}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$			v	Ports C and D $(1 \mathrm{OH}=-1 \mathrm{~mA})$
		$\mathrm{V}_{\mathrm{cc}}{ }^{-0.5}$			v	Ports E to G $(1 \mathrm{OH}=-1 \mathrm{~mA})$
Output High Voltage 2	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{CC}}-2.5$			V	Ports C to G ( $1 \mathrm{OH}=-2 \mathrm{~mA}$ )
Output Low Voltage	VOL1			0.6	V	$\begin{aligned} & \text { Ports E to G } \\ & (1 \mathrm{OL}=2 \mathrm{~mA}) \end{aligned}$
	VOL2			0.4	V	$\begin{aligned} & \text { Ports } E \text { to } G \\ & (1 \mathrm{OL}=1.2 \mathrm{~mA}) \end{aligned}$
Supply Current	ICC		0.8	2.0	mA	
Clock High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	$0.7 \mathrm{~V}_{\text {cc }}$		$\mathrm{V}_{\mathrm{CC}}$	V	CLO, Ext. Clk.
Clock Low Voltage	$V_{\phi L}$	0		$0.3 \mathrm{~V}_{\mathrm{CC}}$	v	CLO, Ext. Clk.
Clock Leakage Current High	${ }^{\text {L }}$ ¢ H			200	$\mu \mathrm{A}$	CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right)$
Clock Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	$\begin{aligned} & \text { CLO, Ext. CIk. } \\ & \left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right) \end{aligned}$
Clock Frequency	f	150		440	KHz	
Clock Rise and Fall Times	tr, tf	0		0.3	$\mu \mathrm{s}$	Ext. CIk.
Clock Pulse Width	${ }^{\text {t }}$ ¢ $W$	0.5		5.6	$\mu \mathrm{s}$	Ext. Clk.

## $\mu$ PD652

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$		$\cdots$	15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
I/O Capacitance	$\mathrm{ClO}_{10}$			15	pf	

CAPACITANCE
OV - - - - -
OV - - - - -

CLOCK WAVEFORM


ITEM	MILLIMETERS	INCHES
A	56.0 MAX	2.2 MAX
B	2.6 MAX	0.1 MAX
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	50.8	2.0
F	1.5	0.059
G	3.2 MIN	0.126 MIN
H	0.5 MIN	0.02 MIN
$\overrightarrow{\text { I }}$	5.22 MAX	0.20 MAX
J	5.72 MAX	0.22 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.3 \pm 0.1$	$0.01 \pm 0.004$

## EVACHIP-43

DESCRIPTION The $\mu$ PD556 is an evaluation chip for the $\mu$ COM- $43 / 44 / 45$ single chip microcomputers. Designed to be used for both hardware and software debugging, the EVACHIP-43 is functionally equivalent to the $\mu \mathrm{COM}-43$, except that it does not contain on-chip ROM. Instead, it is able to address external memory. In addition, in order to facilitate debugging, the $\mu$ PD556 is capable of displaying the contents of the internal accumulator and data pointer and of being single stepped.

When the $\mu$ PD556 is being used to evaluate $\mu$ COM-44/45 designs, the external memory capacity should be restricted to that of the respective on-chip ROM and the instructions should be restricted to the 58 comprising the $\mu$ COM $-44 / 45$ instruction set.

FEATURES • 4-bit Parallel Processor

- Full 80 Instruction Set of $\mu$ COM-43
- $10 \mu \mathrm{~s}$ Instruction Cycle
- Capable of addressing 2K x 8-bits of external program memory
- Single step capability
- Full Functionality of $\mu \mathrm{COM}-43$
- Single supply: -10V PMOS Technology
- Available in a 64-pin Ceramic Quad-in-Line Package


PIN NAMES

$\mathrm{PF}_{0} \mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0} \mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0} \mathrm{PH}_{3}$	Output Port H
$\mathrm{PI}_{0} \mathrm{Pl}_{2}$	Output Port 1
$P^{\prime} A_{0} \cdot P A_{3}$	Input Port A
$P B_{0}-P B_{3}$	Input Port B
$P C_{0} \quad P C_{3}$	Input/Output Port C
INT	Interrupt Input
RES	Reset
$P D_{0} \cdots \mathrm{PD}_{3}$	Input/Output Port D
$P E_{0}-P E_{3}$	Output Port E
BREAK	Hold Input
STEP	Single Step Input
$A_{C C} / \mathrm{PC}$	Display A CC/PC Input
$\mathrm{P}_{0}-\mathrm{P}_{10}$	PC Output
${ }^{1} 0-1_{7}$	Instruction Input
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Source
TEST	Tied to $\mathrm{V}_{\text {SS }}$ (GND)

BLOCK DIAGRAM


Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage VGG	-15 to +0.3 Volts
All Input Voltages	-15 to +0.3 Volts
All Output Voltages	-15 to +0.3 Volts
Output Current	.. -4 mA (1)

Note: (1) All output pins.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{0}$			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	0		$-2.0$	V	Port A to D, 17 to $\mathrm{I}_{0}$. BREAK, STEP, INT, RES, and $A C C / P C$
Input Low Voltage	VIL	$-4.3$		VGG	V	Port A to $\mathrm{D}, 17$ to 10 , BREAK, STEP, INT, RES, and $\mathrm{ACC} / \mathrm{PC}$
Clock High Voltage	$\mathrm{V}_{\mathrm{OH}}$	0		-0.8	V	$\mathrm{CL}_{0}$ Input
Clock Low Voltage	$\mathrm{V}_{\text {OL }}$	-6.0		$\mathrm{V}_{\mathrm{GG}}$	V	$\mathrm{CL}_{0}$ Input
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Port $A$ and $B, I 7$ to $I_{0}$ INT, RES, BREAK, STEP
				+30	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{ACC} / \mathrm{PC}, \mathrm{~V}_{1}=-1 \mathrm{~V} \\ & \text { Port } \mathrm{C} \text { and } \mathrm{D}, \mathrm{~V}_{1}=-1 \mathrm{~V} \end{aligned}$
Input Leakage Current Low	'LIL'			-10	$\mu \mathrm{A}$	Port $A$ and $B, 17$ to 10 INT, RES, BREAK, STEP
				$-30$	$\mu \mathrm{A}$	$\mathrm{ACC}^{2} / \mathrm{PC}, \mathrm{V}_{1}=-11 \mathrm{~V}$   Port $C$ and $D, V_{1}=-11 \mathrm{~V}$
Clock Input   Leakage High	I LOH			+200	$\mu \mathrm{A}$	$\mathrm{CL}_{0}$ Input, $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$
Clock Input   Leakage Low	ILOL			-200	$\mu \mathrm{A}$	$\mathrm{CL}_{\mathrm{O}}$ Input, $\mathrm{V}_{\mathrm{OL}}=-11 \mathrm{~V}$
Output High Voltage	$\mathrm{VOH}_{1}$			-1.0	v	$\begin{aligned} & \text { Port } C \text { to } 1, P_{10} \text { to } P_{0} \\ & I_{O H}=-1.0 \mathrm{~mA} \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.3	V	$\begin{aligned} & \text { Port C to } 1, P_{10} \text { to } P_{0} \\ & 1 \mathrm{OH}=-3.3 \mathrm{~mA} \end{aligned}$
Output Leakage Current Low	'LOL			$-30$	$\mu \mathrm{A}$	$\text { Port } C \text { to } I, P_{10} \text { to } P_{0}$ $V_{0}=-11 \mathrm{~V}$
Supply Current	IGG		$-30$	-50	mA	

Note: (1) Relative to $V_{S S}=0 \mathrm{~V}$
AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Frequency :	$f$	150		440	KHz	
Clock Rise and Fall Times	$t_{r}, t_{f}$	0		0.3	$\mu \mathrm{s}$	
Clock Pulse Width High	t $\phi$ WH	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	t $¢ \mathrm{WL}$	0.5		5.6	$\mu \mathrm{s}$	
Input Setup Time	IS			5	$\mu \mathrm{s}$	
Input Hold Time	${ }_{\text {ti }}$	0.			$\mu \mathrm{s}$	
BREAK to STEP Interval	$t_{B S}$	80			tcy	
STEP to RUN interval	tSB	80			tcy	
STEP Pulse Width	twS	12			tcy	
BREAK to ACC Interval	tBA	80			tcy	
ACC/PC Pulse Width	twA	12			tcy	
STEP to ACC Interval	tSA1	80			tcy	
PC to STEP Overlap	tSA2			2	tcy	
PC to RUN Interval	${ }^{t} A B$	0			$\mu \mathrm{s}$	
$\mathrm{ACC} / \mathrm{PC} \rightarrow \mathrm{P}_{10}{ }^{-\mathrm{P}_{0} \text { Delay }}$	tDAP1			6	tcy	
	tDAP2			6	tcy	

CLOCK WAVEFORM


$(\mathrm{PC})^{n}$


PACKAGE OUTLINE $\mu$ PD556B


ITEM	MILLIMETERS	INCHES
A	41.5	1.634 MAX
B	1.05	0.042
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.2 \pm 0.004$
E	39.4	1.55
F	1.27	0.05
G	5.4 MIN	0.21 MIN
I	2.35 MAX	0.13 MAX
J	24.13	0.95
K	19.05	0.75
L	15.9	0.626
M	$0.25 \pm 0.05$	$0.01 \pm 0.002$

## $\mu$ COM-46 SINGLE CHIP MICROCOMPUTER WITH ON-CHIP AID CONVERTER

DESCRIPTION

FEATURES

The $\mu$ COM-46 is a member of the $\mu$ COM-43 Family with an on-chip A/D Converter. Essentially a $\mu$ COM-44 with the A/D portion replacing some I/O circuitry, the $\mu \mathrm{COM}-46$ has $1000^{\circ} \times 8$ ROM, $64 \times 4$ RAM and 28 I/O lines in addition to the A/D Converter. It is totally software-compatible with the $\mu$ COM -44 , but does have the additional hardware feature of a two-level stack.

The A/D Converter uses the charge transfer (charge pump) method and the actual conversion is done under software control. The analog input voltage applied to the A/D Converter is obtained as binary digital data with a maximum conversion time of 0.7 msec The level of this applied analog input voltage is then calculated from the binary digital data.

- Stand Alone 4-Bit Microcomputer and A/D Converter
- Powerful 58 Instruction Set
- $10 \mu$ s Instruction Cycle
- ROM Size: $1000 \times 8$
- RAM Size: $64 \times 4$
- On-Chip A/D Converter: $2 \%$ Resolution, $4 \%$ Accuracy
- 2 Level Stack
- 28 Input/Output Lines Consisting of: Two 4-Bit Input Ports, Two 4-Bit Input/Outpu Ports and Three 4-Bit Output Ports. All Capable of Both Single-Bit Manipulation and 4-Bit Parallel Processing
- Open Drain Outputs
- P-Channel MOS
- Single Power Supply: -10V



Operating Temperature

$$
-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

ABSOLUTE MAXIMUM
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voltages (Port A, $\overline{\mathrm{INT}}, \mathrm{RES}, \mathrm{TEST}$ ) -15 to +0.3 Volts -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Current (Ports C, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4 mA
(Ports E, F, G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -12 mA
(Total Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -60 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} .
$$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{Cl}_{1}$			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	CO			15	pf	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pf	

DC/AC

## CHARACTERISTICS

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	VIH	0		-2.0	V	Ports A, C, D, INT, RES
Input Low Voltage	VIL1	-4.5		VGG	V	Ports A, INT, RES
	VIL2	-4.5		-35	V	Ports C and D
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, INT, RES, TEST $\mathrm{V}_{1}=1 \mathrm{~V}$
Input Leakage Current Low	'LIL1			-10	$\mu \mathrm{A}$	Ports A, $\overline{\mathrm{INT}}$, RES, TEST $V_{1}=-11 \mathrm{~V}$
	ILIL2			-30	$\mu \mathrm{A}$	Port A $V_{1}=-35 V$
I/O Leakage Current High	${ }^{1} \mathrm{OH}$			+10	$\mu \mathrm{A}$	Ports C and D $V_{i}=-1 V$
I/O Leakage Current Low	'IOL1			-10	$\mu \mathrm{A}$	Ports C and D $V_{1}=-11 \mathrm{~V}$
	110 L 2			-30	$\mu \mathrm{A}$	Ports C and D $V_{1}=-35 \mathrm{~V}$
Output Voltage	VOH1			-1.0	V	Ports C and D $10=-2 \mathrm{~mA}$
	VOH2			-2.0	V	$\begin{aligned} & \text { Ports E, F, G } \\ & 1 \mathrm{O}=-8 \mathrm{~mA} \end{aligned}$
Output Leakage Current	IOL1			-10	$\mu \mathrm{A}$	Ports C, D, E, F, G $V_{O}=-11 \mathrm{~V}$
	IOL2			-30	$\mu \mathrm{A}$	Ports C, D, E, F, G $\mathrm{VO}=-35 \mathrm{~V}$
Supply Current	IGG		-20	-40	mA	$\cdots$
Clock High Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLO, Ext. Clk.
Clock Low Voltage	$\mathrm{V}_{\phi} \mathrm{L}$	-6.0		VGG	V	CLO, Ext. Clk.
Clock Leakage Current High	${ }^{\prime} \mathrm{L} \phi \mathrm{H}$			200	$\mu \mathrm{A}$	$\begin{aligned} & \text { CLO, Ext. CIk. } \\ & \left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right) \end{aligned}$
Clock Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right)$
Clock Frequency	f	150		440	KHz	
Clock Rise and Fall Times	tr, tf	0		0.3	$\mu \mathrm{s}$	Ext. Clk.
Clock Pulse Width	${ }^{t} \phi$ W	0.5		5.6	$\mu \mathrm{s}$	Ext. Clk.

CLOCK WAVEFORM


## $\mu$ PD551



ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25_{-0.05}^{+0.1}$	$0.010+0.004$

## 8-BIT N-CHANNEL MICROPROCESSOR COMPLETELY Z80 ${ }^{\text {TM }}$ COMPATIBLE

The $\mu$ PD780 and $\mu$ PD780-1 processors are single chip microprocessors developed from third generation technology. Their increased computational power produces higher system through-put and more efficient memory utilization, surpassing that of any second generation microprocessor. The single voltage requirement of the $\mu$ PD780 and $\mu$ PD780-1 processors makes it easy to implement them into a system. All output signals are fully decoded and timed to either standard memory or peripheral circuits. An N -channel, ion implanted, silicon gate MOS process is utilized in implementing the circuit.

The block diagram shows the functions of the processor and details the internal register structure. The structure contains 26 bytes of Read/Write (R/W) memory available to the programmer. Included in the registers are two sets of six general purpose registers, which may be used as 8 -bit registers individually, or as 16 -bit register pairs. Also included are two sets of accumulator and flag registers.
Through a group of exchange instructions the programmer has access to either set of main or alternate registers. The alternate register permits foreground/background mode of operation, or may be used for fast interrupt response. A 16 -bit stack pointer is also included in each processor, simplifying implementation of multiple level interrupts, permitting unlimited subroutine nesting, and simplifying many types of data handling.
The two 16-bit index registers simplify implementation of relocatable code and manipulation of tabular data. The Refresh register will automatically refresh external dynamic memories. A powerful interrupt response mode will use the I register to form the upper 8-bits of a pointer to an interrupt service address table, while the interrupting apparatus supplies the lower 8 -bits of the pointer. An indirect call will then be made to service this address.

FEATURES - Single Chip, N-Channel Silicon Gate Processor

- 158 Instructions - Including all 78 of the 8080A Instructions, Permitting Total Software Compatibility
- New 4-, 8-, and 16-Bit Operations Featuring Useful Addressing Modes such as Indexed, Bit and Relative
- 17 Internal Registers
- Three Modes of Rapid Interrupt Response, and One Non-Maskable Interrupt
- Directly Connects Standard Speed Dynamic or Static Memories, with Minimum Support Circuitry
- Single-Phase +5 Volt Clock and 5 VDC Supply
- TTL Compatibility
- Automatic Dynamic RAM Refresh Circuitry
- Available in Plastic Package


## PIN CONFIGURATION




ADDRESS BUS
SPECIAL PURPOSE REGISTERS

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{gathered} 1-5, \\ 30-40 \end{gathered}$	$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Bus	3-State Output, active high. Pins $\mathrm{A}_{0}-\mathrm{A}_{15}$ constitute a 16 -bit address bus, which provides the address for memory and I/O device data exchanges. Memory capacity 65,536 bytes. $A_{0}-A_{7}$ is also needed as refresh cycle.
$\begin{array}{r} 7-10, \\ 12-15 \end{array}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus	3-State input/output, active high. Pins $\mathrm{D}_{0}-\mathrm{D}_{7}$ compose an 8-bit, bidirectional data bus, used for data exchanges with memory and I/O devices.
27	$\bar{M}_{1}$	Machine Cycle One	Output, active low. $\bar{M}_{1}$ indicates that the machine cycle in operation is the op code fetch cycle of an instruction execution.
19	$\overline{\text { MREQ }}$	Memory Request	3-State output, active low. $\overline{\mathrm{MREQ}}$ indicates that a valid address for a memory read or write operation is held in the address.
20	$\overline{\text { ORQ }}$	Input/Output Request	3-State output, active low. The I/O request signal indicates that the lower half of the address bus holds a valid address for an I/O read or write operation. The IORQ signal is also used to acknowledge an interrupt command, indicating that an interrupt response vector can be placed on the data bus.
21	$\overline{\mathrm{RD}}$	Memory Read	3-State output, active low. $\overline{\mathrm{RD}}$ indicates that the processor is requesting data from memory or an I/O device. The memory or I/O device being addressed should use this signal to gate data onto the data bus.

PIN IDENTIFICATION

## PIN IDENTIFICATION (CONT.)

PIN			FUNCTION
NO.	SYMBOL	NAME	
22	$\overline{W R}$	Memory Write	3-State output, active low. The memory write signal indicates that the processor data bus is holding valid data to be stored in the addressed, memory or I/O device.
28	$\overline{\mathrm{RFSH}}$	Refresh	Output, active low. $\overline{\mathrm{RFSH}}$ indicates that a refresh address for dynamic memories is being held in the lower 7-bits of the address bus. The $\overline{M R E O}$ signal should be used to implement a refresh read to all dynamic memories.
18	$\overline{\text { HALT }}$	Halt State	Output, active low. $\overline{\mathrm{HALT}}$ indicates that the processor has executed a HALT software instruction, and will not resume operation until either a non-maskable or a maskable (with mask enabled) interrupt has been implemented. The processor will execute NOP's while halted, to maintain memory refresh activity.
24	$\overline{\text { WAIT }}$	Wait	Input, active low. $\overline{\text { WAIT }}$ indicates to the processor that the memory or 1/O devices being addressed are not ready for a data transfer. As long as this signal is active, the processor will reenter wait states.
16	$\overline{\text { INT }}$	Interrupt Request	Input, active low. The $\overline{\mathrm{INT}}$ signal is produced by I/O devices. The request will be honored upon completion of the current instruction, if the interrupt enable flip-flop (IFF) is enabled by the internal software. There are three modes of interrupt response. Mode 0 is identical to 8080 interrupt response mode. The Mode 1 response is a restart location at 0038 H . Mode 2 is for simple vectoring to an interrupt service routine anywhere in memory.
17	$\overline{\mathrm{NMI}}$	Non-Maskable Interrupt	Input, active low. The non-maskable interrupt has a higher priority than INT. It is always acknowledged at the end of the current instruction, regardless of the status of the interrupt enable flip-flop. When the $\overline{\mathrm{NMI}}$ signal is given, the $\mu$ PD780 processor automatically restarts to location 0066 H .
26	$\overline{\text { RESET }}$	Reset	Input, active low. The $\overline{\text { RESET }}$ signal causes the processor to reset the interrupt enable flip-flop (IFF), clear PC and I and R registers, and set interrupt to 8080A mode. During the reset time, the address bus and data bus go to a state of high impedance, and all control output signals become inactive, after which processing continues at 0000 H .
25	$\overline{B U S R Q}$	Bus Request	Input, active low. $\overline{B U S R}$ has a higher priority than $\overline{\mathrm{NMI}}$, and is always honored at the end of the current machine cycle. It is used to allow other devices to take control over the processor address bus, data bus signals; by requesting that they go to a state of high impedance.
23	$\overline{B U S A K}$	Bus Acknowledge	Output, active low. $\overline{\text { BUSAK }}$ is used to inform the requesting device that the processor address bus, data bus and 3 -state control bus signals have entered a state of high impedance, and the external device can now take control of these signals.

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts (1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W
Note: (1) With Respect to Ground.
COMMENT: Stress above' those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Low Voltage	VILC	-0.3		0.45	V	
Clock Input High Voltage	VIHC	$\mathrm{V}_{\mathrm{cc}}-0.2$		$\mathrm{V}_{\mathrm{cc}}$	V	
Input Low Voltage	VIL	-0.3		0.8	V	
Input High Voltage	VIH	2.0		$\mathrm{V}_{\mathrm{cc}}$	V	
Output Low Voltage	VOL			0.4	V	$1 \mathrm{OL}=1.8 \mathrm{~mA}$
Output High Voltage	V OH	2.4			V	$\mathrm{IOH}=-250 \mu \mathrm{~A}$
Power Supply Current	ICC			150	mA	$\mathrm{t}_{\mathrm{c}}=400 \mathrm{~ns}$
	ICC		90	200	mA	$\mathrm{t}_{\mathrm{c}}=250 \mathrm{~ns}$
Input Leakage Current	ILI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$
Tri-State Output Leakage Current in Float	ILOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=2.4$ to $\mathrm{V}_{\mathrm{cc}}$
Tri-State Output Leakage Current in Float	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
Data Bus Leakage Current in Input Mode	ILD			$\pm 10$	$\mu \mathrm{A}$	$0 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {c }}$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST   CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	$\mathrm{c}_{\phi}$			35	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$			5	pF	Unmeasured Pins
Output Capacitance	COUT			10	pF	Returned to Ground

ABSOLUTE MAXIMUM RATINGS*


> DC CHARACTERISTICS

## CAPACITANCE



## Instruction Op Code Fetch

The contents of the program counter (PC) are placed on the address bus at the start of the cycle. $\overline{\mathrm{MREQ}}$ goes active one-half clock cycle later, and the falling edge of this signal can be used directly as a chip enable to dynamic memories. The memory data should be enabled onto the processor data bus when $\overline{\mathrm{RD}}$ goes active. The processor takes data with the rising edge of the clock state $\mathrm{T}_{3}$. The processor internally decodes and executes the instruction, while clock states $T_{3}$ and $T_{4}$ of the fetch cycle are used to refresh dynamic memories. The refresh control signal $\overline{\mathrm{RFSH}}$ indicates that a refresh read should be done to all dynamic memories.


## Memory Read or Write Cycles

This diagram illustrates the timing of memory read or write cycles other than an op code fetch ( $\mathrm{M}_{1}$ cycle). The function of the $\overline{M R E O}$ and $\overline{\mathrm{PD}}$ signals is exactly the same as in the op code fetch cycle. When a memory write cycle is implemented, the MREO becomes active and is used directly as a chip enable for dynamic memories, when the address bus is stable. The $\overline{W R}$ line is used directly $\quad$; a $R W$ pulse to any type of semiconductor memory, and is active when data on th, Jata us is stable.


## Input or Output Cycles

This illustrates the timing for an I/O read or I/O write operation. A single waitstate ( $\mathrm{T} W$ ) is automatically inserted in I/O operations to allow sufficient time for an I/O port to decode its address and activate the WAIT line, if necessary.


Interrupt Request/Acknowledge Cycle
The processor samples the interrupt signal with the rising edge of the last clock at the end of any instruction. A special $\mathrm{M}_{1}$ cycle is started when an interrupt is accepted. During the $M_{1}$ cycle, the $\overline{\overline{O R O}}$ (instead of $\overline{M R E O}$ ) signal becomes active, indicating that the interrupting device can put an 8 -bit vector on the data bus. Two wait states (TW) are automatically added to this cycle. This makes it easy to implement a ripple priority interrupt scheme.


INSTRUCTION SET The following summary shows the assembly language mnemonic and the symbolic operation performed by the instructions of the $\mu$ PD780 and $\mu$ PD780-1 processors. The instructions are divided into 16 categories:

Miscellaneous Group	8-Bit Loads
Rotates and Shifts	16-Bit Loads
Bit Set, Reset and Test	Exchanges
Input and Output	Memory Block Moves
Jumps	Memory Block Searches
Calls	8-Bit Arithmetic and Logic
Restarts	16-Bit Arithmetic
Returns	General Purpose Accumulator and Flag Operations

The addressing Modes include combinations of the following:

Indexed	Immediate
Register	Immediate Extended
Implied	Modified Page Zero
Register Indirect	Relative
Bit	Extended





	SYMBOLIC OPERATION	DESCRIPTION	NO. BYTES	$\begin{aligned} & \text { NO. T } \\ & \text { STATES } \end{aligned}$	c Z						OP CODE		
MNEMONIC											76	543	210
LD IY, nn	$1 Y \leftarrow n n$	Load IY with value nn	4	14	-	-	-	-	-	$\bullet$	11 00 $n n$ $n n$	111 100 $n n n$ $n n n$	10.1   001   nnn   nnn
LD IV, (nn)	$\begin{aligned} & I Y_{H} \leftarrow(n n+1) \\ & I Y_{L} \leftarrow(n n) \end{aligned}$	Load IY with location (nn)	4	20		$\bullet$	-	-	-	$\bullet$	11 00 $n n$ $n n$ $n$	111 101 $n n n$ $n n n$	101   010   nnn   nnn
LD ss, (nn)	$\begin{aligned} & \mathrm{ss}_{\mathrm{H}}^{\mathrm{H}} \mathrm{~L} \\ & \leftarrow(\mathrm{nn}+1) \\ & \leftarrow(n n) \end{aligned}$	Load Reg. pair dd with location (nn)	4	20		-	-	$\bullet$	-	-	11 01 $n n$ $n n$ $n n$	101 s 1 $n n n$ $n n n$	$101 \text { (A) }$   011   nnn   nnn
LD ( $1 Y+d), n$	$(1 Y+d) \leftarrow n$	Load (1Y+d) with value $n$	4	19		$\bullet$	-	$\bullet$	-	$\bullet$	11 00 $d d$ $n n$	111 110 ddd nnn	$101$   110   ddd   nnn
LD ( $1 Y+d), r$	$(1 Y+d) \leftarrow r$	Load location (IY + d) with Reg. r	3	19		-	$\bullet$	$\bullet$	-	-	11 01 dd	111 110 ddd	$\begin{aligned} & 101{ }^{(B)} \\ & \mathrm{rr} r \\ & d d d \end{aligned}$
LD (nn), A	$(\mathrm{nn}) \leftarrow \mathrm{A}$	Load location ( nn ) with ACC	3	13		-	-	-	-	$\bullet$	00 $n n$ $n n$	110 $n n n$ $n n n$	010   nnn   .nnn
LD (nn), ss	$\begin{aligned} & (n n+1) \leftarrow s s_{H} \\ & (n n) \leftarrow s s_{L} \end{aligned}$	Load location (nn) with Reg. pair dd	4	20		-	-	-	-	-	11 01 $n n$ $n n$	101 $5 s 0$ $n n n$ $n n n$	$101{ }^{(A)}$   011   nnn   nnn
LD ( n ) , HL	$\begin{aligned} & (n n+1) \leftarrow H \\ & (n n) \leftarrow L \end{aligned}$	Load location (nn) with HL	3	16		-	-	-	*	*	00 $n n$ $n n$	$\begin{aligned} & 100 \\ & n n n \\ & n n n \end{aligned}$	$\begin{aligned} & 010 \\ & \mathrm{nnn} \\ & \mathrm{nnn} \end{aligned}$
LD (nn), IX	$\begin{aligned} & (n n+1) \leftarrow 1 X_{H} \\ & (n n) \leftarrow 1 X_{L} \end{aligned}$	Load location (nn) with IX	4	20		-	-	-	-	$\bullet$	11 00 $n n$ $n n$ $n$	011 100 $n n n$ $n n n$	$\begin{aligned} & 101 \\ & 010 \\ & n n n \\ & n n n \end{aligned}$
LD (nn), IY	$\begin{aligned} & (n n+1) \leftarrow I Y_{H} \\ & (n n) \leftarrow I Y_{L} \end{aligned}$	Load location (nn) with IY	4	20		-	-	-	-	-	11 00 $n n$ $n n$ $n n$	111 100 $n n n$ $n n n$	$\begin{aligned} & 101 \\ & 010 \\ & n n n \\ & n n n \end{aligned}$
LD R, A	$R \leftarrow A$	Load R with ACC	2	9		$\bullet$	-	-	-	$\bullet$	11 01	101 001	$\begin{aligned} & 101 \\ & 111 \end{aligned}$
LD r, (HL)	$r \leftarrow(H L)$	Load Reg. $r$ with location (HL)	1	7			-	-	-	$\bullet$	01		$110{ }^{\text {B }}$
LD r, (1X + d)	$r \leftarrow(1 X+d)$	Load Reg. r with location (1X+d)	3	19			-		$\bullet$	$\bullet$	11 01 dd	011 $r r r$ ddd	$\begin{aligned} & 101^{(B)} \\ & 110 \\ & \text { ddd } \end{aligned}$
LD r, (IY + d)	$r \leftarrow(1 Y+d)$	Load Reg. r with location (1Y + d)	3	19		$\bullet$	-	-	$\bullet$	$\bullet$	11 01 dd	111 $r r r$ ddd	$\begin{aligned} & 101 \text { (B) } \\ & 110 \\ & \text { ddd } \end{aligned}$
LD r, n	$r \leftarrow n$	Load Reg. r with value n	2	7		-		-	-	-	00 $n n$	rrr $n n \mathrm{n}$	$\begin{aligned} & 110^{(B)} \\ & n n n \end{aligned}$
LD, r, r	$r \leqslant r$	Load Reg. r with Reg.	1	4			-		-	$\bullet$	01	rr r	r'r'r'( ${ }^{\text {a }}$
LD SP, HL	$S P \leftarrow H L$	Load SP with HL	1	6			-		$\bullet$	$\bullet$	11	111	001
LD SP, IX	$\mathrm{SP} \leftarrow \mathrm{IX}$	Load SP with IX	2	10		-	-		-	$\bullet$	11 11	011 111	$\begin{aligned} & 101 \\ & 001 \end{aligned}$
LD SP, IY	$S P \leftarrow I Y$	Load SP with IY	2	10	-	-	-	$\bullet$	-	$\bullet$	11 11	111 111	$\begin{aligned} & 101 \\ & 001 \end{aligned}$
LDD	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1 \\ & H L \leftarrow H L-1 \\ & B C \leftarrow B C-1 \end{aligned}$	Load location (DE) with location ( HL ), decrement DE, HL and BC	2	16		-	$\downarrow$	-	0	0	11 10	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$
LDDR	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1 \\ & H L \leftarrow H L-1 \\ & B C \leftarrow B C-1 \text { until } B C=0 \end{aligned}$	Load location (DE) with location (HL)	2	21		-	0	$\bullet$	0	0	11 10	101 111	$\begin{aligned} & 101 \\ & 000 \end{aligned}$
LDI	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E+1 \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \end{aligned}$	Load location (DE) with location $(H L)$, increment $D E, H L$; decrement BC	2	16		-	$1^{(1)}$		0	0	11 10	101 100	$\begin{aligned} & 101 \\ & 000 \end{aligned}$
LDIR	$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E+1 \\ & H L \leftarrow H L+1 \\ & B C \leftarrow B C-1 \text { until } B C=0 \end{aligned}$	Load location (DE) with location (HL), increment DE, HL; decrement $B C$ and repeat until $B C=0$	2	$\begin{aligned} & 21 \text { if } B C \neq 0 \\ & 16 \text { if } B C=0 \end{aligned}$	-	-	0	$\bullet$	0	0	11 10	101 110	$\begin{aligned} & 101 \\ & 001 \end{aligned}$
NEG	$A \leftarrow 0-A$	Negate ACC (2's complement)	2	8	$t$	$\downarrow$	$v$	$\dagger$	1	$\dagger$	11   01	$\begin{aligned} & 101 \\ & 000 \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \\ & \hline \end{aligned}$






ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

$T_{a}=0{ }^{\circ} \mathrm{C}$ to $+70^{\prime \prime} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, 5 \%$, unless otherwise specified.

PARAMETER	SYMBOL	Limits				UNIT	TEST conditions
		$\mu \mathrm{PD} 780$		$\mu$ PD780-1			
		MIN	MAX	MIN	MAX		
Clock Period	$t_{c}$	0.4	(12)	0.25	(12)	$\mu \mathrm{s}$	
Clock Pulse Width, Clock High	$t_{w}(\mathrm{~d}, \mathrm{H})$	180		110		ns	
Clock Pulse Width, Clock Low	${ }_{t w}(\Phi)$	180	2000	110	2000	ns	
Clock Rise and Fall Time	$t_{\text {r }, ~}^{\text {f }}$		30		30	ns	
Address Output Delav	t ${ }^{\text {d }}$ (AD)		145		110	ns	
Delay to Fioat	tF(AD)		110		90	ns	
Address Stable Prior to MREO (Memory Cycle)	$\mathrm{tacm}^{\text {a }}$	(1)		(1)		ns	
Address Stable Prior to $\overline{\text { IORQ}, ~}, \overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ (1/O Cycle)	taci	(2)		(2)		ns	
Address Stable from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$	${ }_{\text {c }}$ ca	(3)		(3)		ns	
Address Stable from $\overline{\mathrm{RD}}$ or $\overline{W R}$ During Float	${ }^{\text {c }}$ af	(4)		(4)		ns	
Data Output Delay	to (D)		230		150	ns	
Delay to Float During Write Cycle	${ }_{\text {t }}$ ( $\mathrm{D}^{\text {d }}$		90		90	ns	
Data Setup Time to Rising Edge of Clock During M1 Cycle	tSp( ${ }^{\text {d }}$ )	50		35		ns	
Data Setup Time to Falling Edge of Clock During M2 to M5 Cycles	tswip ${ }^{\text {d }}$	60		50		ns	$C_{L}=200 \mathrm{pF}$
Data Stable Prior to WR. (Memory Cycle)	${ }^{\text {d d }} \mathrm{cm}$	(5)		(5)		ns	
Data Stable Prior to $\overline{W R}$ (I/O Cycle)	$\mathrm{t}_{\mathrm{dc}}$	(6)		(6)		ns	
Data Stable from WR	${ }^{\text {t }}$ cdf	(7)		(7)		ns	
Any Hold Time for Setup Time	${ }^{\text {t }} \mathrm{H}$	0			0	ns	
$\overline{\text { MREO }}$ Delay from Falling Edge of Clock to $\overline{\text { MREQ }}$ Low	TDL市(MR)		100		85	ns	
$\overline{\text { MREO }}$ Delay from Rising Edge of Clock to MREQ High	toht (MR)		100		85	ns	
	TDHD(MR)		100		85	ns	
Pulse Width, $\overline{\text { MREO }}$ Low	${ }^{\text {t }}$ w(MRL)	(8)		(8)		ns	
Pulse Width, MREQ High	${ }^{\text {tw }}$ ( (MRH)	(9)		(9)		ns	
$\overline{\overline{O R Q}}$ Delay from Rising Edye of Clock to $\overline{\overline{\text { ORQ }}}$ Low	tDLW(IR)		90		75	ns	
$\overline{\text { TORO}}$ Delay from Falling Edge of Clock to $\overline{\text { ORO }}$ Low			110		85	ns	
OROQ Delay from Rising Edge of Clock to MORQ High	torqu(1R)		100		85	ns	
$\overline{\overline{O R O}}$ Delay from Fallıng Edge of Clock to $\overline{\text { IORO}}$ High			110		85	ns	$C_{L}=50 \mathrm{pF}$
$\overline{\mathrm{RD}}$ Delay from Rising Edge of Clock to $\overline{\mathrm{RD}}$ Low	told (RD)		100		85	ns	
$\overline{\overline{R D}}$ Delay from Falling:Edze of Clock to $\overline{\mathrm{RD}}$ Low	tols		130		95	ns	
$\overline{\text { RD }}$ Delay from Rising Edge of Clock to $\overline{\text { RD }}$ High	'DHP(RD)		100		85	ns	
$\overline{\overline{R D}}$ Delay from Falling Edge of Clock to $\overline{\overline{R D}} \mathrm{High}$	${ }^{\text {t }} \mathrm{DH} \overline{\text { ¢ }}$ (RD)		110		85	ns	
$\overline{\text { WR }}$ Delay from Rising Edge of Clock to $\overline{\text { WR }}$ Low	tDL ( ${ }^{\text {(WR) }}$		80		65	ns	
$\overline{\text { WR }}$ Delay from Falling Edge of Clock to $\overline{\mathrm{WR}}$ Low	tol $\overline{\text { ¢ }}$ ( $W R$ )		90		80	ns	
$\overline{\text { WR }}$ Delay from Falling Edge of Clock to $\overline{\text { WR }}$ High	tDHゅ(WR)		100		80	ns	
Pulse Width to $\overline{\mathrm{WR}}$ Low	${ }_{\mathrm{w}}(\bar{W} \bar{W} L)$	(10)		(10)		ns	
$\overline{\text { MI }}$ Delay from Rising Edge of Clock to MI Low	'0LIMI)		330		100	ns	$C_{L}=30 \mathrm{pF}$
	${ }^{\text {' }} \mathrm{DH}(\mathrm{MI} 1)$		i30		100	ns	
$\overline{\text { RFSH }}$ Delay from Rising Edge of Clock to $\overline{\text { RFSH }}$ Low	${ }^{\text {t }}$ DL(RF)		180		130	ns	
$\overline{\text { RFSH }}$ Delay from Rising Edge of Clock to $\overline{\text { RFSH }}$ High	${ }^{\text {t }} \mathrm{DH}(\mathrm{RF})$		150		120	ns	
WAIT Setup Time to Falling Edige of Clock	$\mathrm{t}_{5}(\mathrm{WT}$ )	70		70		ns	
HALT Delay Time from Falling Edge of Clock	tD(HT)		300		300	ns	$C_{L}=50 \mathrm{pF}$
$\overline{\text { INT Setup Time to Rising Edge of Clock }}$	$\mathrm{t}_{\mathrm{s}}$ (IT)	80		80		ns	
Pulse Width, NMMI Low	$\mathrm{t}_{\mathrm{w}}$ ( $\overline{\text { MM }}$ L)	80		80		ns	
BUSROD Setup Time to Rising Edge of Clock	$\mathrm{t}_{\mathrm{s}}(\mathrm{BQ})$	80		50		ns	
$\overline{\text { BUSAK }}$ Delay from Rising Edge of Clock to $\overline{\text { BUSAK }}$ Low	${ }^{\text {t } D(L B A) ~}$		120		100	ns	$C_{L}=50 \mathrm{pF}$
BUSAK Delay from Falling Edge of Clock to $\overline{\text { BUSAK }}$ High	${ }^{\text {t }}$ DH(BA)		110		100	ns	$C_{L}=50 \mathrm{pF}$
$\overline{\text { RESET }}$ Setup Time to Rising Edge of Clock	$\mathrm{t}_{\text {s (RS }}$ )	90		60		ns	
Delay to Float ( $\overline{\mathrm{MREQ}}, \overline{\mathrm{ORRO}}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}})$	${ }^{\text {t }}$ (C)		100		80	ns	
$\overline{\text { MI Stable Prior to } \overline{\mathrm{ORQ}} \text { (Interrupt Ack.) }}$	tmr	(11)		(11)		ns	

s: (1) $t_{a c m}=t_{w}(4 \mathrm{pH})+t_{f}-65(75)^{*}$
(2) $\mathrm{t}_{\mathrm{ac}}=\mathrm{t}_{\mathbf{c}}-70(80)^{*}$
(3) ${ }^{{ }_{\mathrm{c}}^{\mathrm{ca}}}{ }^{\mathrm{ca}}=\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})+\mathrm{t}_{\mathrm{r}}-50(40)^{*}$
(4) $t_{c a f}=t_{w}(1 p \mathrm{~L})+t_{r}-45(60)^{*}$
(5) $t_{\mathrm{dcm}}={ }^{\mathrm{w}} \mathrm{t}_{\mathrm{c}} \quad 170(210)^{*}$
(6) $\left.t_{d c 1}=t_{w}(1) L\right)+t_{r}-170(210)^{*}$
(7) $\mathrm{t}_{\mathrm{cdf}}=\mathrm{t}_{\mathrm{w}}(\dot{\mathrm{d} L})+\mathrm{t}_{\mathrm{r}}-70(80)$
(8) $t_{w}(\overline{M R L})=t_{c} \quad 30(40)^{*}$
(9) $t_{w}(\overline{M R H})=t_{w}(10 H)+t_{f} 20(30)^{*}$
(10) $t_{w}(\overline{W R})=t_{c} \quad 30(40) *$
(11) $t_{m r}=2 t_{c}+t_{w}(\Phi H)+t_{f} 65(80)^{*}$
(12) $t_{c}=t_{w}(\Phi H)+t_{w}(T L L)+t_{r}+t_{f}$
*These values apply to the $\mu$ PD 780 .


LOAD CIRCUIT FOR OUTPUT

## NEC Microcomputers, Inc.

## $\mu$ PD8080AF 8-BIT N-CHANNEL MIROPROCESSOR FAMILY

## DESCRIPTION The $\mu$ PD8080AF is a complete 8-bit parallel processor for use in general purpose

 digital computer systems. It is fabricated on a single LSI chip using N-channel silicon gate MOS process, which offers much higher performance than conventional microprocessors ( $1.28 \mu \mathrm{~s}$ minimum instruction cycle). A complete microcomputer system is formed when the $\mu$ PD8080AF is interfaced with I/O ports (up to 256 input and 256 output ports) and any type or speed of semiconductor memory. It is available in a 40 pin ceramic or plastic package.FEATURES • 78 Powerful Instructions

- Three Devices - Three Clock Frequencies $\mu$ PD8080AF -2.0 MHz $\mu$ PD8080AF-2 -2.5 MHz $\mu$ PD8080AF-1 - 3.0 MHz
- Direct Access to 64 K Bytes of Memory with 16-Bit Program Counter
- 256 8-Bit Input Ports and 256 8-Bit Output Ports
- Double Length Operations Including Addition
- Automatic Stack Memory Operation with 16-Bit Stack Pointer
- TTL Compatible (Except Clocks)
- Multi-byte Interrupt Capability
- Fully Compatible with Industry Standard 8080A
- Available in either Plastic or Ceramic Package

PIN CONFIGURATION


## $\boldsymbol{\mu}$ PD8080AF

The $\mu$ PD8080AF contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8-bit parallel binary arithmetic unit. The $\mu$ PD8080AF also provides

FUNCTIONAL DESCRIPTION decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.
The $\mu$ PD8080AF utilizes a 16 -bit address bus to directly address 64 K bytes of memory, is fully TTL compatible ( 1.9 mA ), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.
The $\mu$ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The $\mu$ PD8080AF also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
This processor is designed to greatly simplify system design. Separate 16 -line address and 8 -line bidirectional data busses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All busses, including the control bus, are TTL compatible.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.
The $\mu$ PD8080AF has the capability to accept a multiple byte instruction upon interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.
NEC offers three versions of the $\mu$ PD8080AF. These processors have all the features of the $\mu$ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz . These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.


BLOCK DIAGRAM

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\left\lvert\, \begin{aligned} & 1, \\ & 25-27 \\ & 29-40 \end{aligned}\right.$	$\mathrm{A}_{15}$ - $\mathrm{A}_{0}$	Address Bus (output threestate)	The address bus is used to address memory (up to 64 K 8 -bit words) or specify the I/O device number (up to 256 input and 256 output devices). $A_{0}$ is the least significant bit.
2	$\mathrm{V}_{\text {SS }}$	Ground (input)	Ground
3-10	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (input/ output three-state)	The bidirectional data bus communicates between the processor, memory, and I/O devices for instructions and data transfers. Dur-ing each sync time, the data bus contains a status word that describes the current machine cycle. $\mathrm{D}_{0}$ is the least significant bit.
11	$V_{B B}$	VBB Supply Voltage (input)	$-5 \mathrm{~V} \pm 5 \%$
12	RESET	Reset (input)	If the RESET signal is activated, the program counter is cleared. After RESET, the program starts at location 0 in memory. The INTE and HLDA flip-flops are also reset. The flags, accumulator, stack pointer, and registers are not cleared. (Note: External synchronization is not required for the RESET input signal which must be active for a minimum of 3 clock periods.)
13	HOLD	Hold (input)	HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the $\mu$ PD8080AF address and data buses as soon as the $\mu$ PD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions:   - The processor is in the HALT state.   - The processor is in the $T_{2}$ or TW stage and the READ $Y$ signal is active.   As a result of entering the HOLD state, the ADDRESS BUS ( $A_{15}-A_{0}$ ) and DATA BUS ( $D_{7}-D_{0}$ ) are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin.
14	INT	Interrupt Request (input)	The $\mu$ PD8080AF recognizes an interrupt request on this line at the end of the current instruction or while halted. If the $\mu$ PD8080AF is in the HOLD state, or if the Interrupt Enable flip-flop is reset, it will not honor the request.
15	$\phi_{2}$	Phase Two (input)	Phase two of processor clock.
16	INTE (1)	Interrupt Enable (output)	INTE indicates the content of the internal interrupt enable flipflop. This flip-flop is set by the Enable (EI) or reset by the Disable (DI) interrupt instructions and inhibits interrupts from being accepted by the processor when it is reset. INTE is automatically reset (disabling further interrupts) during $T_{1}$ of the instruction fetch cycle ( $\mathrm{M}_{1}$ ) when an interrupt is accepted and is also reset by the RESET signal.
17	DBIN	Data Bus In (output)	DBIN indicates that the data bus is in the input mode. This signal is used to enable the gating of data onto the $\mu$ PD8080AF data bus from memory or input ports.
18	$\overline{W R}$	Write (output)	$\overline{W R}$ is used for memory WRITE or I/O output control. The data on the data bus is valid while the $\overline{W R}$ signal is active $(\overline{W R}=0)$.
19	SYNC	Synchronizing Signal (output)	The SYNC signal indicates the beginning of each machine cycle.
20	$V_{C C}$	$V_{C C}$ Supply Voltage (input)	$+5 \mathrm{~V} \pm 5 \%$
21	HLDA	Hold Acknowledge (output)	HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at:   - $T_{3}$ for READ memory or input operations.   - The clock period following T3 for WRITE memory or OUTPUT operations.   In either case, the HLDA appears after the rising edge of $\phi_{1}$ and high impedance occurs after the rising edge of $\phi_{2}$.
22	$\phi_{1}$	Phase One (input)	Phase one of processor clock.
23	READY	Ready (input)	The READY signal indicates to the $\mu$ PD8080AF that valid memory or input data is available on the $\mu$ PD8080AF data bus. READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the $\mu$ PD8080AF does not receive a high on the READY pin, the $\mu$ PD8080AF enters a WAIT state for as long as the READY pin is low. (READY can al so be used to single step the processor.)
24	WAIT	Wait (output)	The WAIT signal indicates that the processor is in a'WAIT state.
28	VDD	VDD Supply Voltage (input)	$+12 \mathrm{~V} \pm 5 \%$

[^1] allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

Operating Temperature
Storage Temperature (Ceramic Package). . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 to +20 Volts
All Input Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts
Supply Voltages $V_{C C}, V_{D D}$ and $V_{S S}(1) \ldots . . . . . . . . . . .$.
Power Dissipation 1.5W

Note: (1) Relative to $V_{B B}$.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$,
unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Low Voltage	VILC	VSS - 1		$\mathrm{V}_{\mathrm{SS}}+0.8$	v	
Clock Input High Voltage	VIHC	9.0		$V_{D D}+1$	V	
Input Low Voltage	VIL	VSS - 1		$\mathrm{V}_{\text {SS }}+0.8$	V	
Input High Voltage	VIH	3.3		$\mathrm{V}_{\text {CC }}+1$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\begin{aligned} & \mathrm{IOL}=1.9 \mathrm{~mA} \text { on all outputs } \\ & \mathrm{IOH}=-150 \mu \mathrm{~A} \text { (2) } \end{aligned}$
Output High Voltage	V OH	3.7			V	
Avg. Power Supply Current (VDD)	IDD(AV)		40	70	mA	$t \mathrm{CY}$ min
Avg. Power Supply Current (VCC)	ICC(AV)		60	80	mA	
Avg. Power Supply Current (VBB)	${ }^{\prime} \mathrm{BB}(\mathrm{AV})$		0.01	1	mA	
Input Leakage	IIL			$\pm 10$ (2)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Clock Leakage	ICL			$\pm 10$ (2)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {CLOCK }} \leqslant \mathrm{V}_{\text {DD }}$
Data Bus Leakage in Input Mode	IDL (1)			$\begin{align*} & -100 \\ & -2 \tag{2} \end{align*}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & V_{S S} \leqslant V_{I N} \leqslant V_{S S}+0.8 V \\ & V_{S S}+0.8 V \leqslant V_{I N} \leqslant V_{C C} \end{aligned}$
Address and Data Bus Leakage During HOLD	IFL			$\begin{aligned} & +10 \\ & \cdot 100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED (3)


Notes: (1) When DBIN is high and $V_{I N}>V_{I H}$ internal active pull-up resistors will be switched onto the data bus.
(2) Minus $(-)$ designates current flow out of the device.
(3) $\Delta I$ supply $/ \Delta T_{a}=-0.45 \% /{ }^{\circ} \mathrm{C}$ 。
$T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	C $\phi$		17	25	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$
Input Capacitance	CIN		6	10	pF	Unmeasured Pins
Output Capacitance	COUT		10	20	pF	Returned to $\mathrm{V}_{\text {SS }}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS


Notes:
(1) INTE F/F IS RESET IF INTERNAL INT F/F IS SET.
(2) INTERNAL INT F/F IS RESET IF.INTE F/F IS RESET.
(3) IF REQUIRED, $T_{4}$ AND $T_{5}$ ARE COMPLETED SIMULTANEOUSLY WITH ENTERING HOLD STATE.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{\text {t }} \mathrm{CY}$ ( (3)	0.48		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		50	nsec	
$\phi 1$ Pulse Width	$\mathrm{t}_{\phi} 1$	60			nsec	
$\phi 2$ Pulse Width . ${ }^{\text {m }}$	${ }_{t}{ }_{\text {d }}$	220			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }}$ 1 1	0			nsec	
Delay $\phi 2$ to $\phi 1$.	${ }^{\text {t }}$ 2	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	tD3	80			nsec	
Address Output Delay From $\phi 2$	${ }^{\text {t }}$ DA (2)			200	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t D }}$ (2)			220	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, WR, WAIT, HLDA)	${ }^{\text {t }}$ DC (2)			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {t }}$ DF (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{\mathrm{t}} \mathrm{I} \text { (1) }$			tDF	nsec	
Data Setup Time During $\phi 1$ and DBIN	tDS1	30			nsec	
Data Setup Time to $\phi 2$ During DBIN	${ }^{\text {t DS2 }}$	150			nsec	
Data Hold Time From $\phi 2$ During DBIN	toh (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	$\mathrm{I}_{1 \mathrm{E}}$ (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Settup Time During $\phi$. 2	${ }^{\text {t }}$ RS	120			nsec	
HOLD Setup Time to $\phi 2$	${ }_{\text {ths }}$	140			nsec	
INT Setup Time During $\phi 2$ (During $\phi 1$ in Halt Mode)	${ }^{\text {t }}$ S	120			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{t} \mathrm{H}$	0			nsec	
Delay to Float During Hold   (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	
Address Stable Prior to $\overline{\mathrm{WR}}$	${ }^{t}$ AW (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{W R}, \\ & H L D A, D B I N \end{aligned}$
Output Data Stable Prior to WR	tDW (2)	(6)			nsec	
Output Data Stable From WR	twD (2)	(7)			nsec	
Address Stable from WR	tWA (2)	(7)			nsec	
HLDA to Float Delay	thF (2)	(8)			nsec	
$\overline{\text { WR }}$ to Float Delay	${ }^{\text {t W }}$ ( ${ }^{\text {(2) }}$	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{t} A H^{(2)}$	-20			nsec	

AC CHARACTERISTICS $\mu$ PD8080AF

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. ${ }^{t_{D H}}=50 \mathrm{~ns}$ or tDF, whichever is less.
(2) Load Circuit.

(3) Actual $t_{C Y}=t_{D} 3+t_{r \phi 2}+t_{\phi 2}+t_{f \phi 2}+t_{D 2}+t_{r \phi 1}>t_{C Y}$ Min.


