National Analog and Interface Products Databook

Amplifiers

Audio, Video, Wireless
Data Conversion
Interface
Power Management
Special Functions
Analog Microcontrollers

Analog and Interface Products DATABOOK

2001 Edition
Amplifiers - General Purpose, Low-Power and Buffers 1
Amplifiers - High Speed
Analog Microcontrollers3
Audio
Comparators5
Converters - A/D, D/A, and6
Data Acquisition Systems
Flat Panel Display Circuits7
Interface - Data Transmission Circuits
Interface - LVDS Circuits
Interface - Serial Digital
Special Functions
Temperature Sensors and System Hardware Monitors
Video Circuits
Voltage Control and Supervision Products
Voltage References
Voltage Regulators - Linear
Voltage Regulators - Low-Dropout
Voltage Regulators - Switching andSIMPLE SWITCHER
Voltage Regulators and Converters -Switched Capacitor
Wireless
Mil-AeroAppendices

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

AirShare ${ }^{\text {® }}$	COP8 ${ }^{\text {M }}$	PHYTER ${ }^{\text {® }}$
AT/LANTIC®	DNR ${ }^{\text {® }}$	Silicon Dust ${ }^{\text {TM }}$
BI-FET ${ }^{\text {® }}$	Geode ${ }^{\text {TM }}$	SIMPLE SWITCHER ${ }^{\text {® }}$
Boomer ${ }^{\text {® }}$	Mediamatics ${ }^{\text {TM }}$	Stylized ${ }^{\otimes}{ }^{\otimes}$ (National Worldmark)
COMBO ${ }^{\text {® }}$	National Semiconductor®	Virtual System Architecture ${ }^{\text {® }}$
Comlinear ${ }^{(8)}$	Navigator ${ }^{\text {® }}$	VSA ${ }^{\text {TM }}$
CompactRISC ${ }^{\text {TM }}$	Overture ${ }^{\text {® }}$	WebPAD ${ }^{\text {TM }}$

AT® is a registered trademark of International Business Machines Corporation.
Dolby ${ }^{\circledR}$ is a registered trademark of Dolby Labs.
IC® is a registered trademark of the Philips Corporation
iceMASTER ${ }^{\text {TM }}$ is a trademark of MetaLink Corporation.
K 6^{TM} is a trademark of Advanced Micro Devices, Inc.
Lap-Link ${ }^{\circledR}$ is a registered trademark of Travelling Software.
LocalTalk ${ }^{T M}$ is a trademark of Apple Computer, Inc.
LT^{\circledR} is a registered trademark of Linear Technology Corporation.
Microsoft ${ }^{\text {TM }}$ is a trademark of the Microsoft Corporation.
PAL ${ }^{\oplus}$ is a registered trademark of and used under license from Advanced Micro Devices, Inc.

PC-AT ${ }^{\circledR}$ and $\mathrm{PC}-\mathrm{XT}^{\circledR}$ are registered trademarks of International Business Machines Corporation
PC^{\circledR} is a registered trademark of International Business Machines Corporation.
Pentium II® is a registered trademark of Intel Corporation.
Pentium ${ }^{\text {TM }}$ is a trademark of Intel Corporation.
PowerPC ${ }^{\circledR}$ is a registered trademark of IBM.
SMBus ${ }^{\text {M }}$ is a trademark of Intel Corporation.
$\mathrm{SPl}^{T M}$ is a trademark of Motorola, Inc.
Teflon ${ }^{\circledR}$ is a registered trademark of DuPont.
Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation. Z 80^{TM} is a trademark of Zilog Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 Fax: 1-800-737-7018

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction

National continues its leadership in both Analog and Interface with innovations in performance, packaging, and integration. We are pleased to bring you highlights of all our Analog and Interface products in this databook.
Since the late 1960s, when our first operational amplifiers and regulators were developed, National has been a leading manufacturer of analog integrated circuits. Interface products, beginning with line drivers and receivers, were added in 1973. From the first monolithic regulator, the LM100, to the new chip-scale-packaged product families, many of these products have been "firsts" in performance and function.
The 2001 Analog/Interface Databook contains abbreviated datasheets for thousands of Analog and Interface products. Providing an overview of product capabilities and applications, these short datasheets are the first few pages extracted from the complete document. Selection guides give additional assistance in selecting the products needed to meet the system requirements.
A CD-ROM accompanies this databook, containing the full datasheet for each product. In addition, the CD-ROM includes application notes, information on MilitaryAerospace products, and complete mechanical specifications for packages.
Information on all National products, including those released since this publication, can be found on the National web site at www.national.com.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obsolete	Not In Production	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Introduction. V
Product Status Definitions. vi
Alphanumeric Index xxiii
Section 1 Amplifiers - General Purpose, Low-Power and Buffers
Low Power/General Purpose Operational Amplifiers Selection Guide 1-5
Operational Amplifier Definition Of Terms 1-14
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers 1-15
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. 1-18
LF411 Low Offset, Low Drift JFET Input Operational Amplifier. 1-21
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier. 1-24
LF442 Dual Low Power JFET Input Operational Amplifier 1-28
LF444 Quad Low Power JFET Input Operational Amplifier 1-31
LM10 Operational Amplifier and Voltage Reference. 1-34
LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers. 1-38
LM101A/LM201A/LM301A Operational Amplifiers. 1-41
LM118/LM218/LM318 Operational Amplifiers. 1-44
LM12CL 80W Operational Amplifier 1-46
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers. 1-48
LM1458/LM1558 Dual Operational Amplifier. 1-53
LM146/LM346 Programmable Quad Operational Amplifiers. 1-56
LM148/LM248/LM348 Quad 741 Op Amps LM149 Wide Band Decompensated
$\left(A_{V(\text { MiN })}=5\right)$. 1-59
LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers 1-62
LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers. 1-67
LM392 Low Power Operational Amplifier/Voltage Comparator. 1-70
LM4250 Programmable Operational Amplifier $1-73$
LM611 Operational Amplifier and Adjustable Reference. 1-78
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference. 1-82
LM6132/LM6134 Dual and Quad Low Power 10 MHz Rail-to-Rail I/O Operational Amplifiers. 1-87
LM614 Quad Operational Amplifier and Adjustable Reference. 1-90
LM6142 and LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-94
LM6152/LM6154 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers. 1-97
LM6118/LM6218 Fast Settling Dual Operational Amplifiers 1-100
LM675 Power Operational Amplifier 1-103
LM725 Operational Amplifier. 1-105
LM7301 Low Power, 4 MHz GBW, Rail-to-Rail Input-Output Operational Amplifier in TinyPak Package. 1-108
LM741 Operational Amplifier. 1-113
LM8261 Single RRIO, High Output Current \& Unlimited Cap Load Op Amp in SOT23-5. 1-117

Table of Contents
 (Continued)

LM833 Dual Audio Operational Amplifier. 1-122
LM837 Low Noise Quad Operational Amplifier. 1-125
LMC2001 High Precision, 6MHz Rail-To-Rail Output Operational Amplifier. 1-128
LMC6001 Ultra Ultra-Low Input Current Amplifier. 1-131
LMC6022 Low Power CMOS Dual Operational Amplifier. 1-136
LMC6024 Low Power CMOS Quad Operational Amplifier. 1-140
LMC6032 CMOS Dual Operational Amplifier. 1-144
LMC6034 CMOS Quad Operational Amplifier. 1-148
LMC6035/LMC6036 Low Power 2.7V Single Supply CMOS Operational Amplifiers 1-152
LMC6041 CMOS Single Micropower Operational Amplifier. 1-156
LMC6042 CMOS Dual Micropower Operational Amplifier. 1-160
LMC6044 CMOS Quad Micropower Operational Amplifier. 1-164
LMC6061 Precision CMOS Single Micropower Operational Amplifier. 1-168
LMC6062 Precision CMOS Dual Micropower Operational Amplifier. 1-172
LMC6064 Precision CMOS Quad Micropower Operational Amplifier. 1-176
LMC6081 Precision CMOS Single Operational Amplifier 1-180
LMC6082 Precision CMOS Dual Operational Amplifier. 1-184
LMC6084 Precision CMOS Quad Operational Amplifier. 1-188
LMC6442 Dual Micropower Rail-to-Rail Output Single Supply Operational Amplifier. 1-192
LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier. 1-197
LMC6482 CMOS Dual Rail-To-Rail Input and Output Operational Amplifier 1-202
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 1-207
LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier. 1-212
LMC6572/LMC6574 Dual and Quad Low Voltage (2.7V and 3V) Operational Amplifier. 1-216
LMC660 CMOS Quad Operational Amplifier 1-220
LMC662 CMOS Dual Operational Amplifier. 1-224
LMC7101 Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output. 1-228
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output. 1-234
LMC8101 Rail-to-Rail Input and Output, 2.7V Op Amp in micro SMD package with Shutdown 1-240
LMV101/102/105/110 Fixed-Gain Amplifiers. 1-246
LMV111 Operational Amplifier with Bias Network. 1-249
LMV321/LMV358/LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 1-252
LMV710 and LMV711 Low Power, RRIO Operational Amplifiers with High Output Current Drive and Shutdown Option. 1-256
LMV721/LMV722 10MHz, Low Noise, Low Voltage, and Low Power Operational Amplifier. 1-260
LMV751 Low Noise, Low Vos, Single Op Amp 1-264
LMV821 Single/LMV822 Dual/LMV824 Quad Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps. 1-267

Table of Contents (coninues)

LMV921/LMV922/LMV924 Single, Dual and Quad 1.8V, 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output. 1-272
LP324/LP2902 Micropower Quad Operational Amplifier 1-278
LPC660 Low Power CMOS Quad Operational Amplifier. 1-281
LPC661 Low Power CMOS Operational Amplifier. 1-285
LPC662 Low Power CMOS Dual Operational Amplifier 1-289
LPV321 Single/LPV358 Dual/LPV324 Quad General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers. 1-293
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier. 1-297
Section 2 Amplifiers - High Speed
High Speed Amplifiers/Buffers/Multiplexers/Variable Gain Amplifiers Selection Guide 2-4
High Speed Op Amp Definition Of Terms 2-13
CLC111 Ultra-High Slew-Rate, Closed-Loop Buffer 2-15
CLC114 Quad, Low-Power Video Buffer. 2-17
CLC400 Fast Settling, Wideband Low-Gain Monolithic Op Amp. 2-19
CLC401 Fast Settling, Wideband High-Gain Monolithic Op Amp 2-21
CLC404 Wideband, High-Slew Rate, Monolithic Op Amp 2-23
CLC405 Low-Cost, Low-Power, 110MHz Op Amp with Disable 2-25
CLC406 Wideband, Low-Power Monolithic Op Amp. 2-27
CLC409 Very Wideband, Low Distortion Monolithic Op Amp 2-29
CLC410 Fast Settling, Video Op Amp with Disable. 2-31
CLC411 High-Speed Video Op Amp with Disable. 2-33
CLC412 Dual Wideband Video Op Amp 2-35
CLC414 Quad, Low-Power Monolithic Op Amp. 2-37
CLC415 Quad, Wideband Monolithic Op Amp 2-39
CLC420 High-Speed, Voltage Feedback Op Amp. 2-41
CLC425 Ultra Low Noise Wideband Op Amp. 2-43
CLC426 Wideband, Low-Noise, Voltage Feedback Op Amp. 2-45
CLC428 Dual Wideband, Low-Noise, Voltage Feedback Op Amp 2-47
CLC430 General Purpose 100 MHz Op Amp with Disable 2-49
CLC431/432 Dual Wideband Monolithic Op Amp with Disable 2-51
CLC440 High-Speed, Low-Power, Voltage Feedback Op Amp 2-54
CLC446 400MHz, 50mW Current-Feedback Op Amp. 2-56
CLC449 1.1GHz Ultra-Wideband Monolithic Op Amp 2-58
CLC450 Single Supply, Low-Power, High Output, Current Feedback Amplifier. 2-60
CLC452 Single Supply, Low-Power, High Output, Current Feedback Amplifier. 2-62
CLC501 High-Speed, Output Clamping Op Amp 2-64
CLC502 Clamping, Low-Gain Op Amp with Fast 14-bit Settling. 2-66
CLC505 High-Speed, Programmable-Supply Current, Monolithic Op Amp. 2-67
CLC520 Amplifier with Voltage Controlled Gain, AGC +Amp +. 2-68
CLC522 Wideband Variable-Gain Amplifier 2-70
CLC5506 Gain Trim Amplifier (GTA) 2-72

Table of Contents (Coninuea)

CLC5509 Ultra-Low Noise Preamplifier 2-75
CLC5523 Low-Power, Variable Gain Amplifier. 2-77
CLC5526 Digital Variable Gain Amplifier (DVGA) 2-79
CLC5602 Dual, High Output, Video Amplifier. 2-81
CLC5612 Dual, High Output, Programmable Gain Buffer. 2-83
CLC5622 Dual, High Output, Video Amplifier. 2-85
CLC5623 Triple, High Output, Video Amplifier 2-87
CLC5632 Dual, High Output, Programmable Gain Buffer. 2-89
CLC5633 Triple, High Output, Programmable Gain Buffer. 2-91
CLC5644 Low-Power, Low-Cost, Quad Operational Amplifier. 2-93
CLC5654 Very High-Speed, Low-Cost, Quad Operational Amplifier. 2-95
CLC5665 Low Distortion Amplifier with Disable. 2-97
CLC5801 High Speed Low Noise Voltage Feedback Amplifier. 2-99
CLC5802 Dual Low-Noise, Voltage Feedback Op Amp. 2-101
LM6121/LM6221/LM6321 High Speed Buffer. 2-103
LM6161/LM6261/LM6361 High Speed Operational Amplifier. 2-105
LM6162 High Speed Operational Amplifier. 2-106
LM6164/LM6264/LM6364 High Speed Operational Amplifier. 2-107
LM6165/LM6265/LM6365 High Speed Operational Amplifier. 2-108
LM6171 High Speed Low Power Low Distortion Voltage Feedback Amplifier. 2-109
LM6172 Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers. 2-111
LM6181 $100 \mathrm{~mA}, 100 \mathrm{MHz}$ Current Feedback Amplifier 2-113
LM6182 Dual 100 mA Output, 100 MHz Current Feedback Amplifier. 2-114
LM7121 235 MHz Tiny Low Power Voltage Feedback Amplifier. 2-116
LM7131 Tiny High Speed Single Supply Operational Amplifier 2-117
LM7171 Very High Speed, High Output Current, Voltage Feedback Amplifier. 2-118
Section 3 Analog Microcontrollers
The 8-Bit COP8 Family: Optimized for Value 3-4
ROM Products. 3-9
COP912C 8-Bit Microcontroller. 3-10
COP820C/840C Family 8-Bit CMOS ROM Based Microcontrollers with 1 k or 2 k Memory 3-12
COP680C/COP681C/COP682C/COP880C/COP881C/ COP882C/COP980C/COP981C/COP982C Microcontrollers 3-14
COP820CJ/COP840CJ Family 8-Bit CMOS ROM Based Microcontrollers with 1 k or 2k Memory, Comparator and Brown Out Detector. 3-17
COP688CL/COP684CL, COP888CL/COP884CL, COP988CL/COP984CL 8-Bit Microcontroller. 3-20
COP8SE Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4k Memory and 128 Bytes EERAM. 3-24
COP888FH 8-Bit CMOS ROM Based Microcontrollers with 12k Memory, Comparators, USART and Hardware Multiply/Divide. 3-28

Table of Contents
 (Continued)

COP888xG/CS Family 8-Bit CMOS ROM Based Microcontrollers with 4 k to 24 k
Memory, Comparators and USART. 3-32
COP884BC/COP885BC 8-Bit CMOS ROM Based Microcontrollers with 2 k Memory,
Comparators, and CAN Interface. 3-36
COP888EB 8-Bit CMOS ROM Based Microcontrollers with 8 k Memory, CAN
Interface, 8 -Bit A/D, and USART. 3-39
COP888CF 8-Bit CMOS ROM Based Microcontrollers with 4 k Memory and A/D
Converter. 3-43
COP888GD 8-Bit CMOS ROM Based Microcontrollers with 16k Memory and 8-Channel A/D. 3-47
COP8ACC Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4k or 16k Memory and High Resolution A/D. $3-50$
COP888EK 8-Bit CMOS ROM Based Microcontrollers with 8k Memory, Comparator, and Single-slope A/D Capability. 3-53
COP888GW 8-Bit Microcontroller with Pulse Train Generators and Capture Modules. 3-57
OTP Products 3-59
COP87LxxCJ/RJ Family 8-Bit CMOS OTP Microcontrollers with 4k or 32k Memory and Comparator. 3-60
COP8SA Family 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller with 1 k to 4 k Memory, Power On Reset, and Very Small Packaging. 3-63
COP87L88CL 8-Bit One-Time Programmable (OTP) Microcontroller. 3-68
COP8SG Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 8 k to 32 k Memory, Two Comparators and USART. 3-72
COP87L88FH 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, USART and Hardware Multiply/Divide. 3-78
COP87L84BC 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, and CAN Interface. 3-82
COP87L88EB/RB Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8 -Bit A/D, and USART. 3-84
COP87L88CF 8-Bit CMOS OTP Microcontrollers with 16k Memory and A/D Converter. 3-88
COP87L88GD/RD Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory and 8-Channel A/D with Prescaler. 3-92
COP87L88EK/RK Family 8-Bit CMOS OTP Microcontrollers with 8 k or 32 k Memory, Comparator, and Single-slope A/D Capability. 3-95
COP87L88RW 8-Bit One-Time Programmable (OTP) Microcontroller with Pulse Train Generators and Capture Modules. 3-99
Flash Products 3-102
COP8SBR9/COP8SCR9/COP8SDR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM and Brownout. 3-103
Section 4 Audio
Audio Power Amplifiers. 4-5
LM1875 20W Audio Power Amplifier. 4-6
LM1876 Overture Audio Power Amplifier Series Dual 20W Audio Power Amplifier with Mute and Standby Modes. 4-7

Table of Contents (continues)

LM1877 Dual Audio Power Amplifier. 4-8
LM2876 Overture Audio Power Amplifier Series High-Performance 40W Audio Power Amplifier w/Mute. 4-10
LM380 2.5W Audio Power Amplifier 4-12
LM384 5W Audio Power Amplifier. 4-14
LM386 Low Voltage Audio Power Amplifier. 4-15
LM3875 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier. 4-16
LM3876 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier w/Mute 4-18
LM3886 Overture Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier w/Mute 4-20
LM4651 \& LM4652 Overture Audio Power Amplifier 170W Class D Audio Power Amplifier Solution. 4-22
LM4663 Boomer 2 Watt Stereo Class D Audio Power Amplifier with Stereo Headphone Amplifier. 4-23
LM4700 Overture Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes. 4-24
LM4701 Overture Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes. 4-25
LM4752 Stereo 11W Audio Power Amplifier 4-26
LM4753 Dual 10W Audio Power Amplifier w/Mute, Standby and Volume Control. 4-27
LM4755 Stereo 11W Audio Power Amplifier with Mute. 4-29
LM4765 Overture Audio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes. 4-30
LM4766 Overture Audio Power Amplifier Series Dual 40W Audio Power Amplifier with Mute. 4-31
LM4808 Boomer Dual 105 mW Headphone Amplifier. 4-32
LM4830 Two-Way Audio Amplification System with Volume Control 4-33
LM4831 Boomer Multimedia Computer Audio Chip 4-35
LM4832 Boomer Digitally Controlled Tone and Volume Circuit with Stereo Audio Power Amplifier, Microphone Preamp Stage and National 3D Sound. 4-36
LM4834 Boomer 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp 4-37
LM4835 Boomer Stereo 2W Audio Power Amplifiers with DC Volume Control and Selectable Gain. 4-38
LM4836 Boomer Stereo 2W Audio Power Amplifiers with DC Volume Control, Bass Boost, and Input Mux 4-39
LM4850 Boomer Mono 1.5 W / Stereo 300 mW Power Amplifier. 4-40
LM4860 Boomer Series 1W Audio Power Amplifier with Shutdown Mode. 4-42
LM4861 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-43
LM4862 Boomer 675 mW Audio Power Amplifier with Shutdown Mode 4-44
LM4863 Boomer Dual 2.2W Audio Amplifier Plus Stereo Headphone Function. 4-45
LM4864 Boomer 300 mW Audio Power Amplifier with Shutdown Mode 4-47

Table of Contents ${ }_{\text {(continued) }}$

LM4865 Boomer 750 mW Audio Power Amplifier with DC Volume Control and Headphone Switch. 4-48
LM4870 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-49
LM4871 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-50
LM4872 Boomer 1 Watt Audio Power Amplifier in micro SMD package. 4-51
LM4873 Boomer Dual 2.1W Audio Amplifier Plus Stereo Headphone Function. 4-52
LM4876 Boomer 1.1W Audio Power Amplifier with Logic Low Shutdown 4-54
LM4877 Boomer 1 Watt Audio Power Amplifier in micro SMD package with Shutdown Logic Low. 4-55
LM4880 Boomer Dual 250 mW Audio Power Amplifier with Shutdown Mode. 4-56
LM4881 Boomer Dual 200 mW Headphone Amplifier with Shutdown Mode 4-58
LM4882 Boomer 250mW Audio Power Amplifier with Shutdown Mode 4-59
LM4890 Boomer 1 Watt Audio Power Amplifier 4-60
LM675 Power Operational Amplifier. 4-62
Audio Controls and Signal Processing 4-63
LM1036 Dual DC Operated Tone/Volume/Balance Circuit. 4-64
LM1971Overture Audio Attenuator Series Digitally Controlled 62 dB Audio Attenuator with/Mute. 4-65
LM1972 μ Pot 2-Channel 78dB Audio Attenuator with Mute 4-67
LM1973 μ Pot3-Channel 76dB Audio Attenuator with Mute. 4-68
LM3914 Dot/Bar Display Driver 4-69
LM3915 Dot/Bar Display Driver. 4-71
LM3916 Dot/Bar Display Driver 4-73
LM4610 Dual DC Operated Tone/Volume/Balance Circuit with National 3-D Sound. 4-75
LM565/LM565C Phase Locked Loop. 4-76
LM567/LM567C Tone Decoder. 4-77
LMC1982 Digitally-Controlled Stereo Tone and Volume Circuit with Two Selectable Stereo Inputs. 4-78
LMC1983 Digitally-Controlled Stereo Tone and Volume Circuit with Three Selectable Stereo Inputs 4-79
LMC567 Low Power Tone Decoder 4-80
LMC568 Low Power Phase-Locked Loop 4-81
LF411 Low Offset, Low Drift JFET Input Operational Amplifier. 4-82
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier 4-83
LM6142 and LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers. 4-85
LM833 Dual Audio Operational Amplifier. 4-86
LM837 Low Noise Quad Operational Amplifier. 4-87
LM1894 Dynamic Noise Reduction System DNR. 4-88
Audio Codecs 4-89
LM4540 AC '97 Codec with National 3D Sound. 4-90
LM4543 AC '97 Codec with National 3D Sound. 4-91
LM4545 AC '97 Codec with Stereo Headphone Amplifier and National 3D Sound. 4-92
LM4546 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound 4-93

Table of Contents (coninues)

LM4548 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound. 4-94
LM4549 AC '97 Rev 2.1 Codec with Sample Rate Conversion and National 3D Sound. 4-95
Section 5 Comparators
Voltage Comparators Selection Guide. 5-3
Voltage Comparator Definition Of Terms. 5-5
LM111/LM211/LM311 Voltage Comparator 5-6
LM119/LM219/LM319 High Speed Dual Comparator. 5-10
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators. 5-13
LM160/LM360 High Speed Differential Comparator. 5-17
LM161/LM361 High Speed Differential Comparators 5-20
LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators 5-23
LM392 Low Power Operational Amplifier/Voltage Comparator. 5-28
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference. 5-31
LM6511 180 ns 3V Comparator. 5-36
LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output 5-38
LMC6772 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Open Drain Output 5-42
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input and Push-Pull Output. 5-46
LMC7215/LMC7225 MicroPower, Rail-to-Rail CMOS Comparators with Push-Pull/Open-Drain Outputs and TinyPak Package. 5-50
LMC7221 Tiny CMOS Comparator with Rail-To-Rail Input and Open Drain Output. 5-53
LMV331 Single / LMV393 Dual / LMV339 Quad General Purpose, Low Voltage, TinyPak Comparators 5-57
LMV7219 7 nsec, 2.7V to 5V Comparator with Rail-to-Rail Output. 5-60
LP339 Ultra-Low Power Quad Comparator. 5-65
Section 6 Converters - A/D, D/A, and Data Acquisition Systems
A/D Converter Selection Guide. 6-4
D/A Converter Selection Guide 6-6
Data Acquisition System Selection Guide 6-7
A/D Converter Definition Of Terms 6-8
D/A Converter Definition Of Terms 6-10
ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μ P Compatible A/D Converters 6-11
ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function. 6-13
ADC08061/ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer. 6-15
ADC0808/ADC0809 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with 8-Channel Multiplexer. 6-18
ADC08100 8-Bit, 100 MSPS, $1.3 \mathrm{~mW} / \mathrm{MSPS}$ A/D Converter 6-20
ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function 6-23

Table of Contents (coninues)

ADC0816/ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer. 6-25
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference. 6-27
ADC0820 8-Bit High Speed $\mu \mathrm{P}$ Compatible A/D Converter with Track/Hold Function 6-29
ADC0831/ADC0832/ADC0834/ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 6-31
ADC08351 8-Bit, 42 MSPS, 40 mW A/D Converter. 6-34
ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options. 6-37
ADC08831/ADC08832 8-Bit Serial I/O CMOS A/D Converters with Multiplexer and Sample/Hold Function. 6-39
ADC1001 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter 6-41
ADC10030 10-Bit, 30 MSPS, 125 mW A/D Converter with Internal Sample and Hold. 6-42
ADC1005 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter 6-46
ADC10061/ADC10062/ADC10064 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-47
ADC10154/ADC10158 10-Bit Plus Sign 4μ s ADCs with 4- or 8-Channel MUX, Track/Hold and Reference. 6-50
ADC10221 10-Bit, 15 MSPS, 98 mW A/D Converter with Internal Sample and Hold 6-52
ADC10321 10-Bit, 20 MSPS, 98 mW A/D Converter with Internal Sample and Hold 6-56
ADC10461/ADC10462/ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-60
ADC1061 10-Bit High-Speed μ P-Compatible A/D Converter with Track/Hold Function. 6-62
ADC10662/ADC10664 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-64
ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference. 6-67
ADC1173 8-Bit, 3-Volt, 15 MSPS, 33 mW A/D Converter 6-70
ADC1175 8-Bit, $20 \mathrm{MHz}, 60 \mathrm{~mW}$ A/D Converter 6-73
ADC1175-50 8-Bit, 50 MSPS, 125 mW A/D Converter. 6-76
ADC12H030/ADC12H032/ADC12H034/ADC12H038, ADC12030/ADC12032/ADC12034/ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-80
ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-84
ADC12041 12-Bit Plus Sign 216 kHz Sampling Analog-to-Digital Converter. 6-88
ADC12048 12-Bit Plus Sign 216 kHz 8-Channel Sampling Analog-to-Digital Converter. 6-91
ADC12081 12-Bit, 5 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-95
ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-99
ADC12181 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-103
ADC12191 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-107
ADC12281 12-Bit, 20 MSPS Single-Ended Input, Pipelined A/D Converter. 6-111

Table of Contents (continues)

ADC14061 Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter 6-115
ADC14071 14-Bit, 7 MSPS, 380 mW A/D Converter. 6-120
ADC14161 Low-Distortion, Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter. 6-124
ADC16061 Self-Calibrating 16-Bit, 2.5 MSPS, 390 mW A/D Converter. 6-129
ADCV0831 8 Bit Serial I/O Low Voltage Low Power ADC with Auto Shutdown in a SOT Package. 6-134
CLC5956 12-bit, 65 MSPS Broadband Monolithic A/D Converter. 6-135
CLC5958 14-Bit, 52 MSPS A/D Converter 6-137
DAC0800/DAC0802 8-Bit Digital-to-Analog Converters. 6-139
DAC0808 8-Bit D/A Converter. 6-140
DAC0830/DAC0832 8-Bit μ P Compatible, Double-Buffered D to A Converters. 6-142
LM12454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration 6-144
LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration. 6-147
Section 7 Flat Panel Display Circuits
Flat Panel Display (FPD) Link and LDI Selection Guide 7-3
DS90C363A/DS90CF363A +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz. 7-5
DS90CF363 +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz. 7-6
DS90C363/DS90CF364 +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-65 MHz. 7-7
DS90C383A/DS90CF383A +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz 7-9
DS90CF383 +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link—65 MHz. 7-10
DS90C383/DS90CF384 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link-65 MHz. 7-11
DS90CF384A/DS90CF364A +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-65 MHz. 7-13
DS90C385/DS90C365 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-85 MHz, +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-85 MHz 7-14
DS90CF386/DS90CF366 +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link- 85 MHz , +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link—85 MHz. 7-15
DS90C387/DS90CF388 Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA 7-16
DS90C387A/DS90CF388A Dual Pixel LVDS Display Interface / FPD-Link. 7-18
DS90CF561/DS90CF562 LVDS 18-Bit Color Flat Panel Display (FPD) Link. 7-20
DS90CR561/DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link. 7-22
DS90CF563/DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link- 65 MHz 7-24

Table of Contents
 (Continued)

DS90CF581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link. 7-26
DS90CR581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link. 7-28
DS90CF583/DS90CF584 LVDS 24-Bit Color Flat Panel Display (FPD) Link- 65 MHz 7-30
DS90CR583/DS90CR584 LVDS 24-Bit Color Flat Panel Display (FPD) Link— 65 MHz 7-32
FPD85310 Panel Timing Controller. 7-34
FPD87310 Universal Interface XGA Panel Timing Controller with RSDS (Reduced Swing Differential Signaling) and FPD-Link. 7-35
LMC6009 9 Channel Buffer Amplifier for TFT-LCD 7-36
Section 8 Interface - Data Transmission Circuits
Interface-Data Transmission Selection Guide 8-5
TIA/EIA-232 (RS-232)
DS1488 Quad Line Driver 8-9
DS14C88 Quad CMOS Line Driver. 8-10
DS1489/DS1489A Quad Line Receiver. 8-11
DS14C89A Quad CMOS Receiver. 8-13
DS75150 Dual Line Driver. 8-14
DS75154 Quad Line Receiver. 8-15
DS9627 Dual Line Receiver 8-16
DS14C232 Low Power +5V Powered TIA/EIA-232 Dual Driver/Receiver. 8-17
DS14C238 Single Supply TIA/EIA-232 4×4 Driver/Receiver. 8-18
DS14C241 Single Supply TIA/EIA-232 4×5 Driver/Receiver. 8-19
DS14C335 +3.3V Supply TIA/EIA-232 3×5 Driver/Receiver. 8-20
DS14C535 +5V Supply EIA/TIA-232 3×5 Driver/Receiver. 8-21
DS14185 EIA/TIA-232 3 Driver x 5 Receiver. 8-22
DS14196 EIA/TIA-232 5 Driver x 3 Receiver. 8-23
DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver 8-24
TIA/EIA-422/423 (RS-422/423)
DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE Outputs. 8-25
DS26C31T/DS26C31M CMOS Quad TRI-STATE Differential Line Driver. 8-26
DS26LV31T 3V Enhanced CMOS Quad Differential Line Driver. 8-27
DS26F31M Quad High Speed Differential Line Drivers. 8-28
DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver. 8-29
DS26C32AT/DS26C32AM Quad Differential Line Receiver. 8-30
DS26LV32AT 3V Enhanced CMOS Quad Differential Line Receiver. 8-31
DS26F32M Quad Differential Line Receivers. 8-32
DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers 8-33
DS34C86T Quad CMOS Differential Line Receiver 8-35
DS34LV86T 3V Enhanced CMOS Quad Differential Line Receiver. 8-36
DS3486 Quad RS-422, RS-423 Line Receiver. 8-37

Table of Contents (coninues)

DS34C87T CMOS Quad TRI-STATE Differential Line Driver 8-38
DS34LV87T Enhanced CMOS Quad Differential Line Driver. 8-39
DS3487 Quad TRI-STATE Line Driver. 8-40
DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver. 8-41
DS78C120 Dual CMOS Compatible Differential Line Receiver 8-42
DS78LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe) 8-43
DS8921/DS8921A/DS8921AT Differential Line Driver and Receiver Pair 8-44
DS89C21 Differential CMOS Line Driver and Receiver Pair. 8-45
DS8922/DS8922A/DS8923A TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pairs 8-46
DS8925 LocalTalk Dual Driver/Triple Receiver 8-48
DS89C386 Twelve Channel CMOS Differential Line Receiver 8-49
DS89C387 Twelve Channel CMOS Differential Line Driver. 8-50
DS9636A RS-423 Dual Programmable Slew Rate Line Driver 8-51
DS9637A Dual Differential Line Receiver 8-52
DS9638 RS-422 Dual High Speed Differential Line Driver. 8-53
Backplane Tranceiver Logic (BTL)DS3883A BTL 9-Bit Data Transceiver8-54
DS3884A BTL Handshake Transceiver 8-56
DS3886A BTL 9-Bit Latching Data Transceiver 8-58
DS38C86A CMOS BTL 9-Bit Latching Data Transceiver. 8-60
DS3893A BTL TURBOTRANSCEIVER 8-62
DS3896/DS3897 BTL Trapezoidal Transceivers 8-63
General Purpose Drivers/Receivers DS75110A Dual Line Drivers. 8-64
DS7830 Dual Differential Line Driver. 8-65
DS7831/DS8832 Dual TRI-STATE Line Driver 8-66
DS1603 TRI-STATE Dual Receiver 8-68
DS3650 Quad Differential Line Receivers 8-69
DS75107 Dual Line Receiver. 8-70
DS7820A/DS8820A Dual Line Receiver. 8-71
DS9622 Dual Line Receiver 8-72
DS3662 Quad High Speed Trapezoidal Bus Transceiver 8-73
DS3862 Octal High Speed Trapezoidal Bus Transceiver 8-74
DS75160A/DS75161A IEEE-488 GPIB Transceivers 8-75
DS8641 Quad Unified Bus Transceiver. 8-76
DS8838 Quad Unified Bus Transceiver. 8-78
DS1776 PI-Bus Transceiver 8-80
DS26S10 Quad Bus Transceiver. 8-81
TIA/EIA-485 (RS-485)
DS1487 Low Power RS-485 ¼ Unit Load Multipoint Transceiver. 8-82
DS16F95, DS36F95 EIA-485/EIA-422A Differential Bus Transceiver. 8-83

Table of Contents (coninues)

DS36276 FAILSAFE Multipoint Transceiver. 8-84
DS36277 Dominant Mode Multipoint Transceiver 8-85
DS3695/DS3695T/DS3696/DS3697 Multipoint RS485/RS422 Transceivers/Repeaters. 8-86
DS36950 Quad Differential Bus Transceiver 8-87
DS36954 Quad Differential Bus Transceiver 8-88
DS3695A/DS3695AT/DS3696A Multipoint RS485/RS422 Transceivers 8-89
DS36C278 Low Power Multipoint EIA-RS-485 Transceiver. 8-90
DS36C279 Low Power EIA-RS-485 Transceiver with Sleep Mode 8-91
DS36C280 Slew Rate Controlled CMOS EIA-RS-485 Transceiver 8-92
DS481 Low Power RS-485/RS-422 Multipoint Transceiver with Sleep Mode 8-93
DS485 Low Power RS-485/RS-422 Multipoint Transceiver. 8-94
DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers. 8-95
DS96172/DS96174 RS-485/RS-422 Quad Differential Line Drivers 8-96
DS96173/DS96175 RS-485/RS-422 Quad Differential Line Receivers 8-97
DS96176 RS-485/RS-422 Differential Bus Transceiver. 8-98
DS96177 RS-485/RS-422 Differential Bus Repeater. 8-99
DS96F172M/DS96F174C/DS96F174M EIA-485/EIA-422 Quad Differential Drivers 8-100
DS96F173M/DS96F175C/DS96F175M EIA-485/EIA-422 Quad Differential Receivers. 8-101
Section 9 Interface - LVDS Circuits
Interface-LVDS Line Drivers and Receivers Selection Guide. 9-4
Channel Link Selection Guide 9-5
Bus LVDS Selection Guide. 9-7
DS90LV017 LVDS Single High Speed Differential Driver 9-8
DS90LV017A LVDS Single High Speed Differential Driver 9-9
DS90LV018A 3V LVDS Single CMOS Differential Line Receiver 9-10
DS90LV019 3.3V or 5V LVDS Driver/Receiver 9-11
DS90LV027 LVDS Dual High Speed Differential Driver. 9-12
DS90LV027A LVDS Dual High Speed Differential Driver. 9-13
DS90LV028A 3V LVDS Dual CMOS Differential Line Receiver. 9-14
DS90C031B LVDS Quad CMOS Differential Line Driver. 9-15
DS90C031 LVDS Quad CMOS Differential Line Driver. 9-16
DS90LV031A 3V LVDS Quad CMOS Differential Line Driver 9-18
DS90LV031B 3V LVDS Quad CMOS Differential Line Driver 9-19
DS90C032B LVDS Quad CMOS Differential Line Receiver. 9-20
DS90C032 LVDS Quad CMOS Differential Line Receiver. 9-21
DS90LV032A 3V LVDS Quad CMOS Differential Line Receiver 9-23
DS90LV047A 3V LVDS Quad CMOS Differential Line Driver 9-24
DS90LV048A 3V LVDS Quad CMOS Differential Line Receiver. 9-25
DS90C401 Dual Low Voltage Differential Signaling (LVDS) Driver. 9-26
DS90C402 Dual Low Voltage Differential Signaling (LVDS) Receiver. 9-27
DS36C200 Dual High Speed Bi-Directional Differential Transceiver 9-28
DS90CR211/DS90CR212 21-Bit Channel Link 9-29

Table of Contents (coninues)

DS90CR213/DS90CR214 21-Bit Channel Link—66 MHz. 9-31
DS90CR215/DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link-66 MHz. 9-33
DS90CR217/DS90CR218 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link-75 MHz 9-35
DS90CR218A/DS90CR217 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link- 85 MHz 9-37
DS90CR281/DS90CR282 28-Bit Channel Link 9-39
DS90CR283/DS90CR284 28-Bit Channel Link-66 MHz. 9-41
DS90CR285/DS90CR286 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz. 9-43
DS90CR286A/DS90CR216A +3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link-66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link- 66 MHz 9-45
DS90CR287/DS90CR288 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-75 MHz. 9-46
DS90CR287/DS90CR288A +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ. 9-48
DS90CR483 / DS90CR484 48-Bit LVDS Channel Link Serializer/Deserializer 9-50
DS92LV010A Bus LVDS 3.3/5.0V Single Transceiver. 9-52
DS92LV090A 9 Channel Bus LVDS Transceiver 9-53
DS92LV222A Two Channel Bus LVDS MUXed Repeater 9-55
DS90CP22 2X2 800 Mbps LVDS Crosspoint Switch 9-56
DS92LV1021 and DS92LV1210 16-40 MHz 10 Bit Bus LVDS Serializer and Deserializer. 9-57
DS92LV1212A 16-40 MHz 10-Bit Bus LVDS Random Lock Deserializer with Embedded Clock Recovery 9-60
DS92LV1023 and DS92LV1224 40-66 MHz 10 Bit Bus LVDS Serializer and Deserializer. 9-64
DS92CK16 3V BLVDS 1 to 6 Clock Buffer/Bus Transceiver. 9-68
Section 10 Interface - Serial Digital
Serial Digital Interface (SDI) Introduction. 10-3
SDI Selection Guide 10-4
CLC005 ITU-T G. 703 Cable Driver with Adjustable Outputs 10-5
CLC006 Serial Digital Cable Driver with Adjustable Outputs. 10-7
CLC007 Serial Digital Cable Driver with Dual Complementary Outputs 10-8
CLC011 Serial Digital Video Decoder 10-9
CLC012 Adaptive Cable Equalizer for ITU-T G. 703 Data Recovery 10-11
CLC014 Adaptive Cable Equalizer for High-Speed Data Recovery. 10-13
CLC016 Data Retiming PLL with Automatic Rate Selection. 10-15
CLC018 8×8 Digital Crosspoint Switch, 1.4 Gbps. 10-17
CLC020 SMPTE 259M Digital Video Serializer with Integrated Cable Driver 10-18
CLC021 SMPTE 259M Digital Video Serializer with EDH Generation/Insertion 10-20
SDI Nomenclature 10-23

Table of Contents (coniniues)

Section 11 Special Functions
CLC532 High-Speed 2:1 Analog Multiplexer. 11-3
CLC533 High-Speed 4:1 Analog Multiplexer 11-4
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits 11-6
LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters 11-7
LM195/LM395 Ultra Reliable Power Transistors. 11-8
LM3046 Transistor Array. 11-10
LM555 Timer. 11-11
LMC555 CMOS Timer. 11-13
LMF100 High Performance Dual Switched Capacitor Filter. 11-15
LP395 Ultra Reliable Power Transistor. 11-16
MF10 Universal Monolithic Dual Switched Capacitor Filter 11-17
Imaging Products 11-18
Imaging Products Selection Guide 11-19
LM9810/20 10/12-Bit Image Sensor Processor Analog Front End 11-20
LM9822 3 Channel 42-Bit Color Scanner Analog Front End 11-22
LM9830 36-Bit Color Document Scanner. 11-24
LM98501 10-Bit, 27 MSPS Camera Signal Processor 11-25
Lithium Battery Chargers. 11-27
Lithium Battery Charger Selection Guide 11-28
LM3420-4.2, -8.2, -8.4, -12.6, -16.8 Lithium-Ion Battery Charge Controller 11-29
LM3620 Lithium-Ion Battery Charger Controller. 11-31
LM3621 Single Cell Lithium-Ion Battery Charger Controller 11-33
LM3622 Lithium-Ion Battery Charger Controller. 11-35
LM3647 Universal Battery Charger for Li-Ion, Ni-MH and Ni-Cd Batteries. 11-38
Motion Control 11-41
Motion Control and Motor Drive Selection Guide 11-42
LM12CL 80W Operational Amplifier. 11-43
LM628/LM629 Precision Motion Controller. 11-44
LMD18200 3A, 55V H-Bridge 11-46
LMD18201 3A, 55V H-Bridge 11-48
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver 11-50
Universal Serial Bus 11-51
Universal Serial Bus Products Selection Guide 11-52
LM3525 Single Port USB Power Switch and Over-Current Protection 11-53
LM3526 Dual Port USB Power Switch and Over-Current Protection 11-55
Section 12 Temperature Sensors and System Hardware MonitorsTemperature Sensor Selection Guide12-3
System Hardware Monitor Selection Guide 12-5
LM20 2.4V, 10 AA, SC70, micro SMD Temperature Sensor 12-6
LM34 Precision Fahrenheit Temperature Sensors 12-8
LM35 Precision Centigrade Temperature Sensors 12-10

Table of Contents (continue)

LM45 SOT-23 Precision Centigrade Temperature Sensors. 12-12
LM50 SOT-23 Single-Supply Centigrade Temperature Sensor. 12-13
LM56 Dual Output Low Power Thermostat. 12-14
LM60 2.7V, SOT-23 Temperature Sensor. 12-16
LM61 2.7V, SOT-23 or TO-92 Temperature Sensor. 12-17
LM62 2.7V, $15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ SOT-23 Temperature Sensor. 12-19
LM66 Dual Output Internally Preset Thermostat. 12-20
LM70 SPI/MICROWIRE 10-Bit Plus Sign Digital Temperature Sensor. 12-21
LM74 SPI/MICROWIRE 12-Bit Plus Sign Temperature Sensor. 12-24
LM75 Digital Temperature Sensor and Thermal watchdog with Two-Wire Interface. 12-27
LM76 $\pm 0.5^{\circ} \mathrm{C}, \pm 1^{\circ} \mathrm{C}, 12$-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface. 12-29
LM77 9-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface. 12-31
LM80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor. 12-33
LM81 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor. 12-36
LM82 Remote Diode and Local Digital Temperature Sensor with Two-Wire Interface. 12-40
LM83 Triple-Diode Input and Local Digital Temperature Sensor with Two-Wire Interface. 12-43
LM84 Diode Input Digital Temperature Sensor with Two-Wire Interface. 12-46
LM87 Serial Interface System Hardware Monitor with Remote Diode Temperature Sensing 12-49
LM92 $\pm 0.33^{\circ}$ C Accurate, 12 -Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface 12-52
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 12-54
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors. 12-55
Section 13 Video Circuits
Video Circuits Selection Guide 13-3
LM1279 110 MHz RGB Video Amplifier System with OSD. 13-4
LM1281 85 MHz RGB Video Amplifier System with On Screen Display (OSD). 13-5
LM1282 110 MHz RGB Video Amplifier System with On Screen Display (OSD) 13-6
LM1283 140 MHz RGB Video Amplifier System with On Screen Display (OSD). 13-7
LM2202 230 MHz Video Amplifier System 13-8
LM1253A Monolithic Triple $180 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C}$ CRT Pre-amp With Integrated Analog On Screen Display (OSD) Generator. 13-9
LM2453 Monolithic Triple 6 nS CRT Driver With Integrated Clamp and G1 Blanking 13-12
LM2402 Monolithic Triple 3 ns CRT Driver. 13-14
LM2403 Monolithic Triple 4.5 nS CRT Driver. 13-15
LM2405 Monolithic Triple 7 ns CRT Driver. 13-16
LM2407 Monolithic Triple 7.5 nS CRT Driver. 13-17
LM2409 Monolithic Triple 9.5 ns CRT Driver 13-18
LM2415 Monolithic Triple 5.5 ns CRT Driver 13-19
LM2435 Monolithic Triple 5.5 ns CRT Driver 13-20

Table of Contents ${ }^{\text {(coninineed })}$

LM2437 Monolithic Triple 7.5 ns CRT Driver. 13-21
LM2438 Monolithic Triple 13.5 ns CRT Driver 13-22
LM2439 Monolithic Triple 9.5 ns CRT Driver. 13-23
Section 14 Voltage Control and Supervision Products
Voltage Control and Supervisor Products Selection Guide 14-3
LM809/LM810 3-Pin Microprocessor Reset Circuits 14-5
LM2601 Adapter Interface Circuit. 14-7
LM3411 Precision Secondary Regulator/Driver 14-9
LM3812/LM3813 Precision Current Gauge IC with Ultra Low Loss Sense Element and PWM Output 14-11
LM3814/LM3815 Fast Current Gauge IC with Ultra Low Loss Sense Element and PWM Output 14-13
LM3822 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output. 14-15
LM3824 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output 14-17
LMC6953 PCI Local Bus Power Supervisor 14-19
LP3470 Tiny Power On Reset Circuit 14-21
Section 15 Voltage References
Voltage Reference Selection Guide 15-3
LM10 Operational Amplifier and Voltage Reference 15-9
LM129/LM329 Precision Reference. 15-10
LM199/LM299/LM399/LM3999 Precision Reference 15-12
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 15-14
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode. 15-15
LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode 15-17
LM185/LM285/LM385 Adjustable Micropower Voltage References 15-19
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode 15-21
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode 15-23
LM4040 Precision Micropower Shunt Voltage Reference 15-25
LM4041 Precision Micropower Shunt Voltage Reference 15-28
LM4050 Precision Micropower Shunt Voltage Reference. 15-30
LM4051 Precision Micropower Shunt Voltage Reference 15-32
LM4120 Precision Micropower Low Dropout Voltage Reference. 15-34
LM4121 Precision Micropower Low Dropout Voltage Reference. 15-36
LM4130 Precision Micropower Low Dropout Voltage Reference. 15-38
LM4140 High Precision Low Noise Low Dropout Voltage Reference. 15-40
LM431 Adjustable Precision Zener Shunt Regulator 15-42
LM4431 Micropower Shunt Voltage Reference 15-45
LM611 Operational Amplifier and Adjustable Reference 15-46
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 15-47
LM614 Quad Operational Amplifier and Adjustable Reference 15-48

Table of Contents (coninueo)

LMV431/LMV431A/LMV431B Low-Voltage (1.24V) Adjustable Precision Shunt Regulators. 15-49
Section 16 Voltage Regulators - Linear
Linear Voltage Regulators Selection Guide 16-3
Voltage Regulators Definition Of Terms 16-5
LM105/LM305/LM305A Voltage Regulators 16-6
LM109/LM309 5-Volt Regulator 16-7
LM117/LM317A/LM317 3-Terminal Adjustable Regulator. 16-8
LM117HV/LM317HV 3-Terminal Adjustable Regulator. 16-9
LM123/LM323A/LM323 3-Amp, 5-Volt Positive Regulator. 16-11
LM133/LM333 3-Ampere Adjustable Negative Regulators. 16-12
LM137/LM337 3-Terminal Adjustable Negative Regulators 16-13
LM137HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 16-14
LM138/LM338 5-Amp Adjustable Regulators 16-15
LM340/LM78MXX Series 3-Terminal Positive Regulators. 16-16
LM150/LM350A/LM350 3-Amp Adjustable Regulators. 16-17
LM317L 3-Terminal Adjustable Regulator 16-18
LM320L/LM79LXXAC Series 3-Terminal Negative Regulators. 16-20
LM325 Dual Voltage Regulator. 16-21
LM330 3-Terminal Positive Regulator. 16-22
LM337L 3-Terminal Adjustable Regulator. 16-23
LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators. 16-24
LM723/LM723C Voltage Regulator. 16-25
LM78XX Series Voltage Regulators 16-27
LM78LXX Series 3-Terminal Positive Regulators 16-29
LM79XX Series 3-Terminal Negative Regulators 16-30
LM79MXX Series 3-Terminal Negative Regulators. 16-31
Section 17 Voltage Regulators - Low-Dropout
Low Dropout Regulators Selection Guide. 17-4
Low-Dropout Voltage Regulators Definition Of Terms. 17-7
LM1084 5A Low Dropout Positive Regulators 17-8
LM1085 3A Low Dropout Positive Regulators. 17-10
LM1086 1.5A Low Dropout Positive Regulators. 17-12
LM1117 800mA Low-Dropout Linear Regulator. 17-15
LM2930 3-Terminal Positive Regulator. 17-18
LM2931 Series Low Dropout Regulators 17-19
LM2936-3.0 Ultra-Low Quiescent Current 3.0V Regulator. 17-23
LM2936-3.3 Ultra-Low Quiescent Current 3.3V Regulator. 17-25
LM2936-5.0 Ultra-Low Quiescent Current 5V Regulator 17-27
LM2937 500 mA Low Dropout Regulator. 17-29
LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators. 17-31
LM2940/LM2940C 1A Low Dropout Regulator. 17-33

Table of Contents caminuen

LM2941/LM2941C 1A Low Dropout Adjustable Regulator. 17-35
LM2984 Microprocessor Power Supply System. 17-36
LM2990 Negative Low Dropout Regulator. 17-37
LM2991 Negative Low Dropout Adjustable Regulator. 17-39
LM3460-1.2, -1.5 Precision Controller for GTLp and GTL Bus Termination. 17-41
LM3480 100 mA , SOT-23, Quasi Low-Dropout Linear Voltage Regulator. 17-43

LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion. 17-47
LMS1585A/LMS1587 5A and 3A Low Dropout Fast Response Regulators. 17-49
LMS8117 1A Low-Dropout Linear Regulator. 17-52
LP2950/LP2951 Series of Adjustable Micropower Voltage Regulators. 17-55
LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage
Regulators. 178 .
LP2954/LP2954A 5V and Adjustable Micropower Low-Dropout Voltage Regulators. . . 17-60
LP2956/LP2956A Dual Micropower Low-Dropout Voltage Regulators. 17-62
LP2957/LP2957A 5V Low-Dropout Regulator for μ P Applications. 17-64
LP2960 Adjustable Micropower 0.5A Low-Dropout Regulators. 17-65
LP2966 Dual 150mA Ultra Low-Dropout Regulator. 17-66
LP2975 MOSFET LDO Driver/Controller. 17-69
LP2978 Micropower SOT, 50 mA Low-Noise Ultra Low-Dropout Regulator Designed
for Use with Very Low ESR Output Capacitors. 17-71
LP2980 Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 and micro SMD
Packages. 17-73
LP2980-ADJ Micropower SOT, 50 mA Ultra Low-Dropout Adjustable Voltage
Regulator. 17-77
LP2980LV Micropower SOT, 50 mA Low-Voltage Low-Dropout Regulator For
\quad Applications With Output Voltages $<2 \mathrm{~V} . . . \ldots$. 17-79
LP2981 Micropower 100 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD
Packages. $17-81$
LP2982 Micropower 50 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD
Packages. 174
LP2985 Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator in SOT-23 and
micro SMD Packages Designed for Use with Very Low ESR Output Capacitors. . . . 17-88
LP2986 Micropower, 200 mA Ultra Low-Dropout Fixed or Adjustable Voltage
Regulator. 17-93
LP2987/LP2988 Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with
Programmable Power-On Reset Delay; Low Noise Version Available (LP2988). . . . 17-96
LP2989 Micropower/Low Noise, 500 mA Ultra Low-Dropout Regulator For Use with
Ceramic Output Capacitors. 17-101
LP2989LV Micropower 500 mA Low Noise Low Dropout Regulator for Applications
with Output Voltages <2 V Designed for Use with Very Low ESR Output
Capacitors. $17-103$
LP3961/LP3964 800mA Fast Ultra Low Dropout Linear Regulators. 17-105

Table of Contents (continues)

LP3962/LP3965 1.5A Fast Ultra Low Dropout Linear Regulators. 17-111
LP3963/LP3966 3A Fast Ultra Low Dropout Linear Regulators 17-117
Section 18 Voltage Regulators - Switching and SIMPLE SWITCHERSwitching Regulators Selection Guide.18-4
Switching Regulators Definition Of Terms 18-7
LM1575/LM2575/LM2575HV Series SIMPLE SWITCHER 1A Step-Down Voltage Regulator. 18-9
LM1577/LM2577 SIMPLE SWITCHER Step-Up Voltage Regulator 18-12
LM2524D/LM3524D Regulating Pulse Width Modulator. 18-13
LM2574/LM2574HV SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator 18-14
LM2576/LM2576HV Series SIMPLE SWITCHER 3A Step-Down Voltage Regulator. 18-16
LM2578A/LM3578A Switching Regulator 18-18
LM2585 SIMPLE SWITCHER 3A Flyback Regulator 18-19
LM2586 SIMPLE SWITCHER 3A Flyback Regulator with Shutdown 18-20
LM2587 SIMPLE SWITCHER 5A Flyback Regulator 18-22
LM2588 SIMPLE SWITCHER 5A Flyback Regulator with Shutdown 18-23
LM2594/LM2594HV SIMPLE SWITCHER Power Converter 150 kHz 0.5A Step-Down Voltage Regulator 18-25
LM2595 SIMPLE SWITCHER Power Converter 150 kHz 1A Step-Down Voltage Regulator 18-27
LM2596 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator. 18-29
LM2597/LM2597HV SIMPLE SWITCHER Power Converter 150 kHz 0.5A Step-Down Voltage Regulator, with Features 18-31
LM2598 SIMPLE SWITCHER Power Converter 150 kHz 1A Step-Down Voltage Regulator, with Features 18-32
LM2599 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator, with Features 18-34
LM2621 Low Input Voltage, Step-Up DC-DC Converter. 18-35
LM2636 5-Bit Programmable Synchronous Buck Regulator Controller 18-37
LM2637 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers $18-40$
LM2638 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers. 18-41
LM2639 5-Bit Programmable, High Frequency Multi-phase PWM Controller 18-42
LM2640 Dual Adjustable Step-Down Switching Power Supply Controller 18-43
LM2641 Dual Adjustable Step-Down Switching Power Supply Controller 18-47
LM2650 Synchronous Step-Down DC/DC Converter. 18-51
LM2651 1.5A High Efficiency Synchronous Switching Regulator. 18-53
LM2653 1.5A High Efficiency Synchronous Switching Regulator. 18-55
LM2655 2.5A High Efficiency Synchronous Switching Regulator. 18-56
LM2670 SIMPLE SWITCHER High Efficiency 3A Step-Down Voltage Regulator with Sync 18-59

Table of Contents (coninues)

LM2671 SIMPLE SWITCHER Power Converter High Efficiency 500mA Step-Down Voltage Regulator with Features 18-61
LM2672 SIMPLE SWITCHER Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features. 18-62
LM2673 SIMPLE SWITCHER 3A Step-Down Voltage Regulator with Adjustable Current Limit. 18-63
LM2674 SIMPLE SWITCHER Power Converter High Efficiency 500 mA Step-Down Voltage Regulator 18-65
LM2675 SIMPLE SWITCHER Power Converter High Efficiency 1A Step-Down Voltage Regulator 18-66
LM2676 SIMPLE SWITCHER High Efficiency 3A Step-Down Voltage Regulator. 18-67
LM2677 SIMPLE SWITCHER High Efficiency 5A Step-Down Voltage Regulator with Sync. 18-69
LM2678 SIMPLE SWITCHER High Efficiency 5A Step-Down Voltage Regulator. 18-71
LM2679 SIMPLE SWITCHER 5A Step-Down Voltage Regulator with Adjustable Current Limit. 18-73
LM2825 Integrated Power Supply 1A DC-DC Converter 18-75
LM3478 High Efficiency Low-Side N-Channel Controller for Switching Regulator. 18-76
LM3488 High Efficiency Low-Side N-Channel Controller for Switching Regulators 18-78
LM2720 5-Bit Programmable, High Frequency Multi-phase PWM Controller. 18-80
Section 19 Voltage Regulators and Converters - Switched Capacitor Switched Capacitor Converter Selection Guide 19-3
LM2660/LM2661 Switched Capacitor Voltage Converter 19-4
LM2662/LM2663 Switched Capacitor Voltage Converter 19-5
LM2664 Switched Capacitor Voltage Converter 19-6
LM2665 Switched Capacitor Voltage Converter 19-7
LM2681 Switched Capacitor Voltage Converter 19-8
LM2682 Switched Capacitor Voltage Doubling Inverter 19-9
LM2685 Dual Output Regulated Switched Capacitor Voltage Converter. 19-10
LM2686 Regulated Switched Capacitor Voltage Converter. 19-12
LM2687 Low Noise Regulated Switched Capacitor Voltage Inverter 19-14
LM2765 Switched Capacitor Voltage Converter 19-16
LM2766 Switched Capacitor Voltage Converter 19-18
LM2767 Switched Capacitor Voltage Converter 19-20
LM3350 Switched Capacitor Voltage Converter 19-22
LM3351 Switched Capacitor Voltage Converter 19-23
LM3352 Regulated 200 mA Buck-Boost Switched Capacitor DC/DC Converter 19-24
LM828 Switched Capacitor Voltage Converter 19-26
LMC7660 Switched Capacitor Voltage Converter. 19-27
MAX660 Switched Capacitor Voltage Converter. 19-28
Section 20 Wireless
LMX1600/LMX1601/LMX1602 PLLatinum Low Cost Dual Frequency Synthesizer. 20-3

Table of Contents (continues)

LMX2306/LMX2316/LMX2326 PLLatinum Low Power Frequency Synthesizer for RF Personal Communications 20-6
LMX2324 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 20-8
LMX2330A/LMX2331A/LMX2332A PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-10
LMX2330L/LMX2331L/LMX2332L PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-13
LMX2335/LMX2336/LMX2337 PLLatinum Dual Frequency Synthesizer for RF Personal Communications. 20-17
LMX2335L/LMX2336L PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications 20-20
LMX2350/LMX2352 PLLatinum Fractional N RF / Integer N IF Dual Low Power Frequency Synthesizer 20-24
LMX2353 PLLatinum Fractional N Single 2.5 GHz Frequency Synthesizer. 20-27
LMX2370/LMX2371/LMX2372 PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-29
LMX3161 Single Chip Radio Transceiver. 20-33
LMX3162 Single Chip Radio Transceiver 20-37
LMX5080 PLLatinum 2.7 GHz Low Power Dual Modulus Prescaler for RF Personal Communications 20-43
LMX2323 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 20-45
LMX2354 Dual Low Power Frequency Synthesizer. 20-47
LMX3305 Triple Phase Locked Loop for RF Personal Communications 20-50
LMX5001 Dedicated Bluetooth Link Controller. 20-53
Section 21 Mil-Aero
Military-Aerospace Product Services 21-3
Radiation Test Results 21-4
SMD/JAN Drawing Cross-Reference 21-8
Section 22 Appendices
Device Marking Conventions 22-3
National Semiconductor's Die Products 22-7
Package Illustrations. 22-8
Authorized Distributors
WORLDWIDE SALES OFFICES

Alpha-Numeric Index

ADC12H030 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-80
ADC12H032 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-80
ADC12H034 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-80
ADC12H038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/ Hold. 6-80
ADC12L030 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-84
ADC12L032 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-84
ADC12L034 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-84
ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-84
ADC0801 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters. 6-11
ADC0802 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters. 6-11
ADC0803 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters. 6-11
ADC0804 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters. 6-11
ADC0805 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters. 6-11
ADC0808 8-bit Microprocessor Compatible A/D Converters With 8-Channel Multiplexer 6-18
ADC0809 8-bit Microprocessor Compatible A/D Converters With 8-Channel Multiplexer. 6-18
ADC0816 8-Bit Microprocessor Compatible A/D Converter with 16-Channel Multiplexer. 6-25
ADC0817 8-Bit Microprocessor Compatible A/D Converter with 16-Channel Multiplexer. 6-25
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function. 6-29
ADC0831 8-Bit Serial I/O A/D Converter with Multiplexer Option 6-31
ADC0832 8-Bit Serial I/O A/D Converter with Multiplexer Option. 6-31
ADC0834 8-Bit Serial I/O A/D Converter with Multiplexer Option 6-31
ADC0838 8-Bit Serial I/O A/D Converter with Multiplexer Option 6-31
ADC0844 8-Bit Microprocessor Compatible A/D Converter with Multiplexer Option 6-37
ADC0848 8-Bit Microprocessor Compatible A/D Converter with Multiplexer Option. 6-37
ADC1001 10-Bit μ P Compatible A/D Converter. 6-41
ADC1005 10-Bit Microprocessor Compatible A/D Converter. 6-46
ADC1061 10-Bit High Speed μ P-Compatible A/D Converter with Track/Hold Function. 6-62
ADC1173 8-Bit, 3-Volt, 15MSPS, 33mW A/D Converter. 6-70
ADC1175 8-Bit, 20MHz, 60mW A/D Converter. 6-73
ADC1175-50 8-Bit, 50MSPS, 125mW A/D Converter 6-76
ADC08031 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Ref. and Track/Hold Function. 6-13
ADC08032 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Ref. and Track/Hold Function. 6-13
ADC08034 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Ref. and Track/Hold Function. 6-13
Alpha-Numeric Index (Continued)
ADC08038 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Ref. and Track/Hold Function. 6-13
ADC08061 500 ns A/D Converter with S/H Function and Input Multiplexer. 6-15
ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer. 6-15
ADC08100 8-Bit, 100MSPS, 1.3mW/MSPS A/D Converter. 6-20
ADC08131 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference and Track/Hold Function. $6-23$
ADC08134 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference and Track/Hold Function. $6-23$
ADC08138 8-Bit High Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference and Track/Hold Function. 6-23
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference. 6-27
ADC08351 8-Bit, 42 MSPS, 40 mW A/D Converter. 6-34
ADC08831 8-Bit Serial I/O CMOS A/D Converters with Multiplexer and Sample/Hold Function 6-39
ADC08832 8-Bit Serial I/O CMOS A/D Converters with Multiplexer and Sample/Hold Function 6-39
ADC10030 10-Bit, 30 MSPS, 125 mW A/D Converter with Internal Sample and Hold. 6-42
ADC10061 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-47
ADC10062 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-47
ADC10064 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-47
ADC10154 10-Bit Plus Sign 4 microseconds ADCs with 4- or 8-Channel MUX, Track/Hold and Reference 6-50
ADC10158 10-Bit Plus Sign 4 microseconds ADCs with 4- or 8-Channel MUX, Track/Hold and Reference 6-50
ADC10221 10-Bit, 15MSPS, 98mW A/D Converter with Internal Sample and Hold. 6-52
ADC10321 10-Bit, 20MSPS, 98mW A/D Converter with Internal Sample and Hold. 6-56
ADC10461 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-60
ADC10462 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-60
ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-60
ADC10662 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-64
ADC10664 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold. 6-64
ADC10731 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference. 6-67
ADC10732 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference. 6-67
ADC10734 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference. 6-67
ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference. 6-67
ADC12030 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. $6-80$
ADC12032 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. $6-80$
Alpha-Numeric Index (Continued)
ADC12034 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-80
ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-80
ADC12041 12-Bit Plus Sign 216 kHz Sampling Analog-to-Digital Converter 6-88
ADC12048 12-Bit Plus Sign 216 kHz 8 Channel Sampling Analog to Digital Converter. 6-91
ADC12081 12-Bit, 5 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold. 6-95
ADC12130 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold. 6-99
ADC12132 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold. 6-99
ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold. 6-99
ADC12181 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-103
ADC12191 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-107
ADC12281 12-Bit, 20 MSPS Single-Ended Input, Pipelined A/D Converter 6-111
ADC14061 Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter 6-115
ADC14071 14-Bit, 7 MSPS, 380 mW A/D Converter 6-120
ADC14161 Low-Distortion, Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter 6-124
ADC16061 Self-Calibrating 16-Bit, 2.5 MSPS, 390 mW A/D Converter. 6-129
ADCV0831 8 Bit Serial I/O Low Voltage Low Power ADC with Auto Shutdown in a SOT Package 6-134
CLC005 ITU-T G. 703 Cable Driver with Adjustable Outputs 10-5
CLC006 Serial Digital Cable Driver with Adjustable Outputs. 10-7
CLC007 Serial Digital Cable Driver with Dual Complementary Outputs 10-8
CLC011 Serial Digital Video Decoder 10-9
CLC012 Adaptive Cable Equalizer for ITU-T G. 703 Data Recovery 10-11
CLC014 Adaptive Cable Equalizer for High-Speed Data Recovery. 10-13
CLC016 Data Retiming PLL with Automatic Rate Selection 10-15
CLC018 8×8 Digital Crosspoint Switch, 1.4 Gbps 10-17
CLC020 SMPTE 259M Digital Video Serializer with Integrated Cable Driver. 10-18
CLC021 SMPTE 259M Digital Video Serializer with EDH Generation/Insertion 10-20
CLC111 Ultra-High Slew-Rate, Closed-Loop Buffer. 2-15
CLC114 Quad, Low-Power Video Buffer 2-17
CLC400 Fast Settling, Wideband Low-Gain Monolithic Op Amp. 2-19
CLC401 Fast Settling, Wideband High-Gain Monolithic Op Amp 2-21
CLC404 Wideband, High-Slew Rate, Monolithic Op Amp. 2-23
CLC405 Low-Cost, Low-Power, 110MHz Op Amp with Disable 2-25
CLC406 Wideband, Low-Power Monolithic Op Amp 2-27
CLC409 Very Wideband, Low Distortion Monolithic Op Amp 2-29

Alpha-Numeric Index (Conitues)

CLC410 Fast Settling, Video Op Amp with Disable. 2-31
CLC411 High-Speed Video Op Amp with Disable. 2-33
CLC412 Dual Wideband Video Op Amp 2-35
CLC414 Quad, Low-Power Monolithic Op Amp. 2-37
CLC415 Quad, Wideband Monolithic Op Amp. 2-39
CLC420 High-Speed, Voltage Feedback Op Amp. 2-41
CLC425 Ultra Low Noise Wideband Op Amp. 2-43
CLC426 Wideband, Low-Noise, Voltage Feedback Op Amp. 2-45
CLC428 Dual Wideband, Low-Noise, Voltage Feedback Op Amp. 2-47
CLC430 General Purpose 100MHz Op Amp with Disable. 2-49
CLC431/432 Dual Wideband Monolithic Op Amp with Disable. 2-51
CLC440 High-Speed, Low-Power, Voltage Feedback Op Amp. 2-54
CLC446 400 MHz , 50mW Current-Feedback Op Amp. 2-56
CLC449 1.1GHz Ultra-Wideband Monolithic Op Amp. 2-58
CLC450 Single Supply, Low-Power, High Output, Current Feedback Amplifier. 2-60
CLC452 Single Supply, Low-Power, High Output, Current Feedback Amplifier. 2-62
CLC501 High-Speed, Output Clamping Op Amp. 2-64
CLC502 Clamping, Low-Gain Op Amp with Fast 14-bit Settling. 2-66
CLC505 High-Speed, Programmable-Supply Current, Monolithic Op Amp. 2-67
CLC520 Amplifier with Voltage Controlled Gain, AGC +Amp. 2-68
CLC522 Wideband Variable-Gain Amplifier. 2-70
CLC532 High-Speed 2:1 Analog Multiplexer. 11-3
CLC533 High-Speed 4:1 Analog Multiplexer. 11-4
CLC5506 Gain Trim Amplifier (GTA) 2-72
CLC5509 Ultra-Low Noise Preamplifier. 2-75
CLC5523 Low-Power, Variable Gain Amplifier. 2-77
CLC5526 Digital Variable Gain Amplifier (DVGA). 2-79
CLC5602 Dual, High Output, Video Amplifier. 2-81
CLC5612 Dual, High Output, Programmable Gain Buffer. 2-83
CLC5622 Dual, High Output, Video Amplifier. 2-85
CLC5623 Triple, High Output, Video Amplifier. 2-87
CLC5632 Dual, High Output, Programmable Gain Buffer. 2-89
CLC5633 Triple, High Output, Programmable Gain Buffer 2-91
CLC5644 Low-Power, Low-Cost, Quad Operational Amplifier. 2-93
CLC5654 Very High-Speed, Low-Cost, Quad Operational Amplifier. 2-95
CLC5665 Low Distortion Amplifier with Disable. 2-97
CLC5801 High Speed Low Noise Voltage Feedback Amplifier. 2-99
CLC5802 Dual Low-Noise, Voltage Feedback Op Amp. 2-101
CLC5956 12-bit, 65 MSPS Broadband Monolithic A/D Converter. 6-135
CLC5958 14-Bit, 52 MSPS A/D Converter. 6-137
COP8ACC5 Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4 k or 16 k Memory and High Resolution A/D. 3-50
Alpha-Numeric Index (Continued)
COP8SA Family 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller with 1k to 4k Memory, Power On Reset, and Very Small Packaging. 3-63
COP8SBR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM, and Brownout. 3-103
COP8SCR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM, and Brownout. 3-103
COP8SDR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM, and Brownout. 3-103
COP8SE Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4 k Memory and 128 Bytes EERAM 3-24
COP8SG Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 8 k or 32 k Memory, Two Comparators, and USART 3-72
COP87L84BC 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, and CAN Interface. 3-82
COP87L84CL 8-Bit One-Time Programmable (OTP) Microcontroller. 3-68
COP87L88CF 8-Bit CMOS OTP Microcontrollers with 16k Memory and A/D Converter. 3-88
COP87L88CL 8-Bit One-Time Programmable (OTP) Microcontroller. 3-68
COP87L88EB Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8-Bit A/D, and USART 3-84
COP87L88EK Family 8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Comparator, and Single-slope A/D Capability 3-95
COP87L88FH 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, USART and Hardware Multiply/Divide. 3-78
COP87L88GD Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory and 8-Channel A/D with Prescaler. 3-92
COP87L88RB Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8-Bit A/D, and USART 3-84
COP87L88RD Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory and 8-Channel A/D with Prescaler. 3-92
COP87L88RK Family 8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Comparator, and Single-slope A/D Capability. 3-95
COP87L88RW 8-Bit One-Time Programmable (OTP) Microcontroller with Pulse Train Generators and Capture Modules 3-99
COP87LxxCJ 8-Bit CMOS OTP Microcontrollers with 4k or 32k Memory and Comparator. 3-60
COP87LxxRJ 8-Bit CMOS OTP Microcontrollers with 4 k or 32 k Memory and Comparator. 3-60
COP680C Microcontrollers. 3-14
COP681C Microcontrollers 3-14
COP682C Microcontrollers 3-14
COP684CL 8-Bit Microcontroller 3-20
COP688CL 8-Bit Microcontroller 3-20
COP820C Family 8-Bit CMOS ROM Based Microcontrollers with 1 k or 2 k Memory. 3-12
COP820CJ Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory, Comparator and Brown Out Detector 3-17
COP840C Family 8-Bit CMOS ROM Based Microcontrollers with 1 k or 2 k Memory. 3-12
Alpha-Numeric Index (Continued)
COP840CJ Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory, Comparator and Brown Out Detector. 3-17
COP880C Microcontrollers. 3-14
COP881C Microcontrollers 3-14
COP882C Microcontrollers. 3-14
COP884BC 8-Bit CMOS ROM Based Microcontrollers with $2 k$ Memory, Comparators, and CAN Interface. 3-36
COP884CL 8-Bit Microcontroller 3-20
COP885BC 8-Bit CMOS ROM Based Microcontrollers with 2k Memory, Comparators, and CAN Interface. 3-36
COP888CF 8-Bit CMOS ROM Based Microcontrollers with 4k Memory and A/D Converter. 3-43
COP888CL 8-Bit Microcontroller 3-20
COP888CS Family 8-Bit CMOS ROM Based Microcontrollers with 4k to 24k Memory, Comparators and USART. 3-32
COP888EB 8-Bit CMOS ROM Based Microcontrollers with 8k Memory, CAN Interface, 8-Bit A/D, and USART 3-39
COP888EK 8-Bit CMOS ROM Based Microcontrollers with 8k Memory, Comparator, and Single-slope A/D Capability 3-53
COP888FH 8-Bit CMOS ROM Based Microcontrollers with 12k Memory, Comparators, USART and Hardware Multiply/Divide. 3-28
COP888GD 8-Bit CMOS ROM Based Microcontrollers with 16k Memory and 8-Channel A/D. 3-47
COP888GW 8-Bit Microcontroller with Pulse Train Generators and Capture Modules. 3-57
COP888xG Family 8-Bit CMOS ROM Based Microcontrollers with 4 k to 24 k Memory, Comparators and USART 3-32
COP912C 8-Bit Microcontrollers 3-10
COP912CH 8-Bit Microcontrollers 3-10
COP980C Microcontrollers 3-14
COP981C Microcontrollers 3-14
COP982C Microcontrollers 3-14
COP984CL 8-Bit Microcontroller. 3-20
COP988CL 8-Bit Microcontroller. 3-20
DAC0800 8-Bit D/A Converter. 6-139
DAC0802 8-Bit D/A Converter. 6-139
DAC0808 8-Bit D/A Converter. 6-140
DAC0830 8-bit Microprocessor Compatible, Double-Buffered D/A Converter. 6-142
DAC0832 8-bit Microprocessor Compatible, Double-Buffered D/A Converter. 6-142
DS14C88 Quad CMOS Line Driver. 8-10
DS14C89A Quad CMOS Receiver 8-13
DS14C232 Low Power +5V Powered TIA/EIA-232 Dual Driver/Receiver 8-17
DS14C238 Single Supply TIA/EIA-232 4x4 Driver/Receiver 8-18
DS14C241 Single Supply TIA/EIA-232 4x5 Driver/Receiver 8-19
DS14C335 +3.3V Supply TIA/EIA - 232 3X5 Driver/Receiver. 8-20
Alpha-Numeric Index (Continued)
DS14C535 +5V Supply EIA/TIA-232 3×5 Driver Receiver 8-21
DS16F95 EIA-485/EIA-422A Differential Bus Transceivers. 8-83
DS26C31M CMOS Quad TRI STATE Differential Line Drivers 8-26
DS26C31T CMOS Quad TRI-STATE Differential Line Drivers 8-26
DS26C32AM CMOS Quad Differential Line Receivers. 8-30
DS26C32AT CMOS Quad Differential Line Receivers. 8-30
DS26F31M Quad High Speed Differential Line Drivers. 8-28
DS26F32M Quad Differential Line Receivers 8-32
DS26LS31C Quad High Speed Differential Line Drivers. 8-29
DS26LS31M Quad High Speed Differential Line Drivers 8-29
DS26LS32AC Quad Differential Line Receivers 8-33
DS26LS32C Quad Differential Line Receivers 8-33
DS26LS32M Quad Differential Line Receivers 8-33
DS26LS33M Quad Differential Line Receivers. 8-33
DS26LV31T 3V Enhanced CMOS Quad Differential Line Driver. 8-27
DS26LV32AT 3V Enhanced CMOS Quad Differential Line Receiver 8-31
DS26S10 Quad Bus Transceivers 8-81
DS34C86T Quad CMOS Differential Line Receiver 8-35
DS34C87T CMOS Quad TRI-STATE Differential Line Driver 8-38
DS34LV86T 3V Enhanced CMOS Quad Differential Line Receiver 8-36
DS34LV87T Enhanced CMOS Quad Differential Line Driver 8-39
DS36C200 Dual High Speed Bi-Directional Differential Transceiver. 9-28
DS36C278 Low Power Multipoint TIA/EIA-485 Transceiver 8-90
DS36C279 Low Power TIA/EIA-485 Transceiver with Sleep Mode. 8-91
DS36C280 Slew Rate Controlled CMOS TIA/EIA-485 Transceiver. 8-92
DS36F95 EIA-485/EIA-422A Differential Bus Transceivers 8-83
DS38C86A CMOS BTL 9-Bit Latching Data Transceiver. 8-60
DS78C20 Dual CMOS Compatible Differential Line Receivers 8-41
DS78C120 Dual CMOS Compatible Differential Line Receiver. 8-42
DS78LS120 Dual Differential Line Receivers (Noise-Filtering and Fail-Safe) 8-43
DS88C20 Dual CMOS Compatible Differential Line Receivers 8-41
DS89C21 Differential CMOS Line Driver and Receiver Pair. 8-45
DS89C386 Twelve Channel CMOS Differential Line Receiver 8-49
DS89C387 Twelve Channel CMOS Differential Line Driver 8-50
DS90C031 LVDS Quad CMOS Differential Line Driver. 9-16
DS90C031B LVDS Quad CMOS Differential Line Driver 9-15
DS90C032 LVDS Quad CMOS Differential Line Receiver 9-21
DS90C032B LVDS Quad CMOS Differential Line Receiver 9-20
DS90C363 +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link- 65 MHz 7-7
DS90C363A +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz 7-5
Alpha-Numeric Index (Contiveed)
DS90C365 +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-85 MHz. 7-14
DS90C383 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link- 65 MHz 7-11
DS90C383A +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz 7-9
DS90C385 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link- 85 MHz 7-14
DS90C387 +3.3V Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA. 7-16
DS90C387A Dual Pixel LVDS Display Interface / FPD-Link Transmitter. 7-18
DS90C401 Dual Low Voltage Differential Signaling (LVDS) Driver 9-26
DS90C402 Dual Low Voltage Differential Signaling (LVDS) Receiver. 9-27
DS90CF363 +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link— 65 MHz 7-6
DS90CF363A +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz. 7-5
DS90CF364 +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link- 65 MHz 7-7
DS90CF364A +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-65 MHz 7-13
DS90CF366 +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-85 MHz. 7-15
DS90CF383 + 3.3V LVDS 24-Bit Flat Panel Display (FPD) Link - 65 MHz 7-10
DS90CF383A +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz. 7-9
DS90CF384 +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link- 65 MHz 7-11
DS90CF384A +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link-65 MHz 7-13
DS90CF386 +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link— 85 MHz 7-15
DS90CF388 +3.3V Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA. 7-16
DS90CF388A Dual Pixel LVDS Display Interface / FPD-Link Receiver. 7-18
DS90CF561 LVDS 18-Bit Color Flat Panel Display (FPD) Link 7-20
DS90CF562 LVDS 18-Bit Color Flat Panel Display (FPD) Link 7-20
DS90CF563 LVDS 18-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-24
DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-24
DS90CF581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link 7-26
DS90CF583 LVDS 24-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-30
DS90CF584 LVDS 24-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-30
DS90CP22 2X2 800 Mbps LVDS Crosspoint SwitchCMOS 9-56
DS90CR211 21-Bit Channel Link. 9-29
DS90CR212 21-Bit Channel Link. 9-29
DS90CR213 21-Bit Channel Link - 66 MHz 9-31
DS90CR214 21-Bit Channel Link - 66 MHz 9-31
DS90CR215 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz 9-33
DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz 9-33
DS90CR216A +3.3V Rising Edge Data Strobe LVDS Receiver 21-Bit Channel Link- 66 MHz 9-45
DS90CR217 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel and Link - 85 MHz 9-37
DS90CR218 +3.3V Rising Edge Data Strobe LVDS 21 -Bit Channel and Link -75 MHz 9-35
DS90CR218A +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel and Link - 85 MHz 9-37
Alpha-Numeric Index (Continued)
DS90CR281 28-Bit Channel Link 9-39
DS90CR282 28-Bit Channel Link. 9-39
DS90CR283 28-Bit Channel-Link - 66 MHz 9-41
DS90CR284 28-Bit Channel-Link - 66 MHz 9-41
DS90CR285 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel - 66 MHz 9-43
DS90CR286 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel - 66 MHz 9-43
DS90CR286A +3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link-66 MHz 9-45
DS90CR287 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel - 75 MHz 9-46
DS90CR287 +3.3V Rising Edge Data Strobe LVDS 28 -Bit Channel - 85 MHz 9-48
DS90CR288 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel - 75 MHz 9-46
DS90CR288A +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel - 85 MHz 9-48
DS90CR483 Serializer 9-50
DS90CR484 Deserializer 9-50
DS90CR561 LVDS 18-Bit Color Flat Panel Display (FPD) Link 7-22
DS90CR562 LVDS 18-Bit Color Flat Panal Display (FPD) Link 7-22
DS90CR581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link 7-28
DS90CR583 LVDS 24-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-32
DS90CR584 LVDS 24-Bit Color Flat Panel Display (FPD) Link - 65 MHz 7-32
DS90LV017 Single High Speed Differential Driver. 9-8
DS90LV017A Single High Speed Differential Driver 9-9
DS90LV018A 3V LVDS Single CMOS Differential Line Receiver. 9-10
DS90LV019 3.3V or 5V LVDS Driver/Receiver 9-11
DS90LV027 LVDS Dual High Speed Differential Driver 9-12
DS90LV027A LVDS Dual High Speed Differential Driver 9-13
DS90LV028A 3V LVDS Dual CMOS Differential Line Receiver 9-14
DS90LV031A 3V LVDS Quad CMOS Differential Line Driver 9-18
DS90LV031B 3V LVDS Quad CMOS Differential Line Driver. 9-19
DS90LV032A 3V LVDS Quad CMOS Differential Line Receiver. 9-23
DS90LV047A 3V LVDS Quad CMOS Differential Line Driver 9-24
DS90LV048A 3V LVDS Quad CMOS Differential Line Receiver. 9-25
DS92CK16 3V BLVDS 1 to 6 Clock Buffer/Bus Transceiver. 9-68
DS92LV010A Bus LVDS 3.3/5.0V Single Transceiver. 9-52
DS92LV090A 9 Channel Bus LVDS Transceiver. 9-53
DS92LV1021 16-40 MHz 10 Bit LVDS Serializer and Deserializer. 9-57
DS92LV1023 40 MHz-66MHz 10-Bit Serializer. 9-64
DS92LV1210 16-40 MHz 10 Bit LVDS Serializer and Deserializer 9-57
DS92LV1212A 16-40 MHz 10-Bit LVDS Random Lock Deserializer with Embedded Clock Recovery 9-60
DS92LV1224 40 MHz-66MHz 10-Bit Deserializer. 9-64
DS92LV222A Two Channel Bus LVDS MUXed Repeater. 9-55
DS96F172M EIA-485/EIA-422 Quad Differential Drivers 8-100

Alpha-Numeric Index (Continued)

DS96F173M RS-485/RS-422 Quad Differential Receiver 8-101
DS96F174C EIA-485/EIA-422 Quad Differential Drivers. 8-100
DS96F174M EIA-485/EIA-422 Quad Differential Drivers. 8-100
DS96F175C RS-485/RS-422 Quad Differential Receiver. 8-101
DS96F175M RS-485/RS-422 Quad Differential Receiver. 8-101
DS481 Low Power RS-485/RS-422 Multipoint Transceiver with Sleep Mode. 8-93
DS485 Low-Power RS-485/RS-422 Multipoint Transceiver. 8-94
DS1487 Low Power RS-485/¼ Unit Load Multipoint Transceiver 8-82
DS1488 Quad Line Driver. 8-9
DS1489 Quad Line Receiver 8-11
DS1489A Quad Line Receiver 8-11
DS1603 TRI-STATE Dual Receiver. 8-68
DS1691A RS-422/RS-423 Line Drivers With TRI-STATE Outputs. 8-25
DS1776 Pi-Bus Transceiver 8-80
DS3486 Quad RS-422/RS-423 Line Receiver 8-37
DS3487 Quad TRI-STATE Line Driver 8-40
DS3650 Quad Differential Line Receivers 8-69
DS3662 Quad High Speed Trapezoidal Bus Transceiver. 8-73
DS3691 RS-422/RS-423 Line Drivers With TRI-STATE Outputs 8-25
DS3695 Multipoint RS-485/RS-422 Transceivers 8-86
DS3695A Multipoint RS485/RS422 Transceivers. 8-89
DS3695AT Multipoint RS485/RS422 Transceivers. 8-89
DS3695T Multipoint RS-485/RS-422 Transceivers. 8-86
DS3696 Multipoint RS-485/RS-422 Transceivers 8-86
DS3696A Multipoint RS485/RS422 Transceivers. 8-89
DS3697 Multipoint RS-485/RS-422 Repeater. 8-86
DS3862 Octal High Speed Trapezoidal Bus Transceiver 8-74
DS3883A BTL 9-Bit Data Transceiver. 8-54
DS3884A BTL Handshake Transceiver. 8-56
DS3886A BTL 9-Bit Latching Data Transceiver 8-58
DS3893A BTL TurboTransceiver. 8-62
DS3896 BTL Trapeziodal Transceiver 8-63
DS3897 BTL Trapeziodal Transceiver 8-63
DS7820A Dual Line Receivers 8-71
DS7830 Dual Differential Line Drivers 8-65
DS7831 Dual TRI-STATE Line Drivers 8-66
DS8641 Quad Unified Bus Transceiver 8-76
DS8820A Dual Line Receivers. 8-71
DS8832 Dual TRI-STATE Line Drivers. 8-66
DS8838 Quad Unified Bus Transceiver 8-78
DS8921 Differential Line Drivers and Receiver Pair. 8-44
DS8921A Differential Line Drivers and Receiver Pair. 8-44

Alpha-Numeric Index ${ }_{\text {(Conituved) }}$

DS8921AT Differential Line Drivers and Receiver Pair. 8-44
DS8922 TRI-STATE RS-422 Dual Differential Line Drivers and Receiver Pair. 8-46
DS8922A TRI-STATE RS-422 Dual Differential Line Drivers and Receiver Pair. 8-46
DS8923A TRI-STATE RS-422 Dual Differential Line Drivers and Receiver Pair. 8-46
DS8925 Local Talk Dual Driver/Triple Receiver 8-48
DS9622 Dual Line Receiver. 8-72
DS9627 Dual Line Receiver. 8-16
DS9636A RS-423 Dual Programmable Slew Rate Line Driver 8-51
DS9637A Dual Differential Line Receiver. 8-52
DS9638 RS-422 Dual High Speed Differential Line Driver 8-53
DS14185 EIA/TIA-232 3 Driver x 5 Receiver. 8-22
DS14196 EIA/TIA-232 5 Driver x 3 Receiver. 8-23
DS36276 FailSafe Multipoint Transceiver. 8-84
DS36277 Dominant Mode Multipoint Transceiver. 8-85
DS36950 Quad Differential Bus Transceiver. 8-87
DS36954 Quad Differential Bus Transceiver. 8-88
DS75107 Dual Line Receiver. 8-70
DS75110A Dual Line Driver. 8-64
DS75150 Dual Line Driver. 8-14
DS75154 Quad Line Receiver. 8-15
DS75160A IEEE-488 GPIB Transceiver. 8-75
DS75161A IEEE-488 GPIB Transceiver 8-75
DS75176B Multipoint RS-485/RS-422 Transceivers. 8-95
DS75176BT Multipoint RS-485/RS-422 Transceivers. 8-95
DS96172 RS-485/RS-422 Quad Differential Line Drivers. 8-96
DS96173 RS-485/RS-422 Quad Differential Line Receivers. 8-97
DS96174 RS-485/RS-422 Quad Differential Line Drivers. 8-96
DS96175 RS-485/RS-422 Quad Differential Line Receivers. 8-97
DS96176 RS-485/RS-422 Differential Bus Transceiver 8-98
DS96177 RS-485/RS-422 Differential Bus Repeater 8-99
DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver. 8-24
FPD85310 Panel Timing Controller. 7-34
FPD87310 Universal Interface XGA Panel Timing Controller with RSDS (Reduced Swing Differential Signaling) and FPD-Link 7-35
LF147 Wide Bandwidth Quad JFET Input Operational Amplifiers. 1-15
LF198 Monolithic Sample and Hold Circuit. 11-6
LF198A Monolithic Sample and Hold Circuit. 11-6
LF298 Monolithic Sample and Hold Circuit. 11-6
LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers. 1-15
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. 1-18
LF398 Monolithic Sample and Hold Circuit. 11-6
LF398A Monolithic Sample and Hold Circuit. 11-6
Alpha-Numeric Index (Continued)
LF411 Low Offset, Low Drift JFET Input Operational Amplifier. 1-21
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 4-82
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier. 1-24
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier. 4-83
LF442 Dual Low Power JFET Input Operational Amplifier. 1-28
LF444 Quad Low Power JFET Input Operational Amplifier. 1-31
LM10 Operational Amplifier and Voltage Reference. 15-9
LM10 Operational Amplifier and Voltage Reference. 1-34
LM12CL 80W Operational Amplifier. 11-43
LM12CL 80W Operational Amplifier. 1-46
LM12H458 12-Bit Plus Sign Data Acquisition System with Self-Calibration. 6-144
LM12L458 12-Bit Plus Sign Data Acquisition System with Self-Calibration. 6-147
LM20 2.4V, 10 AA, SC70, micro SMD Temperature Sensor. 12-6
LM34 Precision Fahrenheit Temperature Sensor. 12-8
LM35 Precision Centigrade Temperature Sensor. 12-10
LM45 SOT-23 Precision Centigrade Temperature Sensor. 12-12
LM50 SOT-23 Single-Supply Centigrade Temperature Sensor. 12-13
LM56 Dual Output Low Power Thermostat. 12-14
LM60 2.7V, SOT-23 Temperature Sensor. 12-16
LM61 2.7V, SOT-23 or TO-92 Temperature Sensor. 12-17
LM62 2.7V, 15.6mV/deg C, SOT-23 Temperature Sensor. 12-19
LM66 Dual Output Internally Preset Thermostat. 12-20
LM70 SPI/MICROWIRE 10-Bit plus Sign Digital Temperature Sensor. 12-21
LM74 SPI/MICROWIRE Digital Temperature Sensor. 12-24
LM75 Digital Temperature Sensor and Thermal WATCHDOG with Two-Wire Interface. 12-27
LM76 $\pm 0.5^{\circ} \mathrm{C}, \pm 1^{\circ} \mathrm{C} 12$-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface. 12-29
LM77 9-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface. 12-31
LM78L05 3-Terminal Positive Regulators. 16-29
LM78L09 3-Terminal Positive Regulators 16-29
LM78L12 3-Terminal Positive Regulators. 16-29
LM78L15 3-Terminal Positive Regulators. 16-29
LM78L62 3-Terminal Positive Regulators 16-29
LM78L82 3-Terminal Positive Regulators. 16-29
LM78M05 3-Terminal Positive Voltage Regulators 16-24
LM78M12 3-Terminal Positive Voltage Regulators. 16-24
LM78M15 3-Terminal Positive Voltage Regulators 16-24
LM78MXX Series 3-Terminal Positive Regulators. 16-16
LM78XX Series Voltage Regulators. 16-27
LM79 SERIES 3-Terminal Negative Regulator. 16-30
LM79LXXAC Series 3-Terminal Negative Regulators 16-20
Alpha-Numeric Index (Continued)
LM79M Series 3-Terminal Negative Regulators 16-31
LM80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor 12-33
LM81 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor 12-36
LM82 Remote Diode and Local Digital Temperature Sensor with Two-Wire Interface 12-40
LM83 3 Diode Input ACPI Compatible Digital Temperature Sensor with Two-Wire Interface. 12-43
LM84 Diode Input Digital Temperature Sensor with Two-Wire Interface 12-46
LM87 Serial interface System Hardware Monitor with Remote Diode Temperature Sensing. 12-49
LM92 $\pm 0.33^{\circ} \mathrm{C}$ Accurate, 12 -Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface 12-52
LM101A Operational Amplifier. 1-41
LM105 Voltage Regulators 16-6
LM109 5-Volt Regulator. 16-7
LM111 Voltage Comparator. 5-6
LM117 3-Terminal Adjustable Regulator 16-8
LM117HV 3-Terminal Adjustable Regulator. 16-9
LM118 Operational Amplifier 1-44
LM119 High Speed Dual Comparator 5-10
LM123 3-Amp, 5-Volt Positive Regulator 16-11
LM124 Low Power Quad Operational Amplifier. 1-48
LM129 Precision Reference 15-10
LM133 3-Ampere Adjustable Negative Regulator. 16-12
LM134 3-Terminal Adjustable Current Source. 15-14
LM134 3-Terminal Adjustable Current Source. 12-54
LM135 Precision Temperature Sensor 12-55
LM135A Precision Temperature Sensor 12-55
LM136-2.5 Voltage Reference Diode 15-15
LM136-5.0 5.0V Reference Diode. 15-17
LM137 3-Terminal Adjustable Negative Regulator 16-13
LM137HV 3-Terminal Adjustable Negative Regulator (High Voltage) 16-14
LM138 5 Amp Adjustable Regulator. 16-15
LM139 Low Power Low Offset Voltage Quad Comparator. 5-13
LM146 Programmable Quad Operational Amplifier. 1-56
LM148 Series Quad 741 Op Amp 1-59
LM149 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V} \text { (MIN) }}$ Equal 5). 1-59
LM150 3-Amp Adjustable Regulator. 16-17
LM158 Low Power Dual Operational Amplifier 1-62
LM160 High Speed Differential Comparator. 5-17
LM161 High Speed Differential Comparator 5-20
LM185 Adjustable Micropower Voltage Reference. 15-19
LM185-1.2 Micropower Voltage Reference Diode. 15-21
LM185-2.5 Micropower Voltage Reference Diode. 15-23
LM193 Low Power Low Offset Voltage Dual Comparator. 5-23
Alpha-Numeric Index Continued)
LM195 Ultra Reliable Power Transistor 11-8
LM199 Precision Reference. 15-12
LM201A Operational Amplifier. 1-41
LM211 Voltage Comparator 5-6
LM218 Operational Amplifier. 1-44
LM219 High Speed Dual Comparator. 5-10
LM224 Low Power Quad Operational Amplifier 1-48
LM231 Precision Voltage-to-Frequency Converter. 11-7
LM231A Precision Voltage-to-Frequency Converter 11-7
LM234 3-Terminal Adjustable Current Source. 15-14
LM234 3-Terminal Adjustable Current Source. 12-54
LM235 Precision Temperature Sensor. 12-55
LM235A Precision Temperature Sensor 12-55
LM236-2.5 Voltage Reference Diode 15-15
LM236-5.0 5.0V Reference Diode 15-17
LM239 Low Power Low Offset Voltage Quad Comparator 5-13
LM248 Quad 741 Op Amp 1-59
LM258 Low Power Dual Operational Amplifier. 1-62
LM285 Adjustable Micropower Voltage Reference 15-19
LM285-1.2 Micropower Voltage Reference Diode. 15-21
LM285-2.5 Micropower Voltage Reference Diode. 15-23
LM293 Low Power Low Offset Voltage Dual Comparator 5-23
LM299 Precision Reference. 15-12
LM301A Operational Amplifier. 1-41
LM305 Voltage Regulators 16-6
LM305A Voltage Regulators 16-6
LM309 5-Volt Regulator 16-7
LM311 Voltage Comparator 5-6
LM317 3-Terminal Adjustable Regulator 16-8
LM317A 3-Terminal Adjustable Regulator. 16-8
LM317HV 3-Terminal Adjustable Regulator 16-9
LM317L 3-Terminal Adjustable Regulator. 16-18
LM318 Operational Amplifier 1-44
LM319 High Speed Dual Comparator. 5-10
LM320L Series 3-Terminal Negative Regulators. 16-20
LM323 3-Amp, 5-Volt Positive Regulator. 16-11
LM323A 3-Amp, 5-Volt Positive Regulator. 16-11
LM324 Low Power Quad Operational Amplifier. 1-48
LM325 Dual Voltage Regulator. 16-21
LM329 Precision Reference 15-10
LM330 3-Terminal Positive Regulator. 16-22
LM331 Precision Voltage-to-Frequency Converter. 11-7

Alpha-Numeric Index ${ }_{\text {(Continuea) }}$

LM331A Precision Voltage-to-Frequency Converter. 11-7
LM333 3-Ampere Adjustable Negative Regulator. 16-12
LM334 3-Terminal Adjustable Current Source. 15-14
LM334 3-Terminal Adjustable Current Source. 12-54
LM335 Precision Temperature Sensor. 12-55
LM335A Precision Temperature Sensor. 12-55
LM336-2.5 Voltage Reference Diode. 15-15
LM336-5.0 5.0V Reference Diode 15-17
LM337 3-Terminal Adjustable Negative Regulator. 16-13
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage). 16-14
LM337L 3-Terminal Adjustable Regulator. 16-23
LM338 5 Amp Adjustable Regulator. 16-15
LM339 Low Power Low Offset Voltage Quad Comparator. 5-13
LM340 Series 3-Terminal Positive Regulators. 16-16
LM341 3-Terminal Positive Voltage Regulators. 16-24
LM346 Programmable Quad Operational Amplifier 1-56
LM348 Quad 741 Op Amp 1-59
LM350 3-Amp Adjustable Regulator. 16-17
LM350A 3-Amp Adjustable Regulator. 16-17
LM358 Low Power Dual Operational Amplifier. 1-62
LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers. 1-67
LM360 High Speed Differential Comparator. 5-17
LM361 High Speed Differential Comparator. 5-20
LM380 2.5W Audio Power Amplifier. 4-12
LM384 5W Audio Power Amplifier 4-14
LM385 Adjustable Micropower Voltage Reference. 15-19
LM385-1.2 Micropower Voltage Reference Diode. 15-21
LM385-2.5 Micropower Voltage Reference Diode. 15-23
LM386 Low Voltage Audio Power Amplifier. 4-15
LM392 Low Power Operational Amplifier/Voltage Comparator. 5-28
LM392 Low Power Operational Amplifier/Voltage Comparator. 1-70
LM393 Low Power Low Offset Voltage Dual Comparator. 5-23
LM395 Ultra Reliable Power Transistor. 11-8
LM399 Precision Reference 15-12
LM431 Adjustable Precision Zener Shunt Regulator. 15-42
LM555 Timer. 11-11
LM565 Phase Locked Loop. 4-76
LM565C Phase Locked Loop. 4-76
LM567 Tone Decoder. 4-77
LM567C Tone Decoder. 4-77
LM611 Operational Amplifier and Adjustable Reference. 15-46
LM611 Operational Amplifier and Adjustable Reference. 1-78

Alpha-Numeric Index ${ }_{\text {(Conitinuea) }}$

LM613 Dual Operational Amplifier, Dual Comparator and Adjustable Reference. 5-31
LM613 Dual Operational Amplifier, Dual Comparator and Adjustable Reference. 15-47
LM613 Dual Operational Amplifier, Dual Comparator and Adjustable Reference. 1-82
LM614 Quad Operational Amplifier and Adjustable Reference 15-48
LM614 Quad Operational Amplifier and Adjustable Reference 1-90
LM628 Precision Motion Controller 11-44
LM629 Precision Motion Controller 11-44
LM675 Power Operational Amplifier. 4-62
LM675 Power Operational Amplifier. 1-103
LM723 Voltage Regulator. 16-25
LM723C Voltage Regulator 16-25
LM725 Operational Amplifier 1-105
LM741 Operational Amplifier 1-113
LM809 3-Pin Microprocessor Reset Circuits 14-5
LM810 3-Pin Microprocessor Reset Circuits 14-5
LM828 Switched Capacitor Voltage Converter 19-26
LM833 Dual Audio Operational Amplifier 1-122
LM833 Dual Audio Operational Amplifier 4-86
LM837 Low Noise Quad Operational Amplifier. 1-125
LM837 Low Noise Quad Operational Amplifier. 4-87
LM1036 Dual DC Operated Tone/Volume/Balance Circuit. 4-64
LM1084 5A Low Dropout Positive Regulators 17-8
LM1085 3A Low Dropout Positive Regulators 17-10
LM1086 1.5A Low Dropout Positive Regulators. 17-12
LM1117 800mA Low-Dropout Linear Regulator. 17-15
LM1253A Monolithic Triple 180MHz I²C CRT Pre-amp With Integrated Analog On Screen Display (OSD) Generator. 13-9
LM1279 110 MHz RGB Video Amplifier System with OSD 13-4
LM1281 85 MHz RGB Video Amplifier System with On Screen Display (OSD). 13-5
LM1282 110 MHz RGB Video Amplifier System with On-Screen Display (OSD) 13-6
LM1283 140 MHz RGB Video Amplifier System with On-Screen Display (OSD) 13-7
LM1458 Dual Operational Amplifier 1-53
LM1558 Dual Operational Amplifier 1-53
LM1575 SIMPLE SWITCHER 1A Step-Down Voltage Regulator. 18-9
LM1577 SIMPLE SWITCHER Step-Up Voltage Regulator 18-12
LM1875 20W Audio Power Amplifier. 4-6
LM1876 Overture Audio Power Amplifier Series Dual 20 Watt Audio Power Amplifier with Mute and Standby Modes 4-7
LM1877 Dual Audio Power Amplifier. 4-8
LM1894 Dynamic Noise Reduction System DNR. 4-88
LM1971 Overture Digitally Controlled 62 dB Audio Attenuator with Mute. 4-65
LM1972 Micro-Pot 2-Channel 78 dB Audio Attenuator with Mute. 4-67

Alpha-Numeric Index ${ }_{\text {(Conitivea) }}$

LM1973 Micro-Pot 3-Channel 76 dB Audio Attenuator with Mute 4-68
LM2202 230 MHz Video Amplifier System. 13-8
LM2402 Monolithic Triple 3 nsec Driver. 13-14
LM2403 Monolithic Triple 4.5 ns CRT Driver. 13-15
LM2405 Monolithic Triple 7 ns CRT Driver. 13-16
LM2407 Monolithic Triple 7.5 ns CRT Driver. 13-17
LM2409 Monolithic Triple 9.5 ns CRT Driver. 13-18
LM2415 Monolithic Triple 5.5 ns CRT Driver. 13-19
LM2435 Monolithic Triple 5.5 ns CRT Driver. 13-20
LM2437 Monolithic Triple 7.5 ns CRT Driver. 13-21
LM2438 Monolithic Triple 13.5 ns CRT Driver. 13-22
LM2439 Monolithic Triple 9.5 ns CRT Driver. 13-23
LM2453 Monolithic Triple 6 nS CRT Driver With Integrated Clamp and G1 Blanking. 13-12
LM2524D Regulating Pulse Width Modulator. 18-13
LM2574 SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator. 18-14
LM2574HV SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator. 18-14
LM2575 SIMPLE SWITCHER 1A Step-Down Voltage Regulator. 18-9
LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator. 18-9
LM2576 SIMPLE SWITCHER 3A Step-Down Voltage Regulator. 18-16
LM2576HV SIMPLE SWITCHER 3A Step-Down Voltage Regulator 18-16
LM2577 SIMPLE SWITCHER Step-Up Voltage Regulator. 18-12
LM2578A Switching Regulator. 18-18
LM2585 SIMPLE SWITCHER 3-Amp Flyback Regulator. 18-19
LM2586 SIMPLE SWITCHER 3-Amp Flyback Regulator. 18-20
LM2587 SIMPLE SWITCHER 5A Flyback Regulator. 18-22
LM2588 SIMPLE SWITCHER 5A Flyback Regulator with Shutdown. 18-23
LM2594 SIMPLE SWITCHER Power Converter 150 KHz 0.5A Step-Down Voltage Regulator $18-25$
LM2594HV SIMPLE SWITCHER Power Converter 150 kHz 0.5A Step-Down Voltage Regulator $18-25$
LM2595 SIMPLE SWITCHER Power Converter 150 KHz 1A Step-Down Voltage Regulator 18-27
LM2596 SIMPLE SWITCHER Power Converter 150 KHz 3A Step-Down Voltage Regulator. 18-29
LM2597 SIMPLE SWITCHER Power Converter 150 kHz 0.5A Step-Down Voltage Regulator 18-31
LM2597HV SIMPLE SWITCHER Power Converter 150 kHz 0.5A Step-Down Voltage Regulator, with Features. 18-31
LM2598 SIMPLE SWITCHER Power Converter 150 KHz 1A Step-Down Voltage Regulator, with Features. 18-32
LM2599 SIMPLE SWITCHER Power Converter 150 KHz 3A Step-Down Voltage Regulator with Features 18-34
LM2601 Adapter Interface Circuit. 14-7

Alpha-Numeric Index ${ }_{\text {(Continuea) }}$

LM2621 Low Input Voltage, Step-Up DC-DC Converter 18-35
LM2636 5-Bit Programmable Synchronous Buck Regulator Controller. 18-37
LM2637 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers $18-40$
LM2638 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers 18-41
LM2639 5-Bit Programmable, High Frequency Multi-phase PWM Controller. 18-42
LM2640 Dual Adjustable Step-Down Switching Power Supply Controller 18-43
LM2641 Dual Adjustable Step-Down Switching Power Supply Controller. 18-47
LM2650 Synchronous Step-Down DC/DC Converter. 18-51
LM2651 1.5A High Efficiency Switching Regulator. 18-53
LM2653 1.5A High Efficiency Synchronous Switching Regulator. 18-55
LM2655 2.5A High Efficiency Synchronous Switching Regulator. 18-56
LM2660 Switched Capacitor Voltage Converter 19-4
LM2661 Switched Capacitor Voltage Converter 19-4
LM2662 Switched Capacitor Voltage Converter 19-5
LM2663 Switched Capacitor Voltage Converter 19-5
LM2664 Switched Capacitor Voltage Converter 19-6
LM2665 Switched Capacitor Voltage Converter. 19-7
LM2670 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator with Sync. 18-59
LM2671 SIMPLE SWITCHER® ${ }^{\circledR}$ Power Converter High Efficiency 500mA Step-Down Voltage Regulator with Features. 18-61
LM2672 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features. 18-62
LM2673 SIMPLE SWITCHER ${ }^{\circledR}$ 3A Step-Down Voltage Regulator with Adjustable Current Limit 18-63
LM2674 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 500mA Step-Down Voltage Regulator 18-65
LM2675 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator. 18-66
LM2676 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator. 18-67
LM2677 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 5A Step-Down Voltage Regulator with Sync. 18-69
LM2678 SIMPLE SWITCHER® High Efficiency 5A Step-Down Voltage Regulator 18-71
LM2679 SIMPLE SWITCHER ${ }^{\circledR}$ 5A Step-Down Voltage Regulator with Adjustable Current Limit 18-73
LM2681 Switched Capacitor Voltage Converter. 19-8
LM2682 Switched Capacitor Voltage Doubling Inverter. 19-9
LM2685 Dual Output Regulated Switched Capacitor Voltage Converter. 19-10
LM2686 Regulated Switched Capacitor Voltage Converter 19-12
LM2687 Low Noise Regulated Switched Capacitor Voltage Inverter. 19-14
LM2720 5-Bit Programmable, High Frequency Multi-phase PWM Controller. 18-80
LM2765 Switched Capacitor Voltage Converter. 19-16

Alpha-Numeric Index (Conituea)

LM2766 Switched Capacitor Voltage Converter 19-18
LM2767 Switched Capacitor Voltage Converter 19-20
LM2825 Integrated Power Supply 1A DC-DC Converter. 18-75
LM2876 Overture Audio Power Amp Series High-Performance 40 Watt Audio Power Amplifier w/Mute. 4-10
LM2901 Low Power Low Offset Voltage Quad Comparator. 5-13
LM2902 Low Power Quad Operational Amplifier 1-48
LM2903 Low Power Low Offset Voltage Dual Comparator. 5-23
LM2904 Low Power Dual Operational Amplifier 1-62
LM2930 3-Terminal Positive Regulator. 17-18
LM2931 Series Low Dropout Regulators. 17-19
LM2936-3.0 Ultra-Low Quiescent Current 3.0V Regulator. 17-23
LM2936-3.3 Ultra-Low Quiescent Current 3.3V Regulator. 17-25
LM2936-5.0 Ultra-Low Quiescent Current 5V Regulator 17-27
LM2937 500 mA Low Dropout Regulator 17-29
LM2937-2.5 400 mA and 500 mA Voltage Regulators 17-31
LM2937-3.3 400 mA and 500 mA Voltage Regulators 17-31
LM2940 1A Low Dropout Regulator 17-33
LM2940C 1A Low Dropout Regulator. 17-33
LM2941 1A Low Dropout Adjustable Regulator. '17-35
LM2941C 1A Low Dropout Adjustable Regulator 17-35
LM2984 Microprocessor Power Supply System 17-36
LM2990 Negative Low Dropout Regulator. 17-37
LM2991 Negative Low Dropout Adjustable Regulator 17-39
LM3046 Transistor Array 11-10
LM3302 Low Power Low Offset Voltage Quad Comparator. 5-13
LM3350 Switched Capacitor Voltage Converter 19-22
LM3351 Switched Capacitor Voltage Converter. 19-23
LM3352 Regulated 200 mA Buck-Boost Switched Capacitor DC/DC Converter 19-24
LM3411 Precision Secondary Regulator/Driver 14-9
LM3420-4.2 Lithium-Ion Battery Charger Controller 11-29
LM3420-8.2 Lithium-Ion Battery Charger Controller. 11-29
LM3420-8.4 Lithium-Ion Battery Charger Controller 11-29
LM3420-12.6 Lithium-Ion Battery Charger Controller 11-29
LM3420-16.8 Lithium-Ion Battery Charger Controller 11-29
LM3460 Precision Controller for GTLp and GTL Bus Termination. 17-41
LM3478 High Efficiency Low-Side N-Channel Controller for Switching Regulator 18-76
LM3480 100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator 17-43
LM3488 High Efficiency Low-Side N-Channel Controller for Switching Regulator. 18-78
LM3490 100 mA , SOT-23, Quasi Low-Dropout Linear Voltage Regulator with Logic-Controlled ON/OFF 17-45
LM3524D Regulating Pulse Width Modulator. 18-13
Alpha-Numeric Index (Continued)
LM3525 Single Port USB Power Switch and Over-Current Protection. 11-53
LM3526 Dual Port USB Power Switch and Over-Current Protection 11-55
LM3578A Switching Regulator. 18-18
LM3620 Lithium-Ion Battery Charger Controller 11-31
LM3621 Single Cell Lithium-Ion Battery Charger Controller. 11-33
LM3622 Lithium-Ion Battery Charger Controller 11-35
LM3647 Universal Battery Charger for Li-lon, Ni-MH and Ni-Cd Batteries. 11-38
LM3812 Precision Current Gauge IC with Ultra-Low Loss Sense Element and PWM Output, for High-Side Sensing. 14-11
LM3813 Precision Current Gauge IC with Ultra Low Loss Sense Element and PWM Output, for Low-Side Sensing 14-11
LM3814 Fast Current Gauge IC with Ultra-Low Loss Sense Element and PWM Output, for High-Side Sensing 14-13
LM3815 Fast Current Gauge IC with Ultra Low Loss Sense Element and PWM Output, for Low-Side Sensing 14-13
LM3822 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output. 14-15
LM3824 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output 14-17
LM3875 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier. 4-16
LM3876 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier with Mute. 4-18
LM3886 Overture Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier with Mute. 4-20
LM3914 Dot/Bar Display Driver. 4-69
LM3915 Dot/Bar Display Driver. 4-71
LM3916 Dot/Bar Display Driver. 4-73
LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion 17-47
LM3999 Precision Reference 15-12
LM4040 Precision Micropower Shunt Voltage Reference. 15-25
LM4041 Precision Micropower Shunt Voltage Reference. 15-28
LM4050 Precision Micropower Shunt Voltage Reference 15-30
LM4051 Precision Micropower Shunt Voltage Reference. 15-32
LM4120 Precision Micropower Low Dropout Voltage Reference. 15-34
LM4121 Precision Micropower Low Dropout Voltage Reference. 15-36
LM4130 Precision Micropower Low Dropout Voltage Reference. 15-38
LM4140 High Prceision Low Noise Low Dropout Voltage Reference. 15-40
LM4250 Programmable Operational Amplifier. 1-73
LM4431 Micropower Shunt Voltage Reference 15-45
LM4540 AC '97 Codec with National 3D Sound 4-90
LM4543 AC '97 Codec with National 3D Sound. 4-91
LM4545 AC '97 Codec with Stereo Headphone Amplifier and National 3D Sound. 4-92

Alpha-Numeric Index ${ }_{\text {(conitinued) }}$

LM4546 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound 4-93
LM4548 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound. 4-94
LM4549 AC '97 Rev 2.1 Codec with Sample Rate Conversion and National 3D Sound. 4-95
LM4610 Dual DC Operated Tone/Volume/Balance Circuit with National 3-D Sound 4-75
LM4651 Overture Audio Power Amplifier Series 170W Class D Audio Power Amplifier Solution. 4-22
LM4652 Overture Audio Power Amplifier Series 170W Class D Audio Power Amplifier Solution. 4-22
LM4663 2W Stereo Class D Audio Power Amplifier with Stereo Headphone Amplifier. 4-23
LM4700 Overture Audio Power Amplifier Series 30 Watt Audio Power Amplifier with Mute and Standby Modes 4-24
LM4701 Overture Audio Power Amplifier Series 30 Watt Audio Power Amplifier with Mute and Standby Modes. 4-25
LM4752 Stereo 11W Audio Power Amplifier. 4-26
LM4753 Dual 10W Audio Power Amplifier w/Mute, Standby and Volume Control. 4-27
LM4755 Stereo 11W Audio Power Amplifier with Mute 4-29
LM4765 Overture Audio Power Amplifier Series Dual 30 Watt Audio Power Amplifier with Mute and Standby Modes $4-30$
LM4766 Overture Audio Power Amplifier Series Dual 40 Watt Audio Power Amplifier with Mute 4-31
LM4808 Boomer Audio Power Amplifier Series Dual 150 mW Headphone Amplifier. 4-32
LM4830 Two-Way Audio Amplification System with Volume Control. 4-33
LM4831 Boomer Audio Power Amplifier Series Mulitmedia Computer Audio Chip. 4-35
LM4832 Boomer Digitally Controlled Tone and Volume Circuit with Stereo Audio Power Amplifier, Microphone Preamp Stage and National 3D Sound 4-36
LM4834 Boomer Audio Power Amplifier Series 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp. 4-37
LM4835 Boomer Audio Power Amplifier Series Stereo 2W Audio Power Amplifiers with DC Volume Control and Selectable Gain 4-38
LM4836 Boomer Audio Power Amplifier Series Stereo 2W Audio Power Amplifiers with DC Volume Control, Bass Boost and Input Mux. 4-39
LM4850 Boomer Audio Power Amplifier Series Mono 1.5 W / Stereo 300 mW Power Amplifier. 4-40
LM4860 Boomer Audio Power Amplifier Series 1 Watt Audio Power Amplifier with Shutdown Mode 4-42
LM4861 Boomer Audio Power Amplifier Series 1.1W Audio Power Amplifier with Shutdown Mode. 4-43
LM4862 Boomer Audio Power Amplifier Series 675 mW Audio Power Amplifier with Shutdown Mode. 4-44
LM4863 Boomer Audio Power Amplifier Series Dual 2.2W Audio Amplifier Plus Stereo Headphone Function. 4-45
LM4864 Boomer Audio Power Amplifier Series 300 mW Audio Power Amplifier with Shutdown Mode 4-47
LM4865 Boomer Audio Power Amplifier Series 750mW Audio Power Amplifier with DC Volume Control and Headphone Switch. 4-48
Alpha-Numeric Index ${ }_{\text {(coninueas) }}$
LM4870 Boomer Audio Power Amplifier Series 1.1 Watt Audio Power Amplifier with Shutdown Mode. 4-49
LM4871 Boomer Audio Power Amplifier Series 1.1 Watt Audio Power Amplifier with Shutdown Mode 4-50
LM4872 Boomer Audio Power Amplifier Series 1 Watt Audio Power Amplifier in micro SMD package 4-51
LM4873 Boomer Audio Power Amplifier Series Dual 2.1W Audio Amplifier Plus Stereo Headphone Function 4-52
LM4876 Boomer Audio Power Amplifier Series 1.1W Audio Power Amplifier with Logic Low Shutdown 4-54
LM4877 Boomer Audio Power Amplifier Series 1 Watt Audio Power Amplifier in micro SMD package with Shutdown Logic Low 4-55
LM4880 Boomer Audio Power Amplifier Series Dual 250 mW Audio Power Amplifier with Shutdown Mode 4-56
LM4881 Boomer Audio Power Amplifier Series Dual 200 mW Headphone Amplifier with Shutdown Mode 4-58
LM4882 Boomer Audio Power Amplifier Series 250 mW Audio Power Amplifier with Shutdown Mode 4-59
LM4890 1 Watt Audio Power Amplifier 4-60
LM6118 Fast Settling Dual Operational Amplifier. 1-100
LM6121 High Speed Buffer 2-103
LM6132 Dual Low Power 10 MHz Rail-to-Rail I/O Operational Amplifier 1-87
LM6134 Quad Low Power 10 MHz Rail-to-Rail I/O Operational Amplifier 1-87
LM6142 Dual High Speed/Low Power 17 MHz Rail-to-Rail I/O Operational Amplifier. 1-94
LM6142 Dual High Speed/Low Power 17 MHz Rail-to-Rail I/O Operational Amplifier. 4-85
LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail I/O Operational Amplifier 1-94
LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail I/O Operational Amplifier 4-85
LM6152 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers 1-97
LM6154 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers. 1-97
LM6161 High Speed Operational Amplifier 2-105
LM6162 High Speed Operational Amplifier 2-106
LM6164 High Speed Operational Amplifier 2-107
LM6165 High Speed Operational Amplifier 2-108
LM6171 High Speed Low Power Low Distortion Voltage Feedback Amplifier. 2-109
LM6172 Dual High Speed, Low Power, Low Distortion Voltage Feedback Amplifiers 2-111
LM6181 $100 \mathrm{~mA}, 100 \mathrm{MHz}$ Current Feedback Amplifier 2-113
LM6182 Dual 100 mA Output, 100 MHz Current Feedback Amplifier 2-114
LM6218 Fast Settling Dual Operational Amplifier 1-100
LM6221 High Speed Buffer 2-103
LM6261 High Speed Operational Amplifier 2-105
LM6264 High Speed Operational Amplifier 2-107
LM6265 High Speed Operational Amplifier. 2-108
LM6321 High Speed Buffer 2-103

Alpha-Numeric Index ${ }_{\text {(Coninineod }}$

LM6361 High Speed Operational Amplifier 2-105
LM6364 High Speed Operational Amplifier 2-107
LM6365 High Speed Operational Amplifier. 2-108
LM6511 180 ns 3V Comparator. 5-36
LM7121 175 MHz Tiny Low Power Voltage Feedback Amplifier. 2-116
LM7131 Tiny High Speed Single Supply Operational Amplifier. 2-117
LM7171 Very High Speed, High Output Current, Voltage Feedback Amplifier 2-118
LM7301 Low Power, 4 MHz GBW, Rail-to-Rail Input-Output Operational Amplifier in TinyPak Package. 1-108
LM7512C 12 Volt Regulator. 16-27
LM7805C 5 Volt Regulator. 16-27
LM7815C 15 Volt Regulator. 16-27
LM8261 Single RRIO, High Output Current \& Unlimited Cap Load Op Amp in SOT23-5. 1-117
LM9810 10-Bit Image Sensor Processor Analog Front End. 11-20
LM9820 12-Bit Image Sensor Processor Analog Front End. 11-20
LM9822 3 Channel 42-Bit Color Scanner Analog Front End. 11-22
LM9830 36-Bit Color Document Scanner. 11-24
LM12454 12-Bit Plus Sign Data Acquisition System with Self-Calibration. 6-144
LM12458 12-Bit Plus Sign Data Acquisition System with Self-Calibration. 6-144
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers. 1-38
LM13700A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers. 1-38
LM98501 10-Bit, 27 MSPS Camera Signal Processor. 11-25
LMC555 CMOS Timer. 11-13
LMC567 Low Power Tone Decoder. 4-80
LMC568 Low Power Phase-Locked Loop. 4-81
LMC660 CMOS Quad Operational Amplifier. 1-220
LMC662 CMOS Dual Operational Amplifier. 1-224
LMC1982 Digitally-Controlled Stereo Tone and Volume Circuit with Two Selectable Stereo Inputs. 4-78
LMC1983 Digitally-Controlled Stereo Tone and Volume Circuit with Three Selectable Stereo Inputs. 4-79
LMC2001 High Precision, 6MHz Rail-To-Rail Output Operational Amplifier. 1-128
LMC6001 Ultra Ultra-Low Input Current Amplifier. 1-131
LMC6009 9-Channel Buffer Amplifier for TFT-LCD 7-36
LMC6022 Low Power CMOS Dual Operational Amplifier. 1-136
LMC6024 Low Power CMOS Quad Operational Amplifier. 1-140
LMC6032 CMOS Dual Operational Amplifier. 1-144
LMC6034 CMOS Quad Operational Amplifier. 1-148
LMC6035 Low Power 2.7V Single Supply CMOS Operational Amplifiers 1-152
LMC6036 Low Power 2.7V Single Supply CMOS Operational Amplifier 1-152
LMC6041 CMOS Single Micropower Operational Amplifier. 1-156

Alpha-Numeric Index (Continued)

LMC6042 CMOS Dual Micropower Operational Amplifier.1-160LMC6044 CMOS Quad Micropower Operational Amplifier. 1-164
LMC6061 Precision CMOS Single Micropower Operational Amplifier. 1-168
LMC6062 Precision CMOS Dual Micropower Operational Amplifier. 1-172
LMC6064 Precision CMOS Quad Micropower Operational Amplifier. 1-176
LMC6081 Precision CMOS Single Operational Amplifier. 1-180
LMC6082 Precision CMOS Dual Operational Amplifier. 1-184
LMC6084 Precision CMOS Quad Operational Amplifier. 1-188
LMC6442 Dual Micropower, Rail-to-Rail Output Single Supply Operational Amplifier. 1-192
LMC6462 Dual Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier. 1-197
LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier. 1-197
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier. 1-202
LMC6484 CMOS Quad Rail to Rail Input and Output Operational Amplifier. 1-207
LMC6492 Dual CMOS Rail-to-Rail Input and Output Operational Amplifier. 1-212
LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier. 1-212
LMC6572 Dual Low Voltage (2.7V to 3V) Operational Amplifier. 1-216
LMC6574 Quad Low Voltage (2.7V to 3V) Operational Amplifier. 1-216
LMC6762 Dual Micro-Power Rail-to-Rail Input CMOS Comparator with Push-Pull Output. 5-38
LMC6772 Dual Micro-Power Rail-to-Rail Input CMOS Comparator with Open Drain Output. 5-42
LMC6953 PCI Local Bus Power Supervisor. 14-19
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output. 1-228
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output. 1-234
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input. 5-46
LMC7215 Micro-Power, Rail-to-Rail CMOS Comparators with Open-Drain/Push-Pull Outputs and TinyPak Package. 5-50
LMC7221 Tiny CMOS Comparator with Rail-to-Rail Input and Open Drain Output. 5-53
LMC7225 Micro-Power, Rail-to-Rail CMOS Comparators with Open-Drain/Push-Pull Outputs and TinyPak Package. 5-50
LMC7660 Switched Capacitor Voltage Converter. 19-27
LMC8101 Rail-to-Rail Input and Output, 2.7V Op Amp in micro SMD package with Shutdown 1-240
LMD18200 3A, 55V H-Bridge. 11-46
LMD18201 3A, 55V H-Bridge 11-48
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver. 11-50
LMF100 High Performance Dual Switched Capacitor Filter. 11-15
LMS1585A 5A and 3A Low Dropout Fast Response Regulators. 17-49
LMS1587 5A and 3A Low Dropout Fast Response Regulators 17-49
LMS8117 1A Low-Dropout Linear Regulator 17-52
LMV101 Fixed-Gain Amplifiers. 1-246
LMV102 Fixed-Gain Amplifiers. 1-246
LMV105 Fixed-Gain Amplifiers. 1-246
LMV110 Fixed-Gain Amplifiers. 1-246

Alpha-Numeric Index

LMV111 Operational Amplifier with Bias Network. 1-249
LMV321 Single General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers. 1-252
LMV324 Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers. 1-252
LMV331 Single General Purpose, Low Voltage, TinyPak Comparator. 5-57
LMV339 Quad General Purpose, Low Voltage, TinyPak Comparator. 5-57
LMV358 Dual General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 1-252
LMV393 Dual General Purpose, Low Voltage, TinyPak Comparator. 5-57
LMV431 Low-Voltage (1.24V) Adjustable Precision Shunt Regulators. 15-49
LMV431A Low-Voltage (1.24V) Adjustable Precision Shunt Regulators. 15-49
LMV431B Low-Voltage (1.24V) Adjustable Precision Shunt Regulators. 15-49
LMV710 Low Power, RRIO Operational Amplifiers with High Output Current Drive and Shutdown Option. 1-256
LMV711 Low Power, RRIO Operational Amplifiers with High Output Current Drive and Shutdown Option. 1-256
LMV721 10MHz, Low Noise, Low Voltage, and Low Power Operational Amplifier. 1-260
LMV722 10MHz, Low Noise, Low Voltage, and Low Power Operational Amplifier. 1-260
LMV751 Low Noise, Low Vos, Single Op Amp. 1-264
LMV821 Single Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps. 1-267
LMV822 Dual Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps. 1-267
LMV824 Quad Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps 1-267
LMV921 Single 1.8 V , 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output. 1-272
LMV922 Dual 1.8V, 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output. 1-272
LMV924 Quad 1.8V, 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output 1-272
LMV7219 7 nsec, 2.7V to 5V Comparator with Rail-to-Rail Output. 5-60
LMX1600 2.0 GHz/500 MHz PLLatinum Low Cost Dual Frequency Synthesizer. 20-3
LMX1601 1.1 GHz/500 MHz PLLatinum Low Cost Dual Frequency Synthesizer. 20-3
LMX1602 1.1 GHz/1.1 GHz PLLatinum Low Cost Dual Frequency Synthesizer. 20-3
LMX2306 550 MHz PLLatinum Low Power Frequency Synthesizer for RF Personal Communications. 20-6
LMX2316 1.2 GHz PLLatinum Low Power Frequency Synthesizer for RF Personal Communications. 20-6
LMX2323 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 20-45
LMX2324 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications. 20-8
LMX2326 2.8 GHz PLLatinum Low Power Frequency Synthesizer for RF Personal Communication 20-6
LMX2330A 2.5 GHz/510 MHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications. 20-10
LMX2330L 2.5 GHz/510 MHz PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-13
LMX2331A 2.0 GHz/510 MHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications. 20-10
Alpha-Numeric Index (Continued)
LMX2331L 2.0 GHz/510 MHz PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-13
LMX2332A 1.2 GHz/510 MHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-10
LMX2332L 1.2 GHz/510 MHz PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-13
LMX2335 PLLatinum 1.1 GHz Dual Frequency Synthesizer for RF Personal Communications. 20-17
LMX2335L 1.1 GHz/1.1 GHz PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-20
LMX2336 PLLatinum 2.0 GHz/1.1 GHz Dual Frequency Synthesizer for RF Personal Communications 20-17
LMX2336L PLLatinum 2.0 GHz/1.1 GHz Low Power Dual Frequency Synthesizer for RF Personal Communications. 20-20
LMX2337 PLLatinum 550 MHz Dual Frequency Synthesizer for RF Personal Communications 20-17
LMX2350 2.5 GHz/550 MHz PLLatinum Fractional N RF / Integer N IF Dual Low Power Frequency Synthesizer 20-24
LMX2352 1.2 GHz/550 MHz PLLatinum Fractional N RF / Integer N IF Dual Low Power Frequency Synthesizer 20-24
LMX2353 PLLatinum Fractional N Single 2.5 GHz Frequency Synthesizer. 20-27
LMX2354 2.5 GHz/550 MHz Dual Low Power Frequency Synthesizer 20-27
LMX2370 2.5 GHz/1.2 GHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-29
LMX2371 2.0 GHx/1.2 GHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-29
LMX2372 1.2 GHz/1.2 GHz PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-29
LMX3161 Single Chip Radio Transceiver. 20-33
LMX3162 Single Chip Radio Transceiver. 20-37
LMX3305 Triple Phase Locked Loop for RF Personal Communications 20-50
LMX5001 Dedicated Bluetooth Link Controller. 20-53
LMX5080 PLLatinum 2.7 GHz Low Power Dual Modulus Presacaler for RF Personal Communications 20-43
LP324 Micropower Quad Operational Amplifier. 1-278
LP339 Ultra-Low Power Quad Comparator 5-65
LP395 Ultra Reliable Power Transistor. 11-16
LP2902 Micropower Quad Operational Amplifier 1-278
LP2950 Series of Adjustable Micropower Voltage Regulators 17-55
LP2951 Series of Adjustable Micropower Voltage Regulators 17-55
LP2952 Adjustable Micropower Low-Dropout Voltage Regulator. 17-58
LP2952A Adjustable Micropower Low-Dropout Voltage Regulator. 17-58
LP2953 Adjustable Micropower Low-Dropout Voltage Regulator 17-58
LP2953A Adjustable Micropower Low-Dropout Voltage Regulator. 17-58
Alpha-Numeric Index
LP2954 5V Micropower Low-Dropout Voltage Regulator. 17-60
LP2954A 5V Micropower Low-Dropout Voltage Regulator. 17-60
LP2956 Dual Micropower Low-Dropout Voltage Regulator 17-62
LP2956A Dual Micropower Low-Dropout Voltage Regulator 17-62
LP2957 5V Low-Dropout Regulator for micro-P Application. 17-64
LP2957A 5V Low-Dropout Regulator for micro-P Application. 17-64
LP2960 Adjustable Micropower 0.5A Low-Dropout Regulators. 17-65
LP2966 Dual 150mA Ultra Low-Dropout Regulator. 17-66
LP2975 MOSFET LDO Driver/Collector 17-69
LP2978 Micropower SOT, 50 mA Low-Noise Ultra Low-Dropout Regulator. 17-71
LP2980 Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 and micro SMD Packages. 17-73
LP2980-ADJ Micropower SOT, 50 mA Ultra Low-Dropout Adjustable Voltage Regulator. 17-77
LP2980LV Micropower SOT, 50 mA Low-Voltage Low-Dropout Regulator For Applications With Output Voltages < 2V. 17-79
LP2981 Micropower 100 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages. 17-81
LP2982 Micropower 50 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages. 17-84
LP2985 Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages. 17-88
LP2986 Micropower, 200 mA Ultra Low-Dropout Fixed or Adjustable Voltage Regulator. 17-93
LP2987 Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with Programmable Power-On Reset Delay; Low Noise Version Available (LP2988). 17-96
LP2988 Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with Programmable Power-On Reset Delay; Low Noise Version Available (LP2988). 17-96
LP2989 Micropower/Low Noise, 500 mA Ultra Low-Dropout Regulator. 17-101
LP2989LV Micropower 500 mA Low Noise Low Dropout Regulator for Applications with Output Voltages < 2V Designed for Use with Very Low ESR Output Capacitors. 17-103
LP3470 Tiny Power On Reset Circuit. 14-21
LP3961 800mA Fast Ultra Low Dropout Linear Regulator. 17-105
LP3962 1.5A Fast Ultra Low Dropout Linear Regulator. 17-111
LP3963 3A Fast Ultra Low Dropout Linear Regulator. 17-117
LP3964 800mA Fast Ultra Low Dropout Linear Regulator. 17-105
LP3965 1.5A Fast Ultra Low Dropout Linear Regulator 17-111
LP3966 3A Fast Ultra Low Dropout Linear Regulator. 17-117
LPC660 Low Power CMOS Quad Operational Amplifier. 1-281
LPC661 Low Power CMOS Operational Amplifier. 1-285
LPC662 Low Power CMOS Dual Operational Amplifier 1-289
LPV321 Single General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers. 1-293
LPV324 Quad General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers. 1-293
Alpha-Numeric Index (Continued)
LPV358 Dual General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers. 1-293
MAX660 Switched Capacitor Voltage Converter. 19-28
MF10 Universal Monolithic Dual Switched Capacitor Filter. 11-17
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 1-297
Selection Guide and Related Documents
A/D Converter Selection Guide. 6-4
A/D Converter Definition Of Terms 6-8
Audio Codecs 4-89
Audio Controls and Signal Processing 4-63
Audio Power Amplifiers. 4-5
Bus LVDS Selection Guide. 9-7
Channel Link Selection Guide 9-5
8-Bit COP8 Family: Optimized for Value 3-4
D/A Converter Selection Guide. 6-6
D/A Convęrters Definition Of Terms. 6-10
Data Acquisition System Selection Guide 6-7
Device Marking Conventions. 22-3
Flash Products 3-102
Flat Panel Display (FPD) Link and LDI Selection Guide. 7-3
High Speed Amplifiers/Buffers/Multiplexers/Variable Gain Amplifiers Selection Guide 2-4
High Speed Op Amp Definition Of Terms 2-13
Imaging Products 11-18
Imaging Products Selection Guide 11-19
Interface LVDS Line Drivers and Receivers Selection Guide 9-4
Interface Selection Guide 8-5
Linear Voltage Regulator Selection Guide 16-3
Lithium Battery Chargers. 11-27
Lithium Battery Charger Selection Guide 11-28
Low-Dropout Regulators Selection Guide. 17-4
Low-Dropout Voltage Regulators Definition Of Terms 17-7
Low Power/General Purpose Operational Amplifiers Selection Guide 1-5
Military-Aerospace Product Services. 21-3
Motion Control. 11-41
Motion Control and Motor Drive Selection Guide 11-42
National Semiconductor's Die Products 22-7
Operational Amplifier Definition Of Terms 1-14
OTP Products 3-59
Package Illustrations. 22-8
Product Status Definitions vi
Radiation Test Results 21-4
ROM Products 3-9

Alpha-Numeric Index ${ }_{\text {(Conitinued) }}$

SDI Introduction. 10-3
SDI Nomenclature 10-23
SDI Selection Guide 10-4
SMD/JAN Drawing Cross-Reference. 21-8
Switched Capacitor Converter Selection Guide. 19-3
Switching Regulators Definition Of Terms 18-7
Switching Regulators Selection Guide. 18-4
System Hardware Monitor Selection Guide. 12-5
Temperature Sensor Selection Guide. 12-3
Universal Serial Bus. 11-51
Universal Serial Bus Products Selection Guide. 11-52
Video Circuits Selection Guide. 13-3
Voltage Comparator Definition Of Terms. 5-5
Voltage Comparators Selection Guide. 5-3
Voltage Control and Supervisor Products Selection Guide. 14-3
Voltage Reference Selection Guide. 15-3
Voltage Regulators Definition Of Terms. 16-5

Section 1
 Amplifiers - General Purpose, Low-Power and Buffers

Section 1 Contents

Low Power/General Purpose Operational Amplifiers 1-5
Operational Amplifier Definition Of Terms 1-14
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers. 1-15
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 1-18
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 1-21
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier 1-24
LF442 Dual Low Power JFET Input Operational Amplifier 1-28
LF444 Quad Low Power JFET Input Operational Amplifier 1-31
LM10 Operational Amplifier and Voltage Reference 1-34
LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers 1-38
LM101A/LM201A/LM301A Operational Amplifiers 1-41
LM118/LM218/LM318 Operational Amplifiers 1-44
LM12CL 80W Operational Amplifier 1-46
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers 1-48
LM1458/LM1558 Dual Operational Amplifier 1-53
LM146/LM346 Programmable Quad Operational Amplifiers 1-56
LM148/LM248/LM348 Quad 741 Op Amps, LM149 Wide Band Decompensated $\left(\mathrm{A}_{\mathrm{V}(\mathrm{MIN})}=5\right)$ 1-59
LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers 1-62
LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers 1-67
LM392 Low Power Operational Amplifier/Voltage Comparator 1-70
LM4250 Programmable Operational Amplifier 1-73
LM611 Operational Amplifier and Adjustable Reference 1-78
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 1-82
LM6132/LM6134 Dual and Quad Low Power 10 MHz Rail-to-Rail I/O Operational Amplifiers 1-87
LM614 Quad Operational Amplifier and Adjustable Reference 1-90
LM6142 and LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-94
LM6152/LM6154 Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers 1-97
LM6118/LM6218 Fast Settling Dual Operational Amplifiers 1-100
LM675 Power Operational Amplifier 1-103
LM725 Operational Amplifier 1-105
LM7301 Low Power, 4 MHz GBW, Rail-to-Rail Input-Output Operational Amplifier in TinyPak Package 1-108
LM741 Operational Amplifier 1-113
LM8261 Single RRIO, High Output Current \& Unlimited Cap Load Op Amp in SOT23-5 1-117
LM833 Dual Audio Operational Amplifier 1-122
LM837 Low Noise Quad Operational Amplifier. 1-125
LMC2001 High Precision, 6MHz Rail-To-Rail Output Operational Amplifier. 1-128
LMC6001 Ultra Ultra-Low Input Current Amplifier. 1-131
LMC6022 Low Power CMOS Dual Operational Amplifier. 1-136
LMC6024 Low Power CMOS Quad Operational Amplifier 1-140
LMC6032 CMOS Dual Operational Amplifier 1-144
LMC6034 CMOS Quad Operational Amplifier. 1-148
LMC6035/LMC6036 Low Power 2.7V Single Supply CMOS Operational Amplifiers 1-152
LMC6041 CMOS Single Micropower Operational Amplifier 1-156
LMC6042 CMOS Dual Micropower Operational Amplifier 1-160
LMC6044 CMOS Quad Micropower Operational Amplifier 1-164
LMC6061 Precision CMOS Single Micropower Operational Amplifier 1-168
LMC6062 Precision CMOS Dual Micropower Operational Amplifier 1-172
LMC6064 Precision CMOS Quad Micropower Operational Amplifier 1-176
LMC6081 Precision CMOS Single Operational Amplifier 1-180
LMC6082 Precision CMOS Dual Operational Amplifier 1-184
LMC6084 Precision CMOS Quad Operational Amplifier. 1-188
LMC6442 Dual Micropower Rail-to-Rail Output Single Supply Operational Amplifier 1-192
LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-197
LMC6482 CMOS Dual Rail-To-Rail Input and Output Operational Amplifier 1-202
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 1-207
LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier 1-212
LMC6572/LMC6574 Dual and Quad Low Voltage (2.7V and 3V) Operational Amplifier 1-216
LMC660 CMOS Quad Operational Amplifier. 1-220
LMC662 CMOS Dual Operational Amplifier 1-224
LMC7101 Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output 1-228
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 1-234
LMC8101 Rail-to-Rail Input and Output, 2.7V Op Amp in micro SMD package with Shutdown 1-240
LMV101/102/105/110 Fixed-Gain Amplifiers 1-246
LMV111 Operational Amplifier with Bias Network 1-249
LMV321/LMV358/LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers 1-252
LMV710 and LMV711 Low Power, RRIO Operational Amplifiers with High Output Current Drive and Shutdown Option 1-256
LMV721/LMV722 10MHz, Low Noise, Low Voltage, and Low Power Operational Amplifier 1-260
LMV751 Low Noise, Low Vos, Single Op Amp. 1-264
LMV821 Single/LMV822 Dual/LMV824 Quad Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps. 1-267
LMV921/LMV922/LMV924 Single Dual and Quad 1.8V, 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output 1-272
LP324/LP2902 Micropower Quad Operational Amplifier 1-278
LPC660 Low Power CMOS Quad Operational Amplifier 1-281
LPC661 Low Power CMOS Operational Amplifier 1-285
LPC662 Low Power CMOS Dual Operational Amplifier 1-289
LPV321 Single/LPV358 Dual/LPV324 Quad General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers 1-293
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 1-297

Low Power/General Purpose Operational Amplifiers

Table 1 Single Low Power Operational Amplifiers
Table 2 Dual Low Power Operational Amplifiers
Table 3 Quad Low Power Operational Amplifiers
Table 4 Special Function Operational Amplifiers
Table 5 Single General Purpose Operational Amplifiers
Table 6 Dual General Purpose Operational Amplifiers
Table 7 Quad General Purpose Operational Amplifiers

TABLE 1. SINGLE LOW POWER OPERATIONAL AMPLIFIERS

Part Number	Supply Current	Input Offset Voltage	Input Bias Current	Common Mode Voltage Range	Output Swing (V)	Gain Bandwidth	Supply Voltage		Packages (Note 1)	Operating Temp Ranges (Note 2)
	$I_{s}(\mu A) T y p$	Vos (mV) Max	Ib (tA) Typ	CMVR (V) Typ	Typ with $\mathbf{R}_{\mathrm{L}}=$ $100 \mathrm{k} \Omega$ unless otherwise Specified	GBW (MHz) Typ	Min (V)	Max (V)		
LPV321	9	7	1.5 nA	-0.2 to 4.2	0.09 to 4.997	0.152	2.7	5	M7, M5	1
LM4250	10 (adj)	6	30nA	0.9 to 4.1	0.9 to 4.1	0.2	2	36	M08, N08, H08	C, M
LMC6041	14	6	2	-0.4 to 3.1	0.004 to 4.987	0.075	5	15	M08, N08	1
LMC6041A	14	3	2	-0.4 to 3.1	0.004 to 4.987	0.075	5	15	M08, N08	1
LMC6061	20	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M08, N08	1
LMC6061A	20	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M08, N08	I, M
LMC7111A	25	3	100	-0.3 to 5.25	0.01 to 4.99	0.05	2.5	11	M5, N08	1
LMC7111B	25	7	100	-0.3 to 5.25	0.01 to 4.99	0.05	2.5	11	M5, N08	1
LPC661	55	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M08	1
LMV321	130	7	15nA	-0.2 to 4.2	0.065 to 4.9	1	2.7	5	M7, M5	1
LMV921	160	6	12 AA	-0.3 to 5.35	0.035 to 4.965*	1	1.5	5	M7, M5	1
LM611	210	3	10 nA	0 to 3.2	0.8 to 3.6	0.8	4	36	J08, M14	СIM
LM10	300	4	40nA	-0.3 to 4.9	0.015 to 4.9	0.05	1.2	40	M08, N08, H08	I, M
LMV821	300	3.5	40nA	-0.2 to 4.2	0.55 to 4.9	5	2.7	5	M7, M5	1
LMC6001A	450	0.35	25	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	N08	1
LMC6001B	450	1	100	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	N08	1
LMC6001C	450	1	1000	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	N08	1
LMC6081	450	0.8	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M08, N08	1
LMC6081A	450	0.35	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M08, N08	I, M
LMC7101A	500	3	1000	-0.3 to 5.3	0.10 to 4.90*	1.1	2.7	15	M5	1
LMC7101B	500	7	1000	-0.3 to 5.3	0.10 to 4.90*	1.1	2.7	15	M5	1
LM7301	600	6	90nA	-0.1 to 5.1	0.14 to 4.87*	4	1.8	32	M5, M08	1
LMV751	600	1	1500	-0.2 to 3.6	0.086 to 4.89	5	2.7	5	M5	1
LMC8101	700	5	1000	-0.2 to 5.2	0.02 to 4.97	1	2.7	10	BP08, MM08	1
LMC2001	750	0.04	3pA	0 to 4	0.03 to 4.97	6	4.5	5.5	M08, M5	I,C
LM8261	970	5	$1.18 \mu \mathrm{~A}$	-0.3 to 5.3	0.07 to 4.87	24	2.5	30	M5	1
LMV721	1030	3	260 nA	-0.3 to 4.1	0.046 to 4.962*	10	2.2	5	M7, M5	1
LMV710	1.17 mA	3	4 pA	-0.3 to 5.3	0.01 to 4.98	5	2.7	5.5	M5	1
LMV711	1.17 mA	3	4 pA	-0.3 to 5.3	0.01 to 4.98	5	2.7	5.5	M6	1

TABLE 2. DUAL LOW POWER OPERATIONAL AMPLIFIERS

Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} @ \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}$. ${ }^{*}$ Typical Output Swing with $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. ${ }^{* *}$ Typical Output Swing with $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$.

Part Number	Supply Current $\mathrm{I}_{\mathrm{s}}(\mu \mathrm{A}) \mathrm{Typ}$	Input OffsetVoltage $V_{\text {OS }}(\mathrm{mV})$Max	Input Bias Current lb ($\mathrm{f} A$) Typ	Common Mode Voltage Range CMVR (V) Typ	Output Swing (V) Typ with $R_{L}=100 \mathrm{k} \Omega$ unless otherwise Specified	Gain Bandwidth GBW (MHz) Typ	Supply Voltage		Packages (Note 1)	Operating TempRanges(Note 2)
							Min (V)	Max (V)		
LMC6442	2	7	5	-0.4 to 4.1	0.02 to 4.99	0.01	1.5	15	M14, MM14, N14	1
LMC6442A	2	3	5	-0.4 to 4.1	0.02 to 4.99	0.01	1.5	15	M08, N08, MM08, WG10, J08	I, M
LPV358	14	10	2nA	-0.2 to 4.2	0.09 to 4.997	0.152	2.7	5	MM08, M08	I
LMC6042	20	6	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15	M08, N08	1
LMC6042A	20	3	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15	M08, N08	1
LMC6062	32	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M08, N08	1
LMC6062A	32	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M08, N08, J08	I, M
LMC6462A	40	0.5	150	-0.2 to 5.3	0.005 to 4.995	0.05	3	15	M08, N08	I, M
LMC6462B	40	3	150	-0.2 to 5.3	0.005 to 4.995	0.05	3	15	M08, N08	1
LMC6572A	76	3.3	20	-0.2 to 1.9	0.005 to 2.695**	0.22	2.7	11	M08, N08	1
LMC6572B	76	3.7	20	-0.2 to 1.9	0.005 to 2.695**	0.22	2.7	11	M08, N08, MM08	1
LMC6022	86	9	40	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M08	1
LPC662	86	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M08	1
LPC662A	86	3	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M08	I, M
LMV358	210	7	15nA	-0.2 to 4.2	0.065 to 4.9	1	2.7	5	MM08, M08	1
LM613	224	5	25nA	0.8 to 3.5	0.8 to 3.5	0.8	4	36	M16	1
LMV922	400	8	12 nA	-0.2 to 5.2	0.035 to 4.965	1	1.5	5	M08, MM08	1
LMV822	500	3.5	40 nA	-0.2 to 4.2	0.55 to 4.9	5	2.7	5	MM08, M08	1
LM6132A	720	2	110 nA	-0.25 to 5.25	0.007 to 4.992	10	2.7	24	M08, N08,	1
LM6132B	720	6	110nA	-0.25 to 5.25	0.007 to 4.992	10	2.7	24	M08, N08,	1
LMC662	750	6	2	-0.4 to 3.1	0.1 to 4.87	2	5	15	M08, N08	1
LMC662A	750	3	2	-0.4 to 3.1	0.10 to 4.87*	1.4	5	15	M08, N08	1
LMC6032	750	9	40	-0.4 to 3.1	0.10 to 4.87*	1.4	5	15	M08, N08	1
LMC6035	800	5	20	-0.5 to 4.5	0.08 to 4.9*	1.4	2	15	M08, MM08, BP08	1
LMC6082	900	0.8	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M08, N08	1
LMC6082A	900	0.35	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M08, N08	1
LM392	1000	5	50nA	0 to 3.5	0 to 3.5	1	3	32	M08, N08	C
LMC6482	1000	3	20	-0.3 to 5.3	0.10 to 4.9*	1.3	3	15	M08, N08, MM08	1
LMC6482A	1000	0.75	20	-0.3 to 5.3	0.10 to 4.9*	1.3	3	15	M08, N08, MM08, J08	I, M
LMC6492A	1000	3	150	-0.3 to 5.3	0.10 to 4.9*	1.5	5	15	M08, N08	E
LMC6492B	1000	6	150	-0.3 to 5.3	0.10 to 4.9*	1.5	5	15	M08, N08	E
LM6142A	1300	1	180nA	-0.25 to 5.25	0.005 to 4.995	17	1.8	24	M08, N08, J08	I, M
LM6142B	1300	2.5	180nA	-0.25 to 5.25	0.005 to 4.995	17	1.8	24	M08, N08	1
LMV722	1830	3.5	260nA	-0.3 to 4.1	0.046 to 4.962*	10	2.2	5	MM08, M08	1
LM6152A	2800	2	500nA	-0.25 to 5.25	0.006 to 4.992	75	2.7	24	M08, N08	1
LM6152B	2800	5	500nA	-0.25 to 5.25	0.006 to 4.992	75	2.7	24	M08, N08	1

TABLE 3. QUAD LOW POWER OPERATIONAL AMPLIFIERS
Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} @ \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}$. * Typical Output Swing with $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. ${ }^{* *}$ Typical Output Swing with $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$

Part Number	Supply Current	Input Offset Voltage	Input Bias Current	Common Mode Voltage Range	Output Swing (V)	Gain Bandwidth	Supply Voltage		Packages (Note 1)	Operating Temp Ranges (Note 2)
	$\mathrm{I}_{\mathrm{s}}(\mu \mathrm{A}) \mathrm{Typ}$	Vos (mV) Max	lb (fA) 7 yp	CMVR (V) Typ		GBW (MHz) Typ	$\operatorname{Min}(\mathrm{V})$	Max (V)		
LPV324	28	10	2nA	-0.2 to 4.2	0.09 to 4.997	0.152	2.7	5	MT14, M14	1
LMC6044	40	6	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15	M14, N14	-1
LMC6044A	40	3	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15	M14, N14	1
LMC6064	64	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M14, N14	1
LMC6064A	64	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15	M14, N14, J14	I, M
LMC6464A	80	0.5	150	-0.2 to 5.3	0.005 to 4.995	0.05	3	15	M14, N14, J14, WG14	I, M
LMC6464B	80	3	150	-0.2 to 5.3	0.005 to 4.995	0.05	3	15	M14, N14	1
LP324	85	4	10nA	-0.1 to 4.9	0.7 to 3.6	0.1	3	32	MT14, M14	1
LP2902	85	10	2nA	-0.1 to 4.9	0.7 to 3.6	0.1	3	32	MT14, M14	E
LMC6024	160	9	40	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M14, N14	1
LMC6574A	160	3	20	-0.2 to 1.9	0.005 to 2.695*	0.22	2.7	11	M14, N14	1
LMC6574B	160	7	20	-0.2 to 1.9	0.005 to 2.695*	0.22	2.7	11	M14, N14	1
LPC660	160	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M14	1
LPC660A	160	3	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15	M14	1
LMV324	410	7	15nA	-0.2 to 4.2	0.065 to 4.9	1	2.7	5	MT14, M14	,
LMV924	750	8	12nA	-0.2 to 5.2	0.03 to 4.97	1	1.8	5	M14, MT14	1
LMV824	1000	3.5	40nA	-0.2 to 4.2	0.055 to 4.9	5.6	2.7	5	MT14, M14	1
LMC6036	1300	5	20	-0.5 to 4.5	0.08 to 4.9*	1.4	2	15	M14	1
LM6134A	1440	2	110nA	-0.25 to 5.25	0.005 to 4.995	10	2.7	24	M14, N14	1
LM6134B	1440	6	110nA	-0.25 to 5.25	0.005 to 4.995	10	2.7	24	M14, N14	1
LMC660A	1500	3	2	-0.4 to 3.1	0.10 to 4.87*	1.4	5	15	M14, N14	1
LMC660C	1500	6	2	-0.4 to 3.1	0.10 to 4.87*	1.4	5	15	M14, N14	1
LMC6034	1500	9	40	-0.4 to 3.1	0.10 to 4.87*	1.4	5	15	M14	1
LMC6084	1800	0.8	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M14, N14	1
LMC6084A	1800	0.35	10	-0.4 to 3.1	0.10 to 4.87*	1.3	5	15	M14, N14	1
LMC6484	2000	3	20	-0.3 to 5.3	0.10 to 4.9*	1.3	3	15	M14, N+4	I, M
LMC6484A	2000	0.75	20	-0.3 to 5.3	0.10 to 4.9*	1.3	3	15	M14, N14, J14, WG14	I, M
LMC6494A	2000	3	150	-0.3 to 5.3	0.10 to 4.9*	1.5	2.5	15	M14, N14	E
LMC6494B	2000	6	150	-0.3 to 5.3	0.10 to 4.9*	1.5	2.5	15	M14, N14	E
LM6144A	2600	1	180nA	-0.25 to 5.25	0.005 to 4.995	17	1.8	24	M14, N14	1
LM6144B	2600	2.5	180nA	-0.25 to 5.25	0.005 to 4.995	17	1.8	24	M14, N14	1
LM6154B	5600	5	500nA	-0.25 to 5.25	0.005 to 4.995	75	2.7	24	M14, N14	1

TABLE 4. SPECIAL FUNCTION OPERATIONAL AMPLIFIERS

Part Number	$\begin{gathered} \text { Vos } \\ (\mathrm{mV}) \mathrm{Max} \end{gathered}$	$\stackrel{\mathrm{IB}_{\mathrm{B}}}{(\mathrm{nA})} \mathrm{Max}$	GBW (MHz) Typ	Slew Rate (V/ $/ \mathrm{s}$) Typ	Supply Current (mA) Max	Supply Voltage		Packages (Note 2)	Operating Temp Ranges (Note 2)	Special Note
						Min (V)	Max (V)			
LM12	15	150	0.7	0.7	9	15	80	K	C	80W Operational Amplifier
LM359		$15 \mu \mathrm{~A}$	30	30	60	5	22	M14, N14	C	Dual high speed programmable "Norton" amplifier
LM392	5	250	1	1	2	4	36	M14, N14	C	Low power op amp with voltage comparator
LM611	5	35	0.8	0.7	0.35	4	36	M14, J14	I, C, M	Single amplifier with adjustable voltage reference from 1.2 V to 6.3 V
LM613	5	35	0.8	0.7	1	4	36	N16, J16	I, M	Dual comparator and dual amplifiers with adjustable voltage reference from 1.2 V to 6.3 V
LMV711	3	4 pA	5	5	1.7	2.7	5	M6	1	R-R I/O Op Amp with High Output Current Drive and Shutdown
LMV8101	5	1	1	1	1	2.7	10	BP08, MM08	1	R-R I/O Op Amp in μ SMD with Selectable Shutdown Polarity
LM614	5	35	0.8	0.7	1	4	36	M16	c	Quad Operational Amplifier with Adjustable Reference
LM675	10	$2 \mu \mathrm{~A}$	5.5	5.5	8	12	60	T	C	3 Amp Power Op Amp
CLC5509			33		11	8	11	M08	1	$0.58 \mathrm{nV} / \mathrm{Hz}$ Preamp Plus Buffer
LM194/394	0.1, 0.2		200					K06, N08	I, M	Supermatch Transistor Pair
LMV101			1.6	1	0.25	2.7	5	M5, M7	C	LMV321 Type/w Built-In Feedback R's, Fixed Gain of -1
LMV102			1.8	1	0.25	2.7	5	M5, M7	C	LMV321 Type/w Built-In Feedback R's, Fixed Gain of -2
LMV105			0.8	1	0.25	2.7	5	M5, M7	C	LMV321 Type/w Built-In Feedback R's, Fixed Gain of -5
LMV110			0.2	1	0.25	2.7	5	M5, M7	c	LMV321 Type/w Built-In Feedback R's, Fixed Gain of -10
LMV111			1	1	0.25	2.7	5	M5, M7	c	LMV321 Type/w Built-In VS/2 Divider R's on Non-Inverting Input

TABLE 5. SINGLE GENERAL PURPOSE OPERATIONAL AMPLIFIERS
Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Part Number	GBW (MHz) Typ	$\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ (\mathrm{mV}) \mathrm{Max} \end{gathered}$	$\stackrel{I_{B}}{(n A)} \operatorname{Max}$	Slew Rate (V/ $/ \mathrm{s}$) Typ	Supply Current (mA) Max	Supply Voltage		Packages (Note 1)	Operating Temp Ranges (Note -1)
						Min (V)	Max (V)		
LM725	0.5	1	100	0.3	4.5	6	44	H08	M
LM725A	0.5	0.5	80	0.3	4.5	6	44	H08	M
LM725C	0.5	2.5	125	0.3	4.8	6	44	H08, N08	C
LM101A/201A	1	2	75	10	3	10	44	H08, J08, J14, W10	M, I
LM301A	1	7.5	250	10	3	10	36	H08, N08	C
LM709	1	5	500	0.25	5.5	10	36	H08	M
LM709A	1	2	200	0.25	3.6	10	36	H08	M
LM709C	1	7.5	1500	0.25	6.6	10	36	H08	C
LM748	1	5	500	1	2.8	10	40	H08	M
LM741	1.5	5	500	0.5	2.8	6	44	H08, J08, W10	M
LM741A	1.5	3	80	0.7	2.8	6	44	H08	M
LM741C	1.5	6	500	0.5	2.8	6	36	H08, N08	C
LF155	2.5	5	0.1	5	4	10	44	H08	M, I
LF155A	2.5	2.5	0.05	5	4	10	44	H08	M
LF156	5	5	0.1	12	7	10	44	H08	M, I
LF156A	5	2	0.05	12	7	10	44	H08	M
LM118/218	15	4	250	70	8	10	40	H08, J08, W10, J14	M, I
LM318	15	10	750	70	10	10	40	H08, M08, N08	C
LF157	20	5	0.1	50	7	10	44	H08	M, I
LF157A	20	2	0.05	50	7	10	44	H08	M

TABLE 6. DUAL GENERAL PURPOSE OPERATIONAL AMPLIFIERS
Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Part Number	GBW (MHz) Typ	$\underset{\text { Max }}{\mathrm{V}_{\mathrm{Os}}(\mathrm{mV})}$	$\stackrel{I_{B}}{(\mathrm{nA})} \mathrm{Max}^{2}$	Slew Rate (V/ $/ \mathrm{s}$) Typ	Supply Current (mA) Max	Supply Voltage		Packages (Note 1)	Operating Temp Ranges (Note 2)
						Min (V)	Max (V)		
LF442	1	5	0.1	1	0.5	10	36	H08, N08, J08	C, M
LF442A	1	1	0.05	1	0.4	10	44	H08, N08	C. M
LM158/258	1	5	150	0.5	2	3	32	H08, J08	M, I
LM158A	1	2	50	0.5	2	3	32	H08, J08	M
LM358	1	7	250	0.5	2	3	32	H08, M08, N08	C
LM358A	1	3	100	0.5	2	3	32	M08, N08	c
LM1458	1	6	500	1	5.6	10	36	H08, M08, N08	C
LM1558	1	5	500	1	5	10	44	H08, J08	M
LM2904	1	7	250	0.5	2	3	26	M08, N08	1
LM747	1.5	5	500	0.5	5	10	44	H10, J14	M
LF353	4	10	0.2	13	6.5	10	36	N08, M08	C
LF412	4	3	0.2	15	6.5	10	36	H08, N08, J08	C, M
LF412A	4	1	0.2	15	5.6	10	36	N08	C, M
TL082	4	15	0.4	13	5.6	10	36	M08, N08	C
LM833	15	5	1000	7	8	10	32	MM08, M08, N08	C
LM6218A	17	1	350	140	7	10	42	J08, N08, E20	M, I
LM6218	17	3	500	140	7	10	42	N08, WM14	1
LM6118	17	1	350	75	7	10	42	J08	M

TABLE 7. QUAD GENERAL PURPOSE OPERATIONAL AMPLIFIERS
Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number	$\begin{gathered} \text { GBW } \\ \text { (MHz) Typ } \end{gathered}$	$\underset{\operatorname{Max}}{V_{o s}(m V)}$	$\stackrel{\mathrm{IB}}{(\mathrm{nA})} \mathrm{Max}$	Slew Rate (V/ $/ \mathrm{s}$) Typ	Supply Current (mA) Max	Supply Voltage		Packages (Note 1)	Operating Temp Ranges (Note 2)
						Min (V)	Max (V)		
LF444	1	10	0.1	1	1	10	36	M08, N08, D14	C, M
LF444A	1	5	0.05	1	0.8	10	44	N14	C
LM124/224	1	5	150	0.5	3	3	32	J14, W14	1
LM124A	1	2	50	0.5	3	3	32	J14, W14, E20	M
LM148	1	5	100	0.5	3.6	10	44	J14, E20	M
LM224A	1	3	80	0.5	3	3	32	J14	1
LM324	1	7	250	0.5	3	3	32	M14, N14, J14	c
LM324A	1	3	100	0.5	3	3	32	M14, N14	C
LM348	1	6	200	0.5	4.5	10	36	M14, N14, J14	c
LM2902.	1	7	250	0.5	3	3	26	M14, N14	1
LM146	1.2	5	100	0.4	2	3	44	J16	M
LM346	1.2	6	250	0.4	2.5	3	36	M16, N16	c
LF147	4	5	0.1	13	11	10	44	J14	M
LF347	4	10	0.2	13	11	10	36	M14, N14	C
LM149	4	5	100	2	3.6	10	44	J14	M
LM837	25	5	1000	10	15	10	32	M14, N14	C

Note 1: $($ Letter $=$ Pkg. Type, Number $=\#$ of pins $)$

Code Letter	Package Type
BP	microSMD
E	LCC
H/G	Metal Can
J/D	Ceramic Dual-In-Line
K	Metal Can (TO-3)
M	SOIC
MF	TSSOP
MM	MSOP
M3	SOT23-3
M5	SOT23-5
M6	SOT23-6
N	Plastic Dual-In-Line (PDIP)
T	TO-220
V	PLCC
W	Flatpak
WG	Ceramic SOIC
Z	TO-92

Note 2: Temperature Ranges:

$\mathrm{C}=$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$\mathrm{E}=$	Extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
$\mathrm{I}=$	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
$\mathrm{M}=$	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Operational Amplifier Definition Of Terms

Gain Bandwidth (GWB): The open loop gain times the frequency at a specified frequency higher than the first pole.
Unity Gain Bandwidth: The frequency where the amplifier open loop gain equals to one. It equals GBW if single pole roll off exist.
Common-Mode Rejection Ratio (CMRR): The ratio of differential voltage amplification to common-mode voltage amplification. It is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage change.

$$
\operatorname{CMRR}(\mathrm{dB})=20 \log 10\left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right)
$$

Total Harmonic Distortion (THD): When a pure sinusoid given as $\mathrm{V}_{\text {in }}(\omega)=\mathrm{V}_{\mathrm{p}} \sin (\omega t)$ is applied to the input of an operational amplifier, the output with harmonic distortion will be $\mathrm{V}_{\text {out }}(\omega) \mathrm{a}_{1} \mathrm{~V}_{\mathrm{p}} \sin (\omega \mathrm{t})+\mathrm{a}_{2} \mathrm{~V}_{\mathrm{p}} \sin (\omega \mathrm{t})+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{V}_{\mathrm{p}} \sin (\mathrm{n} \omega \mathrm{t})$. THD is express as

$$
\operatorname{THD}(\%)=\left[\left(a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}\right)^{1 / 2 / 2} a_{1}\right] \times 100
$$

Input Current (I_{B} or I_{in}): The average of the two input currents.
Input Common-Mode Voltage Range ($\mathbf{V}_{\mathbf{C M}}$): Typically the range of voltages on the input terminals for which the amplifier's performance is specified.
Input Impedance ($\mathbf{Z}_{\text {in }}$): The ratio of input AC voltage to input AC current.
Common-Mode Input Resistance: The ratio of the common-mode input voltage change to the inverting or non-inverting input current change.
Differential Input Resistance: The ratio of the differential input voltage change to the input current change.
Input Offset Current (l_{os}): The difference of the currents between the two input terminals.
Input Offset Voltage (V_{os}): The DC error voltage which exists between the input terminals due to non-ideal balancing of the input stage to the output. It is multiplied by the closed loop gain.
Large-Signal Voltage Gain ($\mathbf{A}_{\mathbf{V}}$): The ratio of the output voltage change to the change in input voltage. This parameter is usually specified at a large output voltage, less than maximum output Voltage, and typically under DC condition.
Output Impedance $\left(Z_{0}\right)$: The apparent output impedance of an op amp, typically illustrated with an ideal op amp with zero output impedance in series with an output impedance, Zout, measured under AC condition.
Output Resistance: The apparent output resistance of an op amp, typically illustrated with an ideal op amp with zero output resistance in series with an output resistor, Rout, measured under DC condition.
Output Voltage Swing (V_{o}): The maximum peak-to-peak output voltage swing under specified load and supply voltages.
Offset Voltage Temperature Coefficient ($\mathrm{TCV}_{\mathrm{os}}$): The average rate of change in offset voltage for the junction temperature variation over a specified temperature range.

Power Supply Rejection Ratio (PSRR): The ratio of the change in input offset voltage to the change in power supply voltages producing it.

$$
\operatorname{PSRR}(\mathrm{dB})=20 \log 10\left(\Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{V}_{\mathrm{s}}\right)
$$

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band, which is expressed as the \pm percentage of the total voltage change.
Slew Rate (SR): The rate that an amplifier output changes from one voltage level to another when a step or square wave input is applied. Typically it is the average rate measured from 10% to 90% of the total output voltage change.
Supply Current $\left(\mathbf{I}_{\mathbf{s}}\right)$: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions. Usually small signal is less than 100 mV .
Input Voltage Noise (e_{n}): The equivalent voltage noise applied in series with the input of the noiseless amplifier.
Input Current Noise (i_{n}): The equivalent current noise applied in parallel with the input of the noiseless amplifier.
Phase Margin ($\Phi \mathbf{m}$): The open-loop phase shift between the output and the inverting input at the unity frequency.
Gain Margin ($\mathbf{C}_{\mathbf{m}}$): Open loop gain at the frequency where the phase between inverting input and output crosses zero.
Rise Time (\mathbf{t}_{r}): The time required for an output voltage step to change from 10% to 90% of its final value.
Short-Circuit Output Current: The maximum available current out of the output of an op amp.
Open loop Gain: The ratio of the voltage change at the output to the voltage change at the input, usually under AC condition.
Note: All parameters are under specific conditions.

LF147/LF347

Wide Bandwidth Quad JFET Input Operational Amplifiers

General Description

The LF147 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET II ${ }^{\text {TM }}$ technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs.
The LF147 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift.

Features

$\begin{array}{lr}\text { - Internally trimmed offset voltage: } & 5 \mathrm{mV} \max \\ \text { - Low input bias current: } & 50 \mathrm{pA} \\ \text { - Low input noise current: } & 0.01 \mathrm{pA} / \mathrm{Hz} \\ \text { - Wide gain bandwidth: } & 4 \mathrm{MHz} \\ \text { - High slew rate: } & 13 \mathrm{~V} / \mu \mathrm{s} \\ \text { - Low supply current: } & 7.2 \mathrm{~mA} \\ \text { - High input impedance: } & 10^{12} \Omega \\ \text { - Low total harmonic distortion: } & \leq 0.02 \% \\ \text { - Low 1/f noise corner: } & 50 \mathrm{~Hz} \\ \text { - Fast settling time to } 0.01 \% \text { : } & 2 \mu \mathrm{~s}\end{array}$

Connection Diagram

Dual-In-Line Package

Note 1: LF147 available as per JM38510/11906.
Top View
Order Number LF147J, LF147J-SMD, LF347M, LF347BN, LF347N, LF147J/883, or JL147 BCA (Note 1)
See NS Package Number J14A, M14A or N14A

Simplified Schematic

Absolute Maximum Ratings (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LF147	LF347B/LF347
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
\quad (Note 3)		
Output Short Circuit	Continuous	Continuous
\quadDuration (Note 4)		
Power Dissipation	900 mW	1000 mW
\quad (Notes 5, 11)		
T_{j} max	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$\theta_{\text {jA }}$		
\quad Ceramic DIP (J) Package		$70^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP (N) Package		$75^{\circ} \mathrm{C} / \mathrm{W}$
Surface Mount Narrow (M)		$100^{\circ} \mathrm{C} / \mathrm{W}$

LF147
Surface Mount Wide (WM) Operating Temperature Range
Storage Temperature Range
Lead Temperature
(Soldering, 10 sec.) $\quad 260^{\circ} \mathrm{C} \quad 260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package
Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$
Infrared (15 seconds)
$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 12)
900 V

DC Electrical Characteristics (Note 7)

Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offiset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 7,8)$ Over Temperature		25	$\begin{array}{r} 100 \\ 25 \end{array}$		25	$\begin{gathered} 100 \\ 4 \end{gathered}$		25	$\begin{array}{\|c} \hline 100 \\ 4 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 7,8)$ Over Temperature		50	$\begin{array}{r} 200 \\ 50 \end{array}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	50 25	100		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & \hline+15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \hline \mathrm{v} \\ & \mathrm{v} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 9)	80	100		80	100		70	100		dB
$\mathrm{I}^{\text {s }}$	Supply Current			7.2	11		7.2	11		7.2	11	mA

AC Electrical Characteristics (Note 7)

Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
!	Amplifier to Amplifier Coupling	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \\ & \hline \end{aligned}$		-120			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		8	13		8	13		V/4s
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	4		2.2	4		2.2	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		20			20			20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{A}_{\mathrm{v}}=+10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & \mathrm{~V}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$		<0.02			<0.02			<0.02		\%

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 4: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 5: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 6: The LF147 is available in the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, while the LF347B and the LF347 are available in the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$. Junction temperature can rise to $T_{j} \max =150^{\circ} \mathrm{C}$.
Note 7: Unless otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF147 and for $V_{S}= \pm 15 \mathrm{~V}$ for the LF347B/LF347. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 8: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 9: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the LF347 and LF347B and from $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF147.
Note 10: Refer to RETS147X for LF147D and LF147J military specifications.
Note 11: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.
Note 12: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LF353

Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

■ Internally trimmed offset voltage: 10 mV

- Low input bias current: 50pA
- Low input noise voltage: $\quad 25 \mathrm{nV} / \mathrm{JHz}$
- Low input noise current: $\quad 0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
- Wide gain bandwidth: 4 MHz
- High slew rate: $13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current: 3.6 mA
- High input impedance: $10^{12} \Omega$
- Low total harmonic distortion : $\leq 0.02 \%$
- Low 1/f noise corner: 50 Hz
- Fast settling time to 0.01% : $2 \mu \mathrm{~s}$

Typical Connection

DS005649-14

Simplified Schematic

Connection Diagram

Order Number LF353M, LF353MX or LF353N See NS Package Number M08A or N08E

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Power Dissipation
Operating Temperature Range
T(MAX)
Differential Input Voltage Input Voltage Range (Note 3) Output Short Circuit Duration Storage Temperature Range Lead Temp. (Soldering, 10 sec .)
Soldering Information
Dual-In-Line Package Soldering (10 sec.)
$\pm 18 \mathrm{~V}$
(Note 2)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Small Outline Package
Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$ Infrared (15 sec .) $220^{\circ} \mathrm{C}$ See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 8) 1700V $\theta_{\text {JA }}$ M Package TBD
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

DC Electrical Characteristics

(Note 5)

Symbol	Parameter	Conditions	LF353			Units
			MIn	Typ	Max	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)	70	100		dB
$\mathrm{I}_{\text {S }}$	Supply Current			3.6	6.5	mA

AC Electrical Characteristics

(Note 5)

Symbol	Parameter	Conditions	LF353			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz}$ (Input Referred)		-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.0	13		V/ $\mathrm{\mu s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

AC Electrical Characteristics (Continued)

(Note 5)

Symbol	Parameter	Conditions	LF353			Units
			Min	Typ	Max	
THD	Total Harmonic Distortion	$\begin{aligned} & A_{\mathrm{V}}=+10, \mathrm{RL}=10 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$		<0.02		\%

Note 2: For operating at elevated temperatures, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the N package, and $158^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the H package.
Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 4: The power dissipation limit, however, cannot be exceeded.
Note 5: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $\mathrm{V}_{\mathrm{S}}=$ $\pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LF411

Low Offset，Low Drift JFET Input Operational Amplifier

General Description

These devices are low cost，high speed，JFET input opera－ tional amplifiers with very low input offset voltage and guar－ anteed input offset voltage drift．They require low supply cur－ rent yet maintain a large gain bandwidth product and fast slew rate．In addition，well matched high voltage JFET input devices provide very low input bias and offset currents．The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs．
These amplifiers may be used in applications such as high speed integrators，fast D／A converters，sample and hold cir－ cuits and many other circuits requiring low input offset volt－ age and drift，low input bias current，high input impedance， high slew rate and wide bandwidth．

Features

－Internally trimmed offset voltage：
－Input offset voltage drift：
0.5 mV （max）
－Low input bias current： $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\max)$
－Low input noise current：
－Wide gain bandwidth：
－High slew rate：
－Low supply current：
－High input impedance：
－Low total harmonic distortion：
－Low 1／f noise corner：
－Fast settling time to 0.01% ：

Typical Connection

Ordering Information
 LF411XYZ

\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
＂ M ＂for military
＂C＂for commercial
Z indicates package type
＂ H ＂or＂ N ＂

Connection Diagrams

Note：Pin 4 connected to case．
Top View
Order Number LF411ACH
or LF411MH／883（Note 11）
See NS Package Number H08A

Dual－In－Line Package

Top View
Order Number LF411ACN，LF411CN
See NS Package Number N08E

Absolute Maximum Ratings (Note 1)		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.		
	LF411A	LF411
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit		
Duration	Continuous	Continuous
	H Package	N Package
Power Dissipation		
(Notes 3, 10)	670 mW	670 mW

	H Package	N Package
$T_{\text {j max }}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
$\theta_{\mathrm{j}} \mathrm{A}$	$162^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air)	$120^{\circ} \mathrm{C} / \mathrm{W}$
	$65^{\circ} \mathrm{C} / \mathrm{W}$ (400 LF/min	
	Air Flow)	
$\theta_{j} \mathrm{C}$	$20^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temp. Range	(Note 4)	(Note 4)
Storage Temp. Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD Tolerance	Rating to be determined.	

DC Electrical Characteristics (Note 5)

AC Electrical Characteristic (Note 5)

Symbol	Parameter	Conditions	LF411A			LF411			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		V/ $/ \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$		<0.02			<0.02		\%

AC Electrical Characteristic (Note 5) (Continued)

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{j} \mathrm{~A}$.
Note 4: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in "H" package only.
Note 5: Unless otherwise specified, the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF 411 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 411 . V_{OS}, I_{B}, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The LF411A is 100% tested to this specification. The LF411 is sample tested to insure at least 90% of the units meet this specification.
Note 7: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411A.

Note 9: RETS 411X for LF411MH and LF411MJ military specifications.
Note 10: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

LF412

Low Offset，Low Drift Dual JFET Input Operational Amplifier

General Description

These devices are low cost，high speed，JFET inpút opera－ tional amplifiers with very low input offset voltage and guar－ anteed input offset voltage drift．They require low supply cur－ rent yet maintain a large gain bandwidth product and fast slew rate．In addition，well matched high voltage JFET input devices provide very low input bias and offset currents．The LF412 dual is pin compatible with the LM1558，allowing de－ signers to immediately upgrade the overall performance of existing designs．
These amplifiers may be used in applications such as high speed integrators，fast D／A converters，sample and hold cir－ cuits and many other circuits requiring low input offset volt－ age and drift，low input bias current，high input impedance， high slew rate and wide bandwidth．

Features

－Internally trimmed offset voltage： 1 mV （max）
－Input offset voltage drift： $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$（max）
－Low input bias current： 50 pA
－Low input noise current： $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
－Wide gain bandwidth： $3 \mathrm{MHz}(\mathrm{min})$
－High slew rate： $10 \mathrm{~V} / \mu \mathrm{s}(\mathrm{min})$
－Low supply current： $1.8 \mathrm{~mA} /$ Amplifier
－High input impedance： $10^{12} \Omega$
－Low total harmonic distortion $\leq 0.02 \%$
－Low 1／f noise corner： 50 Hz
－Fast settling time to 0.01% ： $2 \mu \mathrm{~s}$

Connection Diagrams

DS005656－42
Order Number LF412MH，LF412CH or LF412MH／883（Note 1） See NS Package Number H08A

DS005656－44
Order Number LF412ACN，LF412CN or LF412MJ／883（Note 1）
See NS Package Number J08A or N08E

Simplified Schematic

Note 1：Available per JM38510／11905

Detailed Schematic

Absolute Maximum Ratings (Note 2)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 11)

	LF412A	LF412		H Package	N Package
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	T_{j} max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\theta_{\mathrm{j} A}$ (Typical)	$152^{\circ} \mathrm{C} / \mathrm{W}$	$115^{\circ} \mathrm{C} / \mathrm{W}$
Input voltage Range			Operating Temp. Range	(Note 6)	(Note 6)
(Note 3)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Storage Temp.	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
Output Short Circuit			Range		
Duration (Note 4)	Continuous	Continuous	Lead Temp.		
-	H Package	N Package	(Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Power Dissipation (Note 12)	(Note 5)	670 mW	ESD Tolerance (Note 13)	1700V	1700V

DC Electrical Characteristics

(Note 7)

Symbol	Parameter	Conditions		LF412A			LF412			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	3.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Note 8)			7	10		7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Notes 7, 9)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{i}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Notes 7, 9)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{i}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V / mV
		Over Temperature		25	200		15	200		V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range			± 16	+19.5		± 11	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 10)		80	100		70	100		dB
$\mathrm{I}_{\text {S }}$	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			3.6	5.6		3.6	6.5	mA

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

AC Electrical Characteristics

(Note 7)

Symbol	Parameter	Conditions	LF412A			LF412			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz}$ (Input Referred)		-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		V/ $/$ s
GBW	Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz

AC Electrical Characteristics (Continued)

(Note 7)

Symbol	Parameter	Conditions	LF412A			LF412			Units
			Min	Typ	Max	Min	Typ	Max	
THD	Total Harmonic Dist	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$		≤ 0.02			≤ 0.02		\%
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 4: Any of the amplifier outputs can be shorted to ground indefintely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 5: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{j A}$.
Note 6: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only. In all cases the maximum operating temperature is limited by internal junction temperature T_{j} max.
Note 7: Unless otherwise specified, the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF 412 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 412 . V_{OS}, I_{B}, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 8: The LF412A is 100% tested to this specification. The LF412 is sample tested on a per amplifier basis to insure at least 85% of the amplifiers meet this specification.
Note 9: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 10: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. V_{S} $= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
Note 11: Refer to RETS412X for LF412MH and LF412MJ military specifications.
Note 12: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits
Note 13: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Dual Low Power JFET Input Operational Amplifier

General Description

The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC characteristics of the LM1458. The amplifiers have the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM1458 and only draw one tenth the supply current of the LM1458. In addition the well matched high voltage JFET input devices of the LF442 reduce the input bias and offset currents by a factor of 10,000 over the LM1458. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF442 also has a very low equivalent input noise voltage for a low power amplifier.
The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many applications. The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations.

Features

- 1/10 supply current of a LM1458: $400 \mu \mathrm{~A}$ (max)

■ Low input bias current: 50 pA (max)

- Low input offset voltage: 1 mV (max)
- Low input offset voltage drift: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)
- High gain bandwidth: 1 MHz
- High slew rate: $1 \mathrm{~V} / \mu \mathrm{s}$
- Low noise voltage for low power: $\quad 35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

■ Low input noise current: $\quad 0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

- High input impedance: $10^{12} \Omega$
- High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}: 50 \mathrm{k}(\mathrm{min})$

Typical Connection

DS009155-1

Ordering Information

LF442XYZ

\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
" M " for military
" C " for commercial
Z indicates package type
" H " or " N "

Connection Diagrams

Pin 4 connected to case

Top View

Order Number LF442AMH or LF442MH/883 See NS Package Number H08A

Absolute Maximum Ratings（Note 1）				H Package	N Package	
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／ Distributors for availability and specifications．			$\begin{gathered} \theta_{\text {JA }} \text { (Typical) } \\ \text { (Note 4) } \\ \text { (Note 5) } \end{gathered}$			
			$\begin{gathered} 65^{\circ} \mathrm{C} / \mathrm{W} \\ 165^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$114^{\circ} \mathrm{C} / \mathrm{W}$ $152^{\circ} \mathrm{C} / \mathrm{W}$		
			$\theta_{\text {Jc }}$（Typical）	$21^{\circ} \mathrm{C} / \mathrm{W}$	（Note 5）	
	LF442A	LF442				Operating Temperature
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Range			
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	Storage	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150^{\circ}$	$65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	
Input Voltage Range （Note 2）	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Temperature Range Lead Temperature	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	
Output Short Circuit	Continuous	Continuous	（Soldering， 10 sec ．）			
Duration（Note 3）			ESD Tolerance	Rating to	etermined	
	H Package	N Package				
T_{j} max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$				

DC Electrical Characteristics（Note 7）

Symbol	Parameter	Conditions		LF442A			LF442			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	5.0	mV
		Over Temperature							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			7	10		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 7,8) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$(Notes 7, 8)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			10^{12}		Ω
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V / mV
		Over Temperature		25	200		15	200		V／mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common－Mode Voltage Range			± 16	$\begin{aligned} & +18 \\ & -17 \end{aligned}$		± 11	$\begin{aligned} & +14 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common－Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	（Note 9）		80	100		70	90		dB
$\mathrm{I}_{\text {S }}$	Supply Current				300	400		400	500	$\mu \mathrm{A}$

AC Electrical Characteristics（Note 7）

Symbol	Parameter	Conditions	LF442A			LF442			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz}$ （Input Referred）		－120			－120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		V／$/ \mathrm{s}$
GBW	Gain－Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{\mathrm{S}}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

AC Electrical Characteristics (Note 7) (Continued)

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 4: The value given is in 400 linear feet/min air flow.
Note 5: The value given is in static air.
Note 6: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 7: Uniess otherwise specified, the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF 442 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF442. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 8: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 9: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442 and $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442A.
Note 10: Refer to RETS442X for LF442MH military specifications.

Simplified Schematic

1/2 Dual

LF444

Quad Low Power JFET Input Operational Amplifier

General Description

The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry stan－ dard LM148 while greatly improving the DC characteristics of the LM148．The amplifier has the same bandwidth，slew rate，and gain（ $10 \mathrm{k} \Omega$ load）as the LM148 and only draws one fourth the supply current of the LM148．In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148．The LF444 also has a very low equivalent input noise voltage for a low power amplifier．
The LF444 is pin compatible with the LM148 allowing an im－ mediate 4 times reduction in power drain in many applica－ tions．The LF444 should be used wherever low power dissi－ pation and good electrical characteristics are the major considerations．

Features

－1／4 supply current of a LM148： $200 \mu \mathrm{~A} /$ Amplifier（max）
－Low input bias current： 50 pA （max）
－High gain bandwidth： 1 MHz
－High slew rate： $1 \mathrm{~V} / \mu \mathrm{s}$
－Low noise voltage for low power $35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
－Low input noise current $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
－High input impedance： $10^{12} \Omega$
－High gain：50k（min）

Simplified Schematic

DS009156－1

Ordering Information

LF444XYZ
\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
＂ M ＂for military，＂ C ＂for commercial
Z indicates package type＂D＂，＂M＂or＂N＂

Connection Diagram
Dual－In－Line Package

Top View
Order Number LF444CM，LF444CMX， LF444ACN，LF 444CN or LF444MD／883 See NS Package Number D14E，M14A or N14A

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LF444A	LF444
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$

(Note 1)
Output Short Circuit
Duration (Note 2)
Continuous
Continuous

D Package
Power Dissipation
900 mW
N, M Packages
670 mW
(Notes 3, 9)
T_{j} max
θ_{jA} (Typical)
$150^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C}$ $85^{\circ} \mathrm{C} / \mathrm{W}$

LF444A/LF444

(Note 4)
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
Rating to be determined
Soldering Information
Dual-In-Line Packages
(Soldering, 10 sec .)
Small Outline Package

Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics (Note 5)

AC Electrical Characteristics (Note 5)									
Symbol	Parameter	Conditions	LF444A			LF444			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier-to-Amplifier Coupling			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		V/us
GBW	Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{j A}$.
Note 4: The LF444A is available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The LF 444 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " D " package only.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the $L F 444 \mathrm{~A}$ and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 444 . V_{OS}, I_{B}, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444A.
Note 8: Refer to RETS444X for LF444MD military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

LM10

Operational Amplifier and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.
The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV .
The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.
The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for
analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.
This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Features

- input offset voltage: $\quad 2.0 \mathrm{mV}$ (max)
- input offset current: 0.7 nA (max)
- input bias current: 20 nA (max)
- reference regulation: 0.1% (max)
- offset voltage drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- reference drift: $0.002 \% /{ }^{\circ} \mathrm{C}$

Connection and Functional Diagrams

Order Number LM10BH, LM10CH, LM10CLH or LM10H/883 available per SMA\# 5962-8760401 See NS Package Number H08A

Order Number LM10CN or LM10CLN
See NS Package Number N08E

Order Number LM10CWM or LM10CWMX See NS Package Number M14B

Absolute Maximum Ratings
 (Notes 1, 8) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM10/LM10B/ LM10BL/	
LM10C	LM10CL	
Total Supply Voltage	45 V	7 V
Differential Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 7 \mathrm{~V}$
Power Dissipation (Note 3)	internally limited	
Output Short-circuit Duration (Note 4)	continuous	
Storage-Temp. Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temp. (Soldering, 10 seconds)		
\quad Metal Can	$300^{\circ} \mathrm{C}$	
Lead Temp. (Soldering, 10 seconds) DIP	$260^{\circ} \mathrm{C}$	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage			0.3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current (Note 6)			0.25	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.4	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & 250 \\ & 150 \\ & \hline \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \\ & \mathrm{~V}_{\text {OUT }}= \pm 19.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 19.4 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}= \pm 20 \mathrm{~mA}(\pm 15 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 0.6 \mathrm{~V}(\mathbf{0 . 6 5 \mathrm { V }}), \mathrm{I}_{\text {OUT }}= \pm 2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}(\pm \mathbf{0 . 3 V}), \mathrm{V}_{\text {CM }}=-\mathbf{0 . 4} \mathbf{V} \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 80 \\ & 50 \\ & 20 \\ & 1.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 80 \\ 50 \\ 25 \\ 15 \\ 1.0 \\ 0.75 \end{gathered}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		V / mV V / mV
Shunt gain (Note 7)	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\text {OUT }} \leq 40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1.1 \mathrm{k} \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=250 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 14 \\ 6 \\ 8 \\ 4 \end{gathered}$	33 25		$\begin{aligned} & \hline 10 \\ & 6 \\ & 6 \\ & 4 \\ & \hline \end{aligned}$	33 25		V / mV V / mV V / mV V / mV
Common-mode rejection	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 19.15 \mathrm{~V}(19 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 93 \\ & 87 \end{aligned}$	102		$\begin{aligned} & 90 \\ & 87 \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}^{-} \geq-39 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.1 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 39.8 \mathrm{~V} \\ & \mathrm{~V}^{-}=-0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 84 \\ & 96 \\ & 90 \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		$\begin{aligned} & 87 \\ & 84 \\ & 93 \\ & 90 \end{aligned}$	96 106		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift	$\mathrm{T}_{\mathrm{C}}<100^{\circ} \mathrm{C}$		60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V} \\ & 0 \leq \mathrm{I}_{\mathrm{REF}} \leq 1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{aligned} & 0.003 \\ & 0.006 \end{aligned}$		0.001	$\begin{gathered} 0.008 \\ 0.01 \end{gathered}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$

Electrical Characteristics (Continued)
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Load regulation	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{REF}} \leq 1.0 \mathrm{~mA} \\ & \mathrm{~V}^{+}-\mathrm{V}_{\mathrm{REF}} \geq 1.0 \mathrm{~V}(\mathbf{1 . 1}) \end{aligned}$		0.01	$\begin{gathered} 0.1 \\ 0.15 \end{gathered}$		0.01	$\begin{gathered} 0.15 \\ 0.2 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 35 \mathrm{~V}$	$\begin{aligned} & 50 \\ & 23 \end{aligned}$	75		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	70		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Feedback sense voltage		$\begin{aligned} & 195 \\ & 194 \end{aligned}$	200	$\begin{aligned} & 205 \\ & 206 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 189 \end{aligned}$	200	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift			0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current			270	$\begin{array}{r} 400 \\ 500 \end{array}$		300	$\begin{aligned} & 500 \\ & 570 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply current change	$1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$		15	75		15	75	$\mu \mathrm{A}$

Electrical Characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage			0.3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current (Note 6)			0.1	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & 250 \\ & 150 \\ & \hline \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 0.6 \mathrm{~V}(0.65 \mathrm{~V}), \mathrm{I}_{\text {OUT }}= \pm 2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}(\pm \mathbf{0 . 3 \mathrm { V }}), \mathrm{V}_{\mathrm{CM}}=-0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 60 \\ 40 \\ 10 \\ 4 \\ 1.5 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 40 \\ \mathbf{2 5} \\ 5 \\ 3 \\ 1.0 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		V / mV V / mV
Shunt gain (Note 7)	$\begin{aligned} & 1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	30		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	30		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Common-mode rejection	$\begin{aligned} & -3.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.4 \mathrm{~V}(2.25 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 89 \\ & 83 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 74 \\ & \hline \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}^{-} \geq-5.4 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.2 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 6.3 \mathrm{~V} \\ & \mathrm{~V}^{-}=0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 94 \\ & 88 \end{aligned}$	$\begin{aligned} & \hline 96 \\ & 106 \end{aligned}$		$\begin{aligned} & 80 \\ & 74 \\ & 80 \\ & 74 \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift			60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 6.5 \mathrm{~V} \\ & 0 \leq I_{\text {REF }} \leq 0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$		0.001	$\begin{aligned} & 0.02 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{REF}} \leq 0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}-\mathrm{V}_{\mathrm{REF}} \geq 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \end{aligned}$		0.01	$\begin{gathered} 0.1 \\ 0.15 \end{gathered}$		0.01	$\begin{gathered} 0.15 \\ 0.2 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

Electrical Characteristics (Continued)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	70		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	70		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Feedback sense voltage		$\begin{aligned} & 195 \\ & 194 \end{aligned}$	200	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\begin{aligned} & 190 \\ & 189 \\ & \hline \end{aligned}$	200	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift			0.002			0.003		$\% /{ }^{\circ} \mathrm{C}$
Supply current			260	$\begin{aligned} & 400 \\ & 500 \end{aligned}$		280	$\begin{aligned} & 500 \\ & 570 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $V_{I N}<V^{-}$.
Note 3: The maximum, operating-junction temperature is $150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,100^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. At elevated temperatures, devices must be derated based on package thermal resistance.
Note 4: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.
Note 5: These specifications apply for $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-0.85 \mathrm{~V}(1.0 \mathrm{~V}), 1.2 \mathrm{~V}(1.3 \mathrm{~V})<\mathrm{V}_{\mathrm{S}} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{REF}}=0.2 \mathrm{~V}$ and $0 \leq \mathrm{I}_{\mathrm{REF}} \leq 1.0 \mathrm{~mA}$, unless otherwise specified: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the standard part and 6.5 V for the low voltage part. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates limits and altered test conditions for full-temperature-range operation; this is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. The specifications do not include the effects of thermal gradients ($\tau_{1} \cong 20 \mathrm{~ms}$), die heating ($\tau_{2} \cong 0.2 \mathrm{~s}$) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).
Note 6: For $T_{J}>90^{\circ} \mathrm{C}$, l_{OS} may exceed 1.5 nA for $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$. With $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ and $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{-}+0.1 \mathrm{~V}$, $\mathrm{l}_{\mathrm{OS}} \leq 5 \mathrm{nA}$.
Note 7: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V^{+}terminal of the IC and input common mode is referred to V^{-}(see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.
Note 8: Refer to RETS10X for LM10H military specifications.

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.
Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.
Input bias current: The absolute value of the average of the two input currents.
Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.
Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V^{+}terminal of the IC. The load and power source are connected between the V^{+}and V^{-}terminals, and input common-mode is referred to the V^{-}terminal.
Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.
Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.
Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.
Feedback sense voltage: The voltage, referred to V^{-}, on the reference feedback terminal while operating in regulation.
Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.
Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.
Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

LM13700

Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

General Description

The LM13700 series consists of two current controlled transconductance amplifiers, each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. High impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers. The output buffers of the LM13700 differ from those of the LM13600 in that their input bias currents (and hence their output DC levels) are independent of $\mathrm{I}_{\mathrm{ABC}}$. This may result in performance superior to that of the LM13600 in audio applications.

- Excellent g_{m} linearity
- Excellent matching between amplifiers
- Linearizing diodes
- High impedance buffers
- High output signal-to-noise ratio

Applications

- Current-controlled amplifiers
- Current-controlled impedances
- Current-controlled filters
- Current-controlled oscillators
- Multiplexers
- Timers
- Sample-and-hold circuits

Features

g_{m} adjustable over 6 decades

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (Note 2)
LM13700
Power Dissipation (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

LM13700N

$36 V_{D C}$ or $\pm 18 \mathrm{~V}$

Differential Input Voltage
570 mW

Diode Bias Current (I_{D}) $\pm 5 \mathrm{~V}$
2 mA
2 mA
Continuous 20 mA

Operating Temperature Range

LM13700N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+\mathrm{V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$	
DC Input Voltage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Soldering Information	$260^{\circ} \mathrm{C}$
\quad Dual-In-Line Package	
\quad Soldering (10 sec.)	$215^{\circ} \mathrm{C}$
Small Outline Package	$220^{\circ} \mathrm{C}$
\quad Vapor Phase (60 sec.)	
\quad Infrared (15 sec.)	
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.	

Electrical Characteristics (Note 5)

Parameter	Conditions	LM13700			Units
		Min	Typ	Max	
Input Offset Voltage (V_{OS})	Over Specified Temperature Range $\mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	4 4	mV
$\mathrm{V}_{\text {OS }}$ Including Diodes	Diode Bias Current (I_{D}) $=500 \mu \mathrm{~A}$		0.5	5	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\text {ABC }} \leq 500 \mu \mathrm{~A}$		0.1	3	mV
Input Offset Current			0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		0.4	5	$\mu \mathrm{A}$
			1	8	
Forward Transconductance (g_{m})		6700	9600	13000	$\mu \mathrm{mho}$
	Over Specified Temperature Range	5400			
g_{m} Tracking			0.3		dB
Peak Output Current	$\mathrm{R}_{\mathrm{L}}=0, \mathrm{I}_{\text {ABC }}=5 \mu \mathrm{~A}$		5		$\mu \mathrm{A}$
	$\mathrm{R}_{\mathrm{L}}=0, \mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	350	500	650	
	$\mathrm{R}_{\mathrm{L}}=0$, Over Specified Temp Range	300			
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$, Both Channels		2.6		mA
$\mathrm{V}_{\text {OS }}$ Sensitivity Positive Negative	$\begin{aligned} & \Delta \mathbf{V}_{\mathbf{o s}} / \Delta \mathbf{V}^{+} \\ & \Delta \mathbf{V}_{\mathbf{o s}} / \Delta \mathbf{V}^{-} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$
CMRR		80	110		dB
Common Mode Range		± 12	± 13.5		V
	Referred to Input (Note 6) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$		100		dB
Differential Input Current	$\mathrm{I}_{\text {ABC }}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100	nA
Leakage Current	$\mathrm{I}_{\text {ABC }}=0$ (Refer to Test Circuit)		0.2	100	nA
Input Resistance		10	26		$\mathrm{k} \Omega$
Open Loop Bandwidth			2		MHz
Slew Rate	Unity Gain Compensated		50		V/ $\mu \mathrm{s}$
Buffer Input Current	(Note 6)		0.5	2	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 6)	10			V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.

Electrical Characteristics (Note 5) (Continued)

Note 3: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM13700N, $90^{\circ} \mathrm{C} / \mathrm{W}$; LM13700M, $110^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Buffer output current should be limited so as to not exceed package dissipation.
Note 5: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(l_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 6: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{OUT}}=5 \mathrm{k} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

Schematic Diagram

One Operational Transconductance Amplifier

Typical Application

LM101A/LM201A/LM301A Operational Amplifiers

General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier This amplifier offers many features which make its application nearly foolproof: overload protection on the input
and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.
In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.
The LM101A is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM201A from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM 301 A from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Fast AC/DC Converter (Note 1)

DS007752-33
Note 1: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM101A/LM201A	LM301A
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 4)	Continuous	Continuous
Operating Ambient Temp. Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (LM101A)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (LM201A)	
T_{J} Max		
H-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
N-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
J-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
H-Package (Still Air)	500 mW	300 mW
(400 LF/Min Air Flow)	1200 mW	700 mW
N -Package	900 mW	500 mW
J-Package	1000 mW	650 mW
Thermal Resistance (Typical) $\theta_{\mathrm{j} \mathrm{A}}$		
H-Package (Still Air)	$165^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
(400 LF/Min Air Flow)	$67^{\circ} \mathrm{C} / \mathrm{W}$	$67^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$135^{\circ} \mathrm{C} / \mathrm{W}$	$135^{\circ} \mathrm{C} / \mathrm{W}$
J-Package	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{CmW}$
(Typical) θ_{jc}		
H-Package	$25^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)		
Metal Can or Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Plastic	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 7)	2000V	2000 V

Electrical Characteristics (Note 5)

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.8	3.0				mA
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		50	160		25	160		V / mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current					20			70	nA
Average Temperature Coefficient	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$			0.01	0.1		0.01	0.3	$n{ }^{\circ}{ }^{\circ} \mathrm{C}$
of Input Offset Current				0.02	0.2		0.02	0.6	$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Bias Current					0.1			0.3	$\mu \mathrm{A}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$			1.2	2.5				mA

Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \end{aligned}$		25			15			V/mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		± 15						V
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			$\begin{aligned} & +15, \\ & -13 \end{aligned}$		± 12	$\begin{aligned} & +15, \\ & -13 \end{aligned}$		V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	96		dB

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate for which the device is functional, but do no guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $75^{\circ} \mathrm{C}$ for LM101A/LM201A, and $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively for LM301A.

Note 5: Unless otherwise specified, these specifications apply for $\mathrm{C} 1=30 \mathrm{pF}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A}), \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C}$ $\leq T_{A} \leq+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A}), \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM301A).
Note 6: Refer to RETS101AX for LM101A military specifications and RETS101X for LM101 military specifications.
Note 7: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$.

LM118/LM218/LM318

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.
The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $150 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$.
The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters,
sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.
The LM218 is identical to the LM118 except that the LM218 has its performance specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM 318 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- 15 MHz small signal bandwidth
- Guaranteed $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Maximum bias current of 250 nA
- Operates from supplies of $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Fast Voltage Follower

(Note 1)

Note 1: Do not hard-wire as voltage follower ($\mathrm{R} 1 \geq 5 \mathrm{k} \Omega$)

Absolute Maximum Ratings (Note 7)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Differential Input Current (Note 3)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 4)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	
LM118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM218	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM318	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec.)

Hermetic Package	$300^{\circ} \mathrm{C}$
Plastic Package	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 sec.)	
Small Outline Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 8)
2000 V

Electrical Characteristics
(Note 5)

Parameter	Conditions	LM118/LM218			LM318			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4		4	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	50		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3		0.5	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	8		5	10	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	200		25	200		V / mV
Slew Rate	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1 \\ & \text { (Note 6) } \end{aligned}$	50	70		50	70		$\mathrm{V} / \mathrm{\mu s}$
Small Signal Bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		4.5	7				mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			20			V/mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11.5			± 11.5			V
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		dB

Note 2: The maximum junction temperature of the LM118 is $150^{\circ} \mathrm{C}$, the LM 218 is $110^{\circ} \mathrm{C}$, and the LM318 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 4: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 5: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM118), $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM218), and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM318). Also, power supplies must be bypassed with $0.1 \mu \mathrm{~F}$ disc capacitors.
Note 6: Slew rate is tested with $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$. The LM118 is in a unity-gain non-inverting configuration. $\mathrm{V}_{\mathbb{I N}}$ is stepped from -7.5 V to +7.5 V and vice versa. The slew rates between -5.0 V and +5.0 V and vice versa are tested and guaranteed to exceed $50 \mathrm{~V} / \mu \mathrm{s}$.
Note 7: Refer to RETS118X for LM118H and LM118J military specifications.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM12CL

80W Operational Amplifier

General Description

The LM12 is a power op amp capable of driving $\pm 25 \mathrm{~V}$ at $\pm 10 \mathrm{~A}$ while operating from $\pm 30 \mathrm{~V}$ supplies. The monolithic IC can deliver 80 W of sine wave power into a 4Ω load with 0.01% distortion. Power bandwidth is 60 kHz . Further, a peak dissipation capability of 800 W allows it to handle reactive loads such as transducers, actuators or small motors without derating. Important features include:

- input protection
- controlled turn on
- thermal limiting
- overvoltage shutdown
- output-current limiting
- dynamic safe-area protection

The IC delivers $\pm 10 \mathrm{~A}$ output current at any output voltage yet is completely protected against overloads, including shorts to the supplies. The dynamic safe-area protection is provided by instantaneous peak-temperature limiting within the power transistor array.
The turn-on characteristics are controlled by keeping the output open-circuited until the total supply voltage reaches 14 V . The output is also opened as the case temperature ex-
ceeds $150^{\circ} \mathrm{C}$ or as the supply voltage approaches the $\mathrm{BV}_{\text {CEO }}$ of the output transistors. The IC withstands overvoltages to 80 V .
This monolithic op amp is compensated for unity-gain feedback, with a small-signal bandwidth of 700 kHz . Slew rate is $9 \mathrm{~V} / \mu \mathrm{s}$, even as a follower. Distortion and capacitive-load stability rival that of the best designs using complementary output transistors. Further, the IC withstands large differential input voltages and is well behaved should the common-mode range be exceeded.
The LM12 establishes that monolithic ICs can deliver considerable output power without resorting to complex switching schemes. Devices can be paralleled or bridged for even greater output capability. Applications include operational power supplies, high-voltage regulators, high-quality audio amplifiers, tape-head positioners, $x-y$ plotters or other servo-control systems.
The LM12 is supplied in a four-lead, TO-3 package with Von the case. A gold-eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue problems. The LM12 is specified for either military or commercial temperature
range.

Typical Application*

*Low distortion (0.01%) audio amplifier

4-pin glass epoxy TO-3
socket is available from
AUGAT INC.
Part number 8112-AG7

Bottom View
Order Number LM12CLK See NS Package Number K04A

Connection Diagram

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage (Note 1)
Input Voltage
(Note 2)
Output Current
Internally Limited
(Note 3)

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature
(Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Operating Ratings

Total Supply Voltage
15 V to 60 V
Case Temperature (Note 4)

Electrical Characteristics (Note 4)

Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	LM12CL	Units
			Limits	
Input Offset Voltage Input Bias Current	$\begin{aligned} & \pm 10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 0.5 \mathrm{~V}_{\mathrm{MAX}}, \mathrm{~V}_{\mathrm{CM}}=0 \\ & \mathrm{~V}-+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-2 \mathrm{~V} \end{aligned}$	$\begin{gathered} 2 \\ 0.15 \end{gathered}$	$\begin{gathered} \hline 15 / 20 \\ 0.7 / 1.0 \end{gathered}$	$\begin{aligned} & \mathrm{mV}(\max) \\ & \mu \mathrm{A}(\max) \end{aligned}$
Input Offset Current	$\mathrm{V}-+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{+}-2 \mathrm{~V}$	0.03	0.2/0.3	$\mu \mathrm{A}$ (max)
Common Mode Rejection	$\mathrm{V}-+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{+}-2 \mathrm{~V}$	86	70/65	dB (\min)
Power Supply Rejection	$\begin{aligned} & \mathrm{V}_{+}=0.5 \mathrm{~V}_{\mathrm{MAX}}, \\ & -6 \mathrm{~V} \geq \mathrm{V}-\geq-0.5 \mathrm{~V}_{\mathrm{MAX}} \\ & \mathrm{~V}-=-0.5 \mathrm{~V}_{\mathrm{MAX}}, \\ & 6 \mathrm{~V} \leq \mathrm{V}+\leq 0.5 \mathrm{~V}_{\mathrm{MAX}} \end{aligned}$	90 110	$\begin{aligned} & 70 / 65 \\ & 75 / 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\min) \\ & \mathrm{dB}(\min) \end{aligned}$
Output Saturation Threshold	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=1 \mathrm{~ms}, \\ & \Delta \mathrm{~V}_{\mathrm{IN}}=5(10) \mathrm{mV}, \\ & \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A} \\ & 8 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{gathered} 1.8 \\ 4 \\ 5 \end{gathered}$	$\begin{gathered} 2.2 / 2.5 \\ 5 / 7 \end{gathered}$	V (max) V (max) V (max)
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=2 \mathrm{~ms}, \\ & \mathrm{~V}_{\mathrm{SAT}}=2 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=0 \\ & \mathrm{~V}_{\mathrm{SAT}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 30 / 20 \\ & 15 / 10 \end{aligned}$	V / mV (min) V / mV (min)
Thermal Gradient Feedback	$\mathrm{P}_{\text {DISS }}=50 \mathrm{~W}, \mathrm{t}_{\text {ON }}=65 \mathrm{~ms}$	30	100	$\mu \mathrm{V} / \mathrm{W}$ (max)
Output-Current Limit	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{DISS}}=10 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{ON}}=100 \mathrm{~ms}, \mathrm{~V}_{\mathrm{DISS}}=58 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 13 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 16 \\ 0.9 / 0.6 \\ 1.7 \end{gathered}$	A (max) A (min) A (max)
Power Dissipation Rating	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=100 \mathrm{~ms}, \mathrm{~V}_{\mathrm{DISS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\text {DISS }}=58 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 80 \end{gathered}$	$\begin{aligned} & 80 / 55 \\ & 52 / 35 \end{aligned}$	W (min) W (min)
DC Thermal Resistance	$\begin{aligned} & \text { (Note 5) } V_{\text {DISS }}=20 \mathrm{~V} \\ & \mathrm{~V}_{\text {DISS }}=58 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.5 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W}(\max) \\ & { }^{\circ} \mathrm{C} / \mathrm{W}(\max) \end{aligned}$
AC Thermal Resistance	(Note 5)	1.6	2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$ (max)
Supply Current	$\mathrm{V}_{\text {OUT }}=0, \mathrm{l}_{\text {OUT }}=0$	60	120/140	mA (max)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. The maximum voltage for which the LM12 is guaranteed to operate is given in the operating ratings and in Note 4. With inductive loads or output shorts, other restrictions described in applications section apply.
Note 2: Neither input should exceed the supply voltage by more than 50 volts nor should the voltage between one input and any other terminal exceed 60 volts.
Note 3: Operating junction temperature is internally limited near $225^{\circ} \mathrm{C}$ within the power transistor and $160^{\circ} \mathrm{C}$ for the control circuitry.
Note 4: The supply voltage is $\pm 30 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{MAX}}=60 \mathrm{~V}\right)$, unless otherwise specified. The voltage across the conducting output transistor (supply to output) is $\mathrm{V}_{\text {DISs }}$ and internal power dissipation is $\mathrm{P}_{\text {DISs. }}$. Temperature range is $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 70^{\circ} \mathrm{C}$ where T_{C} is the case temperature. Standard typeface indicates limits at $25^{\circ} \mathrm{C}$ while boldface type refers to limits or special conditions over full temperature range. With no heat sink, the package will heat at a rate of $35^{\circ} \mathrm{C} / \mathrm{sec}$ per 100 W of internal dissipation.
Note 5: This thermal resistance is based upon a peak temperature of $200^{\circ} \mathrm{C}$ in the center of the power transistor and a case temperature of $25^{\circ} \mathrm{C}$ measured at the center of the package bottom. The maximum junction temperature of the control circuitry can be estimated based upon a dc thermal resistance of $0.9^{\circ} \mathrm{C} / \mathrm{W}$ or an ac thermal resistance of $0.6^{\circ} \mathrm{C} / \mathrm{W}$ for any operating voltage.

Although the output and supply leads are resistant to electrostatic discharges from handing, the input leads are not. The part should be treated accordingly.

