

V851[™]

32/16-BIT SINGLE-CHIP MICROCOMPUTER

HARDWARE

μ**PD703000** μ**PD703001** μ**PD70P3000**

Document No. U10935EJ2V0UM00 (2nd edition) Date Published September 1996 P Printed in Japan

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices baving reset function.

V851 and V850 families are trademarks of NEC Corporation.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The customer must judge the need for license:	μPD703000GC-xx-xxx-7EA
	µPD70P3000GC-xx-7EA
License not needed	μPD703001GC-xx-7EA

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Mountain View, California

Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby Sweden Tel: 8-63 80 820 Fax: 8-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Major Revisions in This Edition

Page	Description
Throughout	Addition of description of 33-MHz operation
p.3	Addition of parts numbers to 1.4 Ordering Information
p.8	Addition of description to 1.6.2 (2) Bus control unit (BCU)
p.15	Partial change of 2.2 Pin Status
p.20	Addition of description to 2.3.1 (8) (b) (vi) ST0, ST1
p.23	Partial change of 2.4 Processing of Unused Pins
p.26	Addition of text pointer to 3.2 CPU Register Set
p.28	Addition of description to Table 3-2 System Register Numbers
p.46	Change of Figure 3-10 Recommended Memory Map
p.50	Change of 4.3 Number of Access Clocks
p.70, 75	Addition of Note to Figures 5-3 and 5-6 RETI Instruction Processing
p.83, 86	Modification of Note in Figures 5-10 and 5-12 RETI Instruction Processing
p.88	Modification of 5.6.2 (2) To generate exception in service program
p.96	Addition of description to 6.5.2 (1) Power save control register (PSC)
p.104	Addition of Note to 6.5.5 (2) Releasing software STOP mode
p.112	Addition of description and note to 7.2.1 Timer 1
p.114	Addition of Note to 7.2.2 Timer 4
p.134	Change of Figure 7-17 PWM Output Timing (TM1)
p.200	Modification of description of 9.4 Input Noise Filters
p.212	Addition of 11.6 Notes on Releasing STOP Mode When External Clock is Used

The mark \star shows major revised points.

INTRODUCTION

Readers

This manual is intended for the users who wish to understand the functions of the V851 (μ PD703000, 703001 and 70P3000) to design application systems using the V851.

Purpose

Organization

This manual presents information on the hardware functions of the V851.

Two volumes of the V851 User's Manual are available: hardware (this manual) and architecture (V850 FamilyTM User's Manual - Architecture) manuals. The organization of each manual is as follows:

Hardware

- Pin function
- CPU function
- Internal peripheral function
- PROM mode

Architecture

- Data type
- · Register set
- · Instruction format and instruction set
- · Interrupt and exception
- · Pipeline operation

How to Read This Manual

It is assumed that the readers of this manual have general knowledge on electric engineering, logic circuits, and microcontrollers.

- To find the details of a register where the name is known
 → Refer to APPENDIX A REGISTER INDEX.
- To understand the details of an instruction function
 - \rightarrow Refer to the V850 Family User's Manual Architecture.
- To find out about the electrical characteristics of the V851
 → Refer to the Data Sheet separately available.
- · To understand the overall functions of the V851
 - \rightarrow Read this manual according to the Table of Contents.

In this manual, the one-time PROM model is referred to as a PROM.

Legend

Data significance	:	Left: higher digit, right: lower digit	
Active low	:	xxx (top bar over pin or signal name)	
Memory map address	:	Top: highest, bottom: lowest	
Note	:	Foot note	
Caution	:	Important information	
Remark	:	Supplement	
Numeric representation	:	Binary xxxx or xxxxB	
		Decimal xxxx	
		Hexadecimal xxxxH	
Prefix indicating power of 2	:	K (kilo): 2 ¹⁰ = 1024	
		M (m = m =) = 020 = 100.42	

M (mega): $2^{20} = 1024^2$

Related documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Product Name		μPD703000, 703001	μPD70P3000	
Data sheet		U10987E	U10988E	
User's manual Hardware Architecture		This manual		
		U10243E		
Instruction list		U10229E		
Register list		_		

TABLE OF CONTENTS

CHAPT	ER 1 II	NTRODUCTION				
1.1 General						
1.2 Features						
1.3	Application Fields					
1.4	•••	ring Information				
1.5	Pin Configuration (Top View)					
	1.5.1	Normal operation mode				
	1.5.2	PROM programming mode				
1.6		tion Block Configuration				
	1.6.1	Internal block diagram				
	1.6.2	Internal units				
CHAPT	ER2F	PIN FUNCTIONS				
2.1		unction List				
	2.1.1	Normal operation mode				
	2.1.2	PROM programming mode (µPD70P3000 only)				
2.2		status				
2.3		unction				
	2.3.1	Normal operation mode				
	2.3.2	PROM programming mode (µPD70P3000 only)				
2.4		essing of Unused Pins				
2.5		ircuit of Pin				
CHAPT		CPU FUNCTIONS				
3.2		Register Set				
0.2	3.2.1	Program register set				
	3.2.2	System register set				
3.3		ation Modes				
0.0	3.3.1	Operation modes				
	3.3.2	Specifying operation mode				
3.4		ess Space				
0.1	3.4.1	CPU address space				
	3.4.2	Image (Virtual Address Space)				
	3.4.2	Wrap-around of CPU address space				
	3.4.4	Memory map				
	3.4.5	Area				
	0.4.0	(1) Internal ROM/PROM area and interrupt/exception table				
		(1) Internal ROM/FROM area and Interrupt/exception table				
		(3) Peripheral I/O area				
	016	(4) External memory area				
	3.4.6	External expansion mode				
	3.4.7	Recommended use of address space				
	3.4.8	Peripheral I/O registers				

CHAPT	ER4B	US CONTROL FUNCTION	49			
4.1	Featu	res	49			
4.2	Bus C	Control Pins	49			
4.3	Numb	er of Access Clocks	50			
4.4	Memo	bry Block Function	50			
4.5	Wait F	Function	51			
	4.5.1	Programmable wait function	51			
	4.5.2	External wait function	52			
	4.5.3	Relations between programmable wait and external wait	52			
4.6 Idle State Insertion Function						
4.7 Bus Hold Function						
	4.7.1	Outline of function	54			
	4.7.2	Bus hold procedure	54			
	4.7.3	Operation in power save mode	54			
4.8	Bus T	iming	55			
4.9	Bus P	Priority	62			
4.10	Memo	ory Boundary Operation Condition	62			
	4.10.1	Program space	62			
	4.10.2	Data space	62			
4.11	Intern	al Peripheral I/O Interface	63			
		ITERRUPT/EXCEPTION PROCESSING FUNCTION	65			
5.1		res	65			
5.2		laskable Interrupt	67			
	5.2.1	Accepting operation	68			
	5.2.2	Restore operation	70			
	5.2.3	External interrupt mode register 0 (INTM0)	71			
	5.2.4	NP flag	71			
5.3		able Interrupts	72			
	5.3.1	Block diagram	73			
	5.3.2	Operation	73			
	5.3.3	Restore	75			
	5.3.4	Priorities of maskable interrupts	75			
	5.3.5	Interrupt control register (××ICn)	79			
	5.3.6	External interrupt mode registers 1 and 2 (INTM1 and INTM2)	80			
	5.3.7	In-service priority register (ISPR)	81			
E /	5.3.8	Maskable interrupt status flag	81 82			
5.4		•	82			
	5.4.1 5.4.2	Operation	o∠ 83			
	5.4.2 5.4.3	Restore	84			
5.5		EP flag	84 84			
5.5	5.5.1	btion Trap	04 84			
	5.5.1	Illegal op code definition	85			
	5.5.2 5.5.3	Operation	85 86			
5.6		Restore	87			
5.0	5.6.1	ty Control	8 7			
	5.6.2	Priorities of interrupts and exceptions	87 87			
	0.0.2	Multiple Interrupt processing	07			

	Interr	upt Latency Time	ε
5.8	Perio	ds Where Interrupt Is Not Acknowledged	8
СНАРТЕ	ER6 C	LOCK GENERATION FUNCTION	ç
6.1		Ires	ç
6.2		guration	ç
6.3		ting Input Clock	ç
0.0	6.3.1	Direct mode	ç
	6.3.2	PLL mode	ç
6.4		Stabilization	ç
6.5		r Save Control	(
••••	6.5.1	General	
	6.5.2	Control registers	
	6.5.3	HALT mode	
	6.5.4	IDLE mode	1
	6.5.5	Software STOP mode	1
6.6		ifying Oscillation Stabilization Time	1
6.7	-	Coutput Control	1
		IMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)	1
7.1			1
7.2		Configuration	1
	7.2.1		1
7.0	7.2.2		1
7.3		rol Registers	1
7.4		r 1 Operation	1
	7.4.1	Count operation	1
	7.4.2	Selecting count clock frequency	1
	7.4.3 7.4.4	Overflow	1
		Clearing/starting timer by TCLR1 input	1
	7.4.5	Capture operation	1
7 5	7.4.6	Compare operation	1
7.5		r 4 Operation	1
	7.5.1	Count operation	1
	7.5.2	Selecting the count clock frequency	1
	7.5.3	Overflow	1
	7 5 1		1
7.6	7.5.4	Compare operation cation Examples	1

(

(

ſ

And the second second

8.3	Clocked Serial Interface (CSI)	156
	8.3.1 Features	156
	8.3.2 Configuration	157
	8.3.3 Mode registers and control registers	158
	8.3.4 Basic operation	160
	8.3.5 Transmission in 3-wire serial I/O mode	162
	8.3.6 Reception in 3-wire serial I/O mode	163
	8.3.7 Transmission/reception in 3-wire serial I/O mode	164
	8.3.8 System Configuration Example	166
8.4	Baud Rate Generator (BRG)	167
	8.4.1 Configuration and function	167
	8.4.2 Baud rate generator register 0 (BRG0)	170
	8.4.3 Baud rate generator prescaler mode register 0 (BPRM0)	170
CHAPT	ER 9 PORT FUNCTION	171
9.1	Features	171
9.2	Basic Configuration of Port	172
9.3	Port Pin Function	174
	9.3.1 Port 0	174
	9.3.2 Port 1	178
	9.3.3 Port 2	179
	9.3.4 Port 3	183
	9.3.5 Port 4	189
	9.3.6 Port 5	191
	9.3.7 Port 6	193
	9.3.8 Port 9	194
	9.3.9 Port 10	197
9.4	Input Noise Filters	200
OUADT		204
	ER 10 RESET FUNCTION	201
	Features	201
	Pin Function	201 202
10.3	Initialize	202
CHAPT	ER 11 PROM MODE	205
11.1	PROM Mode	205
11.2	Operation Mode	205
11.3	PROM Write Procedure	207
11.4	PROM Read Procedure	211
11.5	Screening of OTPROM Version	212
11.6	Notes on Releasing STOP Mode When External Clock Is Used	212
APPEN	DIX A REGISTER INDEX	213
APPEN	DIX B INSTRUCTION SET LIST	215
APPEN		221

★

LIST OF FIGURES

Figure No.	Title	Page
 3-1.	Program Counter (PC)	27
3-2.	Interrupt Source Register (ECR)	28
3-3.	Program Status Word (PSW)	29
3-4.	CPU Address Space	32
3-5.	Image on Address Space	33
3-6.	Interrupt/Exception Table	37
3-7.	External Memory Area (when expanded to 64 KB, 256 KB, or 1 MB)	40
3-8.	External Memory Area (when expanded to 4 MB)	41
3-9.	External Memory Area (when fully expanded)	42
3-10.	Recommended Memory Map	46
4-1.	Example of Inserting Wait States	52
5-1.	Non-Maskable Interrupt Processing	68
5-2.	Accepting Non-Maskable Interrupt Request	69
5-3.	RETI Instruction Processing	70
5-4.	Maskable Interrupt Block Diagram	73
5-5.	Maskable Interrupt Processing	74
5-6.	RETI Instruction Processing	75
5-7.	Example of Interrupt Nesting Process	76
5-8.	Example of Processing Interrupt Requests Simultaneously Generated	78
5-9.	Software Exception Processing	82
5-10.	RETI Instruction Processing	83
5-11.	Exception Trap Processing	85
5-12.	RETI Instruction Processing	86
5-13.	Pipeline Operation When Interrupt Request Is Accepted (outline)	89
6-1.	Block Configuration	106
7-1.	Basic Operation of Timer 1	121
7-2.	Operation after Occurrence of Overflow (when ECLR1 = 0, OST = 1)	122
7-3.	Clearing/Starting Timer by TCLR1 Input (when ECLR1 = 1, OST = 0)	123
7-4.	Relations between Clear/Start by TCLR1 Input and Overflow (when ECLR1 = 1, OST = 1)	123
7-5.	Example of TM1 Capture Operation (when both edges are specified)	124
7-6.	Example of TM1 Capture Operation	125
7-7.	Example of Compare Operation	126
7-8.	Example of TM1 Compare Operation (set/reset output mode)	127
7-9.	Basic Operation of Timer 4	128
7-10.	Operation with CM4 at 1-FFFFH	129
7-11.	When CM4 Is Set to 0	130
7-12.	Timing of Interval Timer Operation (timer 4)	131
7-13.	Setting Procedure of Interval Timer Operation (timer 4)	131
7-14.	Pulse Width Measurement Timing (timer 1)	132
· · T.		102

Conserved States

LIST OF FIGURES

Figure No.	Title				
7-15.	Setting Procedure for Pulse Width Measurement (timer 1)	133			
7-16.	Interrupt Request Processing Routine Calculating Pulse Width (timer 1)	133			
7-17.	PWM Output Timing (TM1)	134			
7-18.	Programming Procedure of PWM Output (timer 1)	135			
7-19.	Interrupt Request Processing Routine, Modifying Compare Value (timer 1)	136			
7-20.	Frequency Measurement Timing (TM1)	137			
7-21.	Set-up Procedure for Frequency Measurement (timer 1)	138			
7-22.	Interrupt Request Processing Routine Calculating Cycle (timer 1)	138			
8-1.	Block Diagram of Asynchronous Serial Interface	144			
8-2.	Format of Transmit/Receive Data of Asynchronous Serial Interface	152			
8-3.	Asynchronous Serial Interface Transmission Completion Interrupt Timing	153			
8-4.	Asynchronous Serial Interface Reception Completion Interrupt Timing	155			
8-5.	Receive Error Timing	155			
8-6.	Timing of 3-Wire Serial I/O Mode (transmission)	162			
8-7.	Timing of 3-Wire Serial I/O Mode (reception)	163			
8-8.	Timing of 3-Wire Serial I/O Mode (transmission/reception)	165			
8-9.	Example of CSI System Configuration	166			
8-10.	Block Diagram	167			
9-1.	Block Diagram of P00, P01 (Port 0)	175			
9-2.	Block Diagram of P02-P07 (Port 0)	175			
9-3.	Block Diagram of P10-P17 (Port 1)	178			
9-4.	Block Diagram of P20 (Port 2)	180			
9-5.	Block Diagram of P21-P24 (Port 2)	180			
9-6.	Block Diagram of P25 (Port 2)	181			
9-7.	Block Diagram of P26, P27 (Port 2)	181			
9-8.	Block Diagram of P30, P33 (Port 3)	184			
9-9.	Block Diagram of P31 (Port 3)	185			
9-10.	Block Diagram of P32 (Port 3)	185			
9-11.	Block Diagram of P34 (Port 3)	186			
9-12.	Block Diagram of P35 (Port 3)	186			
9-13.	Block Diagram of P36, P37 (Port 3)	187			
9-14.	Block Diagram of P40-P47 (Port 4)	189			
9-15.	Block Diagram of P50-P57 (Port 5)	191			
9-16.	Block Diagram of P60-67 (Port 6)	193			
9-17.	Block Diagram of P90-P97 (Port 9)	195			
9-18.	Block Diagram of P100, P103 (Port 10)	197			
9-19.	Block Diagram of P101 (Port 10)	198			
9-20.	Block Diagram of P102 (Port 10)	198			
9-21.	Example of Noise Filtering Timing	200			
11-1.	PROM Read Timing	211			

Title Table No. Page 3-1. Program Registers 27 3-2. System Register Numbers 28 4-1. Bus Priority 62 5-1. Interrupt List..... 66 6-1. Operation of Clock Generator by Power Save Control 95 6-2. Operating Status in HALT Mode 99 6-3. Operating Status in IDLE Mode 101 Operating Status in Software STOP Mode 6-4. 103 6-5. Example of Count Time 106 7-1. Configuration of RPU 110 7-2. Capture Trigger Signal to 16-Bit Capture Register (TM1) 124 7-3. Interrupt Request Signal from 16-Bit Compare Register (TM1) 126 8-1. Default Priority of Interrupts..... 151 8-2. BRG Set-up Values 169 10-1. Operating Status of Each Pin During Reset Period 201 10-2. Initial Values of Each Register at Reset

203

LIST OF TABLES

[MEMO]

CHAPTER 1 INTRODUCTION

The V851 is the first product of the NEC's V850 family single-chip microcontrollers for real-time control applications. This chapter briefly outlines the V851.

1.1 General

Ŕ

The V851 is a 32-/16-bit single-chip microcontroller that employs the CPU core of the V850 family of highperformance 32-bit single-chip microcontrollers for real-time control applications, and integrates peripheral functions such as ROM/RAM, real-time pulse unit, and serial interface.

The V851 is provided with multiplication instructions that are executed with a hardware multiplier, saturated operation instructions, and bit manipulation instructions that are ideal for digital servo control applications, in addition to the basic instructions that have a high real-time response speed and can be executed in 1 clock cycle. This microcontroller can be employed for many applications including real-time control systems such as engine control and ABS (Anti-lock Braking System); various automobile electronic systems; office machines including PPCs (Plain Paper Copiers), printers, and facsimiles; and factory automation systems such as NC (Numerical Control) machine tools and various controllers. In any of these applications, the V851 demonstrates an extremely high cost effectiveness.

1.2 Features

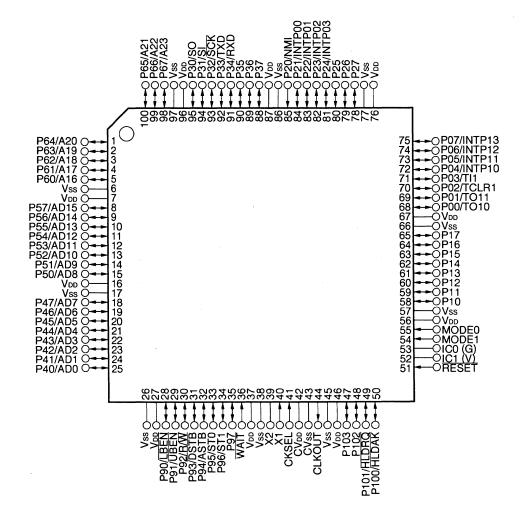
*

O Number of instructions	:	74
O Minimum instruction execution time	e :	30 ns (at 33 MHz)
O General register	:	32 bits × 32
O Instruction set	:	Signed multiply (16 bits × 16 bits → 32 bits): 1 to 2 clocks Saturated operation instructions (with overflow/underflow detection function) 32-bit shift instructions: 1 clock Bit manipulation instructions Load/store instructions with long/short format
O Memory space	:	16 MB linear (common to program/data) Memory is divided in 1 MB unit blocks and wait states can be inserted into a bus cycle for every two blocks. Programmable wait function Idle state insertion function
O External bus interface	:	16-bit data bus (address/data multiplexed) Bus hold function External wait function
O Internal memory	:	ROM/PROM: 32 KB RAM : 1 KB
O Interrupt/exception	:	Non-maskable: 1 source Maskable: 14 sources (Eight levels of priorities can be set.) Illegal instruction code exception
○ I/O line	:	Input port: 1 I/O port : 67
O Real-time pulse unit	:	 16-bit timer/event counter: 1 ch 16-bit timer: 1 16-bit capture/compare register: 4 16-bit interval timer: 1 ch
O Serial interface	:	Asynchronous serial interface (UART): 1 ch Clocked serial interface (CSI): 1 ch Dedicated baud rate generator
O Clock generator	•	×5 function by PLL clock synthesizer
O Power save function	:	HALT/IDLE/STOP mode Clock output stop function
○ CMOS technology		

1.3 Application Fields

O For controlling systems using servo motor (such as PPCs, printers, and NC machine tools)

O For other control applications where high-speed response is required (such as engine control)

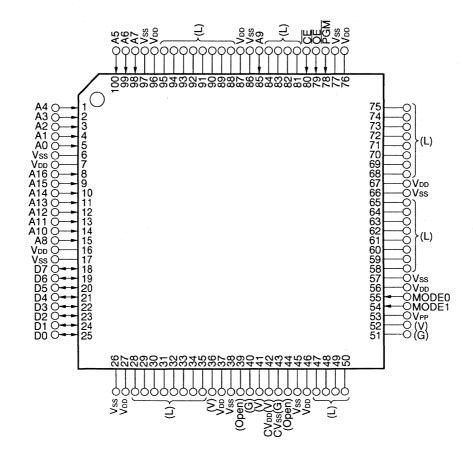

1.4 Ordering Information

		Maximum	
Part Number	Package	Operating	Internal ROM
	Fr	requency (MH	z)
μPD703000GC-25-xxx-7EA	100-pin plastic QFP (fine pitch) (14×14 mm)	25	Mask ROM
μPD703000GC-33-xxx-7EA	100-pin plastic QFP (fine pitch) (14×14 mm)	33	Mask ROM
μPD703001GC-25-7EA	100-pin plastic QFP (fine pitch) (14×14 mm)	25	None
μPD703001GC-33-7EA	100-pin plastic QFP (fine pitch) (14×14 mm)	33	None
μPD70P3000GC-25-7EA ^{Note}	100-pin plastic QFP (fine pitch) (14×14 mm)	25	One-time PROM
μPD70P3000GC-33-7EA ^{Note}	100-pin plastic QFP (fine pitch) (14 \times 14 mm)	33	One-time PROM

Note: Under development

Remark: xxx indicates a ROM code suffix.

- ★ 1.5 Pin Configuration (Top View)
 - 1.5.1 Normal operation mode
 - 100-pin plastic QFP (fine pitch)(14 × 14 mm) μPD703000GC-xx-xxx-7EA μPD703001GC-xx-7EA μPD70P3000GC-xx-7EA

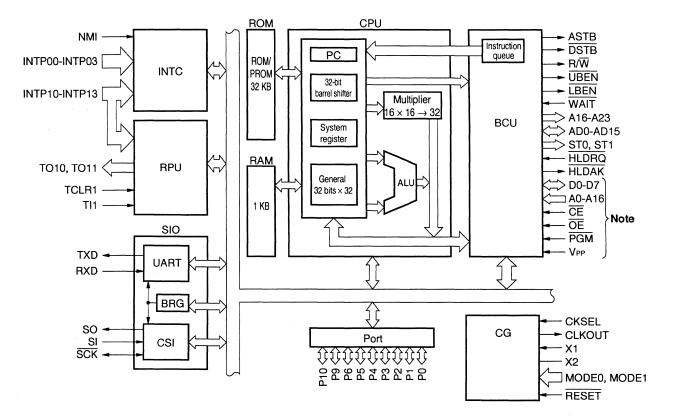

- Cautions: The content in parentheses indicates the processing of the pin not used in the normal operation mode.
 - G: Connect this pin to Vss.
 - V: Connect this pin to VDD
- **Remark:** xx indicates a maximum operating frequency. xxx indicates a ROM code suffix.

P00-P07	:	Port0	A16-A23	:	Address Bus
P10-P17	:	Port1	LBEN	:	Lower Byte Enable
P20-P27	:	Port2	UBEN	:	Upper Byte Enable
P30-P37	:	Port3	R/W	:	Read/Write Status
P40-P47	:	Port4	DSTB	:	Data Strobe
P50-P57	:	Port5	ASTB	:	Address Strobe
P60-P67	:	Port6	STO, ST1	:	Status
P90-P97	:	Port9	HLDAK	:	Hold Acknowledge
P100-P103	:	Port10	HLDRQ	:	Hold Request
TO10, TO11	:	Timer Output	CLKOUT	:	Clock Output
TCLR1	:	Timer Clear	CKSEL	:	Clock Select
TI1	:	Timer Input	WAIT	:	Wait
INTP00-INTP0	3,		MODE0, MODE1	:	Mode
INTP10-INTP1	3:	Interrupt Request From Peripherals	RESET	:	Reset
NMI	:	Non-maskable Interrupt Request	X1, X2	:	Crystal
SO	:	Serial Output	CVDD	:	Clock Generator Power Supply
SI	:	Serial Input	CVss	:	Clock Generator Ground
SCK	:	Serial Clock	Vdd	:	Power Supply
TXD	:	Transmit Data	Vss	:	Ground
RXD	:	Receive Data	ICO, IC1	:	Internally Connected
AD0-AD15	:	Address/Data Bus			

Contraction of the second

1.5.2 PROM programming mode

- 100-pin plastic QFP (fine pitch)(14 \times 14 mm) $\mu \text{PD70P3000GC-xx-7EA}$



- Caution: The content in parentheses indicates the processing of the pin not used in the PROM programming mode.
 - L : Individually connect this pin to Vss via a resistor.
 - G : Directly connect this pin to Vss.
 - V : Directly connect this pin to VDD.
 - Open : Connect nothing to this pin.

A0-A16	: Address Bus	MODE0, MODE1	1:	Programming Mode Set
D0-D7	: Data Bus	Vdd	:	Power Supply
CE	: Chip Enable	Vss	:	Ground
OE	: Output Enable	Vpp	:	Programming Power Supply
PGM	: Programming Mode			

1.6 Function Block Configuration

1.6.1 Internal block diagram

Note: The pins used in the PROM programming mode.

1.6.2 Internal units

(1) CPU

Executes almost all the instruction processing such as address calculation, arithmetic/logic operation, and data transfer in 1 clock by using a 5-stage pipeline.

Dedicated hardware devices such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) are provided to increase the speed of processing complicated instructions.

(2) Bus control unit (BCU)

Initiates the necessary number of bus cycles based on the physical address obtained by the CPU. When the instruction of external memory is executed, if the CPU does not issue a request to start a bus cycle, generates a prefetch address to prefetch an instruction code. The prefetched instruction code is loaded to the internal instruction queue.

(3) ROM/PROM

ROM or PROM of 32-KB mapped starting from address 00000000H. Access is enabled/disabled by the MODE0 and MODE1 pins. With the PROM device, the programming mode is specified by these two pins. This ROM/PROM is accessed in 1 clock by the CPU when an instruction is fetched.

(4) RAM

1-KB RAM mapped starting from address FFFFE000H. This RAM can be accessed in 1 clock by the CPU when data is accessed.

(5) Interrupt controller (INTC)

Processes interrupt requests (NMI, INTP00-INTP03, INTP10-INTP13) from the internal peripheral hardware and external sources. Eight levels of priorities can be specified for these interrupt requests, and multiplexed processing control can be performed on an interrupt source.

(6) Clock generator (CG)

Supplies the CPU clock whose frequency is five times (when the internal PLL is used) or 1/2 times (when the PLL is not used) the frequency of the oscillator connected across the X1 and X2 pins. Input from an external clock source can also be referenced instead of using the oscillator.

(7) Real-time pulse unit (RPU)

Provides a 16-bit timer/event counter, a 16-bit interval timer, and capabilities for measuring pulse width and generation of programmable pulse outputs.

(8) Serial interface (SIO)

The serial interface consists of an asynchronous serial interface (UART) and a synchronous or clocked serial interface (CSI).

UART transfers data by using the TXD and RXD pins and the CSI transfers data by using the SO, SI, and SCK pins.

The output of the baud rate generator and system clock can be selected as the serial interface clock source.

(9) Ports

The V851 is provided with a total of 68 I/O port pins (of which one is an input port pin) that constitute ports 0 to 10. These port pins also function as various control pins.

Port	I/O		Function
P0	8-bit I/O	General port	Timer I/O, external interrupt
P1			
P2			External interrupt
Р3			Serial interface
P4			External address/data bus
P5			
P6			External address bus
P9			External bus interface control signal I/O
P10	4-bit I/O		

[MEMO]

CHAPTER 2 PIN FUNCTIONS

The following table shows the names and functions of the V851's pins. These pins can be divided by function into port pins and other pins.

2.1 Pin Function List

2.1.1 Normal operation mode

(1) Port pins

A.

C C

Pin Name	I/O	Function	Alternate Function
P00	1/0	Port 0.	TO10
P01		8-bit I/O port.	TO11
P02		Can be specified in input/output mode in 1-bit units.	TCLR1
P03			TI1
P04			INTP10
P05			INTP11
P06			INTP12
P07			INTP13
P10-P17	I/O	Port 1. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	_
P20	Input	Port 2.	NMI
P21	I/O	8-bit I/O port. Can be specified in input/output mode in 1-bit units. P20 is fixed to input mode, however.	INTP00
P22			INTP01
P23			INTP02
P24	1		INTP03
P25-P27			. –
P30	I/O	Port 3.	SO
P31		8-bit I/O port.	SI
P32	-	Can be specified in input/output mode in 1-bit units.	SCK
P33	-		TXD
P34			RXD
P35-P37			_
P40-47	I/O	Port 4. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	AD0-AD7
P50-P57	I/O	Port 5. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	AD8-AD15

(1/2)

(2/2)

Pin Name	I/O	Function	Alternate Function
P60-P67	I/O	Port 6. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	A16-A23
P90	1/0	Port 9.	LBEN
P91		8-bit I/O port.	UBEN
P92		Can be specified in input/output mode in 1-bit units.	R/W
P93			DSTB
P94			ASTB
P95			STO
P96			ST1
P97			
P100	I/O	Port 10.	HLDAK
P101		4-bit I/O port. Can be specified in input/output mode in 1-bit units.	HLDRQ
P102			-
P103			-

(2) Pins other than port pins

(States)

(

Pin Name	I/O	Function	Alternate Function
TO10	Output	Pulse signal output from timer 1.	P00
TO11	1		P01
TCLR1	Input	External clear signal input to timer 1.	P02
TI1	1	External count clock input to timer 1.	P03
INTP10	Input	External capture trigger input to timer 1. Also used to input external	P04
INTP11		maskable interrupt request.	P05
INTP12			P06
INTP13	1		P07
NMI	Input	Non-maskable interrupt request input.	P20
INTP00	Input	External maskable interrupt request input.	P21
INTP01			P22
INTP02			P23
INTP03	1		P24
SO	Output	Serial transmit data output from CSI.	P30
SI	Input	Serial receive data input to CSI.	P31
SCK	I/O	Serial clock I/O from/to CSI.	P32
TXD	Output	Serial transmit data output from UART.	P33
RXD	Input	Serial receive data input to UART.	P34
AD0-AD7	I/O	16-bit multiplexed address/data bus when external memory is used.	P40-P47
AD8-AD15			P50-P57
A16-A23	Output	Higher address bus when external memory is used.	P60-P67
LBEN	Output	Lower byte enable signal output of external data bus.	P90
UBEN		Higher byte enable signal output of external data bus.	P91
R/W		External read/write status output.	P92
DSTB		External data strobe signal output.	P93
ASTB		External address strobe signal output.	P94
ST0		External bus cycle status output.	P95
ST1			P96
HLDAK	Output	Bus hold acknowledge output.	P100
HLDRQ	Input	Bus hold request input.	P101
CLKOUT	Output	System clock output.	_
CKSEL	Input	Input specifying operation mode of clock generator.	
WAIT	Input	Control signal input inserting wait state to bus cycle.	_
MODE0, MODE1	Input	Specifies operation mode.	
RESET	Input	System reset input.	
X1	Input	System clock oscillator connecting pins. Supply external clock to X1.	
X2	_	1	

(2/2)

Pin Name	I/O	Function		Alternate Function
CVDD	-	Positive power supply for internal clock generator.	-	
CVss		Ground for internal clock generator.		· _
VDD	-	Positive power supply		-
Vss	_	Ground		_
IC0, IC1	-	Internally connected		· _

2.1.2 PROM programming mode (µPD70P3000 only)

Control and timing of the V851 in the PROM mode are compatible with those of the μ PD27C1001A. The functions of the pins of the V851 in the PROM mode are as follows:

Pin Name	Function in PROM Mode	Corresponding Pin of µPD27C1001A
P60-P67	Address input, low (A0-A7)	A0-A7
P50, P20, P51-P57	Address input, high (A8-A16)	A8, A9, A10-A16
P40-P47	Data input/output	D0-D7
P25	CE (chip enable) input	CE
P26	OE (output enable) input	ŌĒ
P27	PGM (program) input	PGM
Vpp	Power supply for program write	Vpp
MODE0, MODE1	Operation mode specification	_

2.2 Pin Status

The operating status of each pin in each operation mode is as follows:

Operating Status Pin	Reset	STOP Mode	IDLE Mode	Bus Hold	Idle State	HALT Mode
AD0-AD15	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
A16-A23	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained	Retained
LBEN, UBEN	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained	Н
R/W	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
DSTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	н
ASTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
STO, ST1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Idle status	Idle status
HLDRQ	-	-	-	Operates	Operates	Operates
HLDAK	Hi-Z	Hi-Z	Hi-Z	L	Operates	Operates
WAIT	_	_		-	_	_

Hi-Z : high-impedance

Retained : Retains status in external bus cycle immediately before

Н

-

Æ

C C L : low-level output

: high-level output

: input not sampled

2.3 Pin Function

2.3.1 Normal operation mode

(1) P00-P07 (Port0) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 0. They also serves as control signal pins. P00-P07 function not only as I/O port pins, but also as the I/O pins of the real-time pulse unit (RPU) and external interrupt request input pins. Each bit of port 0 can be specified in the port or control mode, by using port mode control register 0 (PMC0).

(a) Port mode

P00-P07 can be set in the input or output mode in 1-bit units by using port mode register 0 (PM0).

(b) Control mode

P00-P07 can be set in the port or control mode in 1-bit units by the PMC0 register.

(i) TO10, TO11 (Timer Output) ... output These pins output pulse signals from timer 1.

(ii) TCLR1 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI1 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

(iv) INTP10-INTP13 (Interrupt Request From Peripherals) ... input

These pins are the external interrupt request input pins of timer 1.

(2) P10-P17 (Port 1) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 1, which can be set in the input or output mode in 1-bit units by using port mode register 1 (PM1).

The pins of port 1 function only as I/O pins and are not multiplexed with control pins.

(3) P20-P27 (Port 2) ... 3-state I/O

These pins constitute an I/O port, port 2, which can be set in the input or output mode in 1-bit units except P20 which is fixed to the input mode. These pins function not only as port pins but also as external interrupt input pins.

Each bit of this port can be specified in the port or control mode by using port mode control register 2 (PMC2). P25-P27 function only as I/O pins and are not multiplexed with control pins.

(a) Port mode

P21-P27 can be set in the input or output mode in 1-bit units by port mode register 2 (PM2). PM20 is dedicated to the NMI input mode.

(b) Control mode

P20-P24 can be set in the port or control mode in 1-bit units by port mode control register 2 (PMC2).

- (i) NMI (Non-Maskable Interrupt Request) ... input This pin inputs a non-maskable interrupt request.
- (ii) INTP00-INTP03 (Interrupt Request From Peripherals) ... input

These pins input external maskable interrupt requests.

(4) P30-P37 (Port 3) ... 3-state input

These pins constitute an 8-bit I/O port, port 3. They also function as control signal pins. P30-P37 function not only as I/O port pins but also as serial interface (UART, CSI) I/O pins in the control mode. P35-P37 function only as I/O pins and are not multiplexed with control pins.

(a) Port mode

P30-P37 can be set in the input or output mode in 1-bit units by port mode register 3 (PM3).

(b) Control mode

P30-P37 can be set in the port or control mode in 1-bit units by the PMC3 register.

- (i) SO (Serial Output) ... output This pin outputs the serial transmit data of CSI.
- (ii) SI (Serial Input) ... input This pin inputs the serial receive data of CSI.
- (iii) SCK (Serial Clock) ... 3-state I/O This pin inputs/outputs the serial clock of CSI.
- (iv) TXD (Transmit Data) ... output This pin outputs the serial transmit data of UART.
- (v) RXD (Receive Data) ... input

This pin inputs the serial receive data of UART.

(5) P40-P47 (Port 4) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 4. They also form a portion of the address/data bus connected to external memory.

P40-P47 function not only as I/O port pins but also as multiplexed address/data bus pins (AD0-AD7) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode, in 1-bit units, by using mode specification pins MODE0 and MODE1, and memory expansion mode register (MM).

(a) Port mode

P40-P47 can be set in the input or output port mode in 1-bit units by using port mode register 4 (PM4).

(b) Control mode (external expansion mode)

P40-P47 can be specified as AD0-AD7 by using the MODE0 and MODE1 pins and MM register.

(i) AD0-AD7 (Address/Data0-7) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A0-A7 output pins of a 24-bit address in the address timing (T1 state), and as the lower 8-bit data I/O bus pins of 16-bit data in the data timing (T2, TW, T3).

The output status of these pins changes in synchronization with the rising edge of the clock in each state of the bus cycle. AD0-AD7 go into a high-impedance state in the idle state (TI).

(6) P50-P57 (Port 5) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 5. They also form a portion of the address/data bus connected to external memory.

P50-P57 function not only as I/O port pins but also as multiplexed address/data bus pins (AD8-AD15) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode in 1-bit units by using mode specification pins MODE0 and MODE1, and memory expansion mode register (MM).

(a) Port mode

P50-P57 can be set in the input or output port mode in 1-bit units by using port mode register 5 (PM5).

(b) Control mode (external expansion mode)

P50-P57 can be specified as AD8-AD15 by using the MODE0 and MODE1 pins and MM register.

(i) AD8-AD15 (Address/Data8-15) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A8-A15 output pins of a 24-bit address in the address timing (T1 state), and as the higher 8-bit data I/O bus pins of 16-bit data in the data timing (T2, TW, T3).

The output status of these pins changes in synchronization with the rising of the clock in each state of the bus cycle. AD8-AD15 go into a high-impedance state in the idle state (TI).

(7) P60-P67 (Port 6) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 6. They also form a portion of the address/data bus connected to external memory.

P60-P67 function not only as I/O port pins but also as address bus pins (A16-A23) in the control mode (external expansion mode) when an external memory is connected. This port can be set in the port or control mode in 2-bit units by using mode specification pins MODE0 and MODE1, and memory expansion mode register (MM).

(a) Port mode

P60-P67 can be set in the input or output port mode in 1-bit units by using port mode register 6 (PM6).

(b) Control mode (external expansion mode)

P60-P67 can be specified as A16-A23 by using the MODE0 and MODE1 pins and MM register.

(i) A16-A23 (Address/Data16-23) ... output

These pins constitute the higher 8 bits of a 24-bit address bus when the external memory is accessed. The output status of these pins changes in synchronization with the rising edge of the clock in the T1 state. During the idle state (TI), the address of the bus cycle immediately before entering the idle state is retained.

(8) P90-P97 (Port 9) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 9, and are also used to output control signals. P90-P96 function not only as I/O port pins but also as control signal output pins in the control mode (external expansion mode) when an external memory is used.

This port can be set in the port or control mode in 5-, 2-, or 1-bit units by using mode specification pins MODE0 and MODE1, and memory expansion mode register (MM).

P97, however, is not multiplexed and can be used only as a port pin.

(a) Port mode

P90-P97 can be set in the input or output port mode in 1-bit units by using port mode register 9 (PM9).

(b) Control mode (external expansion mode)

P90-P96 can be used to output control signals when so specified by the MODE0 and MODE1 pins and MM register when an external memory is used.

(i) LBEN (Lower Byte Enable) ... output

This is the lower byte enable signal of the 16-bit external data bus.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. The status of the bus signal remains unchanged in the idle state (TI).

(ii) UBEN (Upper Byte Enable) ... output

This is the upper byte enable signal of the 16-bit external data bus. It becomes inactive (high) in the byte access mode.

This signal changes in synchronization with the rising of the clock in the T1 state of the bus cycle. The status of the bus signal remains unchanged in the idle state (TI).

Access		UBEN	LBEN	A0
Word Access		0	0	0
Half-word Access		0	0	0
Byte Access	Even address	1	0	0
	Odd address	0	1	1

(iii) R/W (Read/Write Status) ... output

This is a status signal that indicates whether the bus cycle for external access is a read or write cycle. It goes high in the read cycle and low in the write cycle.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. It goes high in the idle state (TI).

