

Copyright © 1989 by NCR Corporation
Dayton, Ohio USA
All Rights Reserved
Printed in the USA

While the information herein presented has been checked for both accuracy and reliability,
NCR assumes no responsibility for either its use or for the infringement of any patents or
other rights of third parties, which would result from its use. The publication and
dissemination of the enclosed information confers no license, by implication or
otherwise, under any patent rights owned by NCR.

SCSI SCRIPTS™ is a trademark of NCR Corporation.

TABLE OF CONTENTS

1. Introduction ... 1

2. SCSI SCRIPTS™ Machine Language Description 7

3. Sample NCR SCSI SCRIPTS ... 18

4. NCR SCSI SCRIPTS Utilities ... 22

5. The NCR SCSI SCRIPTS Language Syntax ... 23

6. SCSI SCRIPTS to Support Use of Scatter/Gather 31

7. NCR SCSI SCRIPTS For An Initiator .. 32

8. Unique Initiator Sequences For The 53C700 ... 47

9. Special SCRIPTS Situations For The User's Guide 49

10. Multi-Tasking I/0 Using SCSI SCRIPTS .. 51

Appendix 1-
High Performance Considerations When Using the
53C700 vs. 53C90 ... 53

Appendix2-
53C700 System Bus Utilization .. 56

53C700 Programmer's Guide
Rev. 2.0 8189

NCR SCSI 1/0 Processor (53C700)

1 INTRODUCTION

1/0 Performance

The demands on today's 1/0 interfaces is being pushed by the increasing performance of personal

computers and workstations. Extremely fast CPU's, both CISC and RISC, only provide marginal

system performance if their 1/0 interfaces are not properly designed. Faster processors do not

equate to higher performance. Amdahl's Law covers this situation. "Assume 1/0 represents 10%

of the system activity and its performance is kept constant. If CPU power is increased by a factor

of 10: 1, the net improvement is only 5: 1. A 100: 1 increase in CPU power is valueless if the net

improvement in systems performance is only 10:1." Interrupt service routines, which often take in

excess of several hundred microseconds to execute, can be a large source of these performance

delays. Interrupts may be generated for exception conditions, 1/0 completion, saving/restoring

buffer data pointers (for system check-point/restart), or low probability events available as options

in todays SCSI definition. Interrupts can be reduced by using programmed 1/0, however, this can

be time consuming and requires much of the host computer cycle time. Therefore programmed 1/0
is not an adequate solution for multi-tasking operations. Another real performance issue is the so

called scatter/gather operation. With virtual storage so common today, many I/O's gather the data

from several physical addresses in system memory. Latencies inherent in the reinstruct OMA

operation can cause serious performance degradation, by allowing the disk drive to slip a latency

while the OMA is being reinstructed.

1/0 Flexibility

Options in bus protocol allow for increased flexibility. This flexibility is partially responsible for

the popularity of the SCSI standard. Flexibility provides users with the ability to configure their

systems for a wide range of peripherals (from high performance disk drives to hand held

scanners). Additionally, this flexibility offers support for command queueing, asynchronous or

synchronous data transfers, caching controllers, peer to peer communication, etc. Unfortunately,

flexibility implies firmware complexity, and if these options are not carefully implemented,

performance will suffer.

A Better Solution is Reguired

First generation (NCR5380) SCSI devices were register oriented and required processor

intervention even to make the most fundamental protocol decisions. Users liked the flexibility of

these devices because the low-level firmware interface provided them with specific real time

1

information about the SCSI bus and improved testability of the SCSI device. This generation of

devices typically requires in excess of 4,000 lines of code to specify a SCSI-1 device

implementation.

Second generation (NCR53C90) SCSI devices provide on-chip state machines, allowing some

complex SCSI sequences to be performed automatically, thereby reducing protocol overhead.

However, these devices have no decision making capability, because the internal sequences are

fixed in hardware at VLSI design. time. Greater than 2,500 lines of driver software is typically

required to support this class of SCSI device.

The flexibility of the SCSI bus has caused system integrators and OEM's alike, to struggle with the

decision of using these first or second generation SCSI devices standalone or integrating them into

intelligent host adapter boards. Non-intelligent SCSI host ports or host bus adapters require a fair

amount of processor intervention, however they are relatively inexpensive to implement.

Intelligent host adapters, which are an order of magnitude more expensive than non-intelligent

adapters, provide slower decision making capabilities (less powerful CPU's), experience

interpretation delays (2-8msec required to start any I/0), and suffer from interprocessor

communication delays. For these reasons, non-intelligent host adapters outperform their intelligent

counterparts in many systems that do not require some type of complex buffering scheme. On the

peripheral controller side, space is at a premium and complex peripheral interfaces require powerful

microprocessors to transfer data at the high rates available off the peripheral interface. Therefore,

SCSI chips that require intense firmware can cause the controller microprocessor to be overworked

and unable to perform the required tasks. Because of the limited space available, adding an extra

processor, or replacing it with a more powerful one is not always possible.

With MIPS increasing in the system CPU, the delays cause by intelligent host adapter cards and

slow peripheral controllers become painfully obvious to the system integrator. The simple solution

to this problem is to build complex, versatile, H/W sequences inside the SCSI components or to

add additional CPU power in the SCSI device board. Of course both of these solutions are costly

(space and component cost) and do not adequately address the problem.

2

Third Generation Requirements

To adequately accommodate the flexibility requirements of the SCSI bus (reducing interrupts and

controlling board cost), an additional level of intelligence and integration is required for next

generation silicon. Third generation SCSI chips must be able to make execution decisions based

on phase changes on the SCSI bus, as well as compare for specific incoming data values, resulting

in a minimum number of interrupts to the external processor. Thus, a truly programmable SCSI

chip that executes SCSI oriented commands is required. Additionally, these new chips must be

able to reduce interrupt service routine complexities by providing unique status values to the

external processor for the few interrupts that do occur. A fully integrated DMA channel must be

provided to allow full use of available host bus bandwidth. With todays virtual memory schemes,

the ability to support scatter/gather memory operations without processor intervention is key to

overall l/O performance. A few hundred lines of driver code is all that's needed to support third

generation SCSI devices. This code is required for exception conditions and for passing addresses

of the user data buffer to the chip. Error recovery must occur at the high level interface. In second

generation chips, the firmware is required to manage every detail of the error recovery mechanism,

because the high level interface is fixed and has only one entry point. Programmable SCSI chips

allow error recovery using the high level interface, because the algorithm can be entered at any

command, and error specific SCSI SCRIPTS™ can be developed.

3

The NCR SCSI 1/0 Processor

The NCR 53C700 is the first truly intelligent SCSI host adapter on a chip. A high-performance re

usable SCSI core and an intelligent 32-bit bus master DMA have been integrated with a SCSI

SCRIPTS processor to accommodate the flexibility requirements of SCSI-1, SCSI-2, and

eventually SCSI-3. This flexibility is supported while solving the protocol performance problems

that have plagued both intelligent and non-intelligent adapter designs.

SCSI Component

In addition to the reliability components of NCR's other SCSI chips:

• lOK volts ESD protection

• >350mV Bus Hysterysis

• immunity to bus reflections due to impedance mismatches

• controlled bus assertion times which reduces generated RFI, improves

reliability, and increases the chances for FCC approval

• latch-up protection >lOOmA

• voltage feed-thru protection

The SCSI core that is in the 53C700 is reusable and designed to migrate to SCSI-2 wide and fast

requirements. As part of the 53C700 it offers synchronous transfers up to 6.25MBytes/sec with

asynchronous transfers greater than 5MBytes/sec. Synchronous offsets up to 8 are supported.

The SCSI core offers low-level register access as well as the high-level control interface. Like first

generation SCSI devices, the 53C700 SCSI core can be accessed as a register oriented device. The

ability to sample and assert any signal on the SCSI bus can be useful in manufacturing test as well

as in diagnostic procedures. Loopback diagnostics are supported to the extent that the SCSI core

may perform a self-selection and operate as both an initiator and a target, verifying that internal data

paths are operational. Another important feature is the ability to test the SCSI pins for physical

connection to the board or the SCSI bus.

Unlike previous generation devices, the SCSI core is controlled by the integrated DMA through a

high-level logical interface. High level programming language commands that control the SCSI

core may be chained from main host memory. These commands instruct the SCSI core to select,

reselect, disconnect, wait for a disconnect, transfer user data, transfer SCSI information, change

bus phases, and in general, implement all aspects of the SCSI protocol. Also, the SCSI SCRIPTS

processor will transfer execution control (jump, call,retum and interrupt) based on

4

SCSI bus phase comparisons. A value in the SCSI SCRIPTS command can be compared to the

actual data in value on the SCSI bus, allowing the same transfer of control based on input data

compares. A special on-chip 2MIPS processor referred to as the SCSI SCRIPTS processor

provides this capability.

DMA COMPONENT

The DMA component is a bus master DMA device that is easily attached to the 80486, 80386,

80286, 80386SX, and 80376 processors. It has been designed to 25 Mhz 80386 bus timings and

may be externally adapted to ISA (AT), EISA, Micro Channel™ , etc.

The chip supports 16 or 32-bit memory and automatically supports misaligned DMA transfers. As

with the 80386, data bus enables are provided for each byte lane. An on-chip 32 byte FIFO allows

2,4, or 8 long words to be burst across the memory bus interface providing memory transfer rates

in excess of 50 MBytes/sec.

Since the DMA is tightly coupled to the SCSI core through the SCSI SCRIPTS processor,

uninterrupted scatter/gather memory operations are supported, with only a 500 nano second delay

between memory segment transfers.

A Watchdog Timer is included as a "bus safety" feature and a flexible arbitration scheme allows for

either daisy chained or "ored" memory bus request implementations.

SCSI SCRIPTS™ Processor

The SCSI SCRIPTS processor is a specially designed 2 MIPS processor that allows both DMA

and SCSI instructions to be fetched from host memory. Algorithms written in the SCSI SCRIPTS

language and then compiled, can control the actions of the SCSI and DMA cores and are executed

from 16 or 32-bit system memory. This allows complex SCSI bus sequences to be executed

independently of the host CPU.

One of the powerful aspects of the SCSI SCRIPTS processor is the ability to begin a SCSI I/O

operation in 500nsec. This compares to the 2-8msec required for traditional intelligent adapters.

The SCSI SCRIPTS processor not only offers performance but allows algorithms to be tailored to

tune SCSI bus performance, adjust to new bus device types (i.e. scanners, communication

gateways, etc.), or adapt to changes in the SCSI logical bus definitions and quickly incorporate

new or popular options. Therefore, SCSI flexibility can be implemented without sacrificing I/O

performance.

5

SCSI SCRIPTS are entirely independent of the CPU and system bus being used. This means that

scripts for an EISA implementation of a 80386 can be identical to the scripts for a 80386SX Micro

Channel™ implementation.

NCR SCSI SCRIPTS™ Descriotion

After power up and initialization of the 53C700, the user may operate the chip in one of two

modes; 1) low level register interface, 2) SCSI SCRIPTS chained mode.

In the low level register interface, the user has access to the OMA control logic and the SCSI bus

control logic and is able to operate the chip much like an NCR 53C80. An external processor has

access to the SCSI bus signals and the low level OMA signals, allowing a user to devise a

complicated board level test algorithm. The interface is useful for backward compatibility with

SCSI devices that require certain unique timings or bus sequences to operate properly. Another

feature allowed at the low level is loop back testing. With the loop back mode, a user can direct the

SCSI core to talk to the OMA core for testing internal data paths all the way out to the chip's pad.

Operating in the chained mode, the 53C700 requires only a SCSI SCRIPTS start address and then

all subsequent commands are fetched from external memory. Four bytes (or optionally two) at a

time are fetched across the iAPX 286/386 OMA interface and loaded into the command register.