LM124／LM224／LM324／LM2902

Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent，high gain， internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages．Operation from split power supplies is also possible and the low power sup－ ply current drain is independent of the magnitude of the power supply voltage．
Application areas include transducer amplifiers，DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply sys－ tems．For example，the LM124 series can be directly oper－ ated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies．

Unique Characteristics

－In the linear mode the input common－mode voltage range includes ground and the output voltage can also swing to ground，even though operated from only a single power supply voltage
－The unity gain cross frequency is temperature compensated
－The input bias current is also temperature compensated

Advantages

－Eliminates need for dual supplies
－Four internally compensated op amps in a single package
－Allows directly sensing near GND and $\mathrm{V}_{\text {OUT }}$ also goes to GND
－Compatible with all forms of logic
－Power drain suitable for battery operation

Features

－Internally frequency compensated for unity gain
－Large DC voltage gain 100 dB
－Wide bandwidth（unity gain） 1 MHz （temperature compensated）
－Wide power supply range： Single supply 3 V to 32 V or dual supplies $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
－Very low supply current drain $(700 \mu \mathrm{~A})$－essentially independent of supply voltage
－Low input biasing current 45 nA （temperature compensated）
－Low input offset voltage 2 mV and offset current： 5 nA
－Input common－mode voltage range includes ground
－Differential input voltage range equal to the power supply voltage
－Large output voltage swing 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

Connection Diagram

Dual－In－Line Package

Top View
Order Number LM124J，LM124AJ，LM124J／883（Note 2），LM124AJ／883（Note 1），LM224J， LM224AJ，LM324J，LM324M，LM324MX，LM324AM，LM324AMX，LM2902M，LM2902MX，LM324N，LM324AN， LM324MT，LM324MTX or LM2902N LM124AJRQML and LM124AJRQMLV（Note 3） See NS Package Number J14A，M14A or N14A

[^0]Note 2：LM124 available per JM38510／11005

Connection Diagram (Continued)

Note 3: See STD Mil DWG 5962R99504 for Radiation Tolerant Device

Order Number LM124AW/883, LM124AWG/883, LM124W/883 or LM124WG/883 LM124AWRQML and LM124AWRQMLV(Note 3)

See NS Package Number W14B
LM124AWGRQML and LM124AWGRQMLV(Note 3)
See NS Package Number WG14A
Schematic Diagram (Each Amplifier)

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

LM124/LM224/LM324 LM124A/LM224A/LM324A

Supply Voltage, V^{+}

Differential Input Voltage
Input Voltage
Input Current
$\left(\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}\right)$ (Note 6)
Power Dissipation (Note 4)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND
(One Amplifier) (Note 5)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Operating Temperature Range
LM324/LM324A
LM224/LM224A
LM124/LM124A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

32 V	26 V
32 V	26 V
-0.3 V to +32 V	-0.3 V to +26 V
50 mA	50 mA
1130 mW	1130 mW
1260 mW	1260 mW
800 mW	800 mW

Continuous

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Continuous
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 13) 250V 250V

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter	Conditions	LM124A			LM224A			LM324A			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 8) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2		1	3		2	3	mV
Input Bias Current (Note 9)	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}_{(+)}} \text {or } \mathrm{I}_{\mathrm{N}(-),}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20	50		40	80		45	100	nA
Input Offset Current	$\begin{aligned} & \mathrm{I}_{\mathrm{N}(+)} \text { or } \mathrm{I}_{\mathrm{N}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2	10		2	15		5	30	nA
Input Common-Mode Voltage Range (Note 10)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0	,	$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { On All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		V/mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{DC}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	70	85		70	85		65	85		dB

Electrical Characteristics (Continued)

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter		Conditions		LM124A			LM224A			LM324A			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
Power Supply Rejection Ratio				$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 26 \mathrm{~V}\right. \text {), } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		65	100		65	100		65	100		dB
Amplifier-to-Amplifier Coupling (Note 11)		$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$			-120			-120			-120		dB		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{I N}^{+}=1 \mathrm{~V}, \mathrm{~V}_{I N}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20	40		20	40		20	40		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{I N}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		10	20		10	20		10	20				
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12	50		12	50		12	50		$\mu \mathrm{A}$		
Short Circuit to Ground		(Note 5) $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			40	60		40	60		40	60	mA		
Input Offset Voltage		(Note 8)				4			4			5	mV		
$\mathrm{V}_{\text {OS }}$ Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			7	20		7	20		7	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current		$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$				30			30			75	nA		
los Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			10	200		10	200		10	300	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Input Bias Current		$\mathrm{I}_{\operatorname{N(+)}}$ or $\mathrm{I}_{\operatorname{NN}(-)}$			40	100		40	100		40	200	nA		
Input Common-Mode Voltage Range (Note 10)		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V		
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		25			25			15			V / mV		
Output Voltage Swing	V_{OH}	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			26			V		
			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		27	28		27	28				
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	20	mV		
Output Current	Source	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}+=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		mA		
	Sink		$\begin{aligned} & \mathrm{V}_{\mathbb{N}^{-}}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	15		5	8		5	8				

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter	Conditions	LM124/LM224			LM324			LM2902			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 8) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	7		2	7	mV
Input Bias Current (Note 9)			45	150		45	250		45	250	nA
Input Offset Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}(+)} \text { or } \operatorname{liN(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3	30		5	50		5	50	nA
Input Common-Mode Voltage Range (Note 10)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { On All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		25	100		25	100		V / mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{DC}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	70	85		65	85		50	70		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 26 \mathrm{~V}\right. \text {), } \end{aligned}$	65	100		65	100		50	100		dB

Electrical Characteristics (Continued)

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter		Conditions		LM124/LM224			LM324			LM2902			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$											
Amplifier-to-Amplifier Coupling (Note 11)		$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$			-120			-120	\cdot		-120		dB		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{+}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20	40		20	40		20	40		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		10	20		10	20		10	20				
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12	50		12	50		12	50		$\mu \mathrm{A}$		
Short Circuit to Ground		(Note 5) $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			40	60		40	60		40	60	mA		
Input Offset Voltage		(Note 8)				7			9			10	mV		
$V_{\text {OS }}$ Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current		$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}}$				100			150		45	200	nA		
Ios Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			10			10			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Input Bias Current		$\mathrm{I}_{\mathrm{IN}(+)}$ or $\mathrm{I}_{\mathbf{N}(-)}$			40	300		40	500		40	500	nA		
Input Common-Mode Voltage Range (Note 10)		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V		
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		25			15			15			V / mV		
Output Voltage Swing	V_{OH}	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			22			V		
			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		27	28		23	24				
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	100	mV		
Output Current	Source	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		mA		
	Sink		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	5	8		5	8		5	8				

Note 4: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $88^{\circ} \mathrm{C} / W$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of all four amplifiers - use external resistors, where possible, to allow the amplifier to saturate of to reduce the power which is dissipated in the integrated circuit.
Note 5: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V^{+}. At values of supply voltage in excess of +15 V , continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$).
Note 7: These specifications are limited to $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to $-25^{\circ} \mathrm{C}$ $\leq T_{A} \leq+85^{\circ} \mathrm{C}$, the LM324/LM324A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 8: $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$) for $\mathrm{LM} 2902, \mathrm{~V}^{+}$from 5 V to 26 V .
Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 10: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at $25^{\circ} \mathrm{C}$). The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ (at $25^{\circ} \mathrm{C}$), but either or both inputs can go to +32 V without damage (+26 V for LM2902), independent of the magnitude of V^{+}.
Note 11: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
Note 12: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.
Note 13: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

National Semiconductor

LM1458/LM1558

Dual Operational Amplifier

General Description

The LM1458 and the LM1558 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.
The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead can and 8-lead mini DIP
- No latch up when input common mode range is exceeded

Connection Diagrams

Top View
Order Number LM1558H, LM1558H/883 or LM1458H See NS Package Number H08C

Top View
Order Number LM1558J/883, LM1458M, LM1458MX or LM1458N
See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 5)
Supply Voltage
LM1558
$\pm 22 \mathrm{~V}$
$\pm 18 \mathrm{~V}$
Power Dissipation (Note 2)
LM1558H/LM1458H
500 mW
400 mW
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Continuous

Operating Temperature Range

LM1558

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package

Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 6)
300 V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM1558			LM1458			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	200		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Supply Current Both Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0	5.0		3.0	5.6	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		20	160		V / mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq \mathrm{k} \Omega \end{aligned}$	25			15			V/mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	± 12	± 14		± 12	± 14		V
		± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	96		77	96		dB

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: The maximum junction temperature of the LM1558 is $150^{\circ} \mathrm{C}$, while that of the LM1458 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.
Note 5: Refer to RETS 1558V for LM1558J and LM1558H military specifications.
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram

Numbers in parentheses are pin numbers for amplifier B.

LM146/LM346

Programmable Quad Operational Amplifiers

General Description

The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors ($\mathrm{R}_{\mathrm{SET}}$) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

Features

($\mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}$)

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current: $350 \mu \mathrm{~A} /$ amplifier
- Guaranteed gain bandwidth product: 0.8 MHz min
- Large DC voltage gain: 120 dB
- Low noise voltage: $28 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide power supply range: $\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Class AB output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Input bias currents are temperature compensated

Connection Diagram

Dual-In-Line Package

Top View
Order Number LM146J, LM146J/883, LM346M,LM346MX or LM346N See NS Package Number J16A, M16A or N16A

PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}\left(\mathrm{I}_{\text {SET }} / 10 \mu \mathrm{~A}\right)$
Gain Bandwidth Product $=1 \mathrm{MHz}\left(I_{\text {SET }} / 10 \mu \mathrm{~A}\right)$
Slew Rate $=0.4 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
Input Bias Current $\cong 50 \mathrm{nA}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
$I_{\text {SET }}=$ Current into pin 8 , pin 9 (see schematic-diagram)
$\mathrm{I}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-\mathrm{V}^{-}-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}$

Capacitorless Active Filters (Basic Circuit)

Absolute Maximum Ratings (Notes 1, 5)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM146	LM346
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
CM Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	900 mW	500 mW
Output Short-Circuit Duration (Note 3)	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Thermal Resistance ($\theta_{\mathrm{j} \mathrm{A}}$), (Note 2)		
Cavity DIP (J) Pd	900 mW	900 mW
$\theta_{\mathrm{j} A}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
Small Outline (M) θ_{jA}		$115^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP (N) Pd		500 mW
$\theta_{\mathrm{j} A}$		$90^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	$+260^{\circ} \mathrm{C}$	$+260^{\circ} \mathrm{C}$
Small Outline Package		
Vapor Phase (60 seconds)	$+215^{\circ} \mathrm{C}$	$+215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$+220^{\circ} \mathrm{C}$	$+220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating is to be determined.

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right)$, (Note 4)

Parameter	Conditions	LM146			LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	5		0.5	6	mV
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	20		2	100	nA
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50	100		50	250	nA
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	1000		50	1000		V / mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		70	100		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \text { to } \pm 15 \mathrm{~V} \end{aligned}$	80	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 12	± 14		± 12	± 14		V
Short-Circuit	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	20	35	5	20	35	mA
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.2		0.5	1.2		MHz
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60			60		Deg
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4			0.4		$\mathrm{V} / \mathrm{\mu s}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28			28		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Channel Separation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		120			120		dB
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0			1.0		$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0			2.0		pF
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		0.5	6		0.5	7.5	mV

DC Electrical Characteristics (Continued)

$\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right)$, (Note 4)

Parameter	Conditions	LM146			LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		2	25		2	100	nA
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		50	100		50	250	nA
Supply Current (4 Op Amps)			1.7	2.2		1.7	2.5	mA
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	1000		25	1000		V / mV
Input CM Range		± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \end{aligned}$	76	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V

DC Electrical Characteristic

$\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5	20		7.5	100	nA
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	250		140	300	$\mu \mathrm{A}$
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		50	100		kHz

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.7			± 0.7			V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.6			± 0.6			V

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.
Note 5: Refer to RETS146X for LM146J military specifications.

LM149

Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}(\mathrm{MIN})}=5$)

General Description

The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.
The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required. For lower power refer to LF444.

Features

- 741 op amp operating characteristics
- Low supply current drain: $0.6 \mathrm{~mA} /$ Amplifier
- Class $A B$ output stage - no crossover distortion
- Pin compatible with the LM124
- Low input offset voltage: 1 mV
- Low input offset current: 4 nA
- Low input bias current 30 nA
- Gain bandwidth product

LM148 (unity gain):
1.0 MHz

LM149 ($A_{V} \geq 5$):
4 MHz

- High degree of isolation between amplifiers: 120 dB
- Overload protection for inputs and outputs

Schematic Diagram

* 1 pF in the LM149

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM148/LM149	LM248	LM348
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous
Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and			
Thermal Resistance (θ_{j}), (Note 2)			
Molded DIP (N) P_{d}	-	-	750 mW
$\theta_{\mathrm{j}} \mathrm{A}$	-	-	$100^{\circ} \mathrm{C} / \mathrm{W}$
Cavity DIP (J) P_{d}	1100 mW	800 mW	700 mW
θ_{JA}	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{jMAX}}$)	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) Plastic			$260^{\circ} \mathrm{C}$
Soldering Information			
Dual-In-Line Package			
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package			
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 5) 500V 500V 500
Electrical Characteristics (Note 3)

Parameter	Conditions	LM148/LM149			LM248			LM348			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	25		4	50		4	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	100		30	200		30	200	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	2.5		0.8	2.5		0.8	2.5		$\mathrm{M} \Omega$
Supply Current All Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		25	160		V / mV
Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}$ to 20 kHz (Input Referred) See Crosstalk Test Circuit		-120			-120			-120		dB
Small Signal Bandwidth	LM148 Series $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ LM149 Series		$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$		MHz MHz
Phase Margin	$\begin{aligned} & \text { LM148 Series }\left(A_{V}=1\right) \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \text { LM149 Series }\left(A_{V}=5\right) \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			60 60			$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$		degrees degrees
Slew Rate	$\begin{aligned} & \text { LM148 Series }\left(A_{V}=1\right) \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \text { LM149 Series }\left(A_{V}=5\right) \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$		V / Ls $\mathrm{V} / \mu \mathrm{s}$
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25			25			25		mA
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5			7.5	mV
Input Offset Current				75			125			100	nA
Input Bias Current				325			500			400	nA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM148/LM149			LM248			LM348			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			15			15			V / mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{\|} \hline \pm 13 \\ \pm 12 \\ \hline \end{array}$		$\begin{array}{\|l} \pm 12 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			± 12			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		70	90		dB
Supply Voltage Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	77	96		77	96		77	96		dB

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, T_{A} The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.
Note 4: Refer to RETS 148X for LM148 military specifications and refer to RETS 149X for LM149 military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Cross Talk Test Circuit

$$
V_{S}= \pm 15 \mathrm{~V}
$$

Application Hints

The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance. The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5 .

LM158/LM258/LM358/LM2904
 Low Power Dual Operational Amplifiers

General Description

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.
The LM358 is also available in a chip sized package (8-Bump micro SMD) using National's micro SMD package technology.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.

Advantages

- Two internally compensated op amps
- Eliminates need for dual supplies
- Allows direct sensing near GND and $\mathrm{V}_{\text {OUT }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual op amp

Features

- Available in 8 -Bump micro SMD chip sized package, (See AN-1112)
- Internally frequency compensated for unity gain
- Large dc voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz (temperature compensated)
- Wide power supply range:
- Single supply: 3 V to 32 V
- or dual supplies: $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Very low supply current drain $(500 \mu \mathrm{~A})$-essentially independent of supply voltage
- Low input offset voltage: 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
■ Large output voltage swing: 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

Voltage Controlled Oscillator (VCO)

Absolute Maximum Ratings (Note 9)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

LM158/LM258/LM358 LM158A/LM258A/LM358A

Supply Voltage, V^{+}
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP
Metal Can
Small Outline Package (M)
micro SMD
Output Short-Circuit to GND
(One Amplifier) (Note 2)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Current $\left(\mathrm{V}_{1 \mathrm{~N}}<-0.3 \mathrm{~V}\right)$ (Note 3)
Operating Temperature Range

LM358	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM258	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LM158	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range Lead Temperature, DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Soldering, 10 seconds) ead Temperature, Metal Can	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
(Soldering, 10 seconds) Soldering Information	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Dual-In-Line Package Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds)	$215{ }^{\circ} \mathrm{C}$ $220{ }^{\circ} \mathrm{C}$	$215{ }^{\circ} \mathrm{C}$ $220{ }^{\circ} \mathrm{C}$

Infrared (15 seconds)
$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 10)
250 V
250 V

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, unless otherwise stated

Parameter	Conditions	LM158A			LM358A			LM158/LM258			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 5), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2		2	3		2	5	mV
Input Bias Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IN(+)}} \text { or } \mathrm{I}_{\mathrm{IN(-)}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V},(\text { Note } 6) \end{aligned}$		20	50		45	100		45	150	nA
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	10		5	30		3	30	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$, (Note 7) (LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, unless otherwise stated

Parameter	Conditions	LM358			LM2904			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 5) , $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	7		2	7	mV
Input Bias Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}(+)} \text { or } \mathrm{I}_{\mathrm{IN(-)}(}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V},(\text { Note } 6) \end{aligned}$		45	250		45	250	nA
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	50		5	50	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$, (Note 7) (LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 4), unless otherwise stated

Parameter		Conditions	LM158A			LM358A			LM158/LM258			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
Large Signal Voltage Gain			$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \text {, (For } \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \text { to } 11 \mathrm{~V} \text {) } \end{aligned}$	50	100		25	100		50	100		V/mV
Common-Mode Rejection Ratio		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V} \end{aligned}$	70	85		65	85		70	85		dB	
Power Supply Rejection Ratio		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \text { (LM2904, } \mathrm{V}^{+}=5 \mathrm{~V} \\ & \text { to } 26 \mathrm{~V} \text {), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	65	100		65	100		65	100		dB	
Amplifier-to-Amplifier Coupling		$\mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Input Referred), (Note 8)		-120			-120			-120		dB	
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		20	40		20	40		mA	
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		mA	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	12	50		12	50		12	50		$\mu \mathrm{A}$	
Short Circuit to Ground		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 2), \\ & \mathrm{V}^{+}=15 \mathrm{~V} \end{aligned}$		40	60		40	60		40	60	mA	
Input Offset Voltage		(Note 5)			4			5			7	mV	
Input Offset Voltage Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7	15		7	20		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current		$\mathrm{I}_{\mathbf{N}(+)}-\mathrm{I}_{\operatorname{IN}(-)}$			30			75			100	nA	
Input Offset Current Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10	200		10	300		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
Input Bias Current		$\mathrm{I}_{\operatorname{IN}(+)}$ or $\mathrm{I}_{\operatorname{IN}(-)}$		40	100		40	200		40	300	nA	
Input Common-Mode Voltage Range		$\mathrm{V}^{+}=30 \mathrm{~V},(\text { Note } 7)$ (LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$)	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V	

Electrical Characteristics (Continued)
$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 4), unless otherwise stated

Parameter		Conditions		LM158A			LM358A			LM158/LM258			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
Large Signal Voltage Gain				$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V} \\ & \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$		25			15			25			V / mV
Output Voltage Swing	V_{OH}	$\mathrm{V}^{+}=+30 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			26			V		
		(LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		27	28		27	28		V		
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	20	mV		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V},} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$		10	20		10	20		10	20		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V},} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$		10	15		5	8		5	8		mA		

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 4), unless otherwise stated

Parameter		Conditions	LM358			LM2904			Units	
		Min	Typ	Max	Min	Typ	Max			
Large Signal Voltage Gain			$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \text {, (For } \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \text { to } 11 \mathrm{~V} \text {) } \end{aligned}$	25	100		25	100		V/mV
Common-Mode Rejection Ratio		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V} \end{aligned}$	65	85		50	70		dB	
Power Supply Rejection Ratio		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2904, \mathrm{~V}^{+}=5 \mathrm{~V}\right. \\ & \text { to } 26 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	65	100		50	100		dB	
Amplifier-to-Amplifier Coupling		$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred), (Note 8) } \\ & \hline \end{aligned}$		-120			-120		dB	
Output Current	Source	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	20	40		20	40		mA	
	Sink	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$	10	20		10	20		mA	
		$\begin{aligned} & \mathrm{V}_{I N^{-}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{I N^{+}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	12	50		12	50		$\mu \mathrm{A}$	
Short Circuit to Ground		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 2), \\ & \mathrm{V}^{+}=15 \mathrm{~V} \end{aligned}$		40	60		40	60	mA	
Input Offset Voltage		(Note 5)			9			10	mV	
Input Offset Voltage Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current		$\mathrm{I}_{\mathbf{N (+)}}-\mathrm{I}_{\operatorname{IN}(-)}$			150		45	200	nA	
Input Offset Current Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
Input Bias Current		$\mathrm{I}_{\operatorname{IN}(+)}$ or $\mathrm{I}_{\operatorname{IN}(-)}$		40	500		40	500	nA	
Input Common-Mode Voltage Range		$\mathrm{V}^{+}=30 \mathrm{~V}$, (Note 7) (LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$)	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V	

Electrical Characteristics (Continued)

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 4), unless otherwise stated

Parameter		Conditions		LM358			LM2904			Units		
		Min	Typ	Max	Min	Typ	Max					
Large Signal Voltage Gain				$\begin{array}{\|l} \hline \mathrm{V}^{+}=+15 \mathrm{~V} \\ \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ \hline \end{array}$		15			15			V/mV
Output Voltage Swing	V_{OH}	$\mathrm{V}^{+}=+30 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			22			V		
		(LM2904, $\mathrm{V}^{+}=26 \mathrm{~V}$)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		23	24		V		
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	100	mV		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{1 \mathbb{N}^{+}}=+1 \mathrm{~V}, \mathrm{~V}_{1 \mathbb{N}^{-}}=0 \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$		10	20		10	20		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\text {IN }^{-}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$		5	8		5	8		mA		

Note 1: For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ for MDIP, $182^{\circ} \mathrm{C} / \mathrm{W}$ for Metal Can, $189^{\circ} \mathrm{C} / \mathrm{W}$ for Small Outline package, and $230^{\circ} \mathrm{C} / \mathrm{W}$ for micro SMD, which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of both amplifiers - use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short cirucits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V^{+}. At values of supply voltage in excess of +15 V , continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$).
Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM158/LM158A. With the LM258/LM258A, all temperature specifications are limited to $-25^{\circ} \mathrm{C}$ $\leq T_{A} \leq+85^{\circ} \mathrm{C}$, the LM358/LM358A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the LM2904 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$) at $25^{\circ} \mathrm{C}$. For $\mathrm{LM} 2904, \mathrm{~V}^{+}$from 5 V to 26 V .
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at $25^{\circ} \mathrm{C}$). The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ (at $25^{\circ} \mathrm{C}$), but either or both inputs can go to +32 V without damage (+26 V for LM 2904), independent of the magnitude of V^{+}.

Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM359

Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers

General Description

The LM359 consists of two current differencing (Norton) input amplifiers. Design emphasis has been placed on obtaining high frequency performance and providing user programmable amplifier operating characteristics. Each amplifier is broadbanded to provide a high gain bandwidth product, fast slew rate and stable operation for an inverting closed loop gain of 10 or greater. Pins for additional external frequency compensation are provided. The amplifiers are designed to operate from a single supply and can accommodate input common-mode voltages greater than the supply.

Applications

- General purpose video amplifiers
- High frequency, high Q active filters
- Photo-diode amplifiers
- Wide frequency range waveform generation circuits
- All LM3900 AC applications work to much higher frequencies

Features

- User programmable gain bandwidth product, slew rate, input bias current, output stage biasing current and total device power dissipation
- High gain bandwidth product $\left(\mathrm{I}_{\mathrm{SET}}=0.5 \mathrm{~mA}\right)$ 400 MHz for $A_{V}=10$ to 100 30 MHz for $A_{V}=1$
- High slew rate $\left(I_{\text {SET }}=0.5 \mathrm{~mA}\right)$ $60 \mathrm{~V} / \mu \mathrm{s}$ for $A_{V}=10$ to 100 $30 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=1$
- Current differencing inputs allow high common-mode input voltages
- Operates from a single 5 V to 22 V supply

■ Large inverting amplifier output swing, 2 mV to $\mathrm{V}_{\mathrm{CC}}-$ 2V

- Low spot noise, $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, for $\mathrm{f}>1 \mathrm{kHz}$

Connection Diagram

Top View
Order Number LM359M or LM359N See NS Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	$\begin{array}{r} 22 V_{\mathrm{DC}} \\ \text { or } \pm 11 \mathrm{~V}_{\mathrm{DC}} \end{array}$
Power Dissipation (Note 2)	
J Package	1W
N Package	750 mW
Maximum T_{J}	
J Package	$+150^{\circ} \mathrm{C}$
N Package	$+125^{\circ} \mathrm{C}$
Thermal Resistance	
J Package	
$\theta_{j \mathrm{~A}} \quad 147^{\circ} \mathrm{C} / \mathrm{W}$ still air	
N Package	
$\theta_{j \mathrm{~A}} \quad 100^{\circ} \mathrm{C} / \mathrm{W}$ still air $75^{\circ} \mathrm{C} / \mathrm{W}$ with 400 linear feet/min air flow	

Input Currents, $\mathrm{I}_{\mathbb{N}}(+)$ or $\mathrm{I}_{\mathbb{I N}}(-)$
$10 \mathrm{~mA}_{\mathrm{DC}}$
Set Currents, $\mathrm{I}_{\mathrm{SET}(\mathrm{IN})}$ or $\mathrm{I}_{\mathrm{SET}(\mathrm{OUT})}$
Operating Temperature Range LM359
Storage Temperature Range
Lead Temperature
(Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Soldering Information

Dual-In-Line Package	
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

Electrical Characteristics

$I_{\text {SET(IN) }}=I_{\text {SET(OUT) }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless , inerwise noted

Parameter	Conditions	LM359			Units
		Min	Typ	Max	
Open Loop Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	62	$\begin{aligned} & 72 \\ & 68 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Bandwidth Unity Gain	$\mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{C}_{\text {comp }}=10 \mathrm{pF}$	15	30		MHz
Gain Bandwidth Product Gain of 10 to 100	$\mathrm{R}_{\text {IN }}=50 \Omega$ to 200Ω	200	400		MHz
Slew Rate Unity Gain Gain of 10 to 100	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{comp}}=10 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{IN}}<200 \Omega \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & \hline \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
Amplifier to Amplifier Coupling	$\mathrm{f}=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		-80		dB
Mirror Gain (Note 3)	at $2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$ Over Temp. at $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{N}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$ Over Temp.	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\mu \mathrm{A} / \mu \mathrm{A}$ $\mu \mathrm{A} / \mu \mathrm{A}$ $\mu \mathrm{A} / \mu \mathrm{A}$
Δ Mirror Gain (Note 3)	at $20 \mu \mathrm{~A}$ to $0.2 \mathrm{~mA} \mathrm{I}_{\mathbb{N}}(+)$ Over Temp, $\mathrm{I}_{\text {SET }}=5 \mu \mathrm{~A}$		3	5	\%
Input Bias Current	Inverting Input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Resistance ($\beta \mathrm{re}$)	Inverting Input		2.5		$\mathrm{k} \Omega$
Output Resistance	$\mathrm{I}_{\text {OUT }}=15 \mathrm{~mA} \mathrm{rms}, \mathrm{f}=1 \mathrm{MHz}$		3.5		Ω
$\begin{aligned} & \text { Output Voltage Swing } \\ & \text { V }_{\text {OUT }} \text { High } \\ & \mathrm{V}_{\text {OUT }} \text { Low } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{I}_{\mathbb{N}}(-) \text { and } \mathrm{I}_{\mathbb{N}}(+) \text { Grounded } \\ & \mathrm{I}_{\mathbb{N}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathbb{N}}(+)=0 \\ & \hline \end{aligned}$	9.5	$\begin{gathered} 10.3 \\ 2 \\ \hline \end{gathered}$	50	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \\ \hline \end{gathered}$

Electrical Characteristics (Continued)

Parameter	Conditions	LM359			Units
		Min	Typ	Max	
Output Currents Source Sink (Linear Region) Sink (Overdriven)	$\begin{aligned} & \mathrm{I}_{\mathbb{N}}(-) \text { and } \mathrm{I}_{\mathbb{N}}(+) \text { Grounded, } \mathrm{R}_{\mathrm{L}}=100 \Omega 2 \\ & \mathrm{~V}_{\text {comp }}-0.5 \mathrm{~V}=\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}(+)=0 \\ & \mathrm{I}_{\mathbb{N}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathbb{N}}(+)=0, \\ & \mathrm{~V}_{\text {OUT }} \text { Force }=1 \mathrm{~V} \end{aligned}$	16 1.5	$\begin{gathered} 40 \\ 4.7 \\ 3 \end{gathered}$		mA mA mA
Supply Current	Non-Inverting Input Grounded, $\mathrm{R}_{\mathrm{L}}=\infty$		18.5	22	mA
Power Supply Rejection (Note 4)	$f=120 \mathrm{~Hz}, \mathrm{I}_{\mathbf{N}}(+)$ Grounded	40	50		dB

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: See Maximum Power Dissipation graph.
Note 3: Mirror gain is the current gain of the current mirror which is used as the non-inverting input. $\left(A_{1}=\frac{I_{\mathbb{N}}(-)}{I_{\mathbb{N}}(+)}\right)$
Δ Mirror Gain is the \% change in A_{1} for two different mirror currents at any given temperature.
Note 4: See Supply Rejection graphs.

LM392

Low Power Operational Amplifier/Voltage Comparator

General Description

The LM392 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.
Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard $5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM392 extremely useful in the design of portable equipment.

Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM358 dual op amp and the LM393 dual comparator

Features

- Wide power supply voltage range

Single supply: 3 V to 32 V
Dual supply: $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$

- Low supply current drain-essentially independent of supply voltage: $600 \mu \mathrm{~A}$
- Low input biasing current: 50 nA
- Low input offset voltage: 2 mV
- Low input offset current: 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage

ADDITIONAL OP AMP FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz
- Large output voltage swing: 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage: 250 mV at 4 mA
- Output voltage compatible with all types of logic systems

Connection Diagram

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM392
Supply Voltage, V^{+}	32 V or $\pm 16 \mathrm{~V}$
Differential Input Voltage	32 V
Input Voltage	-0.3 V to +32 V
Power Dissipation (Note 2)	
Molded DIP (LM392N)	820 mW
Small Outline Package (LM392M)	530 mW
Output Short-Circuit to Ground (Note 3)	Continuous
Input Current (VII < $-0.3 \mathrm{~V}_{\mathrm{DC}}$) (Note 4)	50 mA
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	
Soldering Information	
Dual-in-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 seconds)	
Small Outline Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$; specifications apply to both amplifiers unless otherwise stated) (Note 5)

Parameter	Conditions	LM392			Units
		Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 6)		± 2	± 5	mV
Input Bias Current	$\operatorname{IN}(+)$ or $\operatorname{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 7) , $\mathrm{V}_{\mathrm{CM}}=$ OV		50	250	nA
Input Offset Current	$\mathrm{IN}(+)-\mathrm{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 5	± 50	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 8)	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$		0.5	1	mA
Amplifier-to-Amplifier Coupling	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, Input } \\ & \text { Referred, (Note 9) } \end{aligned}$		-100		dB
Input Offset Voltage	(Note 6)			± 7	mV
Input Bias Current	$\mathrm{IN}(+)$ or $\mathrm{IN}(-)$			400	nA
Input Offset Current	$\mathrm{IN}(+)-\mathrm{IN}(-)$			150	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$, (Note 8)	0		$\mathrm{V}^{+}-2$	V
Differential Input Voltage	Keep All $\mathrm{V}_{\text {IN }}{ }^{\text {'s }} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used) (Note 10)			32	V

Electrica! Characteristics (Continued)

$\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right.$; specifications apply to both amplifiers unless otherwise stated) (Note 5)

Parameter	Conditions	LM392			Units
		Min	Typ	Max	

OP AMP ONLY

Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}} \text { swing }=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	25	100		V/mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}^{+}-1.5$	V
Common-Mode Rejection Ratio	$\begin{aligned} & D C, T_{A}=25^{\circ} C, V_{C M}=0, V_{D C} \text { to } V^{+}-1.5 \\ & V_{D C} \end{aligned}$	65	70		dB
Power Supply Rejection Ratio	DC, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		dB
Output Current Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(-)}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		mA
Output Current Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10	20		mA
	$\begin{aligned} & \mathrm{V}_{I N(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(+)}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{o}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	12	50		$\mu \mathrm{A}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10		$\mathrm{pA}_{\mathrm{DC}}{ }^{\circ} \mathrm{C}$

COMPARATOR ONLY

Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		V/mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(+)}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{O}} \geq 1.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6	16		mA
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}_{\mathrm{N}+\mathrm{+}}}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		250	400	mV
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(+)}}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$			700	mV
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{I N(-)}=0, \mathrm{~V}_{I N(+)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1		nA
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=0, \mathrm{~V}_{\mathrm{IN}(+)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{o}}=30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			1.0	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM392 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $122^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The dissipation is the total of both amplifiers - use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 3: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of V^{+}. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction

Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$)
Note 5: These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$, unless otherwise stated. For the LM 392 , temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 6: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).
Note 7: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 8: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage.

Note 9: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive coupling increases at higher frequencies.
Note 10: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the common-mode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 11: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

LM4250

Programmable Operational Amplifier

General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.
The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the LM4250.

Features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

Connection Diagrams

DS009300-2

Top View

X5 Difference Amplifier

Quiescent $P_{D}=0.6 \mathrm{~mW}$

Dual-In-Line Package

500 Nano-Watt X10 Amplifier

Quiescent $P_{D}=500 \mathrm{nW}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 3)

	LM4250	LM4250C
Supply Voltage	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Operating Temp. Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
. Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
$\mathrm{I}_{\text {SET }}$ Current	150 nA	150 nA
Output Short Circuit Duration	Continuous	Continuous
$\mathrm{T}_{\text {JMAX }}$		
H-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
N-Package		$100^{\circ} \mathrm{C}$
J-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
M-Package		$100^{\circ} \mathrm{C}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
H-Package (Still Air)	500 mW	300 mW
(400 LF/Min Air Flow)	1200 mW	1200 mW
N -Package		500 mW
J-Package	1000 mW	600 mW
M-Package		350 mW
Thermal Resistance (Typical) $\theta_{\text {JA }}$		
H-Package (Still Air)	$165^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
(400 LF/Min Air Flow)	$65^{\circ} \mathrm{C} / \mathrm{W}$	$65^{\circ} \mathrm{C} / \mathrm{W}$
N -Package		$130^{\circ} \mathrm{C} / \mathrm{W}$
J-Package	$108^{\circ} \mathrm{C} / \mathrm{W}$	$108^{\circ} \mathrm{C} / \mathrm{W}$
M-Package		$190^{\circ} \mathrm{C} / \mathrm{W}$
(Typical) θ_{Jc}		
H-Package	$21^{\circ} \mathrm{C} / \mathrm{W}$	$21^{\circ} \mathrm{CN}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	
Small Outline Package		
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.		
ESD tolerance (Note 4)	800 V	

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Refer to RETS4250X for military specifications.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Resistor Biasing

Set Current Setting Resistor to \mathbf{V}^{-}

$\mathrm{I}_{\text {SET }}$					
$\mathrm{V}_{\mathbf{S}}$	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	296 M Ω	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

Electrical Characteristics

LM4250 ($-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified.) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{s}}= \pm 1.5 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
I_{OS}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
$\mathrm{I}_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	40k		50k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$7.5 \mu \mathrm{~A}$		$80 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$23 \mu \mathrm{~W}$		$240 \mu \mathrm{~W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
l_{OS}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \mathrm{nA} \\ & 3 \mathrm{nA} \end{aligned}$		$\begin{aligned} & 10 \mathrm{nA} \\ & 10 \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\text {bias }}$			7.5 nA		50 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	30k		30k	
Output Voltage Swing	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =100 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
I_{OS}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
$\mathrm{I}_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	100k		100k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$10 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$300 \mu \mathrm{~W}$		2.7 mW
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 25 \mathrm{nA} \\ 3 \mathrm{nA} \end{gathered}$		$\begin{aligned} & 25 \mathrm{nA} \\ & 10 \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\text {bias }}$			7.5 nA		50 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	

Electrical Characteristics (Continued)

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{l}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

Electrical Characteristics

LM4250C ($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified.) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mV
I_{os}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$\mathrm{I}_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
l_{os}			8 nA		25 nA
$\mathrm{I}_{\text {bias }}$			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mV
$\mathrm{I}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$I_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	60k	.	60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6.5 mV		7.5 mV
I_{os}			8 nA		25 nA
$\mathrm{I}_{\text {bias }}$			10 nA		80 nA

Electrical Characteristics (Continued)

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

LM611

Operational Amplifier and Adjustable Reference

General Description

The LM611 consists of a single-supply op-amp and a programmable voltage reference in one space saving 8 -pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with a wide output swing op-amp makes the LM611 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-Block ${ }^{\text {TM }}$ family, the LM611 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP
■ Low operating current: $\quad 300 \mu \mathrm{~A}$ (op amp)

- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in low cost 8-pin DIP
- Available in plastic package rated for Military Temperature Range Operation

REFERENCE

- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Reference floats above ground
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and Mass Flow Control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltage on Any Pins Except V_{R}
(referred to V^{-}pin)
(Note 2)
Current through Any Input Pin and V_{R} Pin
Differential Input Voltage
Military and Industrial
Commercial
Storage Temperature Range $\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
$\pm 20 \mathrm{~mA}$
$\pm 36 \mathrm{~V}$
$\pm 32 \mathrm{~V}$
36V (Max)
$-0.3 \mathrm{~V}(\mathrm{Min})$

Thermal Resistance, Junction-to-Ambient (Note 3)

N Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
M Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information Soldering (10 seconds)	
N Package	$260^{\circ} \mathrm{C}$
M Package	$220^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	$\pm 1 \mathrm{kV}$

Operating Temperature Range

LM611AI, LM611I, LM611BI
 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
 LM611AM, LM611M
 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
 LM611C $0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 70^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM611AM LM611AI Limits (Note 6)	LM611M LM611BI LM611I LM611C Limits (Note 6)	Units
I_{s}	Total Supply Current	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=\infty, \\ & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 210 \\ & 221 \end{aligned}$	$\begin{aligned} & 300 \\ & 320 \end{aligned}$	$\begin{aligned} & 350 \\ & 370 \end{aligned}$	$\mu \mathrm{A}$ max $\mu \mathrm{A} \max$
V_{S}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ \mathbf{3} \end{gathered}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	\checkmark min V min
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	V max V max
OPERATIONAL AMPLIFIER						
$\mathrm{V}_{\text {OS } 1}$	$\mathrm{V}_{\text {OS }}$ Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ max $m V$ max
$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {OS }}$ Over $\mathrm{V}_{\text {CM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$m V$ max $m V$ max
$\frac{V_{\mathrm{OS} 3}}{\Delta \mathrm{~T}}$	Average $\mathrm{V}_{\text {OS }}$ Drift	(Note 6)	15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA max nA max
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA max nA max
$\frac{\mathrm{los} 1}{\Delta T}$	Average Offset Drift Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1800			$\mathrm{M} \Omega$
		Common-Mode	3800			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode	5.7			pF
e_{n}	Voltage Noise	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { Input Referred } \end{aligned}$	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Current Noise	$\mathrm{f}=100 \mathrm{~Hz},$ Input Referred	58			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection-Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM611AM LM611AI Limits (Note 6)	LM611M LM611BI LM611I LM611C Limits (Note 6)	Units
OPERATIONAL AMPLIFIER						
PSRR	Power Supply Rejection-Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \\ & \mathrm{PSRR}=20 \log \left(\Delta \mathrm{~V}^{+} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 94 \\ & 40 \\ & \hline \end{aligned}$	V / mV min
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 7)	$\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	V/ $/ \mathrm{s}$
GBW	Gain Bandwidth	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 0.80 \\ & 0.50 \end{aligned}$			MHz
$\mathrm{V}_{\mathrm{O} 1}$	Output Voltage Swing High	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ \mathrm{~V}^{+} & =36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}) \end{aligned}$	$\begin{aligned} & V^{+}-1.4 \\ & V^{+}-1.6 \end{aligned}$	$\begin{aligned} & V^{+}-1.7 \\ & \mathbf{V}^{+}-1.9 \end{aligned}$	$\begin{aligned} & V^{+}-1.8 \\ & V^{+}-1.9 \end{aligned}$	V min V min
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}) \end{aligned}$	$\begin{aligned} & V^{-}+0.8 \\ & V^{-}+0.9 \end{aligned}$	$\begin{aligned} & \mathbf{V}^{-}+0.9 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.95 \\ & \mathrm{~V}^{-}+\mathbf{1 . 0} \end{aligned}$	V max V max
$\mathrm{I}_{\text {OUt }}$	Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	mA min mA min
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}_{+ \text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 14 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ \mathbf{8} \\ \hline \end{gathered}$	mA min mA min
$I_{\text {SHORT }}$	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=2 \mathrm{~V} \text {, Source } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	mA max mA max
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=3 \mathrm{~V}, \text { Sink } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	mA max mA max
VOLTAGE REFERENCE						
V_{R}	Reference Voltage	(Note 8)	1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.2191 \\ 1.2689 \\ (\pm 2.0 \%) \\ \hline \end{gathered}$	V min V max
$\frac{\Delta V_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Average Temperature Drift	(Note 9)	10	80	150	PPM/ ${ }^{\circ} \mathrm{C}$ \max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	Hyst $=($ Vro' -Vro$) / \Delta \mathrm{T}_{J}($ Note 10)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{I}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$m V$ max $m V$ max
		$\begin{aligned} & \mathrm{V}_{\mathrm{R}(10 \mathrm{~mA})}-\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})} \\ & (\text { Note 11) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$m V$ max $m V$ max
R	Resistance	$\begin{aligned} & \Delta V_{R(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{R}(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{aligned} & \Omega \text { max } \\ & \Omega \text { max } \end{aligned}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{Ro}	$\left.\left.V_{R(V r o ~}=V_{r}\right)-V_{R(V r o}=6.3 \mathrm{~V}\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$m V$ max $m V$ max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with V^{+}Change	$\begin{aligned} & \mathrm{V}_{\mathrm{R}(\mathrm{~V}+=5 \mathrm{~V})}-\mathrm{V}_{\mathrm{R}(\mathrm{~V}+=36 \mathrm{~V})} \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$m V$ max $m V$ max
		$\mathrm{V}_{\mathrm{R}(\mathrm{V}+=5 \mathrm{~V})}-\mathrm{V}_{\mathrm{R}(\mathrm{V}+=3 \mathrm{~V})}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$m V$ max $m V$ max

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM611AM LM611AI Limits (Note 6)	LM611M LM611BI LM611I LM611C Limits (Note 6)	Units
VOLTAGE REFERENCE						
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{ANODE}}}$	V_{R} Change with $V_{\text {ANODE }}$ Change	$\begin{aligned} & \mathrm{V}^{+}=\mathrm{V}^{+} \max , \Delta \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} \\ & \left(@ \mathrm{~V}_{\text {ANODE }}=\mathrm{V}^{-}=\mathrm{GND}\right)-\mathrm{V}_{\mathrm{R}} \\ & \left(@ \mathrm{~V}_{\text {ANODE }}=\mathrm{V}^{+}-1.0 \mathrm{~V}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.0 \\ & \hline \end{aligned}$	$m V$ max $m V$ max
I_{FB}	FEEDBACK Bias Current	$\mathrm{I}_{\mathrm{FB}} ; \mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	nA max nA max
e_{n}	V_{R} Noise	10 Hz to $10,000 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 3: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one op amp or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the M package.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: Slew rate is measured with op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and output voltage transition is sampled at 20 V and 10 V .
Note 8: V_{R} is the cathode-feedback voltage, nominally 1.244 V .
Note 9: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, is
 is guaranteed by design and sample testing.
Note 10: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 11: Low contact resistance is required for accurate measurement.
Note 12: Military RETS 611AMX electrical test specification is available on request. The LM611AMJ/883 can also be procured as a Standard Military Drawing.

LM613

Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-Block ${ }^{\text {TM }}$ family, the LM613 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP

■ Low operating current (Op Amp): $300 \mu \mathrm{~A}$

- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temp. Range Operation

REFERENCE

- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

Ultra Low Noise, 10.00V Reference. Total output noise is typically $14 \mu \mathrm{~V}_{\mathrm{RMS}}$.

DS009226-43
*10k must be low
t.c. trimpot

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Voltage on Any Pin Except VR
(referred to }\mp@subsup{\textrm{V}}{}{-}\mathrm{ -in)
    (Note 2)
    (Note 3)
Current through Any Input Pin
    & V }\mp@subsup{V}{R}{}\mathrm{ Pin
Differential Input Voltage
    Military and Industrial
    Commercial
        36V (Max)
            \pm20 mA
        \pm36V
    Storage Temperature Range
                            -65 C }\leq\mp@subsup{T}{J}{\prime}\leq+15\mp@subsup{0}{}{\circ}\textrm{C
Maximum Junction Temp.(Note 4) 150 %
```

Thermal Resistance,
Junction-to-Ambient (Note 5)
$100^{\circ} \mathrm{C} / \mathrm{W}$ $150^{\circ} \mathrm{C} / \mathrm{W}$
WM Package
$260^{\circ} \mathrm{C}$
Soldering Information (10 Sec .)
N Package
WM Package
$220^{\circ} \mathrm{C}$
ESD Tolerance (Note 6) $\quad \pm 1 \mathrm{kV}$

Operating Temperature Range

LM613AI, LM613BI:
LM613AM, LM613M:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM613C:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter		Conditions	$\begin{array}{c}\text { Typical } \\ \text { (Note 7) }\end{array}$	$\begin{array}{c}\text { LM613AM } \\ \text { LM613AI } \\ \text { Limits } \\ \text { (Note 8) }\end{array}$	$\begin{array}{c}\text { LM613M } \\ \text { LM613I } \\ \text { LM613C } \\ \text { Limits } \\ \text { (Note 8) }\end{array}$
				Units		

OPERATIONAL AMPLIFIERS

$\mathrm{V}_{\text {OS } 1}$	$\mathrm{V}_{\text {OS }}$ Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\text { Max }) \\ & \mathrm{mV}(\text { Max } \end{aligned}$
$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {OS }}$ Over V_{CM}	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV (Max) mV (Max)
$\frac{V_{\mathrm{OS} 3}}{\Delta T}$	Average $\mathrm{V}_{\text {Os }}$ Drift	(Note 8)	15			$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & (\mathrm{Max}) \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA (Max) nA (Max)
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \text { (Max) } \\ & \text { nA (Max) } \end{aligned}$
$\frac{\mathrm{los} 1}{\Delta T}$	Average Offset Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1000			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode	6			pF
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Current Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	58			$\dagger \mathrm{A} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\operatorname{Min}) \\ & \mathrm{dB}(\operatorname{Min}) \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \\ & \text { PSRR }=20 \log \left(\Delta \mathrm{~V}^{+} / \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB (Min) dB (Min)

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	$\begin{aligned} & \hline \text { LM613AM } \\ & \text { LM613AI } \\ & \text { Limits } \\ & \text { (Note 8) } \end{aligned}$	LM613M LM613I LM613C Limits (Note 8)	Units
OPERATIONAL AMPLIFIERS						
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 9)	$\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \\ & \hline \end{aligned}$	V/ $/ \mathrm{s}$
GBW	Gain Bandwidth	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$			$\overline{\mathrm{MHz}}$ MHz
$\mathrm{V}_{\mathrm{O} 1}$	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for LM613C) } \end{aligned}$	$\begin{aligned} & V^{+}-1.4 \\ & V^{+}-1.6 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-1.7 \\ & \mathrm{v}^{+}-1.9 \end{aligned}$	$\begin{aligned} & V^{+}-1.8 \\ & V^{+}-1.9 \end{aligned}$	$\begin{aligned} & \hline V(\operatorname{Min}) \\ & V(\operatorname{Min}) \end{aligned}$
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+}, \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.8 \\ & \mathrm{v}^{-}+0.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.9 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.95 \\ & \mathrm{~V}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{V} \text { (Max) } \\ & \mathrm{V} \text { (Max) } \end{aligned}$
$\mathrm{l}_{\text {OUt }}$	Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}^{-}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \\ & \hline \end{aligned}$	mA (Min) mA (Min)
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}^{-}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA (Min) mA (Min)
$I_{\text {SHORT }}$	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}^{-}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\text { Max }) \\ & \mathrm{mA}(\text { Max }) \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=2 \mathrm{~V}, \\ & \mathrm{~V}^{-} \\ & \text {IN }=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\text { Max }) \\ & \mathrm{mA}(\text { Max }) \end{aligned}$
COMPARATORS						
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \text { (32V for LM613C), } \\ & \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \\ & \hline \end{aligned}$
$\frac{V_{O S}}{V_{C M}}$	Offset Voltage over V_{CM}	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 36 \mathrm{~V} \\ & \mathrm{~V}^{+}=36 \mathrm{~V},(32 \mathrm{~V} \text { for LM613C) } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\text { Max }) \\ & \mathrm{mV}(\text { Max }) \end{aligned}$
$\frac{V_{\mathrm{OS}}}{\Delta T}$	Average Offset Voltage Drift		15			$\begin{aligned} & \hline \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & (\mathrm{Max}) \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \text { (Max) } \\ & \mathrm{nA}(\mathrm{Max}) \\ & \hline \end{aligned}$
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \text { (Max) } \\ & \mathrm{nA} \text { (Max) } \end{aligned}$
A_{V}	Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $36 \mathrm{~V}(32 \mathrm{~V}$ for LM613C) $2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$			V/mV V / mV
t_{r}	Large Signal Response Time	$\begin{aligned} & \mathrm{V}^{+}{ }_{\mathrm{NN}}=1.4 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\mathrm{IN}}=\mathrm{TTL} \text { Swing, } \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}^{+}{ }_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\text {IN }}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{gathered} 10 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA}(\operatorname{Min}) \\ & \mathrm{mA}(\operatorname{Min}) \end{aligned}$
		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{aligned} & 2.8 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	mA (Min) mA (Min)
$l_{\text {LEAK }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}^{+} \text {IN }=1 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=36 \mathrm{~V}(32 \mathrm{~V} \text { for LM613C) } \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	10	10	$\mu \mathrm{A} \text { (Max) }$ $\mu \mathrm{A}(\mathrm{Max})$
VOLTAGE REFERENCE						
V_{R}	Voltage Reference	(Note 10)	1.244	1.2365	1.2191	V (Min)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
VOLTAGE REFERENCE						
				$\begin{gathered} 1.2515 \\ (\pm 0.6 \%) \end{gathered}$	$\begin{aligned} & 1.2689 \\ & (\pm 2 \%) \end{aligned}$	V (Max)
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temp. Drift	(Note 11)	10	80	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Max)
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	(Note 12)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{R}}{\Delta I_{R}}$	V_{B} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{gathered} \hline 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV (Max) mV (Max)
		$\begin{aligned} & V_{R(10 m A)}-V_{R(100 \mu A)} \\ & \text { (Note 13) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{aligned} & m V(\operatorname{Max}) \\ & m V(\operatorname{Max}) \end{aligned}$
R	Resistance	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{R}(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{R}(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{aligned} & \Omega(\text { Max }) \\ & \Omega(\text { Max }) \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{RO}	$\left.\left.V_{R(V r o=}=V_{r}\right)-V_{R(V r o}=6.3 \mathrm{~V}\right)$ (5.06 V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV (Max) mV (Max)
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}+}$	V_{R} Change with $V_{\text {ANODE }}$ Change	$\begin{aligned} & V_{R\left(V_{+}=5 V\right)}-V_{R\left(V_{+}=36 V\right)} \\ & \left(V^{+}=32 V \text { for } L M 613 C\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	mV (Max) mV (Max)
		$\mathrm{V}_{\mathrm{R}(\mathrm{V}+=5 \mathrm{~V})}-\mathrm{V}_{\mathrm{R}(\mathrm{V}+=3 \mathrm{~V})}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV}(\text { Max }) \\ & \mathrm{mV}(\text { Max }) \end{aligned}$
$\overline{I_{F B}}$	FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\text {FB }} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & \text { nA (Max) } \\ & \text { nA (Max) } \end{aligned}$
e_{n}	V_{R} Noise	10 Hz to 10 kHz , $V_{R O}=V_{R}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Simultaneous short-circuit of multiple comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous.
Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in bold face type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 8: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and @ 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 10: V_{R} is the Cathode-to-feedback voltage, nominally 1.244 V .
Note 11: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, is
 is guaranteed by design and sample testing.
Note 12: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 13: Low contact resistance is required for accurate measurement.

Simplified Schematic Diagrams

Comparator

Reference/Bias

Dual and Quad Low Power 10 MHz Rail-to-Rail I/O Operational Amplifiers

General Description

The LM6132/34 provides new levels of speed vs power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only $360 \mu \mathrm{~A} / \mathrm{amp}$ supply current, the 10 MHz gain-bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.
The LM6132/34 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6132/34 can also drive large capacitive loads without oscillating.
Operating on supplies from 2.7 V to over 24 V , the LM6132/34 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Features

(For 5V Supply, Typ Unless Noted)
■ Rail-to-Rail input CMVR -0.25 V to 5.25 V
■ Rail-to-Rail output swing 0.01 V to 4.99 V

- High gain-bandwidth, 10 MHz at 20 kHz
- Slew rate $12 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current $360 \mu \mathrm{~A} / \mathrm{Amp}$
- Wide supply range 2.7 V to over 24 V
- CMRR 100 dB
- Gain 100 dB with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$
- PSRR 82 dB

Applications

- Battery operated instrumentation
- Instrumentation Amplifiers
- Portable scanners
- Wireless communications
- Flat panel display driver

Connection Diagrams

14-Pin DIP/SO

Ordering Information

Package	Temperature Range Industrial, $\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	NSC Drawing	Transport Media
8-Pin Molded DIP	LM6132AIN, LM6132BIN	N08E	Rails
8-Pin Small Outline	LM6132AIM, LM6132BIM	M08A	Rails
	LM6132AIMX, LM6132BIMX	M08A	Tape and Reel
14-Pin Molded DIP	LM6134AIN, LM6134BIN	N14A	Rails
14-Pin Small Outline	LM6134AIM, LM6134BIM	M14A	Rails
	LM6134AIMX, LM6134BIMX	M14A	Tape and Reel

Junction Temperature (Note 4)
$150^{\circ} \mathrm{C}$

Operating Ratings(Note 1)

Supply Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 24 \mathrm{~V}$
Junction Temperature Range	
LM6132, LM6134	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal resistance $\left(\theta_{J A}\right)$	
N Package, 8-pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-pin Surface Mount	$193^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-pin Molded DIP	$81^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 14-pin Surface Mount	$126^{\circ} \mathrm{C} / \mathrm{W}$

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LM6134AI LM6132AI Limit (Note 6)	LM6134BI LM6132BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	- *	0.25	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	mV max
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		5			$\mu \mathrm{V} / \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	110	$\begin{aligned} & 140 \\ & 300 \end{aligned}$	$\begin{aligned} & 180 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
los	Input Offset Current	\cdots	3.4	$\begin{aligned} & 30 \\ & 50 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
R_{IN}	Input Resistance, CM		104			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	100	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	80	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	
PSRR	Power Supply Rejection Ratio	$\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 12 \mathrm{~V}$	82	$\begin{aligned} & 78 \\ & 75 \end{aligned}$	$\begin{aligned} & 78 \\ & 75 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range		-0.25	0	0	V
			5.25	5.0	5.0	
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	100	$\begin{gathered} 25 \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	100k Load	4.992	$\begin{aligned} & 4.98 \\ & 4.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.93 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{aligned} & 0.017 \\ & 0.019 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.019 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		10k Load	4.952	$\begin{aligned} & 4.94 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 4.94 \\ & 4.85 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.032	$\begin{aligned} & 0.07 \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		5k Load	4.923	$\begin{aligned} & 4.90 \\ & 4.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.90 \\ & 4.85 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.051	$\begin{gathered} 0.095 \\ \mathbf{0 . 1 2} \\ \hline \end{gathered}$	$\begin{gathered} 0.095 \\ 0.12 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current LM6132	Sourcing	4	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking	3.5	$\begin{aligned} & 1.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{gathered} 1.8 \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

5.0V DC Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter		Conditions	Typ (Note 5)	LM6134AI LM6132AI Limit (Note 6)	LM6134BI LM6132BI Limit (Note 6)
			Units			

5.0V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6134AI LM6132AI Limit (Note 6)	LM6134BI LM6132BI Limit (Note 6)	Units
SR	Slew Rate	$\begin{aligned} & \pm 4 \mathrm{~V} @ \mathrm{~V}_{\mathrm{S}}= \pm 6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}<1 \mathrm{k} \Omega \end{aligned}$	14	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=20 \mathrm{kHz}$	10	$\begin{gathered} 7.4 \\ 7 \end{gathered}$	$\begin{gathered} 7.4 \\ 7 \end{gathered}$	MHz min
$\theta \mathrm{m}$	Phase Margin	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	33			deg
G_{m}	Gain Margin	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	10			dB
e_{n}	Input Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	27			$\frac{n V}{\sqrt{H z}}$
i_{n}	Input Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.18			$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

LM614

Quad Operational Amplifier and Adjustable Reference

General Description

The LM614 consists of four op-amps and a programmable voltage reference in a 16 -pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with four wide output swing op-amps makes the LM614 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's new Super-Block ${ }^{\text {™ }}$ family, the LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

Op Amp

- Low operating current: $300 \mu \mathrm{~A}$
- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temperature Range Operation

Reference

- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver and signal processing
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagram

Ordering Information

ReferenceTolerance \& $V_{\text {os }}$	Temperature Range			Package	
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$\begin{gathered} \text { Commercial } \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{gathered}$		
$\pm 0.6 \% @$ $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max $\mathrm{V}_{\mathrm{os}} \leq 3.5 \mathrm{mV}$ max	LM614AMJ/883(Note 13)	-	- -	16-pin Ceramic DIP	J16A
$\pm 2.0 \% @$ $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max $\mathrm{V}_{\text {os }} \leq 5.0 \mathrm{mV}$	-	LM614IWM LM614IWMX	LM614CWM LM614CWMX	16-pin Wide Surface Mount	M16B

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Voltage on Any Pins except V
    (referred to V- pin)
    (Note 2) 36V (Max)
    (Note 3)
-0.3V (Min)
Current through Any Input Pin &
    V R Pin }\pm20\textrm{mA
Differential Input Voltage
    Military and Industrial }\pm36\textrm{V
    Commercial }\pm32\textrm{V
Storage Temperature Range }\quad-6\mp@subsup{5}{}{\circ}\textrm{C}\leq\mp@subsup{T}{J}{}\leq+15\mp@subsup{0}{}{\circ}\textrm{C
\begin{tabular}{lc} 
Maximum Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Ambient (Note 4) & \\
\(\quad\) N Package & \(100^{\circ} \mathrm{C}\) \\
WM Package & \(150^{\circ} \mathrm{C}\) \\
Soldering Information (Soldering, 10 seconds) & \\
N Package & \(260^{\circ} \mathrm{C}\) \\
WM Package & \(220^{\circ} \mathrm{C}\) \\
ESD Tolerance (Note 5) & \(\pm 1 \mathrm{kV}\)
\end{tabular}
```


Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range .

Symbol	Parameter	Conditions	Typical (Note 6)	LM614AM LM614AI Limits (Note 7)	LM614M LM614BI LM614I LM614C Limits (Note 7)	Units
$I_{\text {s }}$	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 V \leq V^{+} \leq 36 V \text { (32V for LM614C) } \end{aligned}$	$\begin{aligned} & 450 \\ & 550 \end{aligned}$	$\begin{gathered} 940 \\ 1000 \end{gathered}$	$\begin{aligned} & 1000 \\ & 1070 \end{aligned}$	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ max
V_{s}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ \mathbf{3} \end{gathered}$	$\begin{gathered} 2.8 \\ \mathbf{3} \end{gathered}$	$V_{\text {min }}$ \checkmark min
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	V max V max

OPERATIONAL AMPLIFIER

$\mathrm{V}_{\text {OS1 }}$	V os Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max $m V$ max
$\mathrm{V}_{\text {os2 }}$	$\mathrm{V}_{\text {os }}$ Over $\mathrm{V}_{\text {CM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max $m V$ max
$\frac{\mathrm{V}_{\mathrm{OS} 3}}{\Delta \mathrm{~T}}$	Average $\mathrm{V}_{\text {Os }}$ Drift	(Note 7)	15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA max nA max
Ios	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA max nA max
$\frac{\mathrm{los} 1}{\Delta T}$	Average Offset Drift Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1800			$\mathrm{M} \Omega$
		Common-Mode	3800			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode Input	5.7			pF
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Current Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	58			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min

Electrical Characteristics (Continued)
These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range

Symbol	Parameter	Conditions	Typical (Note 6)	LM614AM LM614AI Limits (Note 7)	LM614M LM614BI LM614I LM614C Limits (Note 7)	Units

OPERATIONAL AMPLIFIER

PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \\ & \mathrm{PSRR}=20 \log \left(\Delta \mathrm{~V}^{+} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min
A_{v}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	V / mV min
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 8)	$\begin{aligned} & \pm 0.70 \\ & \pm 0.65 \end{aligned}$	$\begin{aligned} & \pm 0.55 \\ & \pm 0.45 \end{aligned}$	$\begin{aligned} & \pm 0.50 \\ & \pm 0.45 \end{aligned}$	V/ $/ \mathrm{s}$
GBW	Gain Bandwidth	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{gathered} 0.8 \\ 0.52 \end{gathered}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
V_{01}	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}) \end{aligned}$	$\begin{gathered} \mathrm{V}^{+}- \\ 1.4 \\ \mathrm{~V}^{+}-\mathbf{1 . 6} \end{gathered}$	$\begin{aligned} & V^{+}-1.7 \\ & V^{+}-1.9 \end{aligned}$	$\begin{aligned} & V^{+}-1.8 \\ & V^{+}-1.9 \end{aligned}$	$\begin{aligned} & V_{\text {min }} \\ & V \text { min } \end{aligned}$
V_{02}	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}) \end{aligned}$	$\begin{gathered} \mathrm{V}^{-}+ \\ 0.8 \\ \mathrm{v}^{-}+0.9 \end{gathered}$	$\begin{aligned} & V^{-}+0.9 \\ & v^{-}+1.0 \end{aligned}$	$\begin{gathered} V^{-}+ \\ 0.95 \\ V^{-}+1.0 \end{gathered}$	V max V max
I out	Output Source	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {-IN }}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$m A \min$ mA min
$I_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} \hline 14 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA min mA min
$I_{\text {SHORT }}$	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{+ \text {IN }}=3 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=2 \mathrm{~V}, \text { Source } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	mA max mA max
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+ \text {IN }}=2 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=3 \mathrm{~V}, \text { Sink } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	mA max mA max
VOLTAGE REFERENCE						
V_{R}	Voltage Reference	(Note 9)	1.244	$\begin{array}{r} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \\ \hline \end{array}$	$\begin{gathered} \hline 1.2191 \\ 1.2689 \\ (\pm 2.0 \%) \\ \hline \end{gathered}$	V min V max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temperature Drift	(Note 10)	10	80	150	PPM $/{ }^{\circ} \mathrm{C}$ max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	(Note 11)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{I}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV max $m V$ max
		$\begin{aligned} & \mathrm{V}_{\mathrm{R}(10 \mathrm{~mA})}-\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})} \\ & \text { (Note 12) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$m V$ max $m V$ max
R	Resistance	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{R}(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{R}(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	Ω max Ω max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{RO}	$\left.\mathrm{V}_{\mathrm{R}(\mathrm{Vro}}=\mathrm{V}_{\mathrm{r})}-\mathrm{V}_{\mathrm{R}(\mathrm{Vro}}=6.3 \mathrm{~V}\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$m V$ max $m V$ max

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range .

S Symbol

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on ail pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.

Note 4: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{j A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{j} are $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, WM package.

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.

Note 7: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 8: Slew rate is measured with op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and @20V. For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 9: V_{R} is the Cathode-feedback voltage, nominally 1.244 V .
Note 10: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm $/{ }^{\circ} \mathrm{C}$, is $106 \bullet \Delta V_{R} /\left(V_{R\left[25^{\circ}\right.}{ }^{\circ}{ }^{\circ} \Delta T_{J}\right)$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and ΔT_{J} is the temperature range. This parameter is guaranteed by design and sample testing.

Note 11: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, cycle its junction temperature in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 12: Low contact resistance is required for accurate measurement.
Note 13: A military RETSLM614AMX electrical test specification is available on request. The LM614AMJ/883 can also be procured as a Standard Military Drawing.

LM6142 and LM6144

17 MHz Rail-to-Rail Input-Output Operational Amplifiers

General Description

Using patent pending new circuit topologies, the LM6142/44 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8 V to over 24V, the LM6142/44 is an excellent choice for battery operated systems, portable instrumentation and others.
The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
High gain-bandwidth with $650 \mu \mathrm{~A} /$ Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

Features

At $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. Typ unless noted.
■ Rail-to-rail input CMVR -0.25 V to 5.25 V
■ Rail-to-rail output swing 0.005 V to 4.995 V
■ Wide gain-bandwidth: 17 MHz at 50 kHz (typ)

- Slew rate:

Small signal, $5 \mathrm{~V} / \mathrm{us}$
Large signal, $30 \mathrm{~V} / \mu \mathrm{s}$

- Low supply current $650 \mu \mathrm{~A} /$ Amplifier
- Wide supply range 1.8 V to 24 V
- CMRR 107 dB
- Gain 108 dB with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$
- PSRR 87 dB

Applications

- Battery operated instrumentation
- Depth sounders/fish finders
- Barcode scanners
- Wireless communications
- Rail-to-rail in-out instrumentation amps

Connection Diagrams

Top View

8-Pin DIP/SO

Top View

14-Pin DIP/SO

Top View
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2500 V
Differential Input Voltage	15 V
Voltage at Input/Output Pin	$(\mathrm{V}+)+0.3 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}$
Supply Voltage (V+-V-)	35 V
Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 25 \mathrm{~mA}$
Current at Power Supply Pin Lead Temperature $\quad($ soldering, 10 sec$)$	50 mA
	$260^{\circ} \mathrm{C}$

Storage Temp. Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4) $150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}+\leq 24 \mathrm{~V}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LM6142, LM6144	
Thermal Resistance $\left(\theta_{J A}\right)$	$115^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 8-Pin Molded DIP	$193^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	$81^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP	$126^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 14-Pin Surface Mount	

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		0.3	$\begin{aligned} & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		170	250	300	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
		$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	180	$\begin{aligned} & 280 \\ & 526 \end{aligned}$	526	
los	Input Offset Current		3	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
R_{IN}	Input Resistance, C_{M}		126			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	107	$\begin{aligned} & 84 \\ & 78 \end{aligned}$	$\begin{aligned} & 84 \\ & 78 \end{aligned}$	
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	$\begin{aligned} & 82 \\ & 79 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 24 \mathrm{~V}$	87	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	
V_{CM}	Input Common-Mode		-0.25	0	0	V
	Voltage Range		5.25	5.0	5.0	
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{gathered} 270 \\ 70 \end{gathered}$	$\begin{gathered} 100 \\ 33 \end{gathered}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$	V / mV min
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$	0.005	$\begin{gathered} 0.01 \\ 0.013 \end{gathered}$	$\begin{gathered} 0.01 \\ 0.013 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.995	$\begin{aligned} & 4.98 \\ & 4.93 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.98 \\ & 4.93 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	0.02			\checkmark max
			4.97			\checkmark min
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	0.06	$\begin{gathered} 0.1 \\ \mathbf{0 . 1 3 3} \end{gathered}$	$\begin{gathered} 0.1 \\ 0.133 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.90	$\begin{aligned} & 4.86 \\ & 4.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.86 \\ & 4.80 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$

5.0V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
$I_{\text {sc }}$	Output Short Circuit Current LM6142	Sourcing	13	$\begin{aligned} & 10 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
				35	35	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$
		Sinking	24	$\begin{aligned} & 10 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
				35	35	mA max
$I_{s c}$	Output Short Circuit Current LM6144	Sourcing	8	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
				35	35	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		Sinking	22	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
				35	35	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
$\mathrm{I}_{\text {S }}$	Supply Current	Per Amplifier	650	$\begin{aligned} & 800 \\ & 880 \end{aligned}$	$\begin{aligned} & 800 \\ & 880 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

5.0V AC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LM6144AI } \\ & \text { LM6142AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	LM6144BI LM6142BI Limit (Note 6)	Units
SR	Slew Rate	$\begin{aligned} & 8 V_{p-p} @ V_{c c} 12 V \\ & R_{S}>1 \mathrm{k} \Omega \end{aligned}$	25	$\begin{aligned} & 15 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{kHz}$	17	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~min} \end{gathered}$
ϕ_{m}	Phase Margin		38			Deg
	Amp-to-Amp Isolation		130			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	16			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.22			$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
T.H.D.	Total Harmonic Distortion	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	0.003			\%

LM6152/LM6154

Dual and Quad 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers

General Description

Using patented circuit topologies, the LM6152/54 provides new levels of speed vs. power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only $1.4 \mathrm{~mA} /$ amplifier supply current, the 75 MHz gain bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life. The slew rate of the devices increases with increasing input differential voltage, thus allowing the device to handle capacitive loads while maintaining large signal amplitude.
The LM6152/54 can be driven by voltages that exceed both power supply rails, thus eliminating concerns about exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
Operating on supplies from 2.7V to over 24V, the LM6152/54 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Features

At $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, Typ unless noted

- Greater than Rail-to-Rail Input CMVR -0.25 V to 5.25 V
- Rail-to-Rail Output Swing 0.01 V to 4.99 V
- Wide Gain-Bandwidth: 75 MHz @ 100 kHz
- Slew Rate:

Small signal $5 \mathrm{~V} / \mu \mathrm{s}$
Large signal $45 \mathrm{~V} / \mu \mathrm{s}$

- Low supply current 1.4 mA /amplifier
- Wide supply range 2.7 V to 24 V
- Fast settling time of $1.1 \mu \mathrm{~s}$ for 2 V step (to 0.01%)
- PSRR 91 dB
- CMRR 84 dB

Applications

- Portable high speed instrumentation
- Signal conditioning amplifier/ADC buffers
- Barcode scanners

Connection Diagrams

Top View

14-Pin DIP/SO

Top View

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
ESD Tolerance (Note 2)	2500 V
Differential Input Voltage	15V
Voltage at Input/Output	
Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	35 V
Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 25 \mathrm{~mA}$
Current at Power Supply	
Pin	50 mA
Lead Temperature	
(soldering, 10 sec)	$260^{\circ} \mathrm{C}$

Storage Temperature
Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
(Note 4)
$150^{\circ} \mathrm{C}$
Operating Ratings (Note 1)

Supply Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 24 \mathrm{~V}$
Junction Temperature Range	
LM6152,LM6154	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{J A}\right)$	
N Pkg, 8-pin Molded Dip	$115^{\circ} \mathrm{C} / \mathrm{W}$
M Pkg, 8-pin Surface Mount	$193^{\circ} \mathrm{C} / \mathrm{W}$
N Pkg, 14-pin Molded Dip	$81^{\circ} \mathrm{C} / \mathrm{W}$
M Pkg, 14-pin Surface Mount	$126^{\circ} \mathrm{C} / \mathrm{W}$

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6154AC LM6152AC Limit (Note 6)	LM6154BC LM6152BC Limt (Note 6)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		0.54	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	$\begin{aligned} & 500 \\ & 750 \end{aligned}$	$\begin{gathered} 980 \\ 1500 \end{gathered}$	$\begin{gathered} 980 \\ 1500 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{max} \end{aligned}$
los	Input Offset Current		$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance, CM	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	30			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	94	70	70	dB min
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	84	60	60	
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 24 \mathrm{~V}$	91	80	80	dB min
V_{CM}	Input Common-Mode Voltage Range	Low	-0.25	0	0	V
		High	5.25	5.0	5.0	V
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	214	50	50	V / mV min
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	0.006	$\begin{aligned} & \hline 0.02 \\ & \mathbf{0 . 0 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
			4.992	$\begin{aligned} & \hline 4.97 \\ & 4.96 \end{aligned}$	$\begin{aligned} & 4.97 \\ & 4.96 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0.04	$\begin{aligned} & 0.10 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.12 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.89	$\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$I_{\text {Sc }}$	Output Short Circuit Current	Sourcing	6.2	$\begin{gathered} 3 \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 2.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
				$\begin{aligned} & 27 \\ & 17 \end{aligned}$	$\begin{aligned} & 27 \\ & 17 \end{aligned}$	mA \max
		Sinking	16.9	$\begin{aligned} & \hline 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
				40	40	mA max

5.0V DC Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM6154AC LM6152AC Limit	LM6154BC LM6152BC Limt (Note 6)	Units
I_{s}	Supply Current	Per Amplifier	1.4	2	2	mA

5.0V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}^{2}$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM6154AC LM6152AC Limit (Note 6)	LM6154BC LM6152BC Limt (Note 6)	Units
SR	Slew Rate	$\pm 4 \mathrm{~V}$ Step @ $\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$, $\mathrm{R}_{\mathrm{S}}<1 \mathrm{k} \Omega$	30	24	24 15	V / hs min
GBW	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	75		MHz	
	Amp-to-Amp Isolation	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	125		dB	
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	9		$\mathrm{nV} \sqrt{\mathrm{Hz}}$	
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.34		$\mathrm{pA} \sqrt{\mathrm{Hz}}$	
T.H.D	Total Harmonic Distortion	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.002		$\%$	
ts	Settling Time	$2 \mathrm{~V} \mathrm{Step} \mathrm{to} 0.01 \%$	1.1			

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LM6154AC LM6152AC Limit (Note 6)	$\begin{gathered} \hline \text { LM6154BC } \\ \text { LM6152BC } \\ \text { Limt } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		0.8	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		500			nA
los	Input Offset Current		50			nA
$\mathrm{R}_{\text {IN }}$	Input Resistance, CM	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.8 \mathrm{~V}$	30			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.8 \mathrm{~V}$	88			dB
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	78			
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}$	69			dB
V_{CM}	Input Common-Mode Voltage Range	Low	-0.25	0	0	V
		High	2.95	2.7	2.7	V
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	5.5			V / mV
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.032	$\begin{aligned} & 0.07 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.11 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.68	$\begin{aligned} & \hline 2.64 \\ & 2.62 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.62 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{I}_{\text {s }}$	Supply Current	Per Amplifier	1.35			mA

N

LM6118/LM6218

Fast Settling Dual Operational Amplifiers

General Description

The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ± 20 mA output drive capability. The PNP input stage has a typical bias current of 200 nA , and the operating supply voltage is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.
The amplifiers are built on a junction-isolated VIPTM (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

Connection Diagrams and Order Information

Small Outline Package (WM)

Top View
Order Number LM6218WM, LM6218WMX
See NS Package Number M14B
Dual-In-Line Package (J or N)

Top View
Order Number LM6118J/883 or LM6218N
See NS Package Number N08E, J08A

Features

	Typical
Low offset voltage:	0.2 mV
0.01% settling time:	400 ns
Slew rate $A_{v}=-1:$	$140 \mathrm{~V} / \mu \mathrm{s}$
Slew rate $A_{v}=+1:$	$75 \mathrm{~V} / \mu \mathrm{s}$
Gain bandwidth:	17 MHz
Total supply current:	5.5 mA

Applications

- D/A converters
- Fast integrators
- Active filters

Typical Applications

Single ended input to differential output
$A_{V}=10, B W=3.2 \mathrm{MHz}$
40 VPP Response $=1.4 \mathrm{MHz}$
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
Wide-Band, Fast-Settling 40 Vpp Amplifier

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
 Input Voltage
 Differential Input Current (Note 3)
 Output Current (Note 4)
 Power Dissipation (Note 5)
 ESD Tolerance 500 mW

$(\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$	$\pm 2 \mathrm{kV}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
(Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Operating Temp. Range

LM6118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM6218	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics

$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}$, unless otherwise specified. Limits with standard type face are for $\mathrm{T}_{\mathrm{J}}=$ $25^{\circ} \mathrm{C}$, and Bold Face Type are for Temperature Extremes.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$	LM6118 Limits (Note 6)	LM6218 Limits (Note 6)	Units
Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	0.2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	mV (max)
Input Offset Voltage	$\mathrm{V}-+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-3.5 \mathrm{~V}$	0.3	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	mV (max)
Input Offset Current	$\mathrm{V}-+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{+}-3.5 \mathrm{~V}$	20	$\begin{gathered} 50 \\ 250 \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$	nA (max)
Input Bias Current	$\mathrm{V}-+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-3.5 \mathrm{~V}$	200	$\begin{aligned} & 350 \\ & 950 \end{aligned}$	$\begin{gathered} 500 \\ 1250 \end{gathered}$	nA (max)
Input Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}-+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	dB (min)
Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}-=-15 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}+\leq 20 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	dB (min)
Negative Power Supply Rejection Ratio	$\begin{aligned} & V_{+}=15 \mathrm{~V} \\ & -20 \mathrm{~V} \leq \mathrm{V}-\leq-5 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	dB (min)
Large Signal Voltage Gain	$\begin{array}{ll} \mathrm{V}_{\text {out }}= \pm 15 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} & \end{array}$	500	$\begin{aligned} & \hline 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 70 \\ \hline \end{gathered}$	V / mV (min)
	$\begin{array}{ll} \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=500 \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} & (\pm 20 \mathrm{~mA}) \end{array}$	200	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	V / mV (min)
V_{O} Output Voltage Swing	Supply $= \pm 20 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	17.3	± 17	± 17	$V(\min)$
Total Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	5.5	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	mA (max)
Output Current Limit	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, Pulsed	65	100	100	mA (max)
Slew Rate, $\mathrm{Av}=-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{f}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{f}}=10 \mathrm{pF} \end{aligned}$	140	$\begin{gathered} 100 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ \hline \end{gathered}$	$\mathrm{V} / \mathrm{\mu s}$ (min)
Slew Rate, $\mathrm{Av}=+1$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{f}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{f}}=10 \mathrm{pF} \end{aligned}$	75	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\mathrm{V} / \mathrm{\mu s}$ (min)
Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=200 \mathrm{kHz}$	17	14	13	MHz (min)
0.01\% Settling Time $A_{V}=-1$	$\begin{aligned} & \Delta V_{\text {out }}=10 \mathrm{~V}, V_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{S}}=R_{f}=2 \mathrm{k}, \mathrm{C}_{\mathrm{f}}=10 \mathrm{pF} \end{aligned}$	400			ns
Input Capacitance	Inverter	5			pF
	Follower	3			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage range is $\left(\mathrm{V}^{+}-1 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}\right)$.
Note 3: The inputs are shunted with three series-connected diodes back-to-back for input differential clamping. Therefore differential input voltages greater than about 1.8 V will cause excessive current to flow unless limited to less than 10 mA .

Electrical Characteristics (Continued)

Note 4: Current limiting protects the output from a short to ground or any voltage less than the supplies. With a continuous overload, the package dissipation must be taken into account and heat sinking provided when necessary.
Note 5: Devices must be derated using a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N and WM packages.
Note 6: Limits are guaranteed by testing or correlation.

LM675

Power Operational Amplifier

General Description

The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for $A C$ and DC applications.
The LM675 is capable of delivering output currents in excess of 3 amps , operating at supply voltages of up to 60 V . The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also internally compensated for gains of 10 or greater.

Features

- 3A current capability
- Avo typically 90 dB
- 5.5 MHz gain bandwidth product
- $8 \mathrm{~V} /$ us slew rate
- Wide power bandwidth 70 kHz
- 1 mV typical offset voltage
- Short circuit protection
- Thermal protection with parole circuit (100% tested)
- 16V-60V supply range
- Wide common mode range
- Internal output protection diodes
- 90 dB ripple rejection
- Plastic power package TO-220

Applications

- High performance power op amp
- Bridge amplifiers
- Motor speed controls
- Servo amplifiers
- Instrument systems

Connection Diagram

TO-220 Power Package (T)

*The tab is internally connected to pin $3\left(-\mathrm{V}_{\mathrm{EE}}\right)$
Front View
Order Number LM675T
See NS Package T05D

Typical Applications

Non-Inverting Amplifier

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	$\pm 30 \mathrm{~V}$
Input Voltage	$-\mathrm{V}_{\mathrm{EE}}$ to V_{CC}
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
$150^{\circ} \mathrm{C}$
Power Dissipation (Note 2)
30W
Lead Temperature
(Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$

ESD rating to be determined.

Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Typical	Tested Limit	Units
Supply Current	$\mathrm{P}_{\mathrm{OUT}}=\mathrm{OW}$	18	$50(\mathrm{max})$	mA
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$10(\mathrm{max})$	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	0.2	$2(\mathrm{max})$	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	50	$500(\mathrm{max})$	nA
Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$	90	$70(\mathrm{~min})$	dB
PSRR	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
CMRR	$\mathrm{V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	± 21	$\pm 18(\mathrm{~min})$	V
Offset Voltage Drift Versus Temperature	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	25		$\mu \mathrm{~V} / \mathrm{C}^{\circ} \mathrm{C}$
Offset Voltage Drift Versus Output Power		25		$\mu \mathrm{~V} / \mathrm{W}$
Output Power	$\mathrm{THD}=1 \%, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	25	20	W
Gain Bandwidth Product	$\mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz}, \mathrm{A}_{\mathrm{VCL}}=1000$	5.5		MHz
Max Slew Rate		8		$\mathrm{~V} / \mu \mathrm{s}$
Input Common Mode Range		± 22	$\pm 20(\mathrm{~min})$	V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 2: Assumes T_{A} equal to $70^{\circ} \mathrm{C}$. For operation at higher tab temperatures, the LM 675 must be derated based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.

Typical Applications

$\mathrm{V}_{\mathrm{S}}= \pm 8 \mathrm{~V} \rightarrow \pm 30 \mathrm{~V}$

LM725

Operational Amplifier

General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.
The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- High open loop gain $3,000,000$
- Low input voltage drift $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High common mode rejection 120 dB
- Low input noise current $0.15 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low input offset current 2 nA
- High input voltage range $\pm 14 \mathrm{~V}$
- Wide power supply range $\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Offset null capability
- Output short circuit protection

Connection Diagram

Order Number LM725H/883, LM725CH or LM725AH/883 See NS Package Number H08C

Typical Applications

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 2)	500 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 22 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature

(Soldering, 10 Sec .) $260^{\circ} \mathrm{C}$		
Maximum Junction Temperature		
Operating Temperature Range	$\mathrm{T}_{\mathrm{A} \text { (MIN) }}$	$\mathrm{T}_{\text {A(MAX) }}$
LM725	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$
LM725A	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$
LM725C	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

Parameter	Conditions	LM725A			LM725			LM725C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Without External Trim)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			0.5		0.5	1.0		0.5	2.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	20		2.0	35	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	80		42	100		42	125	nA
Input Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		± 13.5	± 14		V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	1000	3000		1000	3000		250	3000		V/mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	120			110	120		94	120		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		2.0	5.0		2.0	10		2.0	35	$\mu \mathrm{V} / \mathrm{N}$
Output Voltage Swing	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	105		80	105		80	150	mW
Input Offset Voltage (Without External Trim)	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			0.7			1.5			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$			2.0		2.0	5.0		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Input Offset Voltage Drift (With External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.6	1.0		0.6			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 18.0 \\ \hline \end{array}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$	nA nA
Average Input Offset Current Drift			35	90		35	150		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	$\begin{array}{r} 70 \\ 180 \\ \hline \end{array}$		$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & \hline \end{aligned}$			$\begin{aligned} & 125 \\ & 250 \\ & \hline \end{aligned}$	nA nA

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM725A		LM725		LM725C			Units
		Min	Typ Max	Min	Typ Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & 500,000 \end{aligned}$		$\begin{aligned} & 1,000,000 \\ & 250,000 \end{aligned}$		$\begin{aligned} & 125,000 \\ & 125,000 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{N} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	110		100			115		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		8.0		20		20		$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12		± 10		± 10			V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: Derate at $150^{\circ} \mathrm{C} / \mathrm{W}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
Note 3: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ unless otherwise specified.
Note 5: For Military electrical specifications RETS725AX are available for LM725AH and RETS725X are available for LM725H.

Schematic Diagram

LM7301

Low Power, 4 MHz GBW, Rail-to-Rail Input-Output Operational Amplifier in TinyPak ${ }^{\text {TM }}$ Package

General Description

The LM7301 provides high performance in a wide range of applications. The LM7301 offers greater than rail-to-rail input range, full rail-to-rail output swing, large capacitive load driving ability and low distortion.
With only 0.6 mA supply current, the 4 MHz gain-bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.
The LM7301 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
Operating on supplies of $1.8 \mathrm{~V}-32 \mathrm{~V}$, the LM7301 is excellent for a very wide range of applications in low power systems.
Placing the amplifier right at the signal source reduces board size and simplifies signal routing. The LM7301 fits easily on low profile PCMCIA cards.

Features

at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ (Typ unless otherwise noted)

- Tiny SOT23-5 package saves space

■ Greater than Rail-to-Rail Input CMVR -0.25 V to 5.25 V

- Rail-to-Rail Output Swing 0.07 V to 4.93 V
- Wide Gain-Bandwidth 4 MHz
- Low Supply Current 0.60 mA
- Wide Supply Range 1.8 V to 32 V
- High PSRR 104 dB
- High CMRR 93 dB
- Excellent Gain 97 dB

Applications

- Portable instrumentation
- Signal conditioning amplifiers/ADC buffers
- Active filters
- Modems
- PCMCIA cards

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2500 V
Differential Input Voltage	15 V
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	35 V
Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 20 \mathrm{~mA}$
Current at Power Supply Pin	25 mA

Lead Temperature	
\quad (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 32 \mathrm{~V}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
M5 Package, 5-Pin SOT23	$325^{\circ} \mathrm{C} / \mathrm{W}$
M Package,	
8-Pin Surface Mount	$165^{\circ} \mathrm{C} / \mathrm{W}$

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM7301 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.03	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	90	$\begin{aligned} & \hline 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
		$\mathrm{V}_{\mathrm{CM}}=5 \mathrm{~V}$	-40	$\begin{aligned} & -75 \\ & -85 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~min} \end{aligned}$
los	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	0.7	$\begin{aligned} & 70 \\ & 80 \end{aligned}$	nA max
		$\mathrm{V}_{\mathrm{CM}}=5 \mathrm{~V}$	0.7	$\begin{aligned} & 55 \\ & 65 \end{aligned}$	
$\mathrm{R}_{\text {IN }}$	Input Resistance, CM	$0 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 5 \mathrm{~V}$	39		$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	88	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V}$	93		
PSRR	Power Supply Rejection Ratio	$2.2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$	104	$\begin{aligned} & 87 \\ & 84 \\ & \hline \end{aligned}$	
V_{CM}	Input Common-Mode Voltage Range	CMRR $\geq 65 \mathrm{~dB}$	5.1		V
			-0.1		V
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	71	$\begin{aligned} & 14 \\ & 10 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$
$\mathrm{V}_{\text {O }}$	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.07	$\begin{aligned} & 0.12 \\ & 0.15 \\ & \hline \end{aligned}$	V max
			4.93	$\begin{aligned} & 4.88 \\ & 4.85 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0.14	$\begin{aligned} & 0.20 \\ & 0.22 \end{aligned}$	V max
			4.87	$\begin{aligned} & 4.80 \\ & 4.78 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	Sourcing	11.0	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking	9.5	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

5.0V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LM7301 Limit (Note 6)	Units
I_{S}	Supply Current		0.60	1.10	mA

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.2 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$

Symbol	Parameter	Conditions $(N o t e ~ 5)$	Units	
SR	Slew Rate	$\pm 4 \mathrm{~V}$ Step @ $\mathrm{V}_{\mathrm{S}} \pm 6 \mathrm{~V}$	1.25	$\mathrm{~V} / \mathrm{ss}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4	MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	36	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.24	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
T.H.D.	Total Harmonic Distortion	$\mathrm{f}=10 \mathrm{kHz}$		$\%$

2.2V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM7301 Limit (Note 6)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		0.04	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	89	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	nA max
		$\mathrm{V}_{\mathrm{CM}}=2.2 \mathrm{~V}$	-35	$\begin{aligned} & -75 \\ & -85 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~min} \end{aligned}$
I_{os}	Input Offset Current	$\mathrm{V}_{C M}=0 \mathrm{~V}$	0.8	$\begin{aligned} & 70 \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \mathrm{max} \end{gathered}$
		$\mathrm{V}_{\mathrm{CM}}=2.2 \mathrm{~V}$	0.4	$\begin{aligned} & 55 \\ & 65 \end{aligned}$	
R_{IN}	Input Resistance	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.2 \mathrm{~V}$	18		$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.2 \mathrm{~V}$	82	$\begin{aligned} & 60 \\ & 56 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$2.2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$	104	$\begin{aligned} & 87 \\ & 84 \end{aligned}$	
V_{CM}	Input Common-Mode Voltage Range	CMRR > 60 dB	2.3		V
			-0.1		V
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=1.6 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	46	$\begin{aligned} & 6.5 \\ & 5.4 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

2.2V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LM7301 Limit (Note 6)	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.05	$\begin{aligned} & 0.08 \\ & 0.10 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.15	$\begin{aligned} & 2.10 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0.09	$\begin{aligned} & 0.13 \\ & 0.14 \end{aligned}$	$\begin{gathered} \mathrm{v} \\ \max \end{gathered}$
			2.10	$\begin{aligned} & 2.07 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing	10.9	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking	7.7	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.57	$\begin{aligned} & 0.97 \\ & 1.24 \end{aligned}$	mA max

30V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}^{2}$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$		Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.04	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	mV max
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	103	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	nA max
		$\mathrm{V}_{\text {CM }}=30 \mathrm{~V}$	-50	$\begin{aligned} & -100 \\ & -200 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~min} \end{aligned}$
l_{OS}	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1.2	$\begin{gathered} 90 \\ 190 \end{gathered}$	nA max
		$\mathrm{V}_{\text {CM }}=30 \mathrm{~V}$	0.5	$\begin{gathered} 65 \\ 135 \end{gathered}$	nA max
$\mathrm{R}_{\text {IN }}$	Input Resistance	$0 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 30 \mathrm{~V}$	200		$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 30 \mathrm{~V}$	104	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 27 \mathrm{~V}$	115	$\begin{aligned} & 90 \\ & 88 \end{aligned}$	
PSRR	Power Supply Rejection Ratio	$2.2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$	104	$\begin{aligned} & 87 \\ & 84 \end{aligned}$	
V_{CM}	Input Common-Mode Voltage Range	CMRR > 80 dB	30.1		V
			-0.1		V
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=28 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	105	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

30V DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM7301 Limit (Note 6)	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.16	$\begin{aligned} & 0.275 \\ & 0.375 \end{aligned}$	V max
			29.8	$\begin{aligned} & 29.75 \\ & 28.65 \end{aligned}$	V min
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	Sourcing (Note 4)	11.7	$\begin{aligned} & 8.8 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking (Note 4)	11.5	$\begin{aligned} & 8.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.72	$\begin{aligned} & 1.30 \\ & 1.35 \end{aligned}$	mA max

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left\langle T_{J(\max)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.

LM741

Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Connection Diagrams

Metal Can Package

DS009341-2
Note 1: LM741H is available per JM38510/10101
Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C

Dual-In-Line or S.O. Package

Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E

Ceramic Flatpak

Order Number LM741W/883
See NS Package Number W10A

Typical Application
Offset Nulling Circuit

Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 7)

	LM741A	LM741	LM741C
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 4)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Soldering Information			
N-Package (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
J- or H-Package (10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
M-Package			
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 8)
400 V
400 V
400 V

Electrical Characteristics (Note 5)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \hline \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			4.0			6.0			7.5	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}, \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	0.5									$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		V
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$				± 12	± 13					V

Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	50			50	200		20	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V} \\ & \hline \end{aligned}$	32 10			25			15			V / mV V / mV V/mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \end{aligned}$									$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Short Circuit Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$		25			25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{AMAX}} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \end{aligned}$	80	95		70	90		70	90		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$	86	96		77	96		77	96		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain		$\begin{gathered} 0.25 \\ 6.0 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 20 \end{aligned}$		$\begin{gathered} 0.3 \\ 5 \end{gathered}$			$\begin{gathered} 0.3 \\ 5 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Bandwidth (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \hline \end{aligned}$
LM741A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \hline \end{aligned}$
LM741	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AMIN}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$					$\begin{aligned} & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 75 \\ \hline \end{gathered}$				$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 5) (Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_{j} max. (listed under "Absolute Maximum Ratings"). $T_{j}=T_{A}+\left(\theta_{j A} P_{D}\right)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$170^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jC} (Junction to Case)	N / A	N / A	$25^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 4: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 6: Calculated value from: BW $(\mathrm{MHz})=0.35 /$ Rise Time $(\mu \mathrm{s})$.
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram

LM8261 Single

RRIO, High Output Current \& Unlimited Cap Load Op Amp in SOT23-5

General Description

The LM8261 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and guaranteed high speed and slew rate while requiring only 0.97 mA supply current. It is specifically designed to handle the requirements of flat panel TFT panel $\mathrm{V}_{\text {Сом }}$ driver applications as well as being suitable for other low power, and medium speed applications which require ease of use and enhanced performance over existing devices.
Greater than Rail-to-Rail input common mode voltage range with 50 dB of Common Mode Rejection, allows high side and low side sensing, among many applications, without having any concerns over exceeding the range and no compromise in accuracy. Exceptionally wide operating supply voltage range of 2.5 V to 30 V alleviates any concerns over functionality under extreme conditions and offers flexibility of use in multitude of applications. In addition, most device parameters are insensitive to power supply variations; this design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD +N) and can supply a respectable amount of current (15 mA) with minimal headroom from either rail $(300 \mathrm{mV})$.

The LM8261 is offered in the space saving SOT23-5 package.

Features

($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Typical values unless specified).

- GBWP

21 MHz
2.5 V to 30 V

- Wide supply voltage range $12 \mathrm{~V} / \mathrm{s}$
- Supply current 0.97 mA
- Cap load limit Unlimited
- Output short circuit current
$+53 \mathrm{~mA} /-75 \mathrm{~mA}$
- +/-5\% Settling time $400 \mathrm{~ns}(500 \mathrm{pF}, 100 \mathrm{mV}$ PP step)
- Input common mode voltage $\quad 0.3 \mathrm{~V}$ beyond rails
- Input voltage noise $15 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
- Input current noise $1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- THD $+\mathrm{N}<0.05 \%$

Applications

- TFT-LCD flat panel $\mathrm{V}_{\text {COM }}$ driver
- A/D converter buffer
- High side/low side sensing
- Headphone amplifier

Connection Diagram

Output Response with Heavy Capacitive Load

SOT23-5

Top View

Ordering Information

Package	Ordering Info	Pkg Marking	Supplied As	NSC Drawing
$5-$ Pin SOT-23	LM8261M5	A45A	1K Units Tape and Reel	MA05B
	LM8261M5X		3K Units Tape and Reel	

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance
$V_{I N}$ Differential
Output Short Circuit Duration
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Voltage at Input/Output pins
Storage Temperature Range

2KV (Note 2) 200V(Note 9)
$+/-10 \mathrm{~V}$
(Notes 3, 11)
$\mathrm{V}^{+}+0.8 \mathrm{~V}, \mathrm{~V}^{-}-0.8 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature (Note 4) $\quad+150^{\circ} \mathrm{C}$
Soldering Information:
Infrared or Convection (20 sec.) $235^{\circ} \mathrm{C}$
Wave Soldering (10 sec.) $260^{\circ} \mathrm{C}$

Operating Ratings

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 2.5 V to 30 V Junction Temperature Range(Note 4) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Thermal Resistance, θ_{JA}, (Note 4) SOT23-5
$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $R_{L}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=2.2 \mathrm{~V}$	+/-0.7	$\begin{aligned} & +/-5 \\ & +/-7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
TC V ${ }_{\text {Os }}$	Input Offset Average Drift	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V} \& \mathrm{~V}_{\mathrm{CM}}=2.2 \mathrm{~V} \\ & \text { (Note 12) } \end{aligned}$	+/-2	-	$\mu \mathrm{V} / \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V} \\ & \text { (Note 7) } \\ & \hline \end{aligned}$	-1.20	$\begin{aligned} & -2.00 \\ & -2.70 \end{aligned}$	$\underset{\max }{\mu \mathrm{A}}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=2.2 \mathrm{~V} \\ & \text { (Note 7) } \end{aligned}$	+0.49	$\begin{aligned} & +1.00 \\ & +1.60 \\ & \hline \end{aligned}$	
los	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=2.2 \mathrm{~V}$	20	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA max
CMRR	Common Mode Rejection Ratio	V_{CM} stepped from 0V to 1.0 V	100	$\begin{aligned} & 76 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		V_{CM} stepped from 1.7V to 2.7V	100		
		V_{CM} stepped from 0 V to 2.7 V	70	$\begin{aligned} & 58 \\ & 50 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5 V	104	$\begin{aligned} & 78 \\ & 74 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-0.3	$\begin{gathered} -0.1 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			3.0	$\begin{aligned} & \hline 2.8 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{A}_{\text {VoL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \text { to } 2.2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \text { to } \mathrm{V}^{-} \end{aligned}$	78	$\begin{aligned} & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \text { to } 2.2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \text { to } \mathrm{V}^{-} \end{aligned}$	73	$\begin{aligned} & 67 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{O}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to V^{-}	2.59	$\begin{aligned} & 2.49 \\ & 2.46 \end{aligned}$	$\stackrel{\mathrm{V}}{\mathrm{~min}}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$ to V^{-}	2.53	$\begin{aligned} & 2.45 \\ & 2.41 \end{aligned}$	
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to V^{-}	90	$\begin{aligned} & 100 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing to } \mathrm{V}^{-} \\ & \mathrm{V}_{I D}=200 \mathrm{mV} \text { (Note 10) } \end{aligned}$	48	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking to V^{+} $\left.V_{I D}=-200 \mathrm{mV} \text { (Note } 10\right)$	65	$\begin{aligned} & 50 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
I_{s}	Supply Current	No load, $\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	0.95	$\begin{aligned} & 1.20 \\ & 1.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
SR	Slew Rate (Note 8)	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{1}=2 \mathrm{~V}_{\mathrm{PP}}$	9	-	V/ $\mu \mathrm{s}$

2.7V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $R_{L}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition (Note 5)	Limit (Note 6)	Units		
f_{u}	Unity Gain-Frequency	$\mathrm{V}_{1}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$ to $\mathrm{V}^{+} / 2$	10	-	MHz	
GBWP	Gain Bandwidth Product	$\mathrm{f}=50 \mathrm{KHz}$	21	15.5 14	MHz min	
Phi $_{\mathrm{m}}$	Phase Margin	$\mathrm{V}_{1}=10 \mathrm{mV}$	50	-	Deg	
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=2 \mathrm{KHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	15	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
i_{n}	Input-Referred Current Noise	$\mathrm{f}=2 \mathrm{KHz}$	1	$\mathrm{pA} \sqrt{\mathrm{Hz}}$		
$\mathrm{f}_{\max }$	Full Power Bandwidth	$\mathrm{Z}_{\mathrm{L}}=(20 \mathrm{pF} \\| 10 \mathrm{~K} \Omega)$ to $\mathrm{V}^{+} / 2$	1	-	MHz	

5V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and
$R_{L}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=4.5 \mathrm{~V}$	+/-0.7	$\begin{aligned} & +/-5 \\ & +/-7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
TC V ${ }_{\text {OS }}$	Input Offset Average Drift	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V} \& \mathrm{~V}_{\mathrm{CM}}=4.5 \mathrm{~V} \\ & \text { (Note 12) } \end{aligned}$	+/-2	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$ (Note 7)	-1.18	$\begin{aligned} & -2.00 \\ & -2.70 \end{aligned}$	$\mu \mathrm{A}$ max
		$\mathrm{V}_{\mathrm{CM}}=4.5 \mathrm{~V}$ (Note 7)	+0.49	$\begin{aligned} & +1.00 \\ & +1.60 \end{aligned}$	
los	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V} \& \mathrm{~V}_{\mathrm{CM}}=4.5 \mathrm{~V}$	20	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
CMRR	Common Mode Rejection Ratio	V_{CM} stepped from 0 V to 3.3 V	110	$\begin{aligned} & 84 \\ & 72 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		V_{CM} stepped from 4 V to 5 V	100	-	
		V_{CM} stepped from 0 V to 5 V	80	$\begin{aligned} & 64 \\ & 61 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	104	$\begin{aligned} & 78 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-0.3	$\begin{gathered} -0.1 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			5.3	$\begin{aligned} & 5.1 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \text { to } \mathrm{V}^{-} \\ & \hline \end{aligned}$	84	$\begin{aligned} & 74 \\ & 70 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \text { to } \mathrm{V}^{-} \\ & \hline \end{aligned}$	80	$\begin{aligned} & 70 \\ & 66 \end{aligned}$	
V_{0}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to V^{-}	4.87	$\begin{aligned} & 4.75 \\ & 4.72 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$ to V^{-}	4.81	$\begin{aligned} & 4.70 \\ & 4.66 \end{aligned}$	
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to V^{-}	86	$\begin{aligned} & 125 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing to V^{-} $\left.\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV} \text { (Note } 10\right)$	53	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	mA min
		Sinking to V^{+} $V_{I D}=-200 \mathrm{mV}(\text { Note } 10)$	75	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limited guaranteed for $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $R_{\mathrm{L}}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units	
I_{s}	Supply Current	No load, $\mathrm{V}_{\text {CM }}=1 \mathrm{~V}$	0.97	$\begin{aligned} & 1.25 \\ & 1.75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$	
SR	Slew Rate (Note 8)	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{1}=5 \mathrm{~V}_{\mathrm{PP}}$	12	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\mathrm{V} / \mu \mathrm{s}$ \min	
f_{u}	Unity Gain Frequency	$\begin{aligned} & \mathrm{V}_{1}=10 \mathrm{mV}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	10.5	-	MHz	
GBWP	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{KHz}$	21	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	MHz min	
Phi ${ }_{\text {m }}$	Phase Margin	$\mathrm{V}_{1}=10 \mathrm{mV}$	53	-	Deg	
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=2 \mathrm{KHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	15	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
i_{n}	Input-Referred Current Noise	$\mathrm{f}=2 \mathrm{KHz}$	1	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
$\mathrm{f}_{\text {max }}$	Full Power Bandwidth	$\mathrm{Z}_{\mathrm{L}}=\left(20 \mathrm{pF} \\| 10 \mathrm{k}\right.$)) $\mathrm{V}^{+} / 2$	900	-	KHz	
t_{s}	Settling Time (+/-5\%)	100 mV PP Step, 500pF load	400	-	ns	
THD+N	Total Harmonic Distortion + Noise	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{f}=10 \mathrm{KHz} \text { to } A_{\mathrm{V}}=+2,4 \mathrm{~V}_{\mathrm{PP}} \\ & \text { swing } \end{aligned}$	0.05	-	\%	

+/-15V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$, and $R_{L}>1 M \Omega$ to $0 V$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	Limit (Note 6)	Units
V_{os}	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=-14.5 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=14.5 \mathrm{~V}$	+/-0.7	$\begin{aligned} & +/-7 \\ & +/-9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
TC V ${ }_{\text {OS }}$	Input Offset Average Drift	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-14.5 \mathrm{~V} \& \mathrm{~V}_{\mathrm{CM}}=14.5 \mathrm{~V} \\ & \text { (Note 12) } \end{aligned}$	+/-2	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-14.5 \mathrm{~V} \\ & \text { (Note 7) } \\ & \hline \end{aligned}$	-1.05	$\begin{aligned} & -2.00 \\ & -2.80 \\ & \hline \end{aligned}$	$\underset{\max }{\mu \mathrm{A}}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=14.5 \mathrm{~V} \\ & \text { (Note 7) } \\ & \hline \end{aligned}$	+0.49	$\begin{aligned} & +1.00 \\ & +1.50 \end{aligned}$	
l_{OS}	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=-14.5 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=14.5 \mathrm{~V}$	30	$\begin{aligned} & 275 \\ & 550 \end{aligned}$	nA \max
CMRR	Common Mode Rejection Ratio	V_{CM} stepped from -15 V to 13V	100	$\begin{aligned} & 84 \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		V_{CM} stepped from 14 V to 15 V	100	-	
		V_{CM} stepped from -15 V to 15 V	88	$\begin{aligned} & 74 \\ & 72 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=12 \mathrm{~V}$ to 15 V	100	$\begin{aligned} & 70 \\ & 66 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{V}^{-}=-12 \mathrm{~V}$ to -15 V	100	$\begin{aligned} & 70 \\ & 66 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-15.3	$\begin{aligned} & \hline-15.1 \\ & -15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			15.3	$\begin{aligned} & 15.1 \\ & 15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$

+/-15V Electrical Characteristics (Continued)

Unless otherwise specified, all limited guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$, and $R_{L}>1 M \Omega$ to 0 V . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Limit (Note 6)	Units	
$A_{\text {vol }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }+/-13 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{aligned}$	85	$\begin{aligned} & 78 \\ & 74 \\ & \hline \end{aligned}$	$\underset{\min }{\mathrm{dB}}$	
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }+/-13 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$	79	$\begin{aligned} & 72 \\ & 66 \end{aligned}$		
$\mathrm{v}_{\text {o }}$	Output Swing High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$	14.83	$\begin{aligned} & 14.65 \\ & 14.61 \end{aligned}$	$\stackrel{V}{\min }$	
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	14.73	$\begin{aligned} & 14.60 \\ & 14.55 \end{aligned}$		
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$	-14.91	$\begin{aligned} & -14.75 \\ & -14.65 \end{aligned}$	$\underset{\max }{V}$	
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	-14.83	$\begin{aligned} & -14.65 \\ & -14.60 \end{aligned}$		
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	$\begin{array}{\|l\|} \hline \text { Sourcing to ground } \\ \mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV} \text { (Note 10) } \\ \hline \end{array}$	60	$\begin{array}{r} 40 \\ 25 \\ \hline \end{array}$	mA min	
		Sinking to ground $\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$ (Note 10)	100	$\begin{aligned} & 70 \\ & 60 \end{aligned}$		
I_{s}	Supply Current	No load, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1.30	$\begin{aligned} & 1.50 \\ & 1.90 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \\ & \hline \end{aligned}$	
SR	Slew Rate (Note 8)	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{1}=24 \mathrm{~V}_{\mathrm{PP}}$	15	$\begin{gathered} \hline 10 \\ 8 \end{gathered}$	V/ $/ \mathrm{s}$ min	
f_{u}	Unity Gain Frequency	$\mathrm{V}_{1}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	14	-	MHz	
GBWP	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{KHz}$	24	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	MHz \min	
$\mathrm{Phim}_{\text {m }}$	Phase Margin	$\mathrm{V}_{1}=10 \mathrm{mV}$	58	-	Deg	
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=2 \mathrm{KHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	15	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
i_{n}	Input-Referred Current Noise	$\mathrm{f}=2 \mathrm{KHz}$	1	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
${ }^{\mathrm{f}_{\text {max }}}$	Full Power Bandwidth	$\mathrm{Z}_{\mathrm{L}}=20 \mathrm{pF} \\| 10 \mathrm{~K} \Omega$	160	-	KHz	
t_{s}	Settling Time ($+/-1 \%, A_{v}=+1$)	Positive Step, $5 \mathrm{~V}_{\mathrm{PP}}$	320	-	ns	
		Negative Step, 5V ${ }_{\text {PP }}$	600	-		
THD+N	Total Harmonic Distortion +Noise	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{f}=10 \mathrm{KHz}, \\ & \mathrm{~A}_{\mathrm{V}}=+2,28 \mathrm{~V}_{\mathrm{PP}} \text { swing } \\ & \hline \end{aligned}$	0.01	-	\%	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF ,
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.

Note 4: The maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly onto a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Positive current corresponds to current flowing into the device.
Note 8: Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.
Note 9: Machine Model, 0Ω is series with 200 pF .
Note 10: Short circuit test is a momentary test. See Note 11.
Note 11: Output short circuit duration is infinite for $V_{S} \leq 6 \mathrm{~V}$ at room temperature and below. For $\mathrm{V}_{S}>6 \mathrm{~V}$, allowable short circuit duration is 1.5 ms .
Note 12: Offset voltage average drift determined by dividing the change in $V_{O S}$ at temperature extremes into the total temperature change.

LM833

Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.
This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.
The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

- Wide dynamic range:	140dB
Low input noise voltage:	$4.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- High slew rate:	$7 \mathrm{~V} / \mu \mathrm{s}$ (typ); $5 \mathrm{~V} / \mu \mathrm{s}$ (min)
■ High gain bandwidth:	15MHz (typ); 10MHz (min)
■ Wide power bandwidth:	120 KHz
■ Low distortion:	0.002\%
■ Low offset voltage:	0.3 mV
■ Large phase margin:	60°
Available in 8 pin MSOP package	

Schematic Diagram (1/2 Lм8з3)

Connection Diagram

Order Number LM833M, LM833MX, LM833N, LM833MM or LM833MMX
See NS Package Number
M08A, N08E or MUA08A

```
Absolute Maximum Ratings
(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage V VC- }\mp@subsup{V}{EE}{
Differential Input Voltage (Note 3) V
Input Voltage Range (Note 3) V VIC
Power Dissipation (Note 4) PD
Operating Temperature Range T
Storage Temperature Range TSTG 
```

Soldering Information Dual-In-Line Package Soldering (10 seconds)	
Small Outline Package	
(SOIC and MSOP)	
Vapor Phase (60 seconds)	
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect	
on Product Reliability" for other methods of soldering	
surface mount devices.	
ESD tolerance (Note 5)	1600 V

DC Electrical Characteristics (Notes 1, 2)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \Omega$		0.3	5	mV
I_{OS}	Input Offset Current			10	200	nA
I_{B}	Input Bias Current			500	1000	nA
A_{V}	Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	90	110		dB
$\mathrm{~V}_{\mathrm{OM}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13.4		V
$\mathrm{~V}_{\mathrm{CM}}$	Input Common-Mode Range		± 12	± 14.0		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=15 \sim 5 \mathrm{~V},-15 \sim-5 \mathrm{~V}$	80	100	dB	
I_{Q}	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Both Amps		5	8	mA

AC Electrical Characteristics

$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right.$)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SR	Slew Rate	$R_{\mathrm{L}}=2 \mathrm{k} \Omega$	5	7		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	10	15		MHz

Design Electrical Characteristics

$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$)
The following parameters are not tested or guaranteed.

Symbol	Parameter	Conditions	Typ	Units
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Input Offset Voltage		2	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
THD	Distortion	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{f}=20 \sim 20 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{OUT}}=3 \mathrm{Vrms}, \mathrm{A}_{\mathrm{V}}=1$	0.002	$\%$
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	0.7	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{THD} \leq 1 \%$	120	kHz
f_{U}	Unity Gain Frequency	Open Loop	9	MHz
ϕ_{M}	Phase Margin	Open Loop	$\mathrm{f}=20 \sim 20 \mathrm{kHz}$	60
	Input Referred Cross Talk	deg		

Design Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 2: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 3: If supply voltage is less than $\pm 15 \mathrm{~V}$, it is equal to supply voltage.
Note 4: This is the permissible value at $T_{A} \leq 85^{\circ} \mathrm{C}$.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM837

Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.
The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Features

- High slew rate
$10 \mathrm{~V} / \mu \mathrm{s}$ (typ); $8 \mathrm{~V} / \mu \mathrm{s}$ (min)
- Wide gain bandwidth product $\quad 25 \mathrm{MHz}$ (typ); 15 MHz (min)
■ Power bandwidth 200 kHz (typ)
- High output current $\pm 40 \mathrm{~mA}$
- Excellent output drive performance
- Low input noise voltage
$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low total harmonic distortion 0.0015\%
- Low offset voltage

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Order Number LM837M, LM837MX or LM837N See NS Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\text {EE }}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage, $\mathrm{V}_{\text {ID }}$ (Note 2)	$\pm 30 \mathrm{~V}$
Common Mode Input Voltage, $\mathrm{V}_{\text {IC }}$	
(Note 2)	$\pm 15 \mathrm{~V}$
Power Dissipation, P_{D} (Note 3)	$1.2 \mathrm{~W}(\mathrm{~N})$
	$830 \mathrm{~mW}(\mathrm{M})$
Operating Temperature Range, $\mathrm{T}_{\mathrm{OPR}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, $\mathrm{T}_{\text {STG }} \quad-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package
Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package
Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$
Infrared (15 seconds)
$220^{\circ} \mathrm{C}$
ESD rating to be determined.
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.3	5	mV
I_{OS}	Input Offset Current			10	200	nA
I_{B}	Input Bias Current			500	1000	nA
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	90	110		dB
$\mathrm{~V}_{\mathrm{OM}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13.5		V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 10	± 12.5	V	
$\mathrm{~V}_{\mathrm{CM}}$	Common Mode Input Voltage		± 12	± 14.0		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=15 \sim 5,-15 \sim-5$	80	100	dB	
I_{S}	Power Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, Four Amps		10	15	mA

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	8	10		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	15	25		MHz

Design Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Note 4)

Symbol	Parameter	Condition	Min	Typ	Max	Units
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $<1 \%$		200		kHz
$\mathrm{e}_{\mathrm{n} 1}$	Equivalent Input Noise Voltage	JIS A, $\mathrm{R}_{\mathrm{S}}=100 \Omega$		0.5		$\mu \mathrm{V}$
$\mathrm{e}_{\mathrm{n} 2}$	Equivalent Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$		4.5		$\begin{aligned} & \mathrm{nV} \mathrm{~V} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$		0.7		$\begin{aligned} & \mathrm{pA} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
THD	Total Harmonic Distortion	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=3 \mathrm{Vrms}, \\ & f=20 \sim 20 \mathrm{kHz}, R_{L}=600 \Omega \end{aligned}$		0.0015		\%
f_{u}	Zero Cross Frequency	Open Loop		12		MHz
ϕ_{m}	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	$\mathrm{f}=20 \sim 20 \mathrm{kHz}$		-120		dB
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 2: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.

Design Electrical Characteristics (Continued)

Note 3: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM837N, $90^{\circ} \mathrm{C} / \mathrm{W}$; LM837M, $150^{\circ} \mathrm{C} / \mathrm{W}$.

Note 4: The following parameters are not tested or guaranteed.

Detailed Schematic

LMC2001
 High Precision, 6MHz Rail-To-Rail Output Operational Amplifier

General Description

The LMC2001 is a new precision amplifier that offers unprecedented accuracy and stability at an affordable price and is offered in miniature (SOT23-5) package. This device utilizes patented techniques to measure and continually correct the input offset error voltage. The result is an amplifier which is ultra stable over time, and temperature. It has excellent CMRR and PSRR ratings, and does not exhibit the familiar $1 / \mathrm{f}$ voltage and current noise increase that plagues traditional amplifiers. The combination of the LMC2001 characteristics makes it a good choice for transducer amplifiers, high gain configurations, ADC buffer amplifiers, DAC $\mathrm{I}-\mathrm{V}$ conversion, and any other 5 V application requiring precision and/or stability.

Other useful benefits of the LMC2001 are rail-to-rail output, low supply current of $750 \mu \mathrm{~A}$, and wide gain-bandwidth product of 6 MHz . The LMC2001 comes in 5 pin SOT23 and 8 pin SOIC. These extremely versatile features found in the LMC2001 provide high performance and ease of use.

Features

(Vs $=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to $\mathrm{V}^{+} / 2$, Typ. Unless Noted)

- Low Guaranteed $\mathrm{V}_{\text {os }}$
- e_{n} With No 1/f
- High CMRR $85 \mathrm{nV} / \sqrt{40 \mu \mathrm{~V}}$

High PSRR
■ High PSRR 120dB

- High $A_{\text {vol }} \quad 137 \mathrm{~dB}$
- Wide Gain-Bandwidth Product 6MHz

■ High Slew Rate $5 \mathrm{~V} / \mu \mathrm{s}$

- Low Supply Current

750 $\mu \mathrm{A}$
30 mV from either rail

- No External Capacitors Required

Applications

- Precision Instrumentation Amplifiers
- Thermocouple Amplifiers
- Strain Gauge Bridge Amplifier

Connection Diagrams

5-Pin SOT23

Top View

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
ESD Tolerance (Note 2)	
Human Body Model	2500 V
Machine Model	150 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	5.6 V
Current At Input Pin	30 mA
Current At Output Pin	30 mA
Current At Power Supply Pin	50 mA
(Note 3)	
Lead Temperature (soldering, 10	$260^{\circ} \mathrm{C}$
sec)	

Operating Ratings (Note 1)
Supply voltage
4.75 V to 5.25 V

Temperature Range

LMC2001AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$
LMC2001AC	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 70^{\circ} \mathrm{C}$

Thermal resistance (θ JA $)$

M Package, 8-pin Surface Mount	$180^{\circ} \mathrm{C} / \mathrm{W}$
M5 Package, SOT23-5	$274^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limit(Note 6)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	(Note 11)	0.5	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{gathered} \mu \mathrm{V} \\ \max \end{gathered}$
	Offset Calibration Time		5	30	ms
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage	(Note 12)	0.015		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Long-Term Offset Drift	(Note 8)	0.006		$\mu \mathrm{V} /$ month
	Lifetime $\mathrm{V}_{\text {OS }}$ drift	(Note 8)	2.5	5	$\mu \mathrm{V}$ Max
I_{IN}	Input Current	(Note 9)	-3		pA
$\mathrm{l}_{\text {os }}$	Input Offset Current		6		pA
$\mathrm{R}_{\text {IND }}$	Input Differential Resistance		9		$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V}$	120	100	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V}$	110	90	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$4.75 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.25 \mathrm{~V}$	120	$\begin{aligned} & 95 \\ & 90 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain (Note 7)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	137	$\begin{aligned} & 105 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	128	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { diff })= \pm 0.5 \mathrm{~V} \end{aligned}$	4.975	$\begin{aligned} & 4.955 \\ & 4.955 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.030	$\begin{aligned} & 0.060 \\ & 0.060 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\mathrm{diff})= \pm 0.5 \mathrm{~V} \end{aligned}$	4.936		V
			0.075		V
I_{0}	Output Current	$\begin{array}{\|l} \hline \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} \text { (diff) }= \pm 0.5 \mathrm{~V} \\ \hline \end{array}$	5.9	$\begin{aligned} & 4.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\begin{array}{\|l} \hline \text { Sinking, } \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}(\text { diff })= \pm 0.5 \mathrm{~V} \\ \hline \end{array}$	14.5	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.75	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	mA max

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ - $\mathrm{T}_{\mathrm{A}} / / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis, unless otherwise noted.
Note 7: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, and R_{L} connected to 2.5 V . For Sourcing tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 4.8 \mathrm{~V}$. For Sinking tests, $0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$.
Note 8: Guaranteed Vos Drift is based on 280 devices operated for 1000 hrs at $150^{\circ} \mathrm{C}$ (equivalent to 30 years $55^{\circ} \mathrm{C}$).
Note 9: Guaranteed by design only.
Note 10: Settling times shown correspond to the worse case (positive or negative step) and does not include slew time. See the Application Note section for test schematic.
Note 11: The limits are set by the accuracy of high speed automatic test equipment. For the typical V_{OS} distribution, see the curve on page 4.
Note 12: Precision bench measurement of more than 300 units. More than 65% of units had less than $15 \mathrm{nV} /{ }^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{OS}}$ drift.

LMC6001

Ultra Ultra-Low Input Current Amplifier

General Description

Featuring 100% tested input currents of 25 fA max., low operating power, and ESD protection of 2000V, the LMC6001 achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, National is able to offer this ultra-low input current in a lower cost molded package.
To avoid long turn-on settling times common in other low input current opamps, the LMC6001A is tested 3 times in the first minute of operation. Even units that meet the 25 fA limit are rejected if they drift.
Because of the ultra-low input current noise of $0.13 \mathrm{fA} / \sqrt{\mathrm{Hz}}$, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at $100 \mathrm{k} \Omega$, 0.1 dB at $1 \mathrm{M} \Omega$ and 0.01 dB or less from $10 \mathrm{M} \Omega$ to $2,000 \mathrm{M} \Omega$, the LMC6001 is an almost noiseless amplifier.
The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photodetection transimpedance amplifiers and sensor amplifiers. Since input referred noise is only $22 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, the LMC6001
can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits.

Features

(Max limit, $25^{\circ} \mathrm{C}$ unless otherwise noted)

- Input current (100% tested): 25 fA
- Input current over temp.: 2 pA
- Low power: $750 \mu \mathrm{~A}$
- Low $\mathrm{V}_{\mathrm{OS}}: 350 \mu \mathrm{~V}$
- Low noise: $22 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @1 kHz Typ.

Applications

- Electrometer amplifier
- Photodiode preamplifier
- lon detector
- A.T.E. leakage testing

Connection Diagrams

Ordering Information

Package	Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$	NSC Package Drawing
8-Pin Molded DIP	LMC6001AIN, LMC6001BIN, LMC6001CIN	N08E
8-Pin Metal Can	LMC6001AIH, LMC6001BIH	H08C

Abstract

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 Sec .)
Storage Temperature
Junction Temperature
Current at Input Pin
Current at Output Pin
\pm Supply Voltage
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
-0.3 V to +16 V
(Notes 2, 10)
(Note 2)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$\pm 10 \mathrm{~mA}$
$\pm 30 \mathrm{~mA}$

Current at Power Supply Pin
Power Dissipation
40 mA
(Note 9)
2 kV
Operating Ratings (Note 1)
Temperature Range
LMC6001AI, LMC6001BI, LMC6001CI
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage
$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance (Note 11)

$\theta_{J A}, N$ Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}, \mathrm{H}$ Package	$145^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}, \mathrm{H}$ Package	$45^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 8)

DC Electrical Characteristics

Limits in standard typeface guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LMC6001AI	LMC6001BI	LMC6001CI	
I_{B}	Input Current	Either Input, $\mathrm{V}_{\mathrm{Cm}}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	10	$\begin{gathered} 25 \\ 2000 \end{gathered}$	$\begin{gathered} 100 \\ 4000 \end{gathered}$	$\begin{aligned} & 1000 \\ & 4000 \end{aligned}$	fA
l_{OS}	Input Offset Current		5	1000	2000	2000	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			$\begin{gathered} 0.35 \\ 1.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	mV
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$		$\begin{gathered} 0.7 \\ 1.35 \end{gathered}$	$\begin{gathered} 1.35 \\ 2.0 \end{gathered}$	1.35	
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Drift		2.5	10	10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
R_{IN}	Input Resistance		>1				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	$\begin{aligned} & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \geq \mathrm{V}^{-} \geq-10 \mathrm{~V}$	94	$\begin{aligned} & 80 \\ & 77 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	
A_{V}	Large Signal Voltage Gain	Sourcing, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Note 6)	1400	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV min
		Sinking, $R_{L}=2 \mathrm{k} \Omega$ (Note 6)	350	$\begin{aligned} & 180 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	
V_{CM}	Input Common-Mode Voltage	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 60 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathbf{V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \hline V^{+}-2.3 \\ & \mathbf{V}^{+}-2.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.80 \\ & 4.73 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{aligned} & 0.14 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.34 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.25 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$

DC Electrical Characteristics (Continued)
Limits in standard typeface guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LMC6001AI	LMC6001BI	LMC6001CI	
Io	Output Current	Sourcing, $\mathrm{V}^{+}=5 \mathrm{~V}$,	22	16	13	13	mA \min
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		10	8	8	
		Sinking, $\mathrm{V}^{+}=5 \mathrm{~V}$,	21	16	13	13	
		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		13	10	10	
		Sourcing, $\mathrm{V}^{+}=15 \mathrm{~V}$,	30	28	23	23	
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		22	18	18	
		Sinking, $\mathrm{V}^{+}=15 \mathrm{~V}$,	34	28	23	23	
		$\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)		22	18	18	
I_{5}	Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	450	750	750	750	$\mu \mathrm{A}$ \max
				900	900	900	
		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	550	850	850	850	
				950	950	950	

AC Electrical Characteristics

Limits in standard typeface guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LM6001AI	LM6001BI	LM6001CI	
SR	Slew Rate	(Note 7)	1.5	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.3				MHz
$\phi \mathrm{f}_{\mathrm{m}}$	Phase Margin		50				Deg
G_{M}	Gain Margin		17				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.13				$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, A_{V}=-10, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{P P}, \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Typical values represent the most likely parametric norm.
Note 5: All limits are guaranteed by testing or statistical analysis.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Limit specified is the lower of the positive and negative slew rates.
Note 8: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 9: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 10: Do not connect the output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 11: All numbers apply for packages soldered directly into a printed circuit board.

LMC6022

Low Power CMOS Dual Operational Amplifier

General Description

The LMC6022 is a CMOS dual operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V^{-}, low input bias current, and voltage gain (into 100 k and $5 \mathrm{k} \Omega$ loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 0.5 mW .
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6024 datasheet for a CMOS quad operational amplifier with these same features.

Features

- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads

■ Ultra low input bias current: 40 fA

- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- Low distortion: 0.01% at 1 kHz
- Slew rate: $0.11 \mathrm{~V} / \mathrm{hs}$
- Micropower operation: 0.5 mW

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- High voltage gain: 120 dB

■ Low offset voltage drift: $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Connection Diagram

LMC6022 Circuit Topology (Each Amplifier)

| Absolute Maximum Ratings $($ Note 1$)$ |
| :--- | ---: | :--- | ---: | | Current at Input Pin |
| :--- |
| Output Short Circuit to V^{-} |
| Differential Input Voltage |
| Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$ |

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6022I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
los	Input Offset Current		0.01	100	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
R_{IN}	Input Resistance		>1		Teras
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \hline V^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega(\text { Note } 7)$ Sourcing Sinking	1000	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note 7) }$ Sourcing Sinking	1000	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V/mV min

DC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \hline \text { LMC6022I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{aligned} & 4.40 \\ & 4.43 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.004	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.940	$\begin{aligned} & 4.20 \\ & 4.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.040	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.970	$\begin{aligned} & 14.00 \\ & 13.90 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.840	$\begin{aligned} & 13.70 \\ & 13.50 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.110	$\begin{aligned} & 0.32 \\ & 0.40 \end{aligned}$	V max
I_{0}	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 2)	22	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			21	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 12)	40	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
			39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	Both Amplifiers $V_{0}=1.5 \mathrm{~V}$	86	$\begin{aligned} & 140 \\ & 165 \end{aligned}$	$\mu \mathrm{A}$ max

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless other otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6022I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	0.11	0.05 0.03	V / ss min
GBW	Gain-Bandwidth Product		0.35		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or correlation.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC6024

Low Power CMOS Quad Operational Amplifier

General Description

The LMC6024 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V^{-}, low input bias current and voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 1 mW .

This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6022 datasheet for a CMOS dual operational amplifier with these same features.

Features

- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain 120 dB

■ Low offset voltage drift $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Ultra low input bias current 40 fA
- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- Low distortion 0.01% at 1 kHz
- Slew rate $0.11 \mathrm{~V} / \mu \mathrm{s}$
- Micropower operation 1 mW

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
\pm Supply Voltage

Lead Temperature
(Soldering, 10 sec .)
Storage Temperature Range
Voltage at Output/Input Pin
Current at Input Pin
$\left(V^{+}\right)+0.3 V,\left(V^{-}\right)-0.3 V$
$\pm 5 \mathrm{~mA}$
Current at Output Pin
Current at Power Supply Pin
Output Short Circuit to V^{+}

Output Short Circuit to V^{-} Junction Temperature
(Note 2)

ESD Tolerance (Note 4)
$150^{\circ} \mathrm{C}$

Power Dissipation
1000 V
(Note 3)

Operating Ratings

Temperature Range
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage Range
4.75 V to 15.5 V
(Note 10)
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$, (Note 11)
14-Pin DIP
$85^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \hline \text { LMC6024I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
los	Input Offset Current		0.01	100	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ For CMRR ≥ 50 DB	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note 7) }$ Sourcing Sinking	1000	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	V / mV Min
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	V / mV Min
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 7 \text {) }$ Sourcing Sinking	1000	$\begin{gathered} 100 \\ 75 \end{gathered}$	V / mV Min
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	\% Conditions	Typical (Note 5)	$\begin{aligned} & \hline \text { LMC6024I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{aligned} & 4.40 \\ & 4.43 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.004	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.940	$\begin{aligned} & 4.20 \\ & 4.00 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.040	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.970	$\begin{aligned} & 14.00 \\ & 13.90 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.007	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.840	$\begin{aligned} & 13.70 \\ & 13.50 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.110	$\begin{aligned} & 0.32 \\ & 0.40 \end{aligned}$	V Max
Io	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 2)	22	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
			21	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 12)	40	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	mA Min
			39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	mA Min
I_{s}	Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	160	$\begin{aligned} & \hline 240 \\ & 280 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6024I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	0.11	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ Min
GBW	Gain-Bandwidth Product		0.35		MHz
θ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversly affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$
$\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or correlation.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC6032

CMOS Dual Operational Amplifier

General Description

The LMC6032 is a CMOS dual operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic loads, such as $2 \mathrm{k} \Omega$ and 600Ω.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6034 datasheet for a CMOS quad operational amplifier with these same features. For higher performance characteristics refer to the LMC662.

Features

- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain: 126 dB
- Low offset voltage drift: $2.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current: 40 fA
- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- $\mathrm{I}_{\text {SS }}=400 \mu \mathrm{~A}$ /amplifier; independent of V^{+}
- Low distortion: 0.01% at 10 kHz
- Slew rate: $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Improved performance over TLC272

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Medical instrumentation

Connection Diagram

Absolute Maximum Ratings (Note 1)		Voltage at Output/Input Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.			$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
		Current at Output Pin	$\pm 18 \mathrm{~mA}$
		Current at Input Pin	$\pm 5 \mathrm{~mA}$
Differential Input Voltage	\pm Supply Voltage	Current at Power Supply Pin	35 mA
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	16 V	Operating Ratings (Note 1)	
Output Short Circuit to V^{+}	(Note 10)		
Output Short Circuit to V^{-}	(Note 2)	Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Lead Temperature		Supply Voltage Range	4.75 V to 15.5 V
(Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$	Power Dissipation	(Note 11)
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Thermal Resistance (θ_{JA}), (Note 12)	
Junction Temperature	$150^{\circ} \mathrm{C}$	8-Pin DIP	$101{ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Tolerance (Note 4)	1000V	$8-\mathrm{Pin} \mathrm{SO}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 3)		

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \hline \text { LMC6032I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
los	Input Offset Current		0.01	100	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Teras
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \hline \mathrm{V}^{+}-2.3 \\ & \mathbf{V}^{+}-2.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega(\text { Note } 7)$ Sourcing Sinking	2000	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	V / mV min
		$R_{L}=600 \Omega(\text { Note } 7)$ Sourcing Sinking	1000	$\begin{gathered} 100 \\ 75 \end{gathered}$	V / mV min
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \hline \text { LMC6032I } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.20 \\ & 4.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.00 \\ & 3.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.30	$\begin{aligned} & 0.63 \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 13.50 \\ & 13.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.26	$\begin{aligned} & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{aligned} & 12.50 \\ & 12.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.79	$\begin{aligned} & 1.45 \\ & 1.75 \end{aligned}$	V \max
I_{0}	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			21	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 10)	40	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			39	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$I_{\text {S }}$	Supply Current	Both Amplifiers $V_{O}=1.5 \mathrm{~V}$	0.75	$\begin{aligned} & 1.6 \\ & 1.9 \\ & \hline \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6032I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.4		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 12: All numbers apply for packages soldered directly into a PC board.

LMC6034

CMOS Quad Operational Amplifier

General Description

The LMC6034 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic loads, such as $2 \mathrm{k} \Omega$ and 600Ω.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6032 datasheet for a CMOS dual operational amplifier with these same features. For higher performance characteristics refer to the LMC660.

Features

- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain: 126 dB
- Low offset voltage drift: $2.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current: 40 fA
- Input common-mode range includes V^{-}
- Operating Range from +5 V to +15 V supply
- $\mathrm{I}_{\mathrm{SS}}=400 \mu \mathrm{~A}$ /amplifier; independent of V^{+}
- Low distortion: 0.01% at 10 kHz
- Slew rate: $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Improved performance over TLC274

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Medical instrumentation

Connection Diagram

Guard Ring Connections

Non-Inverting Amplifier

Absolute Maximum Ratings (Note 1)	Current at Input Pin	$\pm 5 \mathrm{~mA}$
If Military/Aerospace specified devices are required,	Current at Power Supply Pin	35 mA
please contact the National Semiconductor Sales Office/	Junction Temperature (Note 3)	$150^{\circ} \mathrm{C}$
Distributors for availability and specifications.	ESD Tolerance (Note 4)	1000 V
Differential Input Voltage \pm Supply Voltage		
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 16V	Operating Ratings(Note 1)	
Output Short Circuit to V^{+}(Note 10)	Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Output Short Circuit to V^{-}(Note 2)	Supply Voltage Range	4.75 V to 15.5 V
Lead Temperature (Soldering, 10 sec .)	Power Dissipation	(Note 11)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Thermal Resis 14-Pin DIP	$85^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation (Note 3)	14-Pin SO	$115^{\circ} \mathrm{C} / \mathrm{W}$
Voltage at Output/lnput Pin $\quad\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$		
Current at Output Pin $\pm 18 \mathrm{~mA}$		

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \hline \text { LMC6034I } \\ \text { Limit } \\ (\text { Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
los	Input Offset Current		0.01	100	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{v}^{+}-2.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { (Note } 7\right)$ Sourcing Sinking	2000	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	V / mV min
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega \text { (Note 7) }$ Sourcing Sinking	1000	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \hline \text { LMC6034I } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.20 \\ & 4.00 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.00 \\ & 3.80 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \min \end{aligned}$
			0.30	$\begin{aligned} & 0.63 \\ & 0.75 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 13.50 \\ & 13.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.26	$\begin{aligned} & 0.45 \\ & 0.55 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{aligned} & 12.50 \\ & 12.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.79	$\begin{aligned} & 1.45 \\ & 1.75 \end{aligned}$	V max
Io	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			21	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $V_{O}=13 \mathrm{~V}$ (Note 10)	39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	All Four Amplifiers $V_{0}=1.5 \mathrm{~V}$	1.5	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC60341 Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	1.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	V/us min
GBW	Gain-Bandwidth Product		1.4		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}, T_{\mathrm{A}}$. The maximum allowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$ $\left(T_{J(\max)}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 12: All numbers apply for packages soldered directly into a PC board.

LMC6035/LMC6036

Low Power 2.7V Single Supply CMOS Operational Amplifiers

General Description

The LMC6035/6 is an economical, low voltage op amp capable of rail-to-rail output swing into loads of 600Ω. LMC6035 is available in a chip sized package (8-Bump micro SMD) using National's micro SMD package technology. Both allow for single supply operation and are guaranteed for $2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V supply voltage. The 2.7 supply voltage corresponds to the End-of-Life voltage ($0.9 \mathrm{~V} /$ cell) for three NiCd or NiMH batteries in series, making the LMC6035/6 well suited for portable and rechargeable systems. It also features a well behaved decrease in its specifications at supply voltages below its guaranteed 2.7 V operation. This provides a "comfort zone" for adequate operation at voltages significantly below 2.7 V . Its ultra low input currents (I_{IN}) makes it well suited for low power active filter application, because it allows the use of higher resistor values and lower capacitor values. In addition, the drive capability of the LMC6035/6 gives these op amps a broad range of applications for low voltage systems.

Features

(Typical Unless Otherwise Noted)

- LMC6035 in micro SMD Package
- Guaranteed $2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V Performance
- Specified for $2 \mathrm{k} \Omega$ and 600Ω Loads
- Wide Operating Range: 2.0 V to 15.5 V
- Ultra Low Input Current: 20 fA
- Rail-to-Rail Output Swing
@ 600』: 200 mV from either rail at 2.7 V @ $100 \mathrm{k} \Omega$: 5 mV from either rail at 2.7 V
- High Voltage Gain: 126dB
- Wide Input Common-Mode Voltage Range -0.1 V to 2.3 V at $\mathrm{Vs}=2.7 \mathrm{~V}$
- Low Distortion: 0.01% at 10 kHz

■ LMC6035 Dual LMC6036 Quad

Applications

- Filters
- High Impedance Buffer or Preamplifier
- Battery Powered Electronics
- Medical Instrumentation

Connection Diagrams

Top View (Bump Side Down)

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)

Human Body Model
3000 V 300 V
Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V -
Lead Temperature (soldering, 10 sec .)
Current at Output Pin
Current at Input Pin
Current at Power Supply Pin

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)

Operating Ratings (Note 1)

Supply Voltage
2.0 V to 15.5 V

Temperature Range
LMC6035I and LMC6036I
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance (θ JA)
MSOP, 8-pin Mini Surface Mount
M Package, 8-pin Surface Mount
$230^{\circ} \mathrm{C} / \mathrm{W}$
$175^{\circ} \mathrm{C} / \mathrm{W}$
$127^{\circ} \mathrm{C} / \mathrm{W}$
$137^{\circ} \mathrm{C} / \mathrm{W}$
$220^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LMC6035I LMC6036I Limit (Note 6)	Units
V_{OS}	Input Offset Voltage		0.5	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		2.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{IN}	Input Current	(Note 11)	0.02	90	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
l os	Input Offset Current	(Note 11)	0.01	45	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10		Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.7 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	96	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	93	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$	97	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ For CMRR $\geq 40 \mathrm{~dB}$	-0.1	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.3	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}^{+}=3 \mathrm{~V}$ For CMRR $\geq 40 \mathrm{~dB}$	-0.3	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.6	$\begin{aligned} & 2.3 \\ & 2.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.5	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.5	$\begin{aligned} & 4.2 \\ & 3.9 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.5	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			14.4	$\begin{aligned} & 14.0 \\ & 13.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>$ $1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Units
SR	Slew Rate	(Note 9)	1.5	V/us
GBW	Gain Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.4	MHz
$\theta_{\text {m }}$	Phase Margin		48	-
G_{m}	Gain Margin		17	dB
	Amp-to-Amp Isolation	(Note 10)	130	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	27	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.2	$\mathrm{ff} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	0.01	\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 30 mA over long term may adversely affect reliabilty.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}\right.$ $-\mathrm{T}_{\mathrm{A}} / / \mathrm{JA}_{\mathrm{JA}}$. All numbers apply for packages soldered directly onto a PC board with no air flow.
Note 5: Typical Values represent the most likely parametric norm or one sigma value.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as voltage follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Guaranteed by design.

LMC6041

CMOS Single Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6041. Providing input currents of only 2 fA typical, the LMC6041 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6041 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.

Other applications for the LMC6041 include bar code reader amplifiers, magnetic and electric field detectors, and hand-held electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6042 for a dual, and the LMC6044 for a quad amplifier with these features.

Features

■ Low supply current: $\quad 14 \mu \mathrm{~A}$ (Typ)

- Operates from 4.5 V to 15.5 V single supply
- Ultra low input current: 2 fA (Typ)
- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

Low-Leakage Sample and Hold

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{-}
Output Short Circuit to V^{+} Lead Temperature
(Soldering, 10 sec .)
Storage Temperature Range
Junction Temperature
ESD Tolerance (Note 4)
Current at Input Pin
\pm Supply Voltage
16 V
(Note 2)
(Note 11)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$110^{\circ} \mathrm{C}$
500 V
$\pm 5 \mathrm{~mA}$

Current at Output Pin	$\pm 18 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Power Dissipation	$($ Note 3)

(Note 3)

Operating Ratings

Temperature Range

LMC6041AI, LMC6041I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Power Dissipation	(Note 9)
Thermal Resistance $\left(\theta_{J A}\right)$ (Note 10)	
8-Pin DIP	$101^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO	$165^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typical (Note 5)	LMC6041AI Limit (Note 6)	$\begin{gathered} \hline \text { LMC6041I } \\ \hline \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units (Limit)
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	mV max
TCV ${ }_{\text {os }}$	Input Offset Voltage Average Drift			1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.002	4	4	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
l OS	Input Offset Current			0.001	2	2	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10			Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		94	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
CMR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
				$\mathrm{V}^{+}-1.9 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \mathrm{~V} \\ & \mathrm{~V}^{+}-2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \mathrm{~V} \\ & \mathrm{~V}^{+}-2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV min
			Sinking	500	$\begin{aligned} & \hline 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	V / mV min
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 200 \\ & 160 \end{aligned}$	$\begin{gathered} 100 \\ 80 \end{gathered}$	V / mV min
			Sinking	250	$\begin{gathered} 100 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$	V / mV min

Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6041AI	LMC6041I	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.987	$\begin{aligned} & 4.970 \\ & 4.950 \end{aligned}$	$\begin{aligned} & 4.940 \\ & 4.910 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.004	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.980	$\begin{aligned} & 4.920 \\ & 4.870 \end{aligned}$	$\begin{aligned} & 4.870 \\ & 4.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.010	$\begin{aligned} & 0.080 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 0.180 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.970	$\begin{aligned} & 14.920 \\ & 14.880 \end{aligned}$	$\begin{aligned} & 14.880 \\ & 14.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.950	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.022	$\begin{aligned} & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{sc}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$I_{\text {sc }}$	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	40	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			39	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} \hline 21 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{S}	Supply Current	$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	14	$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$	18	$\begin{aligned} & 26 \\ & 31 \end{aligned}$	$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6041AI	LMC6041I	Units (Limit)
				$\begin{gathered} \hline \text { Limit } \\ (\text { Note 6) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ (\text { Note 6) } \end{gathered}$	
SR	Slew Rate	(Note 8)	0.02	$\begin{aligned} & 0.015 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.007 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product		75			kHz
ϕ_{m}	Phase Margin		60			Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01			\%

AC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}\right.$ $\left.-T_{A}\right) / \theta_{\mathrm{JA}}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $V^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified in the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC6042

CMOS Dual Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6042. Providing input currents of only 2 fA typical, the LMC6042 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6042 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6042 include bar code reader amplifiers, magnetic and electric field detectors, and hand-held electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6041 for a single, and the LMC6044 for a quad amplifier with these features.

Features

- Low supply current: $10 \mu \mathrm{~A} / \mathrm{Amp}$ (typ)
- Operates from 4.5 V to 15 V single supply
- Ultra low input current: 2 fA (typ)
- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

DS011137-1

Low-Power Two-Op-Amp Instrumental Amplifier

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
\pm Supply Voltage
16 V
(Note 12)
(Note 2)
Lead Temperature
(Soldering, 10 seconds)
Current at Input Pin
Current at Output Pin
Current at Power Supply Pin
Power Dissipation

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 3)
$110^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)
500 V
Voltage at Input/Output Pin
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

Operating Ratings

Temperature Range
LMC6042AI, LMC6042I
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage
$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
(Note 10)
Thermal Resistance $\left(\theta_{J A}\right)$, (Note 11)
8-Pin DIP
$101^{\circ} \mathrm{C} / \mathrm{W}$
$165^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise spec ified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typical (Note 5)	LMC6042AI Limit (Note 6)	LMC6042I Limit (Note 6)	Units (Limit)
V_{os}	Input Offset Voltage			1	$\begin{gathered} \hline 3 \\ 3.3 \end{gathered}$	$\begin{gathered} \hline 6 \\ 6.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift			1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.002	4	4	pA (Max)
l	Input Offset Current			0.001	2	2	pA (Max)
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10			Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & \hline 68 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & \hline 68 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		94	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
CMR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \mathrm{~V} \\ & \mathrm{~V}^{+}-2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V^{+}-2.3 V \\ & V^{+}-2.4 V \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
A_{v}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
			Sinking	500	$\begin{aligned} & 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 200 \\ & 160 \end{aligned}$	$\begin{gathered} 100 \\ 80 \end{gathered}$	$\begin{gathered} \hline \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$
			Sinking	250	$\begin{gathered} 100 \\ 60 \end{gathered}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$

Electrical Characteristics (Continued)
Unless otherwise spec ified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6042AI	LMC60421	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.987	$\begin{aligned} & 4.970 \\ & 4.950 \end{aligned}$	$\begin{array}{r} 4.940 \\ 4.910 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.004	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.980	$\begin{aligned} & 4.920 \\ & 4.870 \end{aligned}$	$\begin{aligned} & 4.870 \\ & 4.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.080 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 0.180 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.970	$\begin{aligned} & 14.920 \\ & 14.880 \end{aligned}$	$\begin{aligned} & 14.880 \\ & 14.820 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{Min} \end{aligned}$
			0.007	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.950	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.022	$\begin{aligned} & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
$\mathrm{I}_{\text {sc }}$	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
$\mathrm{I}_{\text {sc }}$	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	39	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 21 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{s}	Supply Current	Both Amplifiers $V_{O}=1.5 \mathrm{~V}$	20	$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$
		Both Amplifiers $\mathrm{V}^{+}=15 \mathrm{~V}$	26	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		LMC6042AI	LMC6042I	Units (Limit)
				$\begin{gathered} \hline \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Limit (Note 6)	
SR	Slew Rate	(Note 8)	0.02	$\begin{aligned} & 0.015 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.007 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		100			kHz
ϕ_{m}	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	83			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} N \overline{\mathrm{~Hz}}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ	LMC6042AI	LMC6042I	Units (Limit)
			(Note 5)	Limit (Note 6)	Limit (Note 6)	
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC6044

CMOS Quad Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6044. Providing input currents of only 2 fA typical, the LMC6044 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6044 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6044 include bar code reader amplifiers, magnetic and electric field detectors, and hand-held electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6041 for a single, and the LMC6042 for a dual amplifier with these features.

Features

- Low supply current: $10 \mu \mathrm{~A} / \mathrm{Amp}$ (Typ)
- Operates from 4.5 V to 15.5 V single supply
- Ultra low input current: 2 fA (Typ)
- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

14-Pin DIP/SO

Instrumentation Amplifier

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
\pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
$\pm 5 \mathrm{~mA}$
$\pm 18 \mathrm{~mA}$
35 mA
(Note 3)

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 3)	$110^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	500 V
Voltage at $/ / O$ Pin $\left(\mathrm{V}^{+}\right)$	$+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

Operating Ratings

Temperature Range

LMC6044AI, LMC6044I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Power Dissipation	(Note 10)
Thermal Resistance $\left(\theta_{J A}\right)$, (Note 11)	
14-Pin DIP	$85^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SO	$115^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typical (Note 5)	LMC6044AI Limit (Note 6)	LMC6044I Limit (Note 6)	Units (Limit)
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift			1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.002	4	4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
I_{OS}	Input Offset Current			0.001	2	2	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10			Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		94	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMR	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
				$\mathrm{V}^{+}-1.9 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \mathrm{~V} \\ & \mathrm{~V}^{+}-2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \mathrm{~V} \\ & \mathbf{V}^{+}-2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV min
			Sinking	500	$\begin{aligned} & 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 200 \\ & 160 \end{aligned}$	$\begin{gathered} 100 \\ 80 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	250	$\begin{gathered} 100 \\ 60 \end{gathered}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	V / mV min

Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6044AI	LMC6044I	Units (Limit)
				$\begin{gathered} \text { Limit } \\ (\text { Note 6) } \end{gathered}$	Limit (Note 6)	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{aligned} & 4.970 \\ & 4.950 \end{aligned}$	$\begin{aligned} & 4.940 \\ & 4.910 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.004	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.980	$\begin{aligned} & 4.920 \\ & 4.870 \end{aligned}$	$\begin{aligned} & 4.870 \\ & 4.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.010	$\begin{aligned} & 0.080 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 0.180 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.970	$\begin{aligned} & 14.920 \\ & 14.880 \end{aligned}$	$\begin{aligned} & 14.880 \\ & 14.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.950	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.022	$\begin{aligned} & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$I_{\text {sc }}$	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ \quad 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			21	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$I_{\text {sc }}$	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	40	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			39	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 21 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	Four Amplifiers $V_{0}=1.5 \mathrm{~V}$	40	$\begin{aligned} & 65 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 82 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
		Four Amplifiers $\mathrm{V}^{+}=15 \mathrm{~V}$	52	$\begin{aligned} & 85 \\ & 94 \end{aligned}$	$\begin{gathered} 98 \\ 107 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6044AI	LMC6044I	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
SR	Slew Rate	(Note 8)	0.02	$\begin{aligned} & 0.015 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.007 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product		0.10			MHz
ϕ_{m}	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83	\cdots		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6044AI	LMC6044I Limit (Note 6)	Units (Note 6)
T.H.D.	Total Harmit)					
Distortion	$\mathrm{F}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-5$ $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}}$ $\pm 5 \mathrm{~V}$ Supply	0.01				

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified in the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{Pp}}$.
Note 10: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC poard.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC6061

Precision CMOS Single Micropower Operational Amplifier

General Description

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6061 ideally suited for battery powered applications.
Other applications using the LMC6061 include precision full-wave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6081 precision single operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMC6062 or LMC6064 respectively.

PATENT PENDING

■ Low offset voltage: $100 \mu \mathrm{~V}$
■ Ultra low supply current: $20 \mu \mathrm{~A}$

- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current: 10 fA
- Output swing within 10 mV of supply rail, 100k load
- Input common-mode range includes V^{-}
- High voltage gain: 140 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Features

(Typical Unless Otherwise Noted)

Connection Diagram

Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Absolute Maximum Ratings (Note 1$)$	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for avallability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	16 V
Output Short Circuit to V^{+}	$($Note 10$)$
Output Short Circuit to V^{-}	$($Note 2$)$
Lead Temperature	$260^{\circ} \mathrm{C}$
(Soldering, 10 sec.)	
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=O \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 9) } \end{gathered}$	LMC6061AM Limit (Note 6)	$\begin{aligned} & \hline \text { LMC6061AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6061I } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & 350 \\ & 900 \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mathrm{Max} \end{aligned}$
TCV ${ }_{\text {os }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
los	Input Offset Current			0.005	100	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1 \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$		100	$\begin{aligned} & 84 \\ & 70 \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } \\ & \text { for } \mathrm{CMRR} \geq 6 \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{v}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathbf{V}^{+}-2.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	4000	$\begin{aligned} & 400 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV Min
			Sinking	3000	$\begin{gathered} 180 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 180 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
		$R_{L}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	3000	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
			Sinking	2000	$\begin{gathered} 100 \\ 35 \end{gathered}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 9) } \end{gathered}$	LMC6061AM Limit (Note 6)	$\begin{gathered} \hline \text { LMC6061AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LMC6061I } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{aligned} & 4.990 \\ & 4.970 \end{aligned}$	$\begin{aligned} & 4.990 \\ & 4.980 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.925 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.005	$\begin{aligned} & 0.010 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{aligned} & 4.975 \\ & 4.955 \end{aligned}$	$\begin{aligned} & 4.975 \\ & 4.965 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.850 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.020 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{aligned} & 14.975 \\ & 14.955 \end{aligned}$	$\begin{aligned} & 14.975 \\ & 14.965 \end{aligned}$	$\begin{aligned} & 14.950 \\ & 14.925 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.025 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{aligned} & 14.900 \\ & 14.800 \end{aligned}$	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.025	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.200 \end{aligned}$	V Max
I_{0}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
to	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	35	$\begin{gathered} 24 \\ 7 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{S}	Supply Current	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	20	$\begin{aligned} & 24 \\ & 35 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{Max} \end{aligned}$
		$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	24	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$\begin{aligned} & 40 \\ & 48 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{gathered} \hline \text { LMC6061AM } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LMC6061AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LMC60611 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	V / ms Min
GBW	Gain-Bandwidth Product		100				kHz
$\theta_{\text {m }}$	Phase Margin	:	50				Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} N \overline{\mathrm{~Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \\ & \hline \end{aligned}$	0.01				\%

AC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: For guaranteed Military Temperature Range parameters see RETSMC6061X.

LMC6062

Precision CMOS Dual Micropower Operational Amplifier

General Description

The LMC6062 is a precision dual low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6062 ideally suited for battery powered applications.
Other applications using the LMC6062 include precision full-wave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6082 precision dual operational amplifier.
PATENT PENDING

Features

(Typical Unless Otherwise Noted)
■ Low offset voltage $100 \mu \mathrm{~V}$

- Ultra low supply current $16 \mu \mathrm{~A} /$ Amplifier
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current 10 fA
- Output swing within 10 mV of supply rail, 100 k load
- Input common-mode range includes V^{-}
- High voltage gain 140 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

Ordering Information

Package	Temperature Range		NSCDrawing	Transport Media
	Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
$\begin{array}{\|l\|} \hline 8 \text {-Pin } \\ \text { Molded DIP } \\ \hline \end{array}$	LMC6062AMN	LMC6062AIN LMC6062IN	N08E	Rail
8-Pin Small Outline		LMC6062AIM LMC6062IM	M08A	Rail Tape and Reel
8-Pin Ceramic DIP	LMC6062AMJ/883		J08A	Rail

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
```

Differential Input Voltage
Voltage at Input/Output Pin

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 sec .)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)
\pm Supply Voltage
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
(Note 11)
(Note 2)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typ (Note 5)	LMC6062AM Limit (Note 6)	$\begin{gathered} \hline \text { LMC6062AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	LMC6062\| Limit (Note 6)	Units
V_{OS}	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & \hline 350 \\ & 900 \\ & \hline \end{aligned}$	$\begin{gathered} 800 \\ 1300 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mathrm{Max} \end{aligned}$
$\mathrm{TCV}_{\mathrm{os}}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
I_{OS}	Input Offset Current			0.005	100	2	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
R_{IN}	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1 \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10$		100	$\begin{aligned} & 84 \\ & 70 \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 1 \\ & \text { for } \mathrm{CMRR} \geq 60 \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \hline \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathbf{V}^{+}-2.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	4000	$\begin{aligned} & 400 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV Min
			Sinking	3000	$\begin{aligned} & 180 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	3000	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ \hline \end{gathered}$	V / mV Min
			Sinking	2000	$\begin{gathered} 100 \\ 35 \end{gathered}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6062AM Limit (Note 6)	$\begin{array}{\|c\|} \hline \text { LMC6062AI } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$	LMC6062I Limit (Note 6)	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{aligned} & 4.990 \\ & 4.970 \end{aligned}$	$\begin{aligned} & 4.990 \\ & 4.980 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.925 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.005	$\begin{aligned} & 0.010 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{aligned} & 4.975 \\ & 4.955 \end{aligned}$	$\begin{aligned} & 4.975 \\ & 4.965 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.850 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.020 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{aligned} & 14.975 \\ & 14.955 \end{aligned}$	$\begin{aligned} & 14.975 \\ & 14.965 \end{aligned}$	$\begin{aligned} & 14.950 \\ & 14.925 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.025 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{aligned} & 14.900 \\ & 14.800 \end{aligned}$	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.025	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
Io	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	mA Min
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	35	$\begin{gathered} 24 \\ 7 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
$I_{\text {S }}$	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	32	$\begin{aligned} & 38 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 56 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max
		Both Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	40	$\begin{aligned} & 47 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 66 \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6062AM Limit (Note 6)	LMC6062AI Limit (Note 6)	LMC6062I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	V/ms Min
GBW	Gain-Bandwidth Product		100				kHz
θ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	155				dB
e_{n}	Input-Referred Voitage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \mathrm{VP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.
Note 13: For guaranteed Military Temperature Range parameters, see RETSMC6062X.

LMC6064

Precision CMOS Quad Micropower Operational Amplifier

General Description

The LMC6064 is a precision quad low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption make the LMC6064 ideally suited for battery powered applications.
Other applications using the LMC6064 include precision full-wave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6084 precision quad operational amplifier.
For single or dual operational amplifier with similar features, see the LMC6061 or LMC6062 respectively.
PATENT PENDING

Features

(Typical Unless Otherwise Noted)
■ Low offset voltage: $100 \mu \mathrm{~V}$

- Ultra low supply current: $16 \mu \mathrm{~A} /$ Amplifier
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current: 10 fA
- Output swing within 10 mV of supply rail, 100 k load
- Input common-mode range includes V^{-}
- High voltage gain: 140 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

Low-Leakage Sample and Hold

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\begin{aligned} & \left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V} \\ & \left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V} \end{aligned}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	16V
Output Short Circuit to V^{+}	(Note 11)
Output Short Circuit to V^{-}	(Note 2)
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 k

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6064AM Limit (Note 6)	$\begin{array}{\|c} \hline \text { LMC6064AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LMC6064I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
V_{os}	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & 350 \\ & 900 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 800 \\ 1300 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mathrm{Max} \end{gathered}$
$\mathrm{TCV}_{\mathrm{os}}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
los	Input Offset Current			0.005	100	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10$		100	$\begin{aligned} & 84 \\ & 70 \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 1 \\ & \text { for } \mathrm{CMRR} \geq 6 \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \hline V^{+}-2.3 \\ & V^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & (\text { Note } 7 \text {) } \end{aligned}$	Sourcing	4000	$\begin{aligned} & 400 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \\ \hline \end{gathered}$
			Sinking	3000	$\begin{aligned} & 180 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \\ & (\text { Note } 7 \text {) } \end{aligned}$	Sourcing	3000	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ \hline \end{gathered}$	V / mV Min
			Sinking	2000	$\begin{gathered} 100 \\ 35 \end{gathered}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LMC6064AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6064AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LMC6064I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{o}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{aligned} & 4.990 \\ & 4.970 \end{aligned}$	$\begin{aligned} & 4.990 \\ & 4.980 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.925 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.005	$\begin{aligned} & 0.010 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{aligned} & 4.975 \\ & 4.955 \end{aligned}$	$\begin{aligned} & 4.975 \\ & 4.965 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.850 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.020 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{aligned} & 14.975 \\ & 14.955 \end{aligned}$	$\begin{aligned} & 14.975 \\ & 14.965 \end{aligned}$	$\begin{aligned} & 14.950 \\ & 14.925 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.010	$\begin{aligned} & 0.025 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{Max} \end{aligned}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{aligned} & 14.900 \\ & 14.800 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & 14.800 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.025	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
I_{0}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	mA Min
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $V_{O}=13 \mathrm{~V}$ (Note 11)	35	$\begin{gathered} 24 \\ 7 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{s}	Supply Current	All Four Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	64	$\begin{gathered} \hline 76 \\ 120 \\ \hline \end{gathered}$	$\begin{aligned} & 76 \\ & 92 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 92 \\ 112 \\ \hline \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	80	$\begin{gathered} \hline 94 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} \hline 94 \\ 110 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 114 \\ & 132 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6064AM Limit (Note 6)	LMC6064AI Limit (Note 6)	$\begin{aligned} & \text { LMC6064I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ \mathbf{8} \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	V/ms Min
GBW	Gain-Bandwidth Product		100				kHz
θ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	155				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$\mathrm{nV} / \mathrm{W} \overline{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$F=1 \mathrm{kHz}$	0.0002				$\mathrm{pAN} \overline{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.
Note 13: For guaranteed Military Temperature Range parameters see RETSMC6064X.

LMC6081

Precision CMOS Single Operational Amplifier

General Description

The LMC6081 is a precision low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6081 ideally suited for precision circuit applications.
Other applications using the LMC6081 include precision full-wave rectifiers, integrators, references, and sample-and-hold circuits.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
For designs with more critical power demands, see the LMC6061 precision micropower operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMC6082 or LMC6084 respectively.

PATENT PENDING

Features

(Typical unless otherwise stated)

- Low offset voltage: $150 \mu \mathrm{~V}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current: 10 fA
- Output swing to within 20 mV of supply rail, 100k load
- Input common-mode range includes V^{-}
- High voltage gain: 130 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 Sec .)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)
\pm Supply Voltage
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$ 16 V
(Note 10)
(Note 2)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)

Temperature Range

LMC6081AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6081AI, LMC6081I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance $\left(\theta_{J A}\right)$, (Note 11)	
N Package, 8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	$193^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation (Note 9)	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6081AM Limit (Note 6)	$\begin{gathered} \hline \text { LMC6081AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LMC6081I } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.80 \\ & 4.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.80 \\ & 4.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.67 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.10	$\begin{aligned} & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.50 \\ & 4.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.50 \\ & 4.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.40 \\ & 4.21 \\ & \hline \end{aligned}$	$\begin{gathered} \hline V \\ M i n \end{gathered}$
			0.30	$\begin{aligned} & 0.40 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.63 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.30 \end{aligned}$	$\begin{aligned} & 14.50 \\ & 14.34 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{aligned} & 13.35 \\ & 12.80 \end{aligned}$	$\begin{aligned} & 13.35 \\ & 12.86 \end{aligned}$	$\begin{aligned} & 12.92 \\ & 12.44 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.79	$\begin{aligned} & 1.16 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.58 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
I_{0}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	34	$\begin{aligned} & 28 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
$I_{\text {S }}$	Supply Current	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	450	$\begin{aligned} & 750 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 750 \\ & 900 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max
		$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	550	$\begin{aligned} & 850 \\ & 950 \\ & \hline \end{aligned}$	$\begin{aligned} & 850 \\ & 950 \end{aligned}$	$\begin{aligned} & 850 \\ & 950 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ uniess otherwise specified.

Symbol	Parameter	Conditions		$\begin{aligned} & \text { LMC6081AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6081AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	LMC6081 Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.3				MHz
ϕ_{m}	Phase Margin		50				Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $-\mathrm{T}_{\mathrm{A}}$) $/ \theta_{\mathrm{JA}}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 11: All numbers apply for packages soldered directly into a PC board.

National Semiconductor

LMC6082

Precision CMOS Dual Operational Amplifier

General Description

The LMC6082 is a precision dual low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6082 ideally suited for precision circuit applications.
Other applications using the LMC6082 include precision full-wave rectifiers, integrators, references, and sample-and-hold circuits.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
For designs with more critical power demands, see the LMC6062 precision dual micropower operational amplifier.
PATENT PENDING

Features

(Typical unless otherwise stated)

- Low offset voltage: $150 \mu \mathrm{~V}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current: 10 fA
- Output swing to within 20 mV of supply rail, 100k load
- Input common-mode range includes V^{-}
- High voltage gain: 130 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

Input Bias Current vs Temperature

DS011297-18

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Officel Distributors for availability and specifications.

Differential Input Voltage
Voltage at Input/Output Pin

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 Sec .)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)
\pm Supply Voltage
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
16 V
(Note 11)
(Note 2)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$ 2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)

Temperature Range
LMC6082AM
LMC6082AI, LMC6082I

Supply Voltage
Thermal Resistance ($\theta_{\text {JA }}$) (Note 12)
8 -Pin Molded DIP
8-Pin SO

Power Dissipation

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C} \\
4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V} \\
\\
115^{\circ} \mathrm{C} / \mathrm{W} \\
193^{\circ} \mathrm{C} / \mathrm{W} \\
\text { (Note 10) }
\end{array}
$$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{j}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typ (Note 5)	$\begin{aligned} & \text { LMC6082AM } \\ & \text { LImit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC6082AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { LMC60821 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage			150	$\begin{gathered} 350 \\ 1000 \end{gathered}$	$\begin{aligned} & 350 \\ & 800 \\ & \hline \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mathrm{Max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
los	Input Offset Current			0.005	100	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
R_{IN}	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-$		94	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{Min} \end{aligned}$
$\overline{V_{C M}}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \text { and }$ for CMRR \geq		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{v}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
$\overline{A_{V}}$	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega$ (Note 7)	Sourcing	1400	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV Min
			Sinking	350	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ (Note 7)	Sourcing	1200	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{gathered} 200 \\ 80 \end{gathered}$	V / mV Min
			Sinking	150	$\begin{gathered} 100 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	: Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6082AM Limit (Note 6)	$\begin{gathered} \hline \text { LMC6082AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { LMC6082I } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	4.80 4.70	$\begin{aligned} & 4.80 \\ & 4.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.10	$\begin{aligned} & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.50 \\ & 4.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.50 \\ & 4.31 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 4.21 \end{aligned}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.30	$\begin{aligned} & 0.40 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.63 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.30 \end{aligned}$	$\begin{aligned} & 14.50 \\ & 14.34 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.25 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{aligned} & 13.35 \\ & 12.80 \end{aligned}$	$\begin{aligned} & 13.35 \\ & 12.86 \end{aligned}$	$\begin{aligned} & 12.92 \\ & 12.44 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.79	$\begin{aligned} & 1.16 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.58 \end{aligned}$	V Max
I_{0}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	16 8	$\begin{array}{r} 16 \\ 10 \\ \hline \end{array}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	16 11	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, ${ }^{\prime} V_{O}=13 \mathrm{~V}$ (Note 11)	34	$\begin{aligned} & 28 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{s}	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	0.9	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Max} \end{aligned}$
		Both Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	1.1	$\begin{aligned} & 1.7 \\ & 2 \end{aligned}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	mA Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6082AM Limit (Note 6)	$\begin{aligned} & \hline \text { LMC6082AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6082I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.3				MHz
ϕ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	140				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \mathrm{N} \overline{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} N \overline{\mathrm{~Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, A_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turm with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.

LMC6084

Precision CMOS Quad Operational Amplifier

General Description

The LMC6084 is a precision quad low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6084 ideally suited for precision circuit applications.
Other applications using the LMC6084 include precision full-wave rectifiers, integrators, references, and sample-and-hold circuits.

This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
For designs with more critical power demands, see the LMC6064 precision quad micropower operational amplifier.
For a single or dual operational amplifier with similar features, see the LMC6081 or LMC6082 respectively.
PATENT PENDING

Features

(Typical unless otherwise stated)

- Low offset voltage: $150 \mu \mathrm{~V}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current: 10 fA
- Output swing to within 20 mV of supply rail, 100k load
- Input common-mode range includes V^{-}
- High voltage gain: 130 dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

not Bias Current vs Temperature

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
\pm Supply Voltage
Voltage at Input/Output Pin

Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 Sec .)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6084AM Limit (Note 6)	$\begin{gathered} \hline \text { LMC6084AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	LMC6084I Limit (Note 6)	Units
V_{os}	Input Offset Voltage			150	$\begin{gathered} 350 \\ 1000 \end{gathered}$	$\begin{aligned} & 350 \\ & 800 \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mathrm{Max} \end{gathered}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
l OS	Input Offset Current			0.005	100	2	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{Max} \end{aligned}$
R_{IN}	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 66 \\ & 63 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & \text { dB } \\ & \text { Min } \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$		94	$\begin{aligned} & 84 \\ & 81 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \\ & \hline \end{aligned}$	dB Min
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for } \mathrm{CMRR} \geq 60 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.2 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Note 7)	Sourcing	1400	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & \mathbf{3 0 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
			Sinking	350	$\begin{gathered} 180 \\ 70 \end{gathered}$	$\begin{aligned} & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ (Note 7)	Sourcing	1200	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$
			Sinking	150	$\begin{gathered} 100 \\ 35 \end{gathered}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6084AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6084AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LMC6084I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 4.73 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{gathered} \hline V \\ M i n \end{gathered}$
			0.10	$\begin{aligned} & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.50 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 4.31 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 4.21 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.30	$\begin{aligned} & 0.40 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.63 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.30 \end{aligned}$	$\begin{aligned} & 14.50 \\ & 14.34 \end{aligned}$	$\begin{aligned} & \hline 14.37 \\ & 14.25 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{aligned} & 13.35 \\ & 12.80 \end{aligned}$	$\begin{aligned} & 13.35 \\ & 12.86 \end{aligned}$	$\begin{aligned} & 12.92 \\ & 12.44 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.79	$\begin{aligned} & 1.16 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.58 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
Io	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	34	$\begin{aligned} & 28 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	mA Min
$I_{\text {S }}$	Supply Current	All Four Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	1.8	$\begin{aligned} & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$	mA Max
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	2.2	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	mA Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ uniess otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6084AM Limit (Note 6)	LMC6084AI Limit (Note 6)	LMC6084I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ Min
GBW	Gain-Bandwidth Product		1.3				MHz
$\phi_{\text {m }}$	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	140				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{VP} \\ & \pm 5 \mathrm{~V} \text { Supply } \\ & \hline \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turm with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.

LMC6442

Dual Micropower Rail-to-Rail Output Single Supply Operational Amplifier

General Description

The LMC6442 is ideal for battery powered systems, where very low supply current (less than one microamp per amplifier) and Rail-to-Rail output swing is required. It is characterized for 2.2 V to 10 V operation, and at 2.2 V supply, the LMC6442 is ideal for single (Li-Ion) or two cell (NiCad or alkaline) battery systems.
The LMC6442 is designed for battery powered systems that require long service life through low supply current, such as smoke and gas detectors, and pager or personal communications systems.
Operation from single supply is enhanced by the wide common mode input voltage range which includes the ground (or negative supply) for ground sensing applications. Very low (5fA, typical) input bias current and near constant supply current over supply voltage enhance the LMC6442's performance near the end-of-life battery voltage.
Designed for closed loop gains of greater than plus two (or minus one), the amplifier has typically 9.5 KHz GBWP (Gain Bandwidth Product). Unity gain can be used with a simple compensation circuit, which also allows capacitive loads of up to 300 pF to be driven, as described in the Application Notes section.
For compact assembly the LMC6442 is available in the MSOP 8 pin package, about one half the size required by the SOIC 8 pin package. 8 pin DIP and 8 pin SOIC are also available.

Key Specifications

Features

(Typical, $\mathrm{V}_{\mathrm{S}}=2.2 \mathrm{~V}$)

- Output Swing to within 30 mV of supply rail
- High voltage gain 103 dB
- Gain Bandwidth Product 9.5 KHz
- Guaranteed for:
$2.2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$
■ Low Supply Current
$0.95 \mu \mathrm{~A} /$ Amplifier
- Input Voltage Range
-0.3 V to $\mathrm{V}^{+}-0.9 \mathrm{~V}$
- Power consumption
$2.1 \mu \mathrm{~W} /$ Amplifier
- Stable for $A_{V} \geq+2$ or $A_{V} \leq-1$

Applications

- Portable instruments
- Smoke/gas/CO/fire detectors
- Pagers/cell phones
- Instrumentation
- Thermostats
- Occupancy sensors
- Cameras
- Active badges

Connection Diagram

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	Operating Ratings (Note 1)	
	Supply Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 11 \mathrm{~V}$
ESD Tolerance (Note 2) 2 kV	Junction Temperature	$-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<+85^{\circ} \mathrm{C}$
Differential Input Voltage \pm Supply Voltages	Range: LMC6442AI, LMC6442I	
Voltage at Input/Output Pin $\quad\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$	Thermal Resistance (θ_{JA})	
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$): 16 V	M Package, 8-pin Surface	$193^{\circ} \mathrm{C} / \mathrm{W}$
Current at Input Pin (Note 10) $\pm 5 \mathrm{~mA}$	Mount	
Current at Output Pin(Notes 3, 7) $\pm 30 \mathrm{~mA}$	MSOP Package	$235^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temp. (soldering 10 sec) $260^{\circ} \mathrm{C}$	N Package, 8-pin Molded	$115^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temp. Range: $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DIP	
Junction Temp. (Note 4) $150^{\circ} \mathrm{C}$		

2.2V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}^{2}$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6442AI Limit (Note 6)	LMC6442I Limit (Note 6)	Units

DC Electrical Characteristics

$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-0.75	$\begin{aligned} & \pm 3 \\ & \pm 4 \end{aligned}$	$\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Temp. coefficient of input offset voltage		0.4			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 14)	0.005	4	4	pA \max
los	Input Offset Current	(Note 14)	0.0025	2	2	pA \max
CMRR	Common Mode Rejection Ratio	$-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0.5 \mathrm{~V}$	92	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	dB min
$\mathrm{C}_{\text {IN }}$	Common Mode Input Capacitance		4.7			pF
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10 V	95	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$	1.3	$\begin{aligned} & 1.05 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.95 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing (Note 11)	100			$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		Sinking(Note 11)	94			
		$\mathrm{V}_{\mathrm{O}}=0.22 \mathrm{~V}$ to 2 V	103	80	80	
V_{0}	Output Swing	$\mathrm{V}_{\text {ID }}=100 \mathrm{mV}$ (Note 13)	2.18	$\begin{aligned} & 2.15 \\ & 2.15 \end{aligned}$	$\begin{aligned} & 2.15 \\ & 2.15 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$ (Note 13)	22	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{ID}}=100 \mathrm{mV}$ (Notes 12, 13)	50	$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \min \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$ (Notes 12, 13)	50	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	
I_{s}	Supply Current (2 amplifiers)	$\mathrm{R}_{\mathrm{L}}=$ open	1.90	$\begin{aligned} & 2.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\underset{\max }{\mu \mathrm{A}}$
		$\mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ open	2.10			

AC Electrical Characteristics

SR	Slew Rate (Note 8)		2.2			$\mathrm{~V} / \mathrm{ms}$

2.2V Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}^{-}$to $\mathrm{V}^{+} / 2$. Boidface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \hline \text { LMC6442AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC64421 } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
AC Electrical Characteristics						
GBWP	Gain-Bandwidth Product		9.5			KHz
ϕ_{m}	Phase Margin	(Note 15)	63			Degree

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \hline \text { LMC6442AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6442I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
DC Electrical Characteristics						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-0.75	$\begin{aligned} & \pm 3 \\ & \pm 4 \end{aligned}$	$\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\overline{\mathrm{TCV}}$ os	Temp. coefficient of input offset voltage		0.4			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 14)	0.005	4	4	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
Ios	Input Offset Current	(Note 14)	0.0025	2	2	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
CMRR	Common Mode Rejection Ratio	$-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V}$	102	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	dB min
$\mathrm{C}_{\text {IN }}$	Common Mode Input Capacitance		4.1			pF
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10 V	95	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\overline{V_{C M}}$	Input Common-Mode Voltage Range	$C M R R \geq 50 \mathrm{~dB}$	4.1	$\begin{aligned} & 3.85 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 3.75 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-0.4	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing (Note 11)	100			$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		Sinking (Note 11)	94			
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 4.5 V	103	80	80	
V_{0}	Output Swing	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{ID}}=100 \mathrm{mV} \\ \text { (Note 13) } \\ \hline \end{array}$	4.99	$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
		$\begin{array}{\|l} \hline \mathrm{V}_{\text {ID }}=-100 \mathrm{mV} \\ \text { (Note 13) } \\ \hline \end{array}$	20	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{sc}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{ID}}=100 \mathrm{mV}$ (Notes 12, 13)	500	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \begin{array}{l} \text { Sinking, } \mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV} \\ (\text { Notes } 12,13) \end{array} \\ & \hline \end{aligned}$	350	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	
I_{s}	Supply Current (2 amplifiers)	$\mathrm{R}_{\mathrm{L}}=$ open	1.90	$\begin{aligned} & 2.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
AC Electrical Characteristics						
SR	Slew Rate (Note 8)		4.1	2.5	2.5	V / ms
GBWP	Gain-Bandwidth Product		10			KHz
ϕ_{m}	Phase Margin	(Note 15)	64			Degree
THD	Total Harmonic Distortion	$\begin{aligned} & A_{V}=+2, f=100 \mathrm{~Hz}, \\ & R_{L}=10 \mathrm{M} \Omega, V_{\text {OuT }}=1 \mathrm{Vpp} \end{aligned}$	0.08		-	\%

10V Electrical Characteristics

Unless otherwise specified，all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ ，and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}^{2}$ to $\mathrm{V}^{+} / 2$ ． Boldface limits apply at the temperature extremes．

Symbol	Parameter	Conditions	Typ （Note 5）	LMC6442AI Limit （Note 6）	LMC6442I Limit （Note 6）	Units

DC Electrical Characteristics

$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	，	－1．5	$\begin{aligned} & \pm 3 \\ & \pm 4 \end{aligned}$	$\begin{aligned} & \pm 7 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Temp．coefficient of input offset voltage		0.4			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	（Note 14）	0.005	4	4	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
los	Input Offset Current	（Note 14）	0.0025	2	2	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
CMRR	Common Mode Rejection Ratio	$-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 8.5 \mathrm{~V}$	105	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	dB min
$\mathrm{C}_{\text {IN }}$	Common Mode Input Capacitance		3.5			pF
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10 V	95	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\overline{V_{C M}}$	Input Common－Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$	9.1	$\begin{aligned} & 8.85 \\ & 8.75 \end{aligned}$	$\begin{aligned} & 8.85 \\ & 8.75 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			－0．4	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing（Note 11）	120			$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		Sinking（Note 11）	100			
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 9.5 V	104	80	80	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=100 \mathrm{mV} \\ & \text { (Note 13) } \end{aligned}$	9.99	$\begin{aligned} & 9.97 \\ & 9.97 \end{aligned}$	$\begin{aligned} & 9.97 \\ & 9.97 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$（Note 13）	22	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	Sourcing， $\mathrm{V}_{\text {ID }}=100 \mathrm{mV}$ （Notes 12，13）	2100	$\begin{aligned} & 1200 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 1000 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ min
		Sinking， $\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$ （Notes 12，13）	900	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	
I_{s}	Supply Current（2 amplifiers）	$\mathrm{R}_{\mathrm{L}}=$ open	1.90	$\begin{aligned} & 2.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{max} \end{gathered}$

AC Electrical Characteristics

SR	Slew Rate（Note 8）		4.1	2.5	2.5	$\mathrm{~V} / \mathrm{ms}$
GBWP	Gain－Bandwidth Product		10.5			KHz
ϕ_{m}	Phase Margin	（Note 15）	68			Degree
e_{n}	Input－Referred Voltage Noise	$R_{\mathrm{L}}=$ open $\mathrm{f}=10 \mathrm{~Hz}$	170		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
i_{n}	Input－Referred Current Noise	$\mathrm{R}_{\mathrm{L}}=\mathrm{open}$ $\mathrm{f}=10 \mathrm{~Hz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
	Crosstalk Rejection	（Note 9）	85		dB	

Electrical Characteristics (continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J}\right.$. $\left.(\max)-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis unless otherwise specified.
Note 7: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 8: Slew rate is the slower of the rising and falling slew rates.
Note 9: Input referred, $\mathrm{V}^{+}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega$ connected to 5 V . Each amp excited in turn with 1 KHz to produce about 10 Vpp output.
Note 10: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voitage ratings.
Note 11: R_{L} connected to $\mathrm{V}^{+} / 2$. For Sourcing Test, $\mathrm{V}_{\mathrm{O}}>\mathrm{V}^{+} / 2$. For Sinking tests, $\mathrm{V}_{\mathrm{O}}<\mathrm{V}^{+} / 2$.
Note 12: Output shorted to ground for sourcing, and shorted to $\mathrm{V}+$ for sinking short circult current test.
Note 13: $V_{I D}$ is differential input voltage referenced to inverting input.
Note 14: Limits guaranteed by design.
Note 15: See the Typical Performance Characteristics and Application Notes sections for more details.

LMC6462 Dual/LMC6464 Quad
 Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier

General Description

The LMC6462/4 is a micropower version of the popular LMC6482/4, combining Rail-to-Rail Input and Output Range with very low power consumption.
The LMC6462/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, guaranteed for loads down to $25 \mathrm{k} \Omega$, assures maximum dynamic sigal range. This rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6462/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.
The LMC6462/4, with guaranteed specifications at 3 V and 5 V , is especially well-suited for low voltage applications. A quiescent power consumption of $60 \mu \mathrm{~W}$ per amplifier (at V_{S} $=3 \mathrm{~V}$) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mV , and 85 dB CMRR maintain accuracy in battery-powered systems.

Features

(Typical unless otherwise noted)

- Ultra Low Supply Current: $20 \mu \mathrm{~A} /$ Amplifier
- Guaranteed Characteristics at 3 V and 5 V
- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Swing
(within 10 mV of rail, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$)
- Low Input Current: 150 fA
- Low Input Offset Voltage: 0.25 mV

Applications

- Battery Operated Circuits
- Transducer Interface Circuits
- Portable Communication Devices
- Medical Applications
- Battery Monitoring

Connection Diagrams

$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales Officel } \\ \text { Distributors for availability and specifications. } \\ \text { ESD Tolerance (Note 2) } & 2.0 \mathrm{kV} \\ \text { Differential Input Voltage } & \pm \text { Supply Voltage } \\ \text { Voltage at Input/Output Pin } & \left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V} \\ \text { Supply Voltage }\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) & 16 \mathrm{~V} \\ \text { Current at Input Pin (Note 12) } & \pm 5 \mathrm{~mA} \\ \text { Current at Output Pin } & \\ \text { (Notes 3, 8) } & \pm 30 \mathrm{~mA} \\ \text { Current at Power Supply Pin } & 40 \mathrm{~mA} \\ \text { Lead Temp. (Soldering, 10 sec.) } & 260^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Junction Temperature (Note 4) } & 150^{\circ} \mathrm{C}\end{array}$

Operating Ratings (Note 1)

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
$\overline{\mathrm{V}}$ OS	Input Offset Voltage		0.25	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		1.5	-			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)	0.15	10	10	200	pA max
I_{OS}	Input Offset Current	(Note 13)	0.075	5	5	100	pA max
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3				pF
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15.0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-15 \mathrm{~V} \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.2	$\begin{gathered} -0.10 \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} -0.10 \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} -0.10 \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			5.30	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.2	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			15.30	$\begin{aligned} & 15.25 \\ & 15.00 \end{aligned}$	$\begin{aligned} & 15.25 \\ & 15.00 \end{aligned}$	$\begin{aligned} & 15.25 \\ & 15.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6462AI } \\ & \text { LMC6464AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & (\text { Note 7) } \end{aligned}$	Sourcing	3000				$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	400				$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \\ & (\text { Note } 7) \end{aligned}$	Sourcing	2500				$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	200				$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{\circ}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		4.995	$\begin{aligned} & 4.990 \\ & 4.980 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.925 \end{aligned}$	$\begin{aligned} & 4.990 \\ & 4.970 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
				0.005	$\begin{aligned} & 0.010 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.030 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		4.990	$\begin{aligned} & 4.975 \\ & 4.965 \end{aligned}$	$\begin{aligned} & 4.950 \\ & 4.850 \end{aligned}$	$\begin{aligned} & 4.975 \\ & 4.955 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
				0.010	$\begin{aligned} & 0.020 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & \mathbf{0 . 1 5 0} \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.045 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		14.990	$\begin{aligned} & 14.975 \\ & 14.965 \end{aligned}$	$\begin{aligned} & 14.950 \\ & 14.925 \end{aligned}$	$\begin{aligned} & 14.975 \\ & 14.955 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
				0.010	$\begin{aligned} & 0.025 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.050 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		14.965	$\begin{aligned} & 14.900 \\ & 14.850 \end{aligned}$	$\begin{aligned} & 14.850 \\ & \mathbf{1 4 . 8 0 0} \end{aligned}$	$\begin{aligned} & 14.900 \\ & 14.800 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
				0.025	$\begin{aligned} & 0.050 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.200 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current$V_{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		27	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		27	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$I_{\text {sc }}$	Output Short Circuit Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		38	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 8)		75	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	Dual, LMC6462$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$		40	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 75 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		Quad, LMC6464$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$		80	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		Dual, LMC6462$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$		50	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		Quad, LMC6464$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$		90	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units

3V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)	0.15	10	10	200	pA
los	Input Offset Current	(Note 13)	0.075	5	5	100	pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	60	60	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	60	60	60	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.10	0.0	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
			3.0	3.0	3.0	3.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	2.95	2.9	2.9	2.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.15	0.1	0.1	0.1	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	Dual, LMC6462 $V_{0}=V^{+} / 2$	40	$\begin{aligned} & 55 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$
		Quad, LMC6464 $\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	80	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

3V AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}\right.$ - T_{A})/ $\theta_{\text {JA }}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6462/4X.

LMC6482

CMOS Dual Rail-To-Rail Input and Output Operational Amplifier

General Description

The LMC6482 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6482 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC272 and TLC277.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6482's rail-to-rail output swing. The LMC6482's rail-to-rail output swing is guaranteed for loads down to 600Ω.
Guaranteed low voltage characteristics and low power dissipation make the LMC6482 especially well-suited for battery-operated systems.
LMC6482 is also available in MSOP package which is almost half the size of a SO-8 device.
See the LMC6484 data sheet for a Quad CMOS operational amplifier with these same features.

Features

(Typical unless otherwise noted)
■ Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)

- Rail-to-Rail Output Swing (within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load)
- Guaranteed $3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V Performance
- Excellent CMRR and PSRR: 82 dB
- Ultra Low Input Current: 20 fA
- High Voltage Gain ($\mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$): 130 dB
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- Available in MSOP Package

Applications

- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC272, TLC277

3V Single Supply Buffer Circuit

DS011713-2
Rail-To-Rail Output

DS011713-3

Connection Diagram