(iv) DSTB (Data Strobe) ... output

This is the access strobe signal of the external data bus.

It becomes active (low) in the T2 or TW state of the bus cycle, and becomes inactive (high) in the idle state (TI).

(v) ASTB (Address Strobe) ... output

This is the latch strobe signal of the external address bus.

It becomes active (low) in synchronization with the falling edge of the clock in the T1 state of the bus cycle, and becomes inactive (high) in synchronization with the falling edge of the clock in the T3 state. It goes high in the idle state (TI).

(vi) ST0, ST1 (Status0, 1) ... output

These are status signals which indicate the access type of the current bus cycle when external memory is referenced. The status changes in synchronization with the rising edge of the clock in the T1 and TI states of the bus cycle. In the table below, "Instruction fetch (branch)" cycle is the cycle that occurs only right after the execution is branched, and "Instruction fetch (continuous)" cycle is for the other cases of branch process.

ST1	ST0	Bus Cycle Status
0	0	Idle cycle
0	1	Instruction fetch (branch)
1	0	Operand data access
1	1	Instruction fetch (continuous)

The status "instruction fetch (branch)" is also indicated by the branch cycle immediately after system reset or on starting interrupt processing.

Immediately after system reset, the pins are set in the port mode and output no status, regardless of the setting in the ROM-less mode.

(9) P100-P103 (Port 10) ... 3-state I/O

Port 10 is a 4-bit I/O port that can be set in the input or output mode in 1-bit units. In addition to the function as a port, the pins constituting port 10 are used to input/output control signals, in the control mode, when an external bus master or ASIC is connected.

If port 10 is accessed in 8-bit units, the higher 4 bits are ignored if the access is write, and undefined if the access is read.

P102, P103, however, are not multiplexed and can be used only as port pins.

(a) Port mode

P100-P103 can be set in the input or output mode, in 1-bit units, by port mode register (PM10).

(b) Control mode

P100, P101 function as input and output pins for bus hold control signals when the function is enabled by mode control register 10 (PMC10).

(i) HLDAK (Hold Acknowledge) ... output

This is an acknowledge signal that indicates that the V851 has set the address bus, data bus, and control bus in the high-impedance state in response to a bus hold request.

As long as this signal is active, the address/data bus, and control signals remain in a high-impedance state.

(ii) HLDRQ (Hold Request) ... input

This input signal is used by an external device to request that the V851 relinquish control of the address, data bus, and control signals. This signal can be activated asynchronously with CLKOUT. When this signal becomes active, the V851 sets the address/data bus and control signals in the high-impedance state, after the current bus cycle completes. If there is no current bus activity, the address/ data bus and control signals are immediately set to high-impedance. HLDAK is then made active and the bus and control lines are released.

(10) CLKOUT (Clock Output) ... output

This pin outputs the system clock, even during reset. The output of this pin can be fixed to a logic "0" when the clock output inhibit mode is set by PSC register.

(11) CKSEL (Clock Select) ... input

This pin specifies the operation mode of the clock generation circuit. Once set, the input value of this pin cannot be changed during operation.

CKSEL	Operation Mode	
0	PLL mode	
1	Direct mode	

(12) WAIT (Wait) ... input

This control signal input pin inserts a data wait state to the bus cycle, and can be activated asynchronously to CLKOUT. This pin is sampled at the falling edge of the clock in the T2 and TW states of the bus cycle. If the set/hold time for the sampling timing is not satisfied, the wait state may not be inserted.

(13) MODE0, MODE1 (Mode0, 1) ... input

These pins specify the operation mode of the V851. Three operation modes can be selectable: single-chip mode, ROM-less mode, and PROM programming mode. The input value of these pins cannot be changed during normal operation.

MODE1	MODE0	Operation Mode		
0	0	ROM-less mode		
0	1	RFU (reserved)		
1	0	Single-chip mode		
1	1	PROM mode	V _{PP} = 5 V : read mode	
			VPP = 12.5 V: programming mode	

(14) RESET (Reset) ... input

The RESET signal is an asynchronous input signal. A valid low-level signal on the RESET pin initiates a system reset, regardless of the clock operation. In addition to normal system initialization/start functions, the RESET signal is also used for exiting processor standby modes (HALT, IDLE, or STOP).

(15) X1, X2 (Crystal) ... input (X1 only)

An oscillator for system clock generation is connected across these pins.

An external clock source can also be referenced by connecting the external clock input to the X1 pin and leaving the X2 pin open.

(16) CVDD (Clock Generator Power Supply)

This pin supplies positive power to the internal clock generator.

(17) CVss (Clock Generator Ground)

This is the ground pin of the internal clock generator.

(18) VDD (Power Supply)

This pin supplies positive power. Connect all the VDD pins to a positive power supply.

(19) Vss (Ground)

This is a ground pin. Connect all the Vss pins to ground.

(20) IC0 (Internally Connected)

This pin is internally connected and must be connected to Vss.

(21) IC1 (Internally Connected)

This pin is internally connected and must be connected to VDD.

2.3.2 **PROM** programming mode (µPD70P3000 only)

(1) A0-A16 ... input

These pins constitute an address bus that selects an address of the internal PROM (0000H-7FFFH).

(2) D0-D7 ... I/O

These pins constitute a data bus through which the internal PROM is written/read.

(3) PGM ... input

This pin inputs a program pulse and is activated when $V_{PP} = 12.5 \text{ V}$, $\overline{CE} = 0$, and $\overline{OE} = 1$. Upon activation, the program on D0-D7 is written to an internal PROM cell selected by A0-A16.

(4) **CE** ... input

This is a chip enable input pin. When this signal is active, the program in PROM can be written/read.

(5) OE ... input

This is an output enable signal input pin and inputs a read strobe signal to the internal PROM. When the signal is activated while $\overline{CE}=0$, the contents of the PROM location selected by A0-A16, will appear at the outputs, D0-D7.

(6) VPP ... input

This pin inputs a program pulse. When this pin is activated while $V_{PP} = 12.5 \text{ V}$, $\overline{CE} = 0$, and $\overline{OE} = 1$, the program byte on D0-D7 can be written to the internal PROM cell selected by A0-A16.

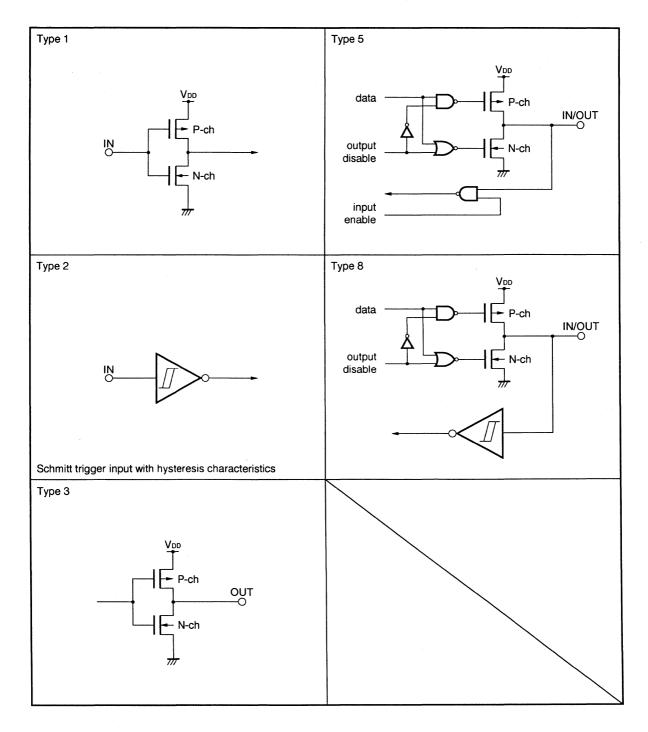
(7) VDD

Positive power supply pin

(8) Vss

GND pin

2.4 Processing of Unused Pins


 \bigcirc

C C

Pin	I/O Circuit Type	Recommended Connection
P00/TO10, P01/TO11	5	Input status : Individually connect to VDD or Vss via
P02/TCLR1, P03/TI1, P04/INTP10-P07/INTP13	8	resistor
P10-P17	5	Output status : Open
P20/NMI	2	Directly connect to Vss via resistor
P21/INTP00-P24/INTP03	8	Input status : Individually connect to VDD or VSS via
P25	5	resistor
P26, P27	8	Output status : Open
P30/SO	5	
P31/SI, P32/SCK	8	
P33/TXD, P34/RXD, P35	5	
P36, P37	8	
P40/AD0-P47/AD7	5	
P50/AD8-P57/AD15		
P60/A16-P67/A23		
P90/LBEN		
P91/UBEN		
P92/R/W		
P93/DSTB		
P94/ASTB		
P95/ST0, P96/ST1		
P97		
P100/HLDAK		
P101/HLDRQ		
P102	-	
P103		
CLKOUT	3	Open
CKSEL	2	Individually connect to VDD or VSS via resistor.
WAIT	1	Directly connect to VDD via resistor.
MODE0, MODE1	2	Individually connect to VDD or Vss via resistor.
RESET		
ICO	-	Directly connect to Vss via resistor.
IC1	_	Directly connect to VDD via resistor.

*

2.5 I/O Circuit of Pin

CHAPTER 3 CPU FUNCTIONS

The CPU of the V851 is based on a RISC architecture and executes most instructions in one clock cycle by using a 5-stage pipeline.

3.1 Features

- O Minimum instruction cycle: 30 ns (at 33 MHz)
- O Address space: 16 MB linear
- O Thirty-two 32-bit general registers
- O Internal 32-bit architecture
- O Five-stage pipeline control
- O Multiplication/division instructions
- O Saturated operation instructions
- O Single-cycle 32-bit shift instruction
- O Long/short instruction format
- O Internal memory
 - ROM/PROM: 32 KB
 - RAM: 1 KB
- O Four types of bit manipulation instructions
 - Set

- Clear
- Not
- Test

3.2 CPU Register Set

The registers of the V851 can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers are 32 bits wide. In this section, only summarized information is contained. For more details, refer to **"V850 Family User's Manual –Architecture–.**"

0

0

Program register set

System register set

31	
r0	Zero Register
r1	Reserved for Address Generation
r2	Interrupt Stack Pointer
r3	Stack Pointer (SP)
r4	Global Pointer (GP)
r5	Text Pointer (TP)
r6	
r7	
r8	
r9	
r10	
r11	
r12	
r13	
r14	
r15	
r16	
r17	
r18	
r19	
r20	
r21	
r22	
r23	
r24	
r25	
r26	
r27	
r28	
r29	
r30	Element Pointer (EP)
r31	Link Pointer (LP)

31

EIPC	Exception/Interrupt PC	
EIPSW	Exception/Interrupt PSW	

0

<u>31</u>		0
FEPC	Fatal Error PC	
FEPSW	Fatal Error PSW	

31		0
ECR	Exception Cause Register	
31		0

PSW Program Status Word

31 PC Program Counter

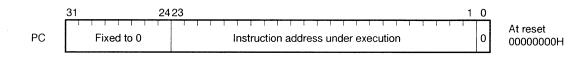
3.2.1 Program register set

The program register set includes general registers and a program counter.

(1) General registers

Thirty-two general registers, r0-r31, are available. Any of these registers can be used as a data variable or address variable.

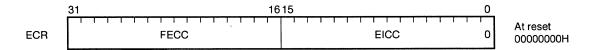
However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. Also, r1-r5 and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used.


Name	Usage	Operation	
r0	Zero register	Always holds 0	
r1	Assembler-reserved register	Working register for address generation	
r2	Interrupt stack pointer	Stack pointer for interrupt handler	
r3	Stack pointer	Used to generate stack frame when function is called	
r4	Global pointer	Used to access global variable in data area	
r5	Text pointer	Used as register indicating beginning of text areaNote	
r6-r29	_	Address/data variable registers	
r30	Element pointer	Base pointer register when memory is accessed	
r31	Link pointer	Used by compiler when calling functions	
PC	Program counter Holds instruction address during program execution		

Note: Area in which program codes are located.

(2) Program counter

This register holds the address of the instruction under execution. The lower 24 bits of this register are valid, and bits 31-24 are fixed 0. If a carry occurs from bit 23 to 24, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.


3.2.2 System register set

System registers control the status of the CPU and hold interrupt information. For values of all registers after reset, refer to section **"10.3 Initialize**".

No.	System Register Name	Usage	Operation
0	EIPC	Status saving registers during interrupt	These registers save the PC and PSW when a trap or interrupt occurs. Because only one set of these registers are available, their contents must be saved
1	EIPSW		when multiple interrupts are enabled. The higher 8 bits of EIPC, and the higher 24 bits of EIPSW are fixed to 0.
2	FEPC	Status saving registers for NMI	These registers save PC and PSW when NMI occurs. The higher 8 bits of FEPC, and the higher 24 bits of
3	FEPSW		FEPSW are fixed to 0.
4	ECR	Interrupt source register	If trap, maskable interrupt, or NMI occurs, this register will contain information referencing the interrupt source. The higher 16 bits of this register are called FECC, to which exception code of NMI is set. The lower 16 bits are called EICC to which exception code of trap/interrupt is set (refer to Figure 3-2).
5	PSW	Program status word	Program status word is collection flags that indicate program status (instruction execution result) and CPU status (refer to Figure 3-3).
6-31	Reserved		· · · · · · · · · · · · · · · · · · ·

To read/write these system registers, specify a system register number indicated by the system register load/store instruction (LDSR or STSR instruction).

Figure 3-2. Interrupt Source Register (ECR)

Bit Position	Bit Name	Function
31-16	FECC	Fatal Error Cause Code Exception code of NMI (Refer to Table 5-1. Interrupt List)
15-0	EICC	Exception/Interrupt Cause Code Exception code of trap/interrupt (Refer to Table 5-1. Interrupt List)

*

CHAPTER 3 CPU FUNCTIONS

Figure 3-3. Program Status Word (PSW)

PSW

Ciaster -

31

876543210 RFU NP EP ID SATCY OV S Z

At reset 00000020H

Bit Position	Bit Name	Function	
31-8	RFU	Reserved field (fixed to 0)	
7.	NP	NMI Pending Indicates that NMI processing is in progress. This flag is set when NMI is accepted, and disables multiple interrupts by masking NMI request.	
6	EP	Exception Pending Indicates that trap processing is in progress. This flag is set when trap is generated.	
5	ID	Interrupt Disable Indicates that accepting external interrupt request is disabled.	
4	SAT	Saturated Math This flag is set if result of executing saturated operation instruction overflows (if overflow does not occur, value of previous operation is held).	
3	CY	Carry This flag is set if carry or borrow occurs as result of operation (if carry or borrow does not occur, it is reset).	
2	OV	Overflow This flag is set if overflow occurs during operation (if overflow does not occur, it is reset).	
1	S	Sign This flag is set if result of operation is negative. It is reset if result is positive.	
0	Z	Zero This flag is set if result of operation is zero (if result is not zero, it is reset).	

3.3 Operation Modes

3.3.1 Operation modes

The V851 has the following operations modes. These modes are selected by the MODE0 and MODE1 pins.

(1) Single-chip mode

In single-chip mode, there is no external bus interface. After the system has been released from the reset status, the pins related to the bus interface are set for I/O port mode, execution branches to the reset entry address of the internal ROM/PROM, and instruction processing is started. However, access to external memory and peripheral devices can be enabled by setting the appropriate bits in the external memory expansion mode register (MM: refer to **3.4.6 (1)**).

(2) ROM-less mode

In ROM-less mode, all control signal relating to external bus operation are made available at the appropriate pins. After the system has been released from the reset status, the bus control signal pins are enabled, execution branches to the reset address of external memory, and instruction processing is started. Instruction fetch and data access from internal ROM/PROM are disabled.

(3) **PROM** programming mode

In PROM programming mode, the appropriate pins function to provide a μ PD27C1001A compatible interface. By using a PROM programmer that supports the μ PD27C1001A, the internal PROM of the V851 can be programmed.

(4) PROM read mode

In PROM read mode, the appropriate pins function to provide a μ PD27C1001A compatible interface. By using a PROM programmer that supports the μ PD27C1001A, the internal PROM of the V851 can be read.

3.3.2 Specifying operation mode

The operation mode of the V851 is specified by using the MODE0 and MODE1 pins. Set these pins in the application system. The MODE pins will also determin the V851 memory map configuration (refer to section "3.4.4". Do not change the setting of these pins during operation.

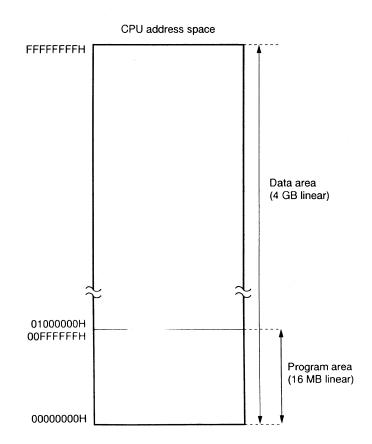
If the setting is changed during operation, the functionality is not guaranteed.

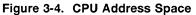
(1) In normal mode

MODE1	MODE0	Operation Mode
0	0	ROM-less mode
0	1	RFU (reserved)
1	0	Single-chip mode
1	1	RFU (reserved)

(2) In PROM mode

I

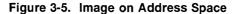

	Pin Status		Operation Mode		
Vpp	MODE1	MODE0	Operation widde		
5 V	0	0	RFU (reserved)		
	0	1			
	1	0			
	1	1	PROM mode (read mode)		
12.5 V	1	1	PROM mode (programming mode)		

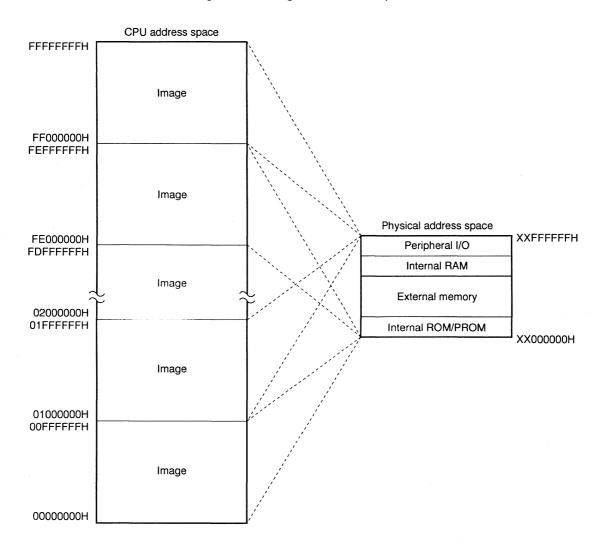

3.4 Address Space

3.4.1 CPU address space

The CPU of the V851 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). When referencing instruction addresses, a linear address space (program space) of up to 16 MB is supported.

Figure 3-4 shows the CPU address space.

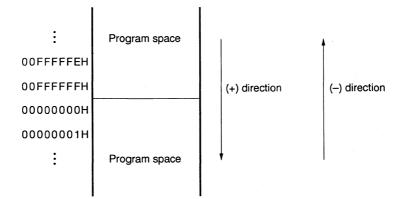




3.4.2 Image (Virtual Address Space)

The core CPU supports 4 GB of "virtual" addressing space, or 256 memory blocks, each containing 16-MB memory locations. In actuality, the same 16-MB block is accessed regardless of the values of bits 31-24 of the CPU address, since these bits are not seen on the external address bus. Figure 3-5 shows the image of the virtual addressing space.

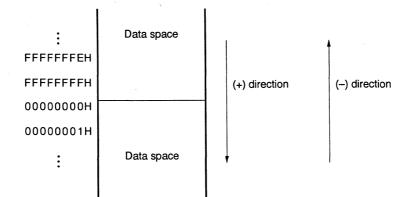
Because the higher 8 bits of a 32-bit CPU address are ignored and the CPU address is only seen as a 24-bit external physical address, the physical location XX000000H is equally referenced by multiple address values 00000000H, 010000000H, 02000000H... through FF000000H. This mapping of CPU address to physical address applies to each of the 16-MB locations of the V851.


3.4.3 Wrap-around of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 8 bits are set to "0", and only the lower 24 bits are valid. Even if a carry or borrow occurs from bit 23 to 24 as a result of branch address calculation, the higher 8 bits ignore the carry or borrow and remain at "0".

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 00FFFFFH are contiguous addresses, and the program space is wrapped around at the boundary of these addresses.


Caution: No instruction can be fetched from the 4-KB area of 00FFF000H-00FFFFFFH because this area is defined as peripheral I/O area. Therefore, do not execute any branch operation instructions in which the destination address will reside in any part of this area.

(2) Data space

The result of operand address calculation that exceeds 32 bits is ignored.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

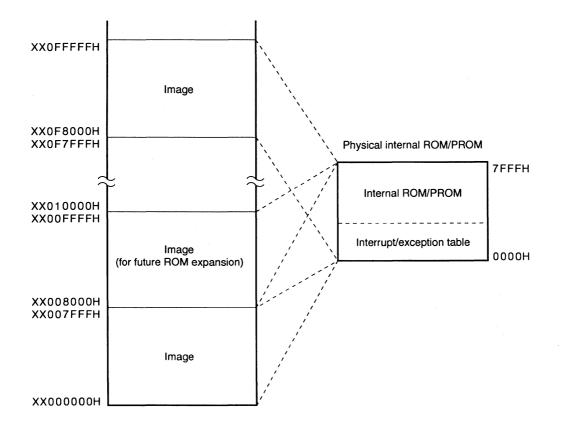
3.4.4 Memory map

1

 \bigcirc

l

(


The V851 reserves areas as shown below. Each mode is specified by using the MODE0 and MODE1 pins (refer to **3.3 Operation Mode**).

	Single-chip mode	Single-chip mode (external expansion mode)	ROM-less mode	
XXFFFFFFH XXFFF000H	Peripheral I/O area	Peripheral I/O area	Peripheral I/O area	4 KB
XXFFEFFFH XXFFE000H	Internal RAM area	Internal RAM area	Internal RAM area	4 KB
XX100000H	(access prohibited)	External memory area	External memory area	16 MB
XXOFFFFFH XX000000H	Internal ROM/PROM area	Internal ROM/PROM area		1 MB

3.4.5 Area

(1) Internal ROM/PROM area and interrupt/exception table

A 1-MB area corresponding to addresses 000000H-0FFFFFH is reserved for the internal ROM/PROM area. The V851 is provided with a 32-KB area of addresses 000000H-007FFFH as a physical internal ROM/PROM. The image of 000000H-007FFFH is seen in the rest of the area (008000H-0FFFFH)

Interrupt/exception table

The V851 increases the interrupt response speed by assigning destination addresses corresponding to interrupts/exceptions.

The collection of these destination addresses is called an interrupt/exception table, which is located in the internal ROM/PROM area. When an interrupt/exception request is granted, execution jumps to the corresponding destination address, and the program written at that memory address is executed. Figure 3-6 shows the names of interrupts/exceptions, and the corresponding addresses.

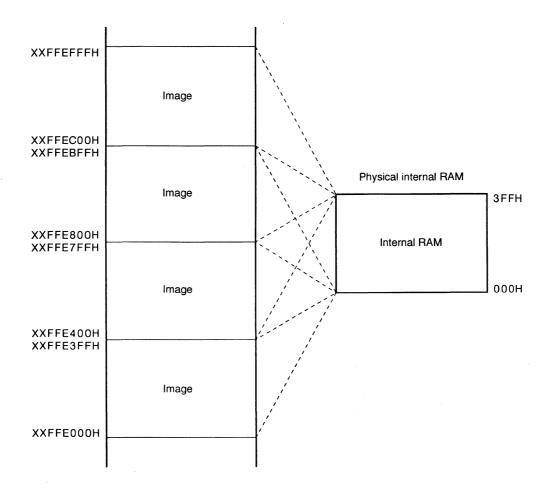
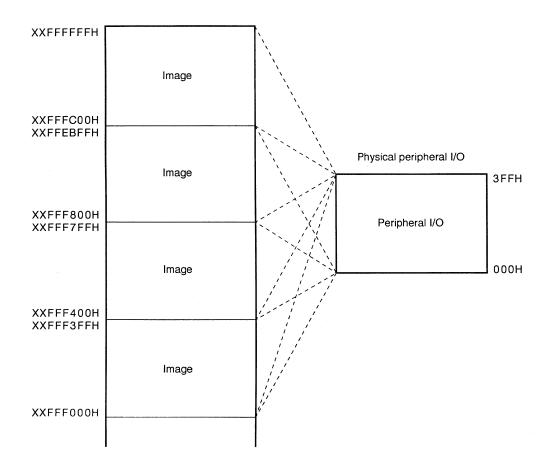

Internal ROM/PROM area 00000150H INTP03 00000140H INTP02 00000130H INTP01 00000120H INTP00 00000110H **INTSTO** 00000100H **INTSR0** 000000F0H **INTSER0** 000000E0H **INTCSI0** 000000D0H INTCM4 000000C0H INTP13/CC13 000000B0H INTP12/CC12 000000A0H INTP11/CC11 0000090H INTP10/CC10 0000080H INTOV1 ILGOP 0000060H 0000050H TRAP1n (n=0-FH) 00000040H TRAP0n (n=0-FH) NMI 00000010H 0000000H RESET 16 bytes

Figure 3-6. Interrupt/Exception Table

In the ROM-less mode, the internal ROM/PROM area is referenced as external memory area. To assure correct operation after reset, connecting an external memory to the reset routine is required.


(2) Internal RAM area

A 4-KB area corresponding to addresses FFE000H through FFEFFFH is reserved as an internal RAM area. The V851 is provided with 1 KB of addresses FFE000H-FFE3FFH as a physical internal RAM area, and the image of FFE000H-FFE3FFH can be seen on the rest of the area (FFE400H-FFEFFFH).

(3) Peripheral I/O area

A 4-KB area of addresses FFF000H-FFFFFH is reserved as a peripheral I/O area. The V851 is provided with a 1-KB area of addresses FFF000H-FFF3FFH as a physical peripheral I/O area, and the image of FFF000H-FFF3FFH can be seen on the rest of the area (FFF400H-FFFFFFH).

Peripheral I/O registers associated with the on-chip peripherals and the CPU are all memory-mapped to peripheral I/O area. Instruction fetches are not allowed in this area.

- Cautions: 1. The least significant bit of an address is not decoded, since all registers reside on an even address. If an odd address (2n+1) in the peripheral I/O area is referenced, the register at the next lowest even address (2n) will be accessed.
 - 2. The V851 does not have a peripheral I/O register than can be accessed in word units. If a register is accessed with a word operation, the effects will be limited to the halfword referenced by the instruction.
 - 3. If a register that can be accessed in byte units is accessed in half-word units, the higher 24 bits become undefined, if the access is a read operation. If a write access is made, only the data in the lower 8 bits is written to the register.
 - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

(4) External memory area

The V851 can use an area of up to xx100000H-xxFFDFFFH in the single-chip mode and an area of up to xx000000H-xxFFDFFFH in the ROM-less mode, for external memory accesses.

In the external memory area, 64 KB, 256 KB, 1 MB, 4 MB, or 16 MB of physical external memory can be allocated when the external expansion mode is specified. The same image as that of the physical external memory can be seen continuously on the external memory area, as shown in Figures 3-7 through 3-9, when the memory is not fully expanded (to 16 MB).

The internal RAM area, peripheral I/O area, and internal ROM/PROM area in the single-chip mode are not subject to external memory access.

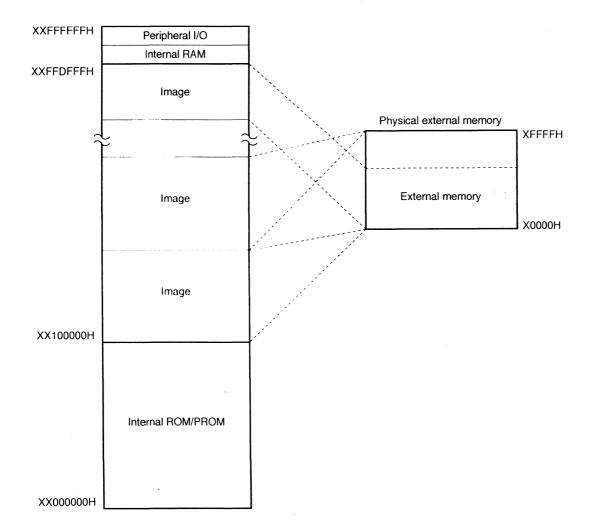
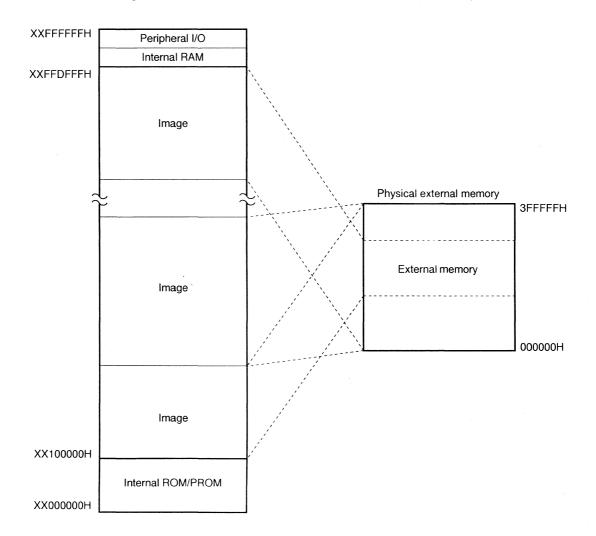



Figure 3-7. External Memory Area (when expanded to 64 KB, 256 KB, or 1 MB)

C

C

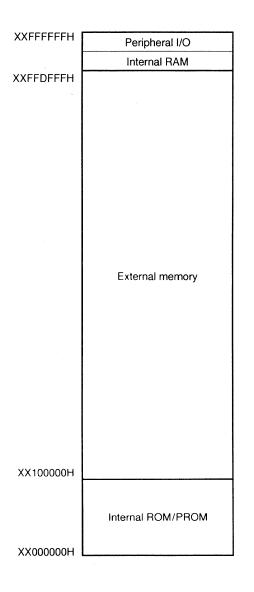


Figure 3-9. External Memory Area (when fully expanded)

3.4.6 External expansion mode

The V851 allows external devices to be connected to the external memory space by using the pins of ports 4 through 10. To connect an external device, the port pins must be set in the external expansion mode by using the MODE0 and MODE1 pins and memory expansion mode register (MM). The MODE0 and MODE1 pins specify an operation mode of the V851. When MODE0 = 0 and MODE1 = 0, the V851 is set in the ROM-less mode; when MODE0 = 0 and MODE1 = 1, the single-chip mode is used.

In ROM-less mode, the pins of ports 4 through 6, and P90 to P94 are set to external expansion mode during reset, thereby enabling the external bus signals and allowing communication with external memory devices.

In single-chip mode, the I/O port pins are set to port mode during reset, thus disabling the external bus signals and preventing any communications with external devices. The condition can be overridden by programming the MM register and setting the port pins to external expansion mode.

The memory area is also set by the MM register. However, the port 10 is set in the external expansion mode by using the PMC10 register (refer to **9.3.9 Port 10**).

(1) Memory expansion mode register (MM)

This register sets the mode of each pin of ports 4 through 9. In the external expansion mode, an external device can be connected to the external memory area of up to 16 MB. However, the external device cannot be connected to the internal RAM area, peripheral I/O area, and internal ROM/PROM area in the single-chip mode (access is restricted to external locations 100000H through FFE00H).

The MM register can be read/written in 8- or 1-bit units. Bit 4 of this register is set to 1.

	7	6	5	4	3	2	. 1	0		
ММ	0	0	0	1	ММЗ	MM2	MM1	MMO	Address FFFFF04CH	At reset 17H (in ROM-less mode)
									•	10H (in single-chip mode)

Bit Position	Bit Name		Function								
3	ММЗ	Memory	Memory Expansion Mode								
		Specifies	operati	on mode	of P95 and F	96 of po	rt 9.				
		ММЗ		Operatio	on mode	P95	P9	6			
		0	Por	t mode		Po	ort				
			Exte	ernal exp	ansion mode	ST0	ST	1			
2-0	MM2-MM0	Memory	Expansi	on Mode							
		Specifies	operati	on mode	of ports 4, 5,	6, and 9	(P9	0-P94).			
		MM2	MM1	ммо	Address space	Port 4		Port 5	Port 6	Port 9 (P90-P94)	
		0	0	0	-			Port n	node	-	
		0	1	1	64-KB expansion	AD0-AD	7	AD8-AD15		UBEN,	
		1	0	0	256-KB expansion				A16 A17	R/₩, DSTB,	
		1	0	1	1-MB expansion				A18 A19	ASTB	
		1	1	0	4-MB expansion				A20 A21		
		1	. 1	1	16-MB expansion				A2		
			Oth	ers		RFU (re	eserv	ed)			

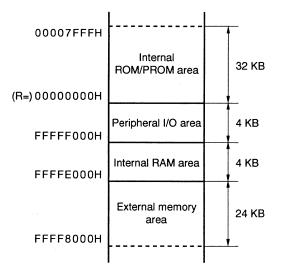
Remark: For the details of the operation of each port pin, refer to 2.3 Pin Function.

3.4.7 Recommended use of address space

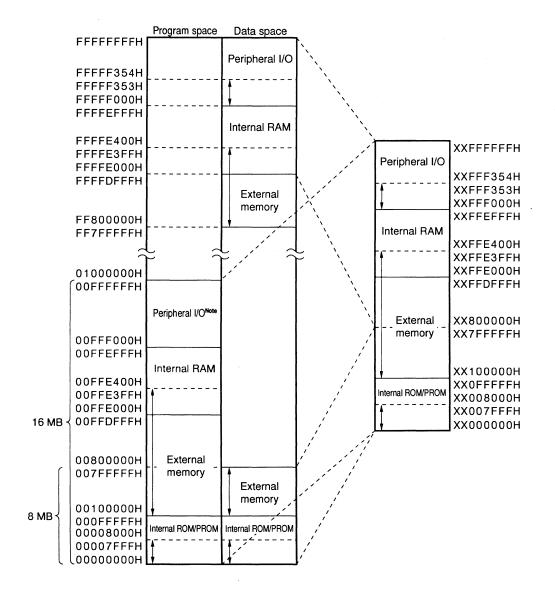
The architecture of the V851 requires that a register that serves as a pointer be secured for address generation in addressing the memory. By optimizing the location of this pointer register, the maximum number of the general-purpose registers for variables can be reserved and the program size can be reduced (because the instruction that generates the pointer address is not necessary).

To enhance the efficiency of using the pointer in connection with the memory map of the V851, the following points are recommended:

(1) Program space


Of the 32 bits of the PC (program counter), the higher 8 bits are fixed to "0", and only the lower 24 bits are valid. Therefore, a contiguous 16-MB space, starting from address 00000000H, unconditionally corresponds to the memory map of the program space.

(2) Data space


Efficient use of resources can be utilized through the wrap-around feature of the data space. The 16-MB of external address space can be mapped to the low 8-MB CPU address space (0000000F-007FFFFH) and the high 8-MB CPU address space (FF800000H-FFFFFFH). Reference to address locations 00800000H-00FFFFFFH essentially remain the same, since the upper byte is ignored.

This mapping configuration, along with the use of the zero register (R0) in based addressing operations, allow for efficient access to internal resources.

For example, when R = r0 (zero register) is specified for the LD/ST disp16[R] instruction, an addressing range of 00000000H+/–32KB can be referenced with the sign-extended, 16-bit displacement value. Using the wraparound mapping scheme described above, all resources including the internal ROM, RAM, and peripheral I/O can be accessed with one base register, which eliminates the need for additional base registers pointing to high memory locations.

Note: This area cannot be used as a program area.

Remark: The recommended area is indicated by the double-headed arrow (\uparrow) .

3.4.8 Peripheral I/O registers

(

C

C

ĺ

I

C C

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			After reset	
				1 bit	8 bits	16 bits		
FFFFF000H	Port 0	P0		0	0			
FFFFF002H	Port 1	P1		0	0			
FFFFF004H	Port 2	P2		0	0			
FFFFF006H	Port 3	P3]	0	0			
FFFFF008H	Port 4	P4]	0	0		Undefined	
FFFFF00AH	Port 5	P5]	0	0			
FFFFF00CH	Port 6	P6]	0	0			
FFFFF012H	Port 9	P9]	0	0			
FFFFF014H	Port 10	P10		0	0			
FFFFF020H	Port 0 mode register	PM0		0	0			
FFFFF022H	Port 1 mode register	PM1		0	0			
FFFFF024H	Port 2 mode register	PM2		0	0			
FFFFF026H	Port 3 mode register	PM3]	0	0			
FFFFF028H	Port 4 mode register	PM4]	0	0		FFH	
FFFFF02AH	Port 5 mode register	PM5		0	0			
FFFFF02CH	Port 6 mode register	PM6	7	0	0			
FFFFF032H	Port 9 mode register	PM9	R/W	0	0			
FFFFF034H	Port 10 mode register	PM10]	0	0			
FFFFF040H	Port 0 mode control register	PMC0]	0	0		00H	
FFFFF044H	Port 2 mode control register	PMC2]	0	0		01H	
FFFFF046H	Port 3 mode control register	PMC3		0	0		00H	
FFFFF04CH	Memory expansion mode register	ММ]	0	0		10H/17H	
FFFFF054H	Port 10 mode control register	PMC10		0	0		00H	
FFFFF060H	Data wait control register	DWC				0	FFFFH	
FFFFF062H	Bus cycle control register	BCC				0	ААААН	
FFFFF070H	Power save control register	PSC]	0	0		00H	
FFFFF078H	System status register	SYS]	0	0		0000000XE	
FFFFF084H	Baud rate generator register 0	BRG0		0	0		Undefined	
FFFFF086H	Baud rate generator prescaler mode register 0	BPRM0		0	0		оон	
FFFFF088H	Clocked serial interface mode register 0	CSIMO		0	0			
FFFFF08AH	Serial I/O shift register 0	SIOO]	0	0		Undefined	
FFFFF0C0H	Asynchronous serial interface mode register 00	ASIM00]	0	0		80H	
FFFFF0C2H	Asynchronous serial interface mode register 01	serial interface mode register 01 ASIM01 O O			00Н			
FFFFF0C4H	Asynchronous serial interface status register 0	gister 0 ASIS0 O O						
FFFFF0C8H	Receive buffer 0 (9 bits)	RXB0	R			0	l la defini d	
FFFFFOCAH	Receive buffer 0L (lower 8 bits)	RXBOL		0	0		Undefined	

Address	Function Register Name	Symbol	R/W		it Units f Ianipulat	After reset	
				1 bit	8 bits	16 bits	
FFFFF0CCH	Transmit shift register 0 (9 bits)	TXS0	w			0	Undefined
FFFFF0CEH	Transmit shift register OL (lower 8 bits)	TXSOL			0		ondenned
FFFFF100H	Interrupt control register	OVIC1		0	0		
FFFFF102H	Interrupt control register	P1IC0		0	0		
FFFFF104H	Interrupt control register	P1IC1		0	0		
FFFFF106H	Interrupt control register	P1IC2		0	0		
FFFFF108H	Interrupt control register	P1IC3	1	0	0		
FFFFF10AH	Interrupt control register	CMIC4		0	0		
FFFFF10CH	Interrupt control register	CSIC0	R/W	0	0		47H
FFFFF10EH	Interrupt control register	SEIC0		0	0		4711
FFFFF110H	Interrupt control register	SRIC0		0	0		
FFFFF112H	Interrupt control register	STIC0		0	0		
FFFFF114H	Interrupt control register	P0IC0		0	0		
FFFFF116H	Interrupt control register	P0IC1	P0IC1 O		0		
FFFFF118H	Interrupt control register	P0IC2		0	0		
FFFFF11AH	Interrupt control register	P0IC3		0	0		
FFFFF166H	In-service priority register	ISPR	R	0	0		00H
FFFFF170H	Command register	PRCMD	w	0	0		Undefined
FFFFF180H	External interrupt mode register 0	INTMO		0	0		
FFFFF182H	External interrupt mode register 1	INTM1		0	0		00Н
FFFFF184H	External interrupt mode register 2	INTM2		0	0		
FFFFF230H	Timer overflow status register	TOVS	R/W	0	0		
FFFFF240H	Timer unit mode register 1	TUM1				0	0000H
FFFFF242H	Timer control register 1	TMC1		0	0		00Н
FFFFF244H	Timer output control register 1	TOC1		0	0		
FFFFF250H	Timer 1	TM1	R			0	0000H
FFFFF252H	Capture/compare register 10	CC10				0	
FFFFF254H	Capture/compare register 11	CC11				0	Undefined
FFFFF256H	Capture/compare register 12	CC12	R/W			0	
FFFFF258H	Capture/compare register 13	CC13				0	
FFFFF342H	Timer control register 4	TMC4		0	0		00Н
FFFFF350H	Timer 4	TM4	R			0	0000H
FFFFF352H	Compare register 4	CM4	R/W			0	Undefined

CHAPTER 4 BUS CONTROL FUNCTION

The V851 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

4.1 Features

- O 16-bit data bus
- O External devices connected through multiplexed I/O port pins
- O Wait function
 - · Programmable wait function, capable of inserting up to 3 wait states per 2 blocks
 - External wait control through WAIT input pin
- O Idle state insertion function
- O Bus mastership arbitration function
- O Bus hold function

4.2 Bus Control Pins

The following pins are used for interfacing to external devices:

External Bus Interface Function	Corresponding Port (pins)		
Address/data bus (AD0-AD7)	Port 4 (P40-P47)		
Address/data bus (AD8-AD15)	Port 5 (P50-P57)		
Address bus (A16-A23)	Port 6 (P60-P67)		
Read/write control (LBEN, UBEN, R/W, DSTB)	Port 9 (P90-P93)		
Address strobe (ASTB)	Port 9 (P94)		
External wait control (WAIT)	WAIT		
Bus cycle status (ST0, ST1)	Port 9 (P95-P96)		
Bus hold control (HLDRQ, HLDAK)	Port 10 (P100-P101)		

The bus interface function of each pin is enabled by the memory expansion mode register (MM). In ROM-less mode, the bus interface function of each pin is unconditionally enabled by the MODE0 and MODE1 inputs. For the details of specifying an operation mode of the external bus interface, refer to **3.4.6 (1) Memory expansion mode register (MM)**.