Command fetch and decode time is minimal (about 500 ns), so little performance penalty is paid

for this feature. Commands will be fetched until an inteITUpt command is encountered, or until

some external, unexpected event (e.g. hardware error detected) causes an inteITUpt to the external

processor. Given the rich set of SCSI oriented features included in the command set, and the

ability of the user to re-enter the SCSI algorithm at any point, this high level interface is all that is

required for both normal and exception conditions. Therefore the user is never required to switch

to a low level mode for error recovery as is the case with today's second generation SCSI VLSI.

6

2 SCSI SCRIPTS™ Machine Langyage oescrjption

The purpose of this section is to describe the details of each SCSI SCRIPT™ command at a
detailed, bit level from a user's (programmer's) point of view. Certainly, a user will normally use
the SCSI SCRIPTS compiler described in following sections, but for debugging purposes, the
details of each command must be described. Each command description consists of a bit diagram
of the command, a brief overview of the command and a description of each field within the
command. In the most general case bits 31-30 are SCSI J/O Processor opcodes with 00 equals
Block Move Command, 01 equals 1/0 Command, 10 equals Transfer Control Command and 11
equals NCR Reserved.

BLOCK MOVE COMMAND

0
0

First 32-bit word of the Block Move Instructions

DCMD Register

MSG/

Op Code bit 0
Op Code bit 1

Indirect Addressing

DBC Register

24-bit Block Move Byte Counter

Second 32-bit word of the Block Move Instructions

DNAD Register
31 30 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 I 0

I

7

Overview

The Block Move command is used to transfer data to(from) user memory from(to) the SCSI bus.
No distinction is made between user data and SCSI information, such as command or message
bytes. Thus a series of SCSI SCRIPTS is written to move all types of data, with no requirement
for separate firmware to distinguish between user and SCSI data. Also, note that the data may
come from any memory address, so scatter/gather operations for user data are transparent to the
chip and the external processor. The user need only write a separate Block Move for each piece of
data to be moved. To speed data transfers between user memory and the I/O Processor, there is a
32 byte DMA data buffer. An 8 byte FIFO exists for synchronous SCSI data in transfers.

Note: The possible values of each field is given in binary.

BLOCK MOVE COMMAND - FIRST SCRIPTS WORD

Block Move opcode -- 00 Bits 31-30

Indirect data address flag (I) Bit 29

0--SCSI or user data is moved to(from) the 32-bit data start address for the block move. The
value is loaded into the chip's address register and incremented as data is transferred.

1--The 32-bit SCSI or user data start address for the Block Move is the address of a pointer to
the actual data buffer address. The value at the 32-bit data start address is loaded into the chip's
DNAD register via a second long word (four byte transfer across the host computer bus. Note that
this option implies three DMA long word transfers, rather than two transfers. Once the actual data
buff er address is loaded, the chip executes as if it were in the direct mode. This indirect feature
allows a user to specify a table of data buffer addresses. Using the NCR SCSI SCRIPTS
compiler, the table offset is placed in the script at compile time. Then at actual data transfer time,
the off sets must be added to the base address of the data address table by the external processor.
Such a feature allows the logical I/0 driver to build a structure of addresses for an I/0 rather than
having to treat each address individually. Also, having SCSI SCRIPTS in a PROM is possible
with this indirect feature.

Block Move Opcodes Bit 28-27

The SCSI role (target or initiator) causes the chip to react differently, with respect to the phase line
values. An obvious difference is whether to sense or drive the SCSI phase lines. Also, there are
major differences between the two roles when in the command phase. Therefore, the Block Move
functions are discussed for each SCSI role.

Target Role Function--00
This operation will DMA user, or SCSI data, with the chip in the target role. First the chip
determines whether the previous command has completed, or a reselect has occurred. The SCSI
phase bits are asserted to the value requested by the Block Move command. If the command
phase has been requested, the chip will:

• Wait for the first byte received.
• Decode the byte to determine the number of SCSI command bytes to receive.
• Write the command length into the DBC register. An invalid group code value causes the
chip to use the original value in the DBC register. If this value is zero, the chip will stop,
interrupt with the first byte, and stop transferring command bytes.
• Transfer the correct number of bytes into the address designated by the Block Move
command.

8

If any phase (other than command) is requested, the chip will transfer the number of bytes
requested to(from) the address requested. Should the initiator turn on attention at any time during
the transfer, the transfer will be completed, and then an interrupt will occur.

Target Role Function--01,10, or 11
These are illegal values, and will generate an invalid command interrupt if the chip is in the target
role.

Initiator Role Function--00
Reserved

Initiator Role Function--01
This operation will wait for a valid phase and DMA data with the chip in the initiator role. The chip
verifies that the previous command is complete or a reselect has occurred, and then waits for a
previously unserviced phase before executing the Block Move command. Thus, the user can
program the chip to pause until the SCSI device it is communicating with is proceeding to the next
phase. A comparison is made between the expected phase bits in the SCSI SCRIPTS and the
latched phase value. If the two values are not equal, the chip issues a phase mismatch interrupt and
halts execution. One normally uses this wait capability to allow the target to pace the chip in the
initiator role. When a phase change is expected, the wait is used to synchronize the expected phase
with the Block Move for that phase.

Initiator Role Function--10, or 11
These are illegal values, and will generate an invalid command interrupt if the chip is in the initiator
role.

SCSI Phase Lines Bit 26-24

These are the three SCSI phase lines used to compare to the actual SCSI bus phase lines. The
SCSI bus phase value is latched when REQ goes active. The value is stored in SSTA T2 (bit 2
through bit 0 -- MSG, C/D, & I/0). Before any data is moved, the chip will compare (or wait for a
new phase and compare).

24 Bit Byte Count Bit 23-00

This count value specifies the exact number of data bytes to be moved between the SCSI bus and
system memory. As the SCSI SCRIPTS command is decoded, the value is moved into the DBC
register. When the user specified burst size of data is available in the DMA FIFO, the SCSI IJO
Processor will:

• Gain access to the system bus.
• Transfer the burst size.
• Decrement the byte counter (byte count).
• Increment the next address register (data address).

The process will continue until byte count is zero. At that time, the next SCSI SCRIPTS command
will be fetched.

9

BLOCK MOVE • SECOND SCRIPTS WORD

Data Start Address for the Block Move Bit 31-00

This value specifies the address of data in memory (direct mode) or the address of the actual
address (indirect mode). The DNAD register is updated with the address of the actual data and is
incremented with each chip DMA transfer.

The Block Move command is very powerful for several reasons. l)No distinction is made
between user data and SCSI command, message, or status data. 2)Data can be stored in any area
of system memory with little performance in1pact (one command fetch). 3)The indirect feature
allows a table of addresses instead of requiring the address to be in the command. 4)A
scatter/gather operation also has little performance impact, because the only overhead is 500 nano
seconds (direct mode) or 750 nano seconds (indirect mode). So, having one Block Move
command for each segment of data in memory is economical with the SCSI I/O processor
architecture.

In the initiator role, the Block Move wait feature is useful for high performance SCSI SCRIPTS
that do not compare for any unexpected phases before executing a Block Move command. If the
phase does not match, then an external interrupt is generated, but in the high performance SCSI
SCRIPTS algorithm, exceptions are abnormal and handled by the external processor. Normally
the Conditional Transfer command (see below) is used for comparing actual to expected phase.
The first Conditional Transfer command must have the "wait" option on (to synchronize the
commands with the actual bus phase), and each subsequent command should have the "wait"
option turned off.

10

1/0 Command

First 32-bit word of the 1/0 Instructions

DCMD Register DBC Register

31 30 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
0

SCSI ID 0
SCSI ID 1

SCSI ID 2 Reserved - must be 0
SCSI ID 3

SCSI ID 4
SCSI ID 5 SCSI ID = Destination ID

SCSI ID 6 No more than 1 bit may be set
SCSI ID 7

Select with ATN
Reserved - must be 0

Reserved - must be 0
Op Code bit 0

Op Code bit 1
Op Code bit 2

Assert SCSI ATN

Assert SCSI ACK

Second 32-bit word of the 1/0 Instructions

DNAD Register
31 30 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I

Overview

The I/O command is used to perform certain SCSI operations such as select and reselect. Each
function defined is a direct command to the SCSI portion of the 53C700. The functions vary
according to whether the chip is in the target or initiator role, so the functions are described
separately for each role.

110 COMMAND - FIRST SCRIPTS WORD

SCSI 1/0 Processor opcode -- 01 Bits 31-30

110 command Opcodes Bits 29-27
Five functions have been defined for target and initiator role, with three reserved for future
expansion. If reserved function codes are used, an illegal command interrupt is generated and
execution will stop.

Target Role -- function 000
Perform reselection -- The chip will arbitrate for the SCSI bus and then perform a reselection.
Arbitration continues until the chip is successful, unless there is some bus initiated interrupt (e.g.
selection). If arbitration terminates because of a bus initiated interrupt (selection or reselection) the
chip will use the 32-bit jump address value to fetch the next instruction and begin execution at that

11

address. If the command is successful, then the next sequential instruction is fetched and
executed Note that the target/initiator role will automatically change to reflect what is actually
happening on the bus. After completion of the bus initiated interrupt processing (sequence goes to
bus free), the chip will revert to the role set by the user in the registers. Some caution is required
here. If the chip is set to an initiator role, gets selected, changes to the target role automatically,
disconnects, does some processing, and then issues a reselect command (without being set to the
target role by the external processor), a selection will occur. Because the chip was in the initiator
role (at the time of selection), it will revert to that role after the disconnect and bus free.

Target Role -- function 001
Perform disconnect -- The chip will physically disconnect from the SCSI bus.

Target Role -- function 010
Wait for select -- The chip will wait for a SCSI selection by some other device on the SCSI bus. If
the chip has already been selected, then the next SCSI SCRIPTS will be fetched and executed. In
the case of a bus initiated interrupt of reselect, the chip will change to the initiator role and fetch the
next command from the address pointed to by the 32-bit jump address, continuing execution from
there.

Target Role -- function 011
Assert bit -- The chip will assert the latches in the SCSI output data register, but nothing will be
driven onto the SCSI bus. Consequently, this function should not be used in the target role.

Target Role -- function 100
Reset bit -- The chip will reset the latches in the SCSI output data register, but nothing will be reset
on the SCSI bus. Consequently, this function should not be used in the target role.

Target Role -- function 101, 110, 111
These are not currently defined and will cause an illegal command interrupt if they are used.

Initiator Role -- 000
Perform selection -- The chip will arbitrate for the SCSI bus and then perform a selection.
Arbitration will continue until the chip is successful, unless there is a bus initiated interrupt (e.g.
reselection). If arbitration terminates because of a bus initiated interrupt (as a result of a select or
reselect), the chip will use the 32-bit jump address to fetch the next instruction and begin
execution at that address. Note that the target/initiator role will automatically change to reflect bus
actions. After completion of the bus initiated interrupt processing (sequence goes to bus free), the

chip will revert to the role set by the user. If the selection is successful, the next instruction is
fetched and executed If bit 24 (the attention flag) is set, then the chip will perform a select with
attention.

User's Note:
Because the chip will automatically change roles and jump to an alternate address if the select or
reselect fails, then a bus initiated interrupt can be processed by the chip with no external
intervention. The alternate jump address should contain the address of an algorithm for a selection
or reselection. That address should contain a wait for selection (target role) command. That
command's alternate address is the reselection algorithm (initiator role). In this manner, the chip
can determine exactly what happened and transfer control to the appropriate SCSI SCRIPTS
algorithm.