```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
```

ESD Tolerance (Note 2)
Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Current at Input Pin (Note 12)
Current at Output Pin
(Notes 3, 8)
Current at Power Supply Pin
Lead Temperature
(Soldering, 10 sec .) $260^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)
Supply Voltage
$3.0 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Junction Temperature Range

LMC6482AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6482AI, LMC6482	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$

Thermal Resistance $\left(\theta_{J A}\right)$
N Package, 8-Pin Molded DIP $90^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8 -Pin Surface Mount $155^{\circ} \mathrm{C} / \mathrm{W}$
MSOP package, 8-Pin Mini SO
$194^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{array}{\|c} \hline \text { LMC6482AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC6482M Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			0.11	$\begin{gathered} 0.750 \\ 1.35 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)		0.02	4.0	4.0	10.0	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
los	Input Offset Current	(Note 13)		0.01	2.0	2.0	5.0	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
C_{IN}	Common-Mode Input Capacitance			3				pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & \hline 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-15 \mathrm{~V}, \mathrm{~V}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		$\mathrm{V}^{-}-0.3$	$\begin{gathered} -0.25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
				$\mathrm{V}^{+}+0.3 \mathrm{~V}$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{V}^{+} \end{gathered}$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{v}^{+} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{V}^{+} \end{gathered}$	$\begin{gathered} \hline \mathrm{V} \\ \min \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega$ (Notes 7, 13)	Sourcing	666	$\begin{aligned} & 140 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 72 \end{aligned}$	$\begin{gathered} 120 \\ 60 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	75	$\begin{aligned} & 35 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 18 \\ & \hline \end{aligned}$	V / mV min
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ (Notes 7, 13)	Sourcing	300	$\begin{aligned} & 80 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	V / mV min
			Sinking	35	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	V / mV min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LMC6482AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC64821 Limit (Note 6)	LMC6482M Limit (Note 6)	Units
V_{o}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.9	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.7	$\begin{gathered} \hline 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.1	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{sc}	Output Short Circuit Current $\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	20	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	15	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\overline{I_{s c}}$	Output Short Circuit Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 8)	30	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\overline{I_{s}}$	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	1.0	$\begin{aligned} & 1.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		Both Amplifiers $\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \\ & =\mathrm{V}^{+} / 2 \end{aligned}$	1.3	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \hline 1.6 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{array}{\|c} \hline \text { LMC6482AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{gathered} \text { LMC6482M } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 1.0 \\ & 0.7 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 0.63 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.54 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.5				MHz
ϕ_{m}	Phase Margin		50				Deg
G_{m}	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	150				dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{cm}}=1 \mathrm{~V} \end{aligned}$	37				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.03				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6482AI Limit (Note 6)	LMC6482I Limit (Note 6)	LMC6482M Limit (Note 6)	Units
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.1 \mathrm{~V}_{\mathrm{PP}}$	0.01				$\%$
		$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=8.5 \mathrm{~V}_{\mathrm{PP}}$ $\mathrm{V}=10 \mathrm{~V}$	0.01				$\%$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { LMC6482AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \hline \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	LMC6482M Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.02				pA
$\mathrm{I}_{\text {OS }}$	Input Offset Current		0.01				pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	64	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	68	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	$\mathrm{V}^{-}-0.25$	0	0	0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}+0.25$	V^{+}	V^{+}	V^{+}	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	2.8				V
			0.2				V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}^{+} / 2$	2.7	2.5	2.5	2.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.37	0.6	0.6	0.6	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	Both Amplifiers	0.825	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6482AI Limit (Note 6)	LMC6482I Limit (Note 6)	LMC6482M Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	0.9				$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		1.0				MHz
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}$	0.01			$\%$	

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a Class 1 device rating.

AC Electrical Characteristics (Continued)

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over iong term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{\text {JA }}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Connected as voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature parameters see RETS6482X.

National Semiconductor

LMC6484

CMOS Quad Rail-to-Rail Input and Output Operational Amplifier

General Description

The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC274 and TLC279.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to 600Ω.

Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for battery-operated systems.
See the LMC6482 data sheet for a Dual CMOS operational amplifier with these same features.

Features

(Typical unless otherwise noted)

- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
- Rail-to-Rail Output Swing (within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load)
- Guaranteed 3V, 5V and 15V Performance
- Excellent CMRR and PSRR: 82 dB
- Ultra Low Input Current: 20 fA
- High Voltage Gain ($\mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$): 130 dB
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads

Applications

- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC274, TLC279

3V Single Supply Buffer Circuit

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2.0 kV
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	16 V
Current at Input Pin (Note 12)	$\pm 5 \mathrm{~mA}$
Current at Output Pin	
\quad(Notes 3, 8)	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Lead Temp. (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$

$\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Junction Temperature (Note 4) } & 150^{\circ} \mathrm{C}\end{array}$

Operating Ratings (Note 1)

Supply Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Junction Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6484AM	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LMC6484AI, LMC6484I	
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$70^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP	
M Package, 14-Pin	
Surface Mount	$110^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions			LMC6484AI Limit (Note 6)	LMC6484I Limit (Note 6)	$\begin{gathered} \hline \text { LMC6484M } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			0.110	$\begin{gathered} 0.750 \\ 1.35 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)		0.02	4.0	4.0	100	pA max
l_{OS}	Input Offset Current	(Note 13)		0.01	2.0	2.0	50	PA max
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3				pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15.0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-15 \mathrm{~V}, \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & \hline 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		$\mathrm{V}^{-}-0.3$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
				$\mathrm{V}^{+}+0.3$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{v}^{+} \end{gathered}$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{v}^{+} \end{gathered}$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{v}^{+} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Notes 7, 13)	Sourcing	666	$\begin{gathered} 140 \\ 84 \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	75	$\begin{aligned} & 35 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ (Notes 7, 13)	Sourcing	300	$\begin{aligned} & 80 \\ & 48 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	35	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6484AI Limit (Note 6)	$\begin{gathered} \hline \text { LMC6484I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \text { LMC6484M } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{O}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.9	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.7	$\begin{gathered} \hline 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14.4 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.1	$\begin{aligned} & \hline 13.4 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.4 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.4 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	V \max
I_{sc}	Output Short Circuit Current$\mathrm{V}+=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	20	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	15	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{sc}	Output Short Circuit Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 8)	30	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			30	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{array}{r} 30 \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
I_{s}	Supply Current	All Four Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	2.0	$\begin{aligned} & 2.8 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.8 \\ & \hline \end{aligned}$	mA max
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	2.6	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	mA \max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6484A Limit (Note 6)	$\begin{aligned} & \hline \text { LMC6484I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \hline \text { LMC6484M } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 1.0 \\ & 0.7 \end{aligned}$	$\begin{gathered} 0.9 \\ 0.63 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.54 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.5				MHz
ϕ_{m}	Phase Margin		50				Deg
G_{m}	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	150				dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	37				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.03				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes
$\left.\begin{array}{l|c|c|c|c|c|c|c}\hline \text { Symbol } & \text { Parameter } & \text { Conditions } & \begin{array}{c}\text { Typ } \\ \text { (Note 5) }\end{array} & \begin{array}{c}\text { LMC6484A } \\ \text { Limit } \\ \text { (Note 6) }\end{array} & \begin{array}{c}\text { LMC6484I } \\ \text { Limit } \\ \text { (Note 6) }\end{array} & \begin{array}{c}\text { LMC6484M } \\ \text { Limit } \\ \text { (Note 6) }\end{array} & \text { Units }\end{array}\right\}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6484AI Limit (Note 6)	LMC6484I Limit (Note 6)	$\begin{aligned} & \hline \text { LMC6484M } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.02				pA
$\mathrm{I}_{\text {os }}$	Input Offset Current		0.01				pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	64	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	68	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	$\mathrm{V}^{-}-0.25$	0	0	0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}+0.25$	V^{+}	V^{+}	V^{+}	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	2.8				V
			0.2				V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}^{+} / 2$	2.7	2.5	2.5	2.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.37	0.6	0.6	0.6	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	All Four Amplifiers	1.65	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6484AI Limit (Note 6)	LMC6484I Limit (Note 6)	LMC6484M Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	0.9				$\mathrm{~V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product		1.0				MHz
T.H.D.	Total Harmonic Distortion	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}$	0.01			$\%$	

[^1]
AC Electrical Characteristics (Continued)

Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6484X.

LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier

General Description

The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 common-mode voltage range to accommodate input signals beyond the rails. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode voltage range. The LMC6492/LMC6494 signal range has a high CMRR of 82 dB for excellent accuracy in non-inverting circuit configurations.
The LMC6492/LMC6494 rail-to-rail input is complemented by rail-to-rail output swing. This assures maximum dynamic signal range which is particularly important in 5 V systems.
Ultra-low input current of 150 fA and 120 dB open loop gain provide high accuracy and direct interfacing with high impedance sources.

Features

(Typical unless otherwise noted)

- Rail-to-Rail input common-mode voltage range, guaranteed over temperature
- Rail-to-Rail output swing within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load
- Operates from 5 V to 15 V supply
- Excellent CMRR and PSRR 82 dB
- Ultra low input current 150 fA
- High voltage gain ($\left.R_{L}=100 \mathrm{k} \Omega\right) \quad 120 \mathrm{~dB}$

■ Low supply current ($@ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$) $500 \mu \mathrm{~A} /$ Amplifier

- Low offset voltage drift $1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Applications

- Automotive transducer amplifier
- Pressure sensor
- Oxygen sensor
- Temperature sensor
- Speed sensor

Connection Diagrams

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
ESD Tolerance (Note 2)	2000 V
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	16 V
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Lead Temp. (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature (Note 4)
$150^{\circ} \mathrm{C}$

Operating Conditions (Note 1)

Supply Voltage	$2.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6492AE, LMC6492BE	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6494AE, LMC6494BE	
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$108^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 8-Pin Molded DIP	$171^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	$78^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP	$118^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6492AE LMC6494AE Limit (Note 6)	LMC6492BE LMC6494BE Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.11	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 11)	0.15	200	200	pA max
I_{OS}	Input Offset Current	(Note 11)	0.075	100	100	pA max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10			Tera Ω
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 63 \\ & 58 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	82	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 63 \\ & 58 \end{aligned}$	
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 58 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 63 \\ 58 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$	$\mathrm{V}^{-}-0.3$	$\begin{gathered} -0.25 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}+0.3$	$\begin{gathered} \mathrm{V}^{+}+0.25 \\ \mathbf{V}^{+} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}^{+}+0.25 \\ \mathbf{V}^{+} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega:$ Sourcing (Note 7) Sinking	300 40			$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6492AE LMC6494AE Limit (Note 6)	LMC6492BE LMC6494BE Limit (Note 6)	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.9	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.7	$\begin{gathered} 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.16	$\begin{gathered} 0.35 \\ 0.5 \end{gathered}$	$\begin{gathered} 0.35 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.1	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{gathered} 11 \\ 8 \end{gathered}$	$\begin{gathered} 11 \\ 8 \end{gathered}$	mA
I_{sc}	Output Short Circuit Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 8)	30	$\begin{aligned} & 28 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 20 \\ & \hline \end{aligned}$	min
			30	$\begin{aligned} & 30 \\ & 22 \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \end{aligned}$	
$\mathrm{I}_{\text {s }}$	Supply Current	LMC6492 $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	1.0	$\begin{gathered} 1.75 \\ 2.1 \end{gathered}$	$\begin{gathered} 1.75 \\ 2.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		LMC6492 $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	1.3	$\begin{gathered} 1.95 \\ 2.3 \end{gathered}$	$\begin{gathered} 1.95 \\ 2.3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$
		LMC6494 $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	2.0	$\begin{aligned} & 3.5 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$
		LMC6494 $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	2.6	$\begin{aligned} & 3.9 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.6 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \max \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6492AE LMC6494AE Limit (Note 6)	LMC6492BE LMC6494BE Limit (Note 6)	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	$\mathrm{V} \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.5			MHz
ϕ_{m}	Phase Margin		50			Deg
G_{m}	Gain Margin		15			dB
	Amp-to-Amp Isolation	(Note 10)	150			dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	37			$\frac{n V}{\sqrt{H Z}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.06			$\frac{p A}{\sqrt{H Z}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=-4.1 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V} \mathrm{VP} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	0.01 0.01			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as voltage follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{Pp}}$.
Note 11: Guaranteed limits are dictated by tester limits and not device performance. Actual performance is reflected in the typical value.

LMC6572/LMC6574 Dual and Quad

Low Voltage (2.7V and 3V) Operational Amplifier

General Description

Low voltage operation and low power dissipation make the LMC6574/2 ideal for battery-powered systems.
3 V amplifier performance is backed by 2.7 V guarantees to ensure operation throughout battery lifetime. These guarantees also enable analog circuits to operate from the same 3.3V supply used for digital logic.

Battery life is maximized because each amplifier dissipates only micro-watts of power.
The LMC6574/2 does not sacrifice functionality for low voltage operation. The LMC6574/2 generates 120 dB of open-loop gain just like a conventional amplifier, but the LMC6574/2 can do this from a 2.7 V supply.
These amplifiers are designed with features that optimize low voltage operation. The output voltage swings rail-to-rail to maximize signal-to-noise ratio and dynamic signal range. The common-mode input voltage range extends from 800 mV below the positive supply to 100 mV below ground.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
LMC6572 is also available in MSOP package which is almost half the size of a SO-8 device.

Features

(Typical unless otherwise noted)

- Guaranteed 2.7 V and 3 V Performance
- Rail-to-Rail Output Swing (within 5 mV of supply rail, $100 \mathrm{k} \Omega$ load)
- Ultra-Low Supply Current: $40 \mu \mathrm{~A} /$ Amplifier
- Low Cost
- Ultra-Low Input Current: 20 fA
- High Voltage Gain @ $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega: 120 \mathrm{~dB}$
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- Available in MSOP Package

Applications

- Transducer Amplifier
- Portable or Remote Equipment
- Battery-Operated Instruments
- Data Acquisition Systems
- Medical Instrumentation
- Improved Replacement for TLV2322 and TLV2324

Connection Diagrams

Order Number LMC6572AIN, LMC6572BIN,
LMC6572AIM, LMC6572AIMX, LMC6572BIM, LMC6572BIMX, LMC6572BIMM or LMC6572BIMMX See NS Package Number N08E, M08A or MUA08A

14-Pin DIP/SO
input $4^{-} \quad \mathrm{V}^{-} \quad$ input 3^{-}

Order Number LMC6574AIN, LMC6574BIN, LMC6574AIM, LMC6574AIMX, LMC6574BIM or LMC6574BIMX
See NS Package Number N14A or M14A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2000 V Differential Input Voltage Voltage at Input/Output Pin
\pm Supply Voltage $\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$, Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$ $\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$	
Current at Input Pin	12 V
Current at Output Pin (Note 3)	$\pm 5 \mathrm{~mA}$
Current at Power Supply Pin	$\pm 10 \mathrm{~mA}$
Lead Temperature	35 mA
\quad (Soldering, 10 Seconds)	
Storage Temperature Range	$260^{\circ} \mathrm{C}$
So	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage
$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 11 \mathrm{~V}$
Junction Temperature Range
LMC6572AI, LMC6572BI
LMC6574AI, LMC6574BI
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
N Package, 8-Pin Molded DIP
M Package, 8-Pin Surface Mount $193^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Package, 8-Pin Mini SO $217^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP
M Package, 14-Pin Surface Mount
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LMC6574AI LMC6572AI Limit (Note 6)	LMC6574BI LMC6572BI Limit (Note 6)	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	2.695	$\begin{aligned} & 2.68 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 2.65 \\ & 2.62 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.005	$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	2.66	$\begin{aligned} & 2.55 \\ & 2.45 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.35 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.04	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	2.995	$\begin{aligned} & 2.98 \\ & 2.96 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 2.93 \end{aligned}$	$\begin{gathered} \hline V \\ M i n \end{gathered}$
			0.005	$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	2.96	$\begin{aligned} & 2.85 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 2.65 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{Min} \end{gathered}$
			0.04	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V Max
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	6.0	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	4.0	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
I_{s}	Supply Current	Quad Package $\mathrm{V}^{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	160	$\begin{aligned} & 240 \\ & 280 \\ & \hline \end{aligned}$	$\begin{aligned} & 240 \\ & 280 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max
		Quad Package $\mathrm{V}^{+}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	160	$\begin{aligned} & 240 \\ & 280 \\ & \hline \end{aligned}$	$\begin{aligned} & 240 \\ & 280 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max
		Dual Package $\mathrm{V}^{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	80	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$
		Dual Package $\mathrm{V}^{+}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$	80	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6574AI LMC6572AI Limit (Note 6)	LMC6574BI LMC6572BI Limit (Note 6)	Units
SR	Slew Rate	$\mathrm{V}^{+}=2.7 \mathrm{~V} \text { and } 3 \mathrm{~V}$ (Note 8)	90	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	V / ms Min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=3 \mathrm{~V}$	0.22			MHz
ϕ_{m}	Phase Margin		60			Deg
G_{m}	Gain Margin		12			dB
	Amp-to-Amp Isolation	(Note 9)	120			dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & V_{C M}=1 \mathrm{~V} \end{aligned}$	45			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred	$\mathrm{F}=1 \mathrm{kHz}$	0.002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6574AI LMC6572AI Limit (Note 6)	LMC6574BI LMC6572BI Limit (Note 6)	Units
	Current Noise					$\%$
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{PP}}$	0.05			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and R_{L} connected to 1.5 V . For Sourcing tests, $1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$. For Sinking tests, $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$.
Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred, $\mathrm{V}^{+}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 1.5 V . Each amp excited in turn with 1 KHz to produce $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{Pp}}$.

LMC660

CMOS Quad Operational Amplifier

General Description

The LMC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It operates from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain into realistic loads ($2 \mathrm{k} \Omega$ and 600Ω) are all equal to or better than widely accepted bipolar equivalents.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC662 datasheet for a dual CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain: 126 dB
- Low input offset voltage: 3 mV
- Low offset voltage drift: $\quad 1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current: 2 fA
- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- $\mathrm{I}_{\mathrm{ss}}=375 \mu \mathrm{~A}$ /amplifier; independent of V^{+}
- Low distortion: 0.01% at 10 kHz
- Slew rate: $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Available in extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$); ideal for automotive applications
- Available to Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-Hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Connection Diagram

14-Pin DIP/SO

LMC660 Circuit Topology (Each Amplifier)

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
Supply Voltage
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 sec .)
Storage Temp. Range
Voltage at Input/Output Pins
Current at Output Pin
Current at Input Pin
Current at Power Supply Pin
\pm Supply Voltage
16 V
(Note 12)
(Note 1)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

$$
\pm 18 \mathrm{~mA}
$$

$$
\pm 5 \mathrm{~mA}
$$

35 mA

Power Dissipation
Junction Temperature
(Note 2)

ESD tolerance (Note 8)
$150^{\circ} \mathrm{C}$

Operating Ratings

Temperature Range

LMC660AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LMC660C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 15.5 V

Supply Voltage Range
4.75 V to 15.5 V
(Note 10)
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 11)
14-Pin Molded DIP
$85^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ(Note 4)	LMC660AI	LMC660C	Units
			$\begin{aligned} & \hline \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	
Input Offset Voltage		1	$\begin{gathered} \hline 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
Input Offset Voltage Average Drift		1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	4	2	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
Input Offset Current	-	0.001	2	1	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
Input Resistance		>1			Teras
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.2 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing	2000	$\begin{aligned} & \hline 440 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
	Sinking	500	$\begin{aligned} & \hline 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
	$\mathrm{R}_{\mathrm{L}}=600 \Omega \text { (Note 5) }$ Sourcing	1000	$\begin{aligned} & \hline 220 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$
		250	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 4) } \end{aligned}$	LMC660AI	LMC660C	Units
			Limit (Note 4)	Limit (Note 4)	
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.87	$\begin{aligned} & 4.82 \\ & 4.79 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.76 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.10	$\begin{aligned} & 0.15 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.21 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.61	$\begin{aligned} & 4.41 \\ & 4.31 \end{aligned}$	$\begin{aligned} & 4.27 \\ & 4.21 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.30	$\begin{aligned} & 0.50 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.69 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.44 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.32 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
		0.26	$\begin{aligned} & 0.35 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.48 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	13.90	$\begin{aligned} & 13.35 \\ & 13.15 \end{aligned}$	$\begin{aligned} & 12.92 \\ & 12.76 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.79	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.58 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		21	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 12)	40	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		39	$\begin{aligned} & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	1.5	$\begin{aligned} & 2.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.9 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC660AI	LMC660C	Units
			Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	1.1	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
Gain-Bandwidth Product		1.4			MHz
Phase Margin		50			Deg
Gain Margin		17			dB
Amp-to-Amp Isolation	(Note 7)	130			dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

AC Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC660AI	LMC660C	Units
			Limit (Note 4)	Limit (Note 4)	
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \\ & \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	0.01			\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 9: A military RETS electrical test specification is available on request. At the time of printing, the LMC660AMJ/883 RETS spec complied fully with the boidface limits in this column. The LMC660AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC662

CMOS Dual Operational Amplifier

General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain into realistic loads ($2 \mathrm{k} \Omega$ and 600Ω) are all equal to or better than widely accepted bipolar equivalents.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain: 126 dB
- Low input offset voltage: 3 mV
- Low offset voltage drift: $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Connection Diagram

- Ultra low input bias current: 2 fA
- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- $I_{\text {ss }}=400 \mu \mathrm{~A}$ /amplifier; independent of V_{+}
- Low distortion: 0.01% at 10 kHz
- Slew rate: $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Available in extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$); ideal for automotive applications
- Available to a Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Typical Application

Low-Leakage Sample-and-Hold

Absolute Maximum Ratings (Note 3)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	16 V
Output Short Circuit to V^{+}	(Note 12)
Output Short Circuit to V^{-}	(Note 1)
Lead Temperature	$260^{\circ} \mathrm{C}$
(Soldering, 10 sec.)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temp. Range	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Voltage at Input/Output Pins	$\pm 18 \mathrm{~mA}$
Current at Output Pin	$\pm 5 \mathrm{~mA}$
Current at Input Pin	35 mA
Current at Power Supply Pin	$($ Note 2$)$

Junction Temperature
$150^{\circ} \mathrm{C}$
1000V
Operating Ratings(Note 3)
Temperature Range

LMC662AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LMC662C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 15.5 V
Power Dissipation	(Note 10)
Thermal Resistance $\left(\theta_{J A}\right)$ (Note 11)	
8-Pin Ceramic DIP	$100^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin Molded DIP	$101^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO	$165^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin Side Brazed Ceramic DIP	$100^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 4) } \end{aligned}$	LMC662AI	LMC662C	Units
			Limit (Note 4)	Limit (Note 4)	
Input Offset Voltage		1	$\begin{gathered} \hline 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
Input Offset Voltage Average Drift		1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	4	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
Input Offset Current		0.001	2	1	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
Input Resistance		>1			Teras
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{aligned} & V^{+}-2.3 \\ & V^{+}-2.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	2000	$\begin{aligned} & 440 \\ & 400 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		500	$\begin{aligned} & 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	V / mV min
	$\mathrm{R}_{\mathrm{L}}=600 \Omega(\text { Note } 5)$ Sourcing Sinking	1000	$\begin{aligned} & 220 \\ & 200 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		250	$\begin{gathered} 100 \\ 60 \end{gathered}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC662AI	LMC662C	Units
			Limit (Note 4)	Limit (Note 4)	
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.87	$\begin{aligned} & 4.82 \\ & 4.79 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.76 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.10	$\begin{aligned} & 0.15 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.21 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.61	$\begin{aligned} & 4.41 \\ & 4.31 \end{aligned}$	$\begin{aligned} & 4.27 \\ & 4.21 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.30	$\begin{aligned} & 0.50 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.69 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.63	$\begin{aligned} & 14.50 \\ & 14.44 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.32 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.26	$\begin{aligned} & 0.35 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	13.90	$\begin{aligned} & 13.35 \\ & 13.15 \end{aligned}$	$\begin{aligned} & 12.92 \\ & 12.76 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.79	$\begin{aligned} & 1.16 \\ & 1.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.58 \end{aligned}$	V max
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		21	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 12)	40	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		39	$\begin{aligned} & 28 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
Supply Current	Both Amplifiers $V_{O}=1.5 \mathrm{~V}$	0.75	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC662AI	LMC662C	Units
			Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	1.1	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
Gain-Bandwidth Product		1.4			MHz
Phase Margin		50			Deg
Gain Margin		17			dB
Amp-to-Amp Isolation	(Note 7)	130	.		dB
Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{VP} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	0.01			\%

AC Electrical Characteristics (Continued)

Note 1: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 9: A military RETS electrical test specification is available on request. At the time of printing, the LMC662AMJ/883 RETS spec complied fully with the boldface limits in this column. The LMC662AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LMC7101

Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output

General Description

The LMC7101 is a high performance CMOS operational amplifier available in the space saving SOT 23-5 Tiny package. This makes the LMC7101 ideal for space and weight critical designs. The performance is similar to a single amplifier of the LMC6482/4 type, with rail-to-rail input and output, high open loop gain, low distortion, and low supply currents.
The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

Features

- Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO-8 designs
- Guaranteed specs at $2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies
- Typical supply current 0.5 mA at 5 V
- Typical total harmonic distortion of 0.01% at 5 V
- 1.0 MHz gain-bandwidth
- Similar to popular LMC6482/4
- Input common-mode range includes V^{-}and V^{+}
- Tiny package outside dimensions $-120 \times 118 \times 56$ mils, $3.05 \times 3.00 \times 1.43 \mathrm{~mm}$

Applications

- Mobile communications
- Notebooks and PDAs
- Battery powered products
- Sensor interface

Connection Diagram

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Supplied As
$5-$ Pin SOT 23-5	LMC7101AIM5	MA05A	A00A	1k Units on Tape and Reel
	LMC7101AIM5X	MA05A	A00A	3k Units Tape and Reel
	LMC7101BIM5	MA05A	A00B	1k Units on Tape and Reel
	LMC7101BIM5X	MA05A	A00B	3k Units Tape and Reel

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
ESD Tolerance (Note 2)	2000 V
Difference Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	16 V
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 35 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Lead Temp. (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$

$\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Junction Temperature (Note 4) } & 150^{\circ} \mathrm{C}\end{array}$

Recommended Operating Conditions (Note 1)

Supply Voltage $\quad 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Junction Temperature Range
LMC7101AI, LMC7101BI
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7101AI Limit (Note 6)	LMC7101BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}^{+}=2.7 \mathrm{~V}$	0.11	6	9	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		1.0	64	64	pA max
I_{OS}	Input Offset Current		0.5	32	32	pA max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.7 \mathrm{~V} \end{aligned}$	70	55	50	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=\mathrm{V}$ For CMRR $\geq 50 \mathrm{~dB}$	0.0	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			3.0	2.7	2.7	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=1.35 \mathrm{~V} \text { to } 1.65 \mathrm{~V} \\ & \mathrm{~V}^{-}=-1.35 \mathrm{~V} \text { to }-1.65 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \end{aligned}$	60	50	45	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.45	2.15	2.15	V min
			0.25	0.5	0.5	\checkmark max
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2.68	2.64	2.64	$V_{\text {min }}$
			0.025	0.06	0.06	V max
I_{s}	Supply Current		0.5	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
SR	Slew Rate	(Note 8)	0.7			V/ $/ \mathrm{s}$
GBW	Gain-Bandwidth Product		0.6			MHz

3V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC7101BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.11	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		,	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1.0	64	64	pA max
l_{os}	Input Offset Current		0.5	32	32	PA max
R_{IN}	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$	74	64	60	$\begin{gathered} \mathrm{db} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	0.0	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			3.3	3.0	3.0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=1.5 \mathrm{~V} \text { to } 7.5 \mathrm{~V} \\ & \mathrm{~V}^{-}=-1.5 \mathrm{~V} \text { to }-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CM}}=0 \end{aligned}$	80	68	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3		.	pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8	2.6	2.6	V min
			0.2	0.4	0.4	V max
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	2.7	2.5	2.5	V min
			0.37	0.6	0.6	V max
$I_{\text {S }}$	Supply Current		0.5	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \hline \text { LMC7101AI } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$		Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$	0.11	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1	64	64	pA max
los	Input Offset Current		0.5	32	32	pA max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	82	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{db} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.20 \\ \mathbf{0 . 0 0} \\ \hline \end{gathered}$	$\begin{gathered} -0.20 \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			5.3	$\begin{aligned} & 5.20 \\ & 5.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.20 \\ & 5.00 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4.9	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	4.7	$\begin{gathered} \hline 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.3	$\begin{gathered} \hline 0.5 \\ 0.65 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{max} \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	24	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	19	$\begin{aligned} & 11 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.5	$\begin{gathered} 0.85 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.85 \\ 1.0 \\ \hline \end{gathered}$	mA max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7101AI Limit (Note 6)	LMC7101BI Limit (Note 6)	Units
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{PP}}$	0.01			$\%$
SR	Slew Rate		1.0			$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain_Bandwidth Product		1.0			MHz

15V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions		$\begin{aligned} & \hline \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	LMC7101BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.11			mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1.0	64	64	PA max
l_{OS}	Input Offset Current		0.5	32	32	pA max
R_{IN}	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.20 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.20 \\ \mathbf{0 . 0 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			15.3	$\begin{aligned} & 15.20 \\ & 15.00 \end{aligned}$	$\begin{aligned} & 15.20 \\ & 15.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega$ Sourcing (Note 7) Sinking	$\begin{aligned} & 340 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 15 \\ & 10 \end{aligned}$	V / mV
		 $R_{\mathrm{L}}=600 \Omega$ Sourcing (Note 7) Sinking	$\begin{gathered} 300 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ 6 \end{gathered}$	$\begin{gathered} 34 \\ 6 \end{gathered}$	V/mV
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3			pF
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	14.1	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$I_{\text {sc }}$	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \text { (Note } 9 \text {) } \end{aligned}$	50	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=12 \mathrm{~V} \\ & \text { (Note 9) } \end{aligned}$	50	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$I_{\text {s }}$	Supply Current		0.8	$\begin{aligned} & 1.50 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.71 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

15V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \hline \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC7101BI Limit (Note 6)	Units
SR	Slew Rate	$\mathrm{V}^{+}=15 \mathrm{~V}$ (Note 8)	1.1	$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.1			MHz
ϕ_{m}	Phase Margin		45			Deg
G_{m}	Gain Margin		10			dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	37			$\frac{n V}{\sqrt{H z}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	1.5			$\frac{\mathrm{fA}}{\sqrt{\text { Hz }}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P D=\left(T_{J(m a x)}\right.$ - $\left.\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and R_{L} connect to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as a Voltage Follower with a 10 V step input. Number specified is the slower of the positive and negative slew rates. $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$ p.
Note 9: Do not short circuit output to V^{+}when V^{+}is greater than 12 V or reliability will be adversely affected.

LMC7111

Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output

General Description

The LMC7111 is a micropower CMOS operational amplifier available in the space saving SOT 23-5 package. This makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to design battery monitoring circuits which sense signals above the V^{+}supply. The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

Features

- Tiny SOT23-5 package saves space
- Very wide common mode input range
- Specified at $2.7 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V
- Typical supply current $25 \mu \mathrm{~A}$ at 5 V
- 50 kHz gain-bandwidth at 5 V
- Similar to popular LMC6462
- Output to within 20 mV of supply rail at 100 k load
- Good capacitive load drive

Applications

- Mobile communications
- Portable computing
- Current sensing for battery chargers
- Voltage reference buffering
- Sensor interface
- Stable bias for GaAs RF amps

Connection Diagrams

Top View

Actual Size

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Transport Media
8-Pin DIP	LMC7111AIN	N08E	LMC7111AIN	Rails
8-Pin DIP	LMC7111BIN	N08E	LMC7111BIN	Rails
5-Pin SOT23-5	LMC7111BIM5	MA05A	A01B	1k units Tape and Reel
	LMC7111BIM5X	MA05A	A01B	3k Units Tape and Reel

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance SOT23-5 (Note 2)
2000 V
ESD Tolerance DIP Package
(Note 2)
Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Current at Input Pin
Current at Output Pin (Note 3)
Current at Power Supply Pin

Lead Temp. (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$2.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 11 \mathrm{~V}$
Junction Temperature Range	
LMC7111AI, LMC7111BI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
N Package, 8 -Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
M05A Package,	
5-Pin Surface Mount	$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		$\begin{aligned} & \hline \text { LMC7111AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC7111BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}^{+}=2.7 \mathrm{~V}$	0.9	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 9)	0.1	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
los	Input Offset Current	(Note 9)	0.01	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10			Tera Ω
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.0 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	60	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -2.7 \mathrm{~V} \leq \mathrm{V}^{-} \leq-5.0 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	60	$\begin{aligned} & 55 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.10	$\begin{gathered} 0.0 \\ 0.40 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.40 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			2.8	$\begin{gathered} 2.7 \\ 2.25 \end{gathered}$	$\begin{gathered} \hline 2.7 \\ 2.25 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
C_{IN}	Common-Mode Input Capacitance		3			pF
V_{O}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	2.69	$\begin{gathered} 2.68 \\ 2.4 \end{gathered}$	$\begin{gathered} 2.68 \\ 2.4 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.01	$\begin{aligned} & 0.02 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.08 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	2.65	$\begin{aligned} & 2.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.03	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=2.7 \mathrm{~V}$	7	$\begin{gathered} 1 \\ 0.7 \end{gathered}$	$\begin{gathered} \hline 1 \\ 0.7 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			7	$\begin{gathered} 1 \\ 0.7 \end{gathered}$	$\begin{gathered} 1 \\ 0.7 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7111AI Limit (Note 6)	LMC7111BI Limit (Note 6)	Units
$\mathrm{A}_{\text {VOL }}$	Voltage Gain	Sourcing	400			$\begin{gathered} \mathrm{V} / \mathrm{mv} \\ \mathrm{~min} \end{gathered}$
		Sinking	150			$\begin{aligned} & \mathrm{V} / \mathrm{mv} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	$\begin{aligned} & \mathrm{V}^{+}=+2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2 \end{aligned}$	20	$\begin{aligned} & 45 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7111AI Limit (Note 6)	LMC7111BI Limit $($ Note 6)	Units
SR	Slew Rate	(Note 8)	0.015			$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		40			kHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}$ and R_{L} connected to 1.35 V . For Sourcing tests, $1.35 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.7 \mathrm{~V}$. For Sinking tests, $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 1.35 \mathrm{~V}$.
Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates. Input referred, $\mathrm{V}^{+}=2.7 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 1.35 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=1 \mathrm{Vpp}$.
Note 9: Bias Current guaranteed by design and processing.

3V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LMC7111AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	LMC7111BI Limit (Note 6)	Units
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=3 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.25	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			3.2	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$	V max

3.3V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7111AI Limit (Note 6)	LMC7111BI Limit (Note 6)	Units
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=3.3 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.25	$\begin{aligned} & -0.1 \\ & 0.00 \end{aligned}$	$\begin{aligned} & -0.1 \\ & 0.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			3.5	$\begin{aligned} & 3.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.2 \end{aligned}$	V max

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \hline \text { LMC7111AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	LMC7111BI Limit (Note 6)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$	0.9			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 9)	0.1	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
I_{OS}	Input Offset Current	(Note 9)	0.01	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10			Tera Ω
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	85	70	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 10 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	85	70	60	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V} \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$	85	70	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.20 \\ \mathbf{0 . 0 0} \\ \hline \end{gathered}$	$\begin{gathered} -0.20 \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			5.25	$\begin{aligned} & 5.20 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.20 \\ & 5.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{Cl}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	4.99	4.98	4.98	Vmin
			0.01	0.02	0.02	Vmax
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	4.98	4.9	4.9	Vmin
			0.02	0.1	0.1	Vmin
I_{sc}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	7	$\begin{gathered} 5 \\ 3.5 \end{gathered}$	$\begin{gathered} 5 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			7	$\begin{gathered} 5 \\ 3.5 \end{gathered}$	$\begin{gathered} 5 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{A}_{\text {VOL }}$	Voltage Gain	Sourcing Sinking	500			V / mv min
			200			V / mv min
I_{s}	Supply Current	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2 \end{aligned}$	25			$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7111AI Limit (Note 6)	LMC7111BI Limit (Note 6)	Units
SR	Slew Rate	Positive Going Slew Rate (Note 8)	0.027	0.015	0.010	$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		50			kHz

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 11: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 12: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$.
Note 13: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ - $\left.\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.

Note 14: Typical Values represent the most likely parametric norm.
Note 15: All limits are guaranteed by testing or statistical analysis.
Note 16: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ and R_{L} connected to 2.5 V . For Sourcing tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V}$. For Sinking tests, $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$.
Note 17: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive slew rate. The negative slew rate is faster. Input referred, $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 1.5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ P.
Note 18: Bias Current guaranteed by design and processing.

10V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7111AI Limit (Note 6)	$\begin{aligned} & \hline \text { LMC7111BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\mathrm{V}^{+}=10 \mathrm{~V}$	0.9	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.1	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
los	Input Offset Current		0.01	$\begin{gathered} 0.5 \\ 10 \end{gathered}$	$\begin{gathered} 0.5 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10			Tera Ω
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 10 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	80			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	80			$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=10 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.2	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			10.2	$\begin{aligned} & 10.15 \\ & 10.00 \end{aligned}$	$\begin{aligned} & 10.15 \\ & 10.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
$I_{\text {sc }}$	Output Short Circuit Current (Note 9)	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=10 \mathrm{~V}$	30	$\begin{gathered} 20 \\ 7 \end{gathered}$	$\begin{gathered} 20 \\ 7 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
			30	$\begin{gathered} 20 \\ 7 \end{gathered}$	$\begin{gathered} 20 \\ 7 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

10V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \hline \text { LMC7111AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	LMC7111BI Limit (Note 6)	Units
$\mathrm{A}_{\text {VOL }}$	Voltage Gain $100 \mathrm{k} \Omega$ Load	Sourcing Sinking	500			$\begin{aligned} & \mathrm{V} / \mathrm{mv} \\ & \mathrm{~min} \end{aligned}$
			200			$\begin{gathered} \mathrm{V} / \mathrm{mv} \\ \mathrm{~min} \end{gathered}$
I_{S}	Supply Current	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2 \end{aligned}$	25	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	9.99	9.98	9.98	V min
			0.01	0.02	0.02	Vmax
		$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	9.98	9.9	9.9	Vmin
			0.02	0.1	0.1	Vmin

10V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7111AI Limit (Note 6)	LMC7111BI Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	0.03			$\mathrm{~V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product		50			kHz
ϕ_{m}	Phase Margin		50		deg	
G_{m}	Gain Margin	15			dB	
	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	110		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$	
	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.03		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$	

Note 19: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 20: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 21: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$.
Note 22: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ - T_{A})/ $\theta_{\text {JA }}$. All numbers apply for packages soldered directly into a PC board.

Note 23: Typical Values represent the most likely parametric norm.
Note 24: All limits are guaranteed by testing or statistical analysis.
Note 25: $\mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=5 \mathrm{~V}$ and R_{L} connected to 5 V . For Sourcing tests, $5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 10 \mathrm{~V}$. For Sinking tests, $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5 \mathrm{~V}$.
Note 26: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates. Input referred, $\mathrm{V}^{+}=10 \mathrm{~V}$ and $R_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ Pp.
Note 27: Operation near absolute maximum limits will adversely affect reliability.

General Description

The LMC8101 is a Rail-to-Rail Input and Output high performance CMOS operational amplifier. The LMC8101 is ideal for low voltage (2.7 V to 10 V) applications requiring Rail-to-Rail inputs and output. The LMC8101 is supplied in the die sized micro SMD as well as the 8 pin MSOP packages. The micro SMD package requires 75% less board space as compared to the SOT23-5 package. The LMC8101 is an upgrade to the industry standard LMC7101.
The LMC8101 incorporates a simple user controlled methodology for shutdown. This allows ease of use while reducing the total supply current to 1 nA typical. This extends battery life where power saving is mandated. The shutdown input threshold can be set relative to either V^{+}or V^{-}using the SL pin (see Application Note section for details).
Other enhancements include improved offset voltage limit, three times the output current drive and lower 1/f noise when compared to the industry standard LMC7101 Op Amp. This makes the LMC8101 ideal for use in many battery powered, wireless communication and Industrial applications.

Features

$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}$ to $\mathrm{V}^{+} / 2$, Typical values unless specified.

- Rail-to-Rail Inputs
- Rail-to-Rail Output Swing

Within 35 mV of Supplies $\left(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right.$)

- Packages Offered:
- micro SMD package
- MSOP package
- Low Supply Current
$1.39 \mathrm{~mm} \times 1.41 \mathrm{~mm}$
- Shutdown Current
$3.0 \mathrm{~mm} \times 4.9 \mathrm{~mm}$
$<1 m A(\max)$
- Versatile Shutdown feature
$1 \mu \mathrm{~A}$ (max)
$10 \mu \mathrm{~s}$ turn-on
- Output Short Circuit Current 10 mA
- Offset Voltage $\pm 5 \mathrm{mV}$ (max)
- Gain-Bandwidth

1 MHz
■ Supply Voltage Range 2.7V-10V

- THD
0.18\%
- Voltage Noise
$36 \frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

Applications

- Portable Communication (voice, data)
- Cellular Phone Power Amp Control Loop
- Buffer AMP
- Active Filters
- Battery Sense
- VCO Loop

Connection Diagrams

Top View

Abstract

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance	$2 \mathrm{KV}($ Note 2) 200 V (Note 13)
V_{IN} differential	$+/-$ Supply Voltage
Output Short Circuit Duration	(Notes 3, 11)
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	12 V
Voltage at Input/Output pins	$\mathrm{V}^{+}+0.8 \mathrm{~V}, \mathrm{~V}^{-}-0.8 \mathrm{~V}$
Current at Input Pin	$+/-10 \mathrm{~mA}$
Current at Output Pin (Notes 3, 12)	$+/-80 \mathrm{~mA}$
Current at Power Supply pins	$+/-80 \mathrm{~mA}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature(Note 4)	$+150^{\circ} \mathrm{C}$
Soldering Information	
\quad Infrared or Convection $(20 \mathrm{sec})$.	$235^{\circ} \mathrm{C}$
Wave Soldering $(10 \mathrm{sec})$.	$260^{\circ} \mathrm{C}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		± 0.70	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 7)	± 1	± 64	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
los	Input Offset Current		0.5	32	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
$\mathrm{R}_{\text {in }} \mathrm{CM}$	Input Common Mode Resistance		10		$\mathrm{G} \Omega$
$\mathrm{C}_{\text {in } \mathrm{CM}}$	Input Common Mode Capacitance		10		pF
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V}<=\mathrm{V}_{\text {CM }}<=2.7 \mathrm{~V}$	78	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{OV}<=\mathrm{V}_{\mathrm{CM}}<=3 \mathrm{~V} \end{aligned}$	78	$\begin{aligned} & 64 \\ & 60 \end{aligned}$	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 3 V	57	$\begin{aligned} & 50 \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} \\ & \mathrm{CMRR}>=50 \mathrm{~dB} \end{aligned}$	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
			3.0	2.7	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & V_{S}=3 \mathrm{~V} \\ & \mathrm{CMRR}>=50 \mathrm{~dB} \end{aligned}$	-0.2	-0.1	V max
			3.2	3.1	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
$\mathrm{A}_{\mathrm{VOL}}$	Large Signal Voltage Gain	Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 2.45 \mathrm{~V} \end{aligned}$	3162	$\begin{gathered} 1000 \\ 562 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 0.25 \mathrm{~V} \end{aligned}$	3162	$\begin{aligned} & 804 \\ & 562 \end{aligned}$	
		Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 2.65 \mathrm{~V} \end{aligned}$	4000	$\begin{aligned} & 1778 \\ & 1000 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 0.05 \mathrm{~V} \end{aligned}$	4000	$\begin{aligned} & 1778 \\ & 1000 \end{aligned}$	

2.7V Electrical Characteristics
 (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{0}	Output Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{ID}}=100 \mathrm{mV} \end{aligned}$	2.67	$\begin{aligned} & 2.64 \\ & 2.62 \end{aligned}$	$\begin{gathered} V \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{ID}}=100 \mathrm{mV} \end{aligned}$	2.69	$\begin{aligned} & 2.68 \\ & 2.67 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
	Output Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{ID}}=-100 \mathrm{mV} \end{aligned}$	32	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \\ & \hline \end{aligned}$
		$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{ID}}=-100 \mathrm{mV} \end{aligned}$	10	$\begin{aligned} & 30 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{ID}}=100 \mathrm{mV} \text { (Note 11) } \end{aligned}$	20	$\begin{gathered} 14 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking to $\mathrm{V}^{+} / 2$ $\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV} \text { (Note 11) }$	10	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	No load, normal operation	0.70	$\begin{aligned} & 1.0 \\ & 1.2 \\ & \hline \end{aligned}$	mA max
		Shutdown mode	0.001	1	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
$\mathrm{T}_{\text {on }}$	Shutdown Turn-on time	(Note 9)	10	15	$\mu \mathrm{s}$
$\mathrm{T}_{\text {off }}$	Shutdown Turn-off time	(Note 9)	1		$\mu \mathrm{s}$
I_{in}	"SL" and "SD" Input Current		± 1	± 64	pA max
SR	Slew Rate (Note 8)	$\begin{aligned} & A_{V}=+1, R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{1}=1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	1	0.8	$\mathrm{V} / \mu \mathrm{s}$ min
f_{u}	Unity Gain-Bandwidth	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	750		KHz
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{KHz}$	1		MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=10 \mathrm{KHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	36		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
i_{n}	Input-Referred Current Noise	$f=10 \mathrm{KHz}$	1.5		$\frac{f A}{\sqrt{\mathrm{~Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{KHz}, \mathrm{AV}=+1, \\ & \mathrm{~V}_{\mathrm{O}}=2.2 \mathrm{Vpp}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	0.18		\%

+/-5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to gnd. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		± 0.7	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	mV max
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 7)	± 1	± 64	pA \max
los	Input Offset Current		0.5	32	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
$\mathrm{R}_{\text {in }} \mathrm{CM}$	Input Common Mode Resistance		10		$\mathrm{G} \Omega$
$\mathrm{C}_{\text {in } \mathrm{CM}}$	Input Common Mode Capacitance		10		pF
CMRR	Common-Mode Rejection Ratio	$-5 \mathrm{~V}<=\mathrm{V}_{\mathrm{CM}}<=5 \mathrm{~V}$	87	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$

+/-5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to gnd.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 10 V	80	$\begin{aligned} & 76 \\ & 72 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMVR	Input Common-Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$	-5.3	$\begin{aligned} & -5.2 \\ & -5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 4 \mathrm{~V} \end{aligned}$	34.5	$\begin{gathered} 17.8 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }-4 \mathrm{~V} \end{aligned}$	34.5	$\begin{aligned} & 17.8 \\ & 3.16 \end{aligned}$	
		Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 4.6 \mathrm{~V} \end{aligned}$	138	$\begin{aligned} & 31.6 \\ & 17.8 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }-4.6 \mathrm{~V} \end{aligned}$	138	$\begin{gathered} 31.6 \\ 10 \end{gathered}$	
V_{0}	Output Swing High	$\begin{aligned} & R_{L}=600 \Omega \\ & V_{I D}=100 \mathrm{mV} \end{aligned}$	4.73	$\begin{aligned} & 4.60 \\ & 4.54 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{ID}}=100 \mathrm{mV} \end{aligned}$	4.90	$\begin{aligned} & 4.85 \\ & 4.83 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
	Output Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{ID}}=-100 \mathrm{mV} \end{aligned}$	-4.85	$\begin{aligned} & -4.75 \\ & -4.65 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{ID}}=-100 \mathrm{mV} \end{aligned}$	-4.95	$\begin{gathered} 4.90 \\ -4.84 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{sc}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{ID}}=100 \mathrm{mV}$ (Note 3),(Note 11)	49	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{ID}}=-100 \mathrm{mV}$ (Note 3),(Note 11)	90	$\begin{aligned} & 60 \\ & 52 \end{aligned}$	mA min
I_{s}	Supply Current	No load, normal operation	1.1	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	mA max
		Shutdown mode	0.001	1	$\mu \mathrm{A}$
$\mathrm{T}_{\text {on }}$	Shutdown Turn-on time	(Note 9)	10	15	$\mu \mathrm{s}$
$\mathrm{T}_{\text {off }}$	Shutdown Turn-off time	(Note 9)	1		$\mu \mathrm{s}$
$\mathrm{I}_{\text {in }}$	"SL" and "SD" Input Current		± 1	± 64	$\begin{gathered} \mathrm{pA} \\ \mathrm{max} \end{gathered}$
SR	Slew Rate (Note 8)	$\begin{aligned} & A_{V}=+10, R_{L}=10 \mathrm{k} \Omega, \\ & V_{O}=10 \mathrm{Vpp}, C_{L}=1000 \mathrm{pF} \end{aligned}$	1.2		$\mathrm{V} / \mathrm{\mu s}$
f_{u}	Unity Gain-Bandwidth	$\begin{aligned} & \mathrm{V}_{1}=10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	840		KHz
GBW	Gain Bandwidth Product	$\mathrm{f}=10 \mathrm{KHz}$	1.3		MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=10 \mathrm{KHz}, \mathrm{R}_{\mathrm{s}}=50 \Omega$	33		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=10 \mathrm{KHz}$	1.5		$\frac{\mathrm{fA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=10 \mathrm{KHz}, \mathrm{AV}=+1, \\ & \mathrm{~V}_{\mathrm{O}}=8 \mathrm{Vpp}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	0.2		\%

+/-5V Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$. Output currents in excess of 40 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly onto a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Positive current corresponds to current flowing into the device.
Note 8: Slew rate is the slower of the rising and falling slew rates.
Note 9: Shutdown Turn-on and Turn-off times are defined as the time required for the output to reach 90% and 10%, respectively, of its final peak to peak swing when set for Rail to Rail output swing with a 100 KHz sine wave, $2 \mathrm{~K} \Omega$ load, and $A_{V}=+10$.
Note 10: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 11: Short circuit test is a momentary test. See Note 12.
Note 12: Output short circuit duration is infinite for $\mathrm{V}_{\mathrm{S}}<6 \mathrm{~V}$. Otherwise, extended period output short circuit may damage the device.
Note 13: machine Model, $O \Omega$ in series with 200 pF .

Application Notes

Shutdown features:

The LMC8101 is capable of being turned off in order to conserve power. Once in shutdown, the device supply current is drastically reduced ($1 \mu \mathrm{~A}$ maximum) and the output will be "Tri-stated".
The shutdown feature of the LMC8101 is designed for flexibility. The threshold level of the SD input can be referenced to either V^{-}or V^{+}by setting the level on the SL input. When the SL input is connected to V^{-}, the SD threshold level is referenced to V^{-}and vice versa. This threshold will be about 1.5 V from the supply tied to the SL pin. So, for this example, the device will be in shutdown as long as the SD pin voltage is within 1 V of V^{-}. In order to ensure that the device would not "chatter" between active and shutdown states, hysteresis is built into the SD pin transition (see Figure 1 for an illustration of this feature). The shutdown threshold and hysteresis level are independent of the supply voltage. Figure 1 illustration applies equally well to the case when SL is tied to V^{+}and the horizontal axis is referenced to V^{+}instead. The SD pin should not be set within the voltage range from 1.1 V to 1.9 V of the selected supply voltage since this is a transition region and the device status will be undetermined.

FIGURE 1. Supply Current vs. 'SD' Voltage

Table 1, below, summarizes the status of the device when the SL and SD pins are connected directly to V^{-}or V^{+}:

TABLE 1. LMC8101 Status Summary

SL	SD	LMC8101 Status
V^{-}	V^{-}	Shutdown
V^{-}	V^{+}	Active
V^{+}	V^{+}	Shutdown
V^{+}	V^{-}	Active

In case shutdown operation is not needed, as can be seen in Table 1, the two pins SL and SD can simply be connected to opposite supply nodes to achieve "Active" operation. The SL and SD should always be tied to a node; if left unconnected, these high impedance inputs will float to an undetermined state and the device status will be undetermined as well.
With the device in shutdown, once "Active" operation is initiated, there will be a finite amount of time required before the device output is settled to its final value. This time is less than $15 \mu \mathrm{~s}$. In addition, there may be some output spike during this time while the device is transitioning into a fully operational state. Some applications may be sensitive to this output spike and proper precautions should be taken in order to ensure proper operation at all times.

Tiny Package:

The LMC8101 is available in the micro SMD package as well the 8 pin MSOP package. The micro SMD package requires approximately $1 / 4$ the board area of a SOT23. This package is less than 1 mm in height allowing it to be placed in absolute minimum height clearance areas such as cellular handsets, LCD panels, PCMCIA cards, etc. More information about the micro SMD package can be found at: http:// www.national.com/appinfo/microsmd.

Application Notes (Continued)

Conversion Boards:

In order to ease the evaluation of tiny packages such as the micro SMD, there is a conversion board (LMC8101CONV) available to board designers. This board converts a micro SMD device into an 8 pin DIP package (see Figure 2, Conversion Board Pin out diagram) for easier handling and evaluation. This board can be ordered from National Semiconductor by contacting http://www.national.com .

FIGURE 2. micro SMD Conversion Board pin-out

Increased Output Current:

Compared to the LMC7101, the LMC8101 has an improved output stage capable of up to three times larger output sourcing and sinking current. This improvement would allow a larger output voltage swing range compared to the LMC7101 when connected to relatively heavy loads. For lower supply voltages this is an added benefit since it increases the output swing range. For example, the LMC8101 can typically swing 2.5 Vpp with 2 mA sourcing and sinking output current (Vs $=2.7 \mathrm{~V}$) whereas the LMC7101 output swing would be limited to 1.9 Vpp under the same conditions. Also, compared to the LMC7101 in the SOT23 package, the LMC8101 can dissipate more power because both the MSOP and the micro SMD packages have 40% better heat dissipation capability.

Lower 1/f noise:

The dominant input referred noise term for the LMC8101 is the input noise voltage. Input noise current for this device is of no practical significance unless the equivalent resistance it looks into is $5 \mathrm{M} \Omega$ or higher.
The LMC8101's low frequency noise is significantly lower than that of the LMC7101. For example, at 10 Hz , the input referred spot noise voltage density is $85 \mathrm{nV} \sqrt{\mathrm{Hz}}$ as compared to about $200 \mathrm{nV} \sqrt{\mathrm{Hz}}$ for the LMC7101. Over a frequency range of 0.1 Hz to 100 Hz , the total noise of the LMC8101 will be approximately 60% less than that of the LMC7101.

Lower THD:

When connected to heavier loads, the LMC8101 has lower THD compared to the LMC7101. For example, with 5 V supply at 10 KHz and 2 Vpp swing ($\mathrm{Av}=-2$), the LMC8101 THD (0.2%) is 60% less than the LMC7101's. The LMC8101 THD can be kept below 0.1% with 3 Vpp at the output for up to 10 KHz (refer to the Typical Characteristics Plots).

Improving the Cap load drive capability:

This can be accomplished in several ways:

- Output resistive loading increase:

The Phase Margin increases with increasing load (refer to the Typical Characteristics Plots). When driving capacitive loads, stability can generally be improved by allowing some output current to flow through a load. For example, the cap load drive capability can be increased from 8200 pF to 16000 pF if the output load is increased from $5 \mathrm{~K} \Omega$ to 600Ω (Av $=+10,25 \%$ overshoot limit, 10 V supply).

- Isolation resistor between output and cap load:

This resistor will isolate the feedback path (where excessive phase shift due to output capacitance can cause instability) from the capacitive load. With a 10 V supply, a 100Ω isolation resistor allows unlimited capacitive load without oscillation compared to only 300 pF without this resistor ($\mathrm{Av}=+1$).

- Higher supply voltage:

Operating the LMC8101 at higher supply voltages allows higher cap load tolerance. At 10V, the LMC8101's low supply voltage cap load limit of 300 pF improves to about 600pF (Av $=+1$).

- Closed loop gain increase:

As with all Op Amps, the capacitive load tolerance of the LMC8101 increases with increasing closed loop gain. In applications where the load is mostly capacitive and the resistive loading is light, stability increases when the LMC8101 is operated at a closed loop gain larger than +1 .

LMV101/102/105/110 Fixed-Gain Amplifiers

General Description

The LMV101/102/105/110 fixed-gain amplifier family integrates a rail-to-rail op amp, two internal gain-setting resistors and a $\mathrm{V}^{+} / 2$ bias circuit into one ultra tiny package, SC70-5 or SOT23-5. Fixed inverting gains of $-1,-2,-5$, and -10 are available.
The core op amp in this series is an LMV321, which provides rail-to-rail output swing, excellent speed-power ratio, 1 MHz bandwidth, and $1 \mathrm{~V} / \mu \mathrm{s}$ of slew rate with low supply current.
The LMV101/102/105/110 family reduces external component count. It is the most cost effective solution for applications where low voltage operation, low power consumption, space savings, and reliable performance are needed. It enables the design of small portable electronic devices, and allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

Features

(For 5V Supply, Typical Unless Otherwise Noted)

- Fixed inverting gain available
$-1,-2,-5,-10$
- DC gain accuracy @2.7V supply
— LMV101/102/105
2\% (typ)
- LMV110

6\% (typ)

- Space saving packages

SC70-5 \& SOT23-5

- Industrial temperature range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low supply current
$130 \mu \mathrm{~A}$
- Rail-to-Rail output swing
- Guaranteed 2.7 V and 5 V performance

Applications

- General purpose portable devices
- Mobile communications
- Battery powered electronics
- Active filters
- Microphone preamplifiers

Typical Application

Phase Inverting AC Amplifier

$$
\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IN}}\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)
$$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
\quad Machine Model	200 V
\quad Human Body Model	1500 V
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V
Output Short Circuit to V^{+}	(Note 3)
Output Short Circuit to V^{-}	(Note 4)
Mounting Temperature	
\quad Infrared or Convection (20 sec)	$235^{\circ} \mathrm{C}$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (T_{J}, max) $150^{\circ} \mathrm{C}$ (Note 5)

Operating Ratings (Note 1)

Supply Voltage	2.7 V to 5.0 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq T_{J} \leq 85^{\circ} \mathrm{C}$
Thermal resistance $\left(\theta_{J A}\right)$	
5-pin SC70-5	$478^{\circ} \mathrm{C} / \mathrm{W}$
5-pin SOT23-5	$265^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 6)	$\begin{gathered} \text { Max } \\ (\text { Note } 7 \text {) } \end{gathered}$	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}^{+}-0.01$	$\mathrm{V}^{+}-0.1$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.08	0.18	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current		80	170	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
	DC Gain Accuracy	LMV101, Gain =-1	2	5	\%
		LMV102, Gain $=-2$	2	5	\%
		LMV105, Gain $=-5$	2	6	\%
		LMV110, Gain $=-10$	6	12	\%
GBW	-3dB Bandwidth	$\begin{aligned} & \text { LMV101, Gain }=-1, \\ & R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	1.6		MHz
		$\begin{aligned} & \text { LMV102, Gain }=-2, \\ & R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	1.8		MHz
		$\begin{aligned} & \text { LMV105, Gain }=-5, \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	0.8		MHz
		$\begin{aligned} & \text { LMV110, Gain }=-10, \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	0.2		MHz

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	$\begin{aligned} & \text { Max } \\ & \text { (Note 7) } \end{aligned}$	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-0.04$	$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathrm{~V}^{+}-0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.14	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-0.01$	$\begin{aligned} & \mathrm{V}^{+}-0.1 \\ & \mathrm{~V}^{+}-0.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.28 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	60	5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	160	10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (Note 7) } \end{gathered}$	Units
I_{s}	Supply Current		130	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
	DC Gain Accuracy	LMV101, Gain =-1	3.5	5	\%
		LMV102, Gain $=-2$	3.5	5	\%
		LMV105, Gain $=-5$	3.5	6	\%
		LMV110, Gain $=-10$	9.0	12	\%
SR	Slew Rate	(Note 8)	1		V/ s
GBW	-3dB Bandwidth	$\begin{aligned} & \text { LMV101, Gain }=-1, \\ & R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	1.6		MHz
		$\begin{aligned} & \text { LMV102, Gain }=-2, \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	1.8		MHz
		$\begin{aligned} & \text { LMV105, Gain }=-5, \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	0.8		MHz
		$\begin{aligned} & \text { LMV110, Gain }=-10, \\ & R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF} \end{aligned}$	0.2		MHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 100 pF .
Note 3: Shorting circuit output to V^{+}will adversely affect reliability.
Note 4: Shorting circuit output to V^{-}will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical Values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: Number specified is the slower of the positive and negative slew rates.

LMV111

Operational Amplifier with Bias Network

General Description

The LMV111 integrates a rail-to-rail op amp with a $\mathrm{V}^{+} / 2$ bias circuit into one ultra tiny package, SC70-5 or SOT23-5. The core op amp of the LMV111 is an LMV321, which provides rail-to-rail output swing, excellent speed-power ratio, 1 MHz bandwidth, and $1 \mathrm{~V} / \mu$ s of slew rate with low supply current.
The LMV111 reduces external component count. It is a cost effective solution for applications where low voltage operation, low power consumption, space saving, and reliable performance are needed. It enables the design of small portable electronic devices, and allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

Features

(For 5V Supply, Typical Unless Otherwise Noted)

- Resistor ratio matching
1\% (typ)
- Space saving package
SC70-5 \& SOT23-5
■ Industrial temp. range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low supply current
$130 \mu \mathrm{~A}$
- Gain-bandwidth product
1 MHz
- Rail-to-Rail output swing

■ Guaranteed 2.7V and 5V performance

Applications

- General purpose portable devices
- Active filters
- Mobile communications
- Battery powered electronics
- Microphone preamplifiers

Connection Diagram

Gain and Phase vs. Capacitive Load

Fixed Current Source

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	200 V
\quad Human Body Model	1500 V
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}{ }^{-}\right.$)	5.5 V
Output Short Circuit to ${ }^{+}$	(Note 3)
Output Short Circuit to ${ }^{-}$	(Note 4)
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Junction Temp. (T_{J} max $)$ (Note 5)	$150^{\circ} \mathrm{C}$
Mounting Temperature	
\quad Infrared or Convection $(20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	2.7 V to 5.0 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$

$478^{\circ} \mathrm{C} / \mathrm{W}$
$265^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}^{+}-0.01$	$\mathrm{V}^{+}-0.1$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.06	0.18	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current		80	170	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
	Resistor Ratio Matching		1		\%
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
Φ_{m}	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 6)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 7) } \end{aligned}$	Units
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-0.04$	$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathbf{V}^{+}-0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.12	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-0.01$	$\begin{aligned} & \mathrm{V}^{+}-0.1 \\ & \mathrm{~V}^{+}-0.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.065	$\begin{aligned} & 0.18 \\ & 0.28 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Io	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=\mathrm{OV}$	60	5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	160	10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{I}_{\text {s }}$	Supply Current		130	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$ max
	Resistor Ratio Matching		1		\%
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
¢m	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB
SR	Slew Rate	(Note 8)	1		$\mathrm{V} / \mathrm{\mu s}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 100 pF .

5V Electrical Characteristics (Continued)

Note 3: Shorting circuit output to V^{+}will adversely affect reliability.
Note 4: Shorting circuit output to $\mathrm{V}{ }^{-}$will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $\mathrm{T}_{\mathrm{J}(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.

Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.

LMV321/LMV358/LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers

General Description

The LMV358/324 are low voltage (2.7-5.5V) versions of the dual and quad commodity op amps, LM358/324, which currently operate at $5-30 \mathrm{~V}$. The LMV321 is the single version.
The LMV321/358/324 are the most cost effective solutions for the applications where low voltage operation, space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358/324. The LMV321/358/324 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed-power ratio, achieving 1 MHz of bandwidth and $1 \mathrm{~V} / \mu \mathrm{s}$ of slew rate with low supply current.
The LMV321 is available in space saving SC70-5, which is approximately half the size of SOT23-5. The small package saves space on pc boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.
The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LMV321/358/324 have bipolar input and output stages for improved noise performance and higher output current drive.

Features

(For $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{V}^{-}=0 \mathrm{~V}$, Typical Unless Otherwise Noted)
■ Guaranteed 2.7V and 5V Performance
■ No Crossover Distortion

- Space Saving Package
- Industrial Temp.Range

SC70-5 2.0x2.1x1.0mm

■ Gain-Bandwidth Product $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Low Supply Current

LMV321 $130 \mu \mathrm{~A}$
LMV358 210رA
LMV324 410 4

- Rail-to-Rail Output Swing
@ $10 \mathrm{k} \Omega$ Load
$\mathrm{V}^{+}-10 \mathrm{mV}$
$\mathrm{V}^{-}+65 \mathrm{mV}$
- V_{CM}
-0.2 V to $\mathrm{V}^{+}-0.8 \mathrm{~V}$

Applications

- Active Filters
- General Purpose Low Voltage Applications
- General Purpose Portable Devices

Output Voltage Swing vs Supply Voltage

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	100 V
Human Body Model	
LMV358/324	2000 V
LMV321	900 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage (V+-V ${ }^{-}$)	5.5 V
Output Short Circuit to ${ }^{+}$	(Note 3)
Output Short Circuit to V $^{-}$	(Note 4)
Soldering Information	
Infrared or Convection $(20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$

Storage Temp. Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temp. (T_{j}, max) (Note 5)
$150^{\circ} \mathrm{C}$
Operating Ratings (Note 1)
Supply Voltage
Temperature Range
LMV321, LMV358, LMV324
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal Resistance ($\theta_{J A}$)(Note 10)

5-pin SC70-5	$478^{\circ} \mathrm{C} / \mathrm{W}$
5-pin SOT23-5	$265^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC	$190^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin MSOP	$235^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC	$145^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP	$155^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 6) } \end{aligned}$	Limit (Note 7)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		1.7	7	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		11	250	nA max
I_{OS}	Input Offset Current		5	50	nA max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	63	50	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \end{aligned}$	60	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			1.9	1.7	V max
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}^{+}-10$	$\mathrm{V}^{+}-100$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			60	180	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{s}	Supply Current	LMV321	80	170	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV358 Both amplifiers	140	340	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV324 All four amplifiers	260	680	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
Φ_{m}	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	46		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.17		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Limit (Note 7)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.7	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		15	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
l_{OS}	Input Offset Current		5	$\begin{gathered} 50 \\ 150 \end{gathered}$	nA \max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	65	50	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	60	50	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{CM}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.2	4	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain (Note 8)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	100	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-40$	$\begin{aligned} & \hline V^{+}-300 \\ & V^{+}-400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			120	$\begin{aligned} & \hline 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-10$	$\begin{aligned} & \hline V^{+}-100 \\ & \mathbf{V}^{+}-200 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			65	$\begin{aligned} & 180 \\ & 280 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
I_{0}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	60	5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
			160	10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{S}	Supply Current	LMV321	130	$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV358 Both amplifiers	210	$\begin{aligned} & 440 \\ & 615 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
		LMV324 All four amplifiers	410	$\begin{gathered} 830 \\ 1160 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 6)	Limit (Note 7)	Units
SR	Slew Rate	$($ Note 9)	1		$\mathrm{~V} / \mu \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
Φ_{m}	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$,	39		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.21		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 200 pF .
Note 3: Shorting output to V^{+}will adversely affect reliability.
Note 4: Shorting output to V^{-}will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: R_{L} is connected to V^{-}. The output voltage is $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$.
Note 9: Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

LMV710 and LMV711 Low Power, RRIO Operational Amplifiers with High Output Current Drive and Shutdown Option

General Description

The LMV710 and LMV711 are BiCMOS operational amplifiers with a CMOS input stage. Both devices have greater than RR input common mode voltage range, rail-to-rail output and high output current drive. They offer a bandwidth of 5 MHz and a slew rate of $5 \mathrm{~V} / \mu \mathrm{s}$.
On the LMV711, a separate shutdown pin can be used to disable the device and reduces the supply current to $0.2 \mu \mathrm{~A}$ (typical). The LMV711 features a turn on time of less than $10 \mu \mathrm{~s}$. It is an ideal solution for power sensitive applications, such as cellular phone, pager, palm computer, etc.
The LMV710 is offered in the space saving SOT23-5 Tiny package. The LMV711 is offered in the space saving SOT23-6 Tiny package.
The LMV710/711 are designed to meet the demands of low power, low cost, and small size required by cellular phones and similar battery powered portable electronics.

Features

(For 5 Supply, Typical Unless Otherwise Noted).

- Low offset voltage	$3 \mathrm{mV}, \max$
- Gain-bandwidth product	5 MHz, typ
- Slew rate	$5 \mathrm{~V} / \mu \mathrm{s}$, typ
- Space saving packages	SOT23-5 and $\mathrm{SOT} 23-6$
- Turn on time from shutdown	$<10 \mu \mathrm{~s}$
- Industrial temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Supply current in shutdown mode	$0.2 \mu \mathrm{~A}$, typ
- Guaranteed 2.7 V and 5 V Performance	
- Unity gain stable	
- Rail-to-rail input and output	
- Capable of driving 600Ω load	

Applications

- Wireless phones
- GSM/TDMA/CDMA power amp control
- AGC, RF power detector
- Temperature compensation
- Wireless LAN
- Bluetooth
- HomeRF

Typical Application

High Side Current Sensing

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
ESD Tolerance (Note 2)	
Machine Model	200 V
Human Body Model	2000 V
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\begin{aligned} & \left(\mathrm{V}^{+}\right)+0.4 \mathrm{~V} \\ & \left(\mathrm{~V}^{-}\right)-0.4 \mathrm{~V} \end{aligned}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	5.5 V
Output Short Circuit to V^{+}	(Note 3)
Output Short Circuit to V^{-}	(Note 4)
Current at Input Pin	$\pm 10 \mathrm{~mA}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Limits (Note 7)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0.85 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=1.85 \mathrm{~V}$	0.4	$\begin{gathered} \hline 3 \\ 3.2 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{B}	Input Bias Current		4		pA
CMRR	Common Mode Rejection Ratio	$0 \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	75	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.85 \mathrm{~V} \end{aligned}$	110	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1.85 \mathrm{~V} \end{aligned}$	95	$\begin{aligned} & 70 \\ & 68 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	V
			3	2.9	
I_{sc}	Output Short Circuit Current	Sourcing $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	28	$\begin{aligned} & 15 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	40	$\begin{aligned} & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	2.68	$\begin{aligned} & 2.62 \\ & 2.60 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.01	$\begin{aligned} & 0.12 \\ & 0.15 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.35 V	2.55	$\begin{array}{r} 2.52 \\ 2.50 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.05	$\begin{aligned} & 0.23 \\ & \mathbf{0 . 3 0} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{V}_{\mathrm{O}}(\mathrm{SD})$	Output Voltage Level in Shutdown Mode		50	200	mV
I_{s}	Supply Current	ON Mode	1.22	$\begin{aligned} & \hline 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		Shutdown Mode, $\mathrm{V}_{\mathrm{SD}}=0 \mathrm{~V}$	0.002	10	$\mu \mathrm{A}$

2.7V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 6)	Limits (Note 7)	Units
A_{V}	Large Signal Voltage	Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 2.3 \mathrm{~V} \end{aligned}$	115	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \text { to } 1.35 \mathrm{~V} \end{aligned}$	113	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$	110	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 1.35 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
SR	Slew Rate	(Note 8)	5		V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product		5		MHz
ϕ_{m}	Phase Margin		60		Deg
$\mathrm{T}_{\text {ON }}$	Turn-on Time from Shutdown		<10		$\mu \mathrm{s}$
$\mathrm{V}_{\text {SD }}$	Shutdown Pin Voltage Range	On Mode	1.5 to 2.7	2.4 to 2.7	V
		Shutdown Mode	0 to 1	0 to 0.8	V
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	20		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

3.2V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.6 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 6)	Limit (Note 7)	Units
V_{O}	Output Swing	$\mathrm{I}_{\mathrm{O}}=6.5 \mathrm{~mA}$	3.0	2.95	V
				$\mathbf{2 . 9 2}$	min
			0.01	0.18	V
				$\mathbf{0 . 2 5}$	\max

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Limits (Note 7)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0.85 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{CM}}=1.85 \mathrm{~V}$	0.4	$\begin{gathered} 3 \\ 3.2 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{B}	Input Bias Current		4		pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	70	$\begin{aligned} & 50 \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.85 \mathrm{~V} \end{aligned}$	110	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1.85 \mathrm{~V} \end{aligned}$	95	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	V
			5.3	5.2	

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Condition	Typ (Note 6)	Limits (Note 7)	Units
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing $V_{O}=0 V$	35	$\begin{aligned} & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking $V_{O}=5 \mathrm{~V}$	40	$\begin{aligned} & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V	4.98	$\begin{aligned} & 4.92 \\ & 4.90 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.01	$\begin{aligned} & 0.12 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 2.5 V	4.85	$\begin{aligned} & 4.82 \\ & 4.80 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.05	$\begin{gathered} 0.23 \\ 0.3 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{O} (SD)	Output Voltage Level in Shutdown Mode		50	200	mV
$\mathrm{I}_{\text {s }}$	Supply Current	On Mode	1.17	$\begin{aligned} & 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		Shutdown Mode	0.2	10	$\mu \mathrm{A}$
A_{V}	Large Signal Voltage Gain	Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \text { to } 4.6 \mathrm{~V} \\ & \hline \end{aligned}$	123	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	120	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sourcing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	110	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		Sinking $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	118	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
SR	Slew Rate	(Note 8)	5		V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product		5		MHz
ϕ_{m}	Phase Margin		60		Deg
$\mathrm{T}_{\text {ON }}$	Turn-on Time from Shutdown		<10		$\mu \mathrm{s}$
$\mathrm{V}_{\text {SD }}$	Shutdown Pin Voltage Range	ON Mode	2 to 5	2.4 to 5	V
		Shutdown Mode	0 to 1.5	0 to 0.8	
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	20		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 100 pF .
Note 3: Shorting circuit output to V^{+}will adversely affect reliability.
Note 4: Shorting circuit output to V^{-}will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $T_{J(m a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: Number specified is the slower of the positive and negative slew rates.

LMV721/LMV722

10MHz, Low Noise, Low Voltage, and Low Power Operational Amplifier

General Description

The LMV721 (Single) and LMV722 (Dual) are low noise, low voltage, and low power op amps, that can be designed into a wide range of applications. The LMV721/LMV722 has a unity gain bandwidth of 10 MHz , a slew rate of $5 \mathrm{~V} / \mathrm{us}$, and a quiescent current of $930 \mathrm{uA} / a m p l i f i e r ~ a t ~ 2.2 V . ~$
The LMV721/722 are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.5 mV (Over Temp.) for the LMV721/LMV722. Their capacitive load capability is also good at low supply voltages. The operating range is from 2.2 V to 5.5 V .

The chip is built with National's advanced Submicron Silicon-Gate BiCMOS process. The single version, LMV721, is available in 5 pin SOT23-5 and a SC-70 (new) package. The dual version, LMV722, is available in a SO-8 and MSOP-8 package.

Features

(For Typical, 5 V Supply Values; Unless Otherwise Noted)

- Guaranteed 2.2V and 5.0V Performance

■ Low Supply Current LMV721/2 930رA/amplifier @ 2.2V

- High Unity-Gain Bandwidth 10 MHz
- Rail-to-Rail Output Swing
@ 600Ω load 120 mV from either rail at 2.2 V
@ $2 \mathrm{k} \Omega$ load 50 mV from either rail at 2.2 V
- Input Common Mode Voltage Range Includes Ground
- Silicon Dust ${ }^{\text {TM }}$, SC70-5 Package $2.0 \times 2.0 \times 1.0 \mathrm{~mm}$
- Input Voltage Noise $9 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ \mathrm{f}=1 \mathrm{KHz}$

Applications

- Cellular an Cordless Phones
- Active Filter and Buffers
- Laptops and PDAs
- Battery Powered Electronics

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
\quad Human Body Model	2000 V
\quad Machine Model	200 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V
Soldering Information	
\quad Infrared or Convection (20 sec.)	$235^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 3)

Supply Voltage	2.2 V to 5.0 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
\quad Silicon Dust SC70-5 Pkg	$440^{\circ} \mathrm{C} / \mathrm{W}$
Tiny SOT23-5 Pkg	$265^{\circ} \mathrm{C} / \mathrm{W}$
SO Pkg, 8-pin Surface Mount	$190^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Pkg, 8-Pin Mini Surface	$235^{\circ} \mathrm{C} / \mathrm{W}$
Mount	
SO Pkge, 14-Pin Surface Mount	$145{ }^{\circ} \mathrm{C} / \mathrm{W}$

2.2V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.02	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		260		nA
l_{OS}	Input Offset Current		25		nA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.3 \mathrm{~V}$	88	$\begin{aligned} & 70 \\ & 64 \end{aligned}$	dB min
PSRR	Power Supply Rejection Ratio	$2.2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}_{\mathrm{CM}}=0$	90	$\begin{aligned} & 70 \\ & 64 \end{aligned}$	dB min
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.30		V
			1.3		V
A_{v}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.75 \mathrm{~V} \text { to } 2.00 \mathrm{~V} \end{aligned}$	81	$\begin{aligned} & 75 \\ & 60 \\ & \hline \end{aligned}$	dB min
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.50 \mathrm{~V} \text { to } 2.10 \mathrm{~V} \end{aligned}$	84	$\begin{aligned} & 75 \\ & 60 \end{aligned}$	dB min
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}^{+} / 2$	2.125	$\begin{aligned} & 2.090 \\ & 2.065 \end{aligned}$	V min
			0.061	$\begin{aligned} & 0.110 \\ & 0.135 \end{aligned}$	V max
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	2.177	$\begin{aligned} & 2.150 \\ & 2.125 \end{aligned}$	V min
			0.026	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	V max
Io	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}(\mathrm{diff})= \pm 0.5 \mathrm{~V}$	14.9	$\begin{gathered} 10.0 \\ 5.0 \\ \hline \end{gathered}$	mA min
		$\begin{aligned} & \text { Sinking, } V_{O}=2.2 \mathrm{~V} \\ & V_{\text {IN }}(\text { diff })= \pm 0.5 \mathrm{~V} \end{aligned}$	23.8	$\begin{gathered} 15.0 \\ 5.0 \\ \hline \end{gathered}$	mA min
I_{s}	Supply Current	LMV721	0.93	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	mA max
		LMV722	1.64	$\begin{aligned} & 2.2 \\ & 2.6 \end{aligned}$	

2.2V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{j}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.2 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$,
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 5$)$	Units
SR	Slew Rate	$($ Note 7)	4.9	$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwdth Product		10	MHz
Φ_{m}	Phase Margin		67.4	Deg
G_{m}	Gain Margin		-9.8	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	9	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.3	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz} \mathrm{A}_{\mathrm{V}}=1$ $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=500 \mathrm{mV} \mathrm{PP}$	0.004	$\%$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-0.08	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		260		nA
Ios	Input Offset Current		25		nA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4.1 \mathrm{~V}$	89	$\begin{aligned} & \hline 70 \\ & 64 \end{aligned}$	dB min
PSRR	Power Supply Rejection Ratio	$2.2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}_{\mathrm{CM}}=0$	90	$\begin{aligned} & 70 \\ & 64 \end{aligned}$	dB min
$\overline{\mathrm{V}} \mathrm{CM}$	Input Common-Mode Voltage	For CMRR $\geq 50 \mathrm{~dB}$	-0.30		V
	Range		4.1		V
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0.75 \mathrm{~V} \text { to } 4.80 \mathrm{~V} \\ & \hline \end{aligned}$	87	$\begin{aligned} & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=0.70 \mathrm{~V} \text { to } 4.90 \mathrm{~V}, \end{aligned}$	94	$\begin{aligned} & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}^{+} / 2$	4.882	$\begin{aligned} & 4.840 \\ & 4.140 \end{aligned}$	V min
			0.105	$\begin{aligned} & 0.160 \\ & 0.185 \end{aligned}$	V max
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$	4.962	$\begin{aligned} & 4.940 \\ & 4.915 \end{aligned}$	V min
			0.046	$\begin{aligned} & 0.080 \\ & 0.105 \end{aligned}$	V max
10	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}(\mathrm{diff})= \pm 0.5 \mathrm{~V}$	52.6	$\begin{aligned} & 25.0 \\ & 12.0 \\ & \hline \end{aligned}$	mA min
		$\begin{array}{\|l} \hline \text { Sinking, } \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}(\text { diff })= \pm 0.5 \mathrm{~V} \\ \hline \end{array}$	23.7	$\begin{gathered} 15.0 \\ 8.5 \\ \hline \end{gathered}$	mA min
I_{s}	Supply Current	LMV721	1.03	$\begin{aligned} & 1.4 \\ & 1.7 \end{aligned}$	mA max
		LMV722	1.83	$\begin{aligned} & \hline 2.4 \\ & 2.8 \end{aligned}$	

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Units
SR	Slew Rate	(Note 7)	5.25	V/ $\mu \mathrm{s}$ min
GBW	Gain-Bandwdth Product		10.0	MHz
$\Phi_{\text {m }}$	Phase Margin		72	Deg
G_{m}	Gain Margin		-11	dB
e_{n}	Input-Related Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	8.5	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.2	$\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{v}=1 \\ & R_{L}=600 \Omega, V_{O}=1 V_{P P} \end{aligned}$	0.001	\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Connected as voltage follower with 1V step input. Number specified is the slower of the positive and negative slew rate.

LMV751

Low Noise, Low Vos, Single Op Amp

General Description

The LMV751 is a high performance CMOS operational amplifier intended for applications requiring low noise and low input offset voltage. It offers modest bandwidth of 4.5 MHz for very low supply current and is unity gain stable.
The output stage is able to drive high capacitance, up to 1000 pF and source or sink 8 mA output current.

It is supplied in the space saving SOT23-5 Tiny package.
The LMV751 is designed to meet the demands of small size, low power, and high performance required by cellular phones and similar battery operated portable electronics.

Features

- Low Noise 6.5nV Rt-Hz typ.
- Low Vos (0.05 mV typ.)
- Wideband 4.5 MHz GBP typ.
- Low Supply Current 500uA typ.

■ Low Suppy Voltage 2.7V to 5.0V

- Ground-referenced Inputs
- Unity gain stable
- Small Package

Applications

- Cellular Phones
- Portable Equipment
- Radio Systems

Connection Diagrams
SOT23-5

Ordering Information

Package	Ordering Info	NSC Drawing	Pkg Marking	Supplied As
5-Pin SOT23-5	LMV751M5	MA05B	A32A	1k Units Tape and Reel
	LMV751M5X	MA05B	A32A	3k units Tape and Reel

Gain/Phase

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD tolerance (Note 3)	
Human Body Model	2000 V
Machine Model	200 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V
Lead Temperature $($ Soldering, 10 sec$)$	$260^{\circ} \mathrm{C}$

Storage Temperature Range
Junction Temperature $\left(T_{J}\right)$ (Note 4)
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage	2.7 V to 5.0 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal resisance $\left(\theta_{\mathrm{JA}}\right)$ (Note 6)	
M5 Package, SOT23-5	$274^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

$\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated. Boldface limits apply over the Temperature Range.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limit (Note 2)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.05	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV}<\mathrm{V}_{\mathrm{CM}}<1.3 \mathrm{~V}$	100	$\begin{aligned} & 85 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.0 V	107	$\begin{aligned} & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.5	$\begin{gathered} \hline 0.7 \\ 0.75 \end{gathered}$	mA max
I_{IN}	Input Current		1.5	100	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
l_{os}	Input Offset Current		0.2		pA
$\mathrm{A}_{\text {VOL }}$	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { Connect to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$	120	$\begin{gathered} \hline 110 \\ 95 \end{gathered}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { Connect to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$	120	$\begin{gathered} 100 \\ 85 \end{gathered}$	
V_{0}	Positive Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	2.62	$\begin{aligned} & 2.54 \\ & 2.52 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	2.62	$\begin{aligned} & 2.54 \\ & 2.52 \end{aligned}$	
V_{0}	NegativeVoltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	78	$\begin{aligned} & 140 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	78	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	
Io	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}(\mathrm{diff})= \pm 0.5 \mathrm{~V}$	12	$\begin{aligned} & 6.0 \\ & \mathbf{1 . 5} \\ & \hline \end{aligned}$	mA min
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}(\text { diff })= \pm 0.5 \mathrm{~V} \end{aligned}$	11	$\begin{aligned} & 6.0 \\ & 1.5 \\ & \hline \end{aligned}$	
$\begin{aligned} & e_{n} \\ & (10 \mathrm{~Hz}) \end{aligned}$	Input Referred Voltage Noise		15.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & e_{n} \\ & (1 \mathrm{kHz}) \end{aligned}$	Input Referred Voltage Noise		7		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & e_{n} \\ & (30 \mathrm{kHz}) \end{aligned}$	Input Referred Voltage Noise		7	10	
$\mathrm{I}_{\mathrm{N}}(1 \mathrm{kHz})$	Input Referred Current Noise		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain-Bandwidth Product		4.5	2	$\begin{gathered} \mathrm{MHZ} \\ \mathrm{~min} \end{gathered}$
SR	Slew Rate		2		$\mathrm{V} / \mathrm{\mu s}$

5.0V Electrical Characteristics

$\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.Boldface limits apply over the Temperature Range.

Symbol	Parameter		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Limit } \\ \text { (Note 2) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	\%	0.05	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV}<\mathrm{V}_{\mathrm{CM}}<3.6 \mathrm{~V}$	103	$\begin{aligned} & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.0 V	107	$\begin{aligned} & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current		0.6	$\begin{gathered} \hline 0.8 \\ 0.85 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
I_{IN}	Input Current		1.5	100	$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
l_{os}	Input offset Current		0.2		pA
$\mathrm{A}_{\text {VOL }}$	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { Connect to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	120	$\begin{gathered} 110 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{db} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { Connect to } \mathrm{V}^{+} / 2 \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	120	$\begin{gathered} 100 \\ 85 \end{gathered}$	
V_{0}	Positive Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	4.89	$\begin{aligned} & 4.82 \\ & 4.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	4.89	$\begin{aligned} & 4.82 \\ & 4.80 \end{aligned}$	
V_{O}	Negative Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	86	$\begin{aligned} & 160 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ Connect to $\mathrm{V}^{+} / 2$	86	$\begin{aligned} & 160 \\ & 180 \end{aligned}$	
I_{0}	Output Current	$\begin{aligned} & \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { diff })= \pm 0.5 \mathrm{~V} \end{aligned}$	15	$\begin{aligned} & 8.0 \\ & 2.5 \\ & \hline \end{aligned}$	mA min
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}(\text { diff })= \pm 0.5 \mathrm{~V} \end{aligned}$	20	$\begin{aligned} & \hline 8.0 \\ & 2.5 \\ & \hline \end{aligned}$	
e_{n} $(10 \mathrm{~Hz})$	Input Referred Voltage Noise		15		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & e_{n} \\ & (1 \mathrm{kHz}) \end{aligned}$	Input Referred Voltage Noise		6.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & e_{\mathrm{n}} \\ & (30 \mathrm{kHz}) \end{aligned}$	Input Referred Voltage Noise		6.5	10	$\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \max \end{gathered}$
$\mathrm{I}_{\mathrm{N}}(1 \mathrm{kHz})$	Input Referred Current Noise		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain-Bandwidth Product		5	2	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~min} \end{gathered}$
SR	Slew Rate		2.3		V/ $/ \mathrm{s}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: All limits are guaranteed by testing or statistical analysis
Note 3: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 1000 pF .
Note 4: The maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All numbers are typical, and apply to packages soldered directly onto PC board in still air.

LMV821 Single/ LMV822 Dual/ LMV824 Quad Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps

General Description

The LMV821/LMV822/LMV824 bring performance and economy to low voltage / low power systems. With a 5 MHz unity-gain frequency and a guaranteed $1.4 \mathrm{~V} / \mu \mathrm{s}$ slew rate, the quiescent current is only $220 \mu \mathrm{~A}$ /amplifier (2.7 V). They provide rail-to-rail (R-to-R) output swing into heavy loads (600Ω Guarantees). The input common-mode voltage range includes ground, and the maximum input offset voltage is 3.5 mV (Guaranteed). They are also capable of comfortably driving large capacitive loads (refer to the application notes section).
The LMV821 (single) is available in the ultra tiny SC70-5 package, which is about half the size of the previous title holder, the SOT23-5.
Overall, the LMV821/LMV822/LMV824 (Single/Dual/Quad) are low voltage, low power, performance op amps, that can be designed into a wide range of applications, at an economical price.

Features
(For Typical, 5 V Supply Values; Unless Otherwise Noted)

- Ultra Tiny, SC70-5 Package
$2.0 \times 2.0 \times 1.0 \mathrm{~mm}$
- Guaranteed 2.5 V, 2.7 V and 5 V Performance
- Maximum VOS
3.5 mV (Guaranteed)
- VOS Temp. Drift
- GBW product @ 2.7 V $1 \mathrm{uV} /^{\circ} \mathrm{C}$ 5 MHz
- $I_{\text {Supply }}$ @ 2.7 V 220μ A/Amplifier
- Minimum SR $1.4 \mathrm{~V} / \mathrm{us}$ (Guaranteed)
- CMRR 90 dB
- PSRR 85 dB
- Rail-to-Rail (R-to-R) Output Swing —@600 Ω Load

160 mV from rail —@10 k Load $\quad 55 \mathrm{mV}$ from rail

- V_{CM} @ 5 V -0.3 V to 4.3 V
- Stable with High Capacitive Loads (Refer to Application Section)

Applications

- Cordless Phones
- Cellular Phones
- Laptops
- PDAs
- PCMCIA

Telephone-line Transceiver for a PCMCIA Modem Card

Absolute Maximum Ratings
 (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)

Machine Model	100 V
Human Body Model	
LMV822/824	2000 V
LMV821	1500 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V

Output Short Circuit to V^{+}(Note 3)
Output Short Circuit to V^{-}(Note 3)
Soldering Information
Infrared or Convection (20 sec)
$235^{\circ} \mathrm{C}$
Storage Temperature Range
Junction Temperature (Note 4)

Operating Ratings (Note 1)
Supply Voltage
2.5 V to 5.5 V

Temperature Range
LMV821, LMV822, LMV824
Thermal Resistance (θ_{JA})

Ultra Tiny SC70-5 Package	$440{ }^{\circ} \mathrm{C} / \mathrm{W}$
5-Pin Surface Mount	
Tiny SOT23-5 Package 5 -Pin	$265{ }^{\circ} \mathrm{C} / \mathrm{W}$

Tiny SOT23-5 Package 5-Pin $265^{\circ} \mathrm{C} / \mathrm{W}$
Surface Mount

SO Package, 8-Pin Surface	
Mount	
MSOP Package, 8-Pin Mini	
Surface Mount	
SO Package, 14 -Pin Surface	$235{ }^{\circ} \mathrm{C} / \mathrm{W}$
\quad Mount	
TSSOP Package, 14-Pin	$145{ }^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		1	$\begin{gathered} 3.5 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		30	$\begin{gathered} 90 \\ 140 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
los	Input Offset Current		0.5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	nA max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	85	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{~V}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -1.0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-3.3 \mathrm{~V}, \mathrm{~V}^{+}=1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.0	1.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing, $\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V}$ to 2.2 V Sinking, $\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V}$ to 0.5 V	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			90	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sourcing, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V}$ to 2.2 V Sinking, $R_{L}=2 k \Omega$ to 1.35, $\mathrm{V}_{\mathrm{O}}=1.35$ to 0.5 V	100	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			95	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
V_{0}	Output Swing	$\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.35 V	2.58	$\begin{aligned} & 2.50 \\ & 2.40 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.13	$\begin{aligned} & 0.20 \\ & 0.30 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.35 V	2.66	$\begin{aligned} & 2.60 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.08	$\begin{aligned} & 0.120 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
${ }^{\circ}$	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	16	12	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			26	12	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	LMV821 (Single)	0.22	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		LMV822 (Dual)	0.45	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \max \end{gathered}$
		LMV824 (Quad)	0.72	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	mA max

2.5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.25 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 3.5 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
V_{0}	Output Swing	$\mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.25 V	2.37	$\begin{aligned} & 2.30 \\ & 2.20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.13	$\begin{aligned} & 0.20 \\ & 0.30 \end{aligned}$	V max
		$\mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.25 V	2.46	$\begin{aligned} & 2.40 \\ & 2.30 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.08	$\begin{aligned} & 0.12 \\ & 0.20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	1.5		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwdth Product		5		MHz
Φ_{m}	Phase Margin		61		Deg.
G_{m}	Gain Margin		10		dB
	Amp-to-Amp Isolation	$($ Note 8)	135		dB
e_{n}	Input-Related Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	28		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 5)	LMV821/822/824 Limit $($ Note 6)	Units
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{V}=-2$, $R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.1 \mathrm{~V}_{P P}$	0.01		$\%$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		40	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
Ios	Input Offset Current		0.5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	nA max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4.0 \mathrm{~V}$	90	$\begin{aligned} & 72 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{~V}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -1.0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-3.3 \mathrm{~V}, \mathrm{~V}^{+}=1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{CM}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.3	4.2	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing, $\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 2.5 V , $\mathrm{V}_{\mathrm{O}}=2.5$ to 4.5 V Sinking, $R_{L}=600 \Omega$ to 2.5 V , $\mathrm{V}_{\mathrm{O}}=2.5$ to 0.5 V	105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sourcing, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V , $\mathrm{V}_{\mathrm{O}}=2.5$ to 4.5 V Sinking, $R_{L}=2 k \Omega$ to 2.5, $\mathrm{V}_{\mathrm{O}}=2.5$ to 0.5 V	105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{0}	Output Swing	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 2.5 V	4.84	$\begin{aligned} & 4.75 \\ & 4.70 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.17	$\begin{gathered} 0.250 \\ .30 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	4.90	$\begin{aligned} & 4.85 \\ & 4.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.10	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { LMV821/822/824 } \\ \text { Limit (Note 6) } \\ \hline \end{gathered}$	Units
I_{0}	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	45	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			40	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{s}	Supply Current	LMV821 (Single)	0.30	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	mA max
		LMV822 (Dual) LMV824 (Quad)	0.5	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	$\overline{m A}$ \max
			1.0	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	mA max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	2.0	1.4	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwdth Product		5.6		MHz
Φ_{m}	Phase Margin		67		Deg.
G_{m}	Gain Margin		15		dB
	Amp-to-Amp Isolation	(Note 8)	135		dB
e_{n}	Input-Related Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	24		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.25		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=4.1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series wth 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J}\right.$ $\left.(\max)-T_{A}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=5 \mathrm{~V}$. Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred, $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 2.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{PP}}$.

LMV921/LMV922/LMV924
 Single, Dual and Quad 1.8V, 1MHz, Low Power Operational Amplifiers with Rail-To-Rail Input and Output

General Description

The LMV921 Single/LMV922 Dual/LMV924 Quad are guaranteed to operate from +1.8 V to +5.0 V supply voltages and have rail-to-rail input and output. This rail-to-rail operation enables the user to make full use of the entire supply voltage range. The input common mode voltage range extends 300 mV beyond the supplies and the output can swing rail-to-rail unloaded and within 100 mV from the rail with 600Ω load at 1.8 V supply. The LMV921/LMV922/LMV924 are optimized to work at 1.8 V which make them ideal for portable two-cell battery-powered systems and single cell Li-lon systems.
The LMV921/LMV922/LMV924 exhibit excellent speed-power ratio, achieving 1 MHz gain bandwidth product at 1.8 V supply voltage with very low supply current. The LMV921/LMV922/LMV924 are capable of driving 600Ω load and up to 1000 pF capacitive load with minimal ringing. The LMV921/LMV922/LMV924's high DC gain of 100dB makes them suitable for low frequency applications.
The LMV921 (Single) is offered in a space saving SC70-5 and SOT23-5 packages. The SC70-5 package is only 2.0X2.1X1.0mm. These small packages are ideal solutions for area constrained PC boards and portable electronics such as cellphones and PDAs.

Features

(Typical 1.8V Supply Values; Unless Otherwise Noted)

- Guaranteed $1.8 \mathrm{~V}, 2.7 \mathrm{~V}$ and 5 V specifications
- Rail-to-Rail input \& output swing
- w/600 load

100 mV from rail

- w/2k Ω load
- V_{CM}
- 90dB gain w/600 load
- Supply current
- Gain bandwidth product
$145 \mu \mathrm{~A} /$ amplifier
- LMV921 Maximum $V_{\text {OS }} 6 \mathrm{mV}$
- LMV921 available in Ultra Tiny, SC70-5 package
- LMV922 available in MSOP-8 package
- LMV924 available in TSSOP-14 package

Applications

- Cordless/cellular phones
- Laptops
- PDAs
- PCMCIA
- Portable/battery-powered electronic Equipment
- Supply current Monitoring
- Battery monitoring

Supply Current vs. Supply Voltage (LMV921)

Gain and Phase Margin vs. Frequency

Output Voltage Swing vs. Supply Voltage

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	100 V
Human Body Model	2000 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	5.5 V
Output Short Circuit to V^{+}(Note 3)	
Output Short Circuit to V^{-}(Note 3)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$
Mounting Temp.	
Infrared or Convection (20 sec)	$235{ }^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	1.5 V to 5.0 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})	
Ultra Tiny SC70-5 Package	
5-Pin Surface Mount	$440{ }^{\circ} \mathrm{C} / \mathrm{W}$
Tiny SOT23-5 Package	
5-Pin Surface Mount	$265{ }^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Package	
8-Pin Surface Mount	$235^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP Package	
14-Pin Surface Mount	$155^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	
8-Pin Surface Mount	$175^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Surface Mount	$127^{\circ} \mathrm{C} / \mathrm{W}$

1.8V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	LMV921 (Single)	-1.8	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
		LMV922 (Dual) LMV924 (Quad)	-1.8	$\begin{gathered} 8 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		12	$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
l_{OS}	Input Offset Current		2	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	nA max
I_{s}	Supply Current	LMV921 (Single)	145	$\begin{aligned} & 185 \\ & 205 \end{aligned}$	$\mu \mathrm{A}$$\max$
		LMV922 (Dual)	330	$\begin{aligned} & 400 \\ & 550 \end{aligned}$	
		LMV924 (Quad)	560	$\begin{aligned} & 700 \\ & 850 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$0 \leq \mathrm{V}_{\mathrm{CM}} \leq 0.6 \mathrm{~V}$	82	$\begin{aligned} & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & -0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.0 \mathrm{~V} \end{aligned}$	74	50	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	78	$\begin{aligned} & 67 \\ & 62 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\overline{V_{C M}}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.15	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain LMV921 (Single)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 0.9 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	91	$\begin{aligned} & 77 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 0.9 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	95	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	
	Large Signal Voltage Gain LMV922 (Dual) LMV924 (Quad)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 0.9 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	79	$\begin{aligned} & 65 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 0.9 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 68 \\ & 63 \end{aligned}$	

1.8V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Limits } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{O}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 0.9 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV} \end{aligned}$	1.7	$\begin{aligned} & 1.65 \\ & 1.63 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.075	$\begin{aligned} & 0.090 \\ & 0.105 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 0.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	1.77	$\begin{aligned} & 1.75 \\ & 1.74 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.025	$\begin{aligned} & 0.035 \\ & 0.040 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Io	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } V_{O}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV} \end{aligned}$	6	$\begin{gathered} \hline 4 \\ 3.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-100 \mathrm{mV} \end{aligned}$	10	$\begin{aligned} & 7 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

1.8V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=1.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Units
SR	Slew Rate	(Note 7)	0.39	V/us
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		60	Deg.
G_{m}	Gain Margin		10	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{V}=+1 \\ & R_{L}=600 k \Omega, V_{I N}=1 V_{P P} \end{aligned}$	0.089	\%
	Amp-to-Amp Isolation	(Note 8)	140	dB

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6) (Note 6)	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage	LMV921 (Single)	-1.6	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
		LMV922 (Dual) LMV924 (Quad)	-1.6	$\begin{gathered} 8 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		12	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	nA max
$\mathrm{I}_{\text {OS }}$	Input Offset Current		2	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	nA max

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
$I_{\text {s }}$	Supply Current	LMV921 (Single)	147	$\begin{aligned} & \hline 190 \\ & 210 \end{aligned}$	uA max
		LMV922 (Dual)	380	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	
		LMV924 (Quad)	580	$\begin{aligned} & 750 \\ & 900 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.5 \mathrm{~V}$	84	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \hline-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}}<2.9 \mathrm{~V} \\ & \hline \end{aligned}$	73	50	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	78	$\begin{aligned} & 67 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.2 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			3.050	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain LMV921 (Single)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	98	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	103	$\begin{aligned} & 83 \\ & 77 \\ & \hline \end{aligned}$	
	Large Signal Voltage Gain LMV922 (Dual) LMV924 (Quad)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	86	$\begin{aligned} & 68 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	91	$\begin{aligned} & 71 \\ & 65 \\ & \hline \end{aligned}$	
V_{O}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	2.62	$\begin{array}{r} 2.550 \\ 2.530 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.075	$\begin{aligned} & 0.095 \\ & 0.115 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	2.675	$\begin{aligned} & 2.650 \\ & 2.640 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.025	$\begin{aligned} & 0.040 \\ & 0.045 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } V_{O}=0 \mathrm{~V} \\ & V_{I N}=100 \mathrm{mV} \end{aligned}$	27	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		$\text { Sinking, } \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=-100 \mathrm{mV}$	28	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Typ $($ Note 5)	Units	
SR	Slew Rate	(Note 7)	0.41	$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		65	Deg
G_{m}	Gain Margin		10	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and
$R_{L}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Units
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=+1$ $\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PP}}$	0.077	$\%$
	Amp-to-Amp Isolation	(Note 8)	140	dB

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 M \Omega$.Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Limits (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	LMV921 (Single)	-1.5	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{max} \end{gathered}$
		LMV922 (Dual) LMV924 (Quad)	-1.5	$\begin{gathered} \hline 8 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		12	$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \mathrm{max} \end{gathered}$
los	Input Offset Current		2	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
I_{S}	Supply Current	LMV921 (Single)	160	$\begin{aligned} & 210 \\ & 230 \end{aligned}$	$\mu \mathrm{A}$$\max$
		LMV922 (Dual)	400	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	
		LMV924 (Quad)	750	$\begin{aligned} & \hline 850 \\ & 980 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\text {СМ }} \leq 3.8 \mathrm{~V}$	86	$\begin{aligned} & 62 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & -0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.2 \mathrm{~V} \end{aligned}$	72	50	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	78	$\begin{aligned} & 67 \\ & 62 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			5.350	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Voltage Gain LMV921 (Single)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$	104	$\begin{aligned} & \hline 86 \\ & 82 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$	108	$\begin{aligned} & 89 \\ & 85 \\ & \hline \end{aligned}$	
	Voltage Gain LMV922 (Dual) LMV924 (Quad)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$	90	$\begin{aligned} & 72 \\ & 68 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \\ & \hline \end{aligned}$	96	$\begin{aligned} & 77 \\ & 73 \end{aligned}$	

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $R_{L}>1 M \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Limits (Note 6)	Units
v_{0}	Output Swing	$\begin{aligned} & R_{L}=600 \Omega \text { to } 2.5 \mathrm{~V} \\ & V_{I N}= \pm 100 \mathrm{mV} \end{aligned}$	4.895	$\begin{aligned} & 4.865 \\ & 4.840 \end{aligned}$	V min
			0.1	$\begin{aligned} & 0.135 \\ & 0.160 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	4.965	$\begin{aligned} & 4.945 \\ & 4.935 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.035	$\begin{aligned} & 0.065 \\ & 0.075 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Short Circuit Current	LMV921 Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $V_{I N}=100 \mathrm{mV}$	98	$\begin{aligned} & 85 \\ & 68 \end{aligned}$	
		LMV922, LMV924 Sourcing, $\mathrm{V}_{\mathrm{O}}=$ OV $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$	60	35	\min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ $V_{I N}=-100 \mathrm{mV}$	75	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and
$R_{L}>1 M \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Units
SR	Slew Rate	(Note 7)	0.45	V/us
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		70	Deg.
G_{m}	Gain Margin		15	dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	45	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=+1 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.069	\%
	Amp-to-Amp Isolation	(Note 8)	140	dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}{ }^{-T} A\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=5 \mathrm{~V}$. Connected as voltage follower with 5 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred, $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 2.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{PP}}$.

LP324/LP2902

Micropower Quad Operational Amplifier

General Description

The LP324 series consists of four independent, high gain internally compensated micropower operational amplifiers. These amplifiers are specially suited for operation in battery systems while maintaining good input specifications, and extremely low supply current drain. In addition, the LP324 has an input common mode range, and output source range which includes ground, making it ideal in single supply applications.
These amplifiers are ideal in applications which include portable instrumentation, battery backup equipment, and other circuits which require good DC performance and low supply current.

Features

- Low supply current: $\quad 125 \mu \mathrm{~A}(\max)$
- Low offset voltage: 2 mV (max)
- Low input bias current: 4 nA (max)
- Input common mode to GND
- Interfaces to CMOS logic
- Wide supply range: $3 \mathrm{~V}<\mathrm{V}^{+}<32 \mathrm{~V}$
- Small Outline Package available
- Pin-for-pin compatible with LM324

Connection Diagram

Dual-In-Line (N) and SO (M)

Order Number LP324M or LP2902M
See NS Package Number M14A
Order Number LP324N or LP2902NSee NS Package Number N14A

Supply Current

Simplified Schematic

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
LP2902
Differential Input Voltage LP2902
Input Voltage (Note 2) LP2902
Output Short-Circuit to GND (One Amplifier) (Note 3)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ESD Susceptibility (Note 10)

32 V or $\pm 16 \mathrm{~V}$
26 V or $\pm 13 \mathrm{~V}$ 32 V 26 V
-0.3 V to 32 V
-0.3 V to 26 V
Continuous

Operating Conditions

Electrical Characteristics (Note 6)

Symbol	Parameter	Conditions	LP2902 (Note 9)			LP324			Units Limits
			Typ	Tested Limit (Note 7)	Design Limit (Note 8)	Typ	Tested Limit (Note 7)	Design Limit (Note 8)	
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		2	4	10	2	4	9	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
I_{b}	Input Bias Current		2	20	40	2	10	20	$\begin{gathered} \mathrm{nA} \\ (\mathrm{Max}) \end{gathered}$
los	Input Offset Current		0.5	4	8	0.2	2	4	$\begin{gathered} \mathrm{nA} \\ (\mathrm{Max}) \end{gathered}$
$\mathrm{A}_{\text {vol }}$	Voltage Gain	$R_{L}=10 k$ to GND $\mathrm{V}^{+}=30 \mathrm{~V}$	70	40	30	100	50	40	V / mV (Min)
CMRR	Common Mode Rej. Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \mathrm{OV} \leq \mathrm{V}_{\mathrm{cm}} \\ & \mathrm{~V}_{\mathrm{cm}}<\mathrm{V}^{+}-1.5 \end{aligned}$	90	80	75	90	80	75	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
PSRR	Power Supply Rej. Ratio	$\mathrm{V}^{+}=5 \mathrm{~V}$ to 30 V	90	80	75	90	80	75	$\begin{gathered} \hline \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
$\mathrm{I}_{\text {s }}$	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	85	150	250	85	150	250	$\mu \mathrm{A}$ (Max)
V_{0}	Output Voltage Swing	$\mathrm{I}_{\mathrm{L}}=350 \mu \mathrm{~A}$ to GND. $\mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V}$	3.6	3.4	$\mathrm{V}^{+}-1.9 \mathrm{~V}$	3.6	3.4	$\mathrm{V}^{+}-1.9 \mathrm{~V}$	$\begin{gathered} \mathrm{V} \\ (\mathrm{Min}) \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=350 \mu \mathrm{~A} \\ & \text { to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V} \end{aligned}$	0.7	0.8	1.0	0.7	0.8	1.0	$\begin{gathered} V \\ (\operatorname{Max}) \end{gathered}$
$I_{\text {out }}$ Source	Output Source Current	$\begin{aligned} & V_{0}=3 V \\ & V_{\text {in }}(d i f f)=1 V \end{aligned}$	10	7	4	10	7	4	mA (Min)
$I_{\text {out }}$ Sink	Output Sink Current	$\begin{aligned} & V_{0}=1.5 \mathrm{~V} \\ & V_{\text {in }}(\text { diff })=1 \mathrm{~V} \end{aligned}$	5	4	3	5	4	3	mA (Min)
$I_{\text {out }}$ Sink	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cm}}=0 \mathrm{~V} \end{aligned}$	4	2	1	4	2	1	mA (Min)
$\mathrm{I}_{\text {source }}$	Output Short to GND	$\mathrm{V}_{\text {in }}($ diff $)=1 \mathrm{~V}$	20	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	35	20	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	35	mA (Max)
$\mathrm{I}_{\text {sink }}$	Output Short to V^{+}	$V_{\text {in }}($ diff $)=1 \mathrm{~V}$	15	30	45	15	30	45	mA (Max)

Electrical Characteristics (Note 6) (Continued)

Symbol	Parameter	Conditions	LP2902 (Note 9)			LP324			Units Limits
			Typ	Tested Limit (Note 7)	Design Limit (Note 8)	Typ	Tested Limit (Note 7)	Design Limit (Note 8)	
$V_{\text {os }}$ Drift			10			10			$\mu \mathrm{V} / \mathrm{C}^{\circ}$
I_{os} Drift			10			10			$\mathrm{pA} / \mathrm{C}^{\circ}$
GBW	Gain Bandwidth Product		100			100			KHz
S_{r}	Slew Rate		50			50			V / mS

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: The input voltage is not allowed to go more than -0.3 V below V^{-}(GND) as this will turn on a parasitic transistor causing large currents to flow through the device.
Note 3: Short circuits from the output to GND can cause excessive heating and eventual destruction. The maximum sourcing output current is approximately 30 mA independent of the magnitude of V^{+}. At values of supply voltage in excess of $15 \mathrm{~V}_{\mathrm{DC}}$, continuous short-circuit to GND can exceed the power dissipation ratings (particularly at elevated temperatures) and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Note 4: For operation at elevated temperatures, these devices must be derated based on a thermal resistance of $\theta_{j a}$ and T_{j} max. $T_{j}=T_{A}+\theta_{j a} P_{D}$.
Note 5: The LP2902 may be operated from $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, and the LP324 may be operated from $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$.
Note 6: Boldface numbers apply at temperature extremes. All other numbers apply only at $T_{A}=T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cm}}=\mathrm{V} / 2$, and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ connected to GND unless otherwise specified.
Note 7: Guaranteed and 100\% production tested.
Note 8: Guaranteed (but not 100% production tested) over the operating supply voltage range (3.0 V to 32 V for the LP324, LP324, and 3.0 V to 26 V for the LP2902), and the common mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$), unless otherwise specified. These limits are not used to calculate outgoing quality levels.
Note 9: The LP2902 operating supply range is 3 V to 26 V , and is not tested above 26 V .
Note 10: The test circuit used consists of the human body model of 100 pF in series with 1500Ω.

National Semiconductor

LPC660

Low Power CMOS Quad Operational Amplifier

General Description

The LPC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltages from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 1 mW .
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LPC662 datasheet for a Dual CMOS operational amplifier and LPC661 datasheet for a single CMOS operational amplifier with these same features.

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Features

- Rail-to-rail output swing
- Micropower operation: (1 mW)
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain:

120 dB

- Low input offset voltage: 3 mV
- Low offset voltage drift:
- Ultra low input bias current:
- Input common-mode includes V^{-}
- Operation range from +5 V to +15 V
- Low distortion:
0.01% at 1 kHz
- Slew rate:
$0.11 \mathrm{~V} / \mu \mathrm{s}$
- Full military temp. range available

Application Circuit

Sine-Wave Oscillator

DS010547-10
Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :
$f_{\text {OSC }}=1 / 2 \pi R C$
where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.

Absolute Maximum Ratings (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 sec .)
Storage Temp. Range
Junction Temperature (Note 2)
ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
Power Dissipation
\pm Supply Voltage
16V
(Note 11)
(Note 1)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$

1000V
(Note 2)
$\pm 5 \mathrm{~mA}$
$\pm 18 \mathrm{~mA}$
Current at Input Pin

Voltage at Input/Output Pin
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Power Supply Pin
35 mA
Operating Ratings (Note 3)
Temperature Range

LPC660AM
LPC660AI
LPC6601
Supply Range
Power Dissipation
Thermal Resistance (θ_{JA}), (Note 10)
14-Pin Ceramic DIP
14-Pin Molded DIP
14-Pin SO
14-Pin Side Brazed Ceramic DIP
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
4.75 V to 15.5 V
(Note 9)
$90^{\circ} \mathrm{C} / \mathrm{W}$
$85^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C} / \mathrm{W}$ $90^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM LPC660AMJ/883	LPC660AI	LPC660I	Units
			Limit (Notes 4, 8)	Limit (Note 4)	Limit (Note 4)	
Input Offset Voltage		1	3	3	6	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	20			$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
			100	4	4	
Input Offset Current		0.001	20			$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
			100	2	2	
Input Resistance		>1				Tera Ω
Common Mode	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Rejection Ratio			68	68	61	
Positive Power Supply	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Rejection Ratio			68	68	61	
Negative Power Supply	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
Rejection Ratio			82	83	73	
Input Common Mode	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR }>50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1	-0.1	-0.1	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Voltage Range			0	0	0	
		$\mathrm{V}^{+}-1.9$	$\mathrm{V}^{+}-2.3$	$\mathrm{V}^{+}-2.3$	$\mathrm{V}^{+}-2.3$	$\begin{gathered} V \\ \min \\ \hline \end{gathered}$
			$\mathrm{V}^{+}-2.6$	$\mathrm{V}^{+}-2.5$	$\mathrm{V}^{+}-2.5$	
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note 5) }$ Sourcing Sinking	1000	400	400	300	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			250	300	200	
		500	180	180	90	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			70	120	70	
	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 5 \text {) }$ Sourcing Sinking	1000	200	200	100	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$
			150	160	80	
		250	100	100	50	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			35	60	40	

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM LPC660AMJ/883	LPC660AI	LPC660I	Units
			Limit (Notes 4, 8)	Limit (Note 4)	Limit (Note 4)	
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	V \max
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{max} \\ \hline \end{gathered}$
			0.300	0.300	0.400	
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	16	16	13	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			12	14	11	
		21	16	16	13	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			12	14	11	
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	40	19	28	23	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			19	25	20	
		39	19	28	23	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			19	24	19	
Supply Current	All Four Amplifiers$V_{O}=1.5 \mathrm{~V}$	160	200	200	240	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
			250	230	270	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM LPC660AMJ/883	LPC660AI	LPC6601	Units
			Limit (Notes 4, 8)	Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
			0.04	0.05	0.03	
Gain-Bandwidth Product		0.35				MHz
Phase Margin		50				Deg
Gain Margin		17				dB
Amp-to-Amp Isolation	(Note 7)	130				dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{V}=-10 \\ & R_{L}=100 \mathrm{k} \Omega, V_{O}=8 \mathrm{~V}_{P P} \end{aligned}$	0.01				\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability. Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: A military RETS electrical test specification is available on request. At the time of printing, the LPC660AMJ/883 RETS specification complied fully with the boldface limits in this column. The LPC660AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 9: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LPC661

Low Power CMOS Operational Amplifier

General Description

The LPC661 CMOS operational amplifier is ideal for operation from a single supply. It features a wide range of operating supply voltage from +5 V to +15 V , rail-to-rail output swing and an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into 100 $\mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the supply current requirement is typically $55 \mu \mathrm{~A}$.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational amplifier or the LPC662 data sheet for a Dual CMOS operational amplifier with these same features.

Features

(Typical unless otherwise noted)

- Rail-to-rail output swing
- Low supply current $55 \mu \mathrm{~A}$
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain 120 dB
- Low input offset voltage 3 mV
- Low offset voltage drift $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current 2 fA
- Input common-mode range includes GND
- Operating range from +5 V to +15 V
- Low distortion 0.01% at 1 kHz
- Slew rate $0.11 \mathrm{~V} / \mu \mathrm{s}$

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Application Circuits

10 Hz Bandpass Filter

$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$
$Q=2.1$
Gain $=18.9 \mathrm{~dB}$

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ($\mathrm{V}^{+}{ }^{-} \mathrm{V}^{-}$)
Differential Input Voltage
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Storage Temperature Range
Lead Temperature
(Soldering, 10 sec .)
Junction Temperature (Note 3)
Power Dissipation
ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
Current at Input Pin
\pm Supply Voltage
(Notes 2, 9)
(Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
(Note 3)

1000 V
$\pm 5 \mathrm{~mA}$

Current at Output Pin
$\pm 18 \mathrm{~mA}$
Voltage Input/Output Pin
Current at Power Supply Pin

Operating Ratings (Note 1)

Supply Voltage
Junction Temperature Range