★ 4.3 Number of Access Clocks

Bus Cycle Type	Resource (bus width)						
	Internal ROM/PROM (32 bits)	Internal RAM (32 bits)	Peripheral I/O (16 bits)	External Memory (16 bits)			
Instruction fetch (continuous/normal mode)	1	3	Disable	3+n			
Instruction fetch (branch)	1	3	Disable	3+n			
Operand data access	3	1	3+n	3+n			

The number of basic clocks necessary for accessing each resource is as follows:

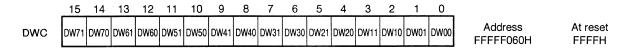
Remarks: 1. Unit: clock/access

2. n: Number of wait states inserted

4.4 Memory Block Function

The 16-MB memory space is divided into memory blocks of 1-MB units. The programmable wait function and bus cycle operation mode can be independently controlled for every two memory blocks.

_		
FFFFFFH	Block 15	FFFFFH
F00000H	DIOCK 10	Peripheral I/O area
EFFFFFH	Block 14	FFF000H
F00000H DFFFFFH		FFEFFH
	Block 13	Internal RAM area
D00000H CFFFFFH		
СОООООН	Block 12	
BFFFFFH		
вооооон	Block 11	
AFFFFFH	Block 10	
A00000H	BIOCK TO	
9FFFFFH	Block 9	
900000H 8FFFFFH		
800000H	Block 8	
7FFFFFH		External memory area
700000H	Block 7	
6FFFFFH	Dia ala C	
600000H	Block 6	
5FFFFFH	Block 5	
500000H 4FFFFFH		
	Block 4	
400000H 3FFFFFH		
300000H	Block 3	
2FFFFFH		
200000н	Block 2	
1FFFFFH	-	1
100000H	Block 1	
OFFFFFH	Block 0	Internal ROM/PROM area
оооооон		


4.5 Wait Function

4.5.1 Programmable wait function

To facilitate interfacing with low-speed memories and I/O devices, up to 3 data wait states can be inserted in a bus cycle for two memory blocks. The number of wait states can be programmed by using data wait control register (DWC). Immediately after the system has been reset, three data wait states are automatically programmed for all memory blocks.

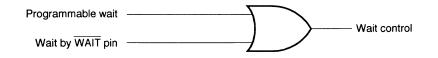
(1) Data wait control register (DWC)

This register can be read/written in 16-bit units.

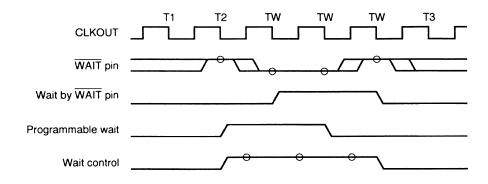
Bit Position	Bit Name		Function				
15-0	DWn1 DWn0 (n=0-7)	Data Wait Specifies numb	Data Wait Specifies number of wait states to be inserted				
		DWn1	DWn0	Number of wait states to be inserted			
	:	0	. 0	0			
		0	1	1			
	:	1	0	2			
		1	1	3			
		<u></u>					
		n	Blo	ocks into which wait states are inserted			
		0	Blocks 0/	1			
		1	Blocks 2/	3			
		2	Blocks 4/	5			
		3	Blocks 6/	7			
		4	Blocks 8/	9			
		5	Blocks 10	//11			
		6	Blocks 12	2/13			
		7	Blocks 14	/15			

Cautions: 1. Block 0 is reserved for the internal ROM/PROM area in the single-chip mode. It is not subject to programmable wait control, regardless of the setting of DWC, and is always accessed without wait states.

2. The internal RAM area of block 15 is not subject to programmable wait control and is always accessed without wait states. The peripheral I/O area of this block is not subject to programmable wait control, either. The only wait control is dependent upon the execution of each peripheral function.


4.5.2 External wait function

When an extremely slow device, I/O, or asynchronous system is connected, any number of wait states can be inserted in a bus cycle by sampling the external wait pin (\overline{WAIT}) to synchronize with the external device.


The external $\overline{\text{WAIT}}$ signal does not affect the access times of the internal ROM/PROM, internal RAM, and peripheral I/O areas. Input of the external $\overline{\text{WAIT}}$ signal can be done asynchronously to CLKOUT and is sampled at the falling edge of the clock in the T2 and TW states of a bus cycle. If the set-up and hold time of the $\overline{\text{WAIT}}$ input is not satisfied, the wait state may or may not be inserted in the next state.

4.5.3 Relations between programmable wait and external wait

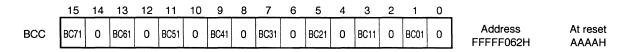
A wait cycle is inserted as a result of an OR operation between the wait cycle specified by the set value of programmable wait and the wait cycle controlled by the \overline{WAIT} pin. In other words, the number of wait cycles is determined by the programmable wait value or the length of evaluation at the \overline{WAIT} input pin.

For example, if the number of programmable wait states is 2 and the timing of the \overline{WAIT} pin input signal is as illustrated below, three wait states will be inserted in the bus cycle.

Figure 4-1. Example of Inserting Wait States

Remark: O : sampling timing

4.6 Idle State Insertion Function


To facilitate interfacing with low-speed memory devices and meeting the data output float delay time (tor) on memory read accesses, one idle state (TI) can be inserted into the current bus cycle after the T3 state. The bus cycle following continuous bus cycles starts after one idle state.

Specifying insertion of the idle state is programmable by using bus cycle control register (BCC).

Immediately after the system has been reset, idle state insertion is automatically programmed for all memory blocks.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.

Bit Position	Bit Name		Function			
15, 13, 11, 9, 7, 5, 3, 1	BCn1 (n=0-7)	Bus Cycle Specifies insertion of idle state. 0: Not inserted 1: Inserted				
		n	Blocks into Which Idle State Is Inserted			
		0	Blocks 0/1			
		1	Blocks 2/3			
		2	Blocks 4/5			
		3	Blocks 6/7			
		4	Blocks 8/9			
		5	Blocks 10/11			
		6 Blocks 12/13				
		7	Blocks 14/15			

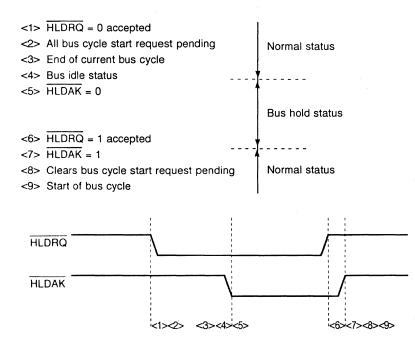
Cautions: 1. Block 0 is reserved for the internal ROM/PROM area in the single-chip mode and therefore, no idle state can be inserted into this block.

- 2. The internal RAM area and peripheral I/O area of block 15 are not subject to insertion of the idle state.
- 3. Be sure to set bits 0, 2, 4, 6, 8, 10, 12, and 14 to 0. If 1 is set, the operation is not guaranteed.

4.7 Bus Hold Function

4.7.1 Outline of function

When P100 and P101 of port 10 are programmed to be in the control mode, the functions of the HLDRQ and HLDAK pins become valid.


When the HLDRQ pin becomes active (low) indicating that other bus master is requesting for acquisition of the bus, the external address/data bus and strobe pins go into a high-impedance state, and the bus is released (bus hold status). When the HLDRQ pin becomes inactive (high) indicating that the request for the bus is cleared, these pins are driven again.

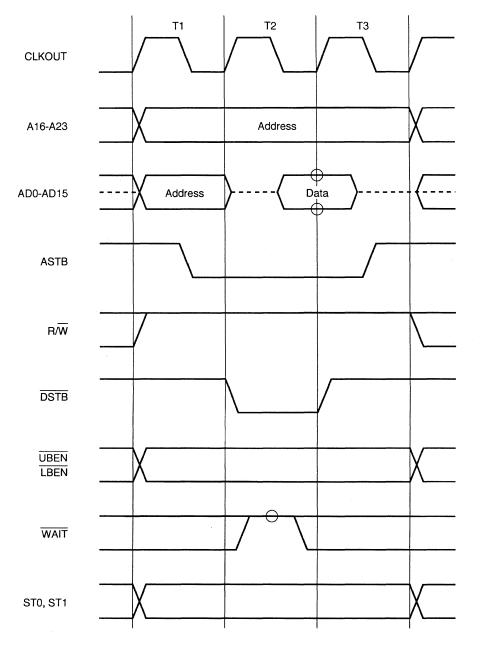
In the bus hold status, the HLDAK pin becomes active (low).

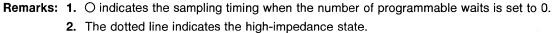
This feature can be used to design a system where two or more bus masters exist, such as when multi-processor configuration is used and when a DMA controller is connected.

4.7.2 Bus hold procedure

The procedure of bus hold function is illustrated below.

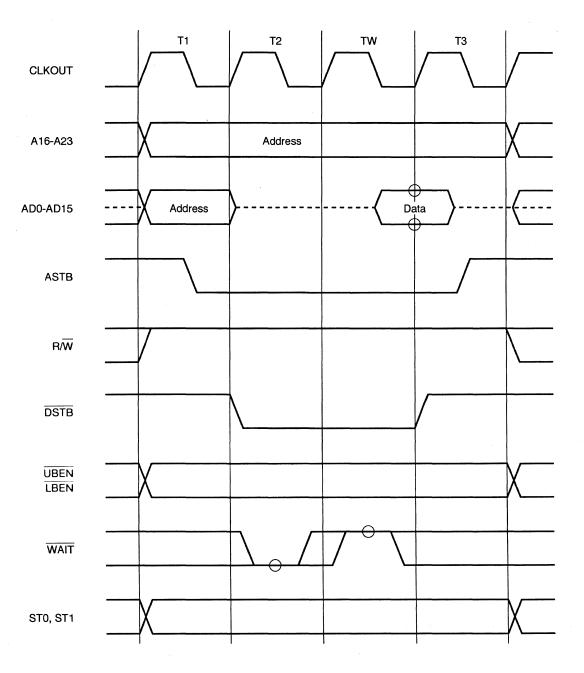
4.7.3 Operation in power save mode

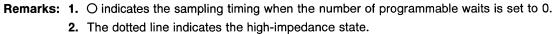

In the STOP or IDLE mode, the system clock is stopped. Consequently, the bus hold status is not set even if the HLDRQ pin becomes active.


In the HALT mode, the HLDAK pin immediately becomes active when the HLDRQ pin becomes active, and the bus hold status is set. When the HLDRQ pin becomes inactive, the HLDAK pin becomes inactive. As a result, the bus hold status is cleared, and the HALT mode is set again.

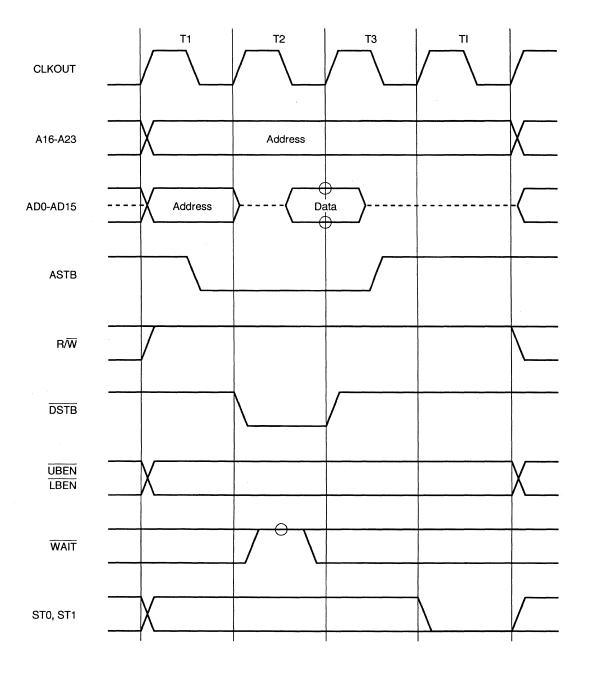
4.8 Bus Timing

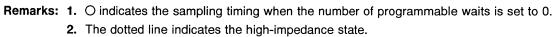
l

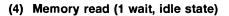

(1) Memory read (0 wait)

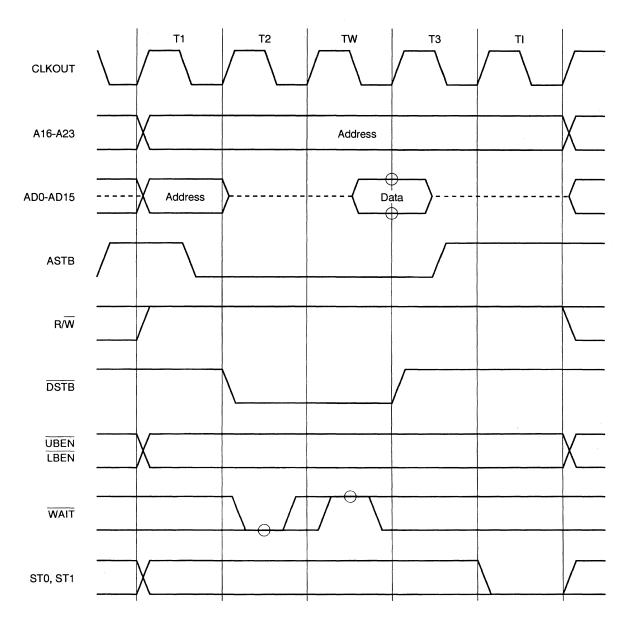


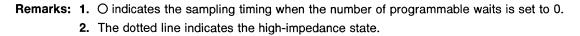
.

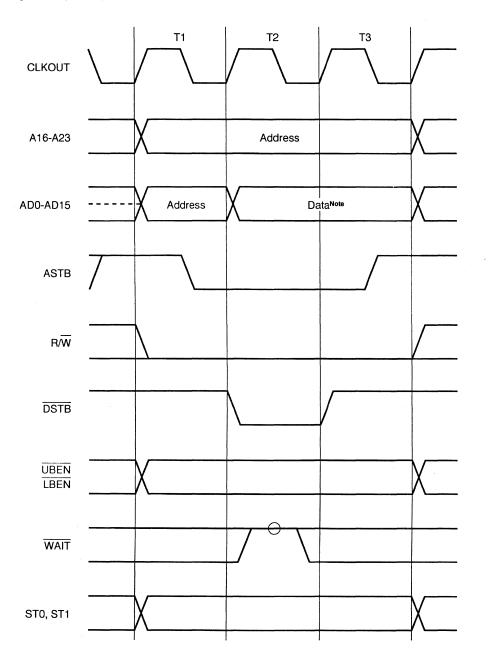

(2) Memory read (1 wait)

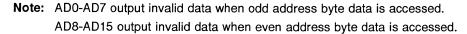




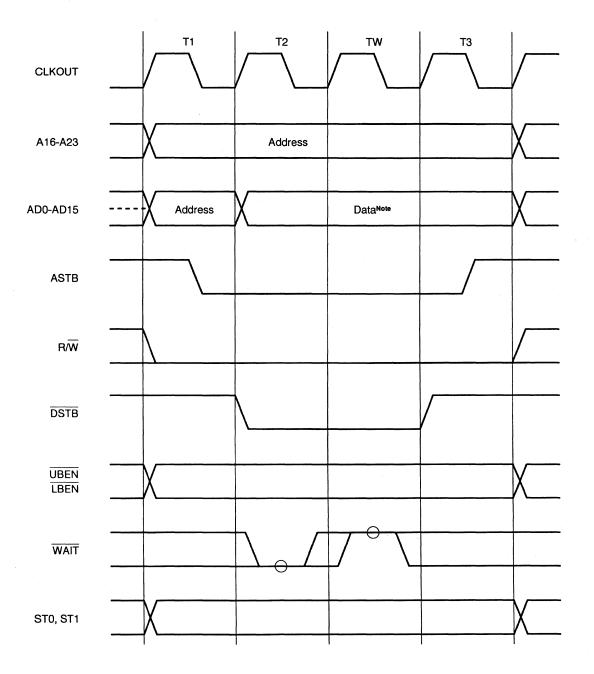

(3) Memory read (0 wait, idle state)


 \bigcirc





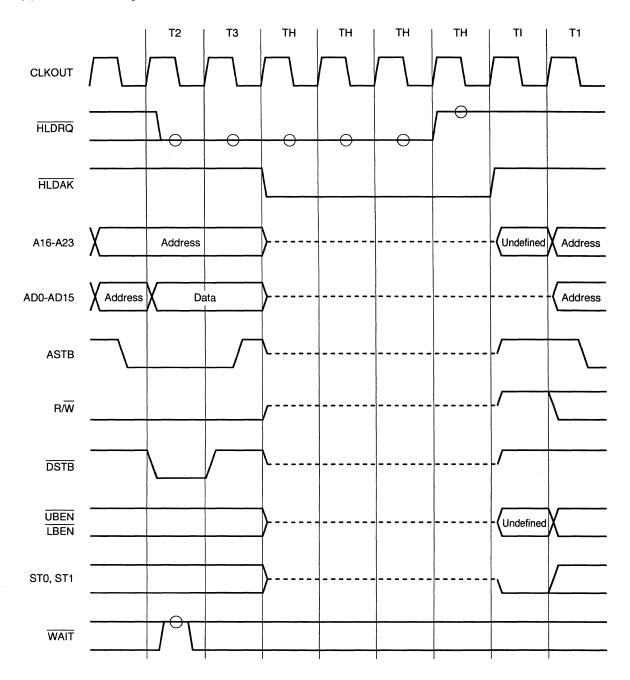
(5) Memory write (0 wait)



Remarks: 1. O indicates the sampling timing when the number of programmable waits is set to 0.2. The dotted line indicates the high-impedance state.

59

(6) Memory write (1 wait)


Note: AD0-AD7 output invalid data when odd address byte data is accessed. AD8-AD15 output invalid data when even address byte data is accessed.

Remarks: 1. O indicates the sampling timing when the number of programmable waits is set to 0.2. The dotted line indicates the high-impedance state.

60

(7) Bus hold timing

Ţ

Remarks: 1. O indicates the sampling timing.

2. The dotted line indicates the high-impedance state.

4.9 Bus Priority

There are four external bus cycles: bus hold, operand data access, instruction fetch (branch), and instruction fetch (continuous). The bus hold cycle is given the highest priority, followed by operand data access, instruction fetch (branch), and instruction fetch (continuous) in that order.

The instruction fetch cycle may be inserted in between the read access and write access of read-modify-write access.

No instruction fetch cycle is inserted between the lower half-word access and higher half-word access of word operations.

External Bus Cycle	Priority
Bus hold	1
Operand data access	2
Instruction fetch (branch)	3
Instruction fetch (continuous)	4

Table 4-1. Bus Priority

4.10 Memory Boundary Operation Condition

4.10.1 Program space

- (1) Do not execute branch to the peripheral I/O area or continuous fetch from the internal RAM area. Of course, it is impossible to fetch from external memory. If it is executed nevertheless, the NOP instruction code is continuously fetched.
- (2) A prefetch operation straddling over the peripheral I/O area (invalid fetch) does not take place if a branch instruction exists at the upper-limit address of the internal RAM area.

4.10.2 Data space

Only the address aligned at the half-word (when the least significant bit of the address is "0")/word (when the lowest 2 bits of the address are "0") boundary is accessed for data half-word (16 bits)/word (32 bits) long.

Therefore, access that straddles over the memory or memory block boundary does not take place. For more details, refer to section **3.3 "Data Alignment"** of **V850 User's Manual** —**Architecture**—.

4.11 Internal Peripheral I/O Interface

C

ſ

Access to the internal peripheral I/O area is not output to the external bus. Therefore, the internal peripheral I/O area can be accessed in parallel with instruction fetch access.

Accesses to the internal peripheral I/O area takes, in most cases, three clock cycles. However accesses to the following timer/counter registers may take from 3 to 4 cycles.

Peripheral I/O Register	Access
TM1	Read
TM4	
CC10	Read/write
CC11	
CC12	
CC13	
CM4	Write

[MEMO]

CHAPTER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V851 is provided with a dedicated interrupt controller (INTC) for interrupt processing and can process a total of 15 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event that occurs dependently on program execution. Generally, an exception takes precedence over an interrupt.

The V851 can process interrupt requests from the internal peripheral hardware and external sources. Moreover, exception processing can be started by an TRAP instruction (software exception) or by generation of an exception event (fetching of an illegal op code).

5.1 Features

O Interrupt

- · Non-maskable interrupt: 1 source
- Maskable interrupt : 14 sources
- · 8 levels programmable priorities
- Multiple interrupt control according to priority
- · Each maskable interrupt can be individually disabled.
- · Rising and/or falling edge of external interrupt request signal can be specified.

O Exception

- Software exception: 32 sources
- Exception trap : 1 source (illegal op code exception)

These interrupt/exception sources are listed in Table 5-1.

			Interrupt/	Exception Source						
Туре	Classifi- cation	Name Contr Regis		Generating Source		Default Priority	Exception Code	Vector Address	Restored PC	
Reset	Interrupt	RESET		Reset input	-	-	0000H	00000000н	Undefined	
Non-maskable	Interrupt	NMI	-	NMI input		-	0010H	00000010H	nextPC	
Software	Exception	TRAP0n ^{Note}	-	TRAP instruction	-	-	004n ^{Note} H	00000040H	nextPC	
exception	Exception	TRAP1n ^{Note}	-	TRAP instruction		-	005n ^{Note} H	00000050H	nextPC	
Exception trap	Exception	ILGOP	-	Illegal op code	-	-	0060H	00000060н	nextPC	
Maskable	Interrupt	INTOV1	OVIC1	Timer 1 overflow	RPU	0	0080H	00000080H	nextPC	
	Interrupt	INTP10/INTCC10	P1IC0	INTP10 pin/CC10 coincidence	Pin/RPU	1	0090H	00000090H	nextPC	
	Interrupt	INTP11/INTCC11	P1IC1	INTP11 pin/CC11 coincidence	Pin/RPU	2	00A0H	000000A0H	nextPC	
	Interrupt	INTP12/INTCC12	P1IC2	INTP12 pin/CC12 coincidence	Pin/RPU	3	00B0H	000000B0H	nextPC	
	Interrupt	INTP13/INTCC13	P1IC3	INTP13 pin/CC13 coincidence	Pin/RPU	4	00C0H	000000C0H	nextPC	
	Interrupt	INTCM4	CMIC4	CM4 coincidence	RPU	5	00D0H	000000D0H	nextPC	
	Interrupt	INTCSI0	CSIC0	CSI0 transmission/ reception completion	SIO	6	00E0H	000000E0H	nextPC	
	Interrupt	INTSER0	SEIC0	UART0 reception error	SIO	7	00F0H	000000F0H	nextPC	
	Interrupt	INTSRO	SRIC0	UART0 reception completion	SIO	8	0100H	00000100H	nextPC	
	Interrupt	INTST0	STIC0 completion	UART0 transmission	SIO	9	0110H	00000110H	nextpc	
	Interrupt	INTP00	P0IC0	INTP00 pm	Pin	10	0120H	00000120H	nextPC	
	Interrupt	INTP01	P0IC1	INTP01 pin	Pin	11	0130H	00000130H	nextPC	
	Interrupt	INTP02	P0IC2	INTP02 pin	Pin	12	0140H	00000140H	nextPC	
	Interrupt	INTP03	P0IC3	INTP03 pin	Pin	13	0150H	00000150H	nextPC	

Table 5-1. Interrupt List

Note: n: value of 0-FH

Remarks: 1. Default Priority: Priority that takes precedence when two or more maskable interrupt requests with the same priority level occur at the same time. The highest priority is 0.

- Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC saved when an interrupt is acknowledged during the DIVH (division) instruction execution is the value of the PC of the current instruction (DIVH).
- The execution address of the illegal instruction when an illegal op code exception occurs is calculated as follows: (Restored PC - 4)

5.2 Non-Maskable Interrupt

The non-maskable interrupt is accepted unconditionally, even when interrupts are disabled (DI states) in the interrupt disabled (DI) status. The NMI is not subject to priority control and takes precedence over all the other interrupts.

The non-maskable interrupt request is input from the NMI pin. When the valid edge specified by the bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

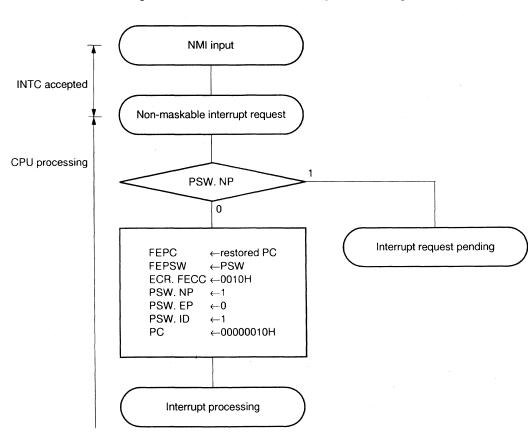
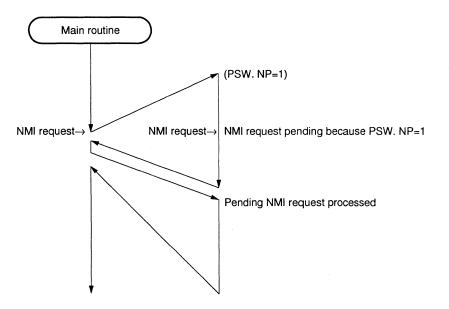
While the service routine of the non-maskable interrupt is being executed, (PSW.NP = 1), the acceptance of another non-maskable interrupt request is kept pending. The pending NMI is accepted after the original service routine of the non-maskable interrupt under execution has been terminated (by the RETI instruction), or when PSW.NP is cleared to 0 by the LDSR instruction. Note that if two or more NMI requests are input during the execution of the service routine for an NMI, the number of NMIs that will be acknowledged after PSW.NP goes to "0", is only one.

5.2.1 Accepting operation

If the non-maskable interrupt is generated by NMI input, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the contents of PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes exception code 0010H to the higher half-word (FECC) of ECR.
- (4) Sets the NP and ID bits of PSW and clears the EP bit.
- (5) Loads the vector address (00000010H) of the non-maskable interrupt routine to the PC, and transfers control.

Figure 5-1 illustrates how the non-maskable interrupt is processed.

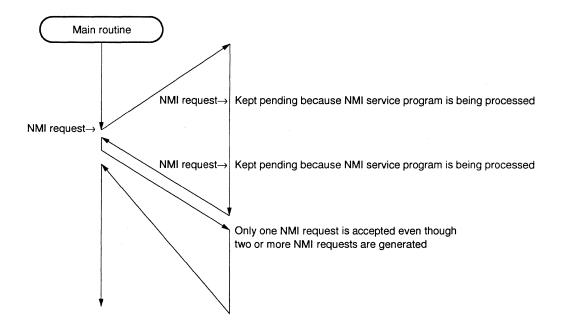

Figure 5-1. Non-Maskable Interrupt Processing

Figure 5-2. Accepting Non-Maskable Interrupt Request

(a) If a new NMI request is generated while an NMI service routine is executing:

(b) If a new NMI request is generated twice while an NMI service routine is executing:

5.2.2 Restore operation

Execution is restored from the non-maskable interrupt processing by the RETI instruction.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from FEPC and FEPSW, respectively, because the EP bit of PSW is 0 and the NP bit of PSW is 1.
- (2) Transfers control back to the address of the restored PC and PSW.

Figure 5-3 illustrates how the RETI instruction is processed.

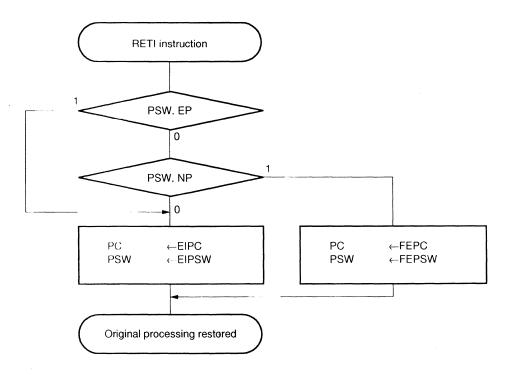
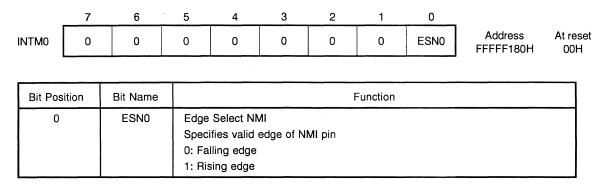


Figure 5-3. RETI Instruction Processing


Caution: If the PSW.EP and PSW.NP bits are changed using the LDSR instruction during non-maskable interrupt service, it is necessary to reset PSW.EP to 0 and set PSW.NP to 1 using the LDSR instruction immediately before the RETI instruction to make sure that the PC and PSW are normally restored by the RETI instruction.

5.2.3 External interrupt mode register 0 (INTM0)

INTMO is a register that specifies the valid edge of the non-maskable interrupt (NMI). The valid edge of NMI can be specified as the rising or falling edge by the ESN0 bit of this register.

This register can be read or written in 8- or 1- bit units.

000000000

5.2.4 NP flag

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) processing is under execution. This flag is set when the NMI interrupt has been accepted, and masks all interrupt requests to prohibit multiple interrupts from being acknowledged.

31

																					2	
			Γ	Г	T				I		1		1									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NP	EP	ID	SAT	CY	0٧	S

At reset 00000020H

0

Ζ

Bit Position	Bit Name	Function
7	NP	NMI Pending
		Indicates that NMI interrupt processing is under execution
		0: No NMI interrupt processing
		1: NMI interrupt currently processing

5.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V851 has 14 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are accepted according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers, allowing programmable priority control.

When an interrupt request has been acknowledged, the acceptance of other maskable interrupts is disabled and the interrupt disabled (DI) status is set.

When the El instruction is executed in an interrupt processing routine, the interrupt enabled (El) status is set which enables interrupts having a higher priority to immediately interrupt the current service routine in progress. Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

To use multiple interrupts, it is necessary to save EIPC and EIPSW to memory or a register before executing the EI instruction, and restore EIPC and EIPSW to the original values by executing the DI instruction before the RETI instruction.

5.3.1 Block diagram

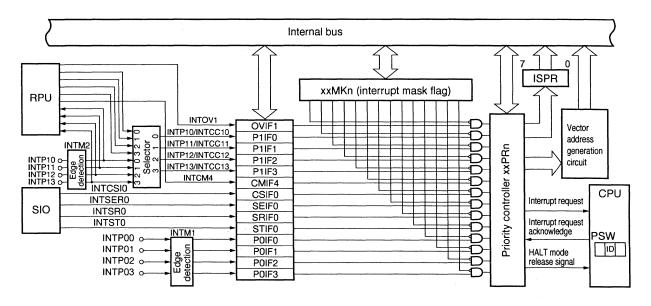
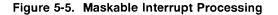
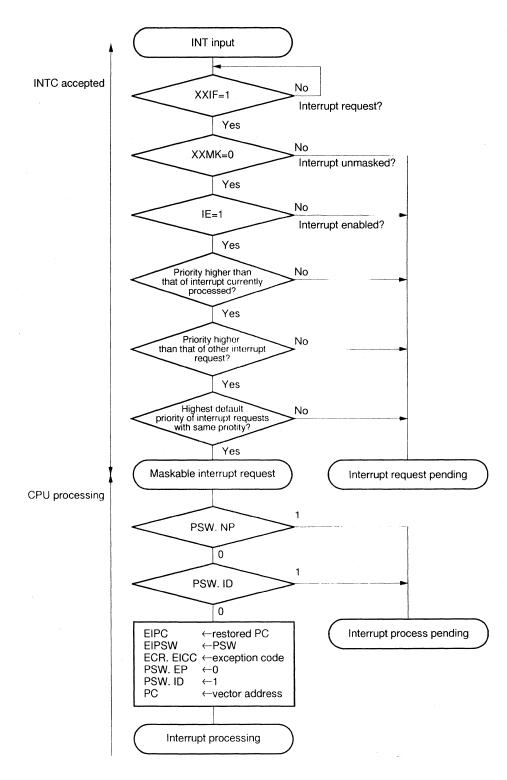


Figure 5-4. Maskable Interrupt Block Diagram

Remark: xx: identification name of each peripheral unit


n : peripheral unit number


5.3.2 Operation

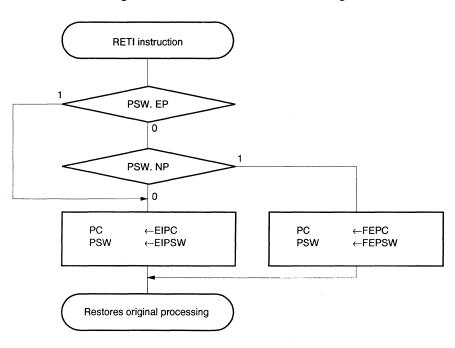
If a maskable interrupt occurs, the CPU performs the following processing, and transfers control to a vector routine:

- (1) Saves the value of PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower half-word of ECR (EICC).
- (4) Sets the ID bit of PSW and clears the EP bit.
- (5) Loads the corresponding vector address to the PC, and transfers control.

Figure 5-5 illustrates how the maskable interrupts are processed.

The INT input masked by the interrupt control registers and the automatic interrupt mask that occurs while a previous interrupt is being processed (when PSW.NP = 1 or PSW.ID = 1) are internally monitored by the interrupt controller. When the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 by using the RETI and LDSR instructions, the pending maskable interrupts can then be acknowledge, by priority, and processed.

5.3.3 Restore


To restore or return execution from the maskable interrupt service routine, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 0 and the NP bit of PSW is 0.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-6 illustrates the processing of the RETI instruction.

Figure 5-6. RETI Instruction Processing

Caution: If the PSW.EP and PSW.NP bits are changed using the LDSR instruction during non-maskable interrupt service, it is necessary to reset PSW.EP to 0 and set PSW.NP to 1 using the LDSR instruction immediately before the RETI instruction to make sure that the PC and PSW are normally restored by the RETI instruction.

5.3.4 Priorities of maskable interrupts

There are two priority control criteria in the V851: control based on the default priority levels, and control based on programmable priority levels. The default priority levels are specified by default for each interrupt request type. The programmable priority is customized into eight levels by setting the priority specification flags (×PRn2 to PRn0, refer to the **table** in section **5.3.5**). The programmable priority levels override the default priority levels. Therefore, the order in which interrupts are serviced normally depends on each programmable priority levels. When two or more interrupts with the same programmable priority level occurred at the same time, the interrupt with the higher or highest default priority level will be serviced first. For more information, refer to **Table 5-1**.

Note that when an interrupt is acknowledged, the ID flag of PSW is automatically set to "1". Therefore, when multiple interrupts are to be used, clear the ID flag to "0" beforehand (for example, by placing the EI instruction into the interrupt service program) to set the interrupt enable mode.

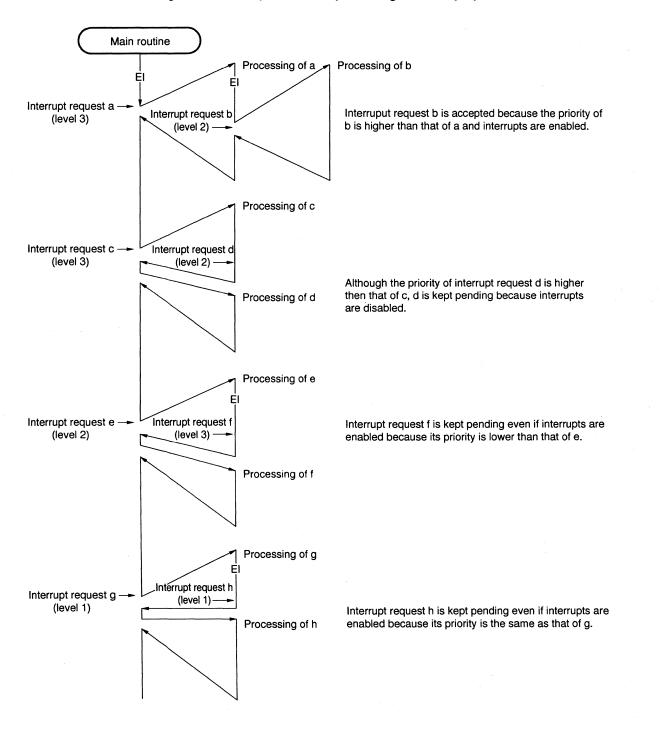
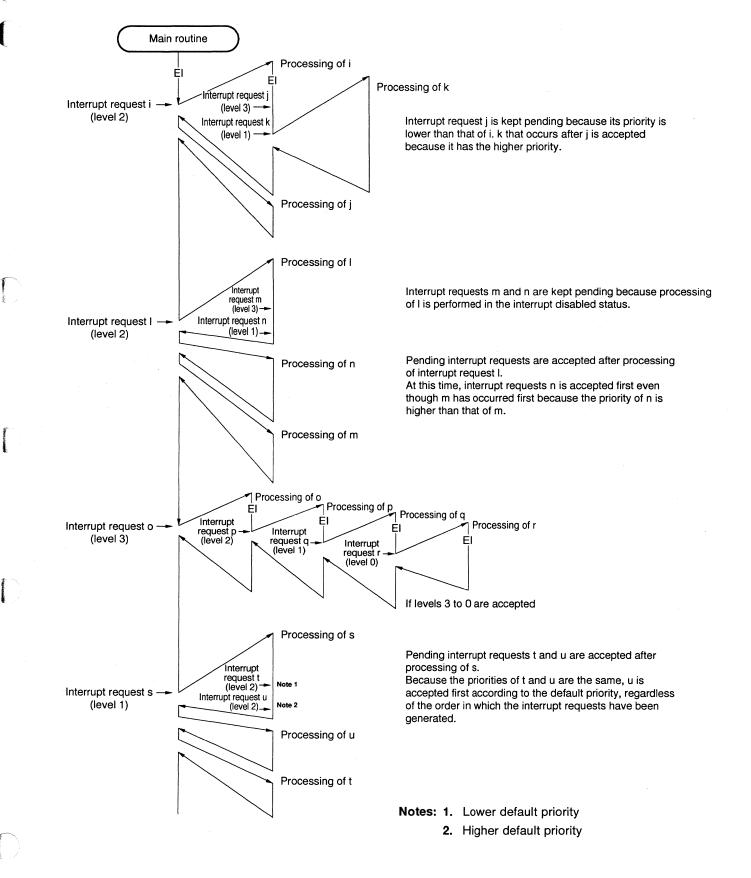
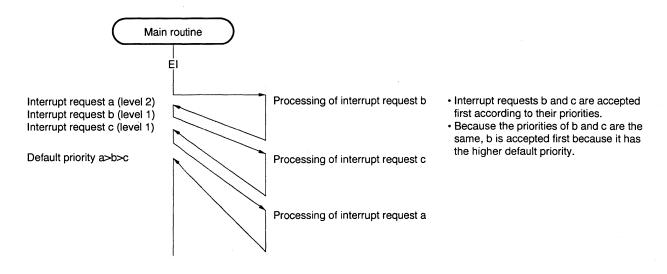
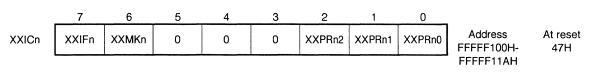



Figure 5-7. Example of Interrupt Nesting Process (1/2)

Remarks: 1. a-u in the figure are the names of interrupt requests shown for the sake of explanation.2. The default priority in the figure indicates the relative priority between two interrupt requests.