12

Initiator Role -- 001
Wait for disconnect -- The initiator waits for a disconnect from the SCSI bus. A legal disconnect is
defined as a loss of busy and select for the specified bus free time following a DISCONNECT
message or a COMMAND COMPLETE message. If the disconnect is legal, the next SCSI
SCRIPTS command will be executed, otherwise an unexpected disconnect interrupt will be
generated.

Initiator Role -- 010
Wait for reselection -- The initiator waits for a reselection from a previously selected SCSI device.
If the operation completes as expected, then the next instruction is fetched and executed by the
chip. However, if the device is selected, then the alternate jump address should contain the
address of an algorithm for a selection. That address should contain a wait for selection (target
role) command. That command's alternate address is the error recovery algorithm (for initiator role
-- reselect). In this manner, the chip can determine exactly what happened and transfers control to
the appropriate SCSI SCRIPTS algorithm.

Users Note:
With the 53C700 byte compare capability of the transfer control command, the SCSI SCRIPTS
algorithm can determine which target reselected the initiator and can jump to the correct algorithm
for that particular target. Thus SCSI SCRIPTS can be tuned for the various types of targets
available and executed with no external processor intervention.

Initiator Role -- function 011
Assert bit -- The chip will assert the SCSI bus bits requested in the flags field. Currently two bits
are defined, allowing the SCSI ACK and A TN bits to be set. Bit 6 is for Acknowledge and bit 3 is
for Attention.

Initiator Role -- function 100
Reset bit -- The chip will reset the SCSI bus bits requested in the flags field. Currently two bits are
defined, allowing the SCSI ACK and ATN bits to be reset. Bit 6 is for Acknowledge and bit 3 is
for Attention.

Initiator Role -- function 101, 110, 111
These are not currently defined and will cause an illegal command interrupt if they are used.

SELECT WITH ATN - Bits 26-24
If bit 24 is set, then the initiator SELECT command will cause the SCSI attention line to be set
during the SELECT operation. Attention on is valid only during the initiator function 000. The bit
is invalid for all other functions, and will cause an interrupt.

SCSI I.D. 7-0 - Bits 23-16
This eight bit field is the I.D. for the SCSI device that is to be selected in the initiator role and
reselected in the target role. Only one bit should be set for either of the functions requested. These
bits are not used for any function other than select or reselect.

Flags Field - Bits 15-00
These bits are used during the set or clear command. Bit 6 on will cause the SCSI acknowledge to
be set/reset, and bit 3 on will cause the SCSI attention to be set/reset. Note that the clear ACK
command should be used after the last target message-in byte has been verified for each separate
message data Block Move command. The initiator is given the opportunity to set attention before
acknowledging the last message byte of a Block Move command. On each byte, if a parity error
was detected on the message in operation, then the ASSERT SCSI A TN should be issued

13

before the clear acknowledge is issued to accept the message. Set Acknowledge can be used to
handshake bytes across the SCSI bus, and clear attention should be issued after the target has
serviced the request for a message out by the initiator.

110 COMMAND • SECOND SCRIPTS WORD

Jump Address - Bit 31-00
If the select, wait reselect, or reselect command fails, this thirty-two bit field specifies the memory
address from which the next SCSI SCRIPTS is fetched for execution. Normally, the next
instruction is fetched in sequence if the requested operation completes with no bus initiated
interrupt.

Transfer Control Command

First 32-bit word of the I/O Instructions

DCMD Register DBC Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
1

0
I/O

CID
MSG/

Op Code bit 0

Op Code bit 1
Op Code bit 2

0
0

Wait for valid phase
Compare Phase

Compare Data
Jump if: True = 1, False = 0

0

Data to be compared with the
SCSI First Byte Received

Reserved - must be 0

Second 32-bit word of the I/O Instructions

DNAD Register
31 30 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I

14

Overview

The Transfer Control Command is comprised of WMP, CALL, RETRUN, and INTERRUPT
operation codes. Each opcode is conditionally performed based on comparers of SCSI phase
values and incoming SCIS data values. The purpose of the Transfer control command is to allow
the user to compare for current phase values on the SCSI bus or the first byte of data on any
incoming bytes and transfer control to another address depending on the results of the test. These
commands allow SCSI algorithms to be written in SCSI SCRIPTS and give the 53C700
characteristics of a general purpose SCSI processor. With transfer control commands, the user can
truly program the chip, rather than simply buffer commands to be executed in a serial fashion with
no real-time decision making capabilities.

Command Fields

TRANSFER CONTROL COMMAND - FIRST SCRIPTS WORD

SCSI 1/0 Processor opcode -- 10 - Bits 31-30

Transfer Opcodes - Bits 29-27
Four opcodes are currently defined that allow a transfer of control in the SCSI SCRIPTS language.
All undefined opcodes cause an interrupt of illegal command.

WMP Command -- 000
If the condition evaluates according to the sequence control bits so the jump must be taken, the next
instruction will be fetched from memory at the 32-bit jump address. Otherwise, the next
sequential address will be used as the instruction fetch address.

CALL Command -- 001
If the condition evaluates according to the sequence control bits so the call must be taken, the next
instruction will be fetched from memory at the 32-bit call address. Otherwise, the next sequential
address will be used as the instruction fetch address. The address of the next sequential command
is stored in the chip's TEMP register in anticipation of a subsequent return address. Note that if
two CALL instructions are executed without any intervening RETURN instruction, then the first
return address in the chip's TEMP register will be overwritten by the second CALL.

RETURN Command -- 010
If the condition evaluates according to the sequence control bits so the return must be taken, the
next instruction will be fetched from memory at the 32-bit address contained in the TEMP
register, having been stored there by the previous call instruction. Otherwise, the next sequential
address will be used as the instruction fetch address. Note that the contents of the TEMP register
may be undefined if a call instruction has not been previously executed.

INTERRUPT Command -- 011
If the condition evaluates according to the sequence control bits so the software interrupt must be
taken, the chip will halt execution and issue an interrupt request to the external processor.
Otherwise, the next sequential address will be used as the instruction fetch address. Note that the
32-bit jump address in the instruction is available in the chip's command register at the time of the
interrupt. In this manner, a user can post a four byte, user unique error status to be used by the
external processor's interrupt service routine. Thus, the cause of the interrupt can be easily
decoded by firmware, thereby reducing firmware interrupt service routine overhead.

15

SCSI Phase Bits • Bits 26-24
In the SCSI initiator role, these bits are used to compare with the actual SCSI lines (MSG, CID,
and 1/0) if the phase compare bit is set in the sequence control field. Actual SCSI lines are a copy
of the last valid SCSI phase line values. A user can set these bits in the SCSI SCRIPTS command
to compare with the current SCSI bus phase lines, and branch to the SCSI SCRIPT™ that was
written to process the particular phase that is currently active. Bit 26 is SCSI MSG, bit 25 is SCSI
CID, and bit 24 is SCSI 1/0. In the target role, these bits are ignored because the chip is driving
them in the target role.

Bits 23-20
These bits are reserved for future use and must be zero.

Bits 19-16
Sequence Control Bits
SCSI SCRIPTS can use the current conditions on the SCSI bus to determine where to transfer
control and execute alternative algorithms, using the sequence control bits. The bits are defined as
follows:

• Bit 19 -- Transfer if True/False. If the bit is set to 1, a transfer of control will occur if the
phase or data values in the instruction is equal to the actual phase value on the SCSI bus or the first
byte of the most recent asynchronous in phase. Note that the byte could be a message in, data in,
or status for the initiator and message out, command, or data out for the target role. When the bit
is set to zero, the transfer control will occur if the comparison yields a false.

• Bit 18 -- Compare the data byte value (bit 7 - bit 0 in the instruction) to the first byte of
the most recent data, message, command, or status byte received. The user's SCSI SCRIPTS
program can determine what routine to execute next, based on actual data values received across
the SCSI bus. For example, the chip can compare for specific message values and process an
extended message in SCSI SCRIPTS, with no external interrupt to the external processor.

• Bit 17 -- In the initiator role, compare the SCSI phase line value (bit 26 - bit 24) to the
most recent valid SCSI phase line values saved in the chip. Using this feature, the chip can react to
actual bus conditions and determine which routines to execute next based on SCSI bus phase line
values. Unexpected phase values can be compared for and error conditions or low probability
events can be processed by SCSI SCRIPTS inside the chip. In the Target role, bit 17 on causes
the chip to test for the attention line on. If the initiator has set attention, the chip (in the target role)
can jump to a message out routine to determine what the initiator needs. Note that this is normally
placed after each SCSI phase to allow the initiator to turn on attention if an error is detected during
the transfer.

• Bit 16 -- In the initiator role, wait for a previously unserviced phase change. Thus, the
user can program the chip to pause until the SCSI device it is communicating with has proceeded to
the next phase. One normally uses this wait capability to pace the chip in the initiator role. When a
phase change is expected, the wait is used to synchronize the expected phase with the actual phase
detected on the SCSI bus. Note that if both data and phase compare bits are set, the compare must
be both true or both false for the transfer to occur.

16

Bits 15-8
Reserved

Bits 7-0
Data Byte -- Compare this data byte value to the first byte of the most recent asynchronous data,
message, command, or status byte received. The user's SCSI SCRIPTS program can determine
what routine to execute next based on actual data values received. Using a series of these
compares, the algorithm cari process complex sequences with no intervention required by the
external processor.

TRANSFER CONTROL COMMAND - SECOND SCRIPTS WORD

Data Jump Address - Bit 31-00
This value specifies the address of the next instruction in memory that control should be transferred
to. The value is ignored in a return command and in the interrupt command. However, it is loaded
into the chip's command register and is available to be read by firmware in the case of an interrupt
command.

Several points should be noted about the transfer control command. If both data compare and
phase compare bits are set, then both comparisons must equate to true or both must equate to false
before the requested transfer will occur. There is no way to test one for false and the other for
true. If neither the phase or data bit is set, and if the true/false bit is 1, the operation is executed
unconditionally. If neither the phase nor the data bit is set and the true/false bit is 0, then the
command is a no operation and can be used for a delay function, or to reserve SCSI SCRIPTS
patch area.

17

3 PEVELOPING NCR SCSI SCRIPTS™

NCR Microelectronics is plannig to support the development of SCSI SCRIPTS with an
integrators developer's kit. This kit includes:

• Sample SCRIPTS
• SCRIPTS Utilities
• Test/Diagnostic SCRIPTS
• A SCRIPTS compiler
• Hardware Test Support

Your local NCR Sales Office or Factory Representative will inform you of the current software
release and current board level options.

To develop an executable SCSI SCRIPT, the user must first define the SCSI functions required,
paying careful attention to what functions are to be executed in SCRIPTS and what functions must
be contained in system firmware. Then the specific algorithms must be designed for the functions
that are to be executed in the SCSI SCRIPTS portion of the SCSI logical I/O driver. Using the
SCRIPTS compiler, the algorithms are coded in SCRIPTS and compiled to create the object code
required as input by the 53C700. The compiler output is much like an object module, because it
includes relocation information required to load the SCRIPTS object module into main memory.
At load time, the SCRIPTS jump addresses must be resolved using one of the utilities furnished in
the software package, and at start l/O time, another utility must be used to patch in the correct
buffer addresses, byte counts, destination I.D., etc.

The 53C700 allows a logical I/0 driver to be written very easily. The first SCSI SCRIPTS
example illustrates how easy the task actually is. This code will perform a read or write function,
using the 53C700 in the high level chained mode. Because SCSI algorithms are so simple when
written in SCSI SCRIPTS, the user can rapidly prototype SCSI algorithms for a proof of concept
and then concentrate on more complicated, realistic algorithms sooner.

A SCSI SCRIPTS is comprised of two areas:
1.) Definition area
2.) SCRIPT area

In this example, the definition area is comprised of variable and absolute values. These values may
describe a variable memory address location, variable byte count or a fixed status byte value.