```
LPC661AM
LPC661AI LPC661I
```

Power Dissipation
Thermal Resistance (θ_{JA}) (Note 8)
8-Pin DIP
$165^{\circ} \mathrm{N}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	$\begin{gathered} \hline \text { LPC661AM } \\ \text { Limit } \\ \text { (Note 4) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { LPC661AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	LPC661I Limit (Note 4)	Units (Limit)
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	mV
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.002	$\begin{gathered} 20 \\ 100 \end{gathered}$	4	4	pA max
los	Input Offset Current		0.001	$\begin{gathered} 20 \\ 100 \end{gathered}$	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{max} \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 84 \\ & 82 \end{aligned}$	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
V_{CM}	Input Common Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ for CMRR $\geq 50 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}-1.9$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathbf{V}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.2 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-2.3 \\ & \mathrm{~V}^{+}-2.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note } 5 \text {) }$	1000	$\begin{aligned} & \hline 400 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & \mathbf{3 0 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & \hline \end{aligned}$	V / mV min
		Sinking $R_{L}=100 \mathrm{k} \Omega \text { (Note 5) }$	500	$\begin{aligned} & 180 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \\ & \hline \end{aligned}$	V / mV min
		Sourcing $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 5 \text {) }$	1000	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 160 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 80 \\ \hline \end{gathered}$	V / mV min
		Sinking $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 5 \text {) }$	250	$\begin{gathered} 100 \\ 35 \end{gathered}$	$\begin{gathered} 100 \\ 60 \end{gathered}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	V / mV min

DC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LPC661AM Limit (Note 4)	$\begin{gathered} \hline \text { LPC661AI } \\ \text { Limit } \\ \text { (Note 4) } \end{gathered}$	$\begin{aligned} & \text { LPC661I } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Units (Limit)
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{aligned} & 4.970 \\ & 4.950 \end{aligned}$	$\begin{aligned} & 4.970 \\ & 4.950 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.940 \\ & 4.910 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.004	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.940	$\begin{aligned} & 4.850 \\ & 4.750 \end{aligned}$	$\begin{aligned} & 4.850 \\ & 4.750 \end{aligned}$	$\begin{aligned} & 4.750 \\ & 4.650 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.040	$\begin{aligned} & 0.150 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.350 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.970	$\begin{aligned} & 14.920 \\ & 14.880 \end{aligned}$	$\begin{aligned} & 14.920 \\ & \mathbf{1 4 . 8 8 0} \end{aligned}$	$\begin{aligned} & 14.880 \\ & 14.820 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.090 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.840	$\begin{aligned} & 14.680 \\ & 14.600 \end{aligned}$	$\begin{aligned} & 14.680 \\ & 14.600 \end{aligned}$	$\begin{aligned} & 14.580 \\ & 14.480 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.110	$\begin{aligned} & 0.220 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.220 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.320 \\ & 0.400 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{0}	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking, $V_{O}=13 \mathrm{~V}$ (Note 9)	39	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {S }}$	Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	55	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 85 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	58	$\begin{aligned} & 75 \\ & 85 \end{aligned}$	$\begin{aligned} & 75 \\ & 85 \end{aligned}$	$\begin{gathered} 90 \\ 105 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typ	LPC661AM Limit (Note 4) 0.07	$\begin{array}{\|c\|} \hline \text { LPC661AI } \\ \text { Limit } \\ \text { (Note 4) } \\ \hline \end{array}$		Units (Limit)
SR	Slew Rate	(Note 6)	0.11	$\begin{aligned} & 0.07 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product		350				kHz
¢m	Phase Margin		50				Deg
G_{M}	Gain Margin		17				dB
e_{n}	Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	0.01				\%

AC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)} ; \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}+=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 8: All numbers apply for packages soldered directly into a PC board.
Note 9: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LPC662

Low Power CMOS Dual Operational Amplifier

General Description

The LPC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltage from +5 V to +15 V , rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 0.5 mW .
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational amplifier and LPC661 for a single CMOS operational amplifier with these same features.

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Features

- Rail-to-rail output swing
- Micropower operation ($<0.5 \mathrm{~mW}$)
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain
- Low input offset voltage
- Low offset voltage drift
- Ultra low input bias current
- Input common-mode includes GND
- Operating range from +5 V to +15 V
- Low distortion
0.01% at 1 kHz
- Slew rate $0.11 \mathrm{~V} / \mathrm{\mu s}$
- Full military temperature range available

Application Circuit

Absolute Maximum Ratings (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Differential Input Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature
(Soldering, 10 sec .)
Storage Temp. Range
Junction Temperature
ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
Power Dissipation
Current at Input Pin
Current at Output Pin
\pm Supply Voltage
16 V
(Note 11)
(Note 1)
$260^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
1000V
(Note 2)
$\pm 5 \mathrm{~mA}$
$\pm 18 \mathrm{~mA}$

Current at Power Supply Pin
35 mA
Voltage at Input/Output Pin
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

Operating Ratings (Note 3)

Temperature Range

LPC662AMJ/883	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LPC662AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LPC662AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LPC662।	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$

Supply Range
Power Dissipation
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 10)
8-Pin Ceramic DIP
$100^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin Molded DIP
8 -Pin SO
8-Pin Side Brazed Ceramic DIP
$101^{\circ} \mathrm{C} / \mathrm{W}$
$165^{\circ} \mathrm{C} / \mathrm{W}$
$100^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC662AM LPC662AMJ/883 Limit (Notes 4, 8)	$\begin{aligned} & \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	LPC6621 Limit (Note 4)	Units
Input Offset Voltage		1	3	3	6	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	$\begin{gathered} 20 \\ 100 \\ \hline \end{gathered}$	4	4	$\begin{aligned} & \mathrm{pA} \\ & \max \end{aligned}$
Input Offset Current		0.001	20			$\begin{aligned} & \mathrm{pA} \\ & \mathrm{max} \end{aligned}$
			100	2	2	
Input Resistance		>1				Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68	68	61	
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			68	68	61	
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			82	83	73	
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.4	-0.1	-0.1	-0.1	$\begin{gathered} \mathrm{V} \\ \mathrm{max} \end{gathered}$
			0	0	0	
		$\mathrm{V}^{+}-1.9$	$\mathrm{V}^{+}-2.3$	$\mathrm{V}^{+}-2.3$	$\mathrm{V}^{+}-2.3$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			$\mathrm{V}^{+}-2.6$	$\mathrm{V}^{+}-2.5$	$\mathrm{V}^{+}-2.5$	
Large Signal Voltage Gain	$\left.\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note } 5\right)$ Sourcing Sinking	1000	400	400	300	V / mV min
			250	300	200	
		500	180	180	90	V / mV min
			70	120	70	
	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	1000	200	200	100	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			150	160	80	
		250	100	100	50	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			35	60	40	

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC662AM LPC662AMJ/883 Limit (Notes 4, 8)	$\begin{aligned} & \hline \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \hline \text { LPC662I } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Units
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.300	0.300	0.400	
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	16	16	13	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			12	14	11	
		21	16	16	13	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			12	14	11	
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	40	19	28	23	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			19	25	20	
		39	19	28	23	mA min
			19	24	19	
Supply Current	Both Amplifiers$V_{O}=1.5 \mathrm{~V}$	86	120	120	140	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
			145	140	160	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$ $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC662AM LPC662AMJ/883 Limit (Notes 4, 8)	$\begin{array}{\|c\|} \hline \text { LPC662AI } \\ \text { Limit } \\ \text { (Note 4) } \end{array}$	LPC662I Limit (Note 4)	Units
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\begin{aligned} & \hline \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
			0.04	0.05	0.03	
Gain-Bandwidth Product		0.35				MHz
Phase Margin		50				Deg
Gain Margin		17				dB
Amp-to-Amp Isolation	(Note 7)	130				dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{V}=-10, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega, V_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01				\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation of any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: A military RETS electrical test specification is available on request. At the time of printing, the LPC662AMJ/883 RETS specification complied fully with the boldface limits in this column. The LPC662AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

LPV321 Single/LPV358 Dual/LPV324 Quad General Purpose, Low Voltage, Low Power, Rail-to-Rail Output Operational Amplifiers

General Description

The LPV321/358/324 are low power ($9 \mu \mathrm{~A}$ per channel at 5.0 V) versions of the LMV321/358/324 op amps. This is another addition to the LMV321/358/324 family of commodity op amps.
The LPV321/358/324 are the most cost effective solutions for the applications where low voltage, low power operation, space saving and low price are needed. The LPV321/358/324 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed-power ratio, achieving 152 KHz of bandwidth with a supply current of only $9 \mu \mathrm{~A}$.
The LPV321 is available in space saving SC70-5, which is approximately half the size of SOT23-5. The small package saves space on pc boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.
The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LPV321/358/324 have bipolar input and output stages for improved noise performance and higher output current drive.

Features

(For $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{V}^{-}=0 \mathrm{~V}$, Typical Unless Otherwise Noted)
■ Guaranteed 2.7V and 5V Performance

- No Crossover Distortion
- Space Saving Package

SC70-5
$2.0 \times 2.1 \times 1.0 \mathrm{~mm}$

- Industrial Temp.Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Gain-Bandwidth Product 152 KHz
- Low Supply Current $\begin{array}{lr}\text { LPV321 } & 9 \mu \mathrm{~A} \\ \text { LPV358 } & 15 \mu \mathrm{~A}\end{array}$
LPV324 $28 \mu \mathrm{~A}$
- Rail-to-Rail Output Swing @ 100k Ω Load

$$
\mathrm{V}^{+}-3.5 \mathrm{mV}
$$

$$
\mathrm{V}^{-}+90 \mathrm{mV}
$$

- V_{CM}
-0.2 V to $\mathrm{V}^{+}-0.8 \mathrm{~V}$

Applications

- Active Filters
- General Purpose Low Voltage Applications
- General Purpose Portable Devices

Connection Diagrams

5-Pin
SC70-5/SOT23-5

Top View

8-Pin SO/MSOP

Top View

14-Pin SO/TSSOP

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	100 V
Human Body Model	2000 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V
Output Short Circuit to V^{+}	(Note 3)
Output Short Circuit to V^{-}	(Note 4)
Soldering Information	
Infrared or Convection (20 sec)	$235^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Junction Temp. (T_{j}, max) (Note 5)

Operating Ratings (Note 1)

Supply Voltage	2.7 V to 5 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)($ Note 10)	
5-pin SC70-5	$478^{\circ} \mathrm{C} / \mathrm{W}$
5-pin SOT23-5	$265^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC	$190^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin MSOP	$235^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC	$145^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP	$155^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 7) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.2	7	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\overline{\mathrm{TCV}}$ Os	Input Offset Voltage Average Drift		2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		1.7	50	nA max
los	Input Offset Current		0.6	40	nA \max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	70	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	65	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			1.9	1.7	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}^{+}-3$	$\mathrm{V}^{+}-100$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			80	180	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{s}	Supply Current	LPV321	4	8	$\mu \mathrm{A}$ \max
		LPV358 Both amplifiers	8	16	$\begin{gathered} \mu \mathrm{A} \\ \max \\ \hline \end{gathered}$
		LPV324 All four amplifiers	16	24	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=22 \mathrm{pF}$	112		KHz
Φ_{m}	Phase Margin		97		Deg
G_{m}	Gain Margin		35		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	178		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.50		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Limit (Note 7)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.5	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		2	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
los	Input Offset Current		0.6	$\begin{array}{r} 40 \\ 50 \\ \hline \end{array}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	71	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	65	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			4.2	4	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain (Note 8)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	100	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-3.5$	$\begin{aligned} & V^{+}-100 \\ & V^{+}-200 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			90	$\begin{array}{r} 180 \\ 220 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{0}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	17	2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			72	20	mA min
I_{s}	Supply Current	LPV321	9	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LPV358 Both amplifiers	15	$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LPV324 All four amplifiers	28	$\begin{aligned} & 42 \\ & 46 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 7) } \end{gathered}$	Units
SR	Slew Rate	(Note 9)	0.1		V//us
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=22 \mathrm{pF}$	152		KHz
Φ_{m}	Phase Margin		87		Deg
G_{m}	Gain Margin		19		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$,	146		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.30		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 200 pF .
Note 3: Shorting output to V^{+}will adversely affect reliability.
Note 4: Shorting output to V^{-}will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: R_{L} is connected to V^{*}. The output voltage is $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$.
Note 9: Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

National Semiconductor

TL082

Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II ${ }^{\text {TM }}$ technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

- Internally trimmed offset voltage:	15 mV
- Low input bias current:	50 pA
- Low input noise voltage:	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current:	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth:	4 MHz
- High slew rate:	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current:	3.6 mA
- High input impedance:	$10^{12} \Omega$
- Low total harmonic distortion:	$\leq 0.02 \%$
- Low $1 / \mathrm{f}$ noise corner:	50 Hz
- Fast settling time to 0.01% :	$2 \mu \mathrm{~s}$

- Fast settling time to 0.01% :

Connection Diagram

Order Number TL082CM or TL082CP
See NS Package Number M08A or N08E

Simplified Schematic

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation	$($ Note 2$)$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j} \text { (MAX) }}$	$150^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$

Input Voltage Range (Note 3) Output Short Circuit Duration Storage Temperature Range Lead Temp. (Soldering, 10 seconds)

ESD rating to be determined.

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{OS}	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6) \\ & \mathrm{T}_{\mathrm{i}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		25	$\begin{gathered} 200 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	$\begin{gathered} \hline 400 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	25 15	100		V / mV V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)	70	100		dB
$\mathrm{I}_{\text {S }}$	Supply Current			3.6	5.6	mA

AC Electrical Characteristics (Note 5)						
Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-$ 20 kHz (Input Referred)		-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		V/us
GBW	Gain Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \mathrm{NHz}$
in_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$		<0.02		\%

Note 2: For operating at elevated temperature, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the N package.
Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 4: The power dissipation limit, however, cannot be exceeded.
Note 5: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

0

Section 2

Amplifiers - High Speed

Section 2 Contents

High Speed Amplifiers/Buffers/Multiplexers/Variable Gain Amplifiers Selection Guide 2-4
High Speed Op Amp Definition Of Terms 2-13
CLC111 Ultra-High Slew-Rate, Closed-Loop Buffer 2-15
CLC114 Quad, Low-Power Video Buffer 2-17
CLC400 Fast Settling, Wideband Low-Gain Monolithic Op Amp 2-19
CLC401 Fast Settling, Wideband High-Gain Monolithic Op Amp 2-21
CLC404 Wideband, High-Slew Rate, Monolithic Op Amp 2-23
CLC405 Low-Cost, Low-Power, 110MHz Op Amp with Disable 2-25
CLC406 Wideband, Low-Power Monolithic Op Amp 2-27
CLC409 Very Wideband, Low Distortion Monolithic Op Amp 2-29
CLC410 Fast Settling, Video Op Amp with Disable 2-31
CLC411 High-Speed Video Op Amp with Disable 2-33
CLC412 Dual Wideband Video Op Amp 2-35
CLC414 Quad, Low-Power Monolithic Op Amp 2-37
CLC415 Quad, Wideband Monolithic Op Amp 2-39
CLC420 High-Speed, Voltage Feedback Op Amp 2-41
CLC425 Ultra Low Noise Wideband Op Amp 2-43
CLC426 Wideband, Low-Noise, Voltage Feedback Op Amp 2-45
CLC428 Dual Wideband, Low-Noise, Voltage Feedback Op Amp 2-47
CLC430 General Purpose 100MHz Op Amp with Disable 2-49
CLC431/432 Dual Wideband Monolithic Op Amp with Disable 2-51
CLC440 High-Speed, Low-Power, Voltage Feedback Op Amp 2-54
CLC446 400MHz, 50mW Current-Feedback Op Amp 2-56
CLC449 1.1GHz Ultra-Wideband Monolithic Op Amp 2-58
CLC450 Single Supply, Low-Power, High Output, Current Feedback Amplifier 2-60
CLC452 Single Supply, Low-Power, High Output, Current Feedback Amplifier 2-62
CLC501 High-Speed, Output Clamping Op Amp 2-64
CLC502 Clamping, Low-Gain Op Amp with Fast 14-bit Settling 2-66
CLC505 High-Speed, Programmable-Supply Current, Monolithic Op Amp 2-67
CLC520 Amplifier with Voltage Controlled Gain, AGC +Amp + 2-68
CLC522 Wideband Variable-Gain Amplifier 2-70
CLC5506 Gain Trim Amplifier (GTA) 2-72
CLC5509 Ultra-Low Noise Preamplifier 2-75
CLC5523 Low-Power, Variable Gain Amplifier 2-77
CLC5526 Digital Variable Gain Amplifier (DVGA) 2-79
CLC5602 Dual, High Output, Video Amplifier 2-81
CLC5612 Dual, High Output, Programmable Gain Buffer 2-83
CLC5622 Dual, High Output, Video Amplifier 2-85
CLC5623 Triple, High Output, Video Amplifier 2-87
CLC5632 Dual, High Output, Programmable Gain Buffer 2-89
CLC5633 Triple, High Output, Programmable Gain Buffer 2-91
CLC5644 Low-Power, Low-Cost, Quad Operational Amplifier 2-93
CLC5654 Very High-Speed, Low-Cost, Quad Operational Amplifier 2-95
CLC5665 Low Distortion Amplifier with Disable 2-97
CLC5801 High Speed Low Noise Voltage Feedback Amplifier 2-99
CLC5802 Dual Low-Noise, Voltage Feedback Op Amp 2-101
LM6121/LM6221/LM6321 High Speed Buffer 2-103
LM6161/LM6261/LM6361 High Speed Operational Amplifier 2-105
LM6162 High Speed Operational Amplifier 2-106
LM6164/LM6264/LM6364 High Speed Operational Amplifier 2-107
LM6165/LM6265/LM6365 High Speed Operational Amplifier 2-108
LM6171 High Speed Low Power Low Distortion Voltage Feedback Amplifier 2-109
LM6172 Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers 2-111
LM6181 $100 \mathrm{~mA}, 100 \mathrm{MHz}$ Current Feedback Amplifier 2-113
LM6182 Dual 100 mA Output, 100 MHz Current Feedback Amplifier 2-114
LM7121 235 MHz Tiny Low Power Voltage Feedback Amplifier 2-116
LM7131 Tiny High Speed Single Supply Operational Amplifier 2-117
LM7171 Very High Speed, High Output Current, Voltage Feedback Amplifier 2-118

High Speed Amplifiers/Buffers/Multiplexers/Variable Gain Amplifiers Selection Guide

Table 1: High-Speed Amplifiers and Buffers, CLC111-CLC441
Table 2: High-Speed Amplifiers and Buffers, CLC111-CLC441
Table 3: High-Speed Amplifiers and Buffers, CLC446-CLC7171
Table 4: High-Speed Amplifiers and Buffers, CLC446-CLC7171
Table 5: \quad Multiplexer Products
Table 6: Variable Gain Amplifier Products
Table 7: RF/IF Amplifier Product

TABLE 1. HIGH-SPEED AMPLIFIERS \& BUFFERS (CLC111 - CLC441)

s5mA Low Power	Part Number	Single/Dual Triple/Quad	Features	Mode	$\begin{gathered} \text { SSBW } \\ \text { MHz } \end{gathered}$		2nd/3rd HD into $R_{\mathrm{L}}=100 \Omega$	Slew Rate V/ $\mu \mathrm{s}$	Icc $\mathrm{mA} / \mathrm{ch}$	NTSC Diff G/P \%/deg	Iout mA	Settling Time (2V step) ns to \%
	CLC111	S	Closed Loop Buffer	BUF	800	1	$-62 /-62$ at 20 MHz	3500	10.5	0.15/0.04	60	16 to 0.1
\checkmark	CLC114	Q	Closed Loop Buffer	BUF	200	1	$-50 /-58$ at 20 MHz	450	3	0.08/0.1	25	20 to 0.01
	CLC400	S	Optimized for Low Gain	CFB	200	2	$-60 /-60$ at 20 MHz	700	15	0.03/0.01	70	12 to 0.05
	CLC401	S	Optimized for High Gain	CFB	150	20	$-45 /-60$ at 20 MHz	1200	15	NA	70	10 to 0.1
	CLC404	S	Wideband, High SR	CFB	175	6	$-53 /-60$ at 20 MHz	2600	11	0.07/0.03	70	10 to 0.2
\checkmark	CLC405	S	Disable Feature	CFB	110	2	$-72 /-70$ at 20 MHz	350	3.5	0.01/0.25	60	18 to 0.05
\checkmark	CLC406	S	Wideband, Low Power	CFB	160	6	-46/-50 at 20 MHz	1500	5	0.02/0.02	70	12 to 0.05
	CLC409	S	Very Wideband, Low Distortion	CFB	350	2	-49/-59 at 20 MHz	1200	13.5	0.03/0.01	70	8 to 0.1
	CLC410	S	Fast Settling with Disable Feature	CFB	200	2	-60/-60 at 20 MHz	700	16	0.01/0.01	70	12 to 0.05
	CLC411	S	High Speed with Disable Feature	CFB	200	2	-48/-52 at 20 MHz	2300	11	0.02/0.03	70	15 to 0.1
	CLC412	D	Wideband Video	CFB	250	2	-46/-50 at 20 MHz	1300	5.1	0.02/0.02	70	12 to 0.05
\checkmark	CLC414	Q	Low Power	CFB	90	6	-47/-55 at 20 MHz	1000	2.5	0.01/0.12	70	16 to 0.1
ν	CLC415	Q	Wideband	CFB	160	6	-44/-54 at 20 MHz	1500	5	0.03/0.03	70	12 to 0.1
ν	CLC420	S	High Speed	VFB	300	1	-50/-53 at 20 MHz	1100	4	NA	70	18 to 0.01
	CLC425	S	Adjustable Supply Current, Ultra Low Noise Wideband	VFB	95	20	-53/-75 at 20MHz	350	15	0.14/0.01	90	22 to 0.2
	CLC426	S	Adjustable Supply Current, Low Noise, Wideband	VFB	130	2	$-62 /-68$ at 20 MHz	400	11	NA	80	16 to 0.05
	CLC428	D	Low Noise	VFB	160	1	-62/-72 at 20MHz	500	11	NA	80	16 to 0.1
	CLC430	S	GP with Disable Feature	CFB	75	2	-89/-92 at 20MHz	2000	11	0.03/0.05	85	35 to 0.05
	CLC432	D	Wideband	CFB	62	2	-65/-75 AT 20MHz	2000	7.1	0.12/0.12	60	70 to 0.05
	CLC440	S	High-Speed, Low Power	VFB	750	1	-64/-70 at 20 MHz	1500	7	0.15/0.25	90	10 to 0.05

See Legend Information following these Selection Guides.

TABLE 2. HIGH-SPEED AMPLIFIER \& BUFFERS (CLC111 - CLC441)

$\leq 5 m A$ Low Power	Part Number	Single/Dual Triple/Quad	$\mathrm{V}_{\mathrm{os}} \mathrm{mV}$ Typ/Temp Limit	Spec. Supply Range (V) (Note 2)	Noise Voltage $(\mathrm{nV} / \sqrt{\mathrm{Hz}}$	$i_{n n}(\mathbf{p A} / \sqrt{H z}$	$\begin{gathered} i_{\mathrm{ni}}(\mathrm{pA} / \sqrt{\mathrm{Hz}} \\) \end{gathered}$	Temp Range	Package	Eval Board	SPICE Model
	CLC111	s	2/17	± 3 to 13	4.0	1.6	-	I, M	E, P, J	C	Y
\checkmark	CLC114	Q	0.5/8.2	± 5	3.9	0.9	-	I, M	E, P, J	D	N
	CLC400	S	2/9	± 5	2.6	3.2	14.2	I, M	E, P, J	A	Y
	CLC401	S	3/11	± 5	2.4	2.6	17.0	I, M	E, P, J	A	Y
	CLC404	S	2.10	± 5	3.2	2.2	12.3	I, M	E, P, M5, J	A, S	Y
\checkmark	CLC405	S	1/8	± 5	5.0	3.0	12.0	I, M	P, E, J	A	Y
ν	CLC406	S	2/12	± 5	2.7	2.1	11.0	I, M	P, E, M5, J	A, S	Y
	CLC409	S	0.5/9.5	± 5	2.2	3.2	14.3	I, M	P, E, M5, J	A, S	Y
	CLC410	S	2/9	± 5	2.4	2.5	13.5	I, M	E, P, J	A	Y
	CLC411	S	2/14	± 10 to ± 15	2.5	6.3	12.9	I, M	E, P, J	A	Y
	CLC412	D	2/12	± 5	3.0	2.0	12.0	I, M	E, P, J	B	Y
\checkmark	CLC414	Q	2/14	± 5	4.2	1.3	9.8	I, M	WG, E, P, J	E	Y
\checkmark	CLC415	Q	2/10	± 5	3.0	2.0	11.5	I, M	E, P, J	E	Y
\checkmark	CLC420	S	. $5 / 1.8$	± 5	4.2	2.0	2.0	I, M	WG, E, P, J	A	Y
	CLC425	S	0.1/1	± 5	1.05	1.6	1.6	I, M	WG, E, P, M5, J	A, S	Y
	CLC426	S	1/2.8	± 5	1.60	2.0	2.0	I, M	WG, E, P, J	A	Y
	CLC428	D	1/3.5	± 5	2.0	2.0	2.0	I, M	E, P, J	B	Y
	CLC430	S	1/10	± 5 to ± 15	3.0	3.2	15.0	I, M	WG, E, P, J	A	Y
	CLC432	D	3/7	± 5 to ± 15	3.3	2.0	13.0	I, M	E, P, J	B	Y
	CLC440	S	1/4	± 2.5 to ± 6	3.5	2.5	2.5	I, M	E, P, J	F	Y

See Legend Information following these Selection Guides.

TABLE 3. HIGH-SPEED AMPLIFIERS \& BUFFERS (CLC446-CLC7171)

$\leq 5 m A$ Low Power	Part Number	Single/Dual Triple/Quad	Features	Mode	$\begin{gathered} \text { SSBW } \\ \text { MHz } \end{gathered}$		2nd/3rd HD into $R_{L}=100 \Omega$	Slew Rate V/ $\mu \mathrm{s}$	Icc $\mathrm{mA} / \mathrm{ch}$	NTSC Diff G/P \%/deg	$\begin{gathered} \text { Iout } \\ \text { mA } \end{gathered}$	Settling Time (2V step) ns to \%
\checkmark	CLC446	S	Wideband, Low Power	CFB	400	2	$-54 /-50$ at 50 MHz	2000	4.8	0.02/0.03	48	9 to 0.1
	CLC449	S	Ultra Wideband	CFB	1100	2	$-44 /-62$ at 50 MHz	2500	12	0.03/0.02	90	11 to 0.01
\checkmark	CLC450	S	Low-Power, High Output Current	CFB	135	2	-86/-65 at 1 MHz	370	1.6	0.03/0.3	130	15 to 0.05
\checkmark	CLC452	S	Low-Power, High Output Current	CFB	160	2	-77/-72 at 1 MHz	540	3.2	0.05/0.08	130	20 to 0.5
	CLC501	S	High-Speed, Output Clamping, High Gain	CFB	75	32	-45/-60 at 20 MHz	1200	18	NA	70	12 to 0.05
	CLC502	S	Fast Settling, Output Clamping	CFB	150	2	-50/-60 at 20MHz	800	17	0.01/0.05	55	25 to 0.0025
\checkmark	CLC505	S	High-Speed, Adjustable Supply Current	CFB	50	6	$-50 /-65$ at 5 MHz	800	1	0.04/0.06	45	35 to 0.05
\checkmark	CLC5602	D	Video Amp, High Output	CFB	135	2	-86/-85 at 1 MHz	300	1.6	0.06/0.02	130	15 to 0.05
\checkmark	CLC5612	D	High Output	PGB	90	2	-74/-86 at 1 MHz	290	1.6	0.15/0.02	130	17 to 0.05
\checkmark	CLC5622	D	Video Amp, High Output, High Capacity Load	CFB	160	2	-95/-95 at 1 MHz	370	3.2	0.05/0.03	130	18 to 0.05
\checkmark	CLC5623	T	Video Amp, High Output, High Capacity Load	CFB	148	2	-78/-94 at 1 MHz	370	3.2	0.06/0.06	130	18 to 0.05
\checkmark	CLC5632	D	High Output	PGB	130	2	-82/-69 at 1 MHz	410	3.2	0.08/0.02	130	17 to 0.5
\checkmark	CLC5633	T	High Output	PGB	130	2	-73/-92 at 1 MHz	410	3.2	0.03/0.06	130	20 to 0.05
\checkmark	CLC5644	Q	Low-Power, Low Cost	CFB	125	2	-72/-79 at 5 MHz	1000	2.5	0.04/0.07	70	16 to 0.1
\checkmark	CLC5654	Q	High-Speed, Low Cost	CFB	350	2	-71/-82 at 5 MHz	2000	5	0.03/0.03	70	12 to 0.1
	CLC5665	S	Disable Feature	CFB	90	1	-89/-92 at 1 MHz	1800	11	0.05/0.05	85	35 to 0.05
\checkmark	LM6171	S	High-Speed, Low-Power, Low Distortion	VFB	160	1	-72/-70 at 1 MHz	3600	2.5	0.03/0.5	100	48 to 0.1
\checkmark	LM6172	D	High-Speed, Low-Power, Low Distortion	VFB	160	1	-72/-70 at 1MHz	3000	2.3	0.28/0.6	100	65 to 0.1
	LM6181	S	$100 \mathrm{MHz}, 100 \mathrm{~mA}$	CFB	160	2	-50/-55 at 10 MHz	2000	7.5	0.05/0.04	100	50 to 0.1
	LM6182	D	$100 \mathrm{MHz}, 100 \mathrm{~mA}$	CFB	100	2	-50/-55 at 10 MHz	2000	7.5	0.05/0.04	100	50 to 0.1
	LM6321	S	High- Speed, High Outpu	BUF	50	1	NA	800	15	NA	300	NA
\checkmark	LM6361	S	High- Speed, Wide Supply Range	VFB	50	1	NA	300	5	0.1/0.1	65	120 to 0.1
\checkmark	LM6364	S	High- Speed, $A_{V}>+5$	VFB	35	5	NA	300	5	NA	65	100 to 0.01
\checkmark	LM6365	S	High- Speed, $\mathrm{Al}_{V}>+25$	VFB	25	25	NA	300	5	NA	65	80 to 0.01
\checkmark	LM7121	S	Low Power, High- Speed,	VFB	235	1	NA	1300	5	0.3/0.65	40	74 to 0.01
	LM7131	S	Low-Power, High- Speed, Single Supply	VFB	90	1	-74/-94 at 1 MHz	130	7.5	0.25/1.0	65	NA
	LM7171	S	High- Speed, High Output Current, $\mathrm{A}_{\mathrm{V}}>+2$	VFB	220	2	-75/-55 at 5 MHz	4100	6.5	0.01/0.02	100	42 to 0.1

See Legend Information following these Selection Guides.

TABLE 4. HIGH-SPEED AMPLIFIERS \& BUFFERS (CLC446-CLC7171)

$\leq 5 \mathrm{~mA}$ Low Power	Part Number	Single/Dual Triple/Quad	$v_{o s} m V$ Typ/Temp Limit	Spec. Supply Range (V) (Note 2)	Noise Voltage ($\mathrm{nV} / \sqrt{\mathrm{Hz}}$	$\mathrm{i}_{\mathrm{nn}}(\mathbf{p A} / \sqrt{H z}$)	$\mathrm{i}_{\mathrm{ni}}(\mathrm{pA} / \sqrt{\mathrm{Hz}}$)	Temp Range	Package	Eval Board	SPICE Model
\checkmark	CLC446	S	2/11	± 5	3.8	2.0	16.0	I, M	E, P, J	F	N
	CLC449	S	3/9	± 5	2.2	3.0	15.0	I, M	E, P, J	F	Y
\checkmark	CLC450	S	2/8	+5 to ± 5	3.0	6.9	8.5	1	E, P, M5	A, S	N
\checkmark	CLC452	S	1/8	+5 to ± 5	2.8	7.5	10.5	I, M	E, P, M5, J	A, S	N
	CLC501	S	1.5/5	± 5	2.4	8.4	10.2	I, M	WG, E, P, J	A	Y
\checkmark	CLC502	S	0.5/2.8	± 5	2.0	18.0	22.0	I, M	E, P, J	A	Y
\checkmark	CLC505	S	13/14.5	± 5	5.2	1.3	9.0	I,M	P, E, J	A	Y
V	CLC5602	D	2/8	+5 to ± 5	3.4	6.3	8.7	1	M, N	B	N
\checkmark	CLC5612	D	3/35	+5 to ± 5	3.4	6.3	8.7	1	M, N	B	N
\checkmark	CLC5622	D	1/8	+5 to ± 5	3.4	6.3	8.7	1	M, N	B	N
\checkmark	CLC5623	T	1/8	+5 to ± 5	4.9	6.6	11.1	1	M, N	K	N
\checkmark	CLC5632	D	7/35	+5 to ± 5	3.4	6.3	8.7	1	M, N	B	N
v	CLC5633	T	7/35	+5 to ± 5	4.9	6.6	11.1	1	M, N	K	N
\checkmark	CLC5644	Q	2.5/15	± 5	4.5	1.5	10.0	1	M, N	E	N
\checkmark	CLC5654	Q	2.5/11	± 5	3.3	2.5	12	1	M, N	E	N
	CLC5665	S	1/10	+5 to ± 15	3.0	3.2	15	1	M, N	A	Y
\checkmark	LM6171	S	1.5/5	+5 to ± 15	12	1.0	1.0	1	M, N	-	Y
\checkmark	LM6172	D	0.4/4	± 5 to ± 15	12	1.0	1.0	I, M	WG, M, N, J	-	Y
	LM6181	S	$2 / 4$	± 5 to ± 15	4	3	16	1	M, N	\cdot	Y
	LM6182	D	2/4	+5 to ± 15	4	3	16	1	M, N	\cdot	N
	LM6321	S	15/50	+5 to ± 15	na	na	na	C, 1	M, N	\cdot	N
\checkmark	LM6361	S	5/10	+5 to ± 15	15	1.5	1.5	C, 1	M, N	-	Y
\checkmark	LM6364	S	2/11	± 4.75 to ± 16	8	1.5	1.5	C	M, N	-	Y
\checkmark	LM6365	S	1/4	± 4.75 to ± 16	5	1.5	1.5	C	M, N	-	Y
\checkmark	LM7121	S	0.9/15	+5 to ± 15	17	1.9	1.9	1	M, N, M5	-	Y
	LM7131	S	0.2/4	± 2.7 to ± 5	17	1.9	1.9	c	M, N, M5	-	Y
	LM7171	S	0.2/4	± 5.5 to ± 15	14	1.8	1.8	I, M	M, N, WG, J	-	Y

See Legend Information following these Selection Guides.

TABLE 5. MULTIPLEXER PRODUCTS

Device	Channels	Switching Speed (ns)	$\begin{array}{\|c\|} \text { Crosstalk } \\ \text { Rejection (dB) } \\ \text { (Note 3) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Settling Time } \\ \text { to } 0.01(\mathrm{~ns}) \end{array}$	2nd Harmonic Distortion HD2 (dBc) (Note 4)	3rd Harmonic Distortion HD2 (dBc) (Note 4)	$\begin{aligned} & \text { SSBW } \\ & \text { (MHz) } \end{aligned}$	Supply Voltage V_{S} (V)	$\begin{gathered} \text { Supply Current } \\ \text { IS }(\mathrm{mA}) \end{gathered}$	Digital Interface	Temp Range	Pkg	Eval Board	SPICE MODEL
CLC532	2:1	5	80	17	80	86	190	± 5	23	CMOS/TTUECL	I, M	J, E, P	G	Y
CLC533	4:1	6	80	17	80	86	180	± 5	28	CMOS/TTUECL	I, M	J, E, P	H	N

See Legend Information following these Selection Guides.

TABLE 6. VARIABLE GAIN AMPLIFIER PRODUCTS

Device	Single/Dual/ Trip/Quad	Signal Channel BW (MHz)	Control Channel BW (MHz)	Gain Adjust Range (dB)	Slew Rate SR (V/ $\mu \mathrm{s}$)	Supply Voltage $\mathbf{V}_{\mathbf{S}}$ (V)	Supply Current is (mA)	Common Mode Input Range CMIR (V)	Temp Range	Pkg	Eval Board	SPICE MODEL	Comments
CLC520	S	160	100	40	2000	± 5	28	± 2.2	I, M	E, P, J	1	Y	$\underset{\mathrm{dB}}{\text { Gain Linear in }}$
CLC522	S	165	165	40	2000	± 5	46	± 2.2	I, M	J, E, P	1	Y	Linear Gain Control (VN)
CLC5523	S	250	95	80	1800	± 5	13.5	± 3.8	1	N, M	J	N	$\underset{\mathrm{dB}}{\text { Gain Linear } \operatorname{In}}$

See Legend Information following these Selection Guides.

TABLE 7. RF/IF AMPLIFIER PRODUCT

Device	Single/Dual/ Trip/Quad	Signal Channel BW (MHz)	Control Channel BW (MHz)	$\begin{array}{\|l\|} \hline \text { Gain Adjust } \\ \text { Range (dB) } \end{array}$	$\begin{aligned} & \text { Supply } \\ & \text { Voltage } \mathrm{V}_{\mathbf{S}} \\ & \text { (V) } \end{aligned}$	Supply Current Is (mA)	Noise Figure (dB)	Output IP3 (dBm)	Step Size (dB)	$\begin{aligned} & \text { Temp } \\ & \text { Range } \end{aligned}$	Pkg	$\begin{aligned} & \text { Eval } \\ & \text { Board } \end{aligned}$	Comments
CLC550	S	600	600	26	+5	75	4.8	22	0.25	1	E	L	$\underset{\mathrm{dB}}{\text { Gain Linear in }}$

See Legend Information following these Selection Guides.

Legend Description

Temperature Range Codes

C	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
I	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
M	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

All values are typical at room temperature unless otherwise specified.

Package Codes

LMyyyy (4 digit P/N) CLCxxxx (4 digit P/N)		CLCxxx (3 digit P/N)	
M	Plastic SOIC	E	Plastic SOIC
N	Plastic DIP	P	Plastic DIP
M5	5-Pin SOT-23	M5	5-Pin SOT-23
WG	Ceramic SOIC	J	Ceramic DIP (Military)
		WG	Ceramic SOIC

Evaluation Board Codes

Code	DIP	SOIC		Code	DIP	SOIC
A	CLC730013	CLC730027		G	CLC730028	
B	CLC730038	CLC730036		CLC730045		
C	CLC730012		CLC730035	CLC730039		
D	CLC730023		CLC730029	CLC730033		
E	CLC730024	CLC730031		J	CLC730065	CLC730066
F	CLC730055	CLC730060			CLC730075	CLC730074

S = CLC730068 (5-Pin SOT-23)

Amplifier/Buffer Mode

CFB	Current Feedback
VFB	Voltage Feedback
BUF	Closed Loop Buffer
PGB	Programmable Gain Buffer

Note 1: Closed Loop Gain used to specify most parameters.
Note 2: Spec. Supply Range is the range of total supply voltage where operation is possible but parameters are not necessarily guaranteed. Refer to datasheets for more details.
Note 3: Crosstalk tested at $10 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{pp}}$.
Note 4: Harmonic Distortion at $5 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{pp}}$.

High Speed Op Amp Definition Of Terms

Mode:

Voltage Feedback: The traditional Op Amp topology where an output signal is generated in response to the voltage difference between the two inputs.
Current Feedback: Op amp which generates an output signal in response to the current flowing into the inverting input node (transimpedance gain function). This topology offers operational advantages in certain areas, compared to the traditional voltage feedback.
Close Loop Buffer: High input impedance and low output impedance amplifier with a fixed gain of +1 used for isolation, or increased output drive, or capacitive load drive, etc. usually, no gain setting resistor are required.
Programmable Gain Buffer: Op Amp with gain setting resistors integrated on the die with possible gains of $+1,+2$, or -1 using simple external connections. Ideal for minimizing external component count, minimizing signal lead lengths, and simplifying designs.

Gain:

Open Loop Gain

Voltage feedback Op Amp: The open loop gain is specified at DC and is defined as the ratio of an output voltage change to an input voltage change. Also referred to as differential voltage gain (no feedback or input networks added). When specified using a sinusoidal waveform, it varies in magnitude and phase relative to frequency.

Current Feedback Op Amp: Ratio of output voltage change to Inverting input current change (transimpedance gain). When specified using a sinusoidal waveform, it varies in magnitude and phase relative to frequency.
Closed Loop Gain: Defined as the ratio of an output voltage change to an input voltage change after feedback and input networks are added. Usually, external resistors are used to set this parameter.

Frequency Domain Response:

-3 dB Bandwidth (or small signal bandwidth (ssbw)): The frequency at which the closed loop amplifier small signal magnitude response is 3 dB below its nominal value at low frequency. Sometimes specified for various signal amplitudes.
Gain Bandwidth Product: Arithmetic Product of a given input frequency and the op amp open loop gain at that frequency (usually specified in MHz, voltage feedback amplifiers only.) For an ideal op amp, this is a constant for all frequency after the dominant pole frequency, but other poles and zeroes in the forward path could make the number vary with frequency.
Unity Gain Frequency: The frequency at which a voltage feedback op amp gain is 1 (0dB). For an ideal op amp, this is equal to the Gain Bandwidth product.

Gain Flatness: Specified as "Peaking" and "Rolloff" numbers in dB over a given frequency band, its a measure of an op amp's closed loop frequency response gain flatness. Phase margin, Gain margin, and sufficient loop gain are the most important parameters affecting these specifications.
Linear Phase Deviation: Specified over a given frequency band, it is a measure of how close an op amp's closed loop phase response follows a linear relationship with respect to frequency.
Differential Gain and Phase: Differential Gain refers to change in gain with level and differential Phase refers to change in phase with level. Both parameters are used in video broadcast applications as a measure of consistency of video signal relative to changes in illumination.

Time Domain Response:

Rise an Fall Times: The time it takes the output voltage to change between 10% and 90% voltage levels when driven with a small signal step input. Correlates to frequency domain small signal bandwidth.
Overshoot: Related to Rise and Fall time measurement. Specified in percentage.
Slew Rate: Maximum rate at which an overdriven op amp can change its output. Overdriving an op amp means exceeding its input voltage amplitude and/or frequency thresholds.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Distortion and Noise Response:

Harmonic Distortion: Unwanted spurious signals generated at the output of an amplifier due to nonlinearity in the signal flow path. With sinusoidal input, these spurs will occur at integer multiples of the input frequency.
Intercept point: The fundamental output power where the specified distortion term ($2^{\text {nd }}, 3^{\text {rd }}$, or $3^{\text {rd }}$ order Intermodulation) is equal in power to this fundamental value power.
Input Voltage Noise (e_{n}) \& Input Current Noise $\left(i_{n}\right)$: Input referred noise sources used to model the noise behavior of an Op Amp.

Static DC Performance:

Supply Current ($\mathbf{I}_{\mathbf{c c}}$): The current required from the power supply to operate the op amp with no load and its output midway between the supplies.
Output Current: the current available at the output of the op amp to drive a load. Usually a function of input over-drive, output voltage relative to supplies, and temperature. Sourcing and Sinking characteristics could be different.

Static DC Performance: (Continued)
Input Offset Voltage ($\mathbf{V}_{\mathbf{o s}}$): The voltage which must be applied between the input terminals to obtain zero output voltage.

Specified Supply Range: Specified supply range are the power supply voltages required to power the op amp.

CLC111

Ultra-High Slew-Rate, Closed-Loop Buffer

General Description

The CLC111 is a high-performance, closed-loop, monolithic buffer designed for applications requiring very high-frequency signals. The CLC111's high performance includes an extremely fast 800 MHz small signal bandwidth $\left(0.5_{\mathrm{pp}}\right)$ and an ultra high ($3500 \mathrm{~V} / \mathrm{\mu s}$) slew rate while requiring only 10.5 mA quiescent current. Signal fidelity is maintained with low harmonic distortion (-62dBc 2nd and 3rd harmonics at 20 MHz). These performance characteristics are for a demanding 100Ω load.
Featuring a patented closed-loop design, the CLC111 offers nearly ideal unity-gain (0.996) with a very low (1.4 $)$ output impedance. The CLC111 is ideally suited for buffering video signals with its $0.15 \% / 0.04^{\circ}$ differential gain and phase performance at 4.43 MHz . Power sensitive applications will benefit from the CLC111's excellent performance on reduced or single supply voltages.
Constructed using an advanced, complementary bipolar process and National's proven high-performance architectures, the CLC111 is available in several versions to meet a variety of requirements.

Enhanced Solutions (Military/Aerospace)

SMD Number: contact factory
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- Very wideband (800 MHz)
- Ultra-high ($3500 \mathrm{~V} / \mu \mathrm{s}$) slew rate
- Very low output impedance (1.4 Ω)
- Low (-62dBc) 2nd/3rd harmonics @ 20MHz
- 60 mA output current (± 5 supplies)
- Single supply operation (0 to 3 V supply min.)
- Evaluation boards and Spice models

Applications

- Video switch buffers
- Test point drivers
- High frequency active filters
- Wideband DC clamping buffer
- High-speed peak detector circuits

Connection Diagram

Typical Application

Pulse Response

Small Signal Bandwidth

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8 -pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC111AJP	N08E
8 -pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC111AJE	M08A

CLC114

Quad，Low－Power Video Buffer

General Description

The CLC114 is a high－performance，closed－loop quad buffer intended for power sensitive applications．Requiring only 30 mW of quiescent power dissipation per channel（ $\pm 5 \mathrm{~V}$ sup－ plies），the CLC114 offers a small signal bandwidth of $200 \mathrm{MHz}(0.5 \mathrm{Vpp})$ and a slew rate of $450 \mathrm{~V} / \mu \mathrm{s}$ ．
Designed specifically for high density crosspoint switch and analog multiplexer applications，the CLC114 offers excellent linearity and wide channel isolation（62dB＠10MHz）．Driving a typical crosspoint switch load，the CLC114 offers differen－ tial gain and phase performance of 0.08% and 0.1% gain flatness through 30 MHz is typically 0.1 dB ．
With its patented closed－loop topology，the CLC114 has sig－ nificant performance advantages over conventional open－loop designs．Applications requiring low output imped－ ance and true unity gain stability through very high frequen－ cies（active filters，dynamic load buffering，etc．）Will benefit from the CLC114＇s superior performance．
Constructed using an advanced，complementary bipolar pro－ cess and National＇s proven high－speed architectures，the CLC114 is available in several versions to meet a variety of requirements．

Enhanced Solutions（Military／Aerospace）
SMD Number：5962－92339
＊Space level versions also available．
＊For more information，visit http：／／www．national／com／mil

Features

－Closed－loop，quad buffer
－ $450 \mathrm{~V} / \mathrm{us}$ slew rate
－Low power， 30 mW per channel（ $\pm 5 \mathrm{~V}$ sup．）
－ 62 dB channel isolation（ 10 MHz ）
－Specified for crosspoint switch loads

Applications

－Video crosspoint switch driver
－Video distribution buffer
－Video switching buffer
－Video signaling multiplexing
－Instrumentation amps
－Active filters

Small Signal Pulse Response

Time（2ns／div）
DS012738－10
－200MHz small－signal bandwidth

Typical Application

Connection Diagram

Pinout

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14－Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC114AJP	N14A
14－Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC114AJE	M14A，B

CLC400

Fast Settling, Wideband Low-Gain Monolithic Op Amp

General Description

The CLC400 is a high-speed, fast-setting operational amplifier designed for low-gain applications. Constructed using a unique, proprietary design and an advanced complementary bipolar process, the CLC400 offers performance far beyond that normally offered by ordinary monolithic op amps. In addition, unlike many other high-speed op amps the CLC400 offers both high performance and stability without the need for compensation circuitry - even at a gain of +1 .
The fast 12 ns settling to 0.05% and its ability to drive capacitive loads makes the CLC400 an ideal flash A/D driver. The wide bandwidth of 200 MHz and the very linear phase ensure unsurpassed signal fidelity. Systems employing digital to analog converters also benefit from the use of the CLC400 - especially if linearity and drive levels are important to system performance.
The CLC400 provides a simple, high performance solution for video distribution and line driving applications. The 50 mA output current and guaranteed specifications for 100Ω loads provide ample drive capability and assured performance.
The CLC400 is based on National's proprietary op amp topology that uses current feedback instead of the usual voltage feedback. This unique design has many advantages over conventional designs (such as settling time that is relatively independent of gain), yet it is used in basically the same way (see the gain equations in Figure 1 and Figure 2). However, an understanding of the topology will aid in achieving the best performance. The following discussion will proceed for the non-inverting gain configuration with the inverting mode analysis being very similar.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-89970
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- -3 dB bandwidth of 200 MHz
- 0.05% settling in 12 ns
- Low Power, 150 mW
- Low distortion, -60 dBc at 20 MHz
- Stable without compensation
- Overload and short circuit protected
- ± 1 to ± 8 closed-loop gain range

Applications

- Flash, precision A/D conversion
- Video distribution
- Line drivers
- D/A current-to-voltage conversion
- Photodiode, CCD preamps
- IF processors
- High-speed communications

Pulse Response

DS012743-9

Connection Diagram

Oi

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8 -pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC400AJP	N08E
8 -pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC400AJE	M08A

CLC401

Fast Settling, Wideband High-Gain Monolithic Op Amp

General Description

The CLC401 is a wideband, fast-settling op amp designed for applications requiring gains greater than ± 7. Constructed using an advanced complementary bipolar process and a proprietary design, the CLC401 features dynamic performance far beyond that of typical high-speed monolithic op amps . For example, at a gain of +20 , the -3 dB bandwidth is 150 MHz and the rise/fall time is only 2.5 ns .
The wide bandwidth and linear phase (0.2° deviation from linear at 50 MHz) and a very flat gain response makes the CLC401 ideal for many digital communication system applications. For example, demodulators need both DC coupling and high-frequency amplification-requirements that are ordinarily difficult to meet.

The very fast 10ns settling to 0.1% and the ability to drive capacitive loads lend themselves well to flash A / D applications. Systems employing D/A converters also benefit from the settling time and also by the fact that current-to-voltage transimpedance amplification is easily accomplished.
The CLC401 provides a quick, effective design solution. Its stable operation over the entire ± 7 to ± 50 gain range precludes the need for external compensation. And, unlike many other high speed-op amps, the CLC401's power dissipation of 150 mW is compatible with designs which must limit total power dissipation or power supply requirements.
The CLC401 is based on National's proprietary op amp topology that uses current feedback instead of the usual voltage feedback. This unique design has many advantages over conventional designs (such as settling time that is relatively independent of gain), yet it is used in basically the same way (see the gain equations in Figure 1 and Figure 2). However, an understanding of the topology will aid in achieving the best performance. The discussion below will proceed for the non-inverting gain configuration with the inverting mode analysis being very similar.

Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- -3 dB bandwidth of 150 MHz
- 0.1% settling in 10 ns
- Low Power, 150 mW
- Overload and short circuit protected
- Stable without compensation
- Recommended gain range,± 7 to ± 50

Applications

- Flash, precision A/D conversion
- Photodiode, CCD preamps
- IF processors
- High-speed modems, radios
- Line drivers
- DC-coupled log amplifiers
- High-speed communications

Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-89973

Connection Diagram

Connection Diagram (Continued)

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC401AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC401AJE	M08A

CLC404

Wideband, High-Slew Rate, Monolithic Op Amp

General Description

The CLC404 is a high-speed, monolithic op amp that combines low power consumption (110 mW typical, 120 mW maximum) with superior large signal performance. Operating off of $\pm 5 \mathrm{~V}$ supplies, the CLC404 demonstrates a large-signal bandwidth ($5 \mathrm{~V}_{\mathrm{pp}}$ output) of 166 MHz . The bandwidth performance, along with other speed characteristics such as rise and fall time (2.1 ns for a 5 V step), is nearly identical to the small signal performance since slew rate is not limiting factor in the CLC404 design.
With its 175 MHz bandwidth and 10 ns settling (0.2%), the CLC404 is ideal for driving ultra-fast flash A/D converters. The 0.5° deviation from linear phase, coupled with -53 dBc 2nd harmonic distortion and -60dBc 3rd harmonic distortion (both at 20 MHz), is well suited for many digital and analog communication applications. These same characteristics, along with 70 mA output current, differential gain of 0.07%, and differential phase at 0.03°, make the CLC404 an appropriate high-performance solution for video distribution and line driving applications.
Constructed using an advanced, complementary bipolar process and proven current feedback topologies, the CLC404 provides performance far beyond that of other monolithic op amps. The CLC404 is available in several versions to meet a variety of requirements.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-90994
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- 165 MHz large signal bandwidth ($5 \mathrm{~V}_{\mathrm{pp}}$)
- $2600 \mathrm{~V} / \mathrm{\mu s}$ slew rate
- Low Power: 110 mW
- Low distortion: -53 dBc at 20 MHz
- 10ns settling to 0.2%
- 0.07% diff. gain, 0.03% diff. phase

Applications

- Fast A/D conversion
- Line drivers
- Video distribution
- High-speed communications
- Radar, IF processors

Large Signal Pulse Response

DS012746-7

Connection Diagrams

Connection Diagrams (Continued)

Pinout
SOT $23-5$

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC404AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC404AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC404AJM5	MA05A

CLC405

Low-Cost, Low-Power, 110MHz Op Amp with Disable

General Description

The CLC405 is a low-cost, wideband (110 MHz) op amp featuring a TTL-compatible disable which quickly switches off in 18ns and back on in 40 ns . While disabled, the CLC405 has a very high input/output impedance and its total power consumption drops to a mere 8 mW . When enabled, the CLC405 consumes only 35 mW and can source or sink an output current of 60 mA . These features make the CLC405 a versatile, high-speed solution for demanding applications that are sensitive to both power and cost.
Utilizing National's proven architectures, this current feedback amplifier surpasses the performance of alternative solutions and sets new standards for low power at a low price. This power conserving op amp achieves low distortion with -72 dBc and -70 dBc for second and third harmonics respectively. Many high source impedance applications will benefit from the CLC405's $6 \mathrm{M} \Omega$ input impedance And finally, designers will have a bipolar part with an exceptionally low 100 nA non-inverting bias current.
With 0.1 dB flatness to 50 MHz and low differential gain and phase errors, the CLC405 is an ideal part for professional video processing and distribution. However, the 110 MHz -3 dB bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$ coupled with a $350 \mathrm{~V} / \mu \mathrm{s}$ slew rate also make the CLC405 a perfect choice in cost-sensitive applications such as video monitors, fax machines, copiers, and CATV systems.

Features

- Low-cost
- Very low input bias current:100nA
- High input impedance: $6 \mathrm{M} \Omega$
- $110 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$
- Low power: $I_{c c}=3.5 \mathrm{~mA}$
- Ultra-fast enable/disable times
- High output current: 60 mA

Applications

- Desktop video systems
- Multiplexers
- Video distribution
- Flash A/D driver
- High-speed switch/driver
- High-source impedance applications
- Peak detector circuits
- Professional video processing
- High resolution monitors

Connection Diagram

Typical Application

*NOTE: Selectable gains can be changed by using different R_{g} resistors. DS012703-3
Wideband Digitally Controlled Programmable Gain Amplifier

Channel Switching

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC405AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC405AJE	M08A

CLC406

Wideband, Low-Power Monolithic Op Amp

General Description

The CLC406 is a wideband monolithic operational amplifier designed for low-gain applications where power and cost are of primary concern. Operating from $\pm 5 \mathrm{~V}$ supplies, the CLC406 consumes only 50 mW of power yet maintains a 160 MHz small signal bandwidth and a $1500 \mathrm{~V} / \mu$ s slew rate. Benefiting from National's current feedback architecture, the CLC406 offers a gain range of ± 1 to ± 10 while providing stable, oscillation free operation without external compensation, even at unity gain.
With its exceptional differential gain and phase typically 0.02% and 0.02° at 3.58 MHz , the CLC406 is designed to meet the performance and cost requirements of high volume composite video applications. The CLC406's large signal bandwidth, high slew rate and high drive capability are features well suited for RGB video applications.
Providing a 12 ns settling time to 0.05% ($1 / 2$ LSB in 10 -bit systems) and $-68 /-75 \mathrm{dBc} 2 \mathrm{nd} / 3 \mathrm{rd}$ harmonic distortion $\left(2 V_{P P}\right.$ at $\left.10 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega\right)$, the CLC406 is an excellent choice as a buffer or driver for high speed A / D and D/A converter systems.
Commercial remote sensing applications and battery powered radio transceivers requiring a high performance, low power amplifier will find the CLC406 to be an attractive, cost-effective solution.
Constructed using an advanced, complementary bipolar process and National's proven current feedback architectures, the CLC406 is available in several versions to meet a variety of requirements.

Features

- 160 MHz small signal bandwidth
- 50 mW power ($\pm 5 \mathrm{~V}$ supplies)
- $0.02 \% / 0.02^{\circ}$ differential gain/phase
- 12 ns settling to 0.05%
- $1500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 2.2 ns rise and fall time ($2 \mathrm{~V}_{\mathrm{PP}}$)
- 70 mA output current

Applications

- Video distribution amp
- HDTV amplifier
- Flash A/D driver
- D/A transimpedance buffer
- Pulse amplifier
- Photodiode amp
- LAN amplifier

Small Signal Pulse Response

Connection Diagrams

DS012747-16

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC406AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC406AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC406AJM5	MA05A

CLC409

Very Wideband, Low Distortion Monolithic Op Amp

General Description

The CLC409 is a very wideband, DC coupled monolithic operational amplifier designed specifically for wide dynamic range systems requiring exceptional signal fidelity. Benefiting from National's current feedback architecture, the CLC409 offers a gain range of ± 1 to ± 10 while providing stable, oscillation free operation without external compensation, even at unity gain.
With its 350 MHz small signal bandwidth ($\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{PP}}$), 10 -bit distortion levels through $20 \mathrm{MHz}\left(R_{L}=100 \Omega\right) 8$-bit distortion levels through $60 \mathrm{MHz}, 2.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input referred noise and 13.5 mA supply current, the CLC409 is the ideal driver or buffer for high speed flash A / D and D / A converters. Wide dynamic range systems such as radar and communication receivers requiring a wideband amplifier offering exceptional signal purity will find the CLC409's low input referred noise and low harmonic and intermodulation distortion make it an attractive high speed solution.
Constructed using an advanced, complimentary bipolar process and National's proven current feedback architecture, the CLC409 is available in several versions to meet a variety of requirements.
Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-92034
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- 350 MHz small signal bandwidth
- $-65 / 72 \mathrm{dBc} 2 \mathrm{nd} / 3 \mathrm{rd}$ harmonics (20MHz)
- Low noise
- 8 ns settling to 0.1%
- $1200 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 13.5 mA supply current $(\pm 5 \mathrm{~V}$)
- 60 mA output current

Applications

- Flash A/D driver
- D/A transimpedance buffer
- Wide dynamic range IF amp
- Radar/communication receivers
- DDS post-amps
- Wideband inverting summer
- Line driver

Harmonic Distortion vs. Load and Frequency

Connection Diagrams

Connection Diagrams (Continued)

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC409AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC409AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC409AJM5	MA05A

National Semiconductor

CLC410

Fast Settling, Video Op Amp with Disable

General Description

The current-feedback CLC410 is a fast-settling, wideband, monolithic op amp with fast disable/enable feature. Designed for low-gain applications ($\mathrm{A}_{\mathrm{V}}= \pm 1$ to ± 8), the CLC410 consumes only 160 mW of power (180 mW max) yet provides a -3 dB bandwidth of $200 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+2\right)$ and 0.05% settling in 12ns (15ns max). Plus, the disable feature provides fast turn-on (100ns) and turn-off (200ns). In addition, the CLC410 offers both high performance and stability without compensation - even at a gain of +1 .
The CLC410 provides a simple, high-performance solution for video switching and distribution applications, especially where analog buses benefit from use of the disable function to "multiplex" signals onto the bus. Differential gain/phase of $0.01 \% / 0.01^{\circ}$ provide high fidelity and the 60 mA output current offers ample drive capability.
The CLC410's fast settling, low distortion, and high drive capabilities make it an ideal ADC driver. The low 160 mW quiescent power consumption and very low 40 mW disabled power consumption suggest use where power is critical and/or "system off" power consumption must be minimized.
The CLC410 is available in several versions to meet a variety of requirements. A three-letter suffix determines the version.
Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-90600
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- -3 dB bandwidth of 200 MHz
- 0.05% settling in 12 ns
- Low Power, 160 mW (40 mW disabled)
- Low distortion, -60 dBc at 20 MHz
- Fast disable (200ns)
- Differential gain/phase: $0.01 \% / 0.01^{\circ}$
- ± 1 to ± 8 closed-loop gain range

Applications

- Video switching and distribution
- Analog bus driving (with disable)
- Low power "standby" using Disable
- Fast, precision A/D conversion
- D/A current-to-voltage conversion
- IF processors
- High-speed communications

$200 \mathrm{~ns} /$ div
DS012749-10

Connection Diagram

Connection Diagram (Continued)

Non-Inverting Frequency Response

Ordering Information

Package	Temperature Range Industrial	Packag Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC410AJP	N08A
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC410AJE	M08A

National Semiconductor

CLC411

High-Speed Video Op Amp with Disable

General Description

The CLC411 combines a state-of-the-art complementary bipolar process with National's patented current-feedback architecture to provide a very high-speed op amp operating from $\pm 15 \mathrm{~V}$ supplies. Drawing only 11 mA quiescent current, the CLC411 provides a 200 MHz small signal bandwidth and a $2300 \mathrm{~V} / \mu \mathrm{s}$ slew rate while delivering a continuous 70 mA current output with $\pm 4.5 \mathrm{~V}$ output swing. The CLC411's high-speed performance includes a 15 ns settling time to 0.1% (2 V step) and a 2.3 ns rise and fall time (6 V step).
The CLC411 is designed to meet the requirements of professional broadcast video systems including composite video and high definition television. The CLC411 exceeds the HDTV standard for gain flatness to 30 MHz with it's $\pm 0.05 \mathrm{~dB}$ flat frequency response and exceeds composite video standards with its very low differential gain and phase errors of $0.02 \%, 0.03^{\circ}$. The CLC411 is the op amp of choice for all video systems requiring upward compatibility from NTSC and PAL to HDTV.
The CLC411 features a very fast disable/enable ($10 \mathrm{~ns} / 55 \mathrm{~ns}$) allowing the multiplexing of high-speed signals onto an analog bus through the common output connections of multiple CLC411's. Using the same signal source to drive disable/enable pins is easy since "break-before-make" is guaranteed.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-94566
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- 200MHz small signal bandwidth ($1 \mathrm{~V}_{\mathrm{PP}}$)
- $\pm 0.05 \mathrm{~dB}$ gain flatness to 30 MHz
- $0.02 \%, 0.03^{\circ}$ differential gain, phase
- $2300 \mathrm{~V} / \mathrm{hs}$ slew rate
- 10ns disable to high-impedance output
- 70 mA continuous output current

■ $\pm 4.5 \mathrm{~V}$ output swing into 100Ω load

- $\pm 4.0 \mathrm{~V}$ input voltage range

Applications

- HDTV amplifier
- Video line driver
- High-speed analog bus driver
- Video signal multiplexer
- DAC output buffer

Connection Diagram

Typical Application

Recommended Inverting Gain Configuration

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC411AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC411AJE	M08A

CLC412

Dual Wideband Video Op Amp

General Description

The CLC412 combines a high－speed complementary bipolar process with National＇s current－feedback topology to pro－ duce a very high－speed dual op amp．The CLC412 provides a 250 MHz small－signal bandwidth at a gain of $+2 \mathrm{~V} / \mathrm{V}$ and a $1300 \mathrm{~V} / \mathrm{us}$ slew rate while consuming only 50 mW per ampli－ fier from $\pm 5 \mathrm{~V}$ supplies．
The CLC412 offers exceptional video performance with its 0.02% and 0.02° differential gain and phase errors for NTSC and PALvideo signals while driving one back terminated 75Ω load．The CLC412 also offers a flat gain response of 0.1 dB to 30 MHz and very low channel－to－channel crosstalk of -76 dB at 10 MHz ．Additionally，each amplifier can deliver a 70 mA continuous output current．This level of performance makes the CLC412 an ideal dual op amp for high－density broadcast－quality video systems
The CLC412＇s two very well－matched amplifiers support a number of applications such as differential line drivers and receivers．In addition，the CLC412 is well suited for Sallen Ken active filters in applications such as anti－aliasing filters for high－speed A／D converters．Its small 8－pin SOIC pack－ age，low power requirement，low noise and distortion allow the CLC412 to serve portable RF applications such as IQ－channels．
Enhanced Solutions（Military／Aerospace）
SMD Number：5962－94719
Space level versions also available．
For more information，visit http：／／www．national．com／mil

Features

－Wide bandwidth： $330 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{N}\right) ; 250 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=\right.$ $+2 \mathrm{~V} / \mathrm{V})$
－ 0.1 dB gain flatness to 30 MHz
－Low power： $5 \mathrm{~mA} /$ channel
－Very low diff．gain，phase： $0.02 \%, 0.02^{\circ}$
－-76 dB channel－to－channel crosstalk（ 10 MHz ）
－Fast slew rate： $1300 \mathrm{~V} / \mathrm{hs}$
－Unity－gain stable

Applications

－HDTV，NTSC \＆PAL video systems
－Video switching and distribution
－IQ amplifiers
－Wideband active filters
－Cable drivers
－DC coupled single－to－differential conversions

Connection Diagram

Typical Application

$$
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{\frac{K_{0}}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{2}}+\frac{1-K_{9}}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

Sallen-Key Low-Pass Filter

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC412AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC412AJE	M08A

CLC414

Quad, Low-Power Monolithic Op Amp

General Description

The CLC414 is a low-power, quad, monolithic operational amplifier designed for intermediate-gain applications where power and cost per channel are of primary concern. Benefiting from National's current feedback architecture, the CLC414 offers a gain range of ± 1 to ± 10 while providing stable, oscillation-free operation without external compensation, even at unity gain.
Operating from ± 5 supplies, the CLC414 consumes only 25 mW of power per channel, yet maintains a 90 MHz small-signal bandwidth and a $1000 \mathrm{~V} / \mu \mathrm{s}$ slew rate. The CLC414 also provides wide channel isolation with its 70 dB crosstalk (input referred at 5 MHz). Applications requiring a high-density solution to high-speed amplification such as active filters and instrumentation diff amps will benefit from the CLC414's four integrated, wideband op amps in one 14-pin package.
Commercial remote-sensing applications and battery powered radio transceivers requiring high performance, low-power will find the CLC414 to be an attractive, cost-effective solution. In composite video switching and distribution applications, the CLC414 offers differential gain and phase performance of $0.1 \%, 0.12^{\circ}$ at 3.58 MHz .
The lower power CLC414 and the wideband CLC415 are quad versions of the CLC406. Both of these quads afford the designer lower power consumption and lower cost per channel with the additional benefit of requiring less board space per amplifier.
Construction using an advanced, complementary bipolar process and National's proven current feedback architecture, the CLC414 is available in several versions to meet a variety of requirements.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-91693
Space level versions also available.

For more information, visit http://www.national.com/mil

Features

- 90 MHz small signal bandwidth
- 2 mA quiescent current per amplifier
- 70 dB channel isolation 5 MHz
- $0.1 \% / 0.12^{\circ}$ differential gain/phase
- 16 ns settling to 0.1%
- $100 \mathrm{~V} / \mathrm{hs}$ slew rate
- 3.3 ns rise and fall time ($2 \mathrm{~V}_{\mathrm{PP}}$)
- 70 mA output current

Applications

- Composite video distribution amps
- HDTV amplifiers
- RGB-video amplifiers
- CCD signal processing
- Active filters
- Instrumentation diff. amps
- General purpose high density requirements

Small Signal Pulse Response

All-Hostile Crosstalk Isolation

Connection Diagram

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14－pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC414AJP	N14A
14－pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC414AJE	M14A，B

CLC415

Quad, Wideband Monolithic Op Amp

General Description

The CLC415 is a wideband, quad, monolithic operational amplifier designed for intermediate-gain applications where power and cost per channel are primary concern. Benefiting from National's current feedback architecture, the CLC415 offers a gain range of ± 1 to ± 10 while providing stable, oscillation-free operation without external compensation, even at unity gain.
Operating from $\pm 5 \mathrm{~V}$ supplies, the CLC415 consumes only 50 mW of power per channel, yet maintains a 160 MHz small-signal bandwidth and a $1500 \mathrm{~V} / \mu \mathrm{s}$ slew rate. High density applications requiring an integrated solution will enjoy the CLC415's 70 dB channel isolation (input referred 5 MHz). With its exceptional differential gain and phase, typically 0.03% and $0.03^{\circ} @ 3.58 \mathrm{MHz}$, the CLC415 is designed to meet the performance and cost per channel requirements of high volume composite video applications. The CLC415's large-signal bandwidth, high slew rate and high drive capability are features well suited for RGB-video applications.
The CLC415 is a quad version of the high speed CLC406 while the CLC414 is a lower power quad version of the same. Both of these quads afford the designer lower power consumption and lower cost per channel with the additional benefit of requiring less board space per amplifier.
Constructed using an advanced, complementary bipolar process and National's proven current feedback architectures. The CLC415 is available in several versions to meet a variety of requirements.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-93055
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- 160 MHz small signal bandwidth
- 5 mA quiescent current per amplifier
- 70 dB channel isolation @ 5 MHz
- 0.03% and 0.03° differential gain/phase
- 12 ns settling to 0.1%
- $1500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 2.0 ns rise and fall time ($2 \mathrm{~V}_{\mathrm{PP}}$)
- 60 mA output current per amplifier

Applications

- Composite video distribution amps
- HDTV amplifiers
- RGB-video amplifiers
- CCD signal processing
- Active Filters
- Instrumentation differential amps
- Channelized EW

Connection Diagram

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14 -pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC415AJP	N14A
14 -pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC415AJE	M14A, B

CLC420

High-Speed, Voltage Feedback Op Amp

General Description

The CLC420 is an operational amplifier designed for applications requiring matched inputs, integration or transimpedance amplification. Utilizing voltage feedback architecture, the CLC420 offers a 300 MHz bandwidth, a $1100 \mathrm{~V} / \mathrm{\mu s}$ slew rate and a 4 mA supply current (power consumption of $40 \mathrm{~mW}, \pm 5 \mathrm{~V}$ supplies).
Applications such as differential amplifiers will benefit from 70 dB common mode rejection ratio and an input offset current of $0.2 \mu \mathrm{~A}$. With its unity-gain stability, $2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ current noise and $3 \mu \mathrm{~A}$ of input bias current, the CLC420 is designed to meet the needs of filter applications and \log amplifiers. The low input offset current and current noise, combined with a settling time of 18 ns to 0.01% make the CLC420 ideal for D/A converters, pin diode receivers and photo multipliers amplifiers. All applications will find 70 dB power supply rejection ratio attractive.

Features

- 300MHz small signal bandwidth
- $1100 \mathrm{~V} / \mu$ s slew rate
- Unity-gain stability
- Low distortion, -60 dBc at 20 MHz
- 0.01% settling in 18 ns
- $0.2 \mu \mathrm{~A}$ input offset current
- $2 p \mathrm{~A} \sqrt{\mathrm{~Hz}}$ current noise

Applications

- Active filters/integrators
- Differential amplifiers
- Pin diode receivers
- Log amplifiers
- D/A converters
- Photo multiplier amplifiers

Non-Inverting Frequency Response

DS012752-19

Connection Diagram

2nd and 3rd Harmonic Distortion

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC420AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC420AJE CLC420AJE-TR13	M08A

CLC425

Ultra Low Noise Wideband Op Amp

General Description

The CLC425 combines a wide bandwidth (1.9GBW) with a very low input noise $(1.05 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 1.6 \mathrm{pA} / \sqrt{\mathrm{Hz}})$ and low dc errors ($100 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}}, 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift) to provide a very precise, wide dynamic-range op amp offering closed-loop gains of ≥ 10.
Singularly suited for very wideband high-gain operation, the CLC425 employs a traditional voltage-feedback topology providing all the benefits of balanced inputs, such as low offsets and drifts, as well as a 96 dB open-loop gain, a 100 dB CMRR and a 95dB PSRR.

The CLC425 also offers great flexibility with its externally adjustable supply current, allowing designers to easily choose the optimum set of power, bandwidth, noise and distortion performance. Operating from $\pm 5 \mathrm{~V}$ power supplies, the CLC425 defaults to a 15 mA quiescent current, or by adding one external resistor, the supply current can be adjusted to less than 5mA.

The CLC425's combination of ultra-low noise, wide gain-bandwidth, high slew rate and low dc errors will enable applications in areas such as medical diagnostic ultrasound, magnetic tape \& disk storage, communications and opto-electronics to achieve maximum high-frequency signal-to-noise ratios.
Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-93259
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- 1.9 GHz gain-bandwidth product
- $1.05 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input voltage noise
- $0.8 \mathrm{pA} / \sqrt{\mathrm{Hz}} @ \mathrm{I}_{\mathrm{CC}} \leq 5 \mathrm{~mA}$
- $100 \mu \mathrm{~V}$ input offset voltage, $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift
- $350 \mathrm{~V} / \mathrm{\mu s}$ slew rate
- 15 mA to 5 mA adjustable supply current
- Gain range ± 10 to $\pm 1,000 \mathrm{~V} / \mathrm{V}$
- Evaluation boards \& simulation macromodel
- 0.9dB NF @ $\mathrm{R}_{\mathrm{s}}=700 \Omega$

Applications

- Instrumentation sense amplifiers
- Ultrasound pre-amps
- Magnetic tape \& disk pre-amps
- Photo-diode transimpedance amplifiers
- Wide band active filters
- Low noise figure RF amplifiers
- Professional audio systems
- Low-noise loop filters for PLLs

Equivalent Input Voltage Noise

Connection Diagrams

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC425AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC425AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC425AJM5	MA05A

CLC426

Wideband，Low－Noise，Voltage Feedback Op Amp

General Description

The National CLC426 combines an enhanced voltage－feedback architecture with an advanced complimen－ tary bipolar process to provide a high－speed op amp with very low noise（ $1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}} \& 2.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ ）and distortion $\left(-62 \mathrm{dBc} /-68 \mathrm{dBc} 2 \mathrm{nd} / 3 \mathrm{rd}\right.$ harmonics at $1 \mathrm{~V}_{\mathrm{pp}}$ and 10 MHz ）．
Providing a wide 230 MHz gain－bandwidth product，a fast $400 \mathrm{~V} / \mu \mathrm{s}$ slew rate and very quick 16 ns settling time to 0.05% ，the CLC426 is the ideal choice for high speed appli－ cations requiring a very wide dynamic range such as an in－ put buffer for high－resolution analog－to－digital converters．
The CLC426 is internally compensated for gains $\geq 2 \mathrm{~V} / \mathrm{V}$ and can easily be externally compensated for unity－gain stability in applications such as wideband low－noise integrators．The CLC426 is also equipped with external supply current adjust－ ment which allows the user to optimize power，bandwidth， noise and distortion performance for each application．
The CLC426＇s combination of speed，low noise and distor－ tion and low dc errors will allow high－speed signal condition－ ing applications to achieve the highest signal－to－noise perfor－ mance．To reduce design times and assist board layout，the CLC426 is supported by an evaluation board and SPICE simulation model available from National．
For even higher gain－bandwidth voltage－feedback op amps see the 1.9 GHz CLC425（ $\mathrm{A}_{\mathrm{v}} \geq 10 \mathrm{~V} / \mathrm{V}$ ）or the 5.0 GHz CLC422 （ $\mathrm{A}_{\mathrm{v}} \geq 30 \mathrm{~V} / \mathrm{V}$ ）．

Enhanced Solutions（Military／Aerospace
SMD Number：5962－94597
＊Space level versions also available．
＊For more information，visit http：／／www．national．com／mil

Features

－Wide gain－bandwidth product： 230 MHz
－Ultra－low input voltage noise： $1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
－Very low harmonic distortion：$-62 /-68 \mathrm{dBc}$
－Fast slew rate： $400 \mathrm{~V} / \mu \mathrm{s}$
－Adjustable supply current
－Dual ± 2.5 to $\pm 5 \mathrm{~V}$ or single 5 to 12 V supplies
－Externally compensatable

Applications

－Active filters \＆integrators
－Ultrasound
－Low－power portable video
－ADC／DAC buffer
－Wide dynamic range amp
－Differential amps
－Pulse／RF amp

Input Voltage Noise Density

Connection Diagram

Typical Application

Wide Dynamic Range Sallen-Key Band Pass Filter 2nd-Order (20MHz, Q=10, G=2)

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC426AJP	N08E
8-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC426AJE	M08A

CLC428

Dual Wideband，Low－Noise，Voltage Feedback Op Amp

General Description

The National CLC428 is a very high－speed dual op amp that offers a traditional voltage－feedback topology featuring unity－ gain stability and slew enhanced circuitry．The CLC428＇s ul－ tra low noise and very low harmonic distortion combine to form a very wide dynamic－range op amp that operates from a single（ 5 to 12 V ）or dual（ $\pm 5 \mathrm{~V}$ ）power supply．
Each of the CLC428＇s closely matched channels provides a 160 MHz unity－gain bandwidth with an ultra low input voltage noise density（ $2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ ）．Very low 2nd／3rd harmonic distor－ tion（－62dB）make the CLC428 a perfect wide dynamic－ range amplifier for matched I／Q channels．
With its fast and accurate settling（ 16 ns to 0.1% ），the CLC428 is also an excellent choice for wide－dynamic range， anti－aliasing filters to buffer the inputs of hi－resolution analog－to－digital converters．Combining the CLC428＇s two tightly－matched amplifiers in a single eight－pin SOIC reduces cost and board space for many composite amplifier applica－ tions such as active filters，differential line drivers／receivers， fast peak detectors and instrumentation amplifiers．
To reduce design times and assist in board layout，the CLC428 is supported by an evaluation board and a SPICE simulation model available from National．

Features

－Wide unity－gain bandwidth： 160 MHz
－Ultra－low noise： $2.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
－Low Distortion：-78 dBc 2nd（2MHz）
－Low Distortion：$-62 /-72 \mathrm{dBc}(10 \mathrm{MHz})$

Connection Diagram

－Settling time： 16 ns to 0.1
－Supply voltage range：± 2.5 to ± 5 or single supply
－High output current：$\pm 70 \mathrm{~mA}$

Applications

－General purpose dual op amp
－Low noise integrators
－Low noise active filters
－Diff－in／diff－out instrumentation amp
－Driver／receiver for transmission systems
－High－speed detectors I／Q channel amplifiers

Typical Application

Typical Application (Continued)

DS012710-2
Frequency \& Phase Response

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC4281AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC4281AJE	M08A

CLC430

General Purpose 100MHz Op Amp with Disable

General Description

The CLC430 is a low-cost, wideband monolithic amplifier for general purpose applications. The CLC430 utilizes National's patented current feedback circuit topology to provide an op amp with a slew rate of $2000 \mathrm{~V} / \mu \mathrm{s}, 100 \mathrm{MHz}$ unity-gain bandwidth and fast output disable function. Like all current feedback op amps, the CLC430 allows the frequency response to be optimized (or adjusted) by the selection of the feedback resistor. For demanding video applications, the 0.1 dB bandwidth to 20 MHz and differential gain/phase of $0.03 \% / 0.05^{\circ}$ make the CLC430 the preferred component for broadcast quality NTSC and PAL video systems.
The large voltage swing ($28 \mathrm{~V}_{\mathrm{PP}}$), continuous output current (84 mA) and slew rate $(2000 \mathrm{~V} / \mu \mathrm{s})$ provide high-fidelity signal conditioning for applications such as CCDs, transmission lines and low impedance circuits. Even driving loads of 100Ω, the CLC430 provides very low 2nd and 3rd harmonic distortion at $1 \mathrm{MHz}(-76 /-82 \mathrm{dBc})$.
Video distribution, multimedia and general purpose applications will benefit from the CLC430's wide bandwidth and disable feature. Power is reduced and the output becomes a high impedance when disabled. The wide gain range of the CLC430 makes this general purpose op amp an improved solution for circuits such as active filters, differential-to-single-ended drivers, DAC transimpedance amplifiers and MOSFET drivers.

Features

- 0.1 dB gain flatness to $20 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
- 100 MHz bandwidth $\left(\mathrm{A}_{\mathrm{V}}=+1\right)$
- $2000 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- $0.03 \% / 0.05^{\circ}$ differential gain/phase
- $\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$ or single supplies
- 100 ns disable to high-impedance output
- Wide gain range
- Low cost

Applications

- Video distribution
- CCD clock driver
- Multimedia systems
- DAC output buffers
- Imaging systems

Connection Diagram

Typical Application

CCD Clock Driver

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC430AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC430AJE	M08A

CLC431／432

Dual Wideband Monolithic Op Amp with Disable

General Description

The CLC431 and CLC432 current－feedback amplifiers pro－ vide wide bandwidths and high slew rates for applications where board density and power are key considerations． These amplifiers provide DC－coupled small signal band－ widths exceeding 92 MHz while consuming only 7 mA per channel．Operating from $\pm 15 \mathrm{~V}$ supplies，the CLC431／432＇s enhanced slew rate circuitry delivers large－signal band－ widths without out voltage swings up to $28 \mathrm{~V}_{\mathrm{pp}}$ ．A wide range of bandwidth－intensive gains are made possible by virtue of the CLC431 and CLC432＇s current－feedback topology．
The large common－mode input range and fast settling time （ 70 ns to 0.05% ）make these amplifiers well suited for CCD \＆ data telecommunication applications．The disable of the CLC431 can accommodate ECL or TTL logic levels or a wide range of user definable inputs．With its fast enable／disable time $(0.2 \mu \mathrm{~s} / 1 \mu \mathrm{~s})$ and high channel isolation of 70 dB at 10 MHz ，the CLC431 can easily be configured as a 2：1 MUX． Many high performance video applications requiring signal gain and／or switching will be satisfied with the CLC431／432 due to their very low differential gain and phase errors（less than 0.1% and $0.1^{\circ} ; A_{V}=+2 \mathrm{~V} / \mathrm{V}$ at 4.3 MHz into 150Ω load）． Quick 8 ns rise and fall times on 10 V pulses allow the CLC431／432 to drive either twisted pair or coaxial transmis－ sion lines over long distances．
The CLC431／432＇s combination of low input voltage noise， wide common－mode input voltage range and large output voltage swings make them especially well suited for wide dy－ namic range signal processing applications
Enhanced Solutions（Military／Aerospace）
SMD Number：5962－94725
＊Space level versions also available．
＊For more information，visit http：／／www．national．com／mil

Features

－Wide bandwidth： $92 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+1\right), 62 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
－Fast slew rate： $2000 \mathrm{~V} / \mathrm{hs}$
－Fast disable： $1 \mu \mathrm{~s}$ to high－Z output
－High channel isolation： 70 dB at 10 MHz
－Single or dual supplies：$\pm 5 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$

Applications

－Video signal multiplexing
－Twisted－pair differential driver
－CCD buffer \＆level shifting
－Discrete gain－select amplifier
－Transimpedance amplifier

Connection Diagrams

Connection Diagrams (Continued)

Typical Application

Time ($1 \mu \mathrm{~s} / \mathrm{div}$)
DS012712-3
CLC431 Gain-Select Amplifier

Discrete Gain-Select Amplifier

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC431AJP	N14A
14-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC431AJE	M14A,B
8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC432AJP	N08E
8-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC432AJE	M08A

High-Speed, Low-Power, Voltage Feedback Op Amp

General Description

The CLC440 is a wideband, low-power, voltage feedback op amp that offers 750 MHz unity-gain bandwidth, $1500 / \mu \mathrm{s}$ slew rate, and 90 mA output current. For video applications, the CLC440 sets new standards for voltage feedback monolithics by offering the impressive combination of 0.015% differential gain and 0.025° differential phase errors while dissipating a mere 70 mW .
The CLC440 incorporates the proven properties of Comlinear's current feedback amplifiers (high bandwidth, fast slewing, etc.) into a "classical" voltage feedback architecture. This amplifier possesses truly differential and fully symmetrical inputs both having a high $900 \mathrm{k} \Omega$ impedance with matched low input bias currents. Furthermore, since the CLC440 incorporates voltage feedback, a specific R_{f} is not required for stability. This flexibility in choosing R_{f} allows for numerous applications in wideband filtering and integration. Unlike several other high-speed voltage feedback op amps, the CLC440 operates with a wide range of dual or single supplies allowing for use in a multitude of applications with limited supply availability. The CLC440's low $3.5 n \mathrm{~V} / \sqrt{\mathrm{Hz}}\left(e_{n}\right)$ and $2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}\left(\mathrm{i}_{\mathrm{n}}\right)$ noise sets a very low noise floor.

Features

- Unity-gain stable
- High unity-gain bandwidth: 750 MHz
- Ultra-low differential gain: 0.015\%
- Very low differential phase: 0.025°
- Low power: 70 mW
- Extremely fast slew rate: $1500 \mathrm{~V} / \mathrm{hs}$

■ High output current: 90 mA

- Low noise: $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Dual $\pm 2.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ or single 5 V to 12 V supplies

Applications

- Professional video
- Graphics workstations
- Test equipment
- Video switching \& routing
- Communications
- Medical imaging
- A/D drivers
- Photo diode transimpedance amplifiers
- Improved replacement for CLC420 or OPA620

Generator Waveforms

Connection Diagram

DS012714-26
Pinout DIP \& SOIC

Typical Application

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8－pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC440AJP	N08E
8－pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC440AJE	M08A

CLC446

400MHz, 50mW Current-Feedback Op Amp

General Description

The National CLC446 is a very high-speed unity-gain-stable current-feedback op amp that is designed to deliver the highest levels of performance from a mere 50 mW quiescent power. It provides a very wide 400 MHz bandwidth, a $2000 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 900 ps rise/fall times. The CLC446 achieves its superior speed-vs-power using an advanced complementary bipolar IC process and National's currentfeedback architecture.
The CLC446 is designed to drive video loads with very low differential gain and phase errors ($0.02 \%, 0.03^{\circ}$). Combined with its very low power (50 mW), the CLC446 makes an excellent choice for NTSC/PAL video switchers and routers. With its very quick edge rates (900 ps) and high slew rate ($2000 \mathrm{~V} / \mathrm{Hs}$), the CLC446 also makes an excellent choice for high-speed, high-resolution component RGB video systems.
The CLC446 makes an excellent low-power high-resolution A/D converter driver with its very fast $9 n s$ settling time (to 0.1%) and low harmonic distortion.
The combination of high performance and low power make the CLC446 useful in many high-speed general purpose applications. Its current-feedback architecture maintains consistent performance over a wide gain range and signal levels. DC gain and bandwidth can be set independently. Also, either maximally flat AC response or linear phase response can be emphasized.

Features

- 400 MHz bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$
- 5 mA supply current
- $0.02 \%, 0.03^{\circ}$ differential gain, phase
- $2000 \mathrm{~V} /$ us slew rate
- 9 ns settling to 0.1%
- 0.05 dB gain flatness to 100 MHz
- $-65 /-78 \mathrm{dBc}$ HD2/HD3

Applications

- High resolution video
- A/D driver
- Medical imaging
- Video switchers \& routers
- RF/IF amplifier
- Communications
- Instrumentation

Connection Diagram

Typical Application

Elliptic－Function Low Pass Filter

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8－pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC446AJP	N08E
8－pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC446AJE	M08A

CLC449

1.1GHz Ultra-Wideband Monolithic Op Amp

General Description

The CLC449 is an ultra-high-speed monolithic op amp, with a typical -3 dB bandwidth of 1.1 GHz at a gain of +2 . This wideband op amp supports rise and fall times less than 1 ns , settling time of 6 ns (to 0.2%) and slew rate of $2500 \mathrm{~V} / \mu \mathrm{s}$. The CLC449 achieves 2nd harmonic distortion of -68 dBc at 5 MHz at a low supply current of only 12 mA . These performance advantages have been achieved through improvements in National's proven current feedback topology combined with a high-speed complementary bipolar process.
The DC to 1.2 GHz bandwidth of the CLC449 is suitable for many IF and RF applications as a versatile op amp building block for replacement of AC coupled discrete designs. Operational amplifier function such as active filters, gain blocks, differentiation, addition, subtraction and other signal conditioning functions take full advantage of the CLC449's unitygain stable closed-loop performance.
The CLC449 performance provides greater headroom for lower frequency applications such as component video, high-resolution workstation graphics, and LCD displays. The amplifier's 0.1 dB gain flatness to beyond 200 MHz , plus 0.8 ns 2 V rise and fall times are ideal for improved time domain performance. In addition, the $0.03 \% / 0.02^{\circ}$ differential gain/phase performance allows system flexibility for handling standard NTSC and PAL signals.
In applications using high-speed flash A/D and D/A converters, the CLC449 provides the necessary wide bandwidth (1.1 GHz), settling (6 ns to 0.02%) and low distortion into 50Ω loads to improve SFDR.

Features

- 1.1 GHz small-signal bandwidth $\left(A_{v}=+2\right)$
- $2500 \mathrm{~V} / \mu$ s slew rate
- $0.03 \%, 0.02^{\circ} \mathrm{D}_{\mathrm{G}}, \mathrm{D}_{\Phi}$
- 6 ns settling time to 0.2%
- 3rd order intercept, 30 dBm @ 70 MHz
- Dual $\pm 5 \mathrm{~V}$ or single 10 V supply
- High output current: 80 mA
- 2.5 dB noise figure

Applications

- High performance RGB video
- RF/IF amplifier
- Instrumentation
- Medical electronics
- Active filters
- High-speed A/D driver
- High-speed D/A buffer

Connection Diagram

DS012715-3
Pinout DIP \& SOIC

Typical Application

120MSPS High-Speed Flash ADC Driver

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC449AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC449AJE	M08A

CLC450

Single Supply, Low-Power, High Output, Current Feedback Amplifier

General Description

The CLC450 has a new output stage that delivers high output drive current (100 mA), but consumes minimal quiescent supply current (1.5 mA) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency. The CLC450 offers superior dynamic performance with a 100 MHz small-signal bandwidth, $280 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 6.1 ns rise/fall times ($2 \mathrm{~V}_{\text {step }}$). The combination of low quiescent power, high output current drive, and high-speed performance make the CLC450 well suited for many battery-powered personal communication/computing systems.
The ability to drive low-impedance, highly capacitive loads, makes the CLC450 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC450 will drive a 100Ω load with only $-75 /-64 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}$, f $=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-70 /-60 \mathrm{dBc}$ second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils.
When driving the input of high-resolution A / D converters, the CLC450 provides excellent $-79 /-75 \mathrm{dBc}$ second/third harmonic distortion ($A_{V}=+2, V_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}, f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$) and fast settling time.
Available in SOT23-5, the CLC450 is ideal for applications where space is critical.

Features

- 100mA output current
- 1.5 mA supply current
- 100 MHz bandwidth $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
- $-79 /-75 \mathrm{dBc}$ HD2/HD3 (1 MHz)
- 20 ns settling to 0.05%
- $280 \mathrm{~V} / \mathrm{us}$ slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V to $\pm 5 \mathrm{~V}$ supplies
- Available in Tiny SOT23-5 package

Applications

- Coaxial cable driver
- Twisted pair driver
- Transformer/Coil Driver
- High capacitive load driver
- Video line driver
- Portable/battery-powered applications
- A/D driver

Connection Diagrams

Pinout DIP \& SOIC

Typical Application

Response After 10m of Cable

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC450AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC450AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC450AJM5	MA05A

CLC452

Single Supply, Low-Power, High Output, Current Feedback Amplifier

General Description

The CLC452 has a new output stage that delivers high output drive current $(100 \mathrm{~mA})$, but consumes minimal quiescent supply current $(3.0 \mathrm{~mA})$ from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency. The CLC452 offers superior dynamic performance with a 130 MHz small-signal bandwidth, $400 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 4.5 ns rise/fall times ($2 \mathrm{~V}_{\text {step }}$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC452 well suited for many battery-powered personal communication/computing systems.

The ability to drive low-impedance, high capacitive loads, makes the CLC452 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC452 will drive a 100Ω load with only $-75 /-74 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}$, f $=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-65 /-77 \mathrm{dBc}$ second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils.
When driving the input of high-resolution A / D converters, the CLC452 provides excellent $-78 /-85 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$) and fast settling time.
Available in SOT23-5, the CLC452 is ideal for applications where space is critical.

Features

- 100mA output current
- 3.0 mA supply current
- 130 MHz bandwidth $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
- $-78 /-85 \mathrm{dBc}$ HD2/HD3 (1MHz)
- 25 ns settling to 0.05%
- $400 \mathrm{~V} / \mathrm{us}$ slew rate
- Stable for capacitive loads up to 1000 pF
- Single 5 V to $\pm 5 \mathrm{~V}$ supplies
- Available in Tiny SOT23-5 package

Applications

- Coaxial cable driver
- Twisted pair driver
- Transformer/Coil Driver
- High capacitive load driver
- Video line driver
- Portable/battery-powered applications
- A/D driver

Maximum Output Voltage vs. $\mathbf{R}_{\mathbf{L}}$

Connection Diagrams

Pinout DIP \& SOIC

Typical Application

Response After 10m of Cable

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC452AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC452AJE	M08A
5-pin SOT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC452AJM5	MA05A

CLC501

High-Speed, Output Clamping Op Amp

General Description

The CLC501 is a high-speed current-feedback op amp with the unique feature of output voltage clamping. This feature allows both the maximum positive $\left(\mathrm{V}_{\text {high }}\right)$ and negative $\left(\mathrm{V}_{\text {low }}\right)$ output voltage levels to be established. This is useful in a number of applications in which "downstream" circuitry must be protected from over driving input signals. Not only can this prevent damage to downstream circuitry, but can also reduce time delays since saturation is avoided. The CLC501's very fast 1ns overload/clamping recovery time is useful in applications in which information-containing signals follow overdriving signals.
Engineers designing high-resolution, subranging A / D systems have long sought an amplifier capable of meeting the demanding requirements of the residue amplifier function. Amplifiers providing the residue function must not only settle quickly, but recover from overdrive quickly, protect the second stage A / D, and provide high fidelity at relatively high gain settings. The CLC501, which excels in these areas, is the ideal design solution in this onerous application. To further support this application, the CLC501 is both characterized and tested at a gain setting of +32 -the most common gain setting for residue amplifier applications.
The CLC501's other features provide a quick, high -performance design solution. Since the CLC501's current feedback design requires no external compensation, designers need not spend their time designing compensation networks. The small 8 -pin package and low, 180 mW power consumption make the CLC501 ideal in numerous applications having small power and size budgets.
The CLC501 is available in several versions to meet a variety of requirements. A three-letter suffix determines the version:

Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-94597
*Space level version also available.
*For more information, visit http://www.national.com/mil

Features

- Output clamping ($\mathrm{V}_{\text {high }}$ and $\mathrm{V}_{\text {low }}$)
- 1ns recovery from clamping/overdrive
- 0.05% settling in 12 ns
- Characterized and guaranteed at $A_{v}=+32$
- Low power, 180 mW

Applications

- Residue amplifier in high-accuracy, subranging A/D systems
- High-speed communications
- Output clamping applications
- Pulse amplitude modulation systems

Connection Diagram

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC501AJP	N08E
8-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC501AJE	M08A

CLC502

Clamping, Low-Gain Op Amp

with Fast 14-bit Settling

General Description

The CLC502 is an operational amplifier designed for low-gain applications requiring output voltage clamping. This feature allows the designer to set maximum positive and negative output voltage levels for the amplifier - thus allowing the CLC502 to protect downstream circuitry, such as delicate converter systems from destructive transients or signals which would otherwise cause saturation. The overload recovery time of only 8 ns permits systems to resume operation quickly after overdrive.
High-accuracy systems will also benefit from the CLC502's fast, accurate settling. Settling to 0.0025% in 25 ns (32ns guaranteed over temperature), the CLC502 is ideal as the input amplifier in high-accuracy (12 bits and above) A/D systems. Unlike most other high-speed op amps, the CLC502 is free of settling tails. And, as the settling plots show, settling to 0.01% accuracy is an even faster 18ns typical.
The CLC502 is also useful in other applications which require low-gain amplification (± 1 to ± 8) and the clamping or overload recovery features. For example, even low-resolution imaging circuits, which often have to cope with overloading signal levels, can benefit from clamping and overload recovery.
The CLC502 is available in several versions to meet a variety of requirements. A three-letter suffix determines the version:
Enhanced Solutions (Military/Aerospace)
SMD Number: 5962-91743

Features

- Output clamping with fast recovery
- 0.0025% settling in 25 ns (32 ns max)
- Low power, 170 mW
- Low distortion. -50 dBc at 20 MHz

Applications

- Output clamping applications
- High-accuracy A/D systems (12-14 bits)
- High-accuracy D/A converters
- Pulse amplitude modulation systems

Clamped Pulse Response (8x Overdrive)

*Space level versions also available.
*For more information, visit http://www.national.com/mil

Connection Diagram

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC502AJP	N08E
8-pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC502AJE	M08A

CLC505

High-Speed, Programmable-Supply Current, Monolithic Op Amp

General Description

The CLC505 is a monolithic, high-speed op amp with a unique combination of high performance, low power consumption, and flexibility of application. The supply current is programmable over a 10 to 1 continuous range with a single resistor, R_{p}. This feature enables the amplifier to be used in a wide variety of high-performance applications. Typical performance at any supply current is exceptional:

Parameter	Supply Current (I $\mathbf{c c})$			Units
	9 mA	3.4 mA	1 mA	
-3 dB bandwidth	150	100	50	MHz
settling time	12	14	35	nsec
slew rate	1700	1200	800	$\mathrm{~V} / \mu \mathrm{sec}$
output current	45	25	7	mA

The CLC505's combination of high performance, low power consumption, and large signal performance makes the CLC505 ideal for a wide variety of remote site equipment applications, such as battery-powered test instrumentation and communications gear. Some other power applications are video switching matrices, ATE, and phased-array radar systems.
The CLC505 has been designed for ease of use and has been specified to ensure design confidence and final system predictability. The product performance is specified for 1 mA , 3 mA ad 9 mA supply current. The CLC505 is available in 8 -pin Dip SOIC packages offered for the industrial temperature range.
Enhanced Solutions (Military/Aerospace)
SMD Number: contact factory
Space level versions also available.

For more information, visit http://www.national.com/mil

Features

- 10 mW power consumption with 50 MHz BW
- Single-resistor programming of supply current
- $3.4 \mathrm{~mA} \mathrm{I}_{\mathrm{cc}}$ provides 100 MHz bandwidth and 14 ns settling (0.05\%)
- Fast disable capability
- 0.04% differential gain at $\mathrm{I}_{\mathrm{CC}}=3.4 \mathrm{~mA}$
- 0.06% differential phase at $\mathrm{I}_{\mathrm{CC}}=3.4 \mathrm{~mA}$

Applications

- Low-power/battery applications
- Remote site instrumentation
- Mobile communications gear
- Video switching matrix
- Phased-array radar

Large-Signal Pulse Response

Connection Diagram

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC505AJP	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC505AJE	M08A

CLC520

Amplifier with Voltage Controlled Gain, AGC +Amp +

General Description

The CLC520 is a wideband DC-coupled amplifier with voltage-controlled gain (AGC). The amplifier has a high-impedance, differential signal input; a high-bandwidth, gain control input; and a single-ended voltage output. Signal channel performance is outstanding with 160 MHz small signal bandwidth, 0.5 degree linear phase deviation (to 60 MHz) and 0.04% signal nonlinearity at $4 \mathrm{~V}_{\mathrm{PP}}$ output.
Gain-control is very flexible and easy to use. Maximum gain may be set over a nominal range of 2 to 100 with one external resistor. In addition, the gain-control input provides more than 40dB of voltage-controlled gain adjustment from the maximum gain setting. For example, a CLC520 may be set for a maximum gain of 2 (or 6 dB) for a voltage-controlled gain range from 40 dB to less than 34 dB . Alternatively, the CLC520 could be set for a maximum gain of 10 or (40 dB) for a voltage-controlled gain range from 40 dB to less than 0 dB .
The gain-control bandwidth of 100 MHz is superb for AGC/ ALC loop stabilization. And since the gain is minimum with a zero volt input and maximum with a +2 volt input, driving the control input is easy.
Finally, the CLC520 differential inputs, and ground-referenced voltage output take the trouble out of designing DC-coupled AGC circuits for display normalizers; signal leveling automatic circuits; etc.

Enhanced Solutions (Military/Aerospace)

SMD Number: 5962-91694
Space level versions also available.
For more information, visit http://www.national.com/mil

Features

- $160 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- $2000 \mathrm{~V} / \mu \mathrm{sec}$ slew rate
- 0.04% signal nonlinearity at $4 \mathrm{~V}_{\mathrm{PP}}$ output
- -43 dB feedthrough at 30 MHz
- User adjustable gain range
- Differential voltage input and single-ended voltage output

Applications

- Wide-bandwidth AGC systems
- Automatic signal-leveling
- Video signal processing
- Voltage controlled filters
- Differential amplifier
- Amplitude modulation

Gain vs. $\mathbf{V}_{\mathbf{g}}$

Connection Diagram

Pinout DIP \& SOIC

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC520AJPM	N14A
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC520AJE	M14A, M14B

CLC522

Wideband Variable-Gain Amplifier

General Description

The CLC522 variable gain amplifier (VGA) is a dc-coupled, two-quadrant multipliers with differential voltage inputs and a single-ended voltage output. Two input buffers and an output operational amplifier are integrated with the multiplier core and make the CLC522 a complete VGA system that does not require external buffering.
The CLC522 provides the flexibility of externally setting the maximum gain with only two external resistors. Greater than 40 dB gain control is easily achieved through a single high impedance voltage input. The CLC522 provides a linear (in Volts per Volt) relationship between the amplifier's gain and the gain-control input voltage.
The CLC522's maximum gain may be set anywhere over a nominal range of $2 \mathrm{~V} / \mathrm{V}$ to $100 \mathrm{~V} / \mathrm{N}$. The gain control input then provides attenuation from the maximum setting. For example, set for a maximum gain of $100 \mathrm{~V} / \mathrm{N}$, the CLC522 will provide a $100 \mathrm{~V} / \mathrm{V}$ to $1 \mathrm{~V} / \mathrm{V}$ gain control range by sweeping the gain control input voltage from +1 to -0.98 V .
Set at a maximum gain of $10 \mathrm{~V} / \mathrm{V}$, the CLC522 provides a 165 MHz signal channel bandwidth and a 165 MHz gain control bandwidth. Gain nonlinearity over a 40 dB gain range is 0.5
and gain accuracy at $A_{V_{\max }}=10 \mathrm{~V} / \mathrm{V}$ is typically $\pm 0.3 \%$.

Features

- 330 MHz signal bandwidth: $A_{V_{\max }}=2$
- 165MHz gain-control bandwidth
- 0.3° to 60 MHz linear phase deviation
- 0.04% (-68 dB) signal-channel non-linearity
- >40dB gain-adjustment range
- Differential or single-end voltage inputs
- Single-ended voltage output

Applications

- Variable attenuators
- Pulse amplitude equalizers
- HF modulators
- Automatic gain control \& leveling loops
- Video production switching
- Differential line receivers
- Voltage controlled filters

Gain vs. Gain Control Voltage ($\mathbf{V}_{\mathbf{g}}$)

Connection Diagram

Typical Application

2nd Order Tuneable Bandpass Filter

$$
\begin{aligned}
& \frac{V_{0}}{V_{I N}}=\left(-\frac{1}{n}\right) \frac{s \frac{1}{C R_{b}}}{s^{2}+s \frac{1}{C R_{b}}+\frac{k}{C^{2} R_{y}^{2}}} \\
& k=1.85 \frac{R_{f}}{R_{y}}, Q=\frac{\sqrt{k R_{b}}}{R_{y}}, \omega_{0}=\frac{\sqrt{k}}{C R_{y}}
\end{aligned}
$$

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC522AJP	N14A
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC522AJE	M14A, B

CLC5506

Gain Trim Amplifier (GTA)

General Description

The CLC5506 is a low-noise amplifier with programmable gain for use in cellular base stations, WLL, radar and RF/IF subsystems where gain-control is required to increase the dynamic range. The CLC5506 allows designers to compensate for manufacturing component tolerances and temperature variations in receiver front ends. Maximum amplifier gain is set at 26 dB . A three-line MICROWIRE serial interface allows 16 dB of attenuation from the max gain setting in precise 0.25 dB steps.
The CLC5506 uses a differential input and output, allowing large output swings on a single 5 V rail. The differential output is well suited for impedance matching networks driving SAW filters or directly driving differential input analog to digital converters (ADC). The differential output also makes it possible to drive transformers allowing designers the ability to match a wide variety of transmission lines. The output amplifier has excellent output drive with low distortion.

Digital control of the CLC5506 is accomplished using MICROWIRE Interface. Data Out and a Load Enable are incorporated so that more than one CLC5506/channel may be programmed per system.
The CLC5506 maintains a 600MHz performance bandwidth over its entire gain and attenuation range from +10 dB to +26 dB . Gain control is divided into 64 equal steps of 0.25 dB and is dB -linear. Output drive and distortion performance are excellent; In a 50Ω system, the third-order output intercept point is +22 dBm at nominal gain of 18 dB at $25^{\circ} \mathrm{C}$. The CLC5506 operates over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- 600 MHz bandwidth
- 26dB maximum gain @ 150MHz
- 16dB gain control range
- Attenuation step size: 0.25 dB
- 4.8dB noise figure @ 26dB
- +22dBm output IP3 @ 18dB gain
- Digital "dB Linear" gain control
- Supply voltage: 5 V

■ Supply current: 75 mA

- Supply shutdown: $35 \mu \mathrm{~A}$
- Package: SOIC-14
- Typical at $25^{\circ} \mathrm{C}$

Applications

- Cellular base-stations
- Base station repeater
- Wireless Local Loop
- Radar
- Receivers
- IF amplifiers
- Digital IF receiver
- Software radio
- Satellite communications

Frequency Response vs. Gain Setting

Typical Application

Connection Diagram

Pin \#	Pin Name	
1	NC	No connection
2	GND $_{\mathrm{A}}$	Analog ground
3	In+	Positive differential input
4	In-	Negative differential input
5	LE	MICROWIRE load enable input. High impedance CMOS input with Schmitt trigger
6	Clock	MICROWIRE clock input. High impedance CMOS input with Schmitt trigger. Data is clocked in on the rising edge of clock.
7	Data In	MICROWIRE data input. High impedance CMOS input with Schmitt trigger. Binary serial data. Data entered Power Down first.
8	Data Out	MICROWIRE data output. High impedance CMOS input with Schmitt trigger.
9	GND	Digital ground
10	V $_{\text {CCD }}$	Digital supply voltage
11	Out-	Negative differential Output
12	Out+	Positive differential output
13	GND $_{\mathrm{A}}$	Analog ground
14	$\mathrm{~V}_{\text {CCA }}$	Analog supply voltage

Ordering Information

Package	Temperature Range		Transport Media

CLC5509

Ultra-Low Noise Preamplifier

General Description

The CLC5509 is a high performance, ultra-low noise preamplifier designed for applications requiring unconditional stability for wide ranges of complex input loads. Both input impedance and gain are externally adjustable, which make it simple to interface to peizoelectric ultrasound transducers. The CLC5509 preamplifier's low $0.58 \mathrm{nV} \sqrt{\mathrm{Hz}}$ total input noise makes it ideal for noise sensitive front ends. The high repeatability in group delay over voltage and temperature translates into precision edge measurements for Doppler applications.
The IC consists of an emitter input, common base amplifier stage followed by a low distortion, closed loop buffer. The Noise Figure can be user programmed by controlling the emitter current ($\mathrm{I}_{\mathrm{BIAS} 1}$) which sets emitter resistance r_{e}. External negative feedback creates a well controlled input impedance to allow a near noiseless active input transmission line termination. The preamp is stable against changes in source impedance of 50 to 200Ω over temperature and supply variations, with gains from 14 dB to 26 dB . The CLC5509 preamp architecture is also well suited for use with magneto-resistive tape or disk drive heads. In these applications the head bias current can be reused to bias the preamp. The part is packaged in an 8 -pin plastic SOIC, and runs off $\pm 5 \mathrm{~V}$ supplies. External biasing is required for the input signal path.
The CLC5509 is constructed using an advanced complementary bipolar process and National Semiconductor's proven high performance architectures.

Features

- $0.58 \mathrm{nV} \sqrt{\mathrm{Hz}}$ total input noise @ 12 MHz
- >3.0dB Noise figure advantage over shunt termination
- <.5ns group delay repeatability
- High cutoff -3 dB @ 33 MHz
- Low cutoff -3dB @ 0.5MHz
- 2.0 dB noise figure @ 50Ω
- -60 dBc intermod for $2 \mathrm{~V}_{\mathrm{PP}}$ @ 5 MHz
- Programmable noise figure vs. I IBIAS1
- Supply current: 11mA
- Available in 8 -pin SOIC

Applications

- Ultrasound preamp
- Tape drive preamp
- Disk drive preamp

Connection Diagram

Typical Application

DS101304-2
Ultrasound PreAmp

Ordering Information

Package	Temperature Range Industrial $\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Packaging Marking	Transport Media	NSC DrawingM
8 -pin SOIC	CLC5509CM	CLC5509CM	Rails	M08A
	CLC5509CMX	CLC5509CM	2.5 k Tape and Reel	

CLC5523

Low-Power, Variable Gain Amplifier

General Description

The CLC5523 is a low power, wideband, DC-coupled, voltage-controlled gain amplifier. It provides a voltage-controlled gain block coupled with a current feedback output amplifier. High impedance inputs and minimum dependence of bandwidth on gain make the CLC5523 easy to use in a wide range of applications. This amplifier is suitable as a continuous gain control element in a variety of electronic systems which benefit from a wide bandwidth of 250 MHz and high slew rate of $1800 \mathrm{~V} / \mu \mathrm{s}$, with only 135 mW of power dissipation.
Input impedances in the megaohm range on both the signal and gain control inputs simplify driving the CLC5523 in any application. The CLC5523 can be configured to use pin 3 as a low impedance input making it an ideal interface for current inputs. By using the CLC5523's inverting configuration in which R_{G} is driven directly, inputs which exceed the device's input voltage range may be used.
The gain control input $\left(\mathrm{V}_{\mathrm{G}}\right)$ with a 0 to 2 V input range, and a linear-in-dB gain control, simplifies the implementation of AGC circuits. The gain control circuit can adjust the gain as fast as $4 \mathrm{~dB} / \mathrm{ns}$. Maximum gains from 2 to 100 are accurately and simply set by two external resistors while attenuation of up to 80 dB from this gain can be achieved.
The extremely high slew rate of $1800 \mathrm{~V} / \mu \mathrm{s}$ and wide bandwidth provides high speed rise and fall times of 2.0 ns , with settling time for a 2 volt step of only 22 ns to 0.2%. In time domain applications where linear phase is important with gain adjust, the internal current mode circuitry maintains low deviation of delay over a wide gain adjust range.

Features

- Low power: 135 mW
- $250 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Slew rate $1800 \mathrm{~V} / \mathrm{\mu s}$
- Gain flatness $0.2 \mathrm{~d} @ 75 \mathrm{MHz}$
- Rise \& fall times 2.0ns
- Low input voltage noise $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

Applications

- Automatic gain control
- Voltage controlled filters
- Automatic signal leveling for A/D
- Amplitude modulation
- Variable gain transimpedance

Frequency Response with changes in $\mathbf{V}_{\mathbf{g}}$

Connection Diagram

Pinout DIP \& SOIC

Typical Application

Variable Gain Amplifier Circuit

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5523IN	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5523IM	M08A

CLC5526

Digital Variable Gain Amplifier (DVGA)

General Description

The CLC5526 is a high performance, digitally controlled, variable-gain amplifier (DVGA). It has been designed for use in a broad range of mixed signal and digital communication applications such as mobile radio, cellular base stations and back-channel modems where automatic-gain-control (AGC) is required to increase system dynamic range.
The CLC5526 has differential input and output, allowing large signal swings on a single 5 V rail. The input impedance is 200Ω. The differential output impedance is 600Ω and is designed to drive a $1 \mathrm{k} \Omega$ differential load. The output amplifier has excellent intermodulation performance. The CLC5526 is designed to accept signals from RF elements and maintain a terminated impedance environment.
The CLC5526 maintains a 350 MHz bandwidth over its entire gain and attenuation range from +30 dB to -12 dB . Internal clamping ensures very fast overdrive recovery. Two tone intermodulation distortion is excellent: at $150 \mathrm{MHz}, 1 \mathrm{~V}_{\mathrm{pp}}$ it is -64 dBc .
Input signals to the CLC5526 are scaled by an accurate, differential R-2R resistive ladder with an input impedance of 200Ω. A scaled version of the input is selected under digital control and passed to the internal amplifier. The input common mode level is set at 2.4 V via a bandgap referenced bias generator which can be overridden by an external input.
Following the resistive ladder is a fixed, 30 dB gain amplifier. The output stage common mode voltage of the CLC5526 is set to 3 V , by internal, positive supply connected resistors.
Digital control of the CLC5526 is accomplished by a 3-bit parallel gain control input and a data valid pin to latch the data. If the data is not latched, the DVGA is transparent to gain control updates. All digital inputs are TTL/CMOS compatible.

A shutdown input reduces the CLC5526 supply currrent to a few mA. During shutdown, the input termination is maintained and current attenuation settings are held.
The CLC5526 operates over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The part is available in a 20 -pin SSOP package.

Features

- 350 MHz bandwidth
- Differential input and output
- Gain control: parallel w/data latching
- Supply voltage: +5 V
- Supply current: 48 mA

Key Specifications

- Low two tone intermod:
distortion: -64 dBc @ $1 \mathrm{~V}_{\mathrm{PP}}, 150 \mathrm{MHz}$
24.5 dBm IP3, 150 MHz
- Low noise: $2.5 \mathrm{nV} / \mathrm{VHz}$ (max gain), 9.3 dB noise figure (max gain)
- Wide gain range: +30 dB to -12 dB
- Gain step size: 6 dB

Applications

- Cellular/PCS base stations
- IF sampling receivers
- Infrared/CCD imaging
- Back-channel modems
- Electro-optics
- Instrumentation
- Medical imaging
- High definition video

Block Diagram

Pin Configuration

Ordering Information

CLC5526MSA	20-Pin SSOP
CLC5526PCASM	Evaluation Board

Pin Descriptions

Pin Name	Pin No.	Description
GND	$1,5,8,10,11,13,20$	Circuit ground.
Gain MSB	2	Gain Selection Most Significant Bit
Gain ISB	3	Gain Selection Data Bit
Gain LSB	4	Gain Selection Least Significant Bit
In+	6	Positive Differential Input
In-	7	Negative Differential Input
Ref Comp	9	Reference Compensation
V $_{\text {CC }}$	16,19	Positive Supply Voltage
Shutdown	18	Low Power Standby Control (Active High)
Latch Data	17	Data Latch Control (Active High)
Out+	15	Positive Differential Output
Out-	14	Negative Differential Output
Ref In	12	External Reference Input

CLC5602

Dual, High Output, Video Amplifier

General Description

The National CLC5602 has a new output stage that delivers high output drive current (130 mA), but consumes minimal quiescent supply current ($1.5 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.
The CLC5602 offers a 0.1 dB gain flatness to 22 MHz and differential gain and phase errors of 0.06
and 0.02%. These features are ideal for professional and consumer video applications.
The CLC5602 offers superior dynamic performance with a 135 MHz small-signal bandwidth, $300 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a 5.7 ns rise/fall times ($2 \mathrm{~V}_{\text {step }}$). The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5602 well suited for many batterypowered personal communication/computing systems.
The ability to drive low-impedance, highly capacitive loads, makes the CLC5602 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC5602 will drive a 100Ω load with only $-86 /-85 \mathrm{dBc}$ second/third harmonic distortion $\left(\mathrm{A}_{\mathrm{V}}=+2\right.$, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\text {pp }}, f=1 \mathrm{MHz}$. With a 25Ω load, and the same conditions, it produces only $-86 /-72 \mathrm{dBc}$ second/third harmonic distortion.
The CLC5602 can also be used for driving differential-input step-up transformers for applications such as Asynchronous Digital Subscriber Lines (ADSL) or High-Bit-Rate Digital Subscriber Lines (HDSL).
When driving the input of high-resolution A / D converters, the CLC5602 provides excellent -87/-95dBc second/third harmonic distortion ($A_{V}=+2, V_{\text {out }}=2 V_{p p}, f=1 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega$) and fast settling time.

Features

- $0.06 \%, 0.02^{\circ}$ differential gain, phase
- $1.5 \mathrm{~mA} / \mathrm{ch}$ supply current
- 135MHz bandwidth ($\mathrm{A}_{\mathrm{v}}=+2$)
- $-87 /-95 \mathrm{dBc}$ HD2/HD3 (1 MHz)
- 15 ns settling to 0.05%
- $300 \mathrm{~V} /$ us slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V or $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- ADSL/HDSL driver
- Coaxial cable driver
- UTP differential line driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- Differential A/D driver

Maximum Output Voltage vs. \mathbf{R}_{L}

- 130mA output current

Connection Diagram

National Semiconductor

CLC5612

Dual, High Output, Programmable Gain Buffer

General Description

The CLC5612 is a dual, low-cost, high-speed (90 MHz) buffer which features user-programmable gains of $+2,+1$, and $-1 \mathrm{~V} /$ V. The CLC5612 also has a new output stage that delivers high output drive current (130 mA), but consumes minimal quiescent supply current ($1.5 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.
The CLC5612 offers 0.1 dB gain flatness to 18 MHz and differential gain and phase errors of 0.15% and 0.02°. These features are ideal for professional and consumer video applications.
The CLC5612 offers superior dynamic performance with a 90 MHz small-signal bandwidth, $290 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 6.2 ns rise/fall times $\left(2 \mathrm{~V}_{\text {step }}\right)$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5612 well suited for many batterypowered personal communication/computing systems.
The ability to drive low-impedance, highly capacitive loads, makes the CLC5612 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC5612 will drive a 100Ω load with only $-74 /$ -86 dBc second/third harmonic distortion ($\mathrm{A}_{\mathrm{v}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}$, $f=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-70 /-67 \mathrm{dBc}$ second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils.
When driving the input of high-resolution A / D converters, the CLC5612 provides excellent -87/-93dBc second/third harmonic distortion ($A_{v}=+2, V_{\text {out }}, f=1 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega$) and fast settling time.

- $0.15 \%, 0.02^{\circ}$ differential gain, phase
- $1.5 \mathrm{~mA} / \mathrm{ch}$ supply current
- 90 MHz bandwidth $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
- $-87 /-93 \mathrm{dBc}$ HD2/HD3 (1 MHz)
- 17 ns settling to 0.05%
- $290 \mathrm{~V} / \mathrm{\mu s}$ slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V to $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- Coaxial cable driver
- Twisted pair driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- A/D driver

Maximum Output Voltage vs. \mathbf{R}_{L}

- 130 mA output current

Connection Diagram

Typical Application

Differential Line Driver with Load Impedance Conversion

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5612IN	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5612IM	M08A
		CLC5612IMX	

National Semiconductor

CLC5622

Dual, High Output, Video Amplifier

General Description

The National CLC5622 has a new output stage that delivers high output drive current (130 mA), but consumes minimal quiescent supply current ($3.0 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.

The CLC5622 offers 0.1 dB gain flatness to 30 MHz and differential gain and phase errors of 0.05% and 0.02°. These features are ideal for professional and consumer video applications.

The CLC5622 offers superior dynamic performance with a 160 MHz small-signal bandwidth, $370 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 4.4 ns rise/fall times $\left(2 \mathrm{~V}_{\text {step }}\right)$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5622 well suited for many battery-powered personal communication/computing systems.

The ability to drive low-impedance, highly capacitive loads, makes the CLC5622 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC5622 will drive a 100Ω load with only $-95 /-95 \mathrm{dBc}$ second/third harmonic distortion $\left(\mathrm{A}_{v}=+2\right.$, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-72 /-77 \mathrm{dBc}$ second/third harmonic distortion.

The CLC5622 can also be used for driving differential-input step-up transformers for applications such as Asynchronous Digital Subscriber Lines (ADSL) or High-Bit-Rate Digital Subscriber Lines (HDSL).
When driving the input of high-resolution A/D converters, the CLC5622 provides excellent $-90 /-97 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{v}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$) and fast settling time.

- $0.05 \%, 0.03^{\circ}$ differential gain, phase
- $3.0 \mathrm{~mA} /$ ch supply current
- 160 MHz bandwidth $\left(\mathrm{A}_{v}=+2\right)$

■ -90/-97dBc HD2/HD3 (1MHz)

- 18 ns settling to 0.05%
- $370 \mathrm{~V} /$ us slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V or $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- ADSL/HDSL driver
- Coaxial cable driver
- UTP differential line driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- Differential A/D driver

Maximum Output Voltage vs. \mathbf{R}_{L}

Features

- 130mA output current

Connection Diagram

Typical Application

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5622IN	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5622IM	M08A
		CLC5622IMX	

CLC5623

Triple, High Output, Video Amplifier

General Description

The CLC5623 has a new output stage that delivers high output drive current (130 mA), but consumes minimal quiescent supply current ($3.0 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.
The CLC5623 offers 0.1 dB gain flatness to 15 MHz and differential gain and phase errors of 0.06% and 0.06°. These features are ideal for professional and consumer video applications.

The CLC5623 offers superior dynamic performance with a 148 MHz small-signal bandwidth, $370 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 4.4 ns rise/fall times $\left(2 \mathrm{~V}_{\text {step }}\right)$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5623 well suited for many batterypowered personal communication/computing systems.
The ability to drive low-impedance, high capacitive loads, with minimum distortion, makes the CLC5623 ideal for cable applications. The CLC5623 will drive a 100Ω load with only $-78 /-94 \mathrm{dBc}$ second/third harmonic distortion $\left(\mathrm{A}_{\mathrm{v}}=+2\right.$, $\mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\text {pp }} \mathrm{f}=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-82 /-96 \mathrm{dBc}$ second/third harmonic distortion.
The CLC5623 can also be used for driving differential-input step-up transformers for applications such as Asynchronous Digital Subscriber Lines (ADSL) or High-Bit-Rate Digital Subscriber Lines (HDSL).
When driving the input of high-resolution A / D converters, the CLC5623 provides excellent -86/-96dBc second/third harmonic distortion ($\mathrm{A}_{\mathrm{v}}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}_{\mathrm{pp}} \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$) and fast settling time.

Features

- 130 mA output current
- $0.06 \%, 0.06^{\circ}$ differential gain, phase
- $3.0 \mathrm{~mA} / \mathrm{ch}$ supply current
- 148 MHz bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$

■ $-86 /-96 \mathrm{dBc}$ HD2/HD3 (1MHz)

- 18 ns settling to 0.05%
- $370 \mathrm{~V} / \mu$ s slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V or $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- ADSL/HDSL driver
- Coaxial cable driver
- UTP differential line driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- Differential A/D driver

Maximum Output Voltage vs. \mathbf{R}_{L}

$R_{L}(\Omega)$
DS015004-1

Connection Diagram

Typical Application

Single Supply Cable Driver

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC56232IN	N14A
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5623IM	M14A, B
		CLC5623IMX	

CLC5632

Dual, High Output, Programmable Gain Buffer

General Description

The CLC5632 is a dual, low-cost, high-speed (130 MHz) buffer which features user-programmable gains of $+2,+1$, and $-1 \mathrm{~V} / \mathrm{V}$. The CLC5632 also has a new output stage that delivers high output drive current (130 mA), but consumes minimal quiescent supply current ($3.0 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.
The CLC5632 offers 0.1 dB gain flatness to 30 MHz and differential gain and phase errors of 0.08% and 0.02°. These features are ideal for professional and consumer video applications.
The CLC5632 offers superior dynamic performance with a 130 MHz small-signal bandwidth, $410 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 5.0 ns rise/fall times $\left(2 \mathrm{~V}_{\text {step }}\right)$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5632 well suited for many batterypowered personal communication/computing systems. The ability to drive low-impedance, highly capacitive loads, makes the CLC5632 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC5632 will drive a 100Ω load with only -82/ -69 dBc second/third harmonic distortion ($A_{v}=+2$, $V_{\text {OUT }}=2 V_{\text {PP }}, f=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-71 /-73 \mathrm{dBc}$ second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils. When driving the input of high-resolution A/D converters, the CLC5632 provides excellent $-86 /-96 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{V}}=$ $+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$) and fast settling time.

Features

- 130 mA output current
- 0.08
, 0.02° differential gain, phase
- $3.0 \mathrm{~mA} / \mathrm{ch}$ supply current
- 130 MHz bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$
- $-86 /-96 \mathrm{dBc}$ HD2/HD3 (1 MHz)
- 17 ns settling to 0.05%
- 410V/ $\mu \mathrm{s}$ slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V to $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- Coaxial cable driver
- Twisted pair driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- A/D driver

Maximum Output Voltage vs. $\mathbf{R}_{\mathbf{L}}$

Connection Diagram

Typical Application

DS015003-2
Differential Line Driver with Load Impedance Conversion

Ordering Information

Package	Temperature RangeIndustrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Packaging Marking	Transport Media	NSC Drawing
8-pin MDIP	CLC5632IN	CLC5632IN	Rails	N08E
8-pin SOIC	CLC5632IM	CLC5632IM	Rails	M08A
	CLC5632IMX	CLC5632IM	$2.5 k$ Units Tape and Reel	

CLC5633

Triple, High Output, Programmable Gain Buffer

General Description

The CLC5633 is a triple, low-cost, high-speed (130 MHz) buffer which features user-programmable gains of $+2,+1$ and $-1 \mathrm{~V} /$. The CLC5633 also has a new output stage that delivers high output drive current ($130 \mathrm{~mA} / \mathrm{ch}$) from a single 5 V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a wide range of gains and signal levels, and has a linear-phase response up to one half of the -3 dB frequency.
The CLC5633 offers 0.1 dB gain flatness to 20 MHz and differential gain and phase errors of 0.03% and 0.06°. These features area ideal for professional and consumer video applications.
The CLC5633 offers superior dynamic performance with a 130 MHz small-signal bandwidth, $410 \mathrm{~V} / \mathrm{hs}$ slew rate and 5.0 ns rise/fall times $\left(2 \mathrm{~V}_{\text {step }}\right)$. The combination of low quiescent power, high output current drive, and high-speed performance make the CLC5633 well suited for many batterypowered personal communication/computing systems.
The ability to drive low-impedance, highly capacitive loads, with minimum distortion makes the CLC5633 ideal for cable applications. The CLC5633 will drive a 100Ω load with only $-73 /-92 \mathrm{dBc}$ second/third harmonic distortion ($A_{V}=+2$, $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{f}=1 \mathrm{MHz}$). With a 25Ω load, and the same conditions, it produces only $-75 /-75 \mathrm{dBc}$ second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils.
When driving the input of high-resolution A / D converters, the CLC5633 provides excellent $-92 /-96 \mathrm{dBc}$ second/third harmonic distortion ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPp }}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=$ $1 \mathrm{k} \Omega$) and fast settling time.

- $3.0 \mathrm{~mA} / \mathrm{ch}$ supply current
- 130 MHz bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+2\right)$
- $-92 /-96 \mathrm{dBc}$ HD2/HD3 (1 MHz)
- 20 ns settling to 0.05%
- $410 \mathrm{~V} / \mathrm{us}$ slew rate
- Stable for capacitive loads up to 1000pf
- Single 5 V to $\pm 5 \mathrm{~V}$ supplies

Applications

- Video line driver
- Coaxial cable driver
- Twisted pair driver
- Transformer/coil driver
- High capacitive load driver
- Portable/battery-powered applications
- A/D driver

Maximum Output Voltage vs. \mathbf{R}_{L}

Features

- 130 mA output current
- $0.03 \%, 0.06^{\circ}$ differential gain, phase

Connection Diagram

Typical Application

Single Supply Cable Driver

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14 -pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5633IN	N14A
14 -pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5633IM	M14A, M14B
		CLC5633IMX	

National Semiconductor

CLC5644

Low-Power, Low-Cost, Quad Operational Amplifier

General Description

The CLC5644 is a quad, current feedback operational amplifier that is perfect for many cost-sensitive applications that require high performance, especially when power dissipation is critical. Not only does the CLC5644 offer excellent economy in board space, but has an excellent performance vs power tradeoff which yields a 170MHz Small Signal Bandwidth while dissipating only 25 mW . Applications requiring significant density of high speed devices such as video routers, matrix switches and high-order active filters will benefit from the configuration of the CLC5644 and the low channel-to-channel crosstalk of 76 dB at 1 MHz .
The CLC5644 provides excellent performance for video applications. Differential gain and phase of 0.04% and 0.07° makes this device well suited for many professional composite video systems, but consumer applications will also be able to take advantage of these features due to the device's low cost. The CLC5644 offers superior dynamic performance with a small signal bandwidth of 170 MHz and slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$. These attributes are well suited for many component video applications such as driving RGB signals down significant lengths of cable. These and many other applications can also take advantage of the 0.1 dB flatness to 25MHz.
Combining wide bandwidth with low cost makes the CLC5644 an attractive option for active filters. SAW filters are often used in IF filters in the 10's of MHz range, but higher order filters designed around a quad operational amplifier may offer an economical alternative to the typical SAW approach and offer greater freedom in the selection of filter parameters. National Semiconductor's Comlinear Products Group has published a wide array of literature on active filters and a list of these publications can be found on the last page of this datasheet.

- $1000 \mathrm{~V} / \mathrm{us}$ slew rate
- $2.5 \mathrm{~mA} /$ channel supply current
- $-72 /-79 \mathrm{dBc}$ HD2/HD3 (5 MHz)
- $0.04 \%, 0.07^{\circ}$ differential gain, phase
- 70 mA output current
- 16 ns settling to 0.1%

Applications

- Portable equipment
- Video switchers \& routers
- Video line driver
- Active filters
- IF amplifier
- Twisted pair driver/receiver

Non-Inverting Frequency Response

Features

- 170 MHz small signal bandwidth

Connection Diagram

Typical Configurations

Non-Inverting Gain

Note: R_{b} provides $D C$ bias for the non-inverting input. Select R_{t} to yield desired $R_{i n}=R_{t} I I R g$.
Inverting Gain

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5644IN	N14A.
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5644IM	M14A, M14B
		CLC5644IMX	

CLC5654

Very High-Speed, Low-Cost, Quad Operational Amplifier

General Description

The CLC5654 is a quad, current feedback operational amplifier that is perfect for many cost-sensitive applications that require high performance. This device also offers excellent economy in board space and power, consuming only 5 mA per amplifier while providing 70 mA of output current capability. Applications requiring significant density of high speed devices such as video routers, matrix switches and high-order active filters will benefit from the configuration of the CLC5654 and the low channel-to-channel crosstalk of 70 dB at 5 MHz .
The CLC5654 provides excellent performance for video applications. Differential gain and phase of 0.03% and 0.03° makes this device well suited for many professional composite video systems, but consumer applications will also be able to take advantage of these features due to the device's low cost. The CLC5654 offers superior dynamic performance with a small signal bandwidth of 450 MHz and slew rate of $2000 \mathrm{~V} / \mathrm{\mu s}$. These attributes are well suited for many component video applications such as driving RGB signals down significant lengths of cable. These and many other applications can also take advantage of the 0.1 dB flatness to 40 MHz .
Combining wide bandwidth with low cost makes the CLC5654 an attractive option for active filters. SAW filters are often used in IF filters in the 10's of MHz range, but higher order filters designed around a quad operational amplifier may offer an economical alternative to the typical SAW approach and offer greater freedom in the selection of filter parameters. National Semiconductor's Comlinear Products Group has published a wide array of literature on active filters and a list of these publications can be found on the last page of this datasheet.

- $2000 \mathrm{~V} / \mathrm{us}$ slew rate
- $5 \mathrm{~mA} /$ channel supply current
- $-71 /-82 \mathrm{dBc}$ HD2/HD3 (5 MHz)
- $0.03 \%, 0.03^{\circ}$ differential gain, phase
- 70 mA output current
- $12 n$ s settling to 0.1%

Applications

- High performance RGB video
- Video switchers \& routers
- Video line driver
- Active filters
- IF amplifier
- Twisted pair driver/receiver

Non-Inverting Frequency Response

Features

- 450MHz small signal bandwidth

Connection Diagram

Typical Configurations

Note: R_{b} provides DC bias for the non-inverting input. Select R_{t} to yield desired $R_{\text {in }}=R_{t} \| R_{g}$.

Inverting Gain

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5654IN	N14A
14-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{CLC5654IM}$	M14A, M14B
		CLC5654IMX	

CLC5665

Low Distortion Amplifier with Disable

General Description

The CLC5665 is a low-cost, wideband amplifier that provides very low 2nd and 3rd harmonic distortion at 1 MHz $(-89 /-92 \mathrm{dBc})$. The great slew rate of $1800 \mathrm{~V} / \mu \mathrm{s}$, bandwidth of $90 \mathrm{MHz}\left(A_{v}=+1\right)$ and fast disabie make it an excellent choice for many high speed multiplexing applications. Like all current feedback op amps, the CLC5665 allows the frequency response to be optimized (or adjusted) by the selection of the feedback resistor. For demanding video applications, the 0.1 dB bandwidth to 20 MHz and differential gain/phase of $0.05 \% / 0.05^{\circ}$ make the CLC5665 the preferred component for broadcast quality NTSC and PAL video systems.
The large voltage swing ($28 \mathrm{~V}_{\mathrm{pp}}$), continuous output current (85 mA) and slew rate $(1800 \mathrm{~V} / \mu \mathrm{s})$ provide high-fidelity signal conditioning for applications such as CCDs, transmission lines and low impedance circuits.
xDSL, video distribution, multimedia and general purpose applications will benefit from the CLC5665's wide bandwidth and disable feature. Power is reduced and the output becomes a high impedance when disabled. The wide gain range of the CLC5665 makes this general purpose op amp an improved solution for circuits such as active filters, differential-to-single-ended drivers, DAC transimpedance amplifiers and MOSFET drivers.

Features

- 0.1 dB gain flatness to $20 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{v}}=+2\right)$
- 90 MHz bandwidth $\left(\mathrm{A}_{\mathrm{v}}=+1\right)$
- Large signal BW 25 MHz
- $1800 \mathrm{~V} / \mathrm{\mu}$ s slew rate
- $0.05 \% / 0.05^{\circ}$ differential gain/phase
- $\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$ or single supplies
- 200ns disable to high-impedance output
- Wide gain range
- $-89 /-92 \mathrm{dBc}$ HD2/HD3 ($\mathrm{R}_{\mathrm{L}}=500 \Omega$
- Low cost

Applications

- xDSL driver
- Twisted pair driver
- Cable driver
- Video distribution
- CCD clock driver
- Multimedia systems
- DAC output buffers
- Imaging systems

Connection Diagram

Typical Application

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
8-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5665IN	N08E
8-pin plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC5665IM	M08A
		CLC5665IMX	

CLC5801

High Speed Low Noise Voltage Feedback Amplifier

General Description

The CLC5801 is a low-cost, wideband voltage feedback amplifier excellent for low noise applications. It combines a wide bandwidth of 420 MHz with very low noise $(2 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 1.8 \mathrm{pA} / \sqrt{\mathrm{Hz}})$ and low DC errors $\left(100 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}}\right)$ making it an excellent precision high speed op amp offering closed-loop gains of ≥ 10.
The CLC5801 employs a traditional voltage-feedback topology and provides all the benefits of balanced inputs, such as low offsets and drifts, as well as 96 dB open-loop gain, 95 dB CMRR and a 90 dB PSRR. Providing a wide 420 MHz bandwidth at a gain of $A_{V}=10$, a fast $300 \mathrm{~V} / \mu \mathrm{s}$ slew rate, the CLC5801 is well suited for wide band active filters and low noise loop filters for PLLs.
The low noise, wide gain-bandwidth, high slew rate and low DC errors enable applications such as medical diagnostic ultrasound, magnetic tape and disk storage, communications and optoelectronics that require maximum high-frequency signal-to-noise ratios. Low noise and offset make the CLC5801 and ideal preamplifier for CD-ROMs and receivers.
The CLC5801 consumes 16 mA of supply current and can be used in either dual 5 V systems or single supply applications. It can easily drive a 100Ω load to within 1.6 V of either rail. The CLC5801 is available in both SOIC-8 and the tiny SOT23-5.

Features

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ Typical unless specified).

- $420 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth $\left(\mathrm{A}_{\mathrm{V}}=10\right)$
- $2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input voltage noise
- $1.8 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ input current noise
- $100 \mu \mathrm{~V}$ input offset voltage
- 300V/us slew rate
- 16 mA supply current
- 18ns settling time

Applications

- Ultrasound preamplifier
- CD-ROM preamplifer
- Photo-diode transimpedance amplifier
- Low-noise loop filters for PLLs
- High-performance receivers
- ADC preamplifier

Equivalent Input Noise

Connection Diagrams

Package	Part Number	Packaging Marking	Transport Media	NSC Drawing
8 -pin SOIC	CLC58011M	CLC5801IM	Rails	M08A
	CLC5801IMX	CLC5801IM	2.5k Tape and Reel	
5-pin SOT23-5	CLC5801IM5	A50A.	1k Units Tape and Reel	MF05A
	CLC5801IM5X	A50A	3k Units Tape and Reel	

CLC5802

Dual Low-Noise, Voltage Feedback Op Amp

General Description

The CLC5802 is a dual op amp that offers a traditional voltage-feedback topology featuring unity-gain stability. Low noise and very low harmonic distortion combine to form a very wide dynamic-range op amp that operates within a power supply range of 5 V to 12 V .
Each of the CLC5802's closely matched channels provides a 140 MHz unity-gain bandwidth with a very low input voltage noise density ($4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$). Low $2 \mathrm{nd} / 3 \mathrm{rd}$ harmonic distortion ($-69 /-66 \mathrm{dBc}$) as well as high channel-to-channel isolation (-61 dB) make the CLC5802 a perfect wide dynamic-range amplifier for I/Q channels and other application which require low distortion and matching. With its fast and accurate settling (18 ns to 0.1%), the CLC5802 is also a excellent choice for wide-dynamic range, anti-aliasing filters to buffer the inputs of hi-resolution analog-to-digital converters. Combining the CLC5802 two tightly-matched amplifiers in a single eight-pin SOIC reduces cost and board space for many composite amplifier applications such as active filters, differential line drivers/receivers, fast peak detectors and instrumentation amplifiers.

Features

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Typical unless specified).

- Wide unity-gain bandwidth: 140 MHz
- Ultra-low noise: $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low distortion: $-69 /-66 \mathrm{dBc}(5 \mathrm{MHz})$
- Settling time: 18 ns to 0.1%
- High output current: $\pm 70 \mathrm{~mA}$
- Supply voltage range: 5 V to 12 V

Applications

- General purpose dual op amp
- Low noise active filters
- Low noise integrators
- High-speed detectors
- Diff-in/diff-out instrumentation amp
- I/Q channel amplifiers
- Driver/receiver for transmission systems

Full Duplex Transmission

Connection Diagram

Ordering Information

Package	Part Number	Packaging Marking	Transport Media	NSC Drawing
8-pin SOIC	CLC5802IM	CLC5802IM	Rails	M08A
	CLC5802IMX	CLC5802IM	2.5 k Tape and Reel	

National Semiconductor

LM6121/LM6221/LM6321
 High Speed Buffer

General Description

These high speed unity gain buffers slew at $800 \mathrm{~V} / \mu \mathrm{s}$ and have a small signal bandwidth of 50 MHz while driving a 50Ω load. They can drive $\pm 300 \mathrm{~mA}$ peak and do not oscillate while driving large capacitive loads. The LM6121 family are monolithic ICs which offer performance similar to the LH0002 with the additional features of current limit and thermal shutdown.
These buffers are built with National's VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

Simplified Schematic

Numbers in () are for 8-pin N DIP.

Connection Diagrams

*Heat-sinking pins. See Application section on heat sinking requirements.
Order Number LM6221N,

LM6321N or LM6121J/883

See NS Package
Number J08A or N08E

Metal Can

Note: Pin 6 connected to case.
Top View
Order Number LM6221H or LM6121H/883 See NS Package Number H08C

Plastic SO

*Pin 3 must be connected to the negative supply.
**Heat-sinking pins. See Application section on heat-sinking requirements.
These pins are at V^{-}potential.
Order Number LM6321M
See NS Package Number M14A

National Semiconductor

LM6161/LM6261/LM6361

High Speed Operational Amplifier

General Description

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V . These amplifiers are built with National's VIP ${ }^{\text {rM }}$ (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate $300 \mathrm{~V} / \mu \mathrm{s}$
- High unity gain freq 50 MHz
- Low supply current 5 mA
- Fast settling 120 ns to 0.1%
- Low differential gain <0.1\%
- Low differential phase 0.1°

■ Wide supply range 4.75 V to 32 V

- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- High-frequency filter
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

See NS Package Number W10A

See NS Package Number J08A, N08E or M08A

Ordering Information

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
	LM6261N	LM6361N	$8 \text { - } \mathrm{Pin}$ Molded DIP	N08E
LM6161J/883 5962-8962101PA		LM6361J	8-Pin Ceramic DIP	J08A
	LM6261M	LM6361M	8-Pin Molded Surface Mt.	M08A
LM6161WG/883 5962-8962101XA			10-Lead Ceramic SOIC	WG10A
LM6161W/883 5962-8962101HA			$10-\mathrm{Pin}$ Ceramic Flatpak	W10A

LM6162

High Speed Operational Amplifier

General Description

The LM6162 family of high-speed amplifiers exhibits an excellent speed-power product, delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 100 MHz gain-bandwidth product (stable for gains as low as +2 or -1) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process which provides fast transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High gain-bandwidth product: 100 MHz
- Low supply current: 5 mA
- Fast settling time: 120 ns to 0.1%
- Low differential gain: <0.1\%
- Low differential phase: <0.1 ${ }^{\circ}$
- Wide supply range: 4.75 V to 32 V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- Wide-bandwidth signal conditioning for image processing (FAX, scanners, laser printers)
- Hard disk drive preamplifier
- Error amplifier for high-speed switching regulator

High slew rate: $300 \mathrm{~V} / \mu \mathrm{s}$

Connection Diagrams

See NS Package Number W10A

See NS Package Number N08E or J08A

Ordering Information

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
LM6162N			8-Pin Molded DIP	N08E
LM6162J/883 5962-9216501PA			8-Pin Ceramic DIP	J08A
LM6162WG/883 5962-9216501XA			10-Lead Ceramic SOIC	WG10A
$\begin{aligned} & \text { LM6162W/883 } \\ & 5962-9216501 \mathrm{HA} \end{aligned}$			10-Pin Ceramic Flatpak	W10A

National Semiconductor

LM6164/LM6264/LM6364 High Speed Operational Amplifier

General Description

The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V per $\mu \mathrm{s}$ and 175 MHz GBW (stable down to gains as low as +5) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate: $300 \mathrm{~V} / \mu \mathrm{s}$
- High GBW product: 175 MHz
- Low supply current: 5 mA
- Fast settling: 100 ns to 0.1%
- Low differential gain: <0.1\%
- Low differential phase: $<0.1^{\circ}$

■ Wide supply range: 4.75 V to 32 V

- Stable with unlimited capacitive load

Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

NS Package Number W10A

Ordering Information

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
	LM6264N	LM6364N	8-Pin Molded DIP	N08E
$\begin{aligned} & \text { LM6164J/883 } \\ & 5962-8962401 \mathrm{PA} \end{aligned}$			8-Pin Ceramic DIP	J08A
		LM6364M	8-Pin Molded Surface Mt.	M08A
LM6164WG/883 5962-8962401XA			10-Lead Ceramic SOIC	WG10A
LM6164W/883 $5962-8962401 \mathrm{HA}$			$10-\mathrm{Pin}$ Ceramic Flatpak	W10A

General Description

The LM6165 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 725 MHz GBW (stable for gains as low as +25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate: $300 \mathrm{~V} / \mu \mathrm{s}$
- High GBW product: 725 MHz
- Low supply current: 5 mA
- Fast settling: 80 ns to 0.1%
- Low differential gain: <0.1\%
- Low differential phase: <0.1 ${ }^{\circ}$
- Wide supply range: 4.75 V to 32 V
- Stable with unlimited capacitive load

Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

Order Number LM6165W/883 See NS Package Number W10A

Order Number LM6165J/883 See NS Package Number J08A Order Number LM6365M
See NS Package Number M08A Order Number LM6265N or LM6365N See NS Package Number N08E

Ordering Information

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
	LM6265N	LM6365N	$8-\mathrm{Pin}$ Molded DIP	N08E
LM6165J/883 5962-8962501PA			$8 \text {-Pin }$ Ceramic DIP	J08A
		LM6365M	8-Pin Molded Surface Mt.	M08A
$\begin{aligned} & \text { LM6165WG/883 } \\ & 5962-8962501 \text { XA } \end{aligned}$			10-Lead Ceramic SOIC	WG10A
$\begin{array}{\|l\|} \hline \text { LM6165W883 } \\ \text { 5962-8962501HA } \\ \hline \end{array}$			10-Pin Ceramic Flatpak	W10A

LM6171

High Speed Low Power Low Distortion Voltage Feedback Amplifier

General Description

The LM6171 is a high speed unity-gain stable voltage feedback amplifier. It offers a high slew rate of $3600 \mathrm{~V} / \mu \mathrm{s}$ and a unity-gain bandwidth of 100 MHz while consuming only 2.5 mA of supply current. The LM6171 has very impressive AC and DC performance which is a great benefit for high speed signal processing and video applications.
The $\pm 15 \mathrm{~V}$ power supplies allow for large signal swings and give greater dynamic range and signal-to-noise ratio. The LM6171 has high output current drive, low SFDR and THD, ideal for ADC/DAC systems. The LM6171 is specified for $\pm 5 \mathrm{~V}$ operation for portable applications.
The LM6171 is built on National's advanced VIP ${ }^{\text {TM }}$ III (Vertically Integrated PNP) complementary bipolar process.

Features

(Typical Unless Otherwise Noted)

- Easy-To-Use Voltage Feedback Topology
- Very High Slew Rate: $3600 \mathrm{~V} / \mu \mathrm{s}$
- Wide Unity-Gain-Bandwidth Product: 100 MHz
- -3 dB Frequency @ $\mathrm{A}_{\mathrm{V}}=+2$: 62 MHz

■ Low Supply Current: 2.5 mA

- High CMRR: 110 dB
- High Open Loop Gain: 90 dB
- Specified for $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Operation

Applications

- Multimedia Broadcast Systems
- Line Drivers, Switchers
- Video Amplifiers
- NTSC, PAL® and SECAM Systems
- ADC/DAC Buffers
- HDTV Amplifiers
- Pulse Amplifiers and Peak Detectors
- Instrumentation Amplifier
- Active Filters

Typical Performance Characteristics

Closed Loop Frequency Response

vs Supply Voltage ($\mathrm{A}_{\mathbf{v}}=+\mathbf{1}$)

Large Signal
Pulse Response
$A_{v}=+1, V_{s}= \pm 15$

Connection Diagram

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
	Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		N08E
8-Pin Molded DIP	LM6171AIN LM6171BIN	Rails	M08A
8-Pin Small Outline	LM6171AIM, LM6171BIM	LM6171AIMX, LM6171BIMX	Tape and Reel

National Semiconductor

LM6172

Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers

General Description

The LM6172 is a dual high speed voltage feedback amplifier. It is unity-gain stable and provides excellent DC and AC performance. With 100 MHz unity-gain bandwidth, $3000 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 50 mA of output current per channel, the LM6172 offers high performance in dual amplifiers; yet it only consumes 2.3 mA of supply current each channel.
The LM6172 operates on $\pm 15 \mathrm{~V}$ power supply for systems requiring large voltage swings, such as ADSL, scanners and ultrasound equipment. It is also specified at $\pm 5 \mathrm{~V}$ power supply for low voltage applications such as portable video systems.

The LM6172 is built with National's advanced VIPTM III (Vertically Integrated PNP) complementary bipolar process. See the LM6171 datasheet for a single amplifier with these same features.

Features

(Typical Unless Otherwise Noted)

- Easy to Use Voltage Feedback Topology
- High Slew Rate 3000V/us
- Wide Unity-Gain Bandwidth 100 MHz
- Low Supply Current $2.3 \mathrm{~mA} /$ Channel
- High Output Current $50 \mathrm{~mA} /$ channel
- Specified for $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Operation

Applications

■ Scanner I-to-V Converters

- ADSL/HDSL Drivers
- Multimedia Broadcast Systems
- Video Amplifiers
- NTSC, PAL® and SECAM Systems
- ADC/DAC Buffers
- Pulse Amplifiers and Peak Detectors

LM6172 Driving Capacitive Load

Connection Diagram

Ordering Information

Package	Temperature Range		Transport Media	NSC Drawing
	Industrial $-\mathbf{4 0} \mathbf{C}$ to $\mathbf{+ 8 5} \mathbf{C}$	Military $\mathbf{- 5 5} \mathbf{C}$ to $\mathbf{+ 1 2 5}^{\circ} \mathbf{C}$		
8-Pin DIP	LM6172IN		Rails	N08E
8-Pin CDIP	LM6172AMJ-QML	$5962-95604$	Rails	J08A
10-Pin Ceramic SOIC	LM6172AMWG-QML	$5962-95604$	Trays	WG10A
8-Pin Small Outline	LM6172IM		Rails	M08A
	LM6172IMX			

LM6181

100 mA, 100 MHz Current Feedback Amplifier

General Description

The LM6181 current-feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. The amplifier can directly drive up to 100 pF capacitive loads without oscillating and a 10 V signal into a 50Ω or 75Ω back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for an 8 -pin DIP high-speed amplifier making it ideal for video applications.
Built on National's advanced high-speed VIP ${ }^{\text {TM }}$ II (Vertically Integrated PNP) process, the LM6181 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at $A_{V}=-1,60 \mathrm{MHz}$ at $A_{V}=-10$. With a slew rate of $2000 \mathrm{~V} / \mu \mathrm{s}$, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of $50 \mathrm{~ns}(0.1 \%)$ the LM6181 dynamic performance makes it ideal for data acquisition, high speed ATE, and precision pulse amplifier applications.

Features

(Typical unless otherwise noted)

- Slew rate: $2000 \mathrm{~V} / \mu \mathrm{s}$
- Settling time (0.1\%): 50 ns
- Characterized for supply ranges: $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Low differential gain and phase error: $0.05 \%, 0.04^{\circ}$
- High output drive: $\pm 10 \mathrm{~V}$ into 100Ω
- Guaranteed bandwidth and slew rate
- Improved performance over EL2020, OP160, AD844, LT1223 and HA5004

Applications

- Coax cable driver
- Video amplifier
- Flash ADC buffer
- High frequency filter
- Scanner and Imaging systems

Typical Application

TIME (50ns/div)

LM6182

Dual 100 mA Output, 100 MHz Current Feedback Amplifier

General Description

The LM6182 dual current feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. Each amplifier can directly drive a 2 V signal into a 50Ω or 75Ω back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for a dual 8 -pin high-speed amplifier making it ideal for video applications.
Built on National's advanced high-speed VIP II ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, the LM6182 employs current-feedback providing bandwidth that does not vary dramatically with gain; 100 MHz at $\mathrm{Av}=-1,60 \mathrm{MHz}$ at $\mathrm{Av}=$ -10 . With a slew rate of $2000 \mathrm{~V} / \mu \mathrm{sec}$, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of $50 \mathrm{~ns}(0.1 \%)$, the two independent amplifiers of the LM6182 offer performance that is ideal for data acquisition, high-speed ATE, and precision pulse amplifier applications.
See the LM6181 data sheet for a single amplifier with these same features.

Features

(Typical unless otherwise noted)

- Slew Rate: $2000 \mathrm{~V} / \mu \mathrm{s}$
- Closed Loop Bandwidth: 100 MHz
- Settling Time (0.1\%): 50 ns
- Low Differential Gain and Phase Error: $0.05 \%, 0.04^{\circ}$ $R_{L}=150 \Omega$
- Low Offset Voltage: 2 mV
- High Output Drive: $\pm 10 \mathrm{~V}$ into 150Ω
- Characterized for Supply Ranges: $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Improved Performance over OP260 and LT1229

Applications

- Coax Cable Driver
- Professional Studio Video Equipment
- Flash ADC Buffer
- PC and Workstation Video Boards
- Facsimile and Imaging Systems

Typical Application

DS011926-2

Connection Diagrams

Order Number LM6182AMJ/883 See NS Package Number J14A

Small Outline Package (M)

*Heat Sinking Pins (Note 3)
Order Number LM6182IM or LM6182AIM See NS Package Number M16A

Order Number LM6182IN, LM6182AIN or LM6182AMN
See NS Package Number N08E

LM7121

235 MHz Tiny Low Power Voltage Feedback Amplifier

General Description

The LM7121 is a high performance operational amplifier which addresses the increasing AC performance needs of video and imaging applications, and the size and power constraints of portable applications.
The LM7121 can operate over a wide dynamic range of supply voltages, from 5 V (single supply) up to $\pm 15 \mathrm{~V}$ (see the Application Information section for more details). It offers an excellent speed-power product delivering $1300 \mathrm{~V} / \mu \mathrm{s}$ and 235 MHz Bandwidth ($-3 \mathrm{~dB}, \mathrm{~A}_{\mathrm{V}}=+1$). Another key feature of this operational amplifier is stability while driving unlimited capacitive loads.
Due to its Tiny SOT23-5 package, the LM7121 is ideal for designs where space and weight are the critical parameters. The benefits of the Tiny package are evident in small portable electronic devices, such as cameras, and PC video cards. Tiny amplifiers are so small that they can be placed anywhere on a board close to the signal source or near the input to an A/D converter.

Features

(Typical unless otherwise noted) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

- Easy to use voltage feedback topology
- Stable with unlimited capacitive loads
- Tiny SOT23-5 package - typical circuit layout takes half the space of SO-8 designs
- Unity gain frequency: 175 MHz
- Bandwidth ($-3 \mathrm{~dB}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega$): 235 MHz

■ Slew rate: $1300 \mathrm{~V} / \mu \mathrm{s}$

- Supply Voltages SO-8: 5 V to $\pm 15 \mathrm{~V}$ SOT23-5: 5 V to $\pm 5 \mathrm{~V}$
- Characterized for: $+5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

■ Low supply current: 5.3 mA

Applications

- Scanners, color fax, digital copiers
- PC video cards
- Cable drivers
- Digital cameras
- ADC/DAC buffers
- Set-top boxes

Connection Diagrams

Top View

Top View

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Supplied As
8-Pin SO-8	M08A	LM7121IM	Rails	
	LM7121IM	M08A	LM7121IM	2.5k Tape and Reel
	LM7121IMX	MA05A	A03A	1k Tape and Reel
	LM7121IM5	MM7121IM5X	A03A	3k Tape and Reel

LM7131

Tiny High Speed Single Supply Operational Amplifier

General Description

The LM7131 is a high speed bipolar operational amplifier available in a tiny SOT23-5 package. This makes the LM7131 ideal for space and weight critical designs. Single supply voltages of 3 V and 5 V provides good video performance, wide bandwidth, low distortion, and high PSRR and CMRR. This makes the amplifier an excellent choice for desktop and portable video and computing applications. The amplifier is supplied in surface mount 8 -pin and tiny SOT23-5 packages.
Tiny amplifiers are so small they can be placed anywhere on a board close to the signal source or next to an A-to-D input. Good high speed performance at low voltage makes the LM7131 a preferred part for battery powered designs.

Features

- Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO-8 designs.
- Guaranteed specs at $3 \mathrm{~V}, 5 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ supplies
- Typical supply current 7.0 mA at $5 \mathrm{~V}, 6.5 \mathrm{~mA}$ at 3 V
- 4 V output swing with +5 V single supply
- Typical total harmonic distortion of 0.1% at 4 MHz
- 70 MHz Gain-Bandwidth Product
- $90 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth at 3 V and 5 V , Gain $=+1$
- Designed to drive popular video A / D converters
- 40 mA output can drive 50Ω loads
- Differential gain and phase 0.25% and 0.75° at $A_{V}=+2$

Applications

- Driving video A/D converters
- Video output for portable computers and PDAs
- Desktop teleconferencing
- High fidelity digital audio
- Video cards

Connection Diagrams

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Supplied as
8-Pin SO-8	LM7131ACM	M08A	LM7131ACM	rails
8-Pin SO-8	LM7131BCM	M08A	LM7131BCM	rails
8-Pin SO-8	LM7131ACMX	M08A	LM7131ACM	2.5k units tape and reel
8-Pin SO-8	LM7131BCMX	M08A	LM7131BCM	2.5k units tape and reel
5-Pin SOT 23-5	LM7131ACM5	MA05A	A02A	1k units on tape and reel
5-Pin SOT 23-5	LM7131BCM5	MA05A	A02B	1 k units on tape and reel
5-Pin SOT 23-5	LM7131ACM5X	MA05A	A02A	3k units tape and reel
5-Pin SOT 23-5	LM7131BCM5X	MA05A	A02B	3k units tape and reel

LM7171

Very High Speed, High Output Current, Voltage Feedback Amplifier

General Description

The LM7171 is a high speed voltage feedback amplifier that has the slewing characteristic of a current feedback amplifier; yet it can be used in all traditional voltage feedback amplifier configurations. The LM7171 is stable for gains as low as +2 or -1 . It provides a very high slew rate at $4100 \mathrm{~V} / \mu \mathrm{s}$ and a wide unity-gain bandwidth of 200 MHz while consuming only 6.5 mA of supply current. It is ideal for video and high speed signal processing applications such as HDSL and pulse amplifiers. With 100 mA output current, the LM7171 can be used for video distribution, as a transformer driver or as a laser diode driver.
Operation on $\pm 15 \mathrm{~V}$ power supplies allows for large signal swings and provides greater dynamic range and signal-to-noise ratio. The LM7171 offers low SFDR and THD, ideal for ADC/DAC systems. In addition, the LM7171 is specified for $\pm 5 \mathrm{~V}$ operation for portable applications.
The LM7171 is built on National's advanced VIPTM III (Vertically integrated PNP) complementary bipolar process.

Features

(Typical Unless Otherwise Noted)

Typical Performance

Large Signal Pulse Response
$A_{V}=+2, V_{s}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)
DS012385-1

- Easy-To-Use Voltage Feedback Topology
- Very High Slew Rate: $4100 \mathrm{~V} / \mu \mathrm{s}$
- Wide Unity-Gain Bandwidth: 200 MHz
- -3 dB Frequency @ $\mathrm{A}_{\mathrm{V}}=+2: 220 \mathrm{MHz}$
- Low Supply Current: 6.5 mA
- High Open Loop Gain: 85 dB
- High Output Current: 100 mA
- Differential Gain and Phase: $0.01 \%, 0.02^{\circ}$
- Specified for $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Operation

Applications

- HDSL and ADSL Drivers
- Multimedia Broadcast Systems
- Professional Video Cameras
- Video Amplifiers
- Copiers/Scanners/Fax
- HDTV Amplifiers
- Pulse Amplifiers and Peak Detectors
- CATV/Fiber Optics Signal Processing

Connection Diagrams

8-Pin DIP/SO

DS012385-2
Top View

16-Pin Wide Body SO

Ordering Information

Package	Temperature Range		Transport Media	NSC Drawing
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
8-Pin DIP	LM7171AIN, LM7171BIN		Rails	N08E
8-Pin CDIP	LM7171AMJ-QML LM7171AMJ-QMLV	5962-95536	Rails	J08A
10-Pin Ceramic SOIC	LM7171AMWG-QML LM7171AMWG-QMLV	5962-95536	Trays	WG10A
8-Pin	LM7171AIM, LM7171BIM		Rails	M08A
Small Outline	LM7171AIMX, LM7171BIMX		Tape and Reel	
16-Pin	LM7171AIWM, LM7171BIWM		Rails	M16B
Small Outline	LM7171AWMX, LM7171BWMX		Tape and Reel	

Section 3
Analog Microcontrollers

Section 3 Contents

The 8-Bit COP8 Family: Optimized for Value 3-4
ROM Products 3-9
COP912C 8-Bit Microcontroller 3-10
COP820C/840C Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory 3-12
COP680C/COP681C/COP682C/COP880C/COP881C/ COP882C/COP980C/COP981C/COP982C Microcontrollers 3-14
COP820CJ/COP840CJ Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory, Comparator and Brown Out Detector. 3-17
COP688CL/COP684CL, COP888CL/COP884CL, COP988CL/COP984CL 8-Bit Microcontroller 3-20
COP8SE Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4k Memory and 128 Bytes EERAM 3-24
COP888FH 8-Bit CMOS ROM Based Microcontrollers with 12k Memory, Comparators, USART and Hardware Multiply/Divide 3-28
COP888xG/CS Family 8-Bit CMOS ROM Based Microcontrollers with $4 k$ to 24 k Memory, Comparators and USART 3-32
COP884BC/COP885BC 8-Bit CMOS ROM Based Microcontrollers with 2 k Memory, Comparators, and CAN Interface 3-36
COP888EB 8-Bit CMOS ROM Based Microcontrollers with 8k Memory, CAN Interface, 8-Bit A/D, and USART 3-39
COP888CF 8-Bit CMOS ROM Based Microcontrollers with 4k Memory and A/D Converter 3-43
COP888GD 8-Bit CMOS ROM Based Microcontrollers with 16k Memory and 8-Channel A/D 3-47
COP8ACC Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 4 k or 16k Memory and High Resolution A/D 3-50
COP888EK 8-Bit CMOS ROM Based Microcontrollers with 8k Memory, Comparator, and Single-slope A/D Capability 3-53
COP888GW 8-Bit Microcontroller with Pulse Train Generators and Capture Modules $3-57$
OTP Products 3-59
COP87LxxCJ/RJ Family 8-Bit CMOS OTP Microcontrollers with 4k or 32k Memory and Comparator 3-60
COP8SA Family 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller with 1 k to 4 k Memory, Power On Reset, and Very Small Packaging 3-63
COP87L88CL 8-Bit One-Time Programmable (OTP) Microcontroller 3-68
COP8SG Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 8 k to 32k Memory, Two Comparators and USART 3-72
COP87L88FH 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, USART and Hardware Multiply/Divide 3-78
COP87L84BC 8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, and CAN Interface 3-82
COP87L88EB/RB Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8 -Bit A/D, and USART 3-84
COP87L88CF 8-Bit CMOS OTP Microcontrollers with 16k Memory and A/D Converter 3-88
COP87L88GD/RD Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory and 8-Channel A/D with Prescaler. 3-92
COP87L88EK/RK Family 8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Comparator, and Single-slope A/D Capability 3-95
COP87L88RW 8-Bit One-Time Programmable (OTP) Microcontroller with Pulse Train Generators and Capture Modules 3-99
Flash Products 3-102
COP8SBR9/COP8SCR9/COP8SDR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM and Brownout 3-103

The 8-Bit COP8 ${ }^{\text {TM }}$ Family: Optimized for Value

CPU/Instruction Set Features

- $10 \mathrm{MHz}, 15 \mathrm{MHz}$ or 20 MHz from 10 MHz oscillator
- $0.5,0.67$, or $1 \mu \mathrm{~s}$ instruction cycle time
- Up to 14 multi-sourced vectored interrupt servicing each interrupt source with independent vector
- Versatile and easy to use instruction set
- 8-bit stack pointer (SP) -(Stack in RAM)
- Two 8-bit register indirect memory pointers (B,X)
- High code efficiency with majority of instructions being single byte/single cycle (77\%)
- True bit manipulation
- BCD arithmetic instructions

Peripheral Features (Vary by Device)

- On-chip Flash up to 32 kbytes
- On-chip ROM from 768 bytes to 32 kbytes
- On-chip OTP EPROM up to 32 kbytes
- On-chip RAM from 64 to 1 kbytes
- On-chip EEPROM up to 512 bytes
- Virtual EEPROM on Flash devices
- Up to three 16 -bit multi-function timers, each with two 16-bit registers supporting
- Processor independent PWM mode
- External event counter mode
- Input capture mode
- Idle timer
- Multi-Input Wakeup (up to 8 wakeup pins) with optional interrupts (8)
- Full duplex USART
- CAN interface
- A/D (8 or 10 bit)
- Analog function block with single-scope A/D capability
- Analog comparators
- WATCHDOG ${ }^{\text {™ }}$ and clock monitor logic
- MICROWIRE/PLUS™ serial I/O
- Brown out detection
- Power-On-Reset
- Multiply/Divide function

I/O Features

- Memory mapped I/O
- Software selectable I/O
- TRI-STATE ${ }^{\circledR}$ outputs
- Push-Pull outputs
— Weak Pull-Up input
— High impedance input
- Schmitt trigger inputs
- High current outputs
- Pin efficient (i.e., 40 pins in 44 -pin package are devoted to useful I/O)
- Packing:
- 16 to 68 pins
- SOIC, DIP, PLCC, and QFP
- Chip-Scale and μ SMD

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$ in HALT)
- Two power saving modes: HALT and IDLE
- Single supply operation: 2.3 V to 6.0 V
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Eraseable, OTP and Flash devices
- Real time emulation and full program debug offered by MetaLink Development System

Development Support (Continued)

An Example of COP888 Block Diagram (COP8SAx7)

Embedded Control: Practical Solutions to Real Problems

Microcontrollers have played an important role in the semiconductor industry for quite some time. Unlike microprocessors, which typically address a range of more computation intensive, general purpose applications, microcontrollers are based on a central processing unit, data memory and input/ output circuitry that are designed primarily for specific, single function applications.
During the 1970s, microcontrollers were initially used in simple applications such as calculators and digital watches, but the combination of decreasing costs and increasing integration and performance has created many new application opportunities over the years. Even as the bulk of application growth occurs in the 8 -bit arena, the same issues that system designers were concerned with in the 4-bit world continue in force today. These include cost/performance tradeoffs, low power and low voltage capabilities, time to market, space/pin efficiency, and ease of design.

- Cost/Performance. A price difference of just a few pennies can be the gating factor in today's 8 -bit design decisions. Manufacturers must offer a wide range of cost/ performance options in order to meet customer demands.
- Low Power and Low Voltage. The increasing range of mobile and/or battery-powered applications is placing a premium on low-power, low-voltage, CMOS and BiCMOS embedded control solutions.
- Time to Market. The microcontroller's architecture, functionality, and feature set have a major influence on product design cycles in today's competitive market, with its shrinking windows of opportunity.
- Space/Pin Efficiency. Real estate and board configuration considerations demand maximum space and I/O pin efficiency, particularly given today's high integration and small product form factors.
- Ease of Design. A familiar and easy to use application design environment-including complete development tool support-is one of the driving factors affecting today's 8 -bit microcontroller design decisions.
All of these issues must be considered when searching for the appropriate 8-bit microcontroller to meet specific application needs.

National Semiconductor has been a prominent player in the worldwide microcontroller market, and its COP8 family of products spans today's range of applications, providing customers with a wealth of options at every price/performance point in the 8-bit microcontroller market.

Designers can select from a variety of building blocks centered around a common memory-mapped core and modified Harvard architecture. These building blocks include ROM, RAM, user programmable memory, USART, comparator, A / D, and I / O functions.
The COP8 family incorporates $0.5 / 0.67 / 1 \mu$ s instruction cycle times, WATCHDOG and clock monitors, multi-input wake up circuitry and National's MICROWIRE/PLUS interface. In addition, National's COP8 microcontrollers are available in a wide variety of temperature range configurations from $-55^{\circ} \mathrm{C}$ through $+125^{\circ} \mathrm{C}$-optimizing them for rugged industrial and military applications.

COP8 Benefits

The COP8 family provides designers with a number of features that result in substantial benefits. These include a code-efficient instruction set, low power/voltage features, efficient I/O, a flexible and configurable design methodology, robust design tools, and electromagnetic interference (EMI) control.
The COP8 family's compact, efficient and easy-to-program instruction set enables designers to reduce time to market for their products. Thanks to the instruction set, efficient ROM utilization lowers costs while providing the opportunity to integrate additional functionality on-chip. Low voltage operation, low current drain, multi-input wakeup and several power saving modes reduce power consumption for today's increasing range of handheld, battery-driven applications. An array of user-friendly development tools-including hardware from MetaLink, and state-of-the-industry assemblers, and C compilers help design engineers save valuable development time.
National's Configurable Controller Methodology (CCM) for the COP8 family creates "whole products" that are bug-free, fully tested and characterized, and supported by a range of documentation and hardware/software tools. National devel-

COP8 Benefits (Continued)

oped CCM because the majority of customer requests for new products have typically called for reconfigurations of existing proven blocks - such as RAM, ROM, timers, comparators, USARTs, and I/O.

EMI Reduction Technology

COP8 products incorporate circuitry that guards against electromagnetic interference-an increasing problem in todays microcontroller board designs. National's patented EMI reduction technology offers low EMI clock circuitry, EMI-optimized pinouts, gradual turn-on outputs (GTO), and on-chip choke device to help customers circumvent many of the EMI issues influencing embedded control designs.

In-System Programming And Virtual EEPROM

TheFlash based devices include a program in a boot ROM that provides the capability, through the MICROWIRE/PLUS serial interface, to erase, program and read the contents of the Flash memory.
Additional routines are included in the boot ROM, which can be called by the user program, to enable the user to customize the in system software update capability if MICROWIRE/ PLUS is not desired.
Additional functions will copy blocks of data between the RAM and the Flash Memory. These functions provide a virtual EEPROM capability by allowing the user to emulate a variable amount of EEPROM by initializing nonvolatile variables from the Flash Memory and occasionally restoring these variables to the Flash Memory.
The contents of the boot ROM have been defined by National. Execution of code from the boot ROM is dependent on the state of the FLEX bit in the Option Register on exit from RESET. If the FLEX bit is a zero, the Flash Memory is assumed to be empty and execution from the boot ROM begins.

Dual Clock And Clock Doubler

Some devices include a versatile clocking system and two oscillator circuits designed to drive a crystal or ceramic resonator. The primary oscillator operates at high speed up to 10 MHz . The secondary oscillator is optimized for operation at 32.768 kHz .
The user can, through specified transition sequences, switch execution between the high speed and low speed oscillators. The unused oscillator can then be turned off to minimize power dissipation. If the low speed oscillator is not used, the pins are available as general purpose bidirectional ports.
The operation of the CPU will use a clock at twice the frequency of the selected oscillator (up to 20 MHz for high speed operation and 65.536 kHz for low speed operation).

True In-System Emulation

On-chip emulation capability has been added to Flash based devices which allows the user to perform true in-system emulation using final production boards and devices. This simplifies testing and evaluation of software in real environmental conditions. The user, merely by providing for a standard connector which can be bypassed by jumpers on the final application board, can provide for software and hardware debugging using actual production units.

Core Architecture

All COP8 devices use a modified Harvard architecture, which means that program memory and data memory are accessed separately using independent address/data buses. This type of architecture offers the advantage of faster operation because the next instruction can be fetched from program memory while the current data memory transfer operation is carried out. The COP8 architecture is a "modified" Harvard version because data tables can be accessed from program memory by using a special instruction, Load Accumulator Indirect (LAID).
The core CPU has an 8 -bit accumulator (A), a 15-bit program counter (PC), two 8-bit data pointers (B and X), an 8 -bit stack pointer (SP), an 8-bit processor status word (PSW), an 8 -bit control register (CNTRL), and a bank of general-purpose 8 -bit registers. All RAM, I/O ports, and registers (except for the accumulator and program counter) are mapped into the data memory address space.
The COP8 device communicates with other devices through several configurable I/O ports or through the MICROWIRE/ PLUS serial I/O interface. The I/O ports are designated by letter names such as Port C, Port D, Port G, Port I, and Port L. The number of ports and port pins vary with the device type and package type.
All COP8 devices have at least one 16 -bit, general-purpose timer that can be programmed to operate in any of three modes: Pulse Width Modulation (PWM), external event counter, or input capture mode. Many COP8 devices have two or more of these timers and/or special-purpose timers such as the IDLE mode timer.

Peripheral Blocks

Several different on-chip peripheral devices are available in different COP8 devices, with multiple peripherals available in some versions of COP8 devices. Some of the peripheral blocks available are:

- Comparator
- Analog-to-Digital Converter
- Universal Synchronous/Asynchronous Receiver/ Transmitter (USART)
- Controller Area Network (CAN) Interface
- Hardware Multiply/Divide

Typically, the inputs and outputs of the peripherals are "alternate functions" of the programmable I/O ports of the COP8 device. In other words, the port pins can be programmed to operate as general-purpose inputs and outputs or as special-purpose inputs and outputs for the supported peripheral device.

Instruction Set

The COP8 offers a powerful and efficient instruction set. Most instructions are one byte long and take one instruction cycle to execute, resulting in compact, efficient programs. Several single-byte instructions are available that carry out multiple operations. For example, the single-byte DRSZ instruction decrements a specified register and skips the next instruction if the result is zero.
The instruction set offers a variety of addressing modes. For reading or writing data, the device offers the following addressing modes: direct, register B or X indirect, register B or X indirect with post-incrementing/decrementing, immediate, immediate short, and indirect from program memory. For

Instruction Set (Continued)

transfer of program control, the device offers the following addressing modes: jump relative, jump absolute, jump absolute long, and jump indirect.
The COP8 allows any individual bit in data memory address space to be set, reset, and tested, including bits in the memory-mapped I/O ports and registers.

COP8 Families

The COP8 line of 8 -bit microcontrollers is divided into two families called the "Basic Core" and "Feature Core." "The Basic Core devices are for lower-end, lower-cost applications that require less memory and simpler peripheral devices; whereas the Feature Core devices are for applications that require more memory and more-advanced peripheral devices. However, both families share the same basic architecture and basic instruction set.
Basic Core devices have from 768 bytes to 4 k bytes of ROM, EPROM or Flash and 64 or 128 bytes of RAM; and one 16 -bit timer. A HALT mode is available to shut down the device during periods of inactivity. Devices typically have 20 or 28 pins. Simple peripheral devices such as a comparator are offered in the family.
Feature Core devices have from $2 k$ to 32 kbytes of ROM and 128 to 1 kbytes of RAM; and at least two 16-bit timers. The Feature instruction set offers nine additional instructions to support vectored interrupts, pushing/popping the stack, and additional types of logic operations. In addition to the HALT mode, another power-down mode is available called the IDLE mode, which allows certain time-monitoring sections to operate while the rest of the device is shut down. All Feature Core devices offer Multi-Input Wakeup, which provides separate inputs for edge-triggered maskable interrupts or for exiting from the HALT or IDLE mode. Devices typically have 28, 40, or 44 pins. Advanced peripheral devices such as an A/D Converter, USART, and/or CAN Interface are offered in the family.

One-Time Programmable (OTP) Devices

All COP8 devices are supported by One-Time Programmable (OTP) devices of the same or increased capability. OTP devices are field-programmable using standard programming equipment. They are useful not only for prototypes and limited-production runs, but for the shortest time to market and for the ability to quickly make revisions or correct bugs, OTP COP8 devices offer an attractive choice for final production.
OTP COP8 devices offer low-voltage operation and program memory security. Security is achieved by programming a bit in the device that makes the program memory unreadable from outside the chip.

COP8SAx7, and COP8SGx7 OTP Devices

Recent additions to the COP8 Feature Family are the COP8SAx7 and COP8SGx7 OTP devices: the COP8SAA7, COP8SAB7, COP8SAC7, COP8SGE7, and COP8SGR7
These devices offer an unusual combination of OTP memory, low price, and a rich set of features:

- Low cost 8-bit OTP microcontroller
- Very small packaging
- Quiet Design (low radiated emissions)
- Multi-Input Wakeup pins with optional interrupts
- 1 k to 32 k OTP program memory
- 8 bytes of user storage space in EPROM
- User selectable clock options
- Zero external component operation
- Internal Power-On Reset-user selectable
- WATCHDOG and Clock Monitor Logic-user selectable
- Up to 12 high current outputs

COP8 Features/Benefits Analysis

	Key Features	Benefits
Instruction Set	- Efficient Instruction Set (77\% Single Byte/Single Cycle) - Easy To Program - Compact Instruction Set - Multi Function Instructions - Ten Addressing Modes	- Efficient ROM Utilization (compact code) - Low Cost Microcontroller (small ROM size) - Fast Time To Market
Low Power	- Low Voltage Operation - Lower Current Drain - Multi-Input Wakeup - Power Savings Modes (HALT/IDLE)	- Lower Power Consumption for Hand Held Battery Driven Applications
Efficient I/O	- Software Programmable I/O - Efficient Pin Utilization - Breadth of Available Packages - Package Types Including Variety of Low Pin Count Devices - High Current Outputs - Schmitt Trigger Inputs	- Multiple Use of I/O Pins - Economical Use of External Components (lower system cost) - Cleaner Hardware Design - Choice of Optimum Package Type (price/outline/ pinout)
Flexible/Powerful On-Board Features	- Smart 16-Bit Timers (processor independent PWM) - A/D - Comparators - Analog Function Block (low cost A/D) - UART - Multi-Input Wakeup - Multi-Source Hardware Interrupts - MICROWIRE/PLUS Serial Interface - Application Specific Features (CAN, Motor Control Timers, etc.)	- Timers Allow Less Software/Process Overhead for Frequency - Measurement (capture) and PWM - Cleaner Hardware (eliminating the need for external components) - Overall Cost Reduction
Safety/SoftwareRunaway Protection	- WATCHDOG - Software Interrupt - Clock Monitor - Brown Out Detection	- No Need for External ProtectionCircuitry - Brown Out Detection Allows the Use of Low Cost Power Supply
Development Tools	- A range of software and hardware tools options to meet every need and budget	- Saves Engineering Development Time-Fast Time to Market

CNational Semiconductor

ROM Products

COP912C

8-Bit Microcontroller

General Description

Note: COP8SA devices are instruction set and pinout compatible supersets of the COP912C devices, and are replacements for these in new designs when possible.
The COP912C ROM based microcontrollers are integrated COP8(tm) Base core devices with smaller memory (768 bytes), and fewer on-board features. These single-chip CMOS devices are suited for lower-functionality applications where system cost is of prime consideration. Pin and software compatible (different Vcc range) $4 \mathrm{k} / 32 \mathrm{k}$ OTP versions are available (COP87LxxCJ/RJ Family). Erasable windowed versions are available for use with a range of COP8(tm) software and hardware development tools.

Family features include an 8 -bit memory mapped architecture, 10 MHz CKI with $2.5 \mathrm{sus}(912 \mathrm{C})$ or 2us(912CH) instruction cycle, one multi-function 16-bit timer/counter with PWM, MICROWIRE/PLUS(tm) serial I/O, power saving HALT mode, three clock modes, high current outputs, software selectable I/O options, multi-volt operation and 20 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP912C	768 ROM	64	16	20 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$2.3 \mathrm{v}-4.0 \mathrm{v}$
COP912CH	768 ROM	64	16	20 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$4.0 \mathrm{v}-5.5 \mathrm{v}$

Key Features

- Lowest cost COP8 microcontroller
- 16-bit multi-function timer supporting
- PWM mode
- External event counter mode
- Input capture mode
- 768 bytes of ROM
- 64 bytes of RAM

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Schmitt trigger inputs on Port G
- MICROWIRE/PLUS ${ }^{\text {M }}$ Serial I/O
- Packages: 20 DIP/SO with 16 I/O pins

CPU/Instruction Set Features

- Instruction cycle time of $2 \mu \mathrm{~s}$ for COP912CH and $2.5 \mu \mathrm{~s}$ for COP912C
- Three multi-sourced interrupts servicing
- External Interrupt with selectable edge
- Timer interrupt
- Software interrupt
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit Register Indirect Memory Pointers (B, X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.3 V to 4.0 V or 4.0 V to 5.5 V
- Temperature range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

Applications

- Electronic keys and switches
- Remote Control
- Timers
- Alarms
- Small industrial control units
- Low cost slave controllers
- Temperature meters
- Small domestic appliances
- Toys and games

Block Diagram

COP820C/840C Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory

General Description

Note: COP8SA devices are instruction set and pinout compatible supersets of the COP800C Family devices, and are replacements for these in new designs when possible.
The COP820C/840C Family ROM based microcontrollers are integrated COP8 ${ }^{\text {TM }}$ Base core devices with smaller memory ($1 \mathrm{k} / 2 \mathrm{k}$), and fewer on-board features. These singlechip CMOS devices are suited for lower-functionality applications where system cost is of prime consideration. Pin and software compatible (different V_{CC} range) $4 \mathrm{k} / 32 \mathrm{k}$ OTP ver-
sions are available (COP87LxxCJ/RJ Family). Erasable windowed versions are available for use with a range of COP8 software and hardware development tools.
Family features include an 8 -bit memory mapped architecture, 10 Hz CKI with $1 \mu \mathrm{~s}$ instruction cycle, one multi-function 16-bit timer/counter with PWM, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, power saving HALT mode, three clock modes, high current outputs, software selectable I/O options, 2.3v-6.0v operation and 20/28 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP620C	1k ROM	64	24	28 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{v}-5.5 \mathrm{v}$
COP820C	1k ROM	64	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP920C	1k ROM	64	24	28 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$\begin{gathered} 2.3 \mathrm{v}-4.0 \mathrm{v}, \\ \mathrm{CH}=4.0 \mathrm{v}-6.0 \mathrm{v} \end{gathered}$
COP622C	1k ROM	64	16	20 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{v}-5.5 \mathrm{v}$
COP822C	1k ROM	64	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP922C	1k ROM	64	16	20 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$\begin{gathered} 2.3 \mathrm{v}-4.0 \mathrm{v} \\ \mathrm{CH}=4.0 \mathrm{v}-6.0 \mathrm{v} \end{gathered}$
COP640C	2k ROM	128	24	28 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{v}-5.5 \mathrm{v}$
COP840C	2k ROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP940C	2k ROM	128	24	28 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$\begin{gathered} 2.3 \mathrm{v}-4.0 \mathrm{v} \\ \mathrm{CH}=4.0 \mathrm{v}-6.0 \mathrm{v} \end{gathered}$
COP642C	2k ROM	128	16	20 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{v}-5.5 \mathrm{v}$
COP842C	2k ROM	128	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP942C	2k ROM	128	16	20 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$\begin{gathered} 2.3 \mathrm{v}-4.0 \mathrm{v} \\ \mathrm{CH}=4.0 \mathrm{v}-6.0 \mathrm{v} \end{gathered}$

Key Features

- 16-bit multi-function timer supporting
- PWM mode
- External event counter mode
- Input capture mode
- 1024 bytes ROM/64 bytes RAM-COP820C
- 2048 bytes ROM/128 bytes RAM-COP840C

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Schmitt trigger inputs on Port G
- MICROWIRE/PLUS serial I/O
- Packages:
- 20 DIP/SO with 16 I/O pins

- 28 DIP/SO with 24 I/O pins

CPU/Instruction Set Feature

- $1 \mu \mathrm{~s}$ instruction cycle time
- Three multi-source interrupts servicing
- External interrupt with selectable edge
- Timer interrupt
- Software interrupt
- Versatile and easy to use instruction set
- 8 -bit Stack point (SP)-stack in RAM
- Two 8-bit Register Indirect Memory Pointers (B, X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 V to 6.0 V
- Temperature range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fully Static CMOS (Continued)
Development Support

- Real time emulation and full program debug offered by MetaLink's Development System
- Emulation and OTP devices

Block Diagram

FIGURE 1.

COP680C/COP681C/COP682C/COP880C/COP881C/ COP882C/COP980C/COP981C/COP982C

 Microcontrollers
General Description

The COP680C/COP681C/COP682C/COP880C/COP881C /COP882C/COP980C/COP981C and COP982C are members of the COPS ${ }^{\text {TM }}$ microcontroller family. They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. This low cost microcontroller is a complete microcomputer containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8-bit memory mapped architecture, MICROWIRE/ PLUS ${ }^{\text {TM }}$ serial I/O, a 16 -bit timer/counter with capture register and a multi-sourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. The part operates over a voltage range of 2.5 to 6.0 V . High throughput is achieved with an efficient, regular instruction set operating at a 1 microsecond per instruction rate.

Key Features

- - 16-bit multi-function timer supporting
—PWM mode
- External event counter mode
- Input capture mode
- 4 kbytes of ROM
- 128 bytes of RAM

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$, Push-Pull, Weak Pull-Up Input, High Impedance Input)
- High current outputs (8 pins)
- Schmitt trigger inputs on Port G
- MICROWIRE PLUS serial I/O
- Packages:
-20 DIP/SO with 16 I/O pins
-28 DIP/SO with 24 I/O pins
-40 DIP, 36 I/O pins
-44 PLCC, 36 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Three multi-source interrupts servicing
-External interrupt with selectable edge
- Timer interrupt
-Software interrupt
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 V to 6.0 V
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink's development system

Block Diagram

FIGURE 1.

Connection Diagrams

Order Number COP882C-XXX/N, COP982C-XXX/N, COP882C-XXX/WM, COP982C-XXX/WM, COP982C-XXX/N or COP982CH-XXX/WM

Top View
Order Number COP680C-XXX/N, COP880C-XXX/N, COP980C-XXX/N or COP980CH-XXX/N

Dual-In-Line Package (N) and 28 Wide SO (WM)

Top View
Order Number COP881C-XXX/N, COP981C-XXX/N, COP881C-XXX/WM, COP981C-XXX/WM, COP981CH-XXX/N or COP981CH-XXX/WM

Plastic Chip Carrier

Order Number COP680C-XXX/V, COP880C-XXX/V, COP980C-XXX/V or COP980CH-XXX/V

FIGURE 2. Connection Diagrams

COP820CJ/COP840CJ Family 8-Bit CMOS ROM Based Microcontrollers with 1k or 2k Memory, Comparator and Brown Out Detector

General Description

The COP820CJ/840CJ Family ROM based microcontrollers are integrated COP8 ${ }^{\text {TM }}$ Base core devices with 1 k or 2 k memory, an Analog comparator and Brownout detection. These single-chip CMOS devices are suited for lowerfunctionality applications where power and voltage fluctuations are a consideration. Pin and software compatible (no Brownout; different Vcc range) $4 \mathrm{k} / 32 \mathrm{k}$ OTP versions are available (COP87LxxCJ/RJ Family) for pre-production, and for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with 1 us instruction cycle, one multifunction 16 -bit timer/counter, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one analog comparator, power saving HALT mode, MIWU, on-chip R/C oscillator capacitor (COP840CJ), high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer, modulator/timer, Brownout detector, Power on Reset, $2.5 \mathrm{v}-6.0 \mathrm{v}$ operation, and 16/20/28 pin packages.
In this datasheet, the term COP820CJ refers to packages including the COP820CJ, COP822CJ, and COP823CJ; and COP840CJ refers to COP840CJ, COP842CJ, COP940CJ, and COP942CJ.
Devices included in this data sheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP820CJ	1k ROM	64	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP822CJ	1k ROM	54	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP823CJ	1k ROM	64	12	16 SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP840CJ	2k ROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	Low EMI
COP940CJ	$2 k$ ROM	128	24	28 DIP/SOIC	-0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.5 \mathrm{~V}, \mathrm{CJH}=4 \mathrm{~V}-6 \mathrm{~V}$
COP842CJ	2k ROM	128	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP942CJ	2k ROM	128	16	20 DIP/SOIC	-0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.5 \mathrm{~V}, \mathrm{CJH}=4 \mathrm{~V}-6 \mathrm{~V}$

Key Features

- Multi-Input Wake Up (on the 8-bit Port L)
- Brown out detector
- Analog comparator
- Modulator/timer (High speed PWM for IR transmission)
- 16-bit multi-function timer supporting
- PWM mode
- External event counter mode
- Input capture mode
- 1024 or 2048 bytes of ROM
- 64 or 128 bytes of RAM
- Quiet design (low radiated emissions)
- Integrated capacitor for the R/C oscillator for COP840CJ

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ output, push-pull output, weak pull-up input, high impedance input)
- High current outputs (8 pins)
- Packages
- 16 SO with 12 I/O pins for COP820CJ
-20 DIP/SO with 16 I/O pins
- 28 DIP/SO with 24 I/O pins
- Schmitt trigger inputs on Port G
- MICROWIRE/PLUS serial I/O

CPU/Instruction Set Feature

- 1μ instruction cycle time
- Three multi-source vectored interrupts servicing
- External interrupt with selectable edge
- Timer interrupt
- Software interrupt
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit register indirect data memory pointers (B, X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 V to 6.0 V
- Temperature ranges: $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

DS011208-1
2k ROM and 128 Bytes RAM for COP840CJ
FIGURE 1. Block Diagram

Connection Diagrams

Order Number COPCJ820-XXX/N or COPCJ820-XXX/M,
Order Number COPCJ840-XXX/N or COPCJ840-XXX/M,
Order Number COPCJ940-XXX/N or COPCJ940-XXX/M
See NS Package Number N28B or M28B

Top View
Order Number COPCJ822-XXX/N or COPCJ822-XXX/M
Order Number COPCJ842-XXX/N or COPCJ842-XXX/M
Order Number COPCJ942-XXX/N or COPCJ942-XXX/M
See NS Package Number N20A or M20B

FIGURE 2. Connection Diagrams

Top View
Order Number COPCJ823-XXX/WM See NS Package Number M16B

Connection Diagrams (Continued)
COP820CJ/COP840CJ Pin Assignment

Port Pin	Typ.	ALT Function	16-Pin	20-Pin	28-Pin
L0	I/O	MIWU/CMPOUT	5	7	11
L1	I/O	MIWU/CMPIN-	6	8	12
L2	I/O	MIWU/CMPIN+	7	9	13
L3	I/O	MIWU	8	10	14
L4	I/O	MIWU	9	11	15
L5	1/O	MIWU	10	12	16
L6	I/O	MIWU	11	13	17
L7	1/O	MIWU/MODOUT	12	14	18
G0	1/O	INTR		17	25
G1	1/O			18	26
G2	I/O			19	27
G3	I/O	TIO	15	20	28
G4	I/O	SO		1	1
G5	I/O	SK	16	2	2
G6	1	SI	1	3	3
G7	I	CKO	2	4	4
10	1				7
11	1				8
12	1				9
13	1				10
D0	0				19
D1	0				20
D2	0				21
D3	0				22
V_{CC}			4	6	6
GND			13	15	23
CKI			3	5	5
RESET			14	16	24

COP688CL/COP684CL, COP888CL/COP884CL, COP988CL/COP984CL 8-Bit Microcontroller

General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2} \mathrm{CMOS}^{\text {TM }}$ process technology. The COP888CL is a member of this expandable 8-bit core processor family of microcontrollers.
It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, two 16-bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), and two power savings modes (HALT and IDLE), both with a multisourced wakeup/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

Key Features

- Two 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 4 kbytes of on-chip ROM
- 128 bytes of on-chip RAM

Additional Peripheral Features

- Idle Timer
- Multi-input Wake Up (MIWU) with optional interrupts (8)
- WATCHDOG ${ }^{\text {TM }}$ and Clock Monitor logic
- MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Schmitt trigger inputs on port G
- Packages:
- 44 PLCC with 40 I/O pins
- 40 DIP with 36 I/O pins
- 28 DIP with 24 I/O pins
-28 SO with 24 I/O pins

CPU/Instruction Set Feature

- $1 \mu \mathrm{~s}$ instruction cycle time
- Ten multi-source vectored interrupts servicing
- External Interrupt with selectable edge
- Idie Timer TO
— Timers (Each with 2 interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B, X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 V to 6.0 V
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

I/O Features

- Memory mapped I/O

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

Dual-In-Line Package

Top View
Order Number COP688CL-XXX/N, COP888CL-XXX/N, COP988CL-XXX/N or COP988CLH-XXX/N See NS Molded Package Number N40A

Dual-In-Line Package

Order Number COP688CL-XXX/N, COP884CL-XXX/N, COP984CL-XXX/N or COP984CLH-XXX/N
See NS Molded Package Number N28B Order Number COP684CL-XXX/WM,
COP884CL-XXX/WM, COP984CL-XXX/WM, or COP984CLHXXX/WM
See NS Surface Mount Package Number M28B
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	1/0	MIWU		11	17	17
L1	I/O	MIWU		12	18	18
L2	I/O	MIWU		13	19	19
L3	1/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU		17	23	27
L7	1/O	MIWU		18	24	28
G0	1/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	1/O	T1A		28	38	42
G4	1/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT RESTART		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1			7	9	9
11	1			8	10	10
12	1				11	11
13	1				12	12
14	1			9	13	13
15	1			10	14	14
16	1					15
17	1					16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	I/O				2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
Unused (Note 1)					16	
Unused (Note 1)					15	
$\mathrm{V}_{\text {cc }}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET					34	38

Note 1: On the 40-pin package Pins 15 and 16 must be connected to GND.

COP8SE Family

8-Bit CMOS ROM Based and OTP Microcontrollers with 4k Memory and 128 Bytes EERAM

General Description

The COP8SEx5 Family ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 4 k memory and advanced features including EERAM. COP8SER7 devices are pin and software compatible (different V_{CC} range), 32k OTP (One Time Programmable) versions for engineering development use with a range of COP8 software and hardware development tools.
Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, 128 bytes of EE-

RAM, one multi-function 16-bit timer/counter, idle timer with MIWU, MICROWIRE/PLUS ${ }^{\text {TM }}$, serial I/O, crystal or R/C oscillator, two power saving HALT/IDLE modes, Schmitt trigger inputs, software selectable I/O options, WATCHDOG ${ }^{\text {M }}$ timer and Clock Monitor, Low EMI 2.7V to 5.5 V operation, and 16/20 pin packages.
Devices included in this data sheet are:

Device	OSC	Memory (bytes)	RAM (bytes)	EERAM	I/O Pins	Package	Temperature
COP8SEC5		4 k ROM	128	128 bytes	$12 / 16$	$16 / 20 \mathrm{SOIC}$	-40 to $+85^{\circ} \mathrm{C},-40$ to $+135^{\circ} \mathrm{C}$
COP8SER7-XE	xtal	32 k OTP EPROM	128	128 bytes	16	20 SOIC	-40 to $+85^{\circ} \mathrm{C}$, Engineering
COP8SER7-RE	R/C	32 k OTP EPROM	128	128 bytes	16	20 SOIC	-use only

Key Features

- 256 bytes data memory
- 128 bytes RAM
-128 bytes EERAM
- OTP with security feature (SER7)
- Quiet Design (low radiated emissions)
- Multi-Input Wakeup pins with optional interrupts (8 pins)
- User selectable clock options:
- R/C oscillator
- Crystal oscillator

Other Features

- Fully static CMOS, with low current drain
- Available with Crystal (-XE) or RC (-RE) oscillator
- Two power saving modes: HALT and IDLE
- 1μ s instruction cycle time
- 4k bytes on-board masked ROM or 32k bytes OTP
- Single supply operation: $2.7 \mathrm{~V}-5.5 \mathrm{~V}$
- MICROWIRE/PLUS Serial Peripheral Interface Compatible
- Nine multi-source vectored interrupts servicing
- EERAM write complete
- External interrupt
- Idle Timer TO
- One Timer (with 2 Interrupts)
- MICROWIRE/PLUS Serial Interface
- Multi-Input Wake Up
— Software Trap
- Default VIS
- Idle Timer with programmable interrupt interval
- One 16 bit timer with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- WATCHDOG and Clock Monitor logic
- Software selectable I/O options:
- TRI-STATE ${ }^{\circledR}$ Output:
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports G and L
- Temperature ranges:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ (SEC5 only)
- Packaging: 16, and 20 SO (SEC5); 20 SO (SER7)
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. Block Diagram

1.0 Device Description

1.1 ARCHITECTURE

The COP8 family is based on a modified Harvard architecture, which allows data tables to be accessed directly from program memory. This is very important with modern microcontroller-based applications, since program memory is usually ROM or EPROM, while data memory is usually RAM. Consequently data tables need to be contained in non-volatile memory, so they are not lost when the microcontroller is powered down. Non-memory for the storage of data variables is provided by the EERAM in the COP8SEC5 and COP8SER7. In a Harvard architecture, instruction fetch and memory data transfers can be overlapped with a two stage pipeline, which allows the next instruction to be fetched from program memory while the current instruction is being executed using data memory. This is not possible with a Von Neumann single-address bus architecture.
The COP8 family supports a software stack scheme that allows the user to incorporate many subroutine calls. This capability is important when using High Level Languages. With a hardware stack, the user is limited to a small fixed number of stack levels.

1.2 INSTRUCTION SET

In today's 8 -bit microcontroller application arena cost/ performance, flexibility and time to market are several of the key issues that system designers face in attempting to build well-engineered products that compete in the marketplace. Many of these issues can be addressed through the manner in which a microcontroller's instruction set handles processing tasks. And that's why the COP8 family offers a unique and code-efficient instruction set-one that provides the flexibility, functionality, reduced costs and faster time to market that today's microcontroller based products require.
Code efficiency is important because it enables designers to pack more on-chip functionality into less program memory
space (ROM/OTP). Selecting a microcontroller with less program memory size translates into lower system costs, and the added security of knowing that more code can be packed into the available program memory space.

1.2.1 Key Instruction Set Features

The COP8 family incorporates a unique combination of instruction set features, which provide designers with optimum code efficiency and program memory utilization.

Single Byte/Single Cycle Code Execution

The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum program space. Because compact code does not occupy a substantial amount of program memory space, designers can integrate additional features and functionality into the microcontroller program memory space. Also, the majority instructions executed by the device are single cycle, resulting in minimum program execution time. In fact, 77% of the instructions are single byte single cycle, providing greater code and I/O efficiency, and faster code execution.

1.2.2 Many Single-Byte, Multifunction Instructions

The COP8 instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to accomplish multiple functions, such as DRSZ, DCOR, JID, LD (Load) and X (Exchange) instructions with post-incrementing and post-decrementing, to name just a few examples. In many cases, the instruction set can simultaneously execute as many as three functions with the same single-byte instruction.
JID: (Jump Indirect); Single byte instruction; decodes external events and jumps to corresponding service routines (analogous to "DO CASE" statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table instruction provides efficient data path from the program

1.0 Device Description (Continued)

memory to the CPU. This instruction can be used for table lookup and to read the entire program memory for checksum calculations.
RETSK: (Return Skip); Single byte instruction allows return from subroutine and skips next instruction. Decision to branch can be made in the subroutine itself, saving code.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These instructions use the two memory pointers B and X to efficiently process a block of data (analogous to "FOR NEXT" in higher level languages).

1.2.3 Bit-Level Control

Bit-level control over many of the microcontroller's I/O ports provides a flexible means to ease layout concerns and save board space. All members of the COP8 family provide the ability to set, reset and test any individual bit in the data memory address space, including memory-mapped I/O ports and associated registers.

Connection Diagrams

Top View
Order Number COP8SEC516M
See NS Package Number M16B

1.2.4 Register Set

Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory data pointers allow the option of post-incrementing or postdecrementing with the data movement instructions (LOAD/ EXCHANGE). And 15 memory-maped registers allow designers to optimize the precise implementation of certain specific instructions.

1.3 PACKAGING/PIN EFFICIENCY

Real estate and board configuration considerations demand maximum space and pin efficiency, particularly given today's high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O needed. Large packages take valuable board space and increase device cost, two trade-offs that microcontroller designs can ill afford.
The COP8 family offers a wide range of packages and does not waste pins: up to 90.9% (or 40 pins in the 44 -pin package, these packages are not available on all COP8 devices) are devoted to useful I/O.

Top View
Order Number COP8SEC520M or COP8SER720M See NS Package Number M20B

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 16-, and 20-Pin Packages

Port	Type	Alt. Fun	20-Pin SO	16-Pin SO
LO	I/O	MIWU	7	7
L1	I/O	MIWU	8	8
L2	I/O	MIWU	9	9
L3	I/O	MIWU	10	10
L4	I/O	MIWU	11	
L5	I/O	MIWU	12	
L6	I/O	MIWU	13	
L7	I/O	MIWU	14	
G0	I/O	INT	17	13
G1	I/O	WDOUT*	18	14
G2	1/O	T1B	19	15
G3	1/O	T1A	20	16
G4	I/O	SO	1	1
G5	I/O	SK	2	2
G6	1	SI	3	3
G7	1	CKO	4	4
D0	0			
D1	0			
D2	0			
D3	0			
F0	I/O			
F1	I/O			
F2	I/O			
F3	1/O			
V_{Cc}			6	6
GND			15	11
CKI	1		5	5
RESET	1		16	12

2.1 Ordering Information

FIGURE 3. Part Numbering Scheme

COP888FH

8-Bit CMOS ROM Based Microcontrollers with 12k Memory, Comparators, USART and Hardware Multiply/Divide

General Description

The COP888FH Family of ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 12 k memory and advanced features including Analog comparators, and Hardware Multiply/Divide. These single-chip CMOS devices are suited for more complex applications requiring a full featured controller, low EMI, two comparators, a full-duplex USART, and hardware multiply/divide functions. COP87L88FH devices are pin and software compatible (different V_{CC} range) 16k OTP (One Time Programmable) versions for pre-production, and for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, hardware multiply/divide functions, three multi-function 16-bit timer/ counters with PWM, full duplex USART, MICROWIRE/ PLUS ${ }^{\text {TM }}$, two Analog comparators, two power saving HALT/ IDLE modes, MIWU, idle timer, high current outputs, software selectable options WATCHDOG ${ }^{\text {TM }}$ and clock/ oscillator mode, low EMI 2.5 V to 5.5 V operation, and $28 /$ 40/44 pin packages.
Devices included in this data sheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP684FH	12 k ROM	512	24	28 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	4.5 V to 5.5 V
COP884FH	12 k ROM	512	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP984FH	12 k ROM	512	24	28 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	2.5 V to $4.0 \mathrm{~V}, \mathrm{FHH}=4.0 \mathrm{~V}$ to
						6.0 V
COP688FH	12 k ROM	512	$36 / 40$	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5 V to 5.5 V
COP888FH	12 k ROM	512	$36 / 40$	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	
COP988FH	12 k ROM	512	$36 / 40$	40 DIP, 44 PLCC	0 to $+70^{\circ} \mathrm{C}$	2.5 V to $4.0 \mathrm{~V}, \mathrm{FHH}=4.0 \mathrm{~V}$ to
						6.0 V

Key Features

- Hardware Multiply/Divide Functions
- Full duplex USART
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Quiet design (low radiated emissions)
- 12 kbytes on-board ROM
- 512 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Two analog comparators
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$, Push-Pull, Weak Pull-Up, and High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Packages:
- 40 DIP with 36 I/O pins

- 44 PLCC with 40 I/O pins

- 28 DIP/SO with 24 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer T0
- Three Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- USART (2)
— Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Low current drain (typically $<5 \mu \mathrm{~A}$)
- Two power saving modes: HALT and IDLE
- Single supply operation: $2.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Block Diagram

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. COP888FH Block Diagram

Connection Diagrams

Dual-In-Line Package

Top View Order
Number COP688FH-XXX/N, COP888FH-XXX/N or COP988FH-XXX/N See NS Molded Package Number N40A

Dual-In-Line Package

Order Number COP684FH-XXX/M, COP884FH-XXX/M,
COP984FH-XXX/M, COP684FH-XXX/N,
COP884FH-XXX/N or COP984FH-XXX/N
See NS Molded Package Number M28B or N28B
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	I/O	MIWU		11	17	17
L1	I/O	MIWU	CKX	12	18	18
L2	I/O	MIWU	TDX	13	19	19
L3	I/O	MIWU	RDX	14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU	T3A	17	23	27
L7	I/O	MIWU	ТЗВ	18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
10	I			7	9	9
11	1	COMP1IN-		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP10UT		10	12	12
14	1	COMP2IN-			13	13
15	1	COMP2IN+			14	14
16	1	COMP2OUT			15	15
17	1				16	16
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	I/O				2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
V_{CC}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

COP888xG/CS Family 8-Bit CMOS ROM Based Microcontrollers with 4k to 24k Memory, Comparators and USART

General Description

Note: COP8SG devices are form-fit-function compatible supersets of the COP888xG/CL/CS Family devices, and are replacements for these in new designs, and design upgrades with minimum effort.
The COP888xG ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with larger memory (4k to 24 k) and advanced features including two Analog comparators. These single-chip CMOS devices are suited for more complex applications requiring a full featured controller with a range of memory sizes, low EMI (except EG), comparators, and a full-duplex USART. Pin and software compatible (different V_{cc} range) 8k toor 32k OTP (One Time

Programmable) versions are available (COP8SGx7 Family). Erasable windowed versions are available for use with a range of software and hardware development tools.
Family features include an 8 -bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, three multifunction 16-bit timer/counters, full-duplex USART, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two Analog comparators, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, low EMI 2.5 V to 5.5 V operation, and 28/40/44 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	$\begin{aligned} & \text { I/O } \\ & \text { Pins } \end{aligned}$	Packages	Temperature	Comments
COP684CS	4k ROM	192	24	28 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP884CS	4k ROM	192	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP984CS	4k ROM	192	24	28 DIP/SOIC	-0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.0 \mathrm{~V}, \mathrm{CSH}=4.0 \mathrm{~V}-6.0 \mathrm{~V}$
COP688CS	4k ROM	192	36/40	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP888CS	4k ROM	192	36/40	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	
COP988CS	4k ROM	192	36/40	40 DIP, 44 PLCC	-0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.0 \mathrm{~V}, \mathrm{CSH}=4.0 \mathrm{~V}-6.0 \mathrm{~V}$
COP884CG	4k ROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$
COP888CG	4k ROM	128	34/38	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$
COP684EG	4k ROM	256	24	28 DIP, SOIC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP884EG	4k ROM	256	24	28 DIP, SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP984EG	4k ROM	256	24	28 DIP, SOIC	0 to $+70^{\circ} \mathrm{C}$	2.5V-4.0V, EGH=4.0-6.0V
COP688EG	8k ROM	256	36/40	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP888EG	8k ROM	256	36/40	40 DIP, 44 PLCC/PQFP	-40 to $+85^{\circ} \mathrm{C}$	
COP988EG	8k ROM	256	36/40	40 DIP, 44 PLCC	0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.0 \mathrm{~V}, \mathrm{EGH}=4.0-6.0 \mathrm{~V}$
COP688GG	16k ROM	512	36/40	$\begin{aligned} & \hline 40 \text { DIP, } 44 \\ & \text { PLCC/PQFP } \end{aligned}$	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP888GG	16k ROM	512	36/40	40 DIP, 44 PLCC/PQFP	-40 to $+85^{\circ} \mathrm{C}$	
COP688HG	20k ROM	512	36/40	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP888HG	20k ROM	512	36/40	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	
COP688KG	24k ROM	512	36/40	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5V-5.5V
COP888KG	24k ROM	512	36/40	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	

Key Features

- Full duplex USART
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Quiet design (low radiated emissions)
- 4 to 24 kbytes on-board ROM
- 128 to 512 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake-Up (MIWU) with optional interrupts (8)

Additional Peripheral Features

(Continued)

- Two analog comparators (one for the CS series)
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Up to 8 high current outputs
- Schmitt trigger inputs on ports G and L
- Packages:
- 44 PQFP with 40 I/O pins
- 44 PLCC with 40 I/O pins
- 40 DIP with 36 I/O pins
- 28 DIP/SOIC with 24 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Versatile and easy to use instruction set
- Up to fourteen multi-source vectored interrupts servicing
- External Interrupt with selectable edge
- Idle Timer TO
- Three Timers (one timer for the CS series)(each with 2 interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake-Up
- Software Trap
- USART (2)
- Default VIS (default interrupt)
- 8-bit Stack Pointer SP-(stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: $2.5 \mathrm{~V}-5.5 \mathrm{~V}$ (COP88x)
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink's Development System

Block Diagram

FIGURE 1. COP888xG Block Diagram

Connection Diagrams

Top View
Order Number COP884CS-XXX/WM, COP984CS-XXX/WM,
COP984CSH-XXX/WM, COP684CS-XXX/WM, COP884CG-XXX/WM, COP884EG-XXX/WM or COP884CS-XXX/N, COP984CS-XXX/N, COP984CSH-XXX/N, COP884CG-XXX/N, COP884EG-XXX/N
See NS Package Number M28B or N28A

Top View
Order Number COP888CS-XXX/N, COP988CS-XXX/N, COP688CS-XXX/N, COP988CSH-XXX/N, COP888CG-XXX/N, COP688EG-XXX/N, COP888GG-XXX/N, COP688GG-XXX/N, COP888GG-XXX/N, COP688HG-XXX/N, COP888HG-XXX/N, COP688KG-XXX/N, or COP888KG-XXX/N

See NS Package Number N40A

Top View
Order Number COP888EG-XXX/VEJ, COP688GG-XXX/VEJ, COP888GG-XXX/VEJ, See NS Package Number VEJ44A

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	$\begin{aligned} & \text { 28-Pin } \\ & \text { DIP/SO } \end{aligned}$	40-Pin DIP	$\begin{aligned} & \text { 44-Pin } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { 44-Pin } \\ & \text { PQFP } \end{aligned}$
L0	1/O	MIWU		11	17	17	11
L1	I/O	MIWU	CKX	12	18	18	12
L2	1/O	MIWU	TDX	13	19	19	13
L3	I/O	MIWU	RDX	14	20	20	14
L4	1/O	MIWU	T2A*	15	21	25	19
L5	I/O	MIWU	T2B*	16	22	26	20
L6	I/O	MIWU	T3A*	17	23	27	21
L7	1/O	MIWU	T3B*	18	24	28	22
G0	I/O	INT		25	35	39	33
G1	WDOUT			26	36	40	34
G2	I/O	T1B		27	37	41	35
G3	I/O	T1A		28	38	42	36
G4	I/O	SO		1	3	3	41
G5	I/O	SK		2	4	4	42
G6	1	SI		3	5	5	43
G7	I/CKO	HALT Restart		4	6	6	44
D0	0			19	25	29	23
D1	0			20	26	30	24
D2	0			21	27	31	25
D3	0			22	28	32	26
D4	0				29	33	7
D5	0				30	34	8
D6	0				31	35	9
D7	0				32	36	10
10	1			7	9	9	27
11	1	COMP1IN-		8	10	10	28
12	1	COMP1IN+		9	11	11	29
13	1	COMP10UT		10	12	12	30
14	1	COMP2IN-*			13	13	3
15	1	COMP2IN+*			14	14	4
16	1	COMP2OUT*			15	15	5
17	1				16	16	6
C0	I/O				39	43	37
C1	I/O				40	44	38
C2	I/O				1	1	39
C3	I/O				2	2	40
C4	I/O					21	15
C5	I/O					22	16
C6	I/O					23	17
C7	1/O					24	18
V_{CC}				6	8	8	2
GND				23	33	37	31
CKI				5	7	7	1
RESET				24	34	38	32

Note 1: * Not available on the CS series

COP884BC/COP885BC

8-Bit CMOS ROM Based Microcontrollers with 2k Memory, Comparators, and CAN Interface

General Description

The COP884BC ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 2 k memory and advanced features including a CAN 2.0B (passive) interface and two Analog comparators. These single-chip CMOS devices are suited for applications requiring a full featured controller with a CAN interface, low EMI, and an 8 -bit 39 kHz PWM timer. COP87L84BC devices are pin and software compatible 16k OTP (One Time Programmable) versions for pre-production, and for use with a range of COP8 software and hardware development tools.

Features include an 8-bit memory mapped architecture, 10 MHz CKI (crystal osc) with $1 \mu \mathrm{~s}$ instruction cycle, one multifunction 16-bit timer/counter, 8-bit 39 kHz PWM timer with 2 outputs, CAN 2.0B (passive) interface, MICROWIRE/ PLUSTM serial I/O, two Analog comparators, two power saving HALT/IDLE modes, idle timer, MIWU, software selectable I/O options, Power on Reset, low EMI 4.5 V to 5.5 V operation, and 20/28 pin packages.
Note: A companion device with CAN interface, more I/O and memory, A/D, and USART is the COP888EB.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP684BC	$2 k$ ROM	64	18	28 SOIC	-55 to $+125^{\circ} \mathrm{C}$
COP884BC	$2 k$ ROM	64	18	28 SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP685BC	$2 k$ ROM	64	10	20 SOIC	-55 to $+125^{\circ} \mathrm{C}$
COP885BC	$2 k$ ROM	64	10	20 SOIC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- CAN 2.0B (passive) Interface
- Power On Reset (selectable)
- One 16-bit timer, with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- High speed, constant resolution 8-bit PWM/frequency monitor timer with 2 output pins
- 2048 bytes on-board ROM
- 64 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (7)
- Two analog comparators
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE® Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Packages: 28 SO with 18 I/O pins and 20 SO with 10 I/O pins

CPU/Instruction Set Features

- 1μ instruction cycle time
- Eleven multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
— Timer T1 (with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- PWM Timer
- CAN Interface (with 3 interrupts)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Low current drain (typically <1 $\mu \mathrm{A}$)
- Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development Systems

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

Top View
Order Number COP884BC-xxx/WM or COP684BC-xxx/WM
See NS Package Number M28B

Order Number COP885BC-xxx/WM or COP685BC-xxx/WM
See NS Package Number M20B
FIGURE 2. Connection Diagrams

Pinouts for 28-SO Package

$\begin{aligned} & \text { Port } \\ & \text { Pin } \end{aligned}$	Type	Alt. Function	$\begin{gathered} 20-P i n \\ \text { SO } \end{gathered}$	$\begin{array}{\|c\|} \hline 28-\mathrm{Pin} \\ \text { SO } \end{array}$
G0	I/O	INTR	17	25
G1	I/O		18	26
G2	I/O	T1B	19	27
G3	I/O	T1A	20	28
G4	I/O	SO	1	1
G5	I/O	SK	2	2
G6	1	SI	3	3
G7	1	CKO	4	4
LO	I/O	CMP1IN+/MIWU		7
L1	I/O	CMP1IN-/MIWU		8
L2	I/O	CMP10UT/MIWU		9
L3	I/O	CMP2IN-/MIWU		10
L4	1/0	CMP2IN+/MIWU	7	11
L5	I/O	CMP2IN-/PWM1/MIWU	8	12
L6	I/O	CMP2OUT/PWMO/ CAPTIN/MIWU	9	13
D0	0			19
D1	0			20
D2	0			21
D3	0			22
CAN V REF			14	18
CAN Tx0	0		11	15
CAN Tx1	0		10	14
CAN Rx0	1	MIWU (Note 1)	13	17
CAN Rx1	1	MIWU	12	16
V_{Cc}			6	6
GND			15	23
CKI	1		5	5
RESET	1		16	24

Note 1: The MIWU function for the CAN interface is internal (see CAN interface block diagram)

COP888EB

8-Bit CMOS ROM Based Microcontrollers with 8 k Memory, CAN Interface, 8-Bit A/D, and USART

General Description

The COP888EB ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 8 k memory and advanced features including a CAN 2.0B (passive) interface, A/D and USART. These single-chip CMOS devices are suited for applications requiring a full featured controller with a CAN interface, low EMI, and versatile communications interfaces. COP87L8EB/RB devices are pin and software compatible 16k or 32k OTP (One Time Programmable) versions for pre-production, and for use with a range of COP8 software and hardware development tools.

Features include an 8 -bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, two multi-function 16 -bit timer/counters, WATCHDOG ${ }^{\text {TM }}$ and Clock Monitor, CAN 2.0B (passive) interface, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, SPI master/slave interface, fully buffered USART, 8-bit A/D with 8 channels, two power saving HALT/IDLE modes, MIWU, idle timer, software selectable I/O options, low EMI 4.5 V to 5.5 V operation, and $44 / 68$ pin packages.

Note: A companion device with CAN interface, less I/O and memory, and PWM timer is the COP888BC.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP688EB	8 k ROM	192	31	44 PLCC	-55 to $+125^{\circ} \mathrm{C}$
COP888EB	8 k ROM	192	31	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP689EB	8 kROM	192	58	68 PLCC	-55 to $+125^{\circ} \mathrm{C}$
COP889EB	8 k ROM	192	58	68 PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- CAN bus interface, with Software Power save mode
- 8-bit A/D Converter with 8 channels
- Fully buffered USART
- Multi-input wake up (MIWU) on both Port L and M
- SPI Compatible Master/Slave Interface
- Quiet Design (Low Radiated Emissions)
- 8096 bytes of on-board ROM
- 192 bytes of on-board RAM

Additional Peripheral Features

- Idle timer (programmable)
- Two 16-bit timer, with two 16-bit registers supporting
- Processor independent PWM mode
- External Event counter mode
- Input capture mode
- WATCHDOG and Clock Monitor
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ outputs, Push pull outputs, Weak pull up input, High impedance input)
- Schmitt trigger inputs on Port G, L and M
- Packages: 44 PLCC with 31 I/O pins

68 PLCC with 58 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-sourced vectored interrupts servicing
- External interrupt
- Idle Timer T0
- Timers (T1 and T2) (4 Interrupts)
- MICROWIRE/PLUS and SPI
- Multi-input Wake up
- Software Trap
- CAN interface (3 interrupts)
- USART (2 Inputs)
- Versatile easy to use instruction set
- 8-bit stack pointer (SP) (Stack in RAM)
- Two 8-bit Register Indirect Memory Pointers (B, X)

Fully Static CMOS

- Two power saving modes: HALT, IDLE
- Single supply operation: 4.5 V to 5.5 V
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

Basic Functional Description

- CAN I/F-CAN serial bus interface block as described in the CAN specification part 2.0B (Passive)
- Interface rates up to 250k bit/s are supported utilizing standard message identifiers
- Programmable double buffered USART
- A/D-8-bit, 8 channel, 1-LSB Resolution, with improved Source Impedance and improved channel to channel cross talk immunity
- Multi-Input-Wake-Up (MIWU) - edge selectable wake-up and interrupt capability via input port and CAN interface (Port L, Port M and CAN I/F); supports Wake-Up capability on SPI, USART, and T2 capture
- Port C-8-bit bi-directional I/O port
- Port D-8-bit Output port with high current drive capability (10 mA)
- Port F-8-bit bidirectional I/O
- Port G-8-bit bidirectional I/O port, including alternate functions for:
- MICROWIRE ${ }^{\text {TM }}$ Input and Output
- Timer 1 Input or Output (Depending on mode selected)
- External Interrupt input
- WATCHDOG Output
- Port I-8-bit input port combining either digital input, or up to eight A / D input channels
- Port L-8-bit bidirectional I/O port, including alternate functions for:
- USART Transmit/Receive I/O
- Multi-input-wake up (MIWU on all pins)
- Port M-8-bit I/O port, with the following alternate function
—SPI Interface
- MIWU
- CAN Interface Wake-up (MSB)
- Timer 2 Input or Output (Depending on mode selected)
- Port N-8-bit bidirectional I/O
- SPI Slave Select Expander
- Two 16-bit multi-function Timer counters (T1 and T2) plus supporting registers
- (I/P Capture, PWM and Event Counting)
- Idle timer-Provides a basic time-base counter, (with interrupt) and automatic wake up from IDLE mode programmable
- MICROWIRE/PLUS—MICROWIRE serial peripheral interface, supporting both Master and Slave operation
- HALT and IDLE-Software programmable low current modes
- HALT—Processor stopped, Minimum current
- IDLE—Processor semi-active more than 60\% power saving
- 8 kBytes ROM and 192 bytes of on board static RAM
- SPI Master/Slave interface includes 12 bytes Transmit and 12 bytes Receive FIFO Buffers. Operates up to 1 M Bit/S
- On board programmable WATCHDOG and CLOCK Monitor

Applications

- Automobile Body Control and Comfort System
- Integrated Driver Informaiton Systems
- Steering Wheel Control
- Car Radio Control Panel
- Sensor/Actuator Applications in Automotive and Industrial Control

Block Diagram

FIGURE 1. Block Diagram

Top View

Order Number COP888EB-XXX/V, COP688EB-XXX/V See NS Plastic Chip Package Number V44A

Plastic Leaded Chip Carrier

Connection Diagrams (Continued)
Pinouts for 44-Pin and 68-Pin Packages

Port Pin	Type	ALT Function	$\begin{aligned} & \text { 44-Pin } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & 68-\mathrm{Pin} \\ & \text { PLCC } \end{aligned}$
G0	I/O	INT	44	1
G1	I/O	WDOUT	1	2
G2	I/O	T1B	2	3
G3	I/O	T1A	3	4
G4	I/O	SO	4	5
G5	I/O	SK	5	6
G6	1	SI	6	7
G7	1	CKO	7	8
D0	0		17	27
D1	0		18	28
D2	0		19	29
D3	0		20	30
D4	0			31
D5	0			32
D6	0			33
D7	0			34
10	1	ADCH0	36	53
11	1	ADCH1	37	54
12	1	ADCH2	38	55
13	1	ADCH3	39	56
14	1	ADCH4		57
15	1	ADCH5		58
16	1	ADCH6		59
17	1	ADCH7		60
L0	I/O	MIWU	40	61
L1	I/O	MIWU;CKX	41	62
L2	I/O	MIWU;TDX	42	63
L3	I/O	MIWU;RDX	43	64
L4	I/O	MIWU		65
L5	I/O	MIWU		66
L6	I/O	MIWU		67
L7	I/O	MIWU		68
M0	I/O	MIWU;MISO	21	38
M1	I/O	MIWU;MOSI	22	39
M2	I/O	MIWU;SCK	23	40
M3	1/O	MIWU;S̄	24	41
M4	I/O	MIWU;T2A	25	42
M5	I/O	MIWU;T2B	26	43
M6	I/O	MIWU	27	44
NO	I/O	ESSO	12	18
N1	I/O	ESS1	13	19
N2	I/O	ESS2	14	20
N3	I/O	ESS3	15	21
N4	I/O	ESS4		22
N5	I/O	ESS5		23
N6	I/O	ESS6		24
N7	I/O	ESS7		25

$\begin{aligned} & \text { Port } \\ & \text { Pin } \end{aligned}$	Type	ALT Function	$\begin{aligned} & \text { 44-Pin } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { 68-Pin } \\ & \text { PLCC } \end{aligned}$
F0	I/O			10
F1	I/O			11
F2	I/O			12
F3	I/O			13
F4	I/O			14
C0	I/O			35
C1	I/O			36
C2	I/O			37
RX0	1		31	48
RX1	1		30	47
TX0	0		29	46
TX1	0		28	45
CANV ${ }_{\text {REF }}$			32	49
CKI			8	9
RESET			16	26
DV ${ }_{\text {cc }}$			10,33	16, 50
GND			9, 11, 34	15, 17, 51
A/D V ${ }_{\text {REF }}$			35	52

National Semiconductor

COP888CF

8-Bit CMOS ROM Based Microcontrollers with 4k Memory and A/D Converter

General Description

The COP888CF ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 4 k memory and advanced features including an A/D Converter. These singlechip CMOS devices are suited for applications requiring a full featured controller with an 8 -bit A/D converter. Pin and software compatible (different V_{CC} range) $16 \mathrm{k} / 32 \mathrm{k}$ OTP (One Time Programmable) versions are available (COP87L88CF Family) for pre-production, and for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, two multifunction 16-bit timer/counters, MICROWIRE/PLUS ${ }^{\text {M }}$ serial I/O, one 8 -bit/8-channel A/D converter with prescaler and both differential and single ended modes, crystal or R/C oscillator, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, 2.5 V to 6.0 V operation and 28/40/44 pin packages.
Devices included in this datasheet are:

Device	Memory	RAM	I/O Pins	Packages	Temperature
COP884CF	$4 k$ bytes ROM	128 bytes	22	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP984CF	$4 k$ bytes ROM	128 bytes	22	28 DIP/SOIC	-0 to $+70^{\circ} \mathrm{C}$
COP888CF	$4 k$ bytes ROM	128 bytes	$34 / 38$	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP988CF	$4 k$ bytes ROM	128 bytes	$34 / 38$	40 DIP, 44 PLCC	-0 to $+70^{\circ} \mathrm{C}$

Key Features

- A/D converter (8-bit, 8-channel, with prescaler and both differential and single ended modes)
- Two 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 4 kbytes of on-chip ROM
- 128 bytes of on-chip RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Packages:
- 44 PLCC with 38 I/O pins
- 40 DIP with 34 I/O pins
-28 DIP/SO with 22 I/O pins
- Schmitt trigger inputs on Port G

CPU/Instruction Set Feature

- 1μ instruction cycle time
- Ten multi-source vectored interrupts servicing
- External interrupt with selectable edge
- Idie Timer TO
- Two Timers (Each with 2 interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B, X)

Fully Static CMOS

- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 V to 6.0 V
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. Block Diagram

Connection Diagrams

Plastic Chip Carrier

DS009425-2
Top View
Order Number COP888CF-XXX/V COP988CF-XXX/V or COP988CFH-XXX/V
See NS Plastic Chip Package Number V44A

Top View
Order Number COP884CF-XXX/N, COP884CF-XXX/WM, COP984CF-XXX/N, COP984CFH-XXX/N, COP984CFH-XXX/WM or COP984CFH-XXX/WM
See NS Package Number N28B or M28B

Dual-In-Line Package

Top View
Order Number COP888CF-XXX/N, COP988CF-XXX/N or COP988CFH-XXX/N
See NS Molded Package Number N40A
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	I/O	MIWU		11	17	-
L1	I/O	MIWU		12	18	-
L2	I/O	MIWU		13	19	19
L3	I/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU		17	23	27
L7	I/O	MIWU		18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
10	I	ACHO		7	9	9
11	1	ACH1		8	10	10
12	1	ACH2			11	11
13	1	ACH3			12	12
14	1	ACH4			13	13
15	1	ACH5			14	14
16	1	ACH6				15
17	1	ACH7				16
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	I/O				2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
$\mathrm{V}_{\text {REF }}$	+ $\mathrm{V}_{\text {REF }}$,	10	16	18
AGND	AGND		;	9	15	17
V_{Cc}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

National Semiconductor

COP888GD

8-Bit CMOS ROM Based Microcontrollers with 16k Memory and 8-Channel A/D

General Description

The COP888GD ROM based microcontrollers are highly integrated COP8 ${ }^{\text {™ }}$ Feature core devices with 16 k memory and advanced features including an A/D Converter. These multi-chip CMOS devices are suited for applications requiring a full featured controller with an 8-bit A/D converter, and as pre-production devices for a masked ROM design. Pin and software compatible 16k or 32k OTP EPROM versions are available (COP87L88GD/RD Family) for pre-production, and for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, three multifunction 16-bit timer/counters, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one 8 -bit/8-channel A/D converter with prescaler and both differential and single ended modes, two power saving HALT/IDLE modes, MIWU, idle timer, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, 2.5 V to 5.5 V operation, program code security, and 44 pin package.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP688GD	16 k ROM	256	40	44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	4.5 V to 5.5 V
COP888GD	16 k ROM	256	40	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	2.5 V to 5.5 V
COP988GD	16 k ROM	256	40	44 PLCC	0 to $+70^{\circ} \mathrm{C}$	2.5 V to $4.0 \mathrm{~V}, \mathrm{GDH}=4.0 \mathrm{~V}$ to
						6.0 V

Key Features

- 8-channel A/D converter with prescaler and both differential and single ended modes
- Three 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Quiet design (low radiated emissions)
- 16 kbytes on-board ROM
- 256 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- WATCHDOG and clock monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull Up Input, High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Package:
- 44 PLCC with 40 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Twelve multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Three Timers (each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.5 V to 5.5 V
- Temperature range: $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. Block Diagram

Connection Diagrams

Plastic Chip Carrier

Top View
Order Number COP888GD-XXXV, COP988GD-XXX/V
See NS Plastic Chip Package Number V44A
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 44-Pin Package

Port	Type	Alt. Fun	Alt. Fun	44-Pin Pack.
LO	I/O	MIWU		17
L1	I/O	MIWU		18
L2	I/O	MIWU		19
L3	I/O	MIWU		20
L4	1/O	MIWU	T2A	25
L5	I/O	MIWU	T2B	26
L6	1/0	MIWU	T3A	27
L7	I/O	MIWU	T3B	28
G0	I/O	INT		39
G1	WDOUT			40
G2	I/O	T1B		41
G3	I/O	T1A		42
G4	1/O	SO		3
G5	1/O	SK		4
G6	1	SI		5
G7	I/CKO	HALT Restart		6
D0	0			29
D1	0	-		30
D2	0			31
D3	0	.		32
D4	0			33
D5	0			34
D6	0			35
D7	0			36
10	1	ACHO		9
11	1	ACH1		10
12	1	ACH2		11
13	1	ACH3		12
14	1	ACH4		13
15	1	ACH5		14
16	1	ACH6		15
17	1	ACH7		16
C0	1/O			43
C1	I/O			44
C2	I/O			1
C3	I/O			2
C4	I/O			21
C5	I/O			22
C6	I/O			23
C7	1/0			24
$\mathrm{V}_{\text {cc }}$				8
GND				37
CKI				7
RESET				38

COP8ACC Family

8-Bit CMOS ROM Based and OTP Microcontrollers with 4k or 16k Memory and High Resolution A/D

General Description

The COP8ACC Family ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 4 k memory and advanced features including a High-Resolution A/D. These single-chip CMOS devices are suited for applications requiring a full featured, low EMI controller with an A/D (only one external capacitor required). COP8ACC7 devices are pin and software compatible (different V_{CC} range) 16 k OTP EPROM versions for pre-production. Erasable windowed versions are available for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 4 MHz CKI with $2.5 \mu \mathrm{~s}$ instruction cycle, 6 channel A/D with 12-bit resolution, analog capture timer, analog current source and $\mathrm{V}_{\mathrm{cd}} / 2$ reference, one multi-function 16-bit timer/ counter, MICROWIRE/PLUS serial I/O, two power saving HALT/IDLE modes, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {MM }}$ timer and Clock Monitor, Low EMI 2.5 V to 5.5 V operation and $20 / 28$ pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	
COP8ACC5xxx9	$4 k$ ROM	128	$15 / 23$	20 SOIC, 28 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$
COP8ACC5xxx8	$4 k$ ROM	128	$15 / 23$	20 SOIC, 28 DIP/SOIC	
COP8ACC7xxx9	16 k OTP EPROM	128	-40 to $+85^{\circ} \mathrm{C}$		
COP8ACC7xxx8	16 k OTP EPROM	128	$15 / 23$	20 SOIC, $28 \mathrm{DIP} / \mathrm{SOIC}$	0 to $+70^{\circ} \mathrm{C}$

Key Features

- Analog Function Block with 12-bit A/D including
- Analog comparator with seven input mux
- Constant Current Source and $\mathrm{V}_{\mathrm{CC} / 2}$ Reference
- 16-bit capture timer (upcounter) clocked from CKI with auto reset on timer startup
- Quiet design (reduced radiated emissions)
- 4096 bytes on-board ROM or 16,384 OTP EPROM with security feature
- 128 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- One 16-bit timer with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Multi-Input Wake-Up (MIWU) with optional interrupts
- WATCHDOG and clock monitor logic
- MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O with programmable shift clock-polarity

I/O Features

- Software selectable I/O options (Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Schmitt Trigger inputs on ports G and L
- Packages: 28 DIP/SO with 23 I/O pins, 20 SO with 15 I/O pins

CPU/Instruction Set Features

- $2.5 \mu \mathrm{~s}$ instruction cycle time
- Eight multi-source vectored interrupt servicing
- External Interrupt
- Idle Timer TO
- Timer T1 associated Interrupts
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— Default VIS
- A/D (Capture Timer)
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit Registers Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.5 V to 5.5 V for COP8ACC5
- Single supply operation: 2.7 V to 5.5 V for COP8ACC7
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development System

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink development system

Applications

- Battery Chargers
- Appliances
- Data Acquisition systems

FIGURE 1. Block Diagram

Connection Diagrams

Order Number COP8ACC528N9 or COP8ACC528N8
See NS Molded Package Number N28A
Order Number COP8ACC528M9 or COP8ACC528M8
Order Number COP8ACC728N9-XE or COP8ACC728N8-XE
Order Number COP8ACC728M9-XE or COP8ACC728M8-XE
See NS Molded Package Number M28B

Note: -X Crystal Oscillator
Note: -E Halt Enable
Top View
Order Number COP8ACC520M9 or COP8ACC520N8
Order Number COP8ACC720M9-XE or COP8ACC720N8-XE
See NS Molded Package Number M20B

Connection Diagrams (Continued)
Pinouts for 28-Pin, 20-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	$\begin{aligned} & \text { 28-Pin } \\ & \text { DIP/SO } \end{aligned}$	$\begin{gathered} 20-\text { Pin } \\ \text { SO } \end{gathered}$
L4	I/O	MIWU	Ext. Int.	4	
L5	I/O	MIWU	Ext. Int.	5	
L6	I/O	MIWU	Ext. Int.	6	
L7	I/O	MIWU	Ext. Int.	7	
G0	I/O	INT		23	15
G1	WDOUT			24	16
G2	I/O	T1B		25	17
G3	I/O	T1A		26	18
G4	I/O	SO		27	19
G5	I/O	SK		28	20
G6	I	SI		1	1
G7	I/CKO	HALT Restart		2	2
D0	0			11	7
D1	0			12	8
D2	0			13	9
D3	0			14	
10	1	Analog CH1		15	10
11	1	$\mathrm{I}_{\text {SRC }}$		16	11
12	1	Analog CH2		17	12
13	1	Analog CH3		18	13
14	1	Analog CH4		19	14
15	1	Analog CH5		20	
16	1	Analog CH6		21	
17	I	$\mathrm{C}_{\text {OUT }}$		22	
V_{CC}				9	5
GND				8	4
CKI				3	3
RESET				10	6

Ordering Inforamtion

FIGURE 3. Part Numbering Scheme

COP888EK

8-Bit CMOS ROM Based Microcontrollers with 8 k Memory, Comparator, and Single-slope A/D Capability

General Description

The COP888EK ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 8 k memory and advanced features including a Multi-Input Comparator and Single-slope A/D capability. These single-chip CMOS devices are suited for applications requiring a full featured, low EMI controller with an analog comparator, current source, and voltage reference. The COP87L88EK/RK Family devices are pin and software compatible (different V_{CC} range) 16 k or 32k OTP (One Time Programmable) versions for preproduction, and for use with a range of COP8 software and hardware development tools.

Family features include an 8 -bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, three multifunction 16-bit timer/counters with PWM, MICROWIRE/ PLUS ${ }^{\text {TM }}$ serial I/O, one analog comparator with seven input multiplexor, an analog current source and V_{cc} reference, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, Low EMI 2.5 V to 6.0 V operation and 28/40/44 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature	Comments
COP684EK	8 k ROM	256	24	28 DIP/SOIC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$
COP884EK	8 k ROM	256	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$	
COP984EK	8 k ROM	256	24	28 DIP/SOIC	0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.0 \mathrm{~V}, \mathrm{EKH}=4.0 \mathrm{~V}-6.0 \mathrm{~V}$
COP688EK	8 k ROM	256	$36 / 40$	40 DIP, 44 PLCC	-55 to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$
COP888EK	8 k ROM	256	$36 / 40$	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$	
COP988EK	8 k ROM	256	$36 / 40$	40 DIP, 44 PLCC	0 to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-4.0 \mathrm{~V}, \mathrm{EKH}=4.0 \mathrm{~V}-6.0 \mathrm{~V}$

Key Features

- Analog function block with
- Analog comparator with seven input multiplexor
- Constant current source and $\mathrm{V}_{\mathrm{Cc}} / 2$ reference
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8 kbytes of on-chip ROM
- 256 bytes of on-chip RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\text {TM }}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Schmitt trigger inputs on Port G and L
- Packages: 44 PLCC with 40 I/O pins, 40 DIP with 36 I/O pins, and 28 DIP/SO with 24 I/O pins

CPU/Instruction Set Feature

- 1μ instruction cycle time
- Twelve multi-source vectored interrupts servicing
- External Interrupt with selectable edge
- Idle Timer T0
- Three Timers (Each with 2 interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B, X)

Fully Static CMOS

- Single supply operation: 2.5 V to 6.0 V
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP devices
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

Order Number COP688EK-XXX/V, COP888EK-XXX/V, COP988EK-XXX/V or COP988EKH-XXX/V See NS Plastic Chip Package Number V44A

Dual-In-Line Package

Order Number COP688EK COP988EK-XXX/N or COP988EKH-XXX/N See NS Molded Package Number N40A

Dual-In-Line Package

Order Number COP684EK-XXX/N, COP884EK-XXX/N, COP984EK-XXX/N or COP984EKH-XXX/N See NS Molded Package Number N28B
Order Number COP684EK-XXX/WM, COP884EK-XXX/WM, COP984EK-XXX/WM or COP984EKH-XXX/WM See NS Molded Package Number M28B

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	I/O	MIWU		11	17	17
L1	I/O	MIWU		12	18	18
L2	I/O	MIWU		13	19	19
L3	I/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU	T3A	17	23	27
L7	I/O	MIWU	T3B	18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	O			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	I	COMPIN1+		7	9	9
11	1	COMPIN-/Current Source Out		8	10	10
12	1	COMPINO+		9	11	11
13	1	COMPOUT/COMPIN2+		10	12	12
14	1	COMPIN3+			13	13
15	1	COMPIN4+			14	14
16	1	COMPIN5+			15	15
17	1	COMPOUT			16	16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	I/O			:	2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
V_{CC}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

COP888GW

8-Bit Microcontroller with Pulse Train Generators and Capture Modules

General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2} \mathrm{CMOS}^{\text {™ }}$ process technology. The COP888GW is a member of this expandable 8-bit core processor family of microcontrollers. It is a fully static part, fabricated using double-metal silicon gate microCMOS technology.
Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter and Input Capture mode capabilities), four independent 16 -bit pulse train generators with 16-bit prescalers, two independent 16-bit input capture modules with 8 -bit prescalers, multiply and divide functions, full duplex UART, and two power savings modes (HALT and IDLE), both with a multi-sourced wake up/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes.
Each I/O pin has software selectable configurations. The devices operate over a voltage range of $2.5 \mathrm{~V}-6 \mathrm{~V}$. High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate. The device has low EMI emissions. Low radiated emissions are achieved by gradual turn-on output drivers and internal $I_{C C}$ filters on the chip logic and crystal oscillator. The device is available in 68 -pin PLCC package.

Key Features

- Two 16-bit input capture modules with 8-bit prescalers
- Four Pulse Train Generators with 16-bit prescalers
- Full duplex UART
- Two 16 -bit timers, each with two 16 -bit registers supporting:
- Processor independent PWM mode
- External event counter mode
- Input capture mode
- Quiet design (low radiated emissions)
- 16 kbytes on-board ROM
- 512 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake-Up (MIWU) with optional interrupts (8)
- MICROWIRE/PLUS ${ }^{\text {M }}$ serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Schmitt trigger inputs on port G
- Package: 68-pin PLCC

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-source vectored interrupts servicing:
- External Interrupt with selectable edge
- Idle Timer T0
- Two Timers (each with 2 interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake-Up
- Software Trap
- UART (2)
- Capture Timers
- Counters (one vector for all four counters)
- Default VIS (default interrupt)
- Versatile and easy-to-use instruction set
- 8-bit Stack Pointer SP-(stack in RAM)
- Two 8-bit register indirect data memory pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Low current drain (typically $<1 \mu \mathrm{~A}$)
- Single supply operation: $2.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation and OTP device
- Real time emulation and full program debug offered by MetaLink's Development System

Block Diagram

FIGURE 1. COP888GW Block Diagram

Connection Diagram

National Semiconductor

OTP Products

COP87LxxCJ/RJ Family 8-Bit CMOS OTP Microcontrollers with 4k or 32k Memory and Comparator

General Description

The COP87LxxCJ/RJ Family OTP (One Time Programmable) microcontrollers are integrated COP8 ${ }^{\text {TM }}$ Base core devices with 4 k or 32 k memory, and an Analog comparator (no brownout). These multi-chip CMOS devices are suited for lower-functionality applications, and as pre-production devices for a ROM design. Low cost, pin and software compatible (plus Brownout) 1 k or 2 k ROM versions are available (COP820CJ/840CJ Family). Versions are available for use with a range of COP8 software and hardware development tools.
Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, three clock op-
tions ($-1=$ crystal; $-2=$ external; $-3=$ internal RC), one multifunction 16-bit timer/counter, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one analog comparator, power saving HALT mode with multi-sourced wakeup/interrupt capability, on-chip R/C oscillator capacitor, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer, modulator/timer, Power on Reset, program code security, 2.7 V to 5.5 V operation and 20/28 pin packages.
In this datasheet, the term COP87L20CJ refers to the COP87L20CJ, and COP87L22CJ. COP840CJ refers to the COP87L40CJ, COP87L42CJ, COP87L40RJ, and COP87L42RJ.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L20CJ	4k OTP EPROM	64	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L22CJ	4k OTP EPROM	64	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L40CJ	$4 k$ OTP EPROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L42CJ	$4 k$ OTP EPROM	128	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L40RJ	$32 k$ OTP EPROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L42RJ	$32 k$ OTP EPROM	128	16	20 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- Multi-Input Wakeup (on the 8-bit Port L)
- Analog comparator
- Modulator/Timer (high speed PWM timer for IR transmission)
- 16-bit multi-function timer supporting
- PWM mode
- External event counter mode
- Input capture mode
- Integrated capacitor for the R/C oscillator
- 4 or 32 kbyte on-board OTP EPROM with security feature
- 64 or 128 bytes on-chip RAM

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\oplus}$, Push-Pull, Weak Pull-Up Input, High Impedance Input)
- High current outputs (8 pins)
- Schmitt trigger inputs on Port G
- MICROWIRE/PLUS serial I/O
- Packages:
- 20 DIP/SO with 16 I/O pins
-28 DIP/SO with 24 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Three multi-source interrupts servicing
- External interrupt with selectable edge
- Timer interrupt
- Software interrupt
- Versatile and easy to use instruction set
- 8-bit stack pointer (SP) -stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Low current drain (typically <1 $\mu \mathrm{A}$)
- Single supply operation: 2.7 V to 5.5 V
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for the COP820CJ/COP840CJ
- Real time emulation and full program debug offered by MetaLink Development Systems

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

FIGURE 2. Connection Diagrams

Note: -1 Crystal Oscillator
 N - Brown out disabled

-2 External Oscillator
-3 R/C Oscillator

Pin Assignment

$\begin{gathered} \text { Port } \\ \text { Pin } \\ \hline \end{gathered}$	Typ	ALT Funct.	$\begin{aligned} & 20 \\ & \text { Pin } \end{aligned}$	$\begin{aligned} & 28 \\ & \text { Pin } \end{aligned}$
L0	I/O	MIWU/CMPOUT	7	11
L1	I/O	MIWU/CMPIN-	8	12
L2	I/O	MIWU/CMPIN+	9	13
L3	I/O	MIWU	10	14
L4	I/O	MIWU	11	15
L5	I/O	MIWU	12	16
L6	I/O	MIWU	13	17
L7	I/O	MIWU/MODOUT	14	18
G0	I/O	INTR	17	25
G1	I/O		18	26
G2	I/O		19	27
G3	I/O	TIO	20	28
G4	I/O	SO	1	1
G5	I/O	SK	2	2
G6	1	SI	3	3
G7	1	CKO	4	4
10	I			7
11	1			8
12	1			9
13	1			10
D0	0			19
D1	0			20
D2	0			21
D3	O			22
$\mathrm{V}_{C C}$			6	6
GND			15	23
CKI			5	5
RESET			16	24

National Semiconductor

COP8SA Family
 8-Bit CMOS ROM Based and One-Time Programmable (OTP) Microcontroller with 1k to 4k Memory, Power On Reset, and Very Small Packaging

General Description

Note: COP8SAx devices are instruction set and pin compatible supersets of the COP800 Family devices, and are replacements for these in new designs when possible.
The COPSAx Rom based and OTP microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ feature core devices, with 1 k to 4 k memory and advanced features including low EMI. These single-chip CMOS devices are suited for low cost applications requiring a full featured controller, low EMI, and POR. 100% form-fit-function compatible OTP versions are available with $1 \mathrm{k}, 2 \mathrm{k}$, and 4 k memory, and in a variety of packages including 28 -pin CSP. Erasable windowed versions are available for use with a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, one multifunction 16-bit timer/counter with PWM output, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two power saving HALT// IDLE modes, MIWU, idle timer, on-chip R/C oscillator, 12 high current outputs, user selectable options (WATCHDOG $^{\text {TM }}, 4$ clock/oscillator modes, power-on-reset), low EMI 2.7 V to 5.5 V operation, and 16/20/28/40/44 pin packages. Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP8SAA5	1k ROM	64	12/16/24	16/20/28 DIP/SOIC	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAB5	2k ROM	128	16/24	20/28 DIP/SOIC	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAC5	4k ROM	128	16/24/36/40	20/28 DIP/SOIC, 28 CSP, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAA7	1k OTP EPROM	64	12/16/24	16/20/28 DIP/SOIC	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAB7	2k OTP EPROM	128	16/24	20/28 DIP/SOIC	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAC7	4k OTP EPROM	128	16/24	20/28 DIP/SOIC, 28 CSP, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C},-40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SAA7SLB9	1k OTP EPROM	64	24	28 CSP	0 to $+70^{\circ} \mathrm{C}$
COP8SAB7SLB9	2k OTP EPROM	128	24	28 CSP	0 to $+70^{\circ} \mathrm{C}$
COP8SAC7SLB9	4k OTP EPROM	128	24	28 CSP	0 to $+70^{\circ} \mathrm{C}$
COP8SAC7-Q3	4k EPROM	128	16/24/36	20/28/40 DIP	Room Temp. Only
COP8SAC7-J3	4k EPROM	128	40	44 PLCC	Room Temp. Only

Key Features

- Low cost 8-bit OTP microcontroller
- OTP program space with read/write protection (fully secured)
- Quiet Design (low radiated emissions)
- Multi-Input Wakeup pins with optional interrupts (4 to 8 pins)
- 8 bytes of user storage space in EPROM
- User selectable clock options
- Crystal/Resonator options
- Crystal/Resonator option with on-chip bias resistor
- External oscillator
- Internal R/C oscillator
- Internal Power-On Reset-user selectable
- WATCHDOG and Clock Monitor Logic-user selectable
- Up to 12 high current outputs

CPU Features

- Versatile easy to use instruction set
- 1μ s instruction cycle time
- Eight multi-source vectored interrupts servicing
- External interrupt
- Idle Timer TO
- One Timer (with 2 interrupts)
- MICROWIRE/PLUS Serial Interface
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions

Peripheral Features

- Multi-Input Wakeup Logic
- One 16-bit timer with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Idle Timer
- MICROWIRE/PLUS Serial Interface (SPI Compatible)

I/O Features

- Software selectable I/O options
- TRI-STATE ${ }^{\circledR}$ Output
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports G and L
- Up to 12 high current outputs
- Pin efficient (i.e., 40 pins in 44 -pin package are devoted to useful I/O)

Fully Static CMOS Design

- Low current drain (typically $<4 \mu \mathrm{~A}$)
- Single supply operation: 2.7 V to 5.5 V
- Two power saving modes: HALT and IDLE

Temperature Ranges

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Windowed packages for DIP and PLCC
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

FIGURE 1. COP8SAx Block Diagram

General Description (Continued)

Key features include an 8-bit memory mapped architecture, a 16 -bit timer/counter with two associated 16 -bit registers supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture capabilities), two power saving HALT/IDLE modes with a multi-sourced wakeup/interrupt capability, on-chip R/C oscillator, high current outputs, user selectable options such as WATCHDOG, Oscillator configuration, and power-on-reset.

1.1 EMI REDUCTION

The COP8SAx family of devices incorporates circuitry that guards against electromagnetic interference - an increasing problem in today's microcontroller board designs. National's patented EMI reduction technology offers low EMI clock circuitry, gradual turn-on output drivers (GTOs) and internal I_{CC} smoothing filters, to help circumvent many of the EMI issues influencing embedded control designs. National has achieved $15 \mathrm{~dB}-20 \mathrm{~dB}$ reduction in EMI transmissions when designs have incorporated its patented EMI reducing circuitry.

1.2 ARCHITECTURE

The COP8SAx family is based on a modified Harvard architecture, which allows data tables to be accessed directly from program memory. This is very important with modern microcontroller-based applications, since program memory is usually ROM or EPROM, while data memory is usually RAM. Consequently data tables usually need to be contained in ROM or EPROM, so they are not lost when the microcontroller is powered down. In a modified Harvard architecture, instruction fetch and memory data transfers can be overlapped with a two stage pipeline, which allows the next instruction to be fetched from program memory while the current instruction is being executed using data memory. This is not possible with a Von Neumann single-address bus architecture.

The COP8SAx family supports a software stack scheme that allows the user to incorporate many subroutine calls. This capability is important when using High Level Languages. With a hardware stack, the user is limited to a small fixed number of stack levels.

1.3 INSTRUCTION SET

In today's 8-bit microcontroller application arena cost/ performance, flexibility and time to market are several of the key issues that system designers face in attempting to build well-engineered products that compete in the marketplace. Many of these issues can be addressed through the manner in which a microcontroller's instruction set handles processing tasks. And that's why COP8 family offers a unique and code-efficient instruction set-one that provides the flexibility, functionality, reduced costs and faster time to market that today's microcontroller based products require.
Code efficiency is important because it enables designers to pack more on-chip functionality into less program memory space (ROM/OTP). Selecting a microcontroller with less program memory size translates into lower system costs, and the added security of knowing that more code can be packed into the available program memory space.

1.3.1 Key Instruction Set Features

The COP8SAx family incorporates a unique combination of instruction set features, which provide designers with optimum code efficiency and program memory utilization.

Single Byte/Single Cycle Code Execution

The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum program space. Because compact code does not occupy a substantial amount of program memory space, designers can integrate additional features and functionality into the microcontroller program memory space. Also, the majority instructions executed by the device are single cycle, resulting in minimum program execution time. In fact, 77% of the instructions are single byte single cycle, providing greater code and I/O efficiency, and faster code execution.

1.3.2 Many Single-Byte, Multifunction Instructions

The COP8SAx instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to accomplish multiple functions, such as DRSZ, DCOR, JID, and LOAD/EXCHANGE instructions with post-incrementing and post-decrementing, to name just a few examples. In many cases, the instruction set can simultaneously execute as many as three functions with the same single-byte instruction.

JID: (Jump Indirect); Single byte instruction; decodes external events and jumps to corresponding service routines (analogous to "DO CASE" statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table instruction provides efficient data path from the program memory to the CPU. This instruction can be used for table lookup and to read the entire program memory for checksum calculations.

RETSK: (Return Skip); Single byte instruction allows return from subroutine and skips next instruction. Decision to branch can be made in the subroutine itself, saving code.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These instructions use the two memory pointers B and X to efficiently process a block of data (analogous to "FOR NEXT" in higher level languages).

1.3.3 Bit-Level Control

Bit-level control over many of the microcontroller's I/O ports provides a flexible means to ease layout concerns and save board space. All members of the COP8 family provide the ability to set, reset and test any individual bit in the data memory address space, including memory-mapped I/O ports and associated registers. Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory data pointers allow the option of post-incrementing or post-decrementing with the data movement instructions (LOAD/EXCHANGE). And 15 memory-maped registers allow designers to optimize the precise implementation of certain specific instructions.

1.4 PACKAGING/PIN EFFICIENCY

Real estate and board configuration considerations demand maximum space and pin efficiency, particularly given today's high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O needed. Large packages take valuable board space and increases device cost, two trade-offs that microcontroller designs can ill afford.
The COP8 family offers a wide range of packages and do not waste pins: up to 90.9% (or 40 pins in the 44 -pin package) are devoted to useful I/O.

Connection Diagrams

Top View

Top View

Top View

Top View

FIGURE 2. Connection Diagrams

Ordering Information

FIGURE 3. Part Numbering Scheme

	1k EPROM		2k EPROM		4k EPROM		4k EPROM	
Temperature	Order Number	Package	Order Number	Package	Order Number	Package	Windowed Device Order Number	Package
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	COP8SAA716M9	16M						
	COP8SAA720M9	20M	COP8SAB720M9	20M	COP8SAC720M9	20M		
	COP8SAA728M9	28M	COP8SAB728M9	28M	COP8SAC728M9	28M		
	COP8SAA716N9	16 N						
	COP8SAA720N9	20N	COP8SAB720N9	20N	COP8SAC720N9	20N	COP8SAC720Q3	20Q
	COP8SAA728N9	28 N	COP8SAB728N9	28 N	COP8SAC728N9	28 N	COP8SAC728Q3	28Q
					COP8SAC740N9	40N	COP8SAC740Q3	40Q
					COP8SAC744V9	44 V	COP8SAC744J3	44 J
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	COP8SAA716M8	16M						
	COP8SAA720M8	20M	COP8SAB720M8	20M	COP8SAC720M8	20M		
	COP8SAA728M8	28M	COP8SAB728M8	28M	COP8SAC728M8	28M		
	COP8SAA716N8	16 N						
	COP8SAA720N8	20N	COP8SAB720N8	20N	COP8SAC720N8	20 N		
	COP8SAA728N8	28 N	COP8SAB728N8	28N	COP8SAC728N8	28 N		
					COP8SAC740N8	40N		
					COP8SAC744V8	44 V		
	COP8SAA7SLB8	SLB	COP8SAB7SLB8	SLB	COP8SAC7SLB8	SLB		
$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$					COP8SAC720M7	20M		
					COP8SAC728M7	28M		
					COP8SAC720N7	20 N		
					COP8SAC728N7	28 N		
					COP8SAC740N7	40N		
					COP8SAC744V7	44 V		

COP87L88CL

8-Bit One-Time Programmable (OTP) Microcontroller

General Description cop8sG devices are
form-fit-function compatible supersets of the COP87L88CL Family devices, and are replacements for these in new designs, and design upgrades with minimum effort.
The COP87L88CL OTP microcontrollers are larger memory (16k), highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices, with advanced features. These multi-chip CMOS devices are suited for applications requiring a full featured controller with a high I/O pincount, and as pre-production devices for a masked ROM design. Lower cost pin and software compatible 4 k ROM versions are available (COP888CL/988CL).

Family features include an 8-bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, two multifunction 16-bit timer/counters, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, $2.7 \mathrm{v}-5.5 \mathrm{v}$ operation, program code security, and 28/40/44 pin packages.
Devices included in this datasheet are:
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Device } & \text { Memory (bytes) } & \begin{array}{c}\text { RAM } \\ \text { (bytes) }\end{array} & \text { I/O Pins } & \text { Packages } & \text { Temperature } & \text { Comments } \\ \hline \text { COP87L84CL } & 16 \mathrm{k} \text { OTP } & 128 & 24 & 28 \text { DIP/SOIC } & -40 \text { to }+85^{\circ} \mathrm{C} & \begin{array}{c}\text { Use } \\ \text { COP8SGx7 } \\ \text { Use } \\ \text { COP87L88CL }\end{array} \\ \text { COP8SGx7 }\end{array}\right]$

Key Features

- Two 16-bit timers, each with two 16-bit registers supporting:
- Processor independent PWM mode
- External event counter mode
- Input capture mode
- 4 kbytes on-board EEPROM with security feature
- 128 bytes on-board RAM

Additional Peripheral Features

- Idle timer
- Multi-Input Wake-Up (MIWU) with optional interrupts (8)
- WATCHDOG ${ }^{\text {M }}$ and clock monitor logic
- MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE® output, push-pull output, weak pull-up input, high impedance input)
- Schmitt trigger inputs on ports G and L
- Packages:
- 44 PLCC with 39 I/O pins
- 40 DIP with 33 I/O pins
-28 DIP with 24 I/O pins
- 28 SO with 24 I/O pins (contact local sales office for availability)

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Ten multi-source vectored interrupts servicing
- External interrupt
- Idle timer TO
- Two timers (each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer SP-stack in RAM
- Two 8-bit register indirect data memory pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE

■ Single supply operation: 2.7V-5.5V

- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for the COP888CL/COP884CL
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

Connection Diagrams

Note: -X Crystal Oscillator
Note: -E Halt Enable
Top View
Order Number COP87L88CLV-XE See NS Package Number V44A

Order Number COP87L84CLN-XE See NS Package Number N40A

Dual-In-Line Package

Top View
Order Number COP87L84CLN-XE or COP87L84CLM-XE
See NS Package Number M28B or N28B
FIGURE 1. COP87L88CL/COP87L84CL Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pkg.	40-Pin Pkg.	44-Pin Pkg.
L0	I/O	MIWU		11	17	17
L1	I/O	MIWU		12	18	18
L2	I/O	MIWU		13	19	19
L3	I/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU		17	23	27
L7	I/O	MIWU		18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	I	SI		3	5	5
G7	I/CKO	Halt Restart		4	6	6
D0	O			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	I			7	9	9
11	1			8	10	10
12	1				11	11
13	1				12	12
14	I			9	13	13
15	1			10	14	14
16	1					15
17	1		:			16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	I/O				2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
Unused*					16	
Unused					15	
V_{Cc}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

[^2]National Semiconductor

COP8SG Family 8-Bit CMOS ROM Based and OTP Microcontrollers with 8k to 32k Memory, Two Comparators and USART

General Description

The COP8SGx5 Family ROM based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 8 k to 32k memory and advanced features including Analog comparators, and zero external components. These single-chip CMOS devices are suited for more complex applications requiring a full featured controller with larger memory, low EMI, two comparators, and a full-duplex USART. COP8SGx7 devices are 100% form-fit-function compatible 8k or 32k OTP (One Time Programmable) versions for use in production or development.

Erasable windowed versions are available for use with a range of COP8 software and hardware development tools. Family features include an 8-bit memory mapped architecture, 15 MHz CKI with $0.67 \mu \mathrm{~s}$ instruction cycle, 14 interrupts, three multi-function 16-bit timer/counters with PWM, full duplex USART, MICROWIRE/PLUS ${ }^{\text {M }}$, two analog comparators, two power saving HALT/IDLE modes, MIWU, idie timer, on-chip R/C oscillator, high current outputs, user selectable options (WATCHDOG ${ }^{\text {TM }}, 4$ clock/oscillator modes, power-on-reset), 2.7 V to 5.5 V operation, program code security, and 28/40/44 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP8SGE5	8k ROM	256	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGG5	16k ROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGH5	20k ROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C} \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGK5	24k ROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGR5	32k ROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C}, \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGE7	8k OTP EPROM	256	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C} \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGR7	32k OTP EPROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP/CSP 28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C} \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
COP8SGR7-Q3	32k EPROM	512	24/36/40	28 DIP/SOIC, 40 DIP, 44 PLCC/QFP	Room Temp.

Key Features

- Low cost 8-bit microcontroller
- Quiet Design (low radiated emissions)
- Multi-Input Wakeup pins with optional interrupts (8 pins)
- Mask selectable clock options
- Crystal oscillator
- Crystal oscillator option with on-chip bias resistor
- External oscillator
- Internal R/C oscillator
- Internal Power-On-Reset-user selectable
- WATCHDOG and Clock Monitor Logic—user selectable
- Eight high current outputs
- 256 or 512 bytes on-board RAM
- 8 k to 32 k ROM or OTP EPROM with security feature

CPU Features

- Versatile easy to use instruction set
- $0.67 \mu \mathrm{~s}$ instruction cycle time

CPU Features (Continued)

- Fourteen multi-source vectored interrupts servicing
- External interrupt / Timers T0 - T3
— MICROWIRE/PLUS Serial Interface
- Multi-Input Wake Up
- Software Trap
- USART (2; 1 receive and 1 transmit)
- Default VIS (default interrupt)
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers
- True bit manipulation
- BCD arithmetic instructions

Peripheral Features

- Multi-Input Wakeup Logic
- Three 16-bit timers (T1 - T3), each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event Counter mode
- Input Capture mode
- Idle Timer (TO)
- MICROWIRE/PLUS Serial Interface (SPI Compatible)
- Full Duplex USART
- Two Analog Comparators

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ Output,Push-Pull Output, Weak Pull-Up Input, and High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Eight high current outputs
- Packages: 28 SO with 24 I/O pins, 40 DIP with 36 I/O pins, 44 PLCC, PQFP and CSP with 40 I/O pins

Fully Static CMOS Design

- Low current drain (typically < $4 \mu \mathrm{~A}$)
- Two power saving modes: HALT and IDLE

Temperature Range

- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Development Support

- Windowed packages for DIP and PLCC
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

FIGURE 1. COP8SGx Block Diagram

1.0 Device Description

1.1 ARCHITECTURE

The COP8 family is based on a modified Harvard architecture, which allows data tables to be accessed directly from program memory. This is very important with modern microcontroller-based applications, since program memory is usually ROM or EPROM, while data memory is usually RAM. Consequently data tables need to be contained in non-volatile memory, so they are not lost when the microcontroller is powered down. In a modified Harvard architecture, instruction fetch and memory data transfers can be overlapped with a two stage pipeline, which allows the next instruction to be fetched from program memory while the current instruction is being executed using data memory. This is not possible with a Von Neumann single-address bus architecture.
The COP8 family supports a software stack scheme that allows the user to incorporate many subroutine calls. This capability is important when using High Level Languages. With a hardware stack, the user is limited to a small fixed number of stack levels.

1.2 INSTRUCTION SET

In today's 8-bit microcontroller application arena cost/ performance, flexibility and time to market are several of the key issues that system designers face in attempting to build well-engineered products that compete in the marketplace. Many of these issues can be addressed through the manner in which a microcontroller's instruction set handles processing tasks. And that's why COP8 family offers a unique and code-efficient instruction set - one that provides the flexibility, functionality, reduced costs and faster time to market that today's microcontroller based products require.
Code efficiency is important because it enables designers to pack more on-chip functionality into less program memory space. Selecting a microcontroller with less program memory size translates into lower system costs, and the added security of knowing that more code can be packed into the available program memory space.

1.2.1 Key Instruction Set Features

The COP8 family incorporates a unique combination of instruction set features, which provide designers with optimum code efficiency and program memory utilization.

Single Byte/Single Cycle Code Execution

The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum program space. Because compact code does not occupy a substantial amount of program memory space, designers can integrate additional features and functionality into the microcontroller program memory space. Also, the majority instructions executed by the device are single cycle, resulting in minimum program execution time. In fact, 77% of the instructions are single byte single cycle, providing greater code and I/O efficiency, and faster code execution.

1.2.2 Many Single-Byte, Multifunction Instructions

The COP8 instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to accomplish multiple functions, such as DRSZ, DCOR, JID, LD (Load) and X (Exchange) instructions with post-incrementing and post-decrementing, to name just a few examples. In
many cases, the instruction set can simultaneously execute as many as three functions with the same single-byte instruction.
JID: (Jump Indirect); Single byte instruction; decodes external events and jumps to corresponding service routines (analogous to "DO CASE" statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table instruction provides efficient data path from the program memory to the CPU. This instruction can be used for table lookup and to read the entire program memory for checksum calculations.
RETSK: (Return Skip); Single byte instruction allows return from subroutine and skips next instruction. Decision to branch can be made in the subroutine itself, saving code.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These instructions use the two memory pointers B and X to efficiently process a block of data (analogous to "FOR NEXT" in higher level languages).

1.2.3 Bit-Level Control

Bit-level control over many of the microcontroller's I/O ports provides a flexible means to ease layout concerns and save board space. All members of the COP8 family provide the ability to set, reset and test any individual bit in the data memory address space, including memory-mapped I/O ports and associated registers.

1.2.4 Register Set

Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory data pointers allow the option of post-incrementing or postdecrementing with the data movement instructions (LOAD/ EXCHANGE). And 15 memory-maped registers allow designers to optimize the precise implementation of certain specific instructions.

1.3 EMI REDUCTION

The COP8SGx5 family of devices incorporates circuitry that guards against electromagnetic interference-an increasing problem in today's microcontroller board designs. National's patented EMI reduction technology offers low EMI clock circuitry, gradual turn-on output drivers (GTOs) and internal I_{CC} smoothing filters, to help circumvent many of the EMI issues influencing embedded control designs. National has achieved $15 \mathrm{~dB}-20 \mathrm{~dB}$ reduction in EMI transmissions when designs have incorporated its patented EMI reducing circuitry.

1.4 PACKAGING/PIN EFFICIENCY

Real estate and board configuration considerations demand maximum space and pin efficiency, particularly given today's high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O needed. Large packages take valuable board space and increases device cost, two trade-offs that microcontroller designs can ill afford.
The COP8 family offers a wide range of packages and do not waste pins: up to 90.9% (or 40 pins in the 44 -pin package) are devoted to useful I/O.

Connection Diagrams

Note 1: $X=E$ for $8 k, G$ for $16 k$,
H for $20 \mathrm{k}, \mathrm{K}$ for $24 \mathrm{k}, \mathrm{R}$ for 32 k $\mathrm{Y}=5$ for ROM, 7 for OTP

> Top View

Order Number COP8SGXY28M8 See NS Package Number M28B Order Number COP8SGXY28N8 See NS Package Number N28B Order Number COP8SGR728Q3 See NS Package Number D28JQ

Top View
Order Number COP8SGXY40N8
See NS Package Number N40A Order Number COP8SGR540Q3 See NS Package Number D40KQ

Top View
Order Number COP8SGR7HLQ8
See NS Package Number LQA44A

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 28 -, 40- and 44-Pin Packages

Port	Type	Alt. Fun	28-Pin SO	40-Pin DIP	44-Pin PLCC	44-Pin PQFP	44-Pin CSP
LO	I/O	MIWU	11	17	17	11	12
L1	I/O	MIWU or CKX	12	18	18	12	13
L2	I/O	MIWU or TDX	13	19	19	13	14
L3	I/O	MIWU or RDX	14	20	20	14	15
L4	I/O	MIWU or T2A	15	21	25	19	20
L5	I/O	MIWU or T2B	16	22	26	20	21
L6	I/O	MIWU or T3A	17	23	27	21	22
L7	I/O	MIWU or T3B	18	24	28	22	23
G0	I/O	INT	25	35	39	33	34
G1	I/O	WDOUT*	26	36	40	34	35
G2	1/O	T1B	27	37	41	35	36
G3	I/O	T1A	28	38	42	36	37
G4	I/O	SO	1	3	3	41	42
G5	I/O	SK	2	4	4	42	43
G6	1	SI	3	5	5	43	44
G7	1	CKO	4	6	6	44	45
D0	0		19	25	29	23	24
D1	0		20	26	30	24	25
D2	0		21	27	31	25	26
D3	0		22	28	32	26	27
D4	0			29	33	27	28
D5	0			30	34	28	29
D6	0			31	35	29	30
D7	0			32	36	30	31
F0	I/O		7	9	9	3	4
F1	I/O	COMP1IN-	8	10	10	4	5
F2	I/O	COMP1IN+	9	11	11	5	6
F3	I/O	COMPIOUT	10	12	12	6	7
F4	I/O	COMP2IN-		13	13	7	8
F5	I/O	COMP2IN+		14	14	8	9
F6	I/O	COMP2OUT		15	15	9	10
F7	I/O			16	16	10	11
C0	I/O			39	43	37	38
C1	I/O			40	44	38	39
C2	I/O			1	1	39	40
C3	I/O			2	2	40	41
C4	I/O				21	15	16
C5	I/O				22	16	17
C6	I/O				23	17	18
C7	1/O				24	18	19
V_{CC}			6	8	8	2	3
GND			23	33	37	31	32
CKI	1		5	7	7	1	2
RESET	1		24	34	38	32	33

2.1 Ordering Information

FIGURE 3. Part Numbering Scheme

COP87L88FH

8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, USART and Hardware Multiply/Divide

General Description

The COP87L88FH OTP (One Time Programmable) microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 16k memory and advanced features including Analog comparators, and Hardware Multiply/Divide. These multi-chip CMOS devices are suited for applications requiring a full featured controller with comparators, a full-duplex USART, and hardware multiply/divide functions, and as pre-production devices for a masked ROM design. Lower cost pin and software compatible 12k ROM versions are available (COP888FH), as well as a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI (-XE = crystal oscillator; -TE = external clock) with $1 \mu \mathrm{~s}$ instruction cycle, hardware multiply/divide functions, three multi-function 16-bit timer/counters with PWM, full duplex USART, MICROWIRE/PLUS ${ }^{\text {TM }}$, two Analog comparators, two power saving HALT/IDLE modes, MIWU, idle timer, WATCHDOG ${ }^{\text {M }}$ and clock monitor logic, low EMI 2.7 V to 5.5 V operation, and $28 / 40 / 44$ pin packages.

Devices included in this data sheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L84FH	16k OTP EPROM	512	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88FH	16k OTP EPROM	512	$36 / 40$	$40 \mathrm{DIP}, 44$ PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- Hardware Multiply/Divide Functions
- Full duplex USART
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 16 kbytes on-board EPROM with security features
- 512 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Two analog comparators
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$, Push-Pull, Weak Pull-Up, and High Impedance)
- Schmitt trigger inputs on ports G and L
- Packages:
- 40 DIP with 36 I/O pins
- 44 PLCC with 40 I/O pins
-28 DIP/SO with 24 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Three Timers (Each with 2 Interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- USART (2)
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE

■ Single supply operation: 2.7V-5.5V

- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for COP888FH
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

FIGURE 1. COP87L88FH Block Diagram

Connection Diagrams

Plastic Chip Carrier
Order Number COP87L88FHV-XE/TE See NS Plastic Chip Package Number V44A

Dual-In-Line Package

Top View Order
Number COP87L88FHN-XE/TE See NS Molded Package Number N40A

Dual-In-Line Package

Order Number COP87L84FHM-XE/TE, or COP87L84FHN-XE/TE See NS Molded Package Number M28B or N28B
Note: -X Crystal Oscillator
-T External Clock
-E Halt Mode Enable

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	I/O	MIWU		11	17	17
L1	I/O	MIWU	CKX	12	18	18
L2	1/O	MIWU	TDX	13	19	19
L3	I/O	MIWU	RDX	14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU	T3A	17	23	27
L7	I/O	MIWU	T3B	18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	1/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
10	1			7	9	9
11	1	COMP1IN-		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP10UT		10	12	12
14	1	COMP2IN-			13	13
15	1	COMP2IN+			14	14
16	1	COMP2OUT			15	15
17	I				16	16
C0	I/O				39	43
C1	I/O				40	44
C2	1/O				1	1
C3	I/O				2	2
C4	1/O					21
C5	I/O					22
C6	I/O					23
C7	1/O					24
V_{CC}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

COP87L84BC

8-Bit CMOS OTP Microcontrollers with 16k Memory, Comparators, and CAN Interface

General Description

The COP87L84BC OTP (One Time Programmable) microcontrollers are highly integrated COP8 ${ }^{\text {M }}$ Feature core devices with 16k OTP EPROM memory and advanced features including a CAN 2.0B (passive) interface and two Analog comparators. These multi-chip CMOS devices are suited for applications requiring a full featured controller with a CAN interface, and 8 -bit 39 kHz PWM timer, and as pre-production devices for a masked ROM design. Pin and software compatible 2k ROM versions are available (COP884BC) with a range of COP8 software and hardware development tools.

Features include an 8-bit memory mapped architecture, 10 MHz CKI ($-\mathrm{XE}=$ crystal oscillator) with $1 \mu \mathrm{~s}$ instruction cycle, one multi-function 16-bit timer/counter, 8-bit 39 kHz PWM timer with 2 outputs, CAN 2.0B (passive) interface, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two Analog comparators, two power saving HALT/IDLE modes, idle timer, MIWU, software selectable I/O options, low EMI 4.5 V to 5.5 V operation, and 28 pin packages.
Note: The companion devices with CAN interface, more I/O and memory, A/D, and USART are the COP87L88EB/RB. Device included in this datasheet is:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L84BC	16 k OTP EPROM	64	18	28 SOIC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- CAN 2.0B (passive) Interface
- One 16-bit timer, with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event coünter mode
- Input Capture mode
- High speed, constant resolution 8 -bit PWM/frequency monitor timer with 2 output pins
- 16 kbytes on-board OTP EPROM with security feature
- 64 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (7)
- Two analog comparators
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE® Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Packages: 28 SO with 18 I/O pins

CPU/Instruction Set Features

- 1μ instruction cycle time
- Eleven multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Timer T1 (with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- PWM Timer
- CAN Interface (with 3 interrupts)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP)—stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for COP884BC/COP885BC
- Real time emulation and full program debug offered by MetaLink Development Systems

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

Note:X = Crystal Oscillator
$E=$ Halt Mode Enabled
Top View
Order Number COP87L84BCM-XE See NS Package Number M28B FIGURE 2. Connection Diagrams

Pinouts for 28-Pin SO Package

Port Pin	Type	Alt. Function	28-Pin SO
G0	I/O	INTR	25
G1	I/O		26
G2	I/O	T1B	27
G3	I/O	T1A	28
G4	I/O	SO	1
G5	I/O	SK	2
G6	I	SI	3
G7	I	CKO	4
L0	I/O	CMP1IN+/MIWU	7
L1	I/O	CMP1IN-/MIWU	8
L2	I/O	CMP10UT/MIWU	9
L3	I/O	CMP2IN-/MIWU	10
L4	I/O	CMP2IN+/MIWU	11
L5	I/O	CMP2IN-/PWM1/MIWU	12
L6	I/O	CMP2OUT/PWMO/	13
		CAPTIN/MIWU	
D0	O		19
D1	O		20
D2	O		21
D3	O		22
CAN V REF			18
CAN Tx0	O		15
CAN Tx1	O		14
CAN Rx0	I	MIWU	17
CAN Rx1	I	MIWU	16
VCC			6
GND			23
CKI	I		5
RESET	I		
			17

COP87L88EB/RB Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8-Bit A/D, and USART

General Description

The COP87L88EB/RB Family OTP (One Time programmable) microcontrollers are highly integrated COP8 ${ }^{\text {rM }}$ Feature core devices with 16 k or 32 k memory and advanced features including a CAN 2.0B (passive) interface, A/D and USART. These multi-chip CMOS devices are suited for applications requiring a full featured controller with a CAN interface, low EMI, and versatile communications interfaces, and as pre-production devices for ROM designs. Pin and software compatible 8k ROM versions (COP888EB) are available as well as a range of COP8 software and hardware development tools.

Features include an 8-bit memory mapped architecture, 10 $\mathrm{MHz} \mathrm{CKI} \mathrm{(-XE}=$ crystal oscillator) with $1 \mu \mathrm{~s}$ instruction cycle, two multi-function 16-bit timer/counters, WATCHDOG and clock monitor, idie timer, CAN 2.0B (passive) interface, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, SPI master/slave interface, fully buffered USART, 8 bit A/D with 8 channels, two power saving HALT/IDLE modes, MIWU, software selectable I/O options, low EMI 4.5 V to 5.5 V operation, program code security, and 44/68 pin packages.
Note: A companion device with CAN interface, less I/O and memory, A/D, and PWM timer is the COP87L84BC.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L88EB	$16 k$ OTP EPROM	192	35	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP87L89EB	$16 k$ OTP EPROM	192	58	68 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88RB	$32 k$ OTP EPROM	192	35	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP87L89RB	$32 k$ OTP EPROM	192	58	68 PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- CAN 2.0B (passive) bus interface, with Software Power save mode
- 8 -bit A/D Converter with 8 channels
- Fully buffered USART
- Multi-input wake up (MIWU) on both Port L and M
- SPI Compatible Master/Slave Interface
- 16 or 32 kbytes of on-board OTP EPROM with security feature
Note: Mask ROMed device with equivalent on-chip features and program memory size of 8 k is available.
- 192 bytes of on-board RAM

Additional Peripheral Features

- Idle timer (programmable)
- Two 16 -bit timer, with two 16 -bit registers supporting - Processor independent PWM mode
- External Event counter mode
- Input capture mode
- WATCHDOG ${ }^{\text {TM }}$ and Clock Monitor
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\circledR}$ outputs, Push pull outputs, Weak pull up input, High impedance input)
- Schmitt trigger inputs on Port G, L and M
- Packages: 44 PLCC with 35 I/O pins; 68 PLCC with 58 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-sourced vectored interrupts servicing
- External interrupt
- Idle Timer TO
- Timers (T1 and T2) (4 Interrupts)
- MICROWIRE/PLUS and SPI
- Multi-input Wake up
- Software Trap
- CAN interface (3 interrupts)
— USART (2 Inputs)
- Versatile easy to use instruction set
- 8-bit stacker pointer (SP) (Stack in RAM)
- Two 8-bit RegisterR Indirect Memory Pointers (B, X)

Fully Static CMOS

- Two power saving modes: HALT, IDLE
- Single supply operation: 4.5 V to 5.5 V
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for COP888EB
- Real time emulation and full program debug offered by MetaLink Development System

Basic Functional Description

- CAN I/F-CAN serial bus interface block as described in the CAN specification part 2.0B (Passive)
- Interface rates up to 250 k bit/s are supported utilizing standard message identifiers
- Programmable double buffered USART
- A/D-8-bit, 8 channel, 1-LSB Resolution, with improved Source Impedance and improved channel to channel cross talk immunity
- Multi-Input-Wake-Up (MIWU) - edge selectable wake-up and interrupt capability via input port and CAN interface (Port L, Port M and CAN I/F); supports Wake-Up capability on SPI, USART, and T2
- Port C-8-bit bi-directional I/O port
- Port D-8-bit Output port with high current drive capability (10 mA)
- Port F-8-bit bidirectional I/O
- Port G-8-bit bidirectional I/O port, including alternate functions for:
- MICROWIRE ${ }^{\text {TM }}$ Input and Output
- Timer 1 Input or Output (Depending on mode selected)
- External Interrupt input
- WATCHDOG Output
- Port I-8-bit input port combining either digital input, or up to eight A/D input channels
- Port L—8-bit bidirectional I/O port, including alternate functions for:
- USART Transmit/Receive I/O
- Multi-input-wake up (MIWU on all pins)
- Port M—8-bit I/O port, with the following alternate function
— SPI Interface
— MIWU
- CAN Interface Wake-up (MSB)
- Timer 2 Input or Output (Depending on mode selected)
- Port N -8-bit bidirectional I/O
-SPI Slave Select Expander
- Two 16-bit multi-function Timer counters (T1 and T2) plus supporting registers
- (I/P Capture, PWM and Event Counting)
- Idle timer-Provides a basic time-base counter, (with interrupt) and automatic wake up from IDLE mode programmable
- MICROWIRE/PLUS-MICROWIRE serial peripheral interface, supporting both Master and Slave operation
- HALT and IDLE-Software programmable low current modes
- HALT—Processor stopped, Minimum current
- IDLE-Processor semi-active more than 60% power saving
- 16 or 32 kbytes OTP EPROM and 192 bytes of on board static RAM
- SPI Master/Slave interface includes 12 bytes Transmit and 12 bytes Receive FIFO Buffers. Operates up to 1 M Bit/S
- On board programmable WATCHDOG and CLOCK Monitor

Applications

- Automobile Body Control and Comfort System
- Integrated Driver Informaiton Systems
- Steering Wheel Control
- Car Radio Control Panel
- Sensor/Actuator Applications in Automotive and Industrial Control

Block Diagram

FIGURE 1. Block Diagram

[^3]Top View
Order Number COP87L89EBV-XE or COP87L89RBV-XE See NS Plastic Chip Package Number V68A

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 44-Pin and 68-Pin Packages

Port Pin	Type	ALT Function	$\begin{aligned} & \text { 44-Pin } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { 68-Pin } \\ & \text { PLCC } \end{aligned}$
G0	I/O	INT	44	1
G1	I/O	WDOUT	1	2
G2	I/O	T1B	2	3
G3	I/O	T1A	3	4
G4	I/O	SO	4	5
G5	1/O	SK	5	6
G6	1	SI	6	7
G7	I	CKO	7	8
D0	0		17	27
D1	0		18	28
D2	0		19	29
D3	0		20	30
D4	0			31
D5	0			32
D6	0			33
D7	0			34
10	1	ADCHO	36	53
11	1	ADCH1	37	54
12	1	ADCH2	38	55
13	1	ADCH3	39	56
14	1	ADCH4		57
15	1	ADCH5		58
16	1	ADCH6		59
17	1	ADCH7		60
L0	1/O	MIWU	40	61
L1	1/O	MIWU;CKX	41	62
L2	1/O	MIWU;TDX	42	63
L3	1/O	MIWU;RDX	43	64
L4	1/O	MIWU		65
L5	I/O	MIWU		66
L6	1/0	MIWU		67
L7	1/O	MIWU		68
M0	1/O	MIWU;MISO	21	38
M1	1/O	MIWU;MOSI	22	39
M2	I/O	MIWU;SCK	23	40
M3	1/O	MIWU;SS	24	41
M4	1/O	MIWU;T2A	25	42
M5	1/0	MIWU;T2B	26	43
M6	1/O	MIWU	27	44
N0	1/0	ESS0	12	18
N1	1/O	ESS1	13	19
N2	1/O	ESS2	14	20
N3	1/O	ESS3	15	21
N4	1/0	ESS4		22
N5	1/O	ESS5		23
N6	1/0	ESS6		24
N7	1/0	ESS7		25

Port Pin	Type	ALT Function	44-Pin PLCC	68-Pin PLCC
F0	I/O			10
F1	I/O			11
F2	I/O			12
F3	I/O			13
F4	I/O			14
C0	I/O			35
C1	I/O			36
C2	I/O			37
RX0	1		31	48
RX1	I		30	47
TX0	O		29	46
TX1	O		28	45
CANV			32	49
CKI			8	9
RESET			16	26
DV			10,33	16,50
GND			$9,11,34$	15,17,
			35	52
A/D				

COP87L88CF

8-Bit CMOS OTP Microcontrollers with 16k Memory and A/D Converter

General Description

The COP87L88CF OTP (One Time Programmable) microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices with 16k memory and advanced features including an A/D converter. These multi-chip CMOS devices are suited for applications requiring a full featured controller with an 8 -bit A/D converter, and as pre-production devices for a masked ROM design. Lower cost pin and software compatible 16k ROM versions are available (COP888CF) as well as a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI (-XE = crystal oscallator) with $1 \mu \mathrm{~s}$ instruction cycle, two multi-function 16-bit timer/counters, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one 8-bit/8-channel A/D converter with prescaler and both differential and single ended modes, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, 2.7 V to 5.5 V operation and $28 / 40 / 44$ pin packages.

Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L84CF	$16 k$ OTP EPROM	128	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88CF	$16 k$ OTP EPROM	128	$36 / 40$	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- A/D converter (8-bit, 8-channel, with prescaler and both differential and single ended modes)
- Two 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 16 kbytes on-board OTP EPROM with security feature
- 128 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\text {TM }}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- High current outputs
- Packages:
- 44 PLCC with 38 I/O pins
- 40 DIP with 34 I/O pins
- 28 DIP/SO with 22 I/O pins

- Schmitt trigger inputs on Port G

CPU/Instruction Set Feature

- $1 \mu \mathrm{~s}$ instruction cycle time
- Ten multi-source vectored interrupts servicing
- External interrupt with selectable edge
- Idle Timer TO
- Two Timers (Each with 2 interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B, X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.7 V to 5.5 V
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for the COP888CF/COP884CF
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

FIGURE 1. Block Diagram

Connection Diagrams

Plastic Chip Carrier

 Top View
 Order Number COP87L88CFV-XE See NS Plastic Chip Package Number V44A

Top View
Order Number COP87L84CFN-XE or COP87L84CFM-XE
See NS Package Number N28B or M28B

Dual-In-Line Package

Top View
Order Number COP87L84CFN-XE, See NS Molded Package Number N40A
Note: -X = Crystal Oscillator
$-E=$ Halt Mode Enable
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Pinouts for 28-, 40-, and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	I/O	MIWU		11	17	-
L1	I/O	MIWU		12	18	-
L2	I/O	MIWU		13	19	19
L3	I/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU		17	23	27
L7	I/O	MIWU		18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
10	1	ACH0		7	9	9
11	1	ACH1		8	10	10
12	1	ACH2			11	11
13	1	ACH3			12	12
14	1	ACH4			13	13
15	1	ACH5			14	14
16	1	ACH6				15
17	1	ACH7				16
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/0				39	43
C1	I/O				40	44
C2	1/O				1	1
C3	I/O				2	2
C4	1/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
$\mathrm{V}_{\text {REF }}$	$+\mathrm{V}_{\text {REF }}$			10	16	18
AGND	AGND			9	15	17
V_{Cc}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

COP87L88GD/RD Family 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory and 8-Channel A/D with Prescaler

General Description

The COP87L88GD/RD OTP (One Time Programmable) Family microcontrollers are highly integratet COP8 ${ }^{\text {™ }}$ Feature core devices with 16 k or 32 k memory and advanced features including an A/D Converter. These multi-chip CMOS devices are suited for applications requiring a full featured controller with an 8-bit A/D converter, and as pre-production devices for a masked ROM design. Pin and software compatible 16k ROM versions are available (COP888GD), as well as a range of COP8 software and hardware development tools.

Family features include an 8-bit memory mapped architecture, 10 MHz CKI (-XE = crystal oscillator) with $1 \mu \mathrm{~s}$ instruction cycle, three multi-function 16 -bit timer/counters, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one 8 -bit/8-channel A/D converter with prescaler and both differential and single ended modes, two power saving HALT/IDLE modes, MIWU, idle timer, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {TM }}$ timer and Clock Monitor, 2.7V to 5.5 V operation, program code security, and 44 pin package.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L88GD	16 k EPROM	256	40	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88RD	32 k EPROM	256	40	44 PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- 8-channel A/D converter with prescaler and both differential and single ended modes
- Idle Timer with 5 selectable Wake-Up periods
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 16 or 32 kbytes on-board OTP EPROM with security feature
- 256 bytes on-board RAM

Additional Peripheral Features

- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- WATCHDOG and clock monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options (TRI-STATE® Output, Push-Pull Output, Weak Pull Up Input, High Impedance Input)
- Schmitt trigger inputs on ports G and L
- Package:
- 44 PLCC with 40 I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Twelve multi-source vectored interrupts servicing
- External Interrupt
— Idle Timer TO
- Three Timers (each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) - stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.7 V to 5.5 V
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for COP888GD
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. Block Diagram

Connection Diagrams

Plastic Chip Carrier

Note: -X Crystal Oscillator
-E Halt Mode Enabled
Top View
Order Number COP87L88RDV-XE, or COP87L88GDV-XE
See NS Plastic Chip Package Number V44A
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued) Pinouts for 40- and 44-Pin Packages				
Port	Type	Alt. Fun	Alt. Fun	44-Pin Package
L0	1/0	MIWU		17
L1	I/O	miwu		18
L2	I/O	miwu		19
L3	1/0	MIWU		20
L4	1/0	MIWU	T2A	25
L5	I/O	miwu	T2B	26
L6	1/0	MIWU	TЗА	27
L7	I/O	MIWU	тЗв	28
G0	I/O	INT		39
G1	wDOUT			40
G2	I/O	T1B		41
G3	1/0	T1A		42
G4	1/0	So		3
G5	I/O	SK		4
G6	1	SI		5
G7	I/CKO	HALT Restart		6
D0	0			29
D1	O			30
D2	O			31
D3	0			32
D4	O			33
D5	O			34
D6	\bigcirc			35
D7	O			36
10	I	ACHO		9
11	1	ACH1		10
12	1	ACH2		11
13	1	ACH3		12
14	I	ACH4		13
15	1	ACH5		14
16	1	ACH6		15
17	1	ACH7		16
C0	1/0			43
C1	1/0			44
C2	1/0			1
С3	I/O			2
C4	I/O			21
C5	1/0			22
C6	1/0			23
C7	I/O			24
V_{cc}				8
GND				37
CKI				7
RESET				38

COP87L88EK/RK Family

8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Comparator, and Single-slope A/D Capability

General Description

The COP87L88EK/RK Family OTP (One Time Programmable) microcontrollers are highly integrated COP8 ${ }^{\text {M }}$ Feature core devices with 16 k or 32 k memory and advanced features including a Multi-Input Comparator and Single-slope A/D capability. These multi-chip CMOS devices are suited for applications requiring a full featured, low EMI controller with an analog comparator, current source, and voltage reference, and as pre-production devices for a masked ROM design. Lower cost pin and software compatible 8 k ROM versions (COP888EK) are available for use with a range of COP8 software and hardware development tools.

Family features include an 8 -bit memory mapped architecture, 10 MHz CKI (-XE = crystal oscillator) with $1 \mu \mathrm{~s}$ instruction cycle, three multi-function 16 -bit timer/counters with PWM, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, one analog comparator with seven input multiplexor, an analog current source and $\mathrm{V}_{\mathrm{cc}} / 2$ reference, two power saving HALT/IDLE modes, idle timer, MIWU, high current outputs, software selectable I/O options, WATCHDOG ${ }^{\text {M }}$ timer and Clock Monitor, 2.7 V to 5.5 V operation and $28 / 40 / 44$ pin packages.

Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L84EK	16k OTP EPROM	256	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88EK	16k OTP EPROM	256	$36 / 40$	40 DIP, 44 PLCC	-40 to $+85^{\circ} \mathrm{C}$
COP87L84RK	$32 k$ OTP EPROM	256	24	28 DIP/SOIC	-40 to $+85^{\circ} \mathrm{C}$
COP87L88RK	32k OTP EPROM	256	$36 / 40$	$40 \mathrm{DIP}, 44$ PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- Analog function block with
- Analog comparator with seven input multiplexor
- Constant current source and $\mathrm{V}_{\mathrm{cc}} / 2$ reference
- Three 16-bit timers, each with two 16-bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8 or 32 kbytes on-board EPROM with security feature
- 256 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- WATCHDOG and Clock Monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Software selectable I/O options (TRI-STATE ${ }^{\text {TM }}$ Output, Push-Pull Output, Weak Pull-Up Input, High Impedance Input)
- Packages:
- 44 PLCC with 40 I/O pins
- 40 DIP with 36 I/O pins
-28 DIP/SO with 24 I/O pins
- Schmitt trigger inputs on Port G and L

CPU/Instruction Set Feature

- $1 \mu \mathrm{~s}$ instruction cycle time
- Twelve multi-source vectored interrupts servicing
- External Interrupt with selectable edge
- Idle Timer TO
- Three Timers (Each with 2 interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- Default VIS (default interrupt)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit Register Indirect Data Memory Pointers (B, X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.7 V to 5.5 V
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation devices for the COP888EK/COP884EK
- Real time emulation and full program debug offered by MetaLink Development System

FIGURE 1. Block Diagram

Connection Diagrams

Order Number COP87L88EKV-XE or COP87L88RKV-XE See NS Plastic Chip Package Number V44A

Dual-In-Line Package

Top View

Order Number COP87L84EKN-XE or COP87L84RKN-XE See NS Molded Package Number N40A

Dual-In-Line Package

Top View
Order Number COP87L84EKN-XE or COP87L84RKN-XE
See NS Molded Package Number N28B
Order Number COP87L84EKM-XE or COP87L84RKM-XE
See NS Molded Package Number M28B
Note: -X Crystal Oscillator
-E Halt Mode Enabled
FIGURE 2. Connection Diagrams

Connection Diagrams
(Continued)
Pinouts for 28-, 40-, and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
L0	I/O	MIWU		11	17	17
L1	I/O	MIWU		12	18	18
L2	I/O	MIWU		13	19	19
L3	I/O	MIWU		14	20	20
L4	I/O	MIWU	T2A	15	21	25
L5	I/O	MIWU	T2B	16	22	26
L6	I/O	MIWU	T3A	17	23	27
L7	I/O	MIWU	T3B	18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	I/O	T1A		28	38	42
G4	I/O	SO		1	3	3
G5	I/O	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1	COMPIN1+		7	9	9
11	1	COMPIN-/Current Source Out		8	10	10
12	1	COMPINO+		9	11	11
13	1	COMPOUT/COMPIN2+		10	12	12
14	1	COMPIN3+			13	13
15	1	COMPIN4+			14	14
16	1	COMPIN5+			15	15
17	1	COMPOUT			16	16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	I/O				39	43
C1	I/O				40	44
C2	I/O				1	1
C3	1/O				2	2
C4	I/O					21
C5	I/O					22
C6	I/O					23
C7	I/O					24
V_{Cc}				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

National Semiconductor

COP87L88RW

8-Bit One-Time Programmable (OTP) Microcontroller with Pulse Train Generators and Capture Modules

General Description

The COP87L88RW OTP microcontrollers are large memory (32k), highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices, with advanced features including including Pulse Train Generators, Capture Modules, and hardware multiply/divide. These multi-chip CMOS devices are suited for applications requiring a full featured controller with high I/O pincount, pulse generation and capture, and a full-duplex USART, and for pre-production devices for ROM designs. Pin and software compatible 16k ROM versions are available (COP888GW), along with a range of COP8 software and hardware development tools.

Family features include an 8 -bit memory mapped architecture, 10 MHz CKI with $1 \mu \mathrm{~s}$ instruction cycle, hardware multiply/divide functions, two 100ns capture modules, four pulse train generators with 16 bit prescalers, two multifunction 16 -bit timer/counters, idle timer, full-duplex USART, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two power saving HALT/ IDLE modes, MIWU, high current outputs, software selectable I/O options, $2.7 \mathrm{v}-5.5 \mathrm{v}$ operation, program code security, and 68 pin packages.
Devices included in this datasheet are:

Device	Memory (bytes)	RAM (bytes)	I/O Pins	Packages	Temperature
COP87L88RW	32 k OTP	512	64	68 PLCC	-40 to $+85^{\circ} \mathrm{C}$

Key Features

- Multiply/divide functions
- Full duplex UART
- Four pulse train generators with 16 -bit prescalers
- Two 16-bit input capture modules with 8 -bit prescalers
- Two 16-bit timers, each with two 16-bit registers supporting
- Processor independent PWM mode
- External event counter mode
- Input capture mode
- 32 kbytes on-board OTP EPROM with security feature

Note: Mask ROMed devices with equivalent on-chip features and program memory sizes of 16 k is available.

- 512 bytes on-board RAM

Additional Peripheral Features

- Idle Timer
- Multi-Input Wake-Up (MIWU) with optional interrupts (8)
- WATCHDOG ${ }^{\text {M }}$ and clock monitor logic
- MICROWIRE/PLUS serial I/O

I/O Features

- Memory mapped I/O
- Software selectable I/O options
- TRI-STATE ${ }^{\text {® }}$ output
- Push-pull output
- Weak pull-up input
- High impedance input
- Schmitt trigger inputs on ports G and L
- Package: 68 PLCC with I/O pins

CPU/Instruction Set Features

- $1 \mu \mathrm{~s}$ instruction cycle time
- Fourteen multi-source vectored interrupts servicing
- External interrupt
- Idle timer TO
- Two timers (each with 2 interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake-Up
- Software trap
- UART (2)
- Default VIS
- Capture timers
- Counters (one vector for all four counters)
- Versatile and easy to use instruction set
- 8-bit Stack Pointer (SP) -stack in RAM
- Two 8-bit register indirect data memory pointers (B and X)

Fully Static CMOS

- Two power saving modes: HALT and IDLE
- Single supply operation: 2.7 V to 5.5 V
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Development Support

- Emulation device for the COP888GW
- Real time emulation and full program debug offered by MetaLink's Development System

Block Diagram

FIGURE 1. COP87L88RW Block Diagram

Connection Diagram

Note: -X Crystal Oscillator Note: -E Halt Enable

FIGURE 2. Connection Diagram

National Semiconductor
Flash Products

COP8SBR9/COP8SCR9/COP8SDR9
 8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM and Brownout

General Description

The COP8SBR9/SCR/SDR9 Flash based microcontrollers are highly integrated COP8 ${ }^{\text {TM }}$ Feature core devices, with 32 k Flash memory and advanced features including Virtual EEPROM, High Speed Timers, USART, and Brownout Reset. This single-chip CMOS device is suited for applications requiring a full featured, in-system reprogrammable controller with large memory and low EMI. The same device is used for development, pre-production and volume production with a range of COP8 software and hardware development tools.
Family features include an 8 -bit memory mapped architecture, in-system programmability (ISP), clock-doubled

10 MHz CKI for 20 MHz operation with $0.5 \mu \mathrm{~s}$ instruction cycle, dual clock operation for reduced power consumption, Virtual EEPROM using Flash Memory to store data, three multi-function 16-bit timer/counters (two with 50 ns resolution), programmable idle timer with MIWU, USART with on-chip Baud Rate Generator, MICROWIRE/PLUS ${ }^{\text {TM }}$ serial I/O, two power saving HALT/IDLE modes, Schmitt trigger inputs, software selectable I/O options, WATCHDOG ${ }^{\text {M }}$ timer and Clock Monitor, Low EMI 2.7V-5.5V operation with Brownout Reset, and 44/68 pin packages.

Device	Program Memory (bytes)	RAM (bytes)	Brownout Voltage	I/O Pins	Packages	Temperature
COP8SBR9	32 k Flash Memory	1 k	2.7 V to 2.9 V	39,63	$44 / 68 \mathrm{PLCC}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
COP8SCR9	32 k Flash Memory	1 k	4.17 V to 4.5 V	39,63	$44 / 68 \mathrm{PLCC}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
COP8SDR9	32 k Flash Memory	1 k	No Brownout	39,63	$44 / 68 \mathrm{PLCC}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Key Features

- 32 kbytes Flash Program Memory with Security Feature
- Virtual EEPROM using Flash Program Memory
- 1 kbyte volatile RAM
- USART
- In-System Programmability of Flash Memory
- Dual Clock Operation providing Enhanced Power Save Modes

Other Features

- Three 16-bit timers:
- Timers T2 and T3 can operate at high speed (50 ns resolution)
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Brown-out Reset (COP8SBR9/CCR)
- Single supply operation: 2.7V-5.5V
- Quiet Design (low radiated emissions)
- Multi-Input Wake-up with optional interrupts
- MICROWIRE/PLUS (Serial Peripheral Interface Compatible)
- Clock Doubler for 20 MHz operation from 10 MHz Oscillator
- Thirteen multi-source vectored interrupts servicing:
- External Interrupt
- USART (2)
- Idle Timer TO
- Three Timers (each with 2 interrupts)
- MICROWIRE/PLUS Serial peripheral interface
- Multi-Input Wake Up
- Software Trap
- Idle Timer with programmable interrupt interval
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers
- True bit manipulation
- WATCHDOG and Clock Monitor logic
- Software selectable I/O options
- TRI-STATE® Output/High Impedance Input
- Push-Pull Output
- Weak Pull Up Input
- Schmitt trigger inputs on I/O ports
- High Current I/Os
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Packaging: 44 and 68 PLCC
- True In-System, Real time emulation and full program debug offered by MetaLink's Development Systems

Block Diagram

Connection Diagrams

Plastic Chip Carrier

Connection Diagrams (Continued)

Pinouts for 44- and 68-Pin Packages

Port	Type	Alt. Fun	In System Emulation Mode	44-Pin PLCC	68-Pin PLCC
L0	1/O	MIWU or Low Speed OSC In		11	22
L1	I/O	MIWU or CKX or Low Speed OSC Out		12	23
L2	I/O	MIWU or TDX		13	24
L3	I/O	MIWU or RDX		14	25
L4	1/0	MIWU or T2A		15	26
L5	I/O	MIWU or T2B		16	27
L6	I/O	MIWU or T3A		17	28
L7	I/O	MIWU or T3B		18	29
G0	I/O	INT	Input	2	3
G1	I/O	WDOUT $^{\text {a }}$	POUT	3	4
G2	I/O	T1B	Output	4	5
G3	1/O	T1A	Clock	5	6
G4	1/0	SO		6	11
G5	I/O	SK		7	12
G6	1	SI		8	13
G7	1	CKO		9	14
D0	0			37	58
D1	0			38	59
D2	0			39	60
D3	0			40	61
D4	0			41	62
D5	0			42	63
D6	0			43	64
D7	0			44	65
E0	I/O				54
E1	I/O				55
E2	I/O				56
E3	I/O				57
E4	I/O				67
E5	I/O				68
E6	I/O				1
E7	I/O				2
C0	I/O				18
C1	I/O				19
C2	I/O				20
C3	I/O				21
C4	I/O				30
C5	I/O				31
C6	I/O				32
C7	I/O				33
A0	I/O				46
A1	I/O				47
A2	I/O			31	48
A3	I/O			32	49
A4	I/O			33	50
A5	I/O			34	51

Connection Diagrams (Continued)
Pinouts for 44- and 68-Pin Packages (Continued)

Port	Type	Alt. Fun	In System Emulation Mode	44-Pin PLCC	68-Pin PLCC
A6	I/O			35	52
A7	I/O			36	53
B0	I/O			19	34
B1	I/O			20	35
B2	I/O			21	36
B3	1/O			22	37
B4	I/O			23	38
B5	1/O			24	39
B6	1/O			25	40
B7	1/O			26	41
F0	I/O				7
F1	I/O				8
F2	I/O				9
F3	I/O				10
V_{CC}			V_{CC}	30	17, 45
GND			GND	27	16, 42
CKI	I			10	15
$\overline{\text { RESET }}$	1		RESET	1	66

a. G1 operation as WDOUT is controlled by Option Register bit 2.

Ordering Information

FIGURE 1. Part Numbering Scheme

1.0 General Description

1.1 EMI REDUCTION

The COP8SBR9/CCR/CDR devices incorporate circuitry that guards against electromagnetic interference - an increasing problem in today's microcontroller board designs. National's patented EMI reduction technology offers low EMI clock circuitry, gradual turn-on output drivers (GTOs) and internal Icc smoothing filters, to help circumvent many of the EMI issues influencing embedded control designs. National has achieved $15 \mathrm{~dB}-20 \mathrm{~dB}$ reduction in EMI transmissions when designs have incorporated its patented EMI reducing circuitry.

1.2 IN-SYSTEM PROGRAMMING AND VIRTUAL EEPROM

The device includes a program in a boot ROM that provides the capability, through the MICROWIRE/PLUS serial interface, to erase, program and read the contents of the Flash memory.
Additional routines are included in the boot ROM, which can be called by the user program, to enable the user to customize in system software update capability if MICROWIRE/ PLUS is not desired.
Additional functions will copy blocks of data between the RAM and the Flash Memory. These functions provide a virtual EEPROM capability by allowing the user to emulate a variable amount of EEPROM by initializing nonvolatile variables from the Flash Memory and occasionally restoring these variables to the Flash Memory.

The contents of the boot ROM have been defined by National. Execution of code from the boot ROM is dependent on the state of the FLEX bit in the Option Register on exit from RESET. If the FLEX bit is a zero, the Flash Memory is assumed to be empty and execution from the boot ROM begins. For further information on the FLEX bit, refer to Section 4.5, Option Register.

1.3 DUAL CLOCK AND CLOCK DOUBLER

The device includes a versatile clocking system and two oscillator circuits designed to drive a crystal or ceramic resonator. The primary oscillator operates at high speed up to 10 MHz . The secondary oscillator is optimized for operation at 32.768 kHz .

The user can, through specified transition sequences (please refer to 7.0 Power Saving Features), switch execution between the high speed and low speed oscillators. The unused oscillator can then be turned off to minimize power dissipation. If the low speed oscillator is not used, the pins are available as general purpose bidirectional ports.
The operation of the CPU will use a clock at twice the frequency of the selected oscillator (up to 20 MHz for high speed operation and 65.536 kHz for low speed operation). This doubled clock will be referred to in this document as 'MCLK'. The frequency of the selected oscillator will be referred to as CKI. Instruction execution occurs at one tenth the selected MCLK rate.

1.4 TRUE IN-SYSTEM EMULATION

On-chip emulation capability has been added which allows the user to perform true in-system emulation using final production boards and devices. This simplifies testing and evaluation of software in real environmental conditions. The user, merely by providing for a standard connector which can
be bypassed by jumpers on the final application board, can provide for software and hardware debugging using actual production units.

1.5 ARCHITECTURE

The COP8 family is based on a modified Harvard architecture, which allows data tables to be accessed directly from program memory. This is very important with modern microcontroller-based applications, since program memory is usually ROM or EPROM, while data memory is usually RAM. Consequently constant data tables need to be contained in non-volatile memory, so they are not lost when the microcontroller is powered down. In a modified Harvard architecture, instruction fetch and memory data transfers can be overlapped with a two stage pipeline, which allows the next instruction to be fetched from program memory while the current instruction is being executed using data memory. This is not possible with a Von Neumann single-address bus architecture.
The COP8 family supports a software stack scheme that allows the user to incorporate many subroutine calls. This capability is important when using High Level Languages. With a hardware stack, the user is limited to a small fixed number of stack levels.

1.6 INSTRUCTION SET

In today's 8-bit microcontroller application arena cost/ performance, flexibility and time to market are several of the key issues that system designers face in attempting to build well-engineered products that compete in the marketplace. Many of these issues can be addressed through the manner in which a microcontroller's instruction set handles processing tasks. And that's why the COP8 family offers a unique and code-efficient instruction set - one that provides the flexibility, functionality, reduced costs and faster time to market that today's microcontroller based products require.
Code efficiency is important because it enables designers to pack more on-chip functionality into less program memory space (ROM, OTP or Flash). Selecting a microcontroller with less program memory size translates into lower system costs, and the added security of knowing that more code can be packed into the available program memory space.

1.6.1 Key Instruction Set Features

The COP8 family incorporates a unique combination of instruction set features, which provide designers with optimum code efficiency and program memory utilization.

1.6.2 Single Byte/Single Cycle Code Execution

The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum program space. Because compact code does not occupy a substantial amount of program memory space, designers can integrate additional features and functionality into the microcontroller program memory space. Also, the majority instructions executed by the device are single cycle, resulting in minimum program execution time. In fact, 77% of the instructions are single byte single cycle, providing greater code and I/O efficiency, and faster code execution.

1.6.3 Many Single-Byte, Multi-Function Instructions

The COP8 instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to accomplish multiple functions, such as DRSZ, DCOR, JID, LD (Load) and X (Exchange) instructions with post-incrementing and post-decrementing, to name just a few examples. In

1.0 General Description
 (Continued)

many cases, the instruction set can simultaneously execute as many as three functions with the same single-byte instruction
JID: (Jump Indirect); Single byte instruction decodes external events and jumps to corresponding service routines (analogous to "DO CASE" statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table instruction provides efficient data path from the program memory to the CPU. This instruction can be used for table lookup and to read the entire program memory for checksum calculations.
RETSK: (Return Skip); Single byte instruction allows return from subroutine and skips next instruction. Decision to branch can be made in the subroutine itself, saving code.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These instructions use the two memory pointers B and X to efficiently process a block of data (simplifying "FOR NEXT" or other loop structures in higher level languages).

1.6.4 Bit-Level Control

Bit-level control over many of the microcontroller's I/O ports provides a flexible means to ease layout concerns and save board space. All members of the COP8 family provide the ability to set, reset and test any individual bit in the data memory address space, including memory-mapped I/O ports and associated registers.

1.6.5 Register Set

Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory data pointers allow the option of post-incrementing or postdecrementing with the data movement instructions (LOAD/ EXCHANGE). And 15 memory-mapped registers allow designers to optimize the precise implementation of certain specific instructions.

1.7 PACKAGING/PIN EFFICIENCY

Real estate and board configuration considerations demand maximum space and pin efficiency, particularly given today's high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O needed. Large packages take valuable board space and increases device cost, two trade-offs that microcontroller designs can ill afford.
The COP8 family offers a wide range of packages and do not waste pins: up to 90.9% (or 40 pins in the 44 -pin package) are devoted to useful I/O.

0

Section 4

Audio

Section 4 Contents

Audio Power Amplifiers 4-5
LM1875 20W Audio Power Amplifier 4-6
LM1876 Overture Audio Power Amplifier Series Dual 20W Audio Power Amplifier with Mute and Standby Modes 4-7
LM1877 Dual Audio Power Amplifier 4-8
LM2876 Overture Audio Power Amplifier Series High-Performance 40W Audio Power Amplifier w/Mute 4-10
LM380 2.5W Audio Power Amplifier 4-12
LM384 5W Audio Power Amplifier 4-14
LM386 Low Voltage Audio Power Amplifier 4-15
LM3875 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier 4-16
LM3876 Overture Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier w/Mute 4-18
LM3886 Overture Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier w/Mute 4-20
LM4651 \& LM4652 Overture Audio Power Amplifier 170W Class D Audio Power Amplifier Solution 4-22
LM4663 Boomer 2 Watt Stereo Class D Audio Power Amplifier with Stereo Headphone Amplifier 4-23
LM4700 Overture Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes 4-24
LM4701 Overture Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes 4-25
LM4752 Stereo 11W Audio Power Amplifier 4-26
LM4753 Dual 10W Audio Power Amplifier w/Mute, Standby and Volume Control 4-27
LM4755 Stereo 11W Audio Power Amplifier with Mute 4-29
LM4765 Overture Audio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes 4-30
LM4766 Overture Audio Power Amplifier Series Dual 40W Audio Power Amplifier with Mute 4-31
LM4808 Dual 105 mW Headphone Amplifier 4-32
LM4830 Two-Way Audio Amplification System with Volume Control 4-33
LM4831 Boomer Multimedia Computer Audio Chip 4-35
LM4832 Boomer Digitally Controlled Tone and Volume Circuit with Stereo Audio Power Amplifier, Microphone Preamp Stage and National 3D Sound 4-36
LM4834 Boomer 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp 4-37
LM4835 Boomer Stereo 2W Audio Power Amplifiers with DC Volume Control and Selectable Gain 4-38
LM4836 Boomer Stereo 2W Audio Power Amplifiers with DC Volume Control, Bass Boost, and Input Mux 4-39
LM4850 Boomer Mono 1.5W/Stereo 300 mW Power Amplifier 4-40
LM4860 Boomer Series 1W Audio Power Amplifier with Shutdown Mode. 4-42
LM4861 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-43
LM4862 Boomer 675 mW Audio Power Amplifier with Shutdown Mode 4-44
LM4863 Boomer Dual 2.2W Audio Amplifier Plus Stereo Headphone Function 4-45
LM4864 Boomer 300 mW Audio Power Amplifier with Shutdown Mode 4-47
LM4865 Boomer 750 mW Audio Power Amplifier with DC Volume Control and Headphone Switch 4-48
LM4870 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-49
LM4871 Boomer 1.1W Audio Power Amplifier with Shutdown Mode 4-50
LM4872 Boomer 1 Watt Audio Power Amplifier in micro SMD package 4-51
LM4873 Boomer Dual 2.1W Audio Amplifier Plus Stereo Headphone Function 4-52
LM4876 Boomer 1.1W Audio Power Amplifier with Logic Low Shutdown 4-54
LM4877 Boomer 1 Watt Audio Power Amplifier in micro SMD package with Shutdown Logic Low 4-55
LM4880 Boomer Dual 250 mW Audio Power Amplifier with Shutdown Mode 4-56
LM4881 Boomer Dual 200 mW Headphone Amplifier with Shutdown Mode. 4-58
LM4882 Boomer 250mW Audio Power Amplifier with Shutdown Mode 4-59
LM4890 Boomer 1 Watt Audio Power Amplifier 4-60
LM675 Power Operational Amplifier 4-62
Audio Controls and Signal Processing. 4-63
LM1036 Dual DC Operated Tone/Volume/Balance Circuit 4-64
LM1971 Overture Audio Attenuator Series Digitally Controlled 62 dB Audio Attenuator with/Mute 4-65
LM1972 μ Pot 2-Channel 78dB Audio Attenuator with Mute 4-67
LM1973 μ Pot 3-Channel 76dB Audio Attenuator with Mute 4-68
LM3914 Dot/Bar Display Driver. 4-69
LM3915 Dot/Bar Display Driver 4-71
LM3916 Dot/Bar Display Driver. 4-73
LM4610 Dual DC Operated Tone/Volume/Balance Circuit with National 3-D Sound. 4-75
LM565/LM565C Phase Locked Loop 4-76
LM567/LM567C Tone Decoder 4-77
LMC1982 Digitally-Controlled Stereo Tone and Volume Circuit with Two Selectable Stereo Inputs 4-78
LMC1983 Digitally-Controlled Stereo Tone and Volume Circuit with Three Selectable Stereo Inputs 4-79
LMC567 Low Power Tone Decoder 4-80
LMC568 Low Power Phase-Locked Loop. 4-81
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 4-82
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier 4-83
LM6142 and LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 4-85
LM833 Dual Audio Operational Amplifier 4-86
LM837 Low Noise Quad Operational Amplifier 4-87
LM1894 Dynamic Noise Reduction System DNR 4-88
Audio Codecs. 4-89
LM4540 AC '97 Codec with National 3D Sound 4-90
LM4543 AC '97 Codec with National 3D Sound 4-91
LM4545 AC '97 Codec with Stereo Headphone Amplifier and National 3D Sound 4-92
LM4546 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound 4-93
LM4548 AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound 4-94
LM4549 AC '97 Rev 2.1 Codec with Sample Rate Conversion and National 3D Sound 4-95

National Semiconductor

Audio Power Amplifiers

LM1875

20W Audio Power Amplifier

General Description

The LM1875 is a monolithic power amplifier offering very low distortion and high quality performance for consumer audio applications.
The LM1875 delivers 20 watts into a 4Ω or 8Ω load on $\pm 25 \mathrm{~V}$ supplies. Using an 8Ω load and $\pm 30 \mathrm{~V}$ supplies, over 30 watts of power may be delivered. The amplifier is designed to operate with a minimum of external components. Device overload protection consists of both internal current limit and thermal shutdown.
The LM1875 design takes advantage of advanced circuit techniques and processing to achieve extremely low distortion levels even at high output power levels. Other outstanding features include high gain, fast slew rate and a wide power bandwidth, large output voltage swing, high current capability, and a very wide supply range. The amplifier is internally compensated and stable for gains of 10 or greater.

Connection Diagram

Package	Ordering Info	NSC Package Number
For Straight Leads	LM1875T SL108949	T05A
For Stagger Bend	LM1875T LB03	T05D
For 90° Stagger Bend	LM1875T LB05	T05E
For 90° Stagger Bend	LM1875T LB02	TA05B

Applications

- High performance audio systems
- Bridge amplifiers
- Stereo phonographs
- Servo amplifiers
- Instrument systems

Features

- Up to 30 watts output power
- Avo typically 90 dB
- Low distortion: $0.015 \%, 1 \mathrm{kHz}, 20 \mathrm{~W}$
- Wide power bandwidth: 70 kHz
- Protection for AC and DC short circuits to ground
- Thermal protection with parole circuit
- High current capability: 4A
- Wide supply range $16 \mathrm{~V}-60 \mathrm{~V}$
- Internal output protection diodes
- 94 dB ripple rejection
- Plastic power package TO-220

Typical Applications

DS005030-2

LM1876 Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series Dual 20W Audio Power Amplifier with Mute and Standby Modes

General Description

The LM1876 is a stereo audio amplifier capable of delivering typically 20 W per charinel of continuous average output power into a 4Ω or 8Ω load with less than 0.1% THD+N.
Each amplifier has an independent smooth transition fade-in/ out mute and a power conserving standby mode which can be controlled by external logic.
The performance of the LM1876, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathrm{SPiKe}^{\text {TM }}$) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Key Specifications

- THD +N at 1 kHz at $2 \times 15 \mathrm{~W}$ continuous average output power into 4Ω or 8Ω : $\quad 0.1 \%$ (max)
- $\mathrm{THD}+\mathrm{N}$ at 1 kHz at continuous average output power of $2 \times 20 \mathrm{~W}$ into 8Ω : $\quad 0.009 \%$ (typ)
- Standby current: 4.2 mA (typ)

Features

- SPiKe protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute mode
- Standby-mode
- Isolated 15-lead TO-220 package
- Non-Isolated 15-lead TO-220 package
- Wide supply range $20 \mathrm{~V}-64 \mathrm{~V}$

Applications

- High-end stereo TVs
- Component stereo
- Compact stereo

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit
Note: Numbers in parentheses represent pinout for amplifier B.
*Optional component dependent upon specific design requirements.

Conņection Diagram

Plastic Package

LM1877

Dual Audio Power Amplifier

General Description

The LM1877 is a monolithic dual power amplifier designed to deliver 2W/channel continuous into 8Ω loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q point centering. The LM1877 is internally compensated for all gains greater than 10 .

Features

- 2W/channel
- -65 dB ripple rejection, output referred
- -65 dB channel separation, output referred
- Wide supply range, 6V-24V
- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Connection Diagram

Dual-In-Line Package or Surface Mount Package

Order Number LM1877M-9 or LM1877N-9
See NS Package Number M14B or N14A

Equivalent Schematic Diagram

LM2876

Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series High-Performance 40W Audio Power Amplifier w/Mute

General Description

The LM2876 is a high-performance audio power amplifier capable of delivering 40 W of continuous average power to an 8Ω load with 0.1% THD+N from $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
The performance of the LM2876, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathbf{S P i K e}^{\text {TM }}$) protection circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature peaks.
The LM2876 maintains an excellent signal-to-noise ratio of greater than $95 \mathrm{~dB}(\mathrm{~min})$ with a typical low noise floor of $2.0 \mu \mathrm{~V}$. It exhibits extremely low THD +N values of 0.06% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMD (SMPTE) typical rating of 0.004%.

Features

- 40W continuous average output power into 8Ω
- 75W instantaneous peak output power capability
- Signal-to-Noise Ratio $\geq 95 \mathrm{~dB}(\mathrm{~min})$
- An input mute function
- Output protection from a short to ground or to the supplies via internal current limiting circuitry
- Output over-voltage protection against transients from inductive loads
- Supply under-voltage protection, not allowing internal biasing to occur when $\left|\mathrm{V}_{\mathrm{EE}}\right|+\left|\mathrm{V}_{\mathrm{CC}}\right| \leq 12 \mathrm{~V}$, thus eliminating turn-on and turn-off transients
- 11-lead TO-220 package
- Wide supply range 20V-72V

Applications

- Component stereo
- Compact stereo
- Self-powered speakers
- Surround-sound amplifiers
- High-end stereo TVs

Typical Application

* Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

\dagger Connect Pin 5 to V^{+}for Compatibility with LM3886.
*Preliminary: Call your local National sales rep. or distributor for availability.
Top View
Order Number LM2876T or LM2876TF
See NS Package Number TA11B for Staggered Lead Non-Isolated

Package or TF11B* for Staggered Lead Isolated Package

LM380

2.5W Audio Power Amplifier

General Description

The LM380 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.
The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. The LM380N uses a copper lead frame. The center three pins on either side comprise a heat sink. This makes the device easy to use in standard PC layouts.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

A selected part for more power on higher supply voltages is available as the LM384. For more information see AN-69.

Features

- Wide supply voltage range: 10V-22V
- Low quiescent power drain: $0.13 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V}\right)$
- Voltage gain fixed at 50
- High peak current capability: 1.3A
- Input referenced to GND
- High input impedance: $150 \mathrm{k} \Omega$
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

Connection Diagrams (Dual-In-Line Packages, Top View)

Block and Schematic Diagrams

General Description

The LM384 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.
The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, sound projector systems, etc. See AN-69 for circuit details.

Features

- Wide supply voltage range: 12 V to 26 V
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability: 1.3A
- Input referenced to GND
- High input impedance: $150 \mathrm{k} \Omega$
- Low distortion: 0.25% ($\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$)
- Quiescent output voltage is at one half of the supply voltage
- Standard dual-in-line package

Schematic Diagram

LM386

Low Voltage Audio Power Amplifier

General Description

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.
The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

Features

- Battery operation
- Minimum external parts
- Wide supply voltage range: $4 \mathrm{~V}-12 \mathrm{~V}$ or $5 \mathrm{~V}-18 \mathrm{~V}$
- Low quiescent current drain: 4 mA
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion: $0.2 \%\left(A_{V}=20, \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{P}_{\mathrm{O}}=\right.$ $125 \mathrm{~mW}, \mathrm{f}=1 \mathrm{kHz}$)
- Available in 8 pin MSOP package

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagrams

Small Outline, Molded Mini Small Outline, and Dual-In-Line Packages

Top View
Order Number LM386M-1, LM386MM-1, LM386N-1, LM386N-3 or LM386N-4 See NS Package Number M08A, MUA08A or N08E

LM3875 Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier

General Description

The LM3875 is a high-performance audio power amplifier capable of delivering 56W of continuous average power to an 8Ω load with 0.1% THD+N from 20 Hz to 20 kHz .
The performance of the LM3875, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathbf{S P i K e}{ }^{\mathrm{TM}}$) protection circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, caused by shorts to the supplies, thermal runaway, and instantaneous temperature peaks.
The LM3875 maintains an excellent signal-to-noise ratio of greater than $95 \mathrm{~dB}(\mathrm{~min})$ with a typical low noise floor of $2.0 \mu \mathrm{~V}$. It exhibits extremely low THD +N values of 0.06% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMD (SMPTE) typical rating of 0.004%.

Features

- 56 W continuous average output power into 8Ω
- 100W instantaneous peak output power capability
- Signal-to-Noise Ratio >95dB (min)
- Output protection from a short to ground or to the supplies via internal current limiting circuitry
- Output over-voltage protection against transients from inductive loads
- Supply under-voltage protection, not allowing internal biasing to occur when $\mathrm{IV}+|+| \mathrm{V}-\mathrm{I} \leq 12 \mathrm{~V}$, thus eliminating turn-on and turn-off transients
- 11 lead TO-220 package
- Wide supply voltage range: IV+I + IV-I = 20 V to 84 V

Applications

- Component or compact stereos
- Self-powered speakers
- Surround-sound amplifiers
- High-end stereo TVs

Typical Application

*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component function description.

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Order Number LM3875T or LM3875TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for Staggered Lead Isolated Package

Equivalent Schematic (Excluding active protection circuitry)

National Semiconductor

LM3876 Overture ${ }^{\text {TM }}$

Audio Power Amplifier Series
High-Performance 56W Audio Power Amplifier w/Mute

General Description

The LM3876 is a high-performance audio power amplifier capable of delivering 56 W of continuous average power to an 8Ω load with 0.1% THD $+N$ from $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
The performance of the LM3876, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathbf{S P i K e}^{\text {TM }}$) protection circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature peaks.
The LM3876 maintains an excellent signal-to-noise ratio of greater than $95 \mathrm{~dB}(\mathrm{~min})$ with a typical low noise floor of $2.0 \mu \mathrm{~V}$. It exhibits extremely low THD +N values of 0.06% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMD (SMPTE) typical rating of 0.004%.

Features

- 56 W continuous average output power into 8Ω
- 100W instantaneous peak output power capability
- Signal-to-Noise Ratio $\geq 95 \mathrm{~dB}(\mathrm{~min})$
- An input mute function
- Output protection from a short to ground or to the supplies via internal current limiting circuitry
- Output over-voltage protection against transients from inductive loads
- Supply under-voltage protection, not allowing internal biasing to occur when $\left|\mathrm{V}_{\mathrm{EE}} \mathrm{I}+\left|\mathrm{V}_{\mathrm{CC}}\right| \leq 12 \mathrm{~V}\right.$, thus eliminating turn-on and turn-off transients
- 11-lead TO-220 package
- Wide supply range 20V-94V

Applications

- Component stereo
- Compact stereo
- Self-powered speakers
- Surround-sound amplifiers
- High-end stereo TVs

Typical Application

*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

\dagger Connect Pin 5 to V^{+}for Compatibility with LM3886.
Top View
Order Number LM3876T or LM3876TF
See NS Package Number TA11B for
Staggered Lead Non-Isolated
Package or TF11B for
Staggered Lead Isolated Package

National Semiconductor

LM3886 Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier w/Mute

General Description

The LM3886 is a high-performance audio power amplifier capable of delivering 68 W of continuous average power to a 4Ω load and 38 W into 8Ω with 0.1% THD+N from $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
The performance of the LM3886, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) (SPiKe ${ }^{\text {TM }}$) protection circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature peaks.
The LM3886 maintains an excellent signal-to-noise ratio of greater than 92 dB with a typical low noise floor of $2.0 \mu \mathrm{~V}$. It exhibits extremely low THD +N values of 0.03% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMD (SMPTE) typical rating of 0.004%.

- 38 W cont. avg. output power into 8Ω at $\mathrm{V}_{\mathrm{CC}}= \pm 28 \mathrm{~V}$
- 50 W cont. avg. output power into 8Ω at $\mathrm{V}_{\mathrm{CC}}= \pm 35 \mathrm{~V}$
- 135W instantaneous peak output power capability
- Signal-to-Noise Ratio $\geq 92 \mathrm{~dB}$
- An input mute function
- Output protection from a short to ground or to the supplies via internal current limiting circuitry
- Output over-voltage protection against transients from inductive loads
- Supply under-voltage protection, not allowing internal biasing to occur when $\left|\mathrm{V}_{\mathrm{EE}}\right|+\left|\mathrm{V}_{\mathrm{CC}}\right| \leq 12 \mathrm{~V}$, thus eliminating turn-on and turn-off transients
- 11-lead TO-220 package
- Wide supply range 20V-94V

Applications

- Component stereo
- Compact stereo
- Self-powered speakers
- Surround-sound amplifiers
- High-end stereo TVs

Features

- 68 W cont. avg. output power into 4Ω at $\mathrm{V}_{\mathrm{CC}}= \pm 28 \mathrm{~V}$

Typical Application

*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Plastic Package (Note 12)

Note 1: Preliminary: call you local National Sales Rep. or distributor for availability
Top View
Order Number LM3886T or LM3886TF
See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B (Note 1) for Staggered Lead Isolated Package

LM4651 \& LM4652 Overture ${ }^{\text {TM }}$ Audio Power Amplifier 170W Class D Audio Power Amplifier Solution

General Description

The IC combination of the LM4651 driver and the LM4652 power MOSFET provides a high efficiency, Class D subwoofer amplifier solution.
The LM4651 is a fully integrated conventional pulse width modulator driver IC. The IC contains short circuit, under voltage, over modulation, and thermal shut down protection circuitry. It contains a standby function, which shuts down the pulse width modulation and minimizes supply current. The LM4652 is a fully integrated H-bridge power MOSFET IC in a TO-220 power package. Together, these two IC's form a simple, compact high power audio amplifier solution complete with protection normally seen only in Class $A B$ amplifiers. Few external components and minimal traces between the IC's keep the PCB area small and aids in EMI control.
The near rail-to-rail switching amplifier substantially increases the efficiency compared to Class AB amplifiers. This high efficiency solution significantly reduces the heat sink size compared to a Class AB IC of the same power level. This two-chip solution is optimum for powered subwoofers and self powered speakers.

Key Specifications

■ Output power into 4Ω with < 10% THD. 170W (Typ)

- THD at $10 \mathrm{~W}, 4 \Omega, 10-500 \mathrm{~Hz}$. < 0.3\% THD (Typ)
- Maximum efficiency at 125W 85\% (Typ)
- Standby attenuation. >100dB (Min)

Features

- Conventional pulse width modulation.
- Externally controllable switching frequency.
- 50 kHZ to 200 kHz switching frequency range.
- Integrated error amp and feedback amp.
- Turn-on soft start and under voltage lockout.
- Over modulation protection (soft clipping).
- Short circuit current limiting and thermal shutdown protection.
- 15 Lead TO-220 isolated package.
- Self checking protection diagnostic.

Applications

- Powered subwoofers for home theater and PC's
- Car booster amplifier
- Self-powered speakers

Connection Diagrams

LM4652 Plastic Package (Note 8)

Isolated TO-220 Package
Order Number LM4652TF
See NS Package Number TF15B or
Non-Isolated TO-220 Package
Order Number LM4652TA
See NS Package Number TA15A

LM4663 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

2 Watt Stereo Class D Audio Power Amplifier with Stereo Headphone Amplifier

General Description

The LM4663 is a fully integrated single supply, high efficiency Class D audio power amplifier solution. The LM4663 utilizes a continuous time delta-sigma modulation technique that lowers output noise and THD when compared to conventional pulse width modulators.
The LM4663 also features a stereo headphone amplifier that delivers 80 mW into a 32Ω headset with less than 0.5% THD. The LM4663 has two stereo inputs that can be selected to drive either the headphone amplifier or the Class D amplifier. All amplifiers are protected with thermal shutdown.
In standby mode, the LM4663 draws an extremely low $2 \mu \mathrm{~A}$ supply current. With a 4Ω load, the IC's efficiency for a 250 mW power level is 69%, reaching 83% at a power level of 2 W . The IC features click and pop reduction circuitry that minimizes audible popping during device turn-on and turn-off. The LM4663 is available in a 24 -lead TSSOP package, ideal for portable and desktop computer applications.

Key Specifications

- Efficiency at 2 Watt into 4Ω

83\% (typ)

- Efficiency at 250 mW into 4Ω 69\% (typ)
- Total quiescent power supply current

22mA (typ)

- Total shutdown power supply current
0.15\% (typ)
- THD $+\mathrm{N} 1 \mathrm{kHz}, 20 \mathrm{~mW}, 32 \Omega$ (Headphone) 4.5 V to 5.5 V

Features

- Delta-sigma modulator.
- Two stereo input selector.
- "Click and pop" suppression circuitry.
- Micropower shutdown mode.
- 24 lead TSSOP package (No heatsink required).
- Stereo headphone amplifier.

Applications

- Portable computers
- Desktop computers
- Multimedia Monitors
- P_{0} at $T H D+N=1 \%$
2.1W (typ)
- THD +N at 1 kHz at 1 Watt into 4Ω (Power Amp)
0.2% (typ)

Block Diagram

Connection Diagram

Top View
Order Number LM4663MT
See NS Package Number MTC24
(TSSOP Package)

LM4700

Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes

General Description

The LM4700 is an audio power amplifier capable of delivering typically 30W of continuous average output power into an 8Ω load with less than 0.1% THD $+N$.
The LM4700 has an independent smooth transition fade-in/ out mute and a power conserving standby mode which can be controlled by external logic.
The performance of the LM4700, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) (SPiKe ${ }^{\text {TM }}$) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Key Specifications

- THD +N at 1 kHz at continuous average output power of 25W into 8Ω :
0.1\% (max)
- THD +N from 20 Hz to 20 kHz at 30 W of continuous average output power into 8Ω :
0.08\% (typ)
- Standby current: 2.1 mA (typ)

Features

- SPiKe Protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute function
- Power conserving standby-mode
- Isolated 11-lead TO-220 package
- Wide supply range 20V-66V

Applications

- Component stereo
- Compact stereo

Connection Diagram

Isolated Plastic Package

DS012369-2
Top View
Order Number LM4700TF or LM4700T
See NS Package Number TF11B for Staggered Lead Isolated Package
See TA11B for Staggered Lead Non-Isolated Package
*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.
FIGURE 1. Typical Audio Amplifier Application Circuit

LM4701 Overture ${ }^{\text {TM }}$ Audio Power Amplifier Series 30W Audio Power Amplifier with Mute and Standby Modes

General Description

The LM4701 is an audio power amplifier capable of delivering typically 30 W of continuous average output power into an 8Ω load with less than $0.1 \% \mathrm{THD}+\mathrm{N}$.

The LM4701 has an independent smooth transition fade-in/ out mute and a power conserving standby mode which can be controlled by external logic.
The performance of the LM4701, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathbf{S P i K e}^{\mathrm{TM}}$) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Key Specifications

- THD+N at 1 kHz at continuous average output power of 25W into 8Ω :
- THD +N from 20 Hz to 20 kHz at 30 W of continuous average output power into 8Ω :
0.08\% (typ)
- Standby current:
2.1 mA (typ)

Features

- SPiKe Protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute function
- Power conserving standby-mode
- Non-Isolated 9-lead TO-220 package
- Wide supply range $20 \mathrm{~V}-66 \mathrm{~V}$

Applications

- TVs
- Component stereo
- Compact stereo

Typical Application

*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component functional description.
FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Plastic Package

DS100835-2
Top View
Order Number LM4701T See NS Package Number TA9A For Staggered Lead Non-Isolated Package

Only a 9-Pin Package

LM4752

Stereo 11W Audio Power Amplifier

General Description

The LM4752 is a stereo audio amplifier capable of delivering 11W per channel of continuous average output power to a 4Ω load, or 7 W per channel into 8Ω using a single 24 V supply at 10% THD+N.
The LM4752 is specifically designed for single supply operation and a low external component count. The gain and bias resistors are integrated on chip, resulting in a 11 W stereo amplifier in a compact 7 pin TO220 package. High output power levels at both 20 V and 24 V supplies and low external component count offer high value for compact stereo and TV applications. A simple mute function can be implemented with the addition of a few external components.

- P_{O} at 10% THD +N @ 1 kHz into 8Ω bridged TO-263 package at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$: 5 W (typ)

Features

- Drives 4Ω and 8Ω loads
- Internal gain resistors ($A_{V}=34 \mathrm{~dB}$)
- Minimum external component requirement
- Single supply operation
- Internal current limiting
- Internal thermal protection
- Compact 7-lead TO-220 package
- Low cost-per-watt
- Wide supply range 9V-40V

Applications

- Compact stereos
- Stereo TVs
- Mini component stereos
- Multimedia speakers

Key Specifications

- Output power at 10% THD +N with 1 kHz into 4Ω at $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}: 11 \mathrm{~W}$ (typ)
- Output power at 10% THD +N with 1 kHz into 8Ω at $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}: 7 \mathrm{~W}$ (typ)
- Closed loop gain: 34dB (typ)
- P_{0} at 10% THD $+N$ @ 1 kHz into 4Ω single-ended TO-263 package at $\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$: 2.5 W (typ)

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram
Plastic Package

Package Description Top View
Order Number LM4752T
Package Number TA07B

Package Description Top View
Order Number LM4752TS
Package Number TS07B

LM4753

Dual 10W Audio Power Amplifier w/Mute, Standby and Volume Control

General Description

The LM4753 is a stereo audio amplifier capable of delivering $10 \mathrm{~W} /$ channel at 10% distortion into a 8Ω load. The power amp has an internally set gain of 30 dB . A $0 \mathrm{~V}-5 \mathrm{~V}$ DC controlled volume block provides 80 dB of attenuation from input to line-out. Line outputs are available after the volume control for signal routing.
The amplifier has a smooth transition fade-in/out mute and a power conserving standby function which are controlled through TTL or CMOS logic. Both functions provide over 75 dB of attenuation.
The LM4753 maintains an excellent Signal-to-Noise ratio of greater than 70 dB with a low noise floor less than 2 mV . The IC also maintains above 50 dB of channel separation.
The LM4753 is available in a 15 -lead non-isolated plastic package and is designed for use in TV applications requiring single supply operation.

Key Specifications

- Output power into 8Ω at 10% THD
- Maximum operating voltage 28 V
- Power output stage Noise floor 2 mV
- Line output Noise floor $55 \mu \mathrm{~V}$
- 0V-5V DC controlled volume attenuation 80 dB
- Mute attenuation 75 dB
- Standby-mode supply current 7 mA

Features

- Quiet fade-in/out mute function
- Stereo variable line-out pins
- AC output short circuit protection
- Thermal shutdown protection

Applications
 - Stereo TVs
 - Component stereo
 - Compact stereo

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

LM4755

Stereo 11W Audio Power Amplifier with Mute

General Description

The LM4755 is a stereo audio amplifier capable of delivering 11 W per channel of continuous average output power to a $4 \Omega 2$ load or 7 W per channel into 8Ω using a single 24 V supply at 10% THD $+N$. The internal mute circuit and pre-set gain resistors provide for a very economical design solution.
Output power specifications at both 20 V and 24 V supplies and low external component count offer high value to consumer electronic manufacturers for stereo TV and compact stereo applications. The LM4755 is specifically designed for single supply operation.

Key Specifications

- Output power at 10% THD with 1 kHz into 4Ω at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}: 11 \mathrm{~W}$ (typ)
- Output power at 10% THD with 1 kHz into 8Ω at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}: 7 \mathrm{~W}$ (typ)
- Closed loop gain: 34dB (typ)
- P_{o} at 10% THD+N @ 1 kHz into 4Ω single-ended TO-263 package at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$: 2.5 W (typ)
- P_{o} at 10% THD+N @ 1 kHz into 8Ω bridged TO-263 package at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$: 5 W (typ)

Features

- Drives 4Ω and 8Ω loads
- Integrated mute function
- Internal Gain Resistors
- Minimal external components needed
- Single supply operation
- Internal current limiting and thermal protection
- Compact 9-lead TO-220 package
- Wide supply range $9 \mathrm{~V}-40 \mathrm{~V}$

Applications

- Stereos TVs
- Compact stereos
- Mini component stereos

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagrams
Plastic Package

Package Description Top Vlew
Order Number LM4755T
Package Number TA09A

Order Number LM4755TS Package Number TS9A

LM4765 Overture ${ }^{\text {TM }}$
 Audio Power Amplifier Series Dual 30W Audio Power Amplifier with Mute and Standby Modes

General Description

The LM4765 is a stereo audio amplifier capable of delivering typically 30 W per channel of continuous average output power into an 8Ω load with less than 0.1% THD+N.
Each amplifier has an independent smooth transition fade-in/ out mute and a power conserving standby mode which can be controlled by external logic.
The performance of the LM4765, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) (SPiKe ${ }^{\text {TM }}$) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Key Specifications

- THD +N at 1 kHz at $2 \times 25 \mathrm{~W}$ continuous average output power into 8Ω :
- $\mathrm{THD}+\mathrm{N}$ at 1 kHz at continuous average output power of $2 \times 30 \mathrm{~W}$ into 8Ω :
0.009\% (typ)
- Standby current:
6.5mA (typ)

Features

- SPiKe Protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute mode
- Standby-mode
- Non-Isolated 15-lead TO-220 package
- Wide supply range $20 \mathrm{~V}-66 \mathrm{~V}$

Applications

- High-end stereo TVs
- Component stereo
- Compact stereo

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit
Note: Numbers in parentheses represent pinout for amplifier B.
*Optional component dependent upon specific design requirements.

Connection Diagram

Plastic Package

DS100927-2
Top View
Non-Isolated Package
Order Number LM4765T See NS Package Number TA15A

LM4766 Overture ${ }^{\text {TM }}$

Audio Power Amplifier Series Dual 40W Audio Power Amplifier with Mute

General Description

The LM4766 is a stereo audio amplifier capable of delivering typically 40W per channel with the non-isolated 'T' package and 30W per channel with the isolated 'TF' package of continuous average output power into an 8Ω load with less than 0.1% (THD+N).
The performance of the LM4766, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) ($\mathbf{S P i K e}^{\text {TM }}$) Protection Circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe Protection means that these parts are safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.
Each amplifier within the LM4766 has an independent smooth transition fade-in/out mute that minimizes output pops. The IC's extremely low noise floor at $2 \mu \mathrm{~V}$ and its extremely low THD +N value of 0.06% at the rated power make the LM4766 optimum for high-end stereo TVs or minicomponent systems.

Key Specifications

- THD +N at 1 kHz at $2 \times 30 \mathrm{~W}$ continuous average output power into 8Ω :
0.1% (max)
- THD +N at 1 kHz at continuous average output power of $2 \times 30 \mathrm{~W}$ into 8Ω :
0.009\% (typ)

Features

- SPiKe Protection
- Minimal amount of external components necessary
- Quiet fade-in/out mute mode
- Non-Isolated 15-lead TO-220 package
- Wide Supply Range 20V-78V

Applications

- High-end stereo TVs
- Component stereo
- Compact stereo

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit
Note: Numbers in parentheses represent pinout for amplifier B.
*Optional component dependent upon specific design requirements.

Connection Diagram

Plastic Package

Top View
Non-Isolated TO-220 Package
Order Number LM4766T
See NS Package Number TA15A
Isolated TO-220 Package
Order Number LM4766TF See NS Package Number TF15B

LM4808 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series
 Dual 105 mW Headphone Amplifier

General Description

The LM4808 is a dual audio power amplifier capable of delivering 105 mW per channel of continuous average power into a 16Ω load with $0.1 \%(T H D+N)$ from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4808 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The unity-gain stable LM4808 can be configured by external gain-setting resistors.

Typical Application

*Refer to the Application Information Section for information concerning proper selection of the input and output coupling capacitors.
FIGURE 1. Typical Audio Amplifier Application Circuit

Key Specifications

- THD+N at 1 kHz at 105 mW continuous average output power into 16Ω
0.1\% (max)
- THD+N at 1 kHz at 70 mW continuous average output power into 32Ω
0.1\% (typ)
- Output power at 0.1% THD +N at 1 kHz into $32 \Omega 70 \mathrm{~mW}$ (typ)

Features

- SOP and MSOP surface mount packaging
- Switch on/off click suppression
- Excellent power supply ripple rejection
- Unity-gain stable
- Minimum external components

Applications

- Headphone Amplifier
- Personal Computers
- Microphone Preamplifier

Connection Diagram

SOP \& MSOP Package

Order Number LM4808M, LM4808MM See NS Package Number M08A, MUA08A

LM4830

Two-Way Audio Amplification System with Volume Control

General Description

The LM4830 is an integrated solution for two-way audio amplification. It contains a bridge-connected audio power amplifier capable of delivering 1W of continuous average power to an 8Ω load with less than 1% THD from a 5 V power supply. It also has the capability of driving 100 mW into a single-ended 32Ω impedance for headset operation. There is a 30 dB attenuator in front of a bridged power amplifier with 6 dB of gain. The attenuation is controlled through 4 bits of parallel digital control; 15 steps of 2 dB each.
The device also contains a microphone preamp with two selectable inputs. Mic2 is selected when HS is high and A1 is in single-ended mode. Mic1 is selected when HS is low and A1 is in bridged mode. This configuration is optimum for switching between an internal system speaker and external headset with microphone. The device also incorporates a buffer used for driving capacitive loads.
The LM4830 also provides a low-current consumption shutdown mode making it optimally suited for low-power portable systems. In addition, the device has an internal thermal shutdown protection mechanism.

Key Specifications

- THD at 1 W cont. avg P_{O} into 8Ω : 1% (max)
- Instantaneous peak output power: 1.4W

■ Shutdown current: $0.5 \mu \mathrm{~A}$ (typ)
■ Supply voltage range: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$

Features

- 4-bit digital control for 30 dB of volume attenuation
- Two selectable microphone inputs
- High performance microphone preamp
- Extra buffer for driving long cables
- No bootstrap capacitors or snubber circuits are necessary
- Small Outline (SO) packaging
- Thermal shutdown protection circuitry

Applications

- Hands-free phone systems
- Mobile phone accessories
- Desktop conference phones
- Portable computers
- Teleconference computer applications

$$
\begin{aligned}
& \text { Dual-In-Line and } \\
& \text { Small Outline Packages } \\
& \text { NC - } \\
& \text { GND }
\end{aligned}
$$

Typical Application

FIGURE 1. Typical Application Circuit

LM4831 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

Multimedia Computer Audio Chip

General Description

The LM4831 is a monolithic integrated circuit that provides a stereo three input mixer, two stereo input analog multiplexer, a stereo line out and a dual 1W bridged audio power amplifier. In addition, a low noise microphone preamp is included on-chip.
The LM4831 is ideal for multimedia computers since it incorporates an input mixer, analog multiplexer, and configurable stereo audio power amplifier, as well as a microphone preamp stage. This combination allows for all of the analog audio processing to be enclosed in a 44-pin TQFP package. The LM4831 features an externally controlled, low-power consumption shutdown mode, as well as both headphone and docking station modes. To temporarily override the shutdown mode and allow audio signals to be amplified, the LM4831 provides four "beep" pins.

Block Diagram

FIGURE 1. LM4831 Block Diagram

Key Specifications

- THD $+N$ at $1 W$ into 8Ω
- Microphone Input Referred Noise
- Supply Current - Bridged Mode
- Shutdown Current
0.6\% (typ)
$10 \mu \mathrm{~V}$ (typ)
16mA (typ)
$2 \mu \mathrm{~A}$ (typ)

Features

- Stereo 1W audio power amplifier
- "Click and pop" suppression circuitry
- Stereo three input mixer
- Shutdown mode
- Multiple operating modes - bridged, single-ended and docking station modes
- Internal mux for switching in/out external filter
- Beep circuitry for "wake-up" while in shutdown
- 44 Pin TQFP Packaging

Applications

- Portable and Desktop Computers

Connection Diagram

Top View
Order Number LM4831VF See NS Package Number VEJ44A

LM4832 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series
 Digitally Controlled Tone and Volume Circuit with Stereo Audio Power Amplifier, Microphone Preamp Stage and National 3D Sound

General Description

The LM4832 is a monolithic integrated circuit that provides volume and tone (bass and treble) controls as well as a stereo audio power amplifier capable of producing 250 mW (typ) into 8Ω or 90 mW (typ) into 32Ω with less than 1.0% THD. In addition, a two input microphone preamp stage, with volume control, capable of driving a $1 \mathrm{k} \Omega$ load is implemented on chip.
The LM4832 also features National's 3D Sound circuitry which can be externally adjusted via a simple RC network. For maximum system flexibility, the LM4832 has an externally controlled, low-power consumption shutdown mode, and an independent mute for power and microphone amplifiers.
Boomer ${ }^{\circledR}$ audio integrated circuits were designed specifically to provide high quality audio while requiring few external components. Since the LM4832 incorporates tone and volume controls, a stereo audio power amplifier and a microphone preamp stage, it is optimally suited to multimedia monitors and desktop computer applications.

Key Specifications

- Output Power at 10% into 8Ω

350mW (typ)

- Output Power at 10% into 32Ω
- THD +N at 75 mW into 32Ω at 1 kHz
- Microphone Input Referred Noise
- Supply Current
- Shutdown Current

Features

- Independent Left and Right Output Volume Controls
- Treble and Bass Control
- National 3D Sound
- $1^{2} \mathrm{C}$ Compatible Interface
- Two Microphone Inputs with Selector
- Software Controlled Shutdown Function

Applications

- Multimedia Monitors
- Portable and Desktop Computers

Block Diagram

FIGURE 1. LM4832 Block Diagram

Connection Diagram

LM4834 Boomer® ${ }^{\circledR}$ Audio Power Amplifier Series

1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp

General Description

The LM4834 is a monolithic integrated circuit that provides DC volume control, and a bridged audio power amplifier capable of producing 1.75 W into 4Ω with less than 1.0% (THD). In addition, the headphone/lineout amplifier is capable of driving 70 mW into 32Ω with less than 0.1% (THD). The LM4834 incorporates a volume control and an input microphone preamp stage capable of driving a $1 \mathrm{k} \Omega$ load impedance.
Boomer ${ }^{\circledR}$ audio integrated circuits were designed specifically to provide high quality audio while requiring a minimum amount of external components in surface mount packaging. The LM4834 incorporates a DC volume control, a bridged audio power amplifier and a microphone preamp stage, making it optimally suited for multimedia monitors and desktop computer applications.
The LM4834 features an externally controlled, low-power consumption shutdown mode, and both a power amplifier and headphone mute for maximum system flexibility and performance.

Block Diagram

FIGURE 1. LM4834 Block Diagram

Key Specifications

- THD at 1.1W continuous average output power into 8Ω at 1 kHz
0.5\% (max)
- Output Power into 4Ω at 1.0% THD+N
1.75W (typ)
- THD at 70 mW continuous average output power into 32Ω at 1 kHz
0.1\% (typ)
- Shutdown Current
1.0رA (max)
- Supply Current
17.5mA (typ)

Features

- PC98 Compliant
- "Click and Pop" suppression circuitry
- Stereo line level outputs with mono input capability for system beeps
- Microphone preamp with buffered power supply
- DC Volume Control Interface
- Thermal shutdown protection circuitry

Applications

- Multimedia Monitors
- Desktop and Portable Computers

LM4835 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

Stereo 2W Audio Power Amplifiers with DC Volume Control and Selectable Gain

General Description

The LM4835 is a monolithic integrated circuit that provides DC volume control, and stereo bridged audio power amplifiers capable of producing 2 W into 4Ω (Note 1) with less than 1.0% THD or 2.2 W into 3Ω (Note 2) with less than 1.0% THD.
Boomer® audio integrated circuits were designed specifically to provide high quality audio while requiring a minimum amount of external components. The LM4835 incorporates a DC volume control, stereo bridged audio power amplifiers and a selectable gain or bass boost, making it optimally suited for multimedia monitors, portable radios, desktop, and portable computer applications.
The LM4835 features an externally controlled, low-power consumption shutdown mode, and both a power amplifier and headphone mute for maximum system flexibility and performance.
Note 1: When properly mounted to the circuit board, the LM4835MTE will deliver 2 W into 4Ω. The LM4835MT will deliver 1.1 W into 8Ω. See the Application Information section for LM4835MTE usage information.

Note 2: An LM4835MTE which has been properly mounted to the circuit board and forced-air cooled will deliver 2.2 W into 3Ω.

Block Diagram

FIGURE 1. LM4835 Block Diagram

Key Specifications

- P_{0} at 1% THD $+N$
- into 3Ω (LM4835MTE) 2.2W (typ)
- into 4Ω (LM4835MTE) 2.0W (typ)
- into 8Ω (LM4835) 1.1W (typ)
- Single-ended mode THD+N at 85 mW into $32 \Omega \quad 1.0 \%$ (typ)
■ Shutdown current $\quad 0.7 \mu \mathrm{~A}$ (typ)

Features

- PC98 Compliant
- DC Volume Control Interface
- System Beep Detect
- Stereo switchable bridged/single-ended power amplifiers
- Selectable internal/external gain and bass boost configurable
- "Click and pop" suppression circuitry
- Thermal shutdown protection circuitry

Applications

- Portable and Desktop Computers
- Multimedia Monitors
- Portable Radios, PDAs, and Portable TVs

Connection Diagram

Top View
Order Number LM4835MT
See NS Package Number MTC28 for TSSOP Order Number LM4835MTE See NS Package Number MXA28A for Exposed DAP TSSOP

National Semiconductor

LM4836 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series
 Stereo 2W Audio Power Amplifiers with DC Volume Control, Bass Boost, and Input Mux

General Description

The LM4836 is a monolithic integrated circuit that provides DC volume control, and stereo bridged audio power amplifiers capable of producing 2 W into 4Ω (Note 1) with less than $1.0 \% \mathrm{THD}+\mathrm{N}$, or 2.2 W into 3Ω (Note 2) with less than 1.0% THD +N .
Boomer ${ }^{\circledR}$ audio integrated circuits were designed specifically to provide high quality audio while requiring a minimum amount of external components. The LM4836 incorporates a DC volume control, stereo bridged audio power amplifiers, selectable gain or bass boost, and an input mux making it optimally suited for multimedia monitors, portable radios, desktop, and portable computer applications.
The LM4836 features an externally controlled, low-power consumption shutdown mode, and both a power amplifier and headphone mute for maximum system flexibility and performance.
Note 1: When properly mounted to the circuit board, the LM4836MTE will deliver 2 W into 4Ω. The LM4836MT will deliver 1.1 W into 8Ω. See the Application Information section for LM4836MTE usage information.
Note 2: An LM4836MTE which has been properly mounted to the circuit board and forced-air cooled will deliver 2.2 W into 3Ω.

Key Specifications

- P_{0} at 1% THD $+N$
- into 3Ω (LM4836MTE)
- into 4Ω (LM4836MTE)
- into 8Ω (LM4836) 1.1W (typ)
.2W (typ)
- Single-ended mode THD+N at 85 mW into $32 \Omega \quad 1.0 \%$ (typ)
- Shutdown current
$0.2 \mu \mathrm{~A}$ (typ)

Features

- PC98 and PC99 Compliant
- DC Volume Control Interface
- Input mux
- System Beep Detect
- Stereo switchable bridged/single-ended power amplifiers
- Selectable internal/external gain and bass boost configurable
- "Click and pop" suppression circuitry
- Thermal shutdown protection circuitry

Applications

- Portable and Desktop Computers
- Multimedia Monitors
- Portable Radios, PDAs, and Portable TVs

Connection Diagram

Top View
Order Number LM4836MT
See NS Package Number MTC28 for TSSOP
Order Number LM4836MTE
See NS Package Number MXA28A for Exposed DAP TSSOP

CNational Semiconductor

LM4850 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

Mono 1.5 W / Stereo $\mathbf{3 0 0} \mathbf{~ m W}$ Power Amplifier

General Description

The LM4850 is an audio power amplifier capable of delivering 1.5 W (typ) of continuous average power into a mono 4Ω bridged-tied load (BTL) with 1% THD+N or 95 mW per channel of continuous average power into stereo 32Ω single-ended (SE) loads with 1% THD+N, using a 5 V power supply.
The LM4850 can automatically switch between mono BTL and stereo SE modes utilizing a headphone sense pin. It is ideal for any system that provides both a monaural speaker output and a stereo line or headphone output
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4850 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The LM4850 features an externally controlled, micropower consumption shutdown mode and thermal shutdown protection. The unity-gain stable LM4850's gain is set by external gain-setting resistors

Key Specifications

- THD +N at $1 \mathrm{kHz}, 1.5 \mathrm{~W}$ into $4 \Omega \mathrm{BTL}$

1\% (typ)

- THD +N at $1 \mathrm{kHz}, 1.1 \mathrm{~W}$ into $8 \Omega \mathrm{BTL}$
- THD +N at $1 \mathrm{kHz}, 300 \mathrm{~mW}$ into $8 \Omega \mathrm{SE}$
- THD +N at $1 \mathrm{kHz}, 95 \mathrm{~mW}$ into 32Ω SE
- Single Supply Operation
- Shutdown Current

1\% (typ)
1\% (typ)
2.4 to 5.5 V
$44 \mu \mathrm{~A}$ (typ)

Features

- Mono 1.5W BTL or stereo 300 mW output
- Headphone sense
- "Click and pop" suppression circuitry
- No bootstrap capacitors required
- Thermal shutdown protection
- Unity-gain stable
- Low shutdown current

Applications

- Portable computers
- Desktop computers
- PDA's
- Handheld games
- Cell phones

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

LM4860 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

Series 1W Audio Power Amplifier with Shutdown Mode

General Description

The LM4860 is a bridge-connected audio power amplifier capable of delivering 1 W of continuous average power to an 8Ω load with less than 1% THD $+N$ over the audio spectrum from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4860 does not require output coupling capacitors, bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The LM4860 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism. It also includes two headphone control inputs and a headphone sense output for external monitoring.
The unity-gain stable LM4860 can be configured by external gain setting resistors for differential gains of up to 10 without the use of external compensation components. Higher gains may be achieved with suitable compensation.

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

Key Specifications

- THD+N at IW continuous average output power into 8Ω : 1% (max)
- Instantaneous peak output power: >2W
- Shutdown current: $0.6 \mu \mathrm{~A}$ (typ)

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SO) packaging
- Compatible with PC power supplies
- Thermal shutdown protection circuitry
- Unity-gain stable.
- External gain configuration capability
- Two headphone control inputs and headphone sensing output

Applications

- Personal computers
- Portable consumer products
- Cellular phones
- Self-powered speakers
- Toys and games

Connection Diagram

Top View
Order Number LM4860M See NS Package Number M16A

LM4861 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

1.1W Audio Power Amplifier with Shutdown Mode

General Description

The LM4861 is a bridge-connected audio power amplifier capable of delivering 1.1 W of continuous average power to an 8Ω load with 1% THD $+N$ using a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4861 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.
The LM4861 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4861 can be configured by external gain-setting resistors for differential gains of up to 10 without the use of external compensation components. Higher gains may be achieved with suitable compensation.

Key Specifications

- THD +N for 1 kHz at 1 W continuous average output power into 8Ω
1.0\% (max)

■ Output power at 10% THD +N
1.5W (typ) at 1 kHz into 8Ω
$0.6 \mu \mathrm{~A}$ (typ)

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SO) packaging
- Compatible with PC power supplies
- Thermal shutdown protection circuitry
- Unity-gain stable
- External gain configuration capability

Applications

- Personal computers
- Portable consumer products
- Self-powered speakers
- Toys and games

Connection Diagram

Small Outline Package

Top View
Order Number LM4861M
See NS Package Number M08A

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

National Semiconductor

LM4862 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

 675 mW Audio Power Amplifier with Shutdown Mode
General Description

The LM4862 is a bridge-connected audio power amplifier capable of delivering typically 675 mW of continuous average power to an 8Ω load with 1% THD $+N$ from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4862 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.
The LM4862 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4862 can be configured by external gain-setting resistors.

Key Specifications

- THD+N for 500 mW continuous average output power at 1 kHz into 8Ω
- Output power at 10% THD+N at 1 kHz 8Ω

1\% (max)

- Shutdown Current

Features

- No output coupling capacitors, bootstrap capacitors or snubber circuits are necessary
- Small Outline or DIP packaging
- Unity-gain stable
- External gain configuration capability
- Pin compatible with LM4861

Applications

- Portable computers
- Cellular phones
- Toys and games

Typical Application

*Refer to the Application Information section for information concerning proper selection of the input coupling capacitor.

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Small Outline and DIP Package

Top View
Order Number LM4862M, LM4862N See NS Package Number M08A or N08E

LM4863 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

Dual 2.2W Audio Amplifier Plus Stereo Headphone Function

General Description

The LM4863 is a dual bridge-connected audio power amplifier which, when connected to a 5 V supply, will deliver 2.2W to a 4Ω load (Note 1) or 2.5 W to a 3Ω load (Note 2) with less than 1.0% THD+N. In addition, the headphone input pin allows the amplifiers to operate in single-ended mode when driving stereo headphones.
Boomer audio power amplifiers were designed specifically to provide high quality output power from a surface mount package while requiring few external components. To simplify audio system design, the LM4863 combines dual bridge speaker amplifiers and stereo headphone amplifiers on one chip.
The LM4863 features an externally controlled, low-power consumption shutdown mode, a stereo headphone amplifier mode, and thermal shutdown protection. It also utilizes circuitry to reduce "clicks and pops" during device turn-on.
Note 1: An LM4863MTE or LM4863LQ that has been properly mounted to a circuit board will deliver 2.2 W into 4Ω. The other package options for the LM4863 will deliver 1.1W into 8Ω. See the Application Information sections for further information concerning the LM4863MTE and LM4863LQ.
Note 2: An LM4863MTE or LM4863LQ that has been properly mounted to a circuit board and forced-air cooled will deliver 2.5 W into 3Ω.

Key Specifications

- P_{0} at 1% THD $+N$
- LM4863LQ, $3 \Omega, 4 \Omega$ loads
2.5W(typ), 2.2W(typ)
- LM4863MTE, 3Ω, 4Ω loads
2.5W(typ), 2.2W(typ)
- LM4863MTE, 8Ω load
1.1W(typ)
- LM4863, 8Ω
1.1W(typ)
- Single-ended mode THD +N at 75 mW into 32Ω
0.5\%(max)
- Shutdown current
$0.7 \mu \mathrm{~A}(\mathrm{typ})$
- Supply voltage range
2.0 V to 5.5 V

Features

- Stereo headphone amplifier mode
- "Click and pop" suppression circuitry
- Unity-gain stable
- Thermal shutdown protection circuitry
- SOIC, DIP, TSSOP and exposed-DAP TSSOP and LLP packages

Applications

- Multimedia monitors
- Portable and desktop computers
- Portable televisions

Typical Application

Note: Pin out shown for DIP and SO packages. Refer to the Connection Diagrams for the pinout of the TSSOP, Exposed-DAP TSSOP, and Exposed-DAP LLP packages.

Connection Diagrams

Top View
Order Number LM4863M, LM4863N See NS Package Number M16B for SO See NS Package Number N16E for DIP

Order Number LM4863MTE
See NS Package Number MXA20A for Exposed-DAP TSSOP

Top View
Order Number LM4863MT
See NS Package Number MTC20 for TSSOP

Top View

See NS Package Number LQA24A for Exposed-DAP LLP

LM4864 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series
 300 mW Audio Power Amplifier with Shutdown Mode

General Description

The LM4864 is a bridged audio power amplifier capable of delivering 300 mW of continuous average power into an 8Ω load with 1% THD +N from a 5 V power supply.
Boomer ${ }^{\circledR}$ audio power amplifiers were designed specifically to provide high quality output power from a low supply voltage while requiring a minimal amount of external components. Since the LM4864 does not require output coupling capacitors, bootstrap capacitors or snubber networks, it is optimally suited for low-power portable applications.
The LM4864 features an externally controlled, low power consumption shutdown mode, and thermal shutdown protection.
The closed loop response of the unity-gain stable LM4864 can be configured by external gain-setting resistors. The device is available in multiple package types to suit various applications.

Key Specifications

- THD +N at 1 kHz for 300 mW continuous average output power into 8Ω
1.0% (max)
- THD +N at 1 kHz for 300 mW continuous average output power into 16Ω
1.0\% (max)
- Shutdown current
$0.7 \mu \mathrm{~A}$ (typ)

Features

- MSOP, SOP, and DIP packaging
- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Thermal shutdown protection circuitry
- Unity-gain stable
- External gain configuration capability

Applications

- Cellular phones
- Personal computers
- General purpose audio

Connection Diagram

DS012607-1
FIGURE 1. Typical Audio Amplifier Application Circuit

LM4865 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

750 mW Audio Power Amplifier with DC Volume Control and Headphone Switch

General Description

The LM4865 is a mono bridged audio power amplifier with DC voltage volume control. The LM4865 is capable of delivering 750 mW of continuous average power into an 8Ω load with less than 1% THD when powered by a 5 V power supply. Switching between bridged speaker mode and headphone (single ended) mode is accomplished using the headphone sense pin. To conserve power in portable applications, the LM4865's micropower shutdown mode ($l_{Q}=0.7 \mu \mathrm{~A}$, typ) is activated when less than 300 mV is applied to the DC Vol//डD pin.
Boomer audio power amplifiers are designed specifically to provide high power audio output while maintaining high fidelity. They require few external components and operate on low supply voltages.

Applications

- GSM phones and accessories, DECT, office phones
- Hand held radio
- Other portable audio devices

Key Specifications

- P_{O} at 1.0% THD +N into 8Ω

750mW (typ) SO, micro SMD

- P_{O} at 10% THD +N into 8Ω

1W (typ) SO, micro SMD

- Shutdown current
$0.7 \mu \mathrm{~A}$ (typ)
- Supply voltage range
2.7V to 5.5 V

Features

- DC voltage volume control
- Headphone amplifier mode
- "Click and pop" suppression
- Shutdown control when volume control pin is low
- Thermal shutdown protection

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit
(Numbers in () are specific to the micro SMD package)

Connection Diagrams

micro SMD Package

Top Vlew
Order Number LM4865IBP
See NS Package Number BPA08CFB

Small Outline Package (SO)
Mini Small Outline Package (MSOP)

Order Number LM4865M, LM4865MM
See NS Package Number M08A, MUA08A

LM4870 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

1.1W Audio Power Amplifier with Shutdown Mode

General Description

The LM4870 is a bridge-connected audio power amplifier capable of delivering 1.1 W of continuous average power to an 8Ω load with less than 0.5% THD+N over the audio spectrum from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal number of external components. Since the LM4870 does not require output coupling capacitors, bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The LM4870 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism. It also includes two headphone control inputs and a headphone sense output for external monitoring. The LM4870 is unity-gain stable and the gain is set using external resistors.

Key Specifications

- THD +N at 1 W into 8Ω
0.5\% (max)
- Output power into 8Ω at 1 kHz at 10% THD+N 1.5 W (typ)
- Shutdown Current
$0.6 \mu \mathrm{~A}$ (typ)

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SOIC) power packaging
- Unity-gain stable
- External gain configuration capability

Applications

- Personal computers
- Desktop computers
- Low voltage audio system

Typical Application

Connection Diagram

Top View
Order Number LM4870M
See NS Package Number M16A

FIGURE 1. Typical Audio Amplifier Application Circuit

National Semiconductor

LM4871 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

1.1W Audio Power Amplifier with Shutdown Mode

General Description

The LM4871 is a bridge-connected audio power amplifier capable of delivering typically 1.1 W of continuous average power to an 8Ω load with 0.5% (THD) from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4871 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optionally suited for low-power portable systems.
The LM4871 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4871 can be configured by external gain-setting resistors.

Key Specifications

- THD at 1 kHz at 1 W continuous average output power into 8Ω 0.5\% (max)
- Output power at 10% THD +N at 1 kHz into $8 \Omega 1.5 \mathrm{~W}$ (typ)
- Shutdown Current
$0.6 \mu \mathrm{~A}$ (typ)
- Supply voltage range 2.0 V to 5.5 V

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline or DIP packaging
- Unity-gain stable
- External gain configuration capability
- Pin compatible with LM4861

Applications

- Portable Computers
- Desktop Computers
- Low Voltage Audio Systems

Typical Application

Connection Diagram

Small Outline and DIP Package

Top View
Order Number LM4871M or LM4871N See NS Package Number M08A or N08E

FIGURE 1. Typical Audio Amplifier Application Circuit

LM4872 Boomer® ${ }^{\circledR}$ Audio Power Amplifier Series
 1 Watt Audio Power Amplifier in micro SMD package

General Description

The LM4872 is a bridge-connected audio power amplifier capable of delivering 1 W of continuous average power to an 8Ω load with less than $.2 \%$ (THD) from a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4872 does not require output coupling capacitors or bootstrap capacitors. It is optimally suited for low-power portable applications.
The LM4872 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4872 can be configured by external gain-setting resistors.

Key Specifications

- Power Output at 0.2\% THD 1W (typ)
- Shutdown Current $0.01 \mu \mathrm{~A}$ (typ)

Features

- micro SMD package (see App. note AN-1112)
- 5V - 2V operation
- No output coupling capacitors or bootstrap capacitors.
- Unity-gain stable
- External gain configuration capability

Applications

- Cellular Phones
- Portable Computers
- Low Voltage Audio Systems

LM4873 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series .

Dual 2.1W Audio Amplifier Plus Stereo Headphone Function

General Description

The LM4873 is a dual bridge-connected audio power amplifier which, when connected to a 5 V supply, will deliver 2.1W to a 4Ω load (Note 1) or 2.4 W to a 3Ω load (Note 2) with less than 1.0% THD+N. In addition, the headphone input pin allows the amplifiers to operate in single-ended mode when driving stereo headphones. A MUX control pin allows selection between the two stereo sets of amplifier inputs. The MUX control can also be used to select two different closed-loop responses.
Boomer audio power amplifiers were designed specifically to provide high quality output power from a surface mount package while requiring few external components. To simplify audio system design, the LM4873 combines dual bridge speaker amplifiers and stereo headphone amplifiers on one chip.
The LM4873 features an externally controlled, low-power consumption shutdown mode, a stereo headphone amplifier mode, and thermal shutdown protection. It also utilizes circuitry to reduce "clicks and pops" during device turn-on.
Note 1: An LM4873MTE-1, LM4873MTE, or LM4873LQ that has been properly mounted to a circuit board will deliver 2.1W into 4Ω. The other package options for the LM4873 will deliver 1.1 W into 8Ω. See the Application Information sections for further information concerning the LM4873MTE-1, LM4873MTE, and the LM4873LQ.
Note 2: An LM4873MTE-1, LM4873MTE, or LM4873LQ that has been properly mounted to a circuit board and forced-air cooled will deliver 2.4 W into 3Ω.

Key Specifications

- P_{\circ} at 1% THD $+N$

LM4873LQ, $3 \Omega, 4 \Omega$ loads	2.4 W (typ), 2.1 W (typ)
LM4873MTE-1, $3 \Omega, 4 \Omega$ loads	2.4 W (typ), 2.1 W (typ)
LM4873MTE, 4Ω	1.9 W (typ)
LM4873, 8Ω	1.1 W (typ)
Single-ended mode THD+N	0.5% (max)
at 75 mW into 32Ω	
Shutdown current	$0.7 \mu \mathrm{~A}$ (typ)
Supply voltage range	2 V to 5.5 V

Features

- Input mux control and two separate inputs per channel
- Stereo headphone amplifier mode
- "Click and pop" suppression circuitry
- Thermal shutdown protection circuitry
- TSSOP and exposed-DAP TSSOP and LLP packages

Applications

- Multimedia monitors
- Portable and desktop computers
- Portable audio systems

Typical Application

[^4]
Connection Diagrams

Top View
Order Number LM4873MTE-1
See NS Package Number MXA28A for Exposed-DAP TSSOP

Top View
Order Number LM4873MT, LM4873MTE
See NS Package Number MTC20 for TSSOP See NS Package Number MXA20A for Exposed-DAP TSSOP

Top View
Order Number LM4873LQ
See NS Package Number LQA24A for Exposed-DAP LLP

LM4876 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

1.1W Audio Power Amplifier with Logic Low Shutdown

General Description

The LM4876 is a single 5 V supply bridge-connected audio power amplifier capable of delivering 1.1W (typ) of continuous average power to an 8Ω load with 0.5% THD+N.
Like other audio amplifiers in the Boomer series, the LM4876 is designed specifically to provide high quality output power with a minimal amount of external components. The LM4876 does not require output coupling capacitors, bootstrap capacitors, or snubber networks. It is perfectly suited for lowpower portable systems.
The LM4876 features an active low externally controlled, micro-power shutdown mode. Additionally, the LM4876 features an internal thermal shutdown protection mechanism. For PCB space efficiency, the LM4876 is available in MSOP and SO surface mount packages.
The unity-gain stable LM4876's closed loop gain is set using external resistors.

Key Specifications

THD +N at 1 kHz for 1 W continuous	
\quad average output power into 8Ω	0.5% (max)
\quad Output power at 1 kHz into 8Ω	1.5 W (typ)
with 10% THD N	$0.01 \mu \mathrm{~A}$ (typ)
© Shutdown current	2.0 V to 5.5 V

Features

- Does not require output coupling capacitors, bootstrap capacitors, or snubber circuits
- 10-pin MSOP and 8-pin SO packages
- Unity-gain stable
- External gain set

Applications

- Mobile Phones
- Portable Computers
- Desktop Computers
- Low-Voltage Audio Systems

Typical Application

FIGURE 1. Typical LM4876 Audio Amplifier Application Circuit. Numbers in () are specific to the 10-pin MSOP package

Connection Diagrams
Mini Small Outline MSOP Package

Top View
Order Number LM4876MM See NS Package Number MUB10A

Small Outline SO Package

Top View
Order Number LM4876M
See NS Package Number M08A

LM4877 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series

1 Watt Audio Power Amplifier in micro SMD package with Shutdown Logic Low

General Description

The LM4877 is a bridge-connected audio power amplifier capable of delivering 1 W of continuous average power to an 8Ω load with less than $.2 \%$ (THD) from a 5 V power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. Since the LM4877 does not require output coupling capacitors or bootstrap capacitors. It is optimally suited for low-power portable applications.
The LM4877 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4877 can be configured by external gain-setting resistors.

Key Specifications

- Power Output at 0.2% THD

1W (typ)

- Shutdown Current
$0.01 \mu \mathrm{~A}$ (typ)

Features

- micro SMD package (see App. note AN-1112)
- 5V-2V operation
- No output coupling capacitors or bootstrap capacitors.
- Unity-gain stable
- External gain configuration capability

Applications

- Cellular Phones
- Portable Computers
- Low Voltage Audio Systems

Typical Application

Connection Diagram

FIGURE 1. Typical Audio Amplifier Application Circuit

LM4880 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series
 Dual 250 mW Audio Power Amplifier with Shutdown Mode

General Description

The LM4880 is a dual audio power amplifier capable of delivering typically 250 mW per channel of continuous average power to an 8Ω load with 0.1% THD+N using a 5 V power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging.
Since the LM4880 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The LM4880 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.
The unity-gain stable LM4880 can be configured by external gain-setting resistors.

Key Specifications

- THD +N at 1 kHz at 200 mW continuous average output power into 8Ω : 0.1% (max)
- THD+N at 1 kHz at 85 mW continuous average output power into 32 Ω : 0.1% (typ)
- Output power at 10% THD +N at 1 kHz into 8Ω : 325 mW (typ)
■ Shutdown current: $0.7 \mu \mathrm{~A}$ (typ)
■ 2.7 V to 5.5 V supply voltage range

Features

- No bootstrap capacitors or snubber circuits are necessary
- Small Outline (SO) and DIP packaging
- Unity-gain stable
- External gain configuration capability

Applications

- Headphone Amplifier
- Personal Computers
- CD-ROM Players

Typical Application

*Refer to the Application Information section for information concerning proper selection of the input and output coupling capacitors.
FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Small Outline and DIP Packages

Top View
Order Number LM4880M or L.M4880N See NS Package Number M08;A for SO or NS Package Number N08E: for DIP

National Semiconductor

LM4881 Boomer® Audio Power Ampififer Series

Dual 200 mW Headphone Amplifier with Shutdown Mode

General Description

The LM4881 is a dual audio power amplifier capable of delivering 200 mW of continuous average power into an 8Ω ! load with 0.1% THD +N from a 5 V power supply.
Boomer audio power amplifiers were designed specificeilly to provide high quality output power with a minimal amount of external components using surface mount packaging. §since the LM4881 does not require bootstrap capacitors or sinubber networks, it is optimally suited for low-power portable systems.
The LM4881 features an externally controlled, low fiower consumption shutdown mode which is virtually clickles:s and popless, as well as an internal thermal shutdown prot ϵ ction mechanism.
The unity-gain stable LM4881 can be configured by extiernal gain-setting resistors.

Key Specifications

- THD +N at 1 kHz at 125 mW continuous average output power into 8Ω 0.1% (max)
- THD +N at 1 kHz at 75 mW
continuous
average output power into 32Ω
0.02\% (typ)

■ Output power at 10% THD+N at 1 kHz into 8Ω

300mW (typ)
■ Shutdown Current
$0.7 \mu \mathrm{~A}$ (typ)

- Supply voltage range
2.7V to 5.5 V

Features

- MSOP surface mount packaging
- Unity-gain stable
- External gain configuration capability
- Thermal shutdown protection circuitry
- No bootstrap capacitors, or snubber circuits are necessary

Applications

- Headphone Amplifier
- Personal Computers
- Microphone Preamplifier

Connection Diagrams

SOP and DIP Package

Top View
Order Number LM4881MM, LM4881M, or LM4881N See NS Package Number MUA08A, M08A, or N08E

LM4882 Boomer ${ }^{\circledR}$ Audio Power Amplifier Series 250mW Audio Power Amplifier with Shutdown Mode

General Description

The LM4882 is a single-ended audio power amplifier capable of delivering 250 mW of continuous average power into an 8Ω load with 1% THD+N from a 5 V power supply.
Boomer ${ }^{\circledR}$ audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4882 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.
The LM4882 features an externally controlled, low power consumption shutdown mode which is virtually clickless and popless, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable L.M4882 can be configured by external gain-setting resistors.

Key Specifications

- THD +N at 1 kHz at 250 mW continuous average output power into 8Ω
1.0\% (max)
- Output Power at 1% THD+N at 1 kHz into 4Ω

380mW (typ)

- THD +N at 1 kHz at 85 mW continuous average output power into 32Ω
0.1\% (typ)
- Shutdown Current
$0.7 \mu \mathrm{~A}$ (typ)

Features

- MSOP surface mount packaging
- "Click and Pop" Suppression Circuitry
- Supply voltages from $2.4 \mathrm{~V}-5.5 \mathrm{~V}$
- Operating Temperature $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Unity-gain stable
- External gain configuration capability
- No bootstrap capacitors, or snubber circuits are necessary

Applications

- Personal Computers
- Cellular Phones
- General Purpose Audio

National Semiconductor

LM4890 Boomer ${ }^{\circledR}$ Audio Power Ampifier Series 1 Watt Audio Power Amplifier

General Description

The LM4890 is an audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1 watt of continuous average power to an $8 \Omega \mathrm{BTL}$ load with less than 1% distortion (THD+N) from a $5 \mathrm{~V}_{\mathrm{DC}}$ power supply.
Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. The LM4890 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.
The LM4890 features a low-power consumption shutdown mode, which is achieved by driving the shutdown pin with logic low. Additionally, the LM4890 features an internal thermal shutdown protection mechanism.

The LM4890 contains advanced pop \& click circuitry which eliminates noises which would otherwise occur during turn-on and turn-off transitions.
The LM4890 is unity-gain stable and can be configured by external gain-setting resistors.

Key Specifications

- Improved PSRR at 217 Hz

66 dB

- Power Output at 5.0V \& 1\% THD 1.0W(typ.)

■ Power Output at 3.3 V \& 1\% THD 400mW(typ.)
■ Shutdown Current

Features

- Available in space-saving packages micro SMD, MSOP and SOIC
- Ultra low current shutdown mode
- Can drive capacitive loads up to 500 pF
- Improved pop \& click circuitry eliminates noises during turn-on and turn-off transitions
- 2.0-5.5V operation
- No output coupling capacitors, snubber networks or bootstrap capacitors required
- Unity-gain stable
- External gain configuration capability

Applications

- Mobile Phones
- PDAs
- Portable electronic devices

Typical Application

DS101310-1
FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

8 Bump micro SMD

Top View
Order Number LM4890IBP, LM48901BPX
See NS Package Number BPA08FFB

Small Outline (SO) Package

Top View
Order Number LM4890M
See NS Package Number M08A

Mini Small Outline (MSOP) Package

Top View
Order Number LM4890MM
See NS Package Number MUA08A

LM675

Power Operational Amplifier

General Description

The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for $A C$ and $D C$ applications.
The LM675 is capable of delivering output currents in excess of 3 amps , operating at supply voltages of up to 60 V . The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also internally compensated for gains of 10 or greater.

Features

- 3A current capability
- Avo typically 90 dB
- 5.5 MHz gain bandwidth product
- 1 mV typical offset voltage
- Short circuit protection
- Thermal protection with parole circuit (100% tested)
- $16 \mathrm{~V}-60 \mathrm{~V}$ supply range
- Wide common mode range
- Internal output protection diodes
- 90 dB ripple rejection
- Plastic power package TO-220

Applications

- High performance power op amp
- Bridge amplifiers
- Motor speed controls
- Servo amplifiers
- $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Instrument systems
- Wide power bandwidth 70 kHz

Connection Diagram

TO-220 Power Package (T)

*The tab is internally connected to pin $3\left(-\mathrm{V}_{\mathrm{EE}}\right)$
Front View
Order Number LM675T
See NS Package T05D

Typical Applications

National Semiconductor

Audio Controls and Signal Processing

LM1036

Dual DC Operated Tone/Volume/Balance Circuit

General Description

The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems. An additional control input allows loudness compensation to be simply effected.
Four control inputs provide control of the bass, treble, balance and volume functions through application of DC voltages from a remote control system or, alternatively, from four potentiometers which may be biased from a zener regulated supply provided on the circuit.
Each tone response is defined by a single capacitor chosen to give the desired characteristic.

Features

- Wide supply voltage range, 9 V to 16 V
- Large volume control range, 75 dB typical
- Tone control, $\pm 15 \mathrm{~dB}$ typical
- Channel separation, 75 dB typical
- Low distortion, 0.06% typical for an input level of 0.3 Vrms
- High signal to noise, 80 dB typical for an input level of 0.3 Vrms
- Few external components required

Block and Connection Diagram

LM1971Overture ${ }^{\text {TM }}$ Audio Attenuator Series Digitally Controlled 62 dB Audio Attenuator with/Mute

General Description

The LM1971 is a digitally controlled single channel audio attenuator fabricated on a CMOS process. Attenuation is variable in 1 dB steps from 0 dB to -62 dB . A mute function disconnects the input from the output, providing over 100 dB of attenuation.
The performance of the device is exhibited by its ability to change attenuation levels without audible clicks or pops. In addition, the LM1971 features a low Total Harmonic Distortion (THD) of 0.0008%, and a Dynamic Range of 115 dB , making it suitable for digital audio needs. The LM1971 is available in both 8-pin plastic DIP or SO packages.
The LM1971 is controlled by a TTL/CMOS compatible 3-wire serial digital interface. The active low LOAD line enables the data input registers while the CLOCK line provides system timing. Its DATA pin receives serial data on the rising edge of each CLOCK pulse, allowing the desired attenuation setting to be selected.

Key Specifications

- Total harmonic distortion
0.0008\% (typ)
- Frequency response $\quad>200 \mathrm{kHz}(-3 \mathrm{~dB})$ (typ)
- Attenuation range (excluding mute)

62 dB (typ)

- Dynamic range

115 dB (typ)

- Mute attenuation

102 dB (typ)

Features

- 3-wire serial interface
- Mute function
- Click and pop free attenuation changes
- 8-pin plastic DIP and SO packages available

Applications

- Communication systems
- Cellular Phones and Pagers
- Personal computer audio control
- Electronic music (MIDI)
- Sound reinforcement systems
- Audio mixing automation

Typical Application

FIGURE 1. Typical Audio Attenuator Application Circuit

Connection Diagram

Dual-In-Line Plastic or Surface Mount Package

Top View
Order Number LM1971M or LM1971N See NS Package Number M08A or N08E

LM1972

$\boldsymbol{\mu P o t}{ }^{\text {TM }}$ 2-Channel 78dB Audio Attenuator with Mute

General Description

The LM1972 is a digitally controlled 2-channel 78 dB audio attenuator fabricated on a CMOS process. Each channel has attenuation steps of 0.5 dB from $0 \mathrm{~dB}-47.5 \mathrm{~dB}, 1.0 \mathrm{~dB}$ steps from $48 \mathrm{~dB}-78 \mathrm{~dB}$, with a mute function attenuating 104 dB . Its logarithmic attenuation curve can be customized through software to fit the desired application.
The performance of a $\mu \mathrm{Pot}$ is demonstrated through its excellent Signal-to-Noise Ratio, extremely low (THD+N), and high channel separation. Each μ Pot contains a mute function that disconnects the input signal from the output, providing a minimum attenuation of 96 dB . Transitions between any attenuation settings are pop free.
The LM1972's 3-wire serial digital interface is TTL and CMOS compatible; receiving data that selects a channel and the desired attenuation level. The Data-Out pin of the LM1972 allows multiple μ Pots to be daisy-chained together, reducing the number of enable and data lines to be routed for a given application.
ul Frequency response:
III Attenuation range (excluding mute):
$100 \mathrm{kHz}(-3 \mathrm{~dB})(\mathrm{min})$
in Differential attenuation:
ni Signal-to-noise ratio (ref. 4 Vrms):
III Channel separation:

Features

II 3-wire serial interface
II Daisy-chain capability
iI 104dB mute attenuation
II Pop and click free attenuation changes

Applications

iI Automated studio mixing consoles
II Music reproduction systems
II Sound reinforcement systems
II Electronic music (MIDI)
III Personal computer audio control

Key Specifications

- Total Harmonic Distortion + Noise: 0.003% (max)

Typical Application

FIGURE 1. Typical Audio Attenuator Application Circuit

Connection Diagram

LM1973

μ Pot $^{\text {TM }} 3$-Channel 76dB Audio Attenuator with Mute

General Description

The LM1973 is a digitally controlled 3-channel 76dB audic) attenuator fabricated on a CMOS process. Each channel has attenuation steps of 0.5 dB from $0 \mathrm{~dB}-15.5 \mathrm{~dB}, 1.0 \mathrm{dEl}$ steps from $16 \mathrm{~dB}-47 \mathrm{~dB}$, and 2.0 dB steps from $48 \mathrm{~dB}-76 \mathrm{~dB}$, with a mute function attenuating 104dB. Its logarithmic attenuation curve can be customized through software to fit the desired application.
The performance of a $\mu \mathrm{Pot}^{\text {TM }}$ is demonstrated through its excellent Signal-to-Noise Ratio, extremely low (THD+N), and high channel separation. Each μ Pot contains a mute function that disconnects the input signal from the output, providing a minimum attenuation of 96 dB . Transitions between any attenuation settings are pop free.
The LM1973's 3 -wire serial digital interface is TTL and CMOS compatible; receiving data that selects a channel and the desired attenuation level. The Data-Out pin of the LM1973 allows multiple μ Pots to be daisy-chained together, reducing the number of enable and data lines to be routed for a given application.

Key Specifications

- Total Harmonic Distortion + Noise: 0.003% (max)
- Frequency response: $100 \mathrm{kHz}(-3 \mathrm{~dB})$ (min)
- Attenuation range (excluding mute): 76dB (typ)
- Differential attenuation:
$\pm 0.25 \mathrm{~dB}(\mathrm{max})$
- Signal-to-noise ratio (ref. 4 Vrms): 110dB (min)
- Channel separation:

Features

- 3-wire serial interface
- Daisy-chain capability
- 104dB mute attenuation
- Pop and click free attenuation changes

Applications

- Automated studio mixing consoles
- Music reproduction systems
- Sound reinforcement systems
- Electronic music (MIDI)
- Personal computer audio control

Typical Application

FIGURE 1. Typical Audio Attenuator Application Circuit

Connection Diagram

Dual-In-Line Plastic or
Surface Mount Package

GND2-10
IN2

LM3914

Dot/Bar Display Driver

General Description

The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, providing a linear analog display. A single pin changes the display from a moving dot to a bar graph. Current drive to the LEDs is regulated and programmable, eliminating the need for resistors. This feature is one that allows operation of the whole system from less than 3 V .

The circuit contains its own adjustable reference and accurate 10 -step voltage divider. The low-bias-current input buffer accepts signals down to ground, or V^{-}, yet needs no protection against inputs of 35 V above or below ground. The buffer drives 10 individual comparators referenced to the precision divider. Indication non-linearity can thus be held typically to $1 / 2 \%$, even over a wide temperature range.
Versatility was designed into the LM3914 so that controller, visual alarm, and expanded scale functions are easily added on to the display system. The circuit can drive LEDs of many colors, or low-current incandescent lamps. Many LM3914s can be "chained" to form displays of 20 to over 100 segments. Both ends of the voltage divider are externally available so that 2 drivers can be made into a zero-center meter. The LM3914 is very easy to apply as an analog meter circuit. A 1.2V full-scale meter requires only 1 resistor and a single 3 V to 15 V supply in addition to the 10 display LEDs. If the 1 resistor is a pot, it becomes the LED brightness control. The simplified block diagram illustrates this extremely simple external circuitry.
When in the dot mode, there is a small amount of overlap or "fade" (about 1 mV) between segments. This assures that at no time will all LEDs be "OFF", and thus any ambiguous display is avoided. Various novel displays are possible.

Much of the display flexibility derives from the fact that all outputs are individual, DC regulated currents. Various effects can be achieved by modulating these currents. The individual outputs can drive a transistor as well as a LED at the same time, so controller functions including "staging" control can be performed. The LM3914 can also act as a programmer, or sequencer.
The LM3914 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3914N-1 is available in an 18-lead molded (N) package.
The following typical application illustrates adjusting of the reference to a desired value, and proper grounding for accurate operation, and avoiding oscillations.

Features

- Drives LEDs, LCDs or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 100 steps
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of less than 3 V
- Inputs operate down to ground
- Output current programmable from 2 mA to 30 mA
- No multiplex switching or interaction between outputs
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- LED driver outputs are current regulated, open-collectors
- Outputs can interface with TTL or CMOS logic
- The internal 10-step divider is floating and can be referenced to a wide range of voltages

DS007970-1
Ref Out $V=1.25\left(1+\frac{R 2}{R 1}\right)$
$L_{L E D} \cong \frac{12.5}{R 1}$
Note: Grounding method is typical of all uses. The $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor is needed if leads to the LED supply are 6 " or longer.

LM3915

Dot/Bar Display Driver

General Description

The LM3915 is a monolithic integrated circuit that senses analog voltage levels and drives ten LEDs, LCDs or vacuum fluorescent displays, providing a logarithmic $3 \mathrm{~dB} /$ step analog display. One pin changes the display from a bar graph to a moving dot display. LED current drive is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V .
The IC contains an adjustable voltage reference and an accurate ten-step voltage divider. The high-impedance input buffer accepts signals down to ground and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 1 dB .
The LM3915's 3 dB /step display is suited for signals with wide dynamic range, such as audio level, power, light intensity or vibration. Audio applications include average or peak level indicators, power meters and RF signal strength meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.
The LM3915 is extremely easy to apply. A 1.2 V full-scale meter requires only one resistor in addition to the ten LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.

The LM3915 is very versatile. The outputs can drive LCDs, vacuum fluorescents and incandescent bulbs as well as LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display with a range of 60 or 90 dB . LM3915s can also be cascaded with LM3914s for a linear/ log display or with LM3916s for an extended-range VU meter.

Features

- $3 \mathrm{~dB} /$ step, 30 dB range
- Drives LEDs, LCDs, or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 90 dB
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to ground
- Output current programmable from 1 mA to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open collectors
- Directly drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages
The LM3915 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3915N-1 is available in an 18 -lead molded DIP package.

Typical Applications

Notes: Capacitor C1 is required if leads to the LED supply are $6^{\prime \prime}$ or longer.
Circuit as shown is wired for dot mode. For bar mode, connect pin 9 to pin 3. $\mathrm{V}_{\text {LED }}$ must be kept below 7 V or dropping resistor should be used to limit IC power dissipation.

$$
\begin{aligned}
& V_{\text {REF }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)+R 2 \times 80 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{LED}}=\frac{12.5 \mathrm{~V}}{R 1}+\frac{\mathrm{V}_{\mathrm{REF}}}{2.2 \mathrm{k} \Omega}
\end{aligned}
$$

LM3916

Dot/Bar Display Driver

General Description

The LM3916 is a monolithic integrated circuit that senses analog voltage levels and drives ten LEDs, LCDs or vacuum fluorescent displays, providing an electronic version of the popular VU meter. One pin changes the display from a bar graph to a moving dot display. LED current drive is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V .
The IC contains an adjustable voltage reference and an accurate ten-step voltage divider. The high-impedance input buffer accepts signals down to ground and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 0.2 dB .
Audio applications include average or peak level indicators, and power meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.
The LM3916 is extremely easy to apply. A 1.2 V full-scale meter requires only one resistor in addition to the ten LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.

The LM3916 is very versatile. The outputs can drive LCDs, vacuum fluorescents and incandescent bulbs as well as LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display for increased range and/or resolution. Useful in other applications are the linear LM3914 and the logarithmic LM3915.

Features

- Fast responding electronic VU meter
- Drivers LEDs, LCDs, or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 70 dB
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to ground
- Output current programmable from 1 mA to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open collectors
- Directly drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages
The LM3916 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3916N-1 is available in an 18-lead molded DIP package.

Typical Applications

DS007971-1
$V_{R E F}=1.25 V\left(1+\frac{R 2}{R 1}\right)+R 2 \times 80 \mu \mathrm{~A}$
$L_{L E D}=\frac{12.5 \mathrm{~V}}{R 1}+\frac{V_{R E F}}{2.2 \mathrm{k} \Omega}$
Notes: Capacitor C1 is required if leads to the LED supply are 6 " or longer.
Circuit as shown is wired for dot mode. For bar mode, connect pin 9 to pin 3 . $\mathrm{V}_{\text {LED }}$ must be kept below 7 V or dropping resistor should be used to limit IC power dissipation.

LM4610

Dual DC Operated Tone/Volume/Balance Circuit with National 3-D Sound

General Description

The LM4610 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems. It also features National's 3D-Sound Circuitry which can be externally adjusted via a simple RC Network. An additional control input allows loudness compensation to be simply effected.
Four control inputs provide control of the bass, treble, balance and volume functions through application of DC voltages from a remote control system or, alternatively, from four potentiometers which may be biased from a zener regulated supply provided on the circuit.
Each tone response is defined by a single capacitor chosen to give the desired characteristic.

Features

- National 3-D Sound
- Wide supply voltage range, 9 V to 16 V
- Large volume control range, 75 dB typical
- Tone control, $\pm 15 \mathrm{~dB}$ typical
- Channel separation, 75 dB typical
- Low distortion, 0.06% typical for an input level of 0.3 Vrms
- High signal to noise, 80 dB typical for an input level of 0.3 Vrms
- Few external components required

Block and Connection Diagram

National Semiconductor

LM565/LM565C Phase Locked Loop

General Description

The LM565 and LM565C are general purpose phase locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM demodulation, and a double balanced phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10:1 can be obtained with the same capacitor. The characteristics of the closed loop system-bandwidth, response speed, capture and pull in range - may be adjusted over a wide range with an external resistor and capacitor. The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.
The LM565H is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM565CN is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ frequency stability of the VCO
- Power supply range of ± 5 to ± 12 volts with $100 \mathrm{ppm} / \%$ typical
- 0.2% linearity of demodulated output
- Linear triangle wave with in phase zero crossings available
- TTL and DTL compatible phase detector input and square wave output
- Adjustable hold in range from $\pm 1 \%$ to $> \pm 60 \%$

Applications

- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemetry receivers
- Signal regeneration
- Coherent demodulators

Connection Diagrams

LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14\%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

Connection Diagrams

Top View
Order Number LM567H or LM567CH See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View
Order Number LM567CM
See NS Package Number M08A
Order Number LM567CN
See NS Package Number N08E

LMC1982

Digitally-Controlled Stereo Tone and Volume Circuit with Two Selectable Stereo Inputs

General Description

The LMC1982 is a monolithic integrated circuit that provides volume, balance, tone (bass and treble), enhanced stereo, and loudness controls and selection between two pairs of stereo inputs. These functions are digitally controlled through a three-wire communication interface. There are two digital inputs for easy interface to other audio peripherals such as stereo decoders. The LMC1982 is designed for line level input signals ($300 \mathrm{mV}-2 \mathrm{~V}$) and has a maximum gain of -0.5 dB . Volume is set at minimum and tone controls are flat when supply voltage is first applied.
Low noise and distortion result from using analog switches and poly-silicon resistor networks in the signal path.
Additional tone control can be achieved using the LMC835 stereo 7 -band graphic equalizer connected to the LMC1982's SELECT OUT/SELECT IN external processor loop.

Features

- Low noise and distortion
- Two pairs of stereo inputs

Block and Connection Diagrams

LMC1983

Digitally-Controlled Stereo Tone and Volume Circuit with Three Selectable Stereo Inputs

General Description

The LMC1983 is a monolithic integrated circuit that provides volume, balance, tone (bass and treble), loudness controls and selection between three pairs of stereo inputs. These functions are digitally controlled through a three-wire communication interface. There are two digital inputs for easy interface to other audio peripherals such as stereo decoders. The LMC1983 is designed for line level input signals ($300 \mathrm{mV}-2 \mathrm{~V}$) and has a maximum gain of -0.5 dB . Volume is set at minimum and tone controls are flat when supply voltage is first applied.
Low noise and distortion result from using analog switches and poly-silicon resistor networks in the signal path.
Additional tone control can be achieved using the LMC835 stereo 7-band graphic equalizer connected to the LMC1983's SELECT OUT/SELECT IN external processor loop.

Features

- Low noise and distortion
- Three pairs of stereo inputs
- Loudness compensation
- 40 position $2 \mathrm{~dB} /$ step volume attenuator plus mute
- Independent left and right volume controls
- Low noise-suitable for use with DNR ${ }^{\circledR}$ and Dolby ${ }^{\circledR}$ noise reduction
- External processor loop
- Signal handling suitable for compact discs
- Pop-free switching
- Serially programmable: INTERMETAL bus (IM) interface
- 6 V to 12 V single supply operation
- 28 Pin DIP or PLCC Package

Applications

- Stereo television
- Music reproduction systems
- Sound reinforcement systems
- Electronic music (MIDI)
- Personal computer audio control

Block Diagram

LMC567

Low Power Tone Decoder

General Description

The LMC567 is a low power general purpose LMCMOS ${ }^{\text {TM }}$ tone decoder which is functionally similar to the industry standard LM567. It consists of a twice frequency voltage-controlled oscillator (VCO) and quadrature dividers which establish the reference signals for phase and amplitude detectors. The phase detector and VCO form a phase-locked loop (PLL) which locks to an input signal frequency which is within the control range of the VCO. When the PLL is locked and the input signal amplitude exceeds an internally pre-set threshold, a switch to ground is activated on the output pin. External components set up the oscillator to run at twice the input frequency and determine the phase and amplitude filter time constants.

Features

- Functionally similar to LM567
- 2 V to 9 V supply voltage range
- Low supply current drain
- No increase in current with output activated
- Operates to 500 kHz input frequency
- High oscillator stability
- Ground-referenced input
- Hysteresis added to amplitude comparator
- Out-of-band signals and noise rejected
- 20 mA output current capability

Block Diagram

(with External Components)

LMC568

Low Power Phase-Locked Loop

General Description

The LMC568 is an amplitude-linear phase-locked loop consisting of a linear VCO, fully balanced phase detectors, and a carrier detect output. LMCMOS ${ }^{\text {M }}$ technology is employed for high performance with low power consumption.
The VCO has a linearized control range of $\pm 30 \%$ to allow demodulation of FM and FSK signals. Carrier detect is indicated when the PLL is locked to an input signal greater than 26 mVrms . LMC568 applications include FM SCA and TV second audio program decoders, FSK data demodulators, and voice pagers.

Features

- Demodulates $\pm 15 \%$ deviation FM/FSK signals
- Carrier Detect Output with hysteresis
- Operation to 500 kHz input frequency
- Low THD - 0.5% typ. for $\pm 10 \%$ deviation
- 2 V to 9 V supply voltage range
- Low supply current drain

Typical Application (100 kHz input frequency, refer to notes pg. 3)

Order Number LMC568CM or LMC568CN
See NS Package Number M08A or N08E
DS009135-1

LF411

Low Offset, Low Drift JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

■ Internally trimmed offset voltage: $\quad 0.5 \mathrm{mV}$ (max)

- Input offset voltage drift:
- Low input bias current:
- Low input noise current:
- Wide gain bandwidth:
- High slew rate:
- Low supply current: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)

50 pA
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
$3 \mathrm{MHz}(\mathrm{min})$
$10 \mathrm{~V} / \mu \mathrm{s}(\mathrm{min})$

- Low total harmonic distortion: $\leq 0.02 \%$
- Low 1/f noise corner: 50 Hz
- Fast settling time to 0.01% : $2 \mu \mathrm{~s}$

Typical Connection

Ordering Information
LF411XYZ
\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
" M " for military
" C " for commercial
\mathbf{Z} indicates package type
"H" or "N"

Connection Diagrams

Note: Pin 4 connected to case.
Top View
Order Number LF411ACH
or LF411MH/883 (Note 11)
See NS Package Number H08A

Top View
Order Number LF411ACN, LF411CN
See NS Package Number N08E

LF412

Low Offset，Low Drift Dual JFET Input Operational

Amplifier

General Description

These devices are low cost，high speed，JFET input opera－ tional amplifiers with very low input offset voltage and guar－ anteed input offset voltage drift．They require low supply cur－ rent yet maintain a large gain bandwidth product and fast slew rate．In addition，well matched high voltage JFET input devices provide very low input bias and offset currents．The LF412 dual is pin compatible with the LM1558，allowing de－ signers to immediately upgrade the overall performance of existing designs．
These amplifiers may be used in applications such as high speed integrators，fast D／A converters，sample and hold cir－ cuits and many other circuits requiring low input offset volt－ age and drift，low input bias current，high input impedance， high slew rate and wide bandwidth．

Features

－Internally trimmed offset voltage： 1 mV （max）
－Input offset voltage drift： $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$（max）
－Low input bias current： 50 pA
－Low input noise current： $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
－Wide gain bandwidth： $3 \mathrm{MHz}(\mathrm{min})$
－High slew rate： $10 \mathrm{~V} / \mu \mathrm{s}(\mathrm{min})$
－Low supply current： $1.8 \mathrm{~mA} /$ Amplifier
－High input impedance： $10^{12} \Omega$
－Low total harmonic distortion $\leq 0.02 \%$
－Low 1／f noise corner： 50 Hz
－Fast settling time to 0.01% ： $2 \mu \mathrm{~s}$

Typical Connection

Ordering Information

LF412XYZ
\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
＂ M ＂for military
＂ C ＂for commercial
Z indicates package type
＂ H ＂or＂ N ＂

Connection Diagrams

Metal Can Package

DS005656－42
Order Number LF412MH，LF412CH
or LF412MH／883（Note 1）
See NS Package Number H08A

Dual－In－Line Package

TOP VIEW
DS005656－44
Order Number LF412ACN，LF412CN or LF412MJ／883（Note 1）
See NS Package Number J08A or N08E

Simplified Schematic

Note 1: Available per JM38510/11905

Detailed Schematic

LM6142 and LM6144

17 MHz Rail－to－Rail Input－Output Operational Amplifiers

General Description

Using patent pending new circuit topologies，the LM6142／44 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary．Operating on supplies of 1.8 V to over 24 V ，the LM6142／44 is an excellent choice for battery operated systems，portable instrumentation and others．
The greater than rail－to－rail input voltage range eliminates concern over exceeding the common－mode voltage range． The rail－to－rail output swing provides the maximum possible dynamic range at the output．This is particularly important when operating on low supply voltages．
High gain－bandwidth with $650 \mu \mathrm{~A} /$ Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unaccept－ able levels．The ability to drive large capacitive loads without oscillating functionally removes this common problem．

Features

At $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ ．Typ unless noted．
－Rail－to－rail input CMVR -0.25 V to 5.25 V
－Rail－to－rail output swing 0.005 V to 4.995 V
－Wide gain－bandwidth： 17 MHz at 50 kHz （typ）
－Slew rate：
Small signal， $5 \mathrm{~V} / \mu \mathrm{s}$
Large signal， $30 \mathrm{~V} / \mu \mathrm{s}$
－Low supply current $650 \mu \mathrm{~A} /$ Amplifier
－Wide supply range 1.8 V to 24 V
－CMRR 107 dB
－Gain 108 dB with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$
－PSRR 87 dB

Applications

－Battery operated instrumentation
－Depth sounders／fish finders
－Barcode scanners
－Wireless communications
－Rail－to－rail in－out instrumentation amps

Connection Diagrams

LM833

Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.

This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.
The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

- Wide dynamic range:
- Low input noise voltage:
$4.5 \mathrm{nV} / \mathrm{NHz}$
- High slew rate:
- High gain bandwidth:
- Wide power bandwidth:
$7 \mathrm{~V} / \mu \mathrm{s}$ (typ); $5 \mathrm{~V} / \mu \mathrm{s}$ (min)
15 MHz (typ); 10 MHz (min)
- Low distortion:

■ Low offset voltage:

- Large phase margin:
- Available in 8 pin

MSOP package

Schematic Diagram (1/2 Lм833)

Connection Diagram

Order Number LM833M, LM833MX, LM833N, LM833MM or LM833MMX
See NS Package Number
M08A, N08E or MUA08A

LM837

Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.
The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Features

- High slew rate
$10 \mathrm{~V} / \mu \mathrm{s}$ (typ); $8 \mathrm{~V} / \mu \mathrm{s}$ (min)
- Wide gain bandwidth product 25 MHz (typ); 15 MHz (min)
- Power bandwidth
- High output current 200 kHz (typ)
- Excellent output drive performance $\pm 40 \mathrm{~mA}$
- Low input noise voltage
$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low total harmonic distortion
0.0015\%
- Low offset voltage 0.3 mV

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Order Number LM837M, LM837MX or LM837N See NS Package Number M14A or N14A

National Semiconductor

LM1894

Dynamic Noise Reduction System DNR ${ }^{\circledR}$

General Description

The LM1894 is a stereo noise reduction circuit for use with audio playback systems. The DNR system is non-complementary, meaning it does not require encoded source material. The system is compatible with virtually all prerecorded tapes and FM broadcasts. Psychoacoustic masking, and an adaptive bandwidth scheme allow the DNR to achieve 10 dB of noise reduction. DNR can save circuit board space and cost because of the few additional components required.

Features
. Non-complementary noise reduction, "single ended"

- Low cost external components, no critical matching
- Compatible with all prerecorded tapes and FM
- 10 dB effective tape noise reduction CCIR/ARM weighted
- Wide supply range, 4.5 V to 18 V
- 1 Vrms input overload

Applications

- Automotive radio/tape players
- Compact portable tape players
- Quality HI-FI tape systems
- VCR playback noise reduction
- Video disc playback noise reduction

Typical Application

DS007918-1
*R1 + R2 = $1 \mathrm{k} \Omega$ total.
See Application Hints.
Order Number LM1894M or LM1894N
See NS Package Number M14A or N14A
FIGURE 1. Component Hook-Up for Stereo DNR System

National Semiconductor

Audio Codecs

LM4540

AC '97 Codec with National 3D Sound

General Description

The LM4540 is an audio codec for PC systems which performs the analog-intensive function of the Analog Codec '97 Rev 1.03 architecture. Using 18 -Bit $\Sigma \Delta A / D$ and D/A converters, the LM4540 provides 90 dB of dynamic range.
The LM4540 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A/D's and D/A's and an analog mixer with 2 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. In addition, the LM4540 provides National's 3D Sound stereo enhancement technology.
The LM4540 features AC-Link, a synchronous, fixed rate serial bus for connection to the digital AC ' 97 Controller. The separation of the analog and digital functions of the AC '97 architecture allows for system design flexibility and increased overall performance.

Key Specifications

- Analog Mixer Dynamic Range
95dB (typ)
- D/A Dynamic Range
89dB (typ)
- A/D Dynamic Range

Features

- Audio Codec '97 compliant
- Stereo 18-Bit $\Sigma \Delta$ A/D's and D/A's with 128X oversampling
- National's 3D Sound circuitry
- Power management support
- Digital Interface 3V and 5V compliant

Applications

- PC Audio Systems Requiring Only 2 Stereo Inputs (CD, Line) and 3 Mono Inputs (Mic, Phone, PC Beep)

Block Diagram

FIGURE 1. LM4540 Block Diagram

LM4543

AC '97 Codec with National 3D Sound

General Description

The LM4543 is an audio codec for PC systems which performs the analog-intensive function of the Analog Codec '97 Rev 1.03 architecture. Using 18 -Bit $\Sigma \Delta A / D$ and D / A converters, the LM4543 provides 90 dB of dynamic range.
The LM4543 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A/D's and D/A's and an analog mixer with 4 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. In addition, the LM4543 provides National's 3D Sound stereo enhancement technology.
The LM4543 features AC-Link, a synchronous, fixed rate serial bus for connection to the digital AC '97 Controller. The separation of the analog and digital functions of the AC '97 architecture allows for system design flexibility and increased overall performance.

Key Specifications

- Analog Mixer Dynamic Range

95dB (typ)

- D/A Dynamic Range

89dB (typ)

- A/D Dynamic Range

90 dB (typ)

Features

- Audio Codec '97 compliant
- Stereo 18-Bit $\Sigma \Delta A / D$'s and D/A's with $128 X$ oversampling
- National's 3D Sound circuitry
- Power management support
- Digital Interface 3V and 5V compliant

Applications

- Desktop PC Audio Systems
- Portable PC Audio Systems
- Mobile PC Audio Solutions

Block Diagram

FIGURE 1. LM4543 Block Diagram

LM4545

AC '97 Codec with Stereo Headphone Amplifier and National 3D Sound

General Description

The LM4545 is an audio codec for PC systems which performs the analog-intensive function of the Analog Codec '97 Rev 1.03 Architecture. Using 18-Bit $\Sigma \Delta A / D$ and D/A converters, the LM4545 provides 90 dB of dynamic range.
The LM4545 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A/D's and D/A's and an analog mixer with 4 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. In addition, the LM4545 provides a stereo headphone amplifier with an independent gain control and National's 3D Sound stereo enhancement technology.
The LM4545 features AC-Link, a synchronous, fixed rate serial bus for connection to the digital AC '97 Controller. The separation of the analog and digital functions of the AC '97 architecture allows for system design flexibility and increased overall performance.

Key Specifications

- Analog Mixer Dynamic Range	95 dB (typ)
D $/$ A Dynamic Range	89 dB (typ)
A/D Dynamic Range	90 dB (typ)
- Headphone THD+N at 50 mW into 32Ω	0.02% (typ)

Features

- Audio Codec '97 compliant
- Stereo 18-Bit $\Sigma \Delta$ A/D's and D/A's with 128X oversampling
- Stereo headphone amp with separate gain control
- National's 3D Sound circuitry
- Power management support
- Digital Interface 3V and 5V compliant

Applications

- Desktop PC Audio Systems
- Portable PC Audio Systems
- Mobile PC Audio Solutions

Block Diagram

FIGURE 1. LM4545 Block Diagram

LM4546

AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound

General Description

The LM4546 is an audio codec for PC systems which is fully PC98 compliant and performs the analog intensive functions of the AC97 Rev 2 architecture. Using 18-bit Sigma-Delta A/D's and D/A's, the LM4546 provides 90dB of Dynamic Range.
The LM4546 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A/D's and D/A's and an analog mixer with 2 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. The LM4546 also provides National's 3D Sound stereo enhancement.

The LM4546 supports variable sample rate conversion as defined in the AC97 Rev2 specification. The sample rate for the A / D and D / A can be programmed separately to convert any rate between $4 \mathrm{kHz}-48 \mathrm{kHz}$ with a resolution of 1 Hz . The AC97 architecture separates the analog and digital functions of the PC audio system allowing both for system design flexibility and increased performance.

Key Specifications

- Analog Mixer Dynamic Range

97dB (typ)

- D/A Dynamic Range

89dB (typ)

- A/D Dynamic Range

90dB (typ)

Features

- AC'97 Rev 2 compliant
- National's 3D Sound circuitry
- High quality Sample Rate Conversion (SRC) from 4 kHz to 48 kHz in 1 Hz increments
- Multiple Codec support
- Advanced power management support
- Digital 3V and 5V compliant

Applications

- Desktop PC Audio Systems
- Portable PC Systems
- Mobile PC Systems

Block Diagram

DS100985-1
FIGURE 1. LM4546 Block Diagram

LM4548

AC '97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound

General Description

The LM4548 is an audio codec for PC systems which is fully PC98 compliant and performs the analog intensive functions of the AC97 Rev2 architecture. Using 18-bit Sigma-Delta A/D's and D/A's, the LM4548 provides 90dB of Dynamic Range.
The LM4548 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A/D's and D/A's and an analog mixer with 4 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. The LM4548 also provides the additional True Line-Level output and National's 3D Sound stereo enhancement.
The LM4548 supports variable sample rate conversion as defined in the AC97 Rev2 specification. The sample rate for the A / D and D / A can be programmed separately to convert any rate between $4 \mathrm{kHz}-48 \mathrm{kHz}$ with a resolution of 1 Hz . The AC97 architecture separates the analog and digital functions of the PC audio system allowing both for system design flexibility and increased performance.

Key Specifications

- Analog Mixer Dynamic Range

97dB (typ)

- D/A Dynamic Range

89dB (typ)

- A/D Dynamic Range

90 dB (typ)

Features

- AC'97 Rev2 compliant
- National's 3D Sound circuitry
- High quality Sample Rate Conversion (SRC) from 4 kHz to 48 kHz in 1 Hz increments.
- Multiple Codec Support
- True Line Level Output with volume control in addition to standard Line Out
- Advanced power management support
- Digital 3 V and 5 V compliant

Applications

- Desktop PC Audio Systems
- Portable PC Systems
- Mobile PC Systems

Block Diagram

FIGURE 1. LM4548 Block Diagram

LM4549

AC '97 Rev 2.1 Codec with Sample Rate Conversion and National 3D Sound

General Description

The LM4549 is an audio codec for PC systems which is fully PC98 compliant and performs the analog intensive functions of the AC97 Rev2.1 architecture. Using 18-bit Sigma-Delta A/D's and D/A's, the LM4549 provides 90dB of Dynamic Range.
The LM4549 was designed specifically to provide a high quality audio path and provide all analog functionality in a PC audio system. It features full duplex stereo A / D 's and D / A 's and an analog mixer with 4 stereo and 3 mono inputs, each of which has separate gain, attenuation and mute control. The codec features a second Line Output known as True Line Level Out that is identical to Line Out but with independent volume control. The LM4549 also features National's 3D Sound stereo enhancement and variable sample rate conversion. The sample rate for the A / D and D / A can be programmed separately with a resolution of 1 Hz to convert any rate between $4 \mathrm{kHz}-48 \mathrm{kHz}$.
The AC97 architecture separates the analog and digital functions of the PC audio system allowing both for system design flexibility and increased performance.

Key Specifications

Analog Mixer Dynamic Range
97dB (typ)

- D/A Dynamic Range

89dB (typ)

- A/D Dynamic Range

90dB (typ)

Features

- AC'97 Rev 2.1 compliant
- National's 3D Sound circuitry
- High quality Sample Rate Conversion (SRC) from 4 kHz to 48 kHz in 1 Hz increments.
- Multiple Codec Support
- External Amplifier Power Down (EAPD) control from codec
- PC-Beep passthrough to Line Out while reset is held active low
- True Line Level Output with volume control independent of Line Out
- Digital 3V and 5V compliant

Applications

- Desktop PC Audio Systems on PCI cards, AMR cards, or with motherboard chips sets featuring AC-Link
- Portable PC Systems as on MDC cards, or with a chipset or accelerator featuring AC-Link

Block Diagram

FIGURE 1. LM4549 Block Diagram

Section 5
Comparators
Section 5 Contents
Voltage Comparators Selection Guide 5-3
Voltage Comparator Definition Of Terms 5-5
LM111/LM211/LM311 Voltage Comparator 5-6
LM119/LM219/LM319 High Speed Dual Comparator 5-10
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators 5-13
LM160/LM360 High Speed Differential Comparator 5-17
LM161/LM361 High Speed Differential Comparators 5-20
LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators 5-23
LM392 Low Power Operational Amplifier/Voltage Comparator 5-28
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 5-31
LM6511 180 ns 3V Comparator 5-36
LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output 5-38
LMC6772 Dual Micropower Rail-To-Rail Input CMOS Comparator with Open Drain Output 5-42
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input and Push-Pull Output 5-46
LMC7215/LMC7225 Micro-Power, Rail-to-Rail CMOS Comparators with Push-Pull/Open-Drain Outputs and TinyPak Package 5-50
LMC7221 Tiny CMOS Comparator with Rail-To-Rail Input and Open Drain Output 5-53
LMV331 Single / LMV393 Dual / LMV339 Quad General Purpose, Low Voltage, TinyPak Comparators 5-57
LMV7219 7 nsec, 2.7V to 5V Comparator with Rail-to-Rail Output 5-60
LP339 Ultra-Low Power Quad Comparator 5-65

Part Number	Number Of Channels	Output Type (Note 1)	Response Time (ns) Typ (Note 2)	$\begin{gathered} \mathbf{v}_{\text {os }}(\mathrm{mV}) \\ \text { Max } \\ \text { (Note 2) } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}(\mathrm{~mA}) \\ \text { Max } \\ \text { (Note 2) } \end{gathered}$	$I_{B}(n A)$ Max (Note 2)	Packages (Note 3)	Operating Temperature Ranges (Note 4)
LM111/211/311	1	OC	200	7.5	7.5	250	$\begin{aligned} & \text { W10, J08, H08, } \\ & \text { M08, N08, E20, } \\ & \text { WG10 } \end{aligned}$	C, I, M
LM119/319	1	OC	80	8	12.5	1000	W10, J14, H10, M14, N14, E20, WG10	C, I, M
LM139/239/339	4	OC	1300	5	2.5	250	W14, J14, M14, N14, E20, WG14	C, I, M
LM161	1	OC	14	5	20	30000	H10, M14, N14	C, M
LM193/293/393	2	OC	1300	5	2.5	250	J08, H08, M08, N08	C, I, M
LM360	1	OC	14	5	32	20000	M08, N08, H10	C
LM392	1	OC	1300	10	1	400	M08, N08	C
LM613	2	OC	1500	5	1	35	J16, M16	C, M
LM2901	4	OC	1300	7	2.5	250	M14, N14	1
LM2903	2	OC	1500	7	2.5	250	M08, N08	1
LM3302	4	OC	1300	20	2.5	500	N14	1
LM6511	1	OC	180	5	3.5	130	M08	1
LM6762	2	PP	4000	3	0.02	40fA (typ)	M08, N08	1
LMC6772	2	OC	4000	3	0.02	40fA (typ)	M08, N08	1
LMC7211A	1	PP	8000	5	0.014	40fA (typ)	M5, M08, N08	1
LMC7211B	1	PP	8000	15	0.014	40fA (typ)	M5, M08, N08	1
LMC7215	1	PP	12000	1	0.001	5fA (typ)	M08, M5, J08	I, M
LMC7221A	1	OC	4000	5	0.014	40fA (typ)	M08, M5, N08	I
LMC7221B	1	OC	4000	15	0.014	40fA (typ)	M08, N08, M5	1
LMC7225	1	OC	12000	1	0.008	5fA (typ)	M08, M5, J08	I, M
LMV331	1	OC	300	7	0.1	250	M7, M5	1
LMV339	4	OC	300	7	0.20	250	M14, MT14	1
LMV393	2	OC	300	7	0.14	250	M08, MM08	1
LMV7219	1	PP	7	6	1.8	950	M5, M7	1
LP339	4	OC	8000	5	0.1	25	H14, N14	C

Note 1: $O C=$ Open Collector, $\mathrm{PP}=$ Push-Pull
Note 2: Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}$.
Note 3: Package Code Key (Letter = Package Type, Number = \# of Pins)

Code Letter	Package Type
E	LCC
H/G	Metal Can
J/D	Ceramic Dual-in-Line
M	SOIC
MT	TSSOP
MM	MSOP
M5	SOT23-5
M7	SC70-5
N	Plastic Dual-in-Line (PDIP)
W	Flatpak
WG	Ceramic SOIC

Note 4: Temperature Ranges:
$\mathrm{C}=0$ to $70^{\circ} \mathrm{C}$
$\mathrm{I}=-40$ to $85^{\circ} \mathrm{C}$
$M=-55$ to $125^{\circ} \mathrm{C}$

National Semiconductor

Voltage Comparator Definition Of Terms

Input Current (I_{B} or I_{in}): The average of the two input currents.
Input Offset Current (I_{Os}): The difference of currents between the two input terminals.
Input Offset Voltage (V_{os}): The DC error voltage which exists between the input terminals due to non-ideal balancing of the input stage.
Input Voltage Range ($\mathbf{V}_{\mathbf{C M}}$): Typically the range of voltages on the input terminals for which the comparator's performance is specified.
Logic threshold Voltage $\left(\mathbf{V}_{\mathbf{T}}\right)$: The voltage that exceeds the input offset voltage causing the output to change state.
Offset Voltage Temperature Coefficient ($\mathrm{TCV}_{\text {os }}$): The average rate of change in offset voltage for junction temperature variation over a specified temperature range.
Offset Current Temperature Coefficient ($\mathrm{TCl}_{\mathrm{os}}$): The average rate of change in offset current for junction temperature variation over a specified temperature range.
Output High Voltage ($\mathbf{V}_{\mathbf{O H}}$): The high DC output voltage with output driven high with specified output current.
Output Low Voltage (V_{OL}): The low DC output voltage with the output driven low with specified sinking current.
Output Leakage Current (ILeakage): The current into the output terminal with the output driven high. Applies to open collector or open drain outputs.
Output Resistance ($\mathbf{R}_{\mathbf{O}}$): The apparent output resistance of a comparator, typically illustrated with an ideal comparator with zero output resistance in series with an output resistor, Rout, measured under DC conditions.
Output Sink Current ($\mathbf{I}_{\mathbf{s c}-}$): The maximum negative current that can be sunk by the comparator.
Output Source Current (Isc_{+}): The maximum positive current that can be sourced by the comparator with push/pull output state.

Power Consumption: The power required to operate the comparator with no output load.
Response Time (\mathbf{t}_{r}): The interval between the application of an input step function and the time when the output crosses the logic threshold voltage.
Saturation Voltage ($\mathbf{V}_{\mathbf{S A T}}$): The low DC voltage of an open collector output with the output driven low the with specified sinking current.
Strobe Current: The current out of the strobe terminal when it is a zero logic level.
Strobe Output Level: The comparator DC output voltage, independent of input conditions, when the strobe is active.
Strobe "ON" Voltage: The maximum voltage on the strobe terminal required forcing the output to the specified high state independent of the input voltage.
Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.
Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to a logic one level and the input is at a level that would drive the output low.
Supply current ($\mathbf{I}_{\mathbf{s}}$). The current required from the positive or negative supply to operate the comparator with no output load.
Voltage Gain $\left(\mathbf{A}_{\mathbf{V}}\right)$: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.
Voltage Overdrive: The input step voltage that goes beyond the minimum drive required to change the output state from one logic level to the opposite logic level.
NOTE: All parameters are under specific conditions.

National Semiconductor

LM111/LM211/LM311 Voltage Comparator

1.0 General Description

The LM111, LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA.
Both the inputs and the outputs of the LM111, LM211 or the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns)
the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710.
The LM211 is identical to the LM111, except that its performance is specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM311 has a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

2.0 Features

- Operates from single 5 V supply
- Input current: 150 nA max. over temperature
- Offset current: 20 nA max. over temperature
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

3.0 Typical Applications (Note 3)

DS005704-36

Increasing Input Stage Current (Note 1)

DS005704-38
Note 1: Increases typical common mode slew from $7.0 \mathrm{~V} / \mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$.

Strobing

Note: Do Not Ground Strobe Pin. Output is turned off when current is pulled from Strobe Pin.

Detector for Magnetic Transducer

DS005704-39
3.0 Typical Applications (Note 3) (Continued)

Digital Transmission Isolator

Relay Driver with Strobe

*Absorbs inductive kickback of relay and protects IC from severe voltage transients on V^{++}line.
Note: Do Not Ground Strobe Pin.
Strobing off Both Input and Output Stages (Note 2)

Note: Do Not Ground Strobe Pin
Note 2: Typical input current is 50 pA with inputs strobed off.
Note 3: Pin connections shown on schematic diagram and typical applications are for HO8 metal can package.

Zero Crossing Detector Driving MOS Logic

DS005704-23
*Solid tantalum

4.0 Absolute Maximum Ratings for the LM111/LM211(Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage $\left(\mathrm{V}_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	50 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
input Voltage (Note 4)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	10 sec

Output to Negative Supply Voltage $\left(V_{74}\right) \quad 50 \mathrm{~V}$
Ground to Negative Supply Voltage (V_{14}) 30 V
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 4) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration 10 sec

Operating Temperature Range
LM111
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LM21 $260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\mathrm{V}^{+}-5 \mathrm{~V}$
Voltage at Strobe Pin
Soldering Information Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$ Small Outline Package

Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Rating (Note 11)
300 V

Electrical Characteristics (Note 6)

for the LM111 and LM211

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 7)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 8)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{I N} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current (Note 9)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0	mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	10	nA
Input Offset Voltage (Note 7)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current (Note 7)				20	nA
Input Bias Current				150	nA
Input Voltage Range	$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \operatorname{Pin} 7$ Pull-Up May Go To 5V	-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6 \mathrm{mV}, \mathrm{l}_{\mathrm{OUT}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 4: This rating applies for ± 15 supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 5: The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$, while that of the LM211 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $110^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 6: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM 211 , however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 7: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and R_{s}.
Note 8: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 9: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Note 10: Refer to RETS111X for the LM111H, LM111J and LM111J-8 military specifications.
Note 11: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

5.0 Absolute Maximum Ratings for the LM311 (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage $\left(\mathrm{V}_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	40 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 13)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 14)	500 mW
ESD Rating (Note 19)	300 V
Output Short Circuit Duration	10 sec

Operating Temperature Range	0° to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$260^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.	

Electrical Characteristics (Note 15)

for the LM311

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 16)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	7.5	mV
Input Offset Current(Note 16)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 17)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current (Note 18)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0	mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \\ & \mathrm{~V}^{-}=\text {Pin } 1=-5 \mathrm{~V} \end{aligned}$		0.2	50	nA
Input Offset Voltage (Note 16)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{~K}$			10	mV
Input Offset Current (Note 16)				70	nA
Input Bias Current				300	nA
Input Voltage Range		-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 12: "Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits."
Note 13: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 14: The maximum junction temperature of the LM311 is $110^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 15: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and Pin 1 at ground, and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, unless otherwise specified. The offset voitage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 16: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and R_{S}.
Note 17: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 18: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .
Note 19: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM119/LM219/LM319

High Speed Dual Comparator

General Description

The LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.
The LM319A offers improved precision over the standard LM319, with tighter tolerances on offset voltage, offset current, and voltage gain.
Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dis-
sipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.
The LM119 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM219 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM319A and LM319 are specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Connection Diagram

Dual-In-Line Package

Top View
Order Number LM119J, LM119J/883 (Note 1), LM219J, LM319J, LM319AM,
LM319M, LM319AN or LM319N
See NS Package Number J14A, M14A or N14A
Note 1: Also available per SMD\# 8601401 or JM38510/10306

Typical Applications (Note 2)
Relay Driver

Note 2: Pin numbers are for metal can package.

DS005705-6

[^5]
Absolute Maximum Ratings (Note 9)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage	36 V
Output to Negative Supply Voltage	36 V
Ground to Negative Supply Voltage	25 V
Ground to Positive Supply Voltage	18 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
ESD rating (1.5 k Ω in series with	
$\quad 100 \mathrm{pF})$	800 V
Power Dissipation (Note 4)	500 mW
Output Short Circuit Duration	10 sec
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Lead Temperature
(Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Soldering Information Dual-In-Line Package Soldering (10 seconds)
$260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$ Infrared (15 seconds)
$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Temperature Range

LM119
LM219
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics (Note 5)

Parameter	Conditions	LM119/LM219			Units
		Min	Typ	Max	
Input Offset Voltage (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)	10	40		V / mV
Response Time (Note 7)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 6)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			7	mV
Input Offset Current (Note 6)				100	nA
Input Bias Current				1000	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	$\begin{gathered} -12 \\ 1 \end{gathered}$	± 13	$\begin{gathered} +12 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\mathrm{OUT}}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V} \end{aligned}$		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8	11.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3	4.5	mA

Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 4: The maximum junction temperature of the LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the J 14 and N 14 packages is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 5: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM 219 , however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 6: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 7: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 8: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.
Note 9: Refer to RETS119X for LM119H/883 and LM119J/883 specifications.

Absolute Maximum Ratings LM319A/319 (Note 9)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage	36 V
Output to Negative Supply Voltage	36 V
Ground to Negative Supply Voltage	25 V
Ground to Positive Supply Voltage	18 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 10)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 11)	500 mW
Output Short Circuit Duration	10 sec
ESD rating (1.5 k Ω in series with	
$100 \mathrm{pF})$	

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Temperature Range

LM319A, LM319
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 12)

Parameter	Conditions	LM319A			LM319			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 13)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.5	1.0		2.0	8.0	mV
Input Offset Current (Note 13)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	40		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500		250	1000	nA.
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 15)	20	40		8	40		V / mV
Response Time (Note 14)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80			80		ns
Saturation Voitage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\text {GND }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10		0.2	10	$\mu \mathrm{A}$
Input Offset Voltage (Note 13)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10			10	mV
Input Offset Current (Note 13)				300			300	nA
Input Bias Current				1000			1200	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	1	± 13	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4		0.3	0.4	V
Differential Input Voltage				± 5			± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3			4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8	12.5		8	12.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3	5		3	5	mA

Note 10: For supply voltages less than ± 15 the absolute maximum input voltage is equal to the supply voltage.
Note 11: The maximum junction temperature of the LM319A and LM319 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the N 14 and J 14 package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The thermal resistance of the M14 package is $115^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 12: These specifications apply for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 13: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 14: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 15: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic - where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

High precision comparators

- Reduced V_{OS} drift over temperature
- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply voltage range
-LM139/139A Series 2 to $36 V_{D C}$ or ± 1 to $\pm 18 V_{D C}$ -LM2901: $\quad 2$ to $36 \mathrm{~V}_{\mathrm{DC}} \quad$ or ± 1 to $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ - LM3302: 2 to $28 \mathrm{~V}_{\mathrm{DC}} \quad$ or ± 1 to $\pm 14 \mathrm{~V}_{\mathrm{DC}}$
- Very low supply current drain (0.8 mA) - independent of supply voltage
- Low input biasing current:

25 nA

- Low input offset current: $\pm 5 \mathrm{nA}$
- Offset voltage:
$\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage:

250 mV at 4 mA

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

One-Shot Multivibrator with Input Lock Out

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V^{+}
Differential Input Voltage (Note 8)
Input Voltage
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)$,
(Note 3)
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND, (Note 2)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
Operating Temperature Range
LM339/LM339A
LM239/LM239A
LM2901
LM139/LM139A
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

LM139/LM239/LM339

LM139A/LM239A/LM339A

LM2901

$36 V_{D C}$ or $\pm 18 V_{D C}$ $36 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$
50 mA

1050 mW
1190 mW
760 mW

Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

LM3302
$28 V_{D C}$ or $\pm 14 V_{D C}$
$28 \mathrm{~V}_{\mathrm{DC}}$
$-0.3 V_{D C}$ to $+28 V_{D C}$
50 mA

1050 mW

Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF) 600V 600V

Electrical Characteristics

($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)	1.0	2.0		1.0	2.0	2.0	5.0	$m V_{D C}$
Input Bias Current	$\mathrm{I}_{\mathrm{N}(+)}$ or $\mathrm{I}_{\mathrm{IN}_{(-)}}$with Output in Linear Range, (Note 5), $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	25	100		25	250	25	100	$n A_{D C}$
Input Offset Current	$\mathrm{I}_{\operatorname{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	3.0	25		5.0	50	3.0	25	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}(\mathrm{LM} 3302, \\ & \left.\mathrm{V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right)(\text { Note } 6) \end{aligned}$	0	$\mathrm{V}^{+}-1.5$	0		+-1.5	0	$\mathrm{V}^{+}-1.5$	V_{DC}
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=36 \mathrm{~V}, \\ & \left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0.8	2.0		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{o}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	50200		50	200		50200		V/mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\text { TTL Logic Swing, } \mathrm{V}_{\mathrm{REF}}= \\ & 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	300			300		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \text { (Note 7) } \end{aligned}$	1.3			1.3		1.3		$\mu \mathrm{s}$

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \\ & \hline \end{aligned}$	6.016		6.0	16		6.016		$\mathrm{mA}_{\mathrm{DC}}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$	250	400		250	400	250	400	$\mathrm{mV}_{\mathrm{DC}}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{I N(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(-)}}=0, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	0.1			0.1		0.1		$n \mathrm{~A}_{\text {DC }}$

Electrical Characteristics

Parameter	Conditions	LM239, LM339			LM2901		LM3302		Units
		Min	Typ	Max	Min Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)		2.0	5.0	2.0	7.0	3	20	$m V_{D C}$
Input Bias Current	$\mathrm{I}_{\mathbb{N}_{(+)}}$or $\mathrm{I}_{\mathbb{N}(-)}$ with Output in Linear Range, (Note 5), $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	250	25	250	25	500	$n A_{\text {DC }}$
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)} \mathrm{I}_{\text {IN(}- \text {) }}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		5.0	50	5	50	3	100	$n \mathrm{~A}_{\mathrm{DC}}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}(\text { LM3302, } \\ & \left.\mathrm{V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right)(\text { Note } 6) \end{aligned}$	0		+-1.5	0	$\mathrm{V}^{+}-1.5$	0	$\mathrm{V}^{+}-1.5$	V_{DC}
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=36 \mathrm{~V}, \\ & \left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	50	200		$25 \quad 100$		230		V / mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}= \\ & 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \end{aligned}$		300		300		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \text { (Note 7) } \end{aligned}$		1.3		1.3		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	6.0	16		6.016		6.016		$m A_{D C}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK} K} \leq 4 \mathrm{~mA} \end{aligned}$		250	400	250	400	250	500	$\mathrm{mV}_{\mathrm{DC}}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(-)}=0, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		0.1		0.1		0.1		$n A_{D C}$

Electrical Characteristics

($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$, (Note 4))

Parameter	Conditions	LM139A		$\begin{aligned} & \text { LM239A, } \\ & \text { LM339A } \end{aligned}$			LM139		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)		4.0			4.0		9.0	$m V_{D C}$
Input Offset Current	$\mathrm{I}_{\operatorname{IN}(+)} \mathrm{I}_{\operatorname{IN(-)}}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		100			150		100	$n \mathrm{~A}_{\mathrm{DC}}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$or $\mathrm{I}_{\mathrm{IN(-)}}$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300			400		300	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}(\mathrm{LM} 3302, \\ & \left.\mathrm{V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right)(\text { Note 6) } \end{aligned}$	0	$\mathrm{V}^{+}-2.0$	0		$\mathrm{V}^{+}-2.0$	0	$\mathrm{V}^{+}-2.0$	V_{DC}
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$		700			700		700	$m V_{\text {DC }}$

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, (Note 4))

Parameter	Conditions	LM139A		LM239A,LM339A			LM139		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)=1} 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(-)}}=0, \\ & \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}},(\mathrm{LM} 3302, \\ & \left.\mathrm{V}_{\mathrm{O}}=28 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$		1.0			1.0		1.0	$\mu \mathrm{A}_{\mathrm{DC}}$
Differential Input Voltage	Keep all V_{IN} ' $\mathrm{s} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used), (Note 8)		36			36		36	V_{DC}

Electrical Characteristics

($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$, (Note 4))

Parameter	Conditions	LM239, LM339			LM2901			LM3302			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 9)			9.0		9	15			40	$\mathrm{mV}_{\mathrm{DC}}$
Input Offset Current	$\mathrm{I}_{1(t)}{ }^{-1} \mathrm{I}_{\mathrm{N}(-)}, \mathrm{V}_{\text {cM }}=0 \mathrm{~V}$			150		50	200			300	$n A_{D C}$
Input Bias Current	$\mathrm{I}_{\left.\mathbb{N}_{(+)}\right)}$or $\mathrm{I}_{\mathrm{IN}_{(-)}}$with Output in Linear Range, $\mathrm{V}_{\mathrm{Cm}}=\mathrm{OV}$ (Note 5)			400		200	500			1000	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28\right. \\ & \left.\mathrm{V}_{\mathrm{DC}}\right) \\ & \text { (Note 6) } \end{aligned}$			$\mathrm{V}^{+}-2.0$	0		$\mathrm{V}^{+}-2.0$	0		$\mathrm{V}^{+}-2.0$	V_{DC}
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0,} \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \\ & \hline \end{aligned}$			700		400	700			700	mV DC
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}_{(+)}=1} \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{1 N_{(-)}=}=0, \\ & \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}},\left(\mathrm{LM} 3302, \mathrm{~V}_{\mathrm{O}}=28\right. \\ & \left.\mathrm{V}_{\mathrm{DC}}\right) \end{aligned}$			1.0			1.0			1.0	$\mu A_{D C}$
Differential Input Voltage	Keep all V_{IN} ' $>0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used), (Note 8)			36			36			28	V_{DC}

Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $95^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100$ mW), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V^{+}.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the $I C$ chip. This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at 25°) C .
Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$, for the LM139/LM139A. With the LM239/LM239A, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, the LM339/LM339A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2901 , LM3302 temperature range is $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$. Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, but either or both inputs can go to +30 V 酸 without damage (25 V for LM3302), independent of the magnitude of V^{+}.
Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used) (at $25^{\circ} \mathrm{C}$).
Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$), at $25^{\circ} \mathrm{C}$. For LM3302, V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $28 \mathrm{~V}_{\mathrm{DC}}$.
Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications.

LM160/LM360

High Speed Differential Comparator

General Description

The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV .
Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

Features

- Guaranteed high speed: 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Connection Diagrams

Metal Can Package

TOP VIEW
DS005707-4
Order Number LM160H/883 (Note 1) See NS Package Number H08C

Dual-In-Line Package

TOP VIEW
Order Number LM360M, LM360MX or LM360N See NS Package Number M08A or N08E

Note 1: Also available in SMD\# 5962-8767401

Absolute Maximum Ratings (Notes 6,8)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Positive Supply Voltage	+8 V
Negative Supply Voltage	-8 V
Peak Output Current	20 mA
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\mathrm{V}^{+} \geq \mathrm{V}_{\text {IN }} \geq \mathrm{V}^{-}$
ESD Tolerance (Note 9)	1600 V
Operating Temperature Range	
LM160	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM360	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Absolute Maximum Ratings
(Notes 6, 8)
If Military/Aerospace specified devices are required, Distributors for availability and specifications.

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature
(Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Soldering Information

Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

$\left(T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\right)$

Parameter	Conditions	Min	Typ	Max	Units
Operating Conditions Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{+}$ Supply Voltage $\mathrm{V}_{\mathrm{Cc}}{ }^{-}$		$\begin{gathered} 4.5 \\ -4.5 \end{gathered}$	$\begin{gathered} 5 \\ -5 \end{gathered}$	$\begin{gathered} 6.5 \\ -6.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$		2	5	mV
Input Offset Current			0.5	3	$\mu \mathrm{A}$
Input Bias Current			5	20	$\mu \mathrm{A}$
Output Resistance (Either Output)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH }}$		100		Ω
Response Time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 2,7) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 3,7) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 4,7) \end{aligned}$		$\begin{aligned} & 13 \\ & 12 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns ns ns
Response Time Difference between Outputs $\begin{aligned} & \left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 2}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 2}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 1}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 2}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 2,7) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 2,7) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 2,7) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 2,7) \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		
Input Resistance	$\mathrm{f}=1 \mathrm{MHz}$		17		$\mathrm{k} \Omega$
Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$		3		pF
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			7		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$	± 4	± 4.5		V
Differential Input Voltage Range		± 5			V
Output High Voltage (Either Output)	$\mathrm{I}_{\text {OUT }}=-320 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$	2.4	3		V
Output Low Voltage (Either Output)	$\mathrm{I}_{\text {SINK }}=6.4 \mathrm{~mA}$		0.25	0.4	V
Positive Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		18	32	mA
Negative Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		-9	-16	mA

Note 2: Response time measured from the 50% point of a $30 \mathrm{mVp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 3: Response time measured from the 50% point of a $2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.

Electrical Characteristics (Continued)

Note 4: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold. Note 5: Typical thermal impedances are as follows:

Cavity DIP (J):	${ }^{\text {日j }} \mathrm{A}$	$135^{\circ} \mathrm{CW}$	Header (H)	${ }^{\text {®j }} \mathrm{A}$	$165^{\circ} \mathrm{CW}$	(Still Air)
Moided DIP (N :	$\theta_{j} \mathrm{~A}$	$130^{\circ} \mathrm{CW}$			$67^{\circ} \mathrm{CN}$	(400 LF/min Air Flow)
				${ }_{\theta \text { ej }}$	$25^{\circ} \mathrm{C} / \mathrm{w}$	

Note 6: The device may be damaged if used beyond the maximum ratings.
Note 7: Measurements are made in AC Test Circuit, Fanout = 1
Note 8: Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications. Note 9: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM161/LM361

High Speed Differential Comparators

General Description

The LM161/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).
Complementary outputs having maximum skew are provided. Applications involve high speed analog to digital converters and zero-crossing detectors in disk file systems.

Features

- Independent strobes
- Guaranteed high speed: 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- Operates from op amp supplies: $\pm 15 \mathrm{~V}$
- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

Logic Diagram

*Output is low when current is drawn from strobe pin.

Top View
Order Number LM361M, LM361MX or LM361N See NS Package Number M14A or N14A

Metal Can Package

DS005708-3
Order Number LM161H/883 or LM361H See NS Package Number H10C

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Positive Supply Voltage, V^{+}	+16 V
Negative Supply Voltage, V^{-}	-16 V
Gate Supply Voltage, V_{CC}	+7 V
Output Voltage	+7 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Common Mode Voltage	$\pm 6 \mathrm{~V}$
Power Dissipation	600 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {mis }}$
TMAx	
LM161	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM361	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
For Any Device Lead Below V^{-}	0.3 V

Operating Conditions

	Min	Typ	Max
Supply Voltage V^{+}			
LM161	5 V		15 V
LM361	5 V		15 V
Supply Voltage V			
LM161			
LM361	-6 V		-15 V
Supply Voltage V		-15 V	
LM161	-6 V		5.5 V
LM361	4.5 V	5 V	5.25 V
ESD Tolerance (Note 5)		5 V	1600 V
Soldering Information			
\quad Dual-In-Line Package			$260^{\circ} \mathrm{C}$
\quad Soldering (10 seconds)			$215^{\circ} \mathrm{C}$
Small Outline Package		$220^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

$\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161			LM361			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage			1	3		1	5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5			10		$\mu \mathrm{A}$
				20			30	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2			2		
				3			5	$\mu \mathrm{A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		V / mV
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		20			20		$\mathrm{k} \Omega$
Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\text {SOURCE }}=-0.5 \mathrm{~mA} \end{aligned}$	2.4	3.3		2.4	3.3		V
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SINK}}=6.4 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
Strobe Input "1" Current (Output Enabled)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{STROBE}}=2.4 \mathrm{~V} \end{aligned}$			200			200	$\mu \mathrm{A}$
Strobe Input " 0 " Current (Output Disabled)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\text {STROBE }}=0.4 \mathrm{~V} \\ & \hline \end{aligned}$			-1.6			-1.6	mA
Strobe Input "0" Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			0.8			0.8	V
Strobe Input "1" Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$	2			2			V
Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	-18		-55	-18		-55	mA
Supply Current I^{+}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			4.5				mA
Supply Current I^{+}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						5	mA
Supply Current I^{-}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			10				mA

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161			LM361			
		Min	Typ	Max	Min	Typ	Max	
Supply Current 1^{-}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \\ & \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						10	mA
Supply Current $\mathrm{I}_{\text {cc }}$	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			18				mA
Supply Current Icc	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						20	mA
Transient Response	$\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}$ overdrive (Note 3)							
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(1)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Delay Between Output A and B	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	5	ns
Strobe Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns
Strobe Delay Time ($\mathrm{t}_{\mathrm{pd}(1)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns

Note 1: The device may be damaged by use beyond the maximum ratings.
Note 2: Typical thermal impedances are as follows:

Note 3: Measurements using AC Test circuit, Fanout =1. The devices are faster at low supply voltages.
Note 4: Refer to RETS161X for LM161H and LM161J military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM193/LM293/LM393/LM2903
 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced $\mathrm{V}_{\text {Os }}$ drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply
- Voltage range:
2.0 V to 36 V
- single or dual supplies:
$\pm 1.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Very low supply current drain (0.4 mA) - independent of supply voltage
- Low input biasing current:
- Low input offset current: $\pm 5 \mathrm{nA}$
- Maximum offset voltage: $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage,:

250 mV at 4 mA

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Connection Diagrams

Squarewave Oscillator

Non-Inverting Comparator with Hysteresis

Schematic and Connection Diagrams

DS005709-2

Metal Can Package

TOP VIEW
DS005709-3
Order Number LM193H *
LM193H/883, LM193AH-QMLV ** LM193AH, LM193AH/883, LM293H or LM393H
See NS Package Number H08C

DS005709-1
Order Number LM193J/883 *
LM193AJ/883, LM193AJ-QMLV ** LM393M, LM393MX, LM2903M, LM2903MX, LM393N or LM2903N See NS Package Number J08A, M08A or N08E

Note: * Also available per JM38510/11202
Note: ** See STD Mil DWG 5962-94526