Caution: The values of EIPC and EIPSW must be saved before executing multiple interrupt.

77

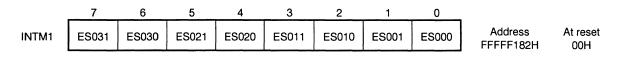

Figure 5-8. Example of Processing Interrupt Requests Simultaneously Generated

5.3.5 Interrupt control register (××ICn)

An interrupt control register is assigned to each maskable interrupt and holds the control conditions for each maskable interrupt request.

The interrupt control register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function						
7	××IFn	Int	errupt Requ	lest Flag				
		Int	errupt requ	est flag				
			Interrupt re					
			Interrupt re			ardware when interrupt request is accepted.		
				automatican	y leset by h	aidware when mempirequest is accepted.		
6	××MKn		ask Flag					
			terrupt masl Enables in	•	occina			
		1		• •	cessing (per	ndina)		
2-0	××PRn2-××PRn0		iority					
2-0				t lovels of r	oriorities for	each interrupt		
			xxPRn2	xxPRn1	××PRn0			
						Interrupt priority specification bit		
			0	0	0	Specifies level 0 (highest)		
			0	0	1	Specifies level 1		
			0 .	1	0	Specifies level 2		
			0	1	1	Specifies level 3		
			1	0	0	Specifies level 4		
			1	0	1	Specifies level 5		
			1	1	0	Specifies level 6		
			1	1	1	Specifies level 7 (lowest)		


Remark: xx: identification name of each peripheral unit

n: peripheral unit number (0, 1, 2, ...)

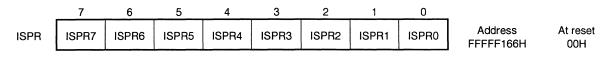
5.3.6 External interrupt mode registers 1 and 2 (INTM1 and INTM2)

These registers specify the valid edges of external interrupt requests INTP00-INTP03 and INTP10-INTP13 that are input from external pins. INTM1 controls INTP00-INTP03, and INTP2 controls INTP10-INTP13.

The valid edge of each pin can be specified to be the rising, falling, and both rising and falling edges. Both the registers can be read/written in 8- or 1-bit units.

Bit Position	Bit Name		Function					
7, 5, 3, 1	ES0n1	Edge Selec	st					
6, 4, 2, 0	ES0n0 (n=3-0)	Specifies v	alid edge	of INTPOn pin				
		ES0n1	ES0n0	Operation				
		0	0	Falling edge				
		0	1	Rising edge				
		1	0	RFU (reserved)				
		1	1	Both rising and falling edges				

	7	6	5	4	3	2	1	0		
INTM2	ES131	ES130	ES121	ES120	ES111	ES110	ES101	ES100	Address FFFFF184H	At reset 00H


Bit Position	Bit Name		Function						
7, 5, 3, 1	ES1n1	Edge Selec	ct						
6, 4, 2, 0	ES1n0 (n=3-0)	Specifies v	alid edge	of INTP1n pin					
		ES1n1	ES1n0	Operation					
		0	0	Falling edge					
		0	[.] 1	Rising edge					
		1	0	RFU (reserved)					
		1	1	Both rising and falling edges					
			······						

5.3.7 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently accepted. When an interrupt request is accepted, the bit of this register corresponding to the priority level of that interrupt is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically reset to 0 by hardware. However, it is not reset when execution is returned from non-maskable processing or exception processing.

This register can be only read in 8- or 1- bit units.

Bit Position	Bit Name	Function
7-0	ISPR7-ISPR0	 In-Service Priority Flag Indicates priority of interrupt currently accepted 0: Interrupt request with priority n not accepted 1: Interrupt request with priority n accepted

Remark: n: 0-7 (priority level)

5.3.8 Maskable interrupt status flag

31

The interrupt disable status flag (ID) of the PSW controls the enabling and disabling of maskable interrupt requests. As a status flag, it also displays the current maskable interrupt acceptance condition.

PSW	

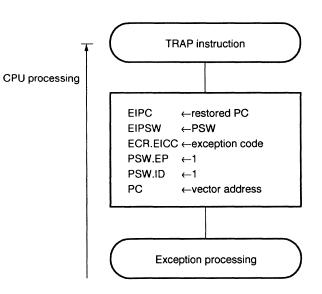
8765432 1 0 s lov Ζ

At reset 0000020H

Bit Position	Bit Name	Function
5	ID	Interrupt Disable Enables or disables maskable interrupt processing. 0: Maskable interrupt accepting enabled 1: Maskable interrupt accepting disabled It is set to 1 by the DI instruction and reset to 0 by the EI instruction. Its value is also modified by the RETI instruction or LDSR instruction when referencing the PSW. Non-maskable interrupt and exceptions are acknowledged regardless of this flag. When a maskable interrupt is accepted, ID flag is automatically set to 1 by hard- ware.

5.4 Software Exception

The software exception is generated when the CPU executes the TRAP instruction, and can be always accepted.


TRAP instruction format: TRAP vector (where vector is 0-1FH)

5.4.1 Operation

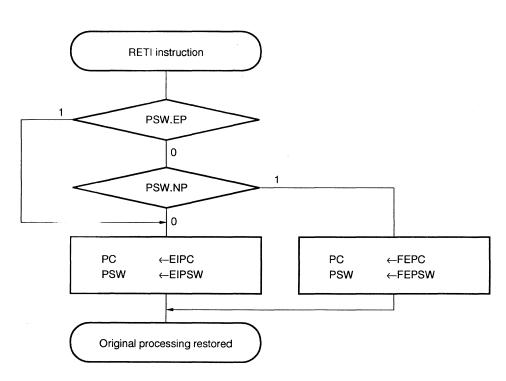
If the software exception occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the value of PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the vector address (00000040H or 00000050H) of the software exception routine in the PC, and transfers control.

Figure 5-9 illustrates how the software exception is processed.

The vector address is determined by the operand of the TRAP instruction. If the operand is 0-0FH, the vector address is 00000040H; if the operand is 10H-1FH, it is 00000050H.

5.4.2 Restore

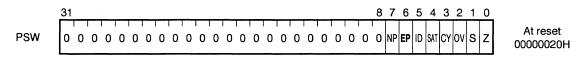

To restore or return execution from the software exception service routine, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-10 illustrates the processing of the RETI instruction.



Caution: If the PSW.EP and PSW.NP bits are changed using the LDSR instruction during software exception processing, it is necessary to reset PSW.EP to 0 and set PSW.NP to 1 using the LDSR instruction immediately before the RETI instruction to make sure that the PC and PSW are normally restored by the RETI instruction.

5.4.3 EP flag

The EP flag in the PSW is a status flag used to indicate that trap processing is in progress. It is set when a trap occurs.

Bit Position	Bit Name	Function
6	EP	Exception Pending Indicates that trap processing is in progress 0: Trap processing is not in progress 1: Trap processing is in progress

5.5 Exception Trap

The exception trap is an interrupt that is requested when illegal execution of an instruction takes place. In the V851, an illegal op code exception (ILGOP: ILeGal OPcode trap) is considered as an exception trap.

Illegal op code exception: occurs if the subop code field of an instruction to be executed next is not a valid op code.

5.5.1 Illegal op code definition

An illegal op code is defined to be a 32-bit word with bits 5-10 being 111111B and bits 23-26 being 0011B-1111B.

1	5		13	12	11	10					5	4			•	0	31				27	26	;		23	322	21	20				16
ſ	1		J					I			T		1 -	1				I		I			•			1			1	1	1	
	X	X	Х	X	х	1	1	1	1	1	1	X	х	Х	Х	Х	X	Х	х	Х	х			2		Х	Х	X	Х	х	Х	X
																						1	٦	1	1							

×: don't care

5.5.2 Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the value of PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code (0060H) to the lower 16 bits (EICC) of ECR.
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the vector address (00000060H) for the exception trap routine to the PC, and transfers control.

Figure 5-11 illustrates how the exception trap is processed.

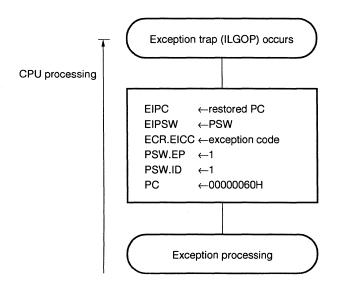


Figure 5-11. Exception Trap Processing

5.5.3 Restore

To restore or return execution from the exception trap, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-12 illustrates the processing of the RETI instruction.

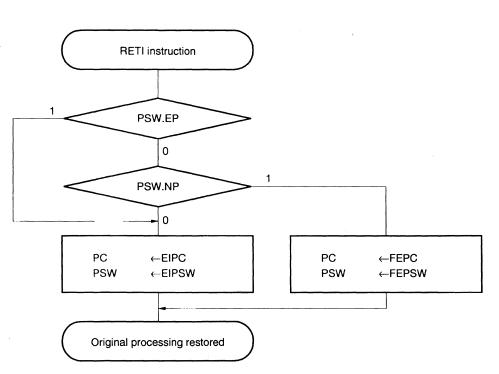


Figure 5-12. RETI Instruction Processing

Caution: If the PSW.EP and PSW.NP bits are changed using the LDSR instruction during software exception processing, it is necessary to reset PSW.EP to 0 and set PSW.NP to 1 using the LDSR instruction immediately before the RETI instruction to make sure that the PC and PSW are normally restored by the RETI instruction.

5.6 Priority Control

5.6.1 Priorities of interrupts and exceptions

	RESET	NMI	INT	TRAP	ILGOP
RESET		*	*	*	*
NMI	×		\leftarrow	\leftarrow	←
INT	×	ſ		←	\leftarrow
TRAP	×	<u>`</u> 1	[↑]		\leftarrow
ILGOP	×	ſ	Ŷ	↑	

RESET : reset

NMI : non-maskable interrupt
INT : maskable interrupt
TRAP : software exception
ILGOP illegal code exception
* : Item on the left ignores the item above.
× : Item on the left is ignored by the item above.
↑ : Item above is higher than the item on the left in priority.
← : Item on the left is higher than the item above in priority.

5.6.2 Multiple interrupt processing

Multiple interrupt processing is a function which allows the nesting of interrupts. If a higher priority interrupt is generated and accepted, it will be allowed to stop a current interrupt service routine in progress. Execution of the original routine will resume once the higher priority interrupt routine is completed.

If an interrupt with a lower or equal priority is generated and a service routine is currently in progress, the later interrupt will be kept pending.

Multiple interrupt processing control is performed while an interrupt service routine is currently in progress and the interrupts are kept enabled (ID=0). If a maskable interrupt or exception is generated and accepted while a prior interrupt routine is under progress, the higher priority interrupting routine must save the current contents of EIPC and EIPSW to allow proper restoration when the routine ends.

Programming examples used for interrupt nesting are shown in the following code fragments:

(1) To accept maskable interrupts in service routine

Service routine of maskable interrupt or exception

- Saves EIPC to memory or register
- · Saves EIPSW to memory or register
- · El instruction (enables interrupt acceptance)
 -

...

... ...

- ← Accepts interrupt such as INTP input
- DI instruction (disables interrupt acceptance)
- · Restores saved value to EIPSW
- Restores saved value to EIPC
- RETI instruction

(2) To generate exception in service program

Service program of maskable interrupt or exception

... · Saves EIPC to memory or register · Saves EIPSW to memory or register

...

...

...

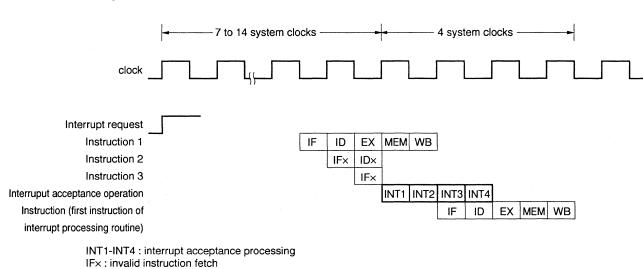
- ← Accepts exception such as TRAP instruction ← Accepts exception such as undefined instruction
- Restores saved value to EIPSW
- Restores saved value to EIPC
- **RETI** instruction

Priorities 0-7 (0 is the highest) can be programmed for each maskable interrupt request for multiple interrupt processing control. To set a priority level, write values to the xxPRn0-xxPRn2 bits of the interrupt request control register (xxICn) corresponding to each maskable interrupt request. At reset, the interrupt request is masked by the xxMKn bit, and the priority level is set to 7 by the xxPRn0-xxPRn2 bits.

Priorities of maskable interrupts

(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)

Interrupt processing that has been suspended as a result of multiple interrupt processing is resumed after the interrupt processing of the higher priority has been completed and the RETI instruction has been executed.


A pending interrupt request is accepted after the current interrupt processing has been completed and the RETI instruction has been executed.

Caution: The maskable interrupt is not accepted but kept pending in the non-maskable interrupt routine (until the RETI instruction is executed).

5.7 Interrupt Latency Time

The interrupt latency is defined as the time measured between the generation of the interrupt request and the execution of the first instruction in the corresponding interrupt processing routine. The following table describes the V851 interrupt latency time.

Figure 5-13. Pipeline Operation When Interrupt Request Is Accepted (outline)

IDx : invalid instruction decode

Interru	ot Latency Time	Condition
Minimum	11 system clocks	Time to eliminate noise (2 system clocks) is also necessary for external interrupts, except when:
Maximum	18 system clocks	 In IDLE/STOP mode External bus is accessed Two or more interrupt request non-sample instructions are executed in succession Interrupt request control register is accessed

5.8 Periods Where Interrupt Is Not Acknowledged

Interrupts are accepted during instruction execution. However, the interrupt is not accepted between the interrupt request non-sample instruction and the next instruction.

Interrupt request non-sample instruction

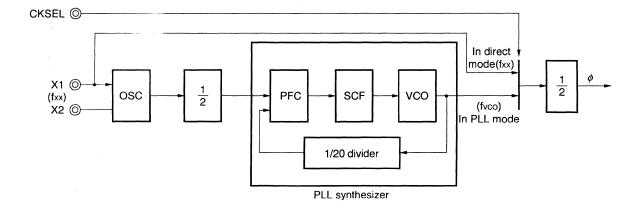
- · El instruction
- · DI instruction
- LDSR reg2, 0×5 instruction (vs. PSW)

[MEMO]

CHAPTER 6 CLOCK GENERATION FUNCTION

The clock generator produces and controls the internal system clock ϕ which is supplied to all the internal hardware units including the CPU.

6.1 Features


O Multiplication function by PLL (Phase Locked Loop) synthesizer (×5)

- O Clock source
 - Oscillation through oscillator connection: fxx = 1/5 × φ (PLL mode)
 External clock: fxx = 1/5 × φ (PLL mode)
 External clock: fxx = 2 × φ (direct mode)

O Power save mode

- · HALT mode
- · IDLE mode
- · Software STOP mode
- O Clock output inhibit function

6.2 Configuration

fvco : VCO oscillation frequency (= 10 · fxx)

- : internal system clock frequency (= 1/2 · fvco: in PLL mode) φ internal system clock frequency (= 1/2 · fxx: in direct mode)
- OSC : oscillator (PLL mode only)
- PFC : phase frequency comparator
- SCF : switched capacitor filter
- VCO : voltage-controlled oscillator

6.3 Selecting Input Clock

The clock generator consists of a clock oscillator and a PLL synthesizer. It can generate, for example, a 25-MHz system clock when a 5-MHz crystal resonator or ceramic resonator is connected across the X1 and X2 pins.

An external clock can be directly connected to the oscillator circuit. In this case, input the clock signal to the X1 pin, and leave the X2 pin open.

The clock generator has two operation modes: PLL and direct modes, and are selected by the CKSEL pin, as shown in the table below.

CKSEL	Operation Mode
0	PLL mode
1	Direct mode

Caution: The CKSEL pin level should never be changed during operation. The V851 may not operate correctly.

6.3.1 Direct mode

In the direct mode, an external clock with a frequency two times higher than that of the system clock is input. Because OSC and PLL synthesizer do not operate, the power dissipation can be significantly reduced. This mode is used mainly in applications where the V851 must operate on a relatively low frequency. To minimize the influence by noise, it is recommended that the frequency of the external clock, fxx, be kept to within 32 MHz (system clock ϕ = 16 MHz).

6.3.2 PLL mode

In the PLL mode, an external clock is input by connecting an external oscillator, which is multiplied by the PLL synthesizer to generate system clock (ϕ).

Because a frequency of up to 33 MHz can be generated based on an external oscillator of 3 to 5 MHz, a low-noise, power-saving system can be designed. The system clock (ϕ) with a frequency 5 times higher than the frequency fxx of the external oscillator or external clock (5 × fxx) can be generated.

The clock generator also provides a backup mode when operating in the PLL mode, thus improving system reliability. If the external oscillator or external clock source fails, the clock generator continues to provide the internal system clock ϕ based on the free-running frequency of the VCO. In this mode, the internal system clock ϕ operating at about 1 MHz.

Example of clock in PLL mode

System Clock Frequency ϕ	External Oscillator/External Clock Frequency (fxx)
32.768 MHz	6.5536 MHz
25.000 MHz	5.0000 MHz
20.000 MHz	4.0000 MHz
16.384 MHz	3.2768 MHz

×

6.4 PLL Stabilization

Following a power-on reset or when exiting the STOP mode, an amount of time will be required for the PLL to stabilize before using any of the V851 hardware functions which rely on execution speed. This required time is called PLL lock-up time, and is different (longer) than the oscillation stabilization time. Clock signals after the oscillation stabilization time have the required wave shape but the frequency might fluctuate. However clock signals after the PLL lock-up time are supplied at a specified frequency without fluctuation, satisfying the required wave shape. In addition, the status in which the frequency is not stable is called unlock status and the status in which it has been stabilized is called lock status.

Two system status flags are available to check with the stabilization of the PLL frequency: UNLOCK flag that indicates the stabilization status of the PLL frequency, and PRERR flag that indicates occurrence of a protection error (for the details of the PRERR flag, refer to **6.5.2 (2) Command register (PRCMD)**).

The SYS register, which contains these UNLOCK and PREERR flags, can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
SYS	0	0	0	PRERR	0	0	0	UNLOCK	Address FFFFF078H	At reset 0000000×B

Bit Position	Bit Name	Function
0	UNLOCK	 Unlock Status Flag This is read-only flag and indicates unlock status of PLL. It holds "0" as long as lock up status is maintained, and is not changed even if system is reset. 0 : Indicates lock status 1 : Indicates unlock status

Remark: For the description of the PRERR flag, refer to 6.5.2 (2) Command register (PRCMD).

If the unlock status condition should arise, due a power or clock source failure, the UNLOCK flag should be checked to verify that the PLL has stabilized before performing any execution speed dependent operations, such as real-time processing.

The static processing such as setting of the on-chip hardware units and initialization of the register data and memory data, however, can be executed before the UNLOCK flag is reset.

6.5 Power Save Control

6.5.1 General

The V851 is provided with the following power save or standby modes to reduce power consumption when CPU operation is not required.

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues operation but the operating clock of the CPU stops. The internal peripherals continue to function in reference to the internal system clock. Through intermittent operations between normal operation and HALT modes, total power consumption of the system can be reduced.

The HALT mode is entered by a dedicated instruction (HALT instruction).

(2) IDLE mode

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuits to stabilize.

The IDLE mode is entered by programming the PSC register.

The IDLE mode is categorized between the STOP and HALT modes in terms of clock stabilization time and power consumption, and is used in applications where the clock oscillation time should be eliminated but low power consumption is need.

(3) Software STOP mode

In this mode, the CPU clock, the internal system clock, and the clock generator are stopped, reducing power consumption to only leakage current. In this state, power consumption is minimized.

(a) In PLL mode

The software STOP mode is entered by programming the PSC register. As soon as the oscillator circuit stops, the clock output of the PLL synthesizer is stopped. After the software STOP mode has been released, it is necessary to allow for stabilization time of the oscillator and system clock. Moreover, the lock up or stabilization time of the PLL may also be necessary, depending on the application. However, when the processor operates on an external clock, the need for oscillation stabilization time of the oscillator will not be necessary.

(b) In direct mode

To stop the clock, fix the X1 pin to the low level. The PLL lock up or stabilization time is not needed in the direct mode.

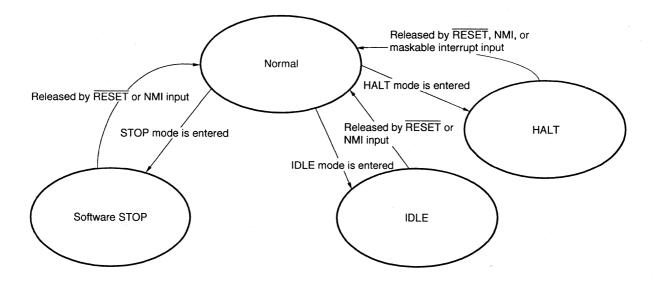
(4) Clock output inhibit

Output of the system clock from the CLKOUT pin is inhibited.

The operations of the clock generator in the normal, HALT, IDLE, and software STOP modes are shown in Table 6-1.

By combining and selecting the mode ideal for a specific application, the power consumption of the system can be effectively reduced.

Clock Source		Standby Mode	Oscillator Circuit (OSC)	PLL Synthesizer	Clock Supply to Peripheral I/O	Clock Supply to CPU
PLL mode	Oscillation by	Normal	0	0	0	0
	crystal oscillator	HALT	0	0	0	×
		IDLE	0	0	×	×
		STOP	×	×	×	×
	External clock	Normal	×	0	0	0
		HALT	×	0	0	×
		IDLE	×	0	×	×
		STOP	×	×	×	×
Direct mode		Normal	×	×	0	0
		HALT	×	×	0	×
		IDLE	×	×	×	×
		STOP	×	×	×	×


Table 6-1. Operation of Clock Generator by Power Save Control

O: operates

× : stops

C f

Status Transition Diagram

6.5.2 Control registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the power save mode. It can be written only by a specific combination of instruction sequences so that its contents are not written by mistake due to erroneous program execution. This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PSC	DCLK1	DCLK0	TBCS	CESEL	0	IDLE	STP	0	Address FFFFF070H	At reset 00H

Bit Position	Bit Name	Function					
7, 6	DCLKn (n=1, 0)	Disable CLKOUT Specifies operation mode of CLKOUT pin					
		DCLK1 DCLK0 Mode					
		0 0 Normal output mode					
		0 1 RFU (reserved)					
		1 0 RFU (reserved)					
		1 1 Clock output inhibit mode					
5	TBCS	Time Base Count Select Selects clock of time base counter 0: fxx/2 ⁸ 1: fxx/2 ⁹ For details, refer to explanation of "Time base counter (TBC)" in section 6.6 "Specifying Oscillation Stabilization Time".					
4	CESEL	Crystal/External Select Specifies functions of X1 and X2 pins 0: Oscillator connected to X1 and X2 pins 1: External clock connected to X1 pin When CESEL = 1, cuts off feedback loop of oscillation circuit and does not make sure that oscillation stabilization time elapses after STOP mode has been released.					
2	IDLE	IDLE Mode Specifies IDLE mode. When "1" is written to this bit, IDLE mode is entered. When IDLE mode is released, this bit is automatically reset to "0".					
1	STP	STOP Mode Specifies software STOP mode. When "1" is written to this bit, STOP mode is entered. When STOP mode is released, this bit is automatically reset to "0".					

Set data to the PSC register in the following sequence.

- <1> Disable interrupts (by setting the NP bit of PSW to 1).
- <2> Write any 8-bit data to the command register (PRCMD).
- <3> Write set data to the PSC register (using the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <4> Enable interrupts (by resetting the NP bit of PSW to 0).
- <5> Insert NOP instructions (two or five instructions).

The PSC register can be read in any sequence.

Cautions: 1. If an interrupt is accepted between issuance of PRCMD (<2>) and writing to the PSC register immediately after that (<3>), nothing is written to the PSC register, and a protection error (in which case the PRERR bit of the SYS register is set to "1") may occur. Therefore, set the NP bit of PSW to 1 (<1>) and disable INT/NMI acceptance. The same applies to use of a bit manipulation instruction to set the PSC register. Insert NOP instructions (<5>) as dummy instructions so that the routine is executed correctly after the STOP/IDLE mode has been released. If the value of the ID bit of PSW does not change even if the instruction (<4>) that resets the NP bit to 0 is executed, insert two NOP instructions. Insert five NOP instructions if the value of the ID bit changes.

Here is an example:

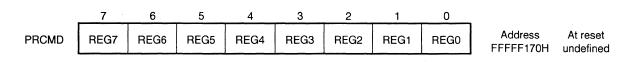
[Example]

LDSR	rX,5	; NP bit = 1
ST.B	r0,PRCMD [r0]	; Writing to PRCMD
ST.B	rD,PSC [r0]	; Setting of PSC register
LDSR	rY,5	; NP bit = 0
NOP		; Dummy instruction (2 or 5 instructions)
	:	

NOP

(next instruction) ; Execution routine after release of STOP/IDLE mode

- rX: Value to be written to PSW
- rY: Value to be written back to PSW
- rD: Value to be set to PSC


To save the value of PSW, the value of PSW before the NP bit is set must be transferred to the rY register.

2. The instructions after the store instruction (<4> Enabling interrupt, <5> NOP instructions) that are executed on the PSC register to set the software STOP mode or IDLE mode, are executed before each power save mode is set.

(2) Command register (PRCMD)

The command register protects the PSC register from being illegally written so that the application system does not stop due to program hang-up.

Only data written first to the PSC register after the PRCMD register has been written becomes valid. Because the register value can be rewritten only in a fixed sequence, illegal write operations are prevented. The command register can be only written in 8-bit units (when this register is read, undefined data is read).

Bit Position	Bit Name	Function
7-0	REG7-REG0	Registration Code
		Registration code (any 8-bit data)

Occurrence of an illegal store operation can be checked by the PRERR flag of the system status register (SYS).

	7	6	5	4	3	2	1	0		
SYS	0	0	0	PRERR	0	0	0	UNLOCK	Address FFFFF078H	At reset 0000000×B

Bit Position	Bit Name	Function
4	PRERR	Protection Error Flag Indicates that PSC register is not written in the correct sequence and that a protection error has occurred. 0: Protection error does not occur 1: Protection error occurs

Remark: For the description of the UNLOCK flag, refer to 6.4 PLL Stabilization.

Operation conditions of PRERR flag

- Set condition (PRERR = "1") : <1> If the store instruction most recently executed to the peripheral I/O does not write data to the PRCMD register, but to PSC register
 - <2> If the first store instruction executed after the write operation to the PRCMD register is to the peripheral I/O register except PSC registers.
- Reset condition (PRERR = "0") : <1> When "0" is written to the PRERR flag of the SYS register.
 - <2> At system reset

6.5.3 HALT mode

(1) Entering and operation status

In the HALT mode, the clock generator (oscillator circuit and PLL synthesizer) operates, while the operating clock of the CPU stops. The internal peripherals continue to function in reference to the internal system clock. By entering the HALT mode during the idle time of the CPU, the total power consumption of the system can be reduced.

This mode is entered by the HALT instruction.

In the HALT mode, program execution is stopped, but the contents of the registers and internal RAM immediately before entering the HALT mode are retained. The on-chip peripheral functions that are not dependent on the instruction processing of the CPU continue to operate.

Table 6-2 shows the status of each hardware unit in the HALT mode.

Function		Operating Status			
Clock Gene	rator	Operates			
Internal Sys	tem Clock	Operates			
CPU		Stops			
I/O Line		Retained			
Peripheral F	unction	Operates			
Internal Data		Status of internal data before setting of HALT mode, such as CPU registers, status, data, and internal RAM contents, are retained.			
External	AD0-AD15	High impedance ^{Note}			
Expansion Mode	A16-A23	Retained ^{Note}	High-impedance when $\overline{\text{HLDAK}} = 0$		
wode	LBEN, UBEN	1 Note			
	R/W				
	DSTB				
ASTB					
STO, ST1		00Note			
	HLDAK	Operates			
CLKOUT		Clock output (v	vhen clock output is not inhibited)		

Table 6-2. Operating Status in HALT Mode

Note: The instruction fetch operation continues even after the HALT instruction has been executed, until the internal instruction prefetch queue becomes full. After the queue has become full, the operation is stopped in the status indicated in the above table.

(2) Releasing HALT mode

The HALT mode can be released by the non-maskable interrupt request, an unmasked maskable interrupt request, or a RESET signal input.

(a) Releasing by interrupt request

The HALT mode is unconditionally released by the NMI request or an unmasked maskable interrupt request, regardless of the priority. However, if the HALT mode is set in an interrupt processing routine, the operation will differ as follows:

- (i) If an interrupt request with a priority lower than that of the interrupt request under execution is generated, the HALT mode is released, but the newly generated interrupt request is not accepted. The new interrupt request will be kept pending.
- (ii) If an interrupt request with a priority higher (including NMI request) than the interrupt request under execution is generated, the HALT mode is released, and the interrupt request is also accepted.

Operation after HALT mode has been released by interrupt request

Releasing Source	El Status	DI Status	
NMI request	Branches to vector address		
Maskable interrupt request	Branches to vector address or executes next instruction	Executes next instruction	

(b) Releasing by RESET signal input

The operation same as the normal reset operation is performed.

6.5.4 IDLE mode

(1) Entering and operation status

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuit to stabilize.

The IDLE mode is entered when the PSC register is programmed by the store (ST/SST) instruction or bit manipulation (SET1/CLR1/NOT1) instruction.

Execution of the program is stopped in the IDLE mode, but the contents of the registers and internal RAM immediately before entering the IDLE mode are retained. The on-chip peripheral function are stopped in this mode. The external bus hold request (HLDRQ) is not accepted.

Table 6-3 shows the hardware status in the IDLE mode.

Fur	nction	Operating Status
Clock Gene	rator	Operates
Internal Sys	tem Clock	Stops
CPU		Stops
I/O Line		Retained
Peripheral F	unction	Stops
Internal Data		Status of all internal data immediately before IDLE mode is entered, such as CPU registers, status, data, and internal RAM contents, are retained.
External	AD0-AD15	High-impedance
Expansion Mode	A16-A23	
Mode	LBEN, UBEN	
	R/W	
	DSTB	
	ASTB	
	STO, ST1	
	HLDAK	
CLKOUT		0

Table 6-3. Operating Status in IDLE Mode

101

(2) Releasing IDLE mode

The IDLE mode is released by the NMI signal input or RESET signal input.

(a) Releasing by NMI signal input

The NMI request is accepted and serviced as soon as the IDLE mode has been released. If the IDLE mode is entered in the NMI processing routine, however, only the IDLE mode is released, and the interrupt will not be accepted. The interrupt request will be retained and kept pending. The interrupt processing that is started by the NMI signal input when the IDLE mode is released is treated in the same manner as a normal NMI interrupt that is processed (because there is only one vector address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software flag should be defined in advance, and the flag must be set before setting the IDLE flag by the store/bit manipulation instruction. By checking this flag during the NMI interrupt processing, the NMI used to released the IDLE mode can be distinguished from the normal NMI.

(b) Releasing by RESET signal input

The operation same as the normal reset operation is performed.

6.5.5 Software STOP mode

(1) Entering and operaton status

In this mode, the CPU clock, the internal system clock, and the clock generator are stopped, reducing power consumption to only leakage current. In this state, power consumption is minimized.

The software STOP mode is entered by programming the PSC register using the store (ST/SST) or bit manipulation (SET1/CLR1/NOT1) instruction.

It is necessary to ensure the oscillation stabilization time of the oscillator circuit after the software STOP mode has been released, when the PLL mode (CKSEL pin = "0") and the oscillator connection mode (CESEL bit = "0") are set.

In the software STOP mode, program execution is stopped, but all the contents of the registers and internal RAM immediately before entering the STOP mode are retained. The on-chip peripheral function also stops operation.

Table 6-4 shows the hardware status in the software STOP mode.

Fur	nction	Operating Status
Clock Gene	rator	Stops
Internal Sys	tem Clock	Stops
CPU	, ,	Stops
I/O LineNote		Retained
Peripheral F	unction ^{Note}	Stops
Internal Data		Status of all internal data immediately before software STOP mode is set, such as CPU registers, status, data, and internal RAM contents, are retained.
External	AD0-AD15	High-impedance
Expansion Mode	A16-A23	
Mode	LBEN, UBEN	
· · · ·	R/W	
	DSTB	
	ASTB	
	ST0, ST1	
	HLDAK	
CLKOUT		0

Table 6-4. Operating Status in Software STOP Mode

Note: When the value of VDD is within the operating range.

Even if VDD drops below the minimum operating voltage, the contents of the internal RAM can be retained if the data retention voltage VDDDR is maintained.

(2) Releasing software STOP mode

The STOP mode is released by the NMI signal input or $\overrightarrow{\text{RESET}}$ signal input. It is necessary to ensure the oscillation stabilization time when releasing from the STOP mode. This will depend on the operating status of the oscillator circuit (PLL mode (CKSEL pin = "0") and in the oscillator connection mode (CESEL bit = "0")).

(a) Releasing by NMI signal input

When the STOP mode is released by the NMI signal, the NMI request is also accepted. If the STOP mode is set in an NMI processing routine, however, only the STOP mode is released, and the interrupt is not accepted. The interrupt request is retained and kept pending.

Caution: When inputting an external clock to the X1 pin, supply the external clock at least 100 μ s before releasing the STOP mode by using NMI input.

NMI interrupt processing on releasing STOP mode

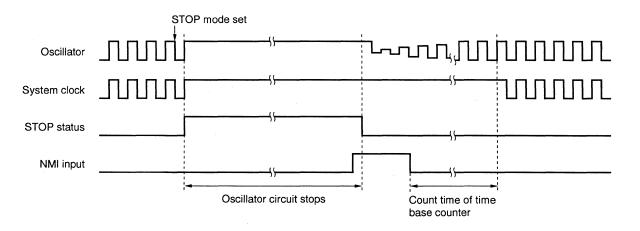
The interrupt processing that is started by the NMI signal input when the STOP mode is released is treated in the same manner as a normal NMI interrupt that is processed (because there is only one vector address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software flag should be defined in advance, and the flag must be set before setting the STOP flag by the store/bit manipulation instruction. By checking this flag during the NMI interrupt processing, the NMI used to released the STOP mode can be distinguished from the normal NMI.

(b) Releasing by RESET signal input

The operation same as the normal reset operation is performed.

Caution: When input an external clock to the X1 pin, make sure that the low-level width of the $\overline{\text{RESET}}$ pin is 100 μ s or more when supplying the clock.

6.6 Specifying Oscillation Stabilization Time


The time required for the oscillator circuit to become stabilized after the STOP mode has been released can be specified in the following two ways:

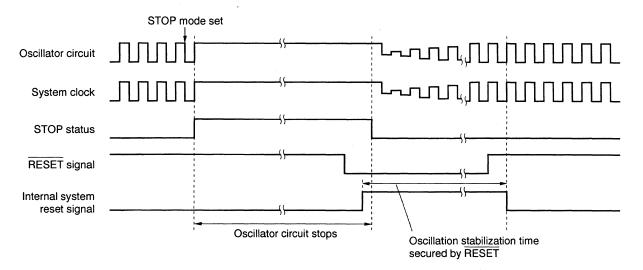
(1) By using internal time base counter (NMI signal input)

When the valid edge is input to the NMI pin, the STOP mode is released. When the inactive edge is input to the pin, the time base counter (TBC) starts counting, and the time required for the clock output from the oscillator circuit to become stabilized is specified by that count time.

Oscillation stabilization time = (Active level width after valid edge of NMI input has been detected) + (Count time of TBC)

After a specific time has elapsed, the system clock output is started, and execution branches to the vector address of the NMI interrupt.

During inactivity, the NMI pin should be kept at the inactive level (e.g. at a logic "1" when the valid edge is specified to be the falling edge).


If an operation to enter the STOP mode is performed while a valid edge has been input to the NMI pin before the CPU accepts the interrupt, the STOP mode will immediately be released. Program execution is immediately started if the clock generator is in the direct mode (CKSEL = "1") and is driven by external clock (CESEL = 1). If the clock generator is in the PLL mode (CKSEL = "0) or is driven by an oscillator (CESEL = 0), program execution is started after the oscillation stabilization time specified in the time base counter has elapsed, following the valid edge input to the NMI pin.

(2) To specify time by signal level width (RESET signal input)

The STOP mode is released when the falling edge is input to the RESET pin.

The time required for the clock output from the oscillator circuit to become stabilized is specified by the lowlevel width of the signal input to the $\overrightarrow{\text{RESET}}$ pin.

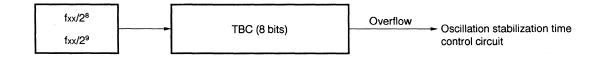
After the rising edge has been input to the RESET pin, operation of the internal system clock begins, and execution branches to the vector address that is used when the system is reset.

Time base counter (TBC)

The time base counter is used to secure the oscillation stabilization time of the oscillator circuit when the software STOP mode is released.

The count clock of TBC is selected by the TBCS bit of the PSC register, and the following count time can be set:

14	۸	
		~
		۱.


Table 6-5.	Example of Count Time	
	Count Time	

			Couhi	lime	
TBCS	Count Clock	fxx = 3.2768 MHz	fxx = 4.0000 MHz	fxx = 5.0000 MHz	fxx = 6.5536 MHz
		φ = 16.384 MHz	φ = 20.000 MHz	φ = 25.000 MHz	φ = 32.768 MHz
0	fxx/2 ⁸	20.0 ms	16.3 ms	13.1 ms	10.0 ms
1	fxx/2 ⁹	40.0 ms	32.7 ms	26.2 ms	20.0 ms

fxx : external oscillator frequency

: internal system clock frequency

Figure 6-1. Block Configuration

6.7 Clock Output Control

The operation mode of the CLKOUT pin can be selected by the DCLK0 and DCLK1 bits of the PSC register. By using this operation mode in combination with the HALT, IDLE, or STOP mode, the power dissipation can be effectively reduced (for how to write these bits, refer to **6.5.2 Control registers**).

Clock output inhibit mode

The clock output from the CLKOUT pin is inhibited.

L

This mode is ideal for single-chip mode systems or systems that fetch instructions to external expansion devices or asynchronously accesses data.

Because the operation of CLKOUT is completely stopped in this mode, the power dissipation can be minimized and radiation noise from the CLKOUT pin can be suppressed.

(Fixed to low level)

CLKOUT (clock output inhibit mode)

[MEMO]

CHAPTER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

7.1 Features

O Measures pulse intervals and frequency, and outputs programmable pulse

- 16-bit measurement possible
- Generates pulses of various shapes (interval pulse, one-shot pulse)

O Timer 1

- 16-bit timer/event counter
- · Count clock source: 2 types (divided system clock and external pulse input)
- · Capture/compare register: 4
- · Count clear pin: TCLR1
- Interrupt source: 5 types
- External pulse output: 2

O Timer 4

- 16-bit interval timer
- · Count clock selected from divided system clock
- Compare register: 1
- Interrupt source: 1

7.2 Basic Configuration

The basic configuration of the real-time pulse unit (RPU) is shown in the table below.