·* ' ;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
·* '

Definition area INITIATOR ROLE

Target Device I.D. to be fixed at Start 1/0 time.
EXTERNAL device

Ten byte buff er for sending messages
EXTERNAL sendmsg

Ten byte buffer for receiving messages

18

EXTERNAL rcvmsg

Number of message bytes to send after selection
EXTERNAL idcount

Number of command bytes
EXTERNAL cmd_count

Buffer for the SCSI command
EXTERNAL cmd_adr

Number of user data bytes
EXTERNAL data_count

Address of user data buffer
EXTERNAL data_adr

Error -- not message out after selection

·* ' ;* Absolute values are stored in DNAD Register *
; * for purposes of interrupt processing *
·* '

·* ' ;* Note that OXO precedes the interrupt status *
;* values and designates a hex value *
·* '

ABSOLUTE errl = OxOffOl

Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = Ox0ff02

Error -- unexpected SCSI phase after a command transfer
ABSOLUTE err3 = Ox0ff03

Error -- expected status phase
ABSOLUTE err4 = Ox0ff04

No Error -- good I/0
ABSOLUTE ok = OxOffOO

Error -- expected message outphase
ABSOLUTE err5 = Ox0ff05

Error -- expected message command complete
ABSOLUTE err6 = Ox0ff06

The following is a simple SCSI SCRIPT that performs a single-tasking SCSI operation without
disconnecting. If an unpredictable event occurs on the SCSI bus, a unique interrupt status value is DNAI
stored in the 53C700's register and is available for interrupt processing.

19

; select the device with attention on
select atn device resel_adr

; if the next phase is not message out, interrupt
int errl when not MSG_ OUT

; sent the i.d. message out to the target
move idcount sendmsg when MSG_ OUT

; if the next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move cmd_count cmd_adr when CMD

; go to process cleanup if status phase
jump end when STATUS

; process data in phase
jump input_data ifDATA_IN

; or data out phase
jump output_data ifDATA_OUT

; unexpected phase if here
int err3

; process the data in phase
input_ data:
move data_count data_adr when DATA_IN

; and go process status
jump end

; process the data out phase
output_ data:
move data_count data_adr when DATA_OUT

; interrupt if not status phase
end:
int err4 when not STATUS

; move the status byte into memory
move 1 status_adr when STATUS

; interrupt if message in is not next
int err5 when not MSG_IN

; move the command complete byte in
move 1 rcvmsg when MSG_IN

; interrupt if it is not a command complete message
int err6 if not 00

20

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an I/O complete
intok

21

4 NCR SCSI SCRIPTS™ Utilities

The following utilities will be provided as part of the integrators development package with the
SCSI SCRIPTS Compiler for each user.

Initialize_IOP()
Sets up the 53C700 for operation after power up.

Save_IOP _State(savearea*)
Takes as an argument the pointer to a save area and stores the status of the 53C700 at that address.
Information saved includes SCSI SCRIPT pointer, current data counter, buffer address, and all
registers required to allow the state of the chip to be restored later. This routine is used during
SCSI disconnect handling, or save data pointer operations.

Restore_IOP _State(savearea*)
Takes as an argument the pointer to the save area where Save_IOP _State has stored the 53C700
status data. Restores the chip state so an interrupted I/0 can be resumed after a reselection or
restore pointers operation.

IOP _Interrupt Status()
After the 53C700 experiences an interrupt, this routine is called to decode the chip's interrupt status
information and report the reason for the interrupt

Relocate_Script_Address(rel_info,base)
Relocates all transfer control addresses in a SCSI SCRIPT to the specified base address. Rel_info
is a data structure produced by the back end of the SCSI SCRIPTS compiler.

Patch_Script(rel_info,symbol, value)
Using the symbol name for byte count, device i.d., or data address, and the rel_info data structure,
this routine will patch the locations where the symbol is used with the input value.

22

5 The NCR SCSI SCRIPTS™ Language Syntax

Notation:

When something is enclosed in curly braces, it is optional.

If the end curly brace is followed by" ... ", then it means that the item enclosed in the curly
braces can be repeated as often as is desired.

Something that is entirely in upper case is a keyword. Case is ignored by the compiler when
looking for keywords.

Phase must be replaced with exactly one of the following keywords: MSG_IN, MSG_ OUT,
DATA_IN, DATA_OUT, CMD, STATUS, RES4, RES5

The word 'address' means a 32-bit number.

The word 'value' means a 32-bit number.

The word 'count' means a 24 bit number.

The word 'id' means an eight bit number that has exactly one bit set

The word 'data' means an eight bit number.

The word 'expression' denotes a mathematical expression in the form of <identifier>
[<addop> <identifier>]*, where <identifier> is any valid variable name or a numeric constant,
and <addop> is either the'+' or'-' characters, denoting addition or subtraction respectively.
Note that an 'expression' may be used in any place where one would normally use a numeric
value. The value of all 'expressions' will be extended to 32-bit s. If an expression is used in a
context in which the evaluated value of it must be less then 32-bit s, the least significant bits
will be used. For instance, if an 'expression' is used to represent a count for a move
instruction, the evaluated value will be truncated to 24 bits. The user will not be notified of the
occurrence of this truncation unless it entails changing the value of the expression.

The word 'name' means a string of one or more consecutive characters chosen from the
letters, the numbers, the underscore, and the dollar sign. Note that names used for labels, for
externals, and for variables in the relative data area will be passed on to the Host development
system. If the Host development system has restrictions on the format of such names, it is up
to the SCSI SCRIPTS writer to avoid using such names. For example, Turbo C, which is
used as the Host development system for this proposal, does not allow names to begin with a
digit or to contain a dollar sign. Thus, the SCSI SCRIPTS writer for DOS and Turbo C
should avoid names of this form.

23

INPUT FORMAT

SCSI SCRIPTS consists of a series of lines. Blank lines, lines that contain only whitespace,
and anything after a semi-colon on an input line is ignored by the front end.

The compiler is "token" oriented. It reads the input stream and splits it up into tokens. White
space and anything from a semicolon to the end of the line is not part of any token, and is thus
ignored by the first pass of the compiler.

There are two types of tokens. Any string of consecutive letters, numbers, dollar signs, and
underscores is a token. Any given character can be part of no more than one token, and the
input stream is split into tokens in such a way as to minimize the number of tokens. Thus, the
string "abc" would be treated as one token ("abc") rather than multiple tokens ("a" and "be",
for example).

The second type of token consists of characters that are not part of other tokens. For example,
anything that is not a letter, a digit, an underscore, or a dollar sign, will become a token.

For example, the string "xxx=Ox 123 ; assign value to xxx" contains three tokens. "xxx" is a
token,"=" is a token, and "Ox123" is a token.

Numeric values may be specified in decimal, hexadecimal, octal, or binary. Decimal numbers
are specified by a string of digits that does not begin with a zero. Hex numbers are specified
by a string consisting of "Ox" or "OX" and the hex digits of the number. Both upper and lower
case are allowed. A binary number is similar to a hex number, except that "Ob" or "OB" is used
instead of "Ox" or "OX". An octal number is specified by a "O" followed by the octal digits.

Language Directives

There are several keywords that are used to provide information to the front end concerning the
compilation of the SCSI SCRIPTS. These are used to define symbolic names, and to indicate
certain things that need to be passed to the second pass of the compiler.

ENTRY label {,label ••• }

The ENTRY keyword indicates that the specified labels are SCSI SCRIPTS entry points.
Their names and values will be made available to the back end, which will make them available
to the Host development system.

ABSOLUTE name = expression {,name = expression ••• }

This declares symbolic names for numeric values. For example, "ABSOLUTE bad_cmd =
Ox1200" allows the name "bad_cmd" to be used wherever a number would be allowed in the
SCSI SCRIPTS. The SCSI SCRIPTS will be compiled as if the number Ox1200 had been
specified instead of the name "bad_cmd" in every instruction that uses "bad_cmd".

EXTERNAL name {,name ••. }

This informs the compiler that the SCSI SCRIPTS will refer to variables with the specified
names that are declared outside of the SCSI SCRIPTS. Note that some host development
systems are not able to support this usage. SCSI SCRIPTS that need this feature may not be
portable to all hosts.

24

RELATIVE name = expression {,name = expression ... }

This is used to declare variables in the relative data area. "name" is the name of the variable,
and "expression" is the offset from the start of the relative data area that the variable is located.

A name followed by a colon signifies a label. The name of a label can be used wherever an
address is called for.

The SCSI SCRIPTS Instructions

When an instruction calls for a count to be specified, a 24 bit number may be used, or a
symbolic constant (declared with the ABSOLUTE keyword) may be used

When an instruction calls for an address, a 32-bit number may be used, the name of a label
may be used, the name of a variable in the relative data area (declared with the RELATIVE
keyword previously) can be used, or the name of an external variable (declared previously
with the EXTERNAL keyword) can be used.

Labels, external variables, and relative variables all share the same name space. If a given
name is declared more than once, the front end is free to resolve the conflict in any way it sees
fit. It will issue a warning to let the user know that there is a possible problem.

If the address field of an instruction contains a name that has not been defined, then the front
end will assume that it refers to a label that will be defined later. This is called forward
referencing. If the name is later defined as an external or relative variable, this shall be
considered a name conflict and the front end may resolve it in any way it wishes. It will issue a
warning in this case.

BLOCK MOVE COMMAND

These are the various forms of the Block Move instruction.The 'address' and 'count' specify
the address and byte count fields of the instruction. If the optional keyword 'PTR' is present,
then the indirect bit will be set. 'Phase' specifies the phase field of the instruction. WITH or
WHEN are used to specify the Block Move function codes. WITH is used to signal the target
role which sets the phase values, and WHEN is the initiator "test for phase" feature.

MOVE count, { PTR } address, WITH Phase

MOVE count, { PTR } address, WHEN Phase

25

JUMP COMMAND

The conditional JUMP instructions all have the same general form. 'Address' is the SCSI
SCRIPTS address that will be transferred to if the JUMP is taken. WHEN means that the Wait
bit in the SEQ CNTL field is to be set. IF means that the Wait bit is not to be set. If the
WHEN or IF is followed by NOT, then the True/False bit of the SEQ CNTL field is not set,
otherwise, the bit will be set. If 'Phase' is present, then the compare Phase bit of SEQ CNTL
will be set, otherwise, it will be cleared. If 'data' is present, the compare Data bit of SEQ
CNTL will be set, otherwise, it will be cleared. If both 'Phase' and 'data' are specified, they
must be in that order and they must be separated by the keyword AND. ATN is the target role
version and required to test whether the initiator has set A TN on the bus. NOT is used for the
inverse test of WHEN and IF. "NOT Phase OR data" is the negation of "Phase AND data".

NOP

JUMP address

JUMP address, IF ATN

JUMP address, IF Phase

JUMP address, IF data

JUMP address, IF ATN AND data

JUMP address, IF Phase AND data

JUMP address, WHEN Phase

JUMP address, WHEN data

JUMP address, WHEN Phase AND data

JUMP address, IF NOT ATN

JUMP address, IF NOT Phase

JUMP address, IF NOT data

JUMP address, IF NOT ATN OR data

JUMP address, IF NOT Phase OR data

JUMP address, WHEN NOT Phase

JUMP address, WHEN NOT data

JUMP address, WHEN NOT Phase OR data

26

CALL COMMAND

The conditional CALL instructions all have the same general form. 'Address' is the SCSI
SCRIPTS address that will be transferred to if the JUMP is taken. WHEN means that the Wait
bit in the SEQ CN1L field is to be set. IF means that the Wait bit is not to be set. If the
WHEN or IF is followed by NOT, then the True/False bit of the SEQ CN1L field is not set,
otherwise, the bit will be set. If 'Phase' is present, then the compare Phase bit of SEQ CNTL
will be set, otherwise, it will be cleared. If 'data' is present, the compare Data bit of SEQ
CN1L will be set, otherwise, it will be cleared. If both 'Phase' and 'data' are specified, they
must be in that order and they must be separated by the keyword AND. A TN is the target role
version and required to test whether the initiator has set A TN on the bus. NOT is used for the
inverse test of WHEN and IF. "NOT Phase OR data" is the negation of "Phase AND data".