AC CHARACTERISTICS $\mu$ PD8080AF-2
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Periód .	${ }^{\text {t }} \mathrm{CY}$ ( (3)	0.38		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		50	nsec	
¢1 Pulse Width	${ }^{\text {t }}$ ¢ 1	60			nsec	
$\phi 2$ Pulse Width	${ }^{\text {t }}$ ¢ 2	175			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }}$ 1 1	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }} \mathrm{D} 2$	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }}$ D 3	70			nsec	
Address Output Delay From $\phi 2$	${ }^{\text {t }}$ DA (2)			175	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t DD (2) }}$			200	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{W R}$, WAIT, HLDA)	${ }^{t} \mathrm{DC}$ (2)			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {t }} \mathrm{DF}$ (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{\text {t }}$ I (1)			tDF	nsec	
Data Setup Time During $\phi 1$ and DBIN	${ }^{\text {t }}$ DS1	20			nsec	
Data Setup Time to $\phi 2$ During DBIN	${ }^{\text {t DS }} 2$	130			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }}$ DH (1)	(1)			nsec	
INTE Qutput Delay From $\phi 2$	IIE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	${ }^{\text {t } R S}$	90			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {t }} \mathrm{HS}$	120			nsec	
INT Setup Time During $\phi 2$ (for all modes)	${ }^{\text {t }}$ S	100			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	
Address Stable Prior to $\overline{\mathrm{WR}}$	${ }^{\text {t AW ( }}$ (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\mathrm{WR},} \\ & H L D A, \text { DBIN } \end{aligned}$
Output Data Stable Prior to $\overline{\mathrm{WR}}$	tow (2)	(6)			nsec	
Output Data Stable From WR.	twD (2).	(7)			nsec	
Address Stable from $\overline{\mathrm{WR}}$	${ }^{\text {t W }}$ WA (2)	(7)			nsec	
HLDA to Float Delay	${ }^{\text {t }} \mathrm{HF} \mathrm{F}$ (2)	(8)			nsec	
$\overline{\text { WR }}$ to Float Delay	${ }^{\text {t }}$ WF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{1} \mathrm{AH}$ (2)	-20			nsec	

Notes Continued:
(4) The following are relevant when interfacing the $\mu$ PD8080AF to devices having $\mathrm{V}_{1 H}=3.3 \mathrm{~V}$.
a. Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns}$ at $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
b. Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ at $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c. If $C_{L} \neq$ SPEC, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $C_{L}>$ CSPEC, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $C_{L}<$ CSPEC .
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{t} \mathrm{CrY}^{\text {( }} 3$	0.32		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$t_{r}, t_{f}$	0		25	nsec	
¢1 Pulse Width	${ }^{\text {t }}$ ¢ ${ }_{1}$	50			nsec	
$\phi 2$ Pulse Width	${ }^{\text {t }}{ }_{\text {2 }}$	145			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }} 1$	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }}$ D2	60			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }}$ ( 3	60			nsec	
Address Output Delay From $\phi 2$	tDA (2)			150	nsec	$C_{L}=50 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {to }}$ ( 2 )			180	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{W R}$, WAIT, HLDA)	${ }^{t} \mathrm{DC}$ (2)			110	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {t }} \mathrm{DF}$ ( (2)	25		130	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{\text {tol }}$ (1)			${ }^{\text {t }}$ DF	nsec	
Data Setup Time During $\phi 1$ and DBIN	${ }^{\text {t }}$ DS1	10 .-			nsec	
Data Setup Time to $\phi 2$ During DBIN	toS2	120			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }}$ DH (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	IIE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	${ }^{\text {tRS }}$	90			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {thS }}$	120			nsec	
INT Setup Time During $\phi 2$ (for all modes)	tis	100			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{t}$ FD			120	nsec	
Address Stable Prior to $\overline{W R}$	${ }^{\text {t AWW }}$ (2)	(5)			nsec	$\begin{aligned} C_{L}= & 50 \mathrm{pF}: \text { Address, }, \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{W R}, \\ & H L D A, D B I N \end{aligned}$
Output Data Stable Prior to $\overline{\mathrm{WR}}$	tow (2)	(6)			nsec	
Output Data Stable From WR	twD (2)	(7)			nsec	
Address Stable from $\overline{W R}$	twA (2)	(7)			nsec	
HLDA to Float Delay	${ }^{\text {thF (2) }}$	(8)			nsec	
$\overline{\text { WR }}$ to Float Delay	twF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{t} \mathrm{AH}$ (2)	-20			nsec	

Notes Continued: (5)

Device	${ }^{\mathrm{t}} \mathrm{AW}$
$\mu$ PD8080AF	$2{ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-140$
$\mu$ PD8080AF-2	$2{ }^{\mathrm{t}} \mathrm{CY}-\mathrm{t}^{\mathrm{t} D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-130$
$\mu$ PD8080AF-1	$2{ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-110$

(6)

Device	${ }^{{ }^{\mathrm{t}} \mathrm{DW}}$
$\mu$ PD8080AF	${ }^{\mathrm{t}} \mathrm{C} Y-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-170$
$\mu$ PD8080AF-2	${ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-170$
$\mu$ PD8080AF-1	${ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-150$

(7) If not HLDA, $t_{W D}=t_{W A}=t_{D 3}+t_{r \phi 2}+10 \mathrm{~ns}$. If $H L D A, t_{W D}=t W A=t W F$.
(8) $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
(9) $\mathrm{t}_{\mathrm{WF}}=\mathrm{t}_{\mathrm{D}} 3+\mathrm{t}_{\mathrm{r}}^{\mathrm{\phi}} 2-10 \mathrm{~ns}$.

AC CHARACTERISTICS $\mu$ PD8080AF- 1
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$, " 0 " = 1.0V; INPUTS " 1 " = 3.3V, " 0 " = 0.8 V ; OUTPUTS " 1 " = 2.0 V , " 0 " = 0.8 V .)


Notes: (1) Data in must be stable for this period during DBIN • T3. Both tDS1 and tDS2 must be satisfied.
(2) Ready signal must be stable for this period during $\mathrm{T}_{2}$ or $\mathrm{T}_{W}$. (Must be externally synchronized.)
(3) Hold signal must be stable for this period during $T_{2}$ or $T_{W}$ when entering hold mode, and during $T_{3}, T_{4}, T_{5}$ and $T_{W H}$ when in hold mode. (External synchronization is not required.)
(4) Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following instruction. (External synchronization is not required.)
(5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
(6) Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}, " 0 "=1.0 \mathrm{~V}$; INPUTS " 1 " $=3.3 \mathrm{~V}$; " 0 " $=0.8 \mathrm{~V}$; OUTPUTS " 1 " $=2.0 \mathrm{~V}$, " 0 " $=0.8 \mathrm{~V}$.

## $\mu$ PD8080AF

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability 'to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.
Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.) The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.
In addition to the four testable flags, the $\mu$ PD8080AF has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the $\mu$ PD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.
Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the $\mu$ PD8080AF instruction set.
The special instruction group completes the $\mu$ PD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly,

Data in the $\mu$ PD8080AF is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	D5		4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1		$\mathrm{D}_{0}$
MSB			DAT	TA	WOR				LSB

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions


Two Byte Instructions

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$									
$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$		Three Byte Instructions							
:---	:---	:---	:---	:---	:---	:---	:---									
$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$									
$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$									
$D_{7}$ $D_{6}$ $D_{5}$ $D_{4}$ $D_{3}$ $D_{2}$ $D_{1}$ $D_{0}$																

## TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical, rotate, return, push, pop, enable, or disable interrupt instructions
OP CODE OPERAND

OP CODE Jump, call or direct load and store instructions
LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2

## DATA AND INSTRUCTION FORMATS



One to five machine cycles ( $M_{1}-M_{5}$ ) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ( $T_{1}-T_{5}$ ). During $\phi_{1} \cdot$ SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.
Execution times and machine cycles used for each type of instruction are shown below.

INSTRUCTION	MACHINE CYCLES EXECUTED	CLOCK TIMES (MIN/MAX)
RST $X$ and PUSH RP	PCR5 (1) SPW3 (5) SPW3 (5)	11
All CALL Instructions	PCR5 (1) PCR3 (2) PCR3 (2) SPW3 (5) SPW3 (5)	11/17
Conditional TURN Instructions	PCR5 (1) SPR3 (4) SPR3 (4)	5/11
RET Instruction	PCR4 (1) SPR3 (4) SPR3 (4)	10
XTHL	PCR4 (1) SPR3 (4) SPR3 (4) SPW3 (5) SPW5 (5)	18
DAD RP	PCR4 (1) PCX3 © PCX3 ©	10
INR R; INX RP, DCR R; DCX RP;PCHL; MOV R, R; SPHL	PCR5 (1)	5
All JUMP Instructions and LXI RP	PCR4 (1) PCR3 (2) PCR3 (2)	10
POP RP	PCR4 (1) SPR3 (4) SPR3 (4)	10
LDA	PCR4 (1) PCR3 (2) PCR3 (2) BBR3 (2)	13
STA	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3)	13
LHLD	PCR4	16
SHLD	PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3) BBW3 (3)	16
STAX B	PCR4 (1) BCW3 (3)	7
STAX D	PCR4 (1) DEW3 (3)	7
LDAX B	PCR4 (1) BCR3 (2)	7
LDAX D	PCR4 (1) DER3 (2)	7
MOV R, M; ADD M;   ADC M; SUB M; SB B M;   ANA M; XRA M;   ORA M; CMP M	PCR4 (1) HLR3 (2)	7
INR M and DCR M	PCR4 (1) HLR3 (2) HLW3 (3)	10
MVIM	PCR4 (1) PCR3 (2) HLW3 (3)	10
MVIR;ADI; ACI; SUI; SBI;ANI; XRI; ORI; CPI	PCR4 (1) PCR3 (2)	7
MOV M, R	PCR4 (1) HLW3 (3)	7
EI; DI ADD R;   ADC R; SUB R;   SBB R; ANA R; XRA R;   ORA R; CMP R; RLC;   RRC; RAL; RAR;   DAA; CMA; STC;   CMC; NOP; XCHG	PCR4 (1)	4
OUT   IN   HLT	PCR4   (1)   PCR3   (2) ABW3 (7) PCR4 $\square$ PCR3   (2) ABR3   (6) PCR4   (1) $\square$ PCX3 (9)	$\begin{array}{r} 10 \\ 10 \\ 7 \end{array}$

Machine Cycle Symbol Definition


Underlined $(X X Y Z \mathbb{N})$ indicates machine cycle is executed if condition is True.

## STATUS INFORMATION DEFINITION

SYMBOLS	DATA BUS BIT	DEFINITION
INTA (1)	$\mathrm{D}_{0}$	Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart or CALL instruction onto the data bus when DBIN is active.
$\overline{\text { WO }}$	D1	Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function ( $\overline{\mathrm{WO}}=0$ ). Otherwise, a READ memory or INPUT operation will be executed.
STACK	$\mathrm{D}_{2}$	Indicates that the address bus holds the pushdown stack address from the Stack Pointer.
HLTA	$\mathrm{D}_{3}$	Acknowledge signal for HALT instruction.
OUT	D4	Indicates that the address bus contains the address of an output device and the data bus will contain the output data when $\overline{W R}$ is active.
$M_{1}$	D5	Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instruction.
INP (1)	$\mathrm{D}_{6}$	Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active.
MEMR (1)	D7	Designates that the data bus will be used for memory read data.

Note: (1) These three status bits can be used to control the flow of data onto the $\mu$ PD8080AF data bus.

PACKAGE OUTLINE $\mu$ PD8080AFC/D
$\mu$ PD8080AFC
(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$


$\mu$ PD8080AFD
(Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54	0.100
D	$0.50 \pm 0.1$	$0.0197 \pm 0.004$
E	$48.26 \pm 0.2$	$1.900 \pm 0.008$
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24	0.6
L	13.5	0.531
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

## $\mu$ PD8085A SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

$$
\begin{aligned}
& \text { DESCRIPTION } \begin{array}{l}
\text { The } \mu \text { PD8085A is a single chip } 8 \text {-bit microprocessor which is } 100 \text { percent software } \\
\text { compatible with the industry standard 8080A. It has the ability of increasing system } \\
\text { performance of the standard } 8080 \text { A by operating at a higher speed. Using the } \\
\mu \text { PD8085A in conjunction with its family of ICs allows the designer complete } \\
\text { flexibility with minimum chip count. }
\end{array} \\
& \text { FEATURES } \quad \text { Single Power Supply: }+5 \text { Volt }
\end{aligned}
$$

- Internal Clock Generation and System Control
- Internal Serial In/Out Port.
- Fully TTL Compatible
- Internal 4-Level Interrupt Structure
- Multiplexed Address/Data Bus for Increased System Performance
- Complete Family of Components for Design Flexibility
- Software Compatible with Standard 8080A
- Available in Either Plastic or Ceramic Package


The $\mu$ PD8085A contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8-bit parallel binary arithmetic unit. The $\mu$ PD8085A also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The $\mu$ PD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.

The $\mu$ PD8085A also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
The $\mu$ PD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pirs for advanced functions in the processor and peripheral chips while providing increased system speed and less critical timing functions. All signals to and from the $\mu$ PD8085A are fully TTL compatible.

The internal interrupt sulucı.re of the $\mu$ PD8085A features 4 levels of prioritized interrupt with three levels internally maskable.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.
The $\mu$ PD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/IO instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.
On chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.


PIN			FUNCTION
NO.	SYMBOL	NAME	
1,2	$\mathrm{x}_{1}, \mathrm{x}_{2}$	Crystal In	Crystal, RC, or external clock input
3	RO	Reset Out	Acknowledge that the processor is being reset to be used as a system reset
4	SOD	Serial Out Data	1-bit data out by the SIM instruction
5	SID	Serial in Data	1 -bit data into $A C C$ bit 7 by the RIM instruction
6	Trap	Trap Interrupt Input	Highest priority nonmaskable restart interrupt
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { RST } 7.5 \\ & \text { RST } 6.5 \\ & \text { RST } 5.5 \end{aligned}$	Restart Interrupts	Priority restart interrupt inputs, of which 7.5 is the highest and 5.5 the lowest priority
10	INTR	Interrupt Request In	A general interrupt input which stops the PC from incrementing, generates $\overline{I N T A}$, and samples the data bus for a restart or call instruction
11	$\overline{\text { NTA }}$	Interrupt   Acknowledge	An output which indicates that the processor has responded to INTR
12-19	$A D_{0}-A D_{7}$	Low   Address/Data Bus	Multiplexed low address and data bus
20	$\mathrm{V}_{S S}$	Ground	Ground Reference
21-28	$\mathrm{A}_{8}-\mathrm{A}_{15}$	High Address Bus	Nonmultiplexed high 8-bits of the address bus
29,33	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Status Outputs	Outputs which indicate data bus status: Halt, Write, Read, Fetch
30	ALE	Address Latch   Enable Out	A signal which indicates that the lower 8 -bits of address are valid on the AD lines
31, 32	$\overline{W R}, \overline{R D}$	Write/Read   Strobes Out	Signals out which are used as write and read strobes for memory and I/O devices
34	$10 / \bar{M}$	I/O or Memory Indicator	A signal out which indicates whether $\overline{R D}$ or $\overline{W R}$ strobes are for 1/O or memory devices
35	Ready	Ready Input	An input which is used to increase the data and address bus access times (can be used for slow memory)
36	$\overline{\text { Reset }} \overline{\text { in }}$	Reset Input	An input which is used to start the processor activity at address 0 , resetting IE and HLDA flip-flops
37	CLK	Clock Out	System Clock Output
38, 39	HLDA, HOLD	Hold Acknowledge Out and Hold Input Request	Used to request and indicate that the processor should relinquish the bus for DMA activity. When hold is acknowledged, $\overline{R D}, \overline{W R}, 10 / \bar{M}$, Address and Data busses are all 3 -stated.
40	$\mathrm{V}_{\mathrm{CC}}$	5V Supply	Power Supply Input

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) .	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +7 V olts
All Input Voltages	-0.3 to +7 Volts
Supply Voltage $\mathrm{V}_{\mathrm{CC}}$.	-0.3 to +7 Volts
Power Dissipation	1.5 W

COMMENT Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{a}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$T_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.5$		$\mathrm{V}_{\text {SS }}+0.8$	V	
Input High Voltage	$V_{\text {IH }}$	2.0	.	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	-		0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$ on all outputs
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4	.	,	V	$\mathrm{OH}=-400 \mu \mathrm{~s}$
Power Supply Current ( $\mathrm{V}_{\mathrm{CC}}$ )	${ }^{1} \mathrm{CC}(\mathrm{AV})$			170	mA	${ }^{\text {t }} \mathrm{CY}$ min
Input Leakage	$1 / 2$			$\pm 10$ (1)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Output Leakage .	${ }^{1} \mathrm{LO}$			$\pm 10$ (1)	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
Input Low Level, Reset	VILR	-0.5		+0.8	V	
Input High Level, Reset	$V_{\text {IHR }}$	2.4		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Hysteresis, Reset	$\mathrm{V}_{\mathrm{HY}}$	0.25			V	

Note: (1) Minus (-) designates current flow out of the device.
$T_{a}=0 \mathrm{C}$ to $+70 \mathrm{C}: V_{C C}=5 \mathrm{~V} \cdot 5 \%: V_{S S}=0 \mathrm{~V}$


Note: (1) $10 / \bar{M}$, SO, SI

CLOCK TIMING


READ OPERATION


AC CHARACTERISTICS

TIMING WAVEFORMS


HOLD OPERATION


INTERRUPT TIMING


Note:(1) $I O / \overline{\mathrm{M}}$ is also floating during this time.


Notes: (1) BI indicates that the bus is idle during this machine cycle.
(2) CK indicates the number of clock cycles in this machine cycle.

CLOCK INPUTS (1)
As stated, the timing for the $\mu$ PD8085A may be generated in one of three ways; crystal, RC, or external clock. Recommendations for these methods are shown below.

$\approx 3 \mathrm{MHz}$ Input Frequency
RC Resonance


EXTERNAL


Note: (1) Input frequency must be twice the internal operating frequency.

STATUS OUTPUTS The Status Outputs are valid during ALE time and have the following meaning:

	S1	S0
Halt	0	0
Write	0	1
Read	1	0
Fetch	1	1

These pins may be decoded to portray the processor's data bus status.

The $\mu$ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART 5.5, 6.5 and 7.5 , and TRAP, a nonmaskable restart.

PRIORITY	INTERRUPT	RESTART   ADDRESS
Highest	TRAP	2416
$\mid$	RST 5.5	$2 \mathrm{C}_{16}$
$\mid$	RST 6.5	3416
$\mid$	RST 7.5	$3 C_{16}$
Lowest	INTR	

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising edge. TRAP, the highest priority interrupt, is nonmaskable and is set on the rising edge or positive level. It must make a low to high transition and remain high to be seen, but it will not be generated again until it makes another low to high transition.

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.

The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:


Note: After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:


The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag iss determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)

The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the $\mu$ PD8085A has another flag (ACY) that is. not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the $\mu$ PD8085A. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the $\mu$ PD8085A instruction set.
Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the $\mu$ PD8085A instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.
Data in the $\mu$ PD8085A is stored as 8 -bit binary integers. All data/instruction transfers FORMATS

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$				
MSB	DATA WORD						LSB				

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions								OP CODE	TYPICAL INSTRUCTIONS   Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Two Byte Instructions									
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$	op CODE OPERAND	Immediate mode or I/O instructions
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Three Byte Instructions									
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	D5	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	OP CODE	Jump, call or direct load and store instructions
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	LOW ADDRESS OR OPERAND 1	
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	HIGH ADD	ESS OR OPERAND 2

INSTRUCTION SET
TABLE


One to five machine cycles $\left(M_{1}-M_{5}\right)$ are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ( $T_{1}-T_{5}$ ).
Machine cycles and clock states used for each type of instruction are shown below.

$\left.$| INSTRUCTION |
| :--- | :---: | :---: |
| TYPE | | MACHINE CYCLES EXECUTED |
| :---: |
| MIN/MAX | | CLOCK STATUS |
| :---: |
| MIN/MAX | \right\rvert\, | 4 |
| :--- |
| ALUR |
| CMC |
| CMA |
| DAA |
| DCR R |
| DI |
| EI |
| INR R |
| MOV R, R |
| NOP |



Plastic

ITEM	MILLIMEfERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$



Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.100 \pm 0.004$
D	$0.50 \pm 0.1$	$0.0197 \pm 0.004$
E	$48.26 \pm 0.2$	$1.900 \pm 0.008$
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	$15.24 \pm 0.1$	$0.6 \pm 0.004$
L	$13.5-0.2$	$0.531+0.008$
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

$\mu$ PD8085A FAMILY MINIMUM SYSTEM CONFIGURATION

A minimum computer system consisting of a processor, ROM, RAM, and I/O can be built with only $3-40$ pin packs. This system is shown below with its address, data, control busses and I/O ports.


## SINGLE CHIP 8-BIT MICROCOMPUTER


#### Abstract

DESCRIPTION The NEC $\mu$ PD8021 is a stand alone 8-bit parallel microcomputer incorporating the following features usually found in external peripherals. The $\mu$ PD8021 contains: $1 \mathrm{~K} \times 8$ bits of mask ROM program memory, $64 \times 8$ bits of RAM data memory, 21 I/O lines, an 8 -bit interval timer/event counter, and internal clock circuitry.


FEATURES - 8-Bit Processor, ROM, RAM, I/O, Timer/Counter

- Single +5 V Supply ( +4.5 V to +6.5 V )
- NMOS Silicon Gate Technology
- $10 \mu$ s Cycle Time
- All Instructions 1 or 2 Cycles
- Instructions are Subset of $\mu$ PD8048/8748/8035
- High Current Drive Capability - 2 I/O Pins
- Clock Generation Using Single Resistor or Inductor
- Zero-Cross Detection Capability
- Expandable I/O Using $\mu$ PD8243's
- Available in 28 Pin Plastic Package



## $\mu$ PD8021

The NEC $\mu$ PD8021 is a single component, 8-bit, parallel microprocessor using N -channel silicon gate MOS technology. The self-contained $1 \mathrm{~K} \times 8$-bit ROM, $64 \times 8$-bit RAM, 8 -bit timer/counter, and clock circuitry allow the $\mu$ PD8021 to operate as a single-chip microcomputer in applications ranging from controllers to arithmetic processors.

The instruction set, a subset of the $\mu$ PD8048/8748/8035, is optimum for high-volume, low cost applications where I/O flexibility and instruction set power are required. The $\mu$ PD8021 instruction set is comprised mostly of single-byte instructions with no instructions over two bytes.


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Watt
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{VS}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage   (All Except XTAL 1, XTAL 2)	VIL	-0.5		+ 0.8	V	
Input High Voltage   (All Except XTAL 1, XTAL 2)	V IH	2.0		VCC	V	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
Input High Voltage   (All Except XTAL 1, XTAL 2)	$\mathrm{V}_{1 \mathrm{H} 1}$	3.0		VCC	V	$V_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}$
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
Output Low Voltage ( $\mathrm{P}_{10}, \mathrm{P}_{11}$ )	VOL1			2.5	V	$\mathrm{IOL}=7 \mathrm{~mA}$
Output High Voltage (All Unless Open Drain)	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{IOH}=50 \mu \mathrm{~A}$
Output Leakage Current (Open Drain Option - Port 0)	IOL			-10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant \mathrm{~V}_{\mathrm{SS}} \\ & +0.45 \mathrm{~V} \end{aligned}$
VCC Supply Current	Icc			60	mA	

PIN IDENTIFICATION

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V}$

		LIMITS				
	PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
TEST CONDITIONS						
Cycle Time	TCY	10.0		50.0	$\mu \mathrm{~s}$	$3 \mathrm{MHz} \times$ TAL $=10 \mu \mathrm{~s}(1)$
Oscillator Frequency Variation   (Resistor Mode)	$\Delta_{\mathrm{F}}$	-20		+20	$\%$	$\mathrm{~F}=2.5 \mathrm{MHz}(1)$

Note: (1) Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} / 4.3 \mathrm{~K}$
PACKAGE OUTLINE $\mu$ PD8021C

PIN		FUNCTION
No.	SYMBOL	
$\begin{gathered} 1-2, \\ 26-27 \end{gathered}$	$\begin{aligned} & \mathrm{P}_{20} \mathrm{P}_{23} \\ & \text { (Port 2) } \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{23}$ comprise the 4 -bit bi-directional I/O port which is also used as the expander bus for the $\mu$ PD8243.
3	PROG	PROG is the output strobe pin for the $\mu$ PD8243.
4-11	$\begin{aligned} & \mathrm{P}_{00-\mathrm{P}}^{1-\mathrm{P}} \\ & \text { (Port 0) } \end{aligned}$	One of the two 8 -bit quasi bi-directional I/O ports.
12	ALE	Address Latch Enable output (active-high). Occurring once every 30 input clock periods, ALE can be used as an output clock.
13	T1	Testable input using transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction. T1 also provides zero-cross sensing for low-frequency $A C$ input signals.
14	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
15	XTAL 1	One side of frequency source input using resistor, inductor, crystal or external source. (non-TTL compatible $\mathrm{V}_{(\mathrm{H}}$ ).
16	XTAL 2	The other side of frequency source input.
17	RESET	RESET initializes the processor, setting program counter to zero and clearing status flip-flops.
18-25	$\begin{aligned} & \mathrm{P}_{10} \mathrm{P}_{17} \\ & \text { (Port 1) } \end{aligned}$	The second of two 8-bit quasi bi-directional I/O ports.
28	$\mathrm{V}_{\text {cc }}$	+5 V power supply inpuit.



ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$


MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								cycles	BYTES	$\begin{aligned} & \text { FLAG } \\ & \text { C } \end{aligned}$
			D7,	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$.	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			
ACCUMULATOR													
ADD $A_{i}=$ data ${ }^{\text {a }}$	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ data	Add immediate the specified Data to the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d 0 \end{gathered}$	2	2	-
Add A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add contents of designated register to the Accumulator.	0	1	1	0	1	r	r	r	1	1	-
ADD A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect the contents the data memory location to the Accumulator.	0	1	1	0	0	0	0	$r$	1	1	-
ADDC $A,=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+$ data	Add immediate with carry the specified data to the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$	2	2	-
ADDC A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator.	0	1	1	1	1	$r$	r	r	1	1	-
ADDC A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+((\operatorname{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect with carry the contents of data memory location to the Accumulator.	0	1	1	1	0	0	0	$r$	1	1	-
ANL A, $=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A})$ AND data	Logical and specified Immediate Data with Accumulator.	$\begin{gathered} 0 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$	2	2	
ANL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }(\mathrm{Rr}) \\ & \text { for } r=0-7 \end{aligned}$	Logical and contents of designated register with Accumulator.	0	1	0	1	1	r	$r$	$r$	1	1	
ANL A, @ Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }((\mathrm{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Logical and Indirect the contents of data memory with Accumulator.	0	1	0	1	0	0	0	$r$	1	1	
CPL A	$(\mathrm{A}) \leftarrow \operatorname{NOT}(\mathrm{A})$	Complement the contents of the Accumulator.	0	0	1	1	0	1	1	1	1	1	
CLR A	(A) $\leftarrow 0$	CLEAR the contents of the Accumulator.	0	0	1	0	0	1	1	1	1	1	
DAA		DECIMAL ADJUST the contents of the Accumulator.	0	1	0	1	0	1	1	1	1	1	-
DEC A	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	DECREMENT by 1 the Accumulator's contents.	0	0	0	0	0	1	1	1	1	1	
INC A	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	Increment by 1 the Accumulator's contents.	0	0	0	1	0	1	1	1	1	1	
ORL A, $=$ data	$(A) \leftarrow(A) O R$ data	Logical OR specified immediate data with Accumulator	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$	2	2	
ORL A, Rr	$\begin{aligned} & (A) \leftarrow(A) O R(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical OR contents of designated register with Accumulator.	0	1	0	0	1	r	$r$	r	1	1	
ORL A @ Rr	$\begin{aligned} & (A) \leftarrow(A) \text { OR }((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator.	0	1	0	0	0	0	0	$r$	1	1	
RLA	$\begin{aligned} & (A N+1) \leftarrow(A N) \\ & \left(A_{0}\right) \leftarrow(A 7) \\ & \text { for } N=0-6 \end{aligned}$	Rotate Accumulator left by 1 -bit without carry.	1	1	1	0	0 .	1	1	1	1	1	
RLC A	$\begin{aligned} & (A N+1) \leftarrow(A N) ; N=0-6 \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{7}\right) \end{aligned}$	Rotate Accumulator left by 1 -bit through carry.	1	1	1	1	0	1	1	1	1	1	-
RR A	$\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit without carry.	0	1	1	1	0	1	1	1	1	1	
RRC A	$\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{7}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit through carry.	0	1	1	0	0	1	1	1	1	1	$\bullet$
SWAP A	$\left(A_{4-7}\right) \rightleftarrows\left(A_{0}-3\right)$	Swap the 24 -bit nibbles in the Accumulator.	0	1	0	0	0	1	1	1	1	1	
XRL A, = data	$(A) \leftarrow(A) \times O R$ data	Logical XOR specified immediate data with Accumulator.	$\begin{gathered} 1 \\ \mathrm{~d} 7 \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	
XRL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { XOR }(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical XOR contents of designated register with Accumulator.	1	1	0	1	1	$r$.	r	r	1	1	
XRL A, @ Rr	$\begin{aligned} & (A) \leftarrow(A) \times O R((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical XOR Indirect the contents of data memory location with Accumulator.	1	1	0	1	0	0	0	$r$	1	1	
BRANCH													
DJNZ Rr, addr	$\begin{aligned} & (R r) \leftarrow(R r)-1 ; r=0-7 \\ & I f(R r) \neq 0 \\ & (P C 0-7) \leftarrow \text { addr } \end{aligned}$	Decrement the specified register and test contents.	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a 4 \end{gathered}$	$\begin{gathered} 1 \\ a_{3} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{a}_{2} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{a}_{1} \end{gathered}$	$\begin{gathered} r \\ a 0 \end{gathered}$	2	2	
JC addr	(PC 0-7) $\leftarrow$ addr if $C=1$   $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ if $\mathrm{C}=0$	Jump to specified address if carry flag is set.	$\begin{gathered} 1 \\ \text { a7 } \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{a}_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { å } \end{gathered}$	2	2	
JMP addr	(PC 8-10) $\leftarrow$ addr $8-10$ (PC 0-7) $\leftarrow$ addr 0-7 (PC 11) $\leftarrow$ DBF	Direct Jump to specified address within the $\mathbf{2 K}$ address block.	$\begin{aligned} & \text { a10 } \\ & \text { a7 } \end{aligned}$	$\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$	$\begin{gathered} 0 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2	
JMPP @ A	$(\mathrm{PC} 0-7) \leftarrow((\mathrm{A}) 1$	Jump indirect to specified address with address page.	1	0	1	1	0	0	1	1	2	1	
JNC addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } C=0 \\ & (P C) \leftarrow(P C)+2 \text { if } C=1 \end{aligned}$	Jump to specified address if carry flag is low.	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2	
JNT 1 addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } \mathrm{T} 1=0 \\ & (P C) \leftarrow(P C)+2 \text { if } T 1=1 . \end{aligned}$	Jump to specified address if Test 1 is low.	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a 5 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{a4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	1 $a_{2}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { ao } \end{gathered}$	2	2	
JNZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is non-zero.	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ \text { a5 } \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2	
JTF addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } T F=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T F=0 \end{aligned}$	Jump to specified address if Timer Flag is set to 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a 0 \end{gathered}$	2	2	
JT1 addr	$\begin{aligned} & (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jump to specified address if Test 1 is a 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$		1 $a_{1}$ 1	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
JZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ \text { a5 } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{a} 4 \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{a}_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	


MNEMONIC	FUNCTION	DESCRIPTION	InStruction code								CYCLES	BYTES	$\begin{aligned} & \text { FLAG } \\ & \mathbf{C} \end{aligned}$
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$			
DATA MOVES													
MOV A, = data	(A) $\leftarrow$ data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1	
MOV A, @ Rr	$(\mathrm{A}) \leftarrow((\mathrm{Rr})) ; \mathrm{r}=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	$r$	1	1	
MOV Rr, = data	$(\mathrm{Rr}) \leftarrow$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} r \\ d_{2} \end{gathered}$	$\begin{gathered} r \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ d_{0} \end{gathered}$	2	2	
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	r	r	1	1	
MOV @ Rr, A	$((\mathrm{Rr}))-(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect Accumulator Contents into data merriory location.	1	0	1	0	0	0	0	$r$	1	1	
MOV @ Rr, = data	$((\mathrm{Rr}) \mathrm{l}$ ¢ data; $\mathrm{r}=0-1$	Move Immediate the specified data into data memory.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2	
MOVP A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A)) \\ & (A) \leftarrow(1 P C)) \end{aligned}$	Move data in the current page into the Accurnulator.	1	0	1	0	0	0	1	1	2	1	
$\mathrm{XCH} A, \mathrm{Rr}$	$(\mathrm{A}) \rightleftarrows(\mathrm{Rr}): r=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	$r$	1	1	
$\mathrm{XCH} \mathrm{A}, @ \mathrm{Rr}$	$(\mathrm{A}) \rightleftarrows\left(\left(R_{r}\right)\right) ; r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1	
XCHD A, @ Rr	$\begin{aligned} & (A 0-3) \rightleftarrows((R r)) 0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1	
FLAGS													
CPL C	(C) $\leftarrow$ NOT (C)	Complement Content of carry bit.	1	0	1	0	0	1	1	1	1	1	$\bullet$
CLR C	(C) $\leftarrow 0$	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-
INPUT/OUTPUT													
ANLD Pp, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { AND }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port ( $4-7$ ).	1	0	0	1	1	1	p	$p$	2	$!$	
IN A, $\mathrm{P}_{\mathrm{p}}$	$(\mathrm{A}) \leftarrow\left(\mathrm{P}_{\mathrm{p}}\right) ; \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	p	2	1	
MOVD A, $\mathrm{P}_{\mathrm{p}}$	$\begin{aligned} & \left(\begin{array}{l} A \\ 0 \end{array}-3\right) \leftarrow\left(P_{p}\right) ; p=4-7 \\ & (A-7) \leftarrow 0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	p	p	2	1	
MOVD $P_{p}, A$	$\left(P_{p}\right)-A 0-3 ; p=4-7$	Move contents of Accumulator to designated port ( $4-7$ ).	0	0	1	1	1	1	p	p	1	1	
ORLD $P_{p}, A$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { OR }\left(\begin{array}{ll} A & 0-3) \\ p=4-7 \end{array}\right. \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	p	1	1	
OUTLP P, A	$\left(P_{p}\right) \leftarrow(A) ; p=1-2$	Output contents of Accumulator to designated port ( $1-2$ ).	0	0	1	1	1	0	$p$	p	1	1	
REGISTERS													
INC Rr	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1 ; r=0-7$	Increment by 1 contents of designated reyisier.	0	0	0	1	1	r	r	r	1	1	
INC@ Rr	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow\left(\left(R_{r}\right)\right)+1 ; \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1	
SUBROUTINE													
CALL addr	$\begin{aligned} & ((\mathrm{SP})) \leftarrow(\mathrm{PC}),(\mathrm{PSW} 4-7) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{PC} 8-10) \leftarrow \text { addr } 8-10 \\ & (\text { PC 0 }-7) \leftarrow \text { addr } 0-7 \\ & (\text { PC 11) } \leftarrow \text { DBF } \end{aligned}$	Call designated Subroutine.	$\begin{aligned} & \mathrm{a}_{10} \\ & \mathrm{a}_{7} \end{aligned}$	$\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$	1   $a_{4}$	0 a	1 $a_{2}$		$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
RET	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \\ & (\mathrm{PC}) \leftarrow((\mathrm{SP})) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1	
TIMER/COUNTER													
MOV A, T	$(\mathrm{A}) \leftarrow(\mathrm{T})$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1	
MOV T, A	$(T) \leftarrow(A)$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1	
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1	
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1.	1	
STRT T		Start Count for Timer.	0	1	0	1	0	1	0	1	1	1	
MISCELLANEOUS													
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1	

Notes: (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical. Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions

SYMBOL	DESCRIPTION
$A$	The Accumulator
addr	Program Memory Address (12 bits)
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
P	"In-Page" Operation Designator
$\mathrm{P}_{\mathrm{p}}$	Port Designator ( $\mathrm{p}=1,2$ or $4-7$ )
$\mathrm{Rr}_{\mathrm{r}}$	Register Designator ( $\mathrm{r}=0,1$ or $0-7)$


SYMBOL	DESCRIPTION
$T$	Timer
$+\mathrm{T}_{1}$	Testable Flag 1
X	External RAM
$=$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
$(\mathrm{x})$	Contents of External RAM Location
$(\mathrm{x}) \mathrm{I})$	Contents of Memory Location Addressed   by the Contents of External RAM Location
$\leftarrow$	Replaced By

Pa

## UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE 8-BIT MICROCOMPUTERS

DESCRIPTION The $\mu$ PD8041 and $\mu$ PD8741 are 8-bit single component microcomputers which function as general purpose programmable interfaces between the host processor and many various peripheral devices. The $\mu$ PD8041 and $\mu$ PD8741 differ only in their internal program memories. The $\mu$ PD8041 contains $1024 \times 8$ bytes of mask ROM, while the $\mu$ PD 8741 contains $1024 \times 8$ bytes of UV EPRROM. Some of the features offered by both devices include $64 \times 8$ bytes of RAM data memory, an 8 -bit programmable counter/timer, 16 TTL compatible I/O lines, and two test inputs.

FEATURES - Fully Compatible with 8080A, 8085A, and 8048 Families

- Single +5 V Supply
- Fülly Compatible ROM and EPROM Versions
- $1024 \times 8$ ROM/EPROM, $64 \times 8$ RAM
- 18 Programmable I/O Lines
- Expandable I/O
- Two Single Level Interrupts
- Single Package: 8-Bit Processor, ROM, RAM, Timer, I/O and Clock
- Asynchronous Data Register for Master Processor Interface
- Available in Both Plastic and Ceramic 40-Pin Packages

PIN CONFIGURATION


[^2]
PERIPHERAL INTERFACE

POWER $-\begin{aligned} & V_{D D} \longrightarrow \text { PROGRAM PO } \\ & \mathrm{V}_{\mathrm{CC}} \longrightarrow \text { +5V SUPPLY } \\ & \mathrm{V}_{S S} \longrightarrow \text { GROUND }\end{aligned}$

Operating Temperature . Storage Temper ature (Ceramic Package)
Storage Temperature (Plastic Package)
Voltage on Any Pin Power Dissipation $\qquad$ -0.5 to +7 Volts (1)

COMMENT Strest above tho listed damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note: (1) With respect to ground
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage   (All except $X_{1}$ and $X_{2}$ )	$V_{\text {IL }}$	-0.5		+0.8	$\checkmark$	
Input High Voltage (All except $X_{1}, X_{2}, \overline{\text { RESET }}$	$\mathrm{V}_{1} \mathrm{H}_{1}$	2.0		$\mathrm{v}_{\mathrm{Cc}}$	V	
Input High Voltage ( $\mathrm{X}_{1}, \mathrm{X}_{2}, \overline{\text { RESET }}$ )	$V_{1 H 2}$	3.0		$\mathrm{V}_{\mathrm{Cc}}$	V	
Output Low Voltage ( $\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{SYNC}$ )	$\mathrm{V}_{\text {OLI }}$			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage   (All other outputs except PROG)	$\mathrm{V}_{\mathrm{OL} 2}$			0.45	v	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\text {OL3 }}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output High Voltage ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ )	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			v	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$
Output High Voltage (All other outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-50 \mu \mathrm{~A}$
Input Leakage Current   ( $T_{0}, T_{1}, \overline{R D}, \overline{W R}, \overline{C S}, E A, A_{0}$ )	IIL			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & v_{S S}<v_{I N}< \\ & v_{C C} \end{aligned}$
Output Leakage Current ( $\mathrm{D}_{0} \cdot \mathrm{D}_{7}$; High Z State)	IOL			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & v_{S S}+0.45< \\ & v_{\text {IN }}<v_{\text {CC }} \end{aligned}$
VDD Supply Current	IDD			25	mA	
Total Supply Current	${ }^{\text {ICC }}+1 \mathrm{IDD}$			135	mA	.
Low Input Source Current ( $\mathrm{P}_{10}-\mathrm{P}_{17}$; $\mathrm{P}_{20}-\mathrm{P}_{27}$ )	${ }^{\text {L LII }}$			0.4	mA	$V_{\text {IL }}=0.8 \mathrm{~V}$
Low Input Source Current (SS; RESET)	${ }^{\prime}$ LI2			0.2	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS*

| PIN |  | $\quad$ FUNCTION |
| :---: | :--- | :--- |$|$| NO. | SYMBOL |
| :---: | :--- |

## $\mu$ PD8041/8741

PARAMETER	SYMBOL	LIMITS				UNITS	TEST CONDITIONS
		$\mu$ PD8041		$\mu$ PD8741			
		MIN	MAX	MIN	MAX		
DBB READ.							
$\overline{C S}, A_{0}$ Setup to $\overline{R D} \downarrow$	${ }^{t}$ AR	0		60		ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{\mathrm{RD}} \uparrow$	${ }^{\text {tra }}$	0		30		ns	
$\overrightarrow{\mathrm{RD}}$ Pulse Width	$\mathrm{t}_{\mathrm{R} R}$	250	.	300	$2 \times \mathrm{tcy}$	ns	${ }^{\mathrm{t}} \mathrm{CY}=2.5 \mu \mathrm{~s}$
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ to Data Out Delay	${ }^{\text {t }}$ ( ${ }^{\text {d }}$		150		370	ns	
$\overline{\mathrm{RD}} \downarrow$ to Data Out Delay	${ }^{\text {t }} \mathrm{DD}$		150		200	ns	
$\overline{\mathrm{RD}} \uparrow$ to Data Float Delay	${ }^{t} \mathrm{DF}$	10		10		ns	,
			100		140	ns	
Recovery Time between Reads and/or Writes	tr V	1		1		$\mu \mathrm{s}$	
Cycle Time	${ }^{\text {t }} \mathrm{C}$	2.5		2.5		$\mu \mathrm{s}$	6 MHz Crystal
DBB WRITE							
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{WR}} \downarrow$	taw	0		60	,	ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{W R} \uparrow \uparrow$	twA	0		30		ns	
$\overline{\text { WR Puise Width }}$	twW	250		300	$2 \times \mathrm{tc} \mathrm{Y}$	ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
Data Setup to $\overline{W R} \uparrow$	${ }^{\text {t }}$ W $W$	150		250		ns	
Data Hold after $\overline{W R} \uparrow$	twD	0		30		ns	

AC CHARACTERISTICS

TIMING WAVEFORMS


WRITE OPERATION - DATA BUS BUFFER REGISTER


PACKAGE OUTLINE $\mu$ PD8041C/D $\mu$ PD8741C/D

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$


(Ceramic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.100 \pm 0.004$
D	$0.50 \pm 0.1$	$0.0197 \pm 0.004$
E	$48.26 \pm 0.2$	$1.900 \pm 0.008$
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	$15.24 \pm 0.1$	$0.6 \pm 0.004$
L	$13.5-0.2$	$0.531+0.008$
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{description} \& \multicolumn{8}{|c|}{instruction code} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{bytes} \& \multicolumn{4}{|c|}{flags} <br>
\hline \& \& \& $\mathrm{D}_{7}$ \& $\mathrm{D}_{6}$ \& $\mathrm{D}_{5}$ \& $\mathrm{D}_{4}$ \& $\mathrm{D}_{3}$ \& $\mathrm{D}_{2}$ \& $\mathrm{D}_{1}$ \& $\mathrm{D}_{0}$ \& \& \& c AC \& Fo \& F1 IB \& DBF <br>
\hline \multicolumn{17}{|c|}{ACCUMULATOR} <br>
\hline ADD A, = data \& (A) - ( A$)+$ data \& Add Immediate the specified Data to the Accumulator. \& $$
\begin{gathered}
0 \\
\mathrm{~d} 7
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$ \& $$
\begin{gathered}
1 \\
d 0
\end{gathered}
$$ \& 2 \& 2 \& - \& \& \& <br>
\hline ADD A, R \& $$
\begin{aligned}
& (A)+(A)+(R r) \\
& \text { for } r=0-7
\end{aligned}
$$ \& Add contents of designated register to the Accumulator. \& \& \& 1 \& 0 \& , \& $r$ \& r \& r \& 1 \& 1 \& - \& \& \& <br>
\hline ADD A, @ Rr \& $$
\begin{aligned}
& \left.(A)-(A)+\left(1 R_{r}\right)\right) \\
& \text { for } r=0 \cdots 1
\end{aligned}
$$ \& Add Indirect the contents the data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& $r$ \& 1 \& 1 \& - \& \& \& <br>
\hline ADOC A, = data \& (A) $-(\mathrm{A})+(\mathrm{C})+$ data \& Add Immediate with carry the specified data to the Accumulator. \& $$
\begin{array}{|c}
0 \\
\mathrm{~d} 7
\end{array}
$$ \& $$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$ \& $$
\begin{aligned}
& 1 \\
& d 0
\end{aligned}
$$ \& 2 \& 2 \& - \& \& \& <br>
\hline ADDC A, Rr \& $$
\begin{aligned}
& (\mathrm{A})-(\mathrm{A})+(\mathrm{C})+(\mathrm{Rr}) \\
& \text { for } r=0 \cdots 7
\end{aligned}
$$ \& Add with carry the contents of the designated register to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& - \& \& \& <br>
\hline ADOC A, @Rr \& $$
\begin{aligned}
& (A)-(A)+(C)+((R r)) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Add Indirect with carry the contents of data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& $r$ \& 1 \& 1 \& - \& \& \& <br>
\hline ANL A, = data \& (A)-(A) AND data \& Logical and specified Immediate Data with Accumulator. \& $$
\begin{array}{|c}
0 \\
\mathrm{~d} 7
\end{array}
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline ANL A, Rr \& $$
\begin{aligned}
& \text { (A) }+(\mathrm{A}) \text { AND (Rr) } \\
& \text { for } r=0-7
\end{aligned}
$$ \& Logical and contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline ANL A, @ Rr \& $$
\begin{aligned}
& (A)+(A) \text { AND }((\mathrm{Rr})) \\
& \text { for } r=0 \cdots 1
\end{aligned}
$$ \& Logical and Indirect the contents of data memory with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>
\hline CPL A \& $(A) \leftarrow N O T(A)$ \& Complement the contents of the Accumulato. \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline CLR A \& (A) -0 \& CLEAR the contents of the Accumulator. \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline DAA \& \& DECIMAL ADJUST the contents of the Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline DEC A \& (A) - (A) 1 \& DECREMENT by 1 the accumulator's contents. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline INC A \& (A) $-(A)+1$ \& Increment by 1 the accumulator's contents. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline ORL A, = data \& (A) - (A) OR data \& Logical OR or specified immediate data with Accumulator \& $$
\begin{array}{|c}
0 \\
\mathrm{~d} 7
\end{array}
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{aligned}
& 0 \\
& d_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d 0
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline ORL A, Rr \& $$
\begin{aligned}
& (A)-(A) O R(R r) \\
& \text { for } r=0 \cdot 7
\end{aligned}
$$ \& Logical OR contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline ORL A, @ Rr \& $$
\begin{aligned}
& (A)-(A) \text { OR ((Rr)) } \\
& \text { for } r=0-1
\end{aligned}
$$ \& Logical OR Indirect the contents of data memory location with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>
\hline RLA \& $$
\begin{aligned}
& (A N+1)-(A N) \\
& \left(A_{0}\right)-\left(A_{7}\right) \\
& \text { for } N=0-6
\end{aligned}
$$ \& Rotate Accumulator left by 1 -bit without carry. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline RLC A \& $$
\begin{aligned}
& (A N+1)+(A N) ; N=0=6 \\
& \left(A_{0}\right)-(C) \\
& (C)-(A\rangle)
\end{aligned}
$$ \& Rotate Accumulator left by 1 -bit through carry. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline RR A \& $$
\begin{aligned}
& (A N)-(A N+1): N=0-6 \\
& (A 7)-(A 0))
\end{aligned}
$$ \& Rotate Accumulator right by 1 -bit without carry. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline RRC A \& $$
\begin{aligned}
& (A N)+(A N+1): N=0-6 \\
& (A 7)-(C) \\
& (C) \div\left(A_{0}\right)
\end{aligned}
$$ \& Rotate Accumulator right by 1 -bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline SWAP A \& $\left(A_{4} 7\right) \div\left(A_{0}-3\right)$ \& Swap the 24 -bit nibbles in the Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline XRL $A, \#$ data \& (A) - (A) XOR data \& Logical XOR specified immediate data with Accumulator. \& $$
\left\lvert\, \begin{gathered}
1 \\
d 7
\end{gathered}\right.
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 5
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{aligned}
& 0 \\
& d_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d o
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline XRL A, Rr \& $$
\begin{aligned}
& \text { (A) }-(A) \times O R(R r) \\
& \text { for } r=0-7
\end{aligned}
$$ \& Logical XOR contents of designated register with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 1 \& ' \& $r$ \& r \& 1 \& 1 \& \& \& \& <br>
\hline XRL A, @ Rr \& $$
\begin{aligned}
& \left.(A)-(A) \text { XOR }\left(R_{r}\right)\right) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Logical XOR Indirect the contents of data memory location with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>
\hline \multicolumn{17}{|c|}{BRANCH} <br>
\hline DJNZ Rr, addr \& $$
\begin{aligned}
& (\mathrm{Rr}) \leftarrow(\mathrm{Rr})-1 ; r=0-7 \\
& \text { If }(\mathrm{Rr}) \neq 0: \\
& (\mathrm{PC} 0-7) \leftarrow \text { addr }
\end{aligned}
$$ \& Decrement the specified register and test contents. \& $$
\begin{array}{|c}
1 \\
a 7
\end{array}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{6}
\end{aligned}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{5}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
a 4
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
a 3
\end{gathered}
$$ \& ${ }^{\text {a }}$ \& $$
\mathrm{a}_{1}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{0}
\end{aligned}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline JBb addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7)-\operatorname{addr} \text { if } \mathrm{Bb}=1 \\
& (\mathrm{PC})+(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0
\end{aligned}
$$ \& Jump to specified address if Accumulator bit is set. \& \& $$
\begin{aligned}
& b_{1} \\
& a_{6}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{b}_{0} \\
& \mathrm{a}_{5}
\end{aligned}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{4}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
a_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
\text { ao }
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline JC addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } \mathrm{C}=1 \\
& (\mathrm{PCC})-(\mathrm{PC})+2 \text { if } \mathrm{C}=0
\end{aligned}
$$ \& Jump to specified address if carry flag is set. \& \& $$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
1 \\
a_{5}
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& a_{4}
\end{aligned}
$$ \& $$
\begin{gathered}
0 \\
0 \\
a_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$ \& $$
\begin{array}{r}
1 \\
a_{1}
\end{array}
$$ \& $$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>
\hline JFO addr \& $$
\begin{aligned}
& (\mathrm{PCO} 0-7)-\text { addr if } \mathrm{FO}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{FO}=0
\end{aligned}
$$ \& Jump to specified address if Flag FO is set. \& 1

97 \& $$
\begin{gathered}
0 \\
a 6
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{4}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JF1 addr \& $$
\begin{aligned}
& (\mathrm{PCC} 0-7)-\operatorname{addr} \text { if } \mathrm{F}_{1}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{F}_{1}=0
\end{aligned}
$$ \& Jump to specified address if Flag F1 is set. \& \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
1 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{4}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JMP addr \& $$
\begin{aligned}
& (\text { PC 8-10)-addr 8-10 } \\
& (\mathrm{PC} 0-7)+\operatorname{addr} 0-7 \\
& (\mathrm{PC} 11)+\mathrm{DBF}
\end{aligned}
$$ \& Direct Jump to specified address within the 2 K address block. \& \[

$$
\begin{aligned}
& a_{10} \\
& a_{7}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& a 9 \\
& { }^{29}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& a_{8} \\
& a_{5}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{2}
\end{aligned}
$$

\] \& \[

\underset{a_{1}}{0}

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JMPP @ A \& (PC 0-7) $-(1 \mathrm{~A})$ ) \& Jump indirect to specified address with with address page. \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline JNC addr \& $$
\begin{aligned}
& \text { (PCO }-7) \leftarrow \text { addr if } \mathrm{C}=0 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=1
\end{aligned}
$$ \& Jump to specified address if carry flag is low. \& \[

\left\lvert\, $$
\begin{gathered}
1 \\
a 7
\end{gathered}
$$\right.