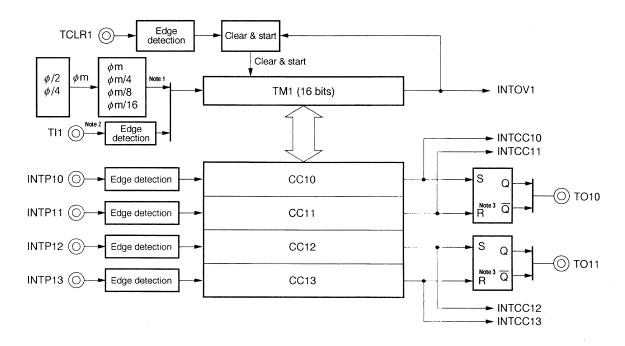
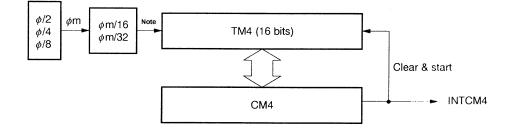

Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output SR	Other Function
Timer 1	φ/2	TM1	Read	INTOV1	-	-	External clear
	φ/4 φ/8	CC10	Read/write	INTCC10	INTP10	TO10 (S)	_
	φ/16	CC11	Read/Write	INTCC11	INTP11	TO10 (R)	_
	φ/32 φ/64	CC12	Read/Write	INTCC12	INTP12	TO11 (S)	-
	TI1 pin input	CC13	Read/Write	INTCC13	INTP13	TO11 (R)	-
Timer 4	φ/32 φ/64 φ/128	TM4	Read		_	_	_
	φ / 256	CM4	Read/write	INTCM4	-	-	_

Table 7-1. Configuration of RPU

Remark: ϕ : system clock

SR : set/reset

(1) Timer 1 (16-bit timer/event counter)



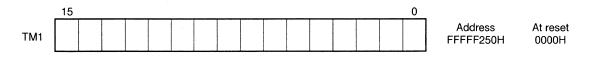
Notes: 1. Internal count clock frequency

- 2. External count clock frequency
- **3.** Reset priority

Remark: ϕ indicates the system clock.

(2) Timer 4 (16-bit interval timer)

Note: Internal count clock


Remark: ϕ indicates the system clock.

7.2.1 Timer 1

(1) Timer 1 (TM1)

TM1 functions as a 16-bit free-running timer or event counter. Timer 1 is used to measure cycles and frequency, and also for programmable pulse generation.

TM1 can be only read in 16-bit units.

TM1 counts up the internal count clock or external count clock. The timer is started or stopped by the CE1 bit of timer control register 1 (TMC1).

Whether the internal or external count clock is used is specified by the TMC1 register.

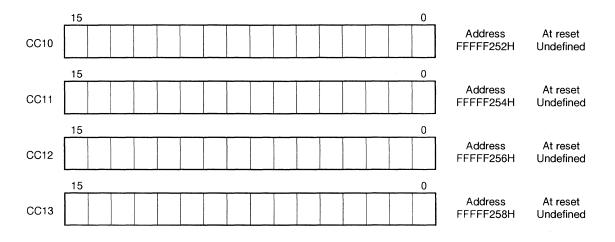
(a) When external count clock is selected

TM1 operates as an event counter. The valid edge is specified by timer unit mode register 1 (TUM1), and TM1 counts up the signal input from the TI1 pin

(b) When internal count clock is selected

TM1 operates as a free running timer. The frequency of the count clock can be selected from the frequency divided by the prescaler, $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, or $\phi/64$, by using the TMC1 register.

When the timer overflows, an overflow interrupt can be generated. The timer can be stopped after an overflow has occurred, if so specified by the TUM1 register.


The timer can be cleared and started by external TCLR1 input. At this time, the prescaler is cleared at the same time. As a result, the time from the TCLR1 input to the first count up by the timer is held constant, according to the division ratio of the prescaler. The operation is set by the TUM1 register. When the $\overrightarrow{\text{RESET}}$ signal is input, all the bits of TM1 are cleared to 0.

Caution: Do not change the count clock frequency while the timer operates.

112

(2) Capture/compare registers 10-13 (CC10-CC13)

Capture/compare registers are 16-bit registers and are connected to the TM1. These registers can be used as capture or compare registers depending on the specification of the timer unit mode register 1 (TUM1). They can be read/written in 16-bit units.

(a) When used as capture register

When a capture/compare register is used as a capture register, it detects the valid edge of the corresponding external interrupt (INTP10-INTP13) as a capture trigger. Timer 1 latches the count value in synchronization with the capture trigger (capture operation). The capture operation is performed asynchronously with the count clock. The latched value is held by the capture register, until the next capture operation is performed.

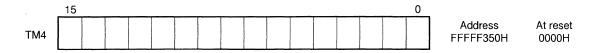
If the capture (latch) timing of the capture register contends with a register write operation by an instruction, the latter takes precedence, and the capture operation is ignored.

The valid edge of the external interrupt (rising, falling, or both edges) can be selected by external interrupt mode register (INTM2).

When a capture/compare register is used as a capture register, and when the valid edge of INTP10-INTP13 is detected, an interrupt is generated. During this time, no interrupt cannot be generated by the compare function of the register.

(b) When used as compare register

When a capture/compare register is used as a compare register, it compares its contents with the value of the timer at each clock tick. When the two values match, a coincidence signal INTCCn is generated. This coincidence signal can be used either to generate a maskable interrupt, to set/reset the timer output pins, or do both functions.

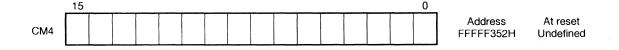

The interrupt source depends on the register mode, whether it is used as a capture or compare register. When used as a compare register, coincidence signal INTCCn or the valid edge of INTPn can be selected as an interrupt signal, depending on the specification of the TUM1 register.

When INTPn is selected, accepting an external interrupt (INTPn) and timer output by the set/reset output function of the compare register can be performed at the same time.

7.2.2 Timer 4

(1) Timer 4 (TM4)

TM4 is a 16-bit timer and is mainly used as an interval timer for software. This timer can be only read in 16-bit units.



TM4 is started or stopped by the CE4 bit of the timer control register 4 (TMC4). The count clock is selected by the TMC4 register from $\phi/32$, $\phi/64$, $\phi/128$, or $\phi/256$. All the bits of TM4 are cleared to 0 by the RESET signal.

- Cautions: 1. When the value of the timer coincides with the value of the compare register (CM4), the timer is cleared by the next clock tick. If the division ratio is large and results in a slow clock period, the timer value may not be cleared to zero yet, if the timer is read immediately after the occurrence of the coincidence signal interrupt.
 - 2. Do not change the count clock frequency while the timer operates.

(2) Compare register 4 (CM4)

CM4 is a 16-bit register and is connected to TM4. This register can be read/written in 16-bit units.

CM4 compares its value with the value of TM4 at each clock tick of TM4, and generates an interrupt (INTCM4) when the two values match or coincide with each other. TM4 is cleared in synchronization with this coincidence.

7.3 Control Registers

(1) Timer unit mode register 1 (TUM1)

TUM1 is a register that controls the operation of timer 1, and specifies the operation mode of the capture/ compare registers.

This register can be read/written in 16-bit units.

15 14 13 12 11 10 9 7 6 5 4 3 2 0 8 1 Address At reset 0 OSTECLR1TES11TES10CES11CES10CMS13CMS12CMS11CMS10IMS13IMS12IMS11IMS10 0 FFFFF240H 0000H

Bit Position	Bit Name			Function					
13	OST	 Overflow Stop Specifies operation of timer after occurrence of overflow. This flag is valid only for TM1. 0: Timer continues counting after overflow has occurred. 1: Timer holds 0000H and stops after overflow has occurred. At this time, CEI bit of TMC1 register remains "1". Timer resumes counting when following operation is performed: When ECLR1 = "0": Writing "1" to CE1 bit When ECLR1 = "1": Trigger input to timer clear pin (TCLR1) 							
12	ECLR1	Enables o 0: TM 1: TM Afte	External Input Timer Clear Enables clearing TM1 by external clear input (TCLR1) 0: TM1 is not cleared by external input 1: TM1 is cleared by external input After TM1 has been cleared, it starts counting.						
11, 10	TES11, TES10	TI1 Edge Specifies		e of external clock input (TI1)					
		TES11	TES10	Valid Edge					
		0	0	Falling edge					
		0	1	Rising edge					
		1	0	RFU (reserved)					
	-	1	1	Both rising and falling edges					
9, 8	CES11, CES10	TCLR1 Ec Specifies	-	t e of external clear input (TCLR1)					
		CES11	CES10	Valid Edge					
		0	0	Falling edge					
		0	1	Rising edge					
		1	0	RFU (reserved)					
	-	1	1	Both rising and falling edge					

115

CHAPTER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

Bit Position	Bit Name	Function
7-4	CMS10-CMS13	 Capture/Compare Mode Select Selects operation mode of capture/compare registers (CC10-CC13) 0: Capture register. However, capture operation is performed only when CE1 of TMC1 register = "1". 1: Compare register
3-0	IMS10-IMS13	Interrupt Mode Select Selects INTPn or INTCCn as interrupt source (n = 10-13) 0: Uses coincidence signal of INTCCn of compare register as interrupt signal 1: Uses external input signal INTPn as interrupt signal

(2) Timer control register 1 (TMC1)

TMC1 controls operation of TM1.

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TMC1	CE1	0	0	ETI	PRS11	PRS10	PRM11	0	Address FFFFF242H	At reset 00H

Bit Position	Bit Name	Function						
7	CE1	 Count Enable Controls timer operation. 0: Timer stops at "0000H" and does not operate. 1: Timer performs count operation. However, it does not start counting when TUM1.ECLR1 = "1", until TCLR1 signal is input. When TUM1.ECLR1 = "0", starting counting of timer by CE1 = "1" is triggered by writing "1" to CE1 bit. Therefore, timer is not started even when TUM1.ECLR1 = "0" after CE1 has been set with TUM1.ECLR1 = "1". 						
4	ETI	External TI1 Input Specifies external or internal count clock. 0: φ (internal) 1: TI1 (external)						
3, 2	PRS11, PRS10	Prescaler Clock Select Selects internal count clock (<i>ø</i> m is intermediate clock)						
		PRS11 PRS10 Count Clock 0 0 \$\phi\$m 0 1 \$\phi\$m/4 1 0 \$\phi\$m/8 1 1 \$\phi\$m/16						
1	PRM11	Prescaler Clock Mode Selects intermediate clock φm of count clock (φ is system clock). 0: φ/2 1: φ/4						

Caution: Do not change the count clock frequency while the timer operates.

(3) Timer control register 4 (TMC4)

TMC4 controls the operation of TM4.

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TMC4	CE4	0	0	0	0	PRS40	PRM41	PRM40	Address FFFFF342H	At reset 00H

Bit Position	Bit Name			Function				
7	CE4	Controls o 0: Tim	Count Enable Controls operation of timer. 0: Timer stops at "0000H" and does not operate. 1: Timer performs count operation.					
2	PRS40 PRM41, PRM40	Selects in 0: <i>φ</i> m/ 1: <i>φ</i> m/ Prescaler	Prescaler Clock Select Selects internal count clock (φm is intermediate clock). 0: φm/16 1: φm/32 Prescaler Clock Mode Selects intermediate clock φm of count clock (φ is system clock).					
		PRM41	PRM40	φm				
		0	0	¢/2				
		0	1	¢/4				
		1	0	¢/8				
		1	1	RFU (reserved)	l			

Caution: Do not change the count clock frequency while the timer operates.

CHAPTER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

(4) Timer output control register 1 (TOC1)

TOC1 controls the timer output from the TO10 and TO11 pins. This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TOC1	ENTO11	ALV11	ENTO10	ALV10	0	0	0	0	Address FFFFF244H	At reset 00H

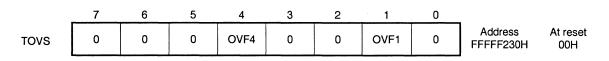
Bit Position	Bit Name	Function
7, 5	ENTO11, ENTO10	Enable TOxx pin
		 Enables corresponding timer output (TO10, TO11). 0: Timer output is disabled. The inactive levels are output from TO10 and TO11 pins based on the ALV10 and ALV11 pins, respectively. For example, ALV11 is set to 0, TO11 outputs high. Even if coincidence signal is generated from corresponding compare register, levels of TO10 and TO11 pins do not change. 1: Timer output function is enabled. Timer output changes when coincidence signal is generated from corresponding compare register. After the timer output has been enabled before the first coincidence signal is generated, the inactive levels are output from TO10 and TO11 pins based on the ALV10 and ALV11 pins, respectively (For example, ALV11 is set to 0, TO11 outputs high during that period).
6, 4	ALV11, ALV10	Active Level TOxx pin Specifies active level of timer output. 0: Active-low 1: Active-high

Remark: F/F of TO10 and TO11 outputs give priority to reset.

Caution: The TO10 and TO11 outputs are not changed by the external interrupt signal (INTP1n). When using TO10 and TO11, specify a capture/compare register as a compare register (CMS1n = 1).

(5) External interrupt mode register 2 (INTM2)

The valid edge of external interrupt INTPn is detected as a capture trigger when CCn (n = 10 to 13) of TM1 is used as a capture register. This valid edge is specified by the INTM2 register (for details, refer to **5.3.6 External interrupt mode registers 1 and 2 (INTM1 and INTM2)**).

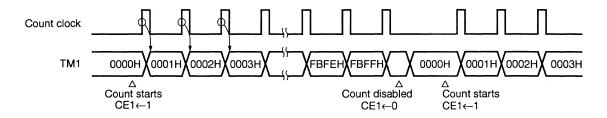

*

(6) Timer overflow status register (TOVS)

This register stores flags that indicate occurrence of an overflow from TM1 and TM4.

This register can be read/written in 8- or 1-bit units.

By testing and resetting the TOVS register via software, occurrence of an overflow can be polled.


Bit Position	Bit Name	Function
4, 1	OVFn	Overflow Flag TMn (n = 1, 4) overflow flag. 0: No overflow from TMn 1: Overflow from TMn
		The INTOV1 maskable interrupt request is also generated and TM1 continues counting. The OVF1 flag is cleared by software. Even though the OVF1 flag and the INTOV1 interrupt request flag are set by the same condition, these two flags are independent of each other. Setting the OVF1 flag in software does not generate an INTOV1 interrupt request. Likewise, setting the INTOV1 interrupt request flag by software does not set the OVF1 flag. Clearing the OVF1 flag by software does not clear the INTOV1 interrupt request and, likewise, when the INTOV1 request flag is cleared by hardware after the interrupt has been serviced, the OVF1 will not be cleared. If an overflow occurs when the TOVS register is being read, the overflow flags will not be updated and the condition will not be seen. However, this overflow condition will be reflected the next time the TOVS register is read.

7.4 Timer 1 Operation

7.4.1 Count operation

Timer 1 functions as a 16-bit free-running timer or event counter, as specified by timer control register 1 (TMC1). When it is used as a free-running timer, and when the count value of TM1 coincides with the value of any of the CC10-CC13 registers, an interrupt signal is generated, and timer output TO×× can be set/reset. In addition, a capture operation that holds the current count value of TM1 and loads it into one of the four registers CC10-CC13, is performed in synchronization with the valid edge detected from the corresponding external interrupt request pin as an external trigger. The captured value is retained until the next capture trigger is generated.

Figure 7-1. Basic Operation of Timer 1

7.4.2 Selecting count clock frequency

An internal or external count clock frequency can be input to timer 1. Which count clock frequency is used is specified by the ETI bit of the TMC1 register.

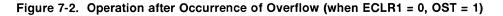
Caution: Do not change the count clock frequency while the timer operates.

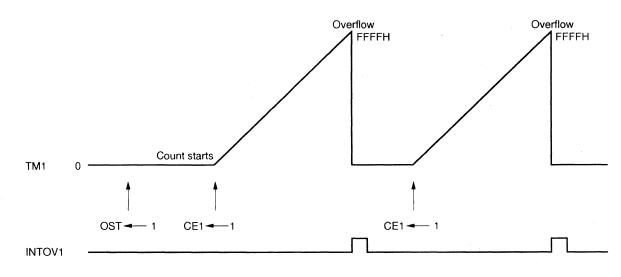
(1) Internal count clock (ETI bit = 0)

An internal count clock frequency is selected by the PRM11, PRS11, and PRS10 bits of the TMC1 register, from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, and $\phi/64$.

PRS11	PRS10	PRM11	Count Clock
0	0	0	<i>ф</i> /2
0	0	1	<i>ф</i> /4
0	1	0	<i>ø</i> 8
0	1	1	<i>ф</i> /16
1	0	0	<i>ф</i> /16
1	0	1	ø/32
1	1	0	ø/32
1	1	1	<i>¢</i> /64

(2) External count clock (ETI bit = 1)

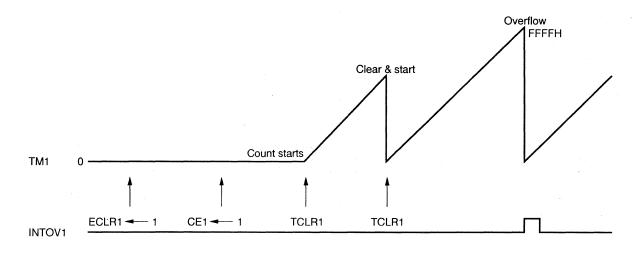

The signal input to the TI1 pin is counted. At this time, timer 1 can operate as an event counter. The valid edge of TI1 is specified by the TES11 and TES10 bits of the TUM1 register.


TES11	TES10	Valid Edge	
0	0	Falling edge	
0	1	Rising edge	
1	0	RFU (reserved)	
1	1	Both rising and falling edges	

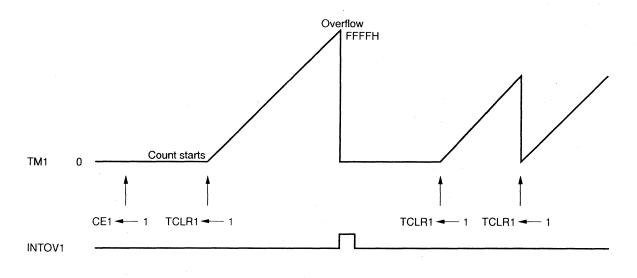
7.4.3 Overflow

If TM1 overflows as a result of counting the external events or internal count clock frequency, the OVF1 bit of the TOVS register is set to 1, and an overflow interrupt (INTOV) is generated.

After the overflow has occurred, the timer can be stopped by setting the OST bit of the TUM1 register to "1". If the timer is stopped due to overflow, the counting operation is not resumed until CE is set to "1" by software. The operation is not affected even if CE1 is set to 1 during count operation.


7.4.4 Clearing/starting timer by TCLR1 input

Timer 1 usually starts the count operation when the CE1 bit of the TMC1 register is set to 1. It is also possible to clear TM1 and start the count operation by using external input TCLR1.


When the valid edge is input to TCLR1 after ECLR1 = 1, OST = 0, and CE1 is set to 1, the count operation is started. If the valid edge is input to TCLR1 during operation, TM1 clears its value and then resumes the count operation (refer to Figure 7-3).

When the valid edge is input to TCLR1 after ECLR1 = 1, OST = 1, and CE1 is set from 0 to 1, the count operation is started. When TM1 overflows, the count operation is stopped once and is not resumed until the valid edge is input to TCLR1. If the valid edge of TCLR1 is detected during count operation, TM1 is cleared and continues counting (refer to **Figure 7-4**). The count operation is not resumed even if CE1 is set to 1 after overflow.

Figure 7-3. Clearing/Starting Timer by TCLR1 Input (when ECLR1 = 1, OST = 0)

123

7.4.5 Capture operation

A capture operation that captures and holds the count value of TM1 and loads it to a capture register in asynchronization with an external trigger can be performed. The valid edge from the external interrupt request input pin INTPn (n = 10-13) is used as the capture trigger. In synchronization with this capture trigger signal, the count value of TM1 during counting, is captured and loaded to the capture register. The value of the capture register is retained until the next capture trigger is generated.

Interrupt signal INTCCn is generated from INTPn input signal.

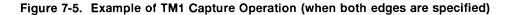

Capture Register	Capture Trigger Signal	
CC10	INTP10	
CC11	INTP11	
CC12	INTP12	
CC13	INTP13	

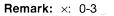
Table 7-2. Capture Trigger Signal to 16-Bit Capture Register (TM1)

Remark: CC10-CC13 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1 (TUM1).

The valid edge of the capture trigger is set by external interrupt mode register (INTM1).

When both the rising and falling edges are specified as the capture trigger, the width of an externally input pulse can be measured. If either the rising or falling edge is specified as the capture trigger, the frequency of the input pulse can be measured.

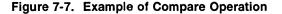


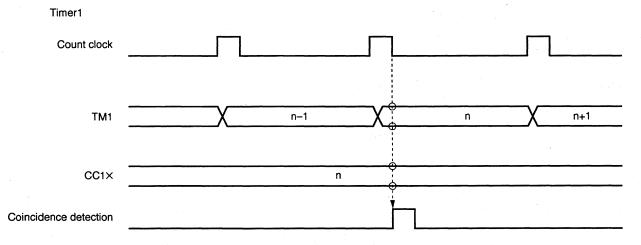


Remark: Dn (n = 0, 1, 2, ...): count value of TM1

The capture operation is not performed even if the interrupt signal is input when CE1 is cleared to 0.

7.4.6 Compare operation


A comparison between the value in a compare register with the count value of TM1 can be performed.

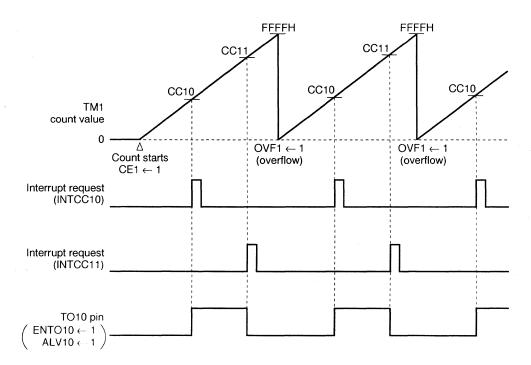

When the count value of TM1 coincides with the value of the compare register programmed in advance, a coincidence signal is sent to the output control circuit (refer to Figure 7-7). The levels of the timer output pins (TO10 and TO11) can be changed by the coincidence signal, and an interrupt request signal can be generated at the same time.

Compare Register	Interrupt Request Signal	
CC10	INTCC10	
CC11	INTCC11	
CC12	INTCC12	
CC13	INTCC13	

Table 7-3. Interrupt Request Signal from 16-Bit Compare Register (TM1)

Remark: CC10-CC13 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1 (TUM1).

Remark: Note that the coincidence signal is generated immediately after TM1 is incremented as shown above.


TM1 has two timer output pins: TO10 and TO11.

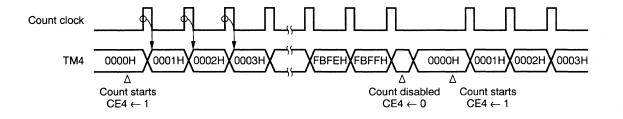
The count value of TM1 is compared with the value of CC10. When the two values coincide, the output level of the TO10 pin is set. The count value of TM1 is also compared with the value of CC11. When the two values coincide, the output level of the TO10 pin is reset.

Similarly, the count value of TM1 is compared with the value of CC12. When the two values coincide, the output level of the TO11 pin is set. The count value of TM1 is also compared with the value of CC13. When the two values coincide, the output level of TO11 pin is reset.

The output levels of the TO10 and TO11 pins can be specified by the TOC1 register.

127

7.5 Timer 4 Operation


7.5.1 Count operation

Timer 4 functions as a 16-bit interval timer. The operation is specified by the timer control register 4 (TMC4).

The operation of timer 4 counts the internal count clocks ($\phi/32-\phi/256$) specified by the PRS40, PRM41, and PRM40 bits of the TMC4 register.

If the count value of TM4 coincides with the value of CM4, the value TM4 is cleared while simultaneously a coincidence interrupt (INTCM4) is generated.

7.5.2 Selecting the count clock frequency

An internal count clock frequency is selected by the PRS40, PRM40, and PRM41 bits of the TMC4 register, from $\phi/32$, $\phi/64$, $\phi/128$, and $\phi/256$.

Caution: Do not change the count clock frequency while the timer operates.

PRS40	PRM40	PRM41	Count Clock
0	0	0	<i>ф</i> /32
0	0	1	<i>ф</i> /64
0	1	0	<i>ф</i> /128
0	1	1	RFU (reserved)
1	0	0	<i>ф</i> /64
1	0	1	<i>ф</i> /128
. 1	1	0	<i>ф</i> /256
1	1	1	RFU (reserved)

7.5.3 Overflow

If TM4 overflows, the OVF4 bit of the TOVS register is set to 1.

7.5.4 Compare operation

A comparison can be performed with the counter value of TM4 and the compare register (CM4).

When the count value of TM4 coincides with the value of the compare register, a coincidence interrupt (INTCM4) is generated. As a result, TM4 is cleared to 0 at the next count timing (refer to **Figure 7-10**). This function allows timer 4 to be used as an interval timer.

CM4 can be also set to 0. In this case, a coincidence is detected when TM4 overflows and is cleared to 0, and INTCM4 is generated. The value of TM4 is cleared to 0 at the next count timing, but INTCM4 is not generated when a coincidence occurs at this time (refer to **Figure 7-11**).

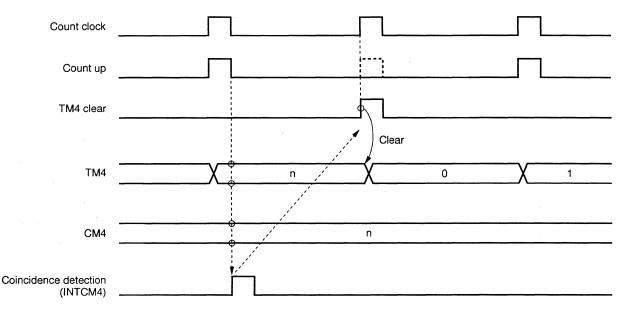
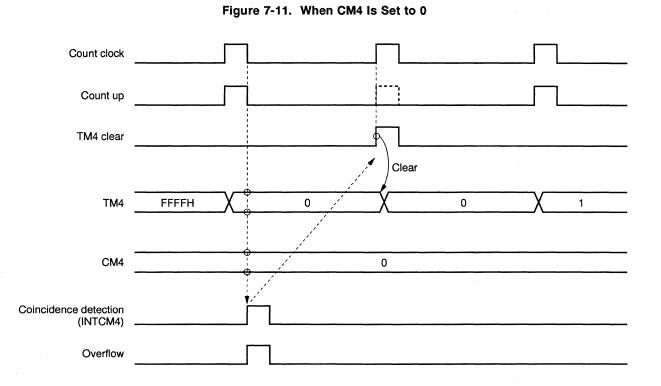
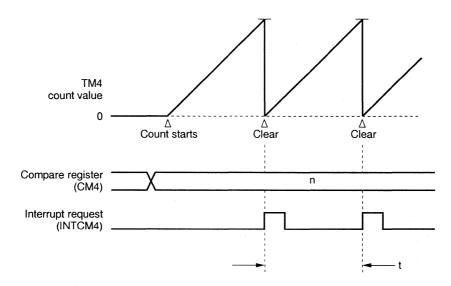



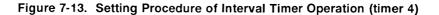
Figure 7-10. Operation with CM4 at 1-FFFFH

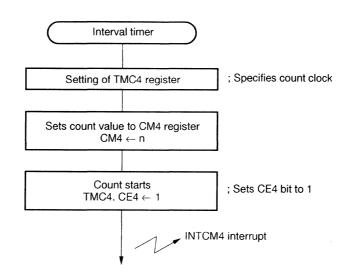
Remark: Interval time = $(n+1) \times \text{count clock cycle}$ n = 1-65535 (FFFFH)


Remark: Interval time = (FFFFH + 2) \times count clock cycle

7.6 Application Examples

(1) Operation as interval timer (timer 4)

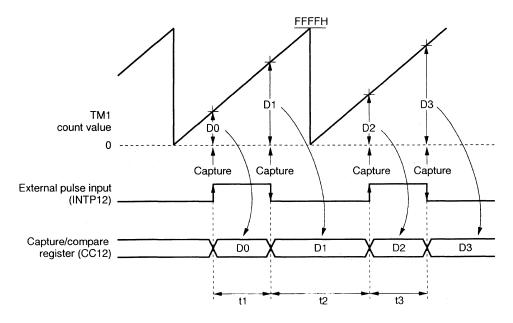

Timer 4 is used as an interval timer that repeatedly generates an interrupt request at time intervals specified by the count value set in advance to compare register CM4. Figure 7-12 shows the timing. Figure 7-13 illustrates the setting procedure.



Remark: n: value of CM4 register

t: interval time = $(n+1) \times \text{count clock cycle}$

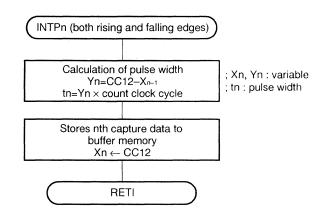
(2) Pulse width measurement (timer 1)


Timer 1 is used to measure pulse width.

In this example, the width of the high or low level of an external pulse input to the INTP12 pin is measured. The value of timer 1 (TM1) is captured to a capture/compare register (CC12) in synchronization with the valid edge of the INTP12 pin (both the rising and falling edges), as shown in Figure 7-14.

To calculate the pulse width, the difference between the count value of TM1 captured to the CC12 register on detection of valid edge n (Dn), and the count value on detection of valid edge (n - 1) (Dn - 1) is calculated. This difference is multiplied by the count clock.

Figure 7-15 shows the setting procedure.


 $t1= (D1-D0) \times count clock cycle$ $t2= {(FFFH-D1) +D2} \times count clock cycle$ $t3= (D3-D2) \times count clock cycle$

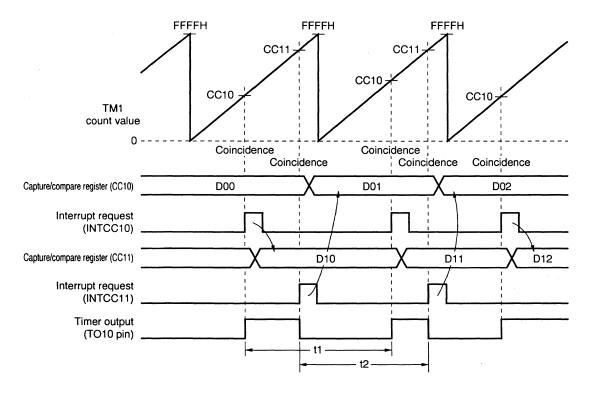
Remark: Dn: count value of TM1 (n = 0, 1, 2, ...)

Figure 7-16. Interrupt Request Processing Routine Calculating Pulse Width (timer 1)

Caution: If an overflow occurs two times or more between (n-1)th capture and nth capture, the pulse width cannot be measured.

(3) PWM output (timer 1)

Any square wave can be output to timer output pins (TO10 and TO11) by combining the use of timer 1 and the timer output function.


(a) Using timer 1

Two capture/compare registers, CC10 and CC11, are used in this example of PWM output. The output mode of the P21/TO10 pin has been programmed to the set/reset output mode.

A PWM signal with an accuracy of 16 bits can be output from the TO10 pin. Figure 7-17 shows the timing. When timer 1 is used as a 16-bit timer, the rising timing of the PWM output is determined by the value set to capture/compare register CC10, and the falling timing is determined by the value set to capture/ compare register CC11.

Figure 7-18 shows the programming procedure at this time.

 $t1 = {(FFFFH - D00) + D01} \times count clock cycle$ $t2 = {(FFFFH - D10) + D11} \times count clock cycle$

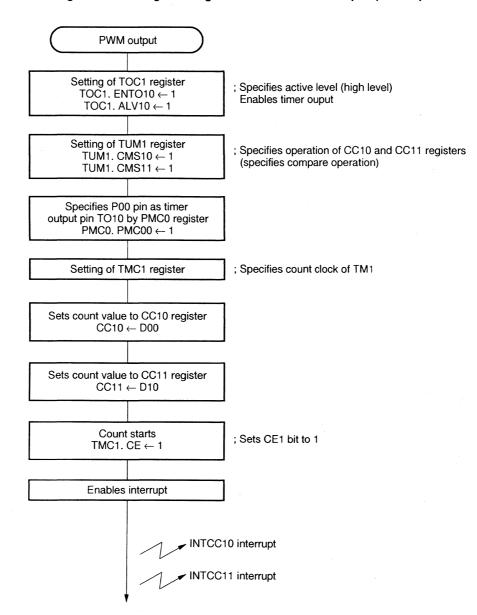
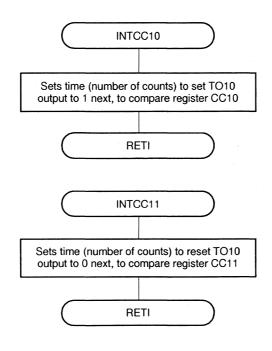



Figure 7-18. Programming Procedure of PWM Output (timer 1)

Figure 7-19. Interrupt Request Processing Routine, Modifying Compare Value (timer 1)

(4) Frequency measurement (timer 1)

Timer 1 can be used to measure the cycle or frequency of an external pulse input to the INTPn pin (n = 10-13).

In this example, the frequency of the external pulse input to the INTP10 pin is measured with an accuracy of 16 bits, by combining the use of timer 1 and the capture/compare register CC10.

The valid edge of the INTP10 input signal is specified by the INTM2 register to be the rising edge.

To calculate the frequency, the difference between the count value of TM1 captured to the CC10 register at the nth rising edge (Dn), and the count value captured at the (n-1)th rising edge (Dn-1), is calculated, and the value multiplied by the count clock frequency.

Figure 7-21 shows the setting procedure at this time.

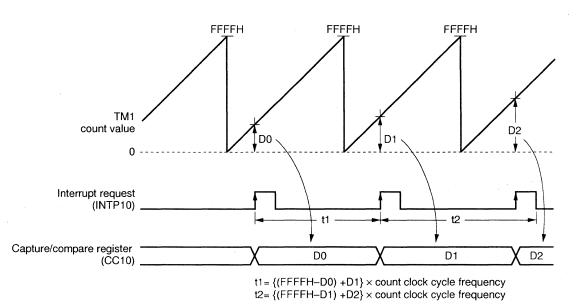
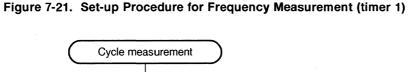
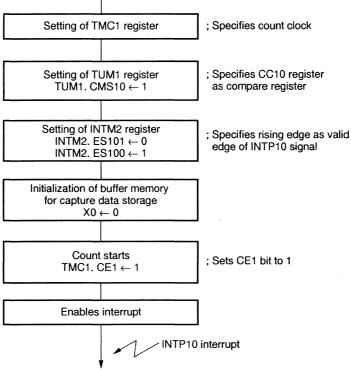
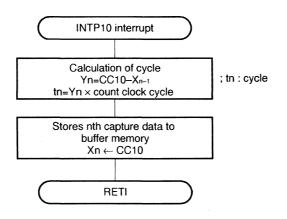
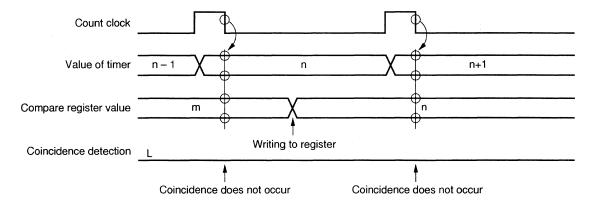
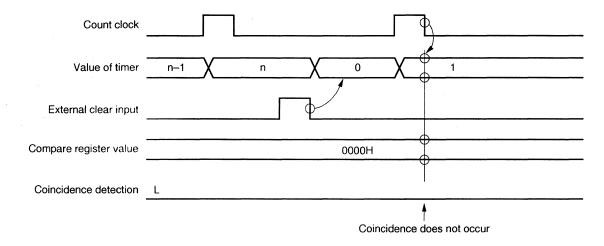



Figure 7-20. Frequency Measurement Timing(TM1)

Remark: Dn: count value of TM1 (n = 0, 1, 2, ...)

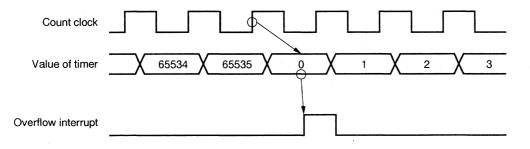




Figure 7-22. Interrupt Request Processing Routine Calculating Cycle (timer 1)


7.7 Note

Coincidence is detected by the compare register immediately after the timer value matches the compare register value, and does not take place in the following cases:

(1) When compare register is rewritten (TM1, TM4)


(2) When timer is cleared by external input (TM1)

(3) When timer is cleared (TM4)

Count clock		
Value of timer	65534 X 65535 X 0	0 1
Internal coincidence clear		
Coincidence detection		
	Coincic	lence does not occur

When timer 1 is used as a free-running timer, the timer value is cleared to 0 when the timer overflows.

CHAPTER 8 SERIAL INTERFACE FUNCTION

8.1 Features

i.

The V851 provides two types serial interfaces which operate as two independent peripheral units, each of which has one channel.

- (1) Asynchronous serial interface (UART)
- (2) Clocked serial interface (CSI)

The UART transmits/receives 1-byte serial data following a start bit and can perform full-duplex communication. The CSI uses three signal lines to high-speed synchronous data transfers data (3-wire serial I/O): serial clock (SCK), serial input (SI), and serial output (SO) lines.

8.2 Asynchronous Serial Interface (UART)

8.2.1 Features

★

- O Transfer rate: 150 bps to 76800 bps (at ϕ = 33 MHz)
- O Full-duplex communication
- O Two-pin configuration: TXD: transmit data output pin

RXD: receive data input pin

O Receive error detection function

- · Parity error
- Framing error
- Overrun error
- O Three interrupt sources
 - Receive error interrupt (INTSER0)
 - Reception completion interrupt (INTSR0)
 - Transmission completion interrupt (INTST0)

O Character length of transmit/receive data is specified by ASIM00 and ASIM01 registers.

O Character length: 7, 8 bits

9 bits (when extended)

O Parity function: odd, even, 0, none

O Transmit stop bit: 1, 2 bits

O Internal baud rate generator

8.2.2 Configuration of asynchronous serial interface

The asynchronous serial interface is controlled by asynchronous serial interface mode register (ASIM) and asynchronous serial interface status register (ASIS). The receive data is stored in receive buffer (RXB), and the transmit data is written to transmit shift register (TXS).

Figure 8-1 shows the configuration of the asynchronous serial interface.

(1) Asynchronous serial interface mode registers (ASIM00, ASIM01)

ASIM00 and ASIM01 are 8-bit registers that specify the operation of the asynchronous serial interface.

(2) Asynchronous serial interface status register (ASIS0)

ASISO is a register containing flags that indicate receive errors, if any, and a transmit status flag. Each receive error flag is set to 1 when a receive error occurs, and is reset to 0 when data is read from the receive buffer (RXB0, RXB0L), or when new data is received (if the next data contains an error, the corresponding error flag is set).

The transmit status flag is set to 1 when transmission is started, and reset to 0 when transmission ends.

(3) Reception control parity check

The reception operation is controlled according to the contents programmed in the ASIM00 and ASIM01 registers. During the receive operation, errors such as parity error are also checked. If an error is found, the appropriate value is set to the ASIS0 register.

(4) Receive shift register

This shift register converts the serial data received on the RXD pin into parallel data. When it receives 1 byte of data, it transfers the receive data to the receive buffer.

The receive shift register cannot be accessed by the CPU.

(5) Receive buffer (RXB0, RXB0L)

RXB0 is a 9-bit buffer register that holds receive data. If data of 7 or 8 bits/character is received, 0 is stored to the most significant bit position of this register.

If this register is accessed in 16-bit units, RXB0 is specified. To access in lower 8-bit units, RXB0L is specified. While reception is enabled, the receive data is transferred from the receive shift register to the receive buffer in synchronization with shift-in processing of 1 frame.

When the data is transferred to the receive buffer, a reception completion interrupt request (INTSR0) occurs.

(6) Transmit shift register (TXS0, TXS0L)

TXS0 is a 9-bit shift register used for transmit operation. When data is written to this register, the transmission operation is started.

A transmission complete interrupt request (INTST0) is generated after each complete data frame is transmitted. When this register is accessed in 16-bit units, TXS0 is specified. To access in lower 8-bit units, TXS0L is specified.

For related information, refer to section 8.2.5" Operation".