CALL address

CALL address, IF ATN

CALL address, IF Phase

CALL address, IF data

CALL address, IF ATN AND data

CALL address, IF Phase AND data

CALL address, WHEN Phase

CALL address, WHEN data

CALL address, WHEN Phase AND data

CALL address, IF NOT ATN

CALL address, IF NOT Phase

CALL address, IF NOT data

CALL address, IF NOT ATN OR data

CALL address, IF NOT Phase OR data

CALL address, WHEN NOT Phase

CALL address, WHEN NOT data

CALL address, WHEN NOT Phase OR data

27

RETURN COMMAND

The conditional RETURN instructions all have the same general form. 'Address' is the SCSI
SCRIPTS address that will be transferred to if the JUMP is taken. WHEN means that the Wait
bit in the SEQ CNTL field is to be set. IF means that the Wait bit is not to be set. If the
WHEN or IF is followed by NOT, then the True/False bit of the SEQ CNTL field is not set,
otherwise, the bit will be set. If 'Phase' is present, then the compare Phase bit of SEQ CNTL
will be set, otherwise, it will be cleared. If 'data' is present, the compare Data bit of SEQ
CNTL will be set, otherwise, it will be cleared. If both 'Phase' and 'data' are specified, they
must be in that order and they must be separated by the keyword AND. ATN is the target role
version and required to test whether the initiator has set ATN on the bus. NOT is used for the
inverse test of WHEN and IF. "NOT Phase OR data" is the negation of "Phase AND data".

RETURN

RETURN, IF ATN

RETURN, IF Phase

RETURN, IF data

RETURN, IF ATN AND data

RETURN, IF Phase AND data

RETURN, WHEN Phase

RETURN, WHEN data

RETURN, WHEN Phase AND data

RETURN, IF NOT ATN

RETURN, IF NOT Phase

RETURN, IF NOT data

RETURN, IF NOT ATN OR data

RETURN, IF NOT Phase OR data

RETURN, WHEN NOT Phase

RETURN, WHEN NOT data

RETURN, WHEN NOT Phase OR data

28

INTERRUPT COMMAND

The conditional INT instructions all have the same general form. 'Address' is the SCSI
SCRIPTS address that will be transferred to if the JUMP is taken. WHEN means that the Wait
bit in the SEQ CNTL field is to be set. IF means that the Wait bit is not to be set. If the
WHEN or IF is followed by NOT, then the True/False bit of the SEQ CNTL field is not set,
otherwise, the bit will be set. If 'Phase' is present, then the compare Phase bit of SEQ CNTL
will be set, otherwise, it will be cleared. If 'data' is present, the compare Data bit of SEQ
CNTL will be set, otherwise, it will be cleared. If both 'Phase' and 'data' are specified, they
must be in that order and they must be separated by the keyword AND. ATN is the target role
version and required to test whether the initiator has set A TN on the bus. NOT is used for the
inverse test of WHEN and IF. "NOT Phase OR data" is the negation of "Phase AND data".

INT address

INT address, IF ATN

INT address, IF Phase

INT address, IF data

INT address, IF ATN AND data

INT address, IF Phase AND data

INT address, WHEN Phase

, INT address, WHEN data

INT address, WHEN Phase AND data

INT address, IF NOT ATN

INT address, IF NOT Phase

INT address, IF NOT data

INT address, IF NOT ATN OR data

INT address, IF NOT Phase OR data

INT address, WHEN NOT Phase

INT address, WHEN NOT data

INT address, WHEN NOT Phase OR data

29

SCSI 1/0 COMMANDS - SELECT {ATN} ID Address

Initiator mode function 0. if A TN is present, the "select with A TN" bit is turned on. 'Id'
specifies the destination SCSI id.

RESELECT id address

Target mode function 0

WAIT DISCONNECT

Initiator mode function 1

DISCONNECT

Target mode function 1

WAIT RESELECT address

Initiator mode function 2

WAIT SELECT address

Target mode function 2

The following set and clear commands have no meaning in the SCSI target role and should not
be used.

SET ACK

Function 3 with the ACK bit set in the Flags field.

SET ATN

Function 3 with the A TN bit set in the Flags field

SET ACK AND ATN

Function 3 with both ACK and A TN bits set in the flag field

CLEAR ACK

Function 4 with the ACK bit set in the Flags field.

CLEAR ATN

Function 4 with the ATN bit set in the Flags field

CLEAR ACK AND ATN

Function 4 with both ACK and ATN bits set in the Flags field

30

6 SCSI SCRIPTS'™ Jo Support Use of Scatter/Gather

Virtual memory schemes are very common in todays systems, and user data is kept in small,
manageable pages in main memory. Memory management units keep track of actual, physical
locations. Because user data is scattered through memory and gathered for a write to disk, this
situation is termed the scatter/gather requirement. One 1/0 may include several pages, so current
SCSI ports must reinstruct the DMA controller at the beginning of each page of user data. The
extra time required to reinstruct for each page always causes some delay for the external processor
interrupt and DMA setup time, but a worse side effect is that the delay may cause the disk to slip a
revolution because there is no place to put data coming off the media.

Fortunately, the 53C700 addresses this scatter/gather performance degradation in a most efficient
way. Each page of user data is represented by a Block Move command. The only overhead
required to move to the next page of data is a SCSI SCRIPTS fetch (500 nanoseconds). No
firmware interrupt is required (normally a minimum of 80 microseconds in a system
environment), and no firmware to reinstruct a DMA controller is required.

A SCSI SCRIPTS model for the scatter/gather situation is as follows. First, separate the set of
Block Move commands that are required to process the user data and code the SCSI SCRIPTS to
call this user data move section. A maximum number of pages per 1/0 should be determined, and
one SCSI SCRIPTS Block Move coded for each possible page. At start 1/0 time, the logical 1/0
routine determines exactly how many block moves are required and patches a return command over
the next SCSI SCRIPTS command after the last Block Move command required. The group of
Block Move commands is called, the correct number of moves is performed, and the return is
executed. At the completion of the 1/0, the return is overwritten with a Block Move to prepare the
set of Block Move commands for the next I/0.

With this simple mechanism, the 53C700 can process scatter/gather requests in a very simple
manner and at the same time, dramatically reduce I/0 overhead.

31

7 NCR SCSI SCRIPTS™ FOR AN INITIATOR

Definition area INITIATOR ROLE

Target Device I.D. to be fixed at Start l/O time.
EXTERNAL device

Ten byte buffer for sending messages
EXTERNAL sendmsg

Ten byte buffer for receiving messages
EX1ERNAL rcvmsg

Number of message bytes to send after selection
EXTERNALidcount

Number of command bytes
EXTERNAL cmd_count

Buffer for the SCSI command
EXTERNAL cmd_adr

Number of user data bytes
EXTERNAL data_count

Address of user data buffer
EXTERNAL data_adr

Error -- not message out after selection
ABSOLU1E errl = OxOffOl

Error -- unexpected SCSI phase before command phase
ABSOLU1E err2 = Ox0ff02

Error -- unexpected SCSI phase after a command transfer
ABSOLU1E err3 = Ox0ff03

Error -- not msg in phase after status phase
ABSOLU1E err4 = Ox0ff04

No Error -- good l/O
ABSOLUTE ok = OxOffOO

SCSI status returned is check condition
ABSOLU1E check_cond = OxOfffe

SCSI status returned is busy
ABSOLU1E busy = OxOfffd

SCSI status returned is reservation conflict
ABSOLU1E reserved = OxOfffc

32

SCSI status returned is unknown
ABSOLUTE bad_status = OxOfffb

Error -- unexpected phase after a data transfer
ABSOLUTE err5 = Ox0ff05

Error -- unexpected msg in phase before command phase
ABSOLUTE err6 = Ox0ff06

Error -- extended msg present before a command phase
ABSOLUTE err? = Ox0ff07

Error -- save data pointers before a command phase
ABSOLUTE err8 = Ox0ff08

Error -- disconnect before command phase
ABSOLUTE err9 = Ox0ff09

Error -- save data pointers after the command phase
ABSOLUTE errlO = OxOfflO

Error -- unexpected msg after command phase
ABSOLUTE errl 1 = OxOffl 1

Error -- extended message present after the command phase
ABSOLUTE err12 = Ox0ff12

Error -- disconnect after a command phase
ABSOLUTE err13 = Ox0ff13

Error -- save data pointers after a data transfer
ABSOLUTE err14 = Ox0ff14

Error -- unexpected messagr:- after a data transfer
ABSOLUTE err15 = Ox0ff15

Error -- extended message after a data transfer
ABSOLUTE err16 = Ox0ff16

Error -- disconnect after a data transfer
ABSOLUTE en-17 = Ox0ff17

Error -- Message in not received after reselection
ABSOLUTE err18 = Ox0ff18

Error -- Data in phase after reselection and i.d. msg rcvd
ABSOLUTE err19 = Ox0ff19

Error -- Data out phase after reselection and i.d. msg rcvd
ABSOLUTE err20 = Ox0ff20

Error -- Msg in phase after reselection and i.d. msg rcvd
ABSOLUTE err21 = Ox0ff21

33

Error -- Status phase after reselection and i.d. msg rcvd
ABSOLUTE err22 = Ox0ff22

Error -- Msg out phase after reselection and i.d. msg rcvd
ABSOLUTE err23 = Ox0ff23

Error -- Unknown phase after reselection and i.d. msg rcvd
ABSOLUTE err24 = Ox0ff24

Error -- Selected as a target
ABSOLUTE err25 = Ox0ff25

Error-- Unexpected message rcvd instead of command complete
ABSOLUTE err26 = Ox0ff26

SCSI 1/0 entry point. This address must be loaded into the
53C700 before initiating a SCSI 1/0.

ENTRY start_up

34

SCRIPTS AREA

This is the entry point for a SCSI I/0

start_ up:

This is the SCRIPf for a standard SCSI I/O

First, select the device with attention and go to an
alternate reselect address. If a reselection or selection
happens before the selection can execute, the chip will
change roles if required.

SELECT ATN device resel_adr

If the next phase is status, go to end. Wait for valid
phase before performing the comparison.

JUMP end WHEN STATUS

If not msg out phase, interrupt. Do not wait for phase.
INT errl IF NOT MSG_ OUT

retry:

**
Label for retry loop to resend I.D. msg on error
**

The expected case after selection is I.D. message out to the
device. Move the I.D. message from the send message buffer.
Do not wait for a phase change.

MOVE idcount sendmsg when MSG_OUT

If the target remains in the message out phase after the
initial messages have been sent to the device, retransfer
the messages. Wait for a valid phase (req asserted).

JUMP retry WHEN MSG_ OUT

Now check for all expected phases.
JUMP end IF STATUS

Process a message in before the command phase here
JUMP msgl IF MSG_IN

If it is not status, msg in, or command, stop
Interrupt if not command phase

INT err2 IF NOT CMD

Transfer command bytes to the host
MOVE cmd_count cmd_adr when CMD

35

Determine what is coming next. Is there a message in after
the command phase?