\] \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& { }_{\mathrm{a} 4}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { ao }
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JNIBF addr \& (PC 0-7) $\leftarrow$ addr if IBF = $(\mathrm{PC})+(\mathrm{PC})+2$ if $\mathrm{IBF}=1$ \& Jump to specified address if input buffer full flag is low. \& \[
$$
\begin{aligned}
& 1 \\
& a 7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{6}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a5 }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a 4
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { ao }
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JOBF \& $$
\begin{aligned}
& (\mathrm{PCO}-7) \leftarrow \text { addr if } \mathrm{OBF}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{OBF}=0
\end{aligned}
$$ \& Jump to specified address if output buffer full flag is set. \& \[

\left\lvert\, $$
\begin{aligned}
& 1 \\
& a 7
\end{aligned}
$$\right.

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
\text { a5 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 9 \\
& 9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& a_{0}
\end{aligned}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline
\end{tabular}



					INS	RUCT	ION COD	ODE							AGS		
MNEMONIC	FUNCTION	DESCRIPTION	D7	D6	D5	D4	D3	D2	D1	D0	CYCLES	BYTES	C. $A C$	F0	F1	IBF	OBF
INPUT/OUTPUT																	
ANL Pp, \# data	$(\mathrm{Pp})-(\mathrm{Pp})$ AND data $p=1-2$	Logıcal and Immediate specified data with designated port (1 or 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d} 0 \end{gathered}$	2	2					
ANLD Pp, A	$\begin{aligned} & (P D)-(P D) \text { AND }\left(\begin{array}{lll} A & 0-3 \end{array}\right) \\ & p=4,7 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1		0	1	1	1	p	$p$	2	1					
IN A, Pp	$(A)-(P p) ; p=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	p	2	1					
IN A, DBB	$(\mathrm{A}) \leftarrow(\mathrm{DBB})$	Input strobed DBB data into Accumulator and clear IBF	0	0	1	0	0	0	1	0	1	1				-	
MOVD A, Pp	$\begin{aligned} & \left(\begin{array}{l} \text { A } 0-3)-(P p) ; p=4-7 \\ (A 4-7) \leftarrow 0 \end{array}\right. \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	p	p	2	1					
MOVD Pp, A	$(P p)-A 0-3 ; p=4 \cdot 7$	Move contents of Accumulator to designated port (4) 7).	0	0	1	1	- 1	1	$p$	$p$	1	1					
ORLD Pp, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow(P p) \text { OR }(A O-3) \\ & p=47 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	$1$	p	$p$	1	1					
ORLPp, = data	$(\mathrm{Pp}) \leftarrow(\mathrm{Pp})$ OR data $p=1-2$	Logical or Immediate specified data with designated port (1-2)	$\begin{gathered} 1 \\ \mathrm{~d} 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} p \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} p \\ d 0 \end{gathered}$	2	2					
OUT DBB, A	(DBB) (A)	Output contents of Accumulator onto DBB and set OBF.	0	0	0	0	0	0	1	0	1	1					-
OUTL Pp, A	$(P p)-(A) ; p=1 \quad 2$	Output contents of Accumulator to designated port (1-2).	0	0	1	1	1	0	p	$p$	1	1					
REGISTERS																	
DEC Rr (Rr)	$(\mathrm{Rr})-(\mathrm{Rr}) \quad 1: r=0 \quad 7$	Decrement by 1 contents of designated register.	1	1	0	0	1		$r$	$r$	1	1					
INC Rr	$(\mathrm{Rr})-(\mathrm{Rr})+1 ; \mathrm{r}=0-7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	r	r	1	1					
INC @ Rr	$\begin{aligned} & ((\operatorname{Rr}))-((\operatorname{Rr}))+1 ; \\ & r=0=1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	$r$	1	1					
SUBROUTINE																	
CALL addr	( $(\mathrm{SP})$ )-(PC), (PSW 4-7)	Call designated Subroutine.		a9	${ }^{1} 8$	1	0	1	0	0	2	2					
	$\begin{aligned} & (S P)-(S P)+1 \\ & \text { (PC 8-10)-addr } 8 \cdot 10 \\ & (P C \text { 0-7)-addr 0-7 } \\ & \text { (PC 11)-DBF } \end{aligned}$					${ }^{2} 4$	${ }^{3}$	${ }^{2} 2$	${ }^{1}$	ao							
RET	$\begin{aligned} & (S P)-(S P)-1 \\ & (P C)-((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1					
RETR	$\begin{aligned} & (S P)+(S P) \quad 1 \\ & (P C)-((S P))-((S P)) \\ & (P S W 4-7)-(S P) \end{aligned}$	Return from Subroutine restoring Program Status Word.	1	0	0	1	0	0	1	1	2	1					
TIMER/COUNTER																	
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output.	0	0	1	0	0	1	0	1	1	1					
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	- 0	1	1	$0$	1	0	1	1	1					*
MOV A, T	(A) $\cdots(T)$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1					
MOV T, A	$(T)-(A)$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1					
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1					
STRT ENT		Start Count for Event Counter.	0	1	0 0	0	$0$	$1$	0	1	$1$	$1$					
STRT T		Start Count for Timer.	0	1	0	1											
MISCELLANEOUS																	
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1					

Notes (1) Instruction Code Designations, and p form the binary epresentation of the Registers and Poits invoived
(2) The dot under the appropiste flag bit indicates that its content is subject to change by the instiuction it appears in
(3) References to the address and data are specified in bytes 2 and or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b =0-7)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
FO, F1	Flags 0, 1.
I	Interrupt
P	"In-Page" Operation Designator
IBF	Input Buffer Full Flag


$s$ SMBOL	DESCRIPTION
$P_{p}$	Port Designator ( $\mathrm{p}=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Register Designator ( $\mathrm{r}=0,1$ or 0-7)
SP	Stack Pointer
T	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Flags 0, 1
X	External RAM
$\#$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
$(\mathrm{x})$	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed   by the Contents of External RAM Location.
$\leftarrow$	Replaced By
OBF	Output Buffer Full
DBB	Data Bus Buffer

## $\mu$ PD8048 FAMILY OF SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION
The $\mu$ PD 8048 family of single chip 8 -bit microcomputers is comprised of the $\mu$ PD8048, $\mu$ PD8748 and $\mu$ PD8035. The processors in this family differ only in their internal program memory options: the $\mu$ PD8048 with $1 \mathrm{~K} \times 8$ bytes of mask ROM, the $\mu$ PD8748 with $1 \mathrm{~K} \times 8$ bytes of UV erasable EPROM and the $\mu$ PD8035 with external memory.

FEATURES - Fully Compatible With Industry Standard 8048/8748/8035

- NMOS Silicon Gate Technology Requiring a Single +5 V Supply
- $2.5 \mu \mathrm{~s}$ Cycle Time. All Instruction 1 or 2 Bytes
- Interval Timer/Event Counter
- $64 \times 8$ Byte RAM Data Memory
- Single Level Interrupt
- 96 Instructions: $70 \%$ Single Byte
- $27 \mathrm{I} / \mathrm{O}$ Lines
- Internal Clock Generator
- 8 Level Stack
- Compatible With 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40 Pin Packages

PIN CONFIGURATION

To 1		40	$\mathrm{V}_{C C}$
$\times$ xtal $1{ }^{2}$		39	$\mathrm{T}_{1}$
$\times$ TAL 2 -		38	P27
$\overline{\text { RESET }} 4$		37	P 26
$\overline{\text { SS }}$		36	P25
INT 6		35	P24
EA 7		34	- P17
$\overline{\mathrm{RD}} 8$	$\mu \mathrm{PD}$	33	P P16
$\overline{\text { PSEN }} 9$	8048/	32	P15
WR - ${ }^{10}$	8748/	31	$\square \mathrm{P} 14$
ALE 11		30	P13
$\mathrm{DB}_{0} \square^{12}$		29	P12
$\mathrm{DB}_{1} \mathrm{Cl}^{13}$		28	P P11
$\mathrm{DB}_{2} \square^{14}$		27	$\square \mathrm{P} 10$
$\mathrm{DB}_{3} \square 15$		26	$\square V_{D D}$
$\mathrm{DB}_{4} \square 16$		25	$\square \mathrm{PROG}$
$\mathrm{DB}_{5} \mathrm{C}_{17}$		24	P P23
$\mathrm{DB}_{6} \mathrm{G} 18$		23	P P22
$\mathrm{DB}_{7} \square^{19}$		22	P21
$\mathrm{v}_{\text {SS }}-20$		21	P20

[^3]
## $\mu$ PD8048/8748/8035

The NEC $\mu$ PD8048, $\mu$ PD8748 and $\mu$ PD8035 are single component, 8 -bit, parallel microprocessors using $N$-channel silicon gate MOS technology. The $\mu$ PD8048/8748/

FUNCTIONAL DESCRIPTION 8035 efficiently function in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.

The $\mu$ PD8048/8748/8035 instruction set is comprised of 1 and 2 byte instructions with over $70 \%$ single-byte and requiring only 1 or 2 cycles per instruction with over $50 \%$ single-cycle.
The $\mu$ PD8048 series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8048 contains the following functions usually found in external peripheral devices: $1024 \times 8$ bits of ROM program memory; $64 \times 8$ bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; oscillator and clock circuitry.
The $\mu$ PD8748 differs from the $\mu$ PD8048 only in its $1024 \times 8$-bit UV erasable EPROM program memory instead of the $1024 \times 8$-bit ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.

The $\mu$ PD8035 is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8048 except the $1024 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.


PIN		FUNCTION
NO.	SYMBOL	
1	T0	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to $\mathrm{T}_{0}$ using the ENTO CLK instruction. $\mathrm{T}_{0}$ can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $\mathrm{V}_{1 H}$ ).
3	XTAL 2	The other side of the crystal input.
4	$\overline{\text { RESET }}$	Active low input for processor initialization. $\overline{\mathrm{RESET}}$ is also used for PROM programming verification and powerdown (non TTL compatible $\mathrm{V}_{1 \mathrm{H}}$ ).
5	$\overline{\overline{s s}}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). INT will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{INT}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{R D}$	READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). PSEN becomes active only during an external memory fetch.
10	WR	WRITE strobe output (active-low). WR will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$D_{0}-D_{7}$ BUS	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode.   During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS, controlled by $A L E, \overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27}: \\ & \mathrm{PORT}_{2} \end{aligned}$	Port 2 is the second of two 8 -bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $P_{20}-P_{23}$ are also used as a 4-bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	Program Pulse. $A+25 V$ pulse applied to this input is used for programming the $\mu$ PD8748. PROG is also used as an output strobe for the $\mu$ PD8243.
26	VDD	Programming Power Supply. VDD must be set to +25 V for programming the $\mu$ PD8748, and to +5 V for the ROM and PROM versions for normal operation. $V_{D D}$ functions as the Low Power Standby input for the $\mu$ PD8048.
27-34	$\begin{gathered} P_{10}-P_{17} \\ \text { PORT } 1 \end{gathered}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	$\mathrm{V}_{\mathrm{CC}}$	Primary Power Supply. VCC must be +5 V for programming and operation of the $\mu$ PD8748, and for operation of the $\mu$ PD8035 and $\mu$ PD8048.


Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package).	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin	0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation	1.5 W

Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\prime \prime} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=V_{D D}=+5 \mathrm{~V} \pm 5 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage   (All Except XTAL 1, XTAL 2)	VIL	0.5		0.8	V	
Input High Voltage   (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$ )	VIH	2.0		VCC	V	
Input High Voltage   (RESET, XTAL 1, XTAL 2)	VIH1	3.0		VCC	V	
Output Low Voltage (BUS, $\overline{P D}$, $\overline{W R}, \overline{\text { PSEN }}, ~ A L E)$	VOL			0.45	V	10L - 2.0 InA
Output Low Voltage (All Other Outputs Except PROG)	VOL 1			0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	V	
Output High Voltage (BUS, $\overline{R D}$, $\overline{W R}, \overline{P S E N}, ~ A L E)$	VOH	2.4			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	VOH1	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-50 \mu \mathrm{~A}$
Input Leakage Current ( $T_{1}, E A, I N T$ )	IIL			$\pm 10$	$\mu \mathrm{A}$	$V_{S S} \leqslant V_{\text {IN }} \leqslant V_{C C}$
Output Leakage Current (BUS, $\mathrm{T}_{0}$ - High Impedance State)	IOL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\mathrm{IN}} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Power Down Supply Current	IDD		10	20	mA	$\mathrm{T}_{\mathrm{a}}=25^{\prime \prime} \mathrm{C}$
Total Supply Current	IDD + ICC		65	135	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 5 \% ; V_{D D}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
VDD Program Voltage High-Level	V DOH	24:0		26.0	V	
VDD Voltage Low-Level	VDDL	4.75		5.25	V	
PROG Voltage High-Level	VPH	215	*	24.5	V	
PROG Voltage Low-Level	Ypt			0.2	V	
EA Program or Verify Voltage High-Lev*	- EAA	21.5		24.5	V	
EA Voltage Low-Level	VEAL			5.25	V	
VDD High Voltage Supply Current	IDD			30.0	mA	
PROG High Voltage Supply Current	IPROG			16.0	mA	..
EA High Voltage Supply Current	IEA			1.0	mA	

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS
READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }_{\text {t }}^{\text {LL }}$	400			ns	
Address Setup before ALE	${ }^{\text {t }}$ L $L$	150			ns	
Address Hoid from ALE	${ }_{\text {ta }}$	80			ns	
Control Pulse Width ( $\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ )	${ }^{\text {t }} \mathrm{C}$	900			ns	
Data Setup before WR	${ }^{\text {t }}$ DW	500			ns	.
Data Hold after WR	two	120			ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
Cycle Time	${ }^{t} \mathrm{CY}$	2.5		15.0	$\mu \mathrm{s}$	6 MHz XTAL
Data Hold	tor	0		200	ns	
$\overline{\text { PSEN, }}, \overline{\mathrm{RD}}$ to Data In	${ }^{\text {tRD }}$			500	ns	
Address Setup before $\overline{W R}$	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data In	${ }^{t} \mathrm{AD}$			950	ns	
Address Float to $\overline{\text { RD }}, \overline{\text { PSEN }}$	${ }^{t} A F C$	0			ns	

Notes: (1) For Control Outputs: $C_{L}=80 \mathrm{pF}$
(2) For Bus Outputs: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
(3) ${ }^{\mathrm{C}} \mathrm{CY}=2.5 \mu \mathrm{~s}$

PORT 2 TIMING
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Controi Setup before Falling Edge of $\overline{\text { PROG }}$	${ }^{\text {t }} \mathrm{C} P$	110			ns	
Port Control Hold after Falling Edge of PROG	tpC	140			ns	
$\widehat{\text { PROG }}$ to Time P2 Input must be Valid	tPR			810	ns	
Output Data Setup Time	${ }^{\text {t }}$ P	220			ns	
Output Data Hold Time	tPD	65			ns	
Input Data Hold Time	tPF			150	ns	
$\overline{\text { PROG Pulse Width }}$	tpp	1510			ns	
Port 2 I/O Data Setup	${ }^{\text {tPL }}$	400			ns	
Port 2 I/O Data Hold	${ }^{\text {t }}$ LP	150			ns	

PROGRAMMING SPECIFICATIONS - $\mu$ PD8748
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time before $\overline{\text { RESET }} \uparrow$	${ }^{\text {t AW }}$	4 tcy				
Address Hold Time after RESET $\uparrow$	tWA	4 t CY				
Data In Setup Time before $\overline{\text { PROG } \uparrow}$	tow	4 t CY				
Data In Hold Time after $\overline{\text { PROG }} \downarrow$	tWD	$4 \mathrm{t} \mathrm{C} Y$				
RESET Hold Time to VERIFY	tPH	4 t CY				
$V_{\text {DD }}$	tVDDW	4 t C .	-			
VDD Hold Time after PROG $\downarrow$	tVDDH	0				
Program Pulse Width	tPW	50		60	ms	
Test 0 Setup Time before Program Mode	tTW	4 tCy		,		
Test 0 Hold Time after Program Mode	${ }^{\text {tw }}$ T	$4 \mathrm{t} C Y$				
Test 0 to Data Out Delay	to			4 t CY		
RESET Pulse Width to Latch Address	twW	4 t CY				
$\mathrm{V}_{\text {DD }}$ and $\overline{\text { PROG }}$ Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0.5		2.0	$\mu \mathrm{s}$	
Processor Operation Cycle Time	${ }^{\text {t }} \mathrm{C} Y$	5.0			$\mu \mathrm{s}$	
$\overline{\text { RESET }}$ Setup Time before EA $\uparrow$	${ }^{\text {t RE }}$	4 t CY				



TIMING WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL MEMORY

$\overline{R D}$

BUS


READ FROM EXTERNAL DATA MEMORY

ALE

$\overline{W R}$

BUS


WRITE TO EXTERNAL MEMORY

TIMING WAVEFORMS (CONT.)


PORT 2 TIMING


PROGRAM/VERIFY TIMING
( $\mu$ PD8748 ONLY)


VERIFY MODE TIMING
( $\mu$ PD8048/8748 ONLY)

[^4]|  | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  | CYCLES | BYTES | FLAGS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MNEMONIC |  |  | D7 | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  | C | AC | F0 | F1 |
| ACCUMULATOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ADD A, \# data | $(\mathrm{A}) \leftarrow(\mathrm{A})+$ data | Add Immediate the specified Data to the Accumulator. | $\begin{gathered} 0 \\ \mathrm{~d} 7 \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 | - |  |  |  |
| ADD A, Rr | $\begin{aligned} & (A) \leftarrow(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add contents of designated register to the Accumulator. | 0 | 1 | 1. | 0 | 1 | r | r | r | 1 | 1 | - |  |  |  |
| ADD A, @ Rr | $\begin{aligned} & (A) \leftarrow(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Add Indirect the contents the data memory location to the Accumulator. | 0 | 1 | 1 | 0 | 0 | 0 | 0 | r | 1 | 1 | - |  |  |  |
| ADDC A, \# data | $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+$ data | Add Immediate with carry the specified data to the Accumulator. | $\begin{gathered} 0 \\ \mathrm{~d} 7 \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 | - |  |  |  |
| ADDC A, Rr | $\begin{aligned} & (A) \leftarrow(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add with carry the contents of the designated register to the Accumulator. | 0 | 1 | 1 | 1 | 1 | $r$ | r | r | 1 | 1 | - |  |  |  |
| ADDC A, @ Rr | $\begin{aligned} & (A) \leftarrow(A)+(C)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Add Indirect with carry the contents of data memory location to the Accumulator. | 0 | 1 | 1 | 1 | 0 | 0 | 0 | $r$ | 1 | 1 | - |  |  |  |
| ANL A. $=$ data | $(\mathrm{A}) \leftarrow(\mathrm{A})$ AND data | Logical and specified Immediate Data with Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ANL A, Rr | $\begin{aligned} & (A) \leftarrow(A) \text { AND }(\mathrm{Rr}) \\ & \text { for } r=0-7 \end{aligned}$ | Logical and contents of designated register with Accumulator. |  |  | 0 | 1 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| ANL A, @ $\mathrm{Rr}^{\text {r }}$ | $\begin{aligned} & (A) \leftarrow(A) \text { AND }((\operatorname{Rr})) \\ & \text { for } r=0-1 \end{aligned}$ | Logical and Indirect the contents of data memory with Accumulator. | 0 | 1 | 0 | 1 | 0 | 0 | 0 | $r$ | 1 | 1 |  |  |  |  |
| CPL A | $(\mathrm{A}) \sim \operatorname{NOT}(\mathrm{A})$ | Complement the contents of the Accumulator. | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| CLR A | (A) -0 | CLEAR the contents of the Accumulator. | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| DA A |  | DECIMAL ADJUST the contents of the Accumulator. | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| DEC A | (A) $-(\mathrm{A})-1$ | DECREMENT by 1 the accumulator's contents. | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| INC A | $(A)-(A)+1$ | Increment by 1 the accumulator's contents. | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| ORL $A$, = data | $(A) \leftarrow(A)$ OR data | Logical OR specified immediate data with Accumulator |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered} .$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ORL A, Rr | $\begin{aligned} & (A)+-(A) O R(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Logical ORcontents of designated register with Accumulator. |  | 1 | 0 | 0 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| ORL A, @ Rr | $\begin{aligned} & (A)-(A) \text { OR }\left(\left\{R_{r}\right\rangle\right) \\ & \text { for } r=0-1 \end{aligned}$ | Logical OR indrect the corients of data memory location with Accumulator. | 0 | 1 | 0 | 0 | 0 | 0 | 0 | : | 1 | 1 |  |  |  |  |
| RL A | $\begin{aligned} & (A N+1)-(A N) \\ & \left(A_{0}\right) \leftarrow\left(A_{7}\right) \\ & \text { for } N=0-6 \end{aligned}$ | Rotate Accumulator left by 1 -bit without carry. | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RLC A | $\begin{aligned} & (A N+1) \leftarrow(A N) ; N=0-6 \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{7}\right) \end{aligned}$ | Rotate Accumulator left by 1 -bit through carry. | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| RR A | $\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit without carry. | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RRC A | $\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & (A 7)-(C) \\ & (C)-\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit through carry. | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| SWAP A | $\left(A_{4-7}\right) \rightleftharpoons\left(A_{0}-3\right)$ | Swap the 24 -bit nibbles in the Accumulator. | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| XRL A, \# data | $(A) \leftarrow(A) \times O R$ data | Logical XOR specified immediate data with Accumulator. |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ |  | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| XRL A, Rr | $\begin{aligned} & (A)-(A) \text { XOR }(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Logical XOR contents of designated register with Accumulator. |  | 1 | 0 | 1 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| XRL A, @ Rr | $\begin{aligned} & (A)-(A) \text { XOR }((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Logical XOR Indirect the contents of data memory location with Accumulator. | 1 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |  |  |  |
| BRANCH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DJNZ Rr, addr | $\begin{aligned} & (R r) \leftarrow(R r)-1 ; r=0-7 \\ & \text { If }(R r) \neq 0: \\ & (P C 0-7) \leftarrow \text { addr } \end{aligned}$ | Decrement the specified register and test contents. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a 4 \end{gathered}$ | $\begin{gathered} 1 \\ a_{3} \end{gathered}$ | ${ }^{\text {a }}$ | $\begin{gathered} r \\ a_{1} \end{gathered}$ | $\begin{gathered} r \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JBb addr | (PC $0-7$ ) $\leftarrow$ addr if $\mathrm{Bb}=1$ <br> $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ if $\mathrm{Bb}=0$ | Jump to specified address if Accumulator bit is set. |  | $\begin{aligned} & \mathrm{b}_{1} \\ & \mathrm{a}_{6} \end{aligned}$ | $\begin{aligned} & \mathrm{b}_{0} \\ & \mathrm{a}_{5} \end{aligned}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ \text { a3 } \end{gathered}$ | $\begin{gathered} 0 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JC addr | (PC 0-7) $\leftarrow$ addr if $\mathrm{C}=1$ <br> $(P C)-(P C)+2$ if $C=0$ | Jump to specified address if carry flag is set. |  |  | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | 1 $a_{1}$ | 0 a 0 | 2 | 2 |  |  |  |  |
| JFO addr | $(P C 0-7) \leftarrow$ addr if $F O=1$ <br> $(P C)-)(P C)+2$ if $F O=0$ | Jump to specified address if Flag F0 is set. | 1 a | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ |  | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JF1 addr | $\begin{aligned} & (P C 0-7) \leftarrow \text { add if } F 1=1 \\ & (P C) \leftarrow(P C)+2 \text { if } F 1=0 \end{aligned}$ | Jump to specified address if Flag F1 is set. |  |  |  | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | 1 $a_{1}$ | 0 $a_{0}$ | 2 | 2 |  |  |  |  |
| JMP addr . . | (PC 8-10) - addr 8-10 (PC 0-7) $\leftarrow$ addr $0-7$ (PC 11) - DBF | Direct Jump to specified address within the 2 K address block. |  | $\begin{aligned} & \text { ag } \\ & \text { a6 } \end{aligned}$ | $\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$ | $\begin{gathered} 0 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 0 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JMPP @ A | $(\mathrm{P}, \mathrm{C} 0-7) \leftarrow(1 \mathrm{~A})$ ) | Jump indirect to specified address with with address page. | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2* | 1 |  |  |  |  |
| JNC addr | (PC 0-7) $\leftarrow$ addr if $\mathrm{C}=0$ $(\mathrm{PC})-(\mathrm{PC})+2$ if $\mathrm{C}=1$ | Jump to specified address if carry flag is low. |  | $\begin{gathered} 1 \\ a 6 \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JNI addr | $\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } I=0 \\ & (P C) \leftarrow(P C)+2 \text { if } I=1 \end{aligned}$ | Jump to specified address if interrupt is low. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | 0 <br> $a_{5}$ | 0 <br> $a_{4}$ | 0 <br> ${ }^{\text {a }} 3$ | 1 <br> $a_{2}$ | 1 $a_{1}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[t]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{instruction code} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{FLAGS} \\
\hline \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{D}_{1}\) \& \(\mathrm{D}_{0}\) \& \& \& c \& AC \& FO \& F1 \\
\hline \multicolumn{17}{|c|}{BRANCH (CONT.)} \\
\hline JNT0 addr \& \[
\begin{aligned}
\& \text { (PC } 0-7)- \text { addr if } T 0=0 \\
\& (P C)-(P C)+2 \text { if } T 0=1
\end{aligned}
\] \& Jump to specified address if Test 0 is low. \& 0
a \& 0
\(a_{6}\) \& 1
\(a_{5}\) \& \[
\begin{gathered}
0 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 3
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JNT1 addr \& \begin{tabular}{l}
(PC 0-7) \(\leftarrow\) addr if \(\mathrm{T} 1=0\) \\
(PC) \(-\cdots(\mathrm{PC})+2\) if \(\mathrm{T} 1=1\)
\end{tabular} \& Jump to specified address if Test 1 is low. \& \& \& 0

5 \& 0

4 \& 0
$a_{3}$ \& 1
$a_{2}$ \& \& 0
$a_{0}$ \& 2 \& 2 \& \& \& \& <br>

\hline JNZ addr \& $$
\begin{aligned}
& (P C 0-7)-\text { addr if } A \neq 0 \\
& \text { (PC) }-(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if accumulator is non-zero. \& \[

$$
\begin{gathered}
1 \\
\text { a7 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{a}_{6}
\end{gathered}
$$

\] \& \[

\cdot \frac{0}{a_{5}}

\] \& \[

$$
\begin{gathered}
1 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& a ${ }^{1}$ \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JTF addr \& | (PC 0-7) $\leftarrow$ addr if $T F=1$ |
| :--- |
| $(P C)-(P C)+2$ if $T F=0$ | \& Jump to specified address if Timer Flag is set to 1 . \& \[

$$
\begin{array}{r}
0 \\
a_{7}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
\mathrm{a}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JT0 addr \& $$
\begin{aligned}
& (P C O-7) \leftarrow \text { addr if TO }=1 \\
& (P C) \leftarrow(P C)+2 \text { if } T O=0
\end{aligned}
$$ \& Jump to specified address if Test 0 is a । \& \[

$$
\begin{gathered}
0 \\
a_{7}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$
\] \& 1

$a_{5}$ \& 1
$a_{4}$
4 \& 0
$a_{3}$ \& 1
$a_{2}$ \& 1
$a_{1}$ \& 0
$a_{0}$ \& 2 \& 2 \& \& \& \& <br>

\hline JT1 addr \& $$
\begin{aligned}
& (P C 0-7) \leftarrow \text { addr if } T 1=1 \\
& (P C)-(P C)+2 \text { if } T 1=0
\end{aligned}
$$ \& Jump to specified address if Test 1 is a 1. \& 0 \& \& 0

${ }^{5} 5$ \& 1
$a_{4}$
0 \& 0
a \& 1
$a_{2}$ \& 1
$a_{1}$ \& 0
a
0 \& 2 \& 2 \& \& \& \& <br>

\hline JZ addr \& $$
\begin{aligned}
& (P C 0-7)-\text { addr if } A=0 \\
& (P C) \cdot(P C)+2 \text { if } A+0
\end{aligned}
$$ \& Jump to specified address if Accumulator is 0 . \& \& \[

$$
\begin{gathered}
i \\
\mathrm{a}_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{2} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
\mathrm{a}_{1} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline \multicolumn{17}{|c|}{CONTROL} <br>
\hline ENI \& \& Enable the External Interrupt input. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline DIS I \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline ENTO CLK \& \& Enable the Clock Output pin TO. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL MBO \& (DBF)-0 \& Select Bank 0 (locations 0-2047) of Program Memory. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL MB1 \& (DBF) . 1 \& Select Bank 1 (locations 2048 - 4095) of Program Memory. \& 1 \& 1 \& 1. \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& - \& \& <br>

\hline SEL RBO \& $$
(\mathrm{BS})-0
$$ \& Select Bank 0 (locations 0-7) of Data Memory. \& \& 1 \& 0 \& \[

0

\] \& 0 \& \[

1
\] \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline SEL RB1 \& (BS) - 1 \& Select Bank 1 (locations 24 31) of Data Memory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline \multicolumn{17}{|c|}{DATA MOVES} <br>

\hline MOV A, $=$ data \& (A) - data \& Move Immediate the specified data into the Accumulator. \& \[
$$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& d_{6}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
d_{0}
\end{array}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV A, Rr \& $(\mathrm{A})-(\mathrm{Rr}) ; \mathrm{r}=0 \quad 7$ \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline MOVA, @Rr \& $(\mathrm{A})-((\mathrm{R})$ ) $; \mathrm{r}=0 \quad 1$ \& Move Indirect the contents of data memory location into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& ${ }^{r}$ \& 1 \& 1. \& \& \& \& <br>
\hline MOV A, PSW \& (A) - (PSW) \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOV Rr, = data \& (Rr) - data; $r=0.7$ \& Move Immediate the specified data into the designated register. \& \[
$$
\begin{aligned}
& -1 \\
& d_{7}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

\stackrel{r}{d_{2}}

\] \& \[

\stackrel{r}{d_{1}}

\] \& \[

\stackrel{r}{d_{0}}
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV Rr, A \& $(\mathrm{Rr})-(\mathrm{A}) ; \mathrm{r}=0 \quad 7$ \& Move Accumulator Contents into the designated regıster. \& 1 \& 0 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline MOV @ Rr, A \& $((R r))-(A) ; r=0-1$ \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& $=0$ \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& - \& \& <br>

\hline MOV @ Rr, = data \& ( $(\mathrm{Rr})$ ) $\cdot$ data; $\mathrm{r}=0 \quad 1$ \& Move Immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
\mathrm{~d} 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
r \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV PSW, A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOVP A, @ A \& $$
\begin{aligned}
& (P C 07) \cdot(A) \\
& (A) \cdot((P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline MOVP3 A, @ A \& $$
\begin{aligned}
& (P C 0 \\
& (P C) \cdot(A) \\
& (P C) \cdot 10)-011 \\
& (A) \cdot((P C))
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline MOVX A, @R \& $(A)-((R r)) ; r=0 \quad 1$ \& Move Indirect the contents of external. data memory into the Accumulator. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \& <br>

\hline MOVX@R, A \& $((R r))-(A) ; r=0 \quad 1$ \& Move Indirect the contents of the Accumulator into external data memory. \& 1 \& 0 \& 0 \& 1 \& $$
0
$$ \& 0 \& 0 \& ${ }^{r}$. \& 2 \& 1 \& \& \& \& <br>

\hline XCH A, Rr \& $(\mathrm{A}) \stackrel{\mathrm{L}}{ }(\mathrm{Rr}) ; \mathrm{r}=0-7$ \& Exchange the Accumulator and designated register's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& r \& 'r \& $\bigcirc$ \& 1 \& 1 \& \& \& \& <br>
\hline XCH A, @ Rr \& $(A) \geq((R r)) ; r=0-1$ \& Exchange Indrect contents of Accumulator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>

\hline XCHD A, @ Rr \& $$
\begin{aligned}
& (A 0-3) \leftrightarrows((R r)) 0-3)) ; \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4-bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>

\hline \& \& $\cdots \quad \cdots \mathrm{FL}$ \& AGS \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline CPL C \& (C) - NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& $\bullet$ \& \& \& <br>
\hline CPL FO \& (FO) - NOT (FO) \& Complement Content of Flag FO. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& <br>

\hline CPL F1 \& (F1) - NOT (F1) \& Complement Content of Flag F1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& $$
1
$$ \& 1 \& \& \& \& $\bullet$ <br>

\hline CLR C \& (C) 0 \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline CLR FO \& (FO) --0 \& Clear content of Flag 0 to 0. \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& <br>
\hline CLR F1 \& (F1) . 0 \& Clear content of Flag 1 to 0 . \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& - <br>
\hline
\end{tabular}



Notes. (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$ )
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
$\mathrm{FO}_{0}, \mathrm{~F}_{1}$	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator


SYMBOL	DESCRIPTION
$\mathrm{P}_{\mathrm{p}}$	Port Designator ( $\mathrm{p}=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Register Designator ( $\mathrm{r}=0,1$ or $0-7$ )
SP	Stack Pointer
T	Timer
TF	Timer Flag
To, T1	Testable Flags 0, 1
X	External RAM
$=$	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
( $(x)$ )	Contents of Memory Location Addressed by the Contents of External RAM Location.
$\leftarrow$	Replaced By

LOGIC SYMBOL


PACKAGE OUTLINES $\mu$ PD8048C/D $\mu$ PD8748D $\mu$ PD8035C/D


Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$
0.0 .002		




Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.100 \pm 0.004$
D	$0.50 \pm 0.1$	$0.0197 \pm 0.004$
E	$48.26 \pm 0.2$	$1.900 \pm 0.008$
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	$15.24 \pm 0.1$	$0.6 \pm 0.004$
L	$13.5+0.2$	$0.531+0.008$
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$



## SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION The NEC $\mu$ PD8049 and $\mu$ PD8039 are single chip 8-bit microcomputers. The processors differ only in their internal program memory options: the $\mu \mathrm{PD} 8049$ with $2 \mathrm{~K} \times 8$ bytes of mask ROM and the $\mu$ PD8039 with external program memory.<br>FEATURES - Fully Compatible with Industry Standard 8049/8039<br>- Pin Compatible with the $\mu$ PD8048/8748/8035<br>- NMOS Silicon Gate Technology Requiring a Single +5 V Supply<br>- $2.5 \mu$ s Cycle Time. All Instructions 1 or 2 Bytes<br>- Interval Timer/Event Counter<br>- $2 \mathrm{~K} \times 8$ Bytes of ROM, $128 \times 8$ Bytes of RAM<br>- Single Level Interrupt<br>- 96 Instructions: 70 Percent Single Byte<br>- 27 I/O Lines<br>- Internal Clock Generator<br>- Compatible with 8080A/8085A Peripherals<br>- Available in Both Ceramic and Plastic 40-Pin Packages

PIN CONFIGURATION

TO 1		40	$\square \vee_{C C}$
XTAL 1 G 2		39	$\mathrm{T}_{1}$
XTAL $2 \square 3$		38	$\square \mathrm{P} 27^{\circ}$
RESET 4		37	$\square \mathrm{P} 26$
$\overline{\text { SS }} 5$		36	- P25
INT $\square 6$		35	$\square \mathrm{P} 24$
EA 7		34	- P17
$\overline{R D} \square 8$		33	P16
$\overline{\text { PSEN }} 9$	$\mu \mathrm{PD}$	32	$\square \mathrm{P} 15$
$\overline{W R} 10$	8049/	31	$\square \mathrm{P} 14$
ALE 11	8039	30	] P 13
$\mathrm{DB}_{0} \square 12$		29	P 12
$\mathrm{DB}_{1} \square 13$		28	P11
$\mathrm{DB}_{2} \square 14$		27	P10
$\mathrm{DB}_{3} \square 15$		26	$\mathrm{V}_{\mathrm{DD}}$
$\mathrm{DB}_{4} \square 16$		25	PROG
$\mathrm{DB}_{5} \square_{17}$		24	P 23
$\mathrm{DB}_{6} \square 18$		23	P22
$\mathrm{DB}_{7} \square 19$		22	$\square \mathrm{P} 21$
$\mathrm{v}_{\text {SS }} \square 20$		21	$\square \mathrm{P} 20$

## $\mu$ PD8049/8039

The NEC $\mu$ PD8049 and $\mu$ PD8039 are single component, 8 -bit, parallel microprocessors using N -channel silicon gate MOS technology. The $\mu$ PD8049 and $\mu$ PD8039 efficiently

FUNCTIONAL DESCRIPTION function in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.

The $\mu$ PD8049 and $\mu$ PD8039 instruction set is comprised of 1 and 2 byte instructions with over 70 percent single-byte and requiring only 1 or 2 cycles per instruction with over 50 percent single-cycle.

The $\mu$ PD8049 and $\mu$ PD8039 microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8049 contains the following functions usually found in external peripheral devices: $2048 \times 8$ bits of mask ROM program memory; $128 \times 8$ bits of RAM data memory; 27 I/O lines; an 8 -bit interval timer/event counter; and oscillator and clock circuitry.

The $\mu$ PD8039 is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8049 except the $2048 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.


PIN		FUNCTION
NO.	SYMBOL	
1	T0	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to $\mathrm{T}_{0}$ using the ENTO CLK instruction. $\mathrm{T}_{0}$ can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $V_{\text {IH }}$ ).
3	XTAL 2	The other side of the crystal input.
4	RESET	Active low input for processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming verification and powerdown (non TTL compatible $\mathrm{V}_{\mathrm{H}}$ ).
5	$\overline{\overline{S S}}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). $\overline{I N T}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. INT can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic "1" at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\overline{R D}}$	READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{\mathrm{RD}}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{\text { WR }}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$D_{0}-D_{7} B \cup S$	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode.   During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7}$ BUS, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{aligned} & P_{20}-P_{27} \\ & \text { PORT } 2 \end{aligned}$	Port 2 is the second of two 8 -bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $P_{20}-P_{23}$ are also used as a 4 -bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	PROG is the output strobe for the $\mu$ PD8243 I/O expander.
26	VDD	$V_{D D}$ is +5 V for normal operation. It also functions as low power standby pin.
27-34	$\begin{gathered} P_{10}-P_{17} \\ \text { PORT } 1 \end{gathered}$	Port 1 is one of two 8 -bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	$\mathrm{V}_{\mathrm{CC}}$	Primary Power supply. $\mathrm{V}_{\mathrm{CC}}$ is +5 V during normal operation.

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin
-0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W
Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	VIL	-0.5		0.8	V	
Input High Voltage   (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$ )	$\mathrm{V}_{\text {IH }}$	2.0		VCC	V	
$\begin{aligned} & \text { Input High Voltage } \\ & \text { (RESET, XTAL 1, XTAL 2) } \end{aligned}$	VIH1	3.0		VCC	V	
Output Low Voltage (BUS, $\overrightarrow{R D}$, $\overline{W R}, \overline{\text { PSEN }}$, ALE)	VOL			0.45	V	$\mathrm{I} \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs Except PROG)	VOL1			0.45	V	$\mathrm{IOL}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	V	
Output High Voltage (BUS, $\overline{R D}$, $\overline{W R}, \overline{\text { PSEN }}, ~ A L E)$	VOH	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	VOH 1	2.4			V	${ }^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$
Input Leakage Current ( $\mathrm{T}_{1}, \mathrm{EA}, \mathrm{INT}$ )	IIL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current (BUS, $\mathrm{T}_{0}$ - High Impedance State)	IOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\mathrm{IN}} \geqslant \mathrm{V}_{\mathrm{SS}}+0.45 \mathrm{~V}$
Power Down Supply Current	IDD		20	50	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	IDD + ICC		75	140	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$



ABSOLUTE MAXIMUM RATINGS*

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=V_{D D}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }^{\text {t L L }}$	400			ns	
Address Setup before ALE	${ }^{\text {t }}$ L	150			ns	
Address Hold from ALE	${ }_{\text {t }}$ A	80			ns	
Control Puise Width ( $\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ )	${ }^{t} \mathrm{CC}$	900			ns	
Data Setup before $\overline{W R}$	${ }^{\text {t }}$ OW	500			ns	
Data Hold after WR	tWD	120			ns	$C_{L}=20 \mathrm{pF}$
Cycle Time	${ }^{t} \mathrm{CY}$	2.5		15.0	$\mu \mathrm{s}$	6 MHz XTAL
Data Hold	${ }^{\text {t }}$ DR	0		200	ns	
$\overline{\text { PSEN, }}$ RD to Data In	${ }^{\text {tRD }}$			500	ns	
Address Setup before $\overline{W R}$	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data In	${ }^{\text {t }}$ AD			950	ns	
Address Float to $\overline{R D}, \overline{\text { PSEN }}$	${ }^{t} A F C$	0			ns	

Notes: (1) For Control Outputs: $C_{L}=80 \mathrm{pF}$
(2) For Bus Outputs: $C_{L}=150 \mathrm{pF}$
(3) ${ }^{\mathrm{t}} \mathrm{CY}=2.5 \mu \mathrm{~s}$

PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Control Setup before Falling Edge of PROG	${ }^{\text {t }} \mathrm{CP}$	110			ns	
Port Control Hold after Falling Edge of PROG	tpe	140			ns	
PROG to Time P2 Input must be . Valid	tpR	,		810	ns	
Output Data Setup Time	${ }^{\text {t }} \mathrm{DP}$	220			ns	
Output Data Hold Time	${ }^{\text {t PD }}$	65		$\because$	ns	
Input Data Hold Time	tpF	0		150,	ns	
PROG Pulse Width	tpp	1510			ns	
Port 2 I/O Data Setup	tPL	400			ns	
Port 2 I/O Data Hold	${ }^{\text {t }}$ LP	150			ns	

TIMING WAVEFORMS


INSTRUCTION FETCH FROM EXTERNAL MEMORY


READ FROM EXTERNAL DATA MEMORY

ALE

$\overline{W R}$


WRITE TO EXTERNAL MEMORY


PORT 2 TIMING


INSTRUCTION SET (CONT.)

	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	Flags			
MNEMONIC			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			c	AC	Fo	F1
BRANCH (CONT.)																
JNTO addr	(PC O-7) $\leftarrow$ addr if TO $=0$ $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ if $\mathrm{TO}=1$	Jump to specified address if Test 0 is low.	0 a	0 $a_{6}$	1 05	0 0 4	0 $a_{3}$	1 $a_{2}$	1 $a_{1}$	0 $a_{0}$	2	2				
JNT1 addr	$\begin{aligned} & \text { (PC } 0-7) \leftarrow \text { addr if } T 1=0 \\ & (P C)-(P C)+2 \text { if } T 1=1 \end{aligned}$	Jump to specified address if Test 1 is low.	0 97	1 $a_{6}$	0 9	0 $a_{4}$	0 -03	1 $a_{2}$	1 $a_{1}$	0 $a_{0}$	2	2				
JNZ addr	(PC 0-7) $\leftarrow$ addr if $A \neq 0$   (PC) $+-(P C)+2$ if $A=0$	Jump to specified address if accumulator is non-zero.	$\begin{gathered} 1 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a 6 \end{gathered}$	$\begin{gathered} 0 \\ 95 \end{gathered}$	$\begin{gathered} 1 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \end{array}$	$\begin{gathered} 0 \\ \text { a0 } \end{gathered}$	2	2				
JTF addr	$\begin{aligned} & (P C O-7) \leftarrow \text { addr if } T F=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T F=0 \end{aligned}$	Jump to specified address if Timer Fiag is set to 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ \text { a } \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JT0 addr	$\begin{aligned} & (P C O-7) \leftarrow \text { addr if } T 0=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T O=0 \end{aligned}$	Jump to specified address if Test 0 is a 1 .	$\begin{gathered} 0 \\ a 7 \end{gathered}$		1 $a_{5}$		0 $a_{3}$	1 $a_{2}$	1 $a_{1}$	0 $a_{0}$	2	2				
JT1 addr	$\begin{aligned} & (P C O-7) \leftarrow \text { addr if } T 1=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T 1=0 \end{aligned}$	Jump to specified address if Test $\mathbf{1}$ is a 1.	0 97		0 $a_{5}$		0 $a_{3}$		1 $a_{1}$	0 $a_{0}$	2	2				
JZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \operatorname{addr} \text { if } A=0 \\ & (P C)-(P C)+2 \text { if } A: 0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{a}_{3} \\ \hline \end{gathered}$		$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
CONTROL																
ENI		Enable the External Interrupt input.	0	0	0	0	0	1	0	1	1	1				
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	$1$				
ENTO CLK		Enable the Clock Output pin TO.	0	1	1	1	0	1	0	1	1	1				
SEL MBO	$(D B F)-0$	Select Bank 0 (locations 0-2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1				
SEL MB1	(DBF) • 1	Select Bank 1 (locations 2048-4095) of Program Memory.	1	1	1	1	0	1	0	1	1	1				
SEL RBO	$(B S) \leftarrow 0$	Select Bank 0 (locations 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1				
SEL RB1	(BS) -- 1	Select Bank 1 (locations 24-31) of Data Memory.	1	1	0	1	0	1	0	1	1	1				
DATA MOVES																
MOV $\mathrm{A}_{\text {, }}$ = data	(A) - data	Move Immediate the specified data into the Accumulator.			$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
MOV A, Rr	$(A)-(R r) ; r=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1				
MOV A, @ Rr	$(\mathrm{A})-((\mathrm{Rr})) ; \mathrm{r}=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	$r$	1	1				
MOV A, PSW	(A) .-. (PSW)	Move contents of the Program Status Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1				
MOV Rr, = data	$(\mathrm{Rr})-$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\stackrel{r}{d_{2}}$	$\begin{gathered} r \\ d_{1} \end{gathered}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2				
MOV Rr, A	$(R r)-(A) ; r=0 . .7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	${ }^{*}$	r	1	1				
MOV @ Rr, A	$((\mathrm{Rr}))+(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect Accumulator Contents into data memory location.	1	0	1	0	0	0	0	$r$	1	1				
MOV @ Rr, == data	$(($ Rr $r)$ )-data: $r=0-1$	Move Immediate the specified data into data memory.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} \text { d } \\ d 0 \end{gathered}$	2	2				
MOV PSW, A	$(\mathrm{PSW})-(\mathrm{A})$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1				
MOVP A, @ A	$\begin{aligned} & (P C O-7)-(A) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1				
MOVP3 A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (P C 8-10) \leftarrow 011 \\ & (A)-((P C)) \end{aligned}$	Move Program data in Page 3 into the Accumulator.	1	1	1	0	0	0	1	1	2	1				
MOVX A, @ R	$(\mathrm{A}) \leftarrow((\mathrm{Rr})): r=0-1$	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1	.			
MOVX@R, A	$((R r)) \leftarrow(A) ; r=0-1$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1				
XCH A, Rr	$(\mathrm{A}) \rightleftarrows(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	$r$	r	1	1				
XCH A, @ Rr	$(A) \rightleftarrows((R r)) ; r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	$r$	1	1				
XCHD A, @ Rr	$\begin{aligned} & (A 0-3) \leftrightarrows((R r)) 0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	$r$	1	1				
FLAGS																
CPL C	(C) - NOT (C)	Complement Content of carry bit.	1	0	1	0	0	1	1	1	1	1	-			
CPL FO	$(\mathrm{FO}) \leftarrow$ NOT $(\mathrm{FO})$	Complement Content of Flag FO.	1	0	0	1	0	1	0	1	1	1			-	
CPL F1	(F1) . NOT (F1)	Complement Content of Flag F1	1	0	1	1	0	1	0	1	1	1				-
CLR C	(C) 0	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-			:
CLR Fo	$(\mathrm{FO}) \leftarrow 0$	Clear content of Flag 0 to 0.	1	0	0	0	0	1	0	1	1	1			-	
CLR F1	(F1) $\times 0$	Clear content of Flag 1 to 0 .	1	0	1	0	0	1	0	1	1	1				$\bullet$


MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE .								CYCLES	BYTES	FLAGS			
			D7	D6	D5	D4	D3	D2	D1	®0			C	AC	F0	F1
INPUT/OUTPUT																
ANL BUS, \# data	$(\mathrm{BUS}) \leftarrow(\mathrm{BUS})$ AND data	Logical and Immediate-specıfied data with contents of BUS.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ d_{0} \end{gathered}$	2	2				
ANL Pp, \# data	$(P p) \leftarrow(P p)$ AND data $p=1-2$	Logical and Immediate specified data with designated port ( 1 or 2)		$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{aligned} & p_{0} \\ & d o \end{aligned}$	2	2				
ANLD Pp, A	$\begin{aligned} & (P p) \leftarrow(P p) \text { AND }\left(\begin{array}{ll} \text { A } & 0-3) \\ p=4-7 \end{array}\right. \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1				
IN A, Pp	$(\mathrm{A}) \leftarrow(\mathrm{Pp}) ; \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	$p$	2	1				
INS A, BUS	$(\mathrm{A}) \leftarrow(\mathrm{B} \cup \mathrm{S})$	Input strobed BUS data into Accumulator.	0	0	0	0	1	0	0	0	2	1				
MOVD A, Pp	$\begin{aligned} & (\mathrm{A} 0-3) \leftarrow(P \mathrm{P}) ; p=4-7 \\ & (\mathrm{~A} 4-7) \leftarrow 0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	p	p	2	1				
MOVD Pp, A	$(P \mathrm{P}) \leftarrow \mathrm{A} 0-3: p=4-7$	Move contents of Accumulator to designated port (4 -7).	0	0	1	1	1	1	p	p	1	1 .				
ORL BUS, \# data	(BUS) $\leftarrow(B \cup S)$ OR data	Logical or Immediate specified data with contents of BUS.	1 $d 7$	$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ d 0 \end{gathered}$	2	2				
ORLD Pp, A	$\begin{aligned} & (P p) \leftarrow(P p) \text { OR }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	p	1	1				
ORLPp, \# data	$\begin{aligned} & (P p) \leftarrow(P p) \text { OR data } \\ & p=1-2 \end{aligned}$	Logical or Immediate specified data with designated port (1 2 )		$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 1 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d} 0 \end{gathered}$	2	2				
OUTL. BUS, A	$(B \cup S) \leftarrow(A)$	Output contents of Accumulator onto BUS.		0	0	0 .	. 0	0 .	1	0	1	1		,		
OUTL Pp, A	$(P p) \leftarrow(A) ; p=1-2$	Output contents of Accumulator to desıgnated port (1-2).	0	0	1	1	1	0	$\rho$	$\rho ;$	1	1				
REGISTERS																
DEC Rr (Rr)	$(R r) \leftarrow(R r)-1 ; r=0-7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r	r.	r	1	1				
INC Rr	$(R r) \leftarrow(R r)+1 ; r=0 \cdots 7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	$r$	$r$	1	1				
INC @ Rr	$\begin{aligned} & ((R r)) \leftarrow((R r))+1 \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.		0	0	1	0	0	0	$r$ :	1.	1				
SUBROUTINE																
CALL addr	$\begin{aligned} & ((\mathrm{SP})) \leftarrow(\mathrm{PC}),(\text { PSW } 4-7) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (P C 8-10) \leftarrow \text { addr } 8-10 \\ & (P C \quad 0-7) \leftarrow \text { addr } 0-7 \\ & (P C \text { 11) } \leftarrow \text { DBF } \end{aligned}$	Call designated Subroutine.		$\begin{aligned} & \mathrm{a}_{9} \\ & \mathrm{a}_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{a}_{4} \end{gathered}$	$\begin{gathered} 0 \\ a 3 \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	0 $a_{0}$	2	2				
RET	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P))) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1				
RETR	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \\ & (P S W 4-7) \leftarrow((S P)) \end{aligned}$	Return from Subroutine restoring Progran Status Word.	1	0	0	1	0	0	1	1	2	' 1				
TIMER/COUNTER																
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output.	0	. 0	1	0	0	1	0	1	1	1				
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	0	1	1	0	1	0	1	1.	1				
MOV A, T	$(A)-(T)$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1				
MOV T, A	$(T) \leftarrow(A)$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0.	1	0	1	1		.		
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1				
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1				
STRT T		Start Count for Timer.	0	1	0	1	0			$\uparrow$	1	1				
MISCELLANEOUS																
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1				

Notes: (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$ )
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
FO, F1 2	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator


SYMBOL	DESCRIPTION
$\mathrm{Pp}_{\mathrm{p}}$	Port Designator ( $\mathrm{p}=1,2$ or 4-7)
PSW	Program Status Word
Rr	Register Designator ( $r=0,1$ or $0-7$ )
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, $\mathrm{T}_{1}$	Testable Flags 0, 1
X	External RAM
=	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
( $(\mathrm{x})$ )	Contents of Memory Location Addressed by the Contents of External RAM Location
$\leftarrow$	Replaced By



Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$



Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.100 \pm 0.004$
D	$0.50 \pm 0.1$	$0.0197 \pm 0.004$
E	$48.26 \pm 0.2$	$1.900 \pm 0.008$
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	$15.24 \pm 0.1$	$0.6 \pm 0.004$
L	$13.5+0.2$	$0.531+0.008$
M	$0.30 \pm 0.1$	$0.012 \pm 0.004$

## MAGNETIC TAPE CASSETTE/CARTRIDGE CONTROLLER

DESCRIPTION The NEC $\mu$ PD371 is a high performance $N$-Channel LSI tape cassette/cartridge controller designed to interface between most cassette or cartridge tape drives and most microprocessors or minicomputers.
The $\mu$ PD371 converts 8 -bit parallel data into serial phase encoded data to be written on tape and converts phase encoded data read from tape into 8-bit parallel data, calculates the CRC during write operations, verifies the CRC during read operations, informs the processor program when to send data bytes during write operations and when to read bytes during read operations, converts tape drive status signals into register bit levels which may be read by the processor program and converts software commands into signals which may be understood by the tape drive(s).
The $\mu$ PD371 read and write data paths are completely separate to allow read-after-write data verification.