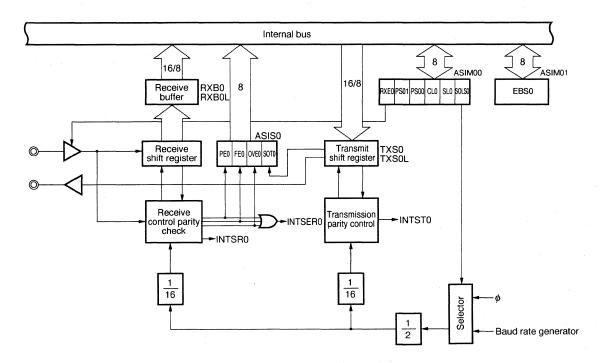
(7) Transmission parity control

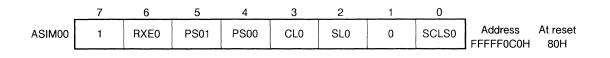
A start bit, parity bit, and stop bit are appended to the data written to the TXS0 register, according to the contents programmed in the ASIM00 and ASIM01 registers, to control the transmission operation.

143

(8) Selector

Selects the source of the serial clock.




Figure 8-1. Block Diagram of Asynchronous Serial Interface

8.2.3 Mode registers and control registers

(1) Asynchronous serial interface mode registers (ASIM00 and ASIM01)

The 8-bit asynchronous serial interface mode register, ASIM00 and ASIM01, specify the serial clock source, the number of stop bits, the character length of one frame of data, and the type of parity bit control for the send and receive operations.

These registers specify the transfer mode of the UART. They can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Funciton
6	RXE0	Receive Enable Enables/disables reception. 0: Disables reception 1: Enables reception When reception is disabled, the receive shift register does not detect the start bit. Data is not
		shifted into the receive shift register and neither is any transfer to the receive buffer performed. Therefore, the previous contents of receive buffer are retained. When reception is enabled, the data is shifted into the receive shift register and transferred to the receive buffer when one complete frame has been received. A reception completion interrupt (INTSR0) is generated in synchronization with the transfer to the receive buffer.

145

Bit Position	Bit Name			Function				
5, 4	PS01, PS00	Parity Select Specifies parity bit.						
		PS01	PS00	Operation				
		0	0	No parity. Extended bit operation				
		$\begin{array}{c cccc} 0 & 1 & 0 \text{ parity} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$						
		1	0	Odd parity				
		1	1	Even parity				
3	 Even parity Parity bit is set to "1" when number of bits equal to one in received data is odd. If if of bits that are one is even, parity bit is cleared to 0. In this way, number of bits that in transmit data and parity bit is controlled to become even. During reception, number that are "1" in receive data and parity bit are counted. If it is odd, parity error occur Odd parity In contrast to even parity, number of bits included in transmit data and parity bit that is controlled to become odd. During reception, parity error occurs if the number of "1"'s in the receive data and parity bit is cleared to "0" during transmission, regardless of transmit data. During reception, the parity bit is not checked. Therefore, parity error does no regardless of whether parity bit is "0" or "1". No parity No parity bit is appended to the transmit data. Reception is performed on assumption that there is no parity bit. Because no parity bit parity error does not occur. Extended bit operation can be specified by EBS0 bit of ASIM01 register.							
3	CLO	Character Length Specifies character length of one frame. 0: 7 bits 1: 8 bits						
2	SLO	Stop Bit Leng Specifies sto 0: 1 bit 1: 2 bits						

CHAPTER 8 SERIAL INTERFACE FUNCTION

÷

han sinak

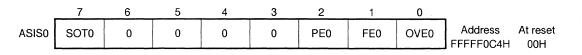
Bit Position	Bit Name	Function		
0	 0 SCLS0 Serial Clock Source Specifies serial clock. 0: Specified by baud rate generator and BPRM0 (baud rate generator prescal register) 1: φ/2 When SCLS0 = 1 φ/2 (system clock) is selected as serial clock source. In asynchronous mode, bau expressed as follows because sampling rate of x16 is used: Baud rate = φ/2 16 bps 			
		φ 33 MHz 25 MHz 20 MHz 16 MHz 12.5 MHz 10 MHz 8 MHz 5 MHz		
		Baud rate 1031 K 781 K 625K 500 K 390 K 312 K 250 K 156 K		
		 When SCLS0 = 0 Baud rate generator output is selected as serial clock source. For details of baud rate generator, refer to 8.4 "Baud Rate Generator (BRG)". 		

Caution: The operation of UART is not guaranteed if the bits 0-6 of this register are changed while UART is transmitting/receiving data.

,	7	6	5	4	3	2	1	0	_	
ASIM01	0	0	0	0	0	0	0	EBS0	Address FFFFF0C2H	At reset 00H

Bit Position	Bit Name	Function
0	EBS0	Extended Bit Select Specifies extended bit operation of transmit/receive data when no parity is specified (PS01, PS00 = 00).
		 0: Disables extended bit operation 1: Enables extended bit operation When extended bit operation is enabled, 1 data bit is appended as most significant bit to 8-bit transmit/receive data, and therefore 9-bit data is communicated. Extended bit operation is valid only when no parity is specified by ASIM00 register. If zero, even, or odd parity is specified, specification by EBS0 bit is invalid, and extended bit is not appended.

*


(2) Asynchronous serial interface status register 0 (ASIS0)

This register contains three error flags that indicate the receive error status for each character received and the status of the transmit shift register.

The error flags always indicate the status of an error that has occurred most recently. If two or more errors occur before the current received data, only the status of the error that has occurred last is retained.

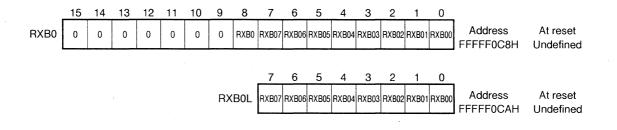
If a receive error occurs, read the receive buffer RXB0 or RXB0L after reading the ASIS0 register, and then clear the error flag.

This register can only be read in 8- or 1-bit units.

Bit Position	Bit Name	Function
7	SOT0	 Status Of Transmission Status flag that indicates transmission operation status. Set (1) : Beginning of transmission of a data frame (writing to TXS register) Clear (0): End of transmission of a data frame (occurrence of INTSTO) When serial data transfer begins, this flag will indicate if the transmit shift register is ready to be written or not.
2	PE0	Parity Error Status flag that indicates parity error. Set (1) : Transmit parity and receive parity do not match Clear (0): No error; this flag is automatically cleared to 0 when the data is read from the receive buffer.
1	FEO	Framing Error Status flag that indicates framing error. Set (1) : Stop bit is not detected Clear (0): No error; this flag is automatically cleared to 0 when the data is read from the receive buffer.
0	OVE0	 Overrun Error Status flag that indicates overrun error. Set (1) : Overrun error; Contents of the receive shift register are transferred to the receive buffer before the previous data has been read by the CPU. This will cause an over writing of data and the previous informaiton will be lost. Clear (0): No error; this flag is automatically cleared to 0 when the data is read from the receive buffer. Because contents of receive shift register are transferred to receive buffer each time one frame of data has been received, if overrun error occurs, next receive data is written over contents of receive buffer.

(3) Receive buffers (RXB0 and RXB0L)

RXB0 is a 9-bit buffer register that holds the receive data. When 7- or 8-bit/character is received, the higher bit of this register is 0.

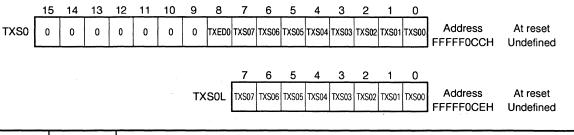

When this register is accessed in 16-bit units, RXB0 is specified. To access in lower 8-bit units, RXB0L is specified.

When reception is enabled, the receive data is transferred from the receive shift register to the receive buffer when one complete frame of data (or character) has been received.

When the receive data is transferred to the receive buffer, a reception completion interrupt request (INTSR0) occurs.

When reception is disabled, the data is not shifted into the receive shift register and the reception completion interrupt is not generated. The previous contents of the receive buffer are retained.

RXB0 enables 16-bit read access only, and RXB0L enables 8-/1-bit read access only.


Bit Position	Bit Name	Function
8	RXEB0	Receive Extended Buffer Extended bit when 9-bit/character is received. This bit is cleared to zero when 7- or 8-bit/character is received.
7-0	RXB0n (n=7-0)	Receive Buffer These bits store receive data. The RXB07 bit is cleared to zero when 7-bit/character is received.

(4) Transmit shift registers (TXS0, TXS0L)

TXS0 is a 9-bit shift register for data transmission. The transmit operation is started when data is written to this register.

Transmission complete interrupt request (INTST0) is generated after each complete data frame is transmitted. When this register is accessed in 16-bit units, TXS0 is specified. To access in lower 8-bit units, TXS0L is specified.

TXS0 enables 16-bit write access only, and TXS0L enables 8-bit write access only.

Bit Position	Bit Name	Function
8	TXED0	Transmit Extended Data
		Extended bit on transmission of 9-bit/character
7-0	TXS0n (n=7-0)	Transmit Shifter Writes transmit data.

Caution: Note that the UART of the V851 does not have a transmit buffer. This means that an interrupt request is generated in synchronization with the end of transmission of one frame of data. This operation is different from that of some other NEC microcontrollers which have transmit buffers. They generate interrupt requests on the completion of transmission (completion of transfer to buffer).

8.2.4 Interrupt request

UART generates the following three types of interrupt requests:

- Receive error interrupt
- Reception completion interrupt
- · Transmission completion interrupt

Of these three, the receive error interrupt has the highest default priority, followed by the reception completion interrupt and transmission completion interrupt.

Interrupt	Priority
Receive error	1
Reception completion	2
Transmission completion	3

Table 8-1. Default Priority of Interrupts

(1) Receive error interrupt (INTSER0)

A receive error interrupt occurs as a result of ORing the three types of receive errors described in description of the ASIS0 register when reception is enabled.

This interrupt does not occur when reception is disabled.

(2) Reception completion interrupt (INTSR0)

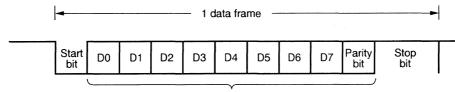
The reception completion interrupt occurs if data is received in the receive shift register and then transferred to the receive buffer when reception is enabled.

This interrupt also occurs when a receive error occurs, but the receive error interrupt has the higher priority. The reception completion interrupt does not occur when reception is disabled.

(3) Transmission completion interrupt (INTST0)

Because the UART of the V851 does not have a transmit buffer, a transmission completion interrupt occurs when one frame of transmit data containing a 7-/8-/9-bit character is shifted out from the transmit shift register. The transmission completion interrupt is output when the last bit of data has been transmitted.

8.2.5 Operation


(1) Data format

Full-duplex serial data is transmitted/received.

One data frame of the transmit/receive data consists of a start bit, character bits, parity bit, and stop bit, as shown in Figure 8-2.

The length of the character bit, parity, and the length of the stop bit in one data frame are specified by the asynchronous serial interface mode registers (ASIM00 and ASIM01).

Figure 8-2. Format of Transmit/Receive Data of Asynchronous Serial Interface

Character bit

- Start bit..... 1 bit
- Character bit 7/8/9 bits (with extended bit)
- · Parity/extended bit Even/odd/0/none/extended bit
- Stop bit 1/2 bits

(2) Transmission

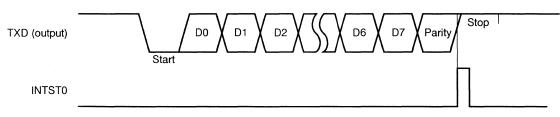
Transmission is started when data is written to the transmit shift register (TXS0 or TXS0L). The next data is written to the TXS0 or TXS0L register by the service routine of the transmission completion interrupt (INTST0).

(a) Transmission enabled status

The UART of the V851 is always enabled to transmit data. Because the V851 does not have a pin that inputs a transmit enable signal, such as a CTS pin, a general input port is used when it is necessary to check whether the other party is ready to receive data.

(b) Starting transmission

Transmission is started by writing data to the transmit shift register (TXS0, TXS0L). The transmit data is transferred starting from the start bit with the LSB first. The start bit, parity bit, and stop bit are automatically appended.


(c) Transmission interrupt request

When one frame of data or character has been completely transferred, a transmission completion interrupt request (INTST0) occurs.

Unless the data to be transmitted next is written to the TXS0 or TXS0L register, the transmission is aborted. The communication rate drops unless the next transmit data is written to the TXS0 or TXS0L register immediately after transmission has been completed.

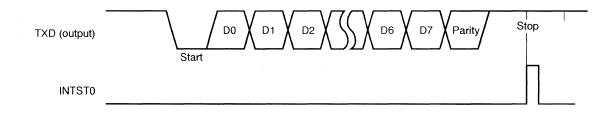

- Cautions: 1. The transmission completion interrupt request (INTST0) is generated after each complete data frame is transmitted out of the transmit shift register. It is not generated by the empty state of TXS0 or TXS0L. Because of this, the INTST0 interrupt will not be generated immediately after reset.
 - 2. During the transmit operation, writing data into the TXS0 or TXS0L register is ignored (the data is discarded) until INTST0 is generated.

Figure 8-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(a) Stop bit length: 1

(b) Stop bit length: 2

(3) Reception

When reception is enabled, sampling of the RXD pin is started, and reception of data begins when the start bit is detected. Each time one frame of data or character has been received, the reception completion interrupt (INTSR0) occurs. Usually, the receive data is transferred from the receive buffer (RXB0, RXB0L) to memory by this interrupt processing.

(a) Reception enabled status

Reception is enabled when the RXE0 bit of the ASIM00 register is set to 1.

RXE0 = 1: Reception is enabled RXE0 = 0: Reception is disabled

When reception is disabled, the receive hardware stands by in the initial status.

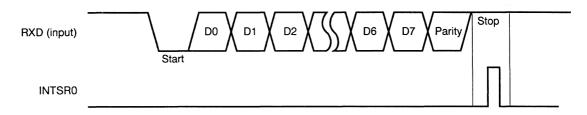
At this time, the reception completion interrupt/receive error interrupt does not occur, and the contents of the receive buffer are retained.

(b) Starting reception

Reception is started when the start bit is detected.

The RXD pin is sampled with the serial clock specified by the ASIM00 register. The RXD pin is sampled again eight clocks after the falling edge of the RXD pin has been detected. If the RXD pin is low at this time, it is recognized as the start bit, and reception is started. After that, the RXD pin is sampled in 16 clock ticks.

If the RXD pin is high eight clocks after the falling edge of the RXD pin has been detected, this falling edge is not recognized as the start bit. The serial clock counter is reinitialized, and the UART waits for the input of the next falling edge or valid start bit.


(c) Reception completion interrupt request

When one frame of data has been received with RXE0 = 1, the receive data in the shift register is transferred to RXB0, and a reception completion interrupt request (INTSR0) is generated.

If an error occurs, the receive data that contains an error is transferred to the receive buffer (RXB0, RXB0L), and the transmission completion interrupt (INTSR0) and receive error interrupt (INTSER0) occur simultaneously.

When the RXE0 bit is reset to 0 during reception, the receive operation is immediately disabled. The contents of the receive buffer (RXB0, RXB0L) and asynchronous serial interface status register (ASIS0) are not changed, and the reception completion interrupt (INTSR0) and receive error interrupt (INTSER0) will not be generated.

Figure 8-4. Asynchronous Serial Interface Reception Completion Interrupt Timing

(d) Receive error flag

Three error flags, parity error, framing error, and overrun error flags, are related with the reception operation.

The receive error interrupt request occurs as a result of ORing these three error flags.

By reading the contents of the ASIS0 register. The error which caused the receive error interrupt (INTSER0) can be identified.

The contents of the ASIS0 register are reset to 0 when the receive buffer (RXB0, RXB0L) is read or the next data frame is received (if the next data contains an error, the corresponding error flag is set).

Receive Error	Error Cause
Parity Error	Parity specified during transmission does not coincide with parity of receive data
Framing error	Stop bit is not detected
Overrun error	Next data is completely received before data is read from receive buffer

Figure 8-5. Receive Error Timing

RXD (input)	D0 D1 D2 D6 D7 Parity	Stop	
INTSR0			
INTSER0			-

8.3 Clocked Serial Interface (CSI)

8.3.1 Features

- O High transfer speed: 8.25 Mbps max. (with $\phi/4$, at $\phi = 33$ MHz)
 - O Half duplex communication
 - O Character length: 8 bits
 - O MSB first/LSB first selectable
 - O External serial clock input/internal serial clock output selectable
 - O 3 lines: SO : serial data output

SI : serial data input

SCK: serial clock I/O

O Interrupt source: 1

Interrupt request signal (INTCSI0)

The clocked serial interface is controlled by the clocked serial interface mode register (CSIM0). The transmit/ receive data is read/written from/to the SIO0 register.

(1) Clocked serial interface mode register (CSIM0)

CSIMO is an 8-bit register that specifies the operation of the clocked serial interface.

(2) Shift register (SIO0)

SIO0 is an 8-bit register that converts serial data into parallel data, and vice versa. SIO0 is used for both transmission and reception.

Data is shifted in (received) or shifted out (transmitted) from the MSB or LSB side.

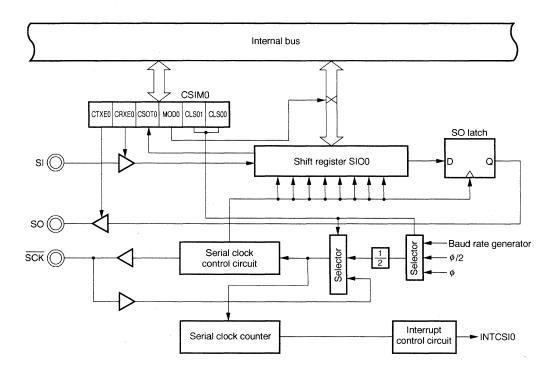
The actual transmitting and receiving of data is actually performed by writing data to and reading data from the SIO0 register.

(3) Serial clock selector

Selects the serial clock to be used.

(4) Serial clock control circuit

Controls supply of the serial clock to the shift register. When the internal clock is used, it also controls the clock output to the \overline{SCK} pin.

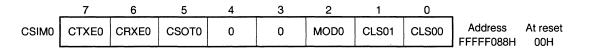

(5) Serial clock counter

Counts the serial clocks being output and the serial clocks received during transmission/reception to check whether 8-bit data has been transmitted or received.

(6) Interrupt signal generation control circuit

Controls whether an interrupt request is generated when the serial clock counter has counted eight serial clocks.

8.3.2 Configuration



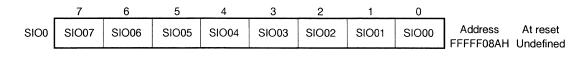
8.3.3 Mode registers and control registers

(1) Clocked serial interface mode register 0 (CSIM0)

This register specifies the basic operation mode of CSI.

It can be read/written in 8- or 1-bit units (note, however, that bit 5 can only be read).

Bit Position	Bit Name	Function					
7	CTXE0	 CSI Transmit Enable Enables or disables transmission. 0: Disables transmission 1: Enables transmission When CTXE0 = "0", output buffers of both SO and SI pins go into high-impedance state. 					
6	CRXE0	 CSI Receive Enable Disables or enables reception. 0: Disables reception 1: Enables reception If serial clock is received when transmission is enabled (CTXE0 = 1) and reception is disabled, "0" is input to shift register. 					
5	CSOTO	CSI Status Of Transmission Indicates that transfer operation is in progress. Set (1): Transfer start timing (writing to SIO0 register) Clear (0): Transfer end timing (INTCSI occurs) This bit is used to check whether writing to serial I/O shift register (SIO0) is permitted or not. Serial data transfer is started by enabling transmission (CTXE0 = 1).					
2	MODO	Bit Order Mode Specifies first bit. 0: MSB first 1: LSB first					
1, 0	CLS01, CLS00	1	CLS00 0 1 0 1 For settin	External clock Internal clock g of BPRM0 regis	Specifies serial clock Specified by BPRM0 register ^{Note1} $\phi/4^{Note2}$ $\phi/2^{Note2}$ ster, refer to section 8.4 "Baud Rate of urth ard a half of system clock frequencies		

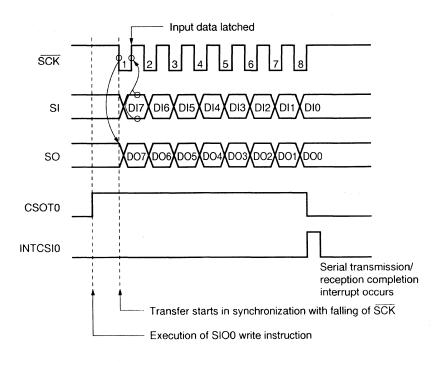

★

(2) Serial I/O shift register 0 (SIO0)

This register converts 8-bit serial data into parallel data, and vice versa. The actual transmitting and receiving of data is performed by writing data to and reading data from the SIO0 register.

A shift operation is performed when CTXE0 = "1" or CRXE0 = "1".

This register can be read/written in 8- or 1-bit units.


Bit Position	Bit Name	Function	
7-0	SIO0n (n=7–0)	Serial I/O Data is shifted in (received) or out (transmitted) from MSB or LSB side.	

8.3.4 Basic operation

(1) Transfer format

The CSI of the V851 performs interfacing by using three lines: one clock line and two data lines. Serial transfer is started by executing an instruction that writes transfer data to the SIO0 register. During transmission, the data is output from the SO pin in synchronization with the falling edge of \overline{SCK} . During reception, the data input to the SI pin is latched in synchronization with the rising of \overline{SCK} . \overline{SCK} stops when the serial clock counter overflows (at the rising of the 8th count), and \overline{SCK} remains high until the next data transmission or reception is started. At the same time, an interrupt request signal (INTCSI0) is generated.

Caution: Data should be sent after changing the CTXE value for successful transfer. If CTXE is changed from 0 to 1 after the transmit data is sent to the shift register, serial transfer will not begin.

(2) Enabling transmission/reception

The CSI of the V851 has only one 8-bit shift register and does not have a buffer. Transmission and reception are therefore performed simultaneously.

(a) Transmission/reception enabling condition

When CTXE0 = 1, transmission is enabled. When CRXE0 = 1, reception is enabled. When CTXE0 = CRXE0 = 1, transmission/reception is enabled.

(i) Disabling SIO0 output by CTXE0

When CTXE0 = 0, the serial output pin goes into a high-impedance state. When CTXE0 = 1, the data of the shift register is output.

(ii) Disabling SIO0 input by CRXE0

When CRXE0 = 0, the shift register input is "0". When CRXE0 = 1, the serial input data is input to the shift register.

(iii) To check transmit data

To receive the transmit data and to check whether bus contention occurs, set CTXE0 and CRXE0 to 1.

(b) Starting transmission/reception

Transmission/reception is started by reading/writing the shift register (SIO0). Transmission/reception is controlled by setting the transmission enable bit (CTXE0) and reception enable bit (CRXE0) as follows:

CTXE0	CRXE0	Start Condition	
0	0	Does not start	
0	1	Reads shift register	
1	0	Writes shift register	
1	1	Writes shift register	
0	$0 \rightarrow 1$	Rewrites CRXE0 bit	

In the above table, note that these bits should be set in advance of data transfer. For example, if CTXE0 is not changed from 0 to 1 before reading data from or writing data to the shift register, transfer will not begin. The bottom of the table means that, if CRXE0 is changed from 0 to 1 when CTXE0 is "0", the serial clock will be generated to initiate receive operation.

8.3.5 Transmission in 3-wire serial I/O mode

Transmission is started when data is written to the SIO0 register after transmission has been enabled by the clocked serial interface mode register (CSIM0).

(1) Starting transmission

Transmission is started by writing the transmit data to the shift register after the CTXE0 bit of the clocked serial interface mode register (CSIM0) has been set (the CRXE0 bit is cleared to "0"). If the CTXE0 bit is reset to 0, the SO pin goes into a high-impedance state.

(2) Transmitting data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission is started, the serial clock is output from the SCK pin, and at the same time, data is sequentially output to the SO pin from SIO0 in synchronization with the falling edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission is started, the data is sequentially output from SIO0 to the SO pin in synchronization with the falling of the serial clock input to the \overline{SCK} pin immediately after transmission has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCK} pin if transmission is not enabled, and the output level of the SO pin will not change.

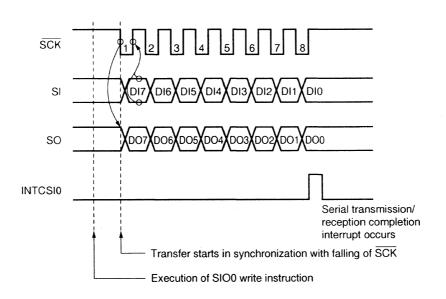


Figure 8-6. Timing of 3-Wire Serial I/O Mode (transmission)

8.3.6 Reception in 3-wire serial I/O mode

Reception is started if the status is changed from reception disabled to reception enabled status by the clocked serial interface mode register (CSIM) or if the SIO0 register is read by the CPU with reception enabled.

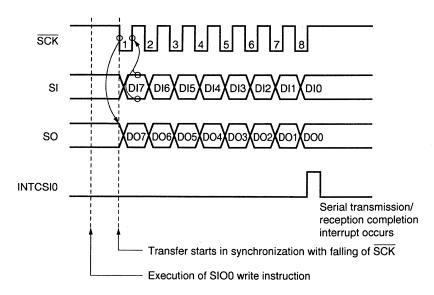
(1) Starting reception

Reception can be started in the following two ways:

- <1> Changing the status of the CRXE0 bit of the CSIM0 register from "0" (reception disabled) to "1" (reception enabled)
- <2> Reading the receive data from the shift register (SIO0) when the CRXE0 bit of the CSIM0 register is "1" (reception enabled)

Note that receive operation is initiated by the change of CRXE0 from 0 to 1. For example, if CRXE0 has already been set to "1", writing "1" to this bit does not initiate receive operation. In this case, CRXE0 must be set to "0" beforehand. When CRXE0 = 0, the shift register input is "0".

(2) Receiving data in synchronization with serial clock


(a) When internal clock is selected as serial clock

When reception is started, the serial clock is output from the SCK pin, and at the same time, data is sequentially loaded from the SI pin to SIO0 in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When reception is started, the data is sequentially loaded from the SI pin to SIO0 in synchronization with the rising of the serial clock input to the \overline{SCK} pin immediately after reception has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCK} pin when reception is not enabled.

8.3.7 Transmission/reception in 3-wire serial I/O mode

Transmission and reception can be executed simultaneously if both transmission and reception are enabled by the clocked serial interface mode register (CSIM0).

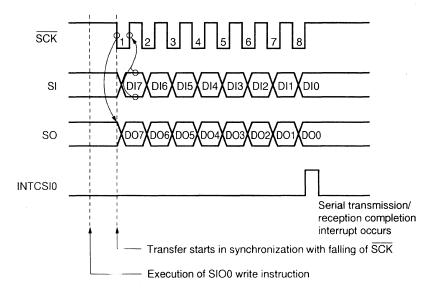
(1) Starting transmission/reception

Transmission and reception can be performed simultaneously (transmission/reception operation) when both the CTXE0 and CRXE0 bits of the clocked serial interface mode register (CSIM0) are set to 1. Transmission/reception can be started in the following two ways:

- <1> By changing the status of the CRXE0 bit from "0" (reception disabled) to "1" (reception enabled) when the CTXE0 bit of the CSIM0 register is "1" (transmission enabled)
- Sy writing the transmit data to the shift register (SIO0) when both the CTXE0 and CRXE0 bits of the CSIM0 register are "1" (transmission/reception enabled)

Note that transmit/receive operation is initiated by the change of CRXE0 of CSIM0 register from 0 to 1. For example, if CRXE0 has already been set to "1", writing "1" to this bit does not initiate transmit/receive operation. In this case, CRXE0 must be set to "0" beforehand.

(2) Transmitting data in synchronization with serial clock


(a) When internal clock is selected as serial clock

When transmission/reception is started, the serial clock is output from the SCK pin, and at the same time, data is sequentially set to the SO pin from SIO0 in synchronization with the falling edge of the serial clock. Simultaneously, the data of the SI pin is sequentially loaded to SIO0 in synchronization with the rising edge of the serial clock.

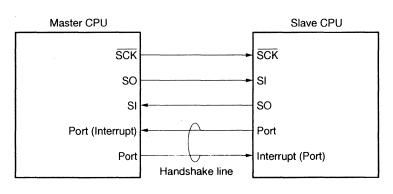
(b) When external clock is selected as serial clock

When transmission/reception is started, the data is sequentially output from SIO0 to the SO pin in synchronization with the falling edge of the serial clock input to the \overline{SCK} pin immediately after transmission/ reception has been started. The data of the SI pin is sequentially loaded to SIO0 in synchronization with the rising edge of the serial clock. The shift operation is not performed even if the serial clock is input to the \overline{SCK} pin when transmission/reception is not enabled, and the output level of the SO pin does not change.

Figure 8-8. Timing of 3-Wire Serial I/O Mode (transmission/reception)

Caution: When transmission/reception is started the first time, the CRXE0 bit always changes its states from "0" to "1".

Transmission/reception is therefore started immediately. In this case, the chances are that undefined data is output. Therefore, enable transmission/reception by writing the first transmit data to the SIO0 register in advance, when both transmission and reception are disabled (when both the CTXE0 and CRXE0 bits are reset to 0).


8.3.8 System Configuration Example

Data 8 bits long is transferred by using three signal lines: serial clock (\overline{SCK}), serial input (SI), and serial output (SO). This feature is effective for connecting peripheral I/Os and display controllers that have a conventional clocked serial interface.

To connect two or more devices, a handshake line is necessary.

Various devices can be connected, because it can be specified whether the data is transmitted starting from the MSB or LSB.

(3-wire serial I/O - 3-wire serial I/O)

8.4 Baud Rate Generator (BRG)

8.4.1 Configuration and function

The internal baud rate, generator can provide the serial clock for the UART and CSI. The baud rate generator uses an 8-bit counter (TMBRG), prescaler, and a compare register (BRGO) to generate the serial clock.

The serial interface can use the output of the internal baud rate generator or ϕ (system clock) as the serial clock. The serial clock source for the UART is specified by the SCLS0 bit of the ASIM00 register. The serial clock source for the CSI is specified by the CLS00 and CLS01 bits of the CSIM0 register.

When the output of the baud rate generator is specified, the baud rate generator will be used as the clock source. Because the serial clock for transmission/reception is shared by both the transmission and reception portions, the same baud rate is used for both transmission and reception.

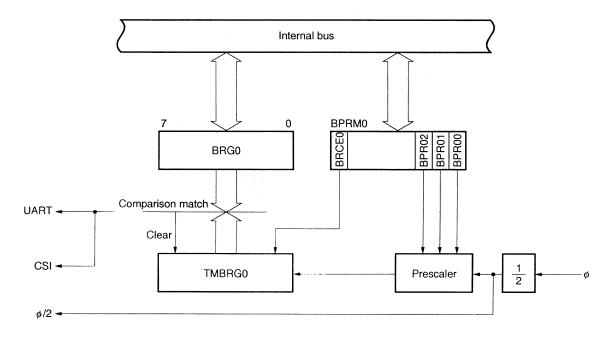


Figure 8-10. Block Diagram

(1) Dedicated baud rate generator (BRG)

The dedicated baud rate generator BRG consists of an 8-bit timer (TMBRG) that generates a serial clock for transmission/reception, a compare register (BRG0), and a prescaler.

(a) Input clock

System clock ϕ is input to the BRG.

(b) Set-up value of BRG

(i) UART

If the dedicated baud rate generator is specified for UART, the actual baud rate can be calculated by the following expression, because a sampling rate of x16 is used:

Baud rate =
$$\frac{\phi}{2 \times m \times 2^n \times 16 \times 2}$$
 [bps]

where,

 ϕ : system clock frequency [Hz]

m : BRG0 set-up value ($1 \le m \le 256$) (256 is set by writing 0 to the BRG register.)

n : BRG prescaler set-up value (n = 0, 1, 2, 3, 4)

(ii) CSI

If the dedicated baud rate generator is specified for CSI, the actual baud rate can be calculated by the following expression:

Baud rate =
$$\frac{\phi}{2 \times m \times 2^n \times 2}$$
 [bps]

where,

- ϕ : system clock frequency [Hz]
- m : BRG0 set-up value ($1 \le m \le 256$) (256 is set by writing 0 to the BRG register.)
- n : BRG prescaler set-up value (n = 0, 1, 2, 3, 4)

Table 8-2 shows the set-up values of the baud rate generator when the typical clocks are used:

(c) Error of baud rate generator

The error of the baud rate generator is calculated as follows:

Error [%] = $\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (normal baud rate)}} - \right) \times 100$ Example: (9520/9600-1) × 100 = -0.833 [%] (5000/4800-1) × 100 = +4.167 [%]

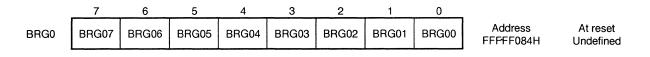
(2) Allowable error range of baud rate generator

The allowable error range depends on the number of bits of one frame.

The basic limit is ± 5 % of baud rate error and ± 4.5 % of sample timing with an accuracy of 16 bits. However, the practical limit should be ± 2.3 % of baud rate error, assuming that both the transmission and reception sides contain an error.

Baud R	Baud Rate [bps] $\phi = 33$ MH		1Hz	φ = 25 MHz			$\phi = 16 \text{ MHz}$			φ = 12.5 MHz			
UART	CSI	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error
110	1760	—	-	-	4	222	0.02 %	4	142	0.03 %	3	222	0.02 %
150	2400	4	215	0.07 %	4	163	0.15 %	3	208	0.16 %	3	163	0.15 %
300	4800	3	215	0.07 %	3	163	0.15 %	2	208	0.16 %	2	163	0.15 %
600	9600	2	215	0.07 %	2	163	0.15 %	1	208	0.16 %	1	163	0.15 %
1200	19200	_1	215	0.07 %	1	163	0.15 %	0	208	0.16 %	0	163	0.15 %
2400	38400	0	215	0.07 %	0	163	0.15 %	0	104	0.16 %	0	81	0.47 %
4800	76800	0	107	0.39 %	0	81	0.47 %	0	52	0.16 %	0	41	0.76 %
9600	153600	0	54	0.54 %	0	41	0.76 %	0	26	0.16 %	0	20	1.73 %
10400	166400	0	50	0.84 %	0	38	1.16 %	0	24	1.16 %	0	19	1.16 %
19200	307200	0	27	0.54 %	0	20	1.73 %	0	13	1.16 %	0	10	1.73 %
38400	614400	0	13	3.29 %	0	10	1.73 %	0	7	6.99 % ^{Note}	0	5	1.73 %
76800	1228800	0	7	4.09 %	0	5	1.73 %		-	-	0	3	15.2 % ^{Note}
153600	2457600	0	3	11.9 %Note	0	2	27.2 % ^{Note}		-	-	-	-	_
				-									
Baud F	ate [bps]		φ = 20 N	ſΗz	φ = 14.746 MHz			φ = 12.288 MHz			φ = 9.830 MHz		
UART	CSI	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error

Table 8-2. BRG Set-up Values


Baud F	late [bps]		φ = 20 MHz			φ = 14.746 MHz			φ = 12.288 MHz			φ = 9.830 MHz		
UART	CSI	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	
110	1760	4	178	0.25 %	4	131	0.07 %	3	218	0.08 %	3	175	0.26 %	
150	2400	4	130	0.16 %	3	192	0.0 %	3	160	0.0 %	3	128	0.0 %	
300	4800	3	130	0.16 %	2	192	0.0 %	2	160	0.0 %	2	128	0.0 %	
600	9600	2	130	0.16 %	1	192	0.0 %	1	160	0.0 %	1	128	0.0 %	
1200	19200	1	130	0.16 %	0	192	0.0 %	0	160	0.0 %	0	128	0.0 %	
2400	38400	0	130	0.16 %	0	96	0.0 %	0	80	0.0 %	0	64	0.0 %	
4800	76800	0	65	0.16 %	0	48	0.0 %	0	40	0.0 %	0	32	0.0 %	
9600	153600	0	33	1.36 %	0	24	0.0 %	0	20	0.0 %	0	16	0.0 %	
10400	166400	0	30	0.16 %	0	22	0.7 %	0	18	2.6 %	0	15	1.5 %	
19200	307200	0	16	1.73 %	0	12	0.0 %	0	10	0.0 %	0 ·	8	0.0 %	
38400	614400	0	8	1.73 %	0	6	0.0 %	0	5	0.0 %	0	4	0.0 %	
76800	1228800	0	4	1.73 %	0	3	0.0 %	0	3	16.7 % ^{Note}	0	2	0.0 %	
153600	2457600	0	2	1.73 %	0	2	25.0 %Note	-	-	-	0	1	0.0 %	

Note: Cannot be used because the error is too great.

 \star

8.4.2 Baud rate generator register 0 (BRG0)

This is an 8-bit compare register that sets a timer/count value for the dedicated baud rate generator. This register can be read/written in 8- or 1-bit units.

Caution: The internal timer (TMBRG0) is cleared by writing the BRG0 register. Therefore, do not rewrite or program the BRG0 register during transmission/reception operation.

8.4.3 Baud rate generator prescaler mode register 0 (BPRM0)

This register controls the timer/count operation of the dedicated baud rate generator and selects a count clock. It can be read/written in 8- or 1-bit units.

Bit Position	Bit Name		Function							
7	BRCE0	Co	ontrols cou 0: Stops	int operati	Count Ena on of BRG ration with peration	G.				
2-0	BPR02-BPR00		Baud Rate Generator Prescaler Specifies count clock input to TMBRG.							
		BPR02 BPR01 BPR00 Count clock								
			0	0	0	φ/2 (n=0)				
			0	0	1	φ/4 (n=1)				
		0 1 0 φ/8 (n=2) 0 1 1 φ/16 (n=3)								
		1 × × φ/32 (n=4)								
			n: set va	lue of pre	scaler, <i>q</i> :	system clock				

Caution: Do not change the count clock during transmission/reception operation.

CHAPTER 9 PORT FUNCTION

9.1 Features

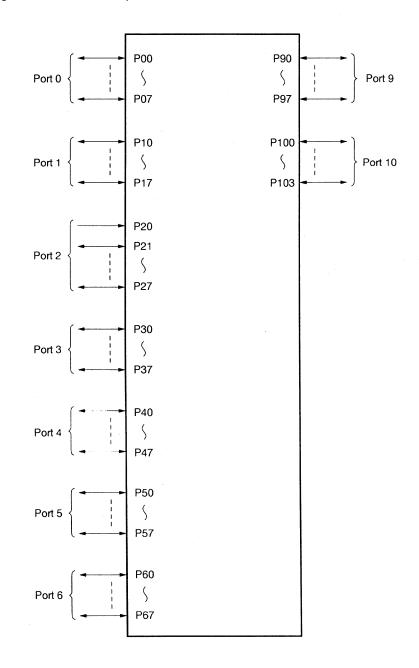
din inte

The ports of the V851 have the following features:

O Number of pins: input: 1

I/O : 67

O Multiplexed with I/O pins of other peripheral functions


O Can be set in input/output mode in 1-bit units

O Noise elimination

O Edge detection

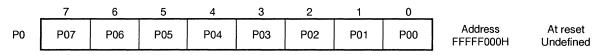
9.2 Basic Configuration of Port

The V851 is provided with a total of 68 input/output port pins (of which one is an input port pin) that make up ports 0 to 10. The configuration of the V851's ports is shown below.

Function of each port

The ports of the V851 have the functions shown in the table below.

Each port can be manipulated in 8- or 1-bit units and perform various types of control operations. In addition to port functions, the ports also have functions as internal hardware input/output pins, when placed in the control mode.