WMP msg2 WHEN MSG_IN

Status phase after the command?
WMP end IF STATUS

Check for data in phase
WMP input_data IF DATA_IN

Is this a data out phase?
JUMP output_data IF DATA_ OUT

Error -- an unexpected phase after a command transfer
INTerr3

Label to process the status phase

. *********************************
' end:

Move the status byte in to the buffer area
MOVE 1 status_adr when STATUS

NOTE: an alternative at this point is to determine what the
status byte is and jump to a set of routines that will
process the command complete message, physical disconnect,
and then interrupt with the appropriate status byte error
value. Here, the algorithm interrupts if good 1/0 is not
the status byte returned by the target.

Was there a check condition
INT check_cond IF Ox02

Is the device busy
INT busy IF Ox08

Is the device reserved
INT reserved IF OxO 18

Interrupt for unknown state
INT bad_status IF NOT OxOO

Status value is good 1/0, so process the command complete
Stop if the next phase is not message in.

INT err4 WHEN NOT MSG_IN

Message in if here. It should be a command complete.
MOVE 1 rcvmsg when MSG_IN

Process the message if it is not a command complete

36

INT IF NOT OxOO

At this point, instead of interrupting, the best course
would be to examine the message received and react, or to
interrupt with a more specific error code.

Command complete was received, acknowledge it
CLEAR ACK

A physical disconnect should be next
WAIT DISCONNECT

Good 1/0 if here
INTok

**
This the data out section of the algorithm

. ** ' output_ data:

MOVE data_count data_adr when DATA_ OUT

'

If a scatter/gather requirement exists, then this section
can be multiple block moves to allow for multiple segments
of data. Also, this section could actually be a jump to a
group of block moves that can be patched appropriately at
start I/0 for the number of segments needed. The overhead
between segment block moves is 500-600 nano seconds.

**
Process what comes after the data transfer
**

check_ out:

Status phase is the normal next step
JUMP end WHEN STATUS

Is there a message in phase after data transfer
JUMP msg3 IF MSG_IN

Unexpected phase detected after data transfer
INTerr5

.
'

**
This is the data in phase portion of the algorithm
**

input_ data:

37

If a scatter/gather requirement exists, then this section
can be multiple block moves to allow for multiple segments
of data. Also, this section could actually be a jump to a
group of block moves that can be patched appropriately at
start I/O for the number of segments needed. The overhead
between segment block moves is 500-600 nano seconds.

MOVE data_count data_adr when DATA_IN

Go check the phase after data in
JUMP check_it

Process a message in before the command phase
*** ' msgl:

MOVE 1 rcvmsg when MSG_IN

Is this an extended message?
JUMP ext_msgl IF OxOl

Is this save data pointers? Interrupt with ACK set.
INT err8 IF Ox02

Is this a disconnect?
JUMP disc 1 IF Ox04

Interrupt if any other message with ACK set
INTerr6

; Message is an extended message
ext_msgl:

Acknowledge the message just received
CLEAR ACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE 2 ext_buf when MSG_IN

Interrupt the processor
INTerr7

.
'

Message is a disconnect
disc!:

Acknowledge the disconnect message
CLEAR ACK

Disconnect before the command if here

38

WAIT DISCONNECT

Interrupt the processor on a disconnect
INTerr9

Message in after the command phase

' msg2:
MOVE 1 rcvmsg when MSG_IN

Is this an extended message?
JUMP ext_msg2 IF OxOl

Is this save data pointers? Interrupt with ACK set.
INT errlO IF Ox02

Is this a disconnect?
JUMP disc2 IF Ox04

Interrupt if any other message with ACK set
INT errl 1

Message is an extended message
ext_msg2:

Acknowledge the message just received
CLEAR ACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE 2 ext_buf when MSG_IN

interrupt the processor
INTerr12

.
' Message is a disconnect
disc2:

Acknowledge the message
CLEAR ACK

Disconnect after the command if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
INTerr13

; Message in after the data transfer phase

39

msg3:
MOVE 1 rcvmsg when MSG_IN

Is this an extended message?
WMP ext_msg3 IF OxOl

Is this save data pointers? Interrupt with ACK set.
INT errl 4 IF Ox02

Is this a disconnect?
WMP disc3 IF Ox04

Interrupt if any other message with ACK set
INT errlS

Message is an extended message
ext_msg3:

Acknowledge the message just received
CLEAR ACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE 2 ext_buf when MSG_IN

Interrupt the processor
INT err16

'
Message is a disconnect

disc3:
Acknowledge the message

CLEAR ACK

Disconnect before the data transfer if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
INT err17

'

This is the section of code to process a reselect or select
when a select I/O command was executed

resel_adr:

Wait for reselect as the most probable event
WAIT RESELECT select_adr

The initiator was reselected, so process the possibilities
INT err18 WHEN NOT MSG_IN

40

I.D. message in is the only expected SCSI phase here
MOVE 1 rcvmsg when MSG_IN

At this point, if the system integrator knows the possible
SCSI device I.D's possible, the algorithm can compare for
each known I.D. and react accordingly. An 1/0 could even be
restarted if the SCSI bus configuration is exactly known.

Data in phase after reselection and i.d. transfer
INT err19 WHEN DATA_IN

Data out phase after reselection and i.d. transfer
INT err20 IF DATA_ OUT

Message in phase after reselection and i.d. transfer
INT err21 IF MSG_IN

Status phase after reselection and i.d. transfer
INTerr22 IF STATUS

Message out phase after reselection and i.d. transfer
INT err23 IF MSG_ OUT

Unknown phase after reselection and i.d. transfer
INTerr24

The chip was in an initiator role, but it has been selected
by another device on the SCSI bus. It is now in the target
role. One could implement the complete SCSI SCRIPTS target
algorithm here, or simply interrupt with an error message.
**

select_adr:

INTerr25

41

Definition Area TARGET ROLE

·* ' ;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
·* '
; Buffer area where the initiator device i.d. is kept
EXTERNAL device

Message out buffer area
EXTERNAL msg_buf

Command byte buffer area
EXTERNAL cmd_buf

Input message buffer
EXTERNAL msg_buf2

Buffer address for the initiator i.d.
EXTERNAL initiator

Count of user data bytes to be moved
EXTERNAL data_count

Address of the user data buffer
EXTERNAL data_addr

Target got reselected

Address of the status buffer
EXTERNAL stat_adr

42

·* ' ;* Absolute values are stored in DNAD Register *
;* for purposes of interrupt processing *
·* '
ABSOLUTE error! = OxOffOl

A TN is on after the i.d. message is sent in to the initiator
ABSOLUTE error2 = Ox0ff02

A TN is on after the command bytes are sent to the initiator
ABSOLUTE error3 = Ox0ff03

Atn is on after the disconnect message is sent to the ;initiator
ABSOLUTE error4 = Ox0ff04

A TN on after i.d. message sent to the initiator after a
reselect operation is complete

ABSOLUTE errors = Ox0ff05

A TN is on after user data is sent into the initiator
ABSOLUTE error6 = Ox0ff06

A TN is on after the status byte is sent
ABSOLUTE error7 = Ox0ff07

A TN is on after the command complete message is sent
ABSOLUTE error8 = Ox0ff08

Entry Point for the target role
ENTRY start_up

Entry point for a target reselect
ENTRY resel_in

SCRIPTS AREA

This is the entry point for a SCSI target I/0

start_ up:

First wait for a selection by the initiator and jump to the
alternate address if reselected.

WAIT SELECT resel_adr

Move the i.d. message into the message buffer
retry_id:
MOVE 1 msg_buf WITH MSG_ OUT

43

If the initiator sets A TN, go process that condition
JUMP id_atn IF ATN

continue_id:

Move the command bytes in to the target buffer
MOVE 1 cmd_buf WITH CMD

Note that though a 1 is in the command count field, the chip
will automatically transfer in the correct number of bytes
based on the SCSI command op code.
If the initiator sets ATN, go process that condition

JUMP cmd_atn IF ATN

continue_cmd:

In this algorithm, an automatic disconnect is assumed after
the SCSI command is received into the buffer. However, the
first byte of the command may be compared against a set of
opcode values to determine if this specific command should
disconnect or not.

Send in the disconnect message
MOVE 1 msg_buf2 WITH MSG_IN

If the initiator sets A TN, go process that condition
JUMP disc_atn IF ATN

continue_disc:

Now get off the bus
DISCONNECT

Entry point for reselecting the initiator

. *** ' resel_in:

Perform the reselect and jump to resel_adr if a reselection
happens while trying to do the reselect

RESELECT initiator resel_adr

Move the reselect i.d. message into the initiator
retry _resel:
MOVE 1 msg_buf2 WITH MSG_IN

If the initiator sets A TN, go process that condition
JUMP resel_atn IF A TN

continue_resel:

Now move the data bytes into the initiator
MOVE data_count data_adr WITH DATA_IN

44

Note that this could easily be changed to a data out command
by patching the phase section of the command, or using a
jump command that can be patched to transfer control to a
section of code that is either the data out or data in algorithm.
If the initiator sets A TN, go process that condition.

JUMP data_atn IF A TN

continue_data:

**
If a scatter/gather requirement exists, then this data
transfer section can be multiple block moves for the
multiple segments of data. Also, the section could be a
jump to a group of block moves that had been patched
appropriately at start I/0 for the exact number of segments desired.
**

Now move in the status byte
MOVE 1 stat_adr WITH STATUS

If the initiator sets A TN, go process that condition
JUMP stat_atn IF A TN

continue_stat:

Move the command complete message in
MOVE 1 msg_buf2 WITH MSG_IN

If the initiator sets ATN, go process that condition
WMP cc_atn IF ATN

continue_cc:

Now physically disconnect
DISCONNECT

**
If the wait for select or reselect fails, this is the label
for the alternate address

. ** ,
resel_adr:

INT errorl

.
' id_atn:

If the initiator turns on ATN after the i.d. message comes
out, this is the code for processing what comes next.
**

Move the message byte from the initiator out to the message buffer
MOVE 1 msg_bufWITHMSG_OUT

At this point, the user may decide to use scripts to program

45

at a very detailed level or simply interrupt with one user
error code. Scripts may be used to check for:

• no-op message -- ignore and jump to continue
• initiator detected error -- jump to retry
• message parity error -- jump to retry
• extended message -- as a minimum, get the opcode and

byte count before interrupting the processor

INT error2

All the ATN subroutines have the same basic function

cmd_atn:
MOVE 1 msg_buf WITH MSG_OUT
INT error3

disc_atn:
MOVE 1 msg_buf WITH MSG_OUT
INT error4

resel_atn:
MOVE 1 msg_buf WITH MSG_OUT
INT error5

data_atn:
MOVE 1 msg_buf WITH MSG_OUT
INTerror6

stat_atn:
MOVE 1 msg_buf WITH MSG_OUT
INT error?

cc_atn:
MOVE 1 msg_bufWITHMSG_OUT
INTerror8

46

8 Unique Initiator Sequences For the 53CZOO

I. Disk Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECT
Reselected -- I.D. message in
Data transfer of 1 - 4 user data blocks
Accept SCSI status byte, COMMAND COMPLETE message and wait for bus free

53C700 strengths in the disk drive environment are:
• A large number of commands are typically issued to the disk, and the 53C700 offers very

little SCSI bus overhead and a minimum of time to initiate an I/O in the host computer.

• The 53C700 can continue to the next scheduled SCSI I/O within SCRIPTS with no
interrupt to the external processor in the following manner:

- Compare for Good I/O status byte
- Interrupt if non-zero
- Jump to the next scheduled I/0 if the status is zero (Good l/0)

• The 53C700 can mask certain disk idiosyncrasies. For example if the disk does a SA VE
DATA POINTERS before the first DISCONNECT message after the command bytes are
transferred, the 53C700 can be programmed to absorb this message with no interrupt to the
external processor.