The $\mu$ PD371 places no limitation on the selection of tape speed since the $\mu$ PD371 maximum data transfer rate is considerably faster than that of the fastest cassette or cartridge drive.

## FEATURES - Compatible with ANSI, ECMA and ISO standard

- Also compatible with most other standards
- Hardware CRC generation and verification
- Read-after-write capability
- High speed file search
- Multiple drive capability
- May read or write on one drive while rewinding or file searching on another
- Maximum Data Transfer rate of 375 K bits/sec equivalent to 468 IPS at 800 BPI



## $\mu$ <br> PD371

```
Operating Temperature
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature . \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
All Output Voltages . - 1 to +8 Volts ©
All Input Voltages . -1 to +8 Volts (1)
Clock Voltages . - 1 to +16 Volts (1)
Supply Voltage VDD . -1 to +16 Volts (1)
Supply Voltage VCC . - 1 to +8 Volts (1)
Supply Voltage VBB . - 10 to 0 Volts
```

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Note: (1) $V_{B B}=-5 V \pm 5 \%$. All voltages measured with respect to GND.

$$
T_{\mathrm{a}}=0-70^{\circ} \mathrm{C} V_{D D}=+12 \mathrm{~V} \pm 5 \% V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% V_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \% V_{\mathrm{SS}}=0 \mathrm{~V}
$$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input High Voltage			$\mathrm{V}_{\text {IH }}$	+3.0		$\mathrm{V}_{\mathrm{CC}}$	V	
Input Low Voltage		VIL	0		+0.8	V		
Output High Voltage		$\mathrm{V}_{\mathrm{OH}}$	+3.5			V	${ }^{1} \mathrm{OH}=-1 \mathrm{~mA}$	
Output Low Voltage		$\mathrm{V}_{\mathrm{OL}}$			+0.4	V	$\mathrm{l}_{\mathrm{OL}}=+1.7 \mathrm{~mA}$	
Clock Input High Voltage		$\mathrm{V}_{\mathrm{OH}}$	+9		$V_{\text {DD }}$	V		
Clock Input Low Voltage		$\mathrm{V}_{\mathrm{OL}}$	0		+0.65	V		
Input Leakage Current		$\mathrm{I}_{\text {LIH }}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+3.0 \mathrm{~V}$	
Input   Leak age   Current	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	ILIL 1			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+0.8 \mathrm{~V}$	
	All Except $\mathrm{DB}_{0}$ $\mathrm{DB}_{7}$ (~25K Internal Pull-ups)	'LIL 2			-1.0	mA	$V_{1}=+0.4 \mathrm{~V}$	
Clock Input Leak age Current		$\mathrm{I}_{\mathrm{LOH}}$			+20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+9.0 \mathrm{~V}$	
Clock Input Leak age Current		$\mathrm{I}_{\text {LOL }}$			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+0.65 \mathrm{~V}$	
Output Leakage Current		$\mathrm{I}_{\mathrm{LOH}}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+3.5 \mathrm{~V}$	
Output Leakage Current		$\mathrm{I}_{\text {LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+0.4 \mathrm{~V}$	
Power Supply Current (VDD)		$I_{\text {DD }}$		$+20$		mA		
Power Supply Current ( $\mathrm{V}_{\mathrm{CC}}$ )		${ }^{1} \mathrm{CC}$		+30		mA		
Power Supply Current ( $\mathrm{V}_{\mathrm{BB}}$ )		$I_{B B}$			-2	mA		

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS	
		MIN	TYP			
Clock Capacitance	$\mathrm{C}_{\mathrm{O}}$			35	pF	fc $=1 \mathrm{MHz}$. All pins   except measuring pin   are grounded.
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			20	pF	

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

## CAPACITANCE

$T_{a}=0-70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{CU}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	$\mathrm{t}_{\mathrm{cy}}$	480		5000	ns	
Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	0		50	ns	
$\phi 1$ Pulse Width	${ }_{\text {t }}{ }^{\text {1 }}$	60			ns	
$\phi 2$ Pulse Width	${ }^{\text {t }}$ ¢ 2	220		-	ns	
$\phi 1$ to $\phi 2$ Delay	${ }^{\text {t }} 1$	0			ns	
$\phi 2$ to $\phi 1$ Delay	${ }^{t}{ }_{\text {D }}$ 2	70		$\cdots$	ns	
Delay $\phi 1$ to $\phi 2$ Lead Edges	${ }^{\text {t }}$ 3 3	80			ns	
Data Out Delay from $\phi 1$	${ }^{\text {toD1 }}$			480	ns	$1 \mathrm{TTL} \& \mathrm{CL}=30 \mathrm{pF}$
Data Out Delay from $\phi 1$	${ }^{\text {tod2 }}$			260	ns	$1 \mathrm{TTL} \& \mathrm{CL}=30 \mathrm{pF}$
$\mathrm{RS}_{0}-\mathrm{RS}_{2}$ to Output Delay	${ }^{\text {t }} \mathrm{ACC} 1$			300	ns	$1 \mathrm{TTL} \& \mathrm{CL}=30 \mathrm{pF}$
DS, W/R to Output Delay	${ }^{\text {t }}$ ACC2			200	ns	$1 \mathrm{TTL} \& \mathrm{CL}=30 \mathrm{pF}$
$\begin{aligned} & \mathrm{DB}_{0}-\mathrm{DB}_{7} \text { to } \phi 2 \text { Setup } \\ & \text { Time } \end{aligned}$	${ }_{\text {t }}$ S 1	250			ns	
$\begin{aligned} & \hline \mathrm{RS}_{0}-\mathrm{RS}_{2} \text { to } \phi 2 \text { Setup } \\ & \text { Time } \\ & \hline \end{aligned}$	${ }^{\text {t }}$ S2	350			ns	
DS, W/R to $\phi 2$ Setup Time	tis3	150			ns	
Input Hold Time from $\phi 2$	${ }_{\text {tin }}$	30			ns	

TIMING WAVEFORMS


PIN			FUNCTION
No.	SYMBOL	NAME	
RESET			
40	RST	Reset	A logic one at this pin causes a general reset of the $\mu$ PD371.
REGISTER SELECT COMMANDS AND DATA BUS			
11	W/R		W/R, DS and $\mathrm{RS}_{0}-\mathrm{RS}_{2}$ control Data Bus transfers between the $\mu \mathrm{PD} 371$ and the processor as follows:   Writing into a $\mu$ PD 371 register:   When $W / R$ is a logic one, information the processor places on $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ is written into the $\mu$ PD 371 WRITE REGISTER selected by $\mathrm{RS}_{0}-\mathrm{RS}_{2}$. The information is strobed into the register by a logic one at DS.   Reading from a $\mu$ PD371 register:   When W/R is a logic zero, information from the $\mu$ PD371 READ REGISTER selected by $R S_{0}-R S_{2}$ is placed on $D B_{0}-D B_{7}$ to be read by the processor. The information remains on $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ as long as DS is a logic one.
12	DS		
13-15	$R S_{0}-R S_{2}$		
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Data Bus	
INTERRUPT REQUEST			
24	REQ		The $\mu$ PD371 may be operated with either interrupt or polling techniques. If the interrupt technique is chosen, REQ should be connected to the interrupt request input of the processor. There are three sources of interrupt: READ BUFFER FULL, WRITE BUFFER EMPTY and GAP DETECTION.
TIMING			The user must provide four timing signals to the $\mu$ PD 371 - one for write operations and three for read operations. Each is defined in terms of $T$, where T is the period between successive data transitions in the phase encoded data written onto or read from tape.
39	WCK		WCK determines the WRITE DATA (WD, pin 36) transfer rate. WCK should have a period of 0.5 T .   DT is a pulse provided by the $\mu$ PD371 to be used in the generation of the three read timing signals - SG, DO, and GAP. DT occurs at each data transition in the data read from tape.   The internal read data sample gate is closed following each data transition and is reopened by a positive transition at SG $0.75 \mathrm{~T} \mu \mathrm{sec}$ after each DT pulse.   A positive transition should be made at DO whenever a DT pulse stream ceases for a period of $1.5 \mathrm{~T} \mu \mathrm{sec}$. A positive transition should be made at GAP whenever a DT pulse stream ceases for a period of $4 T \mu \mathrm{sec}$.   $\phi 1$ and $\phi 2$ are MOS level ( 12 V ) clock pulses. The timing of $\phi 1$ and $\phi 2$ is shown in the Timing Diagram.
16	DT		
34	SG		
38	DO		
35	GAP		
20	$\phi 1$		
23	$\phi 2$		
WRITE DATA			
36	WD		Phase encoded data to be written on tape leaves the $\mu$ PD371 at pin 36.
TAPE DRIVE COMMAND AND STATUS			
37	$\mathrm{C}_{1}$		$\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ are general purpose tape drive commands.   $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ are set and reset by the software manipulation of bits 5,6 and 7 , respectively, in Write Register 3 . Since $C_{1}, C_{2}$ and $C_{3}$ are defined by software, they may be configured for any purpose. Typical uses for $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ are WRITE ENABLE, FORWARD and REVERSE.
27	$\mathrm{C}_{2}$		
28	$\mathrm{C}_{3}$		
29	$\mathrm{S}_{1}$		$S_{1}, S_{2}$ and $S_{3}$ are general purpose tape drive status inputs. Their logic levels are indicated by bits 3, 4 and 7 of Read Register 1, respectively. Typical tape drive status signals are WRITE PERMIT, CASSETTE IN PLACE and SIDE. The $\mu$ PD 371 can adapt to any tape drive status signal set with a slight change in software.
26	$\mathrm{S}_{2}$		
25	$\mathrm{S}_{3}$		
DUAL TAPE DRIVE SYSTEM COMMAND AND STATUS			
17	UA	Unit Address	Selects Drive 0 when low and Drive 1 when high.
19	RW0	Rewind 0	Rewind Command for Drive 0.
18	$\mathrm{RW}_{1}$	Rewind 1	Rewind Command for Drive 1.
30	MK0	Marker 0	EOT/BOT status from Drive 0.
31	MK 1	Marker 1	EOT/BOT status from Drive 1.
READ DATA			
32	RD( ${ }^{(+)}$	Read   Data ( + )	A positive pulse from the tape drive at each positive transition in the read data.
33	RD(-)	$\begin{aligned} & \text { Read } \\ & \text { Data (-) } \end{aligned}$	A positive pulse from the tape drive at each negative transition in the read data.
MISCELLANEOUS			
1	MBH		MBH must be tied to the $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V}$ ) supply.
42	AWL		AWL is a logic low output under all normal operating conditions of the $\mu$ PD371.
POWER SUPPLY VOLTAGES			
2	$V_{\text {DD }}$		+12V
41	$V_{\text {CC }}$		$+5 \mathrm{~V}$
22	$\mathrm{v}_{\text {SS }}$		Ground
21	$V_{B B}$		-5V

Note: (1) Refer to diagram on following page.


PACKAGE OUTLINE $\mu$ PD371D


ITEM	MILLIMETERS	INCHES
A	53.5 MAX	2.1 MAX
B	1.35	0.05
C	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
K	15.24	0.60
L	13.50	0.53
M	0.3	0.012

## $\mu$ PD371

From the point of view of the processor program, the $\mu$ PD371 makes the tape drive (or multiple drive system) appear as ten addressable registers. The program controls the drive(s) and transmits data to be written on tape by manipulating bits in the six $\mu$ PD371 Write Registers. The program senses the status of the drive(s) and reads data stored on tape by reading bits from the four $\mu$ PD 371 Read Registers.

REGISTER ADDRESS			
$W / R$	$R S_{2}$	$R S_{1}$	$R S_{0}$



## WRITE REGISTERS

10000


1	0	0	1
1	0	1	0

$W_{1}$


1010
$W_{2}$


1001
$W^{W} R_{3}$


$$
\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}
$$

## $W_{5}$



WR6


READ REGISTERS
$0 \quad 0 \quad 0 \quad 0$

$0 \quad 0 \quad 0 \quad 1$

$\begin{array}{llll} & 0 & 1 & 0\end{array}$

$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\mathrm{RR}_{3}$

$x=$ NOT USED

## ADDRESSABLE

 INTERNAL REGISTER BIT IDENTIFICATION| BIT | SYMBOL | NAME |
| :---: | :---: | :---: |
| WRITE REGISTER 0 |  |  |
| 0 | GNT | Gap Noise Tolerance |
| 1 | WMD | Write Mode Disable |
| 2 | - | Not used |
| 3 | WCR | Write CRC |
| 4 | WME | Write Mode Enable |
| 5 | SRS | Status Reset |
| 6 | MBL | Must Be Low |
| 7 | RST | Reset |
| WRITE REGISTER 1 |  |  |
| 0 | - | Not used |
| $1{ }^{\text {² }}$ | GRD | Gap Request Disable |
| 2 | GRE | Gap Request Enable |
| 3 | RRD | Read Request Disable |
| 4 | RRE | Read Request Enable |
| 5 | - | Not used |
| 6 | RRR | Read Request Reset |
| 7 | WRR | Write Request Reset |
| WRITE REGISTER 2 |  |  |
| 0-7 | $\begin{aligned} & W D_{0}- \\ & W D_{7} \end{aligned}$ | Write Buffer Register |
| WRITE REGISTER 3 |  |  |
| 0 | - | Not used |
| 1 | - | Not used |
| 2 | - | Not used |
| 3 | RW | Rewind |
| 4 | RRI | Rewind Reset Inhibit |
| 5 | $\mathrm{C}_{1}$ | Command One |
| 6 | $\mathrm{C}_{2}$ | Command Two |
| 7 | $\mathrm{C}_{3}$ | Command Three |
| WRITE REGISTER 4 |  |  |
| - | - | Not used |
| WRITE REGISTER 5 |  |  |
| 0 | - | Not used |
| 1 | - | Not used |
| 2 | - | Not used |
| 3 | RMD | Read Mode Disable |
| 4 | RME | Read Mode Enable |
| 5 | - | Not used |
| 6 | - | Not used |
| 7 | - | Not used |


BIT	SYMBOL	NAME
WRITE REGISTER 6		
0	UA	Unit Address
1-7	-	Not used
READ REGISTER 0		
0	RRO	Read Request.
1	WRQ	Write Request
2	GRQ	Gap Request
3	RDF	Read Flag
4	C3	Command 3
5	$\mathrm{C}_{2}$	Command 2
6	AWL	Always Low
7	AWH	Always High
READ REGISTER 1		
0	UA	Unit Address
1	$\mathrm{C}_{1}$	Command 1
2	RW	Rewind
3	S1	Status 1
4	$\mathrm{S}_{2}$	Status 2
5	MKF	Marker Flag
6	MK	Marker
7	S3	Status 3
READ REGISTER 2		
0-7	$\begin{aligned} & \mathrm{RD}_{0}- \\ & \mathrm{RD}_{7} \end{aligned}$	Read Buffer Register
READ REGISTER 3		
0	NAR	Noise After Record
1	NBR	Noise Before Record
2	COR	Command Overrun
3	DOE	Drop Out Error
4	CRE	CRC Error
5	REC	Record Detection
6	GPF	Gap Flag
7	WD	Write Data

## FLOPPY DISK CONTROLLER

## DESCRIPTION

The $\mu$ PD372D is a single LSI floppy disk controller chip which contains the circuitry to read, write, track seek, load and unload the head, generate and detect CRC characters, and perform all other floppy disk operations. It is completely compatible with the IBM, Minifloppy*TM, hard sector, and other formats and controls up to 4 floppy disk drives. The $\mu$ PD372D may be interfaced directly to a host processor; or to a controller processor first, which in turn is interfaced to the host. These processors do not necessarily have to be of the 8080A type.

Data transfers to and from the $\mu$ PD372D are done through addressable internal registers. These internal regsiters allow a large variety of system architectures to be configured; they provide status information on the drive, as well as perform data transfers between the drive and the processor.

The $\mu$ PD372D issues interrupts to the processor upon detection of an address mark and then when each subsequent data byte is available during either reading or writing. An 8-bit bi-directional data bus and 5 register select lines provide access to the 9 internal registers' contents. An internal interval timer is provided which facilitates performing such drive timing functions as: stepping rate, head settling time, track settling time, etc.
*TM Shugart Associates.
FEATURES • Compatible with IBM 3740 format

- Also compatible with other formats including Minifloppy and hard sector
- Controls up to four floppy disk drives
- Can perform overlap seeks
- Input and output TTL compatible (except for $\phi 1$ and $\phi 2$ )
- Interfaces to most microprocessors including 8080A
- Standard power supplies $(+12 \mathrm{~V},+5 \mathrm{~V}$ and $-5 \mathrm{~V})$
- Controls most floppy disk drives including:

CALCOMP 140, 142	ORBIS 74, 76/77
CDC BR803	PERSCI 70, 75
INNOVEX 210,410	REMEX RFS 7400
PERTEC FD400	SHUGART SA400 (Minifloppy)
POTTER DD4740	WANGCO 82 (Minifloppy)
SHUGART SA900, SA800	GSI MDD50 (Minifloppy)
GSI 110	

PIN CONFIGURATION


Temperature Under Bias	$0^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages	-1.0 to +8 Volts ${ }^{(1)}$
All Input Voltages	-1.0 to +8 Volts ${ }^{(1)}$
Clock Voltage	-1.0 to +16 Volts ${ }^{(1)}$
Supply Voltage V ${ }_{\text {DD }}$	-1.0 to +16 Volts ${ }^{(1)}$
Supply Voltage VCC	-1.0 to +8 Volts ${ }^{(1)}$
Supply Voltage $\mathrm{V}_{\mathrm{BB}}$	-10 to +0 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} r_{a}=25^{\circ} \mathrm{C}$
Note: (1) $V_{B B}=-5 V \pm 5 \%$

$$
T_{a}=-70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
High Level Input Voltage	$V_{\text {IH }}$	+3.0		$\mathrm{V}_{\mathrm{Cc}}$	V	
Low Level Input Voltage	$V_{\text {IL }}$	0		+0.8	V	
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	+3.5			V	${ }^{\prime} \mathrm{OH}=-1.0 \mathrm{~mA}$
Low Level Output Voltage	$\mathrm{V}_{\mathrm{OL} 1}{ }^{(1)}$			+0.5	V	$\mathrm{IOL}=+1.7 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL2}}{ }^{(2)}$			+0.5	V	$\mathrm{I}_{\mathrm{OL}}=+3.3 \mathrm{~mA}$
High Level Clock Voltage	$\mathrm{V}_{\phi} \mathrm{H}$	+9		${ }^{\text {DD }}$	V	
Low Level Clock Voltage	$v_{\phi L}$	0		+0.8	V	
High Level Input Leakage Current	'LIH			+10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+3.0 \mathrm{~V}$
Low Level Input Leakage Current	'LIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+0.8 \mathrm{~V}$
High Level Clock Leakage Current	${ }^{\text {L }}$ ¢ H			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\phi}=+9.0 \mathrm{~V}$
Low Level Clock Leakage Current	${ }^{\text {L }}$ L L			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\phi}=+0.8 \mathrm{~V}$
High Level Output Leakage Current	'LOH			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+3.5 \mathrm{~V}$
Low Level Output Leakage Current	'LOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=+0.5 \mathrm{~V}$
Power Supply Current ( $\mathrm{V}_{\mathrm{DD}}$ )	${ }^{\text {ID }}$		+20		mA	
Power Supply Current (V ${ }_{\text {CC }}$ )	'cc		+23		mA	
Power Supply Current ( $\mathrm{V}_{\mathrm{BB}}$ )	${ }^{\prime} \mathrm{BB}$			-2	mA	

Notes: (1) CKS, REQ, UA ${ }_{0}, \mathrm{UA}_{1}, \mathrm{UB}_{0}, \mathrm{UB}_{1}, \mathrm{DB}_{0}-\mathrm{DB}_{7}$.
(2) WD, HLD, LCT, WE, WFR, SOS, SID.
$T_{a}=0-70 ' C, V_{D D}=+12 V+5 \%, V_{C C}=+5 V+5 \%, V_{B B}=-5 V+5 \%, V_{S S}=0 V$

PARAMETER	SYMBOL	LIMITS				TEST CONDITIONS
		MIN	TYP	MAX	UNIT	
Clock Period	${ }^{\text {cty }}$	480		2000	ns	
Clock R ise and Fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}^{\text {f }}$	0	,	50	ns	
1 Pulse Width	${ }_{6} \mathrm{t}_{1} 1$	60	,		ns	
$2{ }_{2}$ Pulse Width	ts, 2	90			ns	
, 1 to 2 Delay	${ }^{\text {t }}{ }^{1}$	0			ns	
, 2 to 21 Delay	${ }^{\mathrm{t}^{\text {D }} \text { 2 }}$	70			ns	
Delay $0_{1}$ to $0_{2}$ Leading Edges	${ }^{t} \mathrm{D}_{3}$	100			ns.	
Data Out Delay from?	$\mathrm{TOD}_{1}$			90	ns	1 TTL and $\mathrm{C}_{\mathrm{i}}=30 \mathrm{pF}$
Data Out Delay from 2	${ }^{\mathrm{t}} \mathrm{OD}_{2}$			200	ns	$1 . \mathrm{TTL}$ and $\mathrm{C}_{\mathrm{i}}=30 \mathrm{pF}$
				200	ns	2 TTL and $\mathrm{C}_{\mathrm{i}}=50 \mathrm{pF}$
WD Delay Time	${ }^{\mathrm{O}^{\prime} \mathrm{O}_{3}}$			120	ns	2 TTL and $\mathrm{C}_{\mathrm{i}}=50 \mathrm{pF}$
Data Out Delay from DS $\cdot \overline{W / R} \cdot \overline{R S}_{2}$	${ }^{\text {to }}{ }_{4}$	:		200	ns	
Data Setup Time to $\%_{1}$	${ }^{\text {I }} \mathrm{S}_{1}$	150			ns	
Data Setup Time to $\mathrm{S}_{2}$	${ }^{\mathrm{t}} \mathrm{IS}_{2}$	120			ns	
Data Hold Time from 1	${ }^{\mathrm{t}} \mathrm{H}_{1}$	10			ns	
Data Hold Time from $\%_{2}$	${ }^{\mathrm{t}} \mathrm{H}_{2}$	10			ns	
WD pulse width	${ }^{\text {t W D }}$	${ }^{\text {t }} \mathrm{D} 3^{-40}$	${ }^{t} \mathrm{D}_{3}$		ns	
Input pulse width (3)	${ }^{t} W$	${ }^{\text {t }} \mathrm{CY}+150$			ns	-

Notes: (1) CKS, AWL, REQ, UA $0, \cup A_{1}, \cup B_{0}, \cup B_{1}$.
(2) HLD, LCT, WFR, WE, SOS, SID.
(3) IDX, RYA, RYB, RST, WFT, T $00, W C K, ~ R C K$.

TIMING WAVEFORMS



Notes: (1) ${ }^{\mathrm{t}} \mathrm{CY}=\phi 1$ Clock Period
(2) $T_{1} \geq{ }^{t} \mathrm{C} Y+160 \mathrm{~ns}$
(3) $T_{2} \geq{ }^{t} \mathrm{C} Y+160 \mathrm{~ns}$

PIN			INPUT/ OUTPUT	CONNECTION	FUNCTION
NO.	SYMBOL	NAME			
1	RST	Reset	Input	Processor	Initializes internal registers, counters and F/F's
2	W/R	Register Write/ Read Select			W/R $=1$ implies $\mathrm{DB}_{0-7}$ data written into $\mu$ PD372 registers
3	DS	Data Strobe			$\mathrm{DB}_{0-7}$ Write and read strobe
4-6	$\begin{aligned} & \mathrm{RS}_{\phi} \\ & \mathrm{RS}_{1} \\ & \mathrm{RS}_{2} \end{aligned}$	Register Select			Internal Register Select
7	IDX	Index		FDD	Pulse Signal that indicates start of Disk track
8	WFT	Write Fault			Write Fault Signal
9	$\mathrm{T}_{00}$	Track 00			Indicates that Head is positioned on Track 00
10	RCK	Read Clock			
11	RD	Read Data			
12	RYA	Ready A			Indicates that FDD A is Ready
13	WCK	Write Clock		Processor	
14	RYB	Ready B		FDD	Indicates that FDD B is Ready
15	CKS	Clock States	Output		
16	AWL	Always Low			Always a logic zero
17	REQ	Request		Processor	Interrupt Request
18	WD	Write Data		FDD	Serial Write Data (Clock \& Data Bits)
19	HLD	Head Load			Command which causes R/W head to contact disk
22	LCT	Low Current			Command to lower write current for inner tracks
23	WFR	Write Fault Reset			Signal to reset write fault latch
24	WE	Write Enable			
25	SID	Step In or Direction			R/W head step control
26	SOS	Step Out or Step			R/W head step control
27-30	$U A_{0}, U A_{1}$   $\cup B_{0}, U B_{1}$	FDD Select			FDD Unit Select
31-38	$\mathrm{DB}_{0-7}$	Data Bus	Input/ Output	Processor	Bi-directional data bus

PIN IDENTIFICATION


PACKAGE OUTLINE $\mu$ PD372D


ITEM	MILLIMETERS	INCHES
A	53.5 MAX	2.1 MAX
B	1.35	0.05
C	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
K	15.24	0.60
L	13.50	0.53
M	0.3	0.012


BIT	SYMBOL	NAME	FUNCTION
WRITE REGISTER 0			
0		Not Used	
1	WFR	Write Fault Reset	Resets Pin 23 to Zero
2	LCT	Low Current	Sets Pin 22, Should be Zero for TRKS $>43$
3	HLD	Head Load	Sets Pin 19, Loading FDD Head
4		Not Used	
5		Not Used	
6	MBL	Must Be Low	
7	RST	Reset	Software Reset, Same Effect as Pin 1
WRITE REGISTER 1			
0	UA0	Unit $\mathrm{A}_{0}$ Select	Device Select Pin 30
1	UA1	Unit A1 Select	Device Select Pin 29
2	UAS	Unit A Strobe	Strobe for Enabling UA 0 and OA1 to be Loaded
3	CB3	Clock Bit 3	Enables Clock Pulse \#3 to be Written
4	CB4	Clock Bit 4	Enables Clock Pulse \#4 to be Written
5	CB5	Clock Bit 5	Enables Clock Pulse \#5 to be Written
6		Not Used	
7	CBS	Clock Bit Strobe	Enables Clock Bits to be Loaded
WRITE REGISTER 2			
0	WD0	Write Data Bit 0	
1	WD 1	Write Data Bit 1	
2	WD2	Write Data Bit 2	
3	WD3	Write Data Bit 3	
4	WD4	Write Data Bit 4	
5	WD5	Write Data Bit 5	
6	WD6	Write Data Bit 6	
7	WD7	Write Data Bit 7	
WRITE REGISTER 3			
0	CCW	Cyclic Check Words	One During R/W, Zero for CRC Reset
1	CCG	Cyclic Check Generator Start	Starts CRC Generator in Write Mode
2	WER	Write Enable Reset	Resets Pin 24 to Zero
3	IXS	Index Start	Enable Index Hole Detection
4	WES	Write Enable Set	Sets Pin 24 to One
5	STT	Start	Enables Read and Write Operations to Occur
6	WCS	Write Clock Set	Write Clock Selected
7	RCS	Read Clock Set	Read Clock Selected
WRITE REGISTER 4			
0	UB0	Unit B0 Select	Device Select Pin 28
1	UB1	Unit B1 Select	Device Select Pin 27
2	UBS	Unit B Strobe	Strobe for Enabling $\cup^{\prime} 0$, UB1 to be Loaded
3		Not Used	
4		Not Used	
5	SOS	Step Out or Step	Sets Pin 26 to One
6	SID	Step In or Direction	Sets Pin 25 to One
7	STS	Step Strobe	Enables SOS and SID to be Loaded
WRITE REGISTER 5			
0-7		This Register Not Used	
		WRITE REGISTER 6	
0	DRR	Data Register Reset	Resets DRQ (RROB Bit 0)
1	IRR	Index Request Reset	Resets IRQ (RR0 Bit 1)
2	TRR	Timer Request Reset	Resets TRQ (RRO Bit 2)
3		Not Used	
4		Not Used	
5		Not Used	
6		Not Used	
7		Not Used	

INTERNAL REGISTER IDENTIFICATION (CONT.)

BIT	SYMBOL	NAME	FUNCTION
READ REGISTER 0			
0	DRQ	Data Request	Read Data Byte from RR2 or Write Data Byte into WR2
1	IRQ	Index Request	Set by Physical Index Pulse
2	TRQ	Timer Request	Set by Every 512th Write CLK Pulse
3	ERR	Error	Logical OR of WFT + RYA + COR
4	$\mathrm{UB}_{0}$	Drive B0 Selected	
5	UB1	Drive B1 Selected	
6	RYB	Drive B Ready	Ready Signal from Pin 14
7	ALH	Always High	Always Contains a Logical One
READ REGISTER 1			
0	UA0	Drive $\mathrm{A}_{0}$ Selected	
1	UA1	Drive A1 Selected	
2	WFT	Write Fault	Indicates Status of Pin 8
3	RYA	Drive A Ready	Indicates Status of Pin 12
4	COR	Command Overrun	Processor Did Not Respond in Time to a DRQ
5	DER	Data Error	CRC Error During Read
6	T00	Track Zero	Indicates Status of Pin 9
7	WRT	Write Mode	Indicates which Clock WCK or RCK has been Selected
READ REGISTER 2			
0	$\mathrm{RD}_{0}$	Read Data Bit 0	,
1	RD1	Read Data Bit 1	
2	$\mathrm{RD}_{2}$	Read Data Bit 2	
3	$\mathrm{RD}_{3}$	Read Data Bit 3	
4	$\mathrm{RD}_{4}$	Read Data Bit 4	
5	RD5	Read Data Bit 5	
6	$\mathrm{RD}_{6}$	Read Data Bit 6	
7	RD7	Read Data Bit 7	

ADDRESSABLE Data is transferred to the $\mu$ PD372's internal addressable registers by signals W/R INTERNAL REGISTERS (Write=1, Read=0), DS (Data Strobe) and $\mathrm{RS}_{0}-$ RS 2 (Register Select 0,1 and 2).

Timing constraints for these signals are shown in the Timing Diagram. Diagram below shows register allocations and functional content.

REGISTER ADDRESS			
$W / R$	$R S_{2}$	$R S_{1}$	$R S_{0}$


WRITE REGISTERS

1	0	0	0	$W^{+}$	RST	MBL	X	X	HLD	LCT	WFR	X
1	0	0	1	WR1	CBS	X	CB5	$\mathrm{CB}_{4}$	CB3	UAS	UA 1	UA0
1	0	1	0	$W^{\prime} R_{2}$	WD7	WD6	WD5	WD4	WD3	$\mathrm{WD}_{2}$	WD1	WD0
1	0	1	1	$W^{*} 3$	RCS	WCS	STT	WES	TXS	WER	CCG	CCW
1	1	0	0	$W^{W} 4$	STS	SID	SOS	X	X	UBS	UB1	UB0
1	1	1	0	WR6	X	X	X	X	X	TRR	IRR	DRR
READ REGISTERS												
0	0	0	0	$R R_{0}$	ALH	RYB	UB1	UB0	ERR	TRQ	IRO	DRQ
0	0	0	1	RR1	WRT	T00	DER	COR	RYA	WFT	UA1	UAO
0	0	1	0	$R R_{2}$	RD7	RD6	$\mathrm{RD}_{5}$	RD4	RD3	$\mathrm{RD}_{2}$	RD1	RD0



## SYNCHRONOUS RECEIVER/TRANSMITTER

DESCRIPTION The $\mu$ PD379 Synchronous Receiver/Transmitter is an MOS LSI monolithic circuit that performs all the receiving and transmitting functions associated with Basic and High Level Data Link Control Procedures. This circuit is fabricated using N-channel AL-Gate MOS technology, allowing all inputs and outputs to be directly TTL compatible. The operation mode, baud rate and synchronous character are changeable through the use of external control. The $\mu$ PD379 is packaged in a 42 pin Dual-in-line ceramic package.

FEATURES - Suitable for Synchronous Basic and High Level Data Link Control Procedures (BiSync or SDLC)

- Full or Half Duplex Operation
- Fully Double Buffered Transmit and Receive
- Directly TTL Compațible
- Three-State Data Outputs
- Programmable Sync Word
- Detection/Rejection of Flag, Abort and Idle Patterns
- Zero Insertion and Rejection
- Indication of Overrun and Underrun Errors
- 800K Bits/Sec Operating Speed

PIN CONFIGURATION


## Basic Sync Mode Transmission

The Sync character may be 16 in hexadecimal or it may be set to any other pattern

FUNCTIONAL DESCRIPTION in the Closed Mode. When the mode control register is loaded with MS $1=$ high and MS2 = low, the $\mu$ PD379 enters the Basic Sync mode from the Closed Mode. The Sync character is continuously transmitted until a transmission data character is loaded. After a data character is loaded, it is serialized and transmitted out from the TO (Transmitter Output) line. If an underrun occurs, Sync character(s) are again transmitted automatically until the next data character is loaded. Transmission data is sent out from LSB (TD1) first to MSB (TD8) last on the TO line.

## Basic Sync Mode Receive

The RI (Receiver Input) line first searchēs for Sync characters. Once an 8 -bit Sync character has been detected, the following received bits are treated as data characters and outputted on lines RD1 - RD8 in parallel.

When device operation is started, the receiver section should be first brought into Closed mode or should be reset in order to ensure synchronization.

## SDLC Mode Transmission

Until a data character is loaded, the Flag pattern (7E in hexadecimal) is automatically transmitted continuously. After a data character is loaded, it is serialized and transmitted out from LSB (TD1) to MSB (TD8) on the TO line. In transmitting data characters, a dummy bit 0 is automatically inserted immediately following five (5) successive 1's. This is called Zero-Insertion and is performed in order to maintain synchronization with the receiver and to avoid duplication of Flag pattern in data characters. (Zero-Insertion may be prohibited optionally with the $\overline{\mathrm{ZIP}}$ command, if necessary.) If an underrun occurs while data characters are being transmitted, an Abort pattern (FF in hexadecimal) and then a Flag pattern are automatically transmitted. After that, the Flag pattern is again automatically transmitted until the next data character is loaded.

If a low level is placed on the $\overline{\mathrm{CFT}}$ (Closing Flag Transmit) line while a data character is being transmitted, a Closing Flag will be transmitted immediately following transmission of the current data character.

## SDLC Mode Receive

First, the Flag pattern is searched for on the RI line. Once a Flag pattern is detected, inserted zero's are rejected from all the following characters except Flag, Abort (7 to 14 successive 1 's) and Idle ( 15 successive 1 's) patterns, and then deserialized and output on the RD1 - RD8 lines in parallel.

If an overrun occurs, all the following data inputs are neglected and the $\mu$ PD379 goes back to the first stage to search for the next Flag pattern.

## Closed Mode

When there is a change of mode, it must pass through the closed mode. In the closed mode, the following input signals may be used:

$$
\overline{\mathrm{CS}}, \mathrm{SYNC}, \overline{T C B L}, \mathrm{MS} 1, M S 2, M R L, T D_{1}-\mathrm{TD}_{8}
$$

After leaving the closed mode, Sync characters are transmitted synchronously with the rising edge of TC. The receiver operates synchronously with the falling edge of RC, after $\overline{R R}=1$.

The following timing diagram shows how mode changes may be accomplished.


ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS


Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	All Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OV to +8.0V (1)
	All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . OV to +8.0V (1)
	Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . OV to +8.0V (1)
	Supply Voltage VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . OV to +16.0V (1)
	Supply Voltage VBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0 V to OV
COMMENT: Stress above those 'listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.	
	${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
	Note: (1) $V_{B B}=-5 \pm 5 \%$

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	$\mathrm{f}_{\mathrm{C}}$	DC		800	KHz	TC, RC
Pulse Width	tPW					TC, RC
		250			ns	MRL
		250			ns	$\overline{\text { TCBL }}$
		250			ns	$\overline{\text { SNTR } / \overline{C F T}}$
		250			ns	$\overline{\text { ZIP }}$
		400			ns	$\overline{\mathrm{RR}}$
		250			ns	$\overline{\text { DRR }}$
Setup Time	tSET UP	250			ns	
Hold Time	tHOLD	150			ns	
Rise Time.	$\mathrm{tr}_{\mathrm{r}}$			150	ns	
Fall Time	$\mathrm{tf}_{f}$			150	ns	
Pulse Interval	$\mathrm{t}_{\mathrm{cc}}$	100			ns	.
Output Delay Time	tpd1		180	270	ns	$C_{L}=20 \mathrm{pf}$   1 TTL Load
	$\mathrm{tpd}^{\text {p }}$		410	600	ns	
Fan Out	N			1		Standard TTL Load

[^5]| PIN |  | FUNCTION |  |
| :---: | :---: | :---: | :---: |
| No. | SYMBOL | BASIC SYNC MODE | SDLC MODE |
| 1 | NC | No Connection |  |
| 2 | $\mathrm{V}_{\mathrm{DD}}$ | +12V Power Supply |  |
| 3 | $\overline{\text { CS }}$ | Chip Select - When " 1 ", the following inputs are disabled and the outputs are put into the high impedance state: (Input Disabled) $\overline{R R}, \overline{D R R}, S Y N C / \overline{Z / P}, \overline{S N T R} / \overline{C F T}, \overline{T C B L}, M R L ;$ Output-High Impedance) CFR, ABTR, SYNR/IDLR, RD $\mathbf{1}_{1}$ - RD 8 , DR, OE, TCBE, CYNT/ABTT |  |
| 4 | $\overline{\mathrm{R}}$ | Receiver Reset - Receiver portion is reset with a " 0 " and operation is stopped $\mathrm{RD}_{1}-\mathrm{RD}_{8}-\mathrm{R}_{1}-\mathrm{C}^{\prime \prime}{ }^{\prime \prime}$ <br> CFR, ABTR, SYNR/IDLR, AR, OE ——..' 0 '" |  |
| 5 | $\overline{\text { DRR }}$ | Data Received Rese 1 - Resets DR flag to " 0 " |  |
| 6 | RC | Receiver Clock - Receiver clock input. Trailing edge of clock is located in the center of receiver input bits (RI). |  |
| 7 | R1 | Receiver Input - Received data serial input |  |
| 8 | CFR | (Normally " 0 ") | Closing Flag Received - Goes high whenever a Flag has been received during data reception. Goes low on the rising edge of DR or OE commands |
| 9 | ABTR | ("0" Constant) | Abort Received - Becomes " 1 " when 7-14 continuous " 1 "s are received, after receiving the flag. Goes low on the rising edge of DR or OE commands. |
| 10 | SYNR | Sync Character Received - Goes high when synchronization has occurred, or whenever the contents of the Sync Character Buffer and the contents of the Receiver Character Buffer coincide. Goes low when DR goes high and the $\mathrm{RD}_{1}-\mathrm{RD}_{8}$ outputs are different from the Sync Character. | Idle Pattern Rẹceived - Becomes " 1 " (Idle) when it receives 15 consecutive " 1 "s. Goes low on the rising edge of DR or OE outputs. |
| 11-18 | $\mathrm{RD}_{8}-\mathrm{RD}_{1}$ | Receiver Data Outputs - Received character output terminal (RD1:LSB RD ${ }_{8}$ :MSB) |  |
| 19 | DR | Data Received - Goes high when the received charac Register to the Receiver Buffer Register $\qquad$ DR does not go high for the first Sync Character input. It is reset when DRR is driven low. | ter has been transferred from the Receiver Shift <br> DR does not go high for Flag, Abort or Idle Patterns. It is reset when (1) $\overline{\mathrm{DRR}}=$ " 0 ", (2) On the rising edge of $O E$, (3) Seven (7) successive " 1 "s have been received. |
| 20 | OE | Overrun Error - OE = " 1 " shows that DR was still high when the received character is moved from the receiving shift register to the receiving buffer register |  |
| 21 | $V_{B B}$ | -5V Power Supply |  |
| 22 | $\mathrm{v}_{\text {SS }}$ | Ground |  |
| 23 | TCBE | $\overline{T C B E}$ is reset when $\overline{\mathrm{TCBL}} \overline{\text { is }} \overline{\text { driven }} \overline{\text { low }}$ <br> SYNC Character Transmit - SYNT = " 1 " when a sy nchronous character is being transmitted. It is reset when: (1) $\overline{\operatorname{SNTR}}=" 0 "$, (2) when transmission of data commences | It is reset when: $\overline{(1)} \overline{\mathrm{TCBL}}=\bar{"} \overline{0} \overline{\prime \prime}$, (2) $\overline{\text { When }} \overline{\mathrm{CFT}}=$ " 0 " in the data transmission mode, (3) One-half bit before ABTT goes high. |
| 24 | SYNT |  | $\begin{aligned} & \text { Abort Pattern Transmit - ABTT }=\text { " } 1 \text { " when an } \\ & \text { Abort Pattern is being transmitted } \end{aligned}$ |
| 25 | T0 | Transmitter Output - Transmitter data output. TO $=$ " 1 " in the closed mode. |  |
| 26-33 | $\mathrm{TD}_{1}-\mathrm{TD}_{8}$ | Transmitter Data Inputs - Transmitter character input. ( TD $_{1}=$ LSB, $\mathrm{TD}_{8}=$ MSB) |  |
| 34 | SYNC | SYNC Character - In the Closed Mode, the SYNC line is used to select a SYNC character to be loaded into the SYNC Character Buffer. The selected SYNC character is loaded into the buffer on the rising edge of TCBL and is selected as follows: <br> (1) When SYNC = " 0 ", the character placed on the $T D_{1}-\mathrm{TD}_{8}$ inputs is loaded, (2) When SYNC $=$ " 1 ", 16 Hexadecimal is loaded. | Zero Insertion Prohibit - When $\overline{\mathrm{ZIP}}$ is driven low, zero-insertion will be prohibited for all subsequent data characters until a Closing Flag or an Abort Pattern is transmitted. |
| 35 | $\frac{\overline{\text { SNTR }}}{\overline{\text { CFT }}}$ | SYNC Character Transmit Reset - When SNTR is driven low, SYNT is reset to " 0 ". | Closing Flag Transmit - During transmission, $\overline{\mathrm{CFT}}$ low causes the following operations to occur: <br> (1) TCBE Output is reset to " 0 ", (2) The Closing Flag will be transmitted after the end of transmission of the current data character. |
| 36 | $\overline{\text { TCBL }}$ | Transmitter Character Buffer Load - (1) In the closed Mode: the SYNC Character Buffer is loaded on the rising edge of $\overline{T C B L}$. If the SYNC input is low, the buffer is loaded with the data on the $T D_{1}-T D_{8}$ inputs; if SYNC is high, the buffer is loaded with (16) Hex. (2) In the Basic SYNC or SDLC Modes: When TCBL is driven low (a) TCBE is reset to " 0 " and (b) the data character on the $\mathrm{TD}_{1}-\mathrm{TD}_{8}$ inputs is loaded into the Transmitter Character Buffer. The loaded character is latched on the rising edge of TCBL. |  |
| 37 | TC | Transmitter Clock - Clock input for transmission. |  |
| 38 39 | MS MS 1 | Mode Select 2 <br> Mode Select 1 <br> Used to select one of three modes. <br> In the closed mode TO and $R D_{1}-R D_{8}$ are high, all other outputs are low. |  |
| 40 | MRL | Mode Control Register Load - When MRL is low, the operational mode is selected by the current status of $M S_{1}$ and $M S_{2}$. When MRL goes high, the operational mode is latched based upon the status of $M S_{1}$ and $\mathrm{MS}_{2}$. |  |
| 41 | $\mathrm{V}_{\mathrm{CC}}$ | +5V Power Supply |  |
| 42 | NC | No Connection |  |



MODE	MS $_{\mathbf{1}}$	MS $_{\mathbf{2}}$	MRL
Closed	0	0 or 1	L_r
Basic Sync	1	1	L_F
SDLC	1	1	L_F

CHIP SELECT

transmitter section

sYnc
$\overline{\text { TCBL }}$


$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input High Voltage	$V_{1 H}$	3.0		$\mathrm{V}_{\text {DD }}$	V	With Built-in pull-up resistors
Input Low Voltage	$V_{\text {IL }}$			0.8	V	
Output Leakage Current	IOL	-20		20	$\mu \mathrm{A}$	$\begin{aligned} & -V_{0}=0.4 \text { to } 3.5 \mathrm{~V} \\ & (\mathrm{CS})=3.5 \mathrm{~V} \end{aligned}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	3.5			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.4	V	$\mathrm{I}_{\text {OL }}=1.6 \mathrm{~mA}$
Input Low Current	IIL			-1.4	mA	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$
$\mathrm{V}_{\text {DD }}$ Supply Current	IDD		15	20	mA	
$\mathrm{V}_{\text {CC }}$ Supply Current	$I_{\text {CC }}$		40	65	mA	
$\mathrm{V}_{\text {BB }}$ Supply Current	$I_{B B}$		-0.2	-2.0	mA	
Fan-out	N			1		Standard TTL Load


Parameter	Symbol	Limits			Unit	Test Conditions
		$\overline{M i n}$	Typ	Max		
Input Capacitance	$\mathrm{C}_{1 \mathrm{~N}}$			20	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			20	pf	$\mathrm{f}=1 \mathrm{MHz}$



TIMING WAVEFORMS (CONT.)

DC CHARACTERISTICS

CAPACITANCE

PACKAGE OUTLINE $\mu$ PD379D

ITEM	MILLIMETERS	INCHES
A	53.5 MAX	2.1 MAX
B	1.35	0.05
C	2.54	0.10
D	50.80	2.0
F	1.27	0.05
G	2.54 MAX	0.10 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.21 MAX
K	15.24	0.60
L	13.50	0.53
M	9.3	0.012




## SINGLEIDOUBLE DENSITY FLOPPY DISK CONTROLLER

DESCRIPTION

FEATURES

The $\mu$ PD765 is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Double Density format (MFM) including double sided recording. The $\mu$ PD765 provides control signals which simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Interface.

Hand-shaking signals are provided in the $\mu$ PD 765 which make DMA operation easy to incorporate with the aid of an external DMA Controller chip, such as the $\mu$ PD8257. The FDC will operate in either DMA or Non-DMA mode. In the Non-DMA mode, the FDC generates interrupts to the processor every time a data byte is available. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the $\mu$ PD765 and DMA controller.
There are 15 separate commands which the $\mu$ PD 765 will execute. Each of these commands require multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data	Scan High or Equal	Write Deleted Data
Read ID	Scan Low or Equal	Seek
Read Deleted Data	Specify	Recalibrate (Restore to Track 0)
Read a Track	Write Data	Sense Interrupt Status
Scan Equal	Format a Track	Sense Drive Status

Address mark detection circuitry is internal to the FDC which simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The $\mu$ PD765 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.