```
Absolute Maximum Ratings (Note 10)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
```

Supply Voltage, V^{+}
Differential Input Voltage (Note 8)
Input Voltage
Input Current ($\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}$) (Note 3)
Power Dissipation (Note 1)

Molded DIP	780 mW
Metal Can	660 mW
Small Outline Package	510 mW
Output Short-Circuit to Ground	
(Note 2)	Continuous
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM393/LM393A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

LM193/LM193A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM2903	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 seconds)	
Infrared (15 seconds)	$220{ }^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating
($1.5 \mathrm{k} \Omega$ in series with 100 pF)

Electrical Characteristics

$\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions		LM193A			LM293A, LM393A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 9)			1.0	2.0		1.0	2.0	mV
Input Bias Current	$\mathrm{I}_{\mathbb{N}}(+)$ or $\mathrm{I}_{\mathbb{N}}(-)$ with Output In Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)			25	100		25	250	nA
Input Offset Current	$\mathrm{l}_{\text {IN }}(+)-\mathrm{I}_{\text {IN }}(-) \mathrm{V}_{\text {CM }}=0 \mathrm{~V}$			3.0	25		5.0	50	nA
Input Common Mode Voltage Range	$\mathrm{V}+=30 \mathrm{~V}$ (Note 6)		0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}+-1.5$	V
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}^{+}=5 \mathrm{~V}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$		1		0.4	1	mA
		$\mathrm{V}^{+}=36 \mathrm{~V}$			2.5		1	2.5	mA
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V} \end{aligned}$		50	200		50	200		V/mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$			300			300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ (Note 7)			1.3			1.3		$\mu \mathrm{s}$
Output Sink Current	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{~V}_{\mathrm{O}} \approx 1.5 \mathrm{~V}$		6.0	16		6.0	16		mA
Saturation Voltage	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$			250	400		250	400	mV
Output Leakage Current	$\mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\text {IN }}(+)=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$			0.1			0.1		nA

Electrical Characteristics

$\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions		LM193		LM293, LM393		LM2903			Units
			Min Typ	Max	Min Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 9)		1.0	5.0	1.0	5.0		2.0	7.0	mV
Input Bias Current	$\mathrm{I}_{\mathrm{IN}^{\prime}}(+)$ or $\mathrm{I}_{\mathrm{IN}}(-)$ with Output In Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		25	100	25	250		25	250	nA
Input Offset Current	$\mathrm{I}_{\text {IN }}(+)-\mathrm{I}_{\text {IN }}(-) \mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		3.0	25	5.0	50		5.0	50	nA
Input Common Mode Voltage Range	$\mathrm{V}+=30 \mathrm{~V}$ (Note 6)		0	V+-1.5	0	$\mathrm{V}+-1.5$	0		$\mathrm{V}+-1.5$	V
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}^{+}=5 \mathrm{~V}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	1	0.4	1		0.4	1.0	mA
		$\mathrm{V}^{+}=36 \mathrm{~V}$		2.5	1	2.5		1	2.5	mA

Electrical Characteristics (Continued)
($\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated)

Parameter	Conditions	LM193		LM293, LM393		LM2903			Units
		Min Typ	Max	Min Typ	Max	Min	Typ	Max	
Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V} \end{aligned}$	50200		50200		25	100		V / mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	300		300			300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ (Note 7)	1.3		1.3			1.5		$\mu \mathrm{s}$
Output Sink Current	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	$6.0 \quad 16$		$6.0 \quad 16$		6.0	16		mA
Saturation Voltage	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$	250	400	250	400		250	400	mV
Output Leakage Current	$\mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\text {IN }}(+)=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$	0.1		0.1			0.1		nA

Electrical Characteristics

(V+=5V) (Note 4)

Parameter	Conditions	LM193A		Units
		Min	Typ Max	
Input Offset Voltage	(Note 9)		4.0	mV
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		100	nA
Input Bias Current	$\mathrm{I}_{\mathrm{IN}}(+)$ or $\mathrm{I}_{\mathrm{IN}}(-)$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300	nA
Input Common Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 6)	0	$\mathrm{V}^{+}-2.0$	V
Saturation Voltage	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$		700	mV
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{IN}(+)}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$		1.0	$\mu \mathrm{A}$
Differential Input Voltage	Keep All $\mathrm{V}_{\text {in }}$'s $\geq 0 \mathrm{~V}$ (or V^{-}, if Used), (Note 8)		36	V

Electrical Characteristics

(V+=5V) (Note 4)

Parameter	Conditions	LM193	LM293, LM393	LM2903	Units
		Min Typ Max	Min Typ Max	Min Typ Max	
Input Offset Voltage	(Note 9)	9	9	$9 \quad 15$	mV
Input Offset Current	$\mathrm{I}_{\operatorname{IN}(+)}-\mathrm{I}_{\mathbb{N (-)} \text {, }}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	100	150	$50 \quad 200$	nA
Input Bias Current	$\mathrm{I}_{\mathrm{IN}}(+)$ or $\mathrm{I}_{\mathrm{IN}}(-)$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ (Note 5)	300	400	200500	nA
Input Common Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 6)	$0 \quad \mathrm{~V}^{+}-2.0$	$0 \quad \mathrm{~V}^{+}-2.0$	$0 \quad \mathrm{~V}^{+}-2.0$	V
Saturation Voltage	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$	700	700	400700	mV
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{IN}(+)}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$	1.0	1.0	1.0	$\mu \mathrm{A}$
Differential Input Voltage	Keep All $\mathrm{V}_{\text {IN }}$ ' $\mathrm{s} \geq 0 \mathrm{~V}$ (or V^{-}, if Used), (Note 8)	36	36	36	V

Note 1: For operating at high temperatures, the LM393/LM393A and LM2903 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $170^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM193/LM193A/LM293/LM293A must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($P_{D} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.

Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V^{+}.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V .
Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, for the LM193/LM193A. With the LM293/LM293A all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 393 / \mathrm{LM} 393 \mathrm{~A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The LM2903 is limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.

Electrical Characteristics (Continued)

Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, but either or both inputs can go to 36 V without damage, independent of the magnitude of V^{+}.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used). Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$), at $25^{\circ} \mathrm{C}$.
Note 10: Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications.

0

LM392

Low Power Operational Amplifier/Voltage Comparator

General Description

The LM392 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.
Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard $5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM392 extremely useful in the design of portable equipment.

Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM358 dual op amp and the LM393 dual comparator

Features

- Wide power supply voltage range Single supply: 3 V to 32 V Dual supply: $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Low supply current drain-essentially independent of supply voltage: $600 \mu \mathrm{~A}$
- Low input biasing current: 50 nA
- Low input offset voltage: 2 mV
- Low input offset current: 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage

ADDITIONAL OP AMP FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz
- Large output voltage swing: $\quad 0 \mathrm{~V}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage: 250 mV at 4 mA
- Output voltage compatible with all types of logic systems

Connection Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Supply Voltage, V^{+}

LM392

Differential Input Voltage

$$
32 \mathrm{~V} \text { or } \pm 16 \mathrm{~V}
$$

Input Voltage
32 V
-0.3 V to +32 V
Power Dissipation (Note 2)
Molded DIP (LM392N)
820 mW
Small Outline Package (LM392M)
Output Short-Circuit to Ground (Note 3)
Input Current ($\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}$) (Note 4)
530 mW
Continuous
50 mA
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$
ESD rating to be determined.
Soldering Information
Dual-in-Line Package
Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package

Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{Dc}}$; specifications apply to both amplifiers unless otherwise stated) (Note 5)

Parameter	Conditions	LM392			Units
		Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 6)		± 2	± 5	mV
Input Bias Current	$\operatorname{IN}(+)$ or $\operatorname{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 7) , $\mathrm{V}_{\mathrm{CM}}=$ OV		50	250	nA
Input Offset Current	$\mathrm{IN}(+)-\mathrm{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 5	± 50	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 8)	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$		0.5	1	mA
Amplifier-to-Amplifier Coupling	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, Input } \\ & \text { Referred, (Note } 9 \text {) } \end{aligned}$		-100		dB
Input Offset Voltage	(Note 6)			± 7	mV
Input Bias Current	$\mathrm{IN}(+)$ or $\mathrm{IN}(-)$			400	nA
Input Offset Current	$\operatorname{IN}(+)-\operatorname{IN}(-)$			150	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$, (Note 8)	0		$\mathrm{V}^{+}-2$	V
Differential Input Voltage	Keep All $\mathrm{V}_{\text {IN }}{ }^{\text {'s }} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used) (Note 10)			32	V

Electrical Characteristics (Continued)

($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$; specifications apply to both amplifiers unless otherwise stated) (Note 5)

Parameter	Conditions	LM392			Units
		Min	Typ	Max	
OP AMP ONLY					
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}} \text { swing }=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	25	100		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}^{+}-1.5$	V
Common-Mode Rejection Ratio	$\mathrm{DC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{DC}} \text { to } \mathrm{V}^{+}-1.5$ $V_{D C}$	65	70		dB
Power Supply Rejection Ratio	DC, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		dB
Output Current Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(-)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		mA
Output Current Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10	20		mA
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{I N(+)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	12	50		$\mu \mathrm{A}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10		$\mathrm{pA}_{\mathrm{DC}}{ }^{\circ} \mathrm{C}$
COMPARATOR ONLY					
Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		V / mV
Large Signal Response Time	$\mathrm{V}_{\mathrm{IN}}=\text { TTL Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{DC}}$ $\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{O}} \geq 1.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6	16		mA
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN(+)}}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		250	400	mV
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$			700	mV
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=0, \mathrm{~V}_{\mathrm{IN(+)}} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1		nA
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=0, \mathrm{~V}_{\mathrm{IN}(+)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{0}=30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			1.0	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM392 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $122^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The dissipation is the total of both amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 3: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of V^{+}. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$).
Note 5: These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$, unless otherwise stated. For the LM 392 , temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 6: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).
Note 7: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 8: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage.
Note 9: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive coupling increases at higher frequencies.
Note 10: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the common-mode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 11: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

LM613

Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16 -pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.

As a member of National's Super-Block ${ }^{T M}$ family, the LM613 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP

- Low operating current (Op Amp): $300 \mu \mathrm{~A}$
- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temp. Range Operation
REFERENCE
- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$

■ Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA

- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

Ultra Low Noise, 10.00V Reference. Total output noise is typically $14 \mu \mathrm{~V}_{\mathrm{Rms}}$.

*10k must be low t.c. trimpot

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltage on Any Pin Except V_{R}
(referred to V^{-}-pin)
(Note 2)
36V (Max)
(Note 3)
-0.3 V (Min)
Current through Any Input Pin \& V_{R} Pin
Differential Input Voltage
Military and Industrial
Commercial
Storage Temperature Range
Maximum Junction Temp.(Note 4)

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
I_{s}	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 V \leq V^{+} \leq 36 V(32 V \text { for } L M 613 C) \end{aligned}$	$\begin{aligned} & 450 \\ & 550 \end{aligned}$	$\begin{gathered} 940 \\ 1000 \end{gathered}$	$\begin{aligned} & 1000 \\ & 1070 \end{aligned}$	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
V_{S}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{V}(\operatorname{Min}) \\ & \mathrm{V}(\mathrm{Min}) \end{aligned}$
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & \text { V (Max) } \\ & \mathrm{V} \text { (Max) } \end{aligned}$
OPERATIONAL AMPLIFIERS						
$\mathrm{V}_{\text {OS } 1}$	$\mathrm{V}_{\text {OS }}$ Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	mV (Max) mV (Max)
$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {Os }}$ Over $\mathrm{V}_{\text {CM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	mV (Max) mV (Max)
$\frac{V_{\text {OS3 }}}{\Delta T}$	Average $\mathrm{V}_{\text {Os }}$ Drift	(Note 8)	15			$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & (\mathrm{Max}) \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA (Max) nA (Max)
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA}(\text { Max }) \\ & \mathrm{nA}(\text { Max }) \end{aligned}$
$\frac{\mathrm{los} 1}{\Delta T}$	Average Offset Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1000			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode	6			pF
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Current Noise	$f=100 \mathrm{~Hz}$, Input Referred	58			$\mathrm{fA} / \sqrt{\text { Hz }}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\text { Min }) \\ & \mathrm{dB}(\text { Min }) \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \\ & \mathrm{PSRR}=20 \log \left(\Delta \mathrm{~V}^{+} / \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\operatorname{Min}) \\ & \mathrm{dB}(\operatorname{Min}) \end{aligned}$

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	

	LM613AM	LM613M
(Note 7)	LM613AI	LM613I
	Limits	LM613C
	(Note 8)	Limits
		(Note 8)

Units

OPERATIONAL AMPLIFIERS

A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{gathered} 100 \\ 40 \end{gathered}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 9)	$\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	V/ $/ \mathrm{s}$
GBW	Gain Bandwidth	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$			MHz MHz
$\mathrm{V}_{\mathrm{O} 1}$	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to GND, } \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \hline V^{+}-1.4 \\ & V^{+}-1.6 \end{aligned}$	$\begin{aligned} & \hline V^{+}-1.7 \\ & V^{+}-1.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-1.8 \\ & \mathrm{~V}^{+}-1.9 \end{aligned}$	$\begin{aligned} & \hline V(\operatorname{Min}) \\ & V(\operatorname{Min}) \end{aligned}$
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+}, \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.8 \\ & \mathrm{~V}^{-}+\mathbf{0 . 9} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.9 \\ & \mathrm{~V}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{-}+0.95 \\ & \mathrm{v}^{-}+1.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \text { (Max) } \\ & \mathrm{V} \text { (Max) } \\ & \hline \end{aligned}$
Iout	Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}^{-}{ }_{\text {IN }}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	mA (Min) mA (Min)
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}^{-}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA (Min) mA (Min)
$\mathrm{I}_{\text {SHORT }}$	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\text {IN }}=3 \mathrm{~V}, \\ & \mathrm{~V}^{-}{ }_{\text {IN }}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	mA (Max) mA (Max)
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=2 \mathrm{~V}, \\ & \mathrm{~V}^{-}, \\ & \text {IN } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	mA (Max) mA (Max)

COMPARATORS

$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}), \\ & \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV}(\text { Max }) \end{aligned}$
$\frac{V_{O S}}{V_{C M}}$	Offset Voltage over V_{CM}	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 36 \mathrm{~V} \\ & \mathrm{~V}^{+}=36 \mathrm{~V},(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\operatorname{Max}) \\ & \mathrm{mV}(\operatorname{Max}) \end{aligned}$
$\frac{V_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Offset Voltage Drift		15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ (Max)
I_{B}	Input Bias Current		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA (Max) nA (Max)
Ios	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA (Max) nA (Max)
A_{V}	Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $36 \mathrm{~V}(32 \mathrm{~V}$ for LM613C) $2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V}$	$\begin{aligned} & 500 \\ & 100 \\ & \hline \end{aligned}$			V / mV V / mV
t_{r}	Large Signal Response Time	$\begin{aligned} & \mathrm{V}^{+}{ }_{\mathrm{N}}=1.4 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\mathrm{IN}}=\mathrm{TTL} \text { Swing, } \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}^{+}{ }_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\text {IN }}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{gathered} 10 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	mA (Min) mA (Min)
		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{aligned} & 2.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	mA (Min) mA (Min)
$\mathrm{I}_{\text {LEAK }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}^{+}{ }_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=36 \mathrm{~V}(32 \mathrm{~V} \text { for LM613C }) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	10	10	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}(\mathrm{Max})$

VOLTAGE REFERENCE

V_{R}	Voltage Reference	(Note 10)	1.244	1.2365	1.2191	$\mathrm{~V}(\mathrm{Min})$

Electrical Characteristics (Continued)
These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
VOLTAGE REFERENCE						
				$\begin{gathered} 1.2515 \\ (\pm 0.6 \%) \end{gathered}$	$\begin{aligned} & 1.2689 \\ & (\pm 2 \%) \end{aligned}$	V (Max)
$\frac{\Delta V_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temp. Drift	(Note 11)	10	80	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Max)
$\frac{\Delta V_{R}}{\Delta T_{J}}$	Hysteresis	(Note 12)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{R}}{\Delta I_{R}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{gathered} 0.05 \\ 0.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV (Max) mV (Max)
		$\begin{aligned} & V_{R(10 \mathrm{~mA})}-\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})} \\ & \text { (Note 13) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV}(\text { Max }) \\ & \mathrm{mV}(\text { Max }) \end{aligned}$
R	Resistance	$\begin{aligned} & \Delta V_{R(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{R}(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{aligned} & \Omega \text { (Max) } \\ & \Omega \text { (Max) } \\ & \hline \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{RO}	$\left.\left.V_{R(V r o}=V_{r}\right)-V_{R(V r o}=6.3 \mathrm{~V}\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV}(\text { Max }) \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with $V_{\text {ANODE }}$ Change	$\begin{aligned} & \mathrm{V}_{\mathrm{R}(\mathrm{~V}+=5 \mathrm{~V})}-\mathrm{V}_{\mathrm{R}(\mathrm{~V}+=36 \mathrm{~V})} \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
		$\mathrm{V}_{\mathrm{R}(\mathrm{V}+=5 \mathrm{~V})}-\mathrm{V}_{\mathrm{R}(\mathrm{V}+=3 \mathrm{~V})}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
I_{FB}	FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	nA (Max) nA (Max)
e_{n}	V_{R} Noise	10 Hz to 10 kHz , $V_{R O}=V_{R}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Simultaneous short-circuit of multiple comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous.
Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package.

Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in bold face type apply for the full operating temperature range. These values represent the most likely parametric norm.

Note 8: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and @ 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 10: V_{R} is the Cathode-to-feedback voltage, nominally 1.244 V .
Note 11: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, is
 is guaranteed by design and sample testing.
Note 12: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 13: Low contact resistance is required for accurate measurement.

Simplified Schematic Diagrams
Op Amp

Comparator

Reference/Bias

National Semiconductor

LM6511

180 ns 3V Comparator

General Description

The LM6511 voltage comparator is ideal for analog-digital interface circuitry when only a +3 V or +3.3 V supply is available. The open-collector output permits signal compatibility with a wide variety of digital families: +5 V CMOS, +3 V CMOS, TTL and so on. Supply voltage may range from 2.7 V to 36 V between supply voltage leads. The LM6511 operates with little power consumption ($\mathrm{P}_{\text {diss }}<9.45 \mathrm{~mW}$ at $\mathrm{V}^{+}=$ +2.7 V and $\mathrm{V}^{-}=0 \mathrm{~V}$).
This voltage comparator offers many features that are available in traditional sub-microsecond comparators: output sync strobe, inputs and output may be isolated from system ground, and wire-ORing. Also, the LM6511 uses the industry-standard, single comparator pinout configuration.

Features

(Typical unless otherwise noted)

- Operates at $+2.7 \mathrm{~V},+3 \mathrm{~V},+3.3 \mathrm{~V},+5 \mathrm{~V}$
- Low Power consumption <9.45 mW @ $\mathrm{V}^{+}=2.7 \mathrm{~V}$ (max)
- Fast Response Time of 180 ns

Applications

- Portable Equipment
- Cellular Phones
- Digital Level Shifting

Connection Diagram

Ordering Information

Package	Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	NSC Package Drawing
8-Pin Small Outline	LM6511IM, LM6511IMX	M08A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	-0.3 to +36 V
Output to Negative Supply Voltage	50 V
Ground to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage	$($ Note 2$)$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information:	
SO Package	
(Vapor Phase in 60 sec)	$215^{\circ} \mathrm{C}$
SO Package (Infrared in 15 sec$)$	$220^{\circ} \mathrm{C}$

Power Dissipation	500 mW
Output Short Circuit Duration	10 s
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Rating	
$\quad(\mathrm{C}=+100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$	300 V

Operating Ratings (Note 1)

Supply Voltage	2.5 V to 30 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$

$170^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=2.7 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, 50 \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 50 \mathrm{k} \Omega$, and $\mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA}$ unless otherwise specified

Symbol	Parameter	Conditions	Typical	LM6511I	Units (Limits)
				Limit	
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$ (Note 3)	1.5	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
I_{B}	Input Bias Current		38	$\begin{aligned} & 130 \\ & 200 \\ & \hline \end{aligned}$	nA
los	Input Offset Current	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega \\ & \text { (Note 3) } \end{aligned}$	1.5	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	max
I_{s}	Positive Supply Current		2.7	$\begin{gathered} 3.5 \\ 5 \\ \hline \end{gathered}$	mA \max
	Negative Supply Current		1.5	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}} \leq 10 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{SINK}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$	0.23	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\Delta \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$	40		V/mV
CMRR	Common Mode Rejection Ratio		72		dB
$\mathrm{I}_{\text {STROBE }}$	Strobe ON Current	(Note 5)	2.0	5.0	mA max
$\mathrm{V}_{\text {IN }}$	Input Voltage Range			0.50	$\mathrm{V}_{\text {min }}$
				$\mathrm{V}^{+}-1.25$	V max
	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V}, \\ & \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$	0.2		nA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=2.7 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, 50 \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 50 \mathrm{k} \Omega$, and $\mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA}$ unless otherwise specified

Symbol	Parameter	Conditions	Typical	LM6511I	Units
			Limit	(Limits)	
T_{R}	Response Time	(Note 4)	180		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: The positive input voltage limit is 30 V above the negative supply voltage. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply voltage, whichever is less.
Note 3: The offset voltage and offset current limits are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Therefore, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 4: This specification is for a 100 mV input step with a 25 mV overdrive.
Note 5: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 mA to 5 mA .

LMC6762

Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output

General Description

The LMC6762 is an ultra low power dual comparator with a maximum supply current of $10 \mu \mathrm{~A} /$ comparator. It is designed to operate over a wide range of supply voltages, from 2.7 V to 15 V . The LMC6762 has guaranteed specs at 2.7V to meet the demands of 3 V digital systems.
The LMC6762 has an input common-mode voltage range which exceeds both supplies. This is a significant advantage in low-voltage applications. The LMC6762 also features a push-pull output that allows direct connections to logic devices without a pull-up resistor.

A quiescent power consumption of $50 \mu \mathrm{~W} / a m p l i f i e r$ ($@ \mathrm{~V}^{+}=5 \mathrm{~V}$) makes the LMC6762 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of power supply voltage. Guaranteed operation at 2.7 V and a rail-to-rail performance makes this device ideal for battery-powered applications.
Refer to the LMC6772 datasheet for an open-drain version of this device.

Features

(Typical unless otherwise noted)

- Low power consumption (max): $\mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A} /$ comp
- Wide range of supply voltages: 2.7 V to 15 V
- Rail-to-rail input common mode voltage range
- Rail-to-rail output swing (Within 100 mV of the supplies, $@ \mathrm{~V}^{+}=2.7 \mathrm{~V}$, and $\mathrm{I}_{\text {LOAD }}=2.5 \mathrm{~mA}$)
- Short circuit protection: 40 mA
- Propagation delay ($@ \mathrm{~V}^{+}=5 \mathrm{~V}, 100 \mathrm{mV}$ overdrive): $4 \mu \mathrm{~s}$

Applications

- Laptop computers
- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

Connection Diagrams

Lead Temperature
(Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
Operating Ratings (Note 1)
$\begin{array}{ll}\text { Supply Voltage } & 2.7 \leq \mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V} \\ \text { Junction Temperature Range }\end{array}$
LMC6762AI, LMC6762BI
Thermal Resistance $\left(\theta_{J A}\right)$
N Package, 8-Pin Molded DIP $100^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount
$172^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} \hline \text { LMC6762AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { LMC6762BI } \\ & \text { Limit } \\ & (\text { Note 6) } \end{aligned}$	Units
V_{OS}	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{1 8} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Temperature Drift		2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Average Drift	(Note 8)	3.3			$\mu \mathrm{V} / \mathrm{Month}$
I_{B}	Input Current		0.02			pA
$\mathrm{I}_{\text {OS }}$	Input Offset Current		0.01			pA
CMRR	Common Mode Rejection Ratio		75			dB
PSRR	Power Supply Rejection Ratio	$\pm 1.35 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 7.5 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain	(By Design)	100			dB
V_{CM}	Input Common-Mode Voltage Range	CMRR > 55 dB	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\mathrm{I}_{\text {LOAD }}=2.5 \mathrm{~mA}$	2.5	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{OL}	Output Voltage Low	$\mathrm{l}_{\text {LOAD }}=2.5 \mathrm{~mA}$	0.2	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$I_{\text {S }}$	Supply Current	For Both Comparators (Output Low)	12	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \hline \text { LMC6762AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6762BI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	\cdots	3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\overline{\mathrm{TCV}}$ os	Input Offset Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$	2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Temperature Drift	$\mathrm{V}^{+}=15 \mathrm{~V}$	4.0			
	Input Offset Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$ (Note 8)	3.3			$\mu \mathrm{V} /$ Month
	Average Drift	$\mathrm{V}^{+}=15 \mathrm{~V}$ (Note 8)	4.0			
I_{B}	Input Current	$\mathrm{V}=5 \mathrm{~V}$	0.04			pA
los	Input Offset Current	$\mathrm{V}^{+}=5 \mathrm{~V}$	0.02			pA
CMRR	Common Mode Rejection Ratio	$\mathrm{V}^{+}=5 \mathrm{~V}$	75			dB
		$\mathrm{V}^{+}=15 \mathrm{~V}$	82			dB
PSRR	Power Supply Rejection Ratio	$\pm 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 5 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain	(By Design)	100	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$		dB
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5.0 \mathrm{~V}$ CMRR > 55 dB	5.3		$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15.0 \mathrm{~V} \\ & \text { CMRR }>55 \mathrm{~dB} \end{aligned}$	15.3	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	4.8	$\begin{gathered} \hline 4.6 \\ 4.45 \end{gathered}$	$\begin{gathered} 4.6 \\ 4.45 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	14.8	$\begin{gathered} 14.6 \\ 14.45 \end{gathered}$	$\begin{gathered} 14.6 \\ 14.45 \end{gathered}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{OL}	Output Voltage Low	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	For Both Comparators (Output Low)	12	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
$I_{\text {sc }}$	Short Circuit Current	Sourcing	30			mA
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 7)	45			

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LMC6762AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC6762BI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{t}_{\text {RISE }}$	Rise Time	$\begin{aligned} & \hline f=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { Overdrive }=10 \mathrm{mV} \text { (Notes 9, 10) } \end{aligned}$		0.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {faLL }}$	Fall Time	$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Overdrive }=10 \mathrm{mV} \text { (Notes } 9,10) \end{aligned}$		0.3			$\mu \mathrm{s}$
$\overline{\mathrm{t}_{\text {PHL }}}$	Propagation Delay (High to Low)	$\begin{aligned} & f=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & (\text { Notes } 9,10 \text {) } \\ & \hline \end{aligned}$	Overdrive $=10 \mathrm{mV}$	10			$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	4			$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Notes } 9,10 \text {) } \end{aligned}$	Overdrive $=10 \mathrm{mV}$	10			$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	4			$\mu \mathrm{s}$
${ }_{\text {tPLH }}$	Propagation Delay (Low to High)	$\begin{aligned} & \hline \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & (\text { Notes } 9,10) \\ & \hline \end{aligned}$	Overdrive $=10 \mathrm{mV}$	6			$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	4			$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Notes } 9,10 \text {) } \end{aligned}$	Overdrive $=10 \mathrm{mV}$	7			$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	4			$\mu \mathrm{s}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the electrical characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$.All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Do not short circuit output to V^{+}, when V^{+}is greater than 12 V or reliability will be adversely affected.
Note 8: Input Offset Voltage Average Drift is calculated by dividing the accelerated operating life drift average by the equivalent operational time. The Input Offset Voltage Average Drift represents the input offset voltage change at worst-case input conditions.
Note 9: C_{L} includes the probe and jig capacitance.
Note 10: The rise and fall times are measured with a 2 V input step. The propagation delays are also measured with a 2 V input step.

LMC6772

Dual Micropower Rail-To-Rail Input CMOS Comparator with Open Drain Output

General Description

The LMC6772 is an ultra low power dual comparator with a maximum $10 \mu \mathrm{~A} /$ comparator power supply current. It is designed to operate over a wide range of supply voltages, with a minimum supply voltage of 2.7 V .
The common mode voltage range of the LMC6772 exceeds both the positive and negative supply rails, a significant advantage in single supply applications. The open drain output of the LMC6772 allows for wired-OR configurations. The open drain output also offers the advantage of allowing the output to be pulled to any voltage rail up to 15 V , regardless of the supply voltage of the LMC6772.
The LMC6772 is targeted for systems where low power consumption is the critical parameter. Guaranteed operation at supply voltages of 2.7 V and rail-to-rail performance makes this comparator ideal for battery-powered applications.
Refer to the LMC6762 datasheet for a push-pull output stage version of this device.

Features

(Typical unless otherwise noted)

- Low power consumption (max): $I_{S}=10 \mu \mathrm{~A} /$ comp
- Wide range of supply voltages: 2.7 V to 15 V
- Rail-to-Rail Input Common Mode Voltage Range
- Open drain output
- Short circuit protection: 40 mA
- Propagation delay (@V $\mathrm{S}_{\mathrm{S}}=5 \mathrm{~V}, 100 \mathrm{mV}$ overdrive): $5 \mu \mathrm{~s}$

Applications

- Laptop computers
- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

Connection Diagram

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Officel
Distributors for availability and specifications.
ESD Tolerance (Note 2)
$\begin{array}{lr}\text { Differential Input Voltage } & \left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V} \text { to }\left(\mathrm{V}^{-}\right)-0.3 \mathrm{kV} \\ \text { Voltage at Input/Output Pin } & \left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V} \text { to }\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V} \\ \text { Supply Voltage }\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) & 16 \mathrm{~V} \\ \text { Current at Input Pin (Note 8) } & \pm 5 \mathrm{~mA} \\ \text { Current at Output Pin (Notes 3, 7) } & \pm 30 \mathrm{~mA} \\ \text { Current at Power Supply Pin, LMC6772 } & 40 \mathrm{~mA} \\ \text { Lead Temperature (Soldering, } 10 \text { seconds) } & 260^{\circ} \mathrm{C}\end{array}$ lr

| ESD Tolerance (Note 2) | 1.5 kV |
| :--- | ---: | ---: |
| Differential Input Voltage | $\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$ to $\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$ |
| Voltage at Input/Output Pin | $\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$ to $\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$ |
| Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$ | 16 V |
| Current at Input Pin (Note 8) | $\pm 5 \mathrm{~mA}$ |
| Current at Output Pin (Notes 3, 7) | $\pm 30 \mathrm{~mA}$ |
| Current at Power Supply Pin, LMC6772 | 40 mA |
| Lead Temperature (Soldering, 10 seconds) | $260^{\circ} \mathrm{C}$ |

2.7V Electrical Characteristics

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)
Operating Ratings (Note 1)
Supply Voltage
$2.7 \leq V_{S} \leq 15 \mathrm{~V}$
Junction Temperature Range
LMC6772AI, LMC6772BI
$40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})
N Package, 8-Pin Molded DIP
$100^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount
$172^{\circ} \mathrm{C} / \mathrm{W}$

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{array}{\|c} \hline \text { LMC6772AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { LMC6772BI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Temperature Drift		2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Average Drift	(Note 10)	3.3			$\mu \mathrm{V} /$ Month
I_{B}	Input Current		0.02			pA
l_{OS}	Input Offset Current		0.01			pA
CMRR	Common Mode Rejection Ratio		75			dB
PSRR	Power Supply Rejection Ratio	$\pm 1.35 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 7.5 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain	(By Design)	100			dB
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	CMRR > 55 dB	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OL}	Output Voltage Low	$\mathrm{I}_{\text {LOAD }}=2.5 \mathrm{~mA}$	0.2	$\begin{aligned} & 0.3 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	For Both Comparators (Output Low)	12	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
$\mathrm{I}_{\text {Leakage }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}(+)=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(-)=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=15 \mathrm{~V} \end{aligned}$	0.1	500	500	nA

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LMC6772AI Limit (Note 6)	LMC6772BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Temperature Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$	2.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$	4.0			
	Input Offset Voltage Average Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$ (Note 10)	3.3			$\mu \mathrm{V} / \mathrm{Month}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$ (Note 10)	4.0			

5.0V and 15.0V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{array}{\|c} \hline \text { LMC6772AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LMC6772BI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
I_{B}	Input Current	$\mathrm{V}=5 \mathrm{~V}$	0.04			pA
l O	Input Offset Current	$\mathrm{V}^{+}=5 \mathrm{~V}$	0.02			pA
CMRR	Common Mode Rejection Ratio	$\mathrm{V}^{+}=5 \mathrm{~V}$	75			dB
		$\mathrm{V}^{+}=15 \mathrm{~V}$	82			dB
PSRR	Power Supply Rejection Ratio	$\pm 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 5 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain	(By Design)	100			dB
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	15.3	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OL}	Output Voltage Low	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} 0.4 \\ 0.55 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{gathered} \hline 0.4 \\ 0.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.4 \\ 0.55 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{I}_{\text {s }}$	Supply Current	For Both Comparators (Output Low)	12	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
$\mathrm{I}_{\text {sc }}$	Short Circuit Current	$\mathrm{V}^{+}=15 \mathrm{~V}, \text { Sinking, } \mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 7)	45			mA

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LMC6772AI Limit (Note 6)	LMC6772BI Limit (Note 6)	Units
$\mathrm{t}_{\text {RISE }}$	Rise Time	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Overdrive }=10 \mathrm{mV} \text { (Note } 9 \text {) } \end{aligned}$		0.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {FALL }}$	Fall Time	$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { Overdrive }=10 \mathrm{mV} \text { (Note 9) } \end{aligned}$		0.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	$\begin{aligned} & f=10 \mathrm{kHz}, \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note 9) } \end{aligned}$	10 mV	10			$\mu \mathrm{s}$
			100 mV	4			$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note 9) } \end{aligned}$	$10 \mathrm{mV}$	10			$\mu \mathrm{s}$
			100 mV	4			$\mu \mathrm{s}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions		Typ			Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Low to High)	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note } 9 \text {) } \\ & \hline \end{aligned}$	10 mV	10			$\mu \mathrm{s}$
			100 mV	4			$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note } 9 \text {) } \end{aligned}$	10 mV	8			$\mu \mathrm{s}$
			100 mV	4			$\mu \mathrm{s}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the electrical characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . The output pins of the two comparators (pin 1 and pin 7) have an ESD tolerance of 1.5 kV . All other pins have an ESD tolerance of 2 kV .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-T_{A}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Do not short circuit output to V^{+}, when $\mathrm{V}+$ is $>12 \mathrm{~V}$ or reliability will be adversely affected.
Note 8: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 9: C_{L} inicudes the probe and jig capacitance. The rise time, fall time and propagation delays are measured with a 2 V input step.
Note 10: Input offset voltage Average Drift is calculated by dividing the accelerated operating life drift average by the equivalent operational time. The input offset voltage average drift represents the input offset voltage change at worst-case input conditions.

LMC7211

Tiny CMOS Comparator with Rail-to-Rail Input and Push-Pull Output

General Description

The LMC7211 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes the comparator ideal for space and weight critical designs. The LMC7211 is supplied in two offset voltage grades, 5 mV and 15 mV .
The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The rail-to-rail input voltage makes the LMC7211 a good choice for sensor interfacing, such as light detector circuits, optical and magnetic sensors, and alarm and status circuits.
The Tiny Comparator's outside dimensions (length x width x height) of $3.05 \mathrm{~mm} \times 3.00 \mathrm{~mm} \times 1.43 \mathrm{~mm}$ allow it to fit into tight spaces on PC boards.
See the LMC7221 for a comparator with an open-drain output.

Features

- Tiny SOT 23-5 package saves space
- Package is less than 1.43 mm thick
- Guaranteed specs at $2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies
- Typical supply current $7 \mu \mathrm{~A}$ at 5 V
- Response time of $4 \mu \mathrm{~s}$ at 5 V
- Push-pull output
- Input common-mode range beyond V - and $\mathrm{V}+$
- Low input current

Applications

- Battery Powered Products
- Notebooks and PDAs
- PCMCIA cards
- Mobile Communications
- Alarm and Security circuits
- Direct Sensor Interface
- Replaces amplifiers used as comparators with better performance and lower current

Connection Diagrams

Top View

5-Pin SOT23-5

Top View

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature
(Note 4)
$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage
Junction Temperature Range
$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 15 \mathrm{~V}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})
SO-8 Package,
8 -Pin Surface Mount $180^{\circ} \mathrm{C} / \mathrm{W}$ M05A Package,
5-Pin Surface Mount
$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC7211AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7211BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Temperature Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Average Drift	(Note 10)	3.3			$\mu \mathrm{V} /$ Month
I_{B}	Input Current		0.04			pA
l_{OS}	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	75			dB
PSRR	Power Supply Rejection Ratio	$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	CMRR > 55 dB	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		CMRR > 55 dB	-0.3	$\begin{gathered} \hline-0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\mathrm{I}_{\text {load }}=2.5 \mathrm{~mA}$	2.5	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{I}_{\text {load }}=2.5 \mathrm{~mA}$	0.2	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{s}	Supply Current	$\mathrm{V}_{\text {OUT }}=$ Low	7	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7211AI Limit (Note 6)	LMC7211BI Limit (Note 6)	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		3	5	15	mV

5.0V and 15.0V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \hline \text { LMC7211AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC7211BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Temperature Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$	1.0		\cdots	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$	4.0			
	Input Offset Voltage Average Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$	3.3			$\mu \mathrm{V} / \mathrm{Month}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$	4.0			
I_{B}	Input Current		0.04			pA
los	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ration	$\mathrm{V}+=5.0 \mathrm{~V}$	75			dB
		$\mathrm{V}+=15.0 \mathrm{~V}$	82			dB
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 10 \mathrm{~V}$	80		'	dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \text { CMRR }>55 \mathrm{~dB} \end{aligned}$	5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$V_{+}=15.0 \mathrm{~V}$ CMRR > 55 dB	15.3	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$V+=15.0 \mathrm{~V}$ CMRR > 55 dB	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	4.8	$\begin{gathered} 4.6 \\ 4.45 \end{gathered}$	$\begin{gathered} 4.6 \\ 4.45 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	14.8	$\begin{gathered} 14.6 \\ 14.45 \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ 14.45 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{max} \\ \hline \end{gathered}$
I_{s}	Supply Current	$\mathrm{V}_{\text {OUT }}=$ Low	7	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
$I_{\text {Sc }}$	Short Circuit Current	Sourcing	30			mA
		Sinking (Note 8)	45			mA

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7211AI Limit (Note 6)	LMC7211BI Limit (Note 6)	Units
$\mathrm{t}_{\text {rise }}$	Rise Time	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF}$, Overdrive $=10 \mathrm{mV}($ Note 9)	0.3			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {fall }}$	Fall Time	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF}$, Overdrive $=10 \mathrm{mV}$ (Note 9)	0.3			$\mu \mathrm{~s}$

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions		Typ (Note 5)	LMC7211AI Limit	LMC7211BI Limit	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low) (Note 11)	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \\ & \text { (Note 9) } \end{aligned}$	10 mV	10			$\mu \mathrm{s}$
			100 mV	4			
		$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \\ & \text { (Note 9) } \end{aligned}$	10 mV	10			$\mu \mathrm{s}$
			100 mV	4			
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay (Low to High) (Note 11)	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{p} \\ & \text { (Note 9) } \end{aligned}$	10 mV	6			$\mu \mathrm{s}$
			100 mV	4			
		$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \\ & \text { (Note } 9 \text {) } \end{aligned}$	10 mV	7			$\mu \mathrm{s}$
			100 mV	4			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage rating.
Note 8: Do not short circuit output to V_{+}, when $\mathrm{V}+$ is greater than 12 V or reliability will be adversely affected.
Note 9: C_{L} includes the probe and jig capacitance.
Note 10: Input offset voltage average drift is calculated by dividing the accelerated operating life $V_{O S}$ drift by the equivalent operational time. This represents worst case input conditions and includes the first 30 days of drift.
Note 11: Input step voltage for propagation delay measurement is 2 V .

LMC7215/LMC7225

Micro-Power, Rail-to-Rail CMOS Comparators with Push-Pull/Open-Drain Outputs and TinyPak ${ }^{\text {TM }}$ Package

General Description

The LMC7215/LMC7225 are ultra low power comparators with a maximum of $1 \mu \mathrm{~A}$ power supply current. They are designed to operate over a wide range of supply voltages, from 2 V to 8 V .
The LMC7215/LMC7225 have a greater than rail-to-rail common mode voltage range. This is a real advantage in single supply applications.
The LMC7215 features a push-pull output stage. This feature allows operation with absolute minimum amount of power consumption when driving any load.

The LMC7225 features an open drain output. By connecting an external resistor, the output of the comparator can be used as a level shifter to any desired voltage to as high as 15 V.
The LMC7215/LMC7225 are designed for systems where low power consumption is the critical parameter.
Guaranteed operation over the full supply voltage range of 2.7 V to 5 V and rail-to-rail performance makes this comparator ideal for battery-powered applications.

Features

(Typical unless otherwise noted)

- Ultra low power consumption $0.7 \mu \mathrm{~A}$
- Wide range of supply voltages 2 V to 8 V
- Input common-mode range beyond V+ and V-
- Open collector and push-pull output
- High output current drive: ($@ \mathrm{~V}_{\mathrm{s}}=5 \mathrm{~V}$) 45 mA
- Propagation delay ($@ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, 10 \mathrm{mV}$ overdrive) $25 \mu \mathrm{~s}$
- Tiny SOT23-5 package
- Latch-up resistance >300 mA

Applications

m Laptop computers

- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

Connection Diagrams

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specif please contact the National S Distributors for availability a	ed devices are required, miconductor Sales Office/ d specifications.
ESD Tolerance (Note 2)	2 kV
Differential Input Voltage	$\left(\mathrm{V}_{\mathrm{cc}}\right)+0.3 \mathrm{~V}$ to ($-\mathrm{V}_{\mathrm{cc}}$) -0.3 V
Voltage at Input/Output Pin	$\left(\mathrm{V}_{\mathrm{cc}}\right)+0.3 \mathrm{~V}$ to $\left(-\mathrm{V}_{\mathrm{cc}}\right)-0.3 \mathrm{~V}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	10 V
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Lead Temperature	

(soldering, 10 sec)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings(Note 1)

Supply Voltage	$2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 8 \mathrm{~V}$
Junction Temperature Range	
LMC7215IM, LMC7225IM	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
M Package, 8-Pin Surface Mount	$165^{\circ} \mathrm{C} / \mathrm{W}$
SOT23-5 Package	$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V to 5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7215 Limit (Note 6)	LMC7225 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		5			fA
l_{OS}	Input Offset Current		1			fA
CMRR	Common Mode Rejection Ratio	(Note 7)	80	60	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.2 \mathrm{~V}$ to 8 V	90	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
A_{V}	Voltage Gain		140			dB
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{CMRR}>50 \mathrm{~dB} \end{aligned}$	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \text { CMRR }>50 \mathrm{~dB} \end{aligned}$	-0.2	$\begin{aligned} & 0.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.2 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { CMRR }>50 \mathrm{~dB} \end{aligned}$	5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>50 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \\ \hline \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\begin{aligned} & \mathrm{V}^{+}=2.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=1.5 \mathrm{~mA} \end{aligned}$	2.05	$\begin{aligned} & 1.8 \\ & 1.7 \\ & \hline \end{aligned}$	NA	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=2.0 \mathrm{~mA} \end{aligned}$	2.05	$\begin{aligned} & 2.3 \\ & 2.2 \end{aligned}$	NA	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=4.0 \mathrm{~mA} \end{aligned}$	4.8	$\begin{aligned} & 4.6 \\ & 4.5 \\ & \hline \end{aligned}$	NA	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{OL}	Output Voltage Low	$\begin{aligned} & \mathrm{V}^{+}=2.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=1.5 \mathrm{~mA} \end{aligned}$	0.17	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=2.0 \mathrm{~mA} \end{aligned}$	0.17	$\begin{aligned} & 0.4 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=4.0 \mathrm{~mA} \end{aligned}$	0.2	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{I}_{\text {SC+ }}$	Output Short Circuit Current (Note 10)	$\mathrm{V}^{+}=2.7 \mathrm{~V}$, Sourcing	15		NA	mA
		$\mathrm{V}^{+}=5.0 \mathrm{~V}$, Sourcing	50		NA	mA
$\mathrm{I}_{\text {sc- }}$	Output Short Circuit	$\mathrm{V}^{+}=2.7 \mathrm{~V}$, Sinking	12			mA

2.7V to 5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7215 Limit (Note 6)	LMC7225 Limit (Note 6)	Units
	Current (Note 10)	$\mathrm{V}^{+}=5.0 \mathrm{~V}$, Sinking	30			mA
$\mathrm{I}_{\text {Leakage }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}^{+}=2.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}^{+}}=0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=15 \mathrm{~V} \end{aligned}$	0.01	NA	500	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
I_{s}	Supply Current	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V} \end{aligned}$	0.7	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2$

Symbol	Parameter	Conditions		LMC7215 Typ (Note 5)	$\begin{gathered} \hline \text { LMC7225 } \\ \text { Typ } \\ \text { (Notes 5, 8) } \\ \hline \end{gathered}$	Units
$\mathrm{t}_{\text {rise }}$	Rise Time	Overdrive $=10 \mathrm{mV}$ (Note 8)		1	12.2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {fall }}$	Fall Time	Overdrive $=10 \mathrm{mV}$ (Note 8)		0.4	0.35	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	(Notes 8, 9)	Overdrive $=10 \mathrm{mV}$	24	24	$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	12	12	
		$\begin{aligned} & \hline \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & (\text { Notes 8, 9) } \end{aligned}$	Overdrive $=10 \mathrm{mV}$	17	17	$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	11	11	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay (Low to High)	(Notes 8, 9)	Overdrive $=10 \mathrm{mV}$	24	29	$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	12	17	
		$\begin{aligned} & \hline \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & (\text { Notes 8, 9) } \end{aligned}$	Overdrive $=10 \mathrm{mV}$	17	22	$\mu \mathrm{s}$
			Overdrive $=100 \mathrm{mV}$	11	16	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: CMRR measured at $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 2.5 V and 2.5 V to 5 V when $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.2 \mathrm{~V}$ to 1.35 V and 1.35 V to 2.7 V when $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$. This eliminates units that have large V_{OS} at the V_{CM} extremes and low or opposite V_{OS} at $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2$.
Note 8: All measurements made at 10 kHz . A $100 \mathrm{k} \Omega$ pull-up resistor was used when measuring the LMC7225. $\mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF}$ including the test jig and scope probe. The rise times of the LMC7225 are a function of the R-C time constant.
Note 9: Input step voltage for the propagation measurements is 100 mV .
Note 10: Do not short the output of the LMC7225 to voltages greater than 10 V or damage may occur.

LMC7221

Tiny CMOS Comparator with Rail-To-Rail Input and Open Drain Output

General Description

The LM7221 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes this comparator ideal for space and weight critical designs. The LMC7221 is also available in the SO-8 package. The LMC7221 is supplied in two offset voltage grades, 5 mV and 15 mV .

The open drain output can be pulled up with a resistor to a voltage which can be higher or lower than the supply voltage - this makes the part useful for mixed voltage systems.
For a tiny comparator with a push-pull output, please see the LMC7211 datasheet.

Features

- Tiny SOT 23-5 package saves space
- Package is less than 1.43 mm thick
- Guaranteed specs at $2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies
- Typical supply current $7 \mu \mathrm{~A}$ at 5 V
- Response time of $4 \mu \mathrm{~s}$ at 5 V
- LMC7221 - open drain output
- Input common-mode range beyond V - and $\mathrm{V}+$
- Low input current

Applications

- Mixed voltage battery powered products
- Notebooks and PDAs
- PCMCIA cards
- Mobile communications
- Alarm and security circuits
- Driving low current LEDs
- Direct sensor interface

Connection Diagrams

Top View

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
ESD Tolerance (Note 2)
Differential Input Voltage
Voltage at Input
Voltage at Output Pin
0.3 V to $(-\mathrm{VCC})-0.3 \mathrm{~V}$
$\left(V_{c c}\right)+0.3 V$ to $\left(-V_{c c}\right)-0.3 V$

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Current at Input Pin
(Note 7)
Current at Output Pin
(Notes 3, 8)
Current at Power Supply Pin
40 mA
(soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Storage Temperature Range Junction Temperature
(Note 4)
$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 15 \mathrm{~V}$
Junction Temperature Range	
LMC7221AI, LMC7221BI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
SO-8 Package,	
8-Pin Surface Mount	$180^{\circ} \mathrm{C} / \mathrm{W}$
M05A Package,	
5-Pin Surface Mount	$325^{\circ} \mathrm{C} / \mathrm{W}$

Lead Temperature

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \hline \text { LMC7221AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC7221BI Limit (Note 6)	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Temperature Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Average Drift	(Note 10)	3.3			$\mu \mathrm{V} /$ Month
I_{B}	Input Current		0.04			pA
los	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	75			dB
PSRR	Power Supply Rejection Ratio	$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	CMRR > 55 dB	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		CMRR > 55 dB	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{I}_{\text {load }}=2.5 \mathrm{~mA}$	0.2	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{I}_{\text {s }}$	Supply Current	$\mathrm{V}_{\text {OUT }}=$ low	7	$\begin{aligned} & 12 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7221AI Limit (Note 6)	LMC7221BI Limit (Note 6)	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Temperature Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$	1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$\mathrm{V}^{+}=15 \mathrm{~V}$	4.0			
	Input Offset Voltage Average Drift	$\mathrm{V}^{+}=5 \mathrm{~V}$ (Note 10)	3.3			$\mu \mathrm{V} /$ Month
		$\mathrm{V}^{+}=15 \mathrm{~V}$ (Note 10)	4.0			
I_{B}	Input Current		0.04			pA
l_{OS}	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ration	$\mathrm{V}+=5.0 \mathrm{~V}$	75			dB
		$\mathrm{V}+=15.0 \mathrm{~V}$	82			dB
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 10 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \hline \mathrm{V}+=15.0 \mathrm{~V} \\ & \text { CMRR }>55 \mathrm{~dB} \end{aligned}$	15.3	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \hline \mathrm{V}+=15.0 \mathrm{~V} \\ & \text { CMRR }>55 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{load}}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{aligned} & 0.40 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{aligned} & 0.40 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
I_{s}	Supply Current	$\mathrm{V}_{\text {OUT }}=$ Low	7	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
I_{SC}	Short Circuit Current	Sinking (Note 8)	45			mA

Leakage Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7221AI Limit (Note 6)	LMC7221BI Limit (Note 6)	Units
LEAKAGE	Output Leakage Current	$\mathrm{V}+=2.7 \mathrm{~V}$ $\mathrm{~V}_{I N}(+)=0.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{IN}}(-)=0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{OUT}}=15 \mathrm{~V}$	0.1	500	500	nA

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extreme

| Symbol | Parameter | Conditions | $\begin{array}{c}\text { Typ } \\ \text { (Note 5) }\end{array}$ | $\begin{array}{c}\text { LMC7221AI } \\ \text { Limit } \\ \text { (Note 6) }\end{array}$ | $\begin{array}{c}\text { LMC7221BI } \\ \text { Limit } \\ \text { (Note 6) }\end{array}$ | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |$\}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $\mathrm{T}_{\mathrm{J}(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is
Note 5: $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: Limiting input pin current is only necessary for input voitages which exceed the absolute maximum input voltage rating.
Note 9: Do not short circuit the output to $\mathrm{V}+$ when $\mathrm{V}+$ is greater than 12 V or reliability will be adversely affected.
Note 10: C_{L} includes the probe and test jig capacitance.
Note 11: Input offset voltage average drift is calculated by dividing the accelerated operating life $V_{O S}$ drift by the equivalent operational time. This represents worst case input conditions and includes the first 30 days of drift.
Note 12: Input step voltage for propagation delay measurement is 2 V .

LMV331 Single / LMV393 Dual / LMV339 Quad General Purpose, Low Voltage, TinyPak ${ }^{\text {TM }}$ Comparators

General Description

The LMV393 and LMV339 are low voltage (2.7-5V) versions of the dual and quad comparators, LM393/339, which are specified at $5-30 \mathrm{~V}$. The LMV331 is the single version, which is available in space saving SC70-5 and SOT23-5 packages. SC70-5 is approximately half the size of SOT23-5.
The LMV393 is available in 8 -pin SOIC and 8-pin MSOP. The LMV339 is available in 14-pin SOIC and 14-pin TSSOP.
The LMV331/393/339 is the most cost-effective solution where space, low voltage, low power and price are the primary specification in circuit design for portable consumer products. They offer specifications that meet or exceed the familiar LM393/339 at a fraction of the supply current.
The chips are built with National's advanced Submicron Silicon-Gate BiCMOS process. The LMV331/393/339 have bipolar input and output stages for improved noise performance.

Features

(For 5V Supply, Typical Unless Otherwise Noted)

- Space Saving SC70-5 Package $(2.0 \times 2.1 \times 1.0$ mm)
- Space Saving SOT23-5 Package ($3.00 \times 3.01 \times$ 1.43 mm)
- Guaranteed 2.7V and 5V Performance

■ Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Low Supply Current $60 \mu \mathrm{~A} /$ Channel 2
- Input Common Mode Voltage Range Includes Ground

■ Low Output Saturation Voltage 200 mV

Applications

- Mobile Communications
- Notebooks and PDA's
- Battery Powered Electronics
- General Purpose Portable Device
- General Purpose Low Voltage Applications

Typical Applications