Port Name	Port Function	Function in Control Mode	Remarks		
Port 0	8-bit I/O port (Can be set in	Real-time pulse unit (RPU) input/output External interrupt request input	Can be set in port or control mode in 1-bit units		
Port 1	input/output		Fixed to port mode		
Port 2	mode in 1-bit units)	External interrupt request input	Can be set in port or control mode in 1-bit		
Port 3		Serial interface (UART, CSI) input/output	units		
Port 4		Address/data bus (AD0-AD7) for external memory	Can be set in port or control mode in 8-bit		
Port 5		Address/data bus (AD8-AD15) for external memory	units		
Port 6		Address bus (A16-A23) for external memory	Can be set in port or control mode in 2-bi units		
Port 9		Control signal output for external memory	Can be set in port or control mode in 5-, 2-, or 1-bit units		
Port 10	4-bit I/O port (Can be set in input/output mode in 1-bit units)	Control signal input/output for system expansion	Can be set in port or control mode in 1-bit units		

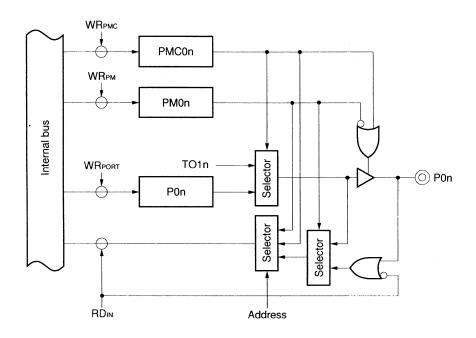
-

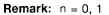
9.3 Port Pin Function

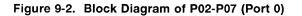
9.3.1 Port 0

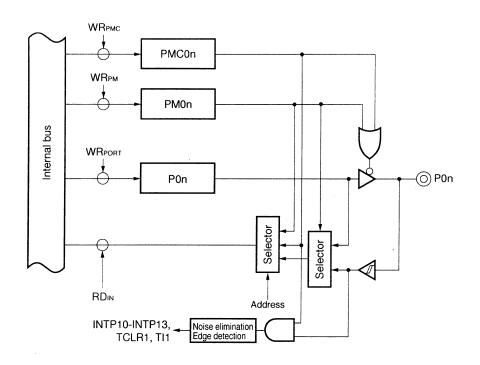
Port 0 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

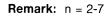
Bit Position	Bit Name	Function
7-0	P0n	Port 0
	(n=7-0)	I/O port

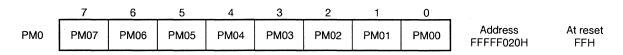

In addition to the function as a general I/O port, this port can also be used to input/output signals of the real-time pulse unit (RPU) and input external interrupt requests, when placed in the control mode.


Operation in control mode


P	ort	Control Mode	Remarks			
Port 0	P00	TO10	Real-time pulse unit (RPU) output			
	P01	TO11				
	P02	TCLR1	Real-time pulse unit (RPU) input			
	P03	TI1				
	P04-P07	INTP10-INTP13	External interrupt input			


(1) Hardware configuration


Figure 9-1. Block Diagram of P00, P01 (Port 0)



The input/output mode of port 0 is set by port mode register 0 (PM0). The control mode is set by port mode control register 0 (PMC0).

Port 0 mode register (PM0)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7-0	PM00-PM07	Port Mode Sets P00-P07 pins in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Port 0 mode control register (PMC0)

This register can be read/written in 8- or 1-bit units.

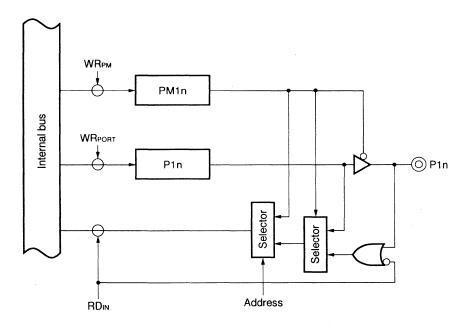
	7	6	5	4	3	2	1	0		
PMC0	PMC07	PMC06	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00	Address FFFFF040H	At reset 00H

Bit Position	Bit Name	Function
7-4	PMC07-PMC04	Port Mode Control Indicates operation mode of P0n pin. 0: I/O port mode 1: External interrupt request input (INTP13-INTP10)
3	PMC03	Port Mode Control Indicates operation mode of P03 pin. 0: I/O port mode 1: TI1 input mode
2	PMC02	Port Mode Control Indicates operation mode of P02 pin. 0: I/O port mode 1: TCLR1 input mode
1	PMC01	Port Mode Control Indicates operation mode of P01 pin. 0: I/O port mode 1: TO11 output mode
0	PMC00	Port Mode Control Indicates operation mode of P00 pin. 0: I/O port mode 1: TO10 output mode

9.3.2 Port 1

Port 1 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

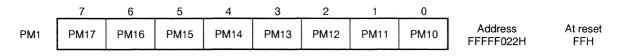

	7	6	5	4	3	2	1	0		
P 1	P17	P16	P15	P14	P13	P12	P11	P10	Address FFFFF002H	At reset Undefined
						· · · · · · · · · · · · · · · · · · ·				


Bit Position	Bit Name	Function
7-0	P1n	Port 1
	(n=7-0)	I/O port

Port 1 is not multiplexed with other functions and is fixed in the port mode.

P	ort	Control Mode	Remarks				
Port 1	P10-P17	-	Fixed in port mode				

(1) Hardware configuration


Remark: n = 0-7

(2) Setting input/output mode

The input/output mode of port 1 is set by port mode register 1 (PM1).

Port 1 mode register (PM1)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7-0	PM1n	Port Mode
	(n=7-0)	Sets P1n pin in input/output mode.
		0: Output mode (output buffer ON)
		1: Input mode (output buffer OFF)

9.3.3 Port 2

Port 2 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P2	P27	P26	P25	P24	P23	P22	P21	P20	Address FFFFF004H	At reset Undefined

Bit Position	Bit Name	Function
7-0	P2n (n=7-0)	Port 2 I/O port

In addition to the function as a port, this port can also be used to input external interrupt requests in the control mode.

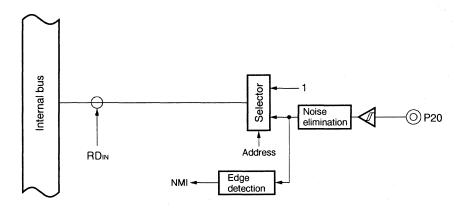
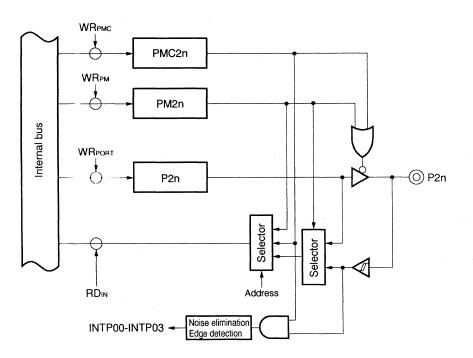
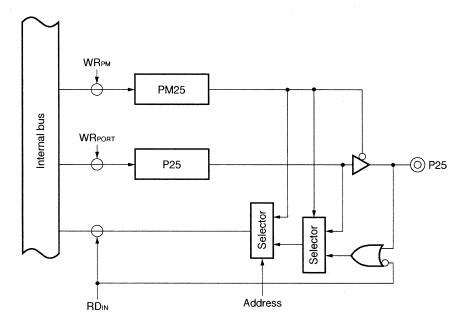
P25-P27 are not multiplexed and are fixed in the control mode.

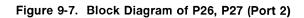
Operation in control mode

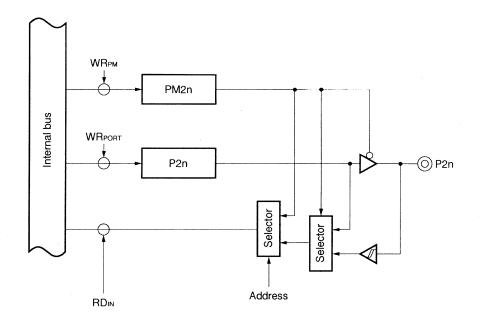
F	Port	Control Mode	Remarks
Port 2	P20	NMI	Non-maskable interrupt request input
	P21-24	INTP00-INTP03	External interrupt request input
	P25-P27	_	Fixed in port mode

(1) Hardware configuration

Figure 9-4. Block Diagram of P20 (Port 2)


Figure 9-5. Block Diagram of P21-P24 (Port 2)



Remark: n = 1-4

Remark: n = 6, 7

The input/output mode of port 2 is set by port mode register 2 (PM2). The control mode is set by port mode control register 2 (PMC2).

P20 is fixed in the NMI input mode.

Port 2 mode register (PM2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to "1" by hardware. Even if "0" is written to this bit, it is ignored.

	7	6	5	4	3	2	1	0		
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	1	Address FFFFF024H	At reset FFH

Bit Position	Bit Name	Function
7-1	PM2n (n=7-1)	Port Mode Sets P2n pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Port 2 mode control register (PMC2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to "1" by hardware. If "0" is written to this bit, it is ignored.

	7	6	5	4	3	2	1	0		
PMC2	0	0	0	PMC24	PMC23	PMC22	PMC21	1	Address FFFFF044H	At reset 01H

Bit Position	Bit Name	Function
4	PMC24	Port Mode Control Sets operation mode of P24 pin. 0: I/O port mode 1: INTP03 input mode
3	PMC23	Port Mode Control Sets operation mode of P23 pin. 0: I/O port mode 1: INTP02 input mode
2	PMC22	Port Mode Control Sets operation mode of P22 pin. 0: I/O port mode 1: INTP01 input mode
1	PMC21	Port Mode Control Sets operation mode of P21 pin. 0: I/O port mode 1: INTP00 input mode

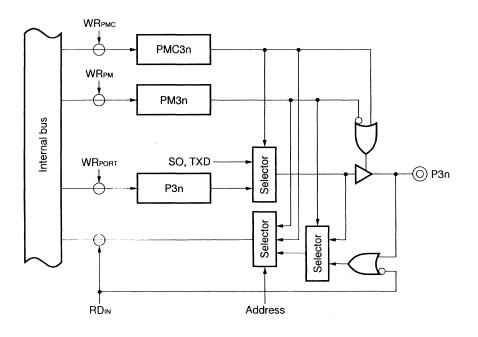
9.3.4 Port 3

Port 3 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P3	P37	P36	P35	P34	P33	P32	P31	P30	Address FFFFF006H	At reset Undefined

Bit Position	Bit Name	Function
7-0	P3n	Port 3
	(n=7-0)	I/O port

In addition to the function as a port, this port can also be used as the input/output lines of the serial interface (UART, CSI), when placed in the control mode.


P35-P37 are not multiplexed and fixed in the port mode.

Operation in control mode

Р	ort	Control Mode	Remarks
Port 3	P30	SO	I/O for serial interface (UART, CSI)
	P31	SI	
	P32	SCK	
	P33	TXD	
	P34	RXD	
	P35-P37		Fixed in port mode

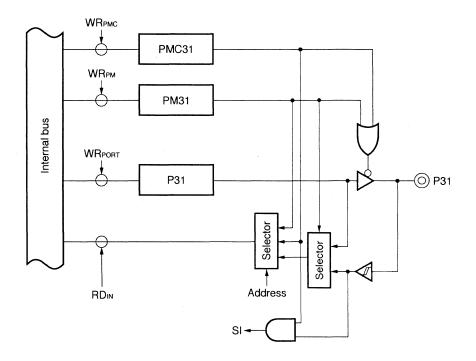
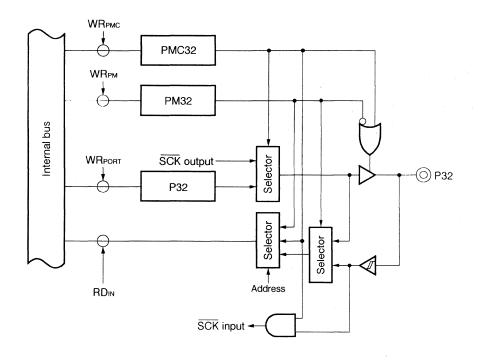
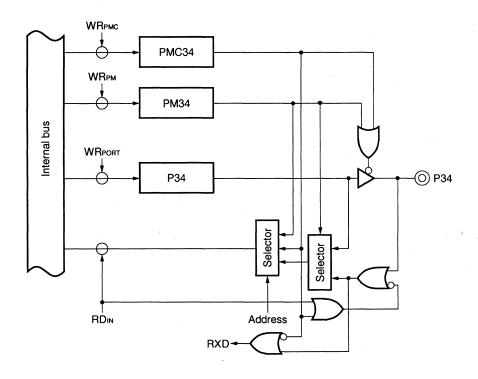

(1) Hardware configuration

Figure 9-8. Block Diagram of P30, P33 (Port 3)



Remark: n = 0, 3

Figure 9-9. Block Diagram of P31 (Port 3)



185

Figure 9-11. Block Diagram of P34 (Port 3)

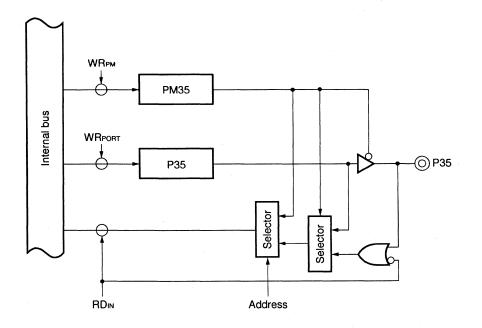
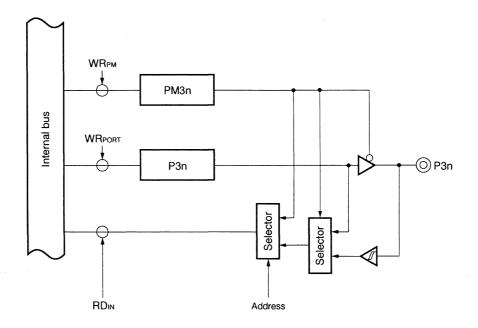
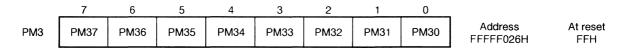



Figure 9-13. Block Diagram of P36, P37 (Port 3)



Remark: n = 6, 7

The input/output mode of port 3 is set by port mode register 3 (PM3). The control mode is set by port mode control register 3 (PMC3).

Port 3 mode register (PM3)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function			
7-0	PM3n	Port Mode			
	(n=7-0)	Sets P3n pin in input/output mode.			
		0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Port 3 mode control register (PMC3)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PMC3	0	0	0	PMC34	PMC33	PMC32	PMC31	PMC30	Address FFFFF046H	At reset 00H

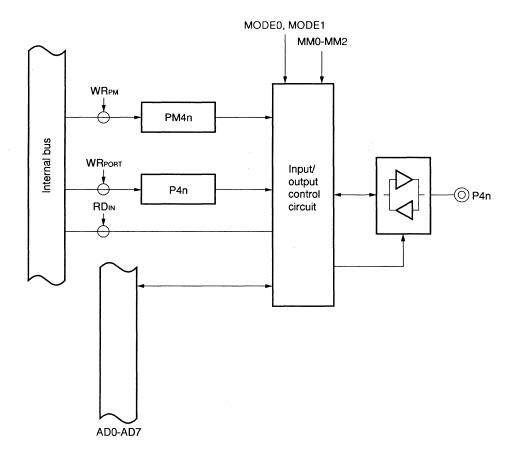
Bit Position	Bit Name	Function
4	PMC34	Port Mode Control Sets operation mode of P34 pin. 0: I/O port mode 1: RXD input mode
3	PMC33	Port Mode Control Sets operation mode of P33 pin. 0: I/O port mode 1: TXD output mode
2	PMC32	Port Mode Control Sets operation mode of P32 pin. 0: I/O port mode 1: SCK input/output mode
1	PMC31	Port Mode Control Sets operation mode of P31 pin. 0: I/O port mode 1: SI input mode
0	PMC30	Port Mode Control Sets operation mode of P30 pin. 0: I/O port mode 1: SO output mode

9.3.5 Port 4

Port 4 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P4	P47	P46	P45	P44	P43	P42	P41	P40	Address FFFFF008H	At reset Undefined
		1							·	

Bit Position	Bit Name	Function
7-0	P4n	Port 4
	(n=7-0)	I/O port


In addition to the function as a general I/O port, this port also serves as an external address/data bus, when placed in the control mode.

Operation in control mode

Po	ort	Control Mode	Remarks				
Port 4	P40-47	AD0-AD7	Address/data bus for external memory				

(1) Hardware configuration

Remark: n = 0-7

The input/output mode of port 4 is set by port mode register 4 (PM4). To enable the external address/data bus function, the control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 4 mode register (PM4)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PM4	PM47	PM46	PM45	P M 44	PM43	PM42	PM41	PM40	Address FFFFF028H	At reset FFH

Bit Position	Bit Name	Function			
7-0	PM4n (n=7-0)	Port Mode Sets P4n pin in input/output mode. 0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Operation mode of port 4

Bit of MM Register			Operation Mode							
MM2	MM1	MM0	P40	P40 P41 P42 P43 P44 P45 P46 P47						
0	0	0	Port							
0	1	1								
1	0	0			A	ddress/	data bu	s		
1	0	1				(AD0-	AD7)			
1	1	0								
1	1	1								
Others					F	RFU (re	served)			

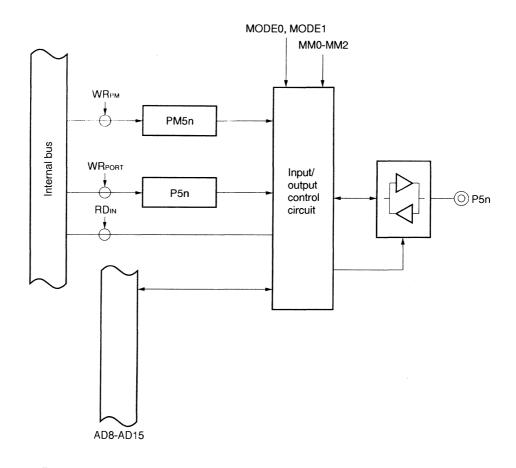
For the details of mode selection by the MODE0 and MODE1 pins, refer to **3.3.2 Specifying operation mode**. When MODE0 and MODE1 = 00 (ROM-less mode), MM0-MM2 bits are initialized to 111 at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0-MM2 bits and setting the port mode. If MM0-MM2 are cleared to 000, the subsequent external instruction cannot be fetched.

9.3.6 Port 5

Port 5 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P5	PM57	P56	P55	P54	P53	P52	P51	P50	Address FFFFF00AH	At reset Undefined

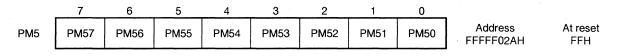
Bit Position	Bit Name	Function
7-0	P5n (n=7-0)	Port 5 I/O port


In addition to the function as a general I/O port, this port also serves as an external address/data bus, when placed in the control mode.

Operation in control mode

Р	ort	Control Mode	Remarks			
Port 5	P50-57	AD8-AD15	Address/data bus for external memory			

(1) Hardware configuration



Remark: n = 0-7

The input/output mode of port 5 is set by port mode register 5 (PM5). To enable the external address/data bus function, the control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 5 mode register (PM5)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function			
7-0	PM5n	Port Mode			
	(n=7-0)	Sets P5n pin in input/output mode.			
		0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Operation mode of port 5

Bit of	MM Re	egister	Operation Mode							
MM2	MM1	MM0	P50 P51 P52 P53 P54 P55 P56 P57							
0	0	0				Po	ort	•		
0	1	1								
1	0	0			A	ddress/	data bu	S		
1	0	1				(AD8	AD15)			
1	1	0								1
1	1	1								
	Others				F	RFU (re	served)			

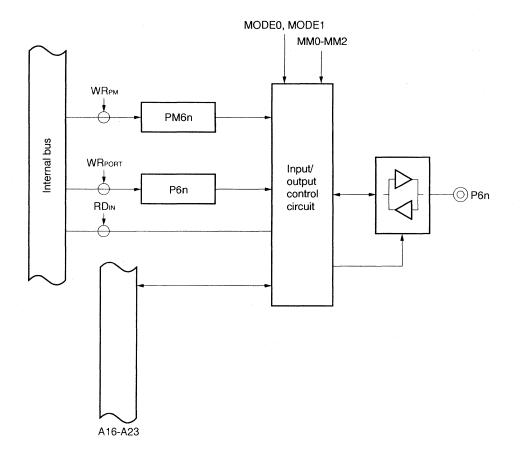
CHAPTER 9 PORT FUNCTION

9.3.7 Port 6

Port 6 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P6	P67	P66	P65	P64	P63	P62	P61	P60	Address FFFFF00CH	At reset Undefined

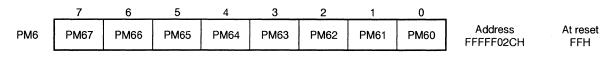
Bit Position	Bit Name	Function
7-0	P6n	Port 6
	(n=7-0)	I/O port


In addition to the function as a general I/O port, this port also serves as an external address bus, when placed in the control mode.

Operation in control mode

P	ort	Control Mode	Remarks
Port 6	P60-67	A16-A23	Address bus for external memory

(1) Hardware configuration



Remark: n = 0-7

The input/output mode of port 6 is set by port mode register 6 (PM6). To enable the external address/data bus function, the control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 6 mode register (PM6)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7-0	PM6n	Port Mode
	(n=7-0)	Sets P6n pin in input/output mode.
		0: Output mode (output buffer ON)
		1: Input mode (output buffer OFF)

Operation mode of port 6

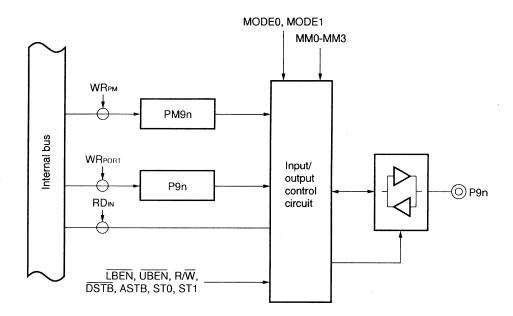
Bit of	MM Re	egister	Operation Mode							
MM2	MM1	MM0	P60	P61	P62	P63	P64	P65	P66	P67
0	0	0				Po	ort			
0	1	1								
1	0	0								
1	0	1	A16	A17						
1	1	0			A18	A19	A20	A21		
1	1	1					720	721	A22	A23
Others F				RFU (re	served)				

9.3.8 Port 9

Port 9 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P9	P97	P96	P95	P94	P93	P92	P91	P90	Address FFFFF012H	At reset Undefined

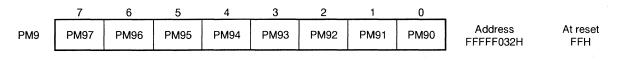
Bit Position	Bit Name	Function
7-0	P9n	Port 9
	(n=7-0)	I/O port


In addition to the function as a general I/O port, this port can also be used to output external bus control signals, when placed in the control mode.

Operation in control mode

P	ort	Control Mode	Remarks
Port 9	P90	LBEN	Control signal output for external memory
	P91	UBEN	
	P92	R/W	
	P93	DSTB	
	P94	ASTB	
	P95	ST0	
	P96	ST1	
	P97	_	Fixed in port mode

(1) Hardware configuration



Remark: n = 0-7

The input/output mode of port 9 is set by port mode register 9 (PM9). To enable the external bus control signals, the control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

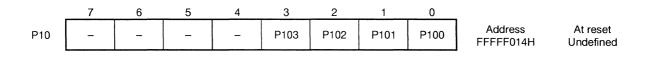
Port 9 mode register (PM9)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7-0	PM9n (n=7-0)	Port Mode Sets P9n pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Operation mode of port 9

P90-P94


Bit of	MM Re	egister	Operation Mode					
MM2	MM1	MM0	P90	P91	P92	P93	P94	
0	0	0	Port					
0	1	1	LBEN	UBEN	R/W	DSTB	ASTB	
1	0	0						
1	0	1						
1	1	0						
1	1	1						
	Others			RFU	J (reser	ved)		

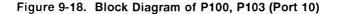
P95, P96

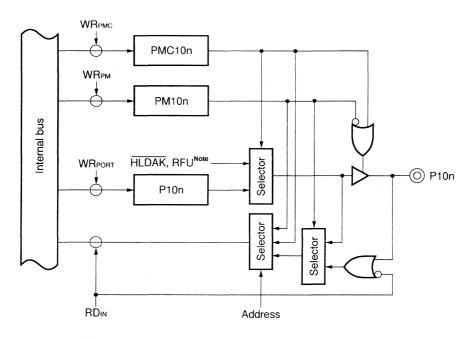
ММЗ	Operation Mode	P95	P96
0	Port mode	Po	ort
1	External expansion mode	ST0	ST1

9.3.9 Port 10

Port 10 is a 4-bit input/output port that can be set in the input or output mode in 1-bit units.

Bit Position	Bit Name	Function
3-0	P10n	Port 10
	(n=3-0)	I/O port

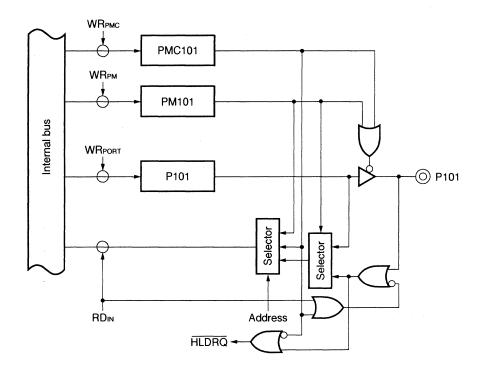

When port 10 is accessed in 8-bit units for write, the higher 4 bits are ignored. When it is accessed in 8-bit units for read, undefined data is read.

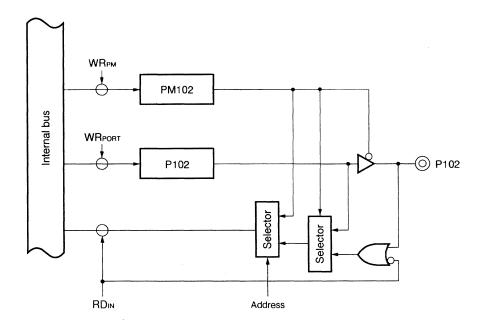

In addition to the function as a port, this port can also be used to input and output external contorl signals to a bus master or ASIC device, when placed in the control mode.

Operation in control mode

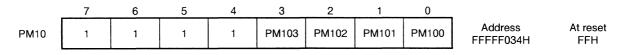
ŀ	Port Control Mod		Remarks
Port 10	P100	HLDAK	Bus hold control signal input/output
	P101	HLDRQ	
	P102, P103	_	Fixed in port mode

(1) Hardware configuration




Note: RFU is an undefined value.

Remark: n = 0, 3



The input/output mode of port 10 is set by port mode register 10 (PM10). The control mode is set by port mode control register 10 (PMC10).

Port 10 mode register (PM10)

This register can be read/written in 8- or 1-bit units.

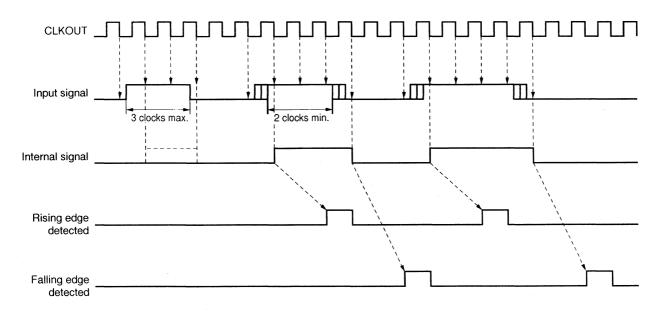
Bit Position	Bit Name	Function	
3-0	PM10n	Port Mode	
	(n=3-0)	Sets P10n pin in input/output mode.	
		0: Output mode (output buffer ON)	
		1: Input mode (output buffer OFF)	

Port 10 mode control register (PMC10)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PMC10	0	0	0	0	0	0	PMC101	PMC100	Address FFFFF054H	At reset 00H

Bit Position	Bit Name	Function
1	PMC101	Port Mode Control Sets operation mode of P101 pin. 0: <u>I/O port mode</u> 1: HLDRQ input mode
0	PMC100	Port Mode Control Sets operation mode of P100 pin. 0: I/O port mode 1: HLDAK output mode


9.4 Input Noise Filters

Noise filters are provided to certain port pins when operating in the control mode. Spikes and voltage transitions which occur within the defined noise filtering times are ignored. One analog filter is used on the NMI input, while the rest are digital filters which operate via a timing control circuit. Filters are provided on the pins listed below.

Pin	Noise Filtering Time
P20/NMI ^{Note}	Analog delay (60 ns to 220 ns)
P02/TCLR1	2 to 3 system clocks
P03/TI1	
P04/INTP10	
P05/INTP11	
P06/INTP12	
P07/INTP13	
P21/INTP00	
P22/INTP01	
P23/INTP02	
P24/INTP03	

Note: The P20/NMI pin is used to release the STOP mode. In the STOP mode, the clock control timing circuit is not used because the clock is stopped.

CHAPTER 10 RESET FUNCTION

A valid low-level signal on the RESET pin initiates a system reset.

Program execution begins at the RESET vector address when the reset condition is removed and a high-level signal appears at the RESET pin.

10.1 Features

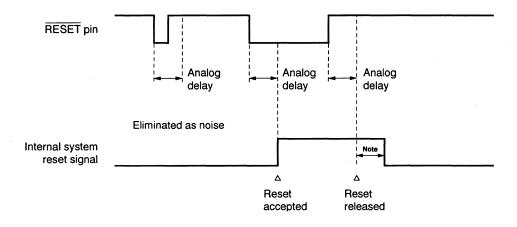
O Analog noise filtering circuit (delay of 60 ns-220 ns) provided on reset pin

10.2 Pin Function

During the reset state, all the pins (except CLKOUT, RESET, X2, VDD, Vss, CVDD, and CVss pins are in the high-impedance state.

When an external memory is connected, a pull-up (or pull-down) resistor must be connected to each pin of ports 4, 5, 6, and 9. Otherwise, the memory contents may be lost if these pins go into a high-impedance state.

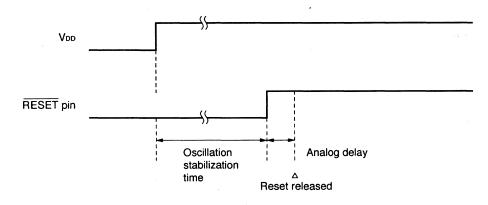
The internal system clock continues to generate the clock signal at CLKOUT pin while the device is in the reset state.


Table 10-1 shows the operating status of each pin during the reset period.

Pin	Operating Status
AD0-AD15	Hi-Z
A16-A23	
LBEN, UBEN	
R/W	
DSTB	
ASTB	
STO, ST1	
HLDRQ	-
HLDAK	Hi-Z
WAIT	-
CLKOUT	Clock output

Table 10-1. Operating Status of Each Pin During Reset Period

*


(1) Accepting reset signal

Note: The internal system reset signal remains active for the duration of at least 4 system clocks after the reset condition is removed from the RESET pin.

(2) Power-ON reset

On power-up, the RESET pin must be held low for at least 10 ms, until the power supply reaches its operating voltage and the clock has stabilized. The clock stabilization time consists of the time for the oscillator to stabilize (oscillation stabilization time) and the time for the PLL to lock at a specific frequency.

10.3 Initialize

Table 10-2 shows the initial value of each register after reset.

The contents of the registers must be initialized in the program as necessary. Especially, set the following registers as necessary because they are related to system setting:

O Power save control register (PSC) ... X1 and X2 pin function, CLKOUT pin operation, etc.

O Data wait control register (DWC) ... Number of data wait states

Caution: In Table 10-2, "Undefined" means an undefined value due to power-on reset or data corruption when a falling edge of RESET coincides with a data write operation. The previous status of data is retained by a falling edge of RESET due to the cases other than the above.

	Register	Initial Value at Reset
rO		0000000H
r1-r31		Undefined
PC		0000000H
PSW		0000020H
EIPC		Undefined
EIPSW		Undefined
FEPC		Undefined
FEPSW		Undefined
ECR		0000000H
Internal RAM		Undefined
Port	Output latch (P0-P6, P9, P10)	Undefined
	Mode register (PM0-6, PM9, PM10)	FFH
	Mode control register (PMC0, PMC3, PMC10)	00Н
	(PMC2)	01H
•	Memory expansion mode register (MM)	10H or 17H
Clock generator	System status register (SYS)	0000000xB
Real-time pulse unit	Timer unit mode register (TUM1)	0000H
	Timer control register (TMC1, TMC4)	00H
	Timer output control register 1 (TOC1)	00H
	Timer (TM1, TM4)	0000H
	Capture/compare register (CC10-CC13)	Undefined
	Compare register 4 (CM4)	Undefined
	Timer overflow status register (TOVS)	00H
Serial interface	Asynchronous serial interface mode register 00 (ASIM00)	80H
	Asynchronous serial interface mode register 01 (ASIM01)	00H
	Asynchronous serial interface status register 0 (ASIS0)	00H
	Receive buffer (RXB0, RXB0L)	Undefined
	Transmit shift register (TXS0, TXS0L)	Undefined
	Clocked serial interface mode register 0 (CSIM0)	00H
	Serial I/O shift register 0 (SIO0)	Undefined
	Baud rate generator register 0 (BRG0)	Undefined
	Baud rate generator prescaler mode register 0 (BPRM0)	00H
Interrupt/exception processing function	Interrupt control register (xxCn)	47H
	In-service priority register (ISPR)	00H
	External interrupt mode register (INTM0, INTM1, INTM2)	00H
Memory management function	Data wait control register (DWC)	FFFFH
	Bus cycle control register (BCC)	ААААН
Power save control	Command register (PRCMD)	Undefined
	Power save control register (PSC)	00H

Table 10-2. Initial Values of Each Register at Reset

Remark: "x" means don't care bit.

[MEMO]

CHAPTER 11 PROM MODE

The PROM model of the V851 has an internal 32K-byte one-time PROM. The internal ROM can be accessed in 1 clock, like the mask ROM model, to fetch instructions.

11.1 PROM Mode

The PROM mode is entered by the setting MODE0 and MODE1 pins. Connect the pins not used in this mode as described in section 1.5.2 "PROM programming mode".

Vpp	MODE1	MODE0	Operation Mode
5.0 V	1	1	PROM mode (read mode)
12.5 V	1	1	PROM mode (programming mode)

VPP: programming voltage

11.2 Operation Mode

Operation in the PROM programming mode is determined by the setting of the pins shown in the following table.

Pin Operation Mode		P25/CE	P26/OE	P27/PGM	Vpp	Vdd	P47/D7-P40/D0
Read Mode	Read	L	L	н	+5.0 V	+5.0 V	Data output
	Output disable	L	н	×			Hi-Z ^{Note}
	Standby	Н	×	×			
Programming	Page data latch	н	L	н	+12.5 V	+6.5 V	Data input
Mode	Page program	н	Н	L			Hi-Z
	Byte program	L	Н	L			Data input
	Program verify	L	L	н			Data output
	Program inhibit	×	L	L			Hi-Z ^{Note}
			н	Н			

VPP: programming voltage (12.5 V)

× : don't care

Note: In this case, the address input is invalid, and 1/0 can be input.

(1) Read mode

The read mode is set when $\overline{CE} = L$ and $\overline{OE} = L$.

(2) Output disable mode

The data output goes into a high-impedance state when $\overline{OE} = H$, and the output disable mode is set. If two or more μ PD70P3000s are connected to the data bus, any one of the devices can be read by controlling the \overline{OE} pin.

(3) Standby mode

The standby mode is set when $\overline{CE} = H$.

In this mode, the data output goes into a high-impedance state regardless of the status of OE.

(4) Page data latch mode

The page data latch mode is set when $\overline{CE} = H$, $\overline{OE} = L$, and $\overline{PGM} = H$ at the beginning of the page write mode. In this mode, data of 1 page and 4 bytes is latched to the internal address/data latch circuit.

(5) Page write mode

Page write is executed in the page write mode by applying a 0.1-ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = H$ and $\overrightarrow{OE} = H$, after an address and data of 1 page and 4 bytes have been latched. After that, the program can be verified when $\overrightarrow{CE} = L$ and $\overrightarrow{OE} = L$.

If the program cannot be written by one program pulse, write and verify are repeatedly executed X times (X \leq 10).

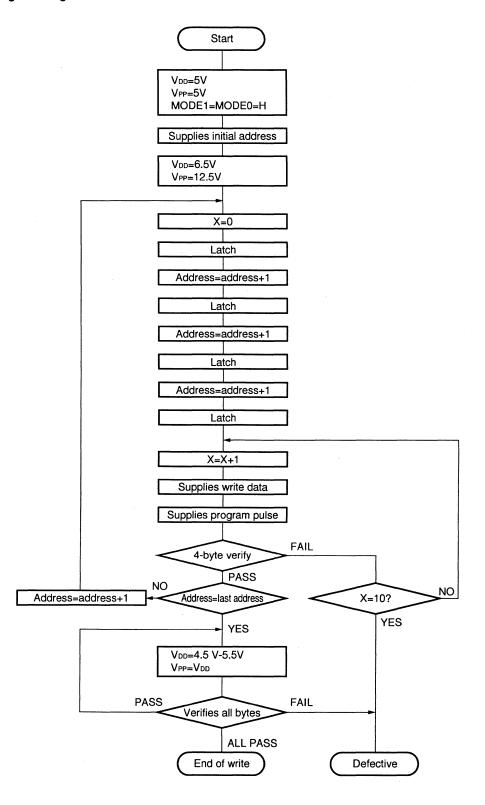
(6) Byte write mode

Byte write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = L$ and $\overline{OE} = H$. After that, the program can be verified when $\overline{OE} = L$.

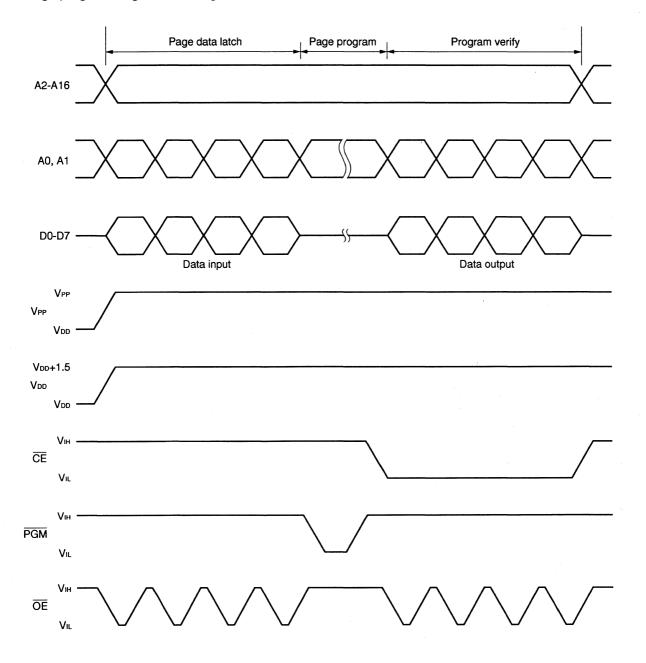
If the program cannot be written by one program pulse, write and verify are repeatedly executed X times (X \leq 10).

(7) Program verify mode

The program verify mode is set by setting $\overline{CE} = L$, $\overline{PGM} = H$, and $\overline{OE} = L$. Use this mode to the check if the program has been correctly written.

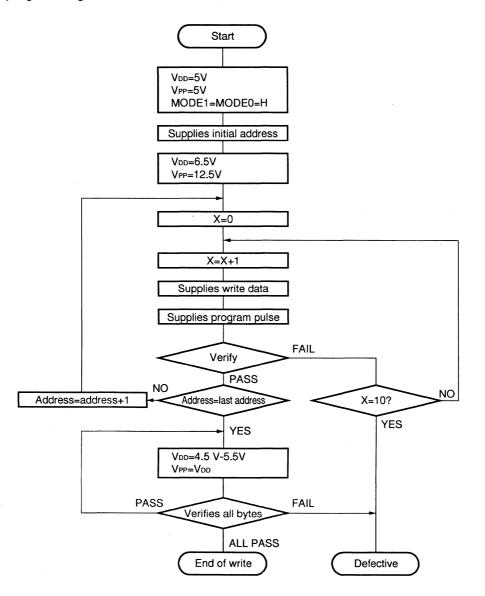

(8) Program inhibit mode

The program inhibit mode is used to write data to one of the μ PD70P3000s whose \overline{OE} , VPP, and D0-D7 pins are connected in parallel.