II. Tape Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECT
Relelected -- I.D. message in
Data transfer of 16k of user data
Accept the message in -- SA VE DATA POINTERS followed by DISCONNECT.
Reselected-- I.D. message in
Data transfer of 16k of user data

*
*
*

Reselected-- I.D. message in
Data transfer of 16k of user data
Accept SCSI status byte, COMMAND COMPLETE message and wait for bus free

47

Each.of the disconnects (on a 16k boundary) must cause an interrupt to the external processor if
there are multiple SCSI devices on the SCSI bus. Also, the reselect must cause an interrupt in the
general case. If this were a single device bus, or the system was designed to perform tape only
activity on the SCSI bus during backup, then the 53C700 could be programmed specifically for
this system. Knowing the tape drive was alone on the bus, the 53C700 could be programmed to:

1) Absorb the SA VE DATA POINTERS.
2) Execute a SCRIPTS command of wait for reselect.
3) Process the SCSI reselect sequence with no interrupts.
4) Initiate the next 16k user data block move.
5) If there is ever a restore pointers, the 53C700 interrupts to allow the external processor

to restart the tape I/O.

The 53C700 can allow a systems integrator to design using the SCSI bus in a versatile fashion
with no performance impact to I/O throughput.

Ill. SCSI Character Oriented Device in the Initiator Role

The system designer can dedicate a SCSI port to terminal control. First, a SCSI read command is
transferred to the target terminal controller. Coming back to the initiator is a stream of user data
typed in at the terminals, plus the inserted control bytes in the stream. A SCRIPT can be written to
look at the byte stream coming in and send line control bytes to the processing buffer and data
bytes to the data buffer. When certain control bytes are received, the 53C700 can terminate the
READ operation and generate a unique interrupt to the external processor.

Writes to the terminal controller can begin automatically when a certain read threshold is reached.
The 53C700 can process the READ command cleanup, jump to the WRITE command portion of
the SCRIPTS, and automatically start sending data to the terminal controller. Thus the 53C700 can
be used in unusual areas to offload any processor and improve performance.

Certainly another area of opportunity for the 53C700 is in the design of SCSI printers, where
WRITE is the only operation and control characters play in important role also.

48

9 Specjal Scripts™ Situations for the User's Gyjde ~:J

I. A SA VE DAT A POINTERS message that can be ignored.

CASE 1 -- Unexpected Phase change in the middle of a data transfer. The Block Move command
was constructed for a 4k transfer of user data, and after 2k of data, the chip gets an unexpected
phase change. Because there may be data left in the chip on a data out phase, an interrupt is
required to:

1) Clean up the chip on Data Out Phase
2) Change the data address and byte count in the active SCSI SCRIPTS
3) Receive the message byte via SCSI SCRIPTS (e.g. load the new entry point for

resumption of the message in operation). This routine will receive the message byte, verify that the
message byte is a SA VE DATA POINTERS (if not, interrupt the external processor), and jump to
the SCSI SCRIPTS entry point that will resume the data transfer previously interrupted.

CASE 2 -- The burst size expected is known ahead of time and is extremely predictable. At
systems integration time, this burst size must be set, so that each Block Move command can be. ,
made exactly equal to the burst size. The SCSI SCRIPTS logic becomes:

* * ..
Block Move of burst size.
Call subroutine (after waiting) if the next phase is not a data phase. (The subroutine should
process the SA VE DATA POINTERS message in and return.)
Block Move of burst size
Call subroutine (after waiting) if the next phase is not a data phase.

*
*

Using this logic, all phase changes are assumed to come on a Block Move command boundary, so
no bytes can be left in the chip when a phase change occurs. Certainly, there is an extra penalty for
fetching the call subroutine command (500 nsec per SCSI SCSI SCRIPTS), but a system interrupt
(minimum 80 microseconds) will be saved by avoiding the extra interrupt.

CASE 3 --The burst size is not known. Use the same logic as in case 2, but the Block Move byte
count should be equal to the device block size. The assumption is that a phase change will come
only on the device's block boundary. There is even more SCSI SCRIPTS fetching overhead,
depending on the ratio of device block size to burst size, however, even an extra 10 microseconds
is minor when compared to the external processor interrupt time of at least 80 microseconds.

II. A SA VE DAT A POINTERS message that must be processed by the
initiator.

CASE 1 -- The message comes in during a Block Move command. The two possibilities that exist
are that the chip is in the data in phase or the data out phase. If it is in the data in phase, all the
bytes in the 53C700 are sent to the DMA core and on into system memory. When no bytes are left
in the chip, all execution stops, and an interrupt is generated to the external processor. To save the
state of the I/O, update the current SCSI SCRIPTS with memory address and byte count that are in
the 53C700. The user should then save a pointer to this current SCSI SCRIPTS in some system
I/O structure so the I/O can be easily rescheduled later. The chip's SCSI SCRIPTS pointer value is
actually the current SCSI SCRIPTS address plus eight, so the saved value must be the SCSI
SCRIPTS pointer value minus eight.

49

If the phase is data out, the 53C700 is full of data bytes going out to the SCSI bus. Execution
stops after the phase change, and then an interrupt is generated to the external processor. At that
time, the processor should calculate the number of bytes in the chip, and use this value to add to
t~ chip's byte count, subtract from the chip's memory address pointer, and store these values in
tjle current SCSI SCRIPTS. A pointer to the SCSI SCRIPTS (minus eight) must be saved in
_some 1/0 structure for later rescheduling. This saved value is the entry point for a resumption of
:the.data transfer portion of the I/0, depending on the outcome of the phase change.

" 1 '
CASE 2 -- The message comes in on a Block Move command boundary. If no test for data phase
was placed between Block Move commands, then the 53C700 will fetch the next command ans
start processing it. When the phase change actually occurs, the 53C700 may have data in it, so the
processing is exactly the same as CASE 1 above.

However, if a wait and test for data phase command is inserted between each Block Move (burst
size is known or the block size is used in each Block Move command), then one interrupt is
generated to signal the processor to save a pointer to the next Block Move command. A SCSI
SCRIPTS to receive message bytes is executed, and the 1/0 can be resumed by reloading the saved
SCSI SCRIPTS pointer. Also, the message processing SCSI SCRIPTS could have a jump
command as its last command. The jump to address would be the entry point of the resume SCSI
SCRIPTS pointer so that the interrupted 1/0 can easily start up again .

. :•, '

50

10 Multi-Tasking 1/0 Using SCSI SCRIPTS™

In order to accommodate multi-tasking I/O entirely within SCSI SCRIPTS, some special · '.1

techniques are required. First, a standard SCSI SCRIPTS algorithm (the I/O descriptor) must be :
developed for each concurrent I/0 that is desired. I/O's can then then be linked together by having
the last SCSI SCRIPTS command of each scheduled I/O descriptor be a jump to the next scheduled
I/O descriptor. This last command address is effectively a mailbox for communication between the
host computer and the 53C700. It allows the external processor to patch the last command to be a
jump command if the next I/O descriptor has been scheduled by the logical I/O, or to be an _ ',
interrupt command if it has not been scheduled. The 53C700 will fetch a complete SCSI
SCRIPTS (all 8 bytes), blocking out the processor. The iAPX 286/386 can write 4 bytes,
blocking out the 53C700. The patch must be to the four byte opcode to allow a test/set capability.
Thus, the second four bytes must be the SCSI SCRIPTS jump address and the interrupt value. All
of the SCSI SCRIPTS algorithms are arranged in memory in a linked list, and to schedule an 1/0,!
the host processor must: : ~

• Find the address of the first open I/O descriptor (SCSI SCRIPTS program).
,·

'"

• Update the variable addresses of user and SCSI data within the I/O descriptor. ' ,

• Change the last command of the I/O descriptor (currently an interrupt command) to an
interrupt with the 1/0 descriptor I.D. as the last four bytes. This information at interrupt time
allows a fast identification of which I/O just completed when no other 1/0 is scheduled.

• Change the last command of the previous 1/0 descriptor (currently an interrupt command)
to a jump to the beginning of the newly scheduled 1/0 descriptor.

In this manner, a series of I/O's can be scheduled by the host processor. When an I/0 completes,
if there is no other scheduled 1/0, then the 53C700 will simply interrupt with the 1/0 descriptor
I.D. in the command register, otherwise it will jump to the next I/O that has been scheduled. The
processor knows that an 1/0 has completed when:

• An interrupt occurs for a given 1/0 because of an error.

• The address of the current SCSI SCRIPTS command being executed is outside the
address space of the 1/0 descriptor that is being tested for completion. Wrap around must be
considered in this test. A timer interrupt or a polling scheme can be used to trigger this test by the
host processor.

• The SCSI status byte has been written into a known address to flag that the 1/0 is
complete. A timer interrupt or a polling scheme can be used to trigger this test by the host
processor.

• Some type of hardware assist (wherein the SCSI status byte being written into a main
memory address causes an interrupt to the host processor) generates an interrupt at the completion
of the 1/0.

At the completion of an 1/0, the last SCSI SCRIPTS command of the 1/0 descriptor must be
changed to an interrupt command to initialize it for the next I/0 to be scheduled (the i.d. value is set
to an invalid value). The 1/0 driver must take care that no infinite loop is ever established with the
SCSI SCRIPTS jump command. Using this simple software mechanism, the 53C700 can be used
to schedule I/0 requests without the requirement for a sophisticated host bus adapter.

51

Using SCSI SCRIPTS to Implement Multi-Threaded 110

' 1/0 #'1

SCSI
SCRIPTS

Jump

1/0 #4

SCSI
SCRIPTS

Jump

110 #2

SCSI
SCRIPTS

Jump

1/0 #5

SCSI
SCRIPTS

Jump

1/0 #3

SCSI
SCRIPTS

1/0 #.6

SCSI
SCRIPTS

Interrupt

In this example, all six I/O's have been scheduled by patching the last SCSI SCRIPT in each
J/O descriptor to jump to the next scheduled 1/0 descriptor. When each 1/0 is complete, the
linked iist is simply broken by patching out the jump instruction to the next J/O descriptor.

52

Appendix 1

High Performance Considerations When Using
the NCR53C700 vs. the NCR53C90

The purpose of this section is to compare firmware required for the 53C700 and the 53C90 to
determine how much of a perfom1ance boost the 53C700 can offer at a system level (I/O's per·.,,
second). One micro second is the time assumed for execution of each external processor :
instruction.

Sample Input Data Structure
To perform an I/0, the following data structure could be expected at the SCSI H/W driver
level.

I I.D. message buffer address
Input message buffer address
SCSI command byte count
SCSI command buffer address
User data byte count 1

.. '' ,,,,.,.....)

User data buffer address 1
*
*

User data byte count 'n'
User data buffer address 'n'
SCSI status buffer address
Command Complete message address

........ ~.~

Description of the firmware required to initialize the SCSI SCSI SCRIPTSTM
for an 1/0 and the operations to start the 110.

Refer to the sample initiator SCSI SCSI SCRIPTS for more detail concerning the exact
sequence and the values to be updated. At the firmware level, the Initiator SCSI SCSI
SCRIPTS must be updated with the address and count for the various pieces of SCSI data and
user data required to perform an 1/0. In the sample initiator algorithm, there are fifteen values
to be updated. Basically, all the BLOCK MOVE commands must be altered. The firmware
sequence involved requires:

Load Address Of Data/Count In Main Memory
Load Value Desired From Main Memory
Move Value To SCSI SCRIPTS™ Offset

Assuming about three micro seconds for the above sequence, the total time is 45 micro
seconds. To execute the initiator algorithm requires approximately 30 SCSI SCRIPTS fetches
and decodes for a total of 15 micro seconds overhead. Assuming a disconnect from the target
after the SCSI command has been transferred across, there will be two interrupts to the host
processor. Each of these should take about 80 micro seconds for a total of 160 micro
seconds. Note that the SCSI portion of the interrupt service routine is only two or three lines
of code because both interrupting situations are under control of SCSI SCRIPTS and a read of
the interrupt code is all that is required. Combining all of these times:

45 + 15 + 160 = 220 micro seconds overhead.