```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
ESD Tolerance (Note 2)
    Human Body Model
    LMV331/ 393/ 339 800V
    Machine Model LMV331/339/393 120V
Differential Input Voltage }\pm\mathrm{ Supply Voltage
Voltage on any pin 5.5V
(referred to \mp@subsup{V}{}{-}
Soldering Information
    Infrared or Convection (20 sec) 235
Storage Temp. Range -65' C to +150 %
Junction Temperature (Note 3) 150}\mp@subsup{}{}{\circ}\textrm{C
```


Operating Ratings(Note 1)

Supply Voltage
2.7 V to 5.0 V

Temperature Range

$$
\text { LMV393, LMV339, } \quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}
$$

Thermal Resistance (θ_{JA})

M Package, 8-pin Surface	$190^{\circ} \mathrm{C} / \mathrm{W}$
Mount	
M Package, 14-pin Surface	
Mount	$145^{\circ} \mathrm{C} / \mathrm{W}$
MTC Package, 14-pin	$155^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP	
MAA05 Package, 5-pin	$478^{\circ} \mathrm{C} / \mathrm{W}$
SC70-5	
M05A Package 5 -pin SOT23-5	$265^{\circ} \mathrm{C} / \mathrm{W}$
MM Package, Surface Mount	$235^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} \hline \text { LMV331// } \\ \text { 393/339 } \\ \text { Limit } \\ \text { (Note 5) } \end{gathered}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		1.7	7	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
TCV ${ }_{\text {os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		10	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA max
los	Input Offset Current		5	$\begin{gathered} 50 \\ 150 \end{gathered}$	nA max
V_{CM}	Input Voltage Range		-0.1		V
			2.0		V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {sink }} \leq 1 \mathrm{~mA}$	200		mV
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	23	5	mA min
I_{s}	Supply Current	LMV331	40	100	$\mu \mathrm{A}$ max
		LMV393 Both Comparators	70	140	$\mu \mathrm{A}$ max
		LMV339 All four Comparators	140	200	$\mu \mathrm{A}$ max
	Output Leakage Current		. 003	1	$\mu \mathrm{A}$ max

2.7V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}-=0 \mathrm{~V}$.

Symbol		Conditions	Typ $($ Note 4)	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$	1000	ns
		Input Overdrive $=100 \mathrm{mV}$	350	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Low to High)	Input Overdrive $=10 \mathrm{mV}$	500	ns
		Input Overdrive $=100 \mathrm{mV}$	400	ns

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

| Symbol | Parameter | Conditions
 (Note 4) | LMV331/
 393/339
 Limit
 (Note 5) | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
| V_{OS} | Input Offset Voltage | | 1.7 | 7 |
| 9 | | | | |

5V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}-=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	Typ (Note 4)	Units
			600	ns
	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$	200	ns
		Input Overdrive $=100 \mathrm{mV}$	450	ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.
Note 2: : Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}\right.$ $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 4: Typical Values represent the most likely parametric norm.
Note 5: All limits are guaranteed by testing or statistical analysis.

LMV7219

7 nsec, 2.7V to 5V Comparator with Rail-to Rail Output

General Description

The LMV7219 is a low-power, high-speed comparator with internal hysteresis. The LMV7219 operating voltage ranges from 2.7 V to 5 V with push/pull rail-to-rail output. This device achieves a 7 ns propagation delay while consuming only 1.1 mA of supply current at 5 V .

The LMV7219 inputs have a common mode voltage range that extends 200 mV below ground, allowing ground sensing. The internal hysteresis ensures clean output transitions even with slow-moving inputs signals.
The LMV7219 is available in the SC70-5 and SOT23-5 packages, which are ideal for systems where small size and low power are critical.

Features

($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Typical values unless specified)

- Propagation delay 7ns
- Low supply current 1.1 mA
- Input common mode voltage range extends 200 mv below ground
- Ideal for 2.7 V and 5 V single supply applications
- Internal hysteresis ensures clean switching
- Fast rise and fall time
- Available in space-saving packages:

5-pin SC70-5
SOT23-5

Applications

- Portable and battery-powered systems
- Scanners
- Set top boxes
- High speed differential line receiver
- Window comparators
- Zero-crossing detectors
- High-speed sampling circuits

Typical Application

Connection Diagram

Ordering Information

Package	Part Number	Marking	Supplied as	NSC Drawing
5-pin SC70-5	LMV7219M7	C15	1k Units Tape and Reel	
	LMV7219M7X	C15	3k Units Tape and Reel	
5 -pin SOT23-5	LMV7219M5	C14A	1k Units Tape and Reel	MA05B
	LMV7219M5X	C14A	3k Units Tape and Reel	

Simplified Schematic

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
\quad Machine Body	150 V
\quad Human Model Body	2000 V
Differential Input Voltage	\pm Supply Voltage
Output Short Circuit Duration	(Note 3)
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	5.5 V
Soldering Information	
Infrared or Convection $(20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$
Wave Soldering $(10 \mathrm{sec})$	$260^{\circ} \mathrm{C}$ (lead temp)

Voltage at Input/Output pins
Current at Input Pin (Note 9)

Operating Ratings

Supply voltages $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	2.7 V to 5 V
Junction temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(Note 4)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Package Thermal Resistance	$478^{\circ} \mathrm{C} / \mathrm{W}$
SC70-5	$265^{\circ} \mathrm{C} / \mathrm{W}$
SOT23-5	

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
I_{B}	Input Bias Current		450	$\begin{gathered} 950 \\ 2000 \end{gathered}$	nA \max
los	Input Offset Current		50	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	nA \max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV}<\mathrm{V}_{\mathrm{CM}}<1.50 \mathrm{~V}$	85	$\begin{aligned} & 62 \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5 V	85	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Voltage Range	CMRR > 50dB	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}-1.2 \\ & \mathrm{v}_{\mathrm{cc}}-1.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-0.2	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{0}	Output Swing High	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=500 \mathrm{mV} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-0.22$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}-0.3 \\ & \mathrm{v}_{\mathrm{cc}}-\mathbf{0 . 4} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=500 \mathrm{mV} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-0.02$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}-0.05 \\ & \mathrm{~V}_{\mathrm{cc}}-\mathbf{0 . 1 5} \\ & \hline \end{aligned}$	
	Output Swing Low	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=-500 \mathrm{mV} \end{aligned}$	130	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=-500 \mathrm{mV} \end{aligned}$	15	$\begin{gathered} 50 \\ 150 \end{gathered}$	
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { (Note 3) }$	20		mA
		Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { (Note 3) }$	20		
I_{s}	Supply Current	No load	0.9	$\begin{aligned} & \hline 1.6 \\ & 2.2 \end{aligned}$	mA max
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis Voltage	(Note 10)	7		mV
$\mathrm{V}_{\text {TRIP }}{ }^{+}$	Input Referred Positive Trip Point	(see Figure 1)	3	8	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{V}_{\text {TRIP }}{ }^{-}$	Input Referred Negative Trip Point	(see Figure 1)	-4	-8	$\begin{gathered} \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

2.7V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{t}_{\text {PD }}$	Propagation Delay	$\begin{aligned} & \text { Overdrive }=5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (Note 7) } \end{aligned}$	12		$\begin{gathered} \mathrm{ns} \\ \max \end{gathered}$
		$\begin{aligned} & \text { Overdrive }=15 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (Note } 7 \text {) } \end{aligned}$	11		
		$\begin{aligned} & \text { Overdrive }=50 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (Note } 7 \text {) } \end{aligned}$	10	20	
$\mathrm{t}_{\text {SKEW }}$	Propagation Delay Skew	(Note 8)	1		ns
t_{r}	Output Rise Time	10\% to 90\%	2.5		ns
t_{f}	Output Fall Time	90\% to 10\%	2		ns

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{B}	Input Bias Current		500	$\begin{gathered} 950 \\ 2000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
los	Input Offset Current		50	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	nA max
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V}<\mathrm{V}_{\text {СM }}<3.8 \mathrm{~V}$	85	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5 V	85	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	CMRR > 50dB	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}-1.2 \\ & \mathrm{~V}_{\mathrm{cc}}-1.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-0.2	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	V max
V_{O}	Output Swing High	$\begin{aligned} & I_{L}=4 \mathrm{~mA}, \\ & V_{I D}=500 \mathrm{mV} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-0.13$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}-0.2 \\ & \mathrm{~V}_{\mathrm{Cc}}-0.3 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=500 \mathrm{mV} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-0.02$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}-0.05 \\ & \mathrm{~V}_{\mathrm{CC}}-0.15 \end{aligned}$	
	Output Swing Low	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=-500 \mathrm{mV} \end{aligned}$	80	$\begin{array}{r} 180 \\ 280 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{ID}}=-500 \mathrm{mV} \end{aligned}$	10	$\begin{gathered} \hline 50 \\ 150 \\ \hline \end{gathered}$	
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 3)	68	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	mA \min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 3)	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	
I_{s}	Supply Current	No load	1.1	$\begin{aligned} & \hline 1.8 \\ & 2.4 \end{aligned}$	mA max
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis Voltage	(Note 10)	7.5		mV
$\mathrm{V}_{\text {Trip }}{ }^{+}$	Input Referred Positive Trip Point	(See figure 1)	3.5	8	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
$\mathrm{V}_{\text {Trip }}{ }^{-}$	Input Referred Negative Trip Point	(See figure 1)	-4	-8	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to V^{-}. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Limit (Note 6)	Units
$\mathrm{t}_{\text {PD }}$	Propagation Delay	$\begin{aligned} & \text { Overdrive }=5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (Note 7) } \end{aligned}$	9		$\begin{gathered} \text { ns } \\ \max \end{gathered}$
		$\begin{aligned} & \text { Overdrive }=15 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}(\text { Note } 7) \end{aligned}$	8	20	
		$\begin{aligned} & \text { Overdrive }=50 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (Note } 7 \text {) } \end{aligned}$	7	19	
$\mathrm{t}_{\text {SKEW }}$	Propagation Delay Skew	(Note 8)	0.4		ns
t_{r}	Output Rise Time	10\% to 90\%	1.3		ns
t_{f}	Output Fall Time	90\% to 10\%	1.25		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.

Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability

Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Propagation delay measurements made with 100 mV steps. Overdrive is measure relative to $V_{\text {Trip }}$.
Note 8: Propagation Delay Skew is defined as absolute value of the difference between $t_{\text {PDLH }}$ and $t_{\text {PDHL }}$.
Note 9: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 10: The LMV7219 comparator has internal hysteresis. The trip points are the input voltage needed to change the output state in each direction. The offset voltage is defined as the average of $\mathrm{V}_{\text {trip }}{ }^{+}$and $\mathrm{V}_{\text {trip }}$, while the hysteresis voltage is the difference of these two.

LP339

Ultra-Low Power Quad Comparator

General Description

The LP339 consists of four independent voltage comparators designed specifically to operate from a single power supply and draw typically $60 \mu \mathrm{~A}$ of power supply drain current over a wide range of power supply voltages. Operation from split supplies is also possible and the ultra-low power supply drain current is independent of the power supply voltage. These comparators also feature a common-mode range which includes ground, even when operated from a single supply.
Applications include limit comparators, simple analog-to-digital converters, pulse, square and time delay generators; VCO's; multivibrators; high voltage logic gates. The LP339 was specifically designed to interface with the CMOS logic family. The ultra-low supply current makes the LP339 valuable in battery powered applications.

- Single supply operation
- Sensing at ground
- Compatible with CMOS logic family
- Pin-out identical to LM339

Features

- Ultra-low power supply current drain $(60 \mu \mathrm{~A})$-independent of the supply voltage ($75 \mu \mathrm{~W} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current: 3 nA
- Low input offset current: $\pm 0.5 \mathrm{nA}$
- Low input offset voltage: $\pm 2 \mathrm{mV}$
- Input common-mode voltage includes ground
- Output voltage compatible with MOS and CMOS logic
- High output sink current capability (30 mA at $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$)
- Supply Input protected against reverse voltages

Advantages

- Ultra-low power supply drain suitable for battery applications

Schematic and Connection Diagrams

Order Number LP339M for S.O. Package See NS Package Number M14A Order Number LP339N for Dual-In-Line Package See NS Package Number N14A

Typical Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Basic Comparator

Driving CMOS

Absolute Maximum Ratings
 (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Differential Input Voltage
Input Voltage
Power Dissipation (Note 2) Molded DIP
Output Short Circuit to GND (Note 3)
Input Current $V_{I N}<-0.3 V_{D C}$ (Note 4)
$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ $\pm 36 V_{D C}$
$-0.3 V_{D C}$ to $36 V_{D C}$
570 mW
Continuous

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range -65° to $+150^{\circ} \mathrm{C}$
Soldering Information:
Dual-In-Line Package (10 sec.)
$+260^{\circ} \mathrm{C}$
S.O. Package:
$\begin{array}{ll}\text { Vapor Phase (60 sec.) } & +215^{\circ} \mathrm{C} \\ \text { Infrared (15 sec.) } & +220^{\circ} \mathrm{C}\end{array}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

$\left(\mathrm{V}+=5 \mathrm{~V}_{\mathrm{DC}}\right)$ (Note 5)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 10)		± 2	± 5	$\mathrm{mV}_{\mathrm{DC}}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}}(+)$ or $\mathrm{I}_{\mathrm{IN}}(-)$ with the Output in the Linear Range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)		2.5	25	$n \mathrm{~A}_{\mathrm{DC}}$
Input Offset Current	$\mathrm{I}_{\mathbb{N}}(+)-\mathrm{I}_{\mathbb{N}}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.5	± 5	$n A_{D C}$
Input Common Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)	0		V+-1.5	V_{DC}
Supply Current	$\mathrm{R}_{\mathrm{L}}=$ Infinite on all Comparators, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		60	100	$\mu \mathrm{A}_{\text {DC }}$
Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		500		V / mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1.3		$\mu \mathrm{Sec}$
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)		8		$\mu \mathrm{Sec}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{I N}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 12) } \end{aligned}$	15	30		$m A_{D C}$
	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}$	0.20	0.70		$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1		$n A_{D C}$
Input Offset Voltage	(Note 10)			± 9	$m V_{D C}$
Input Offset Current	$\mathrm{I}_{\mathbb{N}}(+)-\mathrm{I}_{\mathbb{N}}(-)$		± 1	± 15	$n A_{D C}$
Input Bias Current	$\mathrm{I}_{\text {IN }}(+)$ or $\mathrm{I}_{\text {IN }}(-)$ with Output in Linear Range		4	40	$n A_{D C}$
Input Common Mode Voltage Range	Single Supply	0		V+-2.0	V_{DC}
Output Sink Current	$\mathrm{V}_{\mathrm{IN}}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{IN}}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$	10			$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}}$			1.0	$\mu \mathrm{A}_{\mathrm{DC}}$
Differential Input Voltage	All $\mathrm{V}_{\text {IN's }} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}on split supplies) (Note 9)			36	V_{DC}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: For elevated temperature operation, T_{j} max is $125^{\circ} \mathrm{C}$ for the LP339. θ_{ja} (junction to ambient) is $175^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339N and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339M when either device is soldered in a printed circuit board in a still air environment. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 3: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 50 mA .
Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input clamp diodes. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltage of the comparators to go to the $\mathrm{V}+$ voltage level (or to ground for a large input overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which is negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.
Note 5: These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The temperature extremes are guaranteed but not 100% production tested. These parameters are not used to calculate outgoing AQL.
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or the input lines as long as the common-mode range is not exceeded.
Note 7: The input common-mode voltage or either input voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$, but either or both inputs can go to $30 \mathrm{~V}_{\mathrm{DC}}$ without damage.
Note 8: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals $1.3 \mu \mathrm{~s}$ can be obtained. See Typical Performance Characteristics section.

Electrical Characteristics (Continued)

Note 9: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used) at $T_{A}=25^{\circ} \mathrm{C}$.
Note 10: At output switch point, $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$).
Note 11: For input signals that exceed V^{+}, only the overdriven comparator is affected. With a 5 V supply, V_{IN} should be limited to 25 V maximum, and a limiting resistor should be used on all inputs that might exceed the positive supply.
Note 12: The output sink current is a function of the output voltage. The LP339 has a bi-modal output section which allows it to sink large currents via a Darlington connection at output voltages greater than approximately $1.5 \mathrm{~V}_{\mathrm{DC}}$ and sink lower currents below this point. (See typical characteristics section and applications section).

Section 6
 Converters - A/D, D/A, and Data Acquisition Systems

Section 6 Contents

A/D Converter Selection Guide 6-4
D/A Converter Selection Guide 6-6
Data Acquisition System Selection Guide 6-7
A/D Converters Definition Of Terms 6-8
D/A Converters Definition Of Terms 6-10
ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μ P Compatible A/D Converters 6-11
ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function 6-13
ADC08061/ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer 6-15
ADC0808/ADC0809 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with 8-Channel Multiplexer 6-18
ADC08100 8-Bit, 100 MSPS, $1.3 \mathrm{~mW} / \mathrm{MSPS}$ A/D Converter 6-20
ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function 6-23
ADC0816/ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 6-25
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference 6-27
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function. 6-29
ADC0831/ADC0832/ADC0834/ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 6-31
ADC08351 8-Bit, 42 MSPS, 40 mW A/D Converter 6-34
ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options 6-37
ADC08831/ADC08832 8-Bit Serial I/O CMOS A/D Converters with Multiplexer and Sample/Hold Function 6-39
ADC1001 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter 6-41
ADC10030 10-Bit, 30 MSPS, 125 mW A/D Converter with Internal Sample and Hold 6-42
ADC1005 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter 6-46
ADC10061/ADC10062/ADC10064 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 6-47
ADC10154/ADC10158 10-Bit Plus Sign 4μ s ADCs with 4- or 8-Channel MUX, Track/Hold and Reference 6-50
ADC10221 10-Bit, 15 MSPS, 98 mW A/D Converter with Internal Sample and Hold 6-52
ADC10321 10-Bit, 20 MSPS, 98 mW A/D Converter with Internal Sample and Hold 6-56
ADC10461/ADC10462/ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 6-60
ADC1061 10-Bit High-Speed μ P-Compatible A/D Converter with Track/Hold Function 6-62
ADC10662/ADC10664 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold 6-64
ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference 6-67
ADC1173 8-Bit, 3-Volt, 15 MSPS, 33 mW A/D Converter 6-70
ADC1175 8-Bit, $20 \mathrm{MHz}, 60 \mathrm{~mW}$ A/D Converter 6-73
ADC1175-50 8-Bit, 50 MSPS, 125 mW A/D Converter 6-76
ADC12H030/ADC12H032/ADC12H034/ADC12H038, ADC12030/ADC12032/ADC12034/ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold. 6-80
ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-84
ADC12041 12-Bit Plus Sign 216 kHz Sampling Analog-to-Digital Converter 6-88
ADC12048 12-Bit Plus Sign 216 kHz 8-Channel Sampling Analog-to-Digital Converter 6-91
ADC12081 12-Bit, 5 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-95
ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 6-99
ADC12181 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-103
ADC12191 12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold 6-107
ADC12281 12-Bit, 20 MSPS Single-Ended Input, Pipelined A/D Converter 6-111
ADC14061 Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter. 6-115
ADC14071 14-Bit, 7 MSPS, 380 mW A/D Converter 6-120
ADC14161 Low-Distortion, Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter 6-124
ADC16061 Self-Calibrating 16-Bit, 2.5 MSPS, 390 mW A/D Converter 6-129
ADCV0831 8 Bit Serial I/O Low Voltage Low Power ADC with Auto Shutdown in a SOT Package 6-134
CLC5956 12-bit, 65 MSPS Broadband Monolithic A/D Converter 6-135
CLC5958 14-Bit, 52 MSPS A/D Converter 6-137
DAC0800/DAC0802 8-Bit Digital-to-Analog Converters 6-139
DAC0808 8-Bit D/A Converter 6-140
DAC0830/DAC0832 8-Bit $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 6-142
LM12454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration 6-144
LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration 6-147

National Semiconductor

A/D Converter Selection Guide

(Sorted by Resolution and Speed)

Device	Reso- lution (Bits)	Speed (MSPS)	Conver- sion Time (max)	Supply Voltage (V)	Power Consumption (mW, typ)	$\begin{gathered} \text { INL } \\ \text { (LSB, } \\ \text { typ) } \end{gathered}$	$\begin{gathered} \text { DNL } \\ \text { (LSB, } \\ \text { typ) } \end{gathered}$	SINAD (dB, typ)	ENOB (Bits, typ)
ADC1175-50	8	50	-	+5	125	± 0.8	± 0.7	45	7.2
ADC08351	8	42	-	+3	36	± 0.7	± 0.6	45	7.2
ADC1175	8	20	-	+5	60	± 0.5	± 0.35	45	7.2
ADC1173	8	15	-	+3	33	± 0.5	± 0.4	46	7.6
ADC0820	8	-	$1.2 \mu \mathrm{~s}$	+5	75	± 0.5	-	-	-
ADC08131/4/8	8	-	$2 \mu \mathrm{~s}$	+5	20	± 0.5	± 8	48.3	7.7
ADC08831/2	8	-	$4 \mu \mathrm{~s}$	+5	5.5	± 0.2	± 0.2	48.0	7.7
ADC08031/4/8	8	-	$8 \mu \mathrm{~s}$	+5	20	± 1.0	± 8	-	-
ADCV0831	8	-	$16 \mu \mathrm{~s}$	+5	0.72	± 1.5	-	-	-
ADC0831/2/4/8	8	-	$32 \mu \mathrm{~s}$	+5	15	± 1.0	-	-	-
ADC0844/8	8	-	$40 \mu \mathrm{~s}$	+5	13	± 0.5	-	-	-
ADC0801/2/3/4/5	8	-	$110 \mu \mathrm{~s}$	+5	12.5	± 0.25	-	-	-
ADC0808/9	8	-	$100 \mu \mathrm{~s}$	+5	15	± 0.5	-	-	-
ADC0816/7	8	-	$100 \mu \mathrm{~s}$	+5	15	± 0.5	-	-	-
ADC08161	8	-	560 ns	+5	100	± 0.5	-	60	7.1
ADC08061/2	8	-	560 ns	+5	100	± 0.5	-	-	-
ADC08100	8	100	-	3	130	± 0.5	± 0.4	42.8	7.4
ADC08131/4/8	8	-	8	5	20	± 0.5	-	-	-
ADC10030	10	27	-	+5	121	± 0.45	± 0.4	59	9.4
ADC10221	10	15	-	+5	98	± 0.45	± 0.35	60	9.6
ADC10061/2/4	10	1.1	900 ns	+5	235	± 0.5	-	60	9.6
ADC10321	10	20	-	+5	98	± 0.45	± 0.35	60	9.6
ADC10662/4	10	-	470 ns	+5	235	± 0.5	-	60	9.6
ADC10461/2/4	10	1.1	900 ns	+5	235	± 0.5	-	60	9.6
ADC1061	10	-	$1.8 \mu \mathrm{~s}$	+5	235	± 0.3	± 1.0	-	-
ADC10154/8	10	-	$4.4 \mu \mathrm{~s}$	+5 or ± 5	33	± 1.0	-	60	9.6
ADC10731/2/4/8	10	-	$5 \mu \mathrm{~s}$	+5	37	± 1.25	-	67	10.8
ADC1038	10	-	$13.7 \mu \mathrm{~s}$	+5	15	-	± 1.0	-	-
ADC1005	10	-	$50 \mu \mathrm{~s}$	+5	15	± 0.5	-	-	-
ADC1001	10		$200 \mu \mathrm{~s}$	+5	25	± 2.0	-	-	-
CLC5956	12	65	-	+5	615	± 1.7	± 0.65	65.5	10.5
ADC12281	12	20	-	+5	443	± 1.0	± 0.4	65	10.5
ADC12181	12	10	-	+5	235	± 0.7	± 0.4	64.5	10.4
ADC12191	12	10	-	+5	235	± 0.7	± 0.5	62	10.0
ADC12081	12	5	-	+5	105	± 0.6	± 0.35	67.6	10.9
ADC12041/8	12	-	$3.6 \mu \mathrm{~s}$	+5	33	± 0.6	± 1.0	-	-
ADC12H030/2/4/8	12	-	$5.5 \mu \mathrm{~s}$	+5	36	± 0.5	± 1.0	69.4	11.2
ADC12L030/2/4/8	12	-	$8.8 \mu \mathrm{~s}$	+5	15	± 0.5	± 1.0	69.4	11.2
ADC12030/2/4/8	12	-	$8.8 \mu \mathrm{~s}$	+5	33	± 0.5	± 1.0	69.4	11.2
ADC12130/2/8	12	-	$8.8 \mu \mathrm{~s}$	+5	33	± 0.5	± 1.0	69.4	11.2
ADC12662	12	1.5	0.58	5	200	± 0.4	± 0.4	70	11.3
ADC12062	12	1	1	5	75	± 0.4	± 0.4	71	11.5
ADC12451	12	-	7.7	5	113	1.5	-	-	-
ADC1251	12	-	8	5	113	1.5	-	-	-
CLC5957	12	70	-	5	640	± 1.5	± 0.65	65.5	10.5

Device	Reso- lution (Bits)	Speed (MSPS)	Conver- sion TIme (max)	Supply Voltage (V)	Power Consumption (mW, typ)	INL (LSB, typ)	DNL (LSB, typ)	SINAD (dB, typ)	ENOB (BIts, typ)
ADC1241	12	-	13.8	5	70	± 0.5	-	-	-
CLC5958	14	52	-	+5	1,330	± 1.5	± 0.3	69	11.2
ADC14061	14	2.5	-	+5	390	± 0.75	± 0.3	79	12.8
ADC14161	14	2.5	-	+5	390	± 0.75	± 0.3	79	12.8
ADC14071	14	7	-	5	380	± 2.2	± 1.0	78	12.7
ADC16061	16	2.5	-	+5	390	± 0.3	± 1.0	79	12.8

D/A Converter Selection Guide

Device	Resolution (Bits)	Linearity (\%)	Settling Time $(1 / 2$ LSB $)$	Supply Voltages (V)	Power Consumption (mW, typ)
DAC0800/1/2	8	0.19	100 ns	± 5 to ± 15	33
DAC0806/7/8	8	$0.78 / 0.39 / 0.19$	100 ns	± 5 to ± 15	33
DAC0830/1/2	8	$0.05 / 0.1 / 0.2$	$1 \mu \mathrm{~s}$	± 5 to ± 15	20

Data Acquisition System Selection Guide

Device	Reso- lution (Bits)	Maximum Clock Freq $(\mathbf{M H z})$	Through- put Rate (ksps, $\mathbf{m i n})$	Supply Voltage $\mathbf{(V)}$	Power Con- sumption $(\mathbf{m W}$, max)	INL (LSB, max)	DNL (LSB, max)	Difer- ential SINAD (dB, typ)	ENOB (Bits, typ)
LM12454	$12+$ Sign	5	88	+5	30	± 1.0	± 0.75	76	12.3
LM12458	$12+$ Sign	5	88	+5	30	± 1.0	± 0.75	76	12.3
LM12H458	$12+$ Sign	8	140	+5	34	± 1.0	± 0.75	76	12.3
LM12L458	$12+$ Sign	6	106	+3 V to +5 V	15	± 1.0	± 1.0	76	12.3

A/D Converter Definition Of Terms

ANALOG INPUT BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input. The test is performed with $f_{I N}$ equal to 100 kHz plus integer multiples of $f_{\text {CLK }}$. The input frequency at which the output is -3 $d B$ relative to the low frequency input signal is the full power bandwidth.
APERTURE JITTER is the variation in aperture delay from sample to sample. Aperture jitter shows up as input noise.
APERTURE DELAY See Sampling Delay.
BOTTOM OFFSET is the difference between the input voltage that just causes the output code to transition to the first code and the negative reference voltage. Bottom Offset is defined as $\mathrm{E}_{\mathrm{OB}}=\mathrm{V}_{\mathrm{ZT}}-\mathrm{V}_{\mathrm{RB}}$, where V_{ZT} is the first code transition input voltage and $V_{R B}$ is the lower reference voltage. Note that this is different from the normal Zero Scale Error.
CONVERSION LATENCY See PIPELINE DELAY.
CONVERSION TIME is the time required for a complete measurement by an analog-to-digital converter. Since the Conversion Time does not include acquisition time, multiplexer set up time, or other elements of a complete conversion cycle, the conversion time may be less than the Throughput Time.
DC COMMON-MODE ERROR is a specification which applies to ADCs with differential inputs. It is the change in the output code that occurs when the analog voltages on the two inputs are changed by an equal amount. It is usually expressed in LSBs.
DIFFERENTIAL GAIN ERROR is the percentage difference between the output amplitudes of a given amplitude small signal, high frequency sine wave input at two different dc input levels.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB. DNL is commonly measured at the rated clock frequency with a ramp input.
DIFFERENTIAL PHASE ERROR is the difference in the output phase of a reconstructed small signal sine wave at two different dc input levels.
DYNAMIC SPECIFICATIONS of an ADC are those pertaining to an AC input signal. These include S/N ratio, SNR, SINAD, S/(N+D), ENOB, THD, IMD, FPBW, and SSBW.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion Ratio, or SINAD. ENOB is defined as (SINAD 1.76)/6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.
FULL POWER BANDWIDTH is the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input. The test is performed with $f_{i N}$ equal to 100 kHz plus integer multiples of $\mathrm{f}_{\text {CLK }}$. The input frequency at which the output is -3 dB relative to the low frequency input signal is the full power bandwidth.

FULL SCALE (FS) INPUT RANGE of the ADC is the input range of voltages over which the ADC will digitize that input. For $\mathrm{V}_{\mathrm{REF}^{+}}=3.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}{ }^{-}=1.5 \mathrm{~V}, \mathrm{FS}=\left(\mathrm{V}_{\mathrm{REF}}{ }^{+}\right)-\left(\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$ $=2.0 \mathrm{~V}$.
FULL SCALE ERROR is a measure of how far the last code transition is from the ideal $11 / 2$ LSB below $\mathrm{V}_{\text {REF }}{ }^{+}$and is defined as:

$$
\mathrm{V}_{\max }+1.5 \mathrm{LSB}-\mathrm{V}_{\mathrm{REF}^{+}}
$$

where $\mathrm{V}_{\text {max }}$ is the voltage at which the transition to the max code occurs.
FULL SCALE STEP RESPONSE is defined as the time required after V_{IN} goes from $\mathrm{V}_{\text {REF }}$ - to $\mathrm{V}_{\text {REF }}{ }^{+}$, or $\mathrm{V}_{\text {REF }}{ }^{+}$to $\mathrm{V}_{\text {REF }}{ }^{-}$, and settles sufficiently for the converter to recover and make a conversion with its rated accuracy.
GAIN ERROR (FULL SCALE ERROR) is the difference between the input voltage just causing a transition to positive full scale and $V_{\text {REF }}-1.5$ LSB.
GAIN TEMPERATURE COEFFICIENT (FULL SCALE TEMPERATURE COEFFICIENT) is the change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$).
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from zero scale or negative full scale ($1 / 2$ LSB below the first code transition) through positive full scale ($1 / 2$ LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value. The end point test method is used. INL is commonly measured at rated clock frequency with a ramp input.
INTERMODULATION DISTORTION (IMD) is the creation of additional spectral components as a result of two sinusoidal frequencies being applied to the ADC input at the same time. It is defined as the ratio of the power in the intermodulation products to the total power in the original frequencies. IMD is usually expressed in dB.
MISSING CODES are those output codes that are skipped or will never appear at the ADC outputs. These codes cannot be reached by any input value.
MSB (MOST SIGNIFICANT BIT) is the bit that has the largest value or weight. Its value is on half of full scale.
OFFSET ERROR is the difference between the ideal LSB transition to the actual transition point.
OUTPUT DELAY is the time delay after the edge of the input clock before the data update is present at the output pins.
OUTPUT HOLD TIME is the length of time that the output data is valid after the edge of the input clock.
OVERRANGE RECOVERY TIME is the time required after $V_{I N}$ goes from $A G N D$ to $V_{\text {REF }}{ }^{+}$or $V_{I N}$ goes from V_{A} to $V_{\text {REF }}$ for the converter to recover and make a conversion with its rated accuracy.
PIPELINE DELAY (LATENCY) is the number of clock cycles between initiation of conversion and when that data is presented to the output driver stage. Data for any given sample is available the Pipeline Delay plus the Output Delay after
that sample is taken. New data is available at every clock cycle, but the data lags the conversion by the Pipeline Delay plus the Output Delay.
PSRR (POWER SUPPLY REJECTION RATIO) is the ratio of the change in dc power supply voltage to the resulting change in Full Scale Error, expressed in dB.
QUANTIZATION ERROR is the error inherent in all A/D conversions. Since even an 'ideal' converter has finite resolution, any analog voltage that falls beween two adjacent output codes will result in an output code that is inaccurate by up to $1 / 2$ LSB.
RATIOMETRIC OPERATION uses the same reference voltage that is used for the ADC to drive the signal source such that the ratio of the output of that signal source to the reference is a constant. When the driving voltage for that source is also used as the voltage reference for the ADC, the ADC output code is a function of the ratio of the signal source output to the reference voltage and, for a limited reference voltage range, is independent of the value of that reference voltage.
RESOLUTION is the smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of digital codes is equal to 2^{n}. As an example, a 12 -bit converter maps the analog signal into $2^{12}=4096$ digital codes.
SAMPLING (APERTURE) DELAY is the time after the edge of the clock to when the input signal is acquired or held for conversion.
SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB , of the rms value of the input signal at the output to the rms value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or dc.

SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or SINAD) is the ratio, expressed in dB , of the rms value of the input signal at the output to the rms value of all of the other spectral components below half the clock frequency, including harmonics but excluding dc.

SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB , between the rms values of the input signal at the output and the peak spurious signal. where a spurious signal is any signal present in the output spectrum that is not present at the input.
STATIC SPECIFICATIONS are the specifications of an ADC pertaining to a DC signal input. These include gain error, offset error, and differential and integral linearity errors.
THROUGHPUT RATE is the maximun continuous conversion rate of the ADC.
THROUGHPUT TIME is the inverse of the Throughput Rate. TOP OFFSET is the difference between the positive reference voltage and the input voltage that just causes the output code to transition to full scale and is defined as $\mathrm{E}_{\mathrm{OT}}=$ $\mathrm{V}_{\mathrm{FT}}-\mathrm{V}_{\mathrm{REF}^{+}}$where V_{FT} is the full scale transition input voltage. Note that this is different from the normal Full Scale Error.
TOTAL HARMONIC DISTORTION (THD) is the ratio, expressed in dB or dBc , of the rms total of the first six harmonic components to the RMS value of the input signal at the output.
TOTAL UNADJUSTED ERROR (TUE) is the maximum deviation of the voltage corresponding to the center of a digital code's associated input voltage span from the ideal case. Total unadjusted error includes offset error, Gain error, and differential and integral nonlinearity errors.
ZERO SCALE OFFSET ERROR is the difference between the ideal input voltage ($1 / 2$ LSB) and the actual input voltage that just causes a transition from an output code of zero to an output code of one.
ZERO ERROR is the difference between the ideal input voltage ($1 / 2 \mathrm{LSB}$) and the actual input voltage that just causes a transition from an output code of zero to an output code of one.

D/A Converters Definition Of Terms

Differential Nonlinearity: Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step. For example, a DAC with a 1.5 LSB output change for a 1 LSB digital code change exhibits $1 / 2$ LSB differential non-linearity. Differential non-linearity may be expressed in fractional bits or as a percentage of full scale. A differential non-linearity greater than 1 LSB will lead to a non-monotonic transfer function in a DAC.
Gain Error (Full Scale Error): The difference between the output voltage (or current) with full scale input code and the ideal voltage (or current) that should exist with a full scale input code.
Gain Temperature Coefficient (Full Scale Temperature Coefficient): Change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius (ppm/ ${ }^{\circ} \mathrm{C}$).
Integral Nonlinearity (Linearity Error): Worst case deviation from the line between the endpoints (zero and full scale). Can be expressed as a percentage of full scale or in fraction of an LSB.
LSB (Lease-Significant Bit): In a binary coded system this is the bit that carries the smallest value or weight. Its value is the full scale voltage (or current) divided by 2^{n}, where n is the resolution of the converter.
Monotonicity: A monotonic function has a slope whose sign does not change. A monotonic DAC has an output that changes in the same direction (or remains constant) for each increase in the input code. the converse is true for decreasing codes.

MSB (Most Significant Bit): In a binary coded system this is the bit that has the largest value or weight. Its value is one half of full scale.
Multiplying DAC: In a sense, every DAC is a multiplying DAC since the output voltage (or current) is equal to the reference voltage times a constant determined by the digital input code divided by 2^{n} (n is the number of bits of resolution). In a two quadrant multiplying DAC the reference voltage or the digital input code can change the output voltage polarity. If both the reference voltage and the digital code change the output voltage polarity, four quadrant multiplication exists.
Offset Error (Zero Error): The output voltage that exists when the input digital code is set to give an ideal output of zero volts. All the digital codes in the transfer curve are offset by the same value. Offset error is usually expressed in LSBs.
Power supply Rejection (Power Supply Sensitivity): The sensitivity of a converter to changes in the dc power supply voltages.
Resolution: the smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of analog levels is equal to 2^{n}.
Settling Time: The time from a change in input code until a DAC's output signal remains within $\pm 1 / 2$ LSB (or some other specified tolerance) of the final value.

National Semiconductor

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μ P Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8 -bit successive approximation A/D converters that use a differential potentiometric ladder-similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.
Differential analog voltage inputs allow increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- Compatible with $8080 \mu \mathrm{P}$ derivatives - no interfacing logic needed - access time - 135 ns
- Easy interface to all microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
- Works with 2.5 V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required
- 0.3" standard width 20-pin DIP package
- 20-pin molded chip carrier or small outline package
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference

Key Specifications

- Resolution	8 bits
- Total error	$\pm 1 / 4 \mathrm{LSB}, \pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Conversion time	$100 \mu \mathrm{~s}$

- Resolution
- Conversion time

Connection Diagram

ADC080X
Dual-In-Line and Small Outline (SO) Packages

See Ordering Information
Ordering Information

TEMP RANGE		$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted			ADC0801LCN
	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCWM		ADC0802LCN
	$\pm 1 / 2$ Bit Adjusted			ADC0803LCN
	± 1 Bit Unadjusted	ADC0804LCWM	ADC0804LCN	ADC0805LCN/ADC0804LCJ
PACKAGE OUTLINE		$\begin{gathered} \text { M20B-Small } \\ \text { Outline } \end{gathered}$	N20A - Molded DIP	

Error Specification (Includes Full-Scale, Zero Error, and Non-Linearity)			
Part Number	Full- Scale Adjusted	$\mathbf{V}_{\text {REF }} / 2=2.500$ V $_{\text {DC }}$ (No Adjustments)	$\mathbf{V}_{\text {REF }} / \mathbf{2}=$ No Connection (No Adjustments)
ADC0801	$\pm 1 / 4$ LSB		
ADC0802		$\pm 1 / 2$ LSB	
ADC0803	$\pm 1 / 2$ LSB		
ADC0804		± 1 LSB	
ADC0805			$\pm 1 \mathrm{LSB}$

ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function

General Description

The ADC08031/ADC08032/ADC08034/ADC08038 are 8-bit successive approximation A / D converters with serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$ serial data exchange standard for easy interface to the COPS ${ }^{\text {TM }}$ family of controllers, and can easily interface with standard shift registers or microprocessors.
The ADC08034 and ADC08038 provide a 2.6V band-gap derived reference. For devices offering guaranteed voltage reference performance over temperature see ADC08131, ADC08134 and ADC08138.
A track/hold function allows the analog voltage at the positive input to vary during the actual A / D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as 1V can be accommodated.

Applications

- Digitizing automotive sensors
- Process control monitoring
- Remote sensing in noisy environments
- Instrumentation
- Test systems
- Embedded diagnostics

Features

- Serial digital data link requires few I/O pins
- Analog input track/hold function

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+\mathbf{8 5}^{\circ} \mathrm{C}\right)$	Package
ADC08031CIN *	N08E
ADC08038CIN*	N20A
ADC08031CIWM,	M14B
ADC08032CIWM,	
ADC08034CIWM	M20B
ADC08038CIWM	

*Not recomended for new designs.

Connection Diagrams

ADC08032 Small Outline Package

ADC08031
Small Outline Package

ADC08061/ADC08062

500 ns A/D Converter with S/H Function and Input Multiplexer

General Description

Using a patented multi-step A/D conversion technique, the 8 -bit ADC08061 and ADC08062 CMOS ADCs offer 500 ns (typ) conversion time, internal sample-and-hold (S/H), and dissipate only 125 mW of power. The ADC08062 has a two-channel multiplexer. The ADC08061/2 family performs an 8 -bit conversion using a 2 -bit voltage estimator that generates the 2 MSBs and two low-resolution (3-bit) flashes that generate the 6 LSBs.
Input track-and-hold circuitry eliminates the need for an external sample-and-hold. The ADC08061/2 family performs accurate conversions of full-scale input signals that have a frequency range of DC to 300 kHz (full-power bandwidth) without need of an external S / H.
The digital interface has been designed to ease connection to microprocessors and allows the parts to be I/O or memory mapped.

Key Specifications

- Resolution 8 bits
- Conversion Time 560 ns max ($\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode)
- Full Power Bandwidth 300 kHz
- Throughput rate
- Power Dissipation
- Total Unadjusted Error
1.5 MHz 100 mW max $\pm 1 / 2$ LSB and ± 1 LSB

Features

- 1 or 2 input channels
- No external clock required
- Analog input voltage range from GND to V^{+}
- Overflow output available for cascading (ADC08061)
- ADC08061 pin-compatible with the industry standard ADC0820

Applications

- Mobile telecommunications
- Hard disk drives
- Instrumentation
- High-speed data acquisition systems

Block Diagram

* ADC08061
** ADC08062

Connection Diagrams

Dual-In-Line and Wide-Body Small-Outline
 Packages N20A or M20B

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}^{\circ} \mathrm{C}\right)$	Package
ADC08061BIN, ADC08062BIN	N20A
ADC08061CIWM, ADC08062CIWM	M20B

Pin Description

$V_{I N}$,
$\mathrm{V}_{\mathrm{IN} 1-8}$
These are analog inputs. The input range is GND-50 mV $\leq \mathrm{V}_{\text {INPUT }} \leq \mathrm{V}^{+}+50 \mathrm{mV}$. The ADC08061 has a single input $\left(\mathrm{V}_{\mathrm{IN}}\right)$ and the ADC08062 has a two-channel multiplexer ($\mathrm{V}_{\mathrm{IN} 1-2}$).
DB0-DB7 TRI-STATE data outputs - bit 0 (LSB) through bit 7 (MSB).
$\overline{\mathrm{WR}} / R D Y \overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode (Logic high applied to MODE pin)
 the falling edge of $\overline{\mathrm{WR}}$. The digital result will be strobed into the output latch at the end of conversion (see Figures 2, 3, 4).
$: \quad \overline{\mathbf{R D}}$ Mode (Logic low applied to MODE pin)
RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{\mathrm{CS}}$ and return high at the end of conversion.
MODE Mode: Mode ($\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$) selection input-This pin is pulled to a logic low through an internal $50 \mu \mathrm{~A}$ current sink when left unconnected.
$\overline{\mathbf{R D}}$ Mode is selected if the MODE pin is left unconnected or externally forced low. A complete conversion is accomplished by pulling $\overline{\mathrm{RD}}$ low until output data appears.
$\overline{\text { WR}}-\overline{\mathrm{RD}}$ Mode is selected when a high is applied to the MODE pin. A conversion starts with the $\overline{\mathrm{WR}}$ signal's rising edge and then using $\overline{\mathrm{RD}}$ to access the data.
$\overline{\mathrm{RD}} \quad \overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode (logic high on the MODE pin) This is the active low Read input. With a logic low applied to the $\overline{C S}$ pin, the TRI-STATE data outputs (DB0-DB7) will be activated when RD goes low (Figures 2, 3, 4).
$\overline{\mathrm{RD}}$ Mode (logic low on the MODE pin)

With $\overline{\mathrm{CS}}$ low, a conversion starts on the falling edge of $\overline{\mathrm{RD}}$. Output data appears on DB0-DB7 at the end of conversion(see Figures 1,5).
INT \quad This is an active low output that indicates that a conversion is complete and the data is in the output latch. $\overline{\mathrm{NT}}$ is reset by the rising edge of $\overline{R D}$.
GND This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.
$V_{\text {REF- }}$, These are the reference voltage inputs. They

OFL Overflow Output. If the analog input is higher than $\mathrm{V}_{\text {REF+ }}-1 / 2$ LSB, $\overline{\text { OFL }}$ will be low at the end of conversion. It can be used when cascading two ADC08061s to achieve higher resolution (9 bits). This output is always active and does not go into TRI-STATE as DB0-DB7 do. When OFL is set, all data outputs remain high when the ADC08061's output data is read.
NC No connection.

Pin Description (Continued)

AO This logic input is used to select one of the ADC08062's input multiplexer channels. A channel is selected as shown in the table below.

ADC08062 A0	Channel
0	$\mathrm{~V}_{\mathrm{IN} 1}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

V^{+}Positive power supply voltage input. Nominal operating supply voltage is +5 V . The supply pin should be bypassed with a $10 \mu \mathrm{~F}$ bead tantalum in parallel with a 0.1 ceramic capacitor. Lead length should be as short as possible.

ADC0808/ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8 -bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8 -channel multiplexer can directly access any of 8 -single-ended analog signals.
The device eliminates the need for external zero and full-scale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16-channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.)

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- No zero or full-scale adjust required
- 8-channel multiplexer with address logic
- 0 V to 5 V input range with single 5 V power supply
- Outputs meet TTL voltage level specifications
- Standard hermetic or molded 28-pin DIP package
- 28 -pin molded chip carrier package
- ADC0808 equivalent to MM74C949
- ADC0809 equivalent to MM74C949-1

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2$ LSB and ± 1 LSB
- Single Supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	15 mW
- Conversion Time	$100 \mu \mathrm{~s}$

Block Diagram

[^6]
Connection Diagrams

Dual-In-Line Package

Order Number ADC0808CCN or ADC0809CCN
See NS Package J28A or N28A
Ordering Information

TEMPERATURE RANGE		$\mathbf{- 4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 8 5 } 5 ^ { \circ } \mathrm { C }}$			$\mathbf{- 5 5 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 1 2 5}{ }^{\circ} \mathrm{C}$
Error	$\pm 1 / 2$ LSB Unadjusted	ADC0808CCN	ADC0808CCV	ADC0808CCJ	ADC0808CJ
	± 1 LSB Unadjusted	ADC0809CCN	ADC0809CCV		
Package Outline		N28A Molded DIP	V28A Molded Chip Carrier	J28A Ceramic DIP	J28A Ceramic DIP

ADC08100

8-Bit, 100 MSPS, $1.3 \mathrm{~mW} /$ MSPS A/D Converter

General Description

The ADC08100 is a low-power, 8 -bit, monolithic analog-todigital converter with an on-chip track-and-hold circuit. Optimized for low cost, low power, small size and ease of use, this product operates at conversion rates of 20 MSPS to 125 MSPS with outstanding dynamic performance over its full operating range while consuming just 1.3 mW per MHz of clock frequency. That's just 130 mW of power at 100 MSPS. Raising the PD pin puts the ADC08100 into a Power Down mode where it consumes just 1 mW .
The unique architecture achieves 7.4 Effective Bits with 40 MHz input frequency. The excellent DC and AC characteristics of this device, together with its low power consumption and single +3 V supply operation, make it ideally suited for many imaging and communications applications, including use in portable equipment. Furthermore, the ADC08100 is resistant to latch-up and the outputs are short-circuit proof. The top and bottom of the ADC08100's reference ladder are available for connections, enabling a wide range of input possibilities. The digital outputs are TTL/CMOS compatible with a separate output power supply pin to support interfacing with 3 V or 2.5 V logic. The digital inputs (CLK and PD) are TTL/CMOS compatible.
The ADC08100 is offered in a 24 -lead plastic package (TSSOP) and is specified over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single-ended input
- Internal sample-and-hold function
- Low voltage (single +3 V) operation
- Small package
- Power-down feature

Key Specifications

- Resolution	8 bits
- Maximum sampling frequency	$100 \mathrm{MSPS}(\mathrm{min})$
- DNL	0.4 LSB (typ)
- ENOB	7.4 bits (typ) at $\mathrm{f}_{\mathrm{IN}}=41 \mathrm{MHz}$
- THD	-60 dB (typ)
- Guaranteed no missing codes	
- Power consumption	
- Operating:	
- Power down:	$1.3 \mathrm{~mW} / \mathrm{MSPS}$ (typ)

Applications

- Flat panel displays
- Projection systems
- Set-top boxes
- Battery-powered instruments
- Communications
- Medical scan converters
- X-ray imaging
- High speed viterbi decoders
- Astronomy

Pin Configuration

Ordering Information

ADC08100CIMTC	TSSOP
ADC08100CIMTCX	TSSOP (tape and reel)

Block Diagram

Pin Descriptions and Equivalent Circuits
Pin No.

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
23	PD		Power Down input. When this pin is high, the converter is in the Power Down mode and the data output pins hold the last conversion result.
24	CLK		CMOS/TTL compatible digital clock Input. $\mathrm{V}_{\text {IN }}$ is sampled on the falling edge of CLK input.
13 thru 16 and 19 thru 22	D0-D7		Conversion data digital Output pins. D0 is the LSB, D7 is the MSB. Valid data is output just after the rising edge of the CLK input.
7	$\mathrm{V}_{\text {IN }}$ GND		Reference ground for the single-ended analog input, $V_{I N}$.
1, 4, 12	$\mathrm{V}_{\text {A }}$		Positive analog supply pin. Connect to a clean, quiet voltage source of +3 V . V_{A} should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor for each pin, plus one $10 \mu \mathrm{~F}$ capacitor. See Section 3.0 for more information.
18	DR V_{D}		Power supply for the output drivers. If connected to V_{A}, decouple well from V_{A}.
17	DR GND		The ground return for the output driver supply.
2, 5, 8, 11	AGND		The ground return for the analog supply.

National Semiconductor

ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function

General Description

The ADC08131/ADC08134/ADC08138 are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$ serial data exchange standard for easy interface to the COPS $^{\text {TM }}$ family of controllers, and can easily interface with standard shift registers or microprocessors.
All three devices provide a 2.5 V band-gap derived reference with guaranteed performance over temperature.
A track/hold function allows the analog voltage at the positive input to vary during the actual A / D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as 1 V can be accommodated.

Applications

- Digitizing automotive sensors
- Process control/monitoring
- Remote sensing in noisy environments
- Embedded diagnostics

Features

- Serial digital data link requires few I/O pins
- Analog input track/hold function
- 4- or 8-channel input multiplexer options with address logic
- On-chip 2.5 V band-gap reference ($\pm 2 \%$ over temperature guaranteed)
- No zero or full scale adjustment required
- TTL/CMOS input/output compatible
- 0 V to 5 V analog input range with single 5 V power supply

Key Specifications

- Resolution 8 Bits
- Conversion time ($f_{C}=1 \mathrm{MHz}$) $8 \mu \mathrm{~s}(\mathrm{Max})$
- Power dissipation 20 mW (Max)
- Single supply $5 \mathrm{~V}_{\mathrm{DC}}(\pm 5 \%)$
- Total unadjusted error $\pm 1 / 2$ LSB and ± 1 LSB
- Linearity Error $\left(\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}\right) \quad \pm 1 / 2$ LSB
- No missing codes (over temperature)
- On-board Reference
$+2.5 \mathrm{~V} \pm 1.5 \%$ (Max)

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{+ 8 5}\right.$ $\mathbf{C l})$	Package
ADC08131CIWM	M14B
ADC08134CIWM	M14B
ADC08138CIWM	M20B

Connection Diagrams

	ADC08138CIWM Small Outline Packages
$\mathrm{CHO}-1$	1 $20-v_{C C}$
CH_{1-2}	$219-\mathrm{V}_{\text {REF }}$ OUT
$\mathrm{CH} 2-3$	$3 \quad 18-\overline{C S}$
$\mathrm{CH} 3-4$	4 17-DI
$\mathrm{CH}_{4}-5$	516 -CLK
CH5-6	6 15-SARS
$\mathrm{CH}_{6}-7$	7. 14-D0
$\mathrm{CH} 7-8^{-8}$	$813-\overline{\text { SE }}$
COM -9	9 $12-\mathrm{V}_{\text {REF }}$ IN
DGND-10	1011 -AGND
	DS010749-2

ADC08134CIWM Small Outline Packages

ADC08131CIWM
Small Outline Package

National Semiconductor

ADC0816/ADC0817
 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer

General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 16-channel multiplexer and microprocessor compatible control logic. The 8 -bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 -single-ended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8-bit A/D converter.

The device eliminates the need for external zero and full-scale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0816, ADC0817 has been optimized by incorporating the most desirable aspects of several A / D conversion techniques. The ADC0816, ADC0817 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For similar performance in an 8 -channel, 28 -pin, 8 -bit A/D converter, see the ADC0808, ADC0809 data sheet. (See AN-258 for more information.)

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- 16-channel multiplexer with latched control logic
- Outputs meet TTL voltage level specifications
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
- Standard hermetic or molded 40-pin DIP package
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Latched TRI-STATE output
- Direct access to "comparator in" and "multiplexer out" for signal conditioning
- ADC0816 equivalent to MM74C948
- ADC0817 equivalent to MM74C948-1

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2$ LSB and ± 1 LSB
- Single Supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	15 mW
- Conversion Time	$100 \mu \mathrm{~s}$

Block Diagram

Connection Diagram

Order Number ADC0816CCN or ADC0817CCN See NS Package Number N40A

Ordering Information

TEMPERATURE RANGE		$-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$	
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0816CCN	ADC0816CCJ
	± 1 Bit Unadjusted	ADC0817CCN	
Package Outline		N40A Molded DIP	J40A Hermetic DIP

ADC08161

500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference

General Description

Using a patented multi-step A / D conversion technique, the 8 -bit ADC08161 CMOS A/D converter offers 500 ns conversion time, internal sample-and-hold (S/H), a 2.5 V bandgap reference, and dissipates only 100 mW of power. The ADC08161 performs an 8-bit conversion with a 2-bit voltage estimator that generates the 2 MSBs and two low-resolution (3-bit) flashes that generate the 6 LBSs.
Input signals are tracked and held by the input sampling circuitry, eliminating the need for an external sample-and-hold. The ADC08161 can perform accurate conversions of full-scale input signals at frequencies from DC to typically more than 300 kHz (full power bandwidth) without the need of an external sample-and-hold (S/H).
For ease of interface to microprocessors, this part has been designed to appear as a memory location or I/O port without the need for external interfacing logic.

Key Specifications

- Resolution
- Conversion time ($\mathrm{t}_{\mathrm{conv}}$) 560 ns max ($\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode)
- Full power bandwidth

300 kHz (typ)

- Throughput rate $1.5 \mathrm{MHz} \min$
- Power dissipation 100 mW max
- Total unadjusted error
$\pm 1 / 2$ LSB and ± 1 LSB max

Features

- No external clock required
- Analog input voltage range from GND to V^{+}
- 2.5 V bandgap reference

Applications

- Mobile telecommunications
- Hard-disk drives
- Instrumentation
- High-speed data acquisition systems

Block Diagram

Connection Diagram

Wide-Body Small-Outline Package

See NS Package Number M20B

Ordering Information

Industrial ($-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5} 5^{\circ} \mathrm{C}$)	Package
ADC08161CIWM	M20B

Pin Description

This is the analog input. The input range is GND $-50 \mathrm{mV} \leq \mathrm{V}_{\text {INPUT }} \leq \mathrm{V}^{+}+50 \mathrm{mV}$.
DB0-DB7
$\overline{W R} / R D Y$ through bit 7 (MSB).

WR-RD Mode (Logic high applied to MODE pin)
$\overline{W R}$: With $\overline{\mathrm{CS}}$ low, the conversion is started on the rising edge of WR. The digital result will be strobed into the output latch at the end of conversion (Figures 2, 3, 4).
$\overline{\mathrm{RD}}$ Mode (Logic low applied to MODE pin)
RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{\mathrm{CS}}$ and returns high at the end of conversion.

MODE
Mode: Mode ($\overline{\mathbf{R D}}$ or $\overline{\mathbf{W R}}-\overline{\mathrm{RD}}$) selection input- This pin is pulled to a logic low through an internal $50 \mu \mathrm{~A}$ current sink when left unconnected.
$\overline{\mathbf{R D}}$ Mode is selected if the MODE pin is left unconnected or externally forced low. A complete conversion is accomplished by pulling RD low until output data appears.
$\overline{W R}-\overline{R D}$ Mode is selected when a high is applied to the MODE pin. A conversion starts with the $\overline{\mathrm{WR}}$ signal's rising edge and then using $\overline{\mathrm{RD}}$ to access the data.
$\overline{R D} \quad \overline{W R}-\overline{R D}$ Mode (logic high on the MODE pin)
This is the active low Read input. With a logic low applied to the $\overline{\mathrm{CS}}$ pin, the TRI-STATE data outputs (DB0-DB7) will be activated when RD goes low (Figures 2, 3, 4).
$\overline{\mathbf{R D}}$ Mode (logic low on the MODE pin)
With $\overline{\mathrm{CS}}$ low, a conversion starts on the falling edge of $\overline{R D}$. Output data appears on DB0-DB7 at the end of conversion (Figures 1, 5).
This is an active low output that indicates that a conversion is complete and the data is in the output latch. INT is reset by the rising edge of RD.
This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.
These are the reference voltage inputs. They may be placed at any voltage between GND - 50 mV and $\mathrm{V}^{+}+50 \mathrm{mV}$, but $\mathrm{V}_{\text {REF+ }}$ must be greater than $\mathrm{V}_{\text {REF-. }}$. Ideally, an input voltage equal to $V_{\text {REF- }}$ produces an output code of 0 , and an input voltage greater than $\mathrm{V}_{\text {REF+ }}-1.5 \mathrm{LSB}$ produces an output code of 255.
For the ADC08161 an input voltage that exceeds V^{+}by more than 100 mV or is below GND by more than 100 mV will create conversion errors.
This is the active low Chip Select input. A logic low signal applied to this input pin enables the $\overline{R D}$ and $\overline{W R}$ inputs. Internally, the $\overline{C S}$ signal is ORed with $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals.
Overflow Output. If the analog input is higher than $\mathrm{V}_{\text {REF+ }}$, $\overline{\mathrm{OFL}}$ will be low at the end of conversion. It can be used when cascading two ADC08161s to achieve higher resolution (9 bits). This output is always active and does not go into TRI-STATE as DB0-DB7 do. When OFL is set, all data outputs remain high when the ADC08061's output data is read.
Positive power supply voltage input. Nominal operating supply voltage is +5 V . The supply pin should be bypassed with a $10 \mu \mathrm{~F}$ bead tantalum in parallel with a 0.1 ceramic capacitor. Lead length should be as short as possible.
The internal bandgap reference's 2.5 V output is available on this pin. Use a $220 \mu \mathrm{~F}$ bypass capacitor between this pin and analog ground.

ADC0820

8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function

General Description

By using a half-flash conversion technique, the 8 -bit ADC0820 CMOS A/D offers a $1.5 \mu \mathrm{~s}$ conversion time and dissipates only 75 mW of power. The half-flash technique consists of 32 comparators, a most significant 4-bit ADC and a least significant 4-bit ADC.
The input to the ADC0820 is tracked and held by the input sampling circuitry eliminating the need for an external sample-and-hold for signals moving at less than $100 \mathrm{mV} / \mu \mathrm{s}$.
For ease of interface to microprocessors, the ADC0820 has been designed to appear as a memory location or I/O port without the need for external interfacing logic.

Key Specifications

- Resolution
- Conversion Time

■ Low Power

- Total Unadjusted

Error

8 Bits
8 Bits
$2.5 \mu \mathrm{~s} \mathrm{Max} \mathrm{(RD} \mathrm{Mode)}$
$1.5 \mu \mathrm{~s} \mathrm{Max} \mathrm{(WR-RD} \mathrm{Mode)}$
75 mW Max
$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$

Features

- Built-in track-and-hold function
- No missing codes
- No external clocking
- Single supply - $5 \mathrm{~V}_{\mathrm{DC}}$
- Easy interface to all microprocessors, or operates stand-alone

Connection and Functional Diagrams

Dual-In-Line, Small Outline and SSOP Packages

Top View

Molded Chip Carrier

 Package

Connection and Functional Diagrams (Continued)

FIGURE 1.

Ordering Information

Part Number	Total Unadjusted Error	Package	Temperature Range
ADC0820BCV ADC0820BCWM ADC0820BCN	$\pm 1 / 2$ LSB	V20A - Molded Chip Carrier M20B - Wide Body Small Outline N20A - Molded DIP	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
ADC0820CCJ ADC0820CCWM ADC0820CIWM ADC0820CCN	± 1 LSB	$\begin{aligned} & \text { J20A-Cerdip } \\ & \text { M20B-Wide Body Small Outline } \\ & \text { M20B-Wide Body Small Outline } \\ & \text { N20A - Molded DIP } \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$

National Semiconductor

ADC0831/ADC0832/ADC0834/ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options

General Description

The ADC0831 series are 8-bit successive approximation A/D converters with a serial I/O and configurable input multiplexers with up to 8 channels. The serial $1 / O$ is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$ serial data exchange standard for easy interface to the COPS ${ }^{\text {M }}$ family of processors, and can interface with standard shift registers or μ Ps.
The 2-, 4- or 8-channel multiplexers are software configured for single-ended or differential inputs as well as channel assignment.
The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- NSC MICROWIRE compatible-direct interface to COPS family processors
- Easy interface to all microprocessors, or operates "stand-alone"
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- 2-, 4- or 8-channel multiplexer options with address logic
- Shunt regulator allows operation with high voltage supplies
- 0 V to 5 V input range with single 5 V power supply
- Remote operation with serial digital data link
- TTL/MOS input/output compatible
- 0.3" standard width, 8-, 14- or 20-pin DIP package
- 20 Pin Molded Chip Carrier Package (ADC0838 only)
- Surface-Mount Package

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single Supply	5 V DC
- Low Power	15 mW
- Conversion Time	$32 \mu \mathrm{~s}$

Typical Application

Connection Diagrams

ADC0838 8-Channel Mux Small Outline/Dual-In-Line Package (WM and N)

Top View

ADC0832 2-Channel MUX
Small Outline Package (WM)

ADC0834 4-Channel MUX
Small Outline/Dual-In-Line Package (WM and N)

COM internally connected to A GND
Top View
Top View

ADC0831 Single Differential Input Dual-In-Line Package (N)

Top View

ADC0832 2-Channel MUX Dual-In-Line Package (N)

COM internally connected to GND.
$\mathrm{V}_{\text {REF }}$ internally connected to V_{CC}. Top View

Top View

ADC0831 Single Differential Input Small Outline Package (WM)

Top View

ADC0838 8-Channel MUX Molded Chip Carrier (PCC) Package (V)

Ordering Information

Part Number	$\begin{array}{c}\text { Analog Input } \\ \text { Channels }\end{array}$	$\begin{array}{c}\text { Total } \\ \text { Unadjusted Error }\end{array}$	Package	$\begin{array}{c}\text { Temperature } \\ \text { Range }\end{array}$		
ADC0831CCN	1	± 1	Molded (N)	$\begin{array}{l}0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { ADC0831CCWM }\end{array}$		
ADC0832CIWM		± 1	$\mathrm{SO}(\mathrm{M})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$]$	SO(M)
:---						
ADC0832CCN						
ADC0832CCWM						

See NS Package Number M14B, M20B, N08E, N14A, N20A or V20A

ADC08351

8-Bit, 42 MSPS, 40 mW A/D Converter

General Description

The ADC08351 is an easy to use low power, low cost, small size, 42 MSPS analog-to-digital converter that digitizes signals to 8 bits. The ADC08351 uses an unique architecture that achieves 7.2 Effective Bits with a 4.4 MHz input and 42 MHz clock frequency and 6.8 Effective Bits with a 21 MHz input and 42 MHz clock frequency. Output formatting is straight binary coding.
To minimize system cost and power consumption, the ADC08351 requires minimal external components and includes input biasing to allow optional a.c. input signal coupling. The user need only provide a +3 V supply and a clock. Many applications require no separate reference or driver components.
The excellent dc and ac characteristics of this device, together with its low power consumption and +3 V single supply operation, make it ideally suited for many video and imaging applications, including use in portable equipment. Total power consumption is reduced to less than 7 mW in the power-down mode. Furthermore, the ADC08351 is resistant to latch-up and the outputs are short-circuit proof.
Fabricated on a 0.35 micron CMOS process, the ADC08351 is offered in TSSOP and is designed to operate over the commercial temperature range of $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Low Input Capacitance
- Internal Sample-and-Hold Function
- Single +3 V Operation
- Power Down Feature
- TRI-STATE Outputs

Key Specifications

| Resolution | 8 Bits |
| :--- | ---: | ---: |
| - Maximum Sampling Frequency | 42 MSPS (min) |
| ENOB @ $\mathrm{f}_{\mathrm{CLK}}=42 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=4.4 \mathrm{MHz}$ | 7.2 Bits (typ) |
| Guaranteed No Missing Codes | |
| - Power Consumption | 40 mW (typ); 48 mW (max) |
| | (Excluding Reference Current) |

Applications

- Video Digitization
- Digital Still Cameras
- Set Top Boxes
- Digital Camcorders
- Communications
- Medical Imaging
- Personal Computer Video
- CCD Imaging
- Electro-Optics

Pin Configuration

Ordering Information

ADC08351CIMTC	TSSOP
ADC08351CIMTCX	TSSOP (tape \& reel)

ADC08351 Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol		Description

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol		Equivalent Circuit

ADC0844/ADC0848
 8-Bit μ P Compatible A/D Converters with Multiplexer Options

General Description

The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A / D converters with versatile analog input multiplexers. The 4-channel or 8-channel multiplexers can be software configured for single-ended, differential or pseudo-differential modes of operation.
The differential mode provides low frequency input common mode rejection and allows offsetting the analog range of the converter. In addition, the A/D's reference can be adjusted enabling the conversion of reduced analog ranges with 8 -bit resolution.

The A/Ds are designed to operate from the control bus of a wide variety of microprocessors. TRI-STATE ${ }^{\circledR}$ output latches that directly drive the data bus permit the A/Ds to be configured as memory locations or l/O devices to the microprocessor with no interface logic necessary.

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- 4-channel or 8-channel multiplexer with address logic
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- $0.3^{\prime \prime}$ standard width 20-pin or 24-pin DIP
- 28 Pin Molded Chip Carrier Package

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single Supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	15 mW
- Conversion Time	$40 \mu \mathrm{~s}$

Block and Connection Diagrams

*ADC0848 shown in DIP Package CH5-CH8 not included on the ADC0844
DS005016-1

Block and Connection Diagrams (Continued)

Molded Chip Carrier Package

Top View
See Ordering Information

Dual-In-Line Package

Top View

Dual-In-Line Package

Top View

Ordering Information

Temperature Range	Total Unadjusted Error		MUX Channels	Package Outline
	$\pm 1 / 2$ LSB	± 1 LSB		N20A Molded Dip
		ADC0844CCN	4	N24C Molded Dip
	ADC0848BCN		8	J20A Cerdip
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0848CCN		4	V28A
	ADC0848BCV	ADC0844CCJ		8

ADC08831/ADC08832
 8-Bit Serial I/O CMOS A/D Converters with Multiplexer and Sample/Hold Function

General Description

The ADC08831/ADC08832 are 8-bit successive approximation Analog to Digital converters with 3-wire serial interfaces and a configurable input multiplexer for 2 channels. The serial I/O will interface to COPS ${ }^{\text {TM }}$ family of micro-controllers, PLD's, microprocessors, DSP's, or shift registers. The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$ serial data exchange standard.
To minimize total power consumption, the ADC08831/ADC08832 automatically go into low power mode whenever they are not performing conversions.
A track/hold function allows the analog voltage at the positive input to vary during the actual A/D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. The voltage reference input can be adjusted to allow encoding of small analog voltage spans to the full 8 -bits of resolution.

Applications

- Digitizing sensors and waveforms
- Process control monitoring
- Remote sensing in noisy environments
- Instrumentation
- Embedded Systems

Features

- 3-wire serial digital data link requires few I/O pins
- Analog input track/hold function
- 2-channel input multiplexer option with address logic
- Analog input voltage range from GND to V_{CC}
- No zero or full scale adjustment required
- TTL/CMOS input/output compatible
- Superior pin compatible replacement for ADC0831/2

Key Specifications

- Resolution: 8 bits
- Conversion time ($\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$): $4 \mu \mathrm{~s}$ (max)

■ Power dissipation: 8.5 mW (typ)

- Low power mode: 3.0 mW (typ)
- Single supply: $5 \mathrm{~V}_{\mathrm{DC}}$
- Total unadjusted error: ± 1 LSB
- No missing codes over temperature

Typical Application

Connection Diagrams

ADC08831
Wide Body SO Packages

ADC08831
N,M,MM Packages

ADC08832 Wide Body SO Packages

ADC08832
N,M,MM Packages

Ordering Information

Temperature Range	Package
Industrial $\left(\mathbf{- 4 0 ^ { \circ }} \mathbf{C} \leq \mathbf{T}_{\mathbf{J}} \leq \mathbf{+ 8 5}{ }^{\circ} \mathbf{C}\right)$	
ADC08831IN	N08E
ADC08832IN	
ADC08831IWM,	
ADC08832IWM,	M08A
ADC08831IM,	
ADC08832IM,	
ADC08831IMM,	
ADC08832IMM,	

ADC1001

10-Bit μ P Compatible A/D Converter

General Description

The ADC1001 is a CMOS, 10 -bit successive approximation A/D converter. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family. The 10-bit data word is read in two 8 -bit bytes, formatted left justified and high byte first. The six least significant bits of the second byte are set to zero, as is proper for a 16 -bit word.
Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 10-bit resolution.

Key Specifications

- Resolution	10 bits
- Linearity error	$\pm 1 \mathrm{LSB}$
- Conversion time	$200 \mu \mathrm{~S}$

- Resolution
- Conversion time$200 \mu \mathrm{~S}$

Features

- ADC1001 is pin compatible with ADC0801 series 8-bit A/D converters
- Compatible with NSC800 and $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed
- Easily interfaced to $6800 \mu \mathrm{P}$ derivatives
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
- Works with 2.5V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference
- $0.3^{\prime \prime}$ standard width 20-pin DIP package

Connection Diagram

> ADC1001
> Dual-In-Line Package
> Top View

Ordering Information

Temperature Range	$\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{+ 7 0} \mathbf{}{ }^{\circ} \mathrm{C}$	$\mathbf{- 4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 8 5 } { } ^ { \circ } \mathrm { C }}$
Order Number	ADC1001CCJ-1	ADC 1001 CCJ
Package Outline	J 20 A	J 20 A

ADC10030

10-Bit, 30 MSPS, 125 mW A/D Converter with Internal Sample and Hold

General Description

The ADC10030 is a low power, high performance CMOS analog-to-digital converter that digitizes signals to 10 bits resolution at sampling rates up to 30 Msps while consuming a typical 125 mW from a single 5V supply. Reference force and sense pins allow the user to connect an external reference buffer amplifier to ensure optimal accuracy. No missing codes is guaranteed over the full operating temperature range. The unique two-stage architecture achieves 9.1 Ef fective Bits with a 15 MHz input signal and a 30 MHz clock frequency. Output formatting is straight binary coding.
To ease interfacing to 3 V systems, the digital I / O power pins of the ADC10030 can be tied to a 3V power source, making the outputs 3 V compatible. When not converting, power consumption can be reduced by pulling the PD (Power Down) pin high, placing the converter into a low power standby state, where it typically consumes less than 4 mW . The ADC10030's speed, resolution and single supply operation makes it well suited for a variety of applications in video, imaging, communications, multimedia and high speed data acquisition. Low power, single supply operation ideally suit the ADC10030 for high speed portable applications, and its speed and resolution are ideal for charge coupled device (CCD) input systems.
The ADC10030 comes in a space saving 32-pin TQFP and operates over the industrial ($-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$) temperature range.

Features

- Internal Sample-and-Hold
- Single +5V Operation
- Low Power Standby Mode
- Guaranteed No Missing Codes
- TRI-STATE Outputs
- TTL/CMOS or 3V Logic Input/Output Compatible

Key Specifications

■ Resolution	10 Bits
■ Conversion Rate	30 Msps
ENOB @ 15 MHz Input	9.1 Bits (typ)
■ DNL	0.40 LSB (typ)
C Conversion Latency	2 Clock Cycles
PSRR	56 dB
- Power Consumption	125 mW (typ)
Low Power Standby Mode	$<3.5 \mathrm{~mW}$ (typ)

Applications

- Digital Video
- Communications
- Document Scanners
- Medical Imaging
- Electro-Optics
- Plain Paper Copiers
- CCD Imaging

Connection Diagram

Ordering Information

Commercial Temperature Range $\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$	NS Package
$\mathrm{ADC1} 10030 \mathrm{CIVT}$	TQFP

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
30	$\mathrm{V}_{\text {IN }}$		Analog Input signal to be converted. Conversion range is $\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$ to $\mathrm{V}_{\text {REF }}-\mathrm{S}$.
31	$\mathrm{V}_{\text {REF }}{ }^{+}$		Analog input that goes to the high side of the reference ladder of the ADC. This voltage should force $\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$ to be in the range of 2.6 V to 3.8 V .
32	$\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$		Analog output used to sense the voltage near the top of the ADC reference ladder.
2	$V_{\text {REF }}-\mathrm{F}$		Analog input that goes to the low side of the reference ladder of the ADC. This voltage should force $\mathrm{V}_{\text {REF- }} \mathrm{S}$ to be in the range of 1.7 V to 2.8 V .
1	$\mathrm{V}_{\text {REF- }} \mathrm{S}$		Analog output used to sense the voltage near the bottom of the ADC reference ladder.
9	CLK		Converter digital clock input. $\mathrm{V}_{\text {IN }}$ is sampled on the falling edge of CLK input.
8	PD		Power Down input. When this pin is high, the converter is in the Power Down mode and the data output pins are in a high impedance state.
26	$\overline{O E}$		Output Enable pin. When this pin and the PD pin are low, the output data pins are active. When this pin or the PD pin is high, the data output pins are in a high impedance state.
14 thru 19 and 22 thru 25	D0-D9		Digital Output pins providing the 10 -bit conversion results. D0 is the LSB, D9 is the MSB. Data is acquired on the falling edge of the CLK input and valid data is present 2.0 clock cycles plus $t_{O D}$ later.
$\begin{gathered} 3,7 \\ 28 \end{gathered}$	$\mathrm{V}_{\text {A }}$		Positive analog supply pins. These pins should be connected to a clean, quiet voltage source of +5 V . V_{A} and V_{D} should have a common supply and be separately bypassed with $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$ capacitors in parallel with $0.1 \mu \mathrm{~F}$ capacitors.
5, 10	V_{D}		Positive digital supply pins. These pins should be connected to a clean, quiet voltage source of +5 V . V_{A} and V_{D} should have a common supply and be separately bypassed with $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$ capacitors in parallel with $0.1 \mu \mathrm{~F}$ capacitors.

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
12,21	V $_{\mathrm{D}}$ I/O		Positive supply pins for the digital output drivers. These pins should be connected to a clean, quiet voltage source of +3 V to +5 V and be separately bypassed with $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$ capacitors.
4,27,	AGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC10030 package.
6,11	DGND		The ground return for the digital supply. AGND and DGND should be connected together close to the ADC10030 package.
13,20	DGND I/O		The ground return of the digital output drivers.

ADC1005

10-Bit $\mu \mathrm{P}$ Compatible A/D Converter

General Description

The ADC1005 is a CMOS 10-bit successive approximation A/D converter. The 20-pin ADC1005 outputs 10-bit data in a two-byte format for interface with 8-bit microprocessors.
The ADC1005 has differential inputs to permit rejection of common-mode signals, allow the analog input range to be offset, and also to permit the conversion of signals not referred to ground. In addition, the reference voltage can be adjusted, allowing smaller voltage spans to be measured with 10-bit resolution.

Features

- Easy interface to all microprocessors
- Differential analog voltage inputs
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference or analog span adjusted voltage reference
- 0 V to 5 V analog input voltage range with single 5 V supply
- On-chip clock generator
- TLL/MOS input/output compatible
- $0.3^{\prime \prime}$ standard width 20-pin DIP

Key Specifications

- Resolution
- Linearity Error $\pm 1 / 2$ LSB and ± 1 LSB
- Conversion Time
$50 \mu \mathrm{~s}$

Connection Diagram

Ordering Information

Part Number	Package Outline	Temperature Range	Linearity Error
ADC1005BCJ-1	J 20 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$
ADC1005BCJ	J 20 A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
ADC1005CCJ-1	J 20 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$
ADC 1005 CCJ	J 20 A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

ADC10061／ADC10062／ADC10064 10－Bit 600 ns A／D Converter with Input Multiplexer and Sample／Hold

General Description

Using an innovative，patented multistep＊conversion tech－ nique，the 10 －bit ADC10061，ADC10062，and ADC10064 CMOS analog－to－digital converters offer sub－microsecond conversion times yet dissipate a maximum of only 235 mW ． The ADC10061，ADC10062，and ADC10064 perform a 10－bit conversion in two lower－resolution＂flashes＂，thus yielding a fast A／D without the cost，power dissipation，and other problems associated with true flash approaches．The ADC10061 is pin－compatible with the ADC1061 but much faster，thus providing a convenient upgrade path for the ADC1061．

The analog input voltage to the ADC10061，ADC10062，and ADC10064 is sampled and held by an internal sampling cir－ cuit．Input signals at frequencies from dc to over 200 kHz can therefore be digitized accurately without the need for an external sample－and－hold circuit．
The ADC10062 and ADC10064 include a＂speed－up＂pin． Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 350 ns with only a small increase in linearity error．
For ease of interface to microprocessors，the ADC10061， ADC10062，and ADC10064 have been designed to appear as a memory location or I／O port without the need for exter－ nal interface logic．
＊U．S．Patent Number 4918449

Features

－Built－in sample－and－hold
－Single +5 V supply
－1，2，or 4－input multiplexer options
－No external clock required
－Speed adjust pin for faster conversions（ADC10062 and ADC10064）．See ADC10662／4 for high speed guaranteed performance．

Key Specifications

－Conversion time to 10 bits
600 ns typical，
－
－Sampling Rate 900 ns max over temperature
－Low power dissipation
－Total unadjusted error
235 mW（max）
－No missing codes over temperature

Applications

－Digital signal processor front ends
－Instrumentation
－Disk drives
－Mobile telecommunications

Simplified Block Diagram

DS011020－1
＊ADC10061 Only
＊＊ADC10062 and ADC10064 Only
＊＊＊ADC10064 Only

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+\mathbf{8 5}{ }^{\circ} \mathrm{C}\right)$	Package
$\mathrm{ADC10061CIWM}$	M20B Small Outline
ADC10062CIWM	M24B Small Outline
ADC10064CIWM	M28B Small Outline

Connection Diagrams

Top View

Top View

Pin Descriptions

$D V_{C c}, A V_{c c}$ These are the digital and analog positive supply voltage inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor to ground.
$\overline{I N T} \quad$ This is the active low interrupt output. $\overline{\text { INT }}$ goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{R D}$.
$\overline{\mathrm{S}} / \mathrm{H} \quad$ This is the Sample/Hold control input. When this pin is forced low (and CS is low), it causes the analog input signal to be sampled and initiates a new conversion.
$\overline{\mathrm{RD}} \quad$ This is the active low Read control input. When this $\overline{R D}$ and $\overline{C S}$ are low, any data present in the output registers will be placed on the data bus.
$\overline{\mathrm{CS}} \quad$ This is the active low Chip Select control input. When low, this pin enables the $\overline{R D}$ and $\overline{\mathrm{S}} / \mathrm{H}$ pins.
S0, S1 On the multiple-input devices (ADC10062 and ADC10064), these pins select the analog input that will be connected to the A/D during the conversion. The input is selected based on the state of S0 and S1 when $\overline{\mathrm{S}} / \mathrm{H}$ makes its High-to-Low transition (See the Timing Diagrams). The ADC10064 includes both S0 and S1. The ADC10062 includes just S0, and the ADC10061 includes neither.
$V_{\text {REF-, }} \quad$ These are the reference voltage inputs. They
$\mathrm{V}_{\text {REF }+} \quad$ may be placed at any voltage between GND and V_{CC}, but $\mathrm{V}_{\text {REF+ }}$ must be greater than $\mathrm{V}_{\text {REF- }}$. An input voltage equal to $\mathrm{V}_{\text {REF- }}$ produces an output code of 0 , and an input voltage equal to ($\mathrm{V}_{\mathrm{REF}_{+}-1 \mathrm{LSB}}$) produces an output code of 1023.
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {INO }}$, These are the analog input pins. The

ADC10154/ADC10158

10-Bit Plus Sign $4 \mu \mathrm{~s}$ ADCs with 4 - or 8-Channel MUX, Track/Hold and Reference

General Description

The ADC10154 and ADC10158 are CMOS 10-bit plus sign successive approximation A / D converters with versatile analog input multiplexers, track/hold function and a 2.5 V band-gap reference. The 4-channel or 8-channel multiplexers can be software configured for single-ended, differential or pseudo-differential modes of operation.
The input track/hold is implemented using a capacitive array and sampled-data comparator.
Resolution can be programmed to be 8 -bit, 8 -bit plus sign, 10 -bit or 10 -bit plus sign. Lower-resolution conversions can be performed faster.
The variable resolution output data word is read in two bytes, and can be formatted left justified or right justified, high byte first.

Applications

- Process control
- instrumentation
- Test equipment

Features

- 4- or 8- channel configurable multiplexer
- Analog input track/hold function
- 0 V to 5 V analog input range with single +5 V power supply
- -5 V to +5 V analog input voltage range with $\pm 5 \mathrm{~V}$ supplies
- Fully tested in unipolar (single +5 V supply) and bipolar (dual $\pm 5 \mathrm{~V}$ supplies) operation
- Programmable resolution/speed and output data format
- Ratiometric or Absolute voltage reference operation
- No zero or full scale adjustment required
- No missing codes over temperature
- Easy microprocessor interface

Key Specifications

- Resolution 10-bit plus sign
- Integral linearity error ± 1 LSB (max)
- Unipolar power dissipation 33 mW (max)
- Conversion time (10-bit + sign)
- Convarion (8-bit)
$3.2 \mu \mathrm{~s}(\max)$
- Sampling rate (10-bit + sign) 166 kHz
- Sampling rate (8-bit) 207 kHz
- Band-gap reference $\quad 2.5 \mathrm{~V} \pm 2.0 \%$ (max)

ADC10158 Simplified Block Diagram

Connection Diagrams

Dual-in-Line and SO Packages

DS011225-3
Top View
Order Number ADC10158 NS Package Numbers M28B or N28B
$\overline{R D} \quad$ This is the read control input. When a logic low is applied to this pin the digital outputs are enabled and the INT output is reset high.
This is the write control input. The rising edge of the signal applied to this pin selects the multiplexer channel and initiates a conversion.
$\overline{\mathrm{INT}} \quad$ This is the interrupt output. A logic low at this output indicates the completion of a conversion.
CLK This is the clock input. The clock frequency directly controls the duration of the conversion time (for example, in the 10-bit bipolar mode $\mathrm{t}_{\mathrm{C}}=22 / \mathrm{f}_{\mathrm{CLK}}$) and the acquisition time ($\mathrm{t}_{\mathrm{A}}=$ $6 /{ }_{\text {CLK }}$).
DBO(MAO) These are the digital data inputs/outputs. DB0
-DB7 (L/(ᄌ) is the least significant bit of the digital output word; DB7 is the most significant bit in the digital output word (see the Output Data Configuration table). MAO through MA4 are the digital inputs for the multiplexer channel selection (see the Multiplexer Addressing tables). U/S (Unsigned/Signed), 8/10, (8/10-bit resolution) and L / \bar{R} (Left/Right justification) are the digital input bits that set the A/D's output word format and resolution (see the Output Data Configuration table). The conversion time is modified by the chosen resolution (see Electrical AC Characteristics table). The lower the resolution, the faster the conversion will be.
$\mathrm{CH} 0-\mathrm{CH} 7$ These are the analog input multiplexer channels. They can be configured as single-ended inputs, differential input pairs, or pseudo-differential inputs (see the Multiplexer Addressing tables for the input polarity assignments).

ADC10221

10-Bit, 15 MSPS, 98 mW A/D Converter with Internal Sample and Hold

General Description

The ADC10221 is the first in a family of low power, high performance CMOS analog-to-digital converters. It can digitize signals to 10 bits resolution at sampling rates up to 20 MSPS (15 MSPS guaranteed) while consuming a typical 98 mW from a single 5 V supply. Reference force and sense pins allow the user to connect an external reference buffer amplifier to ensure optimal accuracy. The ADC10221 is guaranteed to have no missing codes over the full operating temperature range. The unique two stage architecture achieves 9.2 Effective Bits with a 10 MHz input signal and a 20 MHz clock frequency. Output formatting is straight binary coding.
To ease interfacing to 3 V systems, the digital I / O power pins of the ADC10221 can be tied to a 3V power source, making the outputs 3 V compatible. When not converting, power consumption can be reduced by pulling the PD (Power Down) pin high, placing the converter into a low power standby state, where it typically consumes less than 4 mW . The ADC10221's speed, resolution and single supply operation make it well suited for a variety of applications in video, imaging, communications, multimedia and high speed data acquisition. Low power, single supply operation ideally suit the ADC10221 for high speed portable applications, and its speed and resolution are ideal for charge coupled device (CCD) input systems.
The ADC10221 comes in a space saving 32-pin TQFP and operates over the industrial ($-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$) temperature range.

Features

- Internal Sample-and-Hold
- Single +5V Operation
- Low Power Standby Mode
- Guaranteed No Missing Codes
- TTL/CMOS or 3V Logic Input/Output Compatible

Key Specifications

- Resolution	10 Bits
- Conversion Rate	20 MSPS (typ)
	15 MSPS (min)
■ ENOB 10 MHz Input,	
20 MHz Clock	9.2 Bits (typ)
DNL	0.35 LSB (typ)
- Power Consumption	98 mW (typ)
- Low Power Standby Mode	$<4 \mathrm{~mW}$ (typ)

Applications

- Digital Video
- Document Scanners
- Medical Imaging
- Electro-Optics
- Plain Paper Copiers
- CCD Imaging

Connection Diagram

Ordering Information

Commercial $\left(-\mathbf{4 0} 0^{\circ} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	NS Package
ADC10221CIVT	TQFP

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
Analog I/O			
30	$\mathrm{V}_{\text {IN }}$	(3)	Analog Input signal to be converted. Conversion range is $\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$ to $\mathrm{V}_{\text {REF }} \mathrm{S}$.
31	$\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{F}$		Analog input that goes to the high side of the reference ladder of the ADC. This voltage should force $\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$ to be in the range of 2.3 V to 4.0 V .
32	$\mathrm{V}_{\text {REF }}{ }^{+} \mathrm{S}$		Analog output used to sense the voltage near the top of the ADC reference ladder.
2	$V_{\text {REF }}{ }^{-} \mathrm{F}$		Analog input that goes to the low side of the reference ladder of the ADC. This voltage should force $\mathrm{V}_{\text {REF- }} \mathrm{S}$ to be in the range of 1.3 V to 3.0 V .
1	$\mathrm{V}_{\text {REF- }} \mathrm{S}$		Analog output used to sense the voltage near the bottom of the ADC reference ladder.
9	CLK		Converter digital clock input. V_{IN} is sampled on the falling edge of CLK input.
8	PD		Power Down input. When this pin is high, the converter is in the Power Down mode and the data output pins are in a high impedance state.
26	$\overline{\mathrm{OE}}$		Output Enable pin. When this pin and the PD pin are low, the output data pins are active. When this pin or the PD pin is high, the output data pins are in a high impedance state.
14 thru 19 and 22 thru 25	D0 -D9		Digital Output pins providing the 10 bit conversion results. D0 is the LSB, D9 is the MSB. Valid data is present just after the falling edge of the CLK input.
$\begin{gathered} 3,7, \\ 28 \end{gathered}$	$\mathrm{V}_{\text {A }}$		Positive analog supply pins. These pins should be connected to a clean, quiet voltage source of +5 V . V_{A} and V_{D} should have a common supply and be separately bypassed with $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$ capacitors in parallel with $0.1 \mu \mathrm{~F}$ capacitors.
5,10	V_{D}		Positive digital supply pins. These pins should be connected to a clean, quiet voltage source of +5 V . V_{A} and V_{D} should have a common supply and be separately bypassed with $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$ capacitors in parallel with $0.1 \mu \mathrm{~F}$ capacitors.

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
Analog 1/0			
12, 21	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		Positive supply pins for the digital output drivers. These pins should be connected to a clean, quiet voltage source of +3 V to +5 V and be separately bypassed with $10 \mu \mathrm{~F}$ capacitors.
$\begin{gathered} 4,27 \\ 29 \end{gathered}$	AGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC10221 package.
6, 11	DGND		The ground return for the digital supply. AGND and DGND should be connected together close to the ADC10221 pacjage.
13, 20	DGND I/O		The ground return of the digital output drivers.

ADC10321

10-Bit, 20MSPS, 98mW A/D Converter with Internal Sample and Hold

General Description

The ADC10321 is a low power, high performance CMOS analog-to-digital converter that digitizes signals to 10 bits resolution at sampling rates up to 25 Msps while consuming a typical 98 mW from a single 5V supply. Reference force and sense pins allow the user to connect an external reference buffer amplifier to ensure optimal accuracy. No missing codes is guaranteed over the full operating temperature range. The unique two stage architecture achieves 9.2 Effective Bits with a 10 MHz input signal and a 20 MHz clock frequency. Output formatting is straight binary coding.
To ease interfacing to 3 V systems, the digital I/O power pins of the ADC10321 can be tied to a 3 V power source, making the outputs 3 V compatible. When not converting, power consumption can be reduced by pulling the PD (Power Down) pin high, placing the converter into a low power standby state, where it typically consumes less than 4 mW . The ADC10321's speed, resolution and single supply operation makes it well suited for a variety of applications in video, imaging, communications, multimedia and high speed data acquisition. Low power, single supply operation ideally suit the ADC10321 for high speed portable applications, and its speed and resolution are ideal for charge coupled device (CCD) input systems.
The ADC10321 comes in a space saving 32-pin TQFP and operates over the industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$ temperature range.

Features

- Internal Sample-and-Hold
- Single +5 V Operation
- Low Power Standby Mode
- Guaranteed No Missing Codes
- Tri-State Outputs
- TTL/CMOS or 3V Logic Input/Output Compatible

Key Specifications

Resolution	10 Bits
Conversion Rate	20 Msps
ENOB 10MHz Input	9.2 Bits (typ)
DNL	0.35 LSB (typ)
Conversion Latency	2 Clock Cycles
(PSRR	56 dB
Power Consumption	98 mW (typ)
Low Power Standby Mode	$<4 \mathrm{~mW}$ (typ)

Applications

- Digital Video
- Communications
- Document Scanners
- Medical Imaging
- Electro-Optics
- Plain Paper Copiers
- CCD Imaging

Connection Diagram

Ordering Information

Commercial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$	NS Package
ADC10321CIVT	TQFP

Block Diagram

DS100897-2

Pin Descriptions and Equivalent Circuits

| Pin
 No. | Symbol |
| :--- | :--- | :--- | :--- | :--- | :--- |

Pin Descriptions and Equivalent Circuits（Continued）

Pin No．	Symbol	Equivalent Circuit	Description
Analog I／O			
12， 21	$V_{D} \mathrm{I} / \mathrm{O}$		Positive supply pins for the digital output drivers． These pins should be connected to a clean，quiet voltage source of +3 V to +5 V and be separately bypassed with $10 \mu \mathrm{~F}$ capacitors．
$\begin{gathered} 4,27, \\ 29 \end{gathered}$	AGND		The ground return for the analog supply．AGND and DGND should be connected together close to the ADC10321 package．
6， 11	DGND		The ground return for the digital supply．AGND and DGND should be connected together close to the ADC10321 pacjage．
13， 20	DGND I／O		The ground return of the digital output drivers．

ADC10461/ADC10462/ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative, patented multistep* conversion technique, the 10-bit ADC10461, ADC10462, and ADC10464 CMOS analog-to-digital converters offer sub-microsecond conversion times yet dissipate a maximum of only 235 mW . The ADC10461, ADC10462, and ADC10464 perform a 10-bit conversion in two lower-resolution "flashes", thus yielding a fast A / D without the cost, power dissipation, and other problems associated with true flash approaches. Dynamic performance (THD, S / N) is guaranteed. The ADC10461 is pin-compatible with the ADC1061 but much faster, thus providing a convenient upgrade path for the ADC1061.
The analog input voltage to the ADC10461, ADC10462, and ADC10464 is sampled and held by an internal sampling circuit. Input signals at frequencies from dc to over 200 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
The ADC10462 and ADC10464 include a "speed-up" pin. Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 350 ns with only a small increase in linearity error.
For ease of interface to microprocessors, the ADC10461, ADC10462, and ADC10464 have been designed to appear as a memory location or I/O port without the need for external interface logic.

Features

- Built-in sample-and-hold
- Single +5 V supply
- 1, 2, or 4-input multiplexer options
- No external clock required
- Speed adjust pin for faster conversions (ADC10462 and ADC10464)

Key Specifications

- Conversion time to 10 bits 600 ns typical
- Sampling Rate
- Low power dissipation

800 kHz

- Total harmonic distortion (50 kHz)

235 mW (max)

- No missing codes over temperature

Applications

- Digital signal processor front ends
- Instrumentation
- Disk drives
- Mobile telecommunications

Note: *U.S. Patent Number 4918449

Ordering Information

Industrial Temp Range $\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC20461CIWM	M20B Small Outline
ADC20462CIWM	M24B Small Outline
ADC20464CIWM	M28B Small Outline

Connection Diagrams

Pin Descriptions

$\mathrm{DV}_{\mathrm{CC}}, \mathrm{AV}_{\mathrm{CC}}$ These are the digital and analog positive supply voltage inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor to ground.
$\overline{\text { INT }} \quad$ This is the active low interrupt output. $\overline{\text { INT }}$ goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{R D}$.
$\overline{\mathrm{S}} / \mathrm{H} \quad$ This is the Sample/Hold control input. When this pin is forced low (and $\overline{\mathrm{CS}}$ is low), it causes the analog input signal to be sampled and initiates a new conversion.
$\overline{R D} \quad$ This is the active low Read control input. When this $\overline{R D}$ and $\overline{C S}$ are low, any data present in the output registers will be placed on the data bus.
$\overline{\mathrm{CS}} \quad$ This is the active low Chip Select control input. When low, this pin enables the $\overline{R D}$ and \bar{S} / H pins.
S0, S1 On the multiple-input devices (ADC10462 and ADC10464), these pins select the analog input that will be connected to the A/D during the conversion. The input is selected based on the state of S0 and S1 when \bar{S} / H makes its High-to-Low transition (See the Timing Diagrams). The ADC10464 includes both S0 and S1. The ADC10462 includes just S0, and the ADC10461 includes neither.
$\mathrm{V}_{\text {REF- }}$, These are the reference voltage inputs. They
$\mathrm{V}_{\mathrm{REF}+} \quad$ may be placed at any voltage between GND and V_{CC}, but $\mathrm{V}_{\text {REF }+}$ must be greater than $\mathrm{V}_{\text {REF- }}$. An input voltage equal to $\mathrm{V}_{\text {REF- }}$ produces an output code of 0 , and an input voltage equal to ($\mathrm{V}_{\text {REF }+}-1 \mathrm{LSB}$) produces an output code of 1023.
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {INO }}$, These are the analog input pins. The $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\text {IN } 2}, \quad$ ADC10461 has one input (V_{IN}), the ADC10462 $\mathrm{V}_{\text {IN3 }}$ has two inputs ($\mathrm{V}_{\mathrm{INO}}$ and $\mathrm{V}_{\mathrm{IN1}}$), and the ADC10464 has four inputs ($\mathrm{V}_{\mathrm{IN} 0}, \mathrm{~V}_{\text {IN1 }}, \mathrm{V}_{\text {IN2 }}$ and $\mathrm{V}_{\mathrm{IN} 3}$). The impedance of the source should be less than 500Ω for best accuracy and conversion speed. For accurate conversions, no input pin (even one that is not selected) should be driven more than 50 mV above V_{CC} or 50 mV below ground.
GND, AGND, These are the power supply ground pins. The DGND ADC10461 has a single ground pin (GND), and the ADC10462 and ADC10464 have separate analog and digital ground pins (AGND and DGND) for separate bypassing of the analog and digital supplies. The ground pins should be connected to a stable, noise-free system ground. For the devices with two ground pins, both pins should be returned to the same potential.
DB0-DB9 These are the TRI-STATE output pins.
SPEED ADJ (ADC10462 and ADC10464 only). This pin is normally left unconnected, but by connecting a resistor between this pin and ground, the conversion time can be reduced. See the Typical Performance Curves and the table of Electrical Characteristics.

General Description

Using a modified half-flash conversion technique, the 10-bit ADC1061 CMOS analog-to-digital converter offers very fast conversion times yet dissipates a maximum of only 235 mW . The ADC1061 performs a 10-bit conversion in two lower-resolution "flashes", thus yielding a fast A/D without the cost, power dissipation, and other problems associated with true flash approaches.
The analog input voltage to the ADC1061 is tracked and held by an internal sampling circuit. Input signals at frequencies from DC to greater than 160 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
For ease of interface to microprocessors, the ADC1061 has been designed to appear as a memory location or I/O port without the need for external interface logic.

Features

- $1.8 \mu \mathrm{~s}$ maximum conversion time to 10 bits
- Low power dissipation: 235 mW (maximum)
- Built-in track-and-hold
- No external clock required
- Single +5 V supply
- No missing codes over temperature

Applications

- Waveform digitizers
- Disk drives
- Digital signal processor front ends
- Mobile telecommunications

Simplified Block and Connection Diagrams

Simplified Block and Connection Diagrams (Continued)

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}^{\circ} \mathrm{C}\right)$	Package
ADC1061CIN	N20A
ADC1061CIWM	M20B

Pin Descriptions

Symbol	Function
$\mathrm{DV}_{\mathrm{cc}}$, $\mathrm{AV}_{\mathrm{cc}}$ $(1,6)$	These are the digital and analog positive supply voltage inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
$\overline{\text { INT }}$ (2)	This is the active low interrupt output. INT goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{\mathrm{RD}}$.
$\overline{\mathrm{S}} / \mathrm{H}(3)$	This is the Sample/Hold control input. When this pin is forced low, it causes the analog input signal to be sampled and initiates a new conversion.
$\overline{\mathrm{RD}}$ (4)	This is the active low Read control input. When this pin is low, any data present in the ADC1061's output registers will be placed on the data bus. In Mode 2, the Read signal must be low until $\overline{\mathrm{INT}}$ goes low. Until INT goes low, the data at the output pins will be incorrect.
$\overline{\mathrm{CS}}$ (5)	This is the active low Chip Select control input. This pin enables the $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ inputs.
$\mathrm{V}_{\text {REF- }}$, $V_{\text {REF }}+$ (7, 9)	These are the reference voltage inputs. They may be placed at any voltage between GND - 50 mV and $\mathrm{V}_{\mathrm{CC}}+50 \mathrm{mV}$, but $\mathrm{V}_{\mathrm{REF}+}$ must be greater than $\mathrm{V}_{\mathrm{REF}}$. An input voltage equal to $\mathrm{V}_{\mathrm{REF}}$ produces an output code of 0 , and an input voltage equal to $V_{\text {REF }+}$ - 1LSB produces an output code of 1023.
$\mathrm{V}_{\text {IN }}(8)$	This is the analog input pin. The impedance of the source should be less than 500Ω for best accuracy and conversion speed. To avoid damage to the ADC1061, V_{IN} should not be allowed to extend beyond the power supply voltages by more than 300 mV unless the drive current is limited. For accurate conversions, V_{IN} should not extend more than 50 mV beyond the supply voltages.
GND (10)	This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.
$\begin{gathered} \hline \text { DB0-DB9 } \\ (11-20) \end{gathered}$	These are the TRI-STATE output pins.

ADC10662/ADC10664

10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative, patented multistep* conversion technique, the 10-bit ADC10662 and ADC10664 are 2- and 4 -input CMOS analog-to-digital converters offering sub-microsecond conversion times yet dissipating a maximum of only 235 mW . The ADC10662 and ADC10664 perform a 10-bit conversion in two lower-resolution "flashes", thus yielding a fast A/D without the cost, power dissipation, and other problems associated with true flash approaches. In addition to standard static performance specifications (Linearity, Full-Scale Error, etc.) dynamic performance (THD, S / N) is guaranteed.
The analog input voltage to the ADC10662 and ADC10664 is sampled and held by an internal sampling circuit. Input signals at frequencies from dc to over 250 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
The ADC10662 and ADC10664 include a "speed-up" pin. Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 360 ns .
For ease of interface to microprocessors, the ADC10662 and ADC10664 have been designed to appear as a memory location or I/O port without the need for external interface logic.

Features

- Built-in sample-and-hold
- Single +5 V supply
- 2- or 4-input multiplexer options
- No external clock required

Key Specifications

- Conversion time to 10 bits: 360 ns typical, 466 ns max over temperature
- Sampling Rate: $1.5 \mathrm{MHz}(\mathrm{min})$
- Low power dissipation: 235 mW (max)
- Total harmonic distortion (50 kHz): -60 dB (max)
- No missing codes over temperature

Applications

- Digital signal processor front ends
- Instrumentation
- Disk drives
- Mobile telecommunications

Ordering Information

ADC10662

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10662CIWM	M24B Small Outline

ADC10664

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10664CIWM	M28B Small Outline

Simplified Block Diagram

*ADC10664 Only

Connection Diagrams

$$
\begin{aligned}
& \text { Top View }
\end{aligned}
$$

Pin Descriptions

DV ${ }_{\mathrm{Cc}}$ ，These are the digital and analog positive sup－ ply voltage inputs．They should always be con－ nected to the same voltage source，but are brought out separately to allow for separate bypass capacitors．Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor to ground．
$\overline{\mathrm{INT}}$
This is the active low interrupt output．$\overline{\text { INT }}$ goes low at the end of each conversion，and returns to a high state following the rising edge of $\overline{\mathrm{RD}}$ ．
$\bar{S} / \mathrm{H} \quad$ This is the Sample／Hold control input．When this pin is forced low（and $\overline{\mathrm{CS}}$ is low），it causes the analog input signal to be sampled and ini－ tiates a new conversion．
$\overline{\mathrm{RD}} \quad$ This is the active low Read control input． When this $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ are low，any data present in the output registers will be placed on the data bus．
$\overline{\mathrm{CS}} \quad$ This is the active low Chip Select control input． When low，this pin enables the $\overline{R D}$ and \bar{S} / H pins．
S0，S1 These pins select the analog input that will be connected to the A／D during the conversion． The input is selected based on the state of SO and S1 when $\overline{\mathrm{S}} / \mathrm{H}$ makes its High－to－Low tran－ sition（See the Timing Diagrams）．The ADC10664 includes both S0 and S1．The ADC10662 includes just S0．
$V_{\text {REF－，}} \quad$ These are the reference voltage inputs．They
$V_{\text {REF }+} \quad$ may be placed at any voltage between GND and V_{CC} ，but $\mathrm{V}_{\text {REF }}$ must be greater than $\mathrm{V}_{\text {REF－－}}$ An input voltage equal to $\mathrm{V}_{\text {REF－}}$ pro－ duces an output code of 0 ，and an input volt－ age equal to（ $\mathrm{V}_{\mathrm{REF}+}-1 \mathrm{LSB}$ ）produces an out－ put code of 1023.
$\mathrm{V}_{\mathrm{INO}}, \mathrm{V}_{\text {IN } 1}$ ，These are the analog input pins．The ADC10662 has two inputs（ $\mathrm{V}_{\text {INO }}$ and $\mathrm{V}_{\text {IN1 }}$ ）and the ADC10664 has four inputs（ $\mathrm{V}_{\mathrm{INO}}, \mathrm{V}_{\mathrm{IN} 1}$ ， $\mathrm{V}_{\text {IN2 }}$ and $\mathrm{V}_{\text {IN3 }}$ ）．The impedance of the source should be less than 500Ω for best accuracy and conversion speed．For accurate conver－ sions，no input pin（even one that is not se－ lected）should be driven more than 50 mV above V_{CC} or 50 mV below ground．
GND，AGND，These are the power supply ground pins．The DGND ADC10662 and ADC10664 have separate analog and digital ground pins（AGND and DGND）for separate bypassing of the analog and digital supplies．The ground pins should be connected to a stable，noise－free system ground．Both pins should be returned to the same potential．
DB0－DB9 These are the TRI－STATE output pins．
SPEED By connecting a resistor between this pin and ADJ ground，the conversion time can be reduced． The specifications listed in the table of Electri－ cal Characteristics apply for a speed adjust re－ sistor（ R_{SA} ）equal to $14.0 \mathrm{k} \Omega$（Mode 1）or 8.26 $\mathrm{k} \Omega$（Mode 2）．See the Typical Performance Curves and the table of Electrical Characteristics．

ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference

General Description

This series of CMOS 10-bit plus sign successive approximation A / D converters features versatile analog input multiplexers, sample/hold and a 2.5 V band-gap reference. The 1-, 2-, 4 -, or 8 -channel multiplexers can be software configured for single-ended or differential mode of operation.
An input sample/hold is implemented by a capacitive reference ladder and sampled-data comparator. This allows the analog input to vary during the A/D conversion cycle.
In the differential mode, valid outputs are obtained even when the negative inputs are greater than the positive because of the 10-bit plus sign output data format.

The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {M }}$ serial data exchange standard for easy interface to the COPS ${ }^{\text {TM }}$ and $\mathrm{HPC}^{\text {TM }}$ families of controllers, and can easily interface with standard shift registers and microprocessors.

- Software or hardware power down
- Analog input sample/hold function
- Ratiometric or absolute voltage referencing
- No zero or full scale adjustment required
- No missing codes over temperature
- TTL/CMOS input/output compatible
- Standard DIP and SO packages

Key Specifications

- Resolution 10 bits plus sign
- Single supply 5 V
- Power dissipation
- In powerdown mode

37 mW (Max)

- Conversion time $18 \mu \mathrm{~W}$
$5 \mu \mathrm{~s}$ (Max)
- Sampling rate

74 kHz (Max)

- Band-gap reference
$2.5 \mathrm{~V} \pm 2 \%$ (Max)

Features

- 0 V to 5 V analog input range with single 5 V power supply

Applications

- Medical instruments
- Portable and remote instrumentation
- Test equipment
- Serial I/O (MICROWIRE compatible)
- 1-, 2-, 4-, or 8-channel differential or single-ended multiplexer

ADC10738 Simplified Block Diagram

Connection Diagrams

Top View
See NS Package Number M20B

Top View
See NS Package Number M24B

SSOP Package

See NS Package Number MSA20

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}$	Package
ADC10731CIWM	M16B
ADC10732CIWM	M20B
ADC10734CIMSA	MSA20
ADC10734CIWM	M20B
ADC10738CIWM	M24B

Pin Descriptions

CLK The clock applied to this input controls the successive approximation conversion time interval, the acquisition time and the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address shift register. This address controls which channel of the analog input multiplexer (MUX) is selected. The falling edge shifts the data resulting from the A/D conversion out on DO. CS enables or disables the above functions. The clock frequency applied to this input can be between 5 kHz and 3 MHz .
DI This is the serial data input pin. The data applied to this pln is shifted by CLK into the multiplexer address register. Tables 1, 2, 3 show the multiplexer address assignment.
DO The data output pin. The A/D conversion result (DBO-SIGN) are clocked out by the failing edge of CLK on this pin.
$\overline{\mathrm{CS}} \quad$ This is the chip select input pin. When a logic low is applied to this pin, the rising edge of CLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE after a conversion has been completed.
PD This is the power down input pin. When a logic high is applied to this pin the A/D is powered down. When a low is applied the A / D is powered up.
SARS This is the successive approximation register status output pin. When $\overline{C S}$ is high this pin is in TRI-STATE. With $\overline{\mathrm{CS}}$ low this pin is active high when a conversion is in progress and active low at all other times.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of CLK into the address register (see Tables 1, 2, 3).

The voltage applied to these inputs should not exceed AV^{+}or go below GND by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pln. It can be used as a "pseudo ground" when the analog multiplexer is single-ended.
$\mathrm{V}_{\text {REF }}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to malntaln accuracy, the voltage range $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right.$) is $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\text {REF }}+$ cannot exceed $\mathrm{AV}^{+}+50 \mathrm{mV}$.
$V_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND - 50 mV or exceed AV^{+} +50 mV .
$\mathrm{AV}^{+}, \mathrm{DV}^{+}$These are the analog and digital power supply pins. These pins should be tied to the same power supply and bypassed separately. The operating voltage range of AV^{+}and DV^{+}is $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND This is the digital ground pin.
AGND This is the analog ground pin.

ADC1173

8-Bit, 3-Volt, 15MSPS, 33mW A/D Converter

General Description

The ADC1173 is a low power, 15 MSPS analog-to-digital converter that digitizes signals to 8 bits while consuming just 33 mW of power (typ). The ADC1173 uses a unique architecture that achieves 7.6 Effective Bits. Output formatting is straight binary coding.
The excellent DC and AC characteristics of this device, together with its low power consumption and +3 V single supply operation, make it ideally suited for many video, imaging and communications applications, including use in portable equipment. Furthermore, the ADC1173 is resistant to latchup and the outputs are short-circuit proof. The top and bottom of the ADC1173's reference ladder is available for connections, enabling a wide range of input possibilities.
The ADC1173 is offered in SOIC (EIAJ) and TSSOP. It is designed to operate over the commercial temperature range of $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Key Specifications

Resolution	8 Bits
Maximum Sampling Frequency	$15 \mathrm{MSPS}(\mathrm{min})$
THD	$-56 \mathrm{~dB}(\mathrm{typ})$
DNL	$\pm 0.8 \mathrm{LSB}$ (max)
ENOB at 3.58 MHz Input	7.6 Bits (typ)
Guaranteed No Missing Codes	
Differential Phase	0.5 Degree (max)
Differential Gain	1.5% (typ)
Power Consumption	33 mW (typ)

(excluding reference current)

Applications
- Video Digitization
- Digital Still Cameras
- Set Top Boxes
- Camcorders
- Personal Computer Video
- Digital Television
- CCD Imaging
- Electro-Optics

Ordering Information

ADC1173CIJM	SOIC (EIAJ)
ADC1173CIJMX	SOIC (EIAJ) (tape \& reel)
ADC1173CIMTC	TSSOP
ADC1173CIMTCX	TSSOP (tape \& reel)

Pin Configuration

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
19	V_{IN}		Analog signal input. Conversion range is V_{RB} to $V_{R T}$.
16	$\mathrm{V}_{\text {RTS }}$		Reference Top Bias with internal pull-up resistor. Short this pin to V_{RT} to self bias the reference ladder.
17	V_{RT}		Analog Input that is the high (top) side of the reference ladder of the ADC. Nominal range is 1.0 V to $A V_{D D}$. Voltage on $V_{R T}$ and $V_{R B}$ inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.
23	V_{RB}		Analog Input that is the low (bottom) side of the reference ladder of the ADC. Nominal range is 0 V to 2.0 V . Voltage on V_{RT} and V_{RB} inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.

Pin Descriptions and Equivalent Circuits (Continued)

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent Circuit	Description
22	$V_{\text {RBS }}$		Reference Bottom Bias with internal pull down resistor. Short to V_{RB} to self bias the reference ladder.
1	$\overline{O E}$		CMOS/TTL compatible Digital input that, when low, enables the digital outputs of the ADC1173. When high, the outputs are in a high impedance state.
12	CLK		CMOS/TTL compatible digital clock Input. $\mathrm{V}_{\text {IN }}$ is sampled on the falling edge of CLK input.
$\begin{aligned} & 3 \text { thru } \\ & 10 \end{aligned}$	D0-D7		Conversion data digital Output pins. DO is the LSB, D7 is the MSB. Valid data is output just after the rising edge of the CLK input. These pins are enabled by bringing the $\overline{\mathrm{OE}}$ pin low.
11, 13	$D V_{D D}$		Positive digital supply pin. Connect to a clean, quiet voltage source of +3 V . $A V_{D D}$ and $D V_{D D}$ should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 3.0 for more information.
2, 24	DVss		The ground return for the digital supply. $\mathrm{AV}_{\mathrm{Ss}}$ and $D V_{\mathrm{Ss}}$ should be connected together close to the ADC1173.
$\begin{gathered} 14, \\ 15,18 \end{gathered}$	$\mathrm{AV}_{\mathrm{DD}}$		Positive analog supply pin. Connected to a clean, quiet voltage source of +3 V . $A V_{D D}$ and $D V_{D D}$ should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 3.0 for more information.
20, 21	$\mathrm{AV}_{\text {ss }}$		The ground return for the analog supply. $\mathrm{AV}_{\mathrm{Ss}}$ and $D V_{S S}$ should be connected together close to the ADC1173 package.

ADC1175

8-Bit, 20MHz, 60 mW A/D Converter

General Description

The ADC1175 is a low power, 20 Msps analog-to-digital converter that digitizes signals to 8 bits while consuming just 60 mW of power (typ). The ADC1175 uses a unique architecture that achieves 7.5 Effective Bits. Output formatting is straight binary coding.
The excellent DC and AC characteristics of this device, together with its low power consumption and +5 V single supply operation, make it ideally suited for many video, imaging and communications applications, including use in portable equipment. Furthermore, the ADC1175 is resistant to latchup and the outputs are short-circuit proof. The top and bottom of the ADC1175's reference ladder is available for connections, enabling a wide range of input possibilities.
The ADC1175 is offered in SOIC (EIAJ) and TSSOP. It is designed to operate over the commercial temperature range of $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Features

- Internal Sample-and-Hold Function
- Single +5V Operation
- Internal Reference Bias Resistors
- Industry Standard Pinout
- TRI-STATE Outputs

Key Specifications

- Resolution 8 Bits
- Maximum Sampling Frequency
- THD
- DNL
- ENOB

20 Msps (min)

$$
-55 \mathrm{~dB} \text { (typ) }
$$

0.75 LSB (max)
7.5 Bits (typ)

- Guaranteed No Missing Codes
- Differential Phase
0.5 Degree (typ)
- Differential Gain
0.7\% (typ)
- Power Consumption

60 mW (typ)
(excluding reference current)

Applications

- Video Digitization
- Digital Still Cameras
- Set Top Boxes
- Communications
- Medical Imaging
- Personal Computer Video Cameras
- Digital Television
- CCD Imaging
- Electro-Optics

Ordering Information

ADC1175CIJM	SOIC (EIAJ)
ADC1175CIJMX	SOIC (EIAJ) (tape \& reel)
ADC1175CIMTC	TSSOP
ADC1175CIMTCX	TSSOP (tape \& reel)

Pin Configuration

ADC1175 Pin Configuration

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
19	$\mathrm{V}_{\text {IN }}$		Analog signal input. Conversion range is V_{RB} to $V_{\text {RT }}$.
16	$\mathrm{V}_{\text {RTS }}$		Reference Top Bias with internal pull-up resistor. Short this pin to V_{RT} to self bias the reference ladder.
17	V_{RT}		Analog Input that is the high (top) side of the reference ladder of the ADC. Nominal range is 1.0 V to $A V_{D D}$. Voltage on $V_{R T}$ and $V_{R B}$ inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.
23	V_{RB}		Analog Input that is the low (bottom) side of the reference ladder of the ADC. Nominal range is $O V$ to 4.0 V . Voltage on $V_{R T}$ and $V_{R B}$ inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.

Pin Descriptions and Equivalent Circuits (Continued)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent Circuit	Description
22	$\mathrm{V}_{\text {Rbs }}$		Reference Bottom Bias with internal pull down resistor. Short to V_{RB} to self bias the reference ladder.
1	$\overline{O E}$		CMOS/TTL compatible Digital input that, when low, enables the digital outputs of the ADC1175. When high, the outputs are in a high impedance state.
12	CLK		CMOS/TTL compatible digital clock Input. $\mathrm{V}_{\text {IN }}$ is sampled on the falling edge of CLK input.
$\begin{gathered} 3 \text { thru } \\ 10 \end{gathered}$	D0-D7		Conversion data digital Output pins. DO is the LSB, D7 is the MSB. Valid data is output just after the rising edge of the CLK input. These pins are enabled by bringing the $\overline{\mathrm{OE}}$ pin low.
11, 13	$D V_{D D}$		Positive digital supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{AV}$ DD and $D V_{D D}$ should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 3.0 for more information.
2, 24	DVss		The ground return for the digital supply. $\mathrm{AV}_{\mathrm{SS}}$ and $D V_{S S}$ should be connected together close to the ADC1175.
$\begin{gathered} 14 \\ 15,18 \end{gathered}$	$\mathrm{AV}_{\mathrm{DD}}$		Positive analog supply pin. Connected to a clean, quiet voltage source of +5 V . $A V_{D D}$ and $D V_{D D}$ should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 3.0 for more information.
20, 21	$\mathrm{AV}_{\text {ss }}$		The ground return for the analog supply. $\mathrm{AV}_{\mathrm{SS}}$ and $\mathrm{DV}_{\mathrm{SS}}$ should be connected together close to the ADC1175 package.

ADC1175-50

8-Bit, 50 MSPS, 125 mW A/D Converter

General Description

The ADC1175-50 is a low power, 50 MSPS analog-to-digital converter that digitizes signals to 8 bits while consuming just 125 mW (typ). The ADC1175-50 uses a unique architecture that achieves 6.8 Effective Bits at 25 MHz input and 50 MHz clock frequency. Output formatting is straight binary coding.
The excellent DC and AC characteristics of this device, together with its low power consumption and +5 V single supply operation, make it ideally suited for many video and imaging applications, including use in portable equipment. Furthermore, the ADC1175-50 is resistant to latch-up and the outputs are short-circuit proof. The top and bottom of the ADC1175-50's reference ladder is available for connections, enabling a wide range of input possibilities. The low input capacitance (7 pF , typical) makes this device easier to drive than conventional flash converters and the power down mode reduces power consumption to less than 5 mW .
The ADC1175-50 is offered in SOIC (EIAJ), TSSOP and LLP. It is designed to operate over the commercial temperature range of $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Features

- Internal Track-and-Hold function
- Single +5 V operation
- Internal reference bias resistors
- Industry standard pinout
- Power-down mode (<5 mW)

Key Specifications

- Resolution	8 Bits
- Maximum Sampling Frequency	50 MSPS (min)
- THD	54 dB (typ)
- DNL	0.7 LSB (typ)
- ENOB @ $\mathrm{f}_{\mathrm{iN}}=25 \mathrm{MHz}$	6.8 Bits (typ)
- Guaranteed No Missing Codes	
- Differential Phase	0.5° (typ)
- Differential Gain	1.0% (typ)

- Power Consumption 125 mW (typ), 190 mW (max) (Excluding Reference Current)

Applications

- Digital Still Cameras
- CCD Imaging
- Electro-Optics
- Medical Imaging
- Communications
- Video Digitization
- Digital Television
- Multimedia

Connection Diagram

Bottom View

Ordering Information

ADC1175-50CIJM	SOIC (EIAJ)
ADC1175-50CIJMX	SOIC (EIAJ) (tape and reel)

Ordering Information (Continued)

ADC1175-50CIMT	TSSOP
ADC1175-50CIMTX	TSSOP (tape and reel)
ADC1175-50CILQ	LLP (tape and reel $-1,000$ units)
ADC1175-50CILQX	LLP (tape and reel $-4,500$ units)

Block Diagram

Pin Descriptions and Equivalent Circuits (LLP pins in parentheses)

Pin No.	Symbol	Equivalent Circuit	Description
$\begin{gathered} 19 \\ (17) \end{gathered}$	V_{IN}		Analog signal input. Conversion range is V_{RT} to V_{RB}.
$\begin{gathered} 16 \\ (14) \end{gathered}$	$\mathrm{V}_{\text {RTS }}$		Reference Top Bias with internal pull up resistor. Short this pin to V_{RT} to self-bias the reference ladder.

Pin Descriptions and Equivalent Circuits (LLP pins in parentheses) (Continued)
Pin
No. Symbol

Pin Descriptions and Equivalent Circuits (LLP pins in parentheses) (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
$\begin{gathered} 11, \\ 13,14 \\ (9,11, \\ 12) \end{gathered}$	DV ${ }_{\text {DD }}$		Positive digital supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{AV}_{\mathrm{DD}}$ and DV D should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 4.0 for more information.
$\begin{gathered} \hline 2,24 \\ (22, \\ 24) \end{gathered}$	DVss		The ground return for the digital supply. $\mathrm{AV}_{\mathrm{SS}}$ and $D V_{S S}$ should be connected together close to the ADC1175-50.
$\begin{gathered} \text { 15, } 18 \\ (13, \\ 16) \end{gathered}$	$\mathrm{AV}_{\mathrm{DD}}$		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{AV} \mathrm{V}_{\mathrm{DD}}$ and DV DD should have a common source and be separately bypassed with a $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. See Section 4.0 for more information.
$\begin{gathered} 20,21 \\ (18, \\ 19) \\ \hline \end{gathered}$	$\mathrm{AV}_{\text {ss }}$		The ground return for the analog supply. $\mathrm{AV}_{\mathrm{SS}}$ and DV ${ }_{\text {SS }}$ should be connected together close to the ADC1175-50 package.

0

ADC12H030/ADC12H032/ADC12H034/ADC12H038, ADC12030/ADC12032/ADC12034/ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12030, and ADC12H030 families are 12-bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexers. The ADC12032/ ADC12H032, ADC12034/ADC12H034 and ADC12038/ ADC12H038 have 2, 4 and 8 channel multiplexers, respectively. The differential multiplexer outputs and A / D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12030/ADC12H030 has a two channel multiplexer with the multiplexer outputs and A/D inputs internally connected. The ADC12030 family is tested with a 5 MHz clock, while the ADC12H030 family is tested with an 8 MHz clock. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to less than ± 1 LSB each.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range (0 V to +5 V) can be accommodated with a single +5 V supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12-bit plus sign output data format. The serial I / O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$. For voltage references see the LM4040 or LM4041.

Features

- Serial I/O (MICROWIRE Compatible)
- 2, 4, or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Variable resolution and conversion rate
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- Fully tested and guaranteed with a 4.096 V reference
- 0 V to 5 V analog input range with single 5 V power supply
- No Missing Codes over temperature

Key Specifications

- Resolution	12-bit plus sign
- 12-bit plus sign conversion time	
- ADC12H030 family	$5.5 \mu \mathrm{~s}$ (max)
- ADC12030 family	$8.8 \mu \mathrm{~s}$ (max)
- 12-bit plus sign throughput time	
- ADC12H030 family	$8.6 \mu \mathrm{~s}$ (max)
- ADC12030 family	$14 \mu \mathrm{~s}$ (max)
- Integral linearity error	$\pm 1 \mathrm{LSB}$ (max)
- Single supply	$5 \mathrm{~V} \pm 10 \%$
- Power dissipation	$33 \mathrm{~mW}(\max)$
- Power down	$100 \mu \mathrm{~W}$ (typ)

Applications

- Medical instruments
- Process control systems
- Test equipment

ADC12038 Simplified Block Diagram

Connection Diagrams

Connection Diagrams (Continued)

28-Pin Wide Body SO Packages

Ordering Information

Industrial Temperature Range $-\mathbf{4 0} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathbf{C}$	Package
ADC12H030CIWM, ADC12030CIWM	M16B
ADC12H032CIWM, ADC12032CIWM	M20B
ADC12H034CIN, ADC12034CIN	N24C
ADC12H034CIWM, ADC12034CIWM	M24B
ADC12H038CIWM, ADC12038CIWM	M28B

Pin Descriptions

CCLK

SCLK

The clock applied to this input controls the sucessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With $\overline{C S}$ low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{C S}$ is toggled the falling edge of $\overline{C S}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and
mode select register. Table 2 through Table 5 show the assignment of the multiplexer address and the mode select data.

DO The data output pin. This pin is an active push/pull output when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, this output is TRI-STATE. The A/D conversion result (D0-D12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table 1). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table 5).
EOC \quad This pin is an active push/pull output and indicates the status of the ADC12030/2/4/8. When low, it signals that the A / D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE. With $\overline{\mathrm{CS}}$ low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the

Pin Descriptions (Continued)

exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The falling edge of $\overline{C S}$ resets a conversion in progress and starts the sequence for a new conversion. When $\overline{\mathrm{CS}}$ is brought back low during a conversion, that conversion is prematurely terminated. The data in the output latches may be corrupted. Therefore, when $\overline{\mathrm{CS}}$ is brought back low during a conversion in progress the data output at that time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table 5 details the data required.
$\overline{D O R} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
$\overline{C O N V} \quad$ A logic low is required on this pin to program any mode or change the ADC's configuration as listed in the Mode Programming Table 5 such as 12 -bit conversion, 8 -bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing $\overline{\mathrm{CS}}$ low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
PD This is the power down pin. When PD is high the A/D is powered down; when PD is low the A / D is powered up. The A/D takes a maximum of $250 \mu \mathrm{~s}$ to power up after the command is given.
These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (See Tables 2, 3, 4).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}}+$ or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM

MUXOUT1, These are the multiplexer output MUXOUT2 pins.
A/DIN1, /DIN2 These are the converter input pins. MUXOUT1 is usually tied to A/DIN1. MUXOUT2 is usually tied to A/DIN2. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 5).
$V_{\text {REF }}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy, the voltage range of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\right.$ $\mathrm{V}_{\mathrm{REF}}{ }^{-}$) is $1 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\text {REF }}+$ cannot exceed $\mathrm{V}_{\mathrm{A}}+$. See Figure 6 for recommended bypassing.
$V_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}}+$. (See Figure 6).
$\mathrm{V}_{\mathrm{A}^{+}}, \mathrm{V}_{\mathrm{D}^{+}} \quad$ These are the analog and digital power supply pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together on the chip. These pins should be tied to the same power supply and bypassed separately (see Figure 6). The operating voltage range of $\mathrm{V}_{\mathrm{A}^{+}}$and $\mathrm{V}_{\mathrm{D}^{+}}$is $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
This is the digital ground pin (see Figure 6). This is the analog ground pin (see Figure 6).

ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12L030 family is 12 -bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexers. These devices are fully tested with a single 3.3V power supply. The ADC12L032, ADC12L034 and ADC12L038 have 2, 4 and 8 channel multiplexers, respectively. Differential multiplexer outputs and A/D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12L030 has a two channel multiplexer with the multiplexer outputs and A/D inputs internally connected. On request, these $A / D s$ go through a self calibration process that adjusts linearity, zero and full-scale errors to less than $\pm 1 / 2$ LSB each.

The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range (0 V to +3.3 V) can be accommodated with a single +3.3 V supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12-bit plus sign two's compliment output data format.
The serial I/O is configured to comply with NSC's MICROWIRE ${ }^{\text {TM }}$ and Motorola's SPI standards. For voltage references, see the LM4040 or LM4041 data sheets.

Features

- 0 V to 3.3 V analog input range with single 3.3 V power supply
- Serial I/O (MICROWIRE and SPI Compatible)
- 2, 4, or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Variable resolution and conversion rate
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- Fully tested and guaranteed with a 2.5 V reference
- No Missing Codes over temperature

Key Specifications

- Resolution	12-bit plus sign
- 12-bit plus sign conversion time	$8.8 \mu \mathrm{~s}(\min)$
- 12-bit plus sign sampling rate	$73 \mathrm{kHz}(\max)$
- Integral linearity error	$\pm 1 \mathrm{LSB}(\max)$
- Single supply	$3.3 \mathrm{~V} \pm 10 \%$
- Power dissipation	$15 \mathrm{~mW}(\max)$
- Power down	$40 \mu \mathrm{~W}(\mathrm{typ})$

Applications

- Portable Medical instruments
- Portable computing
- Portable Test equipment

ADC12L038 Simplified Block Diagram

Ordering Information

Industrial Temperature Range $-\mathbf{4 0} \mathbf{0}^{\circ} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{+ 8 5}^{\circ} \mathbf{C}$	NS Package Number
ADC12L030CIWM	M16B
ADC12L032CIWM	M20B
ADC12L034CIWM	M24B
ADC12L038CIWM	M28B

Connection Diagrams

Pin Descriptions

CCLK The clock applied to this input controls the sucessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
SCLK This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With $\overline{\mathrm{CS}}$ low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Tables 2, 3, 4, 5 show the assignment of the multiplexer address and the mode select data.
DO The data output pin. This pin is an active push/ pull output when $\overline{\mathrm{CS}}$ is Low. When $\overline{\mathrm{CS}}$ is High this output is in TRI-STATE. The A/D conversion result (D0-D12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table 1). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table 5).
This pin is an active push/pull output and indicates the status of the ADC12L030/2/4/8. When low, it signals that the A/D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
$\overline{\mathrm{CS}} \quad$ This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE. With $\overline{C S}$ low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The falling edge of CS resets a conversion in progress and starts the sequence for a new conversion. When $\overline{\mathrm{CS}}$ is brought back low during a conversion, that conversion is prematurely ended. The data in the output latches may be corrupted. Therefore, when $\overline{\mathrm{CS}}$ is brought back low during a conversion in progress the data output at that
time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied, it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table 5 details the data required.
$\overline{\mathrm{DOR}} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
CONV A logic low is required on this pin to program any mode or change the ADC's configuration as listed in the Mode Programming Table (Table 5) such as 12 -bit conversion, 8 -bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing $\overline{C S}$ low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
This is the power down pin. When PD is high the A/D is powered down; when PD is low the A/D is powered up. The A/D takes a maximum of $700 \mu \mathrm{~s}$ to power up after the command is given.
$\mathrm{CH} 0-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Tables 2, 3, 4).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}}+$ or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It is used as a pseudo ground when the analog multiplexer is single-ended.
MUXOUT1, These are the multiplexer output MUXOUT2 pins.
A/DIN1,
These are the converter input pins. MUXOUT1 is usually tied to A/DIN1. MUXOUT2 is usually tied to A/DIN2. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 5).
$\mathrm{V}_{\text {REF }}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy the voltage range of $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$is

Pin Descriptions (Continued)

$1 \mathrm{~V}_{\mathrm{DC}}$ to $3.3 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}+$ cannot exceed $\mathrm{V}_{\mathrm{A}}+$. See Figure 6 for recommended bypassing.
$\mathrm{V}_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}}+$. (See Figure 6).
$\mathrm{V}_{\mathrm{A}^{+}}, \mathrm{V}_{\mathrm{D}^{+}} \quad$ These are the analog and digital power supply pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together on the chip. These pins should be tied to the same power supply and bypassed separately (see Figure 6). The operating voltage range of $\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\mathrm{D}}+$ is $3.0 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND This is the digital ground pin (see Figure 6).
AGND This is the analog ground pin (see Figure 6).

ADC12041

12-Bit Plus Sign 216 kHz Sampling Analog-to-Digital Converter

General Description

Operating from a single 5V power supply, the ADC12041 is a 12 bit + sign, parallel I/O, self-calibrating, sampling analog-to-digital converter (ADC). The maximum sampling rate is 216 kHz . On request, the ADC goes through a self-calibration process that adjusts linearity, zero and full-scale errors.
The ADC12041 can be configured to work with many popular microprocessors/microcontrollers and DSPs including $\mathrm{Na}-$ tional's HPC family, Intel386 and 8051, TMS320C25, Motorola MC68HC11/16, Hitachi 64180 and Analog Devices ADSP21xx.
For complementary voltage references see the LM4040, LM4041 or LM9140.

- Low power standby mode
- No missing codes

Key Specifications

($\mathrm{f}_{\mathrm{CLK}}=12 \mathrm{MHz}$)

- Resolution
- 13-bit conversion time
- 13-bit throughput rate
- Integral Linearity Error (ILE)
- Single supply
- $V_{\text {IN }}$ range
- Power consumption
- Normal operation
- Stand-by mode

33 mW , max
$75 \mu \mathrm{w}$, max

Applications

- Medical instrumentation
- Process control systems
- Test equipment
- Data logging
- Inertial guidance

Block Diagram

Connection Diagrams

28-Pin SSOP

Order Number ADC12041CIV See NS Package Number V28A

Order Number ADC12041CIMSA See NS Package Number MSA28

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}$	NS Package Number
ADC12041CIV	PLCC
ADC12041CIMSA	SSOP

Pin Descriptions

PLCC and SSOP Pkg. Pin Number	$\begin{gathered} \text { Pin } \\ \text { Name } \end{gathered}$	Description
5 6	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}^{+}} \\ & \mathrm{V}_{\mathrm{IN}^{-}} \\ & \hline \end{aligned}$	The analog ADC inputs. $\mathrm{V}_{\mathrm{IN}}+$ is the non-inverting (positive) input and $\mathrm{V}_{\mathrm{IN}}{ }^{-}$is the inverting (negative) input into the ADC.
10	$\mathrm{V}_{\text {REF }}{ }^{+}$	Positive reference input. The operating voltage range for this input is $1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}}+\leq \mathrm{V}_{\mathrm{A}^{+}}$(see Figure 3 and Figure 4). This pin should be bypassed to AGND at least with a parallel combination of a 10 $\mu \mathrm{F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
9	$\mathrm{V}_{\text {REF }}{ }^{-}$	Negative reference input. The operating voltage range for this input is $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}^{-}} \leq \mathrm{V}_{\mathrm{REF}^{+}}-1$ (see Figure 3 and Figure 4). This pin should be bypassed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
4	WMODE	The logic state of this pin at power-up determines which edge of the write signal ($\overline{W R}$) will latch in data from the data bus. If tied low, the ADC12041 will latch in data on the rising edge of the $\overline{W R}$ signal. If tied to a logic high, data will be latched in on the falling edge of the $\overline{\mathrm{WR}}$ signal. The state of this pin should not be changed after power-up.
27	SYNC	The SYNC pin can be programmed as an input or an output. The Configuration register's bit b4 controls the function of this pin. When programmed as an input pin ($b 4=1$), a rising edge on this pin causes the ADC's sample-and-hold to hold the analog input signal and begin conversion. When programmed as an output pin $(\mathrm{b} 4=0)$, the SYNC pin goes high when a conversion begins and returns low when completed.
$\begin{aligned} & 12-20 \\ & 23-26 \end{aligned}$	$\begin{aligned} & \text { D0-D8 } \\ & \text { D9-D12 } \end{aligned}$	13-bit Data bus of the ADC12041. D12 is the most significant bit and D0 is the least significant. The BW(bus width) bit of the Configuration register (b3) selects between an 8 -bit or 13-bit data bus width. When the BW bit is cleared (BW = 0), D7-D0 are active and D12-D8 are always in TRI-STATE ${ }^{\oplus}$. When the BW bit is set (BW = 1), D12-D0 are active.
28	CLK	The clock input pin used to drive the ADC12041. The operating range is 0.05 MHz to 12 MHz .
1	$\overline{\mathrm{WR}}$	$\overline{W R}$ is the active low WRITE control input pin. A logic low on this pin and the $\overline{\mathrm{CS}}$ will enable the input buffers of the data pins D12-D0. The signal at this pin is used by the ADC12041 to latch in data on D12-D0. The sense of the WMODE pin at power-up will determine which edge of the $\overline{W R}$ signal the ADC12041 will latch in data. See WMODE pin description.
2	$\overline{\mathrm{R}}$	$\overline{\mathrm{RD}}$ is the active low read control input pin. A logic low on this pin and $\overline{\mathrm{CS}}$ will enable the active output buffers to drive the data bus.
3	$\overline{\overline{C S}}$	$\overline{\mathrm{CS}}$ is the active low Chip Select input pin. Used in conjunction with the $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ signals to control the active data bus input/output buffers of the data bus.
11	$\overline{\text { RDY }}$	$\overline{\mathrm{RDY}}$ is an active low output pin. The signal at this pin indicates when a requested function has begun or ended. Refer to section Functional Description and the digital timing diagrams for more detail.
7	$\mathrm{V}_{\mathrm{A}^{+}}$	Analog supply input pin. The device operating supply voltage range is $+5 \mathrm{~V} \pm 10 \%$. Accuracy is guaranteed only if the $\mathrm{V}_{\mathrm{A}^{+}}$and $\mathrm{V}_{\mathrm{D}^{+}}$are connected to the same potential. This pin should be bypassed to AGND with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the supply pins of the part as possible.
8	AGND	Analog ground pin. This is the device's analog supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.
21	V^{+}	Digital supply input pins. The device operating supply voltage range is $+5 \mathrm{~V} \pm 10 \%$. Accuracy is guaranteed only if the $\mathrm{V}_{\mathrm{A}^{+}}$and $\mathrm{V}_{\mathrm{D}^{+}}$are connected to the same potential. This pin should be bypassed to DGND with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the supply pins of the part as possible.
22	DGND	Digital ground pin. This is the device's digital supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.

National Semiconductor

ADC12048

12-Bit Plus Sign 216 kHz 8-Channel Sampling Analog-to-Digital Converter

General Description

Operating from a single 5V power supply, the ADC12048 is a 12 bit + sign, parallel I/O, self-calibrating, sampling analog-to-digital converter (ADC) with an eight input fully differential analog multiplexer. The maximum sampling rate is 216 kHz . On request, the ADC goes through a self-calibration process that adjusts linearity, zero and full-scale errors.
The ADC12048's 8-channel multiplexer is software programmable to operate in a variety of combinations of single-ended, differential, or pseudo-differential modes. The fully differential MUX and the 12-bit + sign ADC allows for the difference between two signals to be digitized.
The ADC12048 can be configured to work with many popular microprocessors/microcontrollers and DSPs including $\mathrm{Na}-$ tional's HPC family, Intel386 and 8051, TMS320C25, Motorola MC68HC11/16, Hitachi 64180 and Analog Devices ADSP21xx.

For complementary voltage references see the LM4040, LM4041 or LM9140.

Features

- 8-channel programmable Differential or Single-Ended multiplexer
- Programmable Acquisition Times and user-controllable Throughput Rates
- Programmable data bus width (8/13 bits)
- Built-in Sample-and-Hold
- Programmable Auto-Calibration and Auto-Zero cycles
- Low power standby mode
- No missing codes

Key Specifications

($\mathrm{f}_{\text {CLK }}=12 \mathrm{MHz}$)

- Resolution

12-bits + sign

- 13-bit conversion time
$3.6 \mu \mathrm{~s}$, max
- 13-bit throughput rate
- Integral Linearity Error (ILE)
- Single Supply 216 ksamples/s, min ± 1 LSB, max
- $\mathrm{V}_{\text {IN }}$ Range $+5 \mathrm{~V} \pm 10 \%$
- Power consumption
- Normal operation

34 mW , max

- Stand-by mode
$75 \mu \mathrm{w}, \max$

Applications

- Medical instrumentation
- Process control systems
- Test equipment
- Data logging
- Inertial guidance

Block Diagram

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathbf{C}$	Package
ADC12048CIV	PLCC
ADC12048CIVF	PQFP
ADC12048EVAL	Evaluation board

Pin Description

PLCC Pkg. Pin Number	PQFP Pkg. Pin Number	Pin Name	Description
6	44	CHO	The eight analog inputs to the Multiplexer. Active channels are selected
7	1	CH1	based on the contents of bits b3-b0 of the Configuration register. Refer
8	2	CH 2	to section titled MUX for more details.
9	3	CH3	
15	9	CH 4	
16	10	CH 5	
17	11	CH6	
18	12	CH 7	
14	8	COM	This pin is another analog input pin used as a pseudo ground when the multiplexer is configured in single-ended mode.
13	7	$\mathrm{V}_{\text {REF }}{ }^{+}$	Positive reference input. The operating voltage range for this input is $1 \mathrm{~V} \leq \mathrm{V}_{\text {REF }}{ }^{+} \leq \mathrm{V}_{\mathrm{A}^{+}}$(see Figure 3 and 4). This pin should be bypassed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitors. The capacitors should be placed as close to the part as possible.

PLCC Pkg. Pin Number	PQFP Pkg. Pin Number	Pin Name	Description
12	6	$\mathrm{V}_{\text {REF }}{ }^{-}$	Negative reference input. The operating voltage range for this input is $\mathrm{OV} \leq \mathrm{V}_{\mathrm{REF}}{ }^{-} \leq \mathrm{V}_{\mathrm{REF}^{+}}-1$ (see Figure 3 and 4). This pin should be bypassed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
19 21	13 15	MUX OUTMUX OUT+	The inverting (negative) and non-inverting (positive) outputs of the multiplexer. The analog inputs to the MUX selected by bits b3-b0 of the Configuration register appear at these pins.
20 22	$\begin{aligned} & \hline 14 \\ & 16 \end{aligned}$	ADCIN- ADCIN+	ADC inputs. The inverting (negative) and non-inverting (positive) inputs into the ADC.
24	18	WMODE	The logic state of this pin at power-up determines which edge of the write signal $(\overline{\mathrm{WR}})$ will latch in data from the data bus. If tied low, the ADC12048 will latch in data on the rising edge of the $\overline{\mathrm{WR}}$ signal. If tied to a logic high, data will he latched in on the falling edge of the $\overline{\mathrm{WR}}$ signal. The state of this pin should not be changed after power-up.
25	19	SYNC	The SYNC pin can be programmed as an input or an output. The Configuration register's bit b8 controls the function of this pin. When programmed as an input pin ($\mathrm{b} 8=1$), a rising edge on this pin causes the ADC's sample-and-hold to hold the analog input signal and begin conversion. When programmed as an output pin ($\mathrm{b} 8=0$), the SYNC pin goes high when a conversion begins and returns low when completed.
$\begin{aligned} & 26-31 \\ & 34-40 \end{aligned}$	$\begin{aligned} & 20-25 \\ & 29-34 \end{aligned}$	D0-D5 D6-D12	13-bit Data bus of the ADC12048. D12 is the most significant bit and D0 is the least significant. The BW (bus width) bit of the Configuration register (b12) selects between an 8-bit or 13-bit data bus width. When the BW bit is cleared (BW = 0), D7-D0 are active and D12-D8 are always in TRI-STATE. When the BW bit is set (BW = 1), D12-D0 are active.
43	37	CLK	The clock input pin used to drive the ADC12048. The operating range is 0.05 MHz to 12 MHz .
44	38	$\overline{\mathrm{WR}}$	$\overline{W R}$ is the active low WRITE control input pin. A logic low on this pin and the $\overline{\mathrm{CS}}$ will enable the input buffers of the data pins D12-D0. The signal at this pin is used by the ADC12048 to latch in data on D12-D0. The sense of the WMODE pin at power-up will determine which edge of the $\overline{W R}$ signal the ADC12048 will latch in data. See WMODE pin description.
1	39	$\overline{\mathrm{RD}}$	$\overline{\mathrm{RD}}$ is the active low read control input pin. A logic low on this pin and $\overline{\mathrm{CS}}$ will enable the active output buffers to drive the data bus.
2	40	$\overline{\overline{C S}}$	$\overline{\mathrm{CS}}$ is the active low Chip Select input pin. Used in conjunction with the $\overline{W R}$ and $\overline{R D}$ signals to control the active data bus input/output buffers of the data bus.
3	41	$\overline{\text { RDY }}$	$\overline{\mathrm{RDY}}$ is an active low output pin. The signal at this pin indicates when a requested function has begun or ended. Refer to section Functional Description and the digital timing diagrams for more detail.
4	42	$\overline{\text { STDBY }}$	This is the standby active low output pin. This pin is low when the ADC12048 is in the standby mode and high when the ADC12048 is out of the standby mode or has been requested to leave the standby mode.
10	4	$\mathrm{V}_{\mathrm{A}^{+}}$	Analog supply input pin. The device operating supply voltage range is $+5 \mathrm{~V} \pm 10 \%$. Accuracy is guaranteed only if the $\mathrm{V}_{A^{+}}$and $\mathrm{V}_{D^{+}}$are connected to the same potential. This pin should be bypassed to AGND with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the supply pins of the part as possible.

Pin Description (Continued)

PLCC Pkg. Pin Number	PQFP Pkg. Pin Number	Pin Name	Description
11	5	AGND	Analog ground pin. This is the device's analog supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.
32 and 41	26 and 35	$V_{D^{+}}$	Digital supply input pins. The device operating supply voltage range is $+5 \mathrm{~V} \pm 10 \%$. Accuracy is guaranteed only if the $\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\mathrm{D}}+$ are connected to the same potential. This pin should be bypassed to DGND with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the supply pins of the part as possible.
33 and 42	27 and 36	DGND	Digital ground pin. This is the device's digital supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.

ADC12081

12-Bit, 5 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold

General Description

The ADC12081 is a monolithic CMOS analog-to-digital converter capable of converting analog input signals into 12-bit digital words at 5 megasamples per second (MSPS). The ADC12081 utilizes an innovative pipeline architecture to minimize die size and power consumption. The ADC12081 uses self-calibration and error correction to maintain accuracy and performance over temperature.
The ADC12081 converter operates on a 5V power supply and can digitize analog input signals in the range of 0 to 2 V . A single convert clock controls the conversion operation. All digital I/O is TTL compatible.
The ADC12081 is designed to minimize external components necessary for the analog input interface. An internal sample-and-hold circuit samples the analog input and an internal amplifier buffers the reference voltage input.
The ADC12081 is available in the 32-lead LQFP package and is designed to operate over the extended commercial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single 5V power supply
- Simple analog input interface
- Internal Sample-and-hold
- Internal Reference buffer amplifier
- Low power consumption

Key Specifications

Resolution	12 Bits
Conversion Rate	5 Msps (min)
DNL	$\pm 0.35 \mathrm{LSB}$ (typ)
SNR	68 dB (typ)
ENOB	10.9 Bits (typ)
Analog Input Range	$2 \mathrm{Vpp}(\mathrm{min})$
Supply Voltage	$+5 \mathrm{~V} \pm 5 \%$
\square Power Consumption, 5 MHz	105 mW (typ)

Applications

- Image processing front end
- PC-based data acquisition
- Scanners
- Fax machines
- Waveform digitizer

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\right)$	Package

Simplified Block Diagram

Pin Descriptions and Equivalent Circuits \#2

No.	Symbol	Equivalent Circuit	Description
2	$\mathrm{V}_{\text {IN }}$		Analog signal input. With a 2.0 V reference voltage, input signal voltages in the range of 0 to 2.0 Volts will be converted. See section 1.2.
1	$\mathrm{V}_{\text {REF }}$		Reference voltage input. This pin should be driven from an accurate, stable reference source in the range of 1.8 to 2.2 V and bypassed to a low-noise analog ground with a monolithic ceramic capacitor, nominally $0.01 \mu \mathrm{~F}$. See section 1.1.
32	$V_{\text {RP }}$		Positive reference bypass pin. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor. Do not connect anything else to this pin. See section 3.1
31	V_{RM}	(VR) $\frac{1}{4}$	Reference midpoint bypass pin. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor. Do not connect anything else to this pin. See section 3.1
30	$\mathrm{V}_{\text {RN }}$		Negative reverence bypass pin. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor. Do not connect anything else to this pin. See section 3.1
10	CLOCK		Sample Clock input, TTL compatible. Maximum amplitude should not exceed 3 V .
8	CAL	O-DOHO-	Calibration request, active High. Calibration cycle starts when CAL returns to logic low. CAL is ignored during power-down mode. See section 2.2.
7	PD	$\underline{\text { I }}$	Power-down, active High, ignored during calibration cycle. See paragraph 2.4
11	$\overline{O E}$		Output enable control, active low. When this pin is high the data outputs are in Tri-state (high-impedance) mode.
28	OR		Over range indicator. This pin is at a logic High for $\mathrm{V}_{\text {IN }}<0$ or for $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {REF }}$.
29	READY		Device ready indicator, active High. This pin is at a logic Low during a calibration cycle and while the device is in the power down mode.
$\begin{aligned} & \text { 14-19, } \\ & 22-27 \end{aligned}$	D0-D11		Digital output word, CMOS compatible. DO (pin 14) is LSB, D11 (pin 27) is MSB. Load with no more than 50 pF .

Pin Descriptions and Equivalent Circuits \#2 (Continued)

No.	Symbol	Equivalent Circuit	Description
3	$\mathrm{V}_{\text {In com }}$		Analog input common. Connect to a quiet point in analog ground near the driving device. See section 1.2.
5	$V_{\text {A }}$		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
4, 6	AGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12081 package. See section 5.0.
13	V_{D}		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
9, 12	DGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12081 package. See section 5.0
21	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		The digital output driver supply pin. This pin can be operated from a supply voltage of 3 V to 5 V , but the voltage on this pin should never exceed the V_{D} supply pin voltage.
20	DGND I/O		The ground return for the output drivers. This pin should be returned to a point in the digital ground that is removed from the other ground pins of the ADC12081.

ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12130, ADC12132 and ADC12138 are 12-bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexer. The ADC12132 and ADC12138 have a 2 and an 8 channel multiplexer, respectively. The differential multiplexer outputs and A / D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12130 has a two channel multiplexer with the multiplexer outputs and A / D inputs internally connected. The ADC12130 family is tested with a 5 MHz clock. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to typically less than ± 1 LSB each.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range (0 V to +5 V) can be accommodated with a single +5 V supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12 -bit plus sign output data format.
The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$. For voltage references, see the LM4040 or LM4041.

Features

- Serial I/O (MICROWIRE, SPI and QSPI Compatible)
- 2 or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- 0 V to 5 V analog input range with single 5 V power supply

Key Specifications

- Resolution: 12-bit plus sign
- 12-bit plus sign conversion time: $8.8 \mu \mathrm{~s}$ (max)
- 12-bit plus sign throughput time: $14 \mu \mathrm{~s}$ (max)
- Integral linearity error: ± 2 LSB (max)
- Single supply: 3.3 V or $5 \mathrm{~V} \pm 10 \%$
- Power consumption
-3.3V 15 mW (max)
-3.3V power down
$-5 \mathrm{~V}$
- 5 V power down
$40 \mu \mathrm{~W}$ (typ)
33 mW (max) $100 \mu \mathrm{~W}$ (typ)

Applications

- Pen-based computers
- Digitizers
- Global positioning systems

ADC12138 Simplified Block Diagram

Ordering Information

Industrial Temperature Range $-\mathbf{4 0} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{8 5} \mathbf{C}$	NS Package Number
ADC12130CIN	N16E, Dual-In-Line
ADC12130CIWM	M16B, Wide Body SO
ADC12132CIMSA	MSA20, SSOP
ADC12138CIN	N28B, Dual-In-Line
ADC12138CIWM	M28B
ADC12138CIMSA	MSA28, SSOP

Connection Diagrams

28-Pin Dual-In-Line, SSOP and

 Wide Body SO Packages

Top View

Pin Descriptions

CCLK The clock applied to this input controls the sucessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
SCLK
This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With $\overline{\mathrm{CS}}$ low, the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled, the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Table 2 through Table 4 show the assignment of the multiplexer address and the mode select data.
DO The data output pin. This pin is an active push/ pull output when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, this output is TRI-STATE. The A/D conversion result (DB0-DB12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table 1). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table 4).
EOC This pin is an active push/pull output and indicates the status of the ADC12130/2/8. When low, it signals that the A / D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE. With $\overline{\mathrm{CS}}$ low, the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled, the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The falling edge of $\overline{\mathrm{CS}}$ resets a conversion in progress and starts the sequence for a new conversion. When $\overline{\mathrm{CS}}$ is brought back low during a conversion, that conversion is prematurely terminated. The data in the output latches may be corrupted. Therefore, when $\overline{\mathrm{CS}}$ is brought back
low during a conversion in progress the data output at that time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table 4 details the data required.
$\overline{\mathrm{DOR}} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
$\overline{\text { CONV }} \quad$ A logic low is required on this pin to program any mode or change the ADC's configuration as listed in the Mode Programming Table (Table 4) such as 12-bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing $\overline{\mathrm{CS}}$ low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
PD This is the power down pin. When PD is high the A / D is powered down; when PD is low the A / D is powered up. The A / D takes a maximum of $700 \mu \mathrm{~s}$ to power up after the command is given.
$\mathrm{CH} 0-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Table 2 and Table 3).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}^{+}}$or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It is used as a pseudo ground when the analog multiplexer is single-ended.
MUXOUT1, These are the multiplexer output MUXOUT2 pins.
A/DIN1, These are the converter input pins. MUXOUT1 A/DIN2 is usually tied to A/DIN1. MUXOUT2 is usually tied to A/DIN2. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 5).
$\mathrm{V}_{\text {REF }}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy, the voltage range of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right)$ is

Pin Descriptions (Continued)
$1 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $\mathrm{V}_{\mathrm{A}}+$. See Figure 6 for recommended bypassing.
$V_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}^{+}}$. (See Figure 6).

These are the analog and digital power supply pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together on the chip. These pins should be tied to the same power supply and bypassed separately (see Figure 6). The operating voltage range of $\mathrm{V}_{\mathrm{A}^{+}}$and $\mathrm{V}_{\mathrm{D}^{+}}$is $3.0 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND This is the digital ground pin (see Figure 6).
AGND This is the analog ground pin (see Figure 6).

ADC12181

12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold

General Description

The ADC12181 is a monolithic CMOS analog-to-digital converter capable of converting analog input signals into 12-bit digital words at 10 megasamples per second (MSPS). The ADC12181 utilizes an innovative pipeline architecture to minimize die size and power consumption. Self-calibration and error correction maintain accuracy and performance over temperature.
The ADC12181 converter operates on a 5V power supply and can digitize analog input signals in the range of 0 to 2 V . A single convert clock controls the conversion operation. All digital I/O is TTL compatible.
The ADC12181 is designed to minimize external components necessary for the analog input interface. An internal sample-and-hold circuit samples the analog input and an internal amplifier buffers the reference voltage input.
The ADC12181 is available in the 32 -lead TQFP package and is designed to operate over the extended commercial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single 5V power supply
- Simple analog input interface
- Internal Sample-and-hold
- Internal Reference buffer amplifier
- Low power consumption

Key Specifications

Resolution	12 Bits
Conversion Rate	$10 \mathrm{Msps}(\mathrm{min})$
\square DNL	$\pm 0.4 \mathrm{LSB}$ (typ)
\square SNR	65 dB (typ)
\square ENOB	10.4 Bits (typ)
© Analog Input Range	$2 \mathrm{Vpp}(\mathrm{min})$
\square Supply Voltage	$+5 \mathrm{~V} \pm 5 \%$
\square Power Consumption, 10 MHz	235 mW (typ)

Applications

- Image processing front end
- PC-based data acquisition
- Scanners
- Fax machines
- Waveform digitizer

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC12181CIVT	32 pin TQFP
ADC12181 EVAL	Evaluation Board

Simplified Block Diagram

Pin Descriptions and Equivalent Circuits \#2

No.	Symbol	Description 2	

Pin Descriptions and Equivalent Circuits \#2 (Continued)

No.	Symbol	Equivalent Circuit	Description
3	$\mathrm{V}_{\text {In com }}$		Analog input common. Connect to a quiet point in analog ground near the driving device. See section 1.2.
5	$V_{\text {A }}$		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
4, 6	AGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12181 package. See section 5.0.
13	V_{D}		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
9, 12	DGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12181 package. See section 5.0
21	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		The digital output driver supply pin. This pin can be operated from a supply voltage of 3 V to 5 V , but the voltage on this pin should never exceed the V_{D} supply pin voltage.
20	DGND I/O		The ground return for the output drivers. This pin should be returned to a point in the digital ground that is removed from the other ground pins of the ADC12181.

ADC12191

12-Bit, 10 MHz Self-Calibrating, Pipelined A/D Converter with Internal Sample \& Hold

General Description

The ADC12191 is a monolithic CMOS analog-to-digital converter capable of converting analog input signals into 12-bit digital words at 10 megasamples per second (MSPS). The ADC12191 utilizes an innovative pipeline architecture to minimize die size and power consumption. The ADC12191 uses self-calibration and error correction to maintain accuracy and performance over temperature.
The ADC12191 converter operates on a 5V power supply and can digitize analog input signals in the range of 0 to 2 V . A single convert clock controls the conversion operation. All digital I/O is TTL compatible.
The ADC12191 is designed to minimize external components necessary for the analog input interface. An internal sample-and-hold circuit samples the analog input and an internal amplifier buffers the reference voltage input.
The ADC12191 is available in the 32-lead TQFP package and is designed to operate over the extended commercial temperature range of $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single 5 V power supply
- Simple analog input interface
- Internal Sample-and-hold
- Internal Reference buffer amplifier
- Low power consumption

Key Specifications

- Resolution	12 Bits
- Conversion Rate	10 Msps (min)
■ DNL	$\pm 0.5 \mathrm{LSB}$ (typ)
© SNR	63 dB (typ)
ENOB	10 Bits (typ)
- Analog Input Range	$2 \mathrm{Vpp}(\mathrm{min})$
Supply Voltage	$+5 \mathrm{~V} \pm 5 \%$
Power Consumption, 10 MHz	235 mW (typ)

Applications

- Image processing front end
- PC-based data acquisition
- Scanners
- Fax machines
- Waveform digitizer

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC12191CIVT	32 pin TQFP
ADC12181 EVAL	Evaluation Board

Simplified Block Diagram

Pin Descriptions and Equivalent Circuits \#2

Pin Descriptions and Equivalent Circuits \#2 (Continued)

No.	Symbol	Equivalent Circuit	Description
3	$\mathrm{V}_{\text {IN com }}$		Analog input common. Connect to a quiet point in analog ground near the driving device. See section 1.2.
5	$\mathrm{V}_{\text {A }}$		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
4, 6	AGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12191 package. See section 5.0.
13	V_{D}		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
9, 12	DGND		The ground return for the analog supply. AGND and DGND should be connected together close to the ADC12191 package. See section 5.0
21	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		The digital output driver supply pin. This pin can be operated from a supply voltage of 3 V to 5 V , but the voltage on this pin should never exceed the V_{D} supply pin voltage.
20	DGND I/O		The ground return for the output drivers. This pin should be returned to a point in the digital ground that is removed from the other ground pins of the ADC12191.

ADC12281

12-Bit, 20 MSPS Single-Ended Input, Pipelined A/D Converter

General Description

The ADC12281 is a monolithic CMOS analog-to-digital converter capable of converting analog input signals into 12 -bit digital words at 20 megasamples per second (MSPS). It utilizes a pipeline architecture to minimize die size and power dissipation. Self-calibration and error correction maintain accuracy and performance over temperature.
The ADC12281 operates on a 5V power supply and can digitize single-ended analog input signals in the range of OV to 2 V . A single convert clock controls the conversion operation and all digital I/O is TTL compatible.
The ADC12881 is designed to minimize external components necessary for the analog input interface. An internal sample-and-hold circuit samples the single-ended analog input and an internal amplifier buffers the reference voltage input.
The Power Down feature reduces power consumption to 20 mW , typical.
The ADC12281 is available in the 32 -lead TQFP package and is designed to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single 5V power supply
- Single-ended analog input
- Internal sample-and-hold
- Internal reference buffer amplifier
- Low offset and gain errors

Key Specifications

- Resolution

12 bits

- Conversion rate
- DNL
- SNR
- ENOB
- Analog input range
- Supply voltage
- Power consumption, 20 MHz

Applications

- Digital signal processing front end
- Digital television
- Radar
- High speed data links
- Waveform digitizers
- Quadrature demodulation

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC12281CIVT	32 -Pin TQFP

Simplified Block Diagram

Pin Descriptions and Equivalent Circuits

Pin	Symbol	Equivalent Circuit	Description
2	V_{IN}		Single-ended analog signal input. With a 2.0 V reference voltage, input signal voltages in the range of 0 V to 2.0 V will be converted. See Section 1.2.
1	$V_{\text {REF }}$		Reference voltage input. This pin should be driven from an accurate, stable reference source in the range of 1.8 V to 2.2 V and bypassed to a low-noise ground with a monolithic ceramic capacitor, nominally $0.01 \mu \mathrm{~F}$. See Section 1.1.

Pin Descriptions and Equivalent Circuits（Continued）

Pin	Symbol	Equivalent Circuit	Description
		T	

Pin Descriptions and Equivalent Circuits (Continued)

Pin	Symbol	Equivalent Circuit	Description
3	$\mathrm{V}_{\text {IN }}$ Com		Analog input common. Connect to a quiet point in analog ground near the driving device. See Section 1.2.
5	$\mathrm{V}_{\text {A }}$		Positive analog supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
4, 6	AGND		The ground return for the analog supply, AGND and DGND should be connected together close to the ADC12281 package. See Section 5.0.
13	V_{D}		Positive digital supply pin. Connect to a clean, quiet voltage source of $+5 \mathrm{~V} . \mathrm{V}_{\mathrm{A}}$ and V_{D} should have a common supply and be separately bypassed with a $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ chip capacitor.
9, 12	DGND		The ground return for the digital supply. AGND and DGND should be connected together close to the ADC12281 package. See Section 5.0.
21	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		The digital output driver supply pins. This pin can be operated from a supply voltage of 3 V to 5 V , but the voltage on this pin should never exceed the V_{D} supply pin voltage. See Section 3.4.
20	DGND I/O		The ground return for the digital output drivers. This pin should be returned to a point in the digital ground that is removed from the other ground pins of the ADC12281.

ADC14061
 Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter

General Description

The ADC14061 is a self-calibrating 14-bit, 2.5 Megasample per second analog to digital converter. It operates on a single +5 V supply, consuming just 390 mW (typ).
The ADC14061 provides an easy and affordable upgrade from 12 bit converters. The ADC14061 may also be used to replace many hybrid converters with a resultant saving of space, power and cost.
The ADC14061 operates with excellent dynamic performance at input frequencies up to $1 / 2$ the clock frequency. The calibration feature of the ADC14061 can be used to get more consistent and repeatable results over the entire operating temperature range. On-command self-calibration reduces many of the effects of temperature-induced drift, resulting in more repeatable conversions.

The Power Down feature reduces power consumption to less than 2 mW .
The ADC14061 comes in a TQFP and is designed to operate over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Single +5 V Operation
- Auto-Calibration
- Power Down Mode
- TTL/CMOS Input/Output compatible

Key Specifications

Resolution	14 Bits
Conversion Rate	$2.5 \mathrm{Msps}(\mathrm{min})$
DNL	$0.3 \mathrm{LSB}(\mathrm{typ})$
SNR $\left(\mathrm{f}_{\mathrm{f}}=500 \mathrm{kHz}\right)$	$80 \mathrm{~dB}(\mathrm{typ})$
ENOB	$12.8 \mathrm{Bits}(\mathrm{typ})$
Supply Voltage	$+5 \mathrm{~V} \pm 5 \%$
Power Consumption	390 mW (typ)

Applications

- Instrumentation
- PC-Based Data Acquisition
- Data Communications
- Blood Analyzers
- Sonar/Radar

Connection Diagram

Ordering Information

Commercial $\left(\mathbf{0}^{\circ} \mathrm{C} \leq \mathbf{T A} \leq+70^{\circ} \mathrm{C}\right)$	Package
ADC14061CCVT	VEG52A 52 Pin Thin Quad Flat Pack

DS100103-2

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description

Analog I/O

1	$\mathrm{V}_{1 \mathrm{~N}^{+}}$		Non-Inverting analog signal Input. With a 2.0 V reference voltage and a 2.0 V common mode voltage, V_{CM}, the input signal voltage range is from 1.0 volt to 3.0 Volts.
4	$\mathrm{V}_{\mathrm{IN}^{-}}$		Inverting analog signal Input. With a 2.0 V reference voltage and a 2.0 V common mode voltage, V_{CM}, the input signal voltage range is from 1.0 Volt to 3.0 Volts. The input signal should be balanced for best performance.
48	$\mathrm{V}_{\text {REF }}{ }^{\text {in }}$		Positive reference input. This pin should be bypassed to AGND with a 0.1 $\mu \mathrm{F}$ monolithic capacitor. $\mathrm{V}_{\text {REF }}+$ minus $\mathrm{V}_{\text {REF- IN }}$ should be a minimum of 1.8 V and a maximum of 2.2 V . The full-scale input voltage is equal to $\mathrm{V}_{\text {REF }}{ }_{\text {IN }}$ minus $\mathrm{V}_{\text {REF }}{ }^{-}$IN .
47	$\mathrm{V}_{\text {REF }} \mathrm{IN}^{\text {IN }}$		Negative reference input. In most applications this pin should be connected to $A G N D$ and the full reference voltage applied to $\mathrm{V}_{\text {REF }}{ }^{\operatorname{IN}}$. If the application requires that $\mathrm{V}_{\text {REF }}{ }^{-}$IN be offset from AGND, this pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. $\mathrm{V}_{\mathrm{REF}}{ }^{+}{ }_{\text {IN }}$ minus $\mathrm{V}_{\text {REF- IN }}$ should be a minimum of 1.8 V and a maximum of 2.2 V . The full-scale input voltage is equal to $\mathrm{V}_{\text {REF }}{ }^{+}$in minus $\mathrm{V}_{\text {REF }}{ }^{-}$IN .
50	$\mathrm{V}_{\text {REF }}{ }^{\text {O OUT }}$		Output of the high impedance positive reference buffer. With a 2.0 V reference input, and with a V_{CM} of 2.0 V , this pin will have a 3.0 V output voltage. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor.

Pin Descriptions and Equivalent Circuits (Continued)

Digital I/O			
10	Clock		Digital clock input. The input voltage is captured $t_{A D}$ after the fall of the clock signal. The range of frequencies for this input is 300 kHz to 2.5 MHz . The clock frequency should not be changed or interrupted during conversion or while reading data output.
11	CAL		CAL is a level-sensitive digital input that, when pulsed high for at least two clock cycles, puts the ADC into the CALIBRATE mode. Calibration should be performed upon ADC power-up (after asserting a reset) and each time the temperature changes by more than $50^{\circ} \mathrm{C}$ since the ADC14061 was last calibrated. See Section 2.3 for more information.
40	RESET		RESET is a level-sensitive digital input that, when pulsed high for at least 2 CLOCK cycles, results in the resetting of the ADC. This reset pulse must be applied after ADC power-up, before calibration.
18	$\overline{\mathrm{RD}}$		$\overline{\mathrm{RD}}$ is the (READ) digital input that, when low, enables the output data buffers. When this input pin is high, the output data bus is in a high impedance state.
44	$\overline{P D}$		$\overline{\mathrm{PD}}$ is the Power Down input that, when low, puts the converter into the power down mode. When this pin is high, the converter is in the active mode.
17	$\overline{E O C}$		$\overline{\mathrm{EOC}}$ is a digital output that, when low, indicates the availability of new conversion results at the data output pins.
$\begin{aligned} & 23-32 \\ & 35-38 \end{aligned}$	D00-13		Digital data outputs that make up the 14-bit TRI-STATE conversion results. D00 is the LSB, while D13 is the MSB (SIGN bit) of the two's complement output word.
Analog Power			
$\begin{gathered} 6,7 \\ 45 \end{gathered}$	$\mathrm{V}_{\text {A }}$		Positive analog supply pins. These pins should be connected to a clean, quiet +5 V source and bypassed to AGND with $0.1 \mu \mathrm{~F}$ monolithic capacitors in parallel with $10 \mu \mathrm{~F}$ capacitors, both located within 1 cm of these power pins.
$\begin{gathered} 5,8 \\ 46 \end{gathered}$	AGND		The ground return for the analog supply. AGND and DGND should be connected together directly beneath the ADC14061 package. See Section 5 (Layout and grounding) for more details).

Pin Descriptions and Equivalent Circuits (Continued)

Digital Power			
20	V_{D}		Positive digital supply pin. This pin should be connected to the same clean, quiet +5 V source as is V_{A} and bypassed to DGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor, both located within 1 cm of the power pin.
$\begin{gathered} \hline 12,13 \\ 14,19, \\ 41,42, \\ 43 \end{gathered}$	DGND		The ground return for the digital supply. AGND and DGND should be connected together directly beneath the ADC14061 package. See Section 5 (Layout and Grounding) for more details.
34	$\mathrm{V}_{\mathrm{D}} \mathrm{I} / \mathrm{O}$		Positive digital supply pin for the ADC14061's output drivers. This pin should be connected to a +3 V to +5 V source and bypassed to DGND I/O with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. If the supply for this pin is different from the supply used for V_{A} and V_{D}, it should also be bypassed with a $10 \mu \mathrm{~F}$ capacitor. All bypass capacitors should be located within 1 cm of the supply pin.
33	DGND I/O		The ground return for the digital supply for the ADC14061's output drivers. This pin should be connected to the system digital ground, but not be connected in close proximity to the ADC14061's DGND or AGND pins. See Section 5.0 (Layout and Grounding) for more details.
NC			
$\begin{gathered} \hline 2,3, \\ 9,15, \\ 16, \\ 21, \\ 22,39 \end{gathered}$	NC		All pins marked NC (no connect) should be left floating. Do not connect the NC pins to ground, power supplies, or any other potential or signal. These pins are used for test in the manufacturing process.

ADC14071

14-Bit, 7 MSPS, 380 mW A/D Converter

General Description

The ADC14071 is a 14-bit, monotholic analog to digital converter capable of conversion rates up to 8 Megasamples per second. This CMOS converter uses a differential, piperlined architecture with digital error correction and an on-chip track-and-hold circuit to maintain superb dynamic performance with input frequencies up to 20 MHz . Tested and guaranteed dynamic performance specifications provide the designer with known performance. The ADC14071 operates on a +5 V single supply consuming just 380 mW (typical). The Power Down feature reduces power consumption to 20 mW , typical.
The differential inputs provide a full scale input swing of $\pm \mathrm{V}_{\text {REF }}$ with the possibility of a single input. Full use of the differential input is recommended for optimum perfomance. For ease of use, the reference input is single ended. This singleended reference input is converted on-chip to a differential reference configuration for use by the processing circuitry. Output data format is 14-bit straight binary.
The ADC14071 may be used to replace many hybrid converters with a resultant saving of space, power and cost.
The ADC14071 comes in a 48-pin TQFP and is specified to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single +5V Operation
- Power Down Mode
- TTL/CMOS Input/Output Compatible

Key Specifications

- Resolution

14 Bits

- Max Conversion Rate
- DNL
- SNR ($\mathrm{f}_{\mathrm{IN}}=500 \mathrm{kHz}$)
- ENOB ($\mathrm{f}_{\mathrm{w}}=500 \mathrm{kHz}$)
- Supply Voltage
- Power Consumption

Applications

- Document Scanners
- Imaging
- Instrumentation
- PC-Based Data Acquisition
- Spectrum Analyzers
- Sonar/Radar
- xDSL
- Wireless Local Loop
- Data Acquisition Systems
- DSP Front End

Connection Diagram

Ordering Information

Industrial Temperature Range $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	NS Package
ADC14071CIVBH	VBH48A 48-Pin Thin Quad Flatpak
ADC14071EVAL	Evaluation System

Block Diagram

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description
ANALOG I/O			
2	$\mathrm{V}_{1 \mathrm{~N}^{+}}$		Non-Inverting analog signal input. With a 2.0 V reference voltage the input signal voltage range is from 0 V to 2.0 V .
3	$\mathrm{V}_{\text {IN }}{ }^{-}$		Inverting analog signal input. With a 2.0 V reference voltage the input signal voltage range is from 0 V to 2.0 V . This pin may be connected to a voltage of $1 / 2$ the reference voltage for single-ended operation, but a balanced input signal is required for best performance.
43	$V_{\text {REF IN }}$		Positive reference input. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. $\mathrm{V}_{\text {REF }}$ is 2.0 V nominal and should be in the range of 1.0 V to 2.7 V .

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Symbol \& Equivalent Circuit \& Description \\
\hline \multicolumn{4}{|l|}{ANALOG I/O} \\
\hline \begin{tabular}{l}
47 \\
\\
1 \\
\hline
\end{tabular} \& \(\mathrm{V}_{\text {REF }}+\mathrm{BY}\)

$V_{\text {REF (MID) }} \mathrm{BY}$

$V_{\text {REF }}-\mathrm{BY}$ \& \& These pins are high impedance reference bypass pins only. Connect a $0.1 \mu \mathrm{~F}$ capacitor from each of these pins the AGND. DO NOT connect anything else to these pins.

\hline \multicolumn{4}{|l|}{DIGITAL I/O}

\hline 11 \& CLOCK \& \multirow[t]{3}{*}{} \& Digital clock input. The range of frequencies for this input is 25 kHz to 8 MHz (typical) with guaranteed performance at 7 MHz . The input is sampled on the rising edge of this input.

\hline 12 \& $\overline{O E}$ \& \& $\overline{\mathrm{OE}}$ is the output enable pin that, when low, enables the TRI-STATE ${ }^{\oplus}$ data output pins. When this pin is high, the outputs are in a high impedance state.

\hline 10 \& PD \& \& PD is the Power Down input pin. When high, this input puts the converter into the power down mode. When this pin is low, the converter is in the active mode.

\hline 36 \& OR \& \& Out of Range pin. A high at this output pin indicates that the input voltage is either above the reference voltage or is below ground. When this pin is high, the digital output pins will indicate a full scale for input voltages above the reference voltage, or will indicate a zero scale for input voltages below zero scale.

\hline $$
\begin{aligned}
& 19-23, \\
& 25-29, \\
& 32-35
\end{aligned}
$$ \& D0-D13 \& \& Digital data output pins that make up the 14-bit conversion results. D0 is the LSB, while D13 is the MSB of the straight binary output word.

\hline \multicolumn{4}{|l|}{ANALOG POWER}

\hline $$
\begin{array}{r}
5,6,7 \\
13,41
\end{array}
$$ \& $\mathrm{V}_{\text {A }}$ \& \& Positive analog supply pins. These pins should be connected to a clean, quiet +5 V voltage source and bypassed to AGND with $0.1 \mu \mathrm{~F}$ monolithic capacitors located within 1 cm of these power pins, and by a $10 \mu \mathrm{~F}$ capacitor.

\hline $$
\begin{gathered}
4,8,9 \\
14,15 \\
42
\end{gathered}
$$ \& AGND \& \& The ground return for the analog supply. AGND and DGND should be connected together directly beneath the ADC14071 package. See Section 5 (Layout and Grounding) for more details.

\hline
\end{tabular}

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
DIGITAL POWER			
17	V_{D}		Positive digital supply pin. This pin should be connected to the same clean, quiet +5 V source as is V_{A} and bypassed to DGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor, both located within 1 cm of the power pin.
16	DGND		The ground return for the digital supply. AGND and DGND should be connected together directly beneath the ADC14071 package. See Section 5 (Layout and Grounding) for more details.
31	DR $V_{\text {D }}$		Positive digital supply pin for the ADC14071's output drivers. This pin should be connected to a voltage source of +3 to +5 V and bypassed to DR GND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. If the supply for this pin is different from the supply used for V_{A} and V_{D}, it should also be bypassed with a $10 \mu \mathrm{~F}$ tantalum capacitor and never exceed the voltage on V_{D}. All bypass capacitors should be located within 1 cm of the supply pin.
$\begin{gathered} 24,30, \\ 37 \end{gathered}$	DR GND		The ground return for the digital supply for the ADC14071's output drivers. These pins should be connected to the system digital ground, but not be connected in close proximity to the ADC14071's DGND or AGND pins. See Section 5 (Layout and Grounding) for more details.
NC			
$\begin{gathered} 18,38, \\ 39,40, \\ 44,46, \\ 48 \end{gathered}$	NC		All pins marked NC (no connect) should not be connected to any potential (or to ground). Allow these pins to float.

0

ADC14161

Low-Distortion, Self-Calibrating 14-Bit, 2.5 MSPS, 390 mW A/D Converter

General Description

The ADC14161 is a self-calibrating 14-bit, 2.5 Megasample per second analog to digital converter. It operates on a single +5 V supply, consuming just 390 mW (typical).
The ADC14161 provides an easy and affordable upgrade from 12 bit converters. The ADC14161 may also be used to replace many hybrid converters with a resultant saving of space, power and cost.
The ADC14161 operates with input frequencies up to $1 / 2$ the clock frequency. The calibration feature of the ADC14161 can be used to get more consistent and repeatable results over the entire operating temperature range. On-command self-calibration reduces many of the effects of temperature-induced drift, resulting in more repeatable conversions.
Tested and guaranteed dynamic performance specifications provide the designer with known performance.
The Power Down feature reduces power consumption to less than 2 mW .
The ADC14161 comes in a TQFP and is designed to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Single +5V Operation
- Auto-Calibration
- Power Down Mode
- TTL/CMOS Input/Output compatible

Key Specifications

\author{

- Resolution
}

14 Bits

- Conversion Rate
- DNL
- SNR ($\mathrm{f}_{\mathrm{IN}}=500 \mathrm{kHz}$)
- ENOB
- Supply Voltage

■ Power Consumption
2.5 Msps (min) 0.3 LSB (typ)

80 dB (typ)
12.8 Bits (typ)
$+5 \mathrm{~V} \pm 5 \%$
390mW (typ)

Applications

- Instrumentation
- PC-Based Data Acquisition
- Data Communications
- Blood Analyzers
- Sonar/Radar

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC14161CIVT	VEG52A 52 Pin Thin Quad Flat Pack

Block Diagram

Pin Descriptions and Equivalent Circuits

| Pin
 No. | Symbol | | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |

The output of the negative reference buffer. With a 2.0 V reference and a V_{CM} of 2.0 V , this pin will have a 1.0 V output voltage. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a 10 $\mu \mathrm{F}$ capacitor.

Output of the reference mid-point, nominally equal to $0.4 \mathrm{~V}_{\mathrm{A}}(2.0 \mathrm{~V})$. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. This voltage is derived from V_{CM}.
nput to the common mode buffer, nominally equal to 40% of the supply voltage (2.0V). This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. Best performance is obtained if this pin is driven with a low impedance source of 2.0 V .

Digital I/O

Digital clock input. The input voltage is captured t_{AD} after the fall of the clock signal. The range of frequencies for this input is 300 kHz to 2.5 MHz . The clock frequency should not be changed or interrupted during conversion or while reading data output.

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol		Description

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
Digital Power			
20	V_{D}		Positive digital supply pin. This pin should be connected to the same clean, quiet +5 V source of as is V_{A} and bypassed to DGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor, both located within 1 cm of the power pin.
$\begin{gathered} 12,13 \\ 14,19 \\ 41,42 \\ 43 \end{gathered}$	DGND		The ground return for the digital supply. AGND and DGND should be connected together directly beneath the ADC14161 package. See Section 5 (Layout and Grounding) for more details.
34	$V_{D} \mathrm{I} / \mathrm{O}$		Positive digital supply pin for the ADC14161's output drivers. This pin should be connected to a +3 V to +5 V source and bypassed to DGND I/O with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. If the supply for this pin is different from the supply used for V_{A} and V_{D}, it should also be bypassed with a $10 \mu \mathrm{~F}$ capacitor. All bypass capacitors should be located within 1 cm of the supply pin.
33	DGND I/O		The ground return for the digital supply for the ADC14161's output drivers. This pin should be connected to the system digital ground, but not be connected in close proximity to the ADC14161's DGND or AGND pins. See Section 5.0 (Layout and Grounding) for more details.
NC			
$\begin{aligned} & 2,3, \\ & 9,15, \\ & 16,21 \\ & 22,39 \end{aligned}$	NC		All pins marked NC (no connect) should be left floating. Do not connect the NC pins to ground, power supplies, or any other potential or signal. These pins are used for test in the manufacturing process.

ADC16061

Self-Calibrating 16-Bit, 2.5 MSPS, 390 mW A/D Converter

General Description

The ADC16061 is a self-calibrating 16-bit, 2.5 Megasample per second analog to digital converter. It operates on a single +5 V supply, consuming just 390 mW (typical).
The ADC16061 provides an easy and affordable upgrade from 12 bit and 14 bit converters. The ADC16061 may also be used to replace many hybrid converters with a resultant saving of space, power and cost.
The ADC16061 operates with excellent dynamic performance at input frequencies up to $1 / 2$ the clock frequency. The calibration feature of the ADC16061 can be used to get more consistent and repeatable results over the entire operating temperature range. On-command self-calibration reduces many of the effects of temperature-induced drift, resulting in more repeatable conversions.
The Power Down feature reduces power consumption to less than 2 mW .
The ADC16061 comes in a TQFP and is designed to operate over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Single +5V Operation
- Self Calibration
- Power Down Mode

Key Specifications

- Resolution
- Conversion Rate
- DNL
- SNR ($\mathrm{f}_{\mathrm{IN}}=500 \mathrm{kHz}$)
- Supply Voltage
- Power Consumption

16 Bits
2.5 Msps (min)
1.0 LSB (typ)

80 dB (typ)
$+5 \mathrm{~V} \pm 5 \%$
390mW (typ)

Applications

- PC-Based Data Acquisition
- Document Scanners
- Digital Copiers
- Film Scanners
- Blood Analyzers
- Sonar/Radar

Connection Diagram

Ordering Information

Commercial $\left(\mathbf{0}^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}\right)$	Package
ADC16061CCVT	VEG52A 52 Pin Thin Quad Flat Pack

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent Circuit	Description

Analog I/O

| 1 | $\mathrm{~V}_{\mathrm{IN}^{+}}$ | Non-Inverting analog signal Input. With a 2.0V reference voltage
 and a 2.0 V common mode voltage, V_{CM}, the input signal voltage
 range is from 1.0 volt to $3.0 \mathrm{Volts}$. |
| :--- | :--- | :--- | :--- |
| 4 | $\mathrm{~V}_{\mathrm{IN}^{-}}$ | Inverting analog signal Input. With a 2.0 V reference voltage and a
 2.0 V common mode voltage, V_{CM}, the input signal voltage range is
 from $1.0 \mathrm{Volth} 3.0 \mathrm{Volts} The input signal should be balanced for$.
 best performance. |

Positive reference input. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor.
$\mathrm{V}_{\text {REF }}+$ minus $\mathrm{V}_{\text {REF- IN }}$ should be a minimum of 1.8 V and a maximum of 2.2 V . The full-scale input voltage is equal to $\mathrm{V}_{\text {REF }}{ }^{+}$in minus $\mathrm{V}_{\text {REF }}{ }^{-1 N}$.
Negative reference input. In most applications this pin should be connected to AGND and the full reference voltage applied to $\mathrm{V}_{\text {REF }}{ }^{+}$in. If the application requires that $\mathrm{V}_{\text {REF }}{ }^{-}$IN be offset from AGND, this pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. $\mathrm{V}_{\text {REF }}{ }^{+}$in minus $\mathrm{V}_{\text {REF- IN }}$ should be a minimum of 1.8 V and a maximum of 2.2 V . The full-scale input voltage is equal to $\mathrm{V}_{\text {REF }}{ }_{\text {in }}$ minus $\mathrm{V}_{\text {REF }}{ }^{-}$in .
Output of the high impedance positive reference buffer. With a 2.0 V reference input, and with a V_{CM} of 2.0 V , this pin will have a 3.0 V output voltage. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor.

The output of the negative reference buffer. With a 2.0 V reference and a V_{CM} of 2.0 V , this pin will have a 1.0 V output voltage. This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor.

Output of the reference mid-point, nominally equal to $0.4 \mathrm{~V}_{\mathrm{A}}$ (2.0V). This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. This voltage is derived from V_{CM}.

51
Input to the common mode buffer, nominally equal to 40% of the supply voltage (2.0 V). This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. Best performance is obtained if this pin is driven with a low impedance source of 2.0 V .

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
Digital I/O			
10	CLOCK		Digital clock input. The input voltage is captured t_{AD} after the fall of the clock signal. The range of frequencies for this input is 300 kHz to 2.5 MHz . The clock frequency should not be changed or interrupted during conversion or while reading data output.
11	CAL		CAL is a level-sensitive digital input that, when pulsed high for at least two clock cycles, puts the ADC into the CALIBRATE mode. Calibration should be performed upon ADC power-up (after asserting a reset) and each time the temperature changes by more than $50^{\circ} \mathrm{C}$ since the ADC16061 was last calibrated. See Section 2.3 for more information.
40	RESET		RESET is a level-sensitive digital input that, when pulsed high for at least 2 CLOCK cycles, results in the resetting of the ADC. This reset pulse must be applied after ADC power-up, before calibration.
18	$\overline{\mathrm{RD}}$		$\overline{\mathrm{RD}}$ is the (READ) digital input that, when low, enables the output data buffers. When this input pin is high, the output data bus is in a high impedance state.
44	$\overline{P D}$		$\overline{\mathrm{PD}}$ is the Power Down input that, when low, puts the converter into the power down mode. When this pin is high, the converter is in the active mode.
17	$\overline{\mathrm{EOC}}$		$\overline{\mathrm{EOC}}$ is a digital output that, when low, indicates the availability of new conversion results at the data output pins.
$\begin{aligned} & 21-32 \\ & 35-38 \end{aligned}$	D00-15		Digital data outputs that make up the 16-bit TRI-STATE conversion results. D00 is the LSB, while D15 is the MSB (SIGN bit) of the two's complement output word.
Analog Power			
$\begin{gathered} 6,7 \\ 45 \end{gathered}$	$\mathrm{V}_{\text {A }}$		Positive analog supply pins. These pins should be connected to a clean, quiet +5 V source and bypassed to AGND with $0.1 \mu \mathrm{~F}$ monolithic capacitors in parallel with $10 \mu \mathrm{~F}$ capacitors, both located within 1 cm of these power pins.
$\begin{gathered} 5,8 \\ 46 \end{gathered}$	AGND		The ground return for the analog supply. AGND and DGND should be connected together directly beneath the ADC16061 package. See Section 5 (Layout and grounding) for more details).

Pin Descriptions and Equivalent Circuits (Continued)

Pin No.	Symbol	Equivalent Circuit	Description
Digital Power			
20	V_{D}		Positive digital supply pin. This pin should be connected to the same clean, quiet +5 V source as is V_{A} and bypassed to DGND with a $0.1 \mu \mathrm{~F}$ monolithic capacitor in parallel with a $10 \mu \mathrm{~F}$ capacitor, both located within 1 cm of the power pin.
 12, 13, 14, 19, 41, 42,43	DGND		The ground return for the digital supply. AGND and DGND should be connected together directly beneath the ADC16061 package. See Section 5 (Layout and Grounding) for more details.
34	$V_{0} \mathrm{I} / \mathrm{O}$		Positive digital supply pin for the ADC16061's output drivers. This pin should be connected to $\mathrm{a}+3 \mathrm{~V}$ to +5 V source and bypassed to DGND I/O with a $0.1 \mu \mathrm{~F}$ monolithic capacitor. If the supply for this pin is different from the supply used for V_{A} and V_{D}, it should also be bypassed with a $10 \mu \mathrm{~F}$ capacitor. All bypass capacitors should be located within 1 cm of the supply pin.
33	DGND I/O		The ground return for the digital supply for the ADC16061's output drivers. This pin should be connected to the system digital ground, but not be connected in close proximity to the ADC16061's DGND or AGND pins. See Section 5.0 (Layout and Grounding) for more details.
NC			
$\begin{aligned} & 2,3, \\ & 9,15, \\ & 16,39 \end{aligned}$	NC		All pins marked NC (no connect) should be left floating. Do not connect the NC pins to ground, power supplies, or any other potential or signal. These pins are used for test in the manufacturing process.

ADCV0831

8 Bit Serial I/O Low Voltage Low Power ADC with Auto Shutdown in a SOT Package

General Description

The ADCV0831 is a low voltage 8-bit successive approximation A/D converter with serial I/O. The I/O is a 3-wire serial interface compatible with NSC's MICROWIRE ${ }^{\text {TM }}$ \& Motorola's SPI standards. It easily interfaces with standard shift registers or microprocessors.
Low voltage and auto shutdown features make the ADCV0831 ideal for portable battery operated electronic devices. The main benefits are most apparent in small portable electronic devices. The tiny A/D converter can be placed anywhere on the board.

Applications

- Digitizing automotive sensors
- Process control monitoring
- Remote sensing in noisy environments
- Instrumentation
- Test systems
- Embedded diagnostics

Features

- Tiny 6-pin SOT 23 package
- Serial digital data link requires few I/O pins
- Auto Shutdown
- 0 V to 3 V analog input range with single 3 V power supply
- TTL/CMOS input/output compatible

Key Specifications

(For 3V supply, typical, unless otherwise noted.)

- Resolution: 8 bits
- Conversion time ($\mathrm{f}_{\mathrm{C}}=700 \mathrm{kHz}$): $16 \mu \mathrm{~s}$

■ Low power dissipation: $720 \mu \mathrm{~W}$

- Single supply: 2.7 V to $5 \mathrm{~V}_{\mathrm{DC}}$
- Linearity error: $\pm 1.5 \mathrm{LSB}$ over temperature
- No missing codes over temperature
- Shutdown supply current 10nA

Ordering Information

Temperature Range $\left(0^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{j}} \leq+70^{\circ} \mathrm{C}\right)$	Package	Supplied As
ADCV0831M6	MA06A	1k Units Tape and Reel
ADCV0831M6X	MA06A	3k Units Tape and Reel

Connection Diagram

CLC5956

12-bit, 65 MSPS Broadband Monolithic A/D Converter

General Description

The CLC5956 is a monolithic 12-bit, 65 MSPS analog-to-digital converter subsystem. The device has been optimized for use in cellular base stations and other applications where high resolution, high sampling rate, wide dynamic range, low power dissipation, and compact size are required. The CLC5956 features differential analog inputs, low jitter differential PECL clock inputs, a low distortion track-and-hold with DC to 300 MHz input bandwidth, a bandgap voltage reference, TTL compatible CMOS output logic, and a proprietary 12-bit multi-stage quantizer. The CLC5956 is fabricated on the ABIC-IV 0.8 micron BiCMOS process. The part features a 73 dB spurious free dynamic range (SFDR) and 67 dB SNR. The wideband track-and-hold allows sampling of IF signals to greater than 250 MHz . The part produces two-tone, dithered, spurious-free dynamic range of 83 dBFS at 75 MHz input frequency. The differential analog input provides excellent common-mode rejection, while the differential PECL clock inputs permit the use of balanced transmission to minimize jitter in distributed systems. The 48-pin TSSOP package provides an extremely small footprint for applications where space is a critical consideration. The CLC5956 operates from a single +5 V power supply over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. National thoroughly tests each part to verify full compliance with the guaranteed specifications.

Features

- Wide dynamic range
- IF sampling capability
- 300 MHz input bandwidth
- Small 48-pin TSSOP
- Single +5 V supply
- Low cost

Key Specifications

- Sample Rate

65 MSPS

- SFDR
- SFDR with dither 73 dBc
- SNR 85 dBFS
- Low power consumption

Applications

- Cellular base-stations
- Digital communications
- Infrared/CCD imaging
- IF sampling
- Electro-optics
- Instrumentation
- Medical imaging
- High definition video

Block Diagram

Pin Configuration

Ordering Information

CLC5956IMTD	48 -Pin TSSOP
CLC5956IMTDX	48 -Pin TSSOP (Taped Reel)
CLC5956PCASM	Evaluation Board

Pin Descriptions

Pin Name	Pin No.	Description
$\frac{A_{I N}}{A_{I N}}$	13, 14	Differential input with a common mode voltage of +2.4 V . The ADC full scale input is $1.024 \mathrm{~V}_{\mathrm{PP}}$ on each of the complimentary input signals.
$\frac{\text { ENCODE }}{\text { ENCODE }}$	9, 10	Differential clock where ENCODE initiates a new data conversion cycle on each rising edge. Logic for these inputs are a 50% duty cycle differential PECL signal.
VCM	21	Internal common mode voltage reference. Nominally +2.4 V . Can be used for the input common mode voltage. This voltage is derived from an internal bandgap reference.
D0- $\overline{\mathrm{D} 11}$	$\begin{gathered} 30-34, \\ 39-45 \end{gathered}$	Digital data outputs are CMOS and TTL compatible. DO is the LSB and $\overline{\text { D11 }}$ is the MSB. MSB is inverted. Output coding is two's complement.
GND	$\begin{gathered} 1-4,8,11,12,15,19 \\ 20,23-26,35,36,47,48 \end{gathered}$	Circuit ground.
$+\mathrm{AV}_{\mathrm{cc}}$	5-7, 16-18, 22	+5 V power supply for the analog section. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
$+\mathrm{DV} \mathrm{cc}$	37, 38, 46	+5 V power supply for the digital section. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor.

CLC5958

14-Bit, 52 MSPS A/D Converter

General Description

The CLC5958 is a monolithic 14-bit, 52 MSPS analog-to-digital converter. The ultra-wide dynamic range and high sample rate of the device make it an excellent choice for wideband receivers found in multi-channel base-stations. The CLC5958 integrates a low distortion track-and-hold amplifier and a 14-bit multi-stage quantizer on a single die. Other features include differential analog inputs, low jitter differential clock inputs, an internal bandgap voltage reference, and CMOS/TTL compatible outputs. The CLC5958 is fabricated on the National ABIC-V 0.8 micron BiCMOS process.
The CLC5958 features a 90 dB spurious free dynamic range (SFDR) and 70 dB signal-to-noise ratio (SNR). The balanced differential analog inputs ensure low even-order distortion, while the differential clock inputs permit the use of balanced clock signals to minimize clock jitter. The 48-pin CSP package provides an extremely small footprint for applications where space is a critical consideration. The package also provides a very low thermal resistance to ambient. The CLC5958 may be operated with a single +5 V power supply. Alternatively, an additional supply may be used to program the digital output levels over the range of +3.3 V to +5 V . Operation over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is guaranteed. National Semiconductor tests each part to verify compliance with the guaranteed specifications.

Features

- Ultra-wide dynamic range
- Excellent performance to Nyquist
- IF sampling capability
- Very small package: 48-pin CSP
- Programmable Output Levels: 3.3V to 5V

Key Specifications

- Sample Rate
- SFDR
- Noise floor
$-72 \mathrm{dBFS}$

Applications

- Multi-channel basestations
- Multi-standard basestations: GSM, WCDMA, DAMPS, etc.
- Smart antenna systems
- Wireless local loop
- Wideband digital communications

Block Diagram

Pin Configuration

Ordering Information

CLC5958SLB	48-Pin CSP
CLC5958PCASM	Evaluation Board

Pin Descriptions

Pin Name	Pin No.	Description
$\frac{A_{I N}}{A_{I N}}$	13, 14	Differential inputs. Self biased at a common mode voltage of +3.25 V . The ADC full scale input is $2.048 \mathrm{~V}_{\mathrm{PP}}$ differential.
$\frac{\text { ENCODE, }}{\text { ENCODE }}$	9, 10	Differential clock inputs. ENCODE initiates a new data conversion cycle on each rising edge. Clock signals may be sinusoidal or square waves with PECL encode levels. The falling edge of ENCODE clocks internal pipeline stages.
D0- $\overline{\text { D13 }}$	$\begin{gathered} 28-34, \\ 39-45 \end{gathered}$	Digital data outputs. CMOS and TTL compatible. DO is the LSB and $\overline{\text { D13 }}$ is the inverted MSB. Output coding is two's complement.
DAV	27	Data valid. The rising edge of this signal occurs when output data is valid and may be used to latch data into following circuitry.
V_{CM}	21	Internal analog input common mode voltage reference. Nominally +3.25 V . Can be used to establish the analog input common mode voltage for DC coupled applications (DC coupling not recommended, see applications section).
GND	$1-4,8,11,12,15,19,20,23-26$ $35,36,47,48$ and vias	Circuit ground.
V_{Cc}	5-7, 16-18, 22, 46	+5 V power supply. Bypass each group of supply pins to ground with a $0.01 \mu \mathrm{~F}$ capacitor.
DV ${ }_{\text {cc }}$	37, 38	+3.3 V to +5 V power supply for the digital outputs. Establishes the high output level for the digital outputs. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor.

DAC0800／DAC0802

8－Bit Digital－to－Analog Converters

General Description

The DAC0800 series are monolithic 8 －bit high－speed current－output digital－to－analog converters（DAC）featuring typical settling times of 100 ns ．When used as a multiplying DAC，monotonic performance over a 40 to 1 reference cur－ rent range is possible．The DAC0800 series also features high compliance complementary current outputs to allow dif－ ferential output voltages of $20 \mathrm{Vp}-\mathrm{p}$ with simple resistor loads as shown in Figure 1．The reference－to－full－scale current matching of better than ± 1 LSB eliminates the need for full－scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system er－ ror accumulations．

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin， V_{Lc} ，grounded． Changing the V_{LC} potential will allow direct interface to other logic families．The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range；power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states．

The DAC0800，DAC0802，DAC0800C and DAC0802C are a direct replacement for the DAC－08，DAC－08A，DAC－08C， and DAC－08H，respectively．

Features

－Fast settling output current： 100 ns
－Full scale error：± 1 LSB
－Nonlinearity over temperature：$\pm 0.1 \%$
－Full scale current drift：$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
－High output compliance：-10 V to +18 V
－Complementary current outputs
－Interface directly with TTL，CMOS，PMOS and others
－ 2 quadrant wide range multiplying capability
－Wide power supply range：$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
－Low power consumption： 33 mW at $\pm 5 \mathrm{~V}$
－Low cost

Typical Applications

DS005686－1
FIGURE 1． $\mathbf{\pm} 20$ V $_{\text {p－p }}$ Output Digital－to－Analog Converter（Note 5）

Ordering Information

Non－Linearity	Temperature Range	Order Numbers				
		J Package（J16A）（Note 1）		N Package（N16E）（Note 1）		SO Package（M16A）
$\pm 0.1 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0802LCJ	DAC－08HQ	DAC0802LCN	DAC－08HP	DAC0802LCM
$\pm 0.19 \%$ FS	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LJ	DAC－08Q			
$\pm 0.19 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0800LCJ	DAC－08EQ	DAC0800LCN	DAC－08EP	DAC0800LCM

[^7]
National Semiconductor

DAC0808

8-Bit D/A Converter

General Description

The DAC0808 is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current ($\mathrm{I}_{\mathrm{REF}}$) trimming is required for most applications since the full scale output current is typically ± 1 LSB of $255 \mathrm{I}_{\text {REF }} / 256$. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 is independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum
- Full scale current match: ± 1 LSB typ
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

Block and Connection Diagrams

Order Number DAC0808 See NS Package M16A or N16A

Block and Connection Diagrams (Continued)

Ordering Information

ACCURACY	OPERATING TEMPERATURE RANGE	N PACKAGE (N16A) (Note 1)		
		SO PACKAGE (M16A)		
8 8-bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$	DAC0808LCN	MC1408P8	DAC0808LCM

Note 1: Devices may be ordered by using either order number.

DAC0830/DAC0832

8-Bit μ P Compatible, Double-Buffered D to A Converters

General Description

The DAC0830 is an advanced CMOS/Si-Cr 8-bit multiplying DAC designed to interface directly with the 8080, 8048, $8085, \mathrm{Z80}{ }^{\circledR}$, and other popular microprocessors. A deposited silicon-chromium R-2R resistor ladder network divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.05% of Full Scale Range maximum linearity error over temperature). The circuit uses CMOS current switches and control logic to achieve low power consumption and low output leakage current errors. Special circuitry provides TTL logic input voltage level compatibility.
Double buffering allows these DACs to output a voltage corresponding to one digital word while holding the next digital word. This permits the simultaneous updating of any number of DACs.

The DAC0830 series are the 8 -bit members of a family of microprocessor-compatible DACs (MICRO-DAC ${ }^{\text {TM }}$).

Features

- Double-buffered, single-buffered or flow-through digital data inputs
- Easy interchange and pin-compatible with 12-bit DAC1230 series
- Direct interface to all popular microprocessors
- Linearity specified with zero and full scale adjust only - NOT BEST STRAIGHT LINE FIT.
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- Can be used in the voltage switching mode
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Operates "STAND ALONE" (without $\mu \mathrm{P}$) if desired
- Available in 20 -pin small-outline or molded chip carrier package

Key Specifications

- Current settling time: $1 \mu \mathrm{~s}$
- Resolution: 8 bits
- Linearity: 8, 9 , or 10 bits (guaranteed over temp.)
- Gain Tempco: $0.0002 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
- Low power dissipation: 20 mW
- Single power supply: 5 to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application

Connection Diagrams (Top Views)

Dual-In-Line and Small-Outline Packages

Molded Chip Carrier Package

National Semiconductor

LM12454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration

General Description

The LM12454, LM12458, and LM12H458 are highly integrated Data Acquisition Systems. Operating on just 5V, they combine a fully-differential self-calibrating (correcting linearity and zero errors) 13 -bit (12 -bit + sign) analog-to-digital converter (ADC) and sample-and-hold (S/H) with extensive analog functions and digital functionality. Up to 32 consecutive conversions, using two's complement format, can be stored in an internal 32-word (16-bit wide) FIFO data buffer. An internal 8-word RAM can store the conversion sequence for up to eight acquisitions through the LM12(H)458's eight-input multiplexer. The LM12454 has a four-channel multiplexer, a differential multiplexer output, and a differential S/H input. The LM12454 and LM12(H)458 can also operate with 8 -bit + sign resolution and in a supervisory "watchdog" mode that compares an input signal against two programmable limits.
Programmable acquisition times and conversion rates are possible through the use of internal clock-driven timers. The reference voltage input can be externally generated for absolute or ratiometric operation or can be derived using the internal 2.5V bandgap reference.
All registers, RAM, and FIFO are directly addressable through the high speed microprocessor interface to either an 8 -bit or 16-bit databus. The LM12454 and LM12(H)458 include a direct memory access (DMA) interface for high-speed conversion data transfer.
An evaluation/interface board is available. Order number LM12458EVAL.
Additional applications information can be found in applications notes AN-906, AN-947 and AN-949.

Key Specifications

(f $\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} ; 8 \mathrm{MHz}, \mathrm{H}$)

- Resolution
- 13-bit conversion time
- 9-bit conversion time
- 13-bit Through-put rate
- Comparison time ("watchdog" mode)
- ILE
- $V_{\text {IN }}$ range
- Power dissipation
- Stand-by mode
- Single supply

Features

- Three operating modes: 12 -bit + sign, 8 -bit + sign, and "watchdog"
- Single-ended or differential inputs
- Built-in Sample-and-Hold and 2.5V bandgap reference
- Instruction RAM and event sequencer
m-channel (LM12(H)458), 4-channel (LM12454) multiplexer
- 32-word conversion FIFO
- Programmable acquisition times and conversion rates
- Self-calibration and diagnostic mode
- 8- or 16-bit wide databus dmicroprocessor or DSP interface

Applications
- Data Logging
- Instrumentation
- Process Control
- Energy Management
- Inertial Guidance

Ordering Information

Guaranteed Clock Freq (min)	Guaranteed Linearity Error (max)	Order Part Number	See NS Package Number
8 MHz	$\pm 1.0 \mathrm{LSB}$	LM12H458CIV	V44A
		LM12H458CIVF	VGZ44A
		LM12H458MEL/883	EL44A
		or 5962-9319502MYA	
5 MHz		LM12454CIV	V44A
		LM12458CIV	V44A
		LM12458CIVF	VGZ44A

Connection Diagrams

* Pin names in () apply to the LM12454 and LM12H454.

Order Number LM12454CIV, LM12458CIV or LM12H458CIV
See NS Package Number V44A
Order Number LM12H458MEL/883 or 5962-9319502MYA See NS Package Number EL44A

Functional Diagrams

LM12L458

12-Bit + Sign Data Acquisition System with Self-Calibration

General Description

The LM12L458 is a highly integrated 3.3V Data Acquisition System. It combines a fully-differential self-calibrating (correcting linearity and zero errors) 13-bit (12-bit + sign) analog-to-digital converter (ADC) and sample-and-hold (S/H) with extensive analog functions and digital functionality. Up to 32 consecutive conversions, using two's complement format, can be stored in an internal 32-word (16-bit wide) FIFO data buffer. An internal 8-word RAM can store the conversion sequence for up to eight acquisitions through the LM12L-458's eight-input multiplexer. The LM12L458 can also operate with 8 -bit + sign resolution and in a supervisory "watchdog" mode that compares an input signal against two programmable limits. Programmable acquisition times and conversion rates are possible through the use of internal clock-driven timers.
All registers, RAM, and FIFO are directly addressable through the high speed microprocessor interface to either an 8 -bit or 16 -bit databus. The LM12L458 includes a direct memory access (DMA) interface for high-speed conversion data transfer.

Applications

- Data Logging
- Process Control
- Energy Management
- Medical Instrumentation

Key Specifications

($\mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$)

- Resolution 12-bit + sign or 8-bit + sign
- 13-bit conversion time $7.3 \mu \mathrm{~s}$
- 9-bit conversion time
$3.5 \mu \mathrm{~s}$
- 13-bit Through-put rate

106k samples/s (min)

- Comparison time ("watchdog" mode) $1.8 \mu \mathrm{~s}$ (max)
- ILE ± 1 LSB (max)
- $\mathrm{V}_{\text {IN }}$ range

GND to $\mathrm{V}_{\mathrm{A}}{ }^{+}$

- Power dissipation

15 mW (max)

- Stand-by mode
$5 \mu \mathrm{~W}$ (typ)
- Single supply

3 V to 5.5 V

Features

- Three operating modes: 12-bit + sign, 8-bit + sign, and "watchdog"
- Single-ended or differential inputs
- Built-in Sample-and-Hold
- Instruction RAM and event sequencer
- 8-channel multiplexer
- 32-word conversion FIFO
- Programmable acquisition times and conversion rates
- Self-calibration and diagnostic mode
- 8 - or 16 -bit wide databus microprocessor or DSP interface
- CMOS compatible I/O

Connection Diagram

*Pin names in () apply to the LM12L454.

Functional Diagram
LM12L458

Ordering Information

Guaranteed Clock Freq (min)	Guaranteed Linearity Error (max)	Order Part Number	See NS Package Number
6 MHz	$\pm 1.0 \mathrm{LSB}$	LM12L458CIV	V44A

N

Section 7

Flat Panel Display Circuits

Section 7 Contents

Flat Panel Display (FPD) Link and LDI Selection Guide 7-3
DS90C363A/DS90CF363A +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz 7-5
DS90CF363 +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link—65 MHz 7-6
DS90C363/DS90CF364 +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link—65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link- 65 MHz 7-7
DS90C383A/DS90CF383A +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link- 65 MHz 7-9
DS90CF383 +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz 7-10
DS90C383/DS90CF384 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link- $65 \mathrm{MHz},+3.3 \mathrm{~V}$ LVDS Receiver 24-Bit Flat Panel Display (FPD) Link- 65 MHz 7-11
DS90CF384A/DS90CF364A +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link- $65 \mathrm{MHz},+3.3 \mathrm{~V}$ LVDS Receiver 18-Bit Flat Panel Display (FPD) Link- 65 MHz 7-13
DS90C385/DS90C365 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link - $85 \mathrm{MHz},+3.3 V$ Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link- 85 MHz 7-14
DS90CF386/DS90CF366 +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link- $85 \mathrm{MHz},+3.3 \mathrm{~V}$ LVDS Receiver 18-Bit Flat Panel Display (FPD) Link- 85 MHz 7-15
DS90C387/DS90CF388 Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA. 7-16
DS90C387A/DS90CF388A Dual Pixel LVDS Display Interface/FPD-Link 7-18
DS90CF561/DS90CF562 LVDS 18-Bit Color Flat Panel Display (FPD) Link 7-20
DS90CR561/DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link 7-22
DS90CF563/DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link—65 MHz 7-24
DS90CF581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link 7-26
DS90CR581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link 7-28
DS90CF583/DS90CF584 LVDS 24-Bit Color Flat Panel Display (FPD) Link—65 MHz 7-30
DS90CR583/DS90CR584 LVDS 24-Bit Color Flat Panel Display (FPD) Link—65 MHz. 7-32
FPD85310 Panel Timing Controller 7-34
FPD87310 Universal Interface XGA Panel Timing Controller with RSDS (Reduced Swing Differential Signaling) and FPD-Link 7-35
LMC6009 9 Channel Buffer Amplifier for TFT-LCD 7-36

National Semiconductor

Flat Panel Display (FPD) Link and LDI Selection Guide

Flat Panel Display Products

Part Number	Transmitter/ Receiver	Strobe Edge	Number of Bits	Page Number
+3.3V/112 MHz Dual Pixel LDI Family				
DS90C387	Transmitter	Programmable	48 RGB	7-16
DS90C387A	Transmitter	Programmable	48 RGB	7-16
DS90CF388	Receiver	Falling	48 RGB	7-16
DS90CF388A	Receiver	Falling	48 RGB	7-18
+3.3V/85 MHz FPD-Link Family				
DS90C385	Transmitter	Programmable	24 RGB	7-14
DS90CF386	Receiver	Falling	24 RGB	7-15
DS90C365	Transmitter	Programmable	18 RGB	7-14
DS90CF366	Receiver	Falling	18 RGB	7-14
+3.3V/65 MHz FPD-Link Family				
DS90C383	Transmitter	Programmable	24 RGB	7-11
DS90C383A	Transmitter	Programmable	24 RGB	7-9
DS90CF383	Transmitter	Falling	24 RGB	7-10
DS90CF383A	Transmitter	Falling	24 RGB	7-9
DS90CF384	Receiver	Falling	24 RGB	7-11
DS90CF384A	Receiver	Falling	24 RGB	7-13
DS90C363	Transmitter	Programmable	18 RGB	7-7
DS90C363A	Transmitter	Programmable	18 RGB	7-5
DS90CF363	Transmitter	Falling	18 RGB	7-6
DS90CF363A	Transmitter	Falling	18 RGB	7-5
DS90CF364	Receiver	Falling	18 RGB	7-7
DS90CF364A	Receiver	Falling	18 RGB	7-13
+5V/65 MHz FPD-Link Family				
DS90CF583	Transmitter	Falling	24 RGB	7-30
DS90CF584	Receiver	Falling	24 RGB	7-30
DS90CR583	Transmitter	Rising	24 RGB	7-30
DS90CR584	Receiver	Rising	24 RGB	7-30
DS90CF563	Transmitter	Falling	18 RGB	7-24
DS90CF564	Receiver	Falling	18 RGB	7-24
+5V/40 MHz FPD-Link Family				
DS90CF581	Transmitter	Falling	24 RGB	7-26
DS90CR581	Transmitter	Rising	24 RGB	7-28
DS90CF561	Transmitter	Falling	18 RGB	7-20
DS90CF562	Receiver	Falling	18 RGB	7-20
DS90CR561	Transmitter	Rising	18 RGB	7-22
DS90CR562	Receiver	Rising	18 RGB	7-22

Panel Timing Controller Products

Part Number	Function	Pixel Clock	Graphic Bits	Page Number
FPD85310	Panel Timing Controller	$20-65 \mathrm{MHz}$	8	$7-34$
FPD87310	Panel Timing Controller	$20-67 \mathrm{MHz}$	8	$7-35$

FPD-Link Application Notes

AN-XXXX	Title
AN-971	An Overview of LVDS Technology
AN-1032	An Introduction to FPD Link
AN-1056	STN Application Using FPD-Link
AN-1059	High Speed Transmission with LVDS Devices
AN-1084	Parallel Application of High Speed Links
AN-1085	FPD-Link PCB and Interconnect Design-In Guidelines
AN-1127	LVDS Display Interface (LDI) TFT Data Mapping for Interoperability with

Please check website for current listing of application notes at www.national.com/appinfo/fpd.

FPD Link Evaluation Boards

Evaluation boards are available for a nominal charge that demonstrate the basic operation of the FPD Link chipsets. The evaluation boards can be ordered through National's distributors and come assembled with a transmitter board, receiver board, ribbon cable, and instructions.

ORDER NUMBERS
FLink5v8bt-65
FLink3v8bt-65
FLink3v8bt-85
LDI3v48bt-112
LDI3v check w
Please check website for latest availability, www.national.com/appinfo/fpd.

DS90C363A/DS90CF363A

+3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz
 +3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz

1.0 General Description

The DS90C363A/DS90CF363A transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. At a transmit clock frequency of $65 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 170 Mbytes/ sec. The DS90C363A transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. The DS90CF363A is fixed as a Falling edge strobe transmitter. A Rising edge or Falling edge strobe transmitter will interoperate with a Falling edge strobe Receiver (DS90CF364) without any translation logic.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

2.0 Features

- 20 to 65 MHz shift clock support
- Rejects $> \pm 3$ ns Jitter from VGA chip with less than 225ps output Jitter @65MHz (TJCC)
- Best-in-Class Set \& Hold Times on TxINPUTs
- Tx power consumption <130 mW (typ) @65MHz Grayscale
- >50\% Less Power Dissipation than BiCMOS Alternatives
- Tx Power-down mode $<200 \mu \mathrm{~W}$ (max)
- ESD rating >7 kV (HBM), >500V (EIAJ)
- Supports VGA, SVGA, XGA and Dual Pixel SXGA.
- Narrow bus reduces cable size and cost
- Up to 1.3 Gbps throughput

■ Up to 170 Megabytes/sec bandwidth

- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 48-lead TSSOP package
- Improved replacement for:

SN75LVDS85 - DS90C363A
SN75LVDS84 - DS90CF363A

3.0 Block Diagrams

DS90CF363

+3.3V LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz

General Description

The DS90CF363 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. At a transmit clock frequency of $65 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is $170 \mathrm{Mbytes} / \mathrm{sec}$.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- Single 3.3V supply
- Chipset (Tx + Rx) power consumption < 250 mW (typ)
- Power-down mode ($<0.5 \mathrm{~mW}$ total)
- Single pixel per clock XGA (1024x768) ready
- Supports VGA, SVGA, XGA and higher addressability.

■ Up to 170 Megabytes/sec bandwidth

- Up to 1.3 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe Transmitter
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating $>7 \mathrm{kV}$
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagram

Order Number DS90CF363MTD See NS Package Number MTD48

National Semiconductor

DS90C363/DS90CF364

+3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link—65 MHz

General Description

The DS90C363 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF364 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $65 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is $170 \mathrm{Mbytes} / \mathrm{sec}$. The Transmitter is offered with programmable edge data strobes for convenient interface with a variety of graphics controllers. The Transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge Transmitter will interoperate with a Falling edge Receiver (DS90CF364) without any translation logic.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- Programmable Transmitter (DS90C363) strobe select (Rising or Falling edge strobe)
- Single 3.3V supply
- Chipset ($\mathrm{Tx}+\mathrm{Rx}$) power consumption $<250 \mathrm{~mW}$ (typ)
- Power-down mode (< 0.5 mW total)
- Single pixel per clock XGA (1024x768) ready
- Supports VGA, SVGA, XGA and higher addressability.
- Up to 170 Megabyte/sec bandwidth
- Up to 1.3 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe Receiver
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating $>7 \mathrm{kV}$
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagrams

Block Diagrams（Continued）

Order Number DS90C363MTD
See NS Package Number MTD48

Order Number DS90CF364MTD
See NS Package Number MTD48

DS90C383A/DS90CF383A

+3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz +3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz

1.0 General Description

The DS90C383A/DS90CF383A transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of $65 \mathrm{MHz}, 24$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 227 Mbytes/ sec. The DS90C383A transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. The DS90CF383A is fixed as a Falling edge strobe transmitter. A Rising edge or Falling edge strobe transmitter will interoperate with a Falling edge strobe Receiver (DS90CF384) without any translation logic.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

2.0 Features

- 20 to 65 MHz shift clock support
- Rejects $> \pm 3$ ns Jitter from VGA chip with less than 225ps output Jitter @65MHz (TJCC)
- Best-in-Class Set \& Hold Times on TxINPUTs
- Tx power consumption <130 mW (typ) @65MHz Grayscale
- $>50 \%$ Less Power Dissipation than BiCMOS Alternatives
- Tx Power-down mode $<200 \mu \mathrm{~W}$ (max)
- ESD rating $>7 \mathrm{kV}$ (HBM), $>500 \mathrm{~V}$ (EIAJ)
- Supports VGA, SVGA, XGA and Dual Pixel SXGA.
- Narrow bus reduces cable size and cost
- Up to 1.8 Gbps throughput
- Up to 227 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead TSSOP package
- Improved replacement for:

SN75LVDS83 - DS90C383A
SN75LVDS81 - DS90CF383A

3.0 Block Diagrams

Order Number DS90C383AMTD or DS90CF383AMTD See NS Package Number MTD56

DS90CF383

+3.3V LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz

General Description

The DS90CF383 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of $65 \mathrm{MHz}, 24$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is 227 Mbytes/sec.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- Single 3.3 V supply
- Chipset ($T x+R x$) power consumption $<250 \mathrm{~mW}$ (typ)
- Power-down mode ($<0.5 \mathrm{~mW}$ total)
- Single pixel per clock XGA (1024×768) ready
- Supports VGA, SVGA, XGA and higher addressability.
- Up to 227 Megabytes/sec bandwidth
- Up to 1.8 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 56 -lead TSSOP package
- Falling edge data strobe Transmitter
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating $>7 \mathrm{kV}$
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagram

DS90C383/DS90CF384

+3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link—65 MHz

General Description

The DS90C383 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CF384 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $65 \mathrm{MHz}, 24$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is 227 Mbytes/sec. The transmitter is offered with programmable edge data strobes for convenient interface with a variety of graphics controllers. The transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge transmitter will inter-operate with a Falling edge receiver (DS90CF384) without any translation logic. The DS90CF384 is also offered in 64 ball, 0.8 mm fine pitch ball grid array(FBGA) package which provides a 44% reduction in PCB footprint (available Q3, 1999).
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- Programmable transmitter (DS90C383) strobe select (Rising or Falling edge strobe)
- Single 3.3 V supply
- Chipset ($\mathrm{Tx}+\mathrm{Rx}$) power consumption $<250 \mathrm{~mW}$ (typ)
- Power-down mode ($<0.5 \mathrm{~mW}$ total)
- Single pixel per clock XGA (1024x768) ready
- Supports VGA, SVGA, XGA and higher addressability.
- Up to 227 Megabytes/sec bandwidth
- Up to 1.8 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 56 -lead TSSOP package.
- DS90CF384 also available in 64 ball, 0.8 mm fine pitch ball grid array(FBGA) package
- Falling edge data strobe Receiver
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating $>7 \mathrm{kV}$
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagrams

Block Diagrams (Continued)

Order Number DS90CF384MTD or DS90CF384SLC See NS Package Number MTD56 or SLC64A

DS90CF384A/DS90CF364A

+3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-65 MHz

General Description

The DS90CF384A receiver converts the four LVDS data streams (Up to 1.8 Gbps throughput or 227 Megabytes/sec bandwidth) back into parallel 28 bits of CMOS/TTL data (24 bits of RGB and 4 bits of Hsync, Vsync, DE and CNTL). Also available is the DS90CF364A that converts the three LVDS data streams (Up to 1.3 Gbps throughput or 170 Megabytes/ sec bandwidth) back into parallel 21 bits of CMOS/TTL data (18 bits of RGB and 3 bits of Hsync, Vsync and DE). Both Receivers' outputs are Falling edge strobe. A Rising edge or Falling edge strobe transmitter (DS90C383A/DS90C363A) will interoperate with a Falling edge strobe Receiver without any translation logic.
The DS90CF384A / DS90CF364A devices are enhanced over prior generation receivers and provided a wider data valid time on the receiver output.
The DS90CF384A is also offered in a 64 ball, 0.8 mm fine pitch ball grid array (FBGA) package which provides a 44% reduction in PCB footprint compared to the 56L TSSOP package.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on RxOUTPUTs
- Rx power consumption <142 mW (typ) @65MHz Grayscale
- Rx Power-down mode $<200 \mu \mathrm{~W}$ (max)
- ESD rating $>7 \mathrm{kV}$ (HBM), $>700 \mathrm{~V}$ (EIAJ)
- Supports VGA, SVGA, XGA and Dual Pixel SXGA.
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56 -lead or 48 -lead TSSOP package
- DS90CF384A is also available in a 64 ball, 0.8 mm fine pitch ball grid array (FBGA) package

Block Diagrams

Order Number DS90CF384AMTD or DS90CF384ASLC See NS Package Number MTD56 or SLC64A

Order Number DS90CF364AMTD
See NS Package Number MTD48

DS90C385/DS90C365

+3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-85 MHz, +3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link-85 MHz

1.0 General Description

The DS90C385 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of $85 \mathrm{MHz}, 24$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHz clock, the data throughput is 297.5 Mbytes $/ \mathrm{sec}$. Also available is the DS90C365 that converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. Both transmitters can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge or Falling edge strobe transmitter will interoperate with a Falling edge strobe Receiver (DS90CF386/ DS90CF366) without any translation logic.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

2.0 Features

- 20 to 85 MHz shift clock support
- Best-in-Class Set \& Hold Times on TxiNPUTs
- Tx power consumption <130 mW (typ) @85MHz Grayscale
- Tx Power-down mode $<200 \mu \mathrm{~W}$ (max)
- Supports VGA, SVGA, XGA and Single/Dual Pixel SXGA.
- Narrow bus reduces cable size and cost
- Up to 2.38 Gbps throughput
- Up to 297.5 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56 -lead or 48 -lead TSSOP package

3.0 Block Diagrams

DS100868-1
Order Number DS90C385MTD See NS Package Number MTD56

Order Number DS90C365MTD See NS Package Number MTD48

DS90CF386/DS90CF366

+3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link—85 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link-85 MHz

1.0 General Description

The DS90CF386 receiver converts the four LVDS data streams (Up to 2.38 Gbps throughput or 297.5 Megabytes/ sec bandwidth) back into parallel 28 bits of CMOS/TTL data (24 bits of RGB and 4 bits of Hsync, Vsync, DE and CNTL). Also available is the DS90CF366 that converts the three LVDS data streams (Up to 1.785 Gbps throughput or 223 Megabytes $/ \mathrm{sec}$ bandwidth) back into parallel 21 bits of CMOS/TTL data (18 bits of RGB and 3 bits of Hsync, Vsync and DE). Both Receivers' outputs are Falling edge strobe. A Rising edge or Falling edge strobe transmitter (DS90C385/ DS90C365) will interoperate with a Falling edge strobe Receiver without any translation logic.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

2.0 Features

- 20 to 85 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on RxOUTPUTs
- Rx power consumption <250 mW (typ) @85MHz Grayscale
- Rx Power-down mode <200 W (max)
- Supports VGA, SVGA, XGA and Single/Dual Pixel SXGA.
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56 -lead or 48 -lead TSSOP package

3.0 Block Diagrams

National Semiconductor

DS90C387/DS90CF388 Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA

General Description

The DS90C387/DS90CF388 transmitter/receiver pair is designed to support dual pixel data transmission between Host and Flat Panel Display up to QXGA resolutions. The transmitter converts 48 bits (Dual Pixel 24-bit color) of CMOS/TTL data into 8 LVDS (Low Voltage Differential Signalling) data streams. Control signals (VSYNC, HSYNC, DE and two user-defined signals) are sent during blanking intervals. At a maximum dual pixel rate of 112 MHz , LVDS data line speed is 672 Mbps , providing a total throughput of 5.38 Gbps (672 Megabytes per second). Two other modes are also supported. 24-bit color data (single pixel) can be clocked into the transmitter at a maximum rate of 170 MHz . In this mode, the transmitter provides single-to-dual pixel conversion, and the output LVDS clock rate is 85 MHz maximum. The third mode provides inter-operability with FPD-Link devices.
The LDI chipset is improved over prior generations of FPD-Link devices and offers higher bandwidth support and longer cable drive with three areas of enhancement. To increase bandwidth, the maximum pixel clock rate is increased to 112 (170) MHz and 8 serialized LVDS outputs are provided. Cable drive is enhanced with a user selectable pre-emphasis feature that provides additional output current during transitions to counteract cable loading effects. DC balancing on a cycle-to-cycle basis, is also provided to reduce ISI (Inter-Symbol Interference). With pre-emphasis and DC balancing, a low distortion eye-pattern is provided at the receiver end of the cable. A cable deskew capability has been added to deskew long cables of pair-to-pair skew of up to +/-1 LVDS data bit time. These three enhancements allow cables 5 to 10+ meters in length to be driven.
This chipset is an ideal means to solve EMI and cable size problems for high-resolution flat panel applications. It pro-
vides a reliable interface based on LVDS technology that delivers the bandwidth needed for high-resolution panels while maximizing bit times, and keeping clock rates low to reduce EMI and shielding requirements. For more details, please refer to the "Applications Information" section of this datasheet.

Features

- Complies with OpenLDI specification for digital display interfaces
- 32.5 to $112 / 170 \mathrm{MHz}$ clock support
- Supports SVGA through QXGA panel resolutions
- Drives long, low cost cables
- Up to 5.38Gbps bandwidth
- Pre-emphasis reduces cable loading effects
- DC balance data transmission provided by transmitter reduces ISI distortion
- Deskews +/-1 LVDS data bit time of pair-to-pair skew at receiver inputs; intra-pair skew tolerance of 300ps
- Dual pixel architecture supports interface to GUI and timing controller; optional single pixel transmitter inputs support single pixel GUI interface
- Transmitter rejects cycle-to-cycle jitter
- 5V tolerant on data and control input pins
- Programmable transmitter data and control strobe select (rising or falling edge strobe)
- Backward compatible configuration select with FPD-Link
- Optional second LVDS clock for backward compatibility w/ FPD-Link
- Support for two additional user-defined control signals in DC Balanced mode
- Compatible with TIA/EIA - LVDS Standard

Generalized Block Diagram

Transmitter Block Diagram

Receiver Block Diagram

DS90C387A/DS90CF388A

Dual Pixel LVDS Display Interface / FPD-Link

General Description