- IBM Compatible in Both Single and Double Density Recording Formats
- Programmable Data Record Lengths: 128,256, 512, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drive Up to 4 Floppy Disks
- Data Scan Capability - Will Scan a Single Sector or an Entire Cylinder's Worth of Data Fields, Comparing on a Byte by Byte Basis, Data in the Processor's Memory with Data Read from the Diskette
- Data Transfers in DMA or Non-DMA Mode
- Parallel Seek Operations on Up to Four Drives
- Compatible with Most Microprocessors Including 8080A, 8085A, $\mu$ PD 780 (Z80TM)
- Single Phase 8 MHz . Clock
- Single +5 Volt Power Supply
- Available in 40 Pin Plastic Dual-in-Line Package



COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP ${ }^{(1)}$	MAX		
Input Low Voltage	VIL	-0.5		0.8	V	
Input High Voltage	VIH	2.5		$\mathrm{V}_{\text {CC }}+0.5$	V	
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
Output High Voltage	VOH	2.4		$V_{\text {CC }}$	V	$\mathrm{IOH}=-150 \mu \mathrm{~A}$   for Data Bus $\mathrm{IOH}=-80 \mu \mathrm{~A}$   for other outputs
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {IL }}(\Phi)$	-0.5		0.8	V	
Input High Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {IH }}(\Phi)$	$V_{C C}-0.75$		$V_{C C}+0.5$	V	
VCC Supply Current	ICC		85	130	mA	
Input Load Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
(All Input Pins)				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Output Leakage Current	${ }^{\prime} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	'LOL			-10	$\mu \mathrm{A}$	VOUT $=0 \mathrm{~V}$

[^6]ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

PIN			INPUT/ OUTPUT	CONNECTION TO	FUNCTION
No.	SYMBOL	NAME			
1	RST	Reset	Input	Processor	Places FDC in idle state. Resets output lines to FDD to " 0 " (low).
2	$\overline{\mathrm{RD}}$	Read	Input(1)	Processor	Control signal for transfer of data from FDC to Data Bus, when " $\sigma$ " (low).
3	$\overline{W R}$	Write	Input(1)	Processor	Control signal for transfer of data to FDC via Data Bus, when " $\sigma$ " (low).
4	$\overline{\mathrm{CS}}$	Chip Select	Input	Processor :	IC selected when " 0 " (low), allowing, $\overline{R D}$ and $\overline{W R}$ to be enabled.
5	$A_{0}$	Data/Status Reg Select	Input(1)	Processor	Selects-Data Reg ( $A_{0}=1$ ) or Status Reg ( $A_{O}=0$ ) contents of the FDC to be sent to Data Bus.
6-13	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Data Bus	Input/(1)   Output	Processor	Bi-Directional 8-bit Data Bus.
14	DRQ	Data DMA Request	Output	DMA	DMA Request is being made by FDC when DRQ $=" 1 "$.
15	$\overline{\mathrm{DACK}}$	DMA Acknowledge	Input	DMA	DMA cycle is active when " 0 " (low) and Controller is performing DMA transfer.
16	TC	Terminal Count	Input	DMA	Indicates the termınation of a DMA transfer when " 1 " (high).
17	IDX	Index	Input	FDD	Indicates the beginning of a disk track.
18	INT	Interrupt	Output	Processor	Interrupt Request Generated by FDC.
19	CLK	Clock	Input		Single Phase 8 MHz Squarewave Clock.
20	GND	Ground			D.C. Power Return.
21	WCK	Write Clock	Input		Write data rate to FDD. $\mathrm{FM}=500 \mathrm{kHz}$, MFM $=1 \mathrm{MHz}$, with a pulse width of 250 ns for both FM and MFM.
22	RDW	Read Data Window	Input	Phase Lock Loop	Generated by PLL, and used to sample data from FDD.
23	RDD	Read D̈ata	Input	FDD	Read data from FDD, contaıning clock and data bits.
24	VCO	VCO Sync	Output	Phase Lock Loop	Inhibits VCO in PLL when " 0 " (low), enables VCO when " 1 ".
25	WE	Write Enable	Output	FDD	Enables write data into FDD.
26	MFM	MFM Mode	Output	Phase Lock Loop	MFM mode when " 1 ". FM mode when " 0 ".
27	HD	Head Select	Output	FDD	Head 1 selected when " 1 " (high),   Head 0 selected when " 0 " (low).
28,29	$\mathrm{US}_{1}, \mathrm{US}_{0}$	Unit Select	Output.	FDD	FDD Unit Selected.
30	WDA	Write Data	Output	FDD	Serial clock and data bits to FDD.
31,32	$\mathrm{PS}_{1}, \mathrm{PS}_{0}$	Precompensation (pre-shift)	Output	FDD	Write precompensation status during MFM mode. Determines early, late, and normal times.
33	FLT/TRO	Fault/Track 0	Input	FDD	Senses FDD fault condition, in Read/ Write modé; and Track 0 condition in Seek mode.
34	WP/TS	Write Protect/ Two-Side	Input,	FDD	Senses Write Protect status in Read/ Write mode, and Two Side Media in Seek mode.
35	RDY	Ready	Input	FDD	Indicates FDD is ready to send or receive data.
36	HDL	Head Load	Output	$\mathrm{FDD}$	Command which causes read/write head in FDD to contact diskette.
37	FR/STP	Fit Reset/Step	Output	FDD	Resets fault F.F. in FDD in Read/Write mode, contains step pulses to move head to another cylinder in Seek mode.
38	LCT/DIR	Low Current/ Direction	Output	FDD	Lowers Write current on inner tracks in Read/Write mode, determines direction head will step in Seek mode.
39	$\overline{\mathrm{RW}} / \mathrm{SEEK}$	Read Write/SEEK	Output	FDD.	When "1" (high) Seek mode selected and when " 0 " (low) Read/Write mode selected.
40	$\mathrm{V}_{\mathrm{CC}}$	+5V			D.C. Power

Note: (1) Disabled when $C S=1$.
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP 1	MAX		
Clock Period	$\Phi_{\text {CY }}$	1.0	8.0	9.0	MHz	
Clock Active (High)	$\Phi_{0}$	35			ns	
Clock Rise Time	$\Phi_{r}$			20	ns	
Clock Fall Time	$\Phi_{\text {f }}$			20	ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACR}}$ Set Up Time to $\overline{\mathrm{RD}} \downarrow$	${ }^{\text {T }}$ AR	30			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Hold Time from $\overline{\mathrm{RD}} \uparrow$	$T_{\text {RA }}$	5.0			ns	
$\overline{\text { RD Width }}$	TRR	300			ns	
Data Access Time from $\overline{\mathrm{RD}} \downarrow$	${ }^{\text {T }}$ RD			200	ns	
DB to Float Delay Time from $\overline{\mathrm{RD}} \uparrow$	TDF	20		100	ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\text { DACK }}$ Set Up Time to $\overline{W R} \downarrow$	${ }^{\text {T }}$ AW	50			ns	
$A_{0}, \overline{C S}$, $\overline{\text { DACK }}$ Hold Time to $\overline{W R} \uparrow$	TWA	30			ns	
$\overline{\text { Wh Width }}$	TwW	300			ns	
Data Set Up Time to WR $\uparrow$	T DW	250			ns	
Data Hold Time from $\overline{\mathrm{WR}} \uparrow$	TWD	30			ns	
INT Delay Time from $\overline{\mathrm{RD}} \uparrow$	$T_{\text {RI }}$			500	ns	
INT Delay Time from $\overline{W R} \uparrow$	TWI			500	ns	
DRQ Cycle Time	$\mathrm{T}_{\mathrm{MCY}}$	13			$\mu \mathrm{s}$	
DRQ Delay Time from $\overline{\text { DACR } \uparrow}$	TAivi			1.0	${ }^{\mu} \mathrm{s}$	
$\overline{\text { WR }}$ or $\overline{R D}$ Response Time from DRQ $\uparrow$	$\mathrm{T}_{\text {RWM }}$	1.0			$\mu \mathrm{s}$	
TC Width	${ }^{\text {TTC }}$	300			ns	
Rest Width	TRST	3.0			$\mu \mathrm{s}$	
WCK Cycle Time	${ }^{\text {T }} \mathrm{C} Y$		$\begin{aligned} & 2 \text { or } 4(2) \\ & 1 \text { or } 2 \end{aligned}$		$\mu \mathrm{s}$	$\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$
WCK Active Time (High)	$\mathrm{T}_{0}$	150	250	350	ns	
WCK Rise Time	$\mathrm{T}_{\mathrm{r}}$			30	ns	
WCK Fall Time	$\mathrm{T}_{\mathrm{f}}$			30	ns	
Pre-Shift Delay Time from WCK $\uparrow$	$\mathrm{T}_{\mathrm{CP}}$	20		150	ns	
WDA Delay Time from WCK $\uparrow$	${ }^{T} \mathrm{CD}$	20		150	ns	
RDD Active Time (High)	TRDD	100			ns	
Window Cycle Time	TWCY		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{MFM}=0 \\ & M F M=1 \end{aligned}$
Window Hold Time to/from RDD	TRDW TWRD	100			ns	
US 0,1 Hold Time to RW/SEEK $\dagger$	Tus	12			$\mu \mathrm{s}$	
SEEK/RW Hold Time to LOW CURRENT/ DIRECTION $\uparrow$	${ }^{\text {TSD }}$	7			$\mu \mathrm{s}$	
LiOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP $\uparrow$	TDST	1.0			$\mu \mathrm{s}$	8 MHz Clock   Period
USO, 1 Hold Time from FAULT RESET/STEP $\uparrow$	Tstu	1.0			$\mu \mathrm{s}$	
STEP Active Time (High)	${ }^{\text {T STP }}$		5.0		$\mu \mathrm{s}$	
LOW CURRENT/DIRECTION Hold Time from FAULT RESET/STEP $\downarrow$	TSTD	5.0			$\mu \mathrm{s}$	
STEP Cycle Time	${ }^{\text {T SC }}$	(3)		(3)	ms	
FAULT RESET Active Time (High)	Tfr	8.0		10	$\mu \mathrm{s}$	8 MHz Clock Period

Notes:
(1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage
(2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of 4 and 2 are applied to Mini-floppy.
(3) Under Software Control. The range is from 1 ms to 16 ms at 8 MHz Clock Period, and 2 to 32 ms at 4 MHz Clock Period.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$
CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Capacitance	$\mathrm{C}_{\text {IN }}(\Phi)$			35	pF	All Pins Except Pin Under Test Tied to AC Ground
Input Capacitance	CIN			10	pF	
Output Capacitance.	COUT			20	pF	



	PRESHIFT O	PRESHIFT 1
NORMAL	0	0
LATE	0	1
EARLY	$1 \ldots$	0
INVALID	1	1



TIMING WAVEFORMS (CONT.)

FDD READ OPERATICN


Note: Either polarity data window is valid.


The $\mu$ PD765 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8 -bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8 -bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and is used to facilitate the transfer of data between the processor and $\mu$ PD765.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and $A_{0}$ is shown below.

$\mathrm{A}_{0}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	FUNCTION
0	0	1	Read Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
$\mathrm{DB}_{0}$	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number $\mathbf{0}$ is in the Seek mode.
DB1	FDD 1 Busy	$\mathrm{D}_{1} \mathrm{~B}$	FDD number 1 is in the Seek mode.
$\mathrm{DB}_{2}$	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	FDD number 2 is in the Seek mode.
DB3	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode.
DB4	FDC Busy	CB	A read or write command is in process.
DB5	Non-DMA mode	NDM	The FDC is in the non-DMA mode.
DB6	Data Input/Output	DIO	indicates direction of data transfer between FDC and Data Register. If DIO $=$ " 1 " then transfer is from Data Register to the Processor. If $\mathrm{DIO}=$ ' 0 ", then transfer is from the Processor to Data Register.
DB7	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the Processor. Both bits DIO and RQM should be used to perform the handshaking functions of "ready", and "direction" to the processor.

The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus.


Notes. A - Data register ready to be written into by processor
B] - Data register not ready to be written into by processor
[C - Data register ready for next data byte to be read by the processor
D - Data register not ready for next data byte to be read by processor
PACKAGE OUTLINE $\mu$ PD765C


ITEM	MiLlimeters	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MiN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
$J$	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25{ }_{-0.05}^{+0.1}$	0.010 +0.004 -0.002

The $\mu$ PD765 is capable of performing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the $\mu$ PD765 and the processor, it is convenient to consider each command as consisting of three phases:

Command Phase: The FDC receives all information required to perform a particular operation from the processor.
Execution Phase: The FDC performs the operation it was instructed to do.
Result Phase: After completion of the operation, status and other housekeeping information are made available to the processor.


Note: (1) Symbols used in this table are described at the end of this section.
(2) A0 should equal binary 1 for all operations.
(3) $x=$ Don't care, usually made to equal binary 0 .
(CONT.)
$\mu$ PD765


COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
$A_{0}$	Address Line 0	$A_{0}$ controls selection of Main Status Register ( $A_{0}=0$ ) or Data Register ( $A_{0} \mp 1$ )
C	Cylinder Number	C stands for the current 'selected Cylinder (track) number 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a Sector
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8-bit Data Bus, where D7 stands for a most significant bit, and $D_{0}$ stands for a least significant bit.
DTL	Data Length	When N is defined as 00 , DTL stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder.
GPL	Gap Length	GPL stands for the length of Gap 3 (spacing between Sectors excluding VCO Sync. Field).
H	Head Address	$H$ stands for head number 0 or 1 , as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1. ( $\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 256 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload tume after a read or write operation has occurred ( 0 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Mult-Track	If $M T$ is high, a mult-track operation is to be performed. (A cylinder under both. HDO and HD1 will be read or written.)


SYMBOL	NAME	DESCRIPTION
N	Number ${ }^{\text {C }}$	$N$ stands for the number of data bytes written in a Sector.
NCN	New Cylinder Number	NCN stands for a new Cylinder number, which is going to be reached as a result of the Seek operation: Desired position of Head:
ND	Non-DMA Mode	ND stands for operation in the Non-DMA Mode.
PCN	Present Cylinder Number	PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS   Command. Position of Head at present time.
R	Record	$R$ stands for the Sector number, which will be read or written.
RNW	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address Mark.
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD. ( 1 to 16 ms in 1 ms increments.) Must be defined for each of the four drives.
ST 0   ST 1   ST 2   ST 3	Status 0   Status 1   Status 2   Status 3	ST 0.3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_{0}=0$ ). ST 0-3 may be read only after a com. mand has been executed and contain information relevant to that particular command.
STP		During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP $=2$, then alternate sectors are read and compared.
USO, US1	Unit Select	US stands for a selected drive number 0 or 1.

COMMAND SYMBOL DESCRIPTION (CONT.)


During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the $\mu$ PD765. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the $\mu$ PD765. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 = 1 and D7 = 1) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the $\mu$ PD765 is required in only the Command and Result Phases, and NOT during the Execution Phase.

During the Execution Phase, the Main Status Register need not be read. If the $\mu$ PD765 is in the NON-DMA Mode, then the receipt of each data byte (if $\mu$ PD765 is reading data from F.DD) is indicated by an Interrupt signal on pin 18 (INT = 1). The generation of a Read signal $(\overrightarrow{R D}=0)$ will reset the Interrupt as well as output the Data onto the Data Bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$ ) then it may poll the Main Status Register and then bit D7 (ROM) functions just like the Interrupt signal. If a $W$ rite Command is in process then the $\overline{W R}$ signal performs the reset to the Interrupt signal.

If the $\mu$ PD765 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The $\mu$ PD 765 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a $\overline{D A C K}=0$ (DMA Acknowledge) and a $\overline{\mathrm{RD}}=0$ (Read signal). When the DMA Acknowledge signal goes low $(\overline{\operatorname{DACK}}=0)$ then the DMA Request is reset $(D R Q=0)$. If a Write Command has been programmed then a $\overline{W R}$ signal will appear instead of $\overline{R D}$. After the Execution Phase has been completed (Terminal Count has occurred) then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT $=0$ ).

It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The $\mu$ PD 765 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The $\mu$ PD765 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after successfully completing a command. The particular command which has been executed determines how many of the Status Registers will be read.

The bytes of data which are sent to the $\mu$ PD 765 to form the Command Phase, and are read out of the $\mu$ PD 765 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the $\mu$ PD765, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the $\mu$ PD765 is ready for a new command. A command may be truncated (prematurely ended) by simply sending a Terminal Count signal to pin 16 ( $T C=1$ ). This is a convenient means of ensuring that the processor may always get the $\mu$ PD765's attention even if the disk system hangs up in an abnormal manner.

## $\mu$ PD765

## READ DATA

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number ("R") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.

After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command.
The amount of data which can be handled with a single command to the FDC depends upon MT (multitrack), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.
$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Multi- Track } \\ \text { MT }\end{array} & \begin{array}{c}\text { MFM/FM } \\ \text { MF }\end{array} & \begin{array}{c}\text { Bytes/Sector } \\ \text { N }\end{array} & \begin{array}{c}\text { Maximum Transfer Capacity } \\ \text { (Bytes/Sector) (Number of Sectors) }\end{array} & \begin{array}{c}\text { Final Sector Read } \\ \text { from Diskette }\end{array} \\ \hline 0 & 0 & 00 & \begin{array}{rl}(128)(26)=3,328 & 26 \text { at Side } 0 \\ 0 & 1\end{array} & 01\end{array}\right)$

Table 1. Transfer Capacity
The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 0 , Side 0 and completing at Sector L, Side 1 (Sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.

When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When $N$ is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data Command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.

If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
Status Register 2 to a 1 (high), and terminates the Read Data Command.
If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ( $\mathrm{SK}=0$ ), then the FDC sets the DM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for $C, H, R$, and $N$, when the processor terminates the Command.

## FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

MT	EOT	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	1A   OF   08	Sector 1 to 25 at Side 0   Sector 1 to 14 at Side 0   Sector 1 to 7 at Side 0	NC	NC	$\mathrm{R}+1$	NC
	1A   OF 08	Sector 26 at Side 0   Sector 15 at Side 0   Sector 8 at Side 0	$C+1$	NC	$R=01$	NC
	$\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$	Sector 1 to 25 at Side 1   Sector 1 to 14 at Side 1   Sector 1 to 7 at Side 1	NC	NC	$R+1$	NC
	$\begin{aligned} & 1 A \\ & 0 F \\ & 08 \end{aligned}$	Sector 26 at Side 1   Sector 15 at Side 1   Sector 8 at Side 1	C + 1	NC	$R=01$	NC
1	1A   OF   08	Sector 1 to 25 at Side 0   Sector 1 to 14 at Side 0   Sector 1 to 7 at Side 0	NC	NC	$R+1$	NC
	$\begin{aligned} & 1 A \\ & 0 F \\ & 08 \end{aligned}$	Sector 26 at Side 0   Sector 15 at Side 0   Sector 8 at Side 0	NC	LSB	$R=01$	NC
	1A   OF   08	Sector 1 to 25 at Side 1   Sector 1 to 14 at Side 1   Sector 1 to 7 at Side 1	NC	NC	$R+1$	NC
	$\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$	Sector 26 at Side 1   Sector 15 at Side 1   Sector 8 at Side 1	$C+1$	LSB	$R=01$	NC

Notes: 1 NC (No Change): The same value as the one at the beginning of command execution.
2 LSB (Least Significant Bit): The least significant bit of H is complemented.
Table 2: ID Information When Processor Terminates Command

## WRITE DATA

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified heat settling time (defined in the Specify Command), and begins reading ID Fields. When the current sector number (" $R$ "), stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC takes data from the processor byte-by-by te via the data bus, and outputs it to the FDD.
After writing data into the current sector, the Sector Number stored in " $R$ " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of * $T$ rminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current $\because$ ior to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).

The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) riag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- Head Unload Time Interval
- EN (End of Cylinder) Flag
- ID Information when the processor terminates command (see Table 2
- ND (No Data) Flag
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $31 \mu \mathrm{~s}$ in the FM mode, and every $15 \mu \mathrm{~s}$ in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

## WRITE DELETED DATA

Iz is command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

## READ DELETED DATA

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field (and $S K=0$ (low), it will read all the data in the sector and set the MD flag in Status Register 2 to a 1 (high), and then terminate the command. If SK = 1, then the FDC skips the sector with the Data Address Mark and reads the next sector.

## $\mu$ PD765

## READ A TRACK

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire contents of the track are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data on the track, Gap bytes, Address Marks and Data are all read as a continuous data stream. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.
This command terminates when EOT number of sectors have been read (EOT max $=\mathrm{FF}_{\text {hex }}=255_{\mathrm{dec}}$ ). If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mask) flag in Status Register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively).

## READ ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID Field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively.

## FORMAT A TRACK

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into $N$ (number of bytes/sector), SC (sectors/cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), $R$ (Sector Number) and $N$ (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

After formatting each sector, the processor must send new values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N to the $\mu$ PD765 for each sector on the track. The contents of the $R$ register is incremented by one after each sector is formatted, thus, the $R$ register contains a value of $R+1$ when it is read during the Result Phase. This incrementing and formatting continues for the whole cylinder until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.

If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respecitvely.

Table 3 shows the relationship between N, SC, and GPL for various sector sizes:

FORMAT	SECTOR SIZE	N	SC	GPL (1)	GPL (2)	REMARKS
FM Mode	$\begin{aligned} & 128 \text { bytes/Sector } \\ & 256 \\ & 512 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & 1 \ddot{A}(16) \\ & 0 F(16) \\ & 08 \end{aligned}$	$\begin{aligned} & .07(16) \\ & O E_{(16)} \\ & 1 B_{(16)} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~B}(16) \\ & 2 \mathrm{~A}(16) \\ & 3 \mathrm{~A}(16) \end{aligned}$	IBM Diskette 1 IBM Diskette 2
FM Mode	1024 bytes/Sector   2048   4096	$\begin{aligned} & 03 \\ & 04 \\ & 05 \end{aligned}$	$\begin{aligned} & 04 \\ & 02 \\ & 01 \end{aligned}$			
MFM Mode	$\begin{aligned} & 256 \\ & 512 \\ & 1024 \\ & 2048 \\ & 4096 \\ & 8192 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \end{aligned}$	$\begin{aligned} & 1 A(16) \\ & 0 F_{(16)} \\ & 08 \\ & 04 \\ & 02 \\ & 01 \end{aligned}$	$\begin{aligned} & O E_{(16)} \\ & 1 B_{(16)} \\ & 35_{(16)} \end{aligned}$	$\begin{aligned} & 36(16) \\ & 54(16) \\ & 74(16) \end{aligned}$	IBM Diskette 2D   IBM Diskette 2D

Table 3
Note: (1) Suggested values of GPL in Read or Write Commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

## SCAN COMMANDS

The SCAN Commands allow datal which is being read from the diskette to be compared against data which is being supplied from the main system (Processor in NON-DMA mode, and DMA Controller in DMA mode). The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of DFDD $=$ Dprocessor, DFDD $\leqslant$ DProcessor, or DFDD $\geqslant$ Dprocessor. Ones complement arithmetic is u'sed for comparison ( $F F=$ largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ( $R+S T P \rightarrow R$ ), and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag of Status Register 2 to a. 1 (high), and terminates the Scan Command: If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 = SN	BIT 3 $=\mathbf{S H}$	
Scan Equal	0	1	DFDD $=$ DProcessor
	1	0	DFDD $\neq$ DProcessor
	0	1	DFDD $=$ DProcessor
	0	0	DFDD $<$ DProcessor
	1	0	DFDD \& DProcessor
Scan High or Equal	0	1	DFDD $=$ DProcessor
	0	0	DFDD $<$ DProcessor
	1	0	DFDD $\neq$ DProcessor

Table 4
If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK $=0$ ), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If.SK = 1 , the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case ( $\mathrm{SK}=1$ ), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (MultiTrack) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if $\mathrm{STP}=02, \mathrm{MT}=0$, the sectors are numbered sequentially 1 through 26 , and we start the Scan Command at sector 21 ; the following will happen. Sectors 21,23 , and 25 will be read, then the next sector (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan.Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or $13 \mu \mathrm{~s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

## SEEK

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN < NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low), and Step. Pulses are issued. (Step Out.)
The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated.

During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.

## $\mu$ <br> PD765

## RECALIBRATE

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 1 (high) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulse have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1s (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the SEEK Command, also applies to the RECALIBRATE Command.

## SENSE INTERRUPT STATUS

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read ID Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. However, interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This command when issued resets the interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the interrupt.

SEEK END   BIT 5	INTERRUPT CODE		CAUSE
	BIT 6	BIT 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate Command
1	1	0	Abnormal Termination of Seek or Recalibrate Command

Table 5
Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense: Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).

## SPECIFY

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 0 to 240 ms in increments of $16 \mathrm{~ms}(00=0 \mathrm{~ms}, 01=$ $16 \mathrm{~ms}, 02=32 \mathrm{~ms}$, etc.). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, D=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 256 ms in increments of 2 ms ( $00=2 \mathrm{~ms}, 01=4 \mathrm{~ms}, 02=6 \mathrm{~ms}$, etc.).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.

The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND = 1) the NON-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

## SENSE DRIVE STATUS

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information.

## INVALID

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.

In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

## STATUS REGISTER IDENTIFICATION

BIT			DESCRIPTION
No.	NAME	SYMBOL	
STATUS REGISTER 0			
D6	Interrupt Code	IC	$\mathrm{D}_{7}=0$ and $\mathrm{D}_{6}=0$   Normal Termination of Command, (NT). Command was complëted and properly executed.
			$D_{7}=0 \text { and } D_{6}=1$   Abnormal Termination of Command, (AT).   Execution of Command was started, but was not successfully completed.
			$D_{7}=1 \text { and } D_{6}=0$   Invalid Command issue, (IC). Command which was issued was never started.
			$D_{7}=1 \text { and } D_{6}=1$   Abnormal Termination because during command execution the ready signal from FDD changed state.
D5	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
D4	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
$\mathrm{D}_{3}$	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, th is flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
$\mathrm{D}_{2}$	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
D1	Unit Select 1	US 1	These flags are used to indicate a Drive Unit
$\mathrm{D}_{0}$	Unit Select 0	US 0	Number at Interrupt
STATUS REGISTER 1			
$\mathrm{D}_{7}$	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
D6			Not used. This bit is always 0 (low).
D5	Data Error	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
$\mathrm{D}_{4}$	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, th is flag is set.
D3			Not used. This bit always 0 (low).
$\mathrm{D}_{2}$	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.


BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1 (CONT.)			
$\mathrm{D}_{1}$	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
$\mathrm{D}_{0}$	Missing   Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
D7			Not used. This bit is always 0 (low).
$\mathrm{D}_{6}$	Control Mark	CM	During executing the READ DATA or SCAN Command, if the FDC encounters a Sector which contains a Deleted Data Address Mark, this flag is set.
D5	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
D4	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of $C$ on the medium is different from that stored in the IDR, this flag is set.
D3	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set.
D2	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D1	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of $C$ on the medium is different from that stored in the IDR and the content of C is $F F$, then th is flag is set.
D0	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
D7	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
$\mathrm{D}_{6}$	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D5	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
D4	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
D3	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D2	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D1	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
$\mathrm{D}_{0}$	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

## NEC Microcomputers, Inc.

## 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER


#### Abstract

DESCRIPTION The $\mu$ PD8155 and $\mu$ PD8156 are $\mu$ PD8085A family components having $256 \times 8$ Static RAM, 3 programmable I/O ports and a programmable timer. They directly interface to the multiplexed $\mu$ PD8085A bus with no external logic. The $\mu$ PD8155 has an active low chip enable while the $\mu$ PD8156 is active high:


## FEATURES • 256 X 8-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt
- Directly Interfaces to the $\mu$ PD8085A
- Available in 40 Pin Plastic Packages


```
* \(\mu\) PD8155: \(\overline{\mathrm{CE}}\)
\(\mu\) PD8156: CE
```

The $\mu$ PD8155 and $\mu$ PD8156 contain 2048 bits of Static RAM organized as $256 \times 8$. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the $\mu$ PD8085A as a chip select.

The two general purpose 8 -bit ports (PA and PB ) may be programmed for input or output either in interrupt or status mode. The single 6-bit port (PC) may be used as control for PA and PB or general purpose input or output port. The $\mu$ PD8155 and $\mu$ PD8156 are programmed for their system personalities by writing into their Command/Status Registers (C/S) upon system initialization.

The timer is a single 14 -bit down counter which is programmable for 4 modes of operation; see Timer Section.


Operating Temperature.
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Prastic Package). . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 to +7 Volts ${ }^{(1)}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W
Note: (1) With Respect to Ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

BLOCK
DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

NO.		SYMBOL	
NAME	FUNCTION		

## DC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input Low Voltage			VIL	-0.5		0.8	V	
Input High Voltage		VIH	2.0		$\mathrm{V}_{C C}+0.5$	V		
Output Low Voltage		VOL			0.45	V	$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}$	
Output High Voltage		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{IOH}=400 \mu \mathrm{~A}$	
Input Leakage		IIL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V	
Output Leakage Current		Lo			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{V}_{\text {CC }} \end{aligned}$	
$V_{\text {CC }}$ Supply Current		ICC			180	mA		
Chip   Enable   Leakage	$\mu$ PD8155	IIL (CE)			+100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to OV	
	$\mu$ PD8156	IIL (CE)			-100	$\mu \mathrm{A}$		

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address to Latch Set Up Time	$t_{\text {AL }}$	50			ns	
Address Hold Time after Latch	tha	80			ns	
Latch to READ/WRITE Control	tLC	100			ns	
Valid Data Out Delay from READ Control	tRD			170	ns	
Address Stable to Data Out Valid	${ }_{\text {t }}$ D			400	ns	
Latch Enable Width	${ }_{\text {t }}^{\text {LL }}$	100			ns	
Data Bus Float After READ	trinf	0		100	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }} \mathrm{CL}$	20			ns	
READ/WRITE Control Width	${ }^{\text {t }} \mathrm{C}$	250			ns	
Data In to WRITE Set Up Time	tow	150			ns	
Data in Hold Time After WRITE	two	0			ns	
Recovery Time Between Controis	triv	300			ns	
WRITE to Port Output	twp			400	ns	
Port Input Setup Time	tPR	70			ns	50 pF Load
Port Input Hold Time	trP	50			ns	
Strobe to. Buffer Full	${ }^{\text {t SBF }}$			400	ns	
Strobe Width	tss	200			ns	
READ to Buffer Empty	trbe			400	ns	
Strobe to INTR On	tsi			400	ns	
READ to INTR Off	trdi			400	ns	
Port Setup Time to Strobe Strobe	tPSS	50			ns	
Port Hold Time After Strobe	tPHS	120			ns	
Strobe to Buffer Empty	tsbe			400	ns	
WRITE to Buffer Full	'WBF			400	ns	
WRITE to INTR Off	${ }^{\text {t }}$ WI			400	ns	
TIMER-IN to TIMER-OUT Low	tTL			400	ns	
TIMER-IN to TIMER-OUT High	TTH			400	ns	
Data Bus Enable from READ Control	tride	10			ns	

READ CYCLE

WRITE CYCLE


AC CHARACTERISTICS

TIMING WAVEFORMS


BASIC OUTPUT MODE


TIMER OUTPUT


## $\mu$ PD8155/8156

The Command Status Register is an 8 -bit register which must be programmed before the $\mu$ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXXOOO (X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address $X X X X X 000$. The pattern returned will be a 7-bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

TM2	TM1	IEB	IEA	$\mathrm{PC}_{2}$	$\mathrm{PC}_{1}$	PB	PA

where:

TM2-TM1	Define Timer Mode
IEB	Enable Port B Interrupt
IEA	Enable Port A Interrupt
PC $_{2} \cdot$ PC $_{1}$	Define Port C Mode
PB/PA	Define Port B/A as In or Out (1)

The Timer mode of operation is programmed as follows during command status write:

TM2	TM1	TIMER MODE
0	0	Don't Affect Timer Operation
0	1	Stop Timer Counting
1	0	Stop Counting after TC
1	1	Start Timer Operation

Interrupt enable status is programmed as follows:

IEB/IEA	INTERRUPT ENABLE PORT B/A
0	No
1	Yes

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

$\mathbf{P C}_{\mathbf{2}}$	$\mathbf{P C}_{\mathbf{1}}$	PORT C MODE
0	0	ALT 1
0	1	ALT 3
1	0	ALT 4
1	1	ALT 2

The function of each pin of port C in the four possible modes is outlined as follows:

PIN	ALT 1	ALT 2	ALT 3 (2)	ALT 4 (2)
PCO	IN	OUT	A INTR	A INTR
PC1	IN	OUT	A BF	A BF
PC2	IN	OUT	A STB	A STB
PC3	IN	OUT	OUT	B INTR
PC4	IN	OUT	OUT	B BF
PC5	IN	OUT	OUT	B STB

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; 1 = Output
(2) In ALT 3 and ALT 4 mode the control signals are initialized as follows:

CONTROL	INPUT	OUTPUT
STB (Input Strobe)	Input Control	Input Control
INTR (Interrupt Request)	Low	High
BF (Buffer Full)	Low	Low

COMMAND STATUS READ

$T I$	$I N T E$   $B$	$B$   $B F$	INTR   $B$	INTE   $A$	$A$   $B F$	INTR   $A$

Where the function of each bit is as follows:

TI	Defines a Timer Interrupt. Latched high at TC and   reset after reading the CS register or starting a new   count.
INTE B/A	Defines If Port B/A Interrupt is Enabled.   High = enabled.
B/A BF	Defines If Port B/A Buffer is Full-Input Mode or   Empty-Output Mode. High = active.
INTR B/A	Port B/A Interrupt Request. High = active.

The programming address summary for the status, ports, and timer are as follows:

I/O Address	Number of Bits	Function
XXXXX000	8	Command Status
$X X X \times \times 001$	8	PA
$X X X X \times 010$	8	$P B$
$X X X X \times 011$	6	PC
$X X X X \times 100$	8	Timer-Low
$X X X X \times 101$	8	Timer-High

TIMER The Internal Timer is a 14-bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

M2	M1	Operation
$\mathbf{0}$	$\mathbf{0}$	High at Start, Low During Second Half of Count
$\mathbf{0}$	$\mathbf{1}$	Square Wave   (Period = Count Length, Auto Reload at TC)
$\mathbf{1}$	$\mathbf{0}$	Single Pulse at TC
$\mathbf{1}$	1	Single Pulse at TC with Auto Reload

Programming the timer requires two words to be written to the $\mu$ PD8155/8156 at I/O address $X X X X \times 100$ and $X X X X X 101$ for the low and high order bytes respectively. Valid count length must be between 2 H and $3 F F F H$. The bit assignments for the high and low programming words are as follows:

Word	Bit Pattern								I/O Address
High Byte	M2	$\mathrm{M}_{1}$	T13	T12	T11	T10	T9	T8	XXXXX101
Low Byte	T7	T6	T5	T4	T3	T2	T1	T0	XXXXX100

The control of the timer is performed by TM2 and TM1 of the Command Status Word.


Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.5 \pm 0.1$	$0.019 \pm 0.004$
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

## NEC Microcomputers, Inc.

## EIGHT-BIT INPUT/OUTPUT PORT

DESCRIPTION The $\mu$ PB8212 input/output port consists of an 8 -bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

FEATURES - Fully Parallel 8-Bit Data Register and Buffer

- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current -0.25 mA Max.
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080A Processor
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count
- Available in 24-pin Plastic and Cerdip Packages


PIN NAMES

$\mathrm{DI}_{1}-\mathrm{DI}_{8}$	Data In
$\mathrm{DO}_{1}-\mathrm{DO}_{8}$	Data Out
$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$	Device Select
MD	Mode
STB	Strobe
$\overline{\mathrm{INT}}$	Interrupt (Active Low)
$\overline{\mathrm{CLR}}$	Clear (Active Low)

## - PB8212

The 8 flip-flops that compose the data latch are of a " $D$ " type design. The output ( $Q$ ) of the flip-flop follows the data input ( $D$ ) while the clock input ( $C$ ) is high. Latching occurs when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input ( $\overline{\mathrm{CLR}}$ ).
(Note: Clock (C) Overrides Reset ( $\overline{\mathrm{CLR}}$ ).)

## Output Buffer

The output of the data latch $(\mathrm{O})$ are connected to three-state, non-inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch (Q) or disabling the buffer, forcing the output into a high impedance state (three-state).
This high-impedance state allows the designer to connect the $\mu$ PB8212 directly to the microprocessor bi-directional data bus.

## Control Logic

The $\mu$ PB8212 has four control inputs: $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$, MD and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip-flop.

## $\overline{\mathrm{DS}}_{1}, \mathrm{DS} 2$ (Device Select)

These two inputs are employed for device selection. When $\overline{\mathrm{DS}}_{1}$ is low and $\mathrm{DS}_{2}$ is high $\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS} \mathrm{S}_{2}\right)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

## Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{C L R}$ input (active low). When the (SR) flipflop is set it is in the non-interrupting state.
The output ( Q ) of the ( SR ) flip-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-inverting and is connected to the device selection logic ( $\overline{\mathrm{DS}} 1 \cdot \mathrm{DS}_{2}$ ). The output of the "NOR" gate ( $\overline{\mathrm{NT}}$ ) is active low (interrupting state) for connection to active low input priority generating circuits.

## MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ( $\overline{\mathrm{SS}}_{1} \cdot \mathrm{DS}_{2}$ ).
When MD is in the input mode (low) the output buffer state is determined by the device selection logic ( $\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$ ) and the source of clock (C) to the data latch is the STB (Strobe) input.

## STB (Strobe)

STB is employed as the clock ( $C$ ) to the data latch for the input mode ( $M D=0$ ) and to synchronously reset the service request flip-flop (SR).
Note that the SR flip-flop triggers on the negative edge of STB which overrides $\overline{\mathrm{CLR}}$.

ut Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0 to +5.5 Volts Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 mA   NT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent to the device. This is a stress rating only and functional operation of the device at these or conditions above those indicated in the operational sections of this specification is not Exposure to absolute maximum rating conditions for extended periods may affect device	

${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$


STB	MD	$\left(\overline{\mathbf{D S}}_{\mathbf{1}} \cdot \mathbf{D S}_{\mathbf{2}}\right)$	DATA OUT   EQUALS
0	0	0	Three-State
1	0	0	Three-State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
1	0	1	Data In
0	1	1	Data In
1	1	1	Data In


$\overline{\mathrm{CLR}}$	$\left(\overline{\mathrm{DS}}_{\mathbf{1}} \cdot \mathbf{D S}_{\mathbf{2}}\right)$	$\mathbf{S T B}$	$\mathbf{S R}(2)$	$\overline{\mathrm{INT}}$
0	0	0	1	1
0	1	0	1	0
$\mathbf{1}$	0	0	3	$(3$
1		0	1	1
$\mathbf{1}$	0		0	0
$\mathbf{1}$	$\mathbf{1}$	0	1	0
$\mathbf{1}$	1		0	0

Notes: (1) $\overline{C L R}$ resets data latch sets SR flip-flop. (No effect on output buffer)
(2) Internal SR flip-flop
(3) Previous data remains

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	T.YP	MAX		
InputLoad Current ACK, DS2. CR, $\mathrm{DI}_{1}$ - DI8 Inputs	IF		-0.14	$-0.25$	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current MD Input	IF		-0.25	-0.75	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current $\overline{\mathrm{DS}}_{1}$ Input	IF		-0.26	-1.0	mA	$V_{F}=0.45 \mathrm{~V}$
Input Leakage Current ACK, DS, CR, DI 1 - DI 8 Inputs	IR		-	$10$	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Leakage Current MD Input	$I_{R}$			30	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Leakage Current $\overline{\mathrm{DS}}_{1}$ Input	$I_{\text {R }}$		.	: 40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Forward Voltage Clamp	$\mathrm{V}_{\mathrm{C}}$		-0.85:	$-1.3$	V	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$
Input "Low" Voltage	VIL			0.85	V	.
Input "High" Voltage	V IH	2.0			V	
Output "Low" Voltage	$\mathrm{V}_{\mathrm{OL}}$		0.26	0.45	V	$\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
Output "High" Voltage	VOH	3.65	4.0		V	${ }^{1} \mathrm{OH}=-1 \mathrm{~mA}$
Short Circuit Output Current	ISC	-15	-38	-75	mA	$\mathrm{VO}_{\mathrm{O}}=0 \mathrm{~V}$
Output Leakage Current High Impedance State	10			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}$
Power Supply Current	ICC		103	130	mA	


PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Pulse Width	${ }_{\text {tpw }}$	30			ns	Input Pulse   Amplitude $=2.5 \mathrm{~V}$
Data To Output Delay	tpd		20	30	ns	
Write Enable To Output Delay	$\mathrm{t}_{\text {we }}$			40	ns	Input Rise and Fall Times $=5$ ns
Data Setup Time	$\mathrm{t}_{\text {set }}$	15			ns	
Data Hold Time	th	20			ns	Between 1V and 2V
Reset to Output Delay	$\mathrm{t}_{\mathrm{r}}$			40	ns	Measurement made
Set To Output Delay	ts			30	ns	at 1.5 V with 15 mA
Output Enable/Disable Time	$\mathrm{t}_{\mathrm{e}} / \mathrm{t}_{\mathrm{d}}$			45	ns	Test Load
Clear To Output Delay	$\mathrm{t}_{\mathrm{c}}$			55	ns	(2)

Notes: (1) $\mathrm{R}_{1}=300 \Omega / 10 \mathrm{~K} \Omega ; \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega$
(2) $R_{1}=300 \Omega ; R_{2}=600 \Omega$
(1) 30 pF


TEST CIRCUIT
Note: (1) Including Jig and Probe Capacitance


TIMING WAVEFORMS
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN		7	12	pF	DS 1 , MD
Input Capacitance	CIN		4	9	pF	$\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$
Output Capacitance	COUT		6	12	pF	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$

Note: (1) This parameter is periodically sampled and not $100 \%$ tested

## TYPICAL CHARACTERISTICS









PACKAGE OUTLINE $\mu$ PB8212C/D

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25{ }_{-0.10}^{+0.05}$	$0.01+0.004$


$\mu$ PB8212D (Cerdip)

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
K	15.24	0.6
L	13.5	0.53
M	$0.25_{-0.10}^{+0.10}$	$0.1^{+0.004}$

## PRIORITY INTERRUPT CONTROLLER

## DESCRIPTION

The $\mu$ PB8214 is an eight-level priority interrupt controller. Designed to simplify interrupt driven microcomputer systems, the $\mu$ PB8214 requires a single +5 V power supply and is packaged in a 24 pin plastic Dual-in-line package.

The $\mu$ PB8214 accepts up to eight interrupts, determines which has the highest priority and then compares that priority with a software created current status register. If the incoming requires is of a higher priority than the interrupt currently being serviced, an interrupt request to the processor is generated. Vector information that identifies the interrupting device is also generated.

The interrupt structure of the microcomputer system can be expanded beyond eight interrupt levels by cascading $\mu$ PB8214s. The $\mu$ PB8214's interrupt and vector information outputs are open collector and control signals are provided to simplify expansion of the interrupt structure.

## FEATURES • Eight Priority Levels

- Current Status Register and Priority Comparator
- Easily Expanded Interrupt Structure
- Single +5 Volt Supply

PIN NAMES

Inputs	
$\overline{R_{0}} \cdot \overline{R_{7}}$	Request Levels ( $\overline{\mathrm{R}_{7}}$ Highest Priority)
$\overline{B_{0}}-\overline{B_{2}}$	Current Status
$\overline{\text { SGS }}$	Status Group Select
ECS	Enable Current Status
INTE	Interrupt Enable
$\overline{C L K}$	Clock (INT F-F)
$\overline{\text { ELR }}$	Enable Level Read
ETLG	Enable This Level Group
Outputs	
$\overline{A_{0}}-\overline{A_{2}}$	Request Levels Open
INT	Interrupt (Act Low) Collector
ENLG	Enable Next Level Group



## General

The $\mu$ PB8214 is an LSI device designed to simplify the circuitry required to

FUNCTIONAL DESCRIPTION implement an interrupt driven microcomputer system. Up to eight interrupting devices can be connected to a $\mu$ PB8214, which will assign priority to incoming interrupt requests and accept the highest. It will also compare the priority of the highest incoming request with the priority of the interrupt being serviced. If the serviced interrupt has a higher priority, the incoming request will not be accepted.
A system with more than eight interrupting devices can be implemented by interconnecting additional $\mu$ PB8214s. In order to facilitate this expansion, control signals are provided for cascading the controllers so that there is a priority established among the controllers. In addition, the interrupt and vector information outputs are open collector.

## Priority Encoder and Request Latch

The priority encoder portion of the $\mu$ PB8214 accepts up to eight active low interrupt requests $\left(\overline{R_{0}}-\overline{R_{7}}\right)$. The circuit assigns priority to the incoming requests, with $\overline{R_{7}}$ having the highest priority and $\overline{\mathrm{R}_{0}}$ the lowest. If two or more requests occur simultaneously, the $\mu$ PB8214 accepts the one having the highest priority. Once an incoming interrupt request is accepted, it is stored by the request latch and a three-bit code is output. As shown in the following table, the outputs, ( $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ ) are the complement of the request level (modulo 8 ) and directly correspond to the bit pattern required to generate the one byte RESTART (RST) instructions recognized by an 8080 A . Simultaneously with the $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ outputs, a system interrupt request (INT) is output by the $\mu$ PB8214. It should be noted that incoming interrupt requests that are not accepted are not latched and must remain as an input to the $\mu$ PB8214 in order to be serviced.

PRIORITY REQUEST		RST		$\mathrm{D}_{7} \mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	
		1	1	$\overline{A_{2}}$	$\overline{A_{1}}$	$\overline{A_{0}}$	1	1	1		
LOWEST	$\overline{R_{0}}$		7	1	1	1	1	1	1	1	1
	$\overline{R_{1}}$	6	1	1	1	1	${ }^{\circ} 0$	1	1	1	
	$\overline{R_{2}}$	5	1	1	1	0	1	1	1	1	
	$\overline{\mathrm{R}_{3}}$	4	1	1	1	0	0	1	1	1	
	$\overline{R_{4}}$	3	1	1	0	1	1	1	1	1	
	$\overline{R_{5}}$	2	1	1	0	1	0	1	1	1	
HIGHEST	$\overline{R_{6}}$	1	1	1	0	0	1	1	1	1	
	$\overline{\mathrm{R}} 7$	$0 \times$	1	1	0	0	0	1	1	1	

*CAUTION: RST 0 will vector the program counter to location 0 (zero) and invoke the same routine as the "RESET" input to 8080A.

## Current Status Register

The current status register is designed to prevent an incoming interrupt request from overriding the servicing of an interrupt with higher priority. Via software, the priority level of the interrupt being serviced by the microprocessor is written into the current status register on $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$. The bit pattern written should be the complement of the interrupt level.

The interrupt level currently being serviced is written into the current status register by driving ECS (Enable Current Status) low. The $\mu$ PB8214 will only accept interrupts with a higher priority than the value contained by the current status register. Note that the programmer is free to use the current status register for other than as above. Other levels may be written into it. The comparison may be completely disabled by driving $\overline{\mathrm{SGS}}$ (Status Group Select) low when $\overline{\mathrm{ECS}}$ is driven low. This will cause the $\mu$ PB8214 to accept incoming interrupts only on the basis of their priority to each other.

## Priority Comparator

The priority comparator circuitry compares the level of the interrupt accepted by the priority encoder and request latch with the contents of the current status register. If the incoming request has a priority level higher than that of the current status register, the INT output is enabled. Note that this comparison can be disabled by loading the current status register with $\overline{\mathrm{SGS}}=0$.

## Expansion Control Signals

A microcomputer design may often require more than eight different interrupts. The $\mu$ PB8214 is designed so that interrupt system expansion is easily performed via the use of three signals: ETLG (Enable This Level Group); ENLG (Enable Next Level Group); and ELR (Enable Level Read). A high input to ETLG indicates that the $\mu$ PB8214 may accept an interrupt. In a typical system, the ENLG output from one $\mu$ PB8214 is connected to the ETLG input of another $\mu$ PB8214, etc. The ETLG of the $\mu$ PB8214 with the highest priority is tied high. This configuration sets up priority among the cascaded $\mu$ PB8214's. The ENLG output will be high for any device that does not have an interrupt pending, thereby allowing a device with lower priority to accept interrupts. The $\overline{E L R}$ input is basically a chip enable and allows hardware or software to selectively disable/enable individual $\mu$ PB8214's. A low on the $\overline{E L R}$ input enables the device.

## Interrupt Control Circuitry

The $\mu$ PB8214 contains two flip-flops and several gates which determine whether an accepted interrupt request to the $\mu$ PB8214 will generate a system interrupt to the 8080A. A condition gate drives the $D$ input of the interrupt flip-flop whenever an interrupt request has been completely accepted. This requires that: the ETLG (Enable This Level Group) and INTE (Interrupt Enable) inputs to the $\mu$ PB8214 are high; the $\overline{E L R}$ input is low; the incoming request must be of a higher priority than the contents of the current status register; and the $\mu$ PB8214 must have been enabled to accept interrupt requests by the clearing of the interrupt disable flip-flop.

Once the condition gate drives the D input of the interrupt flip-flop high, a system interrupt ( $\overline{\mathrm{INT}}$ ) to the 8080A is generated on the next rising edge of the CLK input to the $\mu$ PB8214. This $\overline{C L K}$ input is typically connected to the $\phi 2$ (TTL) output of an 8224 so that 8080A set-up time specifications are met. When INT is generated, it sets the interrupt disable flip-flop so that no additional system interrupts will be generated until it is reset. It is reset by driving $\overline{\mathrm{ECS}}$ (Enable Current Status) low, thereby writing into the current status register.
It should be noted that the open collector INT output from the $\mu$ PB8214 is active for only one clock period and thus must be externally latched for inputting to the 8080A. Also, because the INT output is open collector, when $\mu$ PB8214's are cascaded, an INT output from any one will set all of the interrupt disable flipflops in the array. Each $\mu$ PB8214's interrupt disable flip-flop must then be cleared individually in order to generate subsequent system interrupts.


TYPICAL $\mu$ PB8214 CIRCUITRY
FUNCTIONAL DESCRIPTION (CONT.)

## ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
Input Clamp Voltage (all inputs).	$\mathrm{V}_{\mathrm{C}}$			- 1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
Input Forward Current: ETLG input all other inputs	${ }^{\prime} \mathrm{F}$ :		$\begin{array}{r} -.15 \\ -.08 \\ \hline \end{array}$	$\begin{aligned} & \hline-0.5 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$.
Input Reverse Current: ETLG input all other inputs	${ }^{\prime} \mathrm{R}$			$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & \mu \dot{\mathrm{A}} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input LOW Voltage:, all inputs	$\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Input HIGH Voltage: all inputs	$\mathrm{V}_{\text {IH }}$	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Power Supply Current	${ }^{\text {ICC }}$		90	130	mA	(2)
Output LOW Voltage: all outputs	VOL		. 3	45	V	$\mathrm{I}^{\mathrm{OL}}=10 \mathrm{~mA}$
Output HIGH Voltage: ENLG output	$\mathrm{V}_{\mathrm{OH}}$	2.4	3.0		V	$1 \mathrm{OH}=-1 \mathrm{~mA}$
Short Circuit Output Current: ENLG output	IOS	20	-35	-55	mA	$\mathrm{V}_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Output Leakage Current: $\overline{\mathrm{NT}}$ and $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$	ICEX			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$

## CAPACITANCE (B) $\quad T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
Input Capacitance	CIN		5	10	pF	$\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & f=1 \mathrm{mHz} . \end{aligned}$
Output Capacitance	COUT	$\cdots$	7	12	pF	

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.(1)	MAX.		
$\overline{\text { CLK }}$ Cycle Time	tCY	80	50		ns	Input pulse amplitude: 2.5 Volts
$\overline{\text { CLK }}$, ECS, INT Pulse Width	tPW	25	15		ns	
INTE Setup Time to CLK	tiss	16	12		ns	
INTE Hold Time after CLK	tISH	20	10		ns	
ETLG Setup Time to $\overline{C L K}$	tETCS ${ }^{(4)}$	25	12		ns	Input rise and fall times: 5 ns between 1 and 2 Volts
ETLG Hold Time After CLK	${ }^{\text {t }}$ ETCH ${ }^{(4)}$	$20^{\circ}$	10		ns	
ECSS Setup Time to CLK	tECCS (4)	80	50		ns	
$\overline{\text { ECS }}$ Hold Time After $\overline{\text { CLK }}$	${ }^{\text {t }}$ (ECCH ${ }^{(5)}$	0			ns	
ECS Setup Time to $\overline{\text { CLK }}$	tECRS ${ }^{(5)}$	110	70		ns	
$\overline{\text { ECS }}$ Hold Time After $\overline{\text { CLK }}$	${ }^{\text {t ECRH }}{ }^{(5)}$	0				Output loading of 15 mA and 30 pF .
$\overline{\text { ECS }}$ Setup Time to $\overline{\text { CLK }}$	tECSS (4)	75	70		ns	
$\overline{\text { ECS }}$ Hold Time After CLK	tECSH (4)	0			ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to $\overline{\text { CLK }}$	tDCS (4)	70	50		ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$ Hold Time After $\overline{\mathrm{CLK}}$	tDCH (4).	0			ns	Speed measurements taken at the 1.5 Volts levels.
$\overline{\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}} \text { Setup Time to } \overline{\mathrm{CLK}}}$	trcs (5)	90	55		ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After $\overline{\mathrm{CLK}}$	$t_{\text {RCH }}(5)$	0			ns	
$\overline{\text { INT }}$ Setup Time to CLK	tics	55	35		ns	
$\overline{\mathrm{CLK}}$ to $\overline{\mathrm{INT}}$ Propagation Delay	tel		15	25	ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Setup Time to $\overline{\mathrm{R}} \mathrm{NT}$	tRIS (6)	10	0		ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After $\overline{\mathrm{R}} \mathrm{NT}$	trin (6)	35	20		ns	
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	trA		80	100	ns	
$\overline{\mathrm{ELR}}$ to $\overline{\bar{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	tela		40	55	ns	
$\overline{\mathrm{ECS}}$ to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	tECA		100	120	ns	
ETLG to $\overline{A_{0}}-\overline{A_{2}}$ Propagation Delay	teTA		35	70	ns	
$\overline{\overline{S G S}}$ and $\overline{\bar{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to $\overline{\mathrm{ECS}}$	tDECS (6)	15	10		ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$ Hold Time After $\overline{\mathrm{ECS}}$	tDECH (6)	15	10		ns	- ,
$\overline{\mathrm{R}_{0}}-\overline{\bar{R}_{7}}$ to ENLG Propagation Delay	tren		45	70	ns	
ELTG to ENLG Propagation Delay	teTEN		20	25	ns	
$\overline{\text { ECS }}$ to-ENLG Propagation Delay	teCRN		85	90	ns	
$\overline{\text { ECS }}$ to ENLG Propagation Delay	tecsn		35	55	ns	

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}, \overline{\mathrm{SGS}}, \overline{\mathrm{CLK}}, \overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{4}}$ grounded, all other inputs and all outputs open.
(3) This parameter is periodically sampled and not $100 \%$ tested.
(4) Required for proper operation if INTE is enabled during next clock pulse.
(5) These times are not required for proper operation but for desired change in interrupt flip-flop.
(6) Required for new request or status to be properly loaded.


## 4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V}(\mathrm{VOH})$, and for high capacitance terminated bus structures, the DB outputs provide a high $55 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{OL}}\right)$ capability.

FEATURES - Data Bus Buffer Driver for $\mu$ COM- 8 Microprocessor Family

- Low Input Load Current $\mathbf{- 0 . 2 5} \mathrm{mA}$ Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to $\mu$ COM-8 Microprocessor Family
- Three State Outputs
- Reduces System Package Count
- Available in 16 pin packages: Cerdip and Plastic



## PIN NAMES

$\mathrm{DB}_{0}-\mathrm{DB}_{3}$	Data Bus Bi Directional
$\mathrm{DI}_{0} \mathrm{DI}_{3}$	Data Input
$\mathrm{DO}_{0}-\mathrm{DO}_{3}$	Data Output
$\overline{\mathrm{DIEN}}$	Data in Enable Direction Control
$\overline{\mathrm{CS}}$	Chip Select

## $\mu$ PB8216/8226

Microprocessors like the $\mu$ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.
The $\mu$ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

## Bi-Directional Driver

Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive ( 55 mA ). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability ( 3.65 V ) so that direct interface to the 8080A processor is achieved with an adequate amount of noise immunity ( 650 mV worst case).