53

53C90 Algorithm Description.

The firmware must begin the sequence by preloading the 53C90 FIFO with the SCSI I.D. · ' 1; >
mess.age followed by a ten byte SCSI command. The firmware sequence involved req1:1ires: . ,

("~i ~ --: J : ~ ',:. • • ' ' (; ~ ~ - • - ' . , ' ' ~ - ' ': " •• ~ ~ ~ l ~ ! ~: ~ "{l

Loop:·· R'ead Next"'B-yte r. · · ·'. ·:·;: .,(
~:' ~ w·rite 'NexCByte · · ~ ·· ;·. "· ·· ·,,: ::.,
"'": 'Ga. ·To, Loop If Count Not Zero . · .. :·:.;:-; Ji:!

;,: +. I I ' -; 'h {tU:

For eleyeii'b~tes(fthe above sequence would require about 33 micro seconds. On~e the.S~SI«: ·i

oper'atio1fhegins, the 53C90 requires the following overhead. (Note that each interrupt · 1 ,- .. _ :: • ·,)

requires some reads and processing to determine the exact cause of the chip's interrupt.)
Assume that an extra 20 micro seconds is required for each interrupt for a total of 100 (80 +
20) microseconds. The following sequence is required to perform a SCSI operation.

Send the SCSI command
Interrupt -- msg in phase
Interrupt -- msg accepted
Interrupt -- physical disc
Interrupt -- reselected
Initialize DMA Logic
Interrupt -- transfer complete
Interrupt -- completion seq
Interrupt -- msg accepted
Interrupt -- physical disc

033 micro seconds
100
100
100
100
025
100
100
100
100

Total time 85~ micro seconds

Conclusion:
The 53C700 requires about 25% of the normal firmware overhead associated with a 53C90, in
the simplest case. To further compare the chips, note that a SA VE DATA POINTER operation
in the 53C90 requires two processor interrupts (200 micro seconds) and only one interrupt
using the 53C700 chip (80-90 micro seconds). Each data segment (in a scatter gather
situation) requires 125 micro seconds on the 53C90 (one interrupt plus DMA initialize) but
only .5 micro seconds on the 53C700 (500 nano second instruction fetch). So, an 1/0 that
required four data segments in a scatter/gather mode would require 500 micro seconds on the
53C90 and 2 micro seconds on the 53C700 for user data transfer. Combining all this, a four
segment data transfer requires:

53C90

53C700

1233 micro seconds per 1/0

222 micro seconds per 1/0

Translating this improvement into I/O's per second, assume a 4k data transfer size, consisting
of four lk segments in host memory, a target overhead of one millisecond (excluding seek
times), and a 4 megabyte per second user data transfer rate on the SCSI bus.

Function

Data Transfer Time
Target overhead
Host Overhead

Total times

53C90

1.00 millisecond
1.00 millisecond
1.25 milliseconds

3.25 milliseconds

54

53C700

1.00 millisecond
1.00 millisecond
0.22 milliseconds

2.22 milliseconds

I/O's Per Second 307
(4k transfers/second) . . ·'

450

~-· · -· · , . -·· . . _ , __ : .. ::f_~;:;.,,·;n
In this projected environment, a system can increase its throughput rate by fifty percent simply
by using the 53C700 and reducing host computer firmware overhead. Assuming cu~ntly: :·: ,. ,, , .i
available buffered SCSI disk drives, the 53C700 eliminates the host computer firmware as th'e
high performance bottleneck. Note that a 125 microsecond delay between user da~ segµi.ents
may cause disk drives to slip a revolution, which implies a dramatic decrease in data
throughput. Toincrease,system level.performance, designers must patieJ!tly elimi,nate::f(ii9lb ;·
delay. The 53C700 can remove a large portion of the host overhead associated wi~.e~ch,J/Q.:,· '-'

I,_'

1' .'

''

• • ,, ' ~ . t
' I

j:

55

:: I I·~,<

. , .. ~,
.1!.' .\. 1

r;,1 ~~~~ .. ~ ~ ·: .. r ~·;\'.:~".
i ,(i ~~ ~ . ;!~~ : ~- f,

l.

" ''

i

.. ,,, . '

' ,.,

< "·!): ,t <. : ·', ";.

. (

,i ,.

;

f

,J'"' ',.J
.t.

"•
•'I

' ,

.. ·-

I,

;, '•~I! 4,

rJ

,

I I .. =i

'Jl j 1.1 ! .. :~'
(" ~,)I I

l-'1".

,,.,
' ~-

... ,\
'.'

:·I

~-': '); ' ' ~ ,.,.

) ..

J ~ '.

<.I,

,'f

'I

"'

." ... • •• : ,l

,. 1 • : : : ~ ~ '4

,,

. "

' ..

·r II

Appendix 2

53C700 System Bus Utilization

The 53C700 has been observed in the laboratory environment transfering 512 bytes of user data at
the rate of 6,666 transfers per second (150 micro seconds per I/0). The synchronous SCSI burst
rate is set at 5 Mbytes per second. This I/O's per second rate is a limit for the 53C700, because no
firmware intervention is required. A real concern is host bus utilization, or "Does the 53C700
affect host computer performance significantly?" This report will discuss how the host bus is used
when the SCSI bus is saturated at a block size of 512 bytes.

Host Bus Time To Fetch A SCSI SCRIPTS Command

80 nsec -- Arbitrate and bus settle
80 nsec -- Fetch 4 bytes
80 nsec -- Fetch 4 bytes
40 nsec -- Bus settle time

280 nsec -- Total time

To complete an 1/0 requires 14 SCSI SCRIPTS.

select with A TN
jump error, when not MSG_OUT
move, msg_buf, when MSG_OUT
jump error, when not CMD phase
move, cmd_buf, when CMD
jump error, when notDATA_IN
move, data_buf, when DAT A_IN
jump error, when not ST A TUS
move, status_buf, when ST A TUS
jump error, when not MSG_IN
move, msg_buf, when MSG_IN
clear ack
wait disconnect
int OxOOl
error:
int OxOff

The time required to execute them with no exception conditions is:

14 X 280 = 3.92 micro seconds

6,666 X 3.92 = 26.13 msec total fetch time per second

Which implies that fetch time is 2.6% of the available system bus time (one second).

56

Fetching data across the system ~~~ [;?~~: .. ~ ~ .. ~,: :. r . ·: . .,D ,,...

200 nsec -- I.D. msg fetch =:> 80 (data fetc;h)':" ·.i r . _

·--. r . ~ • . . +,'.:~. (~~itrafe}:.,
··'··-··· · · + 40 (settle) ,

360 nsec -- command.f~tcJi,:;::F>, 249. (th~._data~fettcflC1s~ ti 1_

.,(,-:'". ~~P. (arbitrate+ settle)
200 nsec -- Status byte fetch .. ::. ,..,, .. ,.,:_. .: . . -. .
2QQ nsec -- COMMAND COMPI:..ETE mes.i-8.ge. · '-i•> ..
960 nsec -- Total time per SCSI:·col11lnaR~

Total SCSI related data fetch tlme1s: - '-'. , f.,; • 1. ,; : /' T , • 1: ·-: "'
. (y... .J '(,

6,666 X 960 = 6.4 msec ~ ... ,.,•).'\ "\ ' '' ~ '•I• .:i '.~~'' ~.'l

which is o.64% of the available sysrehi time (one·secctndY:
' _... ..

Total overhead time is 0.64%,-i: ~~4% ::::; 3.24% p(.tl;le ~ 11-v~lM>l_e.

Effective user data transfer rate is 3.333Mbyt~~ ~~~-;~econ~ plus bus arbitration, etc. comes to 4.0
Mbytes per second. In a 50.0 Mbyte per second system,.)the user data consumes 8% of the
available bandwidth.i

So the total time to saturate th'e 1SCSI bus takes 1 i.:1%~of fhe~APX-286/386 system bus available
with a blocksize of 512 b)[tes per SCSI command:i ·U'sirt__g l~er--block sizes will lower SCSI
command overh~d (feyver commands per second); ·:an~ ·rpcte$e"tl)e-~ta transfer rates. For
example, a lk bloek:lrripll.es.250 ·micro seconds per'l/0(50 ..:..:.scSI'6vetheadas measured in a lab
environment and 200 for usef data), which is 4000 I/O's per second or 4 Mbytes per second. The
total 386 bus overhead is redqc..ffl. to.about 1.95% ofitJ1e ava~l?-bkHime (4000/6_666 X 3.24%). As
the block size increases, the overhead decreases' .. ,: ·i · · · ' , ..

. ' ~·

r '· : · .. , 1 : : • , ·.:..i

. "· . ':' ·;
,.,.' ~'

.:· ~.. " ; • · • f-.1- Hi»

. .
•,,:"'.. i.t..V•'

57

' ' ".

·.'

•i.

• ·~· ... rt) 1·:t~J_,."-;, . ..,r : .. ~01:.l~J :;~:L 1iitlEi ;J:);:
NCR MICROELECTRONICS ' ,..

163SAemplazaDrive ··-·- ,i ... -- .,, ..•. - : ,,.,.,,. :··r-
Coloi:adoJ"" gs, CO 809i6 ... ' ... " ~ .:, · · '· · -- _ _, 'r" ''.:..

(719) 596:-std. (SOO) 525-2252
'J ' ; •

NoRtiI~'wEsT-ERN · sAiEs .;oFFicF;' .. ~ ,, "!';;
...... ,. Suite209

3130 De La Cruz Boulevard , '; '> · ·; · · .. .:i.-;P ' - - :

Santa Cl3i'a:C.At 95054~2410- · .. ·~· /, .1: ~ ''- /i 1 · >,' ~~~-~':
l(408J'7!7"6575"''.~ ')-. __ · .. :,,, !~:--.,\ ,. :;,fiCJ.'.::-:

NORTH CENTRAL SALES OFFIG,f; 1 · ·:; '""/, !: ;.i :!: : ; <: .. : ~. ; .rr :·
Suite 4050

• I ~ ..
South Barrington Office Center

33 West Higgins Road
South J~_ar,-ington, IL 60010 (312)426-4600'' ·· ~-,r,, ,;•i;~··.:-.,:-.f-_,;.,,.,_·l!'..;i~;/

·ii-fblt'l'H ··E1A'.S'fE'RN SALES' OFFICE·•:_ .. : , : ·;m:J 'J,;,';,i .. ~J'/O ~i;,:;T
Suite 4000

· r.: ,;;_;.~(;~r . .-i··1; 1·.t. .. '.· -500WestCummingsPark-
"::· : ··:1 ~< •• " '· -' ': ... ':;' -Woburn, MA 01801-6336

(617) 933-0778

•·. '"l

,,1 ' \ . ~ ' .j l ' •

SOUTH CENTRAL SALES OFFICE
Suite 100 ~ · ..

400 Chisholm Place
Plano, TX 75075

(214) 578-9113

SOUTH EASTERN SALES OFFICE
Suite 250

700 Old Roswell Lake Parkway
Roswell, GA 30076

(404) 587-3136

EUROPEAN SALES OFFICE
NCRGMBH

Gustav-Heinemann-Ring 133
8000 Munchen 83

West Germany
(49) 89-632-202

ASIA/PACIFIC
2501 Vicwood Plaza
199 Des VoeuxRoad

Central
Hong Kong

852-5-859-6888

r:; ;/' I;::,~~ 'J. ({ ~~·, I ,~i\•,/i.

.. 1. ,. 1<). '.(·;~d .l!J.. ;;_;.

• ' ._ \ <' ' ~·I J