The DS90C387A/DS90CF388A transmitter/receiver pair is designed to support dual pixel data transmission between Host and Flat Panel Display up to QXGA resolutions. The transmitter converts 48 bits (Dual Pixel 24-bit color) of CMOS/TTL data and 3 control bits into 8 LVDS (Low Voltage Differential Signalling) data streams. At a maximum dual pixel rate of 112 MHz , LVDS data line speed is 784 Mbps , providing a total throughput of 5.7 Gbps (714 Megabytes per second).
The LDI chipset is improved over prior generations of FPD-Link devices and offers higher bandwidth support and longer cable drive. To increase bandwidth, the maximum pixel clock rate is increased to 112 MHz and 8 serialized LVDS outputs are provided. Cable drive is enhanced with a user selectable pre-emphasis feature that provides additional output current during transitions to counteract cable loading effects.
The DS90C387A transmitter provides a second LVDS output clock. Both LVDS clocks are identical. This feature supports backward compatibility with the previous generation of FPD-Link Receivers - the second clock allows the transmitter to interface to panels using a 'dual pixel' configuration of two 24-bit or 18-bit FPD-Link receivers.

This chipset is an ideal means to solve EMI and cable size problems for high-resolution flat panel applications. It provides a reliable interface based on LVDS technology that delivers the bandwidth needed for high-resolution panels while maximizing bit times, and keeping clock rates low to reduce EMI and shielding requirements. For more details, please refer to the "Applications Information" section of this datasheet.

Features

- Supports SVGA through QXGA panel resolutions
- 32.5 to $112 / 170 \mathrm{MHz}$ clock support
- Drives long, low cost cables
- Up to 5.7 Gbps bandwidth
- Pre-emphasis reduces cable loading effects
- Dual pixel architecture supports interface to GUI and timing controller; optional single pixel transmitter inputs support single pixel GUI interface
- Transmitter rejects cycle-to-cycle jitter
- 5V tolerant on data and control input pins
- Programmable transmitter data and control strobe select (rising or falling edge strobe)
- Backward compatible with FPD-Link
- Compatible with TIA/EIA-LVDS Standard

Generalized Block Diagrams

Generalized Transmitter Block Diagram

Generalized Receiver Block Diagram

DS90CF561/DS90CF562
 LVDS 18-Bit Color Flat Panel Display (FPD) Link

General Description

The DS90CF561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $40 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Block Diagrams

Order Number DS90CF561MTD See NS Package Number MTD48

Order Number DS90CF562MTD See NS Package Number MTD48

Connection Diagrams

National Semiconductor

DS90CR561/DS90CR562

LVDS 18-Bit Color Flat Panel Display (FPD) Link

General Description

The DS90CR561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $40 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power-down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Block Diagrams

APPLICATION

Connection Diagrams

DS90CR562

DS90CF563／DS90CF564

LVDS 18－Bit Color Flat Panel Display（FPD）Link－ 65 MHz

General Description

The DS90CF563 transmitter converts 21 bits of CMOS／TTL data into three LVDS（Low Voltage Differential Signaling） data streams．A phase－locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link．Every cycle of the transmit clock 21 bits of input data are sampled and transmitted．The DS90CF564 receiver converts the LVDS data streams back into 21 bits of CMOS／TTL data．At a transmit clock frequency of $65 \mathrm{MHz}, 18$ bits of RGB data and 3 bits of LCD timing and control data（FPLINE， FPFRAME，DRDY）are transmitted at a rate of 455 Mbps per LVDS data channel．Using a 65 MHz clock，the data through－ put is 171 Mbytes per second．These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers．
This chipset is an ideal means to solve EMI and cable size problems associated with wide，high speed TTL interfaces．

Features

－ 20 to 65 MHz shift clk support
－Up to 171 Mbytes／s bandwidth
－Cable size is reduced to save cost
－ 290 mV swing LVDS devices for low EMI
－Low power CMOS design（＜ 550 mW typ）
－Power－down mode saves power（ $<0.25 \mathrm{~mW}$ ）
－PLL requires no external components
－Low profile 48－lead TSSOP package
－Falling edge data strobe
－Compatible with TIA／EIA－644 LVDS standard
－Single pixel per clock XGA（ 1024×768 ）
－Supports VGA，SVGA，XGA and higher
－1．3 Gbps throughput

Block Diagrams

Block Diagrams (Continued)

DS90CF581

LVDS Transmitter 24-Bit Color Flat Panel Display (FPD)

 Link
General Description

The DS9GCF581 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of $40 \mathrm{MHz}, 24$ bits of RGB data and 4 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY, CNTL) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 140 Megabytes per second. This transmitter is intended to interface to any of the FPD Link receivers.
The chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 140 Megabyte/sec Bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power-down mode
- PLL requires no external components
- Low profile 56 -lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Block Diagrams

Order Number DS90CF581MTD See NS Package Number MTD56

Connection Diagram

DS90CR581

LVDS Transmitter 24-Bit Color Flat Panel Display (FPD)

Link

General Description

The DS90CR581 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of $40 \mathrm{MHz}, 24$ bits of RGB data and 4 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY, CNTL) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 140 Megabytes per second. This transmitter is intended to interface to any of the FPD Link receivers.
The chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 140 Megabyte/sec Bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power down mode
- PLL requires no external components
- Low profile 56-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Block Diagrams

Connection Diagram

National Semiconductor

DS90CF583/DS90CF584 LVDS 24-Bit Color Flat Panel Display (FPD) Link— 65 MHz

General Description

The DS90CF583 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CF584 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $65 \mathrm{MHz}, 24$ bits of RGB data and 4 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY, CONTROL) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 227 Mbytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clk support
- Up to 227 Mbytes/s bandwidth
- Cable size is reduced to save cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design (< 550 mW typ)
- Power-down mode saves power ($<0.25 \mathrm{~mW}$)
- PLL requires no external components
- Low profile 56-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Single pixel per clock XGA (1024 x 768)
- Supports VGA, SVGA, XGA and higher
- 1.8 Gbps throughput

Block Diagrams

Order Number DS90CF583MTD See NS Package Number MTD56

Order Number DS90CF584MTD See NS Package Number MTD56

Block Diagrams (Continued)

DS90CR583/DS90CR584

LVDS 24-Bit Color Flat Panel Display (FPD) Link— 65 MHz

General Description

The DS90CR583 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR584 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $65 \mathrm{MHz}, 24$ bits of RGB data and 4 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY, CONTROL) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 227 Mbytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clk support
- Up to 227 Mbytes/s bandwidth
- Cable size is reduced to save cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design (< 550 mW typ)
- Power-down mode saves power ($<0.25 \mathrm{~mW}$)
- PLL requires no external components
- Low profile 56-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Single pixel per clock XGA (1024×768)
- Supports VGA, SVGA, XGA and higher
- 1.8 Gbps throughput

Block Diagrams

Order Number DS90CR584MTD See NS Package Number MTD56

Block Diagrams (Continued)

FPD85310

Panel Timing Controller

General Description

The FPD85310 Panel Timing Controller is an integrated FPD-Link based TFT-LCD timing controller. It resides on the flat panel display and provides the interface signal routing and timing control between graphics or video controllers and a TFT-LCD system. FPD-Link is a low power, low electromagnetic interference interface used between this controller and the host system.
The FPD85310 chip links the panel's system interface to the display via a ten wire LVDS data bus. That data is then routed to the source and gate display drivers. XGA and SVGA resolutions are supported.
The FPD85310 is programmable via an optional external serial EEPROM. Reserved space in the EEPROM is available for display identification information. The system can access the EEPROM to read the display identification data or program initialization values used by the FPD85310.

Features

- FPD-Link System Interface utilizes Low Voltage Differential Signaling (LVDS).
- System programmable via EEPROM
- Suitable for notebook and monitor applications
- 8-bit or 6-bit system interface
- XGA or SVGA capable
- Supports single or dual port column drivers
- Programmable outputs provide customized control for standard or in-house column drivers and row drivers
- Fail-safe operation prevents panel damage with system clock failure
- Programmable skew rate controlled outputs on CD interface for reduced EMI
- Polarity pin reduces CD data bus switching
- CMOS circuitry operates from a 3.3 V supply

System Diagram

PRELIMINARY
National Semiconductor

FPD87310

Universal Interface XGA Panel Timing Controller with RSDS ${ }^{\text {TM }}$ (Reduced Swing Differential Signaling) and FPD-Link

General Description

The FPD87310 Panel Timing Controller is an integrated FPD-Link + RSDS + TFT-LCD Timing Controller. It resides on the Flat Panel Display and provides the interface signal routing and Timing Control between Graphics or Video Controllers and a TFT-LCD system. FPD-Link, a low power, low EMI (ElectroMagnetic Interference) interface is used between this Controller and the Host system.
A RSDS (Reduced Swing Differential Signaling) Column Driver interface is used between the Timing Controller and the Column Drivers.
Programmable, General Purpose Outputs provide Row and Column Driver control. The FPD87310 is configured via metal mask initialization value or an optional external serial EEPROM. Reserved space in the EEPROM is available for display identification information. The system can access the EEPROM to read the display identification data or program initialization values used by the FPD87310.
This single 9 -bit+CLK differential bus conveys the 18 bits color data for XGA panels at $130 \mathrm{Mb} / \mathrm{s}$ when using VESA 60 Hz standard timing.

Features

- RSDS (Reduced Swing Differential Signaling) Column Driver bus for low power and reduced EMI
- Drives RSDS Column Drivers at $130 \mathrm{Mb} / \mathrm{s}$ with a 65 MHz clock
- 6- or 8-bit LVDS Video System Interface (FPD-Link)
- 10 General Purpose Outputs for Column/Row Drivers
- Optional EEPROM programming allows fine tuning in development and production environments
- Selectable dual initialization value sets to share parts for the different model panel module
- Ability to drive XGA/SVGA TFT-LCD Systems
- Narrow 9-bit+CLK differential Column Driver Bus minimizes width of Source PCB
- CMOS circuitry operates from a 3.3 V supply
- Supports Graphics Controllers with spread spectrum interface featurefor lower EMI

System Diagram

LMC6009

9 Channel Buffer Amplifier for TFT-LCD

General Description

The LMC6009 is a CMOS integrated circuit that buffers 9 reference voltages for gamma correction in a Thin Film Transistor Liquid Crystal Display (TFT-LCD). Guaranteed to operate at both 3.3 V and 5 V supplies, this integrated circuit contains nine, independent unity gain buffers that can source 130 mA into a capacitive load without oscillation.
The LMC6009 is useful for buffering gamma voltages into column drivers that employ the resistor-divider architecture. High output current capability and fast settling characteristics of this device improve display quality by minimizing rise time errors at the outputs of the column driver. The integration of nine buffers and a multiplexer eliminates the need for discrete buffers and a separate multiplexer (MUX) chip on the panel.
The LMC6009 is available in 48 -pin surface mount TSSOP.

Features

- Number of inputs 18
- 3.3 V and 5 V operation
- Supply current
3.5 mA
- Settling time $3 \mu \mathrm{~s}$
- A/B channel inputs for asymmetrical Gamma
- Number of outputs
- Number of control inputs 1
- Built-in thermal shutdown protection

Applications

- VGA/SVGA TFT-LCD drive circuits
- Electronic Notebooks
- Electronic Games
- Personal Communication Devices
- Personal Digital Assistants (PDA)

Application in VGA/SVGA TFT-LCD

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
48-pin TSSOP	$-20^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$		MTD48
	LMC6009MT		
	LMC6009MTX	Tape and Reel	

N

Section 8

Interface - Data Transmission Circuits
Interface-Data Transmission Selection Guide 8-5
TIA/EIA-232 (RS-232)
DS1488 Quad Line Driver 8-9
DS14C88 Quad CMOS Line Driver 8-10
DS1489/DS1489A Quad Line Receiver 8-11
DS14C89A Quad CMOS Receiver 8-13
DS75150 Dual Line Driver. 8-14
DS75154 Quad Line Receiver 8-15
DS9627 Dual Line Receiver 8-16
DS14C232 Low Power +5V Powered TIA/EIA-232 Dual Driver/Receiver 8-17
DS14C238 Single Supply TIA/EIA-232 4×4 Driver/Receiver 8-18
DS14C241 Single Supply TIA/EIA-232 4×5 Driver/Receiver 8-19
DS14C335 +3.3V Supply TIA/EIA-232 3×5 Driver/Receiver 8-20
DS14C535 +5V Supply EIA/TIA-232 3×5 Driver/Receiver 8-21
DS14185 EIA/TIA-232 3 Driver $\times 5$ Receiver 8-22
DS14196 EIA/TIA-232 5 Driver x 3 Receiver 8-23
DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver 8-24
TIA/EIA-422/423 (RS-422/423)
DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE Outputs 8-25
DS26C31T/DS26C31M CMOS Quad TRI-STATE Differential Line Driver 8-26
DS26LV31T 3V Enhanced CMOS Quad Differential Line Driver 8-27
DS26F31M Quad High Speed Differential Line Drivers 8-28
DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver 8-29
DS26C32AT/DS26C32AM Quad Differential Line Receiver 8-30
DS26LV32AT 3V Enhanced CMOS Quad Differential Line Receiver. 8-31
DS26F32M Quad Differential Line Receivers 8-32
DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers 8-33
DS34C86T Quad CMOS Differential Line Receiver 8-35
DS34LV86T 3V Enhanced CMOS Quad Differential Line Receiver. 8-36
DS3486 Quad RS-422, RS-423 Line Receiver 8-37
DS34C87T CMOS Quad TRI-STATE Differential Line Driver 8-38
DS34LV87T Enhanced CMOS Quad Differential Line Driver 8-39
DS3487 Quad TRI-STATE Line Driver 8-40
DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver 8-41
DS78C120 Dual CMOS Compatible Differential Line Receiver 8-42
DS78LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe) 8-43
DS8921/DS8921A/DS8921AT Differential Line Driver and Receiver Pair 8-44
DS89C21 Differential CMOS Line Driver and Receiver Pair 8-45
DS8922/DS8922A/DS8923A TRI-STATE RS-422 Dual Differential Line Driver and Receiver Pairs. 8-46
DS8925 LocalTalk Dual Driver/Triple Receiver 8-48
DS89C386 Twelve Channel CMOS Differential Line Receiver. 8-49
DS89C387 Twelve Channel CMOS Differential Line Driver 8-50
DS9636A RS-423 Dual Programmable Slew Rate Line Driver 8-51
DS9637A Dual Differential Line Receiver 8-52
DS9638 RS-422 Dual High Speed Differential Line Driver 8-53
BACKPLANE TRANSCEIVER LOGIC (BTL)
DS3883A BTL 9-Bit Data Transceiver 8-54
DS3884A BTL Handshake Transceiver 8-56
DS3886A BTL 9-Bit Latching Data Transceiver 8-58
DS38C86A CMOS BTL 9-Bit Latching Data Transceiver 8-60
DS3893A BTL TURBOTRANSCEIVER. 8-62
DS3896/DS3897 BTL Trapezoidal Transceivers 8-63
GENERAL PURPOSE DRIVERS/RECEIVERS
DS75110A Dual Line Drivers. 8-64
DS7830 Dual Differential Line Driver 8-65
DS7831/DS8832 Dual TRI-STATE Line Driver 8-66
DS1603 TRI-STATE Dual Receiver. 8-68
DS3650 Quad Differential Line Receivers 8-69
DS75107 Dual Line Receiver 8-70
DS7820A/DS8820A Dual Line Receiver 8-71
DS9622 Dual Line Receiver 8-72
DS3662 Quad High Speed Trapezoidal Bus Transceiver 8-73
DS3862 Octal High Speed Trapezoidal Bus Transceiver 8-74
DS75160A/DS75161A IEEE-488 GPIB Transceivers 8-75
DS8641 Quad Unified Bus Transceiver 8-76
DS8838 Quad Unified Bus Transceiver 8-78
DS1776 PI-Bus Transceiver 8-80
DS26S10 Quad Bus Transceiver 8-81
TIA/EIA-485 (RS-485)
DS1487 Low Power RS-485 ¼ Unit Load Multipoint Transceiver 8-82
DS16F95, DS36F95 EIA-485/EIA-422A Differential Bus Transceiver 8-83
DS36276 FAILSAFE Multipoint Transceiver 8-84
DS36277 Dominant Mode Multipoint Transceiver 8-85
DS3695/DS3695T/DS3696/DS3697 Multipoint RS485/RS422 Transceivers/Repeaters 8-86
DS36950 Quad Differential Bus Transceiver 8-87
DS36954 Quad Differential Bus Transceiver 8-88
DS3695A/DS3695AT/DS3696A Multipoint RS485/RS422 Transceivers. 8-89
DS36C278 Low Power Multipoint EIA-RS-485 Transceiver 8-90
DS36C279 Low Power EIA-RS-485 Transceiver with Sleep Mode 8-91
DS36C280 Slew Rate Controlled CMOS EIA-RS-485 Transceiver 8-92
DS481 Low Power RS-485/RS-422 Multipoint Transceiver with Sleep Mode 8-93
DS485 Low Power RS-485/RS-422 Multipoint Transceiver 8-94
DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers 8-95
DS96172/DS96174 RS-485/RS-422 Quad Differential Line Drivers 8-96
DS96173/DS96175 RS-485/RS-422 Quad Differential Line Receivers 8-97
DS96176 RS-485/RS-422 Differential Bus Transceiver 8-98
DS96177 RS-485/RS-422 Differential Bus Repeater 8-99
DS96F172M/DS96F174C/DS96F174M EIA-485/EIA-422 Quad Differential Drivers 8-100
DS96F173M/DS96F175C/DS96F175M EIA-485/EIA-422 Quad Differential Receivers 8-101

National Semiconductor Interface-Data Transmission Selection Guide TIA/EIA-485 (RS-485)				
Tx	Rx	Temp Range	Base Part Number	Page No.
0	4	Com	DS96173C	8-97
0	4	Com	DS96175C	8-97
0	4	Mil-883	DS96F173M	8-101
0	4	Com	DS96F175C	8-101
0	4	Mil-883	DS96F175M	8-101
1	1	Com	DS1487	8-82
1	1	Mil	DS16F95	8-83
1	1	Mil-883	DS16F95	8-83
1	1	Com	DS36276	8-84
1	1	Ind	DS36277T	8-85
1	1	Com	DS3695	8-86
1	1	Com	DS3695A	8-86
1	1	Ind	DS3695AT	8-86
1	1	Ind	DS3695T	8-86
1	1	Com	DS3696	8-86
1	1	Com	DS3696A	8-86
1	1	Com	DS3697	8-86
1	1	Com	DS36C278	8-90
1	1	Ind	DS36C278T	8-90
1	1	Com	DS36C279	8-91
1	1	Ind	DS36C279T	8-91
1	1	Com	DS36C280	8-92
1	1	Ind	DS36C280T	8-92
1	1	Com	DS36F95	8-83
1	1	Ind	DS481T	8-93
1	1	Com	DS485	8-94
1	1	Ind	DS485T	8-94
1	1	Com	DS75176B	8-95
1	1	Ind	DS75176BT	8-95
1	1	Com	DS96176C	8-98
1	1	Com	DS96177C	8-99
4	0	Com	DS96172C	8-96
4	0	Com	DS96174C	8-96
4	0	Mil-883	DS96F172M	8-100
4	0	Com	DS96F174C	8-100
4	0	Mil-883	DS96F174M	8-100
4	4	Com	DS36950	8-87
4	4	Com	DS36954	8-88

TIA/EIA-422 Drivers (RS-422)
 TIA/EIA-422/423 Receivers (RS-422/423)

Tx	Rx	Temp Range	Base Part Number	Page No.
0	2	Mil-883	DS78C120	8-42
0	2	Mil-883	DS78C20	8-41
0	2	Mil-883	DS78LS120	8-43
0	2	Com	DS88C120	8-42
0	2	Com	DS88C20	8-41
0	2	Com	DS9637AC	8-52
0	2	Mil-883	DS9637AM	8-52
0	4	Mil-883	DS26C32AM	8-30
0	4	Ind	DS26C32AT	8-30
0	4	Mil-883	DS26F32M	8-32
0	4	Com	DS26LS32AC	8-33
0	4	Com	DS26LS32C	8-33
0	4	Mil-883	DS26LS32M	8-33
0	4	Com	DS26LS33AC	8-33
0	4	Mil-883	DS26LS33M	8-33
0	4	Ind	DS26LV32AT	8-31
0	4	Mil	DS26LV32AW	8-31
0	4	Com	DS3486	8-37
0	4	Ind	DS34C86T	8-35
0	4	Ind	DS34LV86T	8-36
0	12	Ind	DS89C386T	8-49
1	1	Com	DS8921	8-44
1	1	Com	DS8921A	8-44
1	1	Ind	DS8921AT	8-44
1	1	Ind	DS89C21T	8-45
2	0	Mil-883	DS1691A	8-25
2	0	Com	DS3691	8-25
2	0	Com	DS9638C	8-53
2	0	Mil-883	DS9638M	8-53
2	2	Com	DS8922	8-46
2	2	Com	DS8922A	8-46
2	2	Com	DS8923A	8-46
2	3	Com	DS8925	8-48
4	0	Mil-883	DS26C31M	8-26
4	0	Ind	DS26C31T	8-26
4	0	Mil-883	DS26F31M	8-28
4	0	Com	DS26LS31C	8-29
4	0	Mil-883	DS26LS31M	8-29
4	0	Ind	DS26LV31T	8-27
4	0	Mil	DS26LV31W	8-27
4	0	Com	DS3487	8-40
4	0	Ind	DS34C87T	8-38
4	0	Ind	DS34LV87T	8-39
12	0	Ind	DS89C387T	8-50

TIA/EIA-423 (RS-423)

Tx	Rx	Temp Range	Base Part Number	Page No.
2	0	Mil-883	DS9636A	$8-51$
2	0	Com	DS9636AC	$8-51$
4	0	Mil-883	DS1691A	$8-25$
4	0	Com	DS3691	$8-25$

TIA/EIA-232 (RS-232)

$\mathbf{T x}$	$\mathbf{R x}$	Temp Range	Base Part Number	Page No.
0	2	Mil-883	DS9627M	$8-16$
0	4	Com	DS1489	$8-11$
0	4	Com	DS1489A	$8-11$
0	4	Com	DS14C89A	$8-13$
0	4	Com	DS75154	$8-15$
2	0	Com	DS75150	$8-14$
2	2	Mil-883	DS14C232	$8-17$
2	2	Com	DS14C232C	$8-17$
2	2	Ind	DS14C232T	$8-17$
3	5	Com	DS14185	$8-22$
3	5	Com	DS14C335	$8-20$
3	0	Com	DS14858	$8-21$
4	0	Com	DS14C88	$8-9$
4	4	Com	DS14C238	$8-10$
4	5	Com	DS14196	$8-18$
4	3	Com	DSV14196	$8-19$
5			$8-23$	
5				$8-24$

General Purpose Line Drivers and Receivers

Tx	Rx	Temp Range	Base Part Number	Page No.
0	2	Mil-883	DS1603	$8-68$
0	2	Com	DS75107	$8-70$
0	2	Com	DS75107A	$8-70$
0	2	Mil-883	DS7820	$8-71$
0	2	Mil-883	DS7820A	$8-71$
0	2	Com	DS8820A	$8-71$
0	2	Mil-883	DS9622M	$8-72$
0	4	Com	DS3650	$8-69$
2	0	Mil-883	DS75110A	$8-64$
2	0	Mil-883	DS7830	$8-65$
2	0	Mil-883	DS7831	$8-66$
2	0	Com	DS7831	$8-66$
2	0	Com	DS8832	$8-66$
2	4	Com	DS26S10	$8-66$
4	4	Com	DS3662	$8-81$
4	4	Mil-883	DS8641	$8-73$
4	4		DS8838	$8-76$
8	8			$8-78$
				$8-80$

General Purpose Line Drivers and Receivers (Continued)

Tx	Rx	Temp Range	Base Part Number	Page No.
8	8	Com	DS3862	$8-74$
8	8	Com	DS75160A	$8-75$
8	8	Com	DS75161A	$8-75$

BTL

Tx	Rx	Temp Range	Base Part Number	Page No.
4	4	Com	DS3893A	$8-62$
4	4	Com	DS3897	$8-63$
6	6	Com	DS3884A	$8-56$
8	8	Com	DS3896	$8-63$
9	9	Com	DS3883A	$8-54$
9	9	Com	DS3886A	$8-58$
9	9	Com	DS38C86A	$8-60$

Temperature ranges:
Com = Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ind $=$ Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Mil $=$ Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Mil-883 $=$ Military 883 Qual $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DS1488

Quad Line Driver

General Description

The DS1488 is a quad line driver which converts standard TTL input logic levels through one stage of inversion to output levels which meet EIA Standard RS-232D and CCITT Recommendation V.24.

Features

- Current limited output: $\pm 10 \mathrm{~mA}$ typ
- Power-off source impedance: $300 \Omega \mathrm{~min}$
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are TTL/LS compatible

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Order Number DS1488M or DS1488N
See NS Package Number M14A or N14A

DS14C88

Quad CMOS Line Driver

General Description

The DS14C88, pin-for-pin compatible to the DS1488/ MC1488, is a quad line drivers designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). This device translates standard TTL/ CMOS logic levels to levels conforming to EIA-232-D and CCITT V. 28 standards.
The device is fabricated in low threshold CMOS metal gate technology. The device provides very low power consumption compared to its bipolar equivalents: $500 \mu \mathrm{~A}$ (DS14C88) versus 25 mA (DS1488).

The DS14C88 simplifies designs by eliminating the need for external slew rate control capacitors. Slew rate control in accordance with EIA-232D is provided on-chip, eliminating the output capacitors.

Features

- Meets EIA-232D and CCITT V. 28 standards
- LOW power consumption
- Wide power supply range: $\pm 5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
- Available in SOIC package

Connection Diagram

Order Number DS14C88N, or DS14C88M
See NS Package Number N14A or M14A

DS1489/DS1489A

Quad Line Receiver

General Description

The DS1489/DS1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA Standard RS-232D. The DS1489/DS1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements.

Features

- Four separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode: high output for open inputs
- Inputs withstand $\pm 30 \mathrm{~V}$

Schematic and Connection Diagrams

($1 / 4$ of unit shown)
DS1489: $R_{F}=10 k$
DS1489A: $R_{F}=2 k$

Top View
Order Number DS1489M, DS1489N DS1489AM or DS1489AN
See NS Package Number M14A or N14A

AC Test Circuit and Voltage Waveforms

FIGURE 1.

DS14C89A

Quad CMOS Receiver

General Description

The DS14C89A, pin-for-pin compatible to the DS1489A MC1489A, ia a quad receiver designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices translate levels conforming to EIA-232E and CCITT V. 28 standards to TTL/CMOS logic levels.

The device is fabricated in low threshold CMOS metal gate technology. The device provides very low power consumption compared to their bipolar equivalents: $900 \mu \mathrm{~A}$ (DS14C89A) versus 26 mA (DS1489A).
The DS14C89A provides on chip noise filtering which eliminates the need for external response control filter capacitors.

When replacing the DS1489A with the DS14C89A, the response control filter pins can be tied high, low, or not connected.

Features

- Meets EIA/TIA-232-E and CCITT V. 28 Standards
- Failsafe - Output High for Open Input
- LOW Power consumption
- On chip noise filter
- Available in SOIC Package

Connection Diagram

Order Number DS14C89AN, DS14C89AM, See NS Package Number M14A, N14A

DS75150

Dual Line Driver

General Description

The DS75150 is a dual monolithic line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and LS families. Operation is from -12 V and +12 V power supplies.

Features

- Withstands sustained output short-circuit to any low impedance voltage between -25 V and +25 V
- $2 \mu \mathrm{~s}$ max transition time through the -3 V to +3 V transition region under full 2500 pF load
- Inputs compatible with most TTL and LS families
- Common strobe input
- Inverting output
- Slew rate can be controlled with an external capacitor at the output
- Standard supply voltages: $\pm 12 \mathrm{~V}$

Schematic and Connection Diagrams

Component values shown are nominal.
$1 / 2$ of circuit shown

Top View

Order Number DS75150M See NS Package Number M08A

DS75154

Quad Line Receiver

General Description

The DS75154 is a quad monolithic line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are in relatively short, single-line, point-to-point data transmission systems and for level translators. Operation is normally from a single 5 V supply; however, a built-in option allows operation from a 12 V supply without the use of additional components. The output is compatible with most TTL and LS circuits when either supply voltage is used.
In normal operation, the threshold-control terminals are connected to the $\mathrm{V}_{\mathrm{CC} 1}$ terminal, pin 15, even if power is being supplied via the alternate $\mathrm{V}_{\mathrm{CC} 2}$ terminal, pin 16 . This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.
For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the
negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

Features

- Input resistance, $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ over full RS-232C voltage range
- Input threshold adjustable to meet "fail-safe" requirements without using external components
- Inverting output compatible with TTL or LS
- Built-in hysteresis for increased noise immunity
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage -5 V or 12 V

Schematic Diagram

DS005795-1
Note: When using $V_{C C 1}$ (pin 15), $V_{C C 2}$ (pin 16) may be left open or shorted to $V_{C C 1}$. When using $V_{C C 2}$, $V_{C C 1}$ must be left open or connected to the threshold control pins.

Dual Line Receiver

General Description

The DS9627 is a dual-line receiver which meets the electrical interface specifications of EIA RS-232C and MIL-STD-188C. The input circuitry accommodates $\pm 25 \mathrm{~V}$ input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The DS9627 provides both a selectable hysteresis range and selectable receiver input resistance. When pin 1 is tied to V^{-}, the typical switching points are at 2.6 V and -2.6 V , thus meeting RS-232-C requirements. When pin 1 is open, the typical switching points are at $50 \mu \mathrm{~A}$ and $-50 \mu \mathrm{~A}$, thus satisfying the requirements of MIL-STD-188C LOW level interface. Connecting the RA and/or RB pins to the (-) input yields an input impedance in the range of $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ and satisfies RS-232-C requirements; leaving RA and/or RB pins unconnected, the input resistance will be greater than $6 \mathrm{k} \Omega$ to satisfy MIL-STD-188C.

The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wired-OR function. ATTL/ DTL strobe is also provided for each receiver.

Features

- EIA RS-232-C input standards
- MIL-STD-188C input standards
- Variable hysteresis control
- High common mode rejection
- R control ($5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$)
- Wired-OR capability
- Choice of inverting and non-inverting inputs
- Outputs and strobe TTL compatible

Connection Diagram

See NS Package Number J16A
For Complete Military 883 Specifications, see RETS Data Sheet.

DS14C232

Low Power +5V Powered TIA/EIA-232 Dual Driver/Receiver

General Description

The DS14C232 is a low power dual driver/receiver featuring an onboard DC to DC converter, eliminating the need for $\pm 12 \mathrm{~V}$ power supplies. The device only requires a +5 V power supply. I_{Cc} is specified at 3.0 mA maximum, making the device ideal for battery and power conscious applications. The drivers' slew rate is set internally and the receivers feature internal noise filtering, eliminating the need for external slew rate and filter capacitors. The device is designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). The driver inputs and receiver outputs are TTL and CMOS compatible. DS14C232C driver outputs and receiver inputs meet TIA/EIA-232-E (RS-232) and CCITT V. 28 standards.

Features

- Pin compatible with industry standard MAX232, LT1081, ICL232 and TSC232
- Single +5 V power supply
- Low power-I 3.0 mA maximum
- DS14C232C meets TIA/EIA-232-E (RS-232) and CCITT V. 28 standards
- CMOS technology
- Receiver Noise Filter
- Package efficiency-2 drivers and 2 receivers
- Available in Plastic DIP, Narrow and Wide SOIC packages
- TIA/EIA-232 compatible extended temperature range option:
DS14C232T $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DS14C232E/J: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Connection Diagram

Order Number DS14C232CN, DS14C232CM, or DS14C232TM
See NS Package Number N16E, or M16A

Functional Diagram

Single Supply TIA/EIA-232 4×4 Driver/Receiver

General Description

The DS14C238 is a four driver, four receiver device which conforms to the TIA/EIA-232-E standard and CCITT V. 28 recommendations. This device eliminates $\pm 12 \mathrm{~V}$ supplies by employing an internal DC-DC converter to generate the necessary output levels from a single +5 V supply. Driver slew rate control and receiver noise filtering have also been internalized to eliminate the need for external slew rate control and noise filtering capacitors.

Features

- Conforms to TIA/EIA-232-E and CCITT V. 28
- Internal DC-DC converter
- Operates with single +5 V supply
- Low power requirement-I 10 mA max
- Internal driver slew rate control
- Receiver noise filtering
- Operates above 120 kbits/sec
- Direct replacement for MAX238

Functional Diagram

DS14C241

Single Supply TIA／EIA－232 4×5 Driver／Receiver

General Description

The DS14C241 is four driver，five receiver device which con－ forms to the TIA／EIA－232－E standard and CCITT V． 28 recom－ mendations．This device eliminates $\pm 12 \mathrm{~V}$ supplies by em－ ploying an internal DC－DC converter to generate the necessary output levels from a single +5 V supply．Driver slew rate control and receiver noise filtering have also been internalized to eliminate the need for external slew rate con－ trol and noise filtering capacitors．With the addition of TRI－ STATE®receiver outputs and a shutdown mode，device power consumption is kept to a minimum．

Features

－Conforms to TIA／EIA－232－E and CCITT V． 28
－Internal DC－DC converter
－Operates with single +5 V supply
－Low power requirement－$I_{\mathrm{CC}} 10 \mathrm{~mA}$ max
－Shutdown mode－ $\mathrm{I}_{\mathrm{Cx}} 10 \mu \mathrm{~A}$ max
－Internal driver slew rate control
－Receiver noise filtering
－Operates above 120 kbits／sec
－TRI－STATE receiver outputs
－Direct replacement for MAX241

Connection Diagram

Order Number DS14C241WM See NS Package Number M28B

Functional Diagram

DS14C335

+3.3V Supply TIA/EIA-232 3 x 5 Driver/Receiver

General Description

The DS14C335 is three driver, five receiver device which conforms to TIA/EIA-232-E and CCITT V. 28 standard specifications. This device employs an internal DC-DC converter to generate the necessary output levels from a +3.3 V power supply. A SHUTDOWN (SD) mode reduces the supply current to $10 \mu \mathrm{~A}$ maximum. In the SD mode, one receiver is active, allowing ring indicator (RI) to be monitored. PC Board space consumption is minimized by the availability of Shrink Small Outline Packaging (SSOP).
This device's low power requirement and small footprint makes it an ideal choice for Laptop and Notebook applications.

Features

- Conforms to TIA/EIA-232-E and CCITT V. 28 specifications
- Operates with single +3.3 V power supply
- Low power requirement-I 20 mA maximum
- SHUTDOWN mode- $\mathrm{I}_{\mathrm{Cx}} 10 \mu \mathrm{~A}$ maximum
- One Receiver (R5) active during SHUTDOWN
- Operates up to 128 kbps - Lap-Link ${ }^{\circledR}$ Compatible
- Flow through pinout
- $4 \mathrm{~V} / \mu \mathrm{s}$ minimum Slew Rate guaranteed
- Inter-operates with +5 V UARTs
- Available in 28-lead SSOP EIAJ Type II package

Connection Diagram

Order Number DS14C335MSA See NS Package Number MSA28

Functional Diagram

DS14C535

+5V Supply EIA/TIA-232 3×5 Driver/Receiver

General Description

The DS14C535 is three driver, five receiver device which conforms to EIA/TIA-232-E and CCITT (ITU-T) V. 28 standard specifications. This device employs an internal DC-DC converter to generate the necessary output levels from a +5 V power supply. A SHUTDOWN (SD) mode reduces the supply current to $10 \mu \mathrm{~A}$ maximum. In the SD mode, one receiver is active, allowing ring indicator (RI) to be monitored. PC Board space consumption is minimized by the availability of Shrink Small Outline Packaging (SSOP).
The DS14C535 provides a one-chip solution for the common $9-\mathrm{pin}$ serial RS-232 interface between data terminal and data circuit-terminating equipment.
This device allows an easy migration path to the 3.3 V DS14C335. The packages are the same. The N/C pins on the DS14C535 are not physically connected to the chip. Board layout for the DS14C335 will accommodate both devices.
This device's low power requirement and small footprint makes it an ideal choice for Laptop and Notebook applications.

Features

- Pin compatible with DS14C335
- Conforms to EIA/TIA-232-E and CCITT (ITU-T) V. 28 specifications
- Failsafe receiver outputs high when inputs open
- Operates with single +5 V power supply
- Low power requirement- $\mathrm{I}_{\mathrm{CC}} 12 \mathrm{~mA}$ maximum
- SHUTDOWN mode- $\mathrm{I}_{\mathrm{Cx}} 10 \mu \mathrm{~A}$ maximum
- One Receiver (R5) active during SHUTDOWN
- Operates up to 128 kbps -Lap-Link ${ }^{\circledR}$ Compatible
- $4 \mathrm{~V} / \mu \mathrm{s}$ minimum Slew Rate guaranteed
- ESD rating of 3 kV on all pins (H, B, M)
- Available in 28 -lead SSOP EIAJ Type II package
- Only four $0.1 \mu \mathrm{~F}$ capacitors required for the DC-DC converter

8

Connection Diagram

Order Number DS14C535MSA See NS Package Number MSA28

Functional Diagram

DS14185

EIA/TIA-232 3 Driver x 5 Receiver

General Description

The DS14185 is a three driver, five receiver device which conforms to the EIA/TIA-232-E standard.
The flow-through pinout facilitates simple non-crossover board layout. The DS14185 provides a one-chip solution for the common 9-pin serial RS-232 interface between data terminal and data communications equipment.

Features

- Replaces one 1488 and two 1489s
- Conforms to EIA/TIA-232-E
- 3 drivers and 5 receivers
- Flow through pinout
- Failsafe receiver outputs
- 20-pin SOIC package
- LapLink ${ }^{\circledR}$ compatible -200 kbps data rate

Connection Diagram

Order Number DS14185WM See NS Package M20B

Functional Diagram

DS14196

EIA／TIA－232 5 Driver x 3 Receiver

General Description

The DS14196 is a five driver，three receiver device which conforms to the EIA／TIA－232－E and the ITU－T V． 28 stan－ dards．
The flow－through pinout facilitates simple non－crossover board layout．The DS14196 provides a peripheral side one－chip solution for the common 9－pin serial RS－232 inter－ face between data terminals and data communications equipment．
The DS14196 offers optimum performance when used with the DS14185 3×5 Driver／Receiver，a host side one－chip so－ lution for the common 9 －pin serial RS－232 interface between data terminals and data communications equipment．

Features

－Replaces two 1488s and one 1489
－Conforms to EIA／TIA－232－E and ITU－T V． 28
－ 5 drivers and 3 receivers
－Flow－through pinout
－Failsafe receiver outputs high when inputs open
－20－pin wide SOIC package
－LapLink ${ }^{\text {® }}$ compatible－ 230.4 kbps data rate
－Pin compatible with：SN75196，GD75323

Functional Diagram

DSV14196

+3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver

General Description

The DSV14196/DSV14196T is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V. 28 standards.

The flow-through pinout facilitates simple non-crossover board layout. The DSV14196/DSV14196T provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

Features

- Conforms to EIA/TIA-232-E and ITU-T V. 28
- 5 drivers and 3 receivers
- Flow-through pinout
- Failsafe receiver outputs high when inputs open
- 20-pin wide SOIC package
- LapLink ${ }^{\circledR}$ compatible - 230.4 kbps data rate
- +3.3V Logic Interface
- Commercial temperature range option DSV14196 $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
- Industrial temperature range option DSV14196T $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Connection Diagram

Order Number DSV14196WM,DSV14196TWM See NS Package Number M20B

Functional Diagram

DS1691A/DS3691

(RS-422/RS-423) Line Drivers with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The DS1691A/DS3691 are low power Schottky TTL line drivers designed to meet the requirements of EIA standards RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. A mode control input provides a choice of operation either as 4 single-ended line drivers or 2 differential line drivers. A rise time control pin allows the use of an external capacitor to slow the rise time for suppression of near end crosstalk to other receivers in the cable. Rise time capacitors are primarily intended for waveshaping output signals in the single-ended driver mode. Multipoint applications in differential mode with waveshaping capacitors is not allowed.

With the mode select pin low, the DS1691A/DS3691 are dual-differential line drivers with TRI-STATE outputs. They feature $\pm 10 \mathrm{~V}$ output common-mode range in TRI-STATE mode and $O \mathrm{~V}$ output unbalance when operated with $\pm 5 \mathrm{~V}$ supply.

Features

- Dual RS-422 line driver with mode pin low, or quad RS-423 line driver with mode pin high
- TRI-STATE outputs in RS-422 mode
- Short circuit protection for both source and sink outputs
- Outputs will not clamp line with power off or in TRI-STATE
- 100Ω transmission line drive capability
- Low I_{CC} and I_{EE} power consumption

RS-422: $\mathrm{I}_{\mathrm{CC}}=9 \mathrm{~mA}$ /driver typ RS-423: $\quad \mathrm{I}_{\mathrm{CC}}=4.5 \mathrm{~mA} /$ driver typ:
$I_{\text {EE }}=2.5 \mathrm{~mA} /$ driver typ

- Low current PNP inputs compatible with TTL, MOS and CMOS
- Pin compatible with AM26LS30

Connection Diagrams

Ordering Information

Order Number	Package Type	NS Package Number
DS3691M	SO Package	M16A
DS3691N	Molded DIP	N16E
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.		
DS1691AJ/883	Ceramic DIP	J16A

DS26C31T/DS26C31M CMOS Quad TRI-STATE ${ }^{\circledR}$ Differential Line Driver

General Description

The DS26C31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26C31T meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. The DS26C31M is compatible with EIA standard RS-422; however, one exception in test methodology is taken (Note 8). This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.
The DS26C31 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the drivers to power down without loading down the bus. This device has enable and disable circuitry common to all four drivers. The DS26C31 is pin compatible to the AM26LS31 and the DS26LS31.

All inputs are protected against damage due to electrostatic discharge by diodes to V_{Cc} and ground.

Features

- TTL input compatible
- Typical propagation delays: 6 ns
- Typical output skew: 0.5 ns
- Outputs will not load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- DS26C31T meets the requirements of EIA standard RS-422
- Operation from single 5 V supply
- TRI-STATE outputs for connection to system buses
- Low quiescent current
- Available in surface mount
- Mil-Std-883C compliant

Connection Diagrams

Order Number DS26C31TM or DS26C31TN See NS Package Number M16A or N16E
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.
Order Number DS26C31ME/883, DS26C31MJ/883 or DS26C31MW/883
See NS Package Number E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier (E)

ENABLE	$\overline{\text { ENABLE }}$	Input	Non-Inverting Output	Inverting Output
L	H	X	Z	Z
All other combinations of enable inputs	H	H	H	H
	H			

[^8]
DS26LV31T

3V Enhanced CMOS Quad Differential Line Driver

General Description

The DS26LV31T is a high-speed quad differential CMOS driver that meets the requirements of both TIA/EIA-422-B and ITU-T V.11. The CMOS DS26LV31T features low static I_{Cc} of $100 \mu \mathrm{~A}$ MAX which makes it ideal for battery powered and power conscious applications.
Differential outputs have the same V_{OD} guarantee ($\geq 2 \mathrm{~V}$) as the 5 V version.
The EN and EN* inputs allow active Low or active High control of the TRI-STATE ${ }^{\circledR}$ outputs. The enables are common to all four drivers. Protection diodes protect all the driver inputs against electrostatic discharge. Outputs have enhanced ESD protection providing greater than 7 kV tolerance. The driver and enable inputs (DI, EN, EN*) are compatible with low voltage LVTTL and LVCMOS devices.

Features

- Industrial product meets TIA/EIA-422-B (RS-422) and ITU-T V. 11 recommendation
- Military product conforms to TIA/EIA-422-B (RS-422)
- Interoperable with existing 5V RS-422 networks
- Industrial and Military temperature range
- Guaranteed V_{OD} of 2 V min over operating conditions
- Balanced output crossover for low EMI (typical within 40 mV of 50% voltage level)
- Low power design ($330 \mu \mathrm{~W} 3.3 \mathrm{~V}$ static)
- ESD $\geq 7 \mathrm{kV}$ on cable I/O pins (HBM)
- Guaranteed AC parameter:
- Maximum driver skew: 2 ns
- Maximum transition time: 10 ns
- Pin compatible with DS26C31
- Available in SOIC and Cerpack packaging
- Standard Microcircuit Drawing (SMD) 5962-98584

Connection Diagram

Order Number DS26LV31TM or DS26LV31W See NS Package Number M16A or W16A

Enables		Input	Outputs	
EN	EN *	DI	DO+	DO-
L	H	X	Z	Z
All other combinations of enable inputs	L	L	H	
	H	H	L	

$\mathrm{L}=$ Low logic state
X = Irrelevant
$H=$ High logic state
Z = TRI-STATE

Quad High Speed Differential Line Drivers

General Description

The DS26F31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26F31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
The DS26F31 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F31 features lower power, extended temperature range, and improved specifications.
The circuit provides an enable and disable function common to all four drivers. The DS26F31M features TRI-STATE ${ }^{\circledR}$ outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.

The DS26F31M offers optimum performance when used with the DS26F32 Quad Differential Line Receiver.

Features

- Military temperature range

■ Output skew-2.0 ns typical

- Input to output delay - 10 ns
- Operation from single +5.0 V supply
- 16-lead ceramic DIP Package
- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Output short circuit protection
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100Ω terminated transmission lines

Connection and Logic Diagrams

For Complete Military Product Specifications, refer to the appropriate SMD or MDS.
Order Number DS26F31ME/883, DS26F31MJ/883, or DS26F31MW/883
See NS Package Numbers E20A, J16A, or W16A

FIGURE 1. Logic Symbol

20-Lead Ceramic Leadless Chip Carrier (E)

DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver

General Description

The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE © outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

Features

- Output skew-2.0 ns typical
- Input to output delay - 10 ns typical
- Operation from single 5 V supply
- Outputs won't load line when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA Standard RS-422
- Pin compatible with AM26LS31
- Available in military and commercial temperature range

Logic and Connection Diagrams

DS005778-2
Top View
Order Number DS26LS31CM, or DS26LS31CN
See NS Package M16A or N16E
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.
Order Number DS26LS31MJ/883, DS26LS31ME/883 or DS26LS31MW/883
See NS Package E20A, J16A or W16A

National Semiconductor

DS26C32AT/DS26C32AM

 Quad Differential Line Receiver
General Description

The DS26C32A is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS.
The DS26C32A has an input sensitivity of 200 mV over the common mode input voltage range of $\pm 7 \mathrm{~V}$. The DS26C32A features internal pull-up and pull-down resistors which prevent output oscillation on unused channels.
The DS26C32A provides an enable and disable function common to all four receivers, and features TRI-STATE ${ }^{\circledR}$ outputs with 6 mA source and sink capability. This product is pin compatible with the DS26LS32A and the AM26LS32.

Features

- CMOS design for low power
- $\pm 0.2 \mathrm{~V}$ sensitivity over input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Inputs won't load line when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for connection to system buses
- Available in Surface Mount
- Mil-Std-883C compliant

Logic Diagram

Connection Diagrams

Top View
Order Number DS26C32ATM or DS26C32ATN See NS Package M16A or N16E
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.
Order Number DS26C32AME/883, DS26C32AMJ/883 or DS26C32AMW/883
See NS Package E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier

DS26LV32AT

3V Enhanced CMOS Quad Differential Line Receiver

General Description

The DS26LV32A is a high speed quad differential CMOS re－ ceiver that meets the requirements of both TIA／EIA－422－B and ITU－T V．11．The CMOS DS26LV32AT features typical low static I_{CC} of 9 mA which makes it ideal for battery pow－ ered and power conscious applications．The TRI－STATE ${ }^{\circledR}$ enables， EN and EN^{*} ，allow the device to be active High or active Low．The enables are common to all four receivers．
The receiver output（RO）is guaranteed to be High when the inputs are left open．The receiver can detect signals as low as $\pm 200 \mathrm{mV}$ over the common mode range of $\pm 10 \mathrm{~V}$ ．The re－ ceiver outputs（RO）are compatible with TTL and LVCMOS levels．

Features

－Low Power CMOS design（ 30 mW typical）
－Interoperable with existing 5V RS－422 networks
－Industrial and Military Temperature Range
－Conforms to TIA／EIA－422－B（RS－422）and ITU－T V． 11 Recommendation
－3．3V Operation
－$\pm 7 \mathrm{~V}$ Common Mode Range $@ \mathrm{~V}_{\mathrm{iD}}=3 \mathrm{~V}$
－$\pm 10 \mathrm{~V}$ Common Mode Range $@ \mathrm{~V}_{\mathrm{ID}}=0.2 \mathrm{~V}$
－Receiver OPEN input failsafe feature
－Guaranteed AC Parameter：
Maximum Receiver Skew： 4 ns
Maximum Transition Time： 10 ns
－Pin compatible with DS26C32AT
－ 32 MHz Toggle Frequency
－＞6．5k ESD Tolerance（HBM）
－Available in SOIC and Cerpack Packaging
■ Standard Microcircuit Drawing（SMD）5962－98585

Connection Diagram

Order Number DS26LV32ATM or DS26LV32AW See NS Package Number M16A or W16A

Enables		Inputs	Output
EN	EN^{*}	$\mathrm{RI}+-\mathrm{RI}-$	RO
L	H	X	Z
All Other Combinations of Enable Inputs	$\mathrm{V}_{\mathrm{ID}} \geq+0.2 \mathrm{~V}$	H	
	$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	
	Open \dagger	H	

\dagger Open，not terminated
L＝Logic Low
$H=$ Logic High
$X=$ Irrelevant
$Z=$ TRI－STATE

Quad Differential Line Receivers

General Description

The DS26F32 is a quad differential line receiver designed to meet the requirements of EIA Standards RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The DS26F32 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F32 features lower power, extended temperature range, and improved specifications.
The device features an input sensitivity of 200 mV over the input common mode range of $\pm 7.0 \mathrm{~V}$. The DS26F32 provides an enable function common to all four receivers and TRI-STATE © outputs with 8.0 mA sink capability. Also, a fail-safe input/output relationship keeps the outputs high when the inputs are open.
The DS26F32 offers optimum performance when used with the DS26F31 Quad Differential Line Driver.

Connection Diagrams

See NS Package Number J16A
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.

Order Number DS26F32ME/883,
DS26F32MJ/883 or DS26F32MW/883
See NS Package Number E20A, J16A or W16A

Features

- Military temperature range
- Input voltage range of $\pm 7.0 \mathrm{~V}$ (differential or common mode) $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range
- Meets all the requirements of EIA standards RS-422 and RS-423
- High input impedance (18k typical)
- 30 mV input hysteresis
- Operation from single +5.0 V supply
- Input pull-down resistor prevents output oscillation on unused channels
- TRI-STATE outputs, with choice of complementary enables, for receiving directly onto a data bus
- Propagation delay 15 ns typical

DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers

General Description

The DS26LS32 and DS26LS32A are quad differential line receivers designed to meet the RS-422, RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The DS26LS32 and DS26LS32A have an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$ and the DS26LS33 have an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.
The DS26LS32A differ in function from the popular DS26LS32 and DS26LS33 in that input pull-up and pull-down resistors are included which prevent output oscillation on unused channels.
Each version provides an enable and disable function common to all four receivers and features TRI-STATE © outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commerical operating temperature ranges.

Features

- High differential or common-mode input voltage ranges of $\pm 7 \mathrm{~V}$ on the DS26LS32 and DS26LS32A and $\pm 15 \mathrm{~V}$ on the DS26LS33
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range on the DS26LS32 and DS26LS32A, $\pm 0.5 \mathrm{~V}$ sensitivity on the DS26LS33
- DS26LS32 and DS26LS32A meet all requirements of RS-422 and RS-423
- 6k minimum input impedance
- 100 mV input hysteresis on the DS26LS32 and DS26LS32A, 200 mV on the DS26LS33
- Operation from a single 5 V supply
- TRI-STATE outputs, with choice of complementary output enables for receiving directly onto a data bus

Logic Diagram

Connection Diagram

Order Number DS26LS32CM, DS26LS32CN, DS26LS32ACM, DS26LS32ACN, DS26LS33ACM or DS26LS33ACN
See NS Package Number M16A or N16E For Complete Military Product Specifications, refer to the appropriate SMD or MDS. Order Number DS26LS32MJ/883, DS26LS32MW/883, DS26LS32ME/883, DS26LS33MW/883
See NS Package Number E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier

ENABLE	ENABLE	Input	Output
0	1	X	$\mathrm{Hi}-\mathrm{Z}$
See Note Below		$\mathrm{V}_{\mathrm{ID}} \geq \mathrm{V}_{\mathrm{TH}}(\mathrm{Max})$	1
$\mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{TH}}(\mathrm{Min})$	0		

Hi-Z = TRI-STATE ${ }^{\text {® }}$
Note: Input conditions may be any combination not defined for ENABLE and ENABLE .

National Semiconductor

DS34C86T

Quad CMOS Differential Line Receiver

General Description

The DS34C86T is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS. The DS34C86T has an input sensitivity of 200 mV over the common mode input voltage range of $\pm 7 \mathrm{~V}$. Hysteresis is provided to improve noise margin and discourage output instability for slowly changing input waveforms.
The DS34C86T features internal pull-up and pull-down resistors which prevent output oscillation on unused channels.
Separate enable pins allow independent control of receiver pairs. The TRI-STATE ${ }^{\circledR}$ outputs have 6 mA source and sink capability. The DS34C86T is pin compatible with the DS3486.

Features

- CMOS design for low power
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Inputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for system bus compatibility
- Available in surface mount
- Open input Failsafe feature, output high for open input

Logic Diagram

Connection Diagram

Enable	Input	Output
L	X	Z
H	$\mathrm{V}_{\mathrm{ID}} \geq \mathrm{V}_{T H}(\mathrm{Max})$	H
H	$\mathrm{V}_{\mathrm{ID}} \leq \mathrm{V}_{T H}(\mathrm{Min})$	L
H	Open*	H

*Open, not terminated
Z = TRI-STATE

DS34LV86T

3V Enhanced CMOS Quad Differential Line Receiver

General Description

The DS34LV86T is a high speed quad differential CMOS receiver that meets the requirements of both TIA/EIA-422-B and ITU-T V.11. The CMOS DS34LV86T features typical low static I_{Cc} of 9 mA which makes it ideal for battery powered and power conscious applications. The TRI-STATE ${ }^{\circledR}$ enables, EN, allow the device to be disabled when not in use to minimize power consumption. The dual enable scheme allows for flexibility in turning receivers on and off.
The receiver output (RO) is guaranteed to be High when the inputs are left open. The receiver can detect signals as low as $\pm 200 \mathrm{mV}$ over the common mode range of $\pm 10 \mathrm{~V}$. The receiver outputs (RO) are compatible with TTL and LVCMOS levels.

Features

- Low power CMOS design (30 mW typical)
- Interoperable with existing 5V RS-422 networks
- Industrial temperature range
- Meets TIA/EIA-422-B (RS-422) and ITU-T V. 11 recommendation
- 3.3V Operation
- $\pm 7 \mathrm{~V}$ common mode range $\mathrm{V}_{\mathrm{ID}}=3 \mathrm{~V}$
- $\pm 10 \mathrm{~V}$ common mode range $\mathrm{V}_{\mathrm{ID}}=0.2 \mathrm{~V}$
- Receiver OPEN input failsafe feature
- Guaranteed AC parameter:

Maximum Receiver Skew: 4 ns
Transition time: 10 ns

- Pin compatible with DS34C86T
- 32 MHz Toggle Frequency
- 6.5k ESD Tolerance (HBM)
- Available in SOIC packaging

Connection Diagram

Enable EN	Inputs RI+-RI-	Output RO
L	X	Z
H	$\mathrm{V}_{\mathrm{ID}} \geq+0.2 \mathrm{~V}$	H
H	$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L
H	Open \dagger	H

L = Logic Low
$\mathrm{H}=$ Logic High
X = Irrelevant
$Z=$ TRI-STATE
$\dagger=$ Open, Not Terminated

DS3486

Quad RS-422, RS-423 Line Receiver

General Description

National's quad RS-422, RS-423 receiver features four independent receivers which comply with EIA Standards for the electrical characteristics of balanced/unbalanced voltage digital interface circuits. Receiver outputs are 74LS compatible, TRI-STATE ${ }^{\circledR}$ structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms.

Features

- Four independent receivers
- TRI-STATE outputs
- Internal hysteresis -140 mV (typ)
- Fast propagation times -19 ns (typ)
- TTL compatible outputs
- 5 V supply
- Pin compatible and interchangeable with MC3486

Block and Connection Diagrams

DS005779-1

Top View
Order Number DS3486M or DS3486N
See NS Package Number M16A or N16E

DS34C87T

CMOS Quad TRI-STATE® Differential Line Driver

General Description

The DS34C87T is a quad differential line driver designed for digital data transmission over balanced lines. The DS34C87T meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.
The DS34C87T accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the individual drivers to power down without loading down the bus. This device has separate enable circuitry for each pair of the four drivers. The DS34C87T is pin compatible to the DS3487T.
All inputs are protected against damage due to electrostatic discharge by diodes to V_{CC} and ground.

Features

- TTL input compatible
- Typical propagation delays: 6 ns
- Typical output skew: 0.5 ns
- Outputs won't load line when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Meets the requirements of EIA standard RS-422
- Operation from single 5 V supply
- TRI-STATE outputs for connection to system buses
- Low quiescent current
- Available in surface mount

Connection and Logic Diagrams

Order Number DS34C87TM or DS34C87TN See NS Package Number M16A or N16E

Input	Control Input	Non-Inverting Output	Inverting Output
H	H	H	L
L	H	L	H
X	L	Z	Z

$L=$ Low logic state
$H=$ High logic state
$\mathrm{X}=$ Irrelevant
$Z=$ TRI-STATE (high performance)

DS34LV87T

Enhanced CMOS Quad Differential Line Driver

General Description

The DS34LV87T is a high speed quad differential CMOS driver that meets the requirements of both TIA/EIA-422-B and ITU-T V.11. The CMOS DS34LV87T features low static I_{CC} of $100 \mu \mathrm{~A}$ max which makes it ideal for battery powered and power conscious applications. The TRI-STATE ${ }^{\circledR}$ enable, EN , allows the device to be disabled when the device is not in use to minimize power. The dual enable scheme allows for flexibility in turning devices on or off.
Protection diodes protect all the driver inputs against electrostatic discharge. The driver and enable inputs (DI and EN) are compatible with LVTTL and LVCMOS devices. Differential outputs have the same $\mathrm{V}_{\mathrm{OD}}(\geq 2 \mathrm{~V})$ guarantee as the 5 V version. The outputs have enhanced ESD Protection providing greater than 7 kV tolerance.

Features

- Meets TIA/EIA-422-B (RS-422) and ITU-T V. 11 recommendation
- Interoperable with existing 5V RS-422 networks
- Guaranteed V_{OD} of 2 V min over operating conditions
- Balanced output crossover for low EMI (typical within 40 mV of 50% voltage level)
- Low power design ($330 \mu \mathrm{~W} 3.3 \mathrm{~V}$ static)
- ESD $\geq 7 \mathrm{kV}$ on cable I/O pins (HBM)
- Industrial temperature range
- Guaranteed AC parameter:
- Maximum driver skew: 2 ns
- Maximum transition time: 10 ns
- Pin compatible with DS26C31
- Available in SOIC packaging

Truth Table

Enables		Input	Outputs
EN	DI	DO+	DO-
L	X	Z	Z
H	H	H	L
H	L	L	H

$\mathrm{L}=$ Low logic state
$\mathrm{X}=$ Irrelevant
$H=$ High logic state
Z = TRI-STATE

Connection Diagram

DS3487

Quad TRI-STATE® Line Driver

General Description

National's quad RS-422 driver features four independent drivers which comply with EIA Standards for the electrical characteristics of balanced voltage digital interface circuits. The outputs are TRI-STATE structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs.

Features

- Four independent drivers
- TRI-STATE ${ }^{\circledR}$ outputs
- Fast propagation times (typ 10 ns)
- TTL compatible
- 5V supply
- Output rise and fall times less than 15 ns
- Pin compatible with DS8924 and MC3487

Block and Connection Diagrams

DS005780-1

Top View
Order Number DS3487M or DS3487N See NS Package Number M16A or N16E

Input	Control Input	Non-Inverting Output	Inverting Output
H	H	H	L
L	H	L	H
X	L	Z	Z

[^9]$H=$ High logic state
$\mathrm{X}=$ Irrelevant
$Z=$ TRI-STATE(high impedance)

DS78C20/DS88C20

Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.
Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.
A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a 180Ω terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and the DS88C20 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.

Features

- Meets requirements of EIA Standards RS-232-C RS-422 and RS-423, and Federal Standards 1020 and 1030
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or common-mode)
- Separate strobe input for each receiver
- $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ strobe threshold for CMOS compatibility
- 5 k typical input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V
- DS7830/DS8830 recommended driver

Connection Diagram

DS78C120

Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C120 is a high performance, dual differential, CMOS compatible line receiver for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.
Input specifications meet or exceed those of the popular DS7820 line receiver.

The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and a $\pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.
Circuit features include hysteresis and response control for applications where controlled rise and fall times and/or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes a 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78C120 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Features

- Full compatibility with EIA Standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or common-mode)
- Separate strobe input for each receiver
- $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ strobe threshold for CMOS compatibility
- 5 k typical input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V
- Separate fail-safe mode

Connection Diagram

Top View
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.

Order Number DS78C120J/883
See NS Package Number J16A

DS78LS120

Dual Differential Line Receiver (Noise Filtering and Fail-Safe)

General Description

The DS78LS120 is a high performance, dual differential, TTL compatible line receiver for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.
The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and a $\pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.
Circuit features include hysteresis and response control for applications where controlled rise and fall times and/or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes an optional 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78LS120 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Input specifications meet or exceed those of the popular DS7820 line receiver.

Features

- Meets EIA standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or common-mode)
- Separate strobe input for each receiver
- $5 k$ typical input impedance
- Optional 180Ω termination resistor
- 50 mV input hysteresis
- 200 mV input threshold
- Separate fail-safe mode

Connection Diagram

National Semiconductor

DS8921／DS8921A／DS8921AT Differential Line Driver and Receiver Pair

General Description

The DS8921，DS8921A are Differential Line Driver and Re－ ceiver pairs designed specifically for applications meeting the ST506，ST412 and ESDI Disk Drive Standards．In addi－ tion，these devices meet the requirements of the EIA Stan－ dard RS－422．
The DS8921，DS8921A receivers offer an input sensitivity of 200 mV over a $\pm 7 \mathrm{~V}$ common mode operating range．Hyster－ esis is incorporated（typically 70 mV ）to improve noise mar－ gin for slowly changing input waveforms．
The DS8921，DS8921A drivers are designed to provide uni－ polar differential drive to twisted pair or parallel wire trans－ mission lines．Complementary outputs are logically ANDed and provide an output skew of 0.5 ns （typ．）with propagation delays of 12 ns ．

The DS8921，DS8921A are designed to be compatible with TTL and CMOS．

Features

－ 12 ns typical propagation delay
－Output skew－ 0.5 ns typical
－Meet the requirements of EIA Standard RS－422
－Complementary Driver Outputs
－High differential or common－mode input voltage ranges of $\pm 7 \mathrm{~V}$
－$\pm 0.2 \mathrm{~V}$ receiver sensitivity over the input voltage range
－Receiver input hysteresis－70 mV typical
－DS8921AT industrial temperature operation：$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Connection Diagram

Order Number DS8921M，DS8921N，DS8921AM，DS8921AN， DS8921ATM，or DS8921ATN
See NS Package Number M08A or N08E

Receiver		Driver		
Input	$\mathbf{V}_{\text {OUT }}$	Input	$\mathbf{V}_{\text {OUT }}$	$\overline{\mathbf{V}_{\text {OUT }}}$
$\mathrm{V}_{\text {ID }} \geq \mathrm{V}_{\mathrm{TH}}(\mathrm{MAX})$	1	1	1	0
$\mathrm{~V}_{\text {ID }} \leq \mathrm{V}_{\mathrm{TH}}(\mathrm{MIN})$	0	0	0	1
Open	1			

DS89C21

Differential CMOS Line Driver and Receiver Pair

General Description

The DS89C21 is a differential CMOS line driver and receiver pair, designed to meet the requirements of TIA/EIA-422-A (RS-422) electrical characteristics interface standard. The DS89C21 provides one driver and one receiver in a minimum footprint. The device is offered in an 8-pin SOIC package.
The CMOS design minimizes the supply current to 6 mA , making the device ideal for use in battery powered or power conscious applications.
The driver features a fast transition time specified at 2.2 ns , and a maximum differential skew of 2 ns making the driver ideal for use in high speed applications operating above 10 MHz .
The receiver can detect signals as low as 200 mV , and also incorporates hysteresis for noise rejection. Skew is specified at 4 ns maximum.

The DS89C21 is compatible with TTL and CMOS levels (DI and RO).

Features

- Meets TIA/EIA-422-A (RS-422) and CCITT V. 11 recommendation
- LOW POWER design-15 mW typical
- Guaranteed AC parameters:
- Maximum driver skew 2.0 ns
- Maximum receiver skew 4.0 ns
- Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in SOIC packaging
- Operates over 20 Mbps
- Receiver OPEN input failsafe feature

Connection Diagram

Order Number DS89C21TM See NS Package Number M08A

Driver

Input	Outputs	
DI	DO	DO*
H	H	L
L	L	H

Receiver

Inputs	Output
RI-RI*	RO
$\mathrm{V}_{\text {DIFF }} \geq+200 \mathrm{mV}$	H
$\mathrm{V}_{\text {DIFF }} \leq-200 \mathrm{mV}$	L
OPEN \dagger	H

\dagger Non-terminated

DS8922/DS8922A/DS8923A TRI-STATE® ${ }^{\circledR}$ RS-422 Dual Differential Line Driver and Receiver Pairs

General Description

The DS8922/22A and DS8923A are Dual Differential Line Driver and Receiver pairs. These devices are designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, the devices meet the requirements of the EIA Standard RS-422.
These devices offer an input sensitivity of 200 mV over a $\pm 7 \mathrm{~V}$ common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms. An input fail-safe circuit is provided such that if the receiver inputs are open the output assumes the logical one state.
The DS8922A and DS8923A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns .
Both devices feature TRI-STATE outputs. The DS8922/22A have independent control functions common to a driver and receiver pair. The DS8923A has separate driver and receiver control functions.

Power up/down circuitry is featured which will TRI-STATE the outputs and prevent erroneous glitches on the transmission lines during system power up or power down operation The DS8922/22A and DS8923A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew - $\pm 0.5 \mathrm{~ns}$ typical
- Meets the requirements of EIA Standard RS-422
- Complementary Driver Outputs
- High differential or common-mode input voltage ranges of $\pm 7 \mathrm{~V}$
- $\pm 0.2 \mathrm{~V}$ receiver sensitivity over the input voltage range
- Receiver input fail-safe circuitry
- Receiver input hysteresis -70 mV typical
- Glitch free power up/down
- TRI-STATE outputs

Connection Diagrams

Connection Diagrams (Continued)

DS8923A Dual-In-Line

Order Number DS8923AM, DS8923AN,
See NS Package Number M16A or N16E
DS8922/22A

EN1	EN2	RO1	RO2	DO1	DO2
0	0	ACTIVE	ACTIVE	ACTIVE	ACTIVE
1	0	HI-Z	ACTIVE	HI-Z	ACTIVE
0	1	ACTIVE	HI-Z	ACTIVE	HI-Z
1	1	$\mathrm{HI}-Z$	$\mathrm{HI}-Z$	$\mathrm{HI}-Z$	$\mathrm{HI}-\mathrm{Z}$

DS8923A

$\overline{\text { DEN }}$	$\overline{\text { REN }}$	RO1	RO2	DO1	DO2
0	0	ACTIVE	ACTIVE	ACTIVE	ACTIVE
1	0	ACTIVE	ACTIVE	HI-Z	HI-Z
0	1	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$	ACTIVE	ACTIVE
1	1	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{HI}-\mathrm{Z}$

DS8925

LocalTalk ${ }^{\text {TM }}$ Dual Driver/Triple Receiver

General Description

The DS8925 is a dual driver/triple receiver device optimized to provide a single chip solution for a LocalTalk Interface. The device provides one differential TIA/EIA-422 driver, one TIA/EIA-423 single ended driver, one TIA/EIA-422 receiver and two TIA/EIA-423 receivers, all in a surface mount 16 pin package. This device is electrically similar to the 26LS30 and 26LS32 devices.
The drivers feature $\pm 10 \mathrm{~V}$ common mode range, and the differential driver provides TRI-STATEable outputs. The receivers offer $\pm 200 \mathrm{mV}$ thresholds over the $\pm 10 \mathrm{~V}$ common mode range.

Connection Diagram

Dual-In-Line Package

Order Number DS8925M See NS Package Number M16A

Features

- Single chip solution for LocalTalk port
- Two driver/three receivers per package
- Wide common mode range: $\pm 10 \mathrm{~V}$
- $\pm 200 \mathrm{mV}$ receiver sensitivity
- 70 mV typical receiver input hysteresis
- Available in SOIC packaging

Functional Diagram

National Semiconductor

DS89C386

Twelve Channel CMOS Differential Line Receiver

General Description

The DS89C386 is a high speed twelve channel CMOS differential receiver that meets the requirements of TIA/ EIA-422-B. The DS89C386 features low power dissipation of 240 mW typical.
Each TRI-STATE ${ }^{\circledR}$ enable, EN, allows the receiver output to be active or in a Hi-impedance off state. Each enable is common to only two receivers for flexibility and multiplexing of receiver outputs.
The receiver output (RO) is guaranteed to be High when the inputs are left open and unterminated. The receiver can detect signals as low and including $\pm 200 \mathrm{mV}$ over the common mode range of $\pm 7 \mathrm{~V}$. The receiver outputs (RO) are compatible with both TTL and CMOS levels.

Features

- Low power design - 240 mW typical
- Meets TIA/EIA-422-B (RS-422)
- Receiver OPEN input failsafe feature
- Guaranteed AC parameters:
- Maximum receiver skew -4 ns
- Maximum transition time -9 ns
- High Output Drive Capability: $\pm 6 \mathrm{~mA}$
- Available in SSOP packaging:
- Requires 30% less PCB space than 3 DS34C86TMs

Order Number DS89C386TMEA See NS Package Number MS48A

Function Diagram

1/6 of package

Enable	Inputs	Output
EN	RI-RI*	RO
L	X	Z
H	$\geq 200 \mathrm{mV}$ or OPEN \dagger	H
H	$\leq-200 \mathrm{mV}$	L
H	$+200 \mathrm{mV}>$ and $>-200 \mathrm{mV}$	X

\dagger Not terminated

DS89C387

Twelve Channel CMOS Differential Line Driver

General Description

The DS89C387 is a high speed twelve channel CMOS differential driver that meets the requirements of TIA/EIA-422-B. The DS89C387 features a low I_{Cc} specification of 1.5 mA maximum, which makes it ideal for battery powered and power conscious applications. The device replaces three DS34C87s and offers a PC board space savings up to 30%. The twelve channel driver is available in a SSOP package. The device is ideal for wide parallel bus applications.
Each TRI-STATE ${ }^{\circledR}$ enable (EN) allows the driver outputs to be active or in a HI-impedance off state. Each enable is common to only two drivers for flexibility and control. The drivers may be disabled to turn off load current and to save power when data is not being transmitted.

The driver's input (DI) is compatible with both TTL and CMOS signal levels.

Features

- Low power I_{CC} : 1.5 mA maximum
- Meets TIA/EIA-422-B (RS-422)
- Guaranteed AC parameters:
- Maximum driver skew -3 ns
- Maximum transition time -10 ns
- Available in SSOP packaging:
- Requires 30\% less PCB space than 3 DS34C87TMs

Connection Diagram

48L SSOP
DS89C387

Order Number DS89C387TMEA
See NS Package Number MS48A

Functional Diagram

$1 / 6$ of package

Enable	Input	Outputs	
EN	DI	DO	DO* *
L	X	Z	Z
H	H	H	L
H	L	L	H

General Description

The DS9636A is a TTL/CMOS compatible, dual, single ended line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423.
The DS9636A is suitable for use in digital data transmission systems where signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control lead (WS) and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Current-limiting is provided in both output states. The DS9636A is designed for nominal power supplies of $\pm 12 \mathrm{~V}$.

Inputs are TTL compatible with input current loading low enough ($1 / 10 \mathrm{UL}$) to be also compatible with CMOS logic. Clamp diodes are provided on the inputs to limit transients below ground.

Features

- Programmable slew rate limiting
- Meets EIA Standard RS-423
- Commercial or extended temperature range
- Output short circuit protection
- TTL and CMOS compatible inputs

Connection Diagram

8-Lead DIP
WAVESHAPE CONTROL

Top View
Order Number DS9636ACN, See NS Package Number N08E
For Complete Military Product Specifications, refer to the appropriate SMD or MDS.

Order Number DS9636AJ/883
See NS Package Number J08A

Dual Differential Line Receiver

General Description

The DS9637A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the DS9637A satisfies the requirements of MIL-STD 188-114 and is compatible with the International Standard CCITT recommendations. The DS9637A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5 V power supply and has Schottky TTL compatible outputs. The DS9637A has an operational input common mode range of $\pm 7 \mathrm{~V}$ either differentially or to ground.

Features

- Dual channel
- Single 5V supply
- Satisfies EIA standards RS-422 and RS423
- Built-in $\pm 35 \mathrm{mV}$ hysteresis
- High input common mode voltage range
- High input impedance
- TTL compatible outputs
- Schottky technology
- Extended temperature range

Connection Diagram

DS9638

RS-422 Dual High Speed Differential Line Driver

General Description

The DS9638 is a Schottky, TTL compatible, dual differential line driver designed specifically to meet the EIA Standard RS-422 specifications. It is designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. The inputs are TTL compatible. The outputs are similar to totem pole TTL outputs, with active pull-up and pull-down. The device features a short circuit protected active pull-up with low output impedance and is specified to drive 50Ω transmission lines at high speed. The mini-DIP provides high package density.

Features

- Single 5 V supply
- Schottky technology
- TTL and CMOS compatible inputs
- Output short circuit protection
- Input clamp diodes
- Complementary outputs
- Minimum output skew (<1.0 ns typical)
- 50 mA output drive capability for 50Ω transmission lines
- Meets EIA RS-422 specifications
- Propagation delay of less than 10 ns
- "Glitchless" differential output
- Delay time stable with V_{Cc} and temperature variations (<2.0 ns typical) (Figure 3)
- Extended temperature range

Connection Diagram

DS3883A

BTL 9-Bit Data Transceiver

General Description

The DS3883A is one in a series of transceivers designed specifically for the implementation of high performance Futurebus+ and proprietary bus interfaces. The DS3883A, is a BTL 9-bit Transceiver designed to conform to IEEE 1194.1 (Backplane Transceiver Logic-BTL) as specified in the IEEE 896.2 Futurebus+ specification. Utilization of the DS3883A simplifies the implementation of byte wide address/data with parity lines and also may be used for the Futurebus+ status, tag and command lines.
The DS3883A driver output configuration is an NPN open collector which allows Wired-OR connection on the bus. Each driver output incorporates a Schottky diode in series with its collector to isolate the transistor output capacitance from the bus thus reducing the bus loading in the inactive state. The combined output capacitance of the driver and receiver input is less than 5 pF . The driver also has high sink current capability to comply with the bus loading requirements defined within IEEE 1194.1 BTL specification.
Backplane Transceiver Logic (BTL) is a signaling standard that was invented and first introduced by National Semiconductor, then developed by the IEEE to enhance the performance of backplane buses. BTL compatible transceivers feature low output capacitance drivers to minimize bus loading, a 1V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. BTL eliminates settling time delays that severely limit TTL bus performance, and thus provide significantly higher bus transfer rates. The backplane bus is intended to be operated with termination resistors (selected to match the bus impedance) connected to 2.1 V at both ends. The low voltage is typically 1 V .
Separate ground pins are provided for each BTL output to minimize induced ground noise during simultaneous switching. The unique driver circuitry meets the maximum slew rate of $0.5 \mathrm{~V} / \mathrm{ns}$ which allows controlled rise and fall times to reduce noise coupling to adjacent lines. The transceiver's control and driver inputs are designed with high impedance PNP input structures and are fully TTL compatible.
The receiver is a high speed comparator that utilizes a bandgap reference for precision threshold control allowing maximum noise immunity to the BTL 1V signaling level. Separate $Q V_{c c}$ and QGND pins are provided to minimize the effects of high current switching noise. The output is TRI-STATE ${ }^{\circledR}$ and fully TTL compatible.
The DS3883A supports live insertion as defined in 896.2 through the LI (Live Insertion) pin. To implement live insertion the LI pin should be connected to the live insertion power connector. If this function is not supported the LI pin must be tied to the $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$. The DS3883A also provides glitch free power up/down protection during power sequencing.

The DS3883A has two types of power connections in addition to the LI pin. They are the Logic $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the Quiet $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{QV}_{\mathrm{cc}}\right)$. There are two logic V_{cc} pins on the DS3883 that provide the supply voltage for the logic and control circuitry. Multiple power pins reduce the effects of package inductance and thereby minimize switching noise. As these pins are common to the $V_{c c}$ bus internal to the device, a voltage delta should never exist between these pins and the voltage difference between V_{cc} and QV cc should never exceed $\pm 0.5 \mathrm{~V}$ because of ESD circuitry.
Additionally, the ESD circuitry between the V_{CC} pins and all other pins except for BTL I/O's and LI pins requires that any voltage on these pins should not exceed the voltage on V_{CC} +0.5 V .
There are three different types of ground pins on the DS3883A. They are the logic ground (GND), BTL grounds (B0GND-B8GND) and the Bandgap reference ground (QGND). All of these ground reference pins are isolated within the chip to minimize the effects of high current switching transients. For optimum performance the QGND should be returned to the connector through a quiet channel that does not carry transient switching current. The GND and B0GND-B8GND should be connected to the nearest backplane ground pin with the shortest possible path.
Since many different grounding schemes could be implemented and ESD circuitry exists on the DS3883, it is important to note that any voltage difference between ground pins, QGND, GND or B0GND-B8GND should not exceed $\pm 0.5 \mathrm{~V}$ including power-up/down sequencing.
When CD (Chip Disable) is high, An and Bn are in a high impedance state. To transmit data (An to Bn) the $T / \overline{\mathrm{R}}$ signal is high. To receive data ($B n$ to $A n$) the T / \bar{R} signal is low.

Features

- 9-bit Inverting BTL transceiver meets IEEE 1194.1 standard on Backplane Transceiver Logic (BTL)
- Supports live insertion
- Glitch free power-up/down protection
- Typically less than 5 pF bus-port capacitance
- Low bus-port voltage swing (typically 1V) at 80 mA
- Open collector bus-port output allows Wired-OR
- Controlled rise and fall time to reduce noise coupling
- TTL compatible driver and control inputs
- Built in bandgap reference with separate QV cc and QGND pins for precise receiver thresholds
- Exceeds 2 kV ESD (Human Body Model)
- Individual bus-port ground pins minimize ground bounce
- Tight skew (1 ns typical)

Connection Diagram

DS3884A

BTL Handshake Transceiver

General Description

The DS3884A is one in a series of transceivers designed specifically for the implementation of high performance Futurebus+ and proprietary bus interfaces. The DS3884A is a BTL 6-bit Handshake Transceiver designed to conform to IEEE 1194.1 (Backplane Transceiver Logic-BTL) as specified in the IEEE 896.2 Futurebus+ specification.

Features

- Fast propagation delay (3 ns typ)
- 6-bit BTL transceiver
- Selective receiver glitch filtering (FR1-FR3)
- Meets 1194.1 Standard on Backplane Transceiver Logic (BTL)
- Supports live insertion
- Glitch free power-up/down protection
- Typically less than 5 pF bus-port capacitance
- Low Bus-port voltage swing (typically 1 V) at 80 mA
- TTL compatible driver and control inputs
- Separate TTL I/O
- Open collector bus-port outputs allow Wired-OR connection
- Controlled rise and fall time to reduce noise coupling to adjacent lines
- Built in Bandgap reference with separate QV cc and QGND pins for precise receiver thresholds
■ Exceeds 2 kV ESD testing (Human Body Model)
- Individual Bus-port ground pins
- Product offered in PQFP package styles

Connection Diagram

Order Number DS3884AVF
See NS Package VF44B

Logic Diagram

BTL 9-Bit Latching Data Transceiver

General Description

The DS3886A is a higher speed, lower power, pin compatible version of the DS3886.
The DS3886A is one in a series of transceivers designed specifically for the implementation of high performance Futurebus+ and proprietary bus interfaces. The DS3886A is a BTL 9-Bit Latching Data Transceiver designed to conform to IEEE 1194.1 (Backplane Transceiver Logic-BTL) as specified in the IEEE 896.2 Futurebus+ specification. The DS3886A incorporates an edge-triggered latch in the driver path which can be bypassed during fall-through mode of operation and a transparent latch in the receiver path. Utilization of the DS3886A simplifies the implementation of byte wide address/data with parity lines and also may be used for the Futurebus+ status, tag and command lines.

The DS3886A driver output configuration is an NPN open collector which allows Wired-OR connection on the bus. Each driver output incorporates a Schottky diode in series with it's collector to isolate the transistor output capacitance from the bus, thus reducing the bus loading in the inactive state. The combined output capacitance of the driver output and receiver input is less than 5 pF . The driver also has high sink current capability to comply with the bus loading requirements defined within IEEE 1194.1 BTL specification.
Backplane Transceiver Logic (BTL) is a signaling standard that was invented and first introduced by National Semiconductor, then developed by the IEEE to enhance the performance of backplane buses. BTL compatible transceivers feature low output capacitance drivers to minimize bus loading, a 1 V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. The BTL standard eliminates settling time delays that severely limit TTL bus performance, and thus provide significantly higher bus transfer rates. The backplane bus is intended to be operated with termination resistors (selected to match the bus impedance) connected to 2.1 V at both ends. The low voltage is typically 1 V .

Separate ground pins are provided for each BTL output to minimize induced ground noise during simultaneous switching.
The unique driver circuitry meets the maximum slew rate of $0.5 \mathrm{~V} / \mathrm{ns}$ which allows controlled rise and fall times to reduce noise coupling to adjacent lines.
The transceiver's high impedance control and driver inputs are fully TTL compatible.

The receiver is a high speed comparator that utilizes a Bandgap reference for precision threshold control, allowing maximum noise immunity to the BTL IV signaling level. Separate QV ${ }_{c c}$ and QGND pins are provided to minimize the effects of high current switching noise. The output is TRI-STATE ${ }^{\circledR}$ and fully TTL compatible.
The DS3886A supports live insertion as defined in IEEE 896.2 through the LI (Live Insertion) pin. To implement live insertion the LI pin should be connected to the live insertion power connector. If this function is not supported, the LI pin
must be tied to the $\mathrm{V}_{\mathrm{cc}} \mathrm{pin}$. The DS3886A also provides glitch free power up/down protection during power sequencing.
The DS3886A has two types of power connections in addition to the LI pin. They are the Logic $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the Quiet $\mathrm{V}_{\mathrm{Cc}}\left(\mathrm{QV} \mathrm{V}_{\mathrm{Cc}}\right)$. There are two Logic V_{Cc} pins on the DS3886A that provide the supply voltage for the logic and control circuitry. Multiple connections are provided to reduce the effects of package inductance and thereby minimize switching noise. As these pins are common to the V_{Cc} bus internal to the device, a voltage delta should never exist between these pins and the voltage difference between V_{cc} and $\mathrm{QV}_{\mathrm{cc}}$ should never exceed $\pm 0.5 \mathrm{~V}$ because of ESD circuitry.
When CD (Chip Disable) is high, An is in high impedance state and Bn is high. To transmit data (An to Bn) the T / \bar{R} signal is high.
When RBYP is high, the positive edge triggered flip-flop is in the transparent mode. When RBYP is low, the positive edge of the ACLK signal clocks the data.
In addition, the ESD circuitry between the V_{CC} pins and all other pins except for BTL I/O's and LI pins requires that any voltage on these pins should not exceed the voltage on $V_{c C}$ +0.5 V .
There are three different types of ground pins on the DS3886A; the logic ground (GND), BTL grounds (B0GND-B8GND) and the Bandgap reference ground (QGND). All of these ground reference pins are isolated within the chip to minimize the effects of high current switching transients. For optimum performance the QGND should be returned to the connector through a quiet channel that does not carry transient switching current. The GND and B0GND-B8GND should be connected to the nearest backplane ground pin with the shortest possible path.
Since many different grounding schemes could be implemented and ESD circuitry exists on the DS3886A, it is important to note that any voltage difference between ground pins, QGND, GND or B0GND-B8GND should not exceed $\pm 0.5 \mathrm{~V}$ including power up/down sequencing.
The DS3886A is offered in 44-pin PLCC, and 44-pin PQFP high density package styles.

Features

- Fast propagation delay (3ns typ)
- 9-BIT BTL Latched Transceiver
- Driver incorporates edge triggered latches
- Receiver incorporates transparent latches
- Meets IEEE 1194.1 Standard on Backplane Transceiver Logic (BTL)
- Supports Live Insertion
- Glitch free Power-up/down protection
- Typically less than 5 pF Bus-port capacitance
- Low Bus-port voltage swing (typically 1V) at 80 mA
- Exceeds 2 KV ESD testing (Human Body Model)

Features (Continued)

- Open collector Bus-port outputs allows Wired-OR connection
- Controlled rise and fall time to reduce noise coupling to adjacent lines
- TTL compatible Driver and Control inputs

Connection Diagrams

- Built in Bandgap reference with separate QV cc and QGND pins for precise receiver thresholds
- Individual Bus-port ground pins
- Product offered in PLCC and PQFP package styles
- Tight skew (0.5 ns typical)

Order Number DS3886AV, or DS3886AVF See NS Package Number V44A, or VF44B

DS38C86A

CMOS BTL 9-Bit Latching Data Transceiver

General Description

The DS38C86A is a 9-bit BTL Latching Data Transceiver designed specifically for proprietary bus interfaces. The device is implemented in CMOS technology, and delivers all of the performance of its Bi -CMOS counterparts while consuming less then half of the power supply current of the DS3886A. The DS38C86A conforms to the IEEE 11941.1 (Backplane Transceiver Logic - BTL) Standard.
The DS38C86A incorporates an edge-triggered latch in the driver path which can be bypassed during fall-through mode of operation and a transparent latch in the receiver path. The DS38C86A driver output configuration is an open drain which allows Wired-OR connection on the bus. A unique design reduces the bus loading to 3 pF typical. The driver also has high sink current capability to comply with the bus loading requirements defined within IEEE 11941.1 BTL specification.
Backplane Transceiver Logic (BTL) is a signaling standard that was invented and first introduced by National Semiconductor, then developed by the IEEE to enhance the performance of backplane buses. BTL transceivers feature low output capacitance drivers to minimize bus loading, a 1V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. The BTL standard eliminates settling time delays that severely limit TTL bus performance, and thus provide significantly higher bus transfer rates. The backplane bus is intended to be operated with termination resistors (selected to match the bus impedance) connected to a 2.1 V at both ends. The low voltage is typically 1 V .
The DS38C86A provides an alternative to high power Bipolar and BiCMOS devices with the use of CMOS technology. The CMOS technology enables the DS38C86A to operate at 50% of the I_{Cc} required by the $\mathrm{Bi}-\mathrm{CMOS}$ DS3886A. This can have a major impact on system power consumption. For example, if a backplane is 128 bits wide, 16 devices (9 bits each) required per card. Also assume the backplane is one rack with 20 slots. Power dissipation savings for this application is calculated by the following equation:
$P=I_{c c}$-savings \times Power supply voltage \times number of devices

$$
P=32 \mathrm{~mA} \times 5.5 \mathrm{~V} \times 320=56 \mathrm{Watts}
$$

The power dissipation savings may increase even more when; the system bus is wider than 128 bits, there are multiple racks in the system, or if the system includes a hot backup. This may double the power dissipation savings.
Separate ground pins are provided for each BTL output minimize induced ground noise during simultaneous switching.
The unique driver circuitry provides a maximum slew rate of $0.9 \mathrm{~V} / \mathrm{ns}$ which allows controlled rise and fall times to reduce noise coupling to adjacent lines.
The transceiver's high impedance control and driver inputs are fully TTL compatible.

The receiver is a high speed comparator that utilizes a Bandgap reference for precision threshold control allowing maximum immunity to the BTL 1V signaling level.
Separate $Q V_{C C}$ and QGND pins are provided to minimize the effects of high current switching noise. The receiver output is TRI-STATE ${ }^{\circledR}$ and fully TTL compatible.
The DS38C86A supports live insertion as defined in IEEE 896.2 through the LI (Live Insertion) pin. To implement live insertion the LI pin should be connected to the live insertion power connector. If this function is not supported, the LI pin must be tied to the V_{cc} pin. The DS38C86A also provides glitch free power up/down protection during power sequencing.
The DS38C86A has two types of power connections in addition to the LI pin. They are the Logic $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the Quiet $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{Q} \mathrm{V}_{\mathrm{cc}}\right)$. There are two Logic V_{cc} pins on the DS38C86A that provide the supply voltage for the logic and control circuitry. Multiple connections are provided to reduce the effects of package inductance and thereby minimize switching noise. A voltage delta between V_{cc} and $\mathrm{QV}_{\mathrm{cc}}$ should never exceed $\pm 0.5 \mathrm{~V}$ because of ESD circuitry.
When $C D$ (Chip Disable) is high, An is in high impedance state and Bn is high. To transmit data (An to Bn), the $\mathrm{T} / \overline{\mathrm{R}}$ signal is high.
When RBYP is high, the positive edge triggered flip-flop is in the transparent mode. When RBYP is low, the positive edge of the ACLK signal clocks the data.
In addition, the ESD circuitry between the V_{CC} pins and all other pins except for BTL I/O's and LI pins requires that any voltage on these pins should not exceed the voltage on V_{Cc} +0.5 V .
There are three different types of ground pins on the DS38C86A; the logic ground (GND), BTL grounds (B0GND-B8GND) and the Bandgap reference ground (QGND). All of these ground reference pins are isolated within the chip to minimize the effects of high current switching transients. For optimum performance the QGND should be returned to the connector through a quiet channel that does not carry transient switching current. The GND and BOGND-B8GND should be connected to the nearest backplane ground pin with the shortest possible path.
Since many different grounding schemes could be implemented and ESD circuitry exists on the DS38C86A, it is important to note that any voltage between ground pins, QGND, GND or B0GND-B8GND should not exceed $\pm 0.5 \mathrm{~V}$ including power up/down sequencing.
The DS38C86A is offered in a 48 -pin 7×7 space saving PQFP package.

Features

- $>50 \%$ Less I_{Cc} then Bi-CMOS DS3886A
- 9-Bit inverting BTL latching transceiver
- Meets IEEE 1194.1 Standard on Backplane Transceiver Logic (BTL)
- Very low bus-port capacitance-3 pF typical
- Supports live insertion
- Glitch free power-up/down protection
- Fast propagation delays
- An to Bn (Fall-Thru Mode) 6.0 ns max
- Bn to An (Bypass Mode) 7.0 ns max
- 1V Signal swings with 80 mA sink capability
- Open drain bus-port outputs allow Wired-OR connection
- Controlled rise and fall time to reduce noise coupling to adjacent lines
- TTL compatible Driver and Control inputs
- Built in Bandgap reference with separate QV $_{\mathrm{Cc}}$ and QGND pins for precise receiver thresholds
- Individual bus-port ground pins
- Tight skew -
- Driver 2.0 ns max
- Receiver 2.5 ns max

Connection Diagram

Ordering Information

NSID	Package	NS Package Number
DS38C86AVB	PQFP (7×7)	VBH48A

DS3893A

BTL TURBOTRANSCEIVER ${ }^{\text {™ }}$

General Description

The TURBOTRANSCEIVER is designed for use in very high speed bus systems. The bus terminal characteristics of the TURBOTRANSCEIVER are referred to as "Backplane Transceiver Logic" (BTL). BTL is a new logic signaling standard that has been developed to enhance the performance of backplane buses. BTL compatible transceivers feature low output capacitance drivers to minimize bus loading, a 1V nominal signal swing for reduced power consumption and receivers with precision thresholds for maximum noise immunity. This new standard eliminates the settling time delays, that severely limit the TTL bus performance, to provide significantly higher bus transfer rates.
The TURBOTRANSCEIVER is compatible with the requirements of the proposed IEEE 896 Futurebus draft standard. It is similar to the DS3896/97 BTL TRAPEZOIDALTM Transceivers but the trapezoidal feature has been removed to improve the propagation delay. A stripline backplane is therefore required to reduce the crosstalk induced by the faster rise and fall times. This device can drive a 10Ω load with a typical propagation delay of 3.5 ns for the driver and 5 ns for the receiver.
When multiple devices are used to drive a parallel bus, the driver enables can be tied together and used as a common control line to get on and off the bus. The driver enable delay is designed to be the same as the driver propagation delay in order to provide maximum speed in this configuration. The low input current on the enable pin eases the drive required for the common control line.

The bus driver is an open collector NPN with a Schottky diode in series to isolate the transistor output capacitance from the bus when the driver is in the inactive state. The active output low voltage is typically 1 V . The bus is intended to be operated with termination resistors (selected to match the bus impedance) to 2.1 V at both ends. Each of the resistors can be as low as 20Ω.

Features

- Fast single ended transceiver (typical driver enable and receiver propagation delays are 3.5 ns and 5 ns)
- Backplane Transceiver Logic (BTL) levels (1V logic swing)
- Less than 5 pF bus-port capacitance
- Drives densely loaded backplanes with equivalent load impedances down to 10Ω
- 4 transceivers in 20 pin PCC package
- Specially designed for stripline backplanes
- Separate bus ground returns for each driver to minimize ground noise
- High impedance, MOS and TTL compatible inputs
- TRI-STATE ${ }^{\text {TM }}$ control for receiver outputs
- Built-in bandgap reference provides accurate receiver threshold
- Glitch free power up/down protection on all outputs
- Oxide isolated bipolar technology

Connection and Logic Diagram

Order Number DS3893AV See NS Package Number V20A

DS3896/DS3897

BTL Trapezoidal ${ }^{\text {M }}$ Transceivers

General Description

These advanced transceivers are specifically designed to overcome problems associated with driving a densely populated backplane, and thus provide significant improvement in both speed and data integrity. Their low output capacitance, low output signal swing and noise immunity features make them ideal for driving low impedance buses with minimum power consumption.
The DS3896 is an octal high speed schottky bus transceiver with common control signals, whereas the DS3897 is a quad device with independent driver input and receiver output pins. The DS3897 has a separate driver disable for each driver and is, therefore, suitable for arbitration lines. The separate driver disable pins (En) feature internal pull ups and may be left open if not required. On the other hand, the DS3896 provides high package density for data/address lines.
The open collector drivers generate precise trapezoidal waveforms, which are relatively independent of capacitive loading conditions on the outputs. This significantly reduces noise coupling to adjacent lines. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity and provide equal rejection to both negative and positive going noise pulses on the bus.
To minimize bus loading, these devices also feature a schottky diode in series with the open collector output that isolates the driver output capacitance in the disabled state. The output low voltage is typically " 1 V " and the output high level is intended to be 2 V . This is achieved by terminating the bus
with a pull up resistor to 2 V at both ends. The device can drive an equivalent $D C$ load of 18.5Ω (or greater) in the above configuration.
These signalling requirements, including a 1 volt signal swing, low output capacitance and precise receiver thresholds are referred to as Bus Transceiver Logic (BTL).

Features

- 8 bit DS3896 transceiver provides high package density
- 4 bit DS3897 transceiver provides separate driver input and receiver output pins
- BTL compatible
- Less than 5 pF output capacitance for minimal bus loading
- 1 Volt bus signal swing reduces power consumption
- Trapezoidal driver waveforms ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \cong 6 \mathrm{~ns}$ typical) reduce noise coupling to adjacent lines
- Temperature insensitive receiver thresholds track the bus logic high level to maximize noise immunity in both high and low states
- Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs and receiver outputs

Logic Diagrams

DS75110A

Dual Line Drivers

General Description

The DS75110A is a dual line driver with independent channeis, common supply and ground terminals featuring constant current outputs. These drivers are designed for optimum performance when used with the DS75107, DS75108 line receivers.
The output current of the DS75110A is nominally 12 mA and may be switched to either of two output terminals with the appropriate logic levels at the driver input.
Separate or common control inputs are provided for increased logic versatility. These control or inhibit inputs allow the output current to be switched off (inhibited) by applying low logic levels to the control inputs. The output current in the inhibit mode, $\mathrm{I}_{\text {O(Off) }}$, is specified so that minimum line loading is induced. This is highly desirable in system applications using party line data communications.

Features

- Improved stability over supply voltage and temperature ranges
- Constant current, high impedance outputs
- High speed: 15 ns max propagation delay
- Standard supply voltages
- Inhibitor available for driver selection
- High common mode output voltage range (-3.0 V to 10 V)
- TTL input compatibility

Connection Diagram

14-Lead Dual-In-Line Package and SO-14 Package

Order Number DS75110AM or DS75110AN See NS Package Number M14A or N14A

Function Table

Inputs				Outputs	
Logic		Inhibitor			
1	2	A/B	$\overline{\mathrm{NH}}$	A1/B1	A2/B2
X	X	L	X	Off	Off
X	X	X	L	Off	Off
L	X	H	H	Off	On
X	L	H	H	Off	On
H	H	H	H	On	Off

DS7830

Dual Differential Line Driver

General Description

The DS7830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function.

TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω. The differential feature of the output eliminates troublesome ground-loop errors normally associated with single-wire transmissions.

Features

- Single 5V power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing
- High speed
- Short circuit protection

Connection Diagram
Dual-In-Line and Flat Package

Top View
For Complete Military 883 Specificatons, See RETS Data Sheet. Order Number DS7830J/883 or DS7830W/883

See NS Package Number J14A

DS7831/DS8832 Dual TRI-STATE® Line Driver

General Description

Through simple logic control, the DS7831/DS8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DS8832 does not have the V_{CC} clamp diodes found on the DS7831.
The DS7831 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The DS8832 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance - high drive capability
- 40 mA sink and source currents
- Gating control to allow either single-ended or differential operation
- High impedance output state which allows many outputs to be connected to a common bus line

Connection and Logic Diagram

Top View
Order Number DS8832J or DS8832N
See NS Package Number J16A or N16A For Complete Military 883 Specificatons, See RETS Data Sheet.
Order Number DS7831J/883, DS7831W/883, See NS Package Number J16A or W16A

Truth Table

(Shown for A Channels Only)

"A" Output Disable		Differential/ Single-Ended Mode Control		Input A1	Output A1	Input A2	Output A2
0	0	0	0	Logical "1" or Logical "0"	Same as Input A1	Logical "1" or Logical "0"	Same as Input A2
0	0	X	1	Logical "1" or Logical "0"	Opposite of Input A1	Logical "1" or Logical "0"	Same as Input A2
1	X	X	X	X	High Impedance State	X	High Impedance State

X $=$ Don't Care

DS1603

TRI-STATE® Dual Receiver

General Description

The DS16033 is a dual differential TRI-STATE line receiver designed for a broad range of system applications. It features a high input impedance and low input current which reduces the loading effects on a digital transmission line, making it ideal for use in party line systems and general purpose applications like transducer preamplifiers, level translators and comparators.
The receivers feature a $\pm 25 \mathrm{mV}$ input sensitivity specified over a $\pm 3 \mathrm{~V}$ common mode range. Input protection diodes are incorporated in series with the collectors of the differential stage. These diodes are useful in applications that have multiple $\mathrm{V}_{\mathrm{cC}^{+}}$supplies or $\mathrm{V}_{\mathrm{cc}^{+}}$supplies that are turned off thus avoiding signal clamping. In addition, TTL compatible strobe and control lines are provide for flexibility in the application.

The DS1603 is pin compatible with the DS75107 dual line receiver.

Features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- $\pm 25 \mathrm{mV}$ input sensitivity
- $\pm 3 \mathrm{~V}$ input common-mode range
- High-input inpedance with normal V_{cc}, or $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Strobes for channel selection
- TRI-STATE outputs for high speed buses

Connection Diagram

For Complete Military 883 Specifications, See RETS Data Sheet. Order Number: DS1603J/883 or DS1603W/883

See NS Package Number J14A

Quad Differential Line Receivers

General Description

The DS3650 is TTL compatible quad high speed circuits intended primarily for line receiver applications. Switching speeds have been enhanced over conventional line receivers by the use of Schottky technology, and TRI-STATE ${ }^{\oplus}$ strobing is incorporated offering a high impedance output state for bussed organizations.
The DS3650 has active pull-up outputs and offers a TRI-STATE strobe.

Connection Diagram
Dual-In-Line Package

Order Number DS3650M or DS3650N
See NS Package Number M16A or N16A For Complete Military 883 Specifications, see RETS Data Sheet.

Input	Strobe	Output
		DS3650
$\mathrm{V}_{\mathrm{D}} \geq 25 \mathrm{mV}$	L	H
	H	Open
$-25 \mathrm{mV} \leq \mathrm{V}_{\mathrm{ID}} \leq 25 \mathrm{mV}$	L	X
	H	Open
$\mathrm{V}_{\mathrm{ID}} \leq-25 \mathrm{mV}$	L	L
	H	Open

[^10]
Features

- High speed
- TTL compatible
- Input sensitivity: $\pm 25 \mathrm{mV}$
- TRI-STATE outputs for high speed busses
- Standard supply voltages: $\pm 5 \mathrm{~V}$
- Pin and function compatible with MC3450

Wired "OR" Data Selecting Using TRI-STATE Logic

DS75107

Dual Line Receiver

General Description

The product described herein is a TTL compatible dual high speed circuit intended for sensing in a broad range of system applications. While the primary usage will be for line receivers of MOS sensing, the product may effectively be used as a voltage comparator, level translator, window detector, transducer preamplifier, and in other sensing applications. As a digital line receiver the product is applicable with the SN55109/SN75109 and μ A75110/DS75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems.
Input protection diodes are incorporated in series with the collectors of the differential input stage. These diodes are useful in certain applications that have multiple $\mathrm{V}_{\mathrm{CC}^{+}}$supplies or $\mathrm{V}_{\mathrm{CC}^{+}}$supplies that are turned off.

Features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- $\pm 10 \mathrm{mV}$ or $\pm 25 \mathrm{mV}$ input sensitivity
- $\pm 3 \mathrm{~V}$ input common-mode range
- High input impedance with normal V_{cc}, or $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Strobes for channel selection
- Dual circuits
- Sensitivity gntd. over full common-mode range
- Logic input clamp diodes - meets both "A" and "B" version specifications
- $\pm 5 \mathrm{~V}$ standard supply voltages

Connection Diagram

Dual-In-Line Package

Top View
Order Number DS75107M, DS75107N
See NS Package Number M14A or N14A
For Complete Military 883 Specifications, see RETS Datasheet.
Order Number DS55107AJ/883
See NS Package Number J14A

Selection Guide

Temperature \rightarrow		
Package \rightarrow	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+70^{\circ} \mathrm{C}$ Cavity or Molded Dip	
Input Sensitivity \rightarrow Output Logic \downarrow	$\mathbf{\pm 2 5} \mathbf{~ m V}$	$\pm 10 \mathbf{~ m V}$
TTL Active Pull-Up	DS75107	
TTL Open Collector		

National Semiconductor

DS7820A/DS8820A

Dual Line Receiver

General Description

The DS7820A and the DS8820A are improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with TTL or LS integrated circuits.
The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic "1" for both inputs open. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820A and the DS8820A are specified, worst case, over their full
operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ respectively), over the entire input voltage range, for $\pm 10 \%$ supply voltage variations.

Features

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Strobe low forces output to "1" state
- High input resistance
- Fanout of ten with TTL integrated circuits
- Outputs can be wire OR'ed
- Series 54/74 compatible

Connection Diagram

Note 1: Pin 7 connected to bottom of cavity package.
Top View
Order Number DS7820AJ or DS8820AN See NS Package Number J14A or N14A For Complete Military 883 Specificatons, See RETS Data Sheet. Order Number DS7820AJ/883
See NS Package Number J14A or W14B

Dual Line Receiver

General Description

The DS9622 is a dual line receiver designed to discriminate a worst case logic swing of 2 V from a $\pm 10 \mathrm{~V}$ common mode noise signal or ground shift. A 1.5 V threshold is built into the differential amplifier to offer a TTL compatible threshold voltage and maximum noise immunity. The offset is obtained by use of current sources and matched resistors.
The DS9622 allows the choice of output states with the input open, without affecting circuit performance by use of S3. A 130Ω terminating resistor is provided at the input of each line receiver. An enable is also provided for each line receiver. The output is TTL compatible. The output high level can be increased to 12 V by tying it to a positive supply through a resistor. The output circuits allow wired-OR operation.

Features

- TTL compatible threshold voltage
- Input terminating resistors
- Choice of output state with inputs open
- TTL compatible output
- High common mode
- Wired-OR capability
- Enable inputs
- Logic compatible supply voltages

Connection Diagram

14-Lead DIP

For Complete Military 883 Specifications, see RETS Datasheet.
Order Number DS9622ME/883,
DS9622MJ/883 or DS9622MW/883
See NS Package Number E20A, J14A or W14B

DS3662

Quad High Speed Trapezoidal ${ }^{\text {TM }}$ Bus Transceiver

General Description

The DS3662 is a quad high speed Schottky bus transceiver intended for use with terminated 120Ω impedance lines. It is specifically designed to reduce noise in unbalanced transmission systems. The open collector drivers generate precise trapezoidal waveforms with rise and fall times of 15 ns (typical), which are relatively independent of capacitive loading conditions on the outputs. This reduces noise coupling to the adjacent lines without any appreciable impact on the maximum data rate obtainable with high speed bus transceivers. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity. Tightly controlled threshold levels on the receiver provide equal rejection to both negative and positive going noise pulses on the bus.
The external termination is intended to be a 180Ω resistor from the bus to 5 V logic supply, together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. A two input NOR gate is provided to disable all drivers in a package simultaneously.

Features

- Pin to pin functional replacement for DS8641
- Guaranteed AC specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Temperature insensitive receiver thresholds track bus logic level
- Trapezoidal bus waveforms reduce noise coupling to adjacent lines
- Precision receiver thresholds provide maximum noise immunity and symmetrical response to positive and negative going pulses
- Open collector driver output allows wire-OR connection
- High speed Schottky technology
- $15 \mu \mathrm{~A}$ typical bus termination current with normal V_{CC} or with $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Glitch free power up/down protection on the driver output
- TTL compatible driver and disable inputs, and receiver outputs

Block and Connection Diagram

DS3862

Octal High Speed Trapezoidal ${ }^{\text {M }}$ Bus Transceiver

General Description

The DS3862 is an octal high speed schottky bus transceiver intended for use with terminated 120Ω impedance lines. It is specifically designed to reduce noise in unbalanced transmission systems. The open collector drivers generate precise trapezoidal waveforms with rise and fall times of 9 ns (typical), which are relatively independent of capacitive loading conditions on the outputs. This reduces noise coupling to the adjacent lines without any appreciable impact on the maximum data rate obtainable with high speed bus transceivers. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity. Tightly controlled threshold levels on the receiver provide equal rejection to both negative and positive going noise pulses on the bus.
The external termination is intended to be a 180Ω resistor from the bus to 5 V logic supply, together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends.

Features

- Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Temperature insensitive receiver thresholds track bus logic level and respond symmetrically to positive and negative going pulses
- Trapezoidal bus waveforms reduce noise coupling to adjacent lines
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs, and receiver outputs
- Control logic is the same as the DS3896

Logic and Connection Diagram

Order Number DS3862J, DS3862N or DS3862WM
See NS Package Number J20A, N20A or M20B

National Semiconductor

DS75160A/DS75161A
 IEEE-488 GPIB Transceivers

General Description

This family of high-speed-Schottky 8 -channel bi-directional transceivers is designed to interface TTL/MOS logic to the IEEE Standard 488-1978 General Purpose Interface Bus (GPIB). PNP inputs are used at all driver inputs for minimum loading, and hysteresis is provided at all receiver inputs for added noise margin. The IEEE-488 required bus termination is provided internally with an active turn-off feature which disconnects the termination from the bus when V_{CC} is removed.
The General Purpose Interface Bus is comprised of 16 signal lines - 8 for data and 8 for interface management. The data lines are always implemented with DS75160A, and the management lines are either implemented with DS75161A in a single-controller system.

Features

- 8-channel bi-directional non-inverting transceivers

Bi-directional control implemented with TRI-STATE ${ }^{\circledR}$ output design

- Meets IEEE Standard 488-1978
- High-speed Schottky design
- Low power consumption
- High impedance PNP inputs (drivers)
- 500 mV (typ) input hysteresis (receivers)
- On-chip bus terminators
- No bus loading when $V_{C C}$ is removed
- Pin selectable open collector mode on DS75160A driver outputs
- Accommodates multi-controller systems

Connection Diagrams

DS8641

Quad Unified Bus Transceiver

General Description

The DS8641 is a quad high speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/ receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$. The receivers incorporate tight thresholds for better bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously.

Features

- 4 separate driver/receiver pairs per package
- Guaranteed minimum bus noise immunity of $0.6 \mathrm{~V}, 1.1 \mathrm{~V}$ typ
- Temperature insensitive receiver thresholds track bus logic levels
- $30 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

Connection Diagram

Top View
Order Number DS8641N
See NS Package Number N16A

Typical Application

DS8838

Quad Unified Bus Transceiver

General Description

The DS8838 is a quad high speed driver/receiver designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{Cc}}=\mathrm{OV}$. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

Features

- 4 totally separate driver/receiver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minimum bus noise immunity of $1.3 \mathrm{~V}, 2 \mathrm{~V}$ typ.
- Temperature-insensitive receiver thresholds track bus logic levels
- $20 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

Typical Application

Connection Diagram

Order Number DS7838J, DS8838M or DS8838N
See NS Package Number J16A, M16A or N16A

National Semiconductor

DS1776

PI-Bus Transceiver

General Description

The DS1776 is an octal PI-bus Transceiver. The A to B path is latched. B outputs are open collector with series Schottky diode, ensuring minimum B output loading. B outputs also have ramped rise and fall times (2.5 ns typical), ensuring minimum PI -bus ringing. B inputs have glitch rejection circuitry, 4 ns typical.
Designed using National's Bi-CMOS process for both low operating and disabled power. AC performance is optimized for the Pl-Bus inter-operability requirements.
The DS1776 is an octal latched transceiver and is intended to provide the electrical interface to a high performance wired-or bus. This bus has a loaded characteristic impedance range of 20Ω to 50Ω and is terminated on each end with a 30Ω to 40Ω resistor.
The DS1776 is an octal bidirectional transceiver with open collector B and TRI-STATE® A port output drivers. A latch function is provided for the A port signals. The B port output
driver is designed to sink 100 mA from 2 V and features a controlled linear ramp to minimize crosstalk and ringing on the bus.
A separate high level control voltage $\left(V_{x}\right)$ is provided to prevent the A side output high level from exceeding future high density processor supply voltage levels. For 5 V systems, V_{x} is tied to V_{CC}.

Features

- Mil-Std-883C qualified
- Similar to BTL
- Low power $\mathrm{I}_{\mathrm{CLL}}=41 \mathrm{~mA}$ max
- B output controlled ramp rate
- B input noise immunity, typically 4 ns
- Available in 28 -pin DIP, Flatpak and CLCC
- Pin and function compatible with Signetics 54F776

Pin Configurations

Pin Configuration

Order Number DS1776E/883 or DS1776J/883 See NS Package E28A or J28B

Pin Configuration

Logic Symbol

DS26S10

Quad Bus Transceiver

General Description

The DS26S10 is a quad Bus Transceiver consisting of 4 high speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 V and 4 high speed bus receivers. Each driver output is connected internally to the high speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving 10 Schottky TTL unit loads.
An active low enable gate controls the 4 drivers so that outputs of different device drivers can be connected together for party-line operation.
The bus output high-drive capability in the low state allows party-line operation with a line impedance as low as 100Ω. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2 V .

The DS26S10 features advanced Schottky processing to minimize propagation delay. The device package also has 2 ground pins to improve ground current handling and allow close decoupling between V_{CC} and ground at the package. Both GND 1 and GND 2 should be tied to the ground bus external to the device package.

Features

- Input to bus is inverting on DS26S10
- Quad high speed open-collector bus transceivers
- Driver outputs can sink 100 mA at 0.8 V maximum
- Advanced Schottky processing
- PNP inputs to reduce input loading

Logic Diagrams

DS1487

Low Power RS-485 ¼ Unit Load Multipoint Transceiver

General Description

The DS1487 is a low-power transceiver for RS-485 and RS-422 communication. The device contains one driver and one receiver. The drivers slew rate allows for operation up to 2.0 Mbps (see Applications Information section). The transceiver presents $1 / 4$ unit loading to the RS- 485 bus allowing up to 128 nodes to be connected together without the use of repeaters.
The transceiver draws $200 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with the driver disabled and operates from a single +5 V supply.
The driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into TRI-STATE ${ }^{\circledR}$ (High Impedance state) under fault conditions. The driver guarantees a minimum of 1.5 V differential output voltage with maximum loading across the common mode range (V_{OD}).
The receiver has a failsafe feature that guarantees a logic-high output if the input is open circuit.
The DS1487 is available in surface mount and DIP packages.

Connection and Logic Diagram

*Note: Non Terminated, Open Input only

Order Number	Temp. Range	Package/\#\#\#
DS1487N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DIP/N08E
DS1487M	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOP/M08A

Features

- Meets TIA/EIA RS-485 multipoint standard
- Allows up to 128 transceivers on the bus ($1 / 4$ U.L.)
- Guaranteed full load output voltage ($\mathrm{V}_{\mathrm{OD3}}$)
- Low quiescent current: $200 \mu \mathrm{~A}$ typ
- -7 V to +12 V common-mode input voltage range
- TRI-STATE outputs on driver and receiver
- AC performance:
— Driver transition time: 25 ns typ
- Driver propagation delay: 40 ns typ
—Driver skew: 1 ns typ
-Receiver propagation delay: 200 ns typ
- Receiver skew: 20 ns typ
- Half-duplex flow through pinout
- Operates from a single 5 V supply
- Current-limiting and thermal shutdown for driver overload protection
- Pin and functional compatible with MAX1487

Truth Table

DRIVER SECTION						
RE (Note 1)	DE	DI	A	B		
X	H	H	H	L		
X	H	L	L	H		
X	L	X	Z	Z		
RECEIVER SECTION						
RE	DE	A-B				RO
(Note 1)						
L	L	$\geq+0.2 V$	H			
L	L	$\leq-0.2 V$	L			
H	X	X	Z			
L	L	OPEN (Note 1)	H			

[^11]
DS16F95, DS36F95 EIA-485/EIA-422A Differential Bus Transceiver

General Description

The DS16F95/DS36F95 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets both EIA-485 and EIA-422A standards.
The DS16F95/DS36F95 offers improved performance due to the use of L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by minimizing gate delay times. Thus, the DS16F95 and DS36F95 consume less power, and feature an extended temperature range as well as improved specifications.
The DS16F95/DS36F95 combines a TRI-STATE ${ }^{\circledR}$ differential line driver and a differential input line receiver, both of which operate from a single 5.0 V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.
The driver is designed to accommodate loads of up to 60 mA of sink or source current and features positive and negative current limiting in addition to thermal shutdown for protection from line fault conditions.

The DS16F95/DS36F95 can be used in transmission line applications employing the DS96F172 and the DS96F174 quad differential line drivers and the DS96F173 and DS96F175 quad differential line receivers.

Features

- Meets EIA-485 and EIA-422A
- Meets SCSI-1 (5 MHZ) specifications
- Designed for multipoint transmission
- Wide positive and negative input/output bus voltage ranges
- Thermal shutdown protection
- Driver positive and negative current-limiting
- High impedance receiver input
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0 V supply
- Reduced power consumption
- Pin compatible with DS3695 and SN75176A
- Military temperature range available
- Qualified for MIL-STD 883C
- Standard Military Drawings (SMD) available
- Available in DIP (J), SOIC (M), LCC (E), and Flatpak (W) packages

Function Tables

Driver

Driver Input	Enable	Outputs	
DI	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

Receiver

Differential Inputs	Enable	Output
$\mathbf{A}-\mathbf{B}$	$\overline{\mathbf{R E}}$	RO
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	L	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z

[^12]L = Low Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance (Off)

Logic Diagram

DS36276

FAILSAFE Multipoint Transceiver

General Description

The DS36276 FAILSAFE Multipoint Transceiver is designed for use on bi-directional differential busses. It is compatible with existing TIA/EIA-485 transceivers, however, it offers an additional feature not supported by standard transceivers.
The FAILSAFE feature guarantees the receiver output to a known state when the Interface is in the following conditions: Floating Line, Idle Line (no active drivers), and Line Fault conditions (open or short). The receiver output is in a HIGH state for the following conditions: OPEN Inputs, Terminated Inputs (50), and SHORTED Inputs.
FAILSAFE is a highly desirable feature when the transceivers are used with Asynchronous Controllers such as UARTs.

Connection and Logic Diagram

Order Number DS36276M See NS Package Number M08A

Features

- FAILSAFE receiver, RO = HIGH for:
- OPEN inputs
- Terminated inputs
- SHORTED inputs
- Compatible with popular interface standards:
— TIA/EIA-485 (RS-485)
- TIA/EIA-422-A (RS-422-A)
- CCITT Recommendation V. 11
- Bi-Directional Transceiver
- Designed for multipoint transmission
- Separate driver input, driver enable, receiver enable, and receiver output for maximum flexibility
- Wide bus common mode range
$-(-7 \mathrm{~V}$ to +12 V)
■ Pin compatible with: DS75176B, DS96176, DS3695 and SN75176A and B
- Available in SOIC package

Driver

Inputs			Outputs		
$\overline{\mathbf{R E}}$	DE	DI	DO/RI	$\overline{\mathbf{D O}} / \overline{\mathbf{R I}}$	
X	H	H	H	L	
X	H	L	L	H	
X	L	X	Z	Z	

Receiver

Inputs			Output
$\overline{\mathrm{RE}}$	DE	$\mathrm{RI}-\overline{\mathrm{RI}}$	RO
L	L	$\geq 0 \mathrm{~V}$	H
L	L	$\leq-500 \mathrm{mV}$	L
H	X	X	Z

Receiver FAILSAFE

Inputs			Output
$\overline{\mathbf{R E}}$	DE	RI- $\overline{\mathbf{R I}}$	RO
L	L	SHORTED	H
L	L	OPEN	H
H	X	X	Z

National Semiconductor

DS36277

Dominant Mode Multipoint Transceiver

General Description

The DS36277 Dominant Mode Multipoint Transceiver is designed for use on bi-directional differential busses. It is optimal for use on Interfaces that utilize Society of Automotive Engineers (SAE) J1708 Electrical Standard.
The device is similar to standard TIA/EIA-485 transceivers, but differs in enabling scheme. The Driver's Input is normally externally tied LOW, thus providing only two states: Active (LOW), or Disabled (OFF). When the driver is active, the dominant mode is LOW, conversely, when the driver is disabled, the bus is pulled HIGH by external bias resistors.
The receiver provides a FAILSAFE feature that guarantees a known output state when the Interface is in the following conditions: Floating Line, Idle Line (no active drivers), and Line Fault Conditions (open or short). The receiver output is HIGH for the following conditions: Open Inputs, Terminated Inputs (50) , or Shorted Inputs. FAILSAFE is a highly desirable feature when the transceivers are used with Asynchronous Controllers such as UARTs.

Features

- FAILSAFE receiver, RO $=\mathrm{HIGH}$ for
- OPEN inputs
-- Terminated inputs
- SHORTED inputs

■ Optimal for use in SAE J1708 Interfaces

- Compatible with popular interface standards:
- TIA/EIA-485 and TIA/EIA-422-A
- CCITT recommendation V. 11
- Bi-directional transceiver
- Designed for multipoint transmission
- Wide bus common mode range
$-(-7 \mathrm{~V}$ to $+12 \mathrm{~V})$
- Available in plastic DIP and SOIC packages

Connection and Logic Diagram

Order Number DS36277TM or DS36277TN See NS Package Number M08A or N08E

Driver

Inputs		Outputs	
$\overline{\mathbf{D E}}$	DI	DO/RI	$\overline{\mathbf{D O}} / \overline{\mathbf{R I}}$
L	L	L	H
L	H	H	L
H	X	Z	Z

Receiver

Inputs		Output
$\overline{\mathbf{R E}}$	DO/RI- $\overline{\mathbf{D O}} / \overline{\mathrm{RI}}$	RO
L	$\geq 0 \mathrm{mV}$	H
L	$\leq-500 \mathrm{mV}$	L
L	SHORTED	H
L	OPEN	H
H	X	Z

DS3695/DS3695T/DS3696/DS3697 Multipoint RS485/RS422 Transceivers/Repeaters

General Description

The DS3695, DS3696, and DS3697 are high speed differential TRI-STATE ${ }^{\circledR}$ bus/line transceivers/repeaters designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission.
The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12 V to -7 V . Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696 provides an output pin TS (thermal shutdown) which reports the occurrence of the thermal shutdown of the device. This is an "open collector" pin with an internal $10 \mathrm{k} \Omega$ pull-up resistor. This allows the line fault outputs of several devices to be wire OR-ed.
Both AC and DC specifications are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 15 ns driver propagation delays with 2 ns skew (typical)
- Single +5 V supply
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis

Connection and Logic Diagrams

Note 1: $\overline{\mathrm{TS}}$ pin was $\overline{\mathrm{LF}}$ (Line Fault) in previous datasheets and reports the occurrence of a thermal shutdown of the device.

DS36950

Quad Differential Bus Transceiver

General Description

The DS36950 is a low power, space-saving quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, computer I/O bus applications. A compact 20 -pin surface mount PLCC package provides high transceiver integration and a very small PC board footprint. Timing uncertainty across an interface using multiple devices, a typical problem in a parallel interface, is specified-minimum and maximum propagation delay times are guaranteed.
Six devices can implement a complete IPI master or slave interface. Three transceivers in a package are pinned out for
connection to a parallel databus. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.

Features

- Pinout for IPI interface
- Compact 20-pin PLCC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink
- Thermal Shutdown Protection

Pinout and Logic Diagram

Order Number DS36950
See NS Package Number V20A

DS36954

Quad Differential Bus Transceiver

General Description

The DS36954 is a low power, quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, I/O bus applications. A compact 20-pin surface mount PLCC or SOIC package provides high transceiver integration and a very small PC board footprint.
Propagation delay skew between devices is specified to aid in parallel interface designs-limits on maximum and minimum delay times are guaranteed.
Five devices can implement a complete SCSI initiator or target interface. Three transceivers in a package are pinned out
for data bus connections. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.

Features

- Pinout for SCSI interface
- Compact 20-pin PLCC or SOIC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink currents
- Thermal shutdown protection
- Glitch-free driver outputs on power up and down

Connection Diagrams

Order Number DS36954V
See NS Package Number V20A

Order Number DS36954M See NS Package Number M20B

Logic Diagrams

DS3695A/DS3695AT/DS3696A
 Multipoint RS485/RS422 Transceivers

General Description

The DS3695A and DS3696A are high speed differential TRI-STATE ${ }^{\oplus}$ bus/line transceivers designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission. In addition they are compatible with requirements of RS-422. The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12 V to -7 V . Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696A provides an output pin (TS) which reports the thermal shutdown of the device. TS is an "open collector" pin with an internal $10 \mathrm{k} \Omega$ pull-up resistor. This allows the TS outputs of several devices to be wire OR-ed.
Both $A C$ and $D C$ specifications are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 10 ns driver propagation delays (typical)
- Single +5 V supply
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis
- Available in SOIC packaging

Connection and Logic Diagram

Molded Package, Small Outline (M)

 Top View

$\overline{\mathrm{TS}}$ was $\overline{\mathrm{LF}}$ (Line Fault) on previous datasheets, $\overline{\mathrm{TS}}$ goes low upon thermal shutdown.
Top View
Order Number DS3695AM, DS3695ATM or DS3696AM See NS Package Number M08A

Low Power Multipoint EIA-RS-485 Transceiver

General Description

The DS36C278 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 standard for multipoint data transmission. In addition it is compatible with TIA/EIA-422-B.
The CMOS design offers significant power savings over its bipolar and ALS counterparts without sacrificing ruggedness against ESD damage. The device is ideal for use in battery powered or power conscious applications. I_{CC} is specified at $500 \mu \mathrm{~A}$ maximum.
The driver and receiver outputs feature TRI-STATE® capability. The driver outputs operate over the entire common mode range of -7 V to +12 V . Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.
The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open. (Note 1)
The DS36C278T is fully specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Features

- 100\% RS-485 compliant
- Guaranteed RS-485 device interoperation
- Low power CMOS design: $\mathrm{I}_{\mathrm{cc}} 500 \mu \mathrm{~A}$ max
- Built-in power up/down glitch-free circuitry
- Permits live transceiver insertion/displacement
- DIP and SOIC packages available
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- On-board thermal shutdown circuitry
- Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7 V to +12 V
- Receiver open input fail-safe (Note 1)
- $1 / 4$ unit load (DS36C278): ≥ 128 nodes
- $1 / 2$ unit load (DS36C278T): ≥ 64 nodes
- ESD (human body model): $\geq 2 \mathrm{kV}$
- Drop in replacement for:
— LTC485, MAX485, DS75176, DS3695

Connection and Logic Diagram

Order Number DS36C278TM, DS36C278TN, DS36C278M, DS36C278N
See NS Package Number M08A or N08E

DRIVER SECTION				
RE*	DE	DI	DO/RI	DO*/RI*
X	H	H	H	L
X	H	L	L	H
X	L	X	Z	Z
RECEIVER SECTION				
RE*	DE	RI-RI*		RO
L	L	$\geq+0.2 \mathrm{~V}$		H
L	L	$\leq-0.2 \mathrm{~V}$		L
H	L	X		Z
L	L	OPEN (Note 1)		H

Note 1: Non-terminated, open input only

DS36C279

Low Power EIA-RS-485 Transceiver with Sleep Mode

General Description

The DS36C279 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 Standard for multipoint data transmission. In addition it is compatible with TIA/EIA-422-B.

The sleep mode feature automatically puts the device in a power saving mode when both the driver and receiver are disabled. $\dagger \dagger$ The device is ideal for use in power conscious applications where the device may be disabled for extended periods of time.
The driver and receiver outputs feature TRI-STATE ${ }^{\circledR}$ capability. The driver outputs operate over the entire common mode range of -7 V to +12 V . Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into a high impedance state.
The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open. \dagger
The DS36C279T is fully specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Features

- 100\% RS-485 compliant
- Guaranteed RS-485 device interoperation
- Low power CMOS design: $\mathrm{I}_{\mathrm{CC}} 500 \mu \mathrm{~A}$ max
- Automatic sensing sleep mode
- Reduces I_{cc} to $10 \mu \mathrm{~A}$ maximum
- Built-in power up/down glitch-free circuitry
- Permits live transceiver intersection/displacement
- SOIC packages
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- On-board thermal shutdown circuitry
- Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7 V to +12 V
- Receive open input fail-safe (Note 1)
- $1 / 4$ unit load (DS36C279): ≥ 128 nodes
- $1 / 2$ unit load (DS36C279T): ≥ 64 nodes
- ESD (Human Body Model): $\geq 2 \mathrm{kV}$
- Drop-in replacement for:
— LTC485 MAX485 DS75176 DS3695

Connection and Logic Diagram

Order Number DS36C279M, DS36C279TM See NS Package Number M08A

DRIVER SECTION					
RE *	DE	DI	DO/RI	DO $^{*} / \mathbf{R I}^{*}$	
X	H	H	H	L	
X	H	L	L	H	
X	L	X	Z	Z	
RECEIVER SECTION *	DE	RI-RI *		RO	
L	L	$\geq+0.2 V$		H	
L	L	$\leq-0.2 V$	L		
H	L	X	Z (Note 2)		
L	L	OPEN (Note 1)	H		

Note 1: Non-terminated, open input only
Note 2: Device enters sleep mode if enable conditions are held 600 ns

National Semiconductor

DS36C280

Slew Rate Controlled CMOS EIA-RS-485 Transceiver

General Description

The DS36C280 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 Standard for multipoint data transmission. In addition, it is compatible with TIA/EIA-422-B.
The slew rate control feature allows the user to set the driver rise and fall times by using an external resistor. Controlled edge rates can reduce switching EMI.
The CMOS design offers significant power savings over its bipolar and ALS counterparts without sacrificing ruggedness against ESD damage. The device is ideal for use in battery powered or power conscious applications. I Icc is specified at $500 \mu \mathrm{~A}$ maximum.
The driver and receiver outputs feature TRI-STATE ${ }^{\circledR}$ capability. The driver outputs operate over the entire common mode range of -7 V to +12 V . Bus contention or fault situations are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.
The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open (Note 1).

Features

100\% RS-485 compliant

- Guaranteed RS-485 device interoperation
- Low power CMOS design: $\mathrm{I}_{\mathrm{CC}} 500 \mu \mathrm{~A}$ max
- Adjustable slew rate control
- Minimizes EMI affects
- Built-in power up/down glitch-free circuitry
- Permits live transceiver insertion/displacement
- SOIC packages
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- On-board thermal shutdown circuitry
- Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7 V to +12 V
- Receiver open input fail-safe (Note 1)
- $1 / 4$ unit load (DS36C280): ≥ 128 nodes
- $1 / 2$ unit load (DS36C280T): ≥ 64 nodes

■ ESD (human body model): $\geq 2 \mathrm{kV}$

Connection and Logic Diagram

Order Number DS36C280M, DS36C280TM See NS Package Number M08A

Note 1: Non-terminated, Open Inputs only

DS481

Low Power RS-485/RS-422 Multipoint Transceiver with Sleep Mode

General Description

The DS481 is a low-power transceiver for RS-485 and RS-422 communication. The device contains one driver and one receiver. The drivers slew rate allows for operation up to 2.0 Mbps (see Applications Information section).

The transceiver draws $200 \mu \mathrm{~A}$ of supply current when unloaded or $0.2 \mu \mathrm{~A}$ when in the automatic sleep mode. Sleep mode is activated by inactivity on the enables (DE and RE (Note 1)). Holding DE $=\mathrm{L}$ and RE (Note 1)=H for greater than 600 ns will enable the sleep mode. The DS481 operates from a single +5 V supply.
The driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into TRI-STATE ${ }^{\circledR}$ (High Impedance state) under fault conditions. The driver guarantees a minimum of 1.5 V differential output voltage with maximum loading across the common mode range (V_{OD}).
The receiver has a failsafe feature that guarantees a logic-high output if the input is open circuit.
The DS481 is available in a surface mount package and is characterized for Industrial temperature range operation.

Features

- Meets TIA/EIA RS-485 multipoint standard
- Sleep mode reduces I_{Cc} to $0.2 \mu \mathrm{~A}$
- Guaranteed full load output voltage (V OD_{3})
- Low quiescent current: $200 \mu \mathrm{~A}$ typ

■ -7 V to +12 V common-mode input voltage range

- TRI-STATE outputs on driver and receiver
- AC performance:
- Driver transition time: 25 ns typ
- Driver propagation delay: 40 ns typ
— Driver skew: 1 ns typ
- Receiver propagation delay: 200 ns typ
- Receiver skew: 20 ns typ
- Half-duplex flow through pinout
- Operates from a single 5 V supply
- Allows up to 64 tranceivers on the bus
- Current-limiting and thermal shutdown for driver overload protection
- Industrial temperature range operation
- Pin and functional compatible with MAX481C and MAX481E

Connection and Logic Diagram

*Note: Non Terminated, Open Input only

Order Number	Temp. Range	Package/\#\#\#
DS481TM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOP/M08A

Truth Table

DRIVER SECTION				
RE (Note 1)	DE	DI	A	B
X	H	H	H	L
X	H	L	L	H
X	L	X	Z	Z (Note 2)
RECEIVER SECTION				
RE	DE	A-B	RO	
(Note 1)				
L	L	$\geq+0.2 V$	H	
L	L	$\leq-0.2 V$	L	
H	X	X	Z (Note 2)	
L	L	OPEN (Note 1)	H	

$X=$ indeterminate
$Z=$ TRI-STATE
$Z=$ TRI-STATE
Note 1: Non Terminated, Open Input only
Note 2: Device enters sleep mode if enable conditions are held $>600 \mathrm{~ns}$, $D E=L$ and RE (Note 1) $=\mathrm{H}$.

DS485

Low Power RS-485/RS-422 Multipoint Transceiver

General Description

The DS485 is a low-power transceiver for RS-485 and RS-422 communication. The device contains one driver and one receiver. The drivers slew rate allows for operation up to 2.5 Mbps (see Applications Information section).

The transceiver draws $200 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with the driver disabled and operates from a single +5 V supply.
The driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into TRI-STATE ${ }^{(}$ (High Impedance state) under fault conditions. The driver guarantees a minimum of 1.5 V differential output voltage with maximum loading across the common mode range ($\mathrm{V}_{\mathrm{OD} 3}$).
The receiver has a failsafe feature that guarantees a logic-high output if the input is open circuit.
The DS485 is available in surface mount and DIP packages and is characterized for Industrial and Commercial temperature range operation.

Features

- Meets TIA/EIA RS-485 multipoint standard
- Guaranteed full load output voltage ($\mathrm{V}_{\mathrm{OD3}}$)
- Low quiescent current: $200 \mu \mathrm{~A}$ typ
- -7 V to +12 V common-mode input voltage range
- TRI-STATE outputs on driver and receiver
- AC performance:
- Driver transition time: 25 ns typ
- Driver propagation delay: 40 ns typ
—Driver skew: 1 ns typ
- Receiver propagation delay: 200 ns typ
- Receiver skew: 20 ns typ
- Half-duplex flow through pinout
- Operates from a single 5 V supply
- Allows up to 32 transceivers on the bus
- Current-limiting and thermal shutdown for driver overload protection
- Industrial temperature range operation
- Pin and functional compatible with MAX485 and LTC485

Connection and Logic Diagram

Order Number	Temp. Range	Package/\#\#\#
DS485N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DIP/N08E
DS485M	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOP/M08A
DS485TN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DIP/N08E
DS485TM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOP/M08A

DRIVER SECTION						
RE*	DE	DI	A	B		
X	H	H	H	L		
X	H	L	L	H		
X	L	X	Z	Z		
RECEIVER SECTION						
RE*	DE	A-B				RO
L	L	$\geq+0.2 V$	H			
L	L	$\leq-0.2 V$	L			
H	X	X	Z			
L	L	OPEN*	H			

*Note: Non Terminated, Open Input only
$\mathrm{X}=$ indeterminate
$Z=$ TRI-STATE

DS75176B/DS75176BT

Multipoint RS-485/RS-422 Transceivers

General Description

The DS75176B is a high speed differential TRI-STATE ${ }^{\oplus}$ bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12 V to -7 V), for multipoint data transmission. In addition, it is compatible with RS-422.
The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12 V to -7 V . Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.
DC specifications are guaranteed over the 0 to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422.
- Small Outline (SO) Package option available for minimum board space.
- 22 ns driver propagation delays.
- Single +5 V supply.
- -7 V to +12 V bus common mode range permits $\pm 7 \mathrm{~V}$ ground difference between devices on the bus.
- Thermal shutdown protection.
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down.
- Pin out compatible with DS3695/A and SN75176A/B.
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus.
- 70 mV typical receiver hysteresis.

Connection and Logic Diagram

Order Number DS75176BN, DS75176BTN, DS75176BM or DS75176BTM See NS Package Number N08E or M08A

DS96172/DS96174

RS-485/RS-422 Quad Differential Line Drivers

General Description

The DS96172 and DS96174 are high speed quad differential line drivers designed to meet EIA Standard RS-485. The devices have TRI-STATE ${ }^{\circledR}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps . The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions over a +12 V to -7.0 V common mode range. A thermal shutdown feature is also provided and occurs at junction temperature of approximately $160^{\circ} \mathrm{C}$. The DS96172 features an active high and active low Enable, common to all four drivers. The DS96174 features separate active high Enables for each driver pair. Compatible RS-485 receivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96173, DS96175, DS96176 AND DS96177.

Features

- Meets EIA Standard RS-485 and RS-422A
- Monotonic differential output switching
- Transmission rate to 10 Mbs
- TRI-STATE outputs
- Designed for multipoint bus transmission
- Common mode output voltage range: -7 V to +12 V
- Operates from single +5 V supply
- Thermal shutdown protection
- DS96172/DS96174 are lead and function compatible with the SN75172/75174 or the AM26LS31/MC3487 respectively

Connection Diagrams

DS96173/DS96175

RS-485/RS-422 Quad Differential Line Receivers

General Description

The DS96173 and DS96175 are high speed quad differential line receivers designed to meet EIA Standard RS-485. The devices have TRI-STATE ${ }^{\circledR}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps. The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -7 V to +12 V . The receivers are therefore suitable for multipoint applications in noisy environments. The DS96173 features an active high and active low Enable, common to all four receivers. The DS96175 features separate active high Enables for each receiver pair. Compatible RS-485 drivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96172, DS96174, DS96176 and DS96177.

Features

- Meets EIA Standard RS-485, RS-422A, RS-423A
- Designed for multipoint bus applications
- TRI-STATE Outputs
- Common mode input voltage range: -7 V to +12 V
- Operates from single +5 V supply
- Input sensitivity of $\pm 200 \mathrm{mV}$ over common mode range
- Input hysteresis of 50 mV typical
- High input impedance
- DS96173/DS96175 are lead and function compatible with SN75173/75175 or the AM26LS32/MC3486 respectively

Connection Diagrams

DS96176

RS-485/RS-422 Differential Bus Transceiver

General Description

The DS96176 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A.
The DS96176 combines a TRI-STATE ${ }^{\circledR}$ differential line driver and a differential input line receiver, both of which operate from a single 5.0 V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.
The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately $160^{\circ} \mathrm{C}$. The receiver features a typical input impedance of $15 \mathrm{k} \Omega$, an input sensitivity of $\pm 200 \mathrm{mV}$, and a typical input hysteresis of 50 mV .

The DS96176 can be used in transmission line applications employing the DS96172 and the DS96174 quad differential line drivers and the DS96173 and DS96175 quad differential line receivers.

Features

- Bidirectional transceiver
- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission
- TRI-STATE driver and receiver enables
- Individual driver and receiver enables
- Wide positive and negative input/output bus voltage ranges
- Driver output capability $\pm 60 \mathrm{~mA}$ Maximum
- Thermal shutdown protection
- Driver positive and Negative current-limiting
- High impedance receiver input
- Receiver input sensitivity of $\pm 200 \mathrm{mV}$
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0 V supply
- Low power requirements

Connection Diagram

Top View
Order Number DS96176CN
See NS Package Number N08E

Function Table

Driver

Input	Enable	Outputs	
DI	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

Receiver

Differential Inputs	Enable	Output
A-B	$\overline{\mathbf{R E}}$	\mathbf{R}
$\mathrm{V}_{1 \mathrm{D}} \geq 0.2 \mathrm{~V}$	L	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z

[^13]
DS96177

RS-485/RS-422 Differential Bus Repeater

General Description

The DS96177 Differential Bus Repeater is a monolithic integrated device designed for one-way data communication on multipoint bus transmission lines. This device is designed for balanced transmission bus line applications and meets EIA Standard RS-485 and RS-422A. The device is designed to improve the performance of the data communication over long bus lines. The DS96177 has an active high Enable.
The DS96177 features positive and negative current limiting and TRI-STATE ${ }^{\circledR}$ outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12 V to +12 V . The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately $160^{\circ} \mathrm{C}$. The driver is designed to drive current loads up to 60 mA maximum.
The DS96177 is designed for optimum performance when used on transmission buses employing the DS96172 and

DS96174 differential line drivers, DS96173 and DS96175 differential line receivers, or DS96176 differential bus transceivers.

Features

- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission on long bus lines in noisy environments
- TRI-STATE outputs
- Bus voltage range -7.0 V to +12 V
- Positive and negative current limiting
- Driver output capability $\pm 60 \mathrm{~mA}$ max
- Driver thermal shutdown protection
- Receiver input high impedance
- Receiver input sensitivity of $\pm 200 \mathrm{mV}$
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0 V supply
- Low power requirements

Connection Diagram

Function Table

Differential Inputs	Enable	Outputs		
$\mathbf{A - B}$	E	T	Y	Z
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	H	H	H	L
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	L	L	H
X	L	Z	Z	Z

Note: T is an output pin only, monitoring the BUS (RO).
$\mathrm{H}=$ High Level
L = Low Level
$X=$ Immaterial
$Z=$ High Impedance (off)

DS96F172M/DS96F174C/DS96F174M EIA-485/EIA-422 Quad Differential Drivers

General Description

The DS96F172 and the DS96F174 are high speed quad differential line drivers designed to meet EIA-485 Standards. The DS96F172 and the DS96F174 offer improved performance due to the use of L-FAST bipolar technology. The use of LFAST technology allows the DS96F172 and DS96F174 to operate at higher speeds while minimizing power consumption.
The DS96F172 and the DS96F174 have TRI-STATE ${ }^{\circledR}$ outputs and are optimized for balanced multipoint data bus transmission at rates up to 15 Mbps . The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions over $\mathrm{a}+12 \mathrm{~V}$ to -7.0 V common mode range. A thermal shutdown feature is also provided. The DS96F172 features an active high and active low Enable, common to all four drivers. The DS96F174 features separate active high Enables for each driver pair.

Features

- Meets EIA-485 and EIA-422 standards
- Monotonic differential output switching
- TRI-STATE outputs
- Designed for multipoint bus transmission
- Common mode output voltage range: -7.0 V to +12 V
- Operates from single +5.0 V supply
- Reduced power consumption
- Thermal shutdown protection
- DS96F172 and DS96F174 are lead and function compatible with the SN75172/174 or the AM26LS31/MC3487
- Military temperature range available
- Qualified for MIL-STD-883C
- Standard military drawings available (SMD)
- Available in DIP (J)
(E), and Flatpak (W) packages

Logic Diagrams

DS96F172

DS96F174

Input	Enable		Outputs	
A	E	$\overline{\text { E }}$	Y	Z
L	H	X	L	H
H	X	L	H	L
L	X	L	L	H
X	L	H	Z	Z

DS96F174

Input	Enable	Outputs	
\mathbf{A}	\mathbf{E}	\mathbf{Y}	\mathbf{Z}
H	H	H	L
L	H	L	H
X	L	Z	Z

[^14]L = Low Level
X = Don't Care
$Z=$ High Impedance (Off)

Function Tables (Each Driver)
DS96F172

Input	Enable		Outputs	
\mathbf{A}	\mathbf{E}	$\overline{\mathbf{E}}$	\mathbf{Y}	\mathbf{Z}
H	H	\mathbf{X}	H	L

DS96F173M／DS96F175C／DS96F175M EIA－485／EIA－422 Quad Differential Receivers

General Description

The DS96F173 and the DS96F175 are high speed quad dif－ ferential line receivers designed to meet the EIA－485 stan－ dard．The DS96F173 and the DS96F175 offer improved per－ formance due to the use of L－FAST bipolar technology．The use of LFAST technology allows the DS96F173 and DS96F175 to operate at higher speeds while minimizing power consumption．
The DS96F173 and the DS96F175 have TRI－STATE ${ }^{\circledR}$ out－ puts and are optimized for balanced multipoint data bus transmission at rates up to 15 Mbps ．The receivers feature high input impedance，input hysteresis for increased noise immunity，and input sensitivity of 200 mV over a common mode input voltage range of -7 V to +12 V ．The receivers are therefore suitable for multipoint applications in noisy environ－ ments．The DS96F173 features an active high and active low Enable，common to all four receivers．The DS96F175 features separate active high Enables for each receiver pair．

Features

－Meets EIA－485，EIA－422A，EIA－423A standards
－Designed for multipoint bus applications
－TRI－STATE outputs
－Common mode input voltage range：-7 V to +12 V
－Operates from single +5.0 V supply
－Reduced power consumption（ $\mathrm{I}_{\mathrm{cc}}=50 \mathrm{~mA}$ max）
－Input sensitivity of $\pm 200 \mathrm{mV}$ over common mode range
－Input hysteresis of 50 mV typical
－High input impedance
－Military temperature range available
－Qualified for MIL STD 883C
－Available to standard military drawings（SMD）
－Available in $\operatorname{DIP}(J)$ ，LCC（E），and FlatPak（W）packages
－DS96F173 and DS96F175 are lead and function compatible with SN75173／175 or the AM26LS32／MC3486

Logic Diagrams

Function Tables

（Each Receiver）DS96F173

Differential Inputs	Enable		Output
A－B	E	\bar{E}	Y
$\mathrm{~V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	H	X	H
	X	L	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	X	L
	X	L	L
X	L	X	Z
X	X	H	Z

$H=$ High Level
L＝Low Level
Z＝High Impedance（off）
X＝Don＇t Care
（Each Receiver）DS96F175

Differential Inputs $\mathbf{A}-\mathbf{B}$	Enable \mathbf{E}	Output \mathbf{Y}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	H	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	H	L
X	L	\mathbf{Z}

0

Section 9

 Interface - LVDS Circuits
Section 9 Contents

Interface-LVDS Line Drivers and Receivers Selection Guide. 9-4
Channel Link Selection Guide 9-5
Bus LVDS Selection Guide 9-7
DS90LV017 LVDS Single High Speed Differential Driver. 9-8
DS90LV017A LVDS Single High Speed Differential Driver. 9-9
DS90LV018A 3V LVDS Single CMOS Differential Line Receiver 9-10
DS90LV019 3.3V or 5V LVDS Driver/Receiver. 9-11
DS90LV027 LVDS Dual High Speed Differential Driver 9-12
DS90LV027A LVDS Dual High Speed Differential Driver 9-13
DS90LV028A 3V LVDS Dual CMOS Differential Line Receiver 9-14
DS90C031B LVDS Quad CMOS Differential Line Driver 9-15
DS90C031 LVDS Quad CMOS Differential Line Driver 9-16
DS90LV031A 3V LVDS Quad CMOS Differential Line Driver. 9-18
DS90LV031B 3V LVDS Quad CMOS Differential Line Driver 9-19
DS90C032B LVDS Quad CMOS Differential Line Receiver. 9-20
DS90C032 LVDS Quad CMOS Differential Line Receiver 9-21
DS90LV032A 3V LVDS Quad CMOS Differential Line Receiver 9-23
DS90LV047A 3V LVDS Quad CMOS Differential Line Driver. 9-24
DS90LV048A 3V LVDS Quad CMOS Differential Line Receiver 9-25
DS90C401 Dual Low Voltage Differential Signaling (LVDS) Driver 9-26
DS90C402 Dual Low Voltage Differential Signaling (LVDS) Receiver 9-27
DS36C200 Dual High Speed Bi-Directional Differential Transceiver 9-28
DS90CR211/DS90CR212 21-Bit Channel Link. 9-29
DS90CR213/DS90CR214 21-Bit Channel Link—66 MHz 9-31
DS90CR215/DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz 9-33
DS90CR217/DS90CR218 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 75 MHz 9-35
DS90CR218A/DS90CR217 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 85 MHz 9-37
DS90CR281/DS90CR282 28-Bit Channel Link 9-39
DS90CR283/DS90CR284 28-Bit Channel Link-66 MHz. 9-41
DS90CR285/DS90CR286 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz 9-43
DS90CR286A/DS90CR216A +3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link- 66 MHz , +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link-66 MHz. 9-45
DS90CR287/DS90CR288 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-75 MHz 9-46
DS90CR287/DS90CR288A +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ 9-48
DS90CR483 / DS90CR484 48-Bit LVDS Channel Link Serializer/Deserializer 9-50
DS92LV010A Bus LVDS 3.3/5.0V Single Transceiver 9-52
DS92LV090A 9 Channel Bus LVDS Transceiver 9-53
DS92LV222A Two Channel Bus LVDS MUXed Repeater 9-55
DS90CP22 2X2 800 Mbps LVDS Crosspoint Switch 9-56
DS92LV1021 and DS92LV1210 16-40 MHz 10 Bit Bus LVDS Serializer and Deserializer 9-57
DS92LV1212A 16-40 MHz 10-Bit Bus LVDS Random Lock Deserializer with Embedded Clock Recovery 9-60
DS92LV1023 and DS92LV1224 40-66 MHz 10 Bit Bus LVDS Serializer and Deserializer 9-64
DS92CK16 3V BLVDS 1 to 6 Clock Buffer/Bus Transceiver 9-68
Interface-LVDS Line Drivers and Receivers Selection Guide

National Semiconductor
Interface-LVDS Line Drivers and Receivers Selection Guide

Tx	Rx	Temp Range	Base Part Number	Page No.
0	1	Ind	DS90LV018A	$9-10$
0	2	Ind	DS90C402	$9-27$
0	2	Ind	DS90LV028A	$9-14$
0	4	Ind	DS90C032	$9-21$
0	4	Mil-883	DS90C032E	$9-21$
0	4	Ind	DS90C032B	$9-20$
0	4	Ind	DS90LV032A	$9-23$
0	4	Ind	DS90LV048A	$9-25$
1	0	Com	DS90LV017	$9-8$
1	1	Ind	DS90LV019	$9-11$
2	0	Ind	DS90C401	$9-26$
2	0	Com	DS90LV027	$9-12$
2	2	Ind	DS36C200	$9-28$
4	0	Mil-883	DS90C031	$9-16$
4	0	Ind	DS90C031E	$9-16$
4	0	Ind	DS90C031B	$9-19$
4	0	0	DS90LV031A	$9-18$
4	0		DS90LV047A	$9-24$

Temperature ranges:

Com $=$ Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ind $=$ Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Mil-883 = Military $\mathbf{8 8 3}$ Qual $-\mathbf{5 5} 5^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$ Check WEB Site availability and options

Channel Link Selection Guide

Datasheets

Part Number	Transmitter/ Receiver	Data Throughout	Number of Bits	Page Number
+3.3V/112 MHz Family				
DS90CR483	Transmitter	5.37 Gbps	48	9-50
DS90CR484	Receiver	5.37 Gbps	48	9-50
+3.3V/75 MHz Family				
DS90CR287	Transmitter	2.38 Gbps	28	9-46
DS90CR288	Receiver	2.38 Gbps	28	9-46
DS90CR217	Transmitter	1.78 Gbps	21	9-35
DS90CR218	Receiver	1.78 Gbps	21	9-35
+3.3V/66 MHz Family				
DS90CR285	Transmitter	1.84 Gbps	28	9-43
DS90CR286	Receiver	1.84 Gbps	28	9-43
DS90CR286A	Receiver	1.84 Gbps	28	9-45
DS90CR215	Transmitter	1.38 Gbps	21	9-33
DS90CR216	Receiver	1.38 Gbps	21	9-33
DS90CR216A	Receiver	1.38 Gbps	21	9-45
+5V/66 MHz Family				
DS90CR283	Transmitter	1.84 Gbps	28	9-41
DS90CR284	Receiver	1.84 Gbps	28	9-41
DS90CR213	Transmitter	1.38 Gbps	21	9-31
DS90CR214	Receiver	1.38 Gbps	21	9-31
+5V/40 MHz Family				
DS90CR281	Transmitter	1.12 Gbps	28	9-39
DS90CR282	Receiver	1.12 Gbps	28	9-39
DS90CR211	Transmitter	840 Mbps	21	9-29
DS90CR212	Receiver	840 Mbps	21	9-29

Datasheets (Continued)
Application Notes

AN-XXXX	Title
AN-971	An Overview of LVDS Technology
AN-1035	PCB Design Guidelines for LVDS Technology
AN-1041	Channel Link Introduction
AN-1059	High Speed Transmission with LVDS Devices
AN-1084	Parallel Application of High Speed Link

Channel-Link Evaluation Boards

Evaluation boards are available for a nominal charge that demonstrate the basic operation of the Channel-Link chipsets. The evaluation boards can be ordered through National's distributors and come assembled with a transmitter board, receiver board, ribbon cable, and instructions.

ORDER NUMBERS
CLINK5V21BT-66
CLINK3V21BT-66
CLINK5V28BT-66
CLINK3V28BT-66

DESCRIPTION

5 V , 21 bit device, $20-66 \mathrm{MHz}$ operation
3.3 V , 21 bit device, $20-66 \mathrm{MHz}$ operation

5 V , 28 bit device, $20-66 \mathrm{MHz}$ operation
3.3 V , 28 bit device, $20-66 \mathrm{MHz}$ operation

Bus LVDS Selection Guide

Bus LVDS Transceiver and Repeater Products

Part No.	Function	Temperature Range	Data Rate $(M b p s)$	\# of Drivers	\# of RECs	Power Supply $\left(V_{c c}\right)$	Page No.
DS92LV010A	Transceiver	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	155	1	1	5 V or 3.3 V	$9-52$
DS92LV222A	2 CH MUXed Repeater	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200	2	2	3.3 V	$9-55$
DS92LV090A	9 CH Transceiver	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200	9	9	3.3 V	$9-53$

Bus LVDS Serializer/Deserializer Products

Part No.	Function	Temperature Range	Data Rate (Mbps)	\# of Data Bits	Clock Freq. (MHz)	Power Supply $\left(\mathrm{V}_{\mathbf{c c}}\right)$	Page No.
DS92LV1021	Serializer	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	10	$16-40$	3.3 V	$9-57$
DS92LV1210	Deserializer	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	10	$16-40$	3.3 V	$9-57$
DS92LV1212	Deserializer (Random Lock)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	10	$16-40$	3.3 V	$9-60$

DS90LV017

LVDS Single High Speed Differential Driver

General Description

The DS90LV017 is a single LVDS driver device optimized for high data rate and low power applications. The DS90LV017 is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized. The device is in a 8-lead small Outline Package. The DS90LV017 has a flow-through design for easy PCB layout. The differential driver outputs provides low EMI with its low output swings typically 340 mV .

Features

- Ultra Low Power Dissipation
- Operating Range above 155 Mbps
- Flow-through pinout simplifies PCB layout
- Conforms to TIA/EIA-644 Standard
- 8-Lead SOIC Package Saves Space
- $\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}$ center around 1.2 V
- Low Differential Output Swing Typical 340 mV
- Power Off Protection (outputs in high impedance)

Connection Diagram

Order Number DS90LV017M See NS Package Number M08A

Functional Diagram

DS90LV017A

LVDS Single High Speed Differential Driver

General Description

The DS90LV017A is a single LVDS driver device optimized for high data rate and low power applications. The DS90LV017A is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized. The device is designed to support data rates in excess of 600 Mbps (300MHz) utilizing Low Voltage Differential Signaling (LVDS) technology.
The device is in a 8 -lead small outline package. The DS90LV017A has a flow-through design for easy PCB layout. The differential driver outputs provides low EMI with its typical low output swing of 355 mV . The DS90LV017A can be paired with its companion single line receiver, the DS90LV018A, or with any of National's LVDS receivers, to provide a high-speed point-to-point LVDS interface.

Features

- $>600 \mathrm{Mbps}(300 \mathrm{MHz})$ switching rates
- 0.3 ns typical differential skew
- 0.7 ns maximum differential skew
- 1.5 ns maximum propagation delay
- 3.3V power supply design
- $\pm 355 \mathrm{mV}$ differential signaling
- Low power dissipation (23 mW @ 3.3V static)
- Flow-through design simplifies PCB layout
- Interoperable with existing 5V LVDS devices
- Power Off Protection (outputs in high impedance)
- Conforms to TIA/EIA-644 Standard
- 8-Lead SOIC package saves space
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Connection Diagram

Order Number DS90LV017ATM
See NS Package Number M08A
Functional Diagram

DS90LV018A

3V LVDS Single CMOS Differential Line Receiver

General Description

The DS90LV018A is a single CMOS differential line receiver designed for applications requiring ultra low power dissipation, low noise and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV018A accepts low voltage (350 mV typical) differential input signals and translates them to 3V CMOS output levels. The receiver also supports open, shorted and terminated (100Ω) input fail-safe. The receiver output will be HIGH for all fail-safe conditions. The DS90LV018A has a flow-through design for easy PCB layout.
The DS90LV018A and companion LVDS line driver provide a new alternative to high power PECL/ECL devices for high speed point-to-point interface applications.

Features

■ >400 Mbps (200 MHz) switching rates

- 50 ps differential skew (typical)
- 2.5 ns maximum propagation delay
- 3.3V power supply design
- Flow-through pinout
- Power down high impedance on LVDS inputs
- Low Power design (18 mW @ 3.3V static)
- Interoperable with existing 5V LVDS networks
- Accepts small swing (350 mV typical) differential signal levels
- Supports open, short and terminated input fail-safe
- Conforms to ANSI/TIA/EIA-644 Standard
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Available in SOIC package

Connection Diagram

Dual-in-Line

Order Number DS90LV018ATM
See NS Package Number M08A

Functional Diagram

INPUTS	OUTPUT
$\left[\mathbf{R}_{\mathbf{I N}}+\right]-\left[\mathbf{R}_{\text {IN }}-\right]$	$\mathbf{R}_{\text {OUT }}$
$\mathrm{V}_{\text {ID }} \geq 0.1 \mathrm{~V}$	H
$\mathrm{V}_{\text {ID }} \leq-0.1 \mathrm{~V}$	L
Full Fail-safe OPEN/SHORT or Terminated	H

DS90LV019

3.3V or 5V LVDS Driver/Receiver

General Description

The DS90LV019 is a Driver/Receiver designed specifically for the high speed low power point-to-point interconnect applications. The device operates from a single 3.3 V or 5.0 V power supply and includes one differential line driver and one receiver. The DS90LV019 features an independent driver and receiver with TTL/CMOS compatibility ($D_{\text {IN }}$ and $\mathrm{R}_{\text {Out }}$). The logic interface provides maximum flexibility as 4 separate lines are provided ($\mathrm{D}_{\mathrm{IN}}, \mathrm{DE}, \overline{\mathrm{RE}}$, and $\mathrm{R}_{\mathrm{OUT}}$). The device also features a flow-through pin out which allows easy PCB routing for short stubs between its pins and the connector. The driver has 3.5 mA output loop current.

The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition, the differential signaling provides common-mode noise rejection.
The receiver threshold is $\pm 100 \mathrm{mV}$ over a $\pm 1 \mathrm{~V}$ commonmode range and translates the low swing differential levels to standard (TTL/CMOS) levels.

Features

- LVDS Signaling
- 3.3V or 5.0V operation
- Low power CMOS design
- Balanced Output Impedance
- Glitch free power up/down (Driver disabled)
- High Signaling Rate Capacity (above 100 Mbps)
- Ultra Low Power Dissipation
- $\pm 1 \mathrm{~V}$ Common-Mode Range
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity
- Product offered in SOIC and TSSOP packages
- Flow-Through Pin Out
- Industrial Temperature Range Operation

Connection Diagram

Order Number DS90LV019TM or DS90LV019TMTC See NS Package Number M14A or MTC14

Block Diagram

DS90LV027

LVDS Dual High Speed Differential Driver

General Description

The DS90LV027 is a dual LVDS driver device optimized for high data rate and low power applications. The DS90LV027 is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized. The device is in a 8 -lead small Outline Package. The DS90LV027 has a flow-through design for easy PCB layout. The differential driver outputs provides low EMI with its low output swings typically 340 mV . Perfect for high speed transfer of clock and data. Pair with

Features

- Ultra Low Power Dissipation
- Operating Range above 155 Mbps
- Flow-through pinout simplifies PCB layout
- Conforms to TIA/EIA-644 Standard
- 8-Lead SOIC Package Saves Space
- $\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}$ center around 1.2 V
- Low Differential Output Swing Typical 340 mV
- Power Off Protection (outputs in high impedance)

Connection Diagram

Functional Diagram

DS100029-3

DS90LV027A

LVDS Dual High Speed Differential Driver

General Description

The DS90LV027A is a dual LVDS driver device optimized for high data rate and low power applications. The device is designed to support data rates in excess of 600Mbps (300MHz) utilizing Low Voltage Differential Signaling (LVDS) technology. The DS90LV027A is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized.

The device is in a 8 -lead small outline package. The DS90LV027A has a flow-through design for easy PCB layout. The differential driver outputs provides low EMI with its typical low output swing of 360 mV . It is perfect for high speed transfer of clock and data. The DS90LV027A can be paired with its companion dual line receiver, the DS90LV028A, or with any of National's LVDS receivers, to provide a high-speed point-to-point LVDS interface.

Features

- >600 Mbps (300 MHz) switching rates
- 0.3 ns typical differential skew
- 0.7 ns maximum differential skew
- 1.5 ns maximum propagation delay
- 3.3 V power supply design
- $\pm 360 \mathrm{mV}$ differential signaling
- Low power dissipation (46 mW @ 3.3 V static)
- Flow-through design simplifies PCB layout
- Interoperable with existing 5V LVDS devices
- Power Off Protection (outputs in high impedance)
- Conforms to TIA/EIA-644 Standard
- 8-Lead SOIC package saves space
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Connection Diagram

Dual-In-Line

Order Number DS90LV027ATM See NS Package Number M08A
Functional Diagram
DI 1 CO-1
DS100114-2

DS100114-3

DS90LV028A

3V LVDS Dual CMOS Differential Line Receiver

General Description

The DS90LV028A is a dual CMOS differential line receiver designed for applications requiring ultra low power dissipation, low noise and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV028A accepts low voltage (350 mV typical) differential input signals and translates them to 3V CMOS output levels. The receiver also supports open, shorted and terminated (100Ω) input fail-safe. The receiver output will be HIGH for all fail-safe conditions. The DS90LV028Ahas a flow-through design for easy PCB layout.
The DS90LV028A and companion LVDS line driver provide a new alternative to high power PECL/ECL devices for high speed point-to-point interface applications.

Features

- >400 Mbps (200 MHz) switching rates
- 50 ps differential skew (typical)
- 0.1 ns channel-to-channel skew (typical)
- 2.5 ns maximum propagation delay
- 3.3V power supply design
- Flow-through pinout
- Power down high impedance on LVDS inputs
- Low Power design (18mW @ 3.3V static)
- Interoperable with existing 5V LVDS networks
- Accepts small swing (350 mV typical) differential signal levels
- Supports open, short and terminated input fail-safe
- Conforms to ANSI/TIA/EIA-644 Standard
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Available in SOIC package

Connection Diagram

Order Number DS90LV028ATM See NS Package Number M08A

Functional Diagram

INPUTS	OUTPUT
$\left[\mathbf{R}_{I{ }_{I N}}+\right]-\left[\mathbf{R}_{\mathbf{I N}}-\right]$	$\mathbf{R}_{\text {OUT }}$
$\mathrm{V}_{1 \mathrm{ID}} \geq 0.1 \mathrm{~V}$	H
$\mathrm{V}_{\text {ID }} \leq-0.1 \mathrm{~V}$	L
Full Fail-safe OPEN/SHORT or Terminated	H

DS90C031B

LVDS Quad CMOS Differential Line Driver

General Description

The DS90C031B is a quad CMOS differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $155.5 \mathrm{Mbps}(77.7 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90C031B accepts TTL/CMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition the driver supports a TRI-STATE ${ }^{\oplus}$ function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 11 mW typical.
In addition, the DS90C031B provides power-off high impedance LVDS outputs. This feature assures minimal loading effect on the LVDS bus lines when V_{CC} is not present.
The DS90C031B and companion line receiver (DS90C032B) provide a new alternative to high power pseudo-ECL devices for high speed point-to-point interface applications.

Features

■ >155.5 Mbps (77.7 MHz) switching rates

- High impedance LVDS outputs with power-off
- $\pm 350 \mathrm{mV}$ differential signaling
- Ultra low power dissipation
- 400 ps maximum differential skew $\left(5 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$
- 3.5 ns maximum propagation delay
- Industrial operating temperature range
- Pin compatible with DS26C31, MB571 (PECL) and 41LG (PECL)
- Conforms to ANSI/TIA/EIA-644 LVDS standard
- Offered in narrow and wide body SOIC package
- Fail-safe logic for floating inputs

Connection Diagram

Functional Diagram

DS100989-2

Driver Truth Table

Enables		Input	Outputs	
EN	EN *	$\mathbf{D}_{\text {IN }}$	Dout+	$\mathrm{D}_{\text {out- }}$
L	H	X	Z	Z
All other combinations of ENABLE inputs	L	L	H	
	H	H	L	

DS90C031

LVDS Quad CMOS Differential Line Driver

General Description

The DS90C031 is a quad CMOS differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of 155.5 Mbps (77.7 MHz) utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90C031 accepts TTLCMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition the driver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 11 mW typical.
The DS90C031 and companion line receiver (DS90C032) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications.

Features

■ >155.5 Mbps (77.7 MHz) switching rates

- $\pm 350 \mathrm{mV}$ differential signaling
- Ultra low power dissipation
- 400 ps maximum differential skew $\left(5 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$
- 3.5 ns maximum propagation delay
- Industrial operating temperature range
- Military operating temperature range option
- Available in surface mount packaging (SOIC) and (LCC)
- Pin compatible with DS26C31, MB571 (PECL) and 41LG (PECL)
- Compatible with IEEE 1596.3 SCI LVDS standard
- Conforms to ANSI/TIA/EIA-644 LVDS standard
- Available to Standard Microcircuit Drawing (SMD) 5962-95833

Connection Diagrams

Order Number DS90C031TM See NS Package Number M16A

Order Number DS90C031E-QML See NS Package Number E20A For Complete Military Specifications, refer to appropriate SMD or MDS.

Functional Diagram

DS90LV031A

3V LVDS Quad CMOS Differential Line Driver

General Description

The DS90LV031A is a quad CMOS differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV031A accepts low voltage TTL/CMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition the driver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 13 mW typical.
The EN and EN* inputs allow active Low or active High control of the TRI-STATE outputs. The enables are common to all four drivers. The DS90LV031A and companion line receiver (DS90LV032A) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications.

Features

- $>400 \mathrm{Mbps}(200 \mathrm{MHz}$) switching rates
- 0.1 ns typical differential skew
- 0.4 ns maximum differential skew
- 2.0 ns maximum propagation delay
- 3.3V power supply design
- $\pm 350 \mathrm{mV}$ differential signaling
- Low power dissipation (13 mW at 3.3 V static)
- Interoperable with existing 5V LVDS devices
- Compatible with IEEE 1596.3 SCI LVDS standard
- Compatible with TIA/EIA-644 LVDS standard
- Industrial and Military operating temperature range
- Available in SOIC, TSSOP and Cerpack surface mount packaging
■ Standard Microcircuit Drawing (SMD) 5962-9865201

Functional Diagram

Truth Table

DRIVER

Enables		Input	Outputs	
EN	EN*	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {Out+ }}$	Dout-
L	H	X	Z	Z
All other combinations of ENABLE inputs		L	L	H
		H	H	L

DS90LV031B

3V LVDS Quad CMOS Differential Line Driver

General Description

The DS90LV031B is a quad CMOS differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV031B accepts low voltage TTLCMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition the driver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 13 mW typical. The DS90LV031B is enhanced over the DS90LV031A in that the inputs are further ruggedized for excessive undershoot.
The EN and EN* inputs allow active Low or active High control of the TRI-STATE outputs. The enables are common to all four drivers. The DS90LV031B and companion line receiver (DS90LV032A) provide a new alternative to high power pseudo-ECL devices for high speed point-to-point interface applications.

Features

- >400 Mbps (200 MHz) switching rates
- 0.1 ns typical differential skew
- 0.4 ns maximum differential skew
- 2.0 ns maximum propagation delay
- Ruggedized inputs that can withstand excessive undershoot
- 3.3V power supply design
- $\pm 350 \mathrm{mV}$ differential signaling
- Low power dissipation (13 mW at 3.3 V static)
- Interoperable with existing 5V LVDS devices
- Compatible with IEEE 1596.3 SCI LVDS standard
- Compatible with TIA/EIA-644 LVDS standard
- Industrial temperature operating range
- Available in SOIC and TSSOP surface mount packaging

Truth Table

DRIVER

Enables		Input	Outputs	
EN	EN *	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {OUT }+}$	$\mathrm{D}_{\text {OUT- }}$
L	H	X	Z	Z
All other combinations of ENABLE inputs	L	L	H	
	H	H	L	

DS90C032B

LVDS Quad CMOS Differential Line Receiver

General Description

The DS90C032B is a quad CMOS differential line receiver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of 155.5 Mbps (77.7 MHz) utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90C032B accepts low voltage (350 mV) differential input signals and translates them to CMOS (TTL compatible) output levels. The receiver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to multiplex outputs. The receiver also supports OPEN and terminated (100 2) input Fail-safe. Receiver output will be HIGH for both Fail-safe conditions.
The DS90C032B provides power-off high impedance LVDS inputs. This feature assures minimal loading effect on the LVDS bus lines when V_{CC} is not present.
The DS90C032B and companion line driver (DS90C031B) provide a new alternative to high power pseudo-ECL devices for high speed point-to-point interface applications.

Features

■ >155.5 Mbps (77.7 MHz) switching rates

- Accepts small swing (350 mV) differential signal levels
- High Impedance LVDS inputs with power down
- Ultra low power dissipation
- 600 ps maximum differential skew $\left(5 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$
- 6.0 ns maximum propagation delay
- Industrial operating temperature range
- Available in surface mount packaging (SOIC)
- Pin compatible with DS26C32A, MB570 (PECL) and 41LF (PECL)
- Supports OPEN and terminated input fail-safe
- Conforms to ANSI/TIA/EIA-644 LVDS standard

Connection Diagram

> Dual-In-Line

Functional Diagram

Receiver Truth Table

ENABLES		INPUTS	OUTPUT
EN	EN* *	$\mathbf{R}_{\text {IN }+}-\mathbf{R}_{\text {IN }}$	$\mathbf{R}_{\text {OUT }}$
L	H	X	Z
All other combinations of ENABLE inputs	$\mathrm{V}_{\text {ID }} \geq 0.1 \mathrm{~V}$	H	
	V III $\leq-0.1 \mathrm{~V}$	L	
	Fail-safe OPEN or Terminated	H	

DS90C032

LVDS Quad CMOS Differential Line Receiver

General Description

The DS90C032 is a quad CMOS differential line receiver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $155.5 \mathrm{Mbps}(77.7 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90C032 accepts low voltage (350 mV) differential input signals and translates them to CMOS (TTL compatible) output levels. The receiver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to multiplex outputs. The receiver also supports OPEN, shorted and terminated (100 2) input Fail-safe. Receiver output will be HIGH for all fail-safe conditions.
The DS90C032 and companion line driver (DS90C031) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications.

Features

■ >155.5 Mbps (77.7 MHz) switching rates

- Accepts small swing (350 mV) differential signal levels
- Ultra low power dissipation
- 600 ps maximum differential skew ($5 \mathrm{~V}, 25^{\circ} \mathrm{C}$)
- 6.0 ns maximum propagation delay
- Industrial operating temperature range
- Military operating temperature range option
- Available in surface mount packaging (SOIC) and (LCC)
- Pin compatible with DS26C32A, MB570 (PECL) and 41LF (PECL)
- Supports OPEN, short and terminated input fail-safe
- Compatible with IEEE 1596.3 SCI LVDS standard
- Conforms to ANSI/TIA/EIA-644 LVDS standard
- Available to Standard Microcircuit Drawing (SMD) 5962-95834

Connection Diagrams

Order Number DS90C032E-QML
See NS Package Number E20A
For complete Military Specifications, refer to appropriate SMD or MDS.

Functional Diagram and Truth Table

RECEIVER

ENABLES		INPUTS	OUTPUT
EN	EN* *	$\mathbf{R}_{\text {IN }+}-\mathbf{R}_{\text {IN }-}$	$\mathbf{R}_{\text {OUT }}$
L	H	X	Z
All other combinations of ENABLE inputs	$\mathrm{V}_{\text {ID }} \geq 0.1 \mathrm{~V}$	H	
	$\mathrm{V}_{\text {ID }} \leq-0.1 \mathrm{~V}$	L	
	Full Fail-safe OPEN/SHORT or Terminated	H	

DS90LV032A

3V LVDS Quad CMOS Differential Line Receiver

General Description

The DS90LV032A is a quad CMOS differential line receiver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV032A accepts low voltage (350 mV typical) differential input signals and translates them to 3V CMOS output levels. The receiver supports a TRI-STATE \oplus function that may be used to multiplex outputs. The receiver also supports open, shorted and terminated (100Ω) input Fail-safe. The receiver output will be HIGH for all fail-safe conditions.
The DS90LV032A and companion LVDS line driver (eg. DS90LV031A) provide a new alternative to high power PECL/ECL devices for high speed point-to-point interface

Features

- >400 Mbps (200 MHz) switching rates
- 0.1 ns channel-to-channel skew (typical)
- 0.1 ns differential skew (typical)
- 3.3 ns maximum propagation delay
- 3.3V power supply design
- Power down high impedance on LVDS inputs
- Low Power design (40 mW 3.3 V static)
- Interoperable with existing 5V LVDS networks
- Accepts small swing (350 mV typical) VID
- Supports open, short and terminated input fail-safe
- Compatible with ANSI/TIA/EIA-644
- Industrial temp. operating range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- Available in SOIC and TSSOP Packaging applications.

Connection Diagram

Functional Diagram

Dual-in-Line

Order Number DS90LV032ATM or DS90LV032ATMTC
See NS Package Number M16A or MTC16

ENABLES		INPUTS	OUTPUT
EN	EN *	$\mathbf{R}_{\text {IN }+}-\mathbf{R}_{\mathbf{I N}-}$	$\mathbf{R}_{\text {OUT }}$
L	H	X	Z
All other combinations of ENABLE inputs	$\mathrm{V}_{\text {ID }} \geq 0.1 \mathrm{~V}$	H	
	$\mathrm{V}_{\text {ID }} \leq-0.1 \mathrm{~V}$	L	
	Full Fail-safe OPEN/SHORT or Terminated	H	

DS90LV047A

3V LVDS Quad CMOS Differential Line Driver

General Description

The DS90LV047A is a quad CMOS flow-through differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of $400 \mathrm{Mbps}(200 \mathrm{MHz})$ utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV047A accepts low voltage TTL/CMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition, the driver supports a TRI-STATE ${ }^{\circledR}$ function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 13 mW typical. The DS90LV047A has a flow-through pinout for easy PCB layout. The EN and EN* inputs are ANDed together and control the TRI-STATE outputs. The enables are common to all four drivers. The DS90LV047A and companion line receiver (DS90LV048A) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications.

Features

- >400 Mbps (200 MHz) switching rates
- Flow-through pinout simplifies PCB layout
- 300 ps typical differential skew
- 400 ps maximum differential skew
- 1.7 ns maximum propagation delay
- 3.3 V power supply design
- $\pm 350 \mathrm{mV}$ differential signaling
- Low power dissipation (13 mW at 3.3 V static)
- Interoperable with existing 5V LVDS receivers
- High impedance on LVDS outputs on power down
- Conforms to TIA/EIA-644 LVDS Standard
- Industrial operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Available in surface mount (SOIC) and low profile TSSOP package

Connection Diagram

Order Number DS90LV047ATM, DS90LV047ATMTC See NS Package Number M16A, MTC16

Functional Diagram

Truth Table

ENABLES		INPUT		OUTPUTS	
EN	EN* *	$\mathbf{D}_{\text {IN }}$	$\mathbf{D}_{\text {OUT+ }}$	$\mathbf{D}_{\text {OUT- }}$	
H	L or Open	L	L	H	
		H	H	L	
All other combinations of ENABLE inputs		X	Z	Z	

DS90LV048A

3V LVDS Quad CMOS Differential Line Receiver

General Description

The DS90LV048A is a quad CMOS flow-through differential line receiver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of 400 Mbps (200 MHz) utilizing Low Voltage Differential Signaling (LVDS) technology.
The DS90LV048A accepts low voltage (350 mV typical) differential input signals and translates them to 3V CMOS output levels. The receiver supports a TRI-STATE ${ }^{(}$function that may be used to multiplex outputs. The receiver also supports open, shorted and terminated (100Ω) input fail-safe. The receiver output will be HIGH for all fail-safe conditions. The DS90LV048A has a flow-through pinout for easy PCB layout.
The EN and EN* inputs are ANDed together and control the TRI-STATE outputs. The enables are common to all four receivers. The DS90LV048A and companion LVDS line driver (eg. DS90LV047A) provide a new alternative to high power PECL/ECL devices for high speed point-to-point interface applications.

Features

- $>400 \mathrm{Mbps}(200 \mathrm{MHz})$ switching rates
- Flow-through pinout simplifies PCB layout
- 150 ps channel-to-channel skew (typical)
- 100 ps differential skew (typical)
- 2.7 ns maximum propagation delay
- 3.3V power supply design
- High impedance LVDS inputs on power down
- Low Power design (40 mW 3.3 V static)
- Interoperable with existing 5V LVDS drivers
- Accepts small swing (350 mV typical) differential signal levels
- Supports open, short and terminated input fail-safe
- Conforms to ANSI/TIA/EIA-644 Standard
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Available in SOIC and TSSOP package

Dual-in-Line

Order Number DS90LV048ATM, DS90LV048ATMTC See NS Package Number M16A, MTC16

Functional Diagram

ENABLES		INPUTS	OUTPUT
EN	EN *	$\mathbf{R}_{\mathbf{I N}_{+}-\mathbf{R}_{\mathbf{I N}-}}$	$\mathbf{R}_{\text {OUT }}$
\mathbf{H}	L or Open	$\mathrm{V}_{\mathbf{I D}} \geq 0.1 \mathrm{~V}$	H
		L	
		H	
All other combinations of ENABLE inputs			

DS90C401

Dual Low Voltage Differential Signaling (LVDS) Driver

1.0 General Description

The DS90C401 is a dual driver device optimized for high data rate and low power applications. This device along with the DS90C402 provides a. pair chip solution for a dual high speed point-to-point interface. The DS90C401 is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized. The device is in a 8 lead small outline package. The differential driver outputs provides low EMI with its low output swings typically 340 mV .

2.0 Features

- Ultra low power dissipation
- Operates above 155.5 Mbps
- Standard TIA/EIA-644
- 8 Lead SOIC Package saves space
- Low Differential Output Swing typical 340 mV

3.0 Connection Diagram

Order Number DS90C401M See NS Package Number M08A

4.0 Functional Diagram

National Semiconductor

DS90C402

Dual Low Voltage Differential Signaling (LVDS) Receiver

1.0 General Description

The DS90C402 is a dual receiver device optimized for high data rate and low power applications. This device along with the DS90C401 provides a pair chip solution for a dual high speed point-to-point interface. The device is in a PCB space saving 8 lead small outline package. The receiver offers $\pm 100 \mathrm{mV}$ threshold sensitivity, in addition to common-mode noise protection.

2.0 Features

- Ultra Low Power Dissipation
- Operates above 155.5 Mbps
- Standard TIA/EIA-644
- 8 Lead SOIC Package saves PCB space
- $\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}$ center around 1.2 V
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity

3.0 Connection Diagram

Order Number DS90C402M See NS Package Number M08A

4.0 Functional Diagram

DS36C200

Dual High Speed Bi-Directional Differential Transceiver

General Description

The DS36C200 is a dual transceiver device optimized for high data rate and low power applications. This device provides a single chip solution for a dual high speed bi-directional interface. Also, both control pins may be routed together for single bit control of datastreams. Both control pins are adjacent to each other for ease of routing them together. The DS36C200 is compatible with IEEE 1394 physical layer and may be used as an economical solution with some considerations. Please reference the application information on 1394 for more information. The device is in a 14-lead small outline package. The differential driver outputs provides low EMI with its low output swings typically 210 mV . The receiver offers $\pm 100 \mathrm{mV}$ threshold sensitivity, in addition to common-mode noise protection.

Features

- Optimized for DSS to DVHS interface link
- Compatible IEEE 1394 signaling voltage levels
- Operates above 100 Mbps
- Bi-directional transceivers
- 14-lead SOIC package
- Ultra low power dissipation
- $\pm 100 \mathrm{mV}$ receiver sensitivity
- Low differential output swing typical 210 mV
- High impedance during power off

Connection Diagram

Note: * denotes active LOW pin
Order Number DS36C200M
See NS Package Number M14A

Functional Diagram

DS90CR211／DS90CR212 21－Bit Channel Link

General Description

The DS90CR211 transmitter converts 21 bits of CMOS／TTL data into three LVDS（Low Voltage Differential Signaling） data streams．A phase－locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link．Every cycle of the transmit clock 21 bits of input data are sampled and transmitted．The DS90CR212 receiver converts the LVDS data streams back into 21 bits of CMOS／TTL data．At a transmit clock frequency of $40 \mathrm{MHz}, 21$ bits of TTL data are transmitted at a rate of 280 Mbps per LVDS data channel． Using a 40 MHz clock，the data throughput is 840 Mbit／s（105 Mbyte／s）．
The multiplexing of the data lines provides a substantial cable reduction．Long distance parallel single－ended buses typically require a ground wire per active signal（and have very limited noise rejection capability）．Thus，for a 21 －bit wide data bus and one clock，up to 44 conductors are required． With the Channel Link chipset as few as 9 conductors（3 data pairs， 1 clock pair and a minimum of one ground）are
needed．This provides a 80% reduction in required cable width，providing a system cost savings，reduces connector physical size，and reduces shielding requirements due to the cables smaller form factor．
The 21 CMOS／TTL inputs can support a variety of signal combinations．For example， 54 －bit nibbles plus 1 control，or 29 －bit（byte＋parity）and 3 control．

Features

－Narrow bus reduces cable size and cost
－$\pm 1 \mathrm{~V}$ Common mode range（ground shifting）
－ 290 mV swing LVDS data transmission
－ $840 \mathrm{Mbit} / \mathrm{s}$ data throughput
－Low swing differential current mode drivers reduce EMI
－Rising edge data strobe
－Power down mode
－Offered in low profile 48－lead TSSOP package

Block Diagrams

Order Number DS90CR212MTD
See NS Package Number MTD48

Connection Diagrams

DS90CR212

Typical Application

National Semiconductor

DS90CR213/DS90CR214 21-Bit Channel Link-66 MHz

General Description

The DS90CR213 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR214 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $66 \mathrm{MHz}, 21$ bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is $1.386 \mathrm{Gbit} / \mathrm{s}$ (173 Mbytes/s).
The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 21-bit wide data and one clock, up to 44 conductors are required. With the Channel Link chipset as few as 9 conductors (3 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides an 80% reduction in required cable
width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cable's smaller form factor.
The 21 CMOS/TTL inputs can support a variety of signal combinations. For example, 54 -bit nibbles (byte + parity) or 29 -bit (byte +3 parity) and 1 control.

Features

- 66 MHz Clock Support
- Up to 173 Mbytes/s bandwidth
- Low power CMOS design (<610 mW)
- Power-down mode (<0.5 mW total)

■ Up to 1.386 Gbit/s data throughput

- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS Standard

Block Diagrams

Order Number DS90CR214MTD
See NS Package Number MTD48

Pin Diagrams

DS90CR214

Typical Application

DS90CR215/DS90CR216

+3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz

General Description

The DS90CR215 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR216 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $66 \mathrm{MHz}, 21$ bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is $1.386 \mathrm{Gbit} / \mathrm{s}$ (173 Mbytes/s).
The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 21 -bit wide data and one clock, up to 44 conductors are required. With the Channel Link chipset as few as 9 conductors (3 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides a 80% reduction in required cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.

The $21 \mathrm{CMOS} /$ TTL inputs can support a variety of signal combinations. For example, five 4-bit nibbles plus 1 control, or two 9-bit (byte + parity) and 3 control.

Features

- Single +3.3 V supply
- Chipset ($\mathrm{Tx}+\mathrm{Rx}$) power consumption $<250 \mathrm{~mW}$ (typ)
- Power-down mode ($<0.5 \mathrm{~mW}$ total)
- Up to 173 Megabytes/sec bandwidth

■ Up to 1.386 Gbps data throughput

- Narrow bus reduces cable size
- 290 mV swing LVDS devices for low EMI
- +1 V common mode range (around +1.2 V)
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- ESD Rating $>7 \mathrm{kV}$
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagrams

Pin Diagrams

Typical Application

General Description

The DS90CR217 transmitter converts 21 bits of CMOS／TTL data into three LVDS（Low Voltage Differential Signaling） data streams．A phase－locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link．Every cycle of the transmit clock 21 bits of input data are sampled and transmitted．The DS90CR218 receiver converts the three LVDS data streams back into 21 bits of CMOS／TTL data．At a transmit clock frequency of $75 \mathrm{MHz}, 21$ bits of TTL data are transmitted at a rate of 525 Mbps per LVDS data channel．Using a 75 MHz clock，the data throughput is 1.575 Gbit／s（197 Mbytes／sec）．
This chipset is an ideal means to solve EMI and cable size problems associated with wide，high speed TTL interfaces．

Features

－ 20 to 75 MHz shift clock support
－50\％duty cycle on receiver output clock
－Best－in－Class Set \＆Hold Times on TxINPUTs and RxOUTPUTs
－Low power consumption
－Tx＋Rx Power－down mode $<400 \mu \mathrm{~W}$（max）
$\square \pm 1 \mathrm{~V}$ common mode range（around +1.2 V ）
－Narrow bus reduces cable size and cost
■ Up to 1．575 Gbps throughput
－Up to 197 Megabytes／sec bandwidth
－ 345 mV （typ）swing LVDS devices for low EMI
－PLL requires no external components
－Rising edge data strobe
－Compatible with TIA／EIA－644 LVDS standard
－Low profile 48－lead TSSOP package

Block Diagrams

Order Number DS90CR217MTD See NS Package Number MTD48

[^15]Pin Diagrams

Typical Application

DS90CR218A/DS90CR217 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 85 MHz

General Description

The DS90CR217 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR218A receiver converts the three LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of $85 \mathrm{MHz}, 21$ bits of TTL data are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHz clock, the data throughput is 1.785 Gbit/s (223 Mbytes/sec).
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 85 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on TxINPUTs
- Low power consumption
- $\pm 1 \mathrm{~V}$ common mode range (around +1.2 V)
- Narrow bus reduces cable size and cost

■ Up to 1.785 Gbps throughput

- Up to 223 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 48-lead TSSOP package

Block Diagrams

Order Number DS90CR217MTD See NS Package Number MTD48

Pin Diagrams

Typical Application

DS90CR281/DS90CR282

28-Bit Channel Link

General Description

The DS90CR281 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR282 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $40 \mathrm{MHz}, 28$ bits of TTL data are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is $1.12 \mathrm{Gbit} / \mathrm{s}$ (140 Mbytes/s).
The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 28 -bit wide data bus and one clock, up to 58 conductors are required. With the Channel Link chipset as few as 11 conductors (4 data pairs, 1 clock pair and a minimum of one
ground) are needed. This provides a 80% reduction in required cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.
The 28 CMOS/TTL inputs can support a variety of signal combinations. For example, 74 -bit nibbles or 39 -bit (byte + parity) and 1 control.

Features

- Narrow bus reduces cable size and cost
- $\pm 1 \mathrm{~V}$ common mode range (ground shifting)
- 290 mV swing LVDS data transmission
- 1.12 Gbit/s data throughput
- Low swing differential current mode drivers reduce EMI
- Rising edge data strobe
- Power down mode
- Offered in low profile 56 -lead TSSOP package

Block Diagrams

Order Number DS90CR281MTD See NS Package Number MTD56

Order Number DS90CR282MTD See NS Package Number MTD56

Connection Diagrams

DS90CR282

Typical Application

DS90CR283/DS90CR284

 28-Bit Channel Link-66 MHz
General Description

The DS90CR283 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR284 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $66 \mathrm{MHz}, 28$ bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is $1.848 \mathrm{Gbit} / \mathrm{s}$ (231 Mbytes/s).
The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 28-bit wide data bus and one clock, up to 58 conductors are required. With the Channel Link chipset as few as 11 conductors (4 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides a 80% reduction in required cable
width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.
The 28 CMOS/TTL inputs can support a variety of signal combinations. For example, 74 -bit nibbles or 39 -bit (byte + parity) and 1 control.

Features

- 66 MHz clock support
- Up to 231 Mbytes/s bandwidth
- Low power CMOS design (< 610 mW)
- Power Down mode ($<0.5 \mathrm{~mW}$ total)
- Up to $1.848 \mathrm{Gbit} / \mathrm{s}$ data throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 56-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS Standard

Block Diagrams

Pin Diagrams

DS90CR284

Typical Application

DS90CR285/DS90CR286

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz

General Description

The DS90CR285 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR286 receiver converts the LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $66 \mathrm{MHz}, 28$ bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is $1.848 \mathrm{Gbit} / \mathrm{s}$ (231 Mbytes/s).
The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 28 -bit wide data and one clock, up to 58 conductors are required. With the Channel Link chipset as few as 11 conductors (4 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides a 80% reduction in required cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.

The $28 \mathrm{CMOS} / \mathrm{TTL}$ inputs can support a variety of signal combinations. For example, seven 4 -bit nibbles or three 9 -bit (byte + parity) and 1 control.

Features

- Single +3.3 V supply
- Chipset ($\mathrm{Tx}+\mathrm{Rx}$) power consumption $<250 \mathrm{~mW}$ (typ)
- Power-down mode ($<0.5 \mathrm{~mW}$ total)
- Up to 231 Megabytes $/ \mathrm{sec}$ bandwidth
- Up to 1.848 Gbps data throughput
- Narrow bus reduces cable size
- 290 mV swing LVDS devices for low EMI
- +1 V common mode range (around +1.2 V)
- PLL requires no external components
- Low profile 56-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- ESD Rating > 7 kV
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Pin Diagrams

DS90CR286

Typical Application

General Description

The DS90CR286A receiver converts the four LVDS data streams (Up to 1.848 Gbps throughput or 231 Megabytes/ sec bandwidth) back into parallel 28 bits of CMOS/TTL data. Also available is the DS90CR216A that converts the three LVDS data streams (Up to 1.386 Gbps throughput or 173 Megabytes/sec bandwidth) back into parallel 21 bits of CMOS/TTL data. Both Receivers' outputs are Rising edge strobe.
Both devices are offered in TSSOP packages. In addition the DS90CR286A is also offered in a space saving 64 ball, 0.8 mm fine pitch ball grid array (FBGA) which provides a 44% reduction in PCB footprint compared to the 56L TSSOP package.
The DS90CR286A / DS90CR216A devices are enhanced over prior generation receivers and provided a wider data valid time on the receiver output.
This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 66 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on RxOUTPUTs
- Rx power consumption <270 mW (typ) @66MHz Worst Case
- Rx Power-down mode $<200 \mu \mathrm{~W}$ (max)
- ESD rating $>7 \mathrm{kV}$ (HBM), $>700 \mathrm{~V}$ (EIAJ)
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56 -lead or 48 -lead TSSOP package
- DS90CR286A is also offered in a space saving 64 ball FBGA package
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Block Diagrams

Order Number DS90CR286AMTD or DS90CR286ASLC See NS Package Number MTD56 or SLC64A

Order Number DS90CR216AMTD See NS Package Number MTD48

DS90CR287/DS90CR288

 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-75 MHz
General Description

The DS90CR287 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR288 receiver converts the four LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $75 \mathrm{MHz}, 28$ bits of TTL data are transmitted at a rate of 525 Mbps per LVDS data channel. Using a 75 MHz clock, the data throughput is $2.10 \mathrm{Gbit} / \mathrm{s}$ (262.5 Mbytes/sec).

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 75 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on TxINPUTs and RxOUTPUTs
- Low power consumption
- Tx + Rx Power-down mode $<400 \mu \mathrm{~W}$ (max)
- $\pm 1 \mathrm{~V}$ common mode range (around +1.2 V)
- Narrow bus reduces cable size and cost
- Up to 2.10 Gbps throughput
- Up to 262.5 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56 -lead TSSOP package

Block Diagrams

Pin Diagrams

Typical Application

DS90CR287/DS90CR288A

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ

General Description

The DS90CR287 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR288A receiver converts the four LVDS data streams back into 28 bits of CMOS/TTL data. At a transmit clock frequency of $85 \mathrm{MHZ}, 28$ bits of TTL data are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHZ clock, the data throughput is $2.38 \mathrm{Gbit} / \mathrm{s}$ (297.5 Mbytes/sec).

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 85 MHZ shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set \& Hold Times on TxINPUTs
- Low power consumption
- $\pm 1 \mathrm{~V}$ common mode range (around +1.2 V)
- Narrow bus reduces cable size and cost
- Up to 2.38 Gbps throughput
- Up to 297.5 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead TSSOP package

Block Diagrams

Pin Diagrams

DS90CR288A

Typical Application

DS90CR483 / DS90CR484 48-Bit LVDS Channel Link Serializer/Deserializer

General Description

The DS90CR483 transmitter converts 48 bits of CMOS/TTL data into eight LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a ninth LVDS link. Every cycle of the transmit clock 48 bits of input data are sampled and transmitted. The DS90CR484 receiver converts the LVDS data streams back into 48 bits of CMOS/TTL data. At a transmit clock frequency of $112 \mathrm{MHz}, 48$ bits of TTL data are transmitted at a rate of 672 Mbps per LVDS data channel. Using a 112 MHz clock, the data throughput is $5.38 \mathrm{Gbit} / \mathrm{s}$ (672Mbytes/s).
The multiplexing of data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 48 -bit wide data and one clock, up to 98 conductors are required. With this Channel Link chipset as few as 19 conductors (8 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides an 80% reduction in cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables' smaller form factor.
The $48 \mathrm{CMOS} / \mathrm{TTL}$ inputs can support a variety of signal combinations. For example, 68 -bit words or 59 -bit (byte + parity) and 3 controls.
The DS90CR483/DS90CR484 chipset is improved over prior generations of Channel Link devices and offers higher bandwidth support and longer cable drive with three areas of enhancement. To increase bandwidth, the maximum clock rate is increased to 112 MHz and 8 serialized LVDS outputs are
provided. Cable drive is enhanced with a user selectable pre-emphasis feature that provides additional output current during transitions to counteract cable loading effects. DC balancing on a cycle-to-cycle basis, is also provided to reduce ISI (Inter-Symbol Interference). With pre-emphasis and DC balancing, a low distortion eye-pattern is provided at the receiver end of the cable. A cable deskew capability has been added to deskew long cables of pair-to-pair skew of up to +/-1 LVDS data bit time (up to 80 MHz Clock Rate). These three enhancements allow cables $5+$ meters in length to be driven.
The chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.
For more details, please refer to the "Applications Information" section of this datasheet.

Features

- Up to 5.38 Gbits/sec bandwidth
- 33 MHz to 112 MHz input clock support
- LVDS SER/DES reduces cable and connector size
- Pre-emphasis reduces cable loading effects
- DC balance data transmission provided by transmitter reduces ISI distortion
- Cable Deskew of +/-1 LVDS data bit time (up to 80 MHz Clock Rate)
- 5V Tolerant TxiN and control input pins
- Flow through pinout for easy PCB design
- +3.3V supply voltage
- Transmitter rejects cycle-to-cycle jitter
- Conforms to ANSI/TIA/EIA-644-1995 LVDS Standard

Generalized Block Diagrams

Generalized Transmitter Block Diagram

Bus LVDS 3.3/5.0V Single Transceiver

General Description

The DS92LV010A is one in a series of transceivers designed specifically for the high speed, low power proprietary bus backplane interfaces. The device operates from a single 3.3 V or 5.0 V power supply and includes one differential line driver and one receiver. To minimize bus loading the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility as 4 separate lines are provided (DIN, DE, $\overline{R E}$, and ROUT). The device also features flow through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10 mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27 Ohms.
The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of $\pm 1 \mathrm{~V}$.

The receiver threshold is $\pm 100 \mathrm{mV}$ over a $\pm 1 \mathrm{~V}$ common mode range and translates the low voltage differential levels to standard (CMOS/TTL) levels.

Features

- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Balanced Output Impedance
- Lite Bus Loading 5pF typical
- Glitch free power up/down (Driver disabled)
- 3.3 V or 5.0 V Operation
- $\pm 1 \mathrm{~V}$ Common Mode Range
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity
- High Signaling Rate Capability (above 100 Mbps)
- Low Power CMOS design
- Product offered in 8 lead SOIC package
- Industrial Temperature Range Operation

Connection Diagram

Block Diagram

Order Number DS92LV010ATM See NS Package Number M08A

DS92LV090A

9 Channel Bus LVDS Transceiver

General Description

The DS92LV090A is one in a series of Bus LVDS transceivers designed specifically for the high speed, low power proprietary backplane or cable interfaces. The device operates from a single 3.3 V power supply and includes nine differential line drivers and nine receivers. To minimize bus loading, the driver outputs and receiver inputs are internally connected. The separate I/O of the logic side allows for loop back support. The device also features a flow through pin out which allows easy PCB routing for short stubs between its pins and the connector.
The driver translates 3V TTL levels (single-ended) to differential Bus LVDS (BLVDS) output levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition, the differential signaling provides common mode noise rejection of $\pm 1 \mathrm{~V}$.

The receiver threshold is less than $\pm 100 \mathrm{mV}$ over a $\pm 1 \mathrm{~V}$ common mode range and translates the differential Bus LVDS to standard (TTL/CMOS) levels. (See Applications Information Section for more details.)

Features

- Bus LVDS Signaling
- 3.2 nanosecond propagation delay max
- Chip to Chip skew ± 800 ps
- Low power CMOS design
- High Signaling Rate Capability (above 100 Mbps)
- 0.1 V to 2.3 V Common Mode Range for $\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}$
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity
- Supports open and terminated failsafe on port pins
- 3.3V operation
- Glitch free power up/down (Driver \& Receiver disabled)
- Light Bus Loading (5 pF typical) per Bus LVDS load
- Designed for Double Termination Applications
- Balanced Output Impedance
- Product offered in 64 pin TQFP package
- High impedance Bus pins on power off ($\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$)
- Driver Channel to Channel skew (same device) 230ps typical
- Receiver Channel to Channel skew (same device) 370ps typical

Simplified Functional Diagram

Connection Diagram

Top View
Order Number DS92LV090ATVEH
See NS Package Number VEH064DB

Pinout Description

Pin Name	Pin \#	Input/Output	Descriptions
DO+/RI+	$\begin{gathered} 27,31,35,37,41 \\ 45,47,51,55 \end{gathered}$	1/O	True Bus LVDS Driver Outputs and Receiver Inputs.
DO-/RI-	$\begin{gathered} 26,30,34,36,40 \\ 44,46,50,54 \end{gathered}$	1/O	Complimentary Bus LVDS Driver Outputs and Receiver Inputs.
$\mathrm{D}_{\text {IN }}$	$\begin{gathered} 2,6,12,18,20,22, \\ 58,60,62 \end{gathered}$	1	TTL Driver Input.
RO	$\begin{gathered} 3,7,13,19,21,23, \\ 59,61,63 \\ \hline \end{gathered}$	0	TTL Receiver Output.
$\overline{\mathrm{RE}}$	17	1	Receiver Enable TTL Input (Active Low).
DE	16	1	Driver Enable TTL Input (Active High).
GND	4, 5, 9, 14, 25, 56	Power	Ground for digital circuitry (must connect to GND on PC board). These pins connected internally.
V_{cc}	10, 15, 24, 57, 64	Power	V_{CC} for digital circuitry (must connect to V_{CC} on PC board). These pins connected internally.
AGND	28, 33, 43, 49, 53	Power	Ground for analog circuitry (must connect to GND on PC board). These pins connected internally.
$\mathrm{AV}_{\mathrm{cc}}$	29, 32, 42, 48, 52	Power	Analog V_{cc} (must connect to V_{cc} on PC board). These pins connected internally.
NC	1, 8, 11, 38, 39	N/A	Leave open circuit, do not connect.

National Semiconductor

DS92LV222A

Two Channel Bus LVDS MUXed Repeater

General Description

The DS92LV222A is a repeater designed specifically for the bridging of multiple backplanes in a rack. The DS92LV222A utilizes low voltage differential signaling to deliver high speed while consuming minimal power with reduced EMI. The RSEL pin and DE pins allow maximum flexibility as to which receiver/driver are used. The DS92LV222A repeats signals between backplanes and accepts or drives signals onto the local bus. It also features a flow through pin out which allows easy PCB routing for short stubs between its pins and the connector.

The driver is selectable between 3.5 mA (100Ω load) and 8.5 mA (27Ω load) output loop currents depending upon the level applied to the ISEL pin. This allows for single termination (point-to-point) and also double termination (multipoint) applications while maintain similar differential levels.
The receiver threshold is $\pm 100 \mathrm{mV}$, while providing $\pm 1 \mathrm{~V}$ common mode range.

Features

- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Low power CMOS design
- High Signaling Rate Capability (above 100 Mbps)
- Ultra Low Power Dissipation (13.2 mW quiescent)
- Balanced Output Impedance
- Lite Bus Loading 5 pF typical
- Selectable Drive Capability (3.5 mA or 8.5 mA)
- 3.3V operation
- $\pm 1 \mathrm{~V}$ Common Mode Range
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity
- Available in 16 pin SOIC package.

Connection Diagram

Order Number DS92LV222ATM See NS Package Number M16A

Block Diagram

DS90CP22

2X2 800 Mbps LVDS Crosspoint Switch

General Description

DS90CP22 is a 2×2 crosspoint switch utilizing LVDS (Low Voltage Differential Signaling) technology for low power, high speed operation. Data paths are fully differential from input to output for low noise generation and low pulse width distortion. The non-blocking design allows connection of any input to any output or outputs. LVDS I/O enable high speed data transmission for point-to-point interconnects. This device can be used as a high speed differential crosspoint, 2:1 mux, 1:2 demux, repeater or $1: 2$ signal splitter. The mux and demux functions are useful for switching between primary and backup circuits in fault tolerant systems. The 1:2 signal splitter and 2:1 mux functions are useful for distribution of serial bus across several rack-mounted backplanes.
The DS90CP22 accepts LVDS signal levels, LVPECL levels directly or PECL with attenuation networks.
The individual LVDS outputs can be put into TRI-STATE by use of the enable pins.
For more details, please refer to the Application Information section of this datasheet.

Features

- Low jitter 800 Mbps fully differential data path
- 75 ps (typ) of pk-pk jitter with PRBS $=2^{23}-1$ data pattern at 800 Mbps
- Single $+3.3 \vee$ Supply
n Less than 330 mW (typ) total power dissipation
- Non-blocking "Switch Architecture"
- Balanced output impedance
- Output channel-to-channel skew is 35 ps (typ)
- Configurable as 2:1 mux, 1:2 demux, repeater or 1:2 signal splitter
- LVDS receiver inputs accept LVPECL signals
- Fast switch time of 1.2 ns (typ)
- Fast propagation delay of 1.3 ns (typ)
- Receiver input threshold $< \pm 100 \mathrm{mV}$
- 16 lead SOIC package
- Inter-operates with ANSI/TIA/EIA-644-1995 LVDS standard

Connection Diagram

Order Number DS90CP22M-8 See NS Package Number M16A

Diff. Output Eye-Pattern in 1:2 split mode @ 800 Mbps Conditions: $\mathbf{3 . 3} \mathrm{V}, \mathrm{PRBS}=\mathbf{2}^{23}-1$ data pattern, $V_{I D}=300 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=+\mathbf{+ 1 . 2} \mathrm{V}, 200 \mathrm{ps} / \mathrm{div}, 100 \mathrm{mV} / \mathrm{div}$

National Semiconductor

DS92LV1021 and DS92LV1210 16-40 MHz 10 Bit Bus LVDS Serializer and Deserializer

General Description

The DS92LV1021 transforms a 10-bit wide parallel CMOS/ TTL data bus into a single high speed Bus LVDS serial data stream with embedded clock. The DS92LV1210 receives the Bus LVDS serial data stream and transforms it back into a 10 -bit wide parallel data bus and separates clock. The DS92LV1021 may transmit data over heavily loaded backplanes or 10 meters of cable. The reduced cable, PCB trace count and connector size saves cost and makes PCB design layout easier. Clock-to-data and data-to-data skew are eliminated since one output will transmit both clock and all data bits serially. The powerdown pin is used to save power, by reducing supply current when either device is not in use. The Serializer has a synchronization mode that should be activated upon power-up of the device. The Deserializer will establish lock to this signal within 1024 cycles, and will flag Lock status. The embedded clock guarantees a transition on the bus every 12-bit cycle; eliminating transmission errors
due to charged cable conditions. The DS92LV1021 output pins may be TRI-STATE ${ }^{\circledR}$ to achieve a high impedance state. The PLL can lock to frequencies between 16 MHz and 40 MHz .

Features

- Guaranteed transition every data transfer cycle
- Single differential pair eliminates multi-channel skew
- Flow-through pinout for easy PCB layout
- 400 Mbps serial Bus LVDS bandwidth (at 40 MHz clock)
- 10-bit parallel interface for 1 byte data plus 2 control bits
- Synchronization mode and LOCK indicator
- Programmable edge trigger on clock
- High impedance on receiver inputs when power is off
- Bus LVDS serial output rated for 27Ω load
- Small 28-lead SSOP package-MSA

Block Diagrams

Block Diagrams (Continued)

Functional Description

The DS92LV1021 and DS92LV1210 is a 10-bit Serializer / Deserializer chipset designed to transmit data over a heavily loaded differential backplanes at clock speeds from 16 to 40 MHz . It may also be used to drive data over Unshielded Twisted Pair (UTP) cable.
The chipset has three active states of operation: Initialization, Data Transfer, and Resynchronization; and two passive states: Powerdown and TRI-STATE ${ }^{\circledR}$.
The following sections describe each operation and passive state.

Initialization

Before data can be transferred both devices must be initialized. Initialization refers to synchronization of the Serializer and the Deserializer PLL's to local clocks that may be the same or separate. Afterward, synchronization of Deserializer to Serializer occurs as the second step of initialization.
Step 1: When V_{cc} is applied to both Serializer and/or Deserializer, the respective outputs are held in TRI-STATE ${ }^{\circledR}$ and internal circuitry is disabled by on-chip power-on circuitry. When V_{cc} reaches V_{cc} OK (2.5 V) the PLL in each device begins locking to a local clock. For the Serializer, the local clock is the transmit clock, TCLK, provided by the source ASIC or other device. For the Deserializer, the local clock is provided by an on-board oscillator or other source and applied to the REFCLK pin. After V_{cc} OK is reached the device's PLL will lock.
The Serializer outputs are held in TRI-STATE while the PLL locks to the TCLK. The Serializer is now ready to send data or SYNC patterns depending on the levels of the SYNC1 and SYNC2 inputs. The SYNC pattern is composed of six ones and six zeros switching at the input clock rate.
The Deserializer $\overline{\text { LOCK }}$ output will remain high while its PLL is locking to the local clock- the REFCLK input and then to SYNC patterns on the input.
Step 2: The Deserializer PLL must synchronize to the Serializer to complete the initialization. The transmission of SYNC patterns to the Deserializer enables the Deserializer to lock to the Serializer signal.
Control of the sync pins is left to the user. A feedback loop between the LOCK pin is one recommendation. Another op-
tion is that one or both of the Serializer SYNC inputs are asserted for at least 1024 cycles of TCLK to initiate transmission of SYNC patterns. The Serializer will continue to send SYNC patterns after the minimum of 1024 if either of the SYNC inputs remain high.
When the Deserializer detects edge transitions at the Bus LVDS input it will attempt to lock to the embedded clock information. When the Deserializer locks to the Bus LVDS clock, the $\overline{\text { LOCK }}$ output will go low. When $\overline{\text { LOCK }}$ is low the Deserializer outputs represent incoming Bus LVDS data.

Data Transfer

After initialization, the Serializer inputs DIN0-DIN9 may be used to input data to the Serializer. Data is clocked into the Serializer by the TCLK input. The edge of TCLK used to strobe in data is selectable via the TCLK_R// pin. TCLK_R/F high selects the rising edge for clocking data and low selects the falling edge. If either of the SYNC inputs is high for 5^{*} TCLK cycles the data at DIN 0-DIN9 is ignored regardless of the clock edge.
A start bit and a stop bit, appended internally, frame the data bits in the register. The start bit is always high and the stop bit is always low. The start and stop bits function as the embedded clock bits in the serial stream.
Serialized data and clock bits (10+2 bits) are transmitted from the serial data output (DO) at 12 times the TCLK frequency. For example, if TCLK is 40 MHz , the serial rate is 40 $x 12=480$ Mega bits per second. Since only 10 bits are from input data, the serial "payload" rate is 10 times the TCLK frequency. For instance, if TCLK $=40 \mathrm{MHz}$, the payload data rate is $40 \times 10=400 \mathrm{Mbps}$. TCLK is provided by the data source and must be in the range 16 MHz to 40 MHz nominal. The outputs ($\mathrm{DO} \pm$) can drive a heavily loaded backplane or a point-to-point connection. The outputs transmit data when the enable pin (DEN) is high, PWRDN = high and SYNC1 and SYNC2 are low. The DEN pin may be used to TRISTATE the outputs when driven low.
The $\overline{\text { LOCK }}$ pin on the Deserializer is driven low when it is synchronized with the Serializer. The Deserializer locks to the embedded clock and uses it to recover the serialized data. ROUT data is valid when LOCK is low. Otherwise ROUT0-ROUT9 is invalid.

Data Transfer (Continued)

RCLK pin is the reference to data on the ROUT0-ROUT9 pins. The polarity of the RCLK edge is controlled by the RCLK_R/F input.
ROUT(0-9), $\overline{\text { LOCK }}$ and RCLK outputs will drive a minimum of three CMOS input gates (15 pF load) with 40 MHz clock.

Resynchronization

The Deserializer $\overline{\text { LOCK }}$ pin driven low indicates that the Deserializer PLL is locked to the embedded clock edge. If the Deserializer loses lock, the $\overline{\text { LOCK }}$ output will go high and the outputs (including RCLK) will be TRI-STATE.
The $\overline{\text { LOCK }}$ pin must be monitored by the system to detect a loss of synchronization and the system must arrange to pulse the Serializer SYNC1 or SYNC2 pin to resynchronize. There are multiple approaches possible. One recommendation is to provide a feedback loop using the $\overline{\text { LOCK }}$ pin itself to control the sync request of the Serializer (SYNC1 or SYNC2). Otherwise, $\overline{\text { LOCK }}$ pin needs to be monitored and when it is a high, the system needs to ensure that one or both of the Serializer SYNC inputs area asserted for at least 1024 cycles of TCLK. A minimum of 1024 sync patterns are needed to resynchronize. Dual SYNC pins are provided for multiple control in a multi-drop application.

Powerdown

The Powerdown state is a low power sleep mode that the Serializer and Deserializer may use to reduce power when
there is no data to be transferred. Powerdown is entered when PWRDN and REN are driven low on the Deserializer, and when the PWRDN is driven low on the Serializer. In Powerdown, the PLL is stopped and the outputs go into TRISTATE, disabling load current and also reducing supply current to the milliamp range. To exit Powerdown, PWRDN is driven high.
Both the Serializer and Deserializer must reinitialize and resynchronize before data can be transferred. Initialization of the Serializer takes 1024 TCLK cycles. The Deserializer will initialize and assert $\overline{\text { LOCK }}$ high until it is locked to the Bus LVDS clock.

TRI-STATE

For the Serializer, TRI-STATE is entered when the DEN pin is driven low. This will TRI-STATE both driver output pins (DO+ and DO-). When DEN is driven high the serializer will return to the previous state as long as all other control pins remain static (SYNC1, SYNC2, PWRDN, TCLK_R/F).
For the Deserializer, TRI-STATE is entered when the REN pin is driven low. This will TRI-STATE the receiver output pins (ROUTO-ROUT9), $\overline{\text { LOCK }}$ and RCLK.

Order Numbers		
NSID	Function	Package
DS92LV1021TMSA	Serializer	MSA28
DS92LV1210TMSA	Deserializer	MSA28

National Semiconductor

DS92LV1212A

16-40 MHz 10-Bit Bus LVDS Random Lock Deserializer with Embedded Clock Recovery

General Description

The DS92LV1212A is an upgrade of the DS92LV1212. It maintains all of the features of the DS92LV1212. The DS92LV1212A is designed to be used with the DS92LV1021 Bus LVDS Serializer. The DS92LV1212A receives a Bus LVDS serial data stream and transforms it into a 10-bit wide parallel data bus and separate clock. The reduced cable, PCB trace count and connector size saves cost and makes PCB layout easier. Clock-to-data and data-to-data skews are eliminated since one input receives both clock and data bits serially. The powerdown pin is used to save power by reducing the supply current when the device is not in use. The Deserializer will establish lock to a synchronization pattern within specified lock times but it can also lock to a data stream without SYNC patterns.

Features

- Clock recovery without SYNC patterns-random lock
- Guaranteed transition every data transfer cycle
- Chipset ($\mathrm{Tx}+\mathrm{Rx}$) power consumption < 300mW (typ) @ 40 MHz
- Single differential pair eliminates multi-channel skew
- 400 Mbps serial Bus LVDS bandwidth (at 40 MHz clock)
- 10-bit parallel interface for 1 byte data plus 2 control bits or UTOPIA I Interface
- Synchronization mode and LOCK indicator
- Flow-through pinout for easy PCB layout
- High impedance on receiver inputs when power is off
- Programmable edge trigger on clock
- Footprint compatible with DS92LV1210
- Small 28-lead SSOP package-MSA

Block Diagram

Functional Description

The DS92LV1212 is a 10 －bit Deserializer chip designed to receive data over heavily loaded differential backplanes at clock speeds from 16 MHz to 40 MHz ．It may also be used to receive data over Unshielded Twisted Pair（UTP）cable．
The chip has three active states of operation：Initialization， Data Transfer，and Resynchronization；and two passive states：Powerdown and TRI－STATE ${ }^{\circledR}$ ．

The following sections describe each operation of the active and passive states．

Initialization

Before data can be transferred，the Deserializer must be ini－ tialized．The Deserializer should be powered up with the PWRDN pin held low．After V_{cc} stabilizes，the PWRDN pin can be forced high．The Deserializer is ready to lock to the incoming data stream．
Step 1：When you apply V_{Cc} to the Deserializer，the respec－ tive outputs are held in TRI－STATE and internal circuitry is disabled by on－chip power－on circuitry．When V_{Cc} reaches $\mathrm{V}_{\mathrm{cc}} \mathrm{OK}(2.5 \mathrm{~V})$ ，the PLL is ready to lock to incoming data or synchronization patterns．You must apply the local clock to the REFCLK pin．
The Deserializer $\overline{\text { LOCK }}$ output will remain high while its PLL locks to incoming data or to SYNC patterns on the inputs．
Step 2：The Deserializer PLL must synchronize to the Serial－ izer to complete the initialization．The Deserializer will lock to non－repetitive data patterns；however，the transmission of SYNC patterns to the Deserializer enables the Deserializer to lock to the Serializer signal within a specified time．See Figure 7.
The user＇s application determines control of the SYNC1 and SYNC2 pins．One recommendation is a direct feedback loop from the LOCK pin．Under all circumstances，the Serializer stops sending SYNC patterns after both SYNC inputs return low．
When the Deserializer detects edge transitions at the Bus LVDS input，it will attempt to lock to the embedded clock in－ formation．When the Deserializer locks to the Bus LVDS clock，the LOCK output will go low．When $\overline{\text { LOCK }}$ is low，the Deserializer outputs represent incoming Bus LVDS data．

Data Transfer

After initialization，the Serializer will accept data from inputs DIN0－DIN9．The Serializer uses the TCLK input to latch in－ coming Data．The TCLK＿R／F pin selects which edge the Se－ rializer uses to strobe incoming data．TCLK＿R／／F high selects the rising edge for clocking data and low selects the falling edge．If either of the SYNC inputs is high for 5^{*} TCLK cycles， the data at DINO－DIN9 is ignored regardless of clock edge．
After determining which clock edge to use，a start and stop bit，appended internally，frame the data bits in the register． The start bit is always high and the stop bit is always low． The start and stop bits function as the embedded clock bits in the serial stream．
Serialized data and clock bits（ $10+2$ bits）are received at 12 times the TCLK frequency．For example，if TCLK is 40 MHz ， the serial rate is $40 \times 12=480$ Mega bits per second．Since only 10 bits are from input data，the serial＂payload＂rate is 10 times the TCLK frequency．For instance，if TCLK $=40$ MHz ，the payload data rate is $40 \times 10=400 \mathrm{Mbps}$ ．TCLK is provided by the data source and must be in the range 16 MHz to 40 MHz nominal．
The $\overline{\text { LOCK }}$ pin on the Deserializer is driven low when it is synchronized with the Serializer．The Deserializer locks to the embedded clock and uses it to recover the serialized data．ROUT data is valid when $\overline{\text { LOCK }}$ is low．Otherwise， ROUTO－ROUT9 is invalid．
The ROUTO－ROUT9 pins use the RCLK pin as the reference to data．The polarity of the RCLK edge is controlled by the RCLK＿R／F input．See Figure 5.
ROUT（ $0-9$ ），$\overline{\text { LOCK }}$ and RCLK outputs will drive a minimum of three CMOS input gates（ 15 pF load）with 40 MHz clock．

Resynchronization

When the Deserializer PLL locks to the embedded clock edge，the Deserializer $\overline{\text { LOCK }}$ pin asserts a low．If the Dese－ rializer loses lock，the LOCK pin output will go high and the outputs（including RCLK）will enter TRI－STATE．
The user＇s system monitors the $\overline{\text { LOCK }}$ pin to detect a loss of synchronization．Upon detection，the system can arrange to pulse the Serializer SYNC1 or SYNC2 pin to resynchronize． Multiple resynchronization approaches are possible．One recommendation is to provide a feedback loop using the

Resynchronization (Continued)

$\overline{\text { LOCK }}$ pin itself to control the sync request of the Serializer (SYNC1 or SYNC2). Dual SYNC pins are provided for multiple control in a multi-drop application. Sending sync patterns for resynchronization is desirable when lock times within a specific time are critical. However, the Deserializer can lock to random data, which is discussed in the next section.

Random Lock Initialization and Resynchronization

The initialization and resynchronization methods described in their respective sections are the fastest ways to establish the link between the Serializer and Deserializer. However, the DS92LV1212A can attain lock to a data stream without requiring the Serializer to send special SYNC patterns. This allows the DS92LV1212A to operate in "open-loop" applications. Equally important is the Deserializer's ability to support hot insertion into a running backplane. In the open loop or hot insertion case, we assume the data stream is essentially random. Therefore, because lock time varies due to data stream characteristics, we cannot possibly predict exact lock time. The primary constraint on "random" lock time is the initial phase relation between the incoming data and the REFCLK when the Deserializer powers up. As described in the next paragraph, the data contained in the data stream can also affect lock time.

If a specific pattern is repetitive, the Deserializer could enter "false lock" - falsely recognizing the data pattern as the clocking bits. We refer to such a pattern as a repetitive multi-transition, RMT. This occurs when more than one Low-High transition takes place in a clock cycle over multiple cycles. This occurs when any bit, except DIN 9, is held at a low state and the adjacent bit is held high, creating a 0-1 transition. In the worst case, the Deserializer could become locked to the data pattern rather than the clock. Circuitry within the DS92LV1212A can detect that the possibility of "false lock" exists. The circuitry accomplishes this by detecting more than one potential position for clocking bits. Upon detection, the circuitry will prevent the LOCK output from becoming active until the potential "false lock" pattern changes. The false lock detect circuitry expects the data will eventually change, causing the Deserializer to lose lock to the data pattern and then continue searching for clock bits in the serial data stream. Graphical representations of RMT are shown on the following page. Please note that RMT only applies to bits DINO-DIN8.

Powerdown

When no data transfer occurs, you can use the Powerdown state. The Serializer and Deserializer use the Powerdown state, a low power sleep mode, to reduce power consumption. The Deserializer enters Powerdown when you drive $\overline{\text { PWRDN }}$ and REN low. The Serializer enters Powerdown when you drive PWRDN low. In Powerdown, the PLL stops and the outputs enterTRI-STATE, which disables load current and reduces supply current to the milliampere range. To exit Powerdown, you must drive the PWRDN pin high.
Before valid data exchanges between the Serializer and Deserializer, you must reinitialize and resynchronize the devices to each other. Initialization of the Serializer takes 510 TCLK cycles. The Deserializer will initialize and assert $\overline{\text { LOCK }}$ high until lock to the Bus LVDS clock occurs.

TRI-STATE

The Serializer enters TRI-STATE when the DEN pin is driven low. This puts both driver output pins (DO+ and DO-) into TRI-STATE. When you drive DEN high, the Serializer returns to the previous state, as long as all other control pins remain static (SYNC1, SYNC2, $\overline{P W R D N}$, TCLK_R/F).
When you drive the REN pin low, the Deserializer enters TRI-STATE. Consequently, the receiver output pins (ROUT0-ROUT9) and RCLK will enter TRI-STATE. The $\overline{\text { LOCK }}$ output remains active, reflecting the state of the PLL.

RMT Patterns

DINO Held Low-DIN1 Held High Creates an RMT Pattern

DIN4 Held Low-DIN5 Held High Creates an RMT Pattern

DIN8 Held Low-DIN9 Held High Creates an RMT Pattern

Order Numbers		
NSID	Function	Package
DS92LV1021TMSA	Serializer	MSA28
DS92LV1212AMSA	Deserializer	MSA28

National Semiconductor

DS92LV1023 and DS92LV1224 40-66 MHz 10 Bit Bus LVDS Serializer and Deserializer

General Description

The DS92LV1023 transforms a 10-bit wide parallel LVCMOS/LVTTL data bus into a single high speed Bus LVDS serial data stream with embedded clock. The DS92LV1224 receives the Bus LVDS serial data stream and transforms it back into a 10-bit wide parallel data bus and recovers parallel clock. The DS92LV1023 transmits data over backplanes or cable. The single differential pair data path makes PCB design easier. In addition, the reduced cable, PCB trace count, and connector size tremendously reduce cost. Since one output transmits clock and data bits serially, it eliminates clock-to-data and data-to-data skew. The powerdown pin saves power by reducing supply current when not using either device. Upon power up of the Serializer, you can choose to activate synchronization mode or allow the Deserializer to use the synchronization-to-random-data feature. By using the synchronization mode, the Deserializer will establish lock to a signal within specified lock times. In addition, the embedded clock guarantees a transition on the bus every 12 -bit cycle. This eliminates transmission errors due to charged cable conditions. Furthermore, you may put
the DS92LV1023 output pins into TRI-STATE © to achieve a high impedance state. The PLL can lock to frequencies between 40 MHz and 66 MHz .

Features

- Clock recovery from PLL lock to random data patterns.
- Guaranteed transition every data transfer cycle
- Chipset (Tx + Rx) power consumption < 500 mW (typ) @ 66 MHz
- Single differential pair eliminates multi-channel skew
- Flow-through pinout for easy PCB layout
- 660 Mbps serial Bus LVDS data rate (at 66 MHz clock)
- 10-bit parallel interface for 1 byte data plus 2 control bits
- Synchronization mode and LOCK indicator
- Programmable edge trigger on clock
- High impedance on receiver inputs when power is off
- Bus LVDS serial output rated for 27Ω load
- Small 28-lead SSOP package

Block Diagrams

Functional Description

The DS92LV1023 and DS92LV1224 are a 10-bit Serializer and Deserializer chipset designed to transmit data over differential backplanes at clock speeds from 40 to 66 MHz . The chipset is also capable of driving data over Unshielded Twisted Pair (UTP) cable.
The chipset has three active states of operation: Initialization, Data Transfer, and Resynchronization; and two passive states: Powerdown and TRI-STATE ${ }^{\circledR}$.
The following sections describe each operation and passive state.

Initialization

Initialization of both devices must occur before data transmission begins. Initialization refers to synchronization of the Serializer and Deserializer PLL's to local clocks, which may be the same or separate. Afterwards, synchronization of the Deserializer to Serializer occurs.
Step 1: When you apply V_{Cc} to both Serializer and/or Deserializer, the respective outputs enter TRI-STATE®, and on-chip power-on circuitry disables internal circuitry. When V_{cc} reaches $\mathrm{V}_{\mathrm{Cc}} \mathrm{OK}(2.5 \mathrm{~V})$ the PLL in each device begins locking to a local clock. For the Serializer, the local clock is the transmit clock (TCLK) provided by the source ASIC or other device. For the Deserializer, you must apply a local clock to the REFCLK pin.
The Serializer outputs remain in TRI-STATE while the PLL locks to the TCLK. After locking to TCLK, the Serializer is now ready to send data or SYNC patterns, depending on the levels of the SYNC1 and SYNC2 inputs or a data stream. The SYNC pattern sent by the Serializer consists of six ones and six zeros switching at the input clock rate.
Note that the Deserializer $\overline{\mathrm{LOCK}}$ output will remain high while its PLL locks to the incoming data or to SYNC patterns on the input.
Step 2: The Deserializer PLL must synchronize to the Serializer to complete initialization. The Deserializer will lock to non-repetitive data patterns. However, the transmission of SYNC patterns enables the Deserializer to lock to the Serializer signal within a specified time. See Figure 9.
The user's application determines control of the SYNC1 and SYNC 2 pins. One recommendation is a direct feedback loop

Data Transfer (Continued)

The ROUTO-ROUT9 pins use the RCLK pin as the reference to data. The polarity of the RCLK edge is controlled by the RCLK_R//F input. See Figure 13.
ROUT(0-9), $\overline{\text { LOCK }}$ and RCLK outputs will drive a maximum of three CMOS input gates (15 pF load) with a 66 MHz clock.

Resynchronization

When the Deserializer PLL locks to the embedded clock edge, the Deserializer LOCK pin asserts a low. If the Deserializer loses lock, the $\overline{\text { LOCK }}$ pin output will go high and the outputs (including RCLK) will enter TRI-STATE.
The user's system monitors the $\overline{\text { LOCK }}$ pin to detect a loss of synchronization. Upon detection, the system can arrange to pulse the Serializer SYNC1 or SYNC2 pin to resynchronize. Multiple resynchronization approaches are possible. One recommendation is to provide a feedback loop using the $\overline{\text { LOCK }}$ pin itself to control the sync request of the Serializer (SYNC1 or SYNC2). Dual SYNC pins are provided for multiple control in a multi-drop application. Sending sync patterns for resynchronization is desirable when lock times within a specific time are critical. However, the Deserializer can lock to random data, which is discussed in the next section.

Random Lock Initialization and Resynchronization

The initialization and resynchronization methods described in their respective sections are the fastest ways to establish the link between the Serializer and Deserializer. However, the DS92LV1224 can attain lock to a data stream without requiring the Serializer to send special SYNC patterns. This allows the DS92LV1224 to operate in "open-loop" applications. Equally important is the Deserializer's ability to support hot insertion into a running backplane. In the open loop or hot insertion case, we assume the data stream is essentially random. Therefore, because lock time varies due to data stream characteristics, we cannot possibly predict exact lock time. However, please see Table 1 for some general random lock times under specific conditions. The primary constraint on the "random" lock time is the initial phase relation between the incoming data and the REFCLK when the Deserializer powers up. As described in the next paragraph, the data contained in the data stream can also affect lock time.