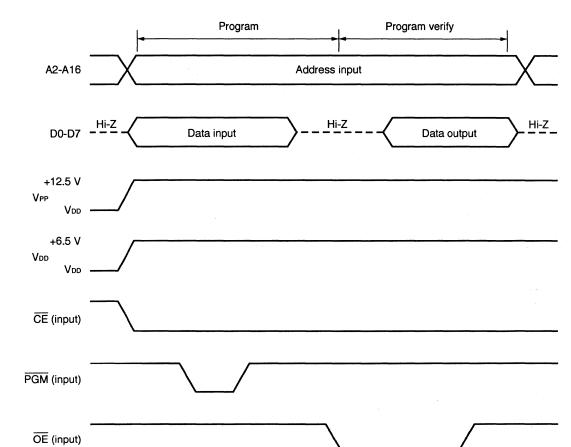

To write data, the page write mode or byte write mode is used. At this time, data cannot be written to a device whose \overline{PGM} pin is high.

11.3 PROM Write Procedure

Page programming mode flowchart



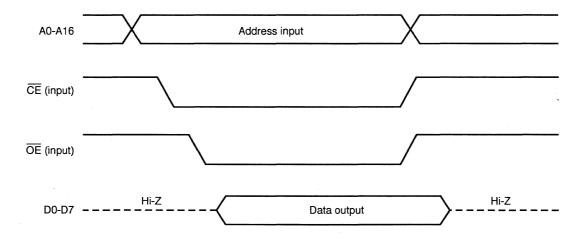
Page programming mode timing



208

Byte programming mode flowchart

★


Byte programming mode timing

11.4 PROM Read Procedure

The contents of the PROM are read to the external data bus (D0-D7) in the following procedure:

- (1) Fix VPP = H, MODE0 = L, and MODE1 = L. Connect the unused pins as described in **1.5.2 PROM programming** mode.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0-A16 pins.
- (4) Read mode ($\overline{CE} = L$, $\overline{OE} = L$)
- (5) The data is output to the D0-D7 pins.

Figure 11-1 shows the timing of (2) to (5) above.

Figure 11-1. PROM Read Timing

11.5 Screening of OTPROM Version

The one-time-programmable ROM (OTPROM) version, μ PD70P3000GC-7EA, cannot be completely tested by NEC before shipment. It is recommended to perform screening to verify the PROM after the PROM has been stored under the following conditions:

Storage Temperature	Storage Time	
125 °C	24 hours	

11.6 Notes on Releasing STOP Mode When External Clock Is Used

When an external clock is used, the external system controls clock supply. To release the STOP mode (by using $\overline{\text{RESET}}$ or NMI input), therefore, supply the clock at least 100 μ s before the $\overline{\text{RESET}}$ or NMI signal is input.

APPENDIX A REGISTER INDEX

Symbol	Name	Unit	Page
ASIM00	Asynchronous serial interface mode register 00	UART	145
ASIM01	Asynchronous serial interface mode register 01	UART	147
ASIS0	Asynchronous serial interface status register 0	UART	148
BCC	Bus cycle control register	BCU	53
BPRM0	Baud rate generator prescaler mode register 0	BRG	170
BRG0	Baud rate generator register 0	BRG	170
CC10	Capture/compare register 10	RPU	113
CC11	Capture/compare register 11	RPU	113
CC12	Capture/compare register 12	RPU	113
CC13	Capture/compare register 13	RPU	113
CM4	Compare register 4	RPU	114
CMIC4	Interrupt control register	INTC	79
CSIC0	Interrupt control register	INTC	79
CSIM0	Clocked serial interface mode register 0	CSI	158
DWC	Data wait control register	BCU	51
ECR	Interrupt source register	CPU	28
EIPC	Interrupt status save register	CPU	28
EIPSW	Interrupt status save register	CPU	28
FEPC	NMI status save register	CPU	28
FEPSW	NMI status save register	CPU	28
INTM0	External interrupt mode register 0	INTC	71
INTM1	External interrupt mode register 1	INTC	80
INTM2	External interrupt mode register 2	INTC	80
ISPR	In-service priority register	INTC	81
мм	Memory expansion mode register	Port	44
OVIC1	Interrupt control register	INTC	79
P0	Port 0	Port	176
P1	Port 1	Port	178
P2	Port 2	Port	179
P3	Port 3	Port	183
P4	Port 4	Port	189
P5	Port 5	Port	191
P6	Port 6	Port	193
P9	Port 9	Port	194
P10	Port 10	Port	197
POICO	Interrupt control register	INTC	79
P0IC1	Interrupt control register	INTC	79

Symbol	Name	Unit	Page
P0IC2	Interrupt control register	INTC	79
P0IC3	Interrupt control register	INTC	79
P1IC0	Interrupt control register	INTC	79
P1IC1	Interrupt control register	INTC	79
P1IC2	Interrupt control register	INTC	79
P1IC3	Interrupt control register	INTC	79
PM0	Port 0 mode register	Port	176
PM1	Port 1 mode register	Port	179
PM2	Port 2 mode register	Port	182
PM3	Port 3 mode register	Port	187
PM4	Port 4 mode register	Port	190
PM5	Port 5 mode register	Port	192
PM6	Port 6 mode register	Port	194
PM9	Port 9 mode register	Port	196
PM10	Port 10 mode register	Port	199
PMC0	Port 0 mode control register	Port	177
PMC2	Port 2 mode control register	Port	183
PMC3	Port 3 mode control register	Port	188
PMC10	Port 10 mode control register	Port	199
PRCMD	Command register	CG	98
PSC	Power save control register	CG	96
PSW	Program status word	CPU	29,71,81,84
RXB0	Receive buffer 0	UART	149
RXB0L	Receive buffer 0L	UART	149
SEIC0	Interrupt control register	INTC	79
SIO0	Serial I/O shift register 0	CSI	159
SRIC0	Interrupt control register	INTC	79
STIC0	Interrupt control register	INTC	79
SYS	System status register	CG	93,98
TM1	Timer 1	RPU	112
TM4	Timer 4	RPU	114
TMC1	Timer control register 1	RPU	117
TMC4	Timer control register 4	RPU	118
TOC1	Timer output control register 1	RPU	119
TOVS	Timer overflow status register	RPU	120
TUM1	Timer unit mode register 1	RPU	115
TXS0	Transmit shift register 0	UART	150
TXSOL	Transmit shift register 0L	UART	150

APPENDIX B INSTRUCTION SET LIST

Legend

(1) Symbols used for operand description

Symbol	Description		
reg1	General register (r0-r31): Used as source register		
reg2	General register (r0-r31): Mainly used as destination register		
imm×	×-bit immediate		
disp×	×-bit displacement		
regID	System register number		
bit#3	3-bit data for bit number specification		
ер	Element pointer (r30)		
cccc	4-bit data to indicate condition code		
vector	5-bit data to specify trap vector (00H-1FH)		

(2) Symbols used for operation description

Symbol	Description
←	Assignment
GR[]	General register
zero-extend(n)	Zero-extends n to word length
sign-extend(n)	Sign-extends n to word length
load-memory(a,b)	Reads data of size b from address a
store-memory(a,b,c)	Writes data b of size c to address a
load-memory-bit(a,b)	Reads bit b of address a
store-memory-bit(a,b,c)	Writes c to bit b of address a
saturated(n)	Performs saturated processing of n (n is 2's complement). If n is $n \ge 7FFFFFFH$ as result of calculation, 7FFFFFFFH. If n is n $\le 80000000H$ as result of calculation, 80000000H.
result	Reflects result on flag
Byte	Byte (8 bits)
Halfword	Half-word (16 bits)
Word	Word (32 bits)
+	Add
-	Subtract
11	Bit concatenation
×	Multiply
÷	Divide
AND	Logical product
OR	Logical sum
XOR	Exclusive logical sum

×

Symbol	Description
NOT	Logical negate
logically shift left by	Logical left shift
logically shift right by	Logical right shift
arithmetically shift right by	Arithmetic right shift

(3) Symbols used for execution clock description

Symbol	Description
i: issue	To execute another instruction immediately after instruction execution
r: repeat	To execute same instruction immediately after instruction execution
I: latency	To reference result of instruction execution by the next instruction

(4) Flag operation

Identifier	Description		
(Blank)	Not affected		
0	Cleared to 0		
1	Set to 1		
×	Set or cleared according to result		
R	Previously saved value is restored		

Condition code

Condition Name (cond)	Condition Code (cccc)	Conditional Expression	Description
V	0000	OV=1	Overflow
NV	1000	OV=0	No overflow
C/L	0001	CY=1	Carry Lower (Less than)
NC/NL	1001	CY=0	No carry No lower (Greater than or equal)
Z/E	0010	Z=1	Zero Equal
NZ/NE	1010	Z=0	Not zero Not equal
NH	0011	(CY OR Z)=1	Not higher (Less than or equal)
н	1011	(CY OR Z)=0	Higher (Greater than)
N	0100	S=1	Negative
Р	1100	S=0	Positive
Т	0101	-	Always (unconditional)
SA	1101	SAT=1	Saturated
LT	0110	(S XOR OV)=1	Less than signed
GE	1110	(S XOR OV)=0	Greater than or equal signed
LE	0111	((S XOR OV) OR Z) = 1	Less than or equal signed
GT	1111	((S XOR OV) OR Z) = 0	Greater than signed

Instruction Set (alphabetical order) (1/4)

Mnemonic	Operand	Code	Operation			ecut Cloc				Fla	3	
					i	r	T	СҮ	ov	S	Z	SAT
ADD	reg1, reg2	rrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend(ir	nm5)	1	1	1	×	×	×	×	
ADDI	imm16, reg1, reg2	rrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(ir	nm16)	1	1	1	×	×	×	×	
												İ
AND	reg1, reg2	rrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	
ANDI	imm16, reg1, reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	0	×	
		111111111111111111										
Bcond	disp9	dddd1011dddcccc	if conditions are satisfied	When condition satisfied	3	3	3					
		Note 1	then PC←PC+sign-extned(disp9)	When condition not satisfied	1	1	1					
CLR1	bit#3, disp16[reg1]	10bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)		4	4	4				×	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	aqqqqqqqqqqqqqqq	Z flag←Not(Load-memory-bit(adr, t	oit#3))								
			Store-memory-bit(adr, bit#3.0)									
CMP	reg1, reg2	rrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	×	×	×	×	
DI		0000011111100000	PSW.ID←1		1	1	1					
		0000000101100000	(Maskable interrupt disabled)									
DIVH	reg1, reg2	rrrr000010RRRRR	GR [reg2]←GR [reg2]÷GR [reg1] [№]	te2	36	36	36		×	×	×	
			(signed division)									
EI		1000011111100000	PSW.ID←0		1	1	1					
		0000000101100000	(Maskable interrupt enabled)									
HALT		0000011111100000	Stops		1	1	1					
		0000000100100000										
JARL	disp22, reg2	rrrr11110ddddd	GR[reg2]←PC+4		3	3	3					
		0ppppppppppppppppp	$PC \leftarrow PC + sign-extend(disp22)$									
		Note 3										
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]		3	3	3					
JR	disp22	0000011110ddddd	$PC \leftarrow PC + sign-extend(disp22)$		3	3	3					
		000000000000000000000000000000000000000										
		Note 3										
LD.B	disp16[reg1], reg2	rrrr111000RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	2					
		aqqqqqqqqqqqqqqq	GR[reg2]←sign-extend(Load-memo	ory(adr, Byte))								
LD.H	disp16[reg1], reg2	rrrr111001RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	2			[
		aqqqqqqqqqqqqqqq	GR[reg2]sign-extend(Load-memory	(adr, Halfword))	1							
		Note 4										
LD.W	disp16p[reg1], reg2	rrrr111001RRRRR	adr-GR[reg1]+sign-extend(disp16)	1	1	2	1				T
		ddddddddddddd	GR[reg2]←Load-memory(adr, Word	(k								
		Note 4										

Notes: 1. dddddddd is the higher 8 bits of disp9.

- 2. Only the lower half-word is valid.
- **3.** dddddddddddddddd is the higher 21 bits of disp22.
- 4. ddddddddddddd is the higher 15 bits of disp16.

217

★

Instruction Set (alphabetical order) (2/4)

Mnemonic	Operand	Code	Operation			Executio Clock		Execution Clock																Flag			
				i	r	1	CY	οv	s	Z	SA																
LDSR	reg2, regID	rrrr111111RRRRR	SR[regID]←GR[reg2]	regID = EIPC, FEPC	1	1	3																				
		000000000100000		regID = EIPSW, FEPSW			1																				
		Note 1		regID = PSW			1	×	×	×	×	>															
MOV	reg1, reg2	rrrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					Γ															
	imm5, reg2	rrrrr010000iiiii	GR[reg2]←sign-extend(imm5	5)	1	1	1					Γ															
MOVEA	imm16, reg1, reg2	rrrr110001RRRRR	GR[reg2]←GR[reg1]+sign-ex	tend(imm16)	1	.1	1					t															
мочні	imm16, reg1, reg2	rrrr110010RRRRR	GR[reg2]←GR[reg1]+(imm16	5 0 ¹⁸)	1	1	1					t															
MULH	reg1, reg2	rrrr000111RRRRR	GR[reg2]←GR[reg2] ^{Note2} ×G	iR[reg1] ^{Note2}	1	1	2					F															
				(Signed multiplication)																							
	imm5, reg2	rrrrr0101111iiii		GR[reg2]←GR[reg2] ^{Note2} ×sign-extend(imm5)		1	2					┢															
			(Signed multiplication)																								
MULHI	imm16, reg1, reg2	rrrr110111RRRRR	GR[reg2]←GR[reg1] ^{Note2} ×in	nm16	1	1	2		,			┢															
				(Signed multiplication)																							
NOP		000000000000000000000000000000000000000			1	1	1					┢															
NOT	reg1, reg2	rrrr000001RRRRR			1	1	1		0	×	×	┢															
NOT1	bit#3, disp16[reg1]	01666111110RRRRR		disp16)	4	4	4				×	┢															
			Z flag←Not(Load-memory-bit(adr, bit#3))																								
			Store-memory-bit(adr, bit#3,																								
OR	reg1, reg2	rrrr001000RRRR			1	1	1		0	×	×	┢															
ORI	imm16, reg1, reg2	rrrr110100RRRR			1	1	1		0	×	×	\vdash															
RETI		0000011111100000	if PSW.EP=1		4	4	4	R	R	R	R	F															
		000000101000000																									
			PSW ←EIPSW																								
			else if PSW.NP=1																								
			then PC ←FEPC																								
			PSW ←FEPSW																								
			else PC ←EIPC																								
			PSW ←EIPSW																								
SAR	reg1, reg2	rrrr111111RRRR	GR[reg2]←GR[reg2]arithmeti	ically shift right	1	1	1	×	0	×	×	+															
UAN	licy, icyz	0000000010100000			'	'	'	Î		Î																	
				by GR[reg1]	<u> </u>	+-	+-	<u> </u>	0			╀															
	imm5, reg2	rrrrr010101iiiii	GR[reg2]←GR[reg2]arithmeti	icany shint right	1	1	1	×	0	×	×																

- **Notes:** 1. The op code of this instruction uses the field of reg1 though the source register is shown as reg2 in the above table. Therefore, the meaning of register specification for mnemonic description and op code is different from that of the other instructions.
 - rrrrr = regID specification
 - RRRRR = reg2 specification
 - 2. Only the lower half-word data is valid.

Instruction Set (alphabetical order) (3/4)

Mnemonic	Operand	Code	Operation		ecut Cloci				Flaç)	
			i	r	1	СҮ	٥v	s	Z	SA	
SATADD	reg1, reg2	rrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×];
	imm5, reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5))	1	1	1	×	×	×	×	:
SATSUB	reg1, reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	;
SATSUBI	imm16, reg1, reg2	rrrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]-sign-extend(imm16))	1	1	1	×	×	×	×	;
SATSUBR	reg1, reg2	rrrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	;
SETF	cccc, reg2	rrrrr1111110cccc	if conditions are satisfied	1	1	1					Γ
		000000000000000000000000000000000000000	then GR[reg2]←0000001H								
			else GR[reg2]←0000000H								l
SET1	bit#3, disp16[reg1]	00bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	4	4	4				×	
		dadadadadadada	Z flag Not(Load-memory-bit(adr, bit#3))								
			Store-memory-bit(adr, bit#3, 1)								
SHL	reg1, reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	F
		000000011000000									
	imm5, reg2	rrrrr010110iiiii	GR[reg2]←GR[reg1] logically shift left by	1	1	1	×	0	×	×	Γ
			zero-extend(imm5)								
SHR	reg1, reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift right by GR[reg1]	1	1	1	×	0	×	×	Γ
		00000001000000									
	imm5, reg2	rrrrr010100iiiii	GR[reg2]—GR[reg2] logically shift right by	1	1	1	×	0	×	×	
			zero-extend(imm5)								
SLD.B	disp7[ep], reg2	rrrr0110dddddd	adr←ep+zero-extend(disp7)	1	1	2					Γ
· . · .			GR[reg2]←sign-extend(Load-memory(adr, Byte))								
SLD.H	disp8[ep], reg2	rrrrr1000dddddd	adr←ep+zero-extend(disp8)	1	1	2					
		Note 1	GR[reg2] - sign-extend(Load-memory(adr, Halfword))								
SLD.W	disp8[ep], reg2	rrrrr1010dddddd	adr←ep+zero-extend(disp8)	1	1	2					
		Note 2	GR[reg2]←Load-memory(adr, Word)						1	1	
SST.B	reg2, disp7[ep]	rrrr0111dddddd	adr←ep+zero-extend(disp7)	1	1	1					
		·	Store-memory(adr, GR[reg2], Byte)								
SST.H	reg2, disp8[ep]	rrrrr1001dddddd	adr←ep+zero-extend(disp8)	1	1	1					
		Note 1	Store-memory(adr, GR[reg2], Halfword)								
SST.W	reg2, disp8[ep]	rrrr1010ddddd1	adr←ep+zero-extend(disp8)	1	1	1					ſ
		Note 2	Store-memory(adr, GR[reg2], Word)								
ST.B	reg2, disp16[reg1]	rrrr111010RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					Γ
		pppppppppppppppp	Store-memory(adr, GR[reg2], Byte)								

Notes: 1. ddddddd is the higher 7 bits of disp8.

2. dddddd is the higher 6 bits of disp8.

★

÷

Instruction Set (alphabetical order) (4/4)

*

Mnemonic	Operand	Code	Operation		ecu Cloc				Fla	9	
			·	i	r	1	СҮ	ov	s	Z	SA
ST.H	reg2, disp16[reg1]	rrrrr111011RRRRR	adr-GR[reg1]+sign-extend(disp16)	1	1	1.					Γ
		0pppppppppppppppppp	Store-memory(adr, GR[reg2], Halfword)								
		Note									
ST.W	reg2, disp16[reg1]	rrrrr111011RRRRR	adr-GR[reg1]+sign-extend(disp16)	1	1	1					
		ddddddddddddd	Store-memory(adr, GR[reg2], Word)								
		Note									
STSR	regID, reg2	rrrr111111RRRRR	GR[reg2]←SR[regID]	1	1	1					Γ
		000000001000000									
SUB	reg1, reg2	rrrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	Γ
SUBR	reg1, reg2	rrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	Γ
TRAP	vector	000001111111iiii	EIPC ←PC+4(Restored PC)	4	4	4					Γ
		000000010000000	EIPSW ←PSW								
			ECR.EICC ←Interrupt code								
			PSW.EP ←1								
			PSW.ID ←1								
			PC ←00000040H(vector=00H-0FH)								
			00000050H(vector=10H-1FH)								
TST	reg1, reg2	rrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3, disp16[reg1]	11bbb111110RRRRR	adr-GR[reg1]+sign-extend(disp16)	3	3	3				×	
		ppppppppppppppppp	Z flag-Not(Load-memory-bit(adr, bit#3))								
XOR	reg1, reg2	rrrr001001RRRRR	R GR[reg2]←GR[reg2] XOR GR[reg1] 1 1 1 0 ×		×						
XORI	imm16, reg1, reg2	rrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend(imm16)	1	1	1		0	×	×	

Note: dddddddddddd is the higher 15 bits of disp16.

220

[0]

3-state	16, 17, 18, 19, 20
4-bit I/O port	173, 197
4-GB	32, 33
5-stage pipeline	25
8-bit I/O port	173, 183, 174, 178, 179, 189, 191, 193, 194
16-MB	25, 32, 33, 35, 40, 44-46

[A]

A0-A16	211
A16-A23	173, 193
ABS	1
access	19
byte	19
even address	19
half-word	19
odd address	19
word	19
acknowledge	67, 71-75, 81, 84, 89
AD0-AD7	173, 189, 190
AD8-AD15	173, 191
address bus	13, 173, 193
address generation	89
address input	14
address space	25, 32-34, 45
data	32, 34, 45
image of	33
linear	25, 32
physical	33, 36, 38-40
program	32, 34, 45
recommended use of	45
virtual	33
wrap-around	34
address strobe	13, 19, 49
address/data bus	5, 6, 49, 173, 189-191
address/data latch	206
align	62
ALV10	119
ALV11	119
analog delay	200, 202
analog filter	
analog noise filtering	
applications	
arbitration	
architecture	
ASIC	

ASIM	143
ASIM00	143, 145, 152, 154, 167
ASIM01	143, 145, 147, 153
ASIS	148, 155
ASIS0	143, 148, 154
assembler	27
ASTB	49, 55-61, 195, 196
asynchonous system	52
asynchronous serial interface	143
mode register	143, 145
status register	143, 148

[B]

barrel shifter
baud rate 157, 167
baud rate generator 2, 3, 8, 157, 167, 170
generator register 170
prescaler mode register 170
BCC 53
BCU
bit manipulation 2, 25
block diagram7
borrow 29, 34
boundary 34
BPRM0 158, 170
bps 142
BRG 167, 168
BRG0 168, 170
bus
control 49
cycle 49-54
cycle control register 53
hold 49, 54, 61, 62
priority 62
timing 55
bus control unit7, 8
bus cycle 8, 13
branch fetch 50, 62
bus hold
instruction fetch 50, 62
operand data access 50, 62
bus cycle status 13
bus hold 2, 20
bus hold acknowledge 13
bus hold control signal 197
bus hold request 13
bus signal19
byte 39

[C]

capture 124
capture register 113
capture trigger 13
capture/compare113
capture/compare mode select 116
capture/compare register 2
carry 29, 34
CC10 66, 113, 124, 126
CC11 66, 113, 124, 126
CC12 66, 113, 124, 126
CC13 66, 113, 124, 126
<u>CE</u> 14, 22, 205, 206, 208, 210, 211
CE1 117
CE4 118
ceramic oscillator
CESEL 96
character 142
character length 142, 156
CKSEL 13, 21, 91
clear 25
CLKOUT 13, 52, 55-61, 201, 202
clock
external
generation
generator
output
output inhibit 107
select 21
source 91, 158
supply
system 91
tick 114, 154
clock generator 2, 8, 13, 14
ground 21
power supply
clocked serial interface
clocked serial interface mode register
CLS00 158, 167
CLS01 158, 167
CM4
CM14
CMOS
CMS10
CMS11 116
CMS12
CMS13 116
coincidence

command register	8
communication14	41, 142
compare 12	26
compare register 11	13, 114, 167, 168, 170
compiler 27	7
control mode 16	6, 17, 18, 19, 20, 173, 174
control signal 17	73, 195
core 2	
count clear 13	3, 16, 109, 121, 128
counter 10	09
CPU	, 8, 68, 70, 73-75, 82, 83, 85, 86, 91
CRXE0 15	58, 159, 161-164
crystal 21	1
crystal resonator 92	2
CSI	, 8, 13, 141, 156, 158, 160, 161, 167, 173, 183, 184
CSIM 15	56, 163
CSIM0 15	56, 158, 162, 164, 167
CSIO 66	6
CTXE 15	58-160
CTXE0 15	58, 159, 161, 162, 164
CV _{DD} 14	4, 21, 201
CV _{SS} 14	4, 21, 201

[D]

D0-D7	206, 208, 210, 211
data access strobe	19
data bus	5, 6
data input	14
data output float delay time	53
data retention voltage	103
data space	32, 34, 45, 46
data strobe	13, 19
data wait control	51
DCLK0	96
DCLK1	96
default	66, 72, 74-78
destination	34, 37
DI	67, 72, 81, 88, 89
direct mode	21, 92
display controllers	166
DIVH	. 66
divider	. 91
division	. 25
DMA	. 54
DSTB	. 49, 55-61, 195, 196
DWC	. 51, 202

[E]

-		
	EBS0	147
	ECLR1	115
	ECR	68, 73, 74, 82, 85
	edge detection	73, 111, 171, 180
	edge select	71, 73, 80, 115
	EI	72, 75, 81, 88, 89
	EICC	73, 74, 82, 85
	EIPC	66, 70, 72-76, 82, 83, 85-88
	EIPSW	70, 72-76, 82, 83, 85-88
	engine control	3
	ENT010	119
	ENT011	119
	EP	68, 70, 71, 73-75, 81-86
	error	66, 155
	ES100	138
	ES101	138
	ES120	133
	ES121	133
	ESN0	67, 71
	even address	59, 60
	even parity	152
	event	65, 109
	event counter	111
	exception	2, 26, 28, 29, 37, 65, 66, 68, 73, 81-88
	extended bit operation	152
	external bus interface	2, 9, 49
	external bus master	20
	external clock	8, 13
	external data bus	13
	external device	-
	external expansion mode	17, 18, 19, 99, 101, 103, 190, 192, 194, 196
	external interrupt	8
	external interrupt mode register	65, 67, 71, 80, 119
	external interrupt request input	173, 177, 179
	external memory	30, 33, 35, 37, 40-46, 49, 50, 62, 173, 195
	external sources	65
	external wait	2, 49, 52

[F]

FECC	68
FEPC	66, 68, 70, 75, 83, 86
FEPSW	68, 70, 75, 83, 86
fine pitch	3, 4, 6
frame	152
framing	155
free-running	112
frequency	8, 111

frequency measurement 1	137
full-duplex 1	141, 142
Function block configuration	7
fvco 9	€1
fxx	91, 106

[G]

general register	. 7, 25, 27
ground	. 21

[H]

half duplex	. 156
half-word	. 39
HALT	. 15, 54, 94, 99
high impedance	15, 54, 55-61, 99, 101, 103, 158, 161, 162, 201, 206
higher byte enable	. 13
HLDAK	. 12, 13, 15, 20, 49, 54, 61, 99, 101, 103, 197, 199
HLDRQ	. 12, 13, 15, 20, 49, 54, 61, 197-199
hold	. 52
hold acknowledge	. 20
hold request	. 20
hold time	. 52

[1]

I/O	. 2, 9
I/O	. 171, 177, 183, 184, 188, 189, 191, 193-195, 197
I/O circuits	
Shmitt trigger	. 24
Туре1	. 24
Туре2	. 24
Туре3	. 24
Туре5	. 24
Туре8	. 24
IC0	. 14, 22
IC1	. 14, 22
ID	. 68, 71, 73-75, 81, 82, 84, 85, 88
IDLE	. 15, 54, 94, 96, 101
idle	. 49, 53, 54, 57, 58
idle state	. 2, 49, 53, 54, 57, 58
ILGOP	. 66, 84, 85, 87
illegal instruction	. 2
illegal opcode	. 65, 66, 84
illegal opcode exception	. 65, 66
image	. 33, 36, 38-41
in-service priority register	. 81
initial register values	. 203
initialize	. 202
input noise filter	. 200

input/output	170 173 183
instruction cycle	
instruction execution time	
instruction fetch	
instructions	
INTC	
INTCC10	
INTCC1	
INTCM4	
INTOSI	
internal memory	
internal RAM	
internal ROM/PROM	
internally connected	
interrupt	
acceptance (acknowledge)	
controller	, ,
disable	
disable flag	
latency time	
mask flag	
priority specification bit	
processing (service)	
	16, 65, 67-69, 72, 74-78, 81, 89, 131
request flag	
request signal	
interrupt/exception table	
interval	,
interval timer	
INTM1	
NTM2	
INTP00	
INTPOn	
INTP01	
INTP1n	
INTP02	
INTP03	
NTP10	
INTP10-INTP13	11, 13, 16, 17
INTP11	66, 73, 80
INTP12	66, 73, 80, 132, 200
INTP13	66, 73, 80, 174, 177, 200

INTPn	133
INTPxx	4, 5, 7
INTSER0	151, 154, 155
INTSR0	151, 154, 155
INTST0	151-153
invalid data	59, 60
ISPR	

[L]

latch strobe signal	. 19
LBEN	. 12, 13, 15, 19, 49, 55-61, 195, 196
LDSR	. 67, 70, 74, 81, 83, 86, 89
load/store	. 2
lock status	. 93
lock up	. 93
long/short format	. 2, 25
low frequency	. 92
lower byte enable	. 13
LSB	. 152, 156, 158, 159, 166

[M]

-	
mask 29	
mask ROM 3, 205	
maskable	
maskable interrupt 66, 72-75, 79, 81, 87,	88
master 166	
Memory	
access 18	
block 50, 51, 53, 62	
boundary62	
contents 201	
expansion 49	
map	
read 53, 55-58	
space 2	
write 59, 60	
Memory expansion register 17, 190, 192, 194, 196	3
MHz 92, 106	
microcontroller 2	
MM 17, 49, 190, 192, 194,	, 196
MM0 189, 190, 191, 193	
MM2 189, 190, 191, 193	
Mode 5	
Normal operation 4	
PROM programming 6	
mode specification pins 190, 192, 194, 196	

mode, operation	
Normal operation11	
ROM-less 21, 30, 31, 35, 37, 40, 43, 44	
Single-chip 21, 30, 31, 35, 40, 43, 44	
PROM programming 14	
Programming mode 21, 30, 31	
Read mode 21, 30, 31	
MODE0 4, 5, 7, 13, 17, 21, 189-192, 194,	196, 205, 207, 209, 211
MODE1 4, 5, 7, 13, 17, 21, 189-192, 194,	196, 205, 207, 209, 211
MSB 156, 158, 159, 166	
multiple interrupt	
multiplex 178, 179, 183	
multiplexed address/data 13	
multiplication 25, 91	
multiplier 1, 7, 8	

[N]

negative	29
nesting	72, 87, 88
NMI	4, 5, 7, 11, 13, 17, 28, 29, 37, 66-69, 71, 87, 88, 179, 182, 200
noise	92, 107, 201
noise elimination	171, 180
noise filtering time	200
non-maskable	2, 65-67, 68-71, 81, 87
non-maskable interrupt	13
not	25
NP	67-71, 74, 75, 81, 83, 84, 86, 88
number of instructions	2

[0]

odd address 59, 60	
odd parity 146, 152	
OE 14, 22, 205, 206, 208, 210, 211	
one-shot 109	
one-time-programmable 212	
operand data 50, 62	
operation mode 14, 15, 21	
OR 52	
OSC	
oscillation 202	
oscillator 8, 13, 105	
OST 115	
OST 115	6
OST 115 OTPROM	6
OST 115 OTPROM 212 output buffer	6
OST	6
OST	6
OST	6

[P]	
P10-P17	11, 16
P20	11
P21-P27	11
P30-P37	11, 17
P40-P47	11, 17
package	2, 3
parity	142, 152, 153, 155
parity bit	143, 146, 152
part number	3
PC	26, 27, 28, 34, 45, 66, 68, 70, 73-75, 82, 83, 85, 86
peripheral	1
peripheral I/O	
peripheral I/O registers	47, 48, 213, 214
bus cycle control	
data wait control	
memory expansion mode	
port mode	
port mode control	
PFC	
PGM	
phase frequency comparator	
phase locked loop	
physical address	
pin configuration	
pin pitch pin status	
Pins	
IC0, IC1	
P00-P07	
P10-P17	
TO10. TO11	
pipeline	
PLL	
PLL mode	
PLL stabilization	
PM0	
PM1	
PM2	
PM3	
PM4	
PM5	
PM6	
PM9	
PM10	
PM10n	
PMC0	
PMC2	

PMC10	0	199
		5, 9, 7, 11, 49, 54, 190, 192, 194, 196
	Port 0	
	Port 1	
	Port 2	
	Port 3	
	Port 4	
	Port 5	
	Port 6	
	Port 9	
	Port 10	
nort m		16, 17, 18, 19, 20, 176-179, 182, 187, 192, 196, 199
port m		176, 179, 182, 187, 192, 194, 196, 199
nort m		173, 177, 182-184, 187, 188, 192, 194, 196, 199
portin	ode control register	
	port mode control register 0	
	port mode control register 2	
	port mode control register 3	
nort	port mode control register 10	199
port m	ode register	170
	port mode register 0	
	port mode register 1	
	port mode register 2	
	port mode register 3	
	port mode register 6	
	port mode register 9	
	port mode register 10	
port pi	ns	
	P00	•
	P01	174, 177
	P02	
	P03	
	P04	
	P04-P07	174
	P05	200
	P06	200
	P07	200
	P0n	177
	P1n	179
	P20	179, 180, 200
	P21	179, 183, 200
	P22	179, 183, 200
	P23	179, 183, 200
	P24	179, 183, 200
	P25	
	P26	
	P27	

P0n	190 192
P2n	
P30	,
P31	
P32	184, 185, 188
P33	184, 188
P34	184, 186, 188
P35	183, 184, 186
P36	183, 184, 187
P37	183, 184, 187
P3n	187
P40-P47	189
P4n	
P50-P57	•
P5n	•
P60-P67	
P90-P94	
P90-P97	195
P95	
P96	196
P100	197, 199
P101	197-199
P102	197, 198
P103	197
positive	29
power consumption	94
power save	
control	
control register	
function	
mode	
power supply	
power-on reset	
PRCMD	
prefetch	
PRERR	
prescaler	
priorities	
PRM40	118
PRM41	118
processing	6, 8
program	62
program counter	
program pulse	
program space	
programmable pulse	
programmable wait function	
programmable wait function	6

programming mode	
flowchart 20	207, 209
timing 20	208, 210
programming voltage 20	205
PROM2,	2, 3, 6, 7, 8, 205, 207, 211, 212
PROM operation mode 20	205
byte write mode 20	206
output disable mode 20	205, 206
page data latch mode	205, 206
page write mode 20	206
program inhibit mode	205, 206
program verify mode 20	205, 206
read mode 20	205
standby mode20	205, 206
PROM programming 1	14, 22
PROM read timing 2	211
protection error9	93, 98
PRS40 1	118
PSC	96, 202
PSW	37-71, 73-75, 81-86, 88, 89
pull-down 2	201
pull-up 2	201
pulse1	132, 133
pulse output 8	
pulse width8	3
measurment 1	132, 133
PWM 1	134, 135

[Q]

QFP	3, 4,	6
queue	7, 8,	99

[R]

• •]	
R/W	49, 55-61, 195, 196
RAM	1, 2, 7, 8, 25, 49
read access	62
read-modify-write access	62
read-only	
read/write	110
read/write status	19
real-time	1, 2, 8
real-time pulse unit	1, 2, 8, 16, 110, 173, 174
receive	13, 66, 143
receive buffer	143, 154
receive error	151
framing	148
interrupt	151, 155
overrun	148, 155
parity	148

receive shift register 143, 151
reception completion interrupt 151, 154
reception enabled status 154
register 110, 202, 203
index
program
reset values 203
system 26, 28
register set
registers at reset 203
RESET 13, 21, 100, 102, 104, 106, 153, 165, 201, 202
reset 15, 66, 87, 110
reset period
reset values 203
restore
restored PC
RETI 67, 70, 72, 74, 75, 81, 83, 86, 88
RFU 80, 96, 194, 196, 197
ROM 1, 2, 7, 8, 25, 49, 212
ROM-less 49, 190
RPU
RXB 143
RXB0143, 149, 154, 155
RXB0L143, 149, 154, 155
RXD 11, 13, 17, 154, 155, 184, 186, 188
RXE0 154

[S]

sample timing	. 168
sampling	. 52, 55-61
saturate operation	. 2, 25
saturated math	. 29
SCF	. 91
Schmitt trigger	. 24
SCK	. 11, 13, 17, 156, 184, 185, 188
SCLS0	. 147, 167
screening	. 212
serial clock	. 17, 156-158, 162, 163
serial data	. 156, 158
serial I/O shift register	. 158, 159
serial input	. 161
serial interface	1, 2, 8, 9, 173, 183, 184
serial interface input/output	. 173
serial output	161
service routine	. 67, 69, 75, 83, 86-89
set	25
set-up time	52
shift	25

shift instruction	2	
shift register	151, 156, 157, 160-162	
SI	11, 13, 17, 141, 157, 160, 162, 163, 165, 166, 184, 185	5, 188
signed multiply	2	
SIO0	156-159, 161-164	
slave	166	
SO	11, 13, 17, 141, 157, 160, 162-166, 184, 188	
sources	82	
square wave	134	
SR	110	
ST0	12, 13, 15, 20, 49, 55-61	
ST1	12, 13, 15, 20, 49, 55-61	
stabilization	93, 202	
stabilization time	93	
standby	94	
start bit	152, 154	
status signals	20	
status transition	95	
STOP	15, 54, 94, 103, 200	
stop bit	152, 153	
storage temperature	212	
storage time	212	
switched capacitor filter	91	
synchronous serial interface	8	
synthesizer	92	
SYS	93	
system clock	13	
system expansion	173	
system register		
system reset	13	

[T]

T1	18, 52, 55-61
T2	18, 52, 55-61
ТЗ	18, 52, 53, 55-61
ТВС	106
TBCS	96, 106
TCLR1	11, 13, 16, 112, 115, 123, 174, 177, 200
tof	53
test	25
TI1	12, 16, 115, 174, 177, 200
tick	114, 154
timer	2, 8, 9, 110
control register	115
control register 1	117
control register 4	118
interrupt	109
output control register	119
overflow	115, 120

•	
overflow flag	120
overflow status register	120
prescaler	112
prescaler clock mode	118
unit mode register	115
Timer 1	112
Timer 4	114
timer/counter	63, 109
timer/event	109
ТМ1	112
ТМ4	114
TMBRG	167, 168, 170
TMBRG0	167, 170
TMC1	117
TMC4	118
TMn	120
TO10	. 119, 174, 177
TO11	. 119, 174, 177
TOC1	. 119
TOVS	. 120
TOxx	. 119
transfer rate	. 142
transmission	. 66
transmission/reception	. 152, 156, 161, 164
transmission complete interrupt	. 151
transmit	. 13, 152, 153
transmit data	. 13, 17
transmit shift register	. 143, 150-153
transmit status flag	. 143
TRAP	. 65, 66, 82, 87, 88
trap	. 84, 85
trigger	. 124
TUM1	. 115
TW	. 18, 52, 56, 58, 60
TXD	. 11, 13, 17, 142, 153, 184, 188
TXS	. 142
TXS0	. 143, 150, 152, 153
TXS0L	. 143, 150, 152, 153

[U]

UART	2, 7, 8, 13, 142, 152, 167, 168, 173, 183, 184
UARTO	66
UBE	195, 196
UBEN	12, 13, 15, 19, 49, 55-61, 195, 196
undefined	66, 88
UNLOCK	93
unlock status	93
upper byte enable	19

[V]

valid edge	. 115, 117, 122
variable	. 27, 45
VCO	. 91
V _{DD}	. 14, 22, 103, 201, 205, 207-211
V _{DDR}	. 103
vector address	. 66, 68, 73, 74, 82, 85
voltage-controlled oscillator	. 91
Vpp	. 14, 22, 205-211
Vss	. 14, 22, 201

[W]

WAIT	. 13, 15, 21, 49, 52, 55-61
wait (cycle)	. 49-52, 55-61
wait control	. 202
wait function	. 49, 50
wait state	. 2, 13, 50-52
write	. 206, 207, 209
write access	. 62

[X]

X1	4,	5,	7,	8,	13,	21,	91,	202	
X2	4,	5,	7,	8,	13,	21,	91,	201,	202

[MEMO]

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

Company

From:

Name

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe	Korea	Japan
NEC Electronics (Europe) GmbH	NEC Electronics Hong Kong Ltd.	NEC Corporation
Technical Documentation Dept.	Seoul Branch	Semiconductor Solution Engineering Division
Fax: +49-211-6503-274	Fax: 02-528-4411	Technical Information Support Dept.
		Fax: 044-548-7900
South America	Taiwan	
NEC do Brasil S.A.	NEC Electronics Taiwan Ltd.	
Fax: +55-11-889-1689	Fax: 02-719-5951	

I would like to report the following error/make the following suggestion:

Document title: _____

Document number: _____

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