## Control Gating $\overline{\text { CS }}, \overline{\text { DIEN }}$

The $\overline{\mathrm{CS}}$ input is used for device selection. When $\overline{\mathrm{CS}}$ is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the DIEN input.
The $\overline{\text { DIEN }}$ input controls the data flow direction (see Block Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.
The $\mu$ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.


FUNCTIONAL DESCRIPTION

BLOCK DIAGRAMS

$\overline{\text { DIEN }}$	$\overline{\text { CS }}$	RESULT
0	0	DI $\rightarrow$ DB
1	0	DB $\rightarrow$ DO
0	1	High Impedance
1	1	

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Cerdip)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output and Supply Voltages	-0.5 to +7 Volts
All Input Voltages.	-1.3 to +5.5 Volts
Output Currents	25

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \cdot 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input Load Current $\overline{D I E N}, \overline{C S}$			'F1			$-0.5$	mA	$V_{F}=0.45$
Input Load Current All Other Inputs		IF2			$-0.25^{\circ}$	mA	$V_{F}=0.45$	
Input Leakage Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$		IR1			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$	
Input Leakage Current DI Inputs		IR2			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$	
Input Forward Voltage Clamp		$\mathrm{V}_{\mathrm{C}}$			-1.0	V	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$	
. Input "Low" Voltage		VIL			0.95	V		
Input "High" Voltage		$\mathrm{V}_{\text {IH }}$	2.0		$\ldots$	V		
Output Leakage Current (3-State) ${ }^{\text { }}$	DO	10			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 / 5.25 \mathrm{~V}$	
	DB	10			100			
Power Supply Current	8216	ICC			130	mA		
	8226	${ }^{\text {ICC }}$			120	mA		
Output "Low" Voltage		$\mathrm{V}_{\text {OL1 }}$			0.48	$\checkmark$	$\begin{aligned} & \text { DO Outputs } 1 \mathrm{OL}=15 \mathrm{~mA} \\ & \text { DB Outputs } 1 \mathrm{OL}=25 \mathrm{~mA} \\ & \hline \end{aligned}$	
Output "Low" Voltage	8216	$\mathrm{V}_{\text {OL2 }}$			0.7	V	DB Outputs $\mathrm{IOL}=55 \mathrm{~mA}$	
	8226	$\mathrm{V}_{\mathrm{OL} 2}$			0.7	V	DB Outputs $10 \mathrm{OH}=50 \mathrm{~mA}$	
Output "High" Voltage		VOH 1	3.65			V	DO Cutputs $\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	
Output "High" Voltage		$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	DB Outputs $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	
Output Short Circuit Current		Ios	-15		-65	mA	DO Outputs $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	
		IOS	-30		-120	mA	DB Outputs $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	

Note: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			8	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output Capacitance	COUT1			10 (2)	pF	
Output Capacitance	COUT2			18 (3)	pF	

Notes: (1) This parameter is periodically sampled and not $100 \%$ tested.
(2) DO Output.
(3) DB Output.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input to Output Delay DO Outputs			tPD1			25	ns	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \text { (4) } \end{aligned}$
Input to Output Delay DB Outputs	8216	tPD2			30	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & \mathrm{R}_{2}=180 \Omega 4 \end{aligned}$	
	8226	tPD2			25	ns		
Output Enable Time	8216	tE			65	ns	(2) (4)	
	8226	tE			54	ns		
Output Disable Time		tD			35.	ns	(3) (4)	

Notes: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) DO Outputs, $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$.
(3) DO Outputs, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$.
(4). Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.


TEST CIRCUIT


TIMING WAVEFORMS

PACKAGE OUTLINE $\mu$ PB8216C/D $\mu$ PB8226C/D


ITEM	MILLIMETERS	INCHES
A	19.4 MAX	076 MAX
B	081	003
C	254	0.10
D	05	002
E	1778	0.70
F	13	0.051
G	254 MIN	0.10 MIN
H	0.5 MIN	002 MIN
I	405 MAX	016 MAX
J	455 MAX	018 MAX
K	762	030
L	6.4	025
M	025.010	001

Plastic


Cerdip


ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
8	1.06	0.042
C	2.54	0.10
D	$0.46 \cdot 0.10$	$0.018 \cdot 0.004$
E	17.78	0.70
F	15	0.059
G	2.54 MIN	0.10 MIN
H	05 MIN	0.019 MIN
1	4.58 MAX	0181 MAX
$J$	5.08 MAX	020 MAX
K	762	0.30
L	6.4	0.25
M	${ }^{025+0.10} \begin{array}{r}\text { 0.05 }\end{array}$	$000098+\begin{gathered}+00039 \\ 0.0019\end{gathered}$

## CLOCK GENERATOR AND DRIVER FOR 8080A PROCESSORS

## DESCRIPTION

The $\mu$ PB8224 is a single chip clock generator and driver for 8080A processors. The clock frequency is determined by a user specified crystal and is capable of meeting the timing requirements of the entire 8080A family of processors. MOS and TTL level clock outputs are generated.

Additional logic circuitry of the $\mu$ PB8224 provides signals for power-up reset, an advance status strobe and properly synchronizes the ready signal to the processor. This greatly reduces the number of chips needed for 8080A systems.

The $\mu$ PB8224 is fabricated using NEC's Schottky bipolar process.
FEATURES - Crystal Controlled Clocks

- Oscillator Output for External Timing
- MOS Level Clocks for 8080A Processor
- TTL Level Clock for DMA Activities
- Power-up Reset for 8080A Processor
- Ready Synchronization
- Advanced Status Strobe
- Reduces System Package Count
- Available in 16-pin Cerdip and Plastic Packages


$\overline{\text { RESIN }}$	Reset Input
RESET	Reset Output
RDYIN	Ready Input
READY	Ready Output
SYNC	Sync Input
$\overline{\text { STSTB }}$	Status STB Output
${ }_{6}$	$\left\{\begin{array}{l} \text { Processor } \\ \text { Clocks } \\ \hline \end{array}\right.$
$\phi_{2}$	
XTAL 1	\}
XTAL 2	
TANK	Used With
	Overtone
	Crystal
OSC	Oscillator
	Output
	$\phi_{2}$ CLK
$\phi_{2}$ (TTL)	(TTL Level)
$\mathrm{V}_{\mathrm{CC}}$	$+5 \mathrm{~V}$
$V_{\text {DD }}$	+12V
GND	OV

## $\mu$ PB8224

## Clock Generator

The clock generator circuitry consists of a crystal controlled oscillator and a divide-by-nine counter. The crystal frequency is a function of the 8080A processor speed and is basically nine times the processor frequency, i.e.:

$$
\text { Crystal frequency }=\frac{9}{{ }^{\mathrm{t}} \mathrm{CY}}
$$

where $t^{C} \mathrm{Y}$ is the 8080A processor clock period.
A series resonant fundamental mode crystal is normally used and is connected across input pins XTAL1 and XTAL2. If an overtone mode crystal is used, an additional LC network, AC coupled to ground, must be connected to the TANK input of the $\mu$ PB8224 as shown in the following figure.

$$
=\left(\frac{}{2 \pi \vec{F}}\right)
$$



The formula for the LC network is:

$$
L C=\left(\frac{1}{2 \pi F}\right)^{2}
$$

where $F$ is the desired frequency of oscillation.
The output of the oscillator is input to the divide-by-nine counter. It is also buffered and brought out on the OSC pin, allowing this stable, crystal controlled source to be used for derivation of other system timing signals. The divide-bynine counter generates the two non-overlapping processor clocks, $\phi_{1}$ and $\phi_{2}$, which are buffered and at MOS levels, a TTL level $\phi_{2}$ and internal timing signals.

The $\phi_{1}$ and $\phi_{2}$ high level outputs are generated in a 2-5-2 digital pattern, with $\phi_{1}$ being high for two oscillator periods, $\phi_{2}$ being high for five oscillator periods, and then neither being high for two oscillator periods. The TTL level $\phi_{2}, \phi_{2}$ (TTL), is normally used for DMA activities by gating the external device onto the 8080A bus once a Hold Acknowledge (HLDA) has been issued.

## Additional Logic

In addition to the clock generator circuitry, the $\mu$ PB8224 contains additional logic to aid the system designer in the proper timing of several interface signals.
The STSTB signal indicates, at the earliest possible moment, when the status signals output from the 8080A processor are stable on the data bus. $\overline{\text { STSTB }}$ is designed to connect directly to the $\mu$ PB8228 System Controller and automatically resets the $\mu$ PB8228 during power-on Reset.
The $\overline{\operatorname{RESIN}}$ input to the $\mu \mathrm{PB} 8224$ is used to automatically generate a RESET signal to the 8080A during power initialization. The slow rise of the power supply voltage in an external RC network is sensed by an internal Schmitt Trigger. The output of the Schmitt Trigger is gated to generate an 8080A compatible RESET. An active low manual switch may also be attached to the RC circuit for manual system reset.
The RDYIN input to the $\mu$ PB8224 accepts an asynchronous "wait request" and generates a READY output to the 8080A that is fully synchronized to meet the 8080A timing requirements.

BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS*


DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V}+5 \%$

PARAMETER	SYMBOL	L.IMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Current Loading	IF			-0.25	mA	$V_{F}-0.45 \mathrm{~V}$
Input Leakage Current	$\mathrm{I}_{\mathrm{R}}$			10	$\mu \mathrm{A}$	$V_{R}-525 \mathrm{~V}$
Input Forward Clamp Voltage	$\mathrm{V}_{\mathrm{C}}$			-1.0	V	$\mathrm{I}^{\prime} \mathrm{C}-5 \mathrm{~mA}$
Input "Low" Voltage	$v_{\text {IL }}$			0.8	v	$V_{C C}=50 \mathrm{~V}$
Input "High" Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} & 2.6 \\ & 2.0 \end{aligned}$			V	Reset Input All Other Inputs
$\overline{\text { RESIN }}$ Input Hysteresis	$V_{\text {IH }} \cdot V_{\text {IL }}$	0.25			V	$\mathrm{v}_{\mathrm{CC}}-50 \mathrm{~V}$
Output "Low" Voltage	$\mathrm{V}_{\mathrm{OL}}$			$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	V.   $v$	(51, 2), Ready, Reset, STSTB   ${ }^{\prime} \mathrm{OL}=2.5 \mathrm{~mA}$   All Other Inputs $I_{O L}=15 \mathrm{~mA}$
Output "High" Voltage $\phi_{1}, \phi_{2}$   READY, RESET   All Other Outputs	$\mathrm{V}_{\mathrm{OH}}$	$\begin{array}{r} 94 \\ 36 \\ 2.4 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$
Output Short Circuit Current (All Low Voltage Outputs Only)	${ }^{\prime} \mathrm{SC}{ }^{(1)}$	$\bigcirc 10$		-60	mA	$\begin{aligned} & \mathrm{v}_{\mathrm{O}}-0 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \hline \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC}$			115	mA	
Power Supply Current.	${ }^{\prime}$ DD			15	mA	

Note: (1) Caution, $\phi_{1}$ and $\phi_{2}$ output drivers do not have short circuit protection
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN 2			8	pF	

Note: (1) This parameter is periodically sampled and not $100 \%$ tested.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+1.2 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS (1)			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$\phi_{1}$ Pulse Width	${ }_{t}{ }^{1}$	$\frac{2 \mathrm{t}_{\mathrm{CY}}}{9}-20 \mathrm{~ns}$			ns	$C_{L}=20 \mathrm{pF}$ to 50 pF
$\phi_{2}$ Pulse Width	${ }^{\text {t }}$ ¢ 2	$\frac{5 t_{C Y}}{9}-35 \mathrm{~ns}$				
$\phi_{1}$ to $\phi_{2}$ Delay	to1	0				
$\phi_{2}$ to $\phi_{1}$ Delay	${ }^{\text {t }}$ 2	$\frac{2 t}{} \frac{t^{\prime} Y}{9}-14 \mathrm{~ns}$				
$\phi_{1}$ to $\phi_{2}$ Delay	${ }_{\text {t }}$ 3	$\frac{{ }^{2 t} \mathrm{C} Y}{9}$		$\frac{2 \mathrm{t} C \mathrm{Y}}{9}+20 \mathrm{~ns}$		
$\phi_{1}$ and $\phi_{2}$ Rise Time	${ }_{\text {t }}$			20		
$\phi_{1}$ and $\phi_{2}$ Fall Time	${ }^{\text {t }}$ F			20		
$\phi_{2}$ to $\phi_{2}$ (TTL) Delay	${ }^{\text {t }}$ ¢ 2	-5		+15	ns	$\begin{aligned} & \hat{S}_{2} \mathrm{TTL}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=300 \mathrm{~s} 2 \\ & \mathrm{R}_{2}=600 \mathrm{~s} 2 \end{aligned}$
$\mathrm{m}_{2}$ to STSTB Delay	${ }^{\text {toss }}$	$\frac{6 t C Y}{9}-30 \mathrm{~ns}$			ns	
STSTB Pulse Width	tpw	${ }^{\text {t }} \mathrm{CY} \mathrm{C}-15 \mathrm{~ns}$				$\overline{\text { STSTB }, C L=15 p F}$
RDYIN Setup Time to $\overline{\text { STSTB }}$	${ }^{\text {t DRS }}$	$50 \mathrm{~ns}-\frac{4 \mathrm{t}^{\text {c }} \mathrm{C} Y}{9}$			ns	$\begin{aligned} & R_{1}=2 K \\ & R_{2}=4 K \end{aligned}$
RDYIN Hold Time After $\overline{\text { STSB }}$	tort	$\frac{4{ }^{\text {t }} \mathrm{CY}}{9}$				
READY or RESET to $\phi_{2}$ Delay	${ }^{\text {t }}$ R	$\frac{{ }^{4 \mathrm{t}} \mathrm{CY}}{9}-25 \mathrm{~ns}$			ns	Ready and Reset $\begin{aligned} C L & =10 \mathrm{pF} \\ \mathrm{R}_{1} & =2 \mathrm{~K} \\ \mathrm{R}_{2} & =4 \mathrm{~K} \end{aligned}$
Crystal Frequency	${ }^{\text {f CLK }}$		$\frac{9}{{ }^{\text {c }} \text { ¢ } Y}$		MHz	
Maximum Oscillating Frequency	${ }^{\text {f MAX }}$			27	MHz	

Note: (1) ${ }^{\mathrm{t}} \mathrm{CY}$ represents the processor clock period


TEST CIRCUIT


Equivalent Resistance 75-20 ohms
Power Dissipation (Min) 4 mW

Note: (1) With tank circuit use 3rd overtone mode.

PACKAGE OUTLINE $\mu$ PB8224C/D

$\mu$ PB8224C (Plastic)

ITEM	MILLIMETERS	INCHES
A	19.4 MAX	0.76 MAX.
B	0.81	0.03
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN.
I	4.05 MAX	0.16 MAX
J	4.55 MAX	0.18 MAX
K	7.62	0.30
L	6.4	0.25
M	$0.25+0.10$	0.01



$\mu$ PB8224D (Cerdip)		
ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
B	1.06	0.042
C	2.54	010
D	$0.46 \pm 0.10$	$0.018 \pm 0.004$
E	17.78	070
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
K	7.62	0.30
L	6.8	0.27
M	$0.25+0.10$	$0.0098+0.0039$



## 8080A SYSTEM CONTROLLER AND BUS DRIVER

## DESCRIPTION

The $\mu$ PB8228/8238 is a single chip controller and bus driver for 8080A based systems. All the required interface signals necessary to connect RAM, ROM and I/O components to a $\mu$ PD8080A are generated.

The $\mu$ PB8228/8238 provides a bi-direr.tional three-state bus driver for high TTL fan-out and isolation of the processor uata bus from the system data bus for increased noise immunity.

The system controller portion of the $\mu$ PB8228/8238 consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any additional components.

Two devices are provided. The $\mu$ PB8228 for small systems without tight write timing constraints and the $\mu$ PB8238 for larger systems.

FEATURES - System Controller for 8080A Systems

- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- . Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- $\mu$ PB8228 for Small Memory Systems
- $\mu$ PB8238 for Large Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology



## $\mu$ PB8228/8238

## Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the $\mu$ PB8228/8238 exceeds the minimum input voltage requirements ( 3.0 V ) of the $\mu \mathrm{PD} 8080 \mathrm{~A}$. On the system side, the driver is capable of adequate drive current $(10 \mathrm{~mA})$ for connection of a large number of memory and I/O devices to the bus. Signal flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

## Status Latch

The Status Latch in the $\mu$ PB8228/8238 stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

## Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.
$\overline{M E M / R}, \overline{I / O R}$ and $\overline{\text { INTA }}$ are generated by gating the DBIN signal from the processor with the contents of the status latch. $\overline{\mathrm{I} / \mathrm{OR}}$ is used to enable an I/O input onto the system data bus. $\overline{M E M / R}$ is used to enable a memory input.
$\overline{\mathrm{NTA}}$ is normally used to gate an interrupt instruction onto the system data bus. When used with the $\mu$ PD8080A processor, the $\mu$ PB8228/8238 will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the $\mu$ PB8228/8238 will internally generate an INTA pulse for those machine cycles.
The $\mu \mathrm{PB} 8228 / 8238$ also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the $\overline{\mathrm{NTA}}$ output (pin 23) of the $\mu \mathrm{PB} 8228 / 8238$ through a 1 K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.
$\overline{M E M / W}$ and $\overline{\mathrm{I} / O W}$ are generated by gating the $\overline{W R}$ signal from the processor with the contents of the status latch. $\overline{\mathrm{I}} \mathrm{OW}$ indicates that an output port write is about to occur. $\overline{M E M / W}$ indicates that a memory write will occur.
The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the $\overline{B U S E N}$ pin of the $\mu \mathrm{PB} 8228 /$ 8238. Normal operation is performed with BUSEN Iow.


BLOCK DIAGRAM

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.5 to 5.5 Volts
Output Currents 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Clamp Voltage, All Inputs	$\mathrm{V}_{\mathrm{C}}$			$-1.0$	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{I} \mathrm{CC}=-5 \mathrm{~mA}$
Input Load Current, STSTB	$I_{\text {I }}$			500	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{\mathrm{F}}=0.45 \mathrm{~V} \end{aligned}$
$\mathrm{D}_{2}$ and $\mathrm{D}_{6}$				750	$\mu \mathrm{A}$	
$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{4}, \mathrm{D}_{5}$, and $\mathrm{D}_{7}$				250	$\mu \mathrm{A}$	
All Other Inputs				250	$\mu \mathrm{A}$	
Input Leakage Current, $\overline{\text { STSTB }}$	'R			100	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{R}=5.0 \mathrm{~V} \end{aligned}$
$\mathrm{DB}_{0}$ through $\mathrm{DB}_{7}$				20	$\mu \mathrm{A}$	
All Other Inputs				100	$\mu \mathrm{A}$	
Input Threshold Voltage, All Inputs	$V_{\text {TH }}$	0.8		2.0	V	$V_{C C}=5 \mathrm{~V}$
Power Supply Current	${ }^{1} \mathrm{CC}$			190	mA	$V_{C C}=5.25 \mathrm{~V}$
Output Low Voltage, $\mathrm{D}_{0}$ through $\mathrm{D}_{7}$	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
All Other Outputs				0.48	V	$\mathrm{I}^{\prime} \mathrm{OL}=10 \mathrm{~mA}$
Output High Voltage, $\mathrm{D}_{0}$ through $\mathrm{D}_{7}$	$\mathrm{V}_{\mathrm{OH}}$	3.6			V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{I}^{\circ} \mathrm{OH}=-10 \mu \mathrm{~A}$
All Other Outputs		2.4			V.	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$
Short Circuit Current, All Outputs	IOS	15	-*	90	mA	$V_{C C}=5 \mathrm{~V}$
Off State Output Current, All Control Outputs	IO(off)			100	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V} ; V_{O}=5.0 \mathrm{~V}$
				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$
INTA Current	${ }^{\text {I INT }}$			5	mA	(See Figure below)




INTA TEST CIRCUIT

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$C_{\text {IN }}$			12	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$,
Output Capacitance Control Signals	COUT			15	pF	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$,
I/O Capacitance   (D or DB)	$\mathrm{Cl}_{1 / \mathrm{O}}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$

NOTE: This parameter is periodically sampled and not $100 \%$ tested.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Width of Status Strobe	tPW	22			ns	
Setup Time, Status Inputs $D_{0}-D_{7}$	tSS	8			ns	, ,
Holda Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	${ }^{\text {t }} \mathrm{SH}$	5			ns	
Delay from STSTB to any Control Signal	${ }^{\text {t }} \mathrm{DC}$	20		60	ns	$C_{L}=100 \mathrm{pF}$
Delay from DBIN to Control Outputs	tRR			30	ns	$C_{L}=100 \mathrm{pF}$.
Delay from DBIN to Enable/ Disable 8080A Bus	tre			45	ns	$C_{L}=25 \mathrm{pF}$
Delay from System Bus to 8080A Bus during Read	tRD			30	ns	$C_{L}=25 \mathrm{pF}$
Delay from $\overline{W R}$ to Control Outputs	${ }^{\text {t }}$ WR	5		45	ns	$C_{L}=100 \mathrm{pF}$
Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after STSTB	tWE			30	ns	$C_{L}=100 \mathrm{pF}$
Delay from 8080A Bus $\mathrm{D}_{0}-\mathrm{D}_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ during Write	tWD	5		40	ns	$C_{L}=100 \mathrm{pF}$
Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$	${ }^{\prime} \mathrm{E}$			30	ns	$C_{L}=100 \mathrm{pF}$
HLDA to Read Status Outputs	${ }^{1} \mathrm{HD}$			25	ns	
Setup Time, System Bus Inputs to HLDA	${ }^{t} \mathrm{DS}$	10			ns	
Hold Time, System Bus Inputs to HLDA	${ }^{1} \mathrm{DH}$	20			ns	$C_{L}=100 \mathrm{pF}$



TEST CIRCUIT


VOLTAGE MEASUREMENT POINTS $\mathrm{D}_{0}$ - $\mathrm{D}_{7}$ (when ourputh) Logic " 0 " 08 V , Logit " 1 " 30 V All other hgnals measured d 1.5 V

TIMING WAVEFORMS



PACKAGE OUTLINE $\mu$ PB8228C/D $\mu$ PB8238C/D

$\mu$ PB8228/8238D
(Ceramic)

ITEM	MILLIMETERS	INCHES
A	36.0 MAX	141 MAX
B	15 MAX.	0.059 MAX
C	254	01
D	$0.50 \cdot 01$	$0.02 \cdot 0.004$
E	33.0	1.299
F	127	0.05
G	3.2 MIN.	0.126 MIN
H	1.0 MIN	0.04 MIN
I	3.3 MAX.	013 MAX.
J	5.2 MAX.	0.20 MAX
K	15.3	060
L	139	0.55
M	$0.30 \cdot 01$	$0.012 \cdot 0.004$

## INPUT/OUTPUT EXPANDER FOR $\mu$ PD8048/8748/8035

DESCRIPTION The $\mu$ PD8243 input/output expander is directly compatible with the $\mu$ PD8048 family of single-chip microcomputers. Using NMOS technology the $\mu$ PD8243 provides high drive capabilities while requiring only a single +5 V supply voltage.

The $\mu$ PD8243 interfaces to the $\mu$ PD8048 family through a 4 -bit I/O port and offers four 4-bit bi-directional static $\mathrm{I} / \mathrm{O}$ ports. The ease of expansion allows for multiple $\mu$ PD8243's to be added using the bus port.

The bi-directional I/O ports of the $\mu$ PD8243 act as an extension of the I/O capabilities of the $\mu$ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

## FEATURES - Four 4-Bit I/O Ports

- Fully Compatible with $\mu$ PD8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5 V Supply
- Direct Extension of Resident $\mu$ PD88048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in 24-Pin Plastic and Ceramic Packages



## General Operation

The I/O capabilities of the $\mu$ PD8048/8748/8035 can be enhanced in four 4-bit I/O port increments using one or more $\mu$ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port $2\left(\mathrm{P}_{20}-\mathrm{P}_{23}\right)$ forms the 4-bit bus through which the $\mu$ PD8243 communicates with the host processor. The PROG output from the $\mu$ PD8048/8748/8035 provides the necessary timing to the $\mu$ PD8243. There are two 4 -bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple $\mu$ PD8243's can be used for additional I/O. The output lines from the $\mu$ PD8048/8748/8035 can be used to form the chip selects for the additional $\mu$ PD8243's.

## Power On Initialization

Applying power to the $\mu$ PD8243 sets ports 4-7 to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time $\mathrm{V}_{\mathrm{CC}}$ drops below 1 V . The table below shows how the 4 -bit nibbles on Port 2 correspond to the $\mu$ PD8243 operations.

Port Address			Op-Code		
$P_{21}$	$P_{20}$	Address Code	$P_{23}$	$P_{22}$	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

## Read Mode

There is one Read mode in the $\mu$ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The Port $(4,5,6$, or 7$)$ that was selected by the Port address $\left(P_{21}-P_{20}\right)$ is returned to the tri-state mode, and Port 2 is switched to the input mode.

Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the $\mu$ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

## Write Modes

There are three write modes in the $\mu$ PD8243. The MOVD $P_{p}, A$ instruction from the $\mu$ PD8048/8748/8035 writes the new data directly to the specified port $(4,5,6$, or 7 ). The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.
The data remains latched at the selected port following the logical manipulation until new data is written to that port.

## BLOCK DIAGRAM



PIN IDENTIFICATION

PIN		( FUNCTION

## $\mu$ PD8243

Operating Temperature
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7 Volts
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIOŃS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	$\checkmark$	:
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		$\mathrm{V}_{C C}+0.5$	V	
Output Low Voltage (Ports 4-7)	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$1 \mathrm{OL}=5 \mathrm{~mA}{ }^{\text {(1) }}$
Output Low Voltage (Port 7)	$\mathrm{V}_{\mathrm{OL} 2}$			1	V	$1 \mathrm{OL}=20 \mathrm{~mA}$
Output Low Voltage (Port 2)	$\mathrm{V}_{\mathrm{OL} 3}$			0.45	$\checkmark$	$\mathrm{I}_{\mathrm{OL}}=0.6 \mathrm{~mA}$
Output High Voltage (Ports 4-7)	VOH	2.4			V	$1 \mathrm{OH}=240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	${ }^{1} \mathrm{OH}=100 \mu \mathrm{~A}$
Sum of All IOL From 16, Outputs	${ }_{\mathrm{I}}^{2}$			100	mA	5 mA Each Pin
Input Leakage Current (Ports 4-7)	I/L1	-10		20	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V
Input Leakage Current (Port 2, CS, PROG)	IIL2	-10		10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$
$V_{\text {CC }}$ Supply Current	${ }^{1} \mathrm{CC}$		10	20	mA	

Note: (1) Refer to graph of additional sink current drive.

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Code Valid Before PROG	${ }^{\text {t }}$ A	100			ns	80 pF Load
Code Valid After PROG	${ }^{\text {t }}$ B	60			ns	20 pF Load
Data Valid Before PROG	${ }^{t} \mathrm{C}$	200			ns	80 pF Load
Data Valid After PROG	to	20			ns	20 pF Load
Port 2 Floating After PROG	${ }_{t}{ }_{\text {H }}$	0		150	ns	20 pF Load
PROG Negative Pulse Width	${ }^{\text {t }}$ K	900			ns	
Ports 4.7 Valid After PROG	tPO			700	ns	100 pF Load
Ports 4-7 Valid Before/After PROG	tLP1	100			ns	
Port 2 Valid After PROG	${ }^{\text {t }}$ ACC			750	ns	80 pF Load
$\overline{\text { CS }}$ Valid Beforé/After PROG	${ }^{\text {c }} \overline{C S}$	50			ns	



## CURRENT SINKING

CAPABILITY (1)


Note: (1) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The $\mu$ PD8243 is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ ) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

## PACKAGE OUTLINES $\mu$ PD8243C/D



ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5: 0.1$	$0.02 \cdot 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	0.25	-0.10
-0.05	$0.01+0.004$	
		-00019


Ceramic

ITEM	MILLIMETERS	INCHES
A	33.5 MAX.	1.32 MAX.
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
K	15.24	0.6
L	13.5	0.53
M	$0.25_{-0.05}^{+0.10}$	$0.01_{-0.002}^{+0.004}$



## PROGRAMMABLE COMMUNICATION INTERFACES

## DESCRIPTION

The $\mu$ PD8251 and $\mu$ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the $\mu$ PD8080 or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TXE and SYNDET, is available to the processor at any time.

FEATURES • Asynchronous or Synchronous Operation

- Asynchronous:

5-8 Bit Characters Clock Rate - 1, 16 or $64 \times$ Baud Rate Break Character Generation Select 1, 1-1/2, or 2 Stop Bits
False Start Bit Detector
Automatic Break Detect and Handling ( $\mu$ PD8251A)

- Synchronous:

5-8 Bit Characters
Internal or External Character Synchronization
Automatic Sync Insertion
Single or Double Sync Characters

- Baud Rate - Synchronous - DC to 56K Baud ( $\mu$ PD8251)
- DC to 64K Baud ( $\mu$ PD8251A)
- Asynchronous - DC to 9.6K Baud
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080/8085/ $\mu$ PD 780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply
- Separate Device, Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
- N-Channel MOS Technology

PIN CONFIGURATION


PIN NAMES	
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus 18 bits)
C/D	Control or Data is to be Written or Read
$\overline{\text { RD }}$	Read Data Command
$\overline{\text { WR }}$	Write Data or Control Command
$\overline{\mathrm{Cs}}$	Chip Enable
CLK	Clock Pulse (TTL)
RESET	Reset
TxC	Tiansmitter Clock (TTL)
TxD	Transmitter Data
$\overline{\mathrm{R} \times \mathrm{C}}$	Receiver Clock (TTL)
R×D	Receiver Data
RXRDY	Receiver Ready (has character for 8080)
TXRDY	Transmitter Ready (ready for char. from 8080)
$\overline{\text { DSR }}$	Data Set Ready
DTR	Data Terminal Ready
SYNDET	Sync Detect
SYNDET/BD	Sync Detect/Break Detect
RTS	Request to Send Data
$\overline{\text { CTS }}$	Clear to Send Data
TXE	Transmitter Empty
$\mathrm{v}_{\mathrm{CC}}$	+5 Volt Supply
GND	Ground

## $\mu$ PD8251/8251A

The $\mu$ PD8251 and $\mu$ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with most 8 -bit processors. Operation of the $\mu$ PD8251 and $\mu$ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the $\mu$ PD8251 or $\mu$ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The $\mu$ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080,8085 , and $\mu$ PD 780 (Z80 ${ }^{\text {TM }}$ ). The additional features and enhancements of the $\mu$ PD8251A over the $\mu$ PD8251 are listed below.

1. The data paths are double-buffered with separate I/O registers for control, status, Data In and Data Out. This feature simplifies control programming and minimizes processor overhead.
2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
3. The Receiver is prevented from starting when in "break" state by a refined Rx initialization. This also prevents a disconnected USART from causing unwanted interrupts.
4. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
5. The Tx Disable command is prevented from halting transmission by the $T_{x}$ Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
6. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through a flip-flop which clears itself upon a status read.
7. The possibility of a false sync detect is minimized by:

- ensuring that if a double sync character is programmed, the characters be contiguously detected.
- clearing the Rx register to all Logic 1s $(\mathrm{VOH})$ whenever the Enter Hunt command is issued in Sync mode.

8. The $\overline{R D}$ and $\overline{W R}$ do not affect the internal operation of the device as long as the $\mu$ PD8251A is not selected.
9. The $\mu$ PD8251A Status can be read at any time, however, the status update will be inhibited during status read.
10. The $\mu$ PD8251A has enhanced AC and DC characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
11. Baud rate from $D C$ to $64 K$.

$\mathbf{C / D}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{C S}}$	
0	0	1	0	$\mu$ PD8251 $/ \mu$ PD8251A $\rightarrow$ Data Bus
0	1	0	0	Data Bus $\rightarrow \mu$ PD8251 $/ \mu$ PD8251A
1	0	1	0	Status $\rightarrow$ Data Bus
1	1	0	0	Data Bus $\rightarrow$ Control
$X$	$X$	$X$	1	Data Bus $\rightarrow 3$-St 2 te
$X$	1	1	0	

TM: Z80 is a registered trademark of Zilog.

FUNCTIONAL DESCRIPTION
$\mu$ PD8251A FEATURES AND ENHANCEMENTS


ABSOLUTE MAXIMUM	Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Ali Output Voltages .	-0.5 to +7 Volts
	All Input Voltages	-0.5 to +7 Volts
	Supply Voltages	-0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS					UNIT	TEST CONDITIONS
		$\mu$ PD8251			$\mu$ PD8251A			
		MIN	TYP	MAX	MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	0.5	0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$		.	0.45	.	0.45	V	$\begin{aligned} & \mu \mathrm{PD} 8251: \quad \mathrm{OL}=1.7 \mathrm{~mA} \\ & \mu \mathrm{PD} 8251 \mathrm{~A}: \quad \mathrm{OL}=2.2 \mathrm{~mA} \\ & \hline \end{aligned}$
Output High Voltage	VOH	2.4			2.4		V	$\begin{aligned} & \mu \mathrm{PD} 8251: \quad \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{C} \mu \mathrm{~A} \\ & \mu \mathrm{PD} 8251 \mathrm{~A}: \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
Data Bus Leakage	${ }^{\prime} \mathrm{DL}$			-50		-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
				10		10		$V_{\text {OUT }}=V_{\text {CC }}$
Input Load Current	IIL			10		10	$\mu \mathrm{A}$	At 5.5V
Power Supply Current	${ }^{1} \mathrm{CC}$		45	80		100	mA	$\mu$ PD8251A: All Outputs $=$ Logic 1

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST   CONDITIONS
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	
I/O Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$			20	pF	Unmeasured   pins returned   to GND


PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu$ PD8251		$\mu$ PD8215A			
		MIN	MAX	MIN	MAX		
READ							
Address Stable before $\overline{\mathrm{READ}}$, ( $\overline{C S}, \overline{\mathrm{C} / \mathrm{D}}$ )	${ }^{\text {t }}$ AR	50		0		ns	
Address Hold Time for $\overline{\text { READ }}$, (CS, $\overline{C D}$ )	tra	5		0		ns	
READ Pulse Width	trR	430		250		ns	
Data Delay from $\overline{\text { READ }}$	trd		350		200	ns	$\mu$ PD8251: $C_{L}=100 \mathrm{pF}$   $\mu$ PD8251A: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floating	${ }^{\text {' }} \mathrm{DF}$	25	200	10	100	ns	$\begin{array}{ll} \mu \text { PD8251 } & C_{L}=100 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}$
WRITE							
Address Stable before $\overline{\text { WRITE }}$	taw	20		0		ns	
Address Hold Time for WRITE	tWA	20		0		ns	
WRITE Pulse Width	twW	400		250		ns	
Data Set-Up Time for WRITE	tDW	200		150		ns	
Data Hold Time for WRITE	tWD	40		0		ns	
Recovery Time Between WRITES (2)	trv	6		6		${ }^{\text {t }} \mathrm{C}$	
OTHER TIMING							
Clock Period (3)	${ }^{\text {t }} \mathrm{C}$	0.420	1.35	0.32	1.35	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }_{t}{ }_{\text {¢ }} \mathrm{W}$	220	${ }^{0.7 \mathrm{t}^{\mathrm{C}} \mathrm{CY}}$	120	${ }^{\text {t }}$ CY-90	ns	
Clock Pulse Width Low	$t_{\phi} W$			90		ns	
Clock Rise and Fall Time	tr.tF	0	50	5	20	ns	
T×D Delay from Falling Edge of T×C	${ }^{\text {t DTx }}$		1		1	$\mu \mathrm{s}$	$\mu \mathrm{PD} 8251 \mathrm{C}_{\text {c }} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
R× Data Set-Up Time to Sampling Pulse		2		2		$\mu \mathrm{s}$	
R× Data Hold Time to Sampling Puise	${ }_{\text {thrx }}$	2		2		$\mu \mathrm{S}$	
Transmitter Input Clock Frequency   $1 \times$ Baud Rate   16X Baud Rate   64X Baud Rate	${ }^{\text {f }}$ ¢ $\times$	DC	56		64	$\mathrm{KHz}_{2}$	
		DC	520		310	kHz	
		DC	520		615	kHz	
Transinitter Inpu: Clock Pulse width   $1 \times$ Baud Rate   16 X and $64 \times$ Baud Rate	tTPW	12		12	,	${ }^{1} \mathrm{CY}$	
		1		1		${ }^{\text {t }} \mathrm{CY}$	
Transmitter Input Clock Pulse Delay $1 \times$ Baud Rate 16X and $64 \times$ Baud Rate	${ }^{\text {tPPD }}$	$\frac{15}{3}$		15		${ }^{\text {t Cry }}$	
```-Recerver Input Clock Frequency 1\times Baud Rate 16X Baud Rate 64X Baud Rate```	${ }^{\text {f }} \mathrm{R} \times$	DC	56		64	kHz	
		$\frac{D C}{\text { DC }}$	520		310	$\frac{\mathrm{kHz}}{\mathrm{kHz}}$	
Receiver Input Clock Puise Width $1 \times$ Baud Rate 16 X and $64 \times$ Baud Rate	${ }^{\text {tRPW }}$	12		12		toy	
		1		1		${ }^{\text {t }} \mathrm{CY}$	
Receiver Input Clock Pulse Delay $1 \times$ Baud Rate 16 X and $64 \times$ Baud Rate	${ }^{\text {tr PPD }}$	15		15		$\frac{1}{\text { tey }}$	
TxRDY Delay from Center of Data Bit	${ }^{\text {tTx }}$		16		8	${ }^{t} \mathrm{C} Y$	${ }_{\mu \text { PD8251. }} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
RxRDY Delay from Center of Data Bit Internal SYNDET Delay from Center of Data Bit	$\begin{aligned} & \text { trx } \\ & \text { tis } \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & { }^{+} \mathrm{CY} \\ & { }^{1} \mathrm{CY} \end{aligned}$	
External SYNDET Set-Up Time before Falling Edge of $\overline{R \times C}$	tes		16		16	${ }^{t} \mathrm{C} Y$	
TxEMPTY Delay from Center of Data Bit	${ }^{\text {t T X }}$ E		16		20	${ }^{t} \mathrm{CY}$	$\mu \mathrm{PD} 8251: \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Control Delay from Rising Edge of WRITE (T×E, DTR, RTS)	${ }^{\text {t }} \mathrm{WC}$		16		8	${ }^{t} \mathrm{C} Y$	
Control to READ Set-Up Time ($\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}})$	${ }^{\text {t }} \mathrm{CR}$		16		20	${ }^{t} \mathrm{C} Y$	

Notes. (1) AC timings measured at $\mathrm{VOH}_{\mathrm{OH}}=2.0, \mathrm{VOL}_{\mathrm{OL}}=0.8$, and with load circuit of Figure 1 .
(2) This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY $=1$
(3) The $T \times C$ and $R \times C$ frequencies have the following limitations with respect to CLK. For $1 \times$ Baud Rate, ${ }^{f} T \times$ or ${ }^{f} R \times \leqslant 1 /\left(30{ }^{t} \mathrm{C} Y\right)$
For $16 X$ and $64 X$ Baud Rate, $f T X$ or $f_{R x} \leqslant 1 /(4.5 \mathrm{t} \mathrm{CY}$
(4) Reset Pulse Width $=6{ }^{t} \mathrm{CY}$ minımum.

Figure 1.

Typical Δ Output Delay Versus Δ Capacitance (pF)

SYSTEM CLOCK INPUT
$\overline{T \times C}(1 \times M O D E)$

T× DATA

TRANSMITTER CLOCK AND DATA

WRITE DATA CYCLE (PROCESSOR \rightarrow USART)

WRITE CONTROL OR OUTPUT PORT CYCLE (PROCESSOR \rightarrow USART)

READ CONTROL OR INPUT PORT CYCLE (PROCESSOR \leftarrow USART)

NOTES: (1) $T_{W C}$ includes the response timing of a control byte.
(2) $T_{C R}$ Includes the effect of CTS on the $T_{X E N B L}$ circuitry

TRANSMITTER CONTROL AND FLAG TIMING
(ASYNC MODE)

TIMING WAVEFORM (CONT.)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)

EXAMPLE FORMAT $=5$ BIT CHARACTER WITH PARITY AND 2 SYNC CHARACTERS

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

PIN			FUNCTION
NO.	SYMBOL	NAME	
1, 2, 27, 28 5-8	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Command words, and Status.
26	$V_{\text {CC }}$	$V_{\text {CC }}$ Supply Voltage	+5 volt supply
4	GND	Ground	Ground
Read/Write Control Logic			This logic block accepts inputs from the processor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device functional definition are located in the Read/ Write Control Logic.
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is $6 \mathrm{t}_{\mathrm{C}} \mathrm{C}$.
20	CLK	Clock Pulse	The CLK input provides for internal device timing and is usually connected to the Phase 2 (TTL) output of the μ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	$\overline{\mathrm{WR}}$	Write Data	A "zero" on th is input instructs the USART to accept the data or control word which the processor is writing out on the data bus.
13	$\overline{\mathrm{RD}}$	Read Data	A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read.
12	C/ $\overline{\text { D }}$	Control/Data	The Control/Data input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus. $0=$ Data; $1=$ Control.
11	$\overline{\overline{C S}}$	Chip Select	A "zero" on this input enables the USART to read from or write to the processor.
	Mod	Control	The μ PD8251 and μ PD8251A have a set of control inpuits and outputs which may be used to simplify the interface to a Modem.
22	$\overline{\text { DSR }}$	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information. The $\overline{\mathrm{DSR}}$ input is normally used to test Modem Data Set Ready condition.
24	$\overline{\text { DTR }}$	Data Terminal Ready	The Data Terminal Ready output can be controlled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
23	$\overline{\text { RTS }}$	Request to Send	The Request to Send output can be controlled via the Command word. The RTS output is normally used to drive the Modem Request to Send line.
17	$\overline{\text { CTS }}$	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TXEN bit in the Command Instruction register is enabled (one).

TRANSMIT BUFFER

PIN IDENTIFICATION (CONT.)

The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

PIN			FUNCTION
NO.	SYMBOL	NAME	
Transmit Control Logic			The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	T×RDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets TXRDY, on the leading edge.
18	T×E	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further characters to transmit. $T \times E$ is automatically reset upon receiving a data character from the processor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE. In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.
9	$\overline{T \times C}$	Transmitter Clock	The Transmitter Clock controls the serial charac ter transmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 x, 16 x$, or $64 x$ the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate. Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T \times C}$.
19	$T \times D$	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

μ PD8251 AND μ PD8251A INTERFACE TO 8080 STANDARD SYSTEM BUS

The Receive Buffer accepts serial data input at the $\overline{R \times D}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251 and μ PD8251A set the extra bits to "zero."

PIN			FUNCTION
NO.	SYMBOL	NAME	
Receiver Control Logic			This block manages all activities related to incoming data.
14	R×RDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check $R \times R D Y$ using a Status Read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets R×RDY.
25	$\overline{\mathrm{R} \times \mathrm{C}}$	Receiver Clock	The Receiver Clock determines the rate at which the incoming character is received. In the Asynchronous mode, the $\overline{\mathrm{RxC}}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Synchronous mode the $\overline{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 \times$ the Baud Rate. Unlike $\overline{T \times C}$, data is sampled by the μ PD8251 and μ PD8251A on the rising edge of $\overline{\mathrm{RxC}}$. (1)
3	$R \times D$	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.
16	SYNDET (μ PD8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the μ PD8251 to start assembling data character on the next falling edge of $\overline{R \times C}$. The length of the SYNDET input should be at least one $\overline{R \times C}$ period, but may be removed once the μ PD8251 is in SYNC.
16	SYNDET/BD (μ PD8251A)	Sync Detect/ Break Detect	The SYNDET/BD pin is used in both Synchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.

PIN IDENTIFICATION
(CONT.)

Note: (1) Since the μ PD8251 and μ PD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. $\overline{\mathrm{R} \times \mathrm{C}}$ and $\overline{T x C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
Examples: If the Baud Rate equals 110 (Async): If the Baud Rate equals 300:
$\overline{R x C}$ or $\overline{T x C}$ equals $110 \mathrm{~Hz}(1 x)$
$\overline{R \times C}$ or $\overline{T x C}$ equals $1.76 \mathrm{KHz}(16 x)$
$\overline{\mathrm{RxC}}$ or $\overline{\mathrm{TxC}}$ equals $7.04 \mathrm{KHz}(64 x)$
$\overline{R x C}$ or $\overline{T x C}$ equals $300 \mathrm{~Hz}(1 x) A$ or S
$\overline{R \times C}$ or $\overline{T x C}$ equals 4800 Hz (16x) A only
$\overline{R \times C}$ or $\overline{T x C}$ equals $19.2 \mathrm{KHz}(64 x)$ A only

OPERATIONAL DESCRIPTION

A set of control words must be sent to the μ PD8251 and μ PD8251A to define the desired mode and communications format. The control words will specify the BAUD RATE FACTOR ($1 x, 16 x, 64 x$), CHARACTER LENGTH (5 to 8), NUMBER OF STOP BITS (1, 1-1/2, 2) ASYNCHRONOUS or SYNCHRONOUS MODE, SYNDET (IN or OUT), PARITY, etc.

After receiving the control words, the μ PD8251 and μ PD8251A are ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251 and μ PD8251A may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset R×RDY.

Note: The μ PD8251 and μ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction ($R \times E$). A dummy read is recommended to clear faulty $R \times R D Y$. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The μ PD8251 and μ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\mathrm{CTS}}$ (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words.

USART PROGRAMMING
The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A Reset (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C / \bar{D}=1$) followed by a software reset command instruction (40 Hex) can be used to initialize the μ PD8251 and μ PD8251A.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION
This control word specifies the general characteristics of the interface regarding the SYNCHRONOUS or ASYNCHRONOUS MODE, BAUD RATE FACTOR, CHARACTER LENGTH, PARITY, and NUMBER OF STOP BITS. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

$$
\begin{aligned}
& \text { NOTE (1) The second SYNC character is skipped if MODE instruction has pro- } \\
& \text { grammed the } \mu \text { PD8251 and } \mu \text { PD8251A to single character Internal } \\
& \text { SYNC Mode. Both SYNC characters are skipped if MODE } \\
& \text { instruction has programmed the } \mu \text { PD8251 and } \mu \text { PD8251A to ASYNC } \\
& \text { mode. }
\end{aligned}
$$

The μ PD8251 and μ PD8251A can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components, one asynchronous and the other synchronous, which share the same support circuits and package. Although the format definition can be changed at will or "on the fly", the two modes will be explained separately for clarity.

When a data character is written into the μ PD8251 and μ PD8251A, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on $\overline{\mathrm{CTS}}$ and TxEN, the character may be transmitted as a serial data stream at the $T x D$ output. Data is shifted out by the falling edge of $T \times C$ at $T \times C, T x C / 16$ or $T \times C / 64$, as defined by the Mode Instruction.

If no data characters have been loaded into the μ PD8251 and μ PD8251A, or if all available characters have been transmitted, the TXD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The RxD input tine is normally held "high" (marking) by the transmitting device. A falling edge at $R \times D$ signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approxiand the bit assembling counter starts counting. The bit counter locates the approxi--
mate center of the date, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the R×D pin with the rising edge of $\overline{R \times C}$. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input of an input character, a framing error (FE) will be set. After a valid STOP bit, the input
character is loaded into the parallel Data Bus Buffer of the μ PD8251 and μ PD8251A and the RxRDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.
. .. NOTE (1)
f no data characters have been loaded into the μ PD8251 and μ PD8251A or if all

MODE INSTRUCTION DEFINITION

ASYNCHRONOUS TRANSMISSION

MODE INSTRUCTION FORMAT ASYNCHRONOUS MODE

TRANSMIT/RECEIVE FORMAT ASYNCHRONOUS MODE

PROCESSOR BYTE (5-8 BITS/CHAR)

TRANSMISSION FORMAT

PROCESSOR BYTE (5.8 BITS/CHAR) (3)

RECEIVE FORMAT
(2) Does not appear on the Data Bus.
(3) If character length is defined as 5,6 , or 7 bits, the unused bits are set to "zero."

μ PD8251/8251A

As in Asynchronous transmission, the TxD output remains "high" (marking) until the μ PD8251 and μ PD8251A receive the first character (usually a SYNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send ($\overline{\mathrm{CTS}}$) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{T \times C}$ and the same rate as $\overline{T \times C}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at TxD continue at the $\overline{T \times C}$ rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251 and μ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TXD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251 and μ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit

SYNCHRONOUS RECEIVE has been set by a Command Instruction, the receiver goes into the HUNT mode.

Incoming data on the $R \times D$ input is sampled on the rising edge of $\overline{R \times C}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251 and μ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{R \times C}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.

MODE INSTRUCTION FORMAT
SYNCHRONOUS MODE

TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE

SERIAL DATA INPUT (R×D)

Note: (1) If character length is defined as 5, 6 or 7 bits, the unused bits are set to "zero."

COMMAND INSTRUCTION FORMAT

After the functional definition of the μ PD8251 and μ PD8251A has been specified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.
After the Moide Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" (C/ $\bar{D}=1$) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251 and μ PD8251A to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

STATUS READ FORMAT

It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The μ PD8251 and μ PD8251A have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/D input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the μ PD8251 and μ PD8251A to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 16 clock periods in the μ PD8251 and 28 clock periods in the μ PD8251A.

When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

OVERRUN ERROR

FRAMING ERROR

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note: (1) ASYNC mode on!y.

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $E H$ | $I R$ | $R T S$ | $E R$ | $S B R K$ |
| :---: | :---: | :---: | :---: | :---: |
| $R \times E$ | $D T R$ | $T \times E N$ | | |

TRANSMIT ENABLE
$1=$ enable
$0=$ disable

DATA TERMINAL READY
"high" will force $\overline{\text { DTR }}$
output to zero

RECEIVE ENABLE $1=$ enable $0=$ disable

SEND BREAK CHARACTER $1=$ forces T×D "low" $0=$ normal operation

ERROR RESET

 $1=$ reset all error flags PE, OE, FEREQUEST TO SEND "high" will force RTS output to zero

OVERRUN ERROR
The OE flag is set when the CPU does not read a character before the next one becomes available. It is reset by the ER bit of the Command instruction. OE does not inhibit operation of the μ PD8251 and μ PD8251A; but, the previously overrun character is lost.

es: (1) No effect in ASYNC mode.
(2) TXRDY status bit is not totally equivalent to the TXRDY output pin, the relationship is as follows:

TxRDY status bit = DB Buffer Empty TxRDY (pin 15) $=$ DB Buffer Empty $\cdot \overline{C T S} \bullet T \times E n$

COMMAND INSTRUCTION FORMAT

STATUS READ FORMAT

ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD

ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE

SYNCHRONOUS INTERFACE TO TELEPHONE LINES

PACKAGE OUTLINES μ PD8251C/D μ PD8251AC/D

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

Ceramic

ITEM	MILLIMETERS	INCHES
A	36.0 MAX.	1.41 MAX.
B	1.5 MAX	0.059 MAX
C	2.54	0.1
D	0.50×0.1	$0.02 \cdot 0.004$
E	33.0	1.299
F	1.27	0.05
G	3.2 MIN.	0.126 MIN
H	1.0 MIN	0.04 MIN
I	3.3 MAX.	0.13 MAX.
J	5.2 MAX.	0.20 MAX.
K	15.3	0.60
L	13.9	0.55
M	0.30 ± 0.1	0.012 ± 0.004

PROGRAMMABLE INTERVAL TIMER

DESCRIPTION The NEC μ PD8253 contains three independent, programmable, multi-modal 16-bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The μ PD8253 interfaces directly to the busses of the processor as an array of I/O ports.

The μ PD8253 can generate accurate time delays under the control of system software. The three independent 16 -bit counters can be clocked at rates from DC to 2 MHz . The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the μ PD8253 in microprocessor based systems are:

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller

FEATURES - Three Indpendent 16-Bit Counters

- Clock Rate: DC to 3 MHz
- Programmable Counter Modes
- Count Binary or BCD
- Single +5 Volt Supply
- 24 Pin Dual-In-Line Plastic Package

microprocessor system. It will transmit or receive data in accordance with the INput or OUTput instructions executed by the processor. There are three basic functions of the Data Bus Buffer.

1. Program the modes of the μ PD8253
2. Load the count registers.
3. Read the count values.

Read/Write Logic

The Read/Write Logic controls the overall operation of the μ PD8253 and is governed by inputs received from the processor system bus.

Control Word Register

Two bits from the address bus of the processor, A_{0} and A_{1}, select the Control Word Register when both are at a logic " 1 " (active-high logic). When selected, the Control Word Register stores data from the Data Bus Buffer in a register. This data is then used to control:

1. The operational MODE of the counters.
2. The selection of BCD or Binary counting.
3. The loading of the count registers.

$\overline{\mathrm{RD}}$ (Read)

This active-low signal instructs the μ PD8253 to transmit the selected counter value to the processor.

$\overline{W R}$ (Write)

This active-low signal instructs the μ PD8253 to receive MODE information or counter input data from the processor.
A_{1}, A_{0}
The A_{1} and A_{0} inputs are normally connected to the address bus of the processor. They control the one-of-three counter selection and address the control word register to select one of the six operational MODES.

$\overline{\mathrm{CS}}$ (Chip Select)

The μ PD8253 is enabled when an active-low signal is applied to this input. Reading or writing from this device is inhibited when the chip is disabled. The counter operation, however, is not affected.
Counters \#0, \#1, \#2
The three identical, 16 -bit down counters are functionally independent allowing for separate MODE configuration and counting operation. They function as Binary or $B C D$ counters with their gate, input and output line configuration determined by the operational MODE data stored in the Control Word Register. The system software overhead time can be reduced by allowing the control word to govern the loading of the count data.
The programmer, with READ operations, has access to each counter's contents. The μ PD8253 contains the commands and logic to read each counter's contents while still counting without disturbing its operation.
The following is a table showing how the counters are manipulated by the input signals to the Read/Write Logic.

$\overline{\mathrm{CS}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\mathrm{A}_{\mathbf{1}}$	$\mathrm{A}_{\mathbf{0}}$	FUNCTION
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation, 3-State
1	X	X	X	X	Disable, 3-State
0	1	1	X	X	No-Operation, 3-State

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 5 \% ; G N D=0 \mathrm{~V}$

PARAMETER	SYMBOL	- LIMITS						UNIT	TEST CONDITIONS
		μ PD8253			μ PD8253.5				
		MIN	TYP	MAX	MIN	TYP	MAX		
		READ							
A'ddress Stable Before $\overline{\text { READ }}$	${ }^{\text {t AR }}$	50			50			ns	
Address Hold Time for $\overline{\text { READ }}$	tra	5			5			ns	
$\overline{\text { READ Pulse Width }}$	trR	400			300			ns	
Data Delay from READ	trD			300			200	ns	$\mathrm{CL}=100 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floating	${ }^{\text {t }}$ DF	25		125	25		100	ns	$\mathrm{CL}=100 \mathrm{pF}$
WRITE									
Address Stable Before WRITE	${ }^{\text {t }}$ AW	20			20			ns	
Address Hold Time for WRITE	${ }^{\text {t }}$ WA	20			20			ns	
WRITE Pulse Width	twW	400			300			ns	
Data Set Up Time for WRITE	t DW	200			200			ns	
Data Hold Time for WRITE	${ }^{\text {t }}$ WD	40			30			ns	
Recovery Time Between WRITES	${ }^{\text {t } R V}$	1			1			$\mu \mathrm{s}$	
CLOCK AND GATE TIMING									
Clock Period	${ }^{\text {t }}$ CLK	' 300		DC	300		DC	ns	
High Pulse Width	tPWH	200			200			ns	
Low Pulse Width	tPWL	100			100			ns	
Gate Pulse Width High	${ }_{\text {t }}$ GW	150			150			ns	
Gate Set Up Time to Clock 1	${ }^{\text {t GS }}$	100			100			ns	
Gate Hold Time After Clock \dagger	${ }^{\text {t GH }}$	50			50			ns	
Low Gate Width	${ }^{\text {t G L }}$	100			100			ns	
Output Delay from Clock \downarrow	${ }^{\text {tob }}$			300			300	ns	$\mathrm{CL}=100 \mathrm{pF}$
Output Delay from Gate	${ }^{\text {t }}$ ODG			300			300	ns	$\mathrm{CL}=100 \mathrm{pF}$

Note: (1) AC Timing Measured at $\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$.

TIMING WAVEFORMS

PROGRAMMING
THE μ PD8253

The programmer can select any of the six operational MODES for the counters using system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data $\left(A_{0}, A_{1}=11\right)$.

CONTROL WORD FORMAT

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
SC 1	$\mathrm{SC0}$	RL 1	RLO	M 2	M 1	M 0	BCD

SC - Select Counter

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Invalid

RL - Read/Load

RL1	RL0	
0	0	Counter Latching Operation
1	0	Read/Load Most Significant Byte Only
0	1	Read/Load Least Significant Byte Only
1	1	Read/Load Least Significant Byte First, Then Most Significant Byte

BCD

0	Binary Counter, 16-Bits
1	BCD Counter, 4-Decades

M-Mode

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
\times	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

μ PD8253

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted Control Words. The following is a summary of the MODE operations.

Mode 0: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT low. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will remain low until the terminal counț sets it high. It will remain in the high state until the trailing edge of the second $\overline{W R}$ pulse loads in COUNT data. If data is loaded during the counting process, the first $\overline{W R}$ stops the count. Counting starts with the new count data triggered by the falling clock edge after the second $\overline{W R}$. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.

Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the trailing edge of GATE. The OUTPUT is set high again at the terminal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the One-Shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.

Mode 2: Rate Generator
The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.

Note: (1) All internal counter events occur at the falling edge of the associated clock in all modes of operation.

OPERATIONAL MODES (Cont.)

Mode 3: Square Wave Generator

MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{N+1}{2}$ clock cycles; Low Period $\rightarrow \frac{N-1}{2}$ clock periods, where N is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.
The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.

(RASET)

OUTPUT $_{n}$

Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loading of new data, the OUTPUT is held high and counting is inhibited.

The OUTPUT is held high for the duration of GATE. The counters are reset and counting begins from the full data value after GATE is removed.

Mode 5: Hardware Triggered Strobe

Loading MODE 5 sets OUTPUT high. Counting begins when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT wi'I pulse low for one clock period. Subsequent trigger pulses will restart the counting ser;uence with the OUTPUT pulsing low on terminal count following the last rising ec.ge of the trigger input (Reference bottom half of timing diagram).

PACKAGE OUTLINE μ PD8253C μ PD8253C-5

ITEM	MILLIMETERS	INCHES
A	33 MAX	13 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	0.25	

PROGRAMMABLE PERIPHERAL INTERFACES

DESCRIPTION
The μ PD8255 and μ PD8255A-5 are general purpose programmable INPUT/OUTPUT devices designed for use with the 8080A/8085A microprocessors. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bidirectional Bus mode, (MODE 2), uses the 8 lines of Port A for a bidirectional bus, and five lines from Port C for bus control signals. The μ PD8255 and μ PD8255A-5 are packaged in 40 pin plastic dual-in-line packages.

FEATURES - Fully Compatible with the 8080A/8085 Microprocessor Families

- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- $8-2 \mathrm{~mA}$ Darlington Drive Outputs for Printers and Displays (μ PD8255)
- 8-4 mA Darlington Drive Outputs for Printers and Displays (μ PD8255A-5)
- LSI Drastically Reduces System Package Count
- Standard 40 Pin Dual-In-Line Plastic Package

$\mathrm{PA}_{3}-1$		40	PA_{4}
$\mathrm{PA}_{2} \mathrm{CH}_{2}$		39	PA_{5}
PA_{1} [${ }^{3}$		38] AA_{6}
$P A_{0} \square^{4}$		37	$\square \mathrm{PA}_{7}$
$\overline{\mathrm{RD}} \mathrm{C}^{5}$		36	WR
$\overline{C S} 6$		35	RESET
GND 7		34	D_{0}
$A_{1} \square^{8}$		33	D_{1}
$A_{0} \square^{9}$		32	D_{2}
$\mathrm{PC}_{7}{ }^{10}$	8255/	31	D_{3}
$\mathrm{PC}_{6}{ }^{11}$	8255A-5	30	D_{4}
$\mathrm{PC}_{5}{ }^{12}$		29	D_{5}
$\mathrm{PC}_{4}{ }^{13}$		28	D_{6}
$\mathrm{PC}_{0}{ }^{14}$		27	D_{7}
$\mathrm{PC}_{1}{ }_{15}$		26	$\cdots \mathrm{V}_{\mathrm{CC}}$
$\mathrm{PC}_{2}{ }_{16}$		25	P PB_{7}
$\mathrm{PC}_{3}{ }_{17}$		24	PB6
$\mathrm{PC}_{0} \square_{18}$		23	PB_{5}
$\mathrm{PC}_{1}{ }^{\text {P }} 19$		22] PB_{4}
$\mathrm{PC}_{2} \square_{20}$		21	PB_{3}

PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (Bi-Directional)
RESET	Reset Input
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{BD}}$	Read Input
$\overline{\mathrm{WR}}$	Write Input
$\mathrm{A}_{0}, \mathrm{~A}_{1}$	Port Address
$\mathrm{PA}_{7}-\mathrm{PA}_{0}$	Port $\mathrm{A}(8 \mathrm{it})$
$\mathrm{PB}_{7}-\mathrm{PB}_{0}$	Port $\mathrm{B}(\mathrm{Bit)}$
$\mathrm{PC}_{7}-\mathrm{PC}_{0}$	Port $\mathrm{C}(\mathrm{Bit)}$
V_{C}	+5 Volts
GND	0 Volts

*All data pertaining to the μ PD8255A- 5 is preliminary.

μ PD8255/8255A-5

General

The μ PD8255 and μ PD8255A-5 Programmable Peripheral Interfaces (PPI) are designed for use in 8080A/8085A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A/8085A data and control busses with the μ PD8255 and μ PD8255A-5. The μ PD8255 and μ PD8255A- 5 are furictionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

Data Bus Buffer

The 3-state, bidirectional, eight bit Data Bus Buffer ($D_{0}-D_{7}$) of the μ PD8255 and μ PD8255A-5 can be directly interfaced to the proce ;sor's system Data Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$). The Data Bus Buffer is controlled by execution of IN and OUT instructions by the processor. Control Words and Status information are also transmitted via the Data Bus Buffer.

Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.

Chip Select, $\overline{\mathbf{C S}}$, pin 6

A Logic Low, $\mathrm{V}_{\text {IL }}$, on this input enables the μ PD8255 and μ PD8255A- 5 for communication with the 8080A/8085A.
Read, $\overline{\mathrm{RD}}, \operatorname{pin} 5$
A Logic Low, VIL, on this input enables the μ PD8255 and μ PD8255A- 5 to send Data or Status to the processor via the Data Bus Buffer.
W/rite, $\overline{W R}$, pin 36
A Logic Low, VIL, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.

Port Select 0, A_{0}, pin 9
Port Select 1, A_{1}, pin 8
These two inputs are used in conjunction with $\overline{C S}, \overline{R D}$, and $\overline{W R}$ to control the selection of one of three ports on the Control Word Register. A_{0} and A_{1} are usually connected to A_{0} and A_{1} of the processor Address Bus.

Reset, pin 35

A Logic High, $V_{1 H}$, on this input clears the Control Register and sets ports A, B, and C to the input mode. The input latches in ports A, B, and C are not cleared.

Group I and Group II Controls

Through an OUT instruction in System S.oftware from the processor, a control word is transmitted to the μ PD8255 and μ PD8255A-5. Information such as "MODE," ; "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.
Each group (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and.in turn controls its associated I/O ports.

Group I - Port A and upper Port C ($\mathrm{PC}_{7}-\mathrm{PC}_{4}$)
Group II - Port B and lower Port C ($\mathrm{PC}_{3}-\mathrm{PC}_{0}$)
While the Control Word Register can be written into, the contents cannot be read back to the processor.

Ports A, B, and C

The three 8 -bit I/O ports (A, B, and C) in the μ PD8255 and μ PD8255A- 5 can all be configured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the μ PD8255 and μ PD8255A-5 is further enhanced by special features unique to each of the ports.

Port $A=A n 8$-bit data output latch/buffer and data input latch.
Port $B=A n 8$-bit data input/output latch/buffer and an 8 -bit data input buffer.
Port $C=A n 8$-bit output latch/buffer and a data input buffer (input not latched).
Port C may be divided into two independent 4-bit control and status ports for use with Ports A and B.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) . -0.5 to +7 Volts
All Input Voltages (1) . 0.5 to +7 Volts
Supply Voltages (1) . 0.5 to +7 Volts
Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		μ PD8255			μ PD8255A-5				
		MIN	TYP	MAX	MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.5$		08	-0.5		08	V	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2		V_{CC}	2	:	$V_{\text {CC }}$	V	
Output Low Voltage	V_{OL}			0.4			045	V	(2)
Output High Voltage	V_{OH}	2.4			2.4			V.	(3)
Darlington Drive Current	${ }^{1} \mathrm{OH}(1)$	1	2	4	-1	-2	-4	mA	$\mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=750 \mathrm{~s} 2$
Power Supply Current	${ }^{1} \mathrm{CC}$		40	120		40	120	mA	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, Output Open
Input Leakage Current	'LIH			10			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current	ILIL			-10			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}-0.4 \mathrm{~V}$
Output Leakage Current	ILOH			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}-V_{C C}, \overline{C S}=20 \mathrm{~V}$
Output Leakage Current	${ }^{\prime} \mathrm{LOL}$			-10			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=04 \mathrm{~V}, \overline{\mathrm{CS}}=20 \mathrm{~V}$

Notes. (1) Any set of eight (8) outputs from etther Port A, B, of C can source 2 mA into 15 V for $\mu \mathrm{PD} 8255$, or 4 mA into 15 V for $\mu \mathrm{PD} 8255 \mathrm{~A}-5$
(2) For μ PD8255 $1 \mathrm{OL} \cdot 17 \mathrm{~mA}$

For ${ }_{\mu}$ PD $8255 \mathrm{~A}-5$. $1 \mathrm{OL}-25 \mathrm{~mA}$ for DB Port, 17 mA for Peripheral Ports
(3) For μ PD8255 $1 \mathrm{OH}-100 \mu \mathrm{~s}$ for DB Port, $50 \mu \mathrm{~s}$ for Peripheral Ports For μ PD8255A-5 $1 \mathrm{OH}-400 \mu$ s for DB Port, $-200 \mu \mathrm{~s}$ for Peripheral Ports

CAPACITANCE
$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	${ }_{\mathrm{f}} \mathrm{C}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to $V_{S S}$

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNIT	test CONDITIONS
		нPD8255		- PPD8255A-5			
		MIN	MAX	MIN	MAX		
READ							.
Address Stable Before $\overline{\text { READ }}$	${ }^{\text {t }}$ AR	50		0		ns	
Address Stable After $\overline{\text { PEAD }}$	tra	0		0		ns	
READ Pulse Width	trR	405		300		$n 3$	
Data Valid From $\overline{\text { READ }}$	tri		295		200	ns	$\begin{aligned} & \text { 8255: } C_{L}=100 \mathrm{pF} \\ & \text { 8255A.5: } C_{L}=150 \mathrm{pF} \\ & \hline \end{aligned}$
Data Float After READ	tDF	10	150	10	100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \end{aligned}$
Time Between $\overline{\text { READS }}$ and/or $\overline{\text { WRITES }}$	trv	850		850		ns	(2)
WRITE							
Address Stable Before WRITE	${ }^{\text {taw }}$	20		0		ns	
Address Stable After White	tWA	20		20		ns	
WRITE Pulse Width	tww	400		300		ns	
Data Valid To WRITE (LE.)	tow	10		100		ns	
Data Valid After WRTTEE	two	35		30		ns	
OTHER TIMING							
$\overline{W R}=0$ To Output	${ }^{\text {tw }}$ \%		500		350	ns	8255: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ 8255A-5: $C_{L}=150 \mathrm{pF}$
Peripheral Data Before RD	${ }_{\text {tiR }}$	0		0		ns	
Peripheral Data After RD	thr	50		0		ns	
$\overline{\text { ACK Pulse Width }}$	${ }_{\text {t }}{ }_{\text {AK }}$	500		300		ns	
STE Pulse Width	${ }^{\text {t }}$ ST	350		500		ns	
Per. Data Before T.E. Of STTB	tPS	60		0		ns	
Por. Data After T.E. Of STB	tPH	150		180		ns	
ACK = 0 To Output	${ }^{1} A D$		400		300	ns	$\begin{aligned} & \text { 8255: } C_{L}=50 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
$\overline{\text { ACR }}=0$ To Output Float	${ }^{\text {t K }}$ D	20	300	20	250	ns	$8255\left\{\begin{array}{l} C_{L}=50 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}\right.$
$\overline{W R}=1 \mathrm{~T}_{0} \overline{\mathrm{OBF}}=0$	twob		300		650	ns	
$\overline{A C R}=0 \mathrm{TO}_{0} \overline{\mathrm{OBF}}=1$	${ }_{\text {t }}{ }^{\text {AOB }}$		450		350	ns	
$\overline{S T B}=0$ To lBF $=1$	${ }^{\text {t }}$ IIB		450		300	ns	8255: $C_{L}=50 \mathrm{pF}$
$\overline{\mathrm{RD}}=1$ TOIBF $=0$	${ }^{\text {trib }}$		360		300	ns	
$\overline{R D}=0$ TOINTR $=0$	$t_{\text {RIT }}$		450		400	ns	
$\overline{S T B}=1$ TO INTR $=1$	tSit		400		300	ns	8255A-5: CL $=150 \mathrm{pF}$
$\overline{\text { ACK }}=1$ To INTR $=1$	${ }^{\text {taIt }}$		400		350	ns	
Wh $=0$ To INTR $=0$	twit		850		850	ns	

Notes: (1) Period of Reset pulse must be at least 50μ s during or after power on. Subsequent Reset pulse can be 500 ns min.

BASIC INPUT

TIMING WAVEFORMS (CONT.) MODE 1

MODE 2

Note: (1) Any sequence where $\overline{W R}$ occurs before $\overline{A C K}$ and $\overline{\text { STB }}$ occurs before $\overline{R D}$ is permissible. $(I N T R=I B F \cdot \overline{M A S K} \cdot \overline{S T B} \cdot \overline{R D}+\overline{O B F} \cdot \overline{M A S K} \cdot \overline{A C K} \cdot \overline{W R})$
(2) When the μ PD8255A-5 is set to Mode 1 or $2, \overline{\mathrm{OBF}}$ is reset to be high (logic 1).

μ PD8255/8255A-5

The μ PD8255 and μ PD8255A- 5 can be operated in modes (0,1 or 2) which are selected
MODES
by appropriate control words and are detailed below.

- MODE 0 provides for basic Input and Output operations through each of the ports

MODE 1 provides for Strobed Input and Output operations with data transferred through Port A or B and handshaking through Port C .
Twe I/O Groups (I and II)
Both groups contain an 8 -bit data port and a 4 -bit control/data port
Both 8 -bit data ports can be either Latched Input or Latched Output
MODE 2 provides for Strobed bidirectional operation using PA0.7 as the bidirectional latched data bus. PC_{3-7} is used for interrupts and "handshaking" bus flow controls similar to Mode 1 . Note that PB_{0-7} and PC_{0-2} may be defined as Mode 0 or 1 , input or output in conjunction with Port A in Mode 2.
An 8-bit latched bidirectional bus port ($\mathrm{PA}_{0}-7$) and a 5 -bit control port ($\mathrm{PC}_{3}-7$)
Both inputs and outputs are latched
An additional 8 -bit input or output port with a 3 -bit control port

INPUT OPERATION (READ)						
\mathbf{A}_{1}	A_{0}	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$		
0	0	0	1	0	PORT $A \longrightarrow$ DATA BUS	
0	1	0	1	0	PORT $\longrightarrow \longrightarrow$ DATA BUS	
1	0	0	1	0	PORT $C \longrightarrow$ DATA BUS	

OUTPUT OPERATION (WRITE)						
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WRR}}$	$\overline{\mathrm{CS}}$		
0	0	$\mathbf{1}$	0	0	DATA BUS \rightarrow PORT A	
0	1	$\mathbf{1}$	0	0	DATA BUS \rightarrow PORT B	
1	0	$\mathbf{1}$	0	0	DATA BUS \rightarrow PORT C	
1	1	1	0	0	DATA BUS \rightarrow CONTROL	

DISABLE FUNCTION							
$A_{\mathbf{1}}$	A_{0}	$\overline{\text { RD }}$	$\overline{\text { WR }}$	$\overline{\mathrm{CS}}$			
\times	\times	\times	\times	1	DATA BUS \rightarrow HIGH Z STATE		
\times	\times	1	1	0	DATA BUS \rightarrow HIGH Z STATE		

NOTES: (1) \times means "DO NOT CARE."
(2) All conditions not listed are illegal and should be avoided.

FORMATS

PACKAGE OUTLINE μ PD8255C/D μ PD8255AC/D-5

Members of the μ PD8085 Family are housed in both plastic and ceramic 40 pin packages. The drawings and tables below apply to all five of the NEC Microcomputer parts covered in this data sheet.

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$13.5-0.2$	$0.531+0.008$
M	0.30 ± 0.1	0.012 ± 0.004

PROGRAMMABLE DMA CONTROLLER

DESCRIPTION The μ PD8257 is a programmable four-channel Direct Memory Access (DMA) controller It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the 8257 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the 8257 so that the system bus may be acquired by the generation of a single HOLD command to the 8080. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other 8257 devices for systems requiring more than four DMA channels.

FEATURES - Four Channel DMA Controller

- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5 V Supply
- Expandable
- 40 Pin Plastic Dual-In-Line Package

The 8257 is a programmable, Direct Memory Access (DMA) device and when used with an 8212 1/O port device, it provides a complete four-channel DMA controller for use in 8080 based systems. Once initialized by an 8080 CPU, the 8257 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occur within the 8257.

- It acquires control of the system bus (placing 8080 in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16 bit memory address word is generated with the aid of an 8212 in the following manner:

The 8257 outputs the least significant eight bits $\left(A_{0}-A_{7}\right)$ which go directly onto the address bus.
The 8257 outputs the most significant eight bits $\left(A_{8}-A_{15}\right)$ onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

- The appropriate memory and $1 / O$ read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.
Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request ($D R Q_{n}$). The 8257 retains control of the system bus as long as $D R Q_{n}$ remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.
There are three different modes of operation:
- DMA read; which causes data to be transferred from memory to a peripheral;
- DMA write; which causes data to be transferred from a peripheral to memory; and
- DMA verify; which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the 8257. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control sianals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.

BLOCK DIAGRAM

AC CHARACTERISTICS PERIPHERAL (SLAVE) MODE

BUS PARAMETERS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$ (1)

PARAMETER	SYMBOL	, \% ¢\% LIMITS						UNIT	TEST CONDITIONS
		\#PD8257			μ PD8257.5				
		MIN	TYP.	MAX	MIN	TYP	MAX		
READ									
Adr or $\overline{\mathrm{CS}}$ S Setup to $\overline{\mathrm{Rd}} \downarrow$	$\mathrm{T}_{\text {AR }}$	0		-	0		-	ns	
Adr or $\overline{\mathrm{CS}} \uparrow$ Hold from $\overline{\mathrm{dd} \uparrow}$	TRA	0			0			ns	
Data Access from $\overline{\text { Rd, }}$	$\mathrm{T}_{\text {RDE }}$	0		300	0		200	ns	$C_{L}=100 \mathrm{pF}$
DB \rightarrow Float Delay from $\overline{\mathrm{R} d} \dagger$:	TrDF	20		150	20		150	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\overline{\mathrm{Rd}}$ Width	$\mathrm{T}_{\text {RW }}$	250	\cdots		250			ns	
WRITE									
$\overline{\text { CSt }}$ Setup to $\overline{W_{r i t}}$	$T_{\text {T }}$ w	300			300			ns	
$\overline{\mathrm{CS}} \mathrm{t}$ Hold from $\overline{\mathrm{Wr}} \mathrm{t}$	TWC	$\cdots 20$			20	.		ns	
Adr Setup to $\overline{\mathrm{Wr}}$:	TAW	20			20			ns	
Adr Hold from $\overline{W r t}$.	TWA	0			0			ns	
Data Setup to $\overline{\mathrm{Wr}}$ t	Tow	200			200		.	ns	
Data Hold from $\overline{W_{r}} \dagger$	Two	0			0			ns	
Wr width	${ }^{\text {Twws }}$	200			200			ns	
other timing									
Reset Pulse Width	TRSTW	300			300			ns	
Power Supply $\dagger\left(\mathrm{V}_{\mathrm{CC}}\right)$ Setup to Reset 4	TRSTD	500			500		\cdots	$\mu \mathrm{s}$	
Signal Rise Time	$T_{\text {r }}$			20			20	ns	
Signal Fall Time	$T_{\text {f }}$			20			20	ns	
Reset to First IOWR	TRSTS	2			2		\cdots	${ }_{\text {t }}^{\text {cr }}$ -	

Note: (1) All timing measurements are made at the following reference voltages unless specified otherwise input " 1 " at $2.0 \mathrm{~V}, ~ " 0$ " at 0.8 V , Output " 1 " at $2.0 \mathrm{~V}, ~ " 0$ " at 0.8 V .

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

READ TIMING

WRITE TIMING

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		μ PD8257		μ PD8257-5			
		MIN	MAX	MIN	MAX		
Cycle Time (Period)	TCY	0.320	4	0.320	4	$\mu \mathrm{s}$	
Clock Active (High)	T_{θ}	120	. 8 T CY	80	${ }^{8 T} \mathrm{CY}$	ns	
DRQ \uparrow Setup to $\theta \downarrow$ (S1, S4)	Tas	120		120			
DRQ \downarrow Hold from HLDA \uparrow	TOH	0		0			(4)
HRQ \uparrow or \downarrow Delay from $\theta \uparrow$ (SI, S4) (measured at 2.0V)	TDQ.		160		160	ns	(1)
HRQ \uparrow or \downarrow Delay from $\theta \uparrow$ (SI, S4) (measured at 3.3V)	T ${ }_{\text {DQ1 }}$		250		250	ns	(3)
HLDAt or \downarrow Setup to $\theta \downarrow$ (SI, S4)	THS	100		100		ns	
AEN \uparrow Delay from $\theta \downarrow$ (S 1)	TAEL		300		300	ns	(1)
AEN \downarrow Delay from $\theta \uparrow$ (SI)	TAET		200		200	ns	(1)
Adr (AB) (Active) Delay from AEN \uparrow (S1)	TAEA	20		20		ns	(4)
Adr (AB) (Active) Delay from $\theta \uparrow$ (S1)	T FAAB		250		250	ns	(2)
$\operatorname{Adr}(\mathrm{AB})$ (Float) Delay from $\theta \uparrow$ (SI)	TAFAB		150		150	ns	(2)
Adr (AB) (Stable) Delay from $\theta \uparrow$ (S1)	$\mathrm{T}_{\text {ASM }}$		250		250	ns	(2)
Adr (AB) (Stable) Hold from $\theta \uparrow$ (S1)	$\mathrm{T}_{\text {AH }}$	$\mathrm{T}_{\text {ASM }}$-50		T ${ }_{\text {ASM }}$-50			(2)
Adr (AB) (Valid). Hold from $\overline{\text { Rd }} \uparrow$ (S1, SI)	$T_{\text {AHR }}$	60		60		ns	(4)
Adr (AB) (Valid) Hold from $\overline{\mathrm{Wr}} \uparrow(\mathrm{S} 1, \mathrm{SI}$)	TAHW	300		300		ns	(4)
Adr (DB) (Active) Delay from θ ¢ (S1)	T $\mathrm{F}_{\text {ADB }}$		300		300	ns	(2)
Adr (DB) (Float) Delay from $\theta \uparrow$ (S2)	TAFDB	TSTT ${ }^{+20}$	250	${ }^{\text {T STT }}+20$	170	ns.	(2)
Adr (DB) Setup to Adr Stb \downarrow (S1-S2)	TASS	100		100		ns	(4)
Adr (DB) (Valid) Hold from Adr Stble (S2)	$\mathrm{T}_{\text {AHS }}$	50		50		ns	(4)
Adr Stb \dagger Delay from $\theta \uparrow$ (S 1)	TSTL		200		200	ns	(1)
Adr Stb \downarrow Delay from $\theta \uparrow$ (S2)	$\mathrm{T}_{\text {STT }}$		140		140	ns	(1)
Adr Stb Width (S1-S2)	$T_{\text {S }}$ W	$\mathrm{T}_{\mathrm{CY}} \mathbf{1 0 0}$		$\mathrm{T}_{\text {CY }} \mathbf{1 0 0}$		ns	(4)
$\overline{R d} \downarrow$ or $\overline{W r}(E x t) \downarrow$ Delay from Adr Stb \downarrow (S)	TASC	70		70		ns	(4)
$\overline{\mathrm{Rd}} \downarrow$ or $\overline{\mathrm{Wr}}$ (Ext) \downarrow Delay from Adr (DB) (Float) (S2)	${ }^{T}$ DBC	20		20		ns	(4)
DACK \uparrow or \downarrow Delay from $\theta \downarrow$ (S2, S1) and TC/Mark \uparrow Delay from $\theta \uparrow(S 3)$ and TC/Mark \downarrow Delay from $\theta \uparrow$ (S4)	${ }^{\text {T }}$ AK		250	\therefore	250	ns	(1) (5)
$\overline{\mathrm{Rd}} \downarrow$ or $\overline{W_{r}}(E x t) \downarrow$ Delay from $\theta \uparrow(\mathrm{S} 2)$ and $\overline{W_{r}} \downarrow$ Delay from $\theta \uparrow$ (S3)	${ }^{T}$ DCL		200		200	ns	(2) (6)
$\begin{array}{\|l} \overline{\mathrm{Rd}} \uparrow \text { Delay from } \theta \downarrow(\mathrm{S} 1, \mathrm{SI}) \text { and } \\ \overline{\mathrm{Wr} \uparrow} \uparrow \text { Delay from } \theta \uparrow(\mathrm{S} 4) \\ \hline \end{array}$	${ }^{T}$ DCT		200		200	ns	(2) (7)
$\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Active) from $\theta \uparrow$ (S1)	$T_{\text {FAC }}$		300		300	ns	(2)
$\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Float) from $\theta \uparrow$ (SI)	$T_{\text {AFC }}$		150		150	ns	(2)
$\overline{\mathrm{Rd}}$ Width (S2-S1 or SI)	TrwM	$\begin{aligned} & 2 \mathrm{~T}_{\mathrm{CY}}{ }^{+} \\ & \mathrm{T}_{\theta}-50 \\ & \hline \end{aligned}$		$\begin{aligned} & 2 T_{C Y+}^{+} \\ & T_{\theta}-50 \\ & \hline \end{aligned}$		ns	(4)
$\overline{\text { Wr }}$ Width (S3-S4)	TWWM	$T_{\text {CY-50 }}$		$\mathrm{T}_{\text {CY-50 }}$		ns	(4)
$\overline{\mathrm{Wr}}$ (Ext) Width (S2-S4)	TWWME	${ }^{2} \mathrm{~T}_{\mathrm{C}} \mathrm{Y}-50$		${ }^{2 T} \mathrm{~T}_{\text {cY }}-50$		ns	(4)
READY Set Up Time to $\theta \uparrow$ ($\mathrm{S} 3, \mathrm{Sw}$)	$\mathrm{T}_{\text {RS }}$	30		30		ns	
READY Hold Time from $\theta \uparrow$ ($\mathrm{S} 3, \mathrm{Sw}$)	TRH	20		20		ns	

Notes: (1) Load $=1 \mathrm{TTL}$
(2) Load $=1 \mathrm{TTL}+50 \mathrm{pF}$
(3) $\mathrm{Load}=1 \mathrm{TTL}+\left(\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K}\right), \mathrm{VOH}_{\mathrm{OH}}=3.3 \mathrm{~V}$
(4) Tracking Specification
(5) $\Delta T_{A K}<50 \mathrm{~ns}$
(6) $\Delta T_{\mathrm{DGL}}<50 \mathrm{~ns}$.
(7) $\triangle T_{D C T}<50 \mathrm{~ns}$

нPD8257

Internally the 8257 contains six different states (S0, S1, S2, S3, S4 and SW), the duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests ($\mathrm{DRO}_{\mathrm{n}}$), then the 8257 enters the S 0 state. During state S 0 a Hold Request (HRQ) is sent to the 8080 and the 8257 waits in SO until the 8080 issues a Hold Acknowledge (HLDA) back. During S0, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line $\left(\overline{\mathrm{DACK}}_{n}\right)$ with the highest priority is driven low selecting that particular peripheral for the DMA cycle. The DMA Request line ($D R Q_{n}$) must remain high until either a DMA Acknowledge ($\overline{\mathrm{DACK}}_{\mathrm{n}}$) or both $\overline{\mathrm{DACK}}_{\mathrm{n}}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst mode).

The DMA cycle consists of four internal states; $\mathrm{Si}, \mathrm{S} 2, \mathrm{~S} 3$ and S 4 . If the access time of the memory or I/O device is not fast enough to return a Ready command to the 8257 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the 8257 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the 8257 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (trs), write setup time (tDW), read data access time (trD) and HLDA setup time (tos) should all be carefully observed during the handshaking mode between the 8257 and the 8080.

During DMA write cycles, the I/O Read ($\overline{/ / O R}$) output is generated at the beginning of state S2 and the Memory Write ($\overline{\mathrm{MEMW}}$) output is generated at the beginning of S3. During DMA read cycles, the Memory Read ($\overline{M E M R}$) output is generated at the beginning of state S2 and the I/O Write ($\overline{\mathrm{I} / \mathrm{OW})}$ goes low at the beginning of state S3. No Read or Write control signals are generated during DMA verify cycles.

Notes: (1) HRQ is set if $D R Q_{n}$ is active.
(2) HRQ is reset if DRQ_{n} is not active.

DMA OPERATION STATE DIAGRAM

TYPICAL 8257
SYSTEM INTERFACE SCHEMATIC

Operating Temperature
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 to +7 Volts (1)
Power Dissipation . 1 Watt

Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	test Conditions
		MIN.	TYP.	MAX.		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	Volts	
Input High Voltage	V_{IH}	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	Volts	
Output Low Voltage	V_{OL}			0.45	Volts	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		v_{Cc}	Volts	${ }^{\prime} \mathrm{OH}^{\prime}=-150 \mu \mathrm{~A}$ for AB , DB and AEN $\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$ for others
HRO Output High Voltage	v_{HH}	3.3		v_{cc}	Volts	$\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\text {CC }}$ Current Drain	${ }^{\text {c C }}$			120	mA	
Input Leakage	IIL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{v}_{\text {CC }}$
Output Leakage During Float	'OFL			10	$\mu \mathrm{A}$	$\mathrm{v}_{\text {OUT }}{ }^{(1)}$

Note: (1) $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{OUT}}>\mathrm{GND}+0.45 \mathrm{~V}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Capacitance	C_{IN}			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$			20	pF	Unmeasured pins returned to GND

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

PACKAGE OUTLINE μ PD8257C μ PD8257C-5

PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION

FEATURES • Eight Level Priority Controller

- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5V Supply (No Clocks)
- Full Compatibility with $8080 \mathrm{~A} / \mu$ PD780(Z80 ${ }^{\text {TM }}$)
- μ PD8259-5 Compatible with 8085A Speeds
- Available in 28 Pin Plastic and Ceramic Packages

PIN CONFIGURATION

$\overline{\mathrm{Cs}} \mathrm{\square}_{1}$		28	$V_{C C}$
$\overline{W R} \square_{2}$		27	$\square \mathrm{A}_{0}$
$\overline{\mathrm{RD}}$		26	$\overline{\text { INTA }}$
$\mathrm{D}_{7} \square_{4}$		25	$\square \mathrm{IR7}$
$\mathrm{D}_{6} \square_{5}$		24	$\square \mathrm{IR} 6$
$\mathrm{D}_{5} \mathrm{C}^{6}$		23	$\square \mathrm{IR5}$
$\mathrm{D}_{4} \mathrm{C}_{7}$	$\mu \mathrm{PD}$	22	\square IR4
$\mathrm{D}_{3} \square_{8}$	8259	21	IR3
$\mathrm{D}_{2} \square_{9}$		20	IR2
$\mathrm{D}_{1} \mathrm{C}_{10}$		19	$\square \mathrm{IR1}$
$\mathrm{D}_{0} 11$		18	$\square \mathrm{IRO}$
CASO 12		17	INT
CAS1 13		16	$\square \overline{\mathrm{SP}}$
GND 14		15	CAS 2

PIN NAMES	
$D_{7}-D_{0}$	Data Bus (Bi-Directional)
$\overline{R D}$	Read Input
$\overline{W R}$	Write Input
A_{0}	Command Select Address
CAS2 - CAS0	Cascade Lines
$\overline{S P}$	Slave Program Input
INT	Interrupt Output
$\overline{I N T A}$	Interrupt Acknowledge Input
IRO - IR7	Interrupt Request Inputs
$\overline{C S}$	Chip Select

*All data pertaining to the μ PD8259-5 is preliminary.

- PD8259

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)
The interrupt request register and in-service register store the in-coming interrupt request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.
A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the μ PD8259 is set high. The IR input line must remain high until the first INTA input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming $\overline{\text { INTA }}$ sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine until it is reset by the programmed End-of-Interrupt (EOI) command.

PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first $\overline{\text { INTA }}$ pulse.

DATA BUS BUFFER

The 3-state, 8-bit, bi-directional data bus buffer interfaces the μ PD8259 to the processor's system bus. It buffers the Control Word and Status Data transfers between the μ PD8259 and the processor bus.

READ/WRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

CHIP SELECT ($\overline{\mathbf{C S}})$

The μ PD8259 is enabled when an active-low signal is received at this input. Reading or writing of the μ PD8259 is inhibited when it is not selected.

WRITE ($\overline{W R}$)

This active-low signal instructs the μ PD8259 to receive Command Data from the processor.

READ ($\overline{R D}$)
When an active-low signal is received on the $\overline{R D}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

INTERRUPT (INT)

The interrupt output from the μ PD8259 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080 's input voltage and timing requirements.

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

FUNCTIONAL DESCRIPTION
(CONT.)

INTERRUPT ACKNOWLEDGE (INTA)

The interrupt acknowledge signal is usually received from the 8228 (system controller for the 8080A). The system controller generates three INTA pulses to signal the 8259 to issue a 3-byte CALL instruction onto the data bus.

A_{0}

A_{0} is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{R D}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{R D}, \overline{W R}$, and $\overline{C S}$ inputs.

μ PD8259 BASIC OPERATION						
A_{0}	D4	D3	$\stackrel{\text { RD }}{ }$	$\overline{W R}$	$\overline{\mathrm{CS}}$	PROCESSOR INPUT OPERATION (READ)
0 1			0	1	0	IRR, ISR or IR \rightarrow Data Bus (1) IMR \rightarrow Data Bus
						PROCESSOR OUTPUT OPERATION (WRITE)
0	0	0	1	0	0	Data Bus \rightarrow OCW2
0	0	1	1	0	0	Data Bus \rightarrow OCW3
0	1	x	1	0	0	Data Bus \rightarrow ICW1
1	X	X	1	0	0	Data Bus \rightarrow OCW1, ICW2, ICW3 (2)
DISABLE FUNCTION						
X	X	X	1	1	0	Data Bus \rightarrow 3-State
X	X	X	X	X	1	Data Bus \rightarrow 3-State

Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the μ PD8259 aligns these commands in the proper order.

CASCADE BUFFER/COMPARATOR. (For Use in Multiple μ PD8259 Array.)

The ID's of all μ PD8259's are buffered and compared in the cascade buffer/comparator. The master μ PD8259 will send the ID of the interrupting slave device along the CASO, 1, 2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two $\overline{\mathrm{INTA}}$ pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

SLAVE PROGRAM ($\overline{\mathbf{S P}}$). (For Use in Multiple μ PD8259 Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple μ PD8259's in a master-plus-slaves array. The master controls the slaves through the CAS0, 1, 2 lines. The $\overline{\mathrm{SP}}$ input to the device selects the CASO-2 lines as either outputs $\overline{\mathrm{SP}}=1$) for the master or as inputs ($\overline{\mathrm{SP}}=0$) for the slaves. For one device only the $\overline{\mathrm{SP}}$ must be set to a logic " 1 " since it is functioning as a master.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to +125 C
Voltage on Any Pin . -0.5 to +7 Volts (1)
Power Dissipation . IW
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings"' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured Pins Returned to V_{SS}

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V	
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		\cdots	V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Interrupt Output- High Voltage	$\mathrm{V}_{\text {OH-INT }}$	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
		3.5			V	$\mathrm{I}^{\mathrm{OH}}=-50 \mu \mathrm{~A}$
Input Leakage Current for IR_{0-7}	$I_{\text {IL }}\left(1 R_{0.7}\right)$			-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
				10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current for other Inputs	$\mathrm{I}_{\text {IL }}$			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V
Output Leakage Current	ILOL			- 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Supply Current	I_{CC}			100	mA	

PACKAGE OUTLINE μ PD8259C/D

(Plastic)

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		8259		8259.5			
		MIN	MAX	MIN	MAX		
READ							
$\overline{\mathrm{CS}} / \mathrm{A}_{0}$ Stable Before $\overline{\mathrm{RD}}$ or $\overline{\mathrm{NTTA}}$	${ }^{\text {t }}$ AR	50		50		ns	
$\overline{\mathrm{CS}} / \mathrm{A}_{0}$ Stable After $\overline{\mathrm{RD}}$ or $\overline{\mathrm{INTA}}$	${ }^{t} \mathrm{RA}$	50		30		ns	
$\overline{\mathrm{RD}}$ Pulse Width	tRR	420		300		ns	
Data Valid From $\overline{\mathrm{RD}} / \overline{\text { INTA }}$	${ }^{\text {tRD }}$		300		200	ns	(1)
Data Float After $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$	${ }^{\text {t }}$ DF	20	200	20	100	ns	(1)
WRITE							
A_{0} Stable Before $\overline{\text { WR }}$	${ }^{\text {t }}$ AW	50		50		ns	
A_{0} Stable After $\overline{W R}$	tWA	20		30		ns	
$\overline{\mathrm{CS}}$ Stable Before $\overline{W R}$	${ }^{\text {t }} \mathrm{CW}$	50				ns	
	twC	20				ns	
$\overline{\text { WR Pulse Width }}$	tWW	400		300		ns	
Data Valid to $\overline{W R}$ (T.E.)	${ }^{\text {t }}$ W .	300		250		ns	
Data Valid After $\overline{\mathrm{WR}}$	TWD	40		30		ns	
OTHER							
Width of Interrupt Request Pulse	tiw	100		100		ns	
INT \uparrow After IR \uparrow	tint	400		350		ns	
Cascade Line Stable After $\overline{\text { INTA }} \uparrow$	${ }_{1} \mathrm{C}$	400		400		ns	

Note: (1) For μ PD8259: $C_{L}=100 \mathrm{pf}$; for μ PD8259-5: $C_{L}=150 \mathrm{pf}$

READ

WRITE

OTHER

Note: IR must stay "high" at least until the leading edge of 1st $\overline{\text { NTAA }}$.

INPUT WAVEFORMS FOR AC TESTS

INITIALIZATION SEQUENCE

μ PD8259

The μ PD8259 derives its versatility from its programmable interrupt modes and its ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the μ PD8259 interacts with the processor.

1. An interrupt or interrupts appearing on IR_{0-7} sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the μ PD8259 will resolve the priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an INTA to the μ PD8259 when it receives the INT.
4. The INTA input to the μ PD8259 from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the μ PD8259 to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more INTA pulses to the μ PD8259.
6. The two INTA pulses signal the μ PD8259 to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second INTA releases the high-order 8-bits.
7. The μ PD8259's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the μ PD8259 at the end of an interrupt service routine to reset the ISR bit and allow the μ PD8259 to service the next interrupt.

Two types of command words are required from the processor to fully define the operating modes of the μ PD8259.

DETAILED OPERATIONAL DESCRIPTION

PROGRAMMING THE μ PD8259

1. Initialization Command Words (ICWs)

Each μ PD8259 in the interrupt array must be initialized prior to normal operation.
The initialization is performed by a 2 or 3 -byte sequence clocked by $\overline{W R}$ pulses. Figure 1 shows this sequence. (Refer to Figure 2 for bit definitions.)

INITIALIZATION SEQUENCE - FIGURE 1.

PROGRAMMING THE μ PD8259 (CONT.)

INITIALIZATION COMMAND WORDS 1 and 2 (ICW1 and ICW2)

2. Operation Command Words (OCWs)

The operation command words are used to program the various interrupt algorithms listed below:

- Fully Nested Mode
- Rotating Priority Mode
- Special Mask Mode
- Polled Mode

Once the μ PD8259 has been initialized, OCWs can be written at any time.
When $A_{0}=0$ and $D_{4}=1$ in a command to the μ PD8259, together with $\overline{C S}=0$, it is recognized as Initialization Command Word 1. This is the start of the initialization sequence and causes the following to occur:

- The Interrupt Request edge-sense circuitry is reset so that an input must make a low-to-high transition to generate its interrupt.
- The initialization sequence clears Interrupt Mask Register to all unmasked and resets the Special Mask Mode and Status Read Flip-Flops.
- IR7 input is set to priority 7.

There are eight equally-spaced base vector addresses in memory for the eight interrupt inputs. The interval between the base vector addresses can be programmed to be either four or eight requiring 32 or 64 bytes in memory, respectively. The following shows how the address format is mapped onto the Data bus.

The μ PD8259 automatically defines $A_{0}-4$ with a separate address for each interrupt input. The base vector addresses A_{15-6} are programmed by ICW1 and ICW2. A_{5} is either defined by the μ PD8259 if the address interval is eight or must be user-defined if the interval is 4 . The 8 -byte CALL interval is consistent with 8080A processor RESTAR* instruction software. The 4-byte CALL interval can be used for a compact jump table.: Refer to Figure 4 for a table of address formats.

The following is an example of an interrupt acknowledge sequence. The μ PD8259 has been programmed for a CALL address (base vector address) interval of eight ($F=0$) and there is an interrupt appearing on IR4. The 3-byte sequence is strobed out to the Data there is an interrupt appea

	D7	D6	D5	D4	D3	D_{2}	D1	D_{0}	CALL CODE
1ST $\overline{\text { INTA }}$	1	1	0	0	1	1	0	1	
2ND INTA	A7	A6	1	0	0	0	0	0	LOWER ROUTINE
									ADDRESS (FROM FIGÜRE 4)
$3 \mathrm{RD} \overline{\text { INTA }}$	A15	A14	A13	A12	A11	A10	A9	A8	HIGHER ROUTINE

It is only necessary to program ICW3 when there are multiple μ PD8259s in the interrupt array, i.e., $\mathrm{S}=\mathbf{0}$. There are two types of ICW3s. The first is for programming the master μ PD8259. The second is for the slaves.

1. ICW3-Master μ PD8259. A " 1 " is set in S_{0-7} for each corresponding slave in the interrupt array. The S_{0-7} bits, together with $\overrightarrow{\mathrm{SP}}=1$, instructs the cascade buffer/ comparator to send the ID of the interrupting slave on the CASO,1,2 lines.
2. ICW3-SLAVE μ PD8259(s). Bits $\mathrm{D}_{7}-\mathrm{D}_{3}$ are "don't care" bits and have no effect on ICW3. The ID of each slave is programmed by bits D_{0-2} (ID $\mathrm{D}_{0,1,2}$). Once the master μ PD8259 has sent out the first byte of the CALL sequence, the slave device(s) with their $\overline{S P}$ inputs set to Logic 0 , compare their IDs appearing on the CASO, 1,2 lines through the cascade buffer/comparator. The slave whose ID matches the CASO, 1,2 code then issues bytes 2 and 3 of the CALL sequence.

Once the μ PD8259 has been programmed with Initialization Command Words, it can now be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the μ PD8259 can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCWs.

INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW 1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic "1." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the μ PD8259 has acknowledged an interrupt, i.e., the μ PD8259 has sent an INT signal to the processor and the system controller has sent it an INTA signal, the interrupt input, although it is masked, will inhibit lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

FULLY NESTED MODE

The fully nested mode is the μ PD8259's basic operating mode. It will operate in this mode after the initialization sequence, requiring no Operation Command Words for formatting. Priorities are set $I R_{0}$ through IR_{7} with $I R_{0}$ the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, the corresponding ISR bit is set, and the vector address is output to the Data bus. The EOI command resets the corresponding ISR bit at the end of its service routine.

Notes: (1) Reference Figure 2
(2) Reference Figure 3

INITIALIZATION COMMAND WORD 3 (ICW3) (1)

OPERATIONAL COMMAND WORDS (OCWs)

OPERATIONAL COMMAND WORDS (CONT.)

ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities 0-7 to the interrupt request input lines. Interrupt line $I R_{0}$ is set to the highest priority and $I_{7} 7$ to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " R " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0. ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines IR_{2} and IR_{5}.
Before Interrupts are Serviced:

According to the Priority Status Register, IR_{2} has a higher priority than IR_{5} and will be serviced first.
After Servicing:

\cdots	IS_{7}	IS_{6}	IS_{5}	IS_{4}	IS3̇	IS_{2}	IS_{1}	IS_{0}	
In-Service Register	0	0	1	0	0	0	0	0	
									Highest Priority
Priority Status Register	$1 \mathrm{R}_{2}$	IR_{1}	IR_{0}	$1 \mathrm{R}_{7}$	IR6	IR_{5}	IR4	$1 \mathrm{R}_{3}$	

At the completion of IR_{2} 's service routine the corresponding In -Service Register bit, $I S_{2}$ is reset to " 0 " by the preprogrammed EOI command. $I R_{2}$ is then assigned the lowest priority level in the Priority Status Register. The μ PD8259 is now ready to service the next highest interrupt, which in this case, is IR_{5}.

2. Specific Rotate Mode

The priorities are set by programming the lowest level through OCW2. The μ PD8259 then automatically assigns the highest priority. If, for example, IR3 is set to the lowest priority (bits L_{2}, L_{1}, L_{0} form the binary code of the bottom priority level), then IR4 will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW 2 in the following manner: set Rotate Priority bit "R" to a logic "1," program EOI to a logic " 0 ," SEOI to a logic " 1 " and L_{2}, L_{1}, L_{0} to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by L_{2}, L_{1}, L_{0} is reset.

END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)

The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate In-Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0, " the μ PD8259 is ready to service the next interrupt.

Two types of EOIs are available to clear the appropriate ISR bit depending on the μ PD8259's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command will aptomatically reset the highest priority ISR bit of those set. The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 "s. Both the EOI and SEOI bits of OCW3 must be set to a logic " 1 " with L_{2}, L_{1}, L_{0} forming the binary code of the ISR bit to be reset.

SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW 1 to a logic " 1 " will inhibit lower priority interrupts from being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic "1." Once the SMM is set, the μ PD8259 remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

POLLED MODE

In the Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. The Poll Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{\mathrm{RD}}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overline{\mathrm{RD}}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. The Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I x x x x W_{2} $\mathrm{~W}_{1}$ | $\mathrm{~W}_{0}$ | | | | | | |

where: $I=1$ if there is an interrupt requesting service
$=0$ if there are no interrupts
W_{2-0} forms the binary code of the highest priority level of the interrupts requesting service
The Poll Mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required offering a saving in ROM space. The Poll Mode can also be used to expand the number of interrupts beyond 64.

OPERATIONAL COMMAND WORDS (CONT.)

The following major regi_ters' status is available to the processor by appropriately formatting OCW3 and issuing : $\overline{\mathrm{RD}}$ command.

INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. Once it has been acknowledged, the highest priority in-service bit is reset. (Note that the Interrupt Mask Register has no effect on the IRR.) A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{R D}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0. ."

IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{R D}$ command. Both ERIS and RIS should be set to a logic "1."

INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overrightarrow{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{R D}$ is asserted with A_{0} at a logic " 1. ."
A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode where bits P and ERIS of OCW3 are set to a logic " 1 ."

CASCADING MULTIPLE μ PD8259s

If more than eight interrupt levels are required, multiple μ PD8259s can be cascaded with one master and up to eight slaves, to accommodate up to 64 levels of interrupt.

As shown in Figure 5, the master device directs the appropriate slave to release its CALL address through its three cascade lines (CASO, 1,2).
The INT output of the slave devices go to the IR inputs of the master device. The master μ PD8259's INT output is connected to the processor's control bus. When the slave device signals the master that it has acknowledged an interrupt, the master issues an 8080A CALL Op-code at the first INTA pulse. The master then signals that slave device (via CASO,1,2) to issue the appropriate CALL address during the second and third INTA pulses.

The slave address code is present on cascade lines $0,1,2$ (active-high logic) from the trailing edge of the first $\overline{\text { INTA }}$ to the trailing edge of the third INTA. Each device in the μ PD8259 array must be individually initialized and can be programmed in different operating modes. Two End-of-Interrupt commands must be issued for the master and its corresponding slave. An address decoder is used to drive the Chip Select inputs for each μ PD8259 in the array. The Slave Program (SP) input must be held at a logic " 0 " level for each slave device and held at logic " 1 " level for the master. The $\overline{S P}$ input selects the Cascade lines as either inputs $\overline{(S P}=0$) or outputs $(\overline{S P}=1)$.

ICW2: \quad| A_{0} |
| :---: | $\mathrm{D}_{7} \quad \mathrm{D}_{6} \quad \mathrm{D}_{5} \quad \mathrm{D}_{4} \quad \mathrm{D}_{3} \quad \mathrm{D}_{2} \quad \mathrm{D}_{1} \quad \mathrm{D}_{0}$

Upper Routine
Address
$1=\mathrm{IR}$ Input has a Slave $0=$ IR Input does not have a Slav

FIGURE 2

ocw3:

FIGURE 3

INITIALIZATION COMMAND WORD FORMAT

OPERATION COMMAND WORD FORMAT COMMAND WORD PROGRAMMING

LOWER MEMORY INTERRUPT VECTOR ADDRESS

INTERVAL = 4									INTERVAL = 8							
	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	D7	D_{6}	D5	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
IR_{7}	A_{7}	A_{6}	A_{5}	1	1	1	0	0	A_{7}	A_{6}	1	1	1	0	0	0
IR_{6}	A_{7}	A_{6}	A_{5}	1	1	0	0	0	A_{7}	A_{6}	1	1	0	0	0	0
IR_{5}	A_{7}	A_{6}	A_{5}	1	0	1	0	0	A_{7}	A_{6}	1	0	1	0	0	0
IR_{4}	A_{7}	A_{6}	A_{5}	1	0	0	0	0	A_{7}	A_{6}	1	0	0	0	0	0
IR_{3}	A_{7}	A_{6}	A_{5}	0	1	1	0	0	A_{7}	A_{6}	0	1	1	0	0	0
IR_{2}	A_{7}	A_{6}	A_{5}	0	1	0	0	0	A_{7}	A_{6}	0	1	0	0	0	0
IR_{1}	A_{7}	A_{6}	A_{5}	0	0	1	0	0	A_{7}	A_{6}	0	0	1	0	0	0
IR_{0}	A_{7}	A_{6}	A_{5}	0	0	0	0	0	A_{7}	A_{6}	0	0	0	0	0	0

FIGURE 4

Instruction Number	Mnemonic	A_{0}	D7	D_{6}	D_{5}	D4	D_{3}	D_{2}	D1	D_{0}	Operation Description
1	ICW1 A	0	A_{7}	A_{6}	A_{5}	1	0	1	1	0	Byte 1 Initialization, Format $=4$, Single
2	ICW1 B	0	A_{7}	${ }^{\text {A } 6}$	A_{5}	1	0	1	0	0	Byte 1 Initialization, Format $=4$, Not Single
3	ICW1 C	0	A_{7}	A_{6}	A_{5}	1	0	0	1	0	Byte 1 Initialization, Format $=8$, Single
4	ICW1 D	0	A_{7}	A_{6}	A_{5}	1	0	0	0	0	Byte 1 Initialization, Format $=8$, Not Single
5	ICW2	1	A15	A_{14}	A_{13}	A_{12}	A11	A10	Ag_{9}	A_{8}	Byte 2 Initialization (Address No. 2)
6	ICW3 M	1	S_{7}	S_{6}	S_{5}	S4	S_{3}	S_{2}	S_{1}	S_{0}	Byte 2 Initialization MASTER
7	ICW3 S	1	0	0	0	0	0	S_{2}	S_{1}	S_{0}	Byte 3 Initialization SLAVE
8	OCW1	1	M_{7}	M_{6}	M_{5}	M_{4}	M_{3}	M_{2}	M 1	M_{0}	Load Mask Register, Read Mask Register
9	OCW2 E	0	0	0	1	0	0	0	0	0	Non-Specific EOI
10	OCW2 SE	0	0	1	1	0	0	L_{2}	L_{1}	Lo	Specific EOI, L_{2}, L_{1}, L_{0} Code of IS to be Reset
11	OCW2 RE	0	1	0	1	0	0	0	0	0	Rotate at EOI (Auto Mode)
12	OCW2 RSE	0	1	1	1	0	0	L_{2}	L_{1}	L_{0}	Rotate at EOI (Specific Mode). L_{2}, L_{1}, L_{0} Code of Line to be Reset and Selected as Bottom Priority.
13	OCW2 RS	0	1	1	0	0	0	L_{2}	L_{1}	L_{0}	$L_{2}, L_{1}, L_{0}-$ Code of Bottom Priority Line.
14	OCW3 P	0	-	. 0	0	0	1	1	0	0	Poll Mode
15	OCW3 RIS	0	-	0	0	0	1	0	1	1	Read IS Register
16	OCW3 RR	0	-	0	0	0	1	0	1	0	Read Requests Register
17	OCW3 SM	0	-	1	1	0	1	0	0	0	Set Special Mask Mode
18	OCW3 RSM	0	-	1	0	0	1	0	0	0	Reset Special Mask Mode

Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all μ PD8259s.

PROGRAMMABLE KEYBOARDIDISPLAY INTERFACE

DESCRIPTION

The μ PD8279-5 is a programmable keyboard and display Input/Output device. It provides the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed as 16×8 or a dual 16×4 and loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128. General sensors or strobed keys may also be used. Keystrokes are stored in an 8 character FIFO and can be either 2 key lockout or N key rollover. Keyboard entries generate an interrupt to the processor.

FEATURES

- Programmable by Processor
- 32 HEX or 16 Alphanumeric Displays
- 64 Expandable to 128 Keyboard
- Simultaneous Keyboard and Display
- 8 Character Keyboard - FIFO
- 2 Key Lockout or N Key Rollover
- Contact Debounce
- Programmable Scan Timer
- Interrupt on Key Entry
- Single +5 Volt Supply
- Fully Compatible with 8080A, 8085A, μ PD780 (Z80 ${ }^{\text {TM }}$)
- Available in 40 Pin Plastic Package

PIN CONFIGURATION

μ PD8279-5

The μ PD8279-5 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The μ PD8279-5 is designed to directly interface the microprocessor bus. The microprocessor must program the operating mode to the μ PD8279-5, these modes are as follows:

Output Modes

- 8 or 16 Character Display
- Right or Left Entry

Input Modes

- Scanned Keyboard with Encoded $8 \times 8 \times 4$ Key Format or Decoded $4 \times 8 \times 8$ Scan Lines.
- Scanned Sensor Matrix with Encoded 8×8 or Decoded 4×8 Scan Lines.
- Strobed Input.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . -0.5 to +7 Volts(1)
All Input Voltages . -0.5 to +7 Volts(1)
Supply Voltages . -0.5 to +7 Volts(1)
Power Dissipation . 1 W

Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM

 RATINGS*| PIN | | | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME | |
| $\begin{aligned} & 1,2,5 \\ & 6,7,8 \\ & 38,39 \end{aligned}$ | RL-0.7 | Return Lines | Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They allso serve as an 8 -bit input in the Strobed Input mode. |
| 3 | CLK | Clock | Clock from system used to generate internal timing. |
| 4 | IRQ | Interrupt Request | Interrupt Request. In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected. |
| 9 | Reset | Reset Input | A high signal on this pin resets the μ PD8279-5. |
| 10 | $\overline{\mathrm{RD}}$ | Read Input | Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus. |
| 11 | $\overline{W R}$ | Write Input | |
| 12-19 | DB0.7 | Data Bus | Bi-Directional data bus. All data and commands between the processor and the μ PD8279-5 are transmitted on these lines. |
| 20 | V ${ }_{\text {SS }}$ | Ground Reference | Power Supply Ground |
| 21 | A_{0} | Buffer Address | Buffer Address. A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data. |
| 22 | $\overline{\mathrm{CS}}$ | Chip Select | Chip Select. A low on this pin enables the interface functions to receive or transmit. |
| 23 | $\overline{\overline{B D}}$ | Blank Display Output | Blank Display. This output is used to blank the display during digit switching or by a display blanking command. |
| 24-27 | OUT A_{0-3} | Display A Outputs | These two ports are the outputs for the 16×4 display refresh registers. The data from these outputs is synchronized to the scan lines ($\mathrm{SL}_{\mathrm{O}_{-}-\mathrm{SL}}^{3}$) for multiplexed digit displays. The two 4-bit ports may be blanked independently. These two ports may also be considered as one 8-bit port. |
| 28.31 | OUT B0-3 | Display B Outputs | |
| 32.35 | SL0-3 | Scan Lines | Scan Lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4). |
| 36 | Shift | Shift Input | The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low. |
| 37 | CNTL/STB | Control/ Strobe Input | For keyboard modes this line is used as a control input and stored like status on a kęy closure. The line is also the strobe line that enters the data into the FIFO in Strobed input mode (Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low. |
| 40 | VCC | +5V Input | Power Supply Input |

μ PD8279-5

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ						
Address Stable Before $\overline{\text { READ }}$	tAR	0			ns	
Address Hold Time for $\overline{\mathrm{READ}}$	tRA	0			ns	
$\overline{\text { READ Pulse Width }}$	tRR	250			ns	
Data Delay from $\overline{\text { READ }}$	tRD			150	ns	$C_{L}=150 \mathrm{pF}$
Address to Data Valid	tAD			250	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floating	tDF	10		100	ns	
Read Cycle Time	trcy	1			$\mu \mathrm{s}$	
WRITE						
Address Stable Before $\overline{\text { WRITE }}$	${ }^{\text {t }}$ AW	0			ns	
Address Hold Time for $\overline{\text { WRITE }}$	tWA	0			ns	
WRITE Pulse Width	tWW	250			ns	
Data Set Up Time for $\overline{\text { WRITE }}$	tDW	150			ns	
Data Hold Time for WRITE	tWD	0			ns	
OTHER						
Clock Pulse Width	$\mathrm{t}_{\phi} \mathrm{W}$	120			ns	
Clock Period	${ }^{\text {t }} \mathrm{C} Y$	320			ns	

GENERAL TIMING

Keyboard Scan Time:	5.1 ms	Digit-on Time:	$480 \mu \mathrm{~s}$
Keyboard Debounce Time:	10.3 ms	Blanking Time:	$160 \mu \mathrm{~s}$
Key Scan Time:	$80 \mu \mathrm{~s}$	Internal Clock Cycle:	$10 \mu \mathrm{~s}$
Display Scan Time:	10.3 ms		

TIMING WAVEFORMS

READ

WRITE

CLOCK INPUT

μ PD8279-5

The following is a description of each section of the μ PD8279-5. See the block diagram for functional reference.

OPERATIONAL DESCRIPTION

I/O Control and Data Buffers

Communication to and from the μ PD8279-5 is performed by selecting $\overline{C S}, A_{0}, \overline{R D}$ and $\overline{W R}$. The type of information written or read by the processor is selected by A_{0}. A logic 0 states that information is data while a 1 selects command or status. $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ select the direction by which the transfer occurs through the Data Buffers. When the chip is deselected ($\overline{\mathrm{CS}}=1$) the bi-directional Data Buffers are in a high impedance state thus enabling the μ PD8279-5 to be tied directly to the processor data bus.

Timing Registers and Timing Control

The Timing Registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide by N scaler which may be programmed to match the processor cycle time. The scaler must take a value between 2 and 31 in binary. A value which scales the internal frequency to 100 KHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix and display scans.

Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode the scan lines are active high and in the decoded mode they are active low.

Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned sampling for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

FIFO/Sensor RAM and Status

This section is a dual purpose 8×8 RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRQ is generated until the change is acknowledged.

Display Address Registers and Display RAM

The Display Address Register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to auto-increment after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

The commands programmable to the μ PD8279-5 via the data bus with $\overline{\mathrm{CS}}$ active (0) and A_{0} high are as follows:

Keyboard/Display Mode Set

Display Mode:
DD

0	0	$8-8$-bit character display - Left entry
0	1^{1}	16-8 bit character display - Left entry 1
1	0	$8-8$ bit character display - Right entry
1	1	$16-8$ bit character display - Right entry

Note: (1) Power on default condition
Keyboard Mode:
KKK

0	0	0	Encoded Scan - 2 Key Lockout
0	0	1	Decoded Scan - 2 Key Lockout
0	1	0	Encoded Scan - N Key Rollover
0	1	1	Decoded Scan - N Key Rollover
1	0	0	Encoded Scan-Sensor Matrix
1	0	1	Decoded Scan-Sensor Matrix
1	1	0	Strobed Input, Encoded Display Scan
1	1	1	Strobed Input, Decoded Display Scan

Program Clock

Where PPPPP is the prescaler value between 2 and 31 this prescaler divides the external clock by PPPPP to develop its internal frequency. After reset, a default value of 31 is generated.

Read FIFO/Sensor RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & A 1 & X & A & A & A \\
\hline
\end{array} \quad \mathrm{~A}_{0}=0
$$

A_{I} is the auto-increment flag. AAA is the row to be read by the processor. The read command is accomplished with ($\overline{\mathrm{CS}} \cdot \mathrm{RD} \cdot \overline{\mathrm{AO}}$) by the processor. If A_{I} is 1 , the row select counter will be incremented after each read. Note that auto-incrementing has no effect on the display.

$$
\begin{aligned}
& \text { Read Display RAM } \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & A 1 & A & A & A & A \\
\hline
\end{array} \quad \begin{array}{c}
A_{0}=0
\end{array}
\end{aligned}
$$

Where $A I$ is the auto-increment flag and AAAA is the character which the processor is about to read.

Write Display RAM

1	0	0	$A 1$	A	A	A	A

where AAAA is the character the processor is about to write.
Display Write Inhibit Blanking

1	0	1	X	IW A	IW B	$B L$ A	$B L$ B

Where IWA and IWB are Inhibit Writing nibble A and B respectively, and BLA, BLB are blanking. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This is accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8 -bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (1).

 Clear \quad COMMAND OPERATION

C_{D}	C_{D}	C_{D}	
1	0	X	
1	1	0	$A B=2016$
1	1	1	
0	X	X	All ones ones
	Disable clear display		

This command is used to clear the display RAM, the FIFO, or both. The CD options allow the user the ability to clear the display RAM to either all zeros or all ones.
C_{F} clears the FIFO.
C_{A} clears all.
Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.

CF will set the FIFO empty flag and reset IRC. The sensor matrix mode RAM pointer will then be set to row 0 .
C_{A} is equivalent to C_{F} and C_{D}. The display is cleared using the display clear code specified and resets the internal timing logic to synchronize it.

End Interrupt/Error Mode Set

1	1	1	E	X	x	x	X

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM.
In N key rollover, setting the E bit to 1 allows for operating in the special Error mode. See Description of FIFO status.

FIFO Status

$D U$	S / E	O	U	F	N	N	N

Where: $\mathrm{D}_{\mathrm{U}}=$ Display Unavailable because a clear display or clear all command is in progress.
$S / E=$ Sensor Error flag due to multiple closure of switch matrix.
$\mathrm{O}=$ FIFO Overrun since an attempt was made to push too many characters into the FIFO.
$U=$ FIFO Underrun. An indication that the processor tried to read an empty FIFO.
$F=$ FIFO Full Flag.
NNN $=$ The Number of characters presently in the FIFO.
The FIFO Status is Read with A_{0} high and $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ active low.
The Display not available is an indication that the C_{D} or C_{A} command has not completed its clearing. The S/E flags are used to show an error in multiple closures has occurred. The O or U , overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

Data Read

Data can be read during $A_{0}=0$ and when $\overline{C S}, \overline{R D}$ are active low. The source of the data is determined by the Read Display or Read FIFO commands.

Data Write

Data is written to the chip when $A_{0}, \overline{C S}$, and $\overline{W R}$ are active low. Data will be written into the display RAM with its address selected by the latest Read or Write Display command.

(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

16,384 BIT ROM WITH I/O PORTS 16,384 BIT EPROM WITH I/O PORTS*

DESCRIPTION The μ PD8355 and the μ PD8755A are μ PD8085A Family components with the μ PD8355 containing 2048×8 bits of mask ROM and the μ PD8755A containing 2048×8 bits of mask EPROM for program development. Both components also contain two general purpose 8 -bit I/O ports. They are housed in 40 pin packages, are designed to directly interface to the μ PD8085A and are pin for pin compatible to each other.

FEATURES • 2048×8 Bits Mask ROM (μ PD8355)

- 2048×8 Bits Mask EPROM (μ PD8755A)
- 2 Programmable I/O Ports
- Single Power Supplies: +5V
- Directly Interfaces to the μ PD8085A
- Pin for Pin Compatible
- μ PD8755A: UV Eraseable and Electrically Programmable
- μ PD8355 available in Plastic Package
- μ PD8755A Available in Ceramic Package

NC: Not Connected
*All data pertaining to the μ PD8755A is preliminary.

The μ PD8355 and μ PD8755A contain 16,384 bits of mask ROM and EPROM respectively, organized as 2048×8. The 2048 word memory location may be selected anywhere within the 64 K memory space by using the upper 5 -bits of address from the μ PD8085A as a chip select.
The two general purpose I/O ports may be programmed input or output at any time. Upon power up, they will be reset to the input mode.

Note: (1) $V_{D D}$ applies to μ PD8755A only.
Operating Temperature (μ PD8355) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (μ PD8755A) $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin (μ PD8355). -0.3 to +7 Volts (1)
(μ PD8755A) -0.5 to +7 Volts (1)
Power Dissipation . 1.5W
Note: (1) With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ (1)
Input High Voltage	V_{IH}	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ (1)
Output Low Voltage	V_{OL}			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Leakage	IIL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Leakage Current	ILO			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC			180	mA	

[^7]FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
1,2	$\overline{\mathrm{CE}}, \mathrm{CE}$	Chip Enables	Enable Chip activity for memory or I/O
3	CLK	Clock Input	Used to Synchronize Ready
4	Reset	Reset Input	Resets PA and PB to all inputs
5 (1)	NC	Not Connected	
5 (2)	VDD	Programming Voltage	Used as a programming voltage, tied to +5 V normally
6	Ready	Ready Output	A tri-state output which is active during data direction register loading
7	$10 / \bar{M}$	I/O or Memory Indicator	An input signal which is used to indicate I/O or memory activity
8	IOR	I/O Read	I/O Read Strobe In
9	$\overline{\mathrm{RD}}$	Memory Read	Memory Read Strobe In
10	$\overline{\text { IOW }}$	I/O Write	I/O Write Strobe In
11	ALE	Address Low Enable	Indicates information on Address/Data lines is valid
12-19	$\mathrm{AD}_{0}-\mathrm{AD}_{7}$	Low Address/Data Bus	Multiplexed Low Address and Data Bus
20	$\mathrm{V}_{\text {SS }}$	Ground	Ground Reference
21-23	A8-A10	High Address	High Address inputs for ROM reading
24-31	$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A	General Purpose I/O Port
32-39	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose I/O Port
40	V_{CC}	5 V Input	Power Supply

$$
\text { Notes: (1) } \mu \text { PD8355 } \mu \text { PD8755A }
$$

1/O PORTS I/O Port activity is controlled by performing I/O reads and writes to selected I/O port numbers. Any activity to and from the μ PD8355 requires the chip enables to be active. This can be accomplished with no external decoding for multiple devices by utilizing the upper address lines for chip selects. (1) Port activity is controlled by the following I/O addresses:

$A D_{1}$	$A D_{0}$	PORT SELECTED	FUNCTION
0	0	A	Read or Write PA
0	1	B	Read or Write PB
1	0	A	Write PA Data Direction
1	1	B	Write PB Data Direction

Since the data direction registers for PA and PB are each 8-bits, any pin on PA or PB may be programmed as input or output ($0=\mathrm{in}, 1=$ out).
Note: (1) During ALE time the data/address lines are duplicated on $\mathrm{A}_{15} 5-\mathrm{A}_{8}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Cycle Time	${ }^{\text {teyc }}$	320.	\cdots		ns	$C_{\text {LOAD }}=150 \mathrm{pF}$
CLK Pulse Width	T_{1}..	80			ns	
CLK Pulse Width	T_{2}	120			ns	
CLK Rise and Fall Time	t_{f}, t_{r}			30	ns	
Address to Latch Set Up Time	${ }^{t}{ }_{\text {AL }}$	50			ns	150 pF Load
Address Hold Time After Latch	${ }_{t}$ LA	80			ns	
Latch to READ/WRITE Control	the	100			ns	
Valid Data Out Delay from READ Control	${ }^{\text {tRD }}$			$\begin{aligned} & 170 \text { (1) } \\ & \hline 150 \text { (2) } \end{aligned}$	ns	
Address Stable to Data Out Valid	${ }^{t} A D$			400	ns	
Latch Enable Width	${ }_{t}{ }_{\text {LL }}$	100			ns	
Data Bus Float After READ	trof	0		100	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }}$ CL	20			ns. ${ }^{\text {a }}$	
READ/WRITE Control Width	${ }^{\text {t }}$ CC	250			ns	
Data In to WRITE Set Up Time	tow	150			ns	
Data In Hold Time After WRITE	tWD:	10			ns.	
WRITE to Port Output	${ }^{\text {twp }}$			400	ns	
Port Input Set Up Time ${ }^{\text {a }}$	tPR	50			ns	
Port input Hold Time	$t_{\text {RP }}$	50			ns	
READY HOLD TIME	trym	0		$\begin{aligned} & 160 \text { (1) } \\ & \hline 120 \text { (2) } \end{aligned}$	ns	
ADDRESS (CE) to READY	taRy		"	160	ns	
Recovery Time Between Controls	trv	300			ns	
Data Out Delay from READ Control	trine	10			ns	

Notes: (1) μ PD8355
(2) $\mu \mathrm{PD} 8755 \mathrm{~A}$

ROM READ, I/O READ AND WRITE (1)

PROM READ, I/O READ AND WRITE (2)

(3) CE must remain low for the entire cycle

TIMING WAVEFORMS (CONT.)

WAIT STATE TIMING (READY = 0)

I/O PORT
INPUT MODE

OUTPUT MODE:

Erasure of the μ PD8755A occurs when exposed to ultraviolet light sources of wave-
lengths less than $4000 \AA$. It is recommended, if the device is exposed to room fluorescent lighting or direct sunlight, that opaque labels be placed over the window to prevent exposure. To erase, expose the device to ultraviolet light at $2537 \AA$ at a minimum of 15 W -sec $/ \mathrm{cm}^{2}$ (intensity X expose time). After erasure, all bits are in the logic 1 state. Logic 0's must be selectively programmed into the desired locations. It is recommended that NEC's prom programmer be used for this application.

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$13.5+0.2$	$0.531+0.008$
M	0.30 ± 0.1	0.012 ± 0.004

TK-80A

DESCRIPTION The TK-80A is a single-board computer based on NEC Microcomputers' industry standard μ PD8080AF. It facilitates understanding and developing 8080A systems and assembly language programs, and consists of the following blocks:

- μ PD8080A Microprocessor Chip Set
- Monitor and User ROM
- RAM
- DMA Display
- Programmable I/O
- 25 Key Keyboard
- Tape Cassette Interface

7

The μ PD8080AF Processor, μ PB8224 Clock Generator and Driver and the μ PB8228 System Controller and Bus Driver comprise the 8080A chip set. The 8080A executes programs stored in memory and supports a large instruction set detailed in the $\mu \mathrm{COM}-8$ Software Manual. The 8224 , coupled with an 18.000 MHz crystal, provides the 2.0 MHz , non-overlapping two-phase MOS clocks required by the 8080A. The 8224 also provides latches for synchronizing the RESET IN and READY IN signals. The 8228 provides bi-directional data bus drivers which buffer the 8080A data bus for on-board and external use. The 8228 also provides a Status Latch and gating array which provide active low memory and I/O read/write strobes, an Interrupt Acknowledge Strobe, and a data control bus enable input. The 8080A address bus is buffered by 3 -state low power Schottky drivers with their enable pins tied to the bus enable input of the 8228, thus allowing the address, data and control busses to be asynchronously disabled by a single control line for user DMA.

The TK-80A resident monitor is provided in NEC Microcomputers' $1 \mathrm{~K} \times 8$ electrically erasable read-only memory, the μ PD458. Since the 2708 and 458 are pin compatible when installed, (pin 1 to pin 1), either 2708's or 458's may be used to expand the ROM/PROM space. Through proper manipulation of on-board jumpers, any of the following devices may be used:

P/N	ORGANIZATION	TYPE	SUPPLIES (1)
458	$1 \mathrm{~K} \times 8$	EEPROM	$+12,+5$
2708	$1 \mathrm{~K} \times 8$	EPROM	$+12,+5,-5$
2308	$1 \mathrm{~K} \times 8$	Mask ROM	$+12,+5,-5$
2758	$1 \mathrm{~K} \times 8$	EPROM	+5
2716	$2 \mathrm{~K} \times 8$	EPROM	+5
2316 E	$2 \mathrm{~K} \times 8$	Mask ROM	+5
$2732(2)$	$4 \mathrm{~K} \times 8$	EPROM	+5
$2332(2)$	$4 \mathrm{~K} \times 8$	Mask ROM	+5

Notes: (1) Read Mode.
(2) 0000 through OFFF only. (All addresses in hexadecimal notation.)

The standard configuration TK-80A has 1 K bytes of socketed RAM (2 pieces μ PD2114LC) located at 8000 through 83FF. Up to 3 K additional RAM may be installed in the sockets dedicated to locations 8400 through 8FFF. All memory and port address decoding is completely implemented to ensure that all possible expansion options are available to the user. The Protect/Enable switch provides for the connection of battery backup to all on-board RAM. If data must be retained for long periods of time with power off, the use of the NEC's 2114 -compatible μ PD444 CMOS RAM is recommended.
In order to improve throughput and demonstrate Direct Memory Access through "Hidden Refresh", the TK-80A uses an 8-byte block of RAM to control the 8-digit LED display directly. Data bytes, whose bits correspond one-for-one to display segments, are stored in display RAM, where they are directly accessed for display.
The μ PD8255 Programmable Peripheral Interface provides the TK-80A with 24 I/O lines. Because the 8255 is a very flexible I/O device, the TK-80A can support considerable user I/O in addition to the Keyboard, Cassette and Display. The 8255 is located at Port Addresses 0F8 through 0FB, thus leaving both conventional and bit select decoding methods open for user expansion.
μ PD8080A
MICROPROCESSOR CHIP SET

MONITOR AND USER ROM/PROM

DMA DISPLAY

PROGRAMMABLE I/O

TAPE CASSETTE INTERFACE

EXPANSION CONNECTORS

The on-board "Kansas City" compatible interface provides means for reliable, inexpensive mass storage using an audio cassette tape recorder. The data transfer rate is software selectable at 300 or 1200 baud. Jumpers in the interface circuitry allow the user to modify record and play back signal polarities to accommodate most tape recorders.

A 50 pin header, J1, for use with flat cable, allows expansion of the TK-80A for use with the EB-80A Expansion Board or other user circuitry. Buffered Address, Data and Control lines, as well as most commonly used interface signals, are available on J1.
J2, a 40 pin header, provides access to the on-board 8255 . The 8255 input/output lines can be buffered and/or terminated with optional circuitry installed in sockets provided. Additional interface signals and a 2400 or 1200 Hz interrupt clock are also available on J2.

BLOCK DIAGRAM

- Word Size SPECIFICATIONS
- Instruction: 1, 2, or 3 8-Bit Bytes
- Data: 8 Bits
- System Clock: $2 \mathrm{MHz} \pm 0.1 \%$
- Cycle Time
- Basic Instruction Cycle: $2.0 \mu \mathrm{~s}$ (1)
- Maximum Instruction Cycle: $9.0 \mu \mathrm{~s}$
- Processor Chip Set
- Processor: μ PD8080AF
- Clock: μ PB8224
- Bus Control: μ PB8228

Note: (1) Basic Instruction Cycle is defined to be the shortest instruction, i.e., four clock cycles.

TK-80A

MEMORY ADDRESSES

On-Board ROM/PROM
0000 - 03FF (Monitor)
On-Board RAM
$8000-83 F F$
MEMORY CAPACITY
On-Board ROM/PROM: $\quad 4 \mathrm{~K}$ Bytes using 1 K Memories 8K Bytes using 2K Memories
On-Board RAM:
Off-Board Expansion:

4 K Bytes in 1 K Increments Up to 64 K Bytes Total

I/O ADDRESSES

On-Board Programmable I/O Controller: μ PD8255

Port	A	B	C	Control
Address	F8	F9	FA	FB

I/O CAPACITY

- Parallel: 24 Lines
- Expansion to a total of 48 I/O lines (34 uncommitted) is possible using the optional EB-80A Expansion Board and to 256 Ports using customer supplied circuitry.
- Compatible with: $7400,7403,7408,7409,7426,7432,7437$ and 7438.
- Cassette:
- "Kansas City" Compatible
- 8-Bit Characters
- One Start Bit and Two Stop Bits
- 300 or 1200 Baud (Software Select)
- Sinusoidal FSK Recording
- Logic " 0 " - 1200 Hz
- Logic "1" - 2400 Hz
- Output 30 mV or 3 V Peak-to-Peak
- Input - 0.3-10V Peak-to-Peak, 2V Peak-to-Peak Nominal

DISPLAY

- Number: 8 Digits
- Size: $0.5 \mathrm{in}(1.27 \mathrm{~cm})$
- Type: LED Seven Segment with Right-Hand Decimal

KEYBOARD

- Keyswitches: Gold Contact Crossbar Type, 0.150 in travel
- Keytops: Double-Shot Removable

INTERRUPTS

On-board logic may be used to auto-vector the processor to 0038 using RESTART 7. External user logic may be used to supply 3-byte interrupts that vector to any memory location.

INTERFACES

- Fully TTL Compatible
- Address and Data Bus
- Control Bus
- Parallel I/O
- Interrupt Request
- Interrupt Clock Available: 2400 Hz - TTL Compatible

HARDWARE CONNECTORS

SPECIFICATIONS (CONT.) - Power: 1 piece 4 conductor nylon crimp type, 0.156 centers Molex 09-50-7041 or equivalent (supplied)
4 pieces terminals, crimp, loose Molex 08-50-0106 or equivalent (supplied)

- Bus: 50 conductor flat cable connector 3M 3425-0000 or equivalent
- Parallel I/O: 40 conductor flat cable connector

3M 3417-0000 or equivalent

- Cassette: In and Out: Standard $1 / 8^{\prime \prime}$ miniature phone plug

Switchcraft "Tini-Plug" 750 or equivalent

PHYSICAL CHARACTERISTICS

- Width: 13.00 in (33.02 cm)
- Depth: 1.40 in $(3.56 \mathrm{~cm})$
- Height: 7.50 in $(19.05 \mathrm{~cm})$
- Weight: 18 oz (510.3 gm)

ELECTRICAL CHARACTERISTICS

DC POWER (1)	WITHOUT DISPLAY	WITH DISPLAY (2)
$V_{C C}=+5 \mathrm{~V} \pm 5 \%$	$1.1 \mathrm{~A} \max$	$1.5 \mathrm{~A} \max$
$\mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$	$150 \mathrm{~mA} \max$	$150 \mathrm{~mA} \max$
$\mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$	(3)(4)	(3)4)

Notes: (1) Standard configuration with 1 K EEPROM and 1 K RAM.
(2) All segments and decimal points of all digits on.
(3) For ROM/PROM, RAM and I/O Expansion power consumption, refer to specific data sheets.
(4) $V_{B B}$ for the μ PD8080AF and one 2708 is generated from $V_{D D}$ and regulated on board. $V_{B B}$ may be externally supplied via 4 -conductor power connector.

ENVIRONMENTAL

- Operating Temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

TK-80A

- Display and/or Modify Memory
- Display and/or Modify Registers
- Run User-Written Programs
- Read and Write Cassette Tapes of Memory Images

KEY	USAGE
ADDR	In most commands, before entering an address value
CLEAR	At any time, to change an entry
NEXT	After some commands, to advance an address pointer
MEM	After an address value, before entering a new memory value
STEP	After an address value, or a previous STEP, to single- step one instruction in a user program
RUN	After an address value, to run a user program in breakpoint or free-running mode
BRK	After an address value which becomes the breakpoint, before entering the breakpoint depth value
REG	Before entering a register name
RESET	To reset all hardware and execute at 0000
Hexadecimal value keys	

KEY IDENTIFICATION

DISPLAY MODES

- the ADDRESS field displays a selected memory location address.
- the BYTE field displays the contents of memory at that address.

REGISTER MODE

- the ADDRESS field displays the contents of the user-program program counter.
- the REGISTER field displays the name of a selected processor register; A, B, C, D, E, F, H, L.
- the BYTE field displays the contents of that register.

REGISTER-PAIR MODE

- the REGISTER-PAIR field displays the name of a selected register-pair; BC, DE, HL, SP (stack pointer) or ST (top of stack).
- the ADDRESS field displays the contents of the selected register-pair.
- the BYTE field displays the contents of the memory location whose address is displayed in the ADDRESS field.

CASSETTE TAPE MASS STORAGE/MEMORY BACKUP

MEMORY MAP

- 1200 Baud is Default Rate
- 300 Baud is Software Selected for Full Kansas-City Standard
- Tape Contains a Block of Consecutive Memory Images, Followed by a Checksum Byte.
- Checksum is Generated Automatically During Record; Checksum is Verified During Playback.

ADDRESS	MEMORY SIZE	USAGE
$0000-03 F F$	1 K	ROM Monitor
$0400-0 F F F$	3 K	On-Board ROM Sockets for User Expansion
$1000-1 \mathrm{FFF}$	4 K	Optional ROM Area © 1
$2000-7 \mathrm{FFF}$	24 K	Unused Area
$8000-839 F$	928	User's RAM Area
83 A0-83F7	88	Monitor's RAM Work Area
83 F8-83FF	8	LED Display
$8400-8 F F F$	3 K	On-Board RAM Sockets for User Expansion
$9000-\mathrm{FFFF}$	28 K	Unused Area

Note: (1) On-board ROM sockets may be jumpered for up to 8 K total.
PROCEDURE FOR ENTERING AND DEBUGGING PROGRAM

1. A program is first written by the user to perform a desired function. This program is assembled manually into 8080A instructions and entered into consecutive locations in RAM via the keyboard.
2. Next the program is run, under monitor control, in single-step mode with the Step/ Auto switch in the Step position. Only one user program instruction is executed at a time. After each instruction, the display informs the user of the results.
3. During the debugging process, expected results can be checked by displaying memory or registers. Registers are saved upon entry to the monitor and restored upon exit to the user program. The register values may be altered or displayed.
4. When only a few bugs remain in the user program, the program may be run in breakpoint mode. Alternatively, the user program may be executed in a free-running mode, without monitor control. In the free-running mode, however, the Step/Auto switch should be in the Auto position. This mode permits instruction execution at the full speed of the μ PD8080AF.
5. The program can be saved on a tape for future use by using the monitor WRITE program. Memory is saved as a block of consecutive locations followed by a monitorgenerated checksum, which is displayed at the completion of the write sequence.

To restore the contents of memory, the monitor READ program is used. The checksum which is read from the tape is compared with the checksum calculated during playback, and the two values are displayed. If a visual comparison indicates both checksums are the same, the correct data transfer may be assumed.

Memory Requirements:

- μ PD458 ROM - monitor resides in 1 K at 0000 - 03FF.
- μ PD2114L RAM - RAM work area, including stack, at 83A0 - 83F7.
- Display output generated by hardware DMA at 83F8-83FF.
- μ PD8255 Input/Output

PORT ADDRESS	
F8	Port A: keypad row input
F9	Port B: Bit 0: Cassette serial input Bit 7: Cassette zero-crossing feedback
FA	Port C: Bit 0: Cassette serial output Bit 4, 5, 6: keypad column strobe output
FB	I/O mode control ; Port C bit set/reset control

NAME	JUMP VECTOR ADDRESS	FUNCTION.	PARAMETERS
DISPLAY			
CL	03CF	clear LED display digits	number of LED digits in B
MSG	03D2	display an 8-digit message	address of message in HL
DLADE	03E1	display a byte as two hexadecimal digits	byte value in A ; digit position in $D E$
DLHLDE	03E4	display a word as four hexadecimal digits	word value in HL ; digit position in DE
DLHEX	03 E 7	display a nibble (half-byte) as one hexadecimal digit	nibble value in bits $0-3$ of A; digit position in DE
KEYBOARD			
GETW	03EA	get a 4-digit hexadecimal word	word value in HL ; key count in D; terminator key in A and B
GETB	03ED	get a 2-digit hexadecimal byte	byte value in L; key count in D; terminator key in A and B
KEY	03F3	get any debounced key	key value in A and C; carry set if hexadecimal key
KYBD	03F0	get an immediate key closure	carry set if key found; key value in A
CASSETTE INTERFACE			
SERIN	03D5	read a byte from cassette	byte value in D; carry set if error
SEROT	03D8	write a byte to cassette	byte value in C
RTP	03DB	read formatted block into memory	start address in HL; end address in DE; carry set if error
WTP	03DE	write formatted block from memory	start address in HL ; end address in DE
OTHER			
D1MS	.03F6	delay one millisecond	none
READ	03F9	stand-alone read tape program	start address in HL ; end address in DE
WRITE	03FC	stand-al one write tape program	start address in HL ; end address in DE

MEMORY RESOURCE USAGE

ROM ORDERING PROCEDURE - MEMORIÉS AND MICROCOMPUTERS

The following NEC products fall under the guidelines set by the ROM Ordering Procedure:

μ PD2316E	μ PD8049	μ PD550
μ PD2332	μ PD8355	μ PD551
μ PD2364	μ PD546	μ PD554
μ PD8021	μ PD547	μ PD650
μ PD8041	μ PD547L	μ PD651
μ PD8048	μ PD548	μ PD652

In order to facilitate the transferal of ROM mask information, NEC Microcomputers, Inc., is able to accept mask patterns in a variety of formats. These are intended to suit various customer needs and minimize the turnaround time. The following is a list of valid media for code transferal.

- Sample ROMs or ROM-based microcomputers
- PROM/EPROM equivalent to ROM parts
- NEC μ PD458 EEPROM
- BNPF Paper Tapes
- Hex Paper Tapes
- Timesharing Files
- Other (Contact NEC Microcomputers, Inc., for arrangements.)

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Microcomputers, Inc., will return the ROM mask patterns to the customer in the most convenient format. Unprogrammed EPROMs, where applicable, if sent with the ROM code can be programmed and returned for verification. HEX paper tapes with the listing are the most convenient means of verification.

Earth satellites and the world-wide GE Mark III timesharing systems provide reliable and instant communication of ROM patterns to the factory. Customers with access to GE-TSS may further reduce the turnaround time by transferring files directly to NEC Microcomputers, Inc.

The following is an example of a ROM mask transferal procedure. The μ PD8048 is used here, however the process is the same for the other ROM-based products.

1. The customer contacts NEC Microcomputers, Inc., concerning a ROM pattern for the μ PD8048 that he would like to send.
2. Since an EPROM version of that part is available, the 8748 is proposed as a code transferal medium, or alternatively, a paper tape and listing.
3. The paper tape and a blank 8748 for verification are sent to NEC Microcomputers, Inc.
4. NEC Microcomputers, Inc., reads the tape, programs the 8748, and enters the code into GE-TSS, returning the 8748 to the customer.
5. Once the customer notifies NEC Microcomputers, Inc., in writing that the code is verified, work commences immediately on the development of his μ PD8048s.

NORTH AMERICAN REGIONAL SALES OFFICES
Eastern; Room 220; 275 Broadhollow Road; Rt. 110; Melville, New York 11749; 516/293-5660
Western: 2914 E. Katella Avenue; Suite 208; Orange, California 92667; 714/633-2980
Midwestern; Contact NEC Microcomputers, Inc., Wellesley, Massachusetts for address and phone number

U.S. REPRESENTATIVES

Alabama
20th Century Marketing, Inc. Huntsville AL 35806
205/772-9237

Arizona

Eltron
Phoenix AZ 85021
602/997-1042
Arkansas
Action Unlimited
Arlington TX 76011
817/461-8039

California

Cerco
San Diego CA 92111
714/560-9143
Santana Sales
Costa Mesa CA 92627
714/642-3282
Trident Associates, Inc.
Sunnyvale CA 94086
408/734-5900
Colorado
D/Z Associates, Inc.
Denver CO 80204
303/534-3649
Connecticut
HLM Associates, Inc. Torrington CT 06790 203/482-6880

Delaware

L\&M Associates
Pikesville MD 21208
301/484-7970
District of Columbia
L\&M Associates
Pikesville MD 21208
301/484-7970

Florida

Perrott Associates, Inc.
Ft. Lauderdale FL 33318
305/792-2211
Perrott Associates, Inc.
Clearwater FL 33518
813/585-3327
Perrott Associates, Inc.
Orlando FL 33807
305/275-1132

Georgia

20th Century Marketing, Inc. Huntsville AL 35806
205/772-9237

Idaho

Tri-Tronix, N.W.
Mercer Island WA 98040
206/232-4993
lllinois
Technology Sales, Inc.
Palatine IL 60067
312/991-6600

Indiana

Technology Sales, Inc. Palatine IL 60067
312/991-6600
414
lowa
Electronic Innovators, Inc.
Minneapolis MN 55420
612/884-7471

Kansas

Burton-Medley Associates
Grandview MO 64030 816/763-5385

Kentucky
Imtech, Inc.
Dayton OH 45414
513/278-6507
Louisiana
Action Unlimited
Arlington TX 76011
817/461-8039

Maine

Contact Sales, Inc.
Burlington MA 01803
617/273-1520
Maryland
L \& M Associates Pikesville MD 21208 301/484-7970

Massachusetts

Contact Sales, Inc. Burlington MA 01803 617/273-1520
Stone Component Sales Waltham MA 02154 617/890-1440

Michigan

R.C. Nordstrom \& Company Lathrup Village MI 48076 313/559-7373

Minnesota

Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471

Mississippi
20th Century Marketing, Inc. Huntsville AL 35806
205/772-9237

Missouri

Burton-Medley Associates Grandview MO 64030 816/763-5385

Montana

Tri-Tronix, N.W.
Mercer Island WA 98040 206/232-4993

Nebraska

Burton-Medley Associates Grandview MO 64030 816/763-5385

Nevada

Eltron
Phoenix AZ 85021
602/997-1042
Trident Associates, Inc. Sunnyvale CA 94086 408/734-5900

New Hampshire

Contact Sales, Inc.
Burlington MA 01803
617/273-1520

New Jersey

HLM Associates, Inc.
Parsippany NJ 07054
201/263-1535
Harry Nash Associates. Willow Grove PA 19090
215/65.7-2213

New Mexico

Tri-Tronix
Albuquerque NM 87110
505/265-8409
New York
HLM Associates, Inc.
Northport NY 11768
516/757-1606
Nycom, Inc.
East Syracuse NY 15307
315/437-8343
North Carolina
Wolffs Electronic Sales, Inc.
Raleigh NC 27619
919/851-2800

North Dakota

Electronic Innovators, Inc.
Minneapolis MN 55420
612/884-7471

Ohio

Imtech, Inc.
Cleveland OH 44130
216/826-3400
Imtech, Inc.
Dayton OH 45414
513/278-6507
Oklahoma
Action Unlimited
Arlington TX 76011
817/461-8039

Oregon

Tri-Tronix, N.W.
Mercer Island WA 98040
206/232-4993
Pennsylvania
Imtech, Inc.
Cleveland OH 44130 216/826-3400
Harry Nash Associates Willow Grove PA 19090
215/657-2213
Rhode Island
Stone Component Sales Waltham MA 02154 617/890-1440

South Carolina
Wolffs Electronic Sales, Inc.
Raleigh NC 27619
919/851-2800

South Dakota

Electronic Innovators, Inc. Minneapolis MN 55420 612/884-7471

Tennessee

20th Century Marketing, Inc. Knoxville TN 37922
615/966-3608

Texas

Action Unlimited
Arlington TX 76011
817/461-8039
Action Unlimited
Spring TX 77373
713/353-3195
Tri-Tronix
Albuquerque NM 87110
505/265-8409
Utah
D/Z Associates, Inc.
Denver CO 80204
303/534-3649.

Vermont

Contact Sales, Inc.
Burlington MA 01803
617/273-1520

Virginia

L \& M Associates
Montpetier VA 23192
804/883-5551
Washington
Tri-Tronix, N.W.
Mercer Island WA 98040
206/232-4993

West Virginia

Imtech, Inc.
Dayton OH 45414
513/2.78-6507

Wisconsin

Electronic Innovators, Inc.
Minneapolis MN 55420
612/884-7471

Wyoming

D/Z Associates, Inc.
Denver CO 80204
303/534-3649

CANADIAN

REPRESENTATIVES

Downsview Ontario M3J 2C7

Surrey British Columbia V3R 6N7

Ville St. Pierre Quebec H8R 1A3

Alberta
Ontario
Manitoba
Kaytronics Limited
416/638-5511
British Columbia
Saskatchewan
Kaytronics Limited
604/581-7611
New Brunswick
Newfoundland
Nova Scotia
Ontario
Prince Edward Island
Quebec :
Kaytronics Limited
514/487-3434
Mantoba

症

U.S. DISTRIBUTORS

Arizona

G.S. Marshall

Tempe AZ 85282
602/968-6181
Sterling Electronics
Phoenix AZ 85036
602/258-4531

California
Diplomat/Westland, Inc.
Sunnyvale CA 94086
408/734-1900
Intermark Electronics
San Diego CA 92121
714/279-5200
Intermark Electronics
Santa Ana CA 92705
714/540-1322
Intermark Electronics
Sunnyvale CA 94086
408/738-1111
G.S. Marshall

Canoga Park CA 91304
213/999-5001
G.S. Marshall

El Monte CA 91731
213/686-0141
G.S. Marshall

Irvine CA 92707
714/556-6400
G.S. Marshall

San Diego CA 92111
714/278-6350
G.S. Marshall

Sunnyvale CA 94086
408/732-1100
Sterling Electronics North Hollywood CA 91605 213/764-4111
Sterling Electronics
San Diego CA 92111
714/565-2441
Western Microtechnology Sales
Sunnyvale CA 94086
408/737-1660
Colorado
Century Electronics
Wheatridge CO 80033
303/424-1985
Connecticut
Milgray Electronics, Inc.
Orange CT 06477
203/795-0711

Florida

Diplomat/Southland, Inc.
Clearwater FL 33515
813/443-4514

Illinois

Diplomat/Lakeland, Inc.
Elk Grove Village IL 60007
312/595-1000
Semiconductor Specialists, Inc.
Chicago IL 60666
312/279-1000

Louisiana

Sterling Electronics
Baton Rouge LA 70806
504/926-9407

Maryland

Almo Electronics Corporation
Baltimore MD 21227
301/247-5955
Technico, Inc.
Columbia MD 21045
301/461-2200

Massachusetts

Diplomat/I.P.C. of Massachusetts
Chicopee Falls MA 01020
413/592-9441
Diplomat
Holliston MA 01746
617/429-4120
Future Electronics
Canada Corporation
Natick MA 01760
617/879-0860
Semiconductor Specialists, Inc.
Burlington MA 01803
617/272-1610
Sterling Electronics
Waltham MA 02154
617/894-6200

Michigan

Diplomat/Northland, Inc.
Farmington MI 48024
313/477-3200
Reptron Electronics, Inc.
Livonia MI 48150
313/525-2700
Semiconductor Specialists, Inc.
Farmington MI 48024
313/478-2700

Minnesota

Diplomat/Electro-Com Corporation
Minneapolis MN 55421
612/788-8601
Semiconductor Specialists, Inc. Minneapolis MN 55420 612/854-8841

Missouri
Diplomat/St. Louis, Inc.
St. Louis MO 63144
314/645-8550
Semiconductor Specialists, Inc.
Hazelwood MO 63042
314/731-2400

New Jersey
Diplomat/I.P.C. Corporation Mount Laurel NJ 08054
609/234-8080
Diplomat/I.P.C. Corporation
Totowa NJ 07512
201/785-1830

New Mexico

Century Electronics
Albuquerque NM 87123
505/292-2700
Sterling Electronics
Albuquerque NM 87107
505/345-6601

New York
Diplomat Electronics
Corporation
Woodbury NY 11797
516/921-9373
Milgray Electronics, Inc.
Freeport NY 11520
516/546-6000
Summit Distributors, Inc.
Buffalo NY 14202
716/884-3450
Summit Elec. of Rochester, Inc.
Rochester NY 14623
716/442-3494

North Carolina

Resco/Raleigh
Raleigh NC 27612
919/781-5700

Ohio

Hughes-Peters, Inc.
Cincinnati OH 45227
513/351-2000
Norman Davis Electronics
South Euclid OH 44121
216/381-0500
Reptron Electronics, Inc.
Columbus OH 43205
614/253-7433
Hughes-Peters, Inc.
Columbus OH 43221
614/294-5351

Pennsylvania

Almo Electronics Corporation
Philadelphia PA 19114
215/698-4000
Semiconductor Specialists, Inc.
Pittsburgh PA 15238
412/781-8120

Texas

Kent Electronics
Houston TX 77036
713/780-7770
Semiconductor Specialists, Inc.
Dallas TX 75220
214/358-5211
Sterling Electronics
Dallas TX 75229
214/357-9131
Sterling Electronics
Houston TX 77027
713/627-9800
Utah
Century Electronics
Salt Lake City UT 84119
801/972-6969
Diplomat/Alta-Land, Inc.
Salt Lake City UT 84115
801/486-7227

Virginia

Technico, Inc.
Roanoke VA 24019
703/563-4975

Washington

Bell Industries
Bellevue WA 98005
206/747-1515
Sterling Electronics
Tukwila WA 98118
206/575-1910

Wisconsin

Semiconductor Specialists, Inc.
Milwaukee WI 53226
414/257-1330

CANADIAN DISTRIBUTORS

Ontario

Future Electronics Corporation
Ottawa Ontario K2C 3P2
613/820-9471
Future Electronics Corporation
Downsview Ontario M3H 5S9
416/663-5563

Quebec

Future Electronics Corporation Montreal Quebec H4P 2K5
514/735-5775

NEC Quality Assurance Procedures

One of the important factors contributing to the final quality of our memory and microcomputer components is the attention given to the parts during the manufacturing process. All
Production Operations in NEC follow the procedures of MIL Standard 883A. Of particular importance to the reliability program are three areas that demonstrate NEC's commitment to the production of components of the highest quality.
I. Burn-In - All memory and microcomputer products are dynamically burned in at an ambient temperature sufficient to bring the junction to a temperature of $150^{\circ} \mathrm{C}$. The duration of the
burn-in is periodically adjusted
to reflect the production history and experience of NEC with each product. 100% of all NEC memory and microcomputer products receive an operational burn-in stress.
II. Electrical Test - Memory and microcomputer testing at NEC is not considered a statistical game where the device is subjected to a series of pseudo random address and data patterns. Not only is this unnecessarily time consuming, but it does not effectively eliminate weak or defective parts. NEC's test procedures are based on the internal physical and electrical organization of each device and are designed to provide the maximum electrical margin for solid board operation. For further information on NEC's testing procedures see your local NEC representative.
III. After completion of all 100% test operations, production lots are held in storage until completion of two groups of extended sample testing: an operating life test and a series of environmental tests. Upon successful completion of these tests, the parts are released from storage and sent to final Q.A. testing.

NEC Microcomputers, Inc.

NEC Microcomputers, Inc.

173 Worcester Street
Wellesley, Massachusetts
02181
Telephore: 617/237-1910
TWX 710-383-1745

[^0]: See curve above for power dissipation versus cycle time.

[^1]: Note: (1) After the El instruction, the μ PD8080AF accepts interrupts on the second instruction following the El. This

[^2]: *All data pertaining to the μ PD8741 is preliminary.

[^3]: *All data pertaining to the μ PD8748 is preliminary.

[^4]: Notes (1) Conditions $\overline{C S} T T L$ Logti "1". AO TTL Logic " 0 " must be met
 2)
 (2) $\mathrm{CCY} 5 \mu$ can be achieved using a 3 MHz frequency source /LC,

[^5]: *50\% Duty Cycle

[^6]: Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage

[^7]: Note: (1) These conditions apply to μ PD8355 only.