If a specific pattern is repetitive, the Deserializer could enter "false lock" - falsely recognizing the data pattern as the clocking bits. We refer to such a pattern as a repetitive multi-transition, RMT. This occurs when more than one Low-High transition takes place in a clock cycle over multiple cycles. This occurs when any bit, except DIN 9 , is held at a low state and the adjacent bit is held high, creating a 0-1 transition. In the worst case, the Deserializer could become locked to the data pattern rather than the clock. Circuitry within the DS92LV1224 can detect that the possibility of "false lock" exists. The circuitry accomplishes this by detecting more than one potential position for clocking bits. Upon detection, the circuitry will prevent the $\overline{\text { LOCK }}$ output from becoming active until the potential "false lock" pattern changes. The false lock detect circuitry expects the data will eventually change, causing the Deserializer to lose lock to the data pattern and then continue searching for clock bits in the serial data stream. Graphical representations of RMT are shown in Figure 1. Please note that RMT only applies to bits DINO-DIN8.

Powerdown

When no data transfer occurs, you can use the Powerdown state. The Serializer and Deserializer use the Powerdown state, a low power sleep mode, to reduce power consumption. The Deserializer enters Powerdown when you drive $\overline{\text { PWRDN }}$ and REN low. The Serializer enters Powerdown when you drive PWRDN low. In Powerdown, the PLL stops and the outputs enterTRI-STATE, which disables load current and reduces supply current to the milliampere range. To exit Powerdown, you must drive the PWRDN pin high.
Before valid data exchanges between the Serializer and Deserializer, you must reinitialize and resynchronize the devices to each other. Initialization of the Serializer takes 510 TCLK cycles. The Deserializer will initialize and assert LOCK high until lock to the Bus LVDS clock occurs.

TRI-STATE

The Serializer enters TRI-STATE when the DEN pin is driven low. This puts both driver output pins (DO+ and DO-) into TRI-STATE. When you drive DEN high, the Serializer returns to the previous state, as long as all other control pins remain static (SYNC1, SYNC2, $\overline{P W R D N}$, TCLK_R/F).
When you drive the REN pin low, the Deserializer enters TRI-STATE. Consequently, the receiver output pins (ROUT0-ROUT9) and RCLK will enter TRI-STATE. The $\overline{\text { LOCK }}$ output remains active, reflecting the state of the PLL.

TABLE 1.

Random Lock Times for the DS92LV1224			
	40 MHz	66 MHz	Units
Maximum	26	18	$\mu \mathrm{~S}$
Mean	4.5	3.0	$\mu \mathrm{~S}$
Minimum	0.77	0.43	$\mu \mathrm{~S}$
Conditions:	PRBS 2		
, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$			

1) Difference in lock times are due to different starting points in the data pattern with multiple parts.

Ordering Information

NSID	Function	Package
DS92LV1023TMSA	Serializer	MSA28
DS92LV1224TMSA	Deserializer	MSA28

DS92CK16

3V BLVDS 1 to 6 Clock Buffer/Bus Transceiver

General Description

The DS92CK16 1 to 6 Clock Buffer/Bus Transceiver is a one to six CMOS differential clock distribution device utilizing Bus Low Voltage Differential Signaling (BLVDS) technology. This clock distribution device is designed for applications requiring ultra low power dissipation, low noise, and high data rates. The BLVDS side is a transceiver with a separate channel acting as a return/source clock.
The DS92CK16 accepts BLVDS (300 mV typical) differential input levels, and translates them to 3V CMOS output levels. An output enable pin $\overline{\mathrm{OE}}$, when high, forces all CLK $\mathrm{K}_{\text {OT }}$ pins high.
The device can be used a source synchronous driver. The selection of the source driving is controlled by the CrdCLK $_{\text {IN }}$ and $\overline{\mathrm{DE}}$ pins. This device can be the master clock, driving the inputs of other clock I/O pins in a multipoint environment. Easy master/slave clock selection is achieved along a backplane.

Features

- Master/Slave clock selection in a backplane application
- 125 MHz operation (typical)
- 100 ps duty cycle distortion (typical)
- 50 ps channel to channel skew (typical)
- 3.3V power supply design
- Glitch-free power on at CLKI/O pins
- Low Power design (20 mA @ 3.3V static)
- Accepts small swing (300 mV typical) differential signal levels
- Industrial temperature operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Available in 24-pin TSSOP Packaging

Function Diagram and Truth Table

Receive Mode Truth Table

INPUT				OUTPUT
$\overline{\mathrm{OE}}$	$\overline{\text { DE }}$	$\mathrm{CrdCLK}_{\text {IN }}$	(CLKI/O+)-(CLKI/O-)	$\mathrm{CLK}_{\text {Out }}$
H	H	X	X	H
L	H	X	VID $\geq 0.07 \mathrm{~V}$	H
L	H	X	VID $\leq-0.07 \mathrm{~V}$	L

$\mathrm{L}=$ Low Logic State
$\mathrm{H}=$ High Logic State
X = Irrelevant
$Z=$ TRI-STATE

Driver Mode Truth Table

INPUT			OUTPUT		
$\overline{\mathbf{O E}}$	$\overline{\mathbf{D E}}$	CrdCLK $_{\text {IN }}$	CLK/I/O+	CLKI/O-	CLK $_{\text {OUT }}$
L	L	L	L	H	L
L	L	H	H	L	H
H	L	L	L	H	H
H	L	H	H	L	H
H	H	X	Z	Z	H

Connection Diagram

TSSOP Package Pin Description

Pin Name	Pin \#	Type	Description
CLKI/O+	6	1/O	True (Positive) side of the differential clock input.
CLKI/O-	7	1/0	Complementary (Negative) side of the differential clock input.
$\overline{\mathrm{OE}}$	2	1	$\overline{\mathrm{OE}}$; this pin is active Low. When High, this pin forces all CLKout pins High. When Low, CLK ${ }_{\text {out }}$ pins logic state is determined by either the CrdCLK ${ }_{1 N}$ or the VID at the CLKI/O pins with respect to the logic level at the $\overline{D E}$ pin. This pin has a weak pullup device to $V_{C C}$. If $\overline{\mathrm{OE}}$ is floating, then all $\mathrm{CLK}_{\text {OUT }}$ pins will be High.
$\overline{\overline{D E}}$	11	1	$\overline{\mathrm{DE}}$; this pin is active LOW. When Low, this pin enables the CardCLK ${ }_{\text {IN }}$ signal to the CLKI/O pins and CLK ${ }_{\text {OUT }}$ pins. When High, the Driver is TRI-STATE ${ }^{\oplus}$, the CLKI/O pins are inputs and determine the state of the CLK Out $^{\text {p }}$ pins. This pin has a weak pullup device to $V_{C C}$. If $\overline{D E}$ is floating, then CLKI/O pins are TRI-STATE.
$\mathrm{CLK}_{\text {out }}$	$\begin{gathered} 13,15,17,19,21, \\ 23 \end{gathered}$	0	6 Buffered clock (CMOS) outputs.
$\mathrm{CrdCLK}_{\text {IN }}$	9	1	Input clock from Card (CMOS level or TTL level).
V_{cc}	16, 20, 24	Power	V_{Cc}; Analog $\mathrm{V}_{\mathrm{CCA}}$ (Internally separate from V_{CC}, connect externally or use separate power supplies). No special power sequencing required. Either $\mathrm{V}_{\mathrm{CCA}}$ or V_{CC} can be applied first, or simultaneously apply both power supplies.
GND	1, 12, 14, 18, 22	Ground	GND
$\mathrm{V}_{\text {CCA }}$	4	Power	Analog $\mathrm{V}_{\mathrm{CCA}}$ (Internally separate from V_{CC}, connect externally or use separate power supplies). No special power sequencing required. Either $\mathrm{V}_{\mathrm{CCA}}$ or V_{CC} can be applied first, or simultaneously apply both power supplies.
GNDA	5, 8	Ground	Analog Ground (Internally separate from Ground must be connected externally).
NC	3, 10		No Connects

N

Section 10 Interface - Serial Digital

N
Section 10 Contents
Serial Digital Interface (SDI) Introduction 10-3
SDI Selection Guide 10-4
CLC005 ITU-T G. 703 Cable Driver with Adjustable Outputs 10-5
CLC006 Serial Digital Cable Driver with Adjustable Outputs 10-7
CLC007 Serial Digital Cable Driver with Dual Complementary Outputs 10-8
CLC011 Serial Digital Video Decoder 10-9
CLC012 Adaptive Cable Equalizer for ITU-T G. 703 Data Recovery 10-11
CLC014 Adaptive Cable Equalizer for High-Speed Data Recovery 10-13
CLC016 Data Retiming PLL with Automatic Rate Selection. 10-15
CLC018 8×8 Digital Crosspoint Switch, 1.4 Gbps 10-17
CLC020 SMPTE 259M Digital Video Serializer with Integrated Cable Driver 10-18
CLC021 SMPTE 259M Digital Video Serializer with EDH Generation/Insertion 10-20
SDI Nomenclature 10-23

Serial Digital Interface (SDI) Introduction

The Serial Digital Interface product family consists of two groups of products optimized for Digital Video and Telecommunications applications. The line driver, receiver/equalizer, and crosspoint switch devices may also be employed in general applications where there exists a need to transfer high-speed serial information great distances.
The Serial Digital Video (SDV) products provide line driving, receiving/equalization, retiming/clock-data separation, and switching functions. Also encoding/ decoding functions are provided for Society of Motion Picture and Television Engineers (SMPTE) standards 125M Component video and 244M composite video transmission. The devices are most commonly for use in source, routing and destination equipment. Applications include: Video Cameras, Signal Generators, Digital Video Routers and Switchers, Distribution Amplifiers, Video Tape Recorders, Telecines and similar applications.
The Synchronous Digital Heirarchy (SDH) products provide line driving, receiving/equalization, retiming/ clock-data separation, and switching functions. This family of parts is targeted at Telecommunications applications in SDH/Sonet, ATM equipment, and other high spesed serial data transmission applictions. These devices may be utilized in ADMs (Add Drop Mux), DCC (Digital Cross Connect) and repeater applications in the digital telecommunication infrastructure.
These products provide Interface Designers with new alternatives for use in "high speed - long distance" data transmission appplications.

National Semiconductor

SDI Selection Guide

SDV—Serial Digital Video Products

Part No.	Function	Temperature Range	Data Rate (Mbps)	Jitter (ps)	Page No.
CLC006	Driver	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	25	
$\mathrm{CLC007}$	Driver with Dual Outputs	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	25	
$\mathrm{CLC011B}$	Decoder	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	360	50	
$\mathrm{CLC014}$	Equalizer	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	650	180	
$\mathrm{CLC016}$	Retimer	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	400	130	
CLC018	8×8 Cross Point Switch	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1400	50	
$\mathrm{CLC020}$	Serializer	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	400	220	
$\mathrm{CLC021}$	Serializer	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	400	220	

SDH—Serial Digital Hierarchy (Telecom)

Part No.	Function	Temperature Range	Data Rate (Mbps)	Jitter (ps)	Page No.
CLC005	Driver	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	622	25	
CLC012	Equalizer	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	622	150	

CLC005

ITU-T G. 703 Cable Driver with Adjustable Outputs

General Description

National's Comlinear CLC005 is a monolithic, high-speed cable driver designed for the ITU-T G. 703 serial digital data transmission standard. The CLC005 drives 75Ω transmission lines (Belden 8281 or equivalent) at data rates from DC to over 622 Mbps . Output signal waveforms produced by the CLC005 comply with G .703 specifications. Controlled output rise and fall times (650 ps typical) minimize transitioninduced jitter. The output voltage swing, typically 2.0 V , set by an accurate, low-drift internal bandgap reference, delivers a 1.0 V swing to back-matched and terminated 75Ω cable. Output swing is adjustable from $0.7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ to $2.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ using external resistors.
The CLC005's class AB output stage consumes less power than other designs, 185 mW with both outputs terminated, and requires no external bias resistors. The differential inputs accept a wide range of digital signals from $200 \mathrm{mV}_{\mathrm{p} \text {-p }}$ to G. 703 levels within the specified common-mode limits. All this make the CLCOO5 an excellent general purpose high speed driver for digital applications.
The CLC005 is powered from a single +5 V or -5.2 V supply and comes in an 8-pin SOIC package.

Key Specifications

- 650 ps rise and fall times
- Data rates to 622 Mbps
- 200 mV differential input
- Low residual jitter ($25 \mathrm{ps}_{\mathrm{pp}}$)

Features

- No external pull-down resistors
- Adjustable output amplitude
- Differential input and output
- Low power dissipation
- Single +5 V or -5.2 V supply

Applications

- ITU-T G.703, Sonet/SDH, and ATM compatible driver
- Digital routers and distribution amplifiers
- Coaxial cable driver for digital transmission line
- Twisted pair driver
- Buffer applications

Typical Application

Typical Performance Characteristic

DS100144-1

Connection Diagram (8-Pin SOIC)

Order Number CLC005AJE See NS Package Number M08A

CLC006

Serial Digital Cable Driver with Adjustable Outputs

General Description

National's Comlinear CLCOO6 is a monolithic, high-speed cable driver designed for the SMPTE 259M serial digital video data transmission standard. The CLC006 drives 75Ω transmission lines (Belden 8281 or equivalent) at data rates up to 400 Mbps . Controlled output rise and fall times (650 ps typical) minimize transition-induced jitter. The output voltage swing, typically 1.65 V , set by an accurate, low-drift internal bandgap reference, delivers an 800 mV swing to backmatched and terminated 75Ω cable. Output swing is adjustable from $0.7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ to $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ using external resistors.
The CLC006's class AB output stage consumes less power than other designs, 185 mW with both outputs terminated, and requires no external bias resistors. The differential inputs accept a wide range of digital signals from $200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to ECL levels within the specified common-mode limits. All this make the CLC006 an excellent general purpose high speed driver for digital applications.
The CLC006 is powered from a single +5 V or -5.2 V supply and comes in an 8-pin SOIC package.

Key Specifications

- 650 ps rise and fall times
- Data rates to 400 Mbps
- 200 mV differential input
- Low residual jitter ($25 \mathrm{ps}_{\mathrm{pp}}$)

Features

- No external pull-down resistors
- Adjustable output amplitude
- Differential input and output
- Low power dissipation
- Single +5 V or -5.2 V supply
- Replaces GS9008 in most applications

Applications

- Digital routers and distribution amplifiers
- Coaxial cable driver for digital transmission line
- Twisted pair driver
- Serial digital video interfaces for the commercial and broadcast industry
- SMPTE, Sonet/SDH, and ATM compatible driver
- Buffer applications

270Mbps Eye Pattern

Connection Diagram (8-Pin SOIC)

Order Number CLC006AJE See NS Package Number M08A

Typical Application

CLC007

Serial Digital Cable Driver with Dual Complementary Outputs

General Description

National's Comlinear CLC007 is a monolithic, high-speed cable driver designed for the SMPTE 259M serial digital video data transmission standard. The CLC007 drives 75Ω transmission lines (Belden 8281 or equivalent) at data rates up to 400 Mbps . Controlled output rise and fall times (650 ps typical) minimize transition-induced jitter. The output voltage swing, typically 1.65 V , set by an accurate, low-drift internal bandgap reference, delivers an 800 mV swing to backmatched and terminated 75Ω cable.
The CLCOO7's class AB output stage consumes less power than other designs, 195 mW with all outputs terminated, and requires no external bias resistors. The differential inputs accept a wide range of digital signals from $200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to ECL levels within the specified common-mode limits. All this make the CLC007 an excellent general purpose high speed driver for digital applications.
The CLC007 is powered from a single +5 V or -5.2 V supply and comes in an 8-pin SOIC package.

Key Specifications

- 650 ps rise and fall times
- Data rates to 400 Mbps
- 2 sets of complimentary outputs
- 200 mV differential input
- Low residual jitter ($25 \mathrm{ps}_{\mathrm{pp}}$)

Features

- No external pull-down resistors
- Differential input and output
- Low power dissipation
- Single +5 V or -5.2 V supply

Applications

- Digital routers and distribution amplifiers
- Coaxial cable driver for digital transmission line
- Twisted pair driver
- Digital distribution amplifiers
- SMPTE, Sonet/SDH, and ATM compatible driver
- Buffer applications

270Mbpe Eye Pattern

Connection Diagram (8-Pin SOIC)

Order Number CLC007AJE See NS Package Number M08A

- Replaces GS9007 in most applications

Typical Application

CLC011

Serial Digital Video Decoder

General Description

National's Comlinear CLC011, Serial Digital Video Decoder, decodes and descrambles SMPTE 259M standard Serial Digital Video datastreams with serial clock into 10-bit parallel words and a corresponding word-rate clock. SMPTE 259M standard parallel data is encoded and scrambled using a 9 -bit shift register and is also converted from NRZ to NRZI. The CLC011 restores the original parallel data by reversing the encoding process. The CLC011 also extracts timing information embedded in the SDV data. These reserved code words, known as Timing Reference Signals (TRS), indicate the start and end of each active video line. By decoding the TRS, the CLC011 correctly identifies the word boundaries of the encoded input data. Detection of the TRS reserved codes is indicated by low-true signals at the TRS and End of Active Video (EAV) outputs.
The CLC011's design using current-mode logic (CML) reduces noise injection into the power supply thereby easing
which feature controlled rise and fall times, may be set for either 3.3 V or 5 V swings with the VDP and VCP inputs.
The CLC011 Serial Digital Video Decoder, CLC014 Adaptive Cable Equalizer and the CLC016 Data Retiming PLL combine to provide a complete Serial Digital Video receiver system.
The CLC011 is packaged in a 28 -pin PLCC.

Features

- Data decoding and deserializing
- CLC011B operates to 360Mbps
- Low noise injection to power supplies
- Single +5 V or -5.2 V supply operation
- Output levels programmable for interface to 5 V or 3.3 V logic
- Low power
- Low cost board layout and interfacing. The CMOS compatible outputs,

Block Diagram

Connection Diagram

Pin Descriptions

Name	Pin No.	Description		
EAV	1	End of active video flag. For component video, a logic low is output for one cycle of the parallel clock every time an EAV timing reference is detected. The pulse is aligned with the fourth word of the timing reference (the XYZ word). For composite video, this line is always asserted high.		
$\mathrm{V}_{\text {EE }}$	$2,4,26$	Negative supply pins.		
NC	3	Unused pin.		
SDI+, SDI-	5,6	Differential serial data inputs.		
SCI+, SCI-	7,8	Differential serial clock inputs.		
NRZI	9	A logic high at this pin enables NRZI-to-NRZ conversion.		
DESC	10	A logic high at this pin enables descrambling.		
FE	11	Frame enable. Enables resynchronization of the parallel word at the next TRS.		
$\mathrm{V}_{\text {CC }}$	12	Positive supply pin.		
VCP	13	Parallel clock high level programming pin. The voltage at this supply pin defines the logic high level for the parallel clock output.		
NSP	14	New sync position. Indicates that the most recent TRS is in a new position relative to the previous TRS. Remains high until the parallel rate clock is aligned properly with the TRS.		
TRS	15	Timing reference flag. A logic low is output for the duration of the TRS.		
PCLK	16	Parallel clock output. The rising edge of this clock is located at the center of the parallel data window.		
PDO-9	17,	Parallel data outputs. VDP		
27,28			\quad	Parallel data high level programming pin. The voltage at this supply pin defines the logic high
:---				
level for the data outputs.				

CLC012

Adaptive Cable Equalizer for ITU-T G. 703 Data Recovery

General Description

National's CLC012 adaptive cable equalizer is a low-cost monolithic solution for equalizing data transmitted over cable (or any media with similar dispersive loss characteristics). The CLC012 simplifies the task of high-speed data recovery with a one-chip solution and a minimal number of external components. The equalizer automatically adapts to equalize any cable length from zero meters to lengths that attenuate the signal by 40 dB at 200 MHz . This corresponds to 300 meters of Belden 8281 or 120 meters of Category 5 UTP (unshielded twisted pair).
The CLC012 provides superior jitter performance: 180 ps pp for 270 Mbps data that has passed through 200 meters of Belden 8281 cable. This exceptional performance provides wide error margin in digital data links. The equalizer operates on a single supply with a power consumption of only 290 mW . The small 14-pin SOIC package allows for high-density placement of components for multi-channel applications such as routers. The equalizer operates over a wide range of data rates from less than 50 Mbps to rates in excess of 650 Mbps.
The equalizer is flexible in allowing either single-ended or differential input drive. Its high common mode rejection provides excellent immunity to interference from noise sources. On-chip quantized feedback eliminates baseline wander.
Additional features include a Loss of Signal output and an output mute pin which, when tied together, mute the output when no signal is present. A buffered eye monitor output is provided, for viewing the equalized signal prior to the com-
parator. Differential AEC pins allow the user to set the internal adaptive loop time constant with one external capacitor.

Features

- Automatic equalization of coaxial and twisted pair cables
- Loss of Signal detect and output mute
- Output eye monitor
- Single supply operation: +5 V or -5.2 V
- Single-ended or differential input
- Low cost

Applications

- ITU-T G. 703 serial data recovery
- Serial digital data routing and distribution
- Serial digital data equalization and reception
- Data recovery equalization: ATM, CAD networks, medical, set top terminals, industrial video networks

Key Specifications

■ Low jitter: 180ps ${ }_{\mathrm{pp}}$ @ 270 Mbps through 200 meters of Belden 8281 coaxial cable

- High data rates: < 50 Mbps to > 650 Mbps

■ Excellent input return loss: 19 dB @ 270 MHz

- Low supply current: 68 mA
- Equalizes up to $300+$ meters of Belden 8281 or 120 meters of Cat 5 UTP cable

Typical Application (Continued)

Before Equalization: 622Mbps 200m of Belden 8281 Coaxial Cable

After Equalization: 622Mbps 200m of Belden 8281 Coaxial Cable

Connection Diagram

Pinout SOIC

CLC014

Adaptive Cable Equalizer for High-Speed Data Recovery

General Description

National's CLC014 adaptive cable equalizer is a low-cost monolithic solution for equalizing data transmitted over cable (or any media with similar dispersive loss characteristics). The CLC014 simplifies the task of high-speed data recovery with a one-chip solution and a minimal number of external components. The equalizer automatically adapts to equalize any cable length from zero meters to lengths that attenuate the signal by 40 dB at 200 MHz . This corresponds to 300 meters of Belden 8281 or 120 meters of Category 5 UTP (unshielded twisted pair).
The CLC014 provides superior jitter performance: $\mathbf{1 8 0 p s}_{\text {pp }}$ for 270 Mbps data that has passed through 200 meters of Belden 8281 cable. This exceptional performance provides wide error margin in digital data links. The equalizer operates on a single supply with a power consumption of only 290 mW . The small 14-pin SOIC package allows for high-density placement of components for multichannel applications such as routers. The equalizer operates over a wide range of data rates from less than 50 Mbps to rates in excess of 650 Mbps .
The equalizer is flexible in allowing either single-ended or differential input drive. Its high common mode rejection provides excellent immunity to interference from noise sources. On-chip quantized feedback eliminates baseline wander.
Additional features include a carrier detect output and an output mute pin which, when tied together, mute the output when no signal is present. A buffered eye monitor output is provided, for viewing the equalized signal prior to the comparator. Differential AEC pins allow the user to set the inter-
nal adaptive loop time constant with one external capacitor. Also, the CLC014 is insensitive to the pathological patterns inherent in the video industry standards.

Features

- Automatic equalization of coaxial and twisted pair cables
- Carrier detection and output mute
- Output eye monitor
- Single supply operation: +5 V or -5.2 V
- Single-ended or differential input
- Low cost

Applications

- SMPTE 259M serial digital interfaces: NTSC/PAL, 4:2:2 component and wide screen; also 540 Mbps (4:4:4:4)
- Serial digital video routing and distribution
- Serial digital data equalization and reception
- Data recovery equalization: ATM, CAD networks, medical, set top terminals, industrial video networks

Key Specifications

- Low jitter: 180ps ${ }_{\mathrm{pp}}$ @ 270 Mbps through 200 meters of Belden 8281 coaxial cable
- High data rates: < 50 Mbps to $>650 \mathrm{Mbps}$
- Excellent input return loss: 19 dB @ 270 MHz
- Low supply current: 58 mA
- Equalizes up to $300+$ meters of Belden 8281 or 120 meters of Cat 5 UTP cable

Typical Application

Typical Application

Before Equalization

After Equalization

Connection Diagram

National Semiconductor

CLC016

Data Retiming PLL with Automatic Rate Selection

General Description

National's Comlinear CLC016 is a low-cost, monolithic, data retiming phase-locked loop (PLL) designed for high-speed serial clock and data recovery. The CLC016 simplifies highspeed data recovery in multi-rate systems by incorporating auto-rate select (ARS) circuitry on chip. This function allows the user to configure the CLC016 to recognize up to four different data rates and automatically adjust to provide accurate, low-jitter clock and data recovery. A single resistor is used to set each data rate anywhere between 40 Mbps and 400 Mbps. No potentiometers, crystals, or other external ICs are required to set the rate.
The CLC016 has output jitter of only $130 \mathrm{ps}_{\mathrm{pp}}$ at a 270 Mbps data rate and 0.25% fractional loop bandwidth. Low phase detector output offset and low VCO injection combine to ensure that the CLC016 does not generate bit errors or large phase transients in response to extreme fluctuations in data transition density. The result is improved performance when handling the pathological patterns inherent in the SMPTE 259M video industry standard.
The carrier detect and output mute functions may be used together to automatically latch the outputs when no data is present, preventing random transitions. The external loop filter allows the user to tailor the loop response to the specific application needs. The CLC016 will operate with either +5 V or -5.2 V power supplies. The serial data inputs and outputs, as well as the recovered clock outputs, allow single- or differential-ECL interfacing. The logic control inputs are TTLcompatible.

Applications

- SMPTE 259M serial digital interfaces: NTSC/PAL, 4:2:2 component, 360 Mbps wide screen
- Serial digital video routing and distribution
- Clock and data recovery for high-speed data transmission
- Re-synchronization of serial data for SONET/SDH, ATM, CAD networks, medical and industrial imaging

Features

- Retimed data output
- Recovered clock output
- Auto and manual rate select modes
- Four user-configurable data rates
- No potentiometers required
- External loop bandwidth control
- Frequency detector for lock acquisition
- Carrier detect output
- Output MUTE function
- Single supply operation: +5 V or -5.2 V
- Low cost

Key Specifications

- Low jitter: $130 \mathrm{ps}_{\mathrm{pp}}$ @ $270 \mathrm{Mbps}, 0.25 \%$ fractional loop bandwidth (0.675 MHz)
■ High data rates: $40 \mathrm{Mbps}-400 \mathrm{Mbps}$
- Low supply current: 100 mA , including output biasing
- Flexible fractional loop bandwidth: from 0.05% to 0.5%

Output Data and Clock, Differential

500ps/div
DS100087-1

Order Number	Temperature	Package
CLC016ACQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLCC V28A
CLC016AJQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC V28A

Pinout

28-pin PLCC

CLC018

8×8 Digital Crosspoint Switch, 1.4 Gbps

General Description

National's Comlinear CLC018 is a fully differential 8×8 digital crosspoint switch capable of operating at data rates exceeding 1.4 Gbps per channel. Its non-blocking architecture utilizes eight independent $8: 1$ multiplexers to allow each output to be independently connected to any input and any input to be connected to any or all outputs. Additionally, each output can be individually disabled and set to a high-impedance state. This TRI-STATE® feature allows flexible expansion to larger switch array sizes.
Low channel-to-channel crosstalk allows the CLC018 to provide superior all-hostile jitter of $50 \mathrm{ps}_{\text {pp }}$. This excellent signal fidelity along with low power consumption of 850 mW make the CLC018 ideal for digital video switching plus a variety of data communication and telecommunication applications.
The fully differential signal path provides excellent noise immunity, and the I/Os support ECL and PECL logic levels. In addition, the inputs may be driven single-ended or differentially and accept a wide range of common mode levels including the positive supply. Single +5 V or -5 V supplies or dual +5 V supplies are supported. Dual supply mode allows the control signals to be referenced to the positive supply $(+5 \mathrm{~V})$ while the high-speed I/O remains ECL compatible.
The double row latch architecture utilized in the CLC018 allows switch reprogramming to occur in the background during operation. Activation of the new configuration occurs with a single "configure" pulse. Data integrity and jitter performance on unchanged outputs are maintained during reconfiguration. Two reset modes are provided. Broadcast reset results in all outputs being connected to input port DIO. TRI-STATE Reset results in all outputs being disabled.

The CLC018 is fabricated on a high-performance BiCMOS process and is available in a 64-lead plastic quad flat pack (PQFP).

Features

- Fully differential signal path
- Non-Blocking
- Flexible expansion to larger array sizes with very low power
- Single $+5 /-5 \mathrm{~V}$ or dual $\pm 5 \mathrm{~V}$ operation
- TRI-STATE® outputs
- Double row latch architecture
- 64-lead PQFP package

Applications

- Serial digital video routing (SMPTE 259M)
- Telecom/datacom switching
- ATM SONET

Key Specifications

- High speed: >1.4 Gbps
- Low jitter:
$<50 \mathrm{ps}_{\mathrm{pp}}$ for rates $<500 \mathrm{Mbps}$
$<100 \mathrm{ps}$ pp for rates $<1.4 \mathrm{Gbps}$
- Low power; 850 mW with all outputs active
- Fast output edge speeds: 250 ps

CLC018 Block Diagram

Output Eye Pattern, 1.4Gbps

CLC020

SMPTE 259M Digital Video Serializer with Integrated Cable Driver

General Description

The CLC020 SMPTE 259M Digital Video Serializer with Integrated Cable Driver is a monolithic integrated circuit that encodes, serializes and transmits bit-parallel digital data conforming to SMPTE 125M and SMPTE 267M component video and SMPTE 244M composite video standards. The CLC020 can also serialize other 8 or 10-bit parallel data. The CLC020 operates at data rates from below 100 Mbps to over 400 Mbps . The serial data clock frequency is internally generated and requires no external frequency setting components, trimming or filtering*. Functions performed by the CLC020 include: parallel-to-serial data conversion, data encoding using the polynomial $\left(X^{9}+X^{4}+1\right)$, data format conversion from NRZ to NRZI, parallel data clock frequency multiplication and encoding with the serial data, and coaxial cable driving. Input for sync (TRS) detection disabling and a PLL lock detect output are provided. The CLC020 has an exclusive built-in self-test (BIST) and video test pattern generator (TPG) with 4 component video test patterns, reference black, PLL and EQ pathologicals and modified colour bars, in 4:3 and 16:9 raster and both NTSC and PAL formats*. Separate power pins for the output driver, VCO and the digital logic improve power supply rejection, output jitter and noise performance.
The CLC020 is the ideal complement to the CLC011B SMPTE 259M Serial Digital Video Decoder, CLC014 Active Cable Equalizer, CLC016 Data Retiming PLL (clock-data separator), CLC018 8X8 Digital Crosspoint Switch and CLC006 or CLC007 Cable Drivers, for a complete parallel-serial-parallel, high-speed data processing and transmission system.
The CLC020 is powered from a single 5V supply. Power dissipation is typically 235 mW including two 75Ω back-matched output loads. The device is packaged in a JEDEC 28-lead PLCC.

Features

- SMPTE 259M serial digital video standard compliant
- No external serial data rate setting or VCO filtering components required*
- Built-in self-test (BIST) and video test pattern generator (TPG) with 16 internal patterns*
- Supports all NTSC and PAL standard component and composite serial video data rates
- HCMOS/TTL-compatible data and control inputs and outputs
- 75Ω ECL-compatible, differential, serial cable-driver outputs
- Fast VCO lock time: $<75 \mu \mathrm{~s}$
- Single +5 V TTL or -5 V ECL supply operation
- Low power: 235 mW typical
- 28-lead PLCC package
- Commercial temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Applications

- SMPTE 259M parallel-to-serial digital video interfaces for:
- Video cameras
- VTRs
— Telecines
- Video test pattern generators and digital video test equipment
- Non-SMPTE video applications
- Other high data rate parallel/serial video and data systems
* Patents applications made or pending.

Typical Application

Block Diagram

Connection Diagram

CLC021

SMPTE 259M Digital Video Serializer with EDH Generation/Insertion

General Description

The CLC021 SMPTE 259M Digital Video Serializer with EDH Generation and Insertion is a monolithic integrated circuit that encodes, serializes and transmits bit-parallel digital data conforming to SMPTE 125M and 267M component video and SMPTE 244M composite video standards. The CLC021 can also serialize other 8 - or 10 -bit parallel data. The CLC021 operates at data rates from below 100 Mbps to over 400 Mbps . The serial data clock frequency is internally generated and requires no external frequency setting, trimming or filtering components*.
Functions performed by the CLC021 include: parallel-toserial data conversion, ITU-R BT.601-4 input data clipping, data encoding using the SMPTE polynomial $\left(X^{9}+X^{4}+1\right)$, data format conversion from NRZ to NRZI, parallel data clock frequency multiplication and encoding with the serial data, and differential, serial output data driving. The CLC021 has circuitry for automatic EDH character and flag generation and insertion per SMPTE RP-165. The CLC021 has an exclusive built-in self-test (BIST) and video test pattern generator (TPG) with 16 component video test patterns: reference black, PLL and EQ pathologicals and modified colour bars in 4:3 and 16:9 raster formats for NTSC and PAL formats*.

The CLC021 has inputs for enabling sync detection, nonSMPTE mode operation, enabling the EDH function, NRZ/ NRZI mode control and an external reset control. Outputs are provided for H, V and F bits, new TRS sync character position indication, ancilliary data header detection, NTSC/PAL raster indication and PLL lock detect. Separate power pins for the output driver, VCO and the serializer improve power supply rejection, output jitter and noise performance.
The CLC021VGZ-5.0V is powered by a single +5 V supply. The CLC021VGZ-3.3V is powered by a single +3.3 V supply. Power dissipation is typically 235 mW including two 75Ω back-matched output loads. The device is packaged in a JEDEC metric 44-lead PQFP.

Features

- SMPTE 259M serial digital video standard compliant
- Supports all NTSC and PAL standard component and composite serial video data rates
- No external serial data rate setting or VCO filtering components required*
- Fast VCO lock time: $<75 \mu$ s at 270 Mbps
- Built-in self-test (BIST) and video test pattern generator (TPG) with 16 internal patterns*
- Automatic EDH character and flag generation and insertion per SMPTE RP 165
- Non-SMPTE mode operation as parallel-to-serial converter
- NRZ-to-NRZI conversion control
- HCMOS/LSTTL-compatible data and control inputs and outputs for CLC021VGZ-5.0, LVCMOS for CLC021VGZ-3.3
- 75Ω ECL-compatible, differential, serial cable-driver outputs
■ Single power supply operation: 5V (CLC021VGZ-5.0) or 3.3V (CLC021VGZ-3.3) in TTL or ECL systems
- Low power: typically 235 mW
- JEDEC 44-lead metric PQFP package
- Commercial temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
* Patents applications made or pending.

Applications

- SMPTE 259M parallel-to-serial digital video interfaces for:
- Video cameras
— VTRs
— Telecines
- Video test pattern generators and digital video test equipment
- Video signal generators
- Non-SMPTE video applications
- Other high data rate parallel/serial video and data applications

Typical Application

Block Diagram

Connection Diagram

DS101368-2
44-Pin Metric PQFP
Order Number CLC021VGZ-5.0 or CLC021VGZ-3.3
See NS Package Number VGZ44A

National Semiconductor

SDI Nomenclature

Note: The SDI (SDV \& SDH) family part numbering nomenclature adheres to the following methodology:
PART NUMBER: CLC\#\#\#ABCCC where:
Example: CLC006AJE
CLC = National's Comlinear Product
\#\#\# = 3 digit unique part number
$A=1$ digit denoting differentiation in:
die revision, or
specification revision, or
screeening, or
other feature noted in the datasheet.
$B=1$ digit denoting operating temperature range:
$\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
$\mathrm{J}=$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
$C C C=1$ to 3 digits denoting package type:
E = SOIC (SOP) Package
Q = PLCC Package
VJQ = PQFP Package
MSA = SSOP Package
Special Part Number Suffix (ABCCC) of "PCASM" denotes assembled Evaluation PCB

N

Section 11

Special Functions

Section 11 Contents
CLC532 High-Speed 2:1 Analog Multiplexer 11-3
CLC533 High-Speed 4:1 Analog Multiplexer 11-4
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits 11-6
LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters 11-7
LM195/LM395 Ultra Reliable Power Transistors 11-8
LM3046 Transistor Array 11-10
LM555 Timer 11-11
LMC555 CMOS Timer 11-13
LMF100 High Performance Dual Switched Capacitor Filter 11-15
LP395 Ultra Reliable Power Transistor 11-16
MF10 Universal Monolithic Dual Switched Capacitor Filter 11-17
Imaging Products 11-18
Imaging Products Selection Guide 11-19
LM9810/20 10/12-Bit Image Sensor Processor Analog Front End 11-20
LM9822 3 Channel 42-Bit Color Scanner Analog Front End 11-22
LM9830 36-Bit Color Document Scanner 11-24
LM98501 10-Bit, 27 MSPS Camera Signal Processor 11-25
Lithium Battery Chargers 11-27
Lithium Battery Charger Selection Guide 11-28
LM3420-4.2, -8.2, -8.4, -12.6, -16.8 Lithium-Ion Battery Charge Controller 11-29
LM3620 Lithium-Ion Battery Charger Controller 11-31
LM3621 Single Cell Lithium-Ion Battery Charger Controller 11-33
LM3622 Lithium-Ion Battery Charger Controller 11-35
LM3647 Universal Battery Charger for Li-lon, Ni-MH and Ni-Cd Batteries 11-38
Motion Control 11-41
Motion Control and Motor Drive Selection Guide 11-42
LM12CL 80W Operational Amplifier 11-43
LM628/LM629 Precision Motion Controller 11-44
LMD18200 3A, 55V H-Bridge 11-46
LMD18201 3A, 55V H-Bridge 11-48
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver 11-50
Universal Serial Bus 11-51
Universal Serial Bus Products Selection Guide 11-52
LM3525 Single Port USB Power Switch and Over-Current Protection 11-53
LM3526 Dual Port USB Power Switch and Over-Current Protection 11-55

National Semiconductor

CLC532

High-Speed 2:1 Analog Multiplexer

General Description

The CLC532 is a high-speed 2:1 multiplexer with active input and output stages. The CLC532 innovative design employs a closed loop design which dramatically improves accuracy. This monolithic device is constructed using an advanced high-performance bipolar process.
The CLC532 has been specifically designed to provide settling times of 17 ns to 0.01%. Fast settling time, coupled with the adjustable bandwidth, and Channel-to-channel isolation is better than $80 \mathrm{~dB} @ 10 \mathrm{MHz}$. Low distortion (-80 dBc) makes the CLC532 an ideal choice for infrared and CCD imaging systems (-80 dBc) and spurious signal levels make the CLC532 a very suitable choice for both I/Q processors and receivers.

The CLC532 is offered in two industrial versions, CLC532AJPVAJE, specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and packaged in 14-pin plastic DIP14-pin and SOIC packages.
Enhanced Solutions (Military/ Aerospace
SMD Number: 5962-92035
*Space level versions also available.
*For more information, visit http://www.national.com/mil

Features

- 17ns 12 -bit settling time to $.01 \%$

■ Low noise $-32 \mu \mathrm{Vrms}$
■ High isolation - 80dB @ 10MHz

- Low distortion - 80dBc @ 5MHz
- Adjustable bandwidth-190MHz(max)

Applications

- Infrared system multiplexing
- CCD sensor signals
- Radar I/Q switching
- High definition video HDTV
- Test and calibration

Settling Time vs. \mathbf{R}_{L}

Typical Application

Connection Diagram

Pinout DIP \& SOIC

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
14-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC532AJP	N14E
14-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC532AJE	M14A,B

CLC533

High-Speed 4:1 Analog Multiplexer

General Description

The CLC533 is a high-speed $4: 1$ multiplexer employing active input and output stages. The CLC533 innovative closed loop design dramatically improves accuracy over conventional analog multiplexer circuits. This monolithic device is constructed using an advanced high-performance bipolar process.
The CLC533 has been specifically designed to provide a 17 ns settling time to 0.01%. Fast settling time, coupled with adjustable bandwidth, and channel-to-channel isolation of 80 dB @ 10 MHz . Low distortion (-80 dBc) makes the CLC533 an ideal choice for infrared and CCD imaging systems (-80 dBc) and spurious signal levels make the CLC533 a very suitable choice for I/Q processors in radar receivers. The CLC533 is offered in two industrial versions, CLC533AJPVAJE specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are packaged in 16-pin plastic DIP and SOIC packages.
Enhanced solutions (Military/Aerospace
SMD Number: 5962-93203
*Space level versions also available.
*For more information, visit http://www.national.com/

Features

- 17ns 12 -bit settling time to $.01 \%$
- Low noise - $42 \mu \mathrm{Vrms}$
- High Isolation 80dBc @ 10MHz
- $110 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$
- Low distortion - 80dBc @ 5MHz
- Adjustable bandwidth -180 MHz (max)

Applications

- Infrared system multiplexing
- CCD sensor signals
- Radar I/Q switching
- High definition video HDTV
- Test and calibration

Settling Time vs. Load

Functional Diagram

Connection Diagram

Pinout DIP \& SOIC

Ordering Information

Package	Temperature Range Industrial	Packaging Marking	NSC Drawing
16-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC533AJP	N16E
16-Pin Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CLC533AJE	M16A,B

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as $6 \mu \mathrm{~s}$ to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy. P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than 10μ s acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth
- Space qualified, JM38510

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies.
An " A " version is available with tightened electrical specifications.

Typical Connection and Performance Curve

Functional Diagram

LM231A/LM231/LM331A/LM331 Precision Voltaye-to-Frequency Converters

General Description

The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications. Further, the LM231A/LM331A attain a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM231/331 are ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.
The LM231/LM331 utilize a new temperature-compensated band-gap reference circuit, to provide excellent accuracy
over the full operating temperature range, at power supplies as low as 4.0 V . The precision timer circuit has low bias currents without degrading the quick response necessary for 100 kHz voltage-to-frequency conversion. And the output are capable of driving 3 TTL loads, or a high voltage output up to 40 V , yet is short-circuit-proof against V_{cc}.

Features

- Guaranteed linearity 0.01% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation
- Operates on single 5 V supply
- Pulse output compatible with all logic forms
- Excellent temperature stability, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
- Low power dissipation, 15 mW typical at 5 V
- Wide dynamic range, 100 dB min at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

Typical Applications

fout $=\frac{V_{I N}}{2.09 V} \cdot \frac{R_{S}}{R_{L}} \cdot \frac{1}{R_{t} C_{t}}$
*Use stable components with low temperature coefficients. See Typical Applications section.
${ }^{* *} 0.1 \mu \mathrm{~F}$ or $1 \mu \mathrm{~F}$, See "Principles of Operation."
FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with $\pm \mathbf{0 . 0 3 \%}$ Typical Linearity ($\mathrm{f}=\mathbf{1 0} \mathrm{Hz}$ to $11 \mathbf{k H z}$)

LM195/LM395

Ultra Reliable Power Transistors

General Description

The LM195/LM395 are fast, monolithic power integrated circuits with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0 A and can switch 40 V in 500 ns .
The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.
The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.
The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source imped-
ance, it is necessary to insert a 5.0 k resistor in series with the base lead to prevent possible emitter follower oscillations. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply bypassing is recommended.
For low-power applications (under 100 mA), refer to the LP395 Ultra Reliable Power Transistor.
The LM195/LM395 are available in the standard TO-3, Kovar TO-5, and TO-220 packages. The LM195 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM395 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Internal thermal limiting
- Greater than 1.OA output current
- $3.0 \mu \mathrm{~A}$ typical base current
- 500 ns switching time
- 2.0 V saturation
- Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL
- 100% electrical burn-in

Simplified Circuit

Connection Diagrams

TO-3 Metal Can Package

Bottom View
Order Number LM195K/883
See NS Package Number K02A (Note 5)

TO-220 Plastic Package

Case is Emitter
Top View
Order Number LM395T
See NS Package Number T03B

TO-5 Metal Can Package

CASE IS EMITTER
Bottom View
Order Number LM195H/883
See NS Package Number H03B (Note 5)

National Semiconductor

LM3046

Transistor Array

General Description

The LM3046 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3046 is supplied in a 14-lead molded small outline package.

Features

- Two matched pairs of transistors $V_{B E}$ matched $\pm 5 \mathrm{mV}$ Input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure: 3.2 dB typ at 1 kHz

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Schematic and Connection Diagram

LM555

Timer

General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits.

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output
- Available in 8 -pin MSOP package

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

Schematic Diagram

Connection Diagram

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

Ordering Information

Package	Part Number	Package Marking	Media Transport	NSC Drawing
8-Pin SOIC	LM555CM	LM555CM	Rails	M08A
	LM555CMX	LM555CM	2.5 k Units Tape and Reel	
8-Pin MSOP	LM555CMM	Z55	1 k Units Tape and Reel	MUA08A
	LM555CMMX	Z55	3.5 k Units Tape and Reel	
8-Pin MDIP	LM555CN	LM555CN	Rails	N08E

LMC555

CMOS Timer

General Description

The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. In addition to the standard package (SOIC, MSOP, and MDIP) the LMC555 is also available in a chip sized package (8 Bump micro SMD) using National's micro SMD package technology. The LMC555 offers the same capability of generating accurate time delays and frequencies as the LM555 but with much lower power dissipation and supply current spikes. When operated as a one-shot, the time delay is precisely controlled by a single external resistor and capacitor. In the stable mode the oscillation frequency and duty cycle are accurately set by two external resistors and one capacitor. The use of National Semiconductor's LMCMOS ${ }^{\text {M }}$ process extends both the frequency range and low supply capability.

Features

- Less than 1 mW typical power dissipation at 5 V supply
- 3 MHz astable frequency capability
- 1.5 V supply operating voltage guaranteed
- Output fully compatible with TTL and CMOS logic at 5 V supply
- Tested to $-10 \mathrm{~mA},+50 \mathrm{~mA}$ output current levels
- Reduced supply current spikes during output transitions
- Extremely low reset, trigger, and threshold currents
- Excellent temperature stability
- Pin-for-pin compatible with 555 series of timers
- Available in 8 pin MSOP Package and 8-Bump micro SMD package

Block and Connection Diagrams

Top View (bump side down)

Pulse Width Modulator

Ordering Information

Package	Temperature Range	Package Marking	Transport Media	NSC Drawing
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			
8-LeadSmall Outline (SO)	LMC555CM	LMC555CM	Rails	M08A
	LMC555CMX	LMC555CM	2.5k Units Tape and Reel	
8-Lead Mini Small Outline (MSOP)	LMC555CMM	ZC5	1 k Units Tape and Reel	MUA08A
	LMC555CMMX	ZC5	3.5k Units Tape and Reel	
8-Lead Molded Dip (MDIP)	LMC555CN	LMC555CN	Rails	N08E
8-Bump micro SMD	LMC555CBP	F1	250 Units Tape and Reel	BPA08EFB
	LMC555CBPX	F1	3k Units Tape and Reel	
Metronome Circuit	LMC555CBPEVAL	N/A	N/A	N/A

LMF100

High Performance Dual Switched Capacitor Filter

General Description

The LMF100 consists of two independent general purpose high performance switched capacitor filters. With an external clock and 2 to 4 resistors, various second-order and first-order filtering functions can be realized by each filter block. Each block has 3 outputs. One output can be configured to perform either an allpass, highpass, or notch function. The other two outputs perform bandpass and lowpass functions. The center frequency of each filter stage is tuned by using an external clock or a combination of a clock and resistor ratio. Up to a 4th-order biquadratic function can be realized with a single LMF100. Higher order filters are implemented by simply cascading additional packages, and all the classical filters (such as Butterworth, Bessel, Elliptic, and Chebyshev) can be realized.
The LMF100 is fabricated on National Semiconductor's high performance analog silicon gate CMOS process,

LMCMOS $^{\text {TM }}$. This allows for the production of a very low offset, high frequency filter building block. The LMF100 is pin-compatible with the industry standard MF10, but provides greatly improved performance.

Features

- Wide 4 V to 15 V power supply range
- Operation up to 100 kHz
- Low offset voltage: typically (50:1 or 100:1 mode): Vos $1= \pm 5 \mathrm{mV}$

$$
\begin{aligned}
& \text { Vos2 }= \pm 15 \mathrm{mV} \\
& \operatorname{Vos3}= \pm 15 \mathrm{mV}
\end{aligned}
$$

- Low crosstalk -60 dB
- Clock to center frequency ratio accuracy $\pm 0.2 \%$ typical
- $f_{0} \times Q$ range up to 1.8 MHz
- Pin-compatible with MF10

4th Order 100 kHz Butterworth Lowpass Filter

Connection Diagram

Surface Mount and Dual-In-Line Package

Top View Order Number
LMF100CCN or LMF100CIWM See NS Package Number N20A or M20B

LP395

Ultra Reliable Power Transistor

General Description

The LP395 is a fast monolithic transistor with complete overload protection. This very high gain transistor has included on the chip, current limiting, power limiting, and thermal overload protection, making it difficult to destroy from almost any type of overload. Available in an epoxy TO-92 transistor package this device is guaranteed to deliver 100 mA .
Thermal limiting at the chip level, a feature not available in discrete designs, provides comprehensive protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive die temperature.
The LP395 offers a significant increase in reliability while simplifying protection circuitry. It is especially attractive as a small incandescent lamp or solenoid driver because of its low drive requirements and blowout-proof design.
The LP395 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LP395 as with any transistor. When the device is used as an emitter follower with a low source impedance, it is necessary to insert a $4.7 \mathrm{k} \Omega$ resistor in series with the base lead to prevent possible emitter follower oscillations. Also since it has good high frequency response, supply by-passing is recommended.
Areas where the LP395 differs from a standard NPN transistor are in saturation voltage, leakage (quiescent) current and
in base current. Since the internal protection circuitry requires voltage and current to function, the minimum voltage across the device in the on condition (saturated) is typically 1.6 Volts, while in the off condition the quiescent (leakage) current is typically $200 \mu \mathrm{~A}$. Base current in this device flows out of the base lead, rather than into the base as is the case with conventional NPN transistors. Also the base can be driven positive up to 36 Volts without damage, but will draw current if driven negative more than 0.6 Volts. Additionally, if the base lead is left open, the LP395 will turn on.
The LP395 is a low-power version of the 1-Amp LM195/ LM295/LM395 Ultra Reliable Power Transistor.
The LP395 is rated for operation over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

Features

- Internal thermal limiting
- Internal current and power limiting
- Guaranteed 100 mA output current
- $0.5 \mu \mathrm{~A}$ typical base current
- Directly interfaces with TTL or CMOS
- +36 Volts on base causes no damage
- $2 \mu \mathrm{~s}$ switching time

Connection Diagram

TO-92 Package
EMITTER COLLECTOR
Order Number LP395Z
See NS Package Z03A

Typical Application

Fully Protected Lamp Driver

MF10

Universal Monolithic Dual Switched Capacitor Filter

General Description

The MF10 consists of 2 independent and extremely easy to use, general purpose CMOS active filter building blocks. Each block, together with an external clock and 3 to 4 resistors, can produce various 2nd order functions. Each building block has 3 output pins. One of the outputs can be configured to perform either an allpass, highpass or a notch function; the remaining 2 output pins perform lowpass and bandpass functions. The center frequency of the lowpass and bandpass 2 nd order functions can be either directly dependent on the clock frequency, or they can depend on both clock frequency and external resistor ratios. The center frequency of the notch and allpass functions is directly dependent on the clock frequency, while the highpass center frequency depends on both resistor ratio and clock. Up to 4th order functions can be performed by cascading the two 2nd order building blocks of the MF10; higher than 4th order functions can be obtained by cascading MF10 packages.

Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.
For pin-compatible device with improved performance refer to LMF100 datasheet.

Features

- Easy to use
- Clock to center frequency ratio accuracy $\pm 0.6 \%$
- Filter cutoff frequency stability directly dependent on external clock quality
- Low sensitivity to external component variation
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
- $f_{\mathrm{O}} \times \mathrm{Q}$ range up to 200 kHz
- Operation up to 30 kHz
- 20-pin 0.3" wide Dual-In-Line package
- 20-pin Surface Mount (SO) wide-body package

System Block Diagram

Package in 20 pin molded wide body surface mount and 20 pin molded DIP.

QNational Semiconductor

Imaging Products

Imaging Products Selection Guide

Device	Description	Output Resolution (Bits)	Pixel Conv Rate (MSPS)	Supply Voltage (V)	Power Consumption (mW, typ)	Full Channel INL (LSB, typ)	Full Channel DNL (LSB, typ)
LM9810	Line Rate Color Scanner Analog Front End	10	6	+5	226	± 0.9	± 0.4
LM9820	Line Rate Color Scanner Analog Front End	12	6	+5	226	± 3.4	± 0.65
LM98222	Pixel Rate Color Scanner Analog Front End	14	6	+5	375	± 8.8	$+3.6 /-1.6$
LM9830	Color Document Scanner System-on-a-Chip	12	6	+5	520	$+4.6 /-1.1$	$+0.7 /-0.5$
LM9832	USB Color Document Scanner System-on-Chip	14	6	+5	510	$+6.8 /-9.2$	$+3.0 /-1.8$

10/12-Bit Image Sensor Processor Analog Front End

General Description

The LM9810 and LM9820 are high performance Analog Front Ends (AFEs) for image sensor processing systems. The LM9810/20 performs all the analog and mixed signal functions (correlated double sampling, color specific gain and offset correction, and analog to digital conversion) necessary to digitize the output of a wide variety of CIS and CCD sensors. The LM9810 has a 10 -bit 6 MHz ADC, and the LM9820 has a 12 -bit 6MHz ADC. The LM9810 and LM9820 are pin-for-pin and functionally compatible.

Applications

- Color Flatbed Document Scanners
- Color Sheetfed Scanners
- Multifunction Imaging Products
- Digital Copiers
- General Purpose Linear CCD Imaging

Features

- 6 million pixels/s conversion rate
- Digitally programmed gain and offset for red, green and blue pixels
- Correlated Double Sampling for lowest noise
- TTL/CMOS input/output compatible

Key Specifications

Resolution:	$10 / 12$ Bits
Pixel Conversion Rate:	6 MHz
■ Supply Voltage:	$+5 \mathrm{~V} \pm 5 \%$
Power Dissipation:	$300 \mathrm{~mW}(\mathrm{max})$

Connection Diagrams

Block Diagram

Ordering Information

Commercial $\left(\mathbf{0}^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{7 0} 0^{\circ} \mathbf{C}\right)$	Package
LM9811CCV	V52A 52-Pin Plastic Leaded Chip Carrier
LM9811CCVF	VEG52A 52-Pin Thin Quad Flatpack

LM9822

3 Channel 42-Bit Color Scanner Analog Front End

General Description

The LM9822 is a high performance Analog Front End (AFE) for image sensor processing systems. It performs all the analog and mixed signal functions (correlated double sampling, color specific gain and offset correction, and analog to digital conversion) necessary to digitize the output of a wide variety of CIS and CCD sensors. The LM9822 has a 14-bit 6 MHz ADC.

Features

- 6 million pixels/s conversion rate
- Digitally programmed gain and offset for red, green and blue color balancing
- Correlated Double Sampling for lowest noise from CCD sensors
- Compatible with CCD and CIS type image sensors
- Internal Voltage Reference Generation
- TTL/CMOS compatible input/output

Key Specifications

- Output Data Resolution 14 Bits
- Pixel Conversion Rate 6 MHz
- Analog Supply Voltage $5 \mathrm{~V} \pm 5 \%$
- I/O Supply Voltage $3.3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 5 \%$
- Power Dissipation (typical) 375 mW

Applications

- Color Flatbed Document Scanners
- Color Sheetfed Scanners
- Multifunction Imaging Products
- Digital Copiers
- General Purpose Linear Array Imaging

Connection Diagram

Ordering Information

Temperature Range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		NS Package Number
Order Number	Device Marking	
LM9822CCWM (Note 1)	LM9822CCWM	M28B
LM9822CCWMX (Note 2)	LM9822CCWM	M28B

Note 1: Rail transport media, 26 parts per rail.
Note 2: Tape and reel transport media, 1000 parts per reel.

LM9830

36-Bit Color Document Scanner

General Description

The LM9830 is a complete document scanner system on a single IC. The LM9830 provides all the functions (CCD control, illumination control, analog front end, pixel processing function image data buffer/SRAM controller, microstepping motor controller, and EPP parallel port interface) necessary to create a high performance color scanner. The LM9830 scans images in 36 -bit color, and has output data formats for 36 bits, 30 bits, and 24 bits.
The only additional active components required are an external SRAM for data buffering and power transistors for the stepper motor. Parallel port pass-through requires two additional TTL/CMOS logic ICs.

Applications

- Color Document Scanners

Features

- Scans at up to 6M pixels/s (2M RGB pixels/sec.)
- Digital Pixel Processing provides 600, 400, 300, 200, 150, 100, 75, and 50 dpi horizontal resolutions from a 600 dpi sensor
- Provides 50-600 dpi vertical resolutions in 1 dpi increments
- Pixel rate correction for gain (shading) and offset errors
- Output formats include 12-bit linear, 10-bit linear with shading and offset, or 8 -bit gamma corrected, all with 12-bit accuracy
- Multiple CCD clocking rates allows matching of CCD clock to scan resolution for maximum scan speed
- Stepper motor control tightly coupled with buffer management to maximize data transfer efficiency
- PWM stepper motor current control allows microstepping for the price of fullstepping
- Supports $64 \mathrm{k}, 128 \mathrm{k}$, or $256 \mathrm{k} \times 8$ external SRAMs
- Parallel Port interface supports EPP, PS2 (bidirectional), or SPP (nibble) modes of operation
- Pixel depths of 1,2, or 4 bits are packed into bytes for faster scans of line art and low pixel depth images
- Supports 1 and 3 channel CIS and CCD devices
- 3 (R, G, and B) programmable gamma correction tables
- Able to transmit an arbitrary range of pixels to speed up scanning of smaller items (business cards, etc.) by zooming in on a subset of CCD pixels
- Compatible with a wide range of color linear CCDs and Contact Image Sensors (CIS)
- Internal bandgap voltage reference
- 100 pin TQFP package

Key Specifications

- Analog to Digital Converter Resolution

12 bits

- Maximum Pixel Conversion Rate 6 MHz
- A4 Color 150 dpi scan <10 seconds
- A4 Color 300 dpi scan
<40 seconds
- A4 Color 600 dpi scan <160 seconds
- Supply Voltage
$+5 \mathrm{~V} \pm 10 \%$
- Power Dissipation (typical)

350 mW

Scanner Block Diagram

Ordering Information

Commerciai $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+70^{\circ} \mathrm{C}\right)$	Package
LM9830VJD	VJD100A 100 Pin Thin Quad Flatpak
LM9830VJDX	VJD100A 100 Pin Thin Quad Flatpak, Tape \& Reel

National Semiconductor

LM98501

10-Bit, 27 MSPS Camera Signal Processor

General Description

The LM98501 is a CCD signal processor for electronic cameras. The processor provides a common interface to a number of different image sensors including CCD, CMOS, and CIS. Correlated double sampling reduces kTC noise from the image signal. A fast, temperature stable, 8 -bit digitally programmable gain amplifier enables pixel-rate white-balancing. An auxiliary input is provided, allowing for the selection of an external signal, useful for electronic titling and video overlay. The 10 -bit A/D converter preserves the image quality with excellent noise performance. The LM98501 also includes the supporting functions of digital black level clamp and power down, ideally suited for portable video applications. This low-power processor is a natural choice for the most demanding imaging systems.

Applications

- Digital still camera
- Digital video camcorder
- Video conferencing
- Security camera
- Plain paper copier
- Flatbed or handheld color scanner
- Video processing for x-ray or infrared
- Barcode scanner

Features

- +3V single power suppiy
- Low power CMOS design
- 4-wire serial interface
- 2.5 V data output voltage swing
- No missing codes
- AUX input with input clamp and programmable gain
- Four color gain and offset registers
- Digital black level clamp
- Small 48-lead LQFP package

Key Specifications

■ Maximum Input Level 1.0V peak-peak
■ CDS Sampling Rate 27 MSPS

- PGA Gain Steps 256 Steps
- PGA Gain Range $0.0 \mathrm{~dB}-32.0 \mathrm{~dB}$
- ADC Resolution 10-Bit
- ADC Sampling Rate 27 MSPS
- *Signal-to-Noise Ratio. $\quad 60 \mathrm{~dB} 0 \mathrm{~dB}$ Gain, 1.0 V Input
- Power Dissipation
$A V+=D V+=D V+I / O=3.0 \mathrm{~V} \quad 195 \mathrm{~mW}$ (typical)
- Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
*20 $\log _{10}\left(V_{1 N} /\right.$ RMS Output Noise $)$

Typical Digital Camera Block Diagram

Overall Chip Block Diagram

FIGURE 1. Chip Block Diagram
LM98501 Chip Pin Out

FIGURE 2. Pin Out Diagram

Ordering Information

Commercial $\left(0^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+70^{\circ} \mathrm{C}\right)$	NS Package
LM98501CCVBH	LQFP

National Semiconductor

Lithium Battery Chargers

Lithium Battery Charger Selection Guide

Part Number	Function	Input Range (V)	Output	Features	Package (Note 1)
LM3420	CV charge control for 1, 2, 3, 4, or 5 Li-lon cells	$4.2,8.2,8.4$, $12.6,16.8$	Current for driving power stage in constant-voltage control of charger	1% \& 0.5% tolerances.	M5
LM3620	CV charge control for 1 or 2 Li-lon cells	4 to 30	Current for driving external PNP in constant-voltage control of charger	1.2% tolerance. Selectable battery type(coke vs graphite anode).	M5
	Full-function CVCC charge controller for 1 Li-lon cell	3.0 to 5.5	Analog control of constant-current / constant-voltage charger	0.5\% tolerance. Selectable battery type (coke vs graphite anode). 5 charge modes plus fault detection	M16
	CVCC charge control for 1 or 2 Li-lon cells	4.5 to 24	Current for driving external PNP or P-FET in constant-voltage / constant-current control of charger	0.7\% and 1.2\% tolerances. Versions for coke or graphite battery type. "Wake up" mode for pre-conditioning deeply discharged cells.	M08

Note 1: Package designation includes number of pins:
$\mathrm{M}=$ plastic surface-mount
M5 = 5 Lead SOT-23

LM3420-4.2, -8.2, -8.4, -12.6, -16.8 Lithium-Ion Battery Charge Controller

General Description

The LM3420 series of controllers are monolithic integrated circuits designed for charging and end-of-charge control for Lithium-Ion rechargeable batteries. The LM3420 is available in five fixed voltage versions for one through four cell charger applications (4.2V, $8.2 \mathrm{~V} / 8.4 \mathrm{~V}, 12.6 \mathrm{~V}$ and 16.8 V respectively).
Included in a very small package is an (internally compensated) op amp, a bandgap reference, an NPN output transistor, and voltage setting resistors. The amplifier's inverting input is externally accessible for loop frequency compensation. The output is an open-emitter NPN transistor capable of driving up to 15 mA of output current into external circuitry.
A trimmed precision bandgap reference utilizes temperature drift curvature correction for excellent voltage stability over the operating temperature range. Available with an initial tolerance of 0.5% for the A grade version, and 1% for the standard version, the LM3420 allows for precision end-of-charge control for Lithium-Ion rechargeable batteries.

The LM3420 is available in a sub-miniature 5-lead SOT23-5 surface mount package thus allowing very compact designs.

Features

- Voltage options for charging 1, 2, 3 or 4 cells
- Tiny SOT23-5 package
- Precision (0.5%) end-of-charge control
- Drive capability for external power stage
- Low quiescent current, $85 \mu \mathrm{~A}$ (typ.)

Applications

- Lithium-Ion battery charging
- Suitable for linear and switching regulator charger designs

LM3420 Functional Diagram

Connection Diagrams and Order Information

5-Lead Small Outline Package (M5)

Actual Size
留
DS012359-4

Top View
For Ordering Information
See Figure 1 in this Data Sheet See NS Package Number MF05A

LM3620

Lithium-Ion Battery Charger Controller

General Description

The LM3620 series of controllers are monolithic integrated circuits designed to control the charging and end-of-charge control for lithium-ion rechargeable batteries. The LM3620 is available in two versions for one or two cell charger applications. Each version provides the option of selecting the appropriate termination voltage for either coke or graphite anode lithium cells.
The LM3620 can operate from a wide range of DC input sources (4 V to 30 V). With no charger supply connected, the controller draws a quiescent current of only 10nA to minimize discharging of a connected battery pack.
The LM3620 consists of an operational transconductance amplifier, a bandgap voltage reference, a NPN driver transistor and precision voltage setting resistors. The output of the amplifier is made available to drive an external power transistor if higher drive currents are required.

With a trimmed output voltage regulation of $\pm 1.2 \%$ initial accuracy, the LM3620 provides a simple, precise solution for end-of-charge control of lithium-ion rechargeable cells.
The LM3620 is packaged in a miniature 5 -lead SOT-23 surface mount package for very compact designs.

Features

- Voltage options for charging 1 or 2 cell stacks
- Adjustable output voltage for coke or graphite anodes
- Precision end-of-charge voltage control
- Wide input voltage range (4 V to 30 V)
- Low off state current (<10nA)
- Drive provided for external power stage
- Tiny SOT-23 package

Typical Application

5-Lead SOT23-5 Surface Mount Package

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

See NS Package MF05A

Ordering Information

Device Order Number	Package Marking	Output Voltage	Initial Accuracy $\left(25^{\circ} \mathrm{C}\right)$	Over Temperature Accuracy $\left(0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	Number of Cells	Supplied as
LM3620M5-4	D10B	$4.1 \mathrm{~V} / 4.2 \mathrm{~V}$	1.2%	2%	1	1000 Unit increments on Tape and Reel
LM3620M5X-4	D10B	$4.1 \mathrm{~V} / 4.2 \mathrm{~V}$	1.2%	2%	1	3000 Unit increments on Tape and Reel
LM3620M5-8	D11B	$8.2 \mathrm{~V} / 8.4 \mathrm{~V}$	1.2%	2%	2	1000 Unit increments on Tape and Reel
LM3620M5X-8	D11B	$8.2 \mathrm{~V} / 8.4 \mathrm{~V}$	1.2%	2%	2	3000 Unit increments on Tape and Reel

The small physical size of the SOT23-5 Package does not allow for the full part number marking. Devices will be marked with the designation shown in the column Package Marking.
The devices are shipped in tape-and-reel format. The standard quantity is 250 units on a reel (indicated by the letters "M5" in the part number), or 3000 units on a reel (indicated by the letters "M5X" in the part number).

LM3621

Single Cell Lithium-Ion Battery Charger Controller

General Description

The LM3621 is a full function constant voltage, constant current (CVCC) lithium-ion (Li+) battery charger controller. It provides 1% regulation accuracy over the specified temperature range without requiring the use of external precision resistors. The IC controls five charge modes: conditioning, fast, top-off, monitor and maintenance. In addition, the LM3621 detects and flags defective batteries as well as over current and over voltage fault events. The architecture of the IC is based on high gain constant voltage and constant current control loops.
The LM3621 is designed to control a switching charger, a linear charger or an off-line ac adapter charger.
The LM3621 consists of a logic controller, precision bandgap reference, wide bandwidth transconductance error amplifiers, comparators, and an output buffer. The LM3621 is available in a 16-pin SOIC package and is specified over the range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Key Specifications

- Tight output voltage accuracy ($\pm 0.5 \%$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
- Two selectable output voltages (4.2V or 4.1 V)
- Less than $1 \mu \mathrm{~A}$ current drain from fully charged battery
- Preconditioning severely discharged cells (0 V to 2.55 V)

Features

- Automatic end-of-charge control
- Preset or user adjustable charge current regulation
- LED drivers for charging status and fault indication
- Battery self-discharge refresh (maintenance)
- Overvoltage/overcurrent fault detection and protection
- Defective battery pack detection
- Charge current boost control for cellular phone applications
- Charge interruption control input

Applications

- Complete, full function, protected battery charger for coke or graphite anode, single cell Lithium-Ion battery packs
- Linear voltage regulator controlled chargers
- High efficiency switching regulator controlled chargers
- Cost effective wall adapter chargers

Typical Application

1A, 4.1V CVCC Linear Charger for Graphite Anode Lithium-Ion Battery

Connection Diagram

> 16-Lead SOIC
> Top View
> Order Number LM3621M or LM3621M-3.0 NSC Package Number M16A

Pin Description

Pin No.	Symbol	I/O	Description
1	$\mathrm{V}_{\text {BAT }}{ }^{+}$	1	Battery pack high side sense input.
2	$\mathrm{V}_{\text {BAT }}{ }^{-}$	1	Battery pack low side sense input.
3	CSR	1	Current Sense Resistor high side input.
4	PFD	0	Pass FET gate Drive output. (N-channel).
5	$\mathrm{I}_{\text {COMP }}$	1	Compensation pin for current regulation loop.
6	MCO	0	Modulation Control Output- analog control signal output
7	$\mathrm{V}_{\text {COMP }}$	1	Compensation pin for voltage regulation loop.
8	$\mathrm{I}_{\text {SET }}$	1	Charge current adjust input pin (see application section).
9	$\mathrm{V}_{\text {SET }}$	I	Charge termination voltage control input ($\mathrm{V}_{\text {SET }}=\mathrm{HI}$ for 4.2 V or $\mathrm{V}_{\text {SET }}=$ LO for 4.1 V).
10	LED1	0	LED driver \#1 output (open drain).
11	LED2	0	LED driver \#2 output (open drain).
12	Chgint	1	Charge current interrupt (active LO).
13	Enable	1	Enable charge cycle control.
14	Boost	1	Maximum output current boost control (max output current increased by 80%).
15	$\mathrm{V}_{\text {SS }}$	S	IC common.
16	$V_{D D}$	S	IC power supply.

National Semiconductor

LM3622

Lithium-Ion Battery Charger Controller

General Description

The LM3622 is a charge controller for Lithium-lon batteries. This monolithic integrated circuit accurately controls an external pass transistor for precision Lithium-lon battery charging. The LM3622 provides a constant voltage or constant current (CVCC) configuration that changes, as necessary, to optimally charge lithium-ion battery cells. Voltage charging versions ($4.1 \mathrm{~V}, 4.2 \mathrm{~V}, 8.2 \mathrm{~V}$, and 8.4 V) are available for one or two cell battery packs and for coke or graphite anode battery chemistry.
The LM3622 accepts input voltages from 4.5 V to 24 V . Controller accuracy over temperature is $\pm 30 \mathrm{mV} / \mathrm{cell}$ for A grade and $\pm 50 \mathrm{mV} /$ cell for the standard grade. No precision external resistors are required. Furthermore, the LM3622's proprietary output voltage sensing circuit drains less than 200nA from the battery when the input source is disconnected.
The LM3622 circuitry includes functions for regulating the charge voltage with a temperature compensated bandgap reference and regulating the current with an external sense resistor. The internal bandgap insures excellent controller performance over the operating temperature and input supply range.
The LM3622 can sink 15 mA minimum at the EXT pin to drive the base of an external PNP pass transistor. It also has
low-voltage battery threshold circuitry that removes this drive when the cell voltage drops below a preset limit. The LV ${ }_{\text {SEL }}$ pin programs this threshold voltage to either $2.7 \mathrm{~V} /$ cell or $2.15 \mathrm{~V} /$ cell. The low-voltage detection, which is a user enabled feature, provides an output signal that can be used to enable a "wake up charge" source automatically to precondition a deeply discharged pack.
The LM3622 is available in a standard 8 -lead SOIC surface mount package.

Features

- Versions for charging of 1 cell (4.1 V or 4.2 V) or 2 cells (8.2V or 8.4 V)
- Versions for coke or graphite anode
- Precision ($\pm 30 \mathrm{mV} /$ cell) end-of-charge control
- Wide input range: $4.5 \mathrm{~V}-24 \mathrm{~V}$
- Low battery drain leakage: 200nA
- 15 mA available to drive low cost PNP

Applications

- Cellular phone cradle charger
- PDA/Notebook cradle charger
- Camcorder cradle charger

Typical Application

8-Lead Surface Mount Package

Refer to the Ordering Information Table in this Datasheet for Specific Part Number See NS Package M08A

Pin Description

Pin No.	Name	I/O	Description
1	$\mathrm{LV}_{\text {SEL }}$	Input	Low-voltage detection threshold Select. The threshold is $2.15 \mathrm{~V} /$ cell when this pin is pulled low to GND and 2.70 V /cell when it is pulled up to V_{CC}. The battery voltage is sensed between CEL and CS pins.
2	$\overline{\mathrm{LV}}_{\text {ENB }}$	Input	Low-voltage detection Enable. The low-voltage detection is enabled when this pin is pulled Low to GND. Pulling this pin HIGH to V_{CC} disables the low-voltage detection.
3	$\overline{\mathrm{LV}}$	Output	Output of the low-voltage detection. This pin is a NPN open-collector output that goes to low impedance state when $\overline{\mathrm{LV}}_{\text {ENB }}$ is pulled LOW and the battery voltage is below the threshold set by LV SEL. . $\overline{L V}$ stays in HIGH impedance state at any battery voltage when $\overline{\mathrm{LV}}_{\text {ENB }}$ is pulled HIGH to $\mathrm{V}_{\mathrm{CC}} . \overline{\mathrm{LV}}$ can be used for turning on a low current source to recondition a deeply depleted battery.
4	GND	Ground	IC common.
5	CS	Input	Input for battery charge current and battery negative-terminal voltage sensing. Battery charging current is sensed through an external resistor, R_{CS}, connected between the battery's negative terminal and GND. The maximum charge current is regulated to a value of $100 \mathrm{mV} / \mathrm{R}_{\mathrm{CS}}$.
6	CEL	Input	Battery positive-terminal voltage sensing.
7	EXT	Output	Output of the controller for driving a PNP transistor or P-MOSFET. The controller modulates the current sinking into this pin to control the regulation of either the charge current or the battery voltage.
8	V_{cc}	Power Supply	IC power supply

Ordering Information

Voltage	Grade	Accuracy	Order Information	Supplied As
4.1 V	A	$\pm 30 \mathrm{mV}$	LM3622AM-4.1	95 unit increments in rail
4.1 V	A	$\pm 30 \mathrm{mV}$	LM3622AMX-4.1	2500 unit increments in tape and reel
4.1 V	Standard	$\pm 50 \mathrm{mV}$	LM3622M-4.1	95 unit increments in rail
4.1 V	Standard	$\pm 50 \mathrm{mV}$	LM3622MX-4.1	2500 unit increments in tape and reel
4.2 V	A	$\pm 30 \mathrm{mV}$	LM3622AM-4.2	95 unit increments in rail
4.2 V	A	$\pm 30 \mathrm{mV}$	LM3622AMX-4.2	2500 unit increments in tape and reel
4.2 V	Standard	$\pm 50 \mathrm{mV}$	LM3622M-4.2	95 unit increments in rail
4.2 V	Standard	$\pm 50 \mathrm{mV}$	LM3622MX-4.2	2500 unit increments in tape and reel
8.2 V	A	$\pm 60 \mathrm{mV}$	LM3622AM-8.2	95 unit increments in rail
8.2 V	A	$\pm 60 \mathrm{mV}$	LM3622AMX-8.2	2500 unit increments in tape and reel
8.2 V	Standard	$\pm 100 \mathrm{mV}$	LM3622M-8.2	95 unit increments in rail
8.2 V	Standard	$\pm 100 \mathrm{mV}$	LM3622MX-8.2	2500 unit increments in tape and reel
8.4 V	A	$\pm 60 \mathrm{mV}$	LM3622AM-8.4	95 unit increments in rail
8.4 V	A	$\pm 60 \mathrm{mV}$	LM3622AMX-8.4	2500 unit increments in tape and reel
8.4 V	Standard	$\pm 100 \mathrm{mV}$	LM3622M-8.4	95 unit increments in rail
8.4 V	Standard	$\pm 100 \mathrm{mV}$	LM3622MX-8.4	2500 unit increments in tape and reel

LM3647

Universal Battery Charger for Li-lon, Ni-MH and Ni-Cd Batteries

1.0 General Description

The LM3647 is a charge controller for Lithium-Ion (Li-Ion), Nickel-Metal Hydride (Ni-MH) and Nickel-Cadmium (Ni-Cd) batteries. The device can use either a pulsed-current charging or a constant-current charging technique. The device can also be configured to discharge before charging. Throughout the charging sequence the LM3647 monitors voltage and/or temperature and time in order to terminate charging.
Charge termination methods are:

- Negative delta voltage $(-\Delta \mathrm{V})$
- Optional: Delta temperature/delta time ($\Delta \mathrm{T} / \Delta \mathrm{t})$
- Backup: Maximum temperature
- Backup: Maximum time
- Backup: Maximum voltage

If both voltage and temperature fail to trigger the termination requirements, then the maximum time (configured by external hardware) steps in which terminates the charging.
In Ni-Cd/Ni-MH mode, four different charging stages are used:

- Soft-start charge
- Fast charge
- Topping charge
- Maintenance charge

In Li-lon mode, four different charging stages are used:

- Qualification
- Fast Charge Phase 1, Constant Current
- Fast Charge Phase 2, Constant Voltage
- Maintenance charge

The charge current of the LM3647 is configured via external resistors, which in turn controls the duty cycle of the PWM switching control output. For cost-sensitive applications, the LM3647 charge controller cab be configured to use an external current source and no temperature sensor.
When using an external current source, the current is controlled by the LM3647 which turns the current source on and off. The LM3647 automatically detects the presence of a bat-
tery and starts the charging procedure when the battery is installed. Whenever an error occurs (e.g., short circuit, temperature too high, temperature too low, bad battery, charge time over, etc.) the LM3647 will stay in error mode until the battery is removed or it gets within the allowed charging temperature range. The LM3647 is available in a standard 20-lead SOIC surface mount package.

Features

- Auto-adaptive fast charge
- High-resolution, accurate voltage monitoring prevents Li-Ion undercharge or overcharge
- Fast charge, pre-charge and maintenance currents are provided. Different currents are selectable via external resistors.
- Fast-charge termination by Δ temperature/ Δ time, maximum voltage, maximum temperature, negative Δ voltage and maximum time
- Dynamically detects battery insertion, removal, short circuit and bad battery without additional hardware
- Supports charging of battery packs with 2-8 cells of $\mathrm{Ni}-\mathrm{Cd} / \mathrm{Ni}-\mathrm{MH}$ or $1-4$ cells of Li-lon (1 cell of $\mathrm{NiCd} / \mathrm{NiMH}$ can be supported by added external $2 x$ voltage amplifier)
- Three optional LED indicators and Buzzer output indicate operational modes
- Ni-MH/Ni-Cd charge mode, Li-lon charge mode or discharge mode can be selected manually
- Supports control of current feedback power supply and constant current power supply

Applications

- Battery charging systems for:
- Portable consumer electronics
- Audio/video equipment
- Communications equipment
- Point of sale devices
- Power tools
- Personal convenience products

2.0 Connection Diagram

2.1 PIN DESCRIPTIONS

Pin No.	Name	I/O	Description
1	SEL3	1	Input to Select Power Source or Li-lon Cell Voltage
2	SEL4	1	Input to Select Maintenance Charge Time Out, Connected to an RC-Network
3	RCIN		RC-Timing Pin
4	GND		Ground
5	V $_{\text {CC }}$		5 V, Power Supply
6	RESET	1	Reset Pin, Active Low
7	LED1	0	LED Output
8	LED2	0	LED Output
9	LED3	0	LED Output
10	V $_{\text {REF }}$	1	Voltage Reference Analog Input
11	CEXT	1	External Capacitor
12	CEL	1	Current Sense Input
13	CS	1	NTC-Temperature Sensor Input
14	TEMP	0	High when Discharging, Else Low
15	DISCHG	0	System Monitor Output
16	SYSOK	0	Buzzer Output
17	BUZZER	0	Charge Control Output
18	PWM	1	Tri-Level Input, Discharge/Maintenance Charge Select
19	SEL1	1	Tri-Level Input, Battery Type Select (NiCd, NiMH, Li-lon)
20	SEL2		

2.2 ORDERING INFORMATION

Device	Package	Temperature
LM3647	20 SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

National Semiconductor

Motion Control

Motion Control and Motor Drive Selection Guide

Motor Drive Circuits-Bridges

Device	Description	Output Current (A)	Max Input Voltage (V)	Operating Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	Package Availability LMD18200 DMOS H-Bridge with Internal Current Sense LMD18200-2D Mil-Std 883. Dual DMOS H-Bridge
LMD18201	DMOS H-Bridge	5	55	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Ceramic DIP
LMD18245	DMOS H-Bridge with Digital or Analog Control	3	55	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	15-Lead TO-220

Motor Drive Circuits-Linear

Device	Description	Output Current (\mathbf{A})	Max Input Voltage (\mathbf{V})	Operating Temperature $\left(\mathbf{T}_{\mathbf{c}}\right)$	Package Availability
LM12CL	Monolithic Power Op-Amp	± 10	± 30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4-Lead TO-3
LM675	Monolithic Power Op-Amp	3	60	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5-Lead TO-220
LM2876	Monolithic Overture Power Amplifier (Note 1)	3	60	$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	11-Lead TO-220
LM3875	Monolithic Overture Power Amplifier (Note 1)	4	84	$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	11-Lead TO-220
LM3876	Monolithic Overture Power Amplifier (Note 1)	4	84	$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	11-Lead TO-220
LM3886	Monolithic Overture Power Amplifier (Note 1)	7	84	$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	11-Lead TO-220
LM4700	Monolithic Overture Power Amplifier (Note 1)	2.9	64	$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	11-Lead TO-220

Precision Motion Control Processor

Device	Features	Operating Temperature $\left(T_{A}\right)$	Max Clock Speed (MHz)	Package Availability
LM628	32-Bit Position, Velocity, and Acceleration Registers; Position and Velocity Modes; 16-Bit PID Filter with programmable Coefficients; 8 or 12-Bit DAC Output Data; Quadrature Incremental Encoder Interface; 8-Bit Asynchronous Host Interface	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 or 8	28-Lead DIP
LM629	Same Features as LM628, but with 8-Bit PWM Sign/Magnitude output Data	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 or 8	28-Lead DIP

Note 1: Refer to Audio Section for product data on the Overture power amplifiers.

LM12CL

80W Operational Amplifier

General Description

The LM12 is a power op amp capable of driving $\pm 25 \mathrm{~V}$ at $\pm 10 \mathrm{~A}$ while operating from $\pm 30 \mathrm{~V}$ supplies. The monolithic IC can deliver 80 W of sine wave power into a 4Ω load with 0.01% distortion. Power bandwidth is 60 kHz . Further, a peak dissipation capability of 800W allows it to handle reactive loads such as transducers, actuators or small motors without derating. Important features include:

- input protection
- controlled turn on
- thermal limiting
- overvoltage shutdown
- output-current limiting
- dynamic safe-area protection

The IC delivers ± 10 A output current at any output voltage yet is completely protected against overloads, including shorts to the supplies. The dynamic safe-area protection is provided by instantaneous peak-temperature limiting within the power transistor array.
The turn-on characteristics are controlled by keeping the output open-circuited until the total supply voltage reaches 14 V . The output is also opened as the case temperature ex-
ceeds $150^{\circ} \mathrm{C}$ or as the supply voltage approaches the $\mathrm{BV}_{\text {CEO }}$ of the output transistors. The IC withstands overvoltages to 80 V .
This monolithic op amp is compensated for unity-gain feedback, with a small-signal bandwidth of 700 kHz . Slew rate is $9 \mathrm{~V} / \mu \mathrm{s}$, even as a follower. Distortion and capacitive-load stability rival that of the best designs using complementary output transistors. Further, the IC withstands large differential input voltages and is well behaved should the common-mode range be exceeded.
The LM12 establishes that monolithic ICs can deliver considerable output power without resorting to complex switching schemes. Devices can be paralleled or bridged for even greater output capability. Applications include operational power supplies, high-voltage regulators, high-quality audio amplifiers, tape-head positioners, $x-y$ plotters or other servo-control systems.
The LM12 is supplied in a four-lead, TO-3 package with Von the case. A gold-eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue problems. The LM12 is specified for either military or commercial temperature range.

Connection Diagram

Typical Application*

*Low distortion (0.01%) audio amplifier

4-pin glass epoxy TO-3
socket is available from
AUGAT INC.
Part number 8112-AG7

Bottom View

Order Number LM12CLK
See NS Package Number K04A

LM628/LM629 Precision Motion Controller

General Description

The LM628/LM629 are dedicated motion-control processors designed for use with a variety of DC and brushless DC servo motors, and other servomechanisms which provide a quadrature incremental position feedback signal. The parts perform the intensive, real-time computational tasks required for high performance digital motion control. The host control software interface is facilitated by a high-level command set. The LM628 has an 8-bit output which can drive either an 8 -bit or a 12-bit DAC. The components required to build a servo system are reduced to the DC motor/actuator, an incremental encoder, a DAC, a power amplifier, and the LM628. An LM629-based system is similar, except that it provides an 8-bit PWM output for directly driving. H -switches. The parts are fabricated in NMOS and packaged in a 28 -pin dual in-line package or a 24 -pin surface mount package (LM629 only). Both 6 MHz and 8 MHz maximum frequency versions are available with the suffixes -6 and -8 , respectively, used to designate the versions. They incorporate an SDA core processor and cells designed by SDA.

Features

- 32-bit position, velocity, and acceleration registers
- Programmable digital PID filter with 16-bit coefficients
- Programmable derivative sampling interva!
- 8- or 12-bit DAC output data (LM628)
- 8-bit sign-magnitude PWM output data (LM629)
- Internal trapezoidal velocity profile generator
- Velocity, target position, and filter parameters may be changed during motion
- Position and velocity modes of operation
- Real-time programmable host interrupts
- 8-bit parallel asynchronous host interface
- Quadrature incremental encoder interface with index pulse input
- Available in a 28 -pin dual in-line package or a 24 -pin surface mount package (LM629 only)

FIGURE 1. Block Diagram

Connection Diagrams

Order Number LM629M-6, LM629M-8, LM628N-6, LM628N-8, LM629N-6 or LM629N-8 See NS Package Number M24B or N28B

National Semiconductor

LMD18200

3A, 55V H-Bridge

General Description

The LMD18200 is a 3A H-Bridge designed for motion control applications. The device is built using a multi-technology process which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure. Ideal for driving DC and stepper motors; the LMD18200 accommodates peak output currents up to 6A. An innovative circuit which facilitates low-loss sensing of the output current has been implemented.

Features

- Delivers up to 3A continuous output
- Operates at supply voltages up to 55 V
- Low $R_{\text {Ds }}(O N)$ typically 0.3Ω per switch
- TTL and CMOS compatible inputs
- No "shoot-through" current
- Thermal warning flag output at $145^{\circ} \mathrm{C}$
- Thermal shutdown (outputs off) at $170^{\circ} \mathrm{C}$
- Internal clamp diodes
- Shorted load protection
- Internal charge pump with external bootstrap capability

Applications

- DC and stepper motor drives
- Position and velocity servomechanisms
- Factory automation robots
- Numerically controlled machinery
- Computer printers and plotters

Functional Diagram

FIGURE 1. Functional Block Diagram of LMD18200

Connection Diagrams and Ordering Information

BOOTSTRAP 2
OUTPUT 2 THERMAL FLAG OUTPUT CURRENT SENSE OUTPUT GROUND
V_{S} POWER SUPPLY
PWM INPUT
brake input dIRECTION INPUT OUTPUT 1 BOOTSTRAP 1
\angle MOUNTING TAB CONNECTED TO GROUND (PIN 7)

11-Lead TO-220 Package Top View
Order Number LMD18200T
See NS Package TA11B

LMD18201

3A, 55V H-Bridge

General Description

The LMD18201 is a 3A H-Bridge designed for motion control applications. The device is built using a multi-technology process which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure. The H-Bridge configuration is ideal for driving DC and stepper motors. The LMD18201 accommodates peak output currents up to 6A. Current sensing can be achieved via a small sense resistor connected in series with the power ground lead. For current sensing without disturbing the path of current to the load, the LMD18200 is recommended.

Features

- Delivers up to 3A continuous output
- Operates at supply voltages up to 55 V
- Low $R_{\text {DS(ON) }}$ typically 0.33Ω per switch
- TTL and CMOS compatible inputs
- No "shoot-through" current
- Thermal warning flag output at $145^{\circ} \mathrm{C}$
- Thermal shutdown (outputs off) at $170^{\circ} \mathrm{C}$
- Internal clamp diodes
- Shorted load protection
- Internal charge pump with external bootstrap capability

Applications

- DC and stepper motor drives
- Position and velocity servomechanisms
- Factory automation robots
- Numerically controlled machinery
- Computer printers and plotters

Functional Diagram

FIGURE 1. Functional Block Diagram of LMD18201

Connection Diagram and Ordering Information

LMD18245

3A, 55V DMOS Full-Bridge Motor Driver

General Description

The LMD18245 full-bridge power amplifier incorporates all the circuit blocks required to drive and control current in a brushed type DC motor or one phase of a bipolar stepper motor. The multi-technology process used to build the device combines bipolar and CMOS control and protection circuitry with DMOS power switches on the same monolithic structure. The LMD18245 controls the motor current via a fixed off-time chopper technique.
An all DMOS H-bridge power stage delivers continuous output currents up to 3A (6A peak) at supply voltages up to 55 V . The DMOS power switches feature low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ for high efficiency, and a diode intrinsic to the DMOS body structure eliminates the discrete diodes typically required to clamp bipolar power stages.
An innovative current sensing method eliminates the power loss associated with a sense resistor in series with the motor. A four-bit digital-to-analog converter (DAC) provides a digital path for controlling the motor current, and, by extension, simplifies implementation of full, half and microstep stepper motor drives. For higher resolution applications, an external DAC can be used.

Features

- DMOS power stage rated at 55 V and 3 A continuous
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of typically 0.3Ω per power switch
- Internal clamp diodes
- Low-loss current sensing method
- Digital or analog control of motor current
- TTL and CMOS compatible inputs
- Thermal shutdown (outputs off) at $\mathrm{T}_{\mathrm{J}}=155^{\circ} \mathrm{C}$
- Overcurrent protection
- No shoot-through currents
- 15-lead TO-220 molded power package

Applications

- Full, half and microstep stepper motor drives
- Stepper motor and brushed DC motor servo drives
- Automated factory, medical and office equipment

Functional Block and Connection Diagram (15-Lead TO-220 Molded Power Package (T))

National Semiconductor

Universal Serial Bus

Universal Serial Bus Products Selection Guide

Part Number	Channels	Switch On-Resistance (Ohm, typ.)	Supply Current, Switches ON (mA, typ.)	Supply Current, Switches OFF (mA, typ.)	Input Voltage V (Min)	Input Voltage V (Max)	Output Current Amps (Max)
LM3525	Single	120	65	0.05	2.7	5.5	1
LM3526	Dual	140	115	0.2	2.7	5.5	1

LM3525

Single Port USB Power Switch and Over-Current Protection

General Description

The LM3525 provides Universal Serial Bus standard power switch and over-current protection for all host port applications. The single port device is ideal for Notebook PC and Handheld PC applications that supply power to one port.
A 1 ms delay on fault flag output prevents erroneous overcurrent reporting caused by inrush currents during the hot-plug events.
The LM3525 accepts an input voltage between 2.7 V and 5.5V allowing use as a device-based inrush current limiter for 3.3V USB peripherals, as well as Root and Self-Powered Hubs at 5.5 V . The Enable input accepts both 3.3 V and 5.0 V logic thresholds.
The small size, low R_{ON}, and 1 ms fault flag delay make the LM3525 a good choice for root hubs as well as ganged power control in space-critical self-powered hubs.

Features

- 1 ms Fault Flag Deiay During Hot-Plug Events
- Smooth Turn-On Eliminates Inrush Induced Voltage Drop
- UL Recognized Component: REF \# 205202
- 1A Nominal Short Circuit Output Current Protects Notebook PC Power Supplies
- Thermal Shutdown Protects Device in Direct Short Condition
- 500 mA Minimum Continuous Load Current
- Small SO-8 Package Minimizes Board Space
- 2.7V to 5.5V Input Voltage Range
- Switch Resistance $\leq 120 \mathrm{~m} \Omega$ Max. at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$
- $1 \mu \mathrm{~A}$ Max Standby Current
- $100 \mu \mathrm{~A}$ Max Operating Current
- Undervoltage Lockout (UVLO)

Applications

- Universal Serial Bus (USB) Root Hubs including Desktop and Notebook PC
- USB Monitor Hubs
- Other Self-Powered USB Hub Devices
- High Power USB Devices Requiring Inrush Limiting
- General Purpose High Side Switch Applications

Typical Operating Circuit and Connection Diagram

LM3525M-H

Part Number	Enable, Delivery Option	Package Type
LM3525M-H	Active High Enable, 95 units per rail	SO-8,NS Package
LM3525M-L	Active Low Enable, 95 units per rail	
LM3525MX-H	Active High Enable, 2500 units per reel	
LM3525MX-L	Active Low Enable, 2500 units per reel	

LM3526

Dual Port USB Power Switch and Over-Current Protection

General Description

The LM3526 provides Universal Serial Bus standard power switch and over-current protection for all host port applications. The dual port device is ideal for Notebook and desktop PC's that supply power to more than one port.
A 1 ms delay on the fault flag output prevents erroneous overcurrent reporting caused by in-rush currents during hot-plug events.
The dual stage thermal protection circuit in the LM3526 provides individual protection to each switch and the entire device. In a short-circuit/over-current event, the switch dissipating excessive heat is turned off, allowing the second switch to continue to function uninterrupted.
The LM3526 accepts an input voltage between 2.7 V and 5.5 V allowing use as a device-based in-rush current limiter for 3.3V USB peripherals, as well as Root and Self-Powered Hubs at 5.5 V . The Enable inputs accept both 3.3 V and 5.0 V logic thresholds.
The small size, low R_{ON}, and 1 ms fault flag delay make the LM3526 a good choice for root hubs as well as per-port power control in embedded and stand-alone hubs.

Features

- 1 ms fault flag delay filters Hot-Plug events
- Smooth turn-on eliminates in-rush induced voltage drop
- UL recognized component: REF\# 205202
- 1A nominal short circuit output current protects PC power supplies
- Thermal shutdown protects device in direct short condition
- 500 mA minimum continuous load current
- Small SO-8 package minimizes board space
- 2.7 V to 5.5 V input voltage range
- $140 \mathrm{~m} \Omega$ Max. switch resistance
- $1 \mu \mathrm{~A}$ Max. standby current
- $200 \mu \mathrm{~A}$ Max. operating current
- Under-voltage lockout (UVLO)

Applications

- Universal Serial Bus (USB) Root Hubs including Desktop and Notebook PC
- USB Monitor Hubs
- Other Self-Powered USB Hub Devices
- High Power USB Devices Requiring In-rush Limiting
- General Purpose High Side Switch Applications

Typical Operating Circuit and Connection Diagram

Ordering Information

Part Number	Enable, Delivery Option	Package Type
LM3526M-H	Active High Enable, 95 units per rail	SO-8,
LM3526M-L	Active Low Enable, 95 units per rail	
LM3526MX-H	Active High Enable, 2500 units per reel	Number M08A
LM3526MX-L	Active Low Enable, 2500 units per reel	

N

Section 12
 Temperature Sensors and System Hardware Monitors

Section 12 Contents
Temperature Sensor Selection Guide 12-3
System Hardware Monitor Selection Guide 12-5
LM20 2.4V, 10 AA, SC70, micro SMD Temperature Sensor 12-6
LM34 Precision Fahrenheit Temperature Sensors 12-8
LM35 Precision Centigrade Temperature Sensors 12-10
LM45 SOT-23 Precision Centigrade Temperature Sensors 12-12
LM50 SOT-23 Single-Supply Centigrade Temperature Sensor 12-13
LM56 Dual Output Low Power Thermostat 12-14
LM60 2.7V, SOT-23 Temperature Sensor 12-16
LM61 2.7V, SOT-23 or TO-92 Temperature Sensor 12-17
LM62 2.7V, $15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ SOT-23 Temperature Sensor 12-19
LM66 Dual Output Internally Preset Thermostat. 12-20
LM70 SPI/MICROWIRE ${ }^{\text {TM }}$ 10-Bit plus Sign Digital Temperature Sensor 12-21
LM74 SPI/MICROWIRE ${ }^{\text {TM }}$ 12-Bit Plus Sign Temperature Sensor 12-24
LM75 Digital Temperature Sensor and Thermal watchdog with Two-Wire Interface 12-27
LM76 $\pm 0.5^{\circ} \mathrm{C}, \pm 1^{\circ} \mathrm{C}, 12$-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface 12-29
LM77 9-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface 12-31
LM80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor 12-33
LM81 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor. 12-36
LM82 Remote Diode and Local Digital Temperature Sensor with Two-Wire Interface 12-40
LM83 Triple-Diode Input and Local Digital Temperature Sensor with Two-Wire Interface 12-43
LM84 Diode Input Digital Temperature Sensor with Two-Wire Interface 12-46
LM87 Serial Interface System Hardware Monitor with Remote Diode Temperature Sensing 12-49
LM92 $\pm 0.33^{\circ} \mathrm{C}$ Accurate, 12 -Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface 12-52
LM134/LM234/LM334 3-Terminal Adjustable Current Sources. 12-54
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors 12-55

National Semiconductor

Temperature Sensor Selection Guide

Device	Description	Output Type	Operating Temp Range	Accuracy		Sensor Gain	Supply Voltage	Quiescent Current (max)
				(max)	(typ)			
Analog Output Temperature Sensors								
LM20B	SC-70 Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +130^{\circ} \mathrm{C} \end{aligned}$	$\pm 2.5^{\circ} \mathrm{C}$		$\begin{aligned} & -11.7 \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} +2.4 \mathrm{~V} \text { to } \\ +5.5 \mathrm{~V} \end{gathered}$	$10 \mu \mathrm{~A}$
LM20C	SC-70 Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +130^{\circ} \mathrm{C} \end{aligned}$	$\pm 5.0^{\circ} \mathrm{C}$		$\begin{aligned} & -11.7 \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +2.4 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$10 \mu \mathrm{~A}$
LM20S	micro SMD Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 3.5^{\circ} \mathrm{C}$		$\begin{aligned} & -11.7 \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +2.4 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$10 \mu \mathrm{~A}$
LM34A	Precision Farenheit Temperature Sensor	Analog	$\begin{aligned} & -50^{\circ} \mathrm{F} \text { to } \\ & +300^{\circ} \mathrm{F} \end{aligned}$	$\pm 2.0^{\circ} \mathrm{F}$	$\pm 0.8^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & +5 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$163 \mu \mathrm{~A}$
LM34	Precision Farenheit Temperature Sensor	Analog	$\begin{aligned} & -50^{\circ} \mathrm{F} \text { to } \\ & +300^{\circ} \mathrm{F} \end{aligned}$	$\pm 3.0^{\circ} \mathrm{F}$	$\pm 01.6^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & +5 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$181 \mu \mathrm{~A}$
LM34CA	Precision Farenheit Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } \\ & +230^{\circ} \mathrm{F} \end{aligned}$	$\pm 3.0^{\circ} \mathrm{F}$	$\pm 0.8^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & +5 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$142 \mu \mathrm{~A}$
LM34C	Precision Farenheit Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } \\ & +230^{\circ} \mathrm{F} \end{aligned}$	$\pm 4.0^{\circ} \mathrm{F}$	$\pm 1.6^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & +5 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$159 \mu \mathrm{~A}$
LM34D	Precision Farenheit Temperature Sensor	Analog	$\begin{aligned} & -32^{\circ} \mathrm{F} \text { to } \\ & +212^{\circ} \mathrm{F} \end{aligned}$	$\pm 4.0^{\circ} \mathrm{F}$	$\pm 1.8^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & +5 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$159 \mu \mathrm{~A}$
LM35A	Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\pm 1.0^{\circ} \mathrm{C}$	$\pm 0.4^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$133 \mu \mathrm{~A}$
LM35	Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\pm 1.5^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$161 \mu \mathrm{~A}$
LM35CA	Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +110^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\pm 1.5^{\circ} \mathrm{C}$	$\pm 0.4^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$116 \mu \mathrm{~A}$
LM35C	Precision Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +110^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\pm 2.0^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$141 \mu \mathrm{~A}$
LM35D	Precision Celsius Temperature Sensor	Analog	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\pm 2.0^{\circ} \mathrm{C}$	$\pm 0.9^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +30 \mathrm{~V} \end{aligned}$	$141 \mu \mathrm{~A}$
LM45B	SOT-23, Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 3.0^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$160 \mu \mathrm{~A}$
LM45C	SOT-23, Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 4.0^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$160 \mu \mathrm{~A}$
LM50B	SOT-23, Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 3.0^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \end{gathered}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4.5 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$180 \mu \mathrm{~A}$
LM50C	SOT-23, Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 4.0^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4.5 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$180 \mu \mathrm{~A}$
LM60B	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\pm 3.0^{\circ} \mathrm{C}$		$6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$125 \mu \mathrm{~A}$
LM60C	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 4.0^{\circ} \mathrm{C}$		$6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$125 \mu \mathrm{~A}$
LM61B	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\pm 3.0^{\circ} \mathrm{C}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$155 \mu \mathrm{~A}$
LM61C	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{gathered} -30^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$	$\pm 4.0^{\circ} \mathrm{C}$		$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} +2.7 \mathrm{~V} \text { to } \\ +10 \mathrm{~V} \end{gathered}$	$155 \mu \mathrm{~A}$
LM62B	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +90^{\circ} \mathrm{C} \end{aligned}$	$+2.5 /-2^{\circ} \mathrm{C}$		$15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$165 \mu \mathrm{~A}$
LM62C	2.7V,SOT-23 Celsius Temperature Sensor	Analog	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +90^{\circ} \mathrm{C} \end{aligned}$	$+4 /-3^{\circ} \mathrm{C}$		$15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$165 \mu \mathrm{~A}$
LM135A	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\pm 2.7^{\circ} \mathrm{C}$	$\pm 1.3^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	0.4 mA to 5 mA
LM135	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +150^{\circ} \mathrm{C} \end{gathered}$	$\pm 5.0^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	0.4 mA to 5 mA

Device	Description	Output Type	Operating Temp Range	Accuracy		Sensor Gain	Supply Voltage	Quiescent Current (max)
				(max)	(typ)			
Analog Output Temperature Sensors								
LM235A	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 2.7^{\circ} \mathrm{C}$	$\pm 1.3^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	$\begin{aligned} & 0.4 \mathrm{~mA} \\ & \text { to } 5 \mathrm{~mA} \end{aligned}$
LM235	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 5.0^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	0.4 mA to 5 mA
LM335A	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$	$\pm 5.0^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	0.4 mA to 5 mA
LM335	Precision Shunt Celsius Temperature Sensor	Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$	$\pm 9.0^{\circ} \mathrm{C}$	$\pm 4.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$	Shunt Ref	$0.4 \mathrm{~mA}$ $\text { to } 5 \mathrm{~mA}$
Digital Output Temperature Sensor								
LM56B	Low Power Dual Output Thermostat	$\begin{aligned} & \text { Thermo- } \\ & \text { stat/ } \\ & \text { Analog } \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 2.0^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		$6.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$230 \mu \mathrm{~A}$
LM56C	Low Power Dual Output Thermostat	$\begin{aligned} & \text { Thermo- } \\ & \text { stat/ } \\ & \text { Analog } \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 3.0^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$6.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$230 \mu \mathrm{~A}$
LM66	Dual Output Thermostat, Preset at $+73^{\circ} \mathrm{C}$ and $+82^{\circ} \mathrm{C}$	Thermostat/ Analog	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 3.0^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		$6.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +2.7 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	$2.50 \mu \mathrm{~A}$
LM70	SPI/MICROWIRE, 10-Bit Plus Sign Temperature Sensor	3-Wire Serial	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} +1.5 /-2.0^{\circ} \mathrm{C} \\ -10^{\circ} \mathrm{C} \text { to } \\ 60^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 0.25^{\circ} \mathrm{C} \\ \text { LSBB } \end{gathered}$	$\begin{gathered} +2.65 \mathrm{~V} \text { to } \\ +5.5 \mathrm{~V} \end{gathered}$	$490 \mu \mathrm{~A}$
LM74	SPI/MICROWIRE, 12-Bit Plus Sign Temperature Sensor	3-Wire Serial	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 1.25^{\circ} \mathrm{C}$		$\underset{/ L S B}{0.0625^{\circ} \mathrm{C}}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$520 \mu \mathrm{~A}$
LM75	8-bit Plus Sign, Temperature Sensor	2-Wire Serial*, OS	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 3.0^{\circ} \mathrm{C}$		$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & \text { LSSB } \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	1 mA
LM76CNM	12-Bit Plus Sign, ACPI Temperature Sensor	2-Wire Serial* T_CRIT_A INT,	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$		$\underset{/ \mathrm{LSB}}{0.0625^{\circ} \mathrm{C}}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +3.6 \mathrm{~V} \end{aligned}$	$500 \mu \mathrm{~A}$
LM76CHM	12-Bit Plus Sign, ACPI Temperature Sensor		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \end{aligned}$		$\underset{/ \mathrm{LSB}}{0.0625^{\circ} \mathrm{C}}$	$\begin{aligned} & +4.5 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$450 \mu \mathrm{~A}$
LM77	12-Bit Plus Sign, ACPI Temperature Sensor	2-Wire Serial* T_CRIT_A $\frac{\text { INT }}{}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 1.5^{\circ} \mathrm{C} \\ -10^{\circ} \mathrm{C} \text { to } \\ +65^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & \text { LSBB } \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$500 \mu \mathrm{~A}$
LM82	7-Bit Plus Sign, Remote Diode Temperature Sensor	2-Wire Serial*_A T_CRIT_A INT	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 3.0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & / \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +3.6 \mathrm{~V} \end{aligned}$	$800 \mu \mathrm{~A}$
LM83	7-Bit Plus Sign, Triple Remote Diode Temperature Sensor	$\frac{\text { 2-Wire }}{\substack{\text {-Werial* } \\ \text { S_MIT_A, }}}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 3.0^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & / \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +3.6 \mathrm{~V} \end{aligned}$	$800 \mu \mathrm{~A}$
LM84	7-Bit Plus Sign, Remote Diode Temperature Sensor	2-Wire Serial*, INT	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 4.0^{\circ} \mathrm{C} \\ & +60^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & / \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \text { to } \\ & +3.6 \mathrm{~V} \end{aligned}$	1 mA
LM92CIM	12-Bit Plus Sign Temperature Sensor	$\frac{$ 2-Wire Serial* T_CRIT_A INT ,}{}	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 0.33^{\circ} \mathrm{C} \\ & \text { at }+30^{\circ} \mathrm{C} \end{aligned}$.	$\underset{/ \mathrm{LSB}}{0.0625^{\circ} \mathrm{C}}$	$\begin{gathered} +2.7 \mathrm{~V} \text { to } \\ +5.5 \mathrm{~V} \end{gathered}$	$625 \mu \mathrm{~A}$

* - SMBus or $\mathrm{I}^{2} \mathrm{C}$ compatible

National Semiconductor

System Hardware Monitor Selection Guide

Device	Description	Operating Temp Range	Voltage Monitoring Accuracy (max)	Temperature Sensor Accuracy (max)	Sensor Gain	Supply Voltage (V)	Quiescent Current (mA)
LM78	ISA Bus/2 Wire Serial System Hardware Monitor (Not Recommended for New Designs)	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\pm 1 \%$	$\pm 3.0^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C} / \mathrm{LSB}$	$\begin{gathered} +4.25 \mathrm{~V} \text { to } \\ 5.75 \mathrm{~V} \end{gathered}$	2 mA
LM79	ISA Bus/2 Wire Serial System Hardware Monitor (Not Recommended for New Designs)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \%$	$\pm 3.0^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C} / \mathrm{LSB}$	$\underset{5.75 \mathrm{~V}}{+4.25 \mathrm{~V}}$	2 mA
LM80	2 Wire Serial System Hardware Monitor	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \%$	$\pm 3.0^{\circ} \mathrm{C}$	$\begin{gathered} 0.0625^{\circ} \mathrm{C} \\ / \text { LSB } \end{gathered}$	$\begin{aligned} & +2.8 \mathrm{~V} \text { to } \\ & +5.75 \mathrm{~V} \end{aligned}$	1.5 mA
LM81B	SMBus System Hardware Monitor (D/A Output and Input Scaling Resistors)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1.2 \%$	$\pm 3.0^{\circ} \mathrm{C}$	$\begin{gathered} 0.0625^{\circ} \mathrm{C} \\ \text { LSBB } \end{gathered}$	$\begin{aligned} & +2.8 \mathrm{~V} \text { to } \\ & +3.8 \mathrm{~V} \end{aligned}$	1.4 mA
LM87	SMBus Remote Diode System Hardware Monitor (with D/A Output and Input Scaling Resistors)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 3.0^{\circ} \mathrm{C}$ (internal) ± 4 (remote diode)	$1^{\circ} \mathrm{C} / \mathrm{LSB}$	$\begin{gathered} +2.8 \mathrm{~V} \text { to } \\ +3.8 \mathrm{~V} \end{gathered}$	2.0 mA

LM20

2.4V, 10رA, SC70, micro SMD Temperature Sensor

General Description

The LM20 is a precision analog output CMOS integrated-circuit temperature sensor that operates over a $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$ temperature range. The power supply operating range is +2.4 V to +5.5 V . The transfer function of LM20 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM20 when specified to a parabolic transfer function is $\pm 1.5^{\circ} \mathrm{C}$ at an ambient temperature of $+30^{\circ} \mathrm{C}$. The temperature error increases linearly and reaches a maximum of $\pm 2.5^{\circ} \mathrm{C}$ at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V the temperature range extremes are $+130^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$. Decreasing the power supply voltage to 2.4 V changes the negative extreme to $-30^{\circ} \mathrm{C}$, while the positive remains at $+130^{\circ} \mathrm{C}$.
The LM20's quiescent current is less than $10 \mu \mathrm{~A}$. Therefore, self-heating is less than $0.02^{\circ} \mathrm{C}$ in still air. Shutdown capability for the LM20 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or does not necessitate shutdown at all.

Applications

- Cellular Phones
- Computers
- Power Supply Modules
- Battery Management
- FAX Machines
- Printers
- HVAC
- Disk Drives
- Appliances

Features

- Rated for full $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$ range
- Available in an SC70 and a micro SMD package
- Predictable curvature error
- Suitable for remote applications

Key Specifications

■ Accuracy at $+30^{\circ} \mathrm{C}$	± 1.5 to $\pm 4^{\circ} \mathrm{C}$ (max)
- Accuracy at $+130^{\circ} \mathrm{C}$ \& $-55^{\circ} \mathrm{C}$	± 2.5 to $\pm 5^{\circ} \mathrm{C}$ (max)
■ Power Supply Voltage	
Range	+2.4 V to +5.5 V
Current Drain	$10 \mu \mathrm{~A}$ (max)
■ Nonlinearity	$\pm 0.4 \%$ (typ)
Output Impedance	160Ω (max)
Load Regulation	
$\quad 0 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{L}}<+16 \mu \mathrm{~A}$	-2.5 mV (max)

Typical Application

$V_{O}=\left(-3.88 \times 10^{-6} \mathrm{xT}^{2}\right)+\left(-1.15 \times 10^{-2} \mathrm{xT}\right)+1.8639$
or
$T=-1481.96+\sqrt{2.1962 \times 10^{6}+\frac{\left(1.8639-V_{O}\right)}{3.88 \times 10^{-6}}}$
where:
T is temperature, and V_{O} is the measured output voltage of the LM20.

Output Voltage vs Temperature

Full-Range Celsius (Centigrade) Temperature Sensor ($\mathbf{- 5 5 ^ { \circ }} \mathbf{C}$ to $+130^{\circ} \mathrm{C}$)
Operating from a Single Li-lon Battery Cell

Typical Application (Continued)

Temperature (\mathbf{T})	Typical $\mathbf{V}_{\mathbf{O}}$
$+130^{\circ} \mathrm{C}$	+303 mV
$+100^{\circ} \mathrm{C}$	+675 mV
$+80^{\circ} \mathrm{C}$	+919 mV
$+30^{\circ} \mathrm{C}$	+1515 mV

Connection Diagrams

Note:

- GND (pin 2) may be grounded or left floating. For optimum thermal conductivity to the pc board ground plane pin 2 should be grounded.
- NC (pin 1) should be left floating or grounded. Other signal traces should not be connected to this pin.

Top View
See NS Package Number MAA05A

Temperature (\mathbf{T})	Typical $\mathrm{V}_{\mathbf{O}}$
$+25^{\circ} \mathrm{C}$	+1574 mV
$0^{\circ} \mathrm{C}$	+1863.9 mV
$-30^{\circ} \mathrm{C}$	+2205 mV
$-40^{\circ} \mathrm{C}$	+2318 mV
$-55^{\circ} \mathrm{C}$	+2485 mV

Note:

- Pin numbers are referenced to the package marking text orientation.
- Reference JEDEC Registration MO-211, variation BA
- The actual physical placement of package marking will vary slightly from part to part. The package marking will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View
See NS Package Number BPA04DDC

Ordering Information

Order Number	Temperature Accuracy	Temperature Range	NS Package Number	Device Marking	Transport Media
LM20BIM7	$\pm 2.5^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$	MAA05A	T2B	1000 Units on Tape and Reel
LM20BIM7X	$\pm 2.5^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$	MAA05A	T2B	3000 Units on Tape and Reel
LM20CIM7	$\pm 5^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$	MAA05A	T2C	1000 Units on Tape and Reel
LM20CIM7X	$\pm 5^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$	MAA05A	T2C	3000 Units on Tape and Reel
LM20SIBP	$\pm 3.5^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	BPA04DDC	Date Code	250 Units on Tape and Reel
LM20SIBPX	$\pm 3.5^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	BPA04DDC	Date Code	3000 Units on Tape and Reel

LM34

Precision Fahrenheit Temperature Sensors

General Description

The LM34 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Fahrenheit temperature. The LM34 thus has an advantage over linear temperature sensors calibrated in degrees Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Fahrenheit scaling. The LM34 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 2^{\circ} \mathrm{F}$ at room temperature and $\pm 1 \frac{1}{2}{ }^{\circ} \mathrm{F}$ over a full -50 to $+300^{\circ} \mathrm{F}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM34's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies or with plus and minus supplies. As it draws only $75 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.2^{\circ} \mathrm{F}$ in still air. The LM34 is rated to operate over a -50° to $+300^{\circ} \mathrm{F}$ temperature range, while the LM34C is rated for a -40° to $+230^{\circ} \mathrm{F}$ range ($0^{\circ} \mathrm{F}$ with improved accuracy). The LM34 series is available packaged in
hermetic TO-46 transistor packages, while the LM34C, LM34CA and LM34D are also available in the plastic TO-92 transistor package. The LM34D is also available in an 8-lead surface mount small outline package. The LM34 is a complement to the LM35 (Centigrade) temperature sensor.

Features

- Calibrated directly in degrees Fahrenheit
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ scale factor
- $1.0^{\circ} \mathrm{F}$ accuracy guaranteed (at $+77^{\circ} \mathrm{F}$)
- Rated for full -50° to $+300^{\circ} \mathrm{F}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 5 to 30 volts
- Less than $90 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.18^{\circ} \mathrm{F}$ in still air
- Nonlinearity only $\pm 0.5^{\circ} \mathrm{F}$ typical
- Low-impedance output, 0.4Ω for 1 mA load

Connection Diagrams

TO-46
Metal Can Package
(Note 1)

Order Numbers LM34H, LM34AH, LM34CH, LM34CAH or LM34DH See NS Package Number H03H

TO-92 Plastic Package

Order Number LM34CZ, LM34CAZ or LM34DZ See NS Package Number Z03A

SO-8
Small Outline Molded Package

N.C. $=$ No Connection

Top View
Order Number LM34DM
See NS Package Number M08A

Note 1: Case is connected to negative pin (GND).

Typical Applications

FIGURE 1. Basic Fahrenheit Temperature Sensor $\left(+5^{\circ}\right.$ to $\left.+300^{\circ} \mathrm{F}\right)$

CHOOSE $\mathbf{R}_{1}=\left(-V_{S}\right) / 50 \mu \mathrm{~A}$
$V_{\text {OUT }}=+3,000 \mathrm{mV} \mathrm{AT}+300^{\circ} \mathrm{F}$
$=+750 \mathrm{mV} \mathrm{AT}+75^{\circ} \mathrm{F}$
$=-500 \mathrm{mV}$ AT $-50^{\circ} \mathrm{F}$

DS006685-4
FIGURE 2. Full-Range Fahrenheit Temperature Sensor

LM35

Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in - Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 4^{\circ} \mathrm{C}$ at room temperature and $\pm 3 / 4^{\circ} \mathrm{C}$ over a full -55 to $+150^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only $60 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.1^{\circ} \mathrm{C}$ in still air. The LM35 is rated to operate over a -55° to $+150^{\circ} \mathrm{C}$ temperature range, while the LM35C is rated for a -40° to $+110^{\circ} \mathrm{C}$ range (-10° with improved accuracy). The L.M35 series is available packaged in
hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $0.5^{\circ} \mathrm{C}$ accuracy guaranteeable (at $+25^{\circ} \mathrm{C}$)
- Rated for full -55° to $+150^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than $60 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.08^{\circ} \mathrm{C}$ in still air
- Nonlinearity only $\pm 1 / 4^{\circ} \mathrm{C}$ typical
- Low impedance output, 0.1Ω for 1 mA load

Choose $\mathrm{R}_{1}=-\mathrm{V}_{\mathrm{S}} / 50 \mu \mathrm{~A}$ $V_{\text {OUT }}=+1,500 \mathrm{mV}$ at $+150^{\circ} \mathrm{C}$

$$
=+250 \mathrm{mV} \text { at }+25^{\circ} \mathrm{C}
$$

$=-550 \mathrm{mV}$ at $-55^{\circ} \mathrm{C}$
FIGURE 2. Full-Range Centigrade Temperature Sensor

Connection Diagrams

TO-46
Metal Can Package*

*Case is connected to negative pin (GND)
Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH
See NS Package Number H03H

TO-92
Plastic Package

bottom view DS005516-2
Order Number LM35CZ, LM35CAZ or LM35DZ
See NS Package Number Z03A

SO-8
Small Outline Molded Package

N.C. $=$ No Connection

Top View
Order Number LM35DM See NS Package Number M08A

TO-220
Plastic Package*

*Tab is connected to the negative pin (GND).
Note: The LM35DT pinout is different than the discontinued LM35DP.
Order Number LM35DT
See NS Package Number TA03F

LM45

SOT-23 Precision Centigrade Temperature Sensors

General Description

The LM45 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM45 does not require any external calibration or trimming to provide accuracies of $\pm 2^{\circ} \mathrm{C}$ at room temperature and $\pm 3^{\circ} \mathrm{C}$ over a full -20 to $+100^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM45's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with a single power supply, or with plus and minus supplies. As it draws only $120 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.2^{\circ} \mathrm{C}$ in still air. The LM45 is rated to operate over a -20° to $+100^{\circ} \mathrm{C}$ temperature range.

Applications

- Battery Management
- FAX Machines
- Printers
- Portable Medical Instruments
- HVAC
- Power Supply Modules
- Disk Drives
- Computers
- Automotive

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $\pm 3^{\circ} \mathrm{C}$ accuracy guaranteed
- Rated for full -20° to $+100^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4.0 V to 10 V
- Less than $120 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.20^{\circ} \mathrm{C}$ in still air
- Nonlinearity only $\pm 0.8^{\circ} \mathrm{C}$ max over temp
- Low impedance output, 20Ω for 1 mA load

Connection Diagram

Top View
See NS Package Number MA03B

Order Number	SOT-23 Device Marking	Supplied As
LM45BIM3	T4B	1000 Units on Tape and Reel
LM45BIM3X	T4B	3000 Units on Tape and Reel
LM45CIM3	T4C	1000 Units on Tape and Reel
LM45CIM3X	T4C	3000 Units on Tape and Reel

Choose $\mathrm{R}_{1}=-\mathrm{V}_{\mathrm{S}} / 50 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OUT }}=\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{Temp}{ }^{\circ} \mathrm{C}\right)$
$V_{\text {OUT }}=+1,000 \mathrm{mV}$ at $+100^{\circ} \mathrm{C}$
$=+250 \mathrm{mV}$ at $+25^{\circ} \mathrm{C}$
$=-200 \mathrm{mV}$ at $-20^{\circ} \mathrm{C}$
FIGURE 2. Full-Range Centigrade Temperature Sensor $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

National Semiconductor

LM50

SOT-23 Single-Supply Centigrade Temperature Sensor

General Description

The LM50 is a precision integrated-circuit temperature sensor that can sense a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range using a single positive supply. The LM50's output voltage is linearly proportional to Celsius (Centigrade) temperature $\left(+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ and has a DC offset of +500 mV . The offset allows reading negative temperatures without the need for a negative supply. The ideal output voltage of the LM50 ranges from +100 mV to +1.75 V for a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM50 does not require any external calibration or trimming to provide accuracies of $\pm 3^{\circ} \mathrm{C}$ at room temperature and $\pm 4^{\circ} \mathrm{C}$ over the full $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Trimming and calibration of the LM50 at the wafer level assure low cost and high accuracy. The LM50's linear output, +500 mV offset, and factory calibration simplify circuitry required in a single supply environment where reading negative temperatures is required. Because the LM50's quiescent current is less than $130 \mu \mathrm{~A}$, self-heating is limited to a very low $0.2^{\circ} \mathrm{C}$ in still air.

Applications

- Computers
- Disk Drives
- Battery Management
- Automotive
- FAX Machines
- Printers
- Portable Medical Instruments
- HVAC
- Power Supply Modules

Features

- Calibrated directly in degree Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $\pm 2^{\circ} \mathrm{C}$ accuracy guaranteed at $+25^{\circ} \mathrm{C}$
- Specified for full -40° to $+125^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4.5 V to 10 V
- Less than $130 \mu \mathrm{~A}$ current drain
- Low self-heating, less than $0.2^{\circ} \mathrm{C}$ in still air
- Nonlinearity less than $0.8^{\circ} \mathrm{C}$ over temp

Connection Diagram

Order Number	SOT-23 Device Marking	Supplied As
LM50BIM3	T5B	1000 Units on Tape and Reel
LM50CIM3	T5C	1000 Units on Tape and Reel
LM50BIM3X	T5B	3000 Units on Tape and Reel
LM50CIM3X	T5C	3000 Units on Tape and Reel

Typical Application

FIGURE 1. Full-Range Centigrade Temperature Sensor ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

LM56

Dual Output Low Power Thermostat

General Description

The LM56 is a precision low power thermostat. Two stable temperature trip points ($\mathrm{V}_{\mathrm{T} 1}$ and $\mathrm{V}_{\mathrm{T} 2}$) are generated by dividing down the LM56 1.250V bandgap voltage reference using 3 external resistors. The LM56 has two digital outputs. OUT1 goes LOW when the temperature exceeds T 1 and goes HIGH when the the temperature goes below ($\mathrm{T} 1-\mathrm{T}_{\text {HYST }}$). Similarly, OUT2 goes LOW when the temperature exceeds T2 and goes HIGH when the temperature goes below ($\mathrm{T} 2-\mathrm{T}_{\text {HYST }}$). $\mathrm{T}_{\text {HYST }}$ is an internally set $5^{\circ} \mathrm{C}$ typical hysteresis. The LM56 is available in an 8-lead Mini-SO8 surface mount package and an 8 -lead small outline package.

Applications

- Microprocessor Thermal Management
- Appliances
- Portable Battery Powered 3.0V or 5V Systems
- Fan Control
- Industrial Process Control
- HVAC Systems
- Remote Temperature Sensing
- Electronic System Protection

Features

- Digital outputs support TTL logic levels
- Internal temperature sensor
- 2 internal comparators with hysteresis
- Internal voltage reference
- Currently available in 8 -pin SO plastic package
- Future availability in the 8 -pin Mini-SO8 package

Key Specifications

- Power Supply Voltage	$2.7 \mathrm{~V}-10 \mathrm{~V}$
- Power Supply Current	$230 \mu \mathrm{~A}(\max)$
V $\mathrm{V}_{\text {REF }}$	$1.250 \mathrm{~V} \pm 1 \%(\max)$
Hysteresis Temperature	$5^{\circ} \mathrm{C}$
- Internal Temperature Sensor	

I Internal Temperature Sensor
Output Voltage
($+6.20 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}$) +395 mV

- Temperature Trip Point Accuracy:

	LM56BIM	LM56CIM
$+25^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}(\max)$	$\pm 3^{\circ} \mathrm{C}(\max)$
$+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}(\max)$	$\pm 3^{\circ} \mathrm{C}(\max)$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}(\max)$	$\pm 4^{\circ} \mathrm{C}(\max)$

Simplified Block Diagram and Connection Diagram

Order Number	LM56BIM	LM56BIMX	LM56CIM	LM56CIMX	LM56BIMM	LM56BIMMX	LM56CIMM	LM56CIMMX
NS Package Number	M08A	M08A	M08A	M08A	MUA08A	MUA08A	MUA08A	MUA08A
	SOP-8	SOP-8	SOP-8	SOP-8	MSOP-8	MSOP-8	MSOP-8	MSOP-8
Transport Media	Rail	2500 Units Reel	Rail	2500 Units Reel	Rail	Tape \& Reel Tan	Rail	3500 Units Tape \& Reel
Package Marking	LM56BIM	LM56BIM	LM56CIM	LM56CIM	T02B	T02B	T02C	T02C

Typical Application

$V_{T 1}=1.250 \mathrm{~V} \times(\mathrm{R} 1) /(\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3)$
$V_{T 2}=1.250 \mathrm{~V} \times(R 1+R 2) /(R 1+R 2+R 3)$
where:
$(R 1+R 2+R 3)=27 \mathrm{k} \Omega$ and
$\mathrm{V}_{\mathrm{T} 1}$ or $\mathrm{T} 2=\left[6.20 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}\right]+395 \mathrm{mV}$ therefore:
$\mathrm{R} 1=\mathrm{V}_{\mathrm{T} 1} /(1.25 \mathrm{~V}) \times 27 \mathrm{k} \Omega$
$R 2=\left(\mathrm{V}_{\mathrm{T} 2} /(1.25 \mathrm{~V}) \times 27 \mathrm{k} \Omega\right)-\mathrm{R} 1$
$R 3=27 \mathrm{k} \Omega-\mathrm{R} 1-\mathrm{R} 2$
FIGURE 1. Microprocessor Thermal Management

LM60

2.7V, SOT-23 Temperature Sensor

General Description

The LM60 is a precision integrated-circuit temperature sensor that can sense a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range while operating from a single +2.7 V supply. The LM60's output voltage is linearly proportional to Celsius (Centigrade) temperature ($+6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) and has a DC offset of +424 mV . The offset allows reading negative temperatures without the need for a negative supply. The nominal output voltage of the LM60 ranges from +174 mV to +1205 mV for $\mathrm{a}-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM60 is calibrated to provide accuracies of $\pm 2.0^{\circ} \mathrm{C}$ at room temperature and $\pm 3^{\circ} \mathrm{C}$ over the full $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
The LM60's linear output, +424 mV offset, and factory calibration simplify external circuitry required in a single supply environment where reading negative temperatures is required. Because the LM60's quiescent current is less than $110 \mu \mathrm{~A}$, self-heating is limited to a very low $0.1^{\circ} \mathrm{C}$ in still air. Shutdown capability for the LM60 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates.

Features

- Calibrated linear scale factor of $+6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- Rated for full -40° to $+125^{\circ} \mathrm{C}$ range

Connection Diagram

See NS Package Number MA03B Order Information

Order Number	SOT-23 Device Marking	Supplied As
LM60BIM3	T6B	1000 Units on Tape and Reel
LM60BIM3X	T6B	3000 Units on Tape and Reel
LM60CIM3	T6C	1000 Units on Tape and Reel
LM60CIM3X	T6C	3000 Units on Tape and Reel

- Suitable for remote applications

Applications

- Cellular Phones
- Computers
- Power Supply Modules
- Battery Management
- FAX Machines
- Printers
- HVAC
- Disk Drives
- Appliances

Key Specifications

- Accuracy at $25^{\circ} \mathrm{C}$: ± 2.0 and $\pm 3.0^{\circ} \mathrm{C}$ (max)
- Accuracy for $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$: $\quad \pm 4.0^{\circ} \mathrm{C}$ (max)
- Accuracy for $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$: $\pm 3.0^{\circ} \mathrm{C}$ (max)
- Temperature Slope: $+6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- Power Supply Voltage Range: +2.7 V to +10 V
- Current Drain @ $25^{\circ} \mathrm{C}$: $110 \mu \mathrm{~A}$ (max)
- Nonlinearity: $\pm 0.8^{\circ} \mathrm{C}$ (max)
- Output Impedance: 800Ω (max)

Typical Application

$V_{\mathrm{O}}=\left(+6.25 \mathrm{mV} /^{\circ} \mathrm{C} \times \mathrm{T}^{\circ} \mathrm{C}\right)+424 \mathrm{mV}$

Temperature (T)	Typical $\mathrm{V}_{\mathbf{O}}$
$+125^{\circ} \mathrm{C}$	+1205 mV
$+100^{\circ} \mathrm{C}$	+1049 mV
$+25^{\circ} \mathrm{C}$	+580 mV
$0^{\circ} \mathrm{C}$	+424 mV
$-25^{\circ} \mathrm{C}$	+268 mV
$-40^{\circ} \mathrm{C}$	+174 mV

FIGURE 1. Full-Range Centigrade Temperature Sensor $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ Operating from a Single Li -lon Battery Cell

LM61

2.7V, SOT-23 or TO-92 Temperature Sensor

General Description

The LM61 is a precision integrated-circuit temperature sensor that can sense a $-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ temperature range while operating from a single +2.7 V supply. The LM61's output voltage is linearly proportional to Celsius (Centigrade) temperature ($+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) and has a DC offset of +600 mV . The offset allows reading negative temperatures without the need for a negative supply. The nominal output voltage of the LM61 ranges from +300 mV to +1600 mV for $\mathrm{a}-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ temperature range. The LM61 is calibrated to provide accuracies of $\pm 2.0^{\circ} \mathrm{C}$ at room temperature and $\pm 3^{\circ} \mathrm{C}$ over the full $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
The LM61's linear output, +600 mV offset, and factory calibration simplify external circuitry required in a single supply environment where reading negative temperatures is required. Because the LM61's quiescent current is less than $125 \mu \mathrm{~A}$, self-heating is limited to a very low $0.2^{\circ} \mathrm{C}$ in still air. Shutdown capability for the LM61 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates.

Features

- Calibrated linear scale factor of $+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- Rated for full -30° to $+100^{\circ} \mathrm{C}$ range
- Suitable for remote applications

Applications

- Cellular Phones
- Computers
- Power Supply Moduies
- Battery Management
- FAX Machines
- Printers
- HVAC
- Disk Drives
- Appliances

Key Specifications

\(\left.\begin{array}{lr}- Accuracy at 25^{\circ} \mathrm{C} \& \pm 2.0 or \pm 3.0^{\circ} \mathrm{C}

(max)\end{array}\right]\)| - Accuracy for $-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ | $\pm 4.0^{\circ} \mathrm{C}$ (max) |
| :--- | ---: |
| - Accuracy for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\pm 3.0^{\circ} \mathrm{C}(\max)$ |
| - Temperature Slope | $+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| - Power Supply Voltage Range | +2.7 V to +10 V |
| Current Drain @ $25^{\circ} \mathrm{C}$ | $125 \mu \mathrm{~A}$ (max) |
| Nonlinearity | $\pm 0.8^{\circ} \mathrm{C}$ (max) |
| Output Impedance | 800Ω (max) |

Typical Application

$\mathrm{V}_{\mathrm{O}}=\left(+10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}^{\circ} \mathrm{C}\right)+600 \mathrm{mV}$

Temperature (T)	Typical $\mathbf{V}_{\mathbf{O}}$
$+100^{\circ} \mathrm{C}$	+1600 mV
$+85^{\circ} \mathrm{C}$	+1450 mV
$+25^{\circ} \mathrm{C}$	+850 mV
$0^{\circ} \mathrm{C}$	+600 mV
$-25^{\circ} \mathrm{C}$	+350 mV
$-30^{\circ} \mathrm{C}$	+300 mV

FIGURE 1. Full-Range Centigrade Temperature Sensor ($-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$) Operating from a Single Li-Ion Battery Cell

Connection Diagrams

Top View
See NS Package Number MA03B

TO-92

DS012897-25
Top View
See NS Package Number Z03A

Ordering Information

Order Number	Device Marking	Supplied In	Accuracy Over Specified Temperature Range (${ }^{\circ} \mathrm{C}$)	Specified Temperature Range	Package Type
LM61BIM3	T1B	1000 Units on Tape and Reel		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23
LM61BIM3X	T1B	3000 Units on Tape and Reel	\pm	to +85	
LM61CIM3	T1C	1000 Units on Tape and Reel	± 4	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
LM61CIM3X	T1C	3000 Units on Tape and Reel			
LM61BIZ	LM61BIZ	Bulk	± 3	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-92
LM61CIZ	LM61CIZ	Bulk	± 4	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	

National Semiconductor

LM62

2.7V, $15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ SOT-23 Temperature Sensor

General Description

The LM62 is a precision integrated-circuit temperature sensor that can sense a $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ temperature range while operating from a single +3.0 V supply. The LM62's output voltage is linearly proportional to Celsius (Centigrade) temperature ($+15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) and has a DC offset of +480 mV . The offset allows reading temperatures down to $0^{\circ} \mathrm{C}$ without the need for a negative supply. The nominal output voltage of the LM62 ranges from +480 mV to +1884 mV for a $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ temperature range. The LM62 is calibrated to provide accuracies of $\pm 2.0^{\circ} \mathrm{C}$ at room temperature and $+2.5^{\circ} \mathrm{C} /$ $-2.0^{\circ} \mathrm{C}$ over the full $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ temperature range.
The LM62's linear output, +480 mV offset, and factory calibration simplify external circuitry required in a single supply environment where reading temperatures down to $0^{\circ} \mathrm{C}$ is required. Because the LM62's quiescent current is less than $130 \mu \mathrm{~A}$, self-heating is limited to a very low $0.2^{\circ} \mathrm{C}$ in still air. Shutdown capability for the LM62 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates.

Features

- Calibrated linear scale factor of $+15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- Rated for full $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ range with 3.0 V supply
- Suitable for remote applications

Applications

- Cellular Phones
- Computers
- Power Supply Modules
- Battery Management
- FAX Machines
- Printers
- HVAC
- Disk Drives
- Appliances

Key Specifications

- Accuracy at $25^{\circ} \mathrm{C}$	± 2.0 or $\pm 3.0^{\circ} \mathrm{C}$
	(\max)
■ Temperature Slope	$+15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
■ Power Supply Voltage Range	+2.7 V to +10 V
Current Drain @ $25^{\circ} \mathrm{C}$	$130 \mu \mathrm{~A}(\max)$
Nonlinearity	$\pm 0.8^{\circ} \mathrm{C}(\max)$
Output Impedance	$4.7 \mathrm{k} \Omega$ (max)

Connection Diagram

Top View
See NS Package Number MA03B

Ordering Information

Order Number	SOT-23 Device Marking	Supplied As
LM62BIM3	T7B	1000 Units on Tape and Reel
LM62BIM3X	T7B	3000 Units on Tape and Reel
LM62CIM3	T7C	1000 Units on Tape and Reel
LM62CIM3X	T7C	3000 Units on Tape and Reel

Typical Application

$V_{O}=\left(+15.6 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}^{\circ} \mathrm{C}\right)+480 \mathrm{mV}$

Temperature (T)	Typical $\mathbf{V}_{\mathbf{O}}$
$+90^{\circ} \mathrm{C}$	+1884 mV
$+70^{\circ} \mathrm{C}$	+1572 mV
$+25^{\circ} \mathrm{C}$	870 mV
$0^{\circ} \mathrm{C}$	+480 mV

FIGURE 1. Full-Range Centigrade Temperature Sensor $\left(0^{\circ} \mathrm{C}\right.$ to $+90^{\circ} \mathrm{C}$) Stabilizing a Crystal Oscillator

LM66

Dual Output Internally Preset Thermostat

General Description

The LM66 is a precision low power thermostat. Two stable temperature trip points $\left(\mathrm{V}_{\mathrm{T} 1}\right.$ and $\left.\mathrm{V}_{\mathrm{T} 2}\right)$ are generated by dividing down the LM66 1.250 V bandgap voltage reference using a resistors divider network. The LM66 has two digital outputs. OUT1 goes LOW when the temperature exceeds T1 and goes HIGH when the the temperature goes below ($\mathrm{T} 1-\mathrm{T}_{\mathrm{HYST}}$). Similarly, OUT2 goes LOW when the temperature exceeds T2 and goes HIGH when the temperature goes below (T2-T $\mathrm{T}_{\text {HYST }}$). $\mathrm{T}_{\text {HYST }}$ is an internally set $5^{\circ} \mathrm{C}$ typical hysteresis.

The LM66 is currently available in an 8-lead small outline package.

Applications

- Microprocessor Thermal Management
- Appliances
- Portable Battery Powered 3.0V or 5V Systems
- Fan Control
- Industrial Process Control
- HVAC Systems
- Remote Temperature Sensing

Simplified Block Diagram and Connection Diagram

- Electronic System Protection

Features

- Digital outputs support TTL logic levels
- Internal temperature sensor
- 2 internal comparators with hysteresis
- Internal voltage reference
- Currently available in 8 -pin SO plastic package

Key Specifications

- Power Supply Voltage 2.7 V to 10 V
- Power Supply Current $250 \mu \mathrm{~A}$ (max)
- $V_{\text {REF }}$
$1.250 \mathrm{~V} \pm 1.4 \%$ (max)
■ Hysteresis Temperature
- Internal Temperature Sensor

Output Voltage
$\left(+6.20 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}\right)+400 \mathrm{mV}$

- Temperature Trip Point Accuracy
$\pm 3^{\circ} \mathrm{C}$ (max)
- T1 set point $+73^{\circ} \mathrm{C}$
- T2 set point

Ordering Information

TABLE 1.

Order Number	LM66CIM- RLSKB	LM66CIMX- RLSKB
NS Tackage Number	M08A	M08A
Transport Media	Bulk Rail	2500 Units Tape \& Reel

Typical Application

LM70

SPI/MICROWIRE 10-Bit Plus Sign Digital Temperature

Sensor

General Description

The LM70 is a temperature sensor, Delta-Sigma analog-to-digital converter with an SPI and MICROWIRE compatible interface available in LLP and MSOP 8-pin packages. The host can query the LM70 at any time to read temperature. A shutdown mode decreases power consumption to less than $10 \mu \mathrm{~A}$. This mode is useful in systems where low average power consumption is critical.
The LM70 has 10-bit plus sign temperature resolution $\left(0.25^{\circ} \mathrm{C}\right.$ per LSB) while operating over a temperature range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The LM70's 2.65 V to 5.5 V supply voltage range, low supply current and simple SPI interface make it ideal for a wide range of applications. These include thermal management and protection applications in hard disk drives, printers, electronic test equipment, and office electronics.

Applications

- System Thermal Management
- Personal Computers
- Disk Drives
- Office Electronics
- Electronic Test Equipment

Features

- $0.25^{\circ} \mathrm{C}$ temperature resolution.
- Shutdown mode conserves power between temperature reading
- SPI and MICROWIRE Bus interface
- MSOP-8 and LLP-8 packages save space

Key Specifications

- Supply Voltage		2.65 V to 5.5 V
Supply Current	operating	$260 \mu \mathrm{~A}$ (typ)
		$490 \mu \mathrm{~A}$ (max)
	shutdown	$12 \mu \mathrm{~A}$ (typ)
Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}(\max)$
Accuracy	$-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	$+1.5 /-2^{\circ} \mathrm{C}(\max)$
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$+3 /-2^{\circ} \mathrm{C}($ max $)$
	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$+3.5 /-2^{\circ} \mathrm{C}$ (max)

Simplified Block Diagram

DS101223-1

Connection Diagrams

LLP-8

Ds101223.25
TOP VIEW NS Package Number LDA08A

Ordering Information

Order Number	Package Marking	NS Package Number	Supply Voltage	Transport Media
LM70CILD-3	T33	LLP-8, LDA08A	2.65 V to 3.6V	_ Units in Rail
LM70CILDX-3	T33	LLP-8, LDA08A	2.65 V to 3.6V	- Units in Rail
LM70CILD-5	T35	LLP-8, LDA08A	4.5 V to 5.5V	_ Units in Tape and Reel
LM70CILDX-5	T35	LLP-8, LDA08A	4.5 V to 5.5 V	- Units in Tape and Reel
LM70CIMM-3	T04C	MSOP-8, MUA08A	2.65 V to 3.6V	250 Units in Rail
LM70CIMMX-3	T04C	MSOP-8, MUA08A	2.65 V to 3.6V	3500 Units in Tape and Reel
LM70CIMM-5	T03C	MSOP-8, MUA08A	4.5 V to 5.5 V	250 Units in Rail
LM70CIMMX-5	T03C	MSOP-8, MUA08A	4.5 V to 5.5 V	3500 Units in Tape and Reel

Pin Descriptions

Label	SOP-8 Pin \#	LLP-8 Pin \#	Function	Typical Connection
SI/O	1	1	Input/Output - Serial bus bi-directional data line. Schmitt trigger input.	From and to Controller
SC	2	3	Clock - Serial bus clock Schmitt trigger input line.	From Controller
GND	4	7	Power Supply Ground	Ground
V^{+}	5	5	Positive Supply Voltage Input	DC Voltage from 2.65V to 5.5V. Bypass with a 0.1 $\mu \mathrm{F}$ ceramic capacitor.
$\overline{\mathrm{CS}}$	7	8	Chip Select input.	From Controller
NC	$3,6,8$	$2,4,6$	No Connect	These pins are not connected to the LM70 die in any way.

Typical Application

FIGURE 1. COP Microcontroller Interface

LM74

SPI/MICROWIRE ${ }^{\text {TM }}$ 12-Bit Plus Sign Temperature Sensor

General Description

The LM74 is a temperature sensor, Delta-Sigma analog-to-digital converter with an SPI and MICROWIRE compatible interface. The host can query the LM74 at any time to read temperature. A shutdown mode decreases power consumption to less than $10 \mu \mathrm{~A}$. This mode is useful in systems where low average power consumption is critical.
The LM74 has 12-bit plus sign temperature resolution $\left(0.0625^{\circ} \mathrm{C}\right.$ per LSB) while operating over a temperature range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The LM74's 3.0 V to 5.5 V supply voltage range, low supply current and simple SPI interface make it ideal for a wide range of applications. These include thermal management and protection applications in hard disk drives, printers, electronic test equipment, and office electronics. The LM74 is available in the SO-8 package as well as an 5-Bump micro SMD package.

Applications

- System Thermal Management
- Personal Computers
- Disk Drives
- Office Electronics
- Electronic Test Equipment

Features

- $0.0625^{\circ} \mathrm{C}$ temperature resolution.
- Shutdown mode conserves power between temperature reading
- SPI and MICROWIRE Bus interface
- 5-Bump micro SMD package saves space

Key Specifications

■ Supply Voltage		3.0 V or 2.65 V
	to 5.5 V	
■ Supply Current	operating	$265 \mu \mathrm{~A}$ (typ)
		$520 \mu \mathrm{~A}(\max)$
	shutdown	$3 \mu \mathrm{~A}$ (typ)
Temperature	$-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	$\pm 1.25^{\circ} \mathrm{C}(\max)$
Accuracy	$-25^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$	$\pm 2.1^{\circ} \mathrm{C}($ max $)$
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}($ max $)$

Simplified Block Diagram

Connection Diagram

5-Bump micro SMD

Note:

- Pin numbers are referenced to the package marking text orientation. Pin 1 is designated by the square.
- Reference JEDEC Registration MO-211, variation BC
- The top 4 characters designate the date code. The bottom 3 characters designate the device type (see ordering information).

TOP VIEW
NS Package Number BPD05MPB

Ordering Information

Order Number	Package Marking	NS Package Number	Supply Voltage	Transport Media
LM74CIM-3	LM74CIM-3	SO-8, M08A	3.0 V to 3.6V	95 Units in Raii
LM74CIMX-3	LM74CIM-3	SO-8, M08A	3.0 V to 3.6V	2500 Units in Tape and Reel
LM74CIM-5	LM74CIM-5	SO-8, M08A	4.5 V to 5.5 V	95 Units in Rail
LM74CIMX-5	LM74CIM-5	SO-8, M08A	4.5 V to 5.5 V	2500 Units in Tape and Reel
LM74CIBP-3	T8	micro SMD, BPD05MPB	2.65 V to 3.6V	250 Units in Tape and Reel
LM74CIBPX-3	T8	micro SMD, BPD05MPB	2.65 V to 3.6V	3000 Units in Tape and Reel
LM74CIBP-5	T9	micro SMD, BPD05MPB	4.5 V to 5.5 V	250 Units in Tape and Reel
LM74CIBPX-5	T9	micro SMD, BPD05MPB	4.5 V to 5.5 V	3000 Units in Tape and Reel

Pin Descriptions

Label	SO-8 Pin \#	micro SMD Pin \#	Function	Typical Connection
SI/O	1	1	Slave Input/Output - Serial bus bi-directional data line. Shmitt trigger input.	From and to Controller
SC	2	5	Slave Clock - Serial bus clock Shmitt trigger input line.	From Controller
NC	3		No Connection	No Connection
GND	4	4	Power Supply Ground	Ground
NC	5		No Connection	No Connection
NC	6		No Connection	No Connection
$\overline{\mathrm{CS}}$	7	3	Chip Select input.	From Controller
V^{+}	8	2	Positive Supply Voltage Input	DC Voltage from 3.0V to 5.5V for the LM74CIM and 2.65V to 5.5V for the LM74CIBP. Bypass with a 0.1 LF ceramic capacitor.

Typical Application

FIGURE 1. COP Microcontroller Interface

National Semiconductor

LM75
 Digital Temperature Sensor and Thermal watchdog with Two-Wire Interface

General Description

The LM75 is a temperature sensor, Delta-Sigma analog-to-digital converter, and digital over-temperature detector with $I^{2} \mathrm{C}^{\circledR}$ interface. The host can query the LM75 at any time to read temperature. The open-drain Overtemperature Shutdown (O.S.) output becomes active when the temperature exceeds a programmable limit. This pin can operate in either "Comparator" or "Interrupt" mode.
The host can program both the temperature alarm threshold ($T_{\text {os }}$) and the temperature at which the alarm condition goes away ($\mathrm{T}_{\text {HYST }}$). In addition, the host can read back the contents of the LM75's Tos and THYST registers. Three pins (A0, A1, A2) are available for address selection. The sensor powers up in Comparator mode with default thresholds of $80^{\circ} \mathrm{C}$ T_{OS} and $75^{\circ} \mathrm{C} \mathrm{T}_{\text {HYST }}$.
The LM75's 3.0 V to 5.5 V supply voltage range, low supply current and $I^{2} \mathrm{C}$ interface make it ideal for a wide range of applications. These include thermal management and protection applications in personal computers, electronic test equipment, and office electronics.

Features

- SOP-8 and Mini SOP-8 (MSOP) packages save space
- $I^{2} \mathrm{C}$ Bus interface
- Separate open-drain output pin operates as interrupt or comparator/thermostat output
- Register readback capability
- Power up defaults permit stand-alone operation as thermostat
- Shutdown mode to minimize power consumption
- Up to 8 LM75s can be connected to a single bus

Key Specifications

- Supply Voltage		3.0 V to 5.5 V
Supply Current	operating	$250 \mu \mathrm{~A}$ (typ)
		$1 \mathrm{~mA}(\max)$
	shutdown	$4 \mu \mathrm{~A}$ (typ)
Temperature	$-25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}(\max)$
Accuracy	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}($ max $)$

Applications
 - System Thermal Management
 - Personal Computers
 - Office Electronics
 - Electronic Test Equipment

Simplified Block Diagram

SOP-8 and Mini SOP-8

Ordering Information

Order Number	Package Marking	NS Package Number	Supply Voltage	Transport Media
LM75CIM-3	LM75CIM-3	M08A (SOP-8)	3.3 V	
LM75CIMX-3	LM75CIM-3	M08A (SOP-8)	3.3 V	2500 Units on Tape and Reel
LM75CIMM-3	T01C	MUA08A (MSOP-8)	3.3 V	250 Units in Rail
LM75CIMMX-3	T01C	MUA08A (MSOP-8)	3.3 V	3500 Units on Tape and Reel
LM75CIM-5	LM75CIM-5	M08A (SOP-8)	5 V	
LM75CIMX-5	LM75CIM-5	M08A (SOP-8)	5 V	2500 Units on Tape and Reel
LM75CIMM-5	T00C	MUA08A (MSOP-8)	5 V	250 Units in Rail
LM75CIMMX-5	T00C	MUA08A (MSOP-8)	5 V	3500 Units on Tape and Reel

Pin Description

Label	Pin \#	Function	Typical Connection
SDA	1	$1^{2} \mathrm{C}$ Serial Bi-Directional Data Line. Open Drain.	From Controller, tied to a pull-up
SCL	2	$\mathrm{I}^{2} \mathrm{C}$ Clock Input	From Controller
O.S.	3	Overtemperature Shutdown Open Drain Output	Pull Up Resistor, Controller Interrupt Line
GND	4	Power Supply Ground	Ground
$+V_{S}$	8	Positive Supply Voltage Input	DC Voltage from 3V to 5.5 V
A0-A2	$7,6,5$	User-Set I ${ }^{2} C$ Address Inputs	Ground (Low, "0") or $+\mathrm{V}_{\mathrm{S}}$ (High, "1")

FIGURE 1. Typical Application

LM76

$\pm 0.5^{\circ} \mathrm{C}, \pm 1^{\circ} \mathrm{C}, 12$-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface

General Description

The LM76 is a digital temperature sensor and thermal window comparator with an $I^{2} C^{\top M}$ Serial Bus interface with an accuracy of $\pm 1^{\circ} \mathrm{C}$. This accuracy for the LM76CHM is specified for a $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ temperature range, while for the LM76CNM the temperature range is $70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The LM76CHM is specified with an accuracy $\pm 0.5^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$. The window-comparator architecture of the LM76 eases the design of temperature control systems conforming to the ACPI (Advanced Configuration and Power Interface) specification for personal computers. The open-drain Interrupt (INT) output becomes active whenever temperature goes outside a programmable window, while a separate Critical Temperature Alarm (T_CRIT_A) output becomes active when the temperature exceeds a programmable critical limit. The INT output can operate in either a comparator or event mode, while the T_CRIT_A output operates in comparator mode only.
The host can program both the upper and lower limits of the window as well as the critical temperature limit. Programmable hysterisis as well as a fault queue are available to minimize false tripping. Two pins (A0, A1) are available for address selection. The sensor powers up with default thresholds of $2^{\circ} \mathrm{C} \mathrm{T}_{\text {HYST }}, 10^{\circ} \mathrm{C} \mathrm{T}_{\text {LOW }}, 64^{\circ} \mathrm{C} \mathrm{T}_{\text {HIGH }}$, and $80^{\circ} \mathrm{C}$ T_CRIT.
The LM76's 3.3 V and 5.0 V supply voltage, Serial Bus interface, 12 -bit + sign output, and full-scale range of over $127^{\circ} \mathrm{C}$ make it ideal for a wide range of applications. These inciude thermal management and protection applications in personal computers, electronic test equipment, office electronics and bio-medical applications.

Features

- Window comparison simplifies design of ACPI compatible temperature monitoring and control.
- Serial Bus interface
- Separate open-drain outputs for Interrupt and Critical Temperature shutdown
- Shutdown mode to minimize power consumption
- Up to 4 LM76s can be connected to a single bus
- 12 -bit + sign output; full-scale reading of over $127^{\circ} \mathrm{C}$

Key Specifications

■ Supply Voltage		3.3 V or 5.0 V
- Supply Current	operating	$250 \mu \mathrm{~A}($ typ $)$
		$450 \mu \mathrm{~A}(\max)$
	shutdown	$8 \mu \mathrm{~A}(\max)$
Temperature	$+25^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}(\max)$
Accuracy	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	$\pm 1.0^{\circ} \mathrm{C}(\max)$
	$70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$\pm 1.0^{\circ} \mathrm{C}(\max)$
Resolution		$0.0625^{\circ} \mathrm{C}$

Applications

- System Thermal Management
- Personal Computers
- Office Electronics
- HVAC

Simplified Block Diagram

LM76 See NS Package Number M08A

Ordering Information

Order Number	Supply Voltage	Acurracy	Temperature Range for Accuracy	Transport Media
LM76CHM-5	5.0 V	$\pm 0.5^{\circ} \mathrm{C}$ $\pm 1.0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$ $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$	95 units in Rail
LM76CHMX-5	5.0 V	$\pm 0.5^{\circ} \mathrm{C}$ $\pm 1.0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$ $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$	2500 Units on Tape and Reel
LM76CNM-3	3.3 V	$\pm 1^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	95 units in Rail
LM76CNMX-3	3.3 V	$\pm 1^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	2500 Units on Tape and Reel

Pin Description

Label	Pin \#	Function	Typical Connection
SDA	1	Serial Bi-Directional Data Line, Open Drain Output, CMOS Logic Level	Pull Up Resistor, Controller I²C Data Line
SCL	2	Serial Bus Clock Input, CMOS Logic Level	From Controller I²C Clock Line
T_CRIT_A	3	Critical Temperature Alarm, Open Drain Output	Pull Up Resistor, Controlier Interrupt Line or System Hardware Shutdown
GND	4	Power Supply Ground	Ground
INT	5	Interrupt, Open Drain Output	Pull Up Resistor, Controller Interrupt Line
$+V_{S}$	8	Positive Supply Voltage Input	DC Voltage from 3.3V power supply or $5 V$.
A0-A1	7,6	User-Set Address Inputs, TTL Logic Level	Ground (Low, "0") or $+V_{\mathrm{S}}$ (High, "1")

FIGURE 1. Typical Application

LM77

9-Bit + Sign Digital Temperature Sensor and Thermal Window Comparator with Two-Wire Interface

General Description

The LM77 is a digital temperature sensor and thermal window comparator with an $I^{2} \mathrm{C}^{\mathrm{TM}}$ Serial Bus interface. The window-comparator architecture of the LM77 eases the design of temperature control systems conforming to the ACPI (Advanced Configuration and Power Interface) specification for personal computers. The open-drain Interrupt (INT) output becomes active whenever temperature goes outside a programmable window, while a separate Critical Temperature Alarm (T_CRIT_A) output becomes active when the temperature exceeds a programmable critical limit. The INT output can operate in either a comparator or event mode, while the T_CRIT_A output operates in comparator mode only.
The host can program both the upper and lower limits of the window as well as the critical temperature limit. Programmable hysterisis as well as a fault queue are available to minimize false tripping. Two pins (A0, A1) are available for address selection. The sensor powers up with default thresholds of $2^{\circ} \mathrm{C} \mathrm{T}_{\text {HYST, }} 10^{\circ} \mathrm{C} \mathrm{T}_{\text {LOW, }} 64^{\circ} \mathrm{C} \mathrm{T}_{\text {HIGH }}$, and $80^{\circ} \mathrm{C}$ T_CRIT.
The LM77's 3.0 V to 5.5 V supply voltage range, Serial Bus interface, 9 -bit + sign output, and full-scale range of over $128^{\circ} \mathrm{C}$ make it ideal for a wide range of applications. These include thermal management and protection applications in personal computers, electronic test equipment, office electronics, automotive, and HVAC applications.

Features

- Window comparison simplifies design of ACPI compatible temperature monitoring and control.
- Serial Bus interface
- Separate open-drain outputs for Interrupt and Critical Temperature shutdown
- Shutdown mode to minimize power consumption
- Up to 4 LM77s can be connected to a single bus
- 9 -bit + sign output; full-scale reading of over $128^{\circ} \mathrm{C}$

Key Specifications

- Supply Voltage		3.0 V to 5.5 V
- Supply Current	operating	$250 \mu \mathrm{~A}$ (typ)
		$500 \mu \mathrm{~A}(\max)$
	shutdown	$5 \mu \mathrm{~A}$ (typ)
	$-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	$\pm 1.5^{\circ} \mathrm{C}(\max)$
- Temperature	$-25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}($ max $)$
Accuracy	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}($ max $)$

Applications

- System Thermal Management
- Personal Computers
- Office Electronics
- Electronic Test Equipment
- Automotive
- HVAC

Simplified Block Diagram

Connection Diagram

LM77 See NS Package Number M08A

Ordering Information

Order Number	Supply Voltage	Supplied As
LM77CIM-3	3.3 V	
LM77CIMX-3	3.3 V	2500 Units on Tape and Reel
LM77CIM-5	5 V	
LM77CIMX-5	5 V	2500 Units on Tape and Reel

Pin Description

Label	Pin \#	Function	Typlcal Connection
SDA	1	Serial Bi-Directional Data Line. Open Drain Output	From Controller
SCL	2	Serial Bus Clock Input	From Controller
T_CRIT_A	3	Critical Temperature Alarm Open Drain Output	Pull Up Resistor, Controller Interrupt Line or System Hardware Shutdown
GND	4	Power Supply Ground	Ground
INT	5	Interrupt Open Drain Output	Pull Up Resistor, Controller Interrupt Line
$+V_{S}$	8	Positive Supply Voltage Input	DC Voltage from 3V to 5.5V
A0-A1	7,6	User-Set Address Inputs	Ground (Low, "0") or $+V_{\mathrm{S}}($ High, "1")

FIGURE 1. Typlcal Application

LM80

Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor

General Description

The LM80 provides 7 positive voltage inputs, temperature measurement, fan speed measurement, and hardware monitoring on an $1^{2} \mathrm{C}^{\mathrm{TM}}$ interface. The LM80 performs WATCHDOG comparisons of all measured values and an open-drain interrupt output becomes active when any values exceed programmed limits. A Chassis Intrusion input is provided to monitor and reset an external circuit designed to latch a chassis intrusion event.
The LM80 is especially suited to interface to both linear and digital temperature sensors. The 10 mV LSB and 2.56 volt input range is ideal for accepting inputs from a linear sensor such as the LM50. The BTI is used as an input from either digital or thermostat sensors such as LM75 and LM56.
The LM80's 2.8 V to 5.75 V supply voltage range, low supply current, and $\mathrm{I}^{2} \mathrm{C}$ interface make it ideal for a wide range of applications. These include hardware monitoring and protection applications in personal computers, electronic test equipment, and office electronics.

Features

- Temperature sensing
- 7 positive voltage inputs
- 2 programmable fan speed monitoring inputs
- 10 mV LSB and 2.56 V input range accepts outputs from linear temperature sensors such as the LM50
- Chassis Intrusion Detector input
- WATCHDOG comparison of all monitored values
- Separate input to show status in Interrupt Status Register of additional external temperature sensors such as the LM56 or LM75
- $1^{2} \mathrm{C}$ Serial Bus interface compatibility
- Shutdown mode to minimize power consumption
- Programmable $\overline{\text { RST_OUT} / \overline{O S}}$ pin: $\overline{\text { RST_OUT }}$ provides a Reset output; $\overline{O S}$ provides an Interrupt Output activated by an Overtemperature Shutdown event

Key Specifications

- Voltage monitoring Error		$\pm 1 \%$ (max)
Temperature Error		$\pm 3^{\circ} \mathrm{C}$ (max)
$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2.8 V to
- Supply Voltage Range		5.75 V
		0.2 mA typ
Supply Current	Operating:	$0.15 \mu \mathrm{~A}$ typ
	Shutdown:	8 Bits
ADC Resolution		$0.5^{\circ} \mathrm{C}$

Applications

- System Thermal and Hardware Monitoring for Servers and PCs
- Office Electronics
- Electronic Test Equipment and Instrumentation

Typical Application

\# Indicates Active Low ("Not")

Ordering Information

Temperature Range$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		NS Package Number	Specified Power Supply Voltage
Order Number	Device Marking		
LM80CIMT-3 ${ }^{1}$ LM80CIMTX-3 ${ }^{2}$	LM80CIMT-3	MTC24B	3.3 V
LM80CIMT-5 ${ }^{1}$ LM80CIMTX-5 ${ }^{2}$	LM80CIMT-5	MTC24B	5.0 V

Note: ${ }^{1}$-Rail transport media, 62 parts per rail
${ }^{2}$-Tape and reel transport media, 3400 parts per reel

Connection Diagram

Block Diagram

Pin Descriptions

Pin Name(s)	Pin Number	Number of Pins	Type	Description
$\overline{\text { INT_IN }}$	1	1	Digital Input	This is an active low input that propagates the $\overline{\mathbb{I N T} _I N}$ signal to the $\overline{\text { INT }}$ output of the LM80 via Interrupt Mask Register 1 Bit 7 and $\overline{\text { INT }}$ enable Bit 1 of the Configuration Register.
SDA	2	1	Digital I/O	Serial Bus bidirectional Data. Open-drain output.
SCL	3	1	Digital Input	Serial Bus Clock.

Pin Descriptions (Continued)

$\begin{gathered} \text { Pin } \\ \text { Name(s) } \end{gathered}$	Pin Number	Number of Pins	Type	Description
FAN1-FAN2	4-5	2	Digital Inputs	0 to V^{+}fan tachometer inputs.
$\overline{\mathrm{BTI}}$	6	1	Digital Input	Board Temperature Interrupt driven by O.S. outputs of additional temperature sensors such as LM75. Provides internal pull-up of $10 \mathrm{k} \Omega$.
Cl (Chassis Intrusion)	7	1	Digital I/O	An active high input from an external circuit which latches a Chassis Intrusion event. This line can go high without any clamping action regardless of the powered state of the LM80. The LM80 provides an internal open drain on this line, controlled by Bit 5 of the Configuration Register, to provide a minimum 10 ms reset of this line.
GND	8	1	GROUND	Internally connected to all of the digital circuitry.
$\begin{aligned} & \hline \mathrm{V}^{+}(+2.8 \mathrm{~V} \text { to } \\ & +5.75 \mathrm{~V}) \end{aligned}$	9	1	POWER	+3.3 V or $+5 \mathrm{~V} \mathrm{~V}^{+}$power. Bypass with the parallel combination of $10 \mu \mathrm{~F}$ (electrolytic or tantalum) and $0.1 \mu \mathrm{~F}$ (ceramic) bypass capacitors.
$\overline{\mathrm{INT}}$	10	1	Digital Output	Non-Maskable Interrupt (open source)/Interrupt Request (open drain). The mode is selected with Bit 5 of the Configuration Register and the output is enabled when Bit 1 of the Configuration Register is set to 1 . The default state is disabled.
$\begin{aligned} & \hline \overline{\overline{\mathrm{GPO}}}(\overline{\text { Power }} \\ & \overline{\text { Switch Bypass }}) \end{aligned}$	11	1	Digital Output	An active low open drain output intended to drive an external P-channel power MOSFET for software power control.
$\frac{\overline{\text { NTEST_IN/ } / 2}}{\overline{\text { RESET_IN }}}$	12	1	Digital Input	An active-low input that enables NAND Tree board-level connectivity testing. Refer to Section 10.0 on NAND Tree testing. Whenever NAND Tree connectivity is enabled the LM80 is also reset to its power on state.
$\overline{\text { RST_OUT/OS }}$	13	1	Digital Output	Master Reset, 5 mA driver (open drain), active low output with a 10 ms minimum pulse width. Available when enabled via Bit 4 in Configuration Register and Bit 7 of the Fan Divisor//ㅈST_OUT/OS Register. Bit 6 of the Fan Divisor/RST_OUT/OS Register enables this output as an active low Overtemperature Shutdown ($\overline{\mathrm{OS}}$).
GNDA	14	1	GROUND	Internally connected to all analog circuitry. The ground reference for all analog inputs. This pin needs to be taken to a low noise analog ground plane for optimum performance.
IN6-IN0	15-21	7	Analog Inputs	OV to 2.56 V full scale range Analog Inputs.
A0/NTEST_OUT	22	1	Digital I/O	The lowest order bit of the Serial Bus Address. This pin functions as an output when doing a NAND Tree test.
A1-A2	23-24	2	Digital Inputs	The two highest order bits of the Serial Bus Address.
TOTAL PINS		24		

LM81

Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor

General Description

The LM81 is a highly integrated data acquisition system for hardware monitoring of servers, Personal Computers, or virtually any microprocessor-based system. In a PC, the LM81 can be used to monitor power supply voltages, temperatures, and fan speeds. Actual values for these inputs can be read at any time. Programmable WATCHDOG limits in the LM81 activate a fully programmable and maskable interrupt system with two outputs ((INT and $\overline{\text { __CRIT_}_{-}}$).
The LM81 has an on-chip digital output temperature sensor with 9-bit or 12-bit resolution, a 6 analog input ADC with 8-bit resolution and an 8-bit DAC. Two fan tachometer outputs can be measured with the LM81's FAN1 and FAN2 inputs. The DAC, with a 0 to 1.25 V output voltage range, can be used for fan speed control. Additional inputs are provided for Chassis Intrusion detection circuits, and VID monitor inputs. The LM81 has a Serial Bus interface that is compatible with SMBus ${ }^{\text {TM }}$.

Features

- Temperature sensing
- 6 positive voltage inputs with scaling resistors to monitor $+5 \mathrm{~V},+12 \mathrm{~V},+3.3 \mathrm{~V},+2.5 \mathrm{~V}$, Vccp power supplies directly
- 8 -bit DAC output for controlling fan speed
- 2 fan speed monitoring inputs
- Chassis Intrusion detector input
- WATCHDOG comparison of all monitored values
- SMBus 1.0 (LM81C) and 1.1 (LM81B) Serial Bus interface compatibility
- LM81B has improved voltage monitoring accuracy
- VIDO-VID4 monitoring inputs

Key Specifications

Voltage Monitoring Error	$+2 \%$ or $\pm 1.2 \%$ (max)
Temperature Error	
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}$ (max)
Supply Voltage Range	2.8 V to 3.8 V
- Supply Current	0.4 mA (typ)
- ADC and DAC Resolution	8 Bits
Temperature Resolution	$0.5^{\circ} \mathrm{C}$

Applications

- System Thermal and Hardware Monitoring for Servers and PCs
- Office Electronics
- Electronic Test Equipment and Instrumentation

Typical Application

[^16]
Ordering Information

Temperature Range $-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{1 2 5}^{\circ} \mathbf{C}$		NS Package Number	SMBus Revision Level	Moltage Mritoring Error
Order Number	Device Marking		1.1	$\pm 1.2 \%$
LM81BIMT-3 ${ }^{1}$	LM81BIMT-3	MTC24B	1.1	$\pm 1.2 \%$
LM81BIMTX-3 ${ }^{2}$	LM81BIMT-3	MTC24B	1.10	$+2 \%$
LM81CIMT-3 ${ }^{1}$	LM81CIMT-3	MTC24B	1.0	$+2 \%$
LM81CIMTX-3 ${ }^{2}$	LM81CIMT-3	MTC24B	1.0	

Note: ${ }^{1}$-Rail transport media, 62 parts per rail
${ }^{2}$-Tape and reel transport media, 3400 parts per reel

Connection Diagram

Block Diagram

Pin Description

Pin Name(s)	Pin Number	Number of Pins	Type	Description
A0/NTEST_OUT	1	1	Digital I/0	The lowest order programmable bit of the serial bus address. This pin functions as an output during NAND Tree tests (board-level connectivity testing). Refer to SECTION 11 on NAND Tree testing.
A1	2	1	Digital Input	The highest order programmable bit of the serial bus address.
SMBData	3	1	Digital I/O	Serial Bus bidirectional Data. Open-drain output.
SMBCLK	4	1	Digital Input	Serial Bus Clock.
FAN1-FAN2	5-6	2	Digital Inputs	Schmitt Trigger fan tachometer inputs.
Cl	7	1	Digital I/O	An active high input from an external circuit which latches a Chassis Intrusion event. This line can go high without any clamping action regardless of the powered state of the LM81. There is also an internal open-drain output on this line, controlled by Bit 6 of the Configuration Register (40h) or Bit 7 CI Clear Register (46h), to provide a minimum 20 ms reset pulse. See Section 3.3 and Section 9.0.
$\overline{\overline{\text { T_CRIT_A }}}$	8	1	Digital Output	Critical Temperature Alarm active low open-drain output. This pin can be grounded when not used.
$\begin{aligned} & \hline \mathrm{V}^{+}(+2.8 \mathrm{~V} \text { to } \\ & +3.8 \mathrm{~V}) \\ & \hline \end{aligned}$	9	1	POWER	$+3.3 \mathrm{~V} \mathrm{~V}^{+}$power. Bypass with the parallel combination of $10 \mu \mathrm{~F}$ (electrolytic or tantalum) and $0.1 \mu \mathrm{~F}$ (ceramic) bypass capacitors.

Pin Description (Continued)

Pin Name(s)	Pin Number	Number of Pins	Type	Description
$\overline{\text { INT }}$	10	1	Digital Output	Interrupt active low open-drain output. This output is enabled when Bit 1 in the Configuration Register is set to 1 . The default state is disabled.
DACOut/NTEST_IN	11	1	Analog Output/Digital Input	0 V to +1.25 V amplitude 8 -bit DAC output. When forced high by an external voltage the NAND Tree Test mode is enabled which provides board-level connectivity testing. Refer to Section 11.0 on NAND Tree testing.
$\overline{\text { RESET }}$	12	1	Digital I/O	Master Reset, 5 mA driver (open-drain), active low output with a 20 ms minimum pulse width. Available when enabled via Bit 4 in the Configuration register. It acts as an active low power on RESET input.
GND	13	1	GROUND	Internally connected to all circuitry. The ground reference for all analog inputs and the DAC output. This pin needs to be connected to a low noise analog ground plane for optimum performance of the DAC output.
Vccp2	14	1	Analog Input	Analog input for monitoring -12V or Vccp2. Selectable by choosing the appropriate external resistor divider values such that the input to the LM81 is scaled to +2.5 V . See Section 4.0.
+12Vin	15	1	Analog Input	Analog input for monitoring +12 V .
$\underline{+5 \mathrm{Vin}}$	16	1	Analog Input	Analog input for monitoring +5 V .
+3.3Vin	17	1	Analog Input	Analog input for monitoring +3.3 V .
+2.5Vin	18	1	Analog Input	Analog input for monitoring +2.5 V .
Vccp1	19	1	Analog Input	Analog input for monitoring Vccp, a processor voltage that is nominally at +2.5 V .
VID4-VID0	20-24	5	Digital Inputs	Supply Voltage readouts from the Pentium/PRO power supplies that indicate the operating voltage or the processor (e.g. 1.5 V to 2.9 V). The values are read in the VID/Fan Divisor Register and the VID4 Register.
TOTAL PINS		24		

LM82

Remote Diode and Local Digital Temperature Sensor with Two-Wire Interface

General Description

The LM82 is a digital temperature sensor with a 2 wire serial interface that senses the voltage and thus the temperature of a remote diode using a Delta-Sigma analog-to-digital converter with a digital over-temperature detector. The LM82 accurately senses its own temperature as well as the temperature of external devices, such as Pentium II® Processors or diode connected 2N3904s. The temperature of any ASIC can be detected using the LM82 as long as a dedicated diode (semiconductor junction) is available on the die. Using the SMBus interface a host can access the LM82's registers at any time. Activation of a T_CRIT_A output occurs when any temperature is greater than a programmable comparator limit, T_CRIT. Activation of an INT output occurs when any temperature is greater than its corresponding programmable comparator HIGH limit.
The host can program as well as read back the state of the T_CRIT register and the 2 T_HIGH registers. Three state logic inputs allow two pins (ADDO, ADD1) to select up to 9 SMBus address locations for the LM82. The sensor powers up with default thresholds of $127^{\circ} \mathrm{C}$ for T_CRIT and all T_HIGHs. The LM82 is pin for pin and register compatible with the LM84, Maxim MAX1617 and Analog Devices ADM1021.

Features

- Accurately senses die temperature of remote ICs, or diode junctions
- On-board local temperature sensing
- SMBus and ${ }^{2} \mathrm{C}$ compatible interface, supports SMBus 1.1 TIMEOUT
- Two interrupt outputs: $\overline{\text { INT }}$ and \bar{T} _CRIT_A
- Register readback capability
- 7 bit plus sign temperature data format, $1^{\circ} \mathrm{C}$ resolution
- 2 address select pins allow connection of 9 LM82s on a single bus

Key Specifications

- Supply Voltage
3.0 V to 3.6 V
- Supply Current
0.8 mA (max)
- Local Temp Accuracy (includes quantization error)

$$
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \quad \pm 3.0^{\circ} \mathrm{C}(\max)
$$

Remote Diode Temp Accuracy (includes quantization error)

$$
\begin{aligned}
+25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} & \pm 3^{\circ} \mathrm{C}(\max) \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \pm 4^{\circ} \mathrm{C}(\max)
\end{aligned}
$$

Applications

- System Thermal Management
- Computers
- Electronic Test Equipment
- Office Electronics
- HVAC

Simplified Block Diagram

Connection Diagram

Ordering Information

Order Number	NS Package Number	Transport Media
LM82CIMQA	MQA16A (QSOP-16)	95 Units in Rail
LM82CIMQAX	MQA16A (QSOP-16)	2500 Units on Tape and Reel

Typical Application

*Note: $2.2 n F$ Capacitors must be placed as close as possilbe to $D+$ and D - pins of the LM82.

Pin Description

Label	Pin \#	Function	Typical Connection
NC	1,5	floating, unconnected	Left floating. PC board traces may be routed through the pads for these pins. No restrictions applied.
V_{cc}	2	Positive Supply Voltage Input	DC Voltage from 3.0 V to 3.6 V
D+	3	Diode Current Source	To Diode Anode. Connected to remote discrete diode junction or to the diode junction on a remote IC whose die temperature is being sensed. When not used they should be left floating.
D-	4	Diode Return Current Sink	To Diode Cathode. Must float when not used.
ADD0-ADD1	10, 6	User-Set SMBus (${ }^{2} \mathrm{C}$) Address Inputs	Ground (Low, " 0 "), V_{CC} (High, " 1 ") or open ("TRI-LEVEL")
GND	7, 8	Power Supply Ground	Ground
NC	9, 13, 15	Manufacturing test pins.	Left floating. PC board traces may be routed through the pads for these pins, although the components that drive these traces should share the same supply as the LM82 so that the Absolute Maximum Rating, Voltage at Any Pin, is not violated.
$\overline{\text { INT }}$	11	Interrupt Output, open-drain	Pull Up Resistor, Controller Interrupt or Alert Line
SMBData	12	SMBus ($\mathrm{I}^{2} \mathrm{C}$) Serial Bi-Directional Data Line, open-drain output	From and to Controller, Pull-Up Resistor
SMBCLK	14	SMBus ($1^{2} \mathrm{C}$) Clock Input	From Controller, Pull-Up Resistor
$\overline{\text { T_CRIT_A }}$	16	Critical Temperature Alarm, open-drain output	Pull Up Resistor, Controller Interrupt Line or System Shutdown

LM83

Triple-Diode Input and Local Digital Temperature Sensor with Two-Wire Interface

General Description

The LM83 is a digital temperature sensor with a 2 wire serial interface that senses the voltage and thus the temperature of three remote diodes using a Delta-Sigma analog-to-digital converter with a digital over-temperature detector. The LM83 accurately senses its own temperature as well as the temperature of three external devices, such as Pentium I^{\otimes} Processors or diode connected 2N3904s. The temperature of any ASIC can be detected using the LM83 as long as a dedicated diode (semiconductor junction) is available on the die. Using the SMBus interface a host can access the LM83's registers at any time. Activation of a T_CRIT_A output occurs when any temperature is greater than a programmable comparator limit, T_CRIT. Activation of an INT output occurs when any temperature is greater than its corresponding programmable comparator HIGH limit.
The host can program as well as read back the state of the T_CRIT register and the four T_HIGH registers. Three state logic inputs allow two pins (ADDO, ADD1) to select up to 9 SMBus address locations for the LM83. The sensor powers up with default thresholds of $127^{\circ} \mathrm{C}$ for T_CRIT and all T_HIGHs. The LM83 is pin for pin and register compatible with the LM84 as well as the Maxim MAX1617 and the Ana\log Devices ADM1021.

Features

- Accurately senses die temperature of 3 remote ICs, or diode junctions
- On-board local temperature sensing
- SMBus and $\mathrm{I}^{2} \mathrm{C}$ compatible interface, supports SMBus 1.1 TIMEOUT
- Two interrupt outputs: $\overline{\text { INT }}$ and $\overline{\text { T_CRIT_A }}$
- Register readback capability
- 7 bit plus sign temperature data format, $1^{\circ} \mathrm{C}$ resolution
- 2 address select pins allow connection of 9 LM83s on a single bus

Key Specifications

- Supply Voltage
3.0 V to 3.6 V
- Supply Current
0.8 mA (max)
- Local Temp Accuracy (includes quantization error)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad \pm 3.0^{\circ} \mathrm{C}$ (max)
Remote Diode Temp Accuracy (includes quantization error)

$$
\begin{aligned}
+25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} & \pm 3^{\circ} \mathrm{C} \text { (max) } \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \pm 4^{\circ} \mathrm{C} \text { (max) }
\end{aligned}
$$

Applications

- System Thermal Management
- Computers
- Electronic Test Equipment
- Office Electronics
- HVAC

Simplified Block Diagram

Connection Diagram

DS101058-2

Ordering Information

Order Number	NS Package Number	Transport Media
LM83CIMQA	MQA16A (QSOP-16)	95 Units in Rail
LM83CIMQAX	MQA16A (QSOP-16)	2500 Units on Tape and Reel

Typical Application

*Note: 2.2 nF Capacitors must be placed as close as possilbe to $\mathrm{D}+$ and D - pins of the LM83.

Pin Description

Label	Pin \#	Function	Typical Connection
D1+, D2+, D3+	$1,3,5$	Diode Current Source	To Diode Anode. Connected to remote discrete diode junction or to the diode junction on a remote IC whose die temperature is being sensed. When not used they should be left floating.
V_{CC}	2	Positive Supply Voltage Input	DC Voltage from 3.0 V to 3.6 V

Pin Description (Continued)

Label	Pin \#	Function	Typical Connection
D-	4	Diode Return Current Sink	To all Diode Junction Cathodes using a star connection to pin. Must float when not used.
ADD0-ADD1	10,6	User-Set SMBus ($1^{2} \mathrm{C}$) Address Inputs	Ground (Low, " 0 "), V_{cc} (High, " 1 ") or open ("TRI-LEVEL")
GND	7, 8	Power Supply Ground	Ground
NC	9, 13, 15	Manufacturing test pins.	Left floating. PC board traces may be routed through the pads for these pins, although the components that drive these traces should share the same supply as the LM83 so that the Absolute Maximum Rating, Voltage at Any Pin, is not violated.
$\overline{\text { INT }}$	11	Interrupt Output, open-drain	Pull Up Resistor, Controller Interrupt or Alert Line
SMBData	12	SMBus ($1^{2} \mathrm{C}$) Serial Bi-Directional Data Line, open-drain output	From and to Controller, Pull-Up Resistor
SMBCLK	14	SMBus ($1^{2} \mathrm{C}$) Clock Input	From Controller, Pull-Up Resistor
\bar{T} T_CRIT_A	16	Critical Temperature Alarm, open-drain output	Pull Up Resistor, Controller Interrupt Line or System Shutdown

LM84

Diode Input Digital Temperature Sensor with Two-Wire Interface

General Description

The LM84 is a remote diode temperature sensor, Delta-Sigma analog-to-digital converter, and digital over-temperature detector with an SMBus ${ }^{\text {TM }}$ interface. The LM84 senses its own temperature as well as the temperature of a target IC with a diode junction, such as a Pentium ${ }^{\circledR}$ II processor or a diode connected 2N3904. A diode junction (semiconductor junction) is required on the target IC's die. A host can query the LM84 at any time to read the temperature of this diode as well as the temperature state of the LM84 itself. A \bar{T} _CRIT_A interrupt output becomes active when the temperature is greater than a programmable comparator limit, T_CRIT.
The host can program as well as read back the state of the T_CRIT register. Three state logic inputs allow two pins (ADDO, ADD1) to select up to 9 SMBus address locations for the LM84. The sensor powers up with default thresholds of $127^{\circ} \mathrm{C}$ for T_CRIT.

Features

- Directly senses die temperature of remote ICs
- Senses temperature of remote diodes
- SMBus compatible interface, supports SMBus Timeout
- Register readback capability
- 7 bit plus sign temperature data format
- 2 address select lines enable 9 LM84s to be connected to a single bus

Key Specifications

- Supply Voltage	$3.0 \mathrm{~V}-3.6 \mathrm{~V}$
- Supply Current	1 mA (max)
Local Temperature Accuracy	$\pm 1.0^{\circ} \mathrm{C}$ (typ)
Remote Diode Temperature Accuracy	
$+60^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 3^{\circ} \mathrm{C}$ (max)
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 5^{\circ} \mathrm{C}$ (max)

Applications

- System Thermal Management
- Personal Computers
- Electronic Test Equipment
- Office Electronics
- HVAC

Simplified Block Diagram

\# Indicates Active Low ("NOT")

QSOP-16

Ordering Information

Order Number	NS Package Number	Transport Media	SMBus Revision Level	Noise Filter on SMBCLK
LM84BIMQA	MQA16A (QSOP-16)	95 Units in Rail	1.1	20 MHz
LM84BIMQAX	MQA16A (QSOP-16)	2500 Units on Tape and Reel	1.1	20 MHz
LM84CIMQA	MQA16A (QSOP-16)	95 Units in Rail	1.0	Not Available
LM84CIMQAX	MQA16A (QSOP-16)	2500 Units on Tape and Reel	1.0	Not Available

Typical Application

Pin Descriptions

Label	Pin \#	Function	Typical Connection
NC	$\begin{aligned} & 1,5,9 \\ & 13,16 \end{aligned}$	Manufacturing test pins.	Left floating. PC board traces may be routed through the pads for these pins. Although, the components that drive these traces should share the same supply as the LM84 so that the Absolute Maximum Voltage at any Pin rating is not violated.
V_{cc}	2	Positive Supply Voltage Input	DC Voltage from 3.0V to 3.6V
D+	3	Diode Current Source	To Diode Anode. Connected to remote discrete diode or to the diode on the external IC whose die temperature is being sensed.
D-	4	Diode Retürn Current Sink	To Diode Cathode. Must be grounded when not used.
ADD0-ADD1	10,6	User-Set SMBus (${ }^{2} \mathrm{C}$) Address Inputs	Ground (Low, " 0 "), V_{cc} (High, "1") or open ("TRI-LEVEL")
GND	7, 8	Power Supply Ground	Ground
$\overline{\text { T_CRIT_A }}$	11	Critical Temperature Alarm, open-drain output	Pull Up Resistor, Controller Interrupt Line or System Shutdown
SMBData	12	SMBus (${ }^{2} \mathrm{C}$) Serial Bi-Directional Data Line, open-drain output	From and to Controller, Pull Up Resistor
SMBCLK	14	SMBus (${ }^{2} \mathrm{C}$) Clock Input	From Controller
NC	15	No Connection	Left floating. PC board traces may be routed through the pads for this pin.

LM87

Serial Interface System Hardware Monitor with Remote Diode Temperature Sensing

General Description

The LM87 is a highly integrated data acquisition system for hardware monitoring of servers, Personal Computers, or virtually any microprocessor-based system. In a PC, the LM87 can be used to monitor power supply voltages, motherboard and processor temperatures, and fan speeds. Actual values for these inputs can be read at any time. Programmable WATCHDOG limits in the LM87 activate a fully programmable and maskable interrupt system with two outputs (INT\# and THERM\#).
The LM87 has an on-chip digital output temperature sensor with 8 -bit resolution as well as the capability of monitoring 2 external diode temperatures to 8 -bit resolution, an 8 channel analog input ADC with 8 -bit resolution and an 8 -bit DAC. A channel on the ADC measures the supply voltage applied to the LM87, nominally 3.3 V . Two of the ADC inputs can be redirected to a counter that can measure the speed of up to 2 fans. A slow speed $\Sigma \triangle$ ADC architecture allows stable measurement of signals in an extremely noisy environment. The DAC, with a 0 to 2.5 V output voltage range, can be used for fan speed control. Additional inputs are provided for Chassis Intrusion detection circuits, and VID monitor inputs. The VID monitor inputs can also be used as IRQ inputs if VID monitoring is not required. The LM87 has a Serial Bus interface that is compatible with $\mathrm{SMBus}^{\top \mathrm{M}}$ and $\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}$.

Features

- Remote diode temperature sensing (2 channels)
- 8 positive voltage inputs with scaling resistors for monitoring $+5 \mathrm{~V},+12 \mathrm{~V},+3.3 \mathrm{~V},+2.5 \mathrm{~V}$, Vccp power supplies directly
- 2 inputs selectable for fan speed or voltage monitoring
- 8-bit DAC output for controlling fan speed
- Chassis Intrusion Detector input
- WATCHDOG comparison of all monitored values
- SMBus or $I^{2} C$ Serial Bus interface compatibility
- VID0-VID4 or IRQ0-IRQ4 monitoring inputs
- On chip temperature sensor

Key Specifications

- Voltage Monitoring Error	$\pm 2 \%$ (max)
- External Temperature Error	$\pm 4{ }^{\circ} \mathrm{C}$ (max)
- Internal Temperature Error	
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 3{ }^{\circ} \mathrm{C}$ (typ)
- Supply Voltage Range	2.8 to 3.8 V
Supply Current	0.7 mA (typ)
a ADC and DAC Resolution	8 Bits
- Temperature Resolution	$1.0^{\circ} \mathrm{C}$

Applications

- System Thermal and Hardware Monitoring for Servers, Workstations and PCs
- Networking and Telecom Equipment
- Office Electronics
- Electronic Test Equipment and Instrumentation

Ordering Information

Temperature Range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125$ O \mathbf{C}		NS Package Number
Order Number	Device Marking	
LM87CIMT 1	LM87CIMT	MTC24B
LM87CIMTX 2	LM87CIMT	MTC24B

Note: ${ }^{1}$-Rail transport media, 61 parts per rail
${ }^{2}$-Tape and reel transport media, 2500 parts per reel

Connection Diagram

Block Diagram

DS100995-1

Pin Description

Pin Name(s)	Pin Number	Number of Pins	Type	Description
ADD/NTEST_OUT	1	1	Digital I/O	This pin normally functions as a three-state input that controls the two LSBs of the Serial Bus Address. When this pin is tied to V the two LSBs are 01. When tied to Ground, the two LSBs are 10. If this pin is not connected, the two LSBs are 00. This pin also functions as an output during NAND Tree tests (board-level connectivity testing). To ensure proper NAND tree function, this pin should not be tied directly to VCC or Ground. Instead, a series 5 k Ω resistor should be used to allow the test output function to work. Refer to SECTION 11 on NAND Tree testing.
THERM\#	2	1	Digital I/O	This pin functions as an open-drain interrupt output for temperature interrupts only, or as an interrupt input for fan control. It has an on-chip 100 k pullup resistor.
SMBData	3	1	Digital I/O	Serial Bus bidirectional Data. Open-drain output.
SMBCLK	4	1	Digital Input	Serial Bus Clock.
FAN1/AIN1-	$5-6$	2	Analog/Digital Inputs	Programmable as analog inputs (0 to 2.5V) or digital Schmitt Trigger fan tachometer inputs.
FAN2/AIN2	7	1	Digital I/O	An active high input from an external circuit which latches a Chassis Intrusion event. This line can go high without any clamping action regardless of the powered state of the LM87. There is also an internal open-drain output on this line, controlled by Bit 7 of the CI Clear Register (46h), to provide a minimum 20 ms reset pulse.

Pin Description (Continued)

Pin Name(s)	Pin Number	Number of Pins	Type	Description
GND	8	1	GROUND	The system ground pin. Internally connected to all circuitry. The ground reference for all analog inputs and the DAC output. This pin needs to be connected to a low noise analog ground plane for optimum performance of the DAC output.
$\begin{aligned} & \mathrm{V}^{+}(+2.8 \mathrm{~V} \text { to } \\ & +3.8 \mathrm{~V}) \\ & \hline \end{aligned}$	9	1	POWER	$+3.3 \mathrm{~V}^{+}$power. Bypass with the parallel combination of $10 \mu \mathrm{~F}$ (electrolytic or tantalum) and $0.1 \mu \mathrm{~F}$ (ceramic) bypass capacitors.
INT\# /ALERT\#	10	1	Digital Output	Interrupt active low open-drain output. This output is enabled when Bit 1 in the Configuration Register is set to 1. The default state is disabled. It has an on-chip $100 \mathrm{k} \Omega$ pullup resistor. Alternately used as an active low output to signal SMBus Alert Response Protocol.
DACOut/NTEST_IN	11	1	Analog Output/Digital Input	0 V to +2.5 V amplitude 8-bit DAC output. When forced high on power up by an external voltage the NAND Tree Test mode is enabled which provides board-level connectivity testing.
RESET\#	12	1	Digital I/O	Master Reset, 5 mA driver (open-drain), active low output with a 45 ms minimum pulse width. Available when enabled via Bit 4 in the Configuration register. It also acts as an active low power on RESET input. It has an on-chip $100 \mathrm{k} \Omega$ pullup resistor.
D1-	13	1	Analog Input	Analog input for monitoring the cathode of the first external temperature sensing diode.
D1+	14	1	Analog Input	Analog input for monitoring the anode of the first external temperature sensing diode.
+12Vin	15	1	Analog Input	Analog input for monitoring +12 V .
$+5 \mathrm{Vin}$	16	1	Analog Input	Analog input for monitoring +5 V .
Vccp2/D2-	17	1	Analog Input	Digitally programmable analog input for monitoring Vccp2 (0 to 3.6 V input range) or the cathode of the second external temperature sensing diode.
+2.5Vin/D2+	18	1	Analog Input	Digitally programmable analog input for monitoring +2.5 V or the anode of the second external temperature sensing diode.
Vccp1	19	1	Analog Input	Analog input (0 to 3.6 V input range) for monitoring Vccp1, the core voltage of processore 1.
VID4/IRQ4VIDO/IRQ0	20-24	5	Digital Inputs	Digitally programmable dual function digital inputs. Can be programmed to monitor the VID pins of the Pentium/PRO and Pentium II processors, that indicate the operating voltage of the processor, or as interrupt inputs. The values are read in the VID/Fan Divisor Register and the VID4 Register. These inputs have on-chip $100 \mathrm{k} \Omega$ pullup resistors.
TOTAL PINS		24		

[^17]
LM92

$\pm 0.33^{\circ} \mathrm{C}$ Accurate, 12 -Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface

General Description

The LM92 is a digital temperature sensor and thermal window comparator with an $I^{2} C^{T M}$ Serial Bus interface and an accuracy of $\pm 0.33^{\circ} \mathrm{C}$. The window-comparator architecture of the LM92 eases the design of temperature control systems. The open-drain Interrupt (INT) output becomes active whenever temperature goes outside a programmable window, while a separate Critical Temperature Alarm (T_CRIT_A) output becomes active when the temperature exceeds a programmable critical limit. The INT output can operate in either a comparator or event mode, while the T_CRIT_A output operates in comparator mode only.
The host can program both the upper and lower limits of the window as well as the critical temperature limit. Programmable hysterisis as well as a fault queue are available to minimize false tripping. Two pins (AO, A1) are available for address selection. The sensor powers up with default thresholds of $2^{\circ} \mathrm{C} \mathrm{T}_{\text {HYST, }} 10^{\circ} \mathrm{C}$ TLOW, $64^{\circ} \mathrm{C} \mathrm{T}_{\text {HIGH }}$, and $80^{\circ} \mathrm{C}$ T_CRIT.
The LM92's 2.7 V to 5.5 V supply voltage range, Serial Bus interface, 12-bit + sign output, and full-scale range of over $128^{\circ} \mathrm{C}$ make it ideal for a wide range of applications. These include thermal management and protection applications in personal computers, electronic test equipment, office electronics, automotive, medical and HVAC applications.

Features

- Window comparison simplifies design of ACPI compatible temperature monitoring and control.
- Serial Bus interface
- Separate open-drain outputs for Interrupt and Critical Temperature shutdown
- Shutdown mode to minimize power consumption
- Up to 4 LM92s can be connected to a single bus
- 12-bit + sign output
- Operation up to $150^{\circ} \mathrm{C}$

Key Specifications

- Supply Voltage		2.7 V to 5.5 V
	operating	$350 \mu \mathrm{~A}$ (typ)
		$625 \mu \mathrm{~A}$ (max)
	shutdown	$5 \mu \mathrm{~A}$ (typ)
- Temperature	$30^{\circ} \mathrm{C}$	$\pm 0.33^{\circ} \mathrm{C}$ (max)
Accuracy	$10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$\pm 0.50^{\circ} \mathrm{C}$ (max)
	$-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\pm 1.0^{\circ} \mathrm{C}($ max $)$
	$125^{\circ} \mathrm{C}$	$\pm 1.25^{\circ} \mathrm{C}$ (max)
	$-25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$\pm 1.5^{\circ} \mathrm{C}$ (max)
- Linearity		$\pm 0.5^{\circ} \mathrm{C}$ (max)
- Resolution		$0.0625^{\circ} \mathrm{C}$

Applications
 - HVAC
 - Medical Electronics
 - Electronic Test Equipment
 - System Thermal Management
 - Personal Computers
 - Office Electronics
 - Automotive

Simplified Block Diagram

Connection Diagram

Ordering Information

Order Number	Supply Voltage	Supplied As
LM92CIM	2.7 V to 5.5 V	
LM92CIMX	2.7 V to 5.5 V	2500 Units on Tape and Reel

Pin Descriptions

Label	Pin \#	Function	Typical Connection
SDA	1	Serial Bi-Directional Data Line. Open Drain Output	From Controller
SCL	2	Serial Bus Clock Input	From Controller
T_CRIT_A	3	Critical Temperature Alarm Open Drain Output	Pull Up Resistor, Controller Interrupt Line or System Hardware Shutdown
GND	4	Power Supply Ground	Ground
INT	5	Interrupt Open Drain Output	Pull Up Resistor, Controller Interrupt Line
$+V_{\mathrm{S}}$	8	Positive Supply Voltage Input	DC Voltage from 2.7V to 5.5V
A0-A1	7,6	User-Set Address Inputs	Ground (Low, "0") or $+V_{\mathrm{S}}($ High, "1")

Typical Application

LM134/LM234/LM334

3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications. The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the current sources include bias networks, surge protection, low power reference, ramp generation,

LED driver, and temperature sensing. The LM234-3 and LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.
The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic, TO-92 and SO-8 plastic packages.

Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
- $\pm 3 \%$ initial accuracy

Connection Diagrams

SO-8
Surface Mount Package

Order Number LM334M or LM334MX
See NS Package Number M08A

SO-8 Alternative Pinout Surface Mount Package

Order Number LM334SM or LM334SMX
See NS Package Number M08A

TO-46
Metal Can Package

V^{-}Pin is electrically connected to case.
Bottom View
Order Number LM134H, LM234H or LM334H See NS Package Number H03H

TO-92 Plastic Package

Bottom View
Order Number LM334Z, LM234Z-3 or LM234Z-6
See NS Package Number Z03A

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at $+10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. With less than $1 \Omega \mathrm{dy}$ namic impedance the device operates over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.
Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.
The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
temperature range. The LM335 operates from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO-92 packages.

Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initial accuracy available
- Operates from $400 \mu \mathrm{~A}$ to 5 mA
- Less than 1Ω dynamic impedance
- Easily calibrated
- Wide operating temperature range
- $200^{\circ} \mathrm{C}$ overrange
- Low cost

Connection Diagrams

TO-92
Plastic Package

Bottom View
Order Number LM335Z or LM335AZ See NS Package Number Z03A

SO-8
Surface Mount Package

Order Number LM335M See NS Package Number M08A

TO-46 Metal Can Package*

*Case is connected to negative pin
Bottom Vlew Order Number LM135H, LM135H-MIL, LM235H, LM335H, LM135AH, LM235AH or LM335AH See NS Package Number H03H

Section 13 Video Circuits

Section 13 Contents

Video Circuits Selection Guide 13-3
LM1279 110 MHz RGB Video Amplifier System with OSD 13-4
LM1281 85 MHz RGB Video Amplifier System with On Screen Display (OSD) 13-5
LM1282 110 MHz RGB Video Amplifier System with On Screen Display (OSD) 13-6
LM1283 140 MHz RGB Video Amplifier System with On Screen Display (OSD) 13-7
LM2202 230 MHz Video Amplifier System 13-8
LM1253A Monolithic Triple $180 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C}$ CRT Pre-amp With Integrated Analog On Screen Display (OSD) Generator 13-9
LM2453 Monolithic Triple 6 ns CRT Driver With Integrated Clamp and G1 Blanking 13-12
LM2402 Monolithic Triple 3 ns CRT Driver 13-14
LM2403 Monolithic Triple 4.5 ns CRT Driver 13-15
LM2405 Monolithic Triple 7 ns CRT Driver 13-16
LM2407 Monolithic Triple 7.5 ns CRT Driver 13-17
LM2409 Monolithic Triple 9.5 ns CRT Driver 13-18
LM2415 Monolithic Triple 5.5 ns CRT Driver 13-19
LM2435 Monolithic Triple 5.5 ns CRT Driver 13-20
LM2437 Monolithic Triple 7.5 ns CRT Driver 13-21
LM2438 Monolithic Triple 13.5 ns CRT Driver 13-22
LM2439 Monolithic Triple 9.5 ns CRT Driver 13-23

National Semiconductor

Video Circuits Selection Guide

Screen Size	$14^{\prime \prime}-15^{\prime \prime}$	$14^{\prime \prime}-15^{\prime \prime}$	$15^{\prime \prime}-17^{\prime \prime}$	$17^{\prime \prime}$	$19^{\prime \prime}$	$21^{\prime \prime}$	
Resolution	1024×768	1024×768	1024×768	1280×1024	1280×1024	1600×1200	
Horizontal Frequency (kHz)	48.4	56.5	68.7	80	91.1	93.8	
Vertical Frequency (Hz)	60	70	85	75	85	75	
OSD	Yes	Yes	Yes	Yes	Yes	Yes	
Video Channel							
Preamplifier	LM1279N	LM1279N	LM1279N LM1281N	LM1279N LM1282N	LM1283N	LM2202N	
CRT Driver	LM2438T	LM2439T LM2409T	LM2437T LM2407T	LM2435T LM2415T LM2405T	LM2403N	LM2402N	
Deflection							
Horizontal PLL	LM1290N	LM1290N	LM1290N	LM1290N	LM1292N	LM1292N	
Geomery Correction	LM1296N	LM1296N	LM1296N	LM1296N	LM1295N	LM1295N	

National Semiconductor

LM1279

110 MHz RGB Video Amplifier System with OSD

General Description

The LM1279 is a full featured and low cost video amplifier with OSD (On Screen Display). 8V operation for low power and increased reliability. Supplied in a 20 -pin DIP package, accommodating very compact designs of the video channel requiring OSD. All video functions controlled by 0 V to 4 V high impedance DC inputs. This provides easy interfacing to 5 V DACs used in computer controlled systems and digital alignment systems. Unique OSD switching, no OSD switching signal required. An OSD signal at any OSD input typically switches the LM1279 to the OSD mode within 5 ns . Ideal video amplifier for the low cost OSD monitor with resolutions up to 1280×1024. The LM1279 provides superior protection against ESD. Excellent alternative for the MC13282 in new designs.

Features

- Three wideband video amplifiers 110 MHz @ -3dB (4 V_{PP} output)
- OSD signal to any OSD input pin automatically switches all 3 outputs to the OSD mode
- Fast OSD switching time, typically 5 ns
- 3.5 kV ESD protection
- Fixed cutoff level typically set to 1.35 V
- OV to 4 V , high impedance DC contrast control with over 40 dB range
- 0 V to 4 V , high impedance DC drive control $(0 \mathrm{~dB}$ to -12 dB range)
- Matched ($\pm 0.3 \mathrm{~dB}$ or 3.5%) attenuators for contrast control
- Output stage directly drives CRT drivers
- Ideal combination with LM2407 CRT driver

Applications

- High resolution RGB CRT monitors
- Video AGC amplifiers
- Wideband amplifiers with contrast and drive controls
- Interface amplifiers for LCD or CCD systems

Block and Connection Diagram

FIGURE 1. Order Number LM1279N
See NS Package Number N20A

National Semiconductor

LM1281

85 MHz RGB Video Amplifier System with On Screen Display (OSD)

General Description

The LM1281 is a full feature video amplifier with OSD inputs, all within a 28 -pin package. This part is intended for use in monitors with resolutions up to 1024×768. The video section of the LM1281 features three matched video amplifiers with blanking. All of the video amplifier adjustments feature high input impedance 0 V to 4 V DC controls, providing easy interfacing to bus controlled alignment systems. The OSD section features three TTL inputs and a DC contrast control. The switching between the OSD and video section is controlled by a single TTL input. Although the OSD signals are TTL inputs, these signals are internally processed to match the OSD logic low level to the video black level. When adjusting the drive controls for color balance of the video signal, the color balance of the OSD display will track these color adjustments. The LM1281 also features an internal spot killer circuit to protect the CRT when the monitor is turned off. For applications without OSD insertion please refer to the LM1205 or LM1208 data sheets.

- TTL OSD inputs, 50 MHz bandwidth
- On chip blanking, outputs under 0.1 V when blanked
- High speed Video/OSD switch
- Independent drive control for each channel for color balance
- 0 V to 4 V , high impedance DC contrast control with over 40 dB range
- 0 V to 4 V , high impedance DC drive control (0 dB to -12 dB range)
- 0 V to 4 V , high impedance DC OSD contrast control with over 40 dB range
- Capable of $7 \mathrm{~V}_{\mathrm{PP}}$ output swing (slight reduction in bandwidth)
- Output stage directly drives most hybrid or discrete CRT drivers

Applications

- High resolution RGB CRT monitors requiring OSD capability

Features

- Three wideband video amplifiers 85 MHz @ -3 dB ($4 \mathrm{~V}_{\mathrm{PP}}$ output)

Block and Connection Diagram

National Semiconductor

LM1282

110 MHz RGB Video Amplifier System with On Screen Display (OSD)

General Description

The LM1282 is a full feature video amplifier with OSD inputs, all within a 28 -pin package. This part is intended for use in monitors with resolutions up to 1280×1024. The video section of the LM1282 features three matched video amplifiers with blanking. All of the video amplifier adjustments feature high input impedance 0 V to 4 V DC controls, providing easy interfacing to bus controlled alignment systems. The OSD section features three TTL inputs and a DC contrast control. The switching between the OSD and video section is controlled by a single TTL input. Although the OSD signals are TTL inputs, these signals are internally processed to match the OSD logic low level to the video black level. When adjusting the drive controls for color balance of the video signal, the color balance of the OSD display will track these color adjustments. The LM1282 also features an internal spot killer circuit to protect the CRT when the monitor is turned off. For applications without OSD insertion please refer to the LM1205 or LM1208 data sheets.

- TTL OSD inputs, 50 MHz bandwidth
- On chip blanking, outputs under 0.1 V when blanked
- High speed Video/OSD switch
- Independent drive control for each channel for color balance
- 0 V to 4 V , high impedance DC contrast control with over 40 dB range
- 0 V to 4 V , high impedance DC drive control (0 dB to -12 dB range)
- 0 V to 4 V , high impedance DC OSD contrast control with over 40 dB range
- Capable of $7 \mathrm{~V}_{\mathrm{PP}}$ output swing (slight reduction in bandwidth)
- Output stage directly drives most hybrid or discrete CRT drivers

Applications

- High resolution RGB CRT monitors requiring OSD capability

Features

- Three wideband video amplifiers 110 MHz @ -3 dB
(4 VPp output)

Block and Connection Diagram

DS012519-1
FIGURE 1. Order Number LM1282N See NS Package Number N28B

National Semiconductor

LM1283

140 MHz RGB Video Amplifier System with On Screen Display (OSD)

General Description

The LM1283 is a full feature video amplifier with OSD inputs, all within a 28 -pin package. This part is intended for use in monitors with resolutions up to 1280×1024. The video section of the LM1283 features three matched video amplifiers with blanking. All of the video amplifier adjustments feature high input impedance 0 V to 4 V DC controls, providing easy interfacing to bus controlled alignment systems. The OSD section features three TTL inputs and a DC contrast control. The switching between the OSD and video section is controlled by a single TTL input. Although the OSD signals are TTL inputs, these signals are internally processed to match the OSD logic low level to the video black level. When adjusting the drive controls for color balance of the video signal, the color balance of the OSD display will track these color adjustments. The LM1283 also features an internal spot killer circuit to protect the CRT when the monitor is turned off. For applications without OSD insertion please refer to the LM1205 or LM1208 data sheets.

- TTL OSD inputs, 50 MHz bandwidth
- On chip blanking, outputs under 0.1 V when blanked
- Video/OSD switch speed of 7 ns
- Independent drive control for each channel for color balance
- 0 V to 4 V , high impedance DC contrast control with over 40 dB range
- 0 V to 4 V , high impedance DC drive control (0 dB to -12 dB range)
- 0 V to 4 V , high impedance DC OSD contrast control with over 40 dB range
- Capable of $6.5 \mathrm{~V}_{\mathrm{PP}}$ output swing (slight reduction in bandwidth)
- Output stage directly drives most hybrid or discrete CRT drivers

Applications

- High resolution RGB CRT monitors requiring OSD capability

Features

■ Three wideband video amplifiers $140 \mathrm{MHz} @-3 \mathrm{~dB}$
(4 V_{PP} output)

Block and Connection Diagram

LM2202
 230 MHz Video Amplifier System

General Description

The LM2202 is a very high frequency video amplifier system intended for use in high resolution monochrome or RGB color monitor applications. In addition to the wideband video amplifier the LM2202 contains a gated differential input black level clamp comparator for brightness control, a DC controlled attenuator for contrast control and a DC controlled sub contrast attenuator for drive control. The DC control for the contrast attenuator is pinned out separately to provide a more accurate control system for RGB color monitor applications. All DC controls offer a high input impedance and operate over a 0 V to 4 V range for easy interface to bus controlled alignment systems. The LM2202 operates from a nominal 12 V supply but can be operated with supply voltages down to 8 V for applications that require reduced IC package power dissipation characteristics.

Features

- Wideband video amplifier
($\mathrm{f}_{-3 \mathrm{~dB}}=230 \mathrm{MHz}$ at $\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{PP}}$)
- $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=1.5 \mathrm{~ns}$ at $\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{PP}}$
- Externally gated comparator for brightness control
- 0 V to 4 V high input impedance DC contrast control ($>40 \mathrm{~dB}$ range)
- 0 V to 4 V high input impedance DC drive control ($\pm 3 \mathrm{~dB}$ range)
- Easy to parallel three LM2202s for optimum color tracking in RGB systems
■ Output stage clamps to 0.65 V and provides up to 9 V output voltage swing
- Output stage directly drives most hybrid or discrete CRT amplifier stages
- Replacement for the LM1202

Applications

- High resolution CRT monitors
- Video switches
- Video AGC amplifier
- Wideband amplifier with gain and DC offset control

Block and Connection Diagram

Order Number LM2202N or LM2202M
See NS Package Number N20A or M20B

LM1253A

Monolithic Triple $180 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C}$ CRT Pre-amp With Integrated Analog On Screen Display (OSD) Generator

General Description

The LM1253A pre-amp is an integrated high voltage triple CRT pre-amp and Analog On Screen Display (OSD) generator. The IC is $\mathrm{I}^{2} \mathrm{C}$ controlled, and allows control of all the parameters necessary to setup and adjust the brightness and contrast in the CRT display. In addition, it provides a programmable period vertical blanking pulse which is used to blank the G1.

The LM1253A pre-amp is designed to work in cooperation with the LM2453 driver, and provides a multiplexed video signal (VideoPlex) interface to enable the DC clamp levels at the cathode to be varied in order to set up the CRT bias and to allow individual adjustment for brightness.
The Analog OSD has a selectable palette allowing a wide selection of colors. The preset level of the OSD can be controlled by $\mathrm{I}^{2} \mathrm{C}$ to suit different CRT displays. The OSD signal is internally mixed with the video signal, before the gain section, and thus gives excellent white tracking of the OSD with the white color point setting of the video.
The Brightness settings are also mixed into the video signal before the gain matching controls and consequently give excellent white color point tracking with variations in the Brightness control. An active horizontal blanking signal is added to the video at the output, giving excellent smear performance, and preventing video content dependent DC bias offsets as a result of high frequency over shoot.
The OSD horizontal sync and blanking signal is derived from a positive going flyback pulse. The digital section provides easy interfacing of this signal with the deflection circuits.
The vertical blanking signal is taken from the vertical sync signal, and the blanking duration is programmable. This system is highly integrated and requires a minimal number of external components.
Black level clamping of the signal is carried out directly on the AC coupled input signal into the high impedance preamplifier input, thus eliminating the need for additional black level clamp capacitors.

The outputs are referenced to a DC level produced by the LM1253A Pre-amp, and so are guaranteed to provide stable DC operating levels within the system without the need for additional external feedback components.
The IC is packaged in an industry standard wide body 28 lead DIL molded plastic package.

Features

- 190 two-color ROM based Character Fonts
- 64 four-color ROM based Character Fonts
- Supports a programmable page size with up to 512 characters and line definition codes
- Support for 2 Display Windows (size of each window is configurable)
- Programmable start position for each Display Window
- Programmable Resolutions: from 512 to 960 pixels per line in 64 pixel increments
- Programmable Character Height, with automatic height control with mode change
- Programmable Row Spacing between each display character row
- Maximum Pixel clock of 92.2 MHz
- $I^{2} \mathrm{C}$ compatible interface to controlling micro-controller
- Button boxes
- 180 MHz preamplifier with full video signal parametric control
- VideoPlex ${ }^{\text {TM }}$ interface to the LM2453 driver
- OSD mixing with 64 out of 512 color mask programmable selection

Intended Applications

- 1280×1024 Displays up to 75 Hz requiring OSD capability

Block and Connection Diagrams

FIGURE 1. Block Diagram

Block and Connection Diagrams (Continued)

28-Lead (0.600 " wide) Molded Dual-In-Line Package

Order Number LM1253AN
See NS Package Number N28B
FIGURE 2. Connection Diagram

LM2453

Monolithic Triple 6 nS CRT Driver With Integrated Clamp and G1 Blanking

General Description

The AC2DC driver is an integrated high voltage triple CRT driver circuit designed for use in color monitor applications. The input signal interface to the IC is a multiplexed signal containing both clamp and video signal information, relative to a $1.7 \mathrm{~V}_{\mathrm{DC}}$ reference.
The IC contains three high gain, high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -52 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation.
Integrated with the driver is triple clamp circuit for DC recovery of each of the AC coupled outputs. The DC clamp circuit amplifies the clamp signal that is multiplexed on the video signal input. The DC clamp amplifiers are high gain, high input impedance amplifiers, setting a low impedance DC level at the clamp output which can be used to restore the DC level of the cathode drive. Each channel has a gain that is internally set to +73 .
Also integrated within the package is a $40 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ vertical blanking driver that is designed to provide vertical retrace blanking on G1 of the CRT. This is a current limited, low impedance output capable of driving normal G1 decoupling ca-
pacitances via an external resistor. The output of the G1 driver can also be used to drive a voltage boost capacitor (22 $\mu \mathrm{F})$. When connected between the G1 drive output and the 120 V supply input pin, a 120 V boost supply is achieved which can be used to drive the internal DC clamp circuit, thereby eliminating the requirement for a 120 V clamp supply. The IC is packaged in an industry standard 15-lead TO-220 molded plastic power package.

Features

- Low power dissipation
- Well matched with LM1253A video pre-amp
- Three wideband video amplifiers
- Three integrated active clamp circuits
- Convenient TO-220 staggered lead package
- Built in horizontal blanking
- Integrated 120 V supply and G1 vertical blank drive circuit

Applications

- 1280×1024 Resolution displays up to 75 Hz refresh
- Pixel clock frequencies up to 135 MHz
- Monitors requiring horizontal video blanking

Block Diagram

FIGURE 1. LM2453 Block Diagram

Package Pinout

FIGURE 2. LM2453 Package Pinout Order Number LM2453TA

Special Features

MULTIPLEXED VIDEO SIGNAL INPUT

The LM2453 accepts the multiplexed video signal from the LM1253 which contains the video signal and DC clamp level. This multiplexed signal is shown in Figure 3. It was designed to simplify the interface between the pre-amp and CRT

Driver. Slightly over 1V of dynamic range is provided for the video and OSD portions of the waveform. The clamp signal control voltage range is approximately 0.9 V . The typical numbers for the black and white levels shown correspond to a nominal swing of $40 \mathrm{~V}_{\text {P-p }}$ (from 25 to 65) at the video outputs of the LM2453. The clamp pulse lower level is used to set the voltage at the clamp outputs of the LM2453.

FIGURE 3. National LM1253 Multiplexed Video Signal

LM2402
 Monolithic Triple 3 ns CRT Driver

General Description

The LM2402 is an integrated high voltage CRT driver circuit designed for use in high resolution color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads presented by other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 11 lead TO-220 molded plastic power package. See thermal considerations on page 5

Features

- Rise/fall times typically $3.0 / 2.8 \mathrm{~ns}$ with 8 pF load at $40 \mathrm{~V}_{\mathrm{PP}}$
- Well matched with LM2202 video preamps
- Output swing capability: $50 \mathrm{~V}_{\mathrm{PP}}$ for $\mathrm{V}_{\mathrm{CC}}=80 \mathrm{~V}$
- 1 V to 5 V input range
- Stable with 0-20 pF capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM240X family pinout which is designed for easy PCB layout

Applications

- CRT driver for color monitors with display resolutions up to 1600×1200
- Pixel clock frequency up to 200 MHz

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: $T a b$ is at GND
DS101016-2
Top View
Order Number LM2402T

LM2403

Monolithic Triple 4.5 nS CRT Driver

General Description

The LM2403 is an integrated high voltage CRT driver circuit designed for use in high resolution color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads presented by other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 11 lead TO-220 molded plastic power package. See thermal considerations on page 5.

Features

- Rise/fall times typically 4.5 nS with 8 pF load at $40 \mathrm{~V}_{\mathrm{pp}}$
- Well matched with LM1283 video preamp
- Output swing capability: $60 \mathrm{~V}_{\mathrm{pp}}$ for $\mathrm{V}_{\mathrm{CC}}=80 \mathrm{~V}$
- 1V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM240X Family Pinout which is designed for easy PCB layout

Applications

- CRT driver for color monitors with display resolutions up to 1600×1200
- Pixel clock frequency up to 160 MHz

Schematic and Connection Diagrams

Note: $T a b$ is at GND
Top View
Order Number LM2403T

FIGURE 1. Simplified Schematic Diagram (One Channel)

LM2405

Monolithic Triple 7 ns CRT Driver

General Description

The LM2405 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set at -14 and can drive CRT capacitive loads as well as resistive loads presented by other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 11 lead TO-220 molded plastic power package. See thermal considerations on page 5.

Features

- Rise/fall times typically 7 ns with 8 pF load
- Output swing capability: $50 \mathrm{~V}_{\mathrm{PP}}$ for $\mathrm{V}_{\mathrm{CC}}=80$ $40 \mathrm{~V}_{\mathrm{PP}}$ for $\mathrm{V}_{\mathrm{CC}}=70$ $30 V_{P P}$ for $V_{C C}=60$
- Pinout designed for easy PCB layout
- 0 V to 6 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capactive loads
- Convenient TO-220 staggered lead package style

Applications

- CRT driver for 1280×1024 (Non-interlaced) and XGA display resolution color monitors
- Pixel clock frequency up to 130 MHz
- Monitors using video blanking

Schematic and Connection Diagram

FIGURE 1. Simplified Schematic Diagram (One Channel)

Tab is at GND

> Top View Order Number LM2405T

LM2407

Monolithic Triple 7.5 nS CRT Driver

General Description

The LM2407 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each charınel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 11-lead TO-220 molded plastic power package. See thermal considerations on page 6.

Features

- Low power dissipation
- Well matched with LM1279 video preamp
- 0 V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM240X Family Pinout which is designed for easy PCB layout

Applications

- 1024×768 displays up to 85 Hz refresh
- Pixel clock frequencies up to 100 MHz
- Monitors using video blanking

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View Order Number LM2407T

National Semiconductor

LM2409

Monolithic Triple 9.5 ns CRT Driver

General Description

The LM2409 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation. The IC is packaged in an industry standard 11-lead TO-220 molded plastic power package. See Thermal Considerations section.

- Well matched with LM1279 video preamp
- 0 V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM240X Family Pinout which is designed for easy PCB layout

Applications

- 1024×768 Displays up to 70 Hz Refresh
- Pixel clock frequencies up to 75 MHz
- Monitors using video blanking

Features

- Dissipates approximately 50% less power than the LM2406

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View Order Number LM2409T

LM2415

Monolithic Triple 5.5 ns CRT Driver

General Description

The LM2415 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation. The IC is packaged in an industry standard 11-lead TO-220 molded plastic power package. See Thermal Considerations section.

- Well matched with LM1279 and LM1282 video preamps
- 0 V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM240X Family Pinout which is designed for easy PCB layout

Applications

- 1280×1024 Displays up to 75 Hz Refresh
- Pixel clock frequencies up to 135 MHz
- Monitors using video blanking

Features

- Dissipates approximately 45% less power than the LM2405

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View Order Number LM2415T

LM2435

Monolithic Triple 5.5 ns CRT Driver

General Description

The LM2435 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 9-lead TO-220 molded plastic power package. See Thermal Considerations section.

Features

- Dissipates approximately 45% less power than the LM2405
- Well matched with LM1279 and LM1282/83 video preamps
- 0 V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM243X Family Pinout which is designed for easy PCB layout

Applications

- 1280×1024 Displays up to 75 Hz Refresh
- Pixel clock frequencies up to 135 MHz
- Monitors using video blanking

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

0
 National Semiconductor

LM2437

Monolithic Triple 7.5 ns CRT Driver

General Description

The LM2437 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 9-lead TO-220 molded plastic power package. See Thermal Considerations section.

Features

- Well matched with LM1279 video preamp
- 0 V to 4.5 V input range
- Stable with 0-20 pF capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM243X Family Pinout which is designed for easy PCB layout

Applications

■ 1024×768 displays up to 85 Hz refresh

- Pixel clock frequencies up to 100 MHz
- Monitors using video blanking

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View Order Number LM2437T

General Description

The LM2438 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation. The IC is packaged in an industry standard 9-lead TO-220 molded plastic power package. See Thermal Considerations section.

Features

- Well matched with LM1279 video preamp
- 0 V to 5 V input range
- Stable with 0-20 pF capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM243X Family Pinout which is designed for easy PCB layout

Applications

- 1024×768 displays up to 60 Hz refresh
- Pixel clock frequencies up to 60 MHz
- Monitors using video blanking

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View
Order Number LM2438T

LM2439

Monolithic Triple 9.5 ns CRT Driver

General Description

The LM2439 is an integrated high voltage CRT driver circuit designed for use in color monitor applications. The IC contains three high input impedance, wide band amplifiers which directly drive the RGB cathodes of a CRT. Each channel has its gain internally set to -14 and can drive CRT capacitive loads as well as resistive loads present in other applications, limited only by the package's power dissipation.
The IC is packaged in an industry standard 9-lead TO-220 molded plastic power package. See Thermal Considerations section.

- Well matched with LM1279 video preamp
- 0 V to 5 V input range
- Stable with $0 \mathrm{pF}-20 \mathrm{pF}$ capacitive loads and inductive peaking networks
- Convenient TO-220 staggered lead package style
- Standard LM243X Family Pinout which is designed for easy PCB layout

Applications

- 1024×768 Displays up to 70 Hz Refresh
- Pixel clock frequencies up to 75 MHz
- Monitors using video blanking

Features

- Dissipates approximately 50% less power than the LM2406

Schematic and Connection Diagrams

FIGURE 1. Simplified Schematic Diagram (One Channel)

Note: Tab is at GND
Top View Order Number LM2439T

0

Section 14
 Voltage Control and Supervision Products

0
Section 14 Contents
Voltage Control and Supervisor Products Selection Guide 14-3
LM809/LM810 3-Pin Microprocessor Reset Circuits 14-5
LM2601 Adapter Interface Circuit 14-7
LM3411 Precision Secondary Regulator/Driver 14-9
LM3812/LM3813 Precision Current Gauge IC with Ultra Low Loss Sense Element and PWM Output 14-11
LM3814/LM3815 Fast Current Gauge IC with Ultra Low Loss Sense Element and PWM Output 14-13
LM3822 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output 14-15
LM3824 Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output 14-17
LMC6953 PCI Local Bus Power Supervisor 14-19
LP3470 Tiny Power On Reset Circuit 14-21

Voltage Control and Supervisor Products Selection Guide

VOLTAGE CONTROL PRODUCTS

Part Number	Function	Input Range $\mathbf{(V)}$	Output	Features	Package (Note 1)
LM3411	Power Supply Feedback	$3.3,5$	Current for control of regulator (20mA to 15mA)	$1 \% \& 0.5 \%$ tolerances. Custom voltages available (3V to 17V)	M5, N8
LM3460 (Note 2)	GTL, GTLp Bus control	$1.2,1.5$	Current for control of regulator (up to 15mA)	1% tolerance.	M5

CURRENT GAUGE PRODUCTS

Part Number	Function	Input Range	Output	Features	Package (Note 1)
LM3812-1.0	High-Side Precision Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 50 ms for 4% tolerance.	M8
LM3812-7.0	High-Side Precision Current Gauge	up to 7A (10A peak)	PWM with duty cycle proportional to input current	Sampling interval of 50 ms for 6% tolerance.	M8
LM3813-1.0	Low-Side Precision Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 50 ms for 4% tolerance.	M8
LM3813-7.0	Low-Side Precision Current Gauge	$\begin{aligned} & \text { up to 7A (10A } \\ & \text { peak) } \end{aligned}$	PWM with duty cycle proportional to input current	Sampling interval of 50 ms for 6% tolerance.	M8
LM3814-1.0	High-Side Fast Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 6 ms for 5.5\% tolerance.	M8
LM3814-7.0	High-Side Fast Current Gauge	up to 7A (10A peak)	PWM with duty cycle proportional to input current	Sampling interval of 6 ms for 8.5\% tolerance.	M8
LM3815-1.0	Low-Side Fast Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 6 ms for 5.5% tolerance.	M8
LM3815-7.0	Low-Side Fast Current Gauge	up to 7A (10A peak)	PWM with duty cycle proportional to input current	Sampling interval of 6 ms for 8.5% tolerance.	M8
LM3822-1.0	High-Side Precision Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 50ms for 4\% tolerance.	M8
LM3822-2.0	High-Side Precision Current Gauge	up to 2A	PWM with duty cycle proportional to input current	Sampling interval of 50 ms for 4% tolerance.	M8
LM3824-1.0	High-Side Precision Current Gauge	up to 1A	PWM with duty cycle proportional to input current	Sampling interval of 6 ms for 6\% tolerance.	M8

CURRENT GAUGE PRODUCTS (Continued)

Part Number
Function
IM3822-2.0
High-Side Precision Current Gauge

Part Number	Function	$\begin{array}{c}\text { Input Range } \\ \text { or Threshold }\end{array}$	Output	Features	$\begin{array}{c}\text { Package } \\ \text { (Note 1) }\end{array}$
LM809	Power-on Reset	$2.63,2.93$,	Reset Flag	Active Low RESET Output	M3
		$3.08,4.00$,			
$4.38,4.63 \mathrm{~V}$					

Note 1: Package designation includes number of pins:
$M=$ plastic surface-mount
M3 $=3$ Lead SOT-23
M5 = 5 Lead SOT-23
$\mathrm{N}=$ plastic dual-in-line
TSSOP-14 = 14-Lead Thin Shrink Small-Outline Package
Note 2: Refer to the Low Dropout Linear Voltage Regulators for product data for the LM3460 voltage controller.

LM809/LM810

3-Pin Microprocessor Reset Circuits

General Description

The LM809/810 microprocessor supervisory circuits can be used to monitor the power supplies in microprocessor and digital systems. They provide a reset to the microprocessor during power-up, power-down and brown-out conditions.
The function of the LM809/810 is to monitor the V_{CC} supply voltage, and assert a reset signal whenever this voltage declines below the factory-programmed reset threshold. The reset signal remains asserted for 240 ms after V_{CC} rises above the threshold. The LM809 has an active-low RESET output, while the LM810 has an active-high RESET output. Six standard reset voltage options are available, suitable for monitoring $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3 V supply voltages.
With a low supply current of only $15 \mu \mathrm{~A}$, the LM809/810 are ideal for use in portable equipment. The LM809/LM810 are available in the 3-pin SOT23 package.

Features

- Precise monitoring of $3 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V supply voltages
- Superior upgrade to MAX809/810
- Fully specified over temperature
- 140 ms min. Power-On Reset pulse width, 240ms typical Active-low RESET Output (LM809) Active-high RESET Output (LM810)
- Guaranteed RESET Output valid for $\mathrm{V}_{\mathrm{CC}} \geq 1 \mathrm{~V}$
- Low Supply Current, $15 \mu \mathrm{~A}$ typ.
- Power supply transient immunity

Applications

- Microprocessor Systems
- Computers
- Controllers
- Intelligent Instruments
- Portable/Battery-Powered Equipment
- Automotive

Typical Application Circuit

Connection Diagram

() are for LM810

Ordering Information

Reset Threshold (V)	LM809 Supplied as 1000 units, tape \& reel	LM809 Supplied as 3000 units, tape \& reel	Package Top Mark	Package Type	NSC Package
4.63	LM809M3-4.63	LM809M3X-4.63	S8B		
4.38	LM809M3-4.38	LM809M3X-4.38	S7B		
4.00	LM809M3-4.00	LM809M3X-4.00	S6B		
3.08	LM809M3-3.08	LM809M3X-3.08	S5B	SOT23-3	М03B
2.93	LM809M3-2.93	LM809M3X-2.93	S4B		
2.63	LM809M3-2.63	LM809M3X-2.63	S3B		
Reset Threshold (V)	LM810 Supplied as 1000 units, tape \& reel	LM810 Supplied as 3000 units, tape \& reel	Package Top Mark	Package Type	NSC Package
4.63	LM810M3-4.63	LM810M3X-4.63	SEB	SOT23-3	M03B
4.38	LM810M3-4.38	LM810M3X-4.38	SDB		
4.00	LM810M3-4.00	LM810M3X-4.00	SCB		
3.08	LM810M3-3.08	LM810M3X-3.08	SBB		
2.93	LM810M3-2.93	LM810M3X-2.93	SAB		
2.63	LM810M3-2.63	LM810M3X-2.63	S9B		

Custom voltages and improved accuracies are available, subject to minimum orders. Contact your local National Semiconductor Sales Office for information.

Pin Description

PIN	NAME	FUNCTION
1	GND	Ground reference
2	RESET (LM809)	Active-low output. $\overline{\text { RESET remains low while } \mathrm{V}_{\mathrm{CC}} \text { is below the reset threshold, and }}$ for 240ms after V_{CC} rises above the reset threshold.
	RESET (LM810)	Active-high output. RESET remains high while V_{CC} is below the reset threshold, and for 240ms after V_{CC} rises above the reset threshold.
	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage $(+5 \mathrm{~V},+3.3 \mathrm{~V}$, or $+3.0 \mathrm{~V})$

National Semiconductor

LM2601
 Adapter Interface Circuit

General Description

The Adapter Interface Circuit (AIC) is used to sense the presence of an external power source for a portable computer. It notifies the computer if a source is present and indicates if the source is appropriate for charging battery packs inside the computer. The AIC also senses current thresholds and signals the computer when these thresholds are exceeded.

Features

- Wide input range: $5 \mathrm{~V}-24 \mathrm{~V}$
- Low leakage current: $1 \mu \mathrm{~A}$ typical
- Available in TSSOP-14 package

AIC Block Diagram

Connection Diagram

Ordering Information

Order Number	Package Number	Package Type	Supplied As* *
LM2601MTC	MTC14	TSSOP-14	Rail (94 Units/Rail)
LM2601MTCX	MTC14	TSSOP-14	Tape and Reel (2500 Units/Reel)

* Partial Rails are available, there is no minimum order quantity. Tape and Reel is supplied as full reels only.

Pin Description

Pin No.	Name	Function
1	MPS DELAY	A capacitor between this pin and ground sets the delay of the MPS risetime.
2	MASTER POWER SOURCE	Bi-directional logic pin. If driven high by an external source, indicates external source is driving the power buss. If driven high by the AIC, indicates the adapter is powering the buss.
3	ADAPTER ENABLE	Logic input pin. Grants permission to the adapter to drive both the power buss and the MPS signal.
4	ADAPTER PRESENT	Logic output pin. High when 12 volts < $V_{\text {ADAPTER }}<17$ volts. 5CHARGER PRESENT
9	GND	Logic output pin. High when V VADAPTER >17 volts.
10	DISCONNECT	DC ground pin.
11	BACKFEED the gate of the disconnect FET.	
12	DIRECTION	Drives the gate of the backfeed FET.
13	SENSE	Connection for current sense resistor to control BACKFEED.
14	VEAK SENSE	Connection for current sense resistor to control DISCONNECT.

LM3411
 Precision Secondary Regulator/Driver

General Description

The LM3411 is a low power fixed-voltage (3.3V or 5.0V) precision shunt regulator designed specifically for driving an optoisolator to provide feedback isolation in a switching regulator.
The LM3411 circuitry includes an internally compensated op amp, a bandgap reference, NPN output transistor, and voltage setting resistors.
A trimmed precision bandgap reference with temperature drift curvature correction, provides a guaranteed 1% precision over the operating temperature range (A grade version). The amplifier's inverting input is externally accessible for loop frequency compensation when used as part of a larger servo system. The output is an open-emitter NPN transistor capable of driving up to 15 mA of load current.
Because of its small die size, the LM3411 has been made available in the sub-miniature 5-lead SOT23-5 surface mount package. This package is ideal for use in space critical applications.

Although its main application is to provide a precision output voltage (no trimming required) and maintain very good regulation in isolated DC/DC converters, it can also be used with
other types of voltage regulators or power semiconductors to provide a precision output voltage without precision resistors or trimming.

Features

- Fixed voltages of 3.3 V and 5.0 V with initial tolerance of $\pm 1 \%$ for standard grade and $\pm 0.5 \%$ for A grade
- Custom voltages available (3V-17V)
- Wide output current range, $20 \mu \mathrm{~A}-15 \mathrm{~mA}$
. Low temperature coefficient
- Available in 5-lead SOT23-5 surface mount package (tape and reel)

Applications

- Secondary controller for isolated DC/DC PWM switching regulators systems
- Use with LDO regulator for high-precision fixed output regulators
- Precision monitoring applications
- Use with many types of regulators to increase precision and improve performance

Typical Application and Functional Diagram

Basic Isolated DC/DC Converter

LM3411 Functional Diagram

Connection Diagrams and Order Information

5－Lead Small Outline Package（M5）

Actual Size
 気
 DS011987－4

＊No internal connection，but should be soldered to PC board for best heat transfer．

Top View
For Ordering Information See Figure 1 in this Data Sheet See NS Package Number MF05A

Five Lead Surface Mount Package Marking and Order Information（SOT23－5）

The small SOT23－5 package allows only 4 alphanumeric characters to identify the product．The table below contains the field in－ formation marked on the package．

	Grade	Order Information	Package Marking	Supplied as
3.3 V	A（Prime）	LM3411AM5－3．3	D00A	1000 unit increments on tape and reel
3.3 V	A（Prime）	LM3411AM5X－3．3	D00A	3000 unit increments on tape and reel
3.3 V	B（Standard）	LM3411M5－3．3	D00B	1000 unit increments on tape and reel
3.3 V	B（Standard）	LM3411M5X－3．3	D00B	3000 unit increments on tape and reel
5.0 V	A（Prime）	LM3411AM5－5．0	D01A	1000 unit increments on tape and reel
5.0 V	A（Prime）	LM3411AM5X－5．0	D01A	3000 unit increments on tape and reel
5.0 V	B（Standard）	LM3411M5－5．0	D01B	1000 unit increments on tape and reel
5.0 V	B（Standard）	LM3411M5X－5．0	D01B	3000 unit increments on tape and reel

FIGURE 1．SOT23－5 Marking and Order Information
The first letter＂ D ＂identifies the part as a Driver，the next two numbers indicate the voltage，＂00＂for 3.3 V part and＂ 01 ＂for a 5 V part．The fourth letter indicates the grade，＂B＂for standard grade，＂A＂for the prime grade．
The SOT23－5 surface mount package is only available on tape in quantities increments of 250 on tape and reel（indicated by the letters＂M5＂in the part number），or in quantities increments of 3000 on tape and reel（indicated by the letters＂M5X＂in the part number）．

LM3812/LM3813

Precision Current Gauge IC with Ultra Low Loss Sense Element and PWM Output

General Description

The LM3812/LM3813 Current Gauges provide easy to use precision current measurement with virtually zero insertion loss (typically 0.004Ω). The LM3812 is used for high-side sensing and the LM3813 is used for low-side sensing.
A Delta Sigma analog to digital converter is incorporated to precisely measure the current and to provide a current averaging function. Current is averaged over 50 msec time periods in order to provide immunity to current spikes. The ICs have a pulse-width modulated (PWM) output which indicates the current magnitude and direction. The shutdown pin can be used to inhibit false triggering during start-up, or to enter a low quiescent current mode.
The LM3812 and LM3813 are factory-set in two different current options. The sense range is $-1 A$ to $+1 A$ or $-7 A$ to $+7 A$. The sampling interval for these parts is 50 ms . If faster sampling is desired, please refer to the data sheets for the part numbers LM3814 and LM3815.

Key Specifications

- Ultra low insertion loss (typically 0.004Ω)
- 2 V to 5.25 V supply range
- $\pm 2 \%$ accuracy at room temperature (includes accuracy of the internal sense element) (LM3812-1.0, LM3813-1.0)
- Low quiescent current in shutdown mode (typically $2.5 \mu \mathrm{~A}$)
- 50 msec sampling interval

Features

- No external sense element required
- PWM output indicates the current magnitude and direction
- PWM output can be interfaced with microprocessors
- Precision $\Delta \Sigma$ current-sense technique
- Low temperature sensitivity
- Internal filtering rejects false trips
- Internal Power-On-Reset (POR)

Applications

- Battery charge/discharge gauge
- Motion control diagnostics
- Power supply load monitoring and management
- Resettable smart fuse

Connection Diagrams

Top View
LM3813
for Low-Side Sensing

Ordering Information

| Order No.* | Sense
 Range | Sampling
 Interval* | Sensing
 Method | NS
 Package
 Number | Package
 Type | Supplied As: |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |$|$| LM3812M-1.0 | $\pm 1 \mathrm{~A}$ | 50 ms | High-side |
| :--- | :---: | :---: | :---: |
| M08A | SO-8 | 95 units in Rails | |
| LM3812MX-1.0 | $\pm 1 \mathrm{~A}$ | 50 ms | High-side |
| M08A | SO-8 | 2.5 k units on Tape and Reel | |
| LM3812M-7.0 | $\pm 7 \mathrm{~A}$ | 50 ms | High-side |
| M08A | SO-8 | 95 units in Rails | |
| LM3813M-1.0 | $\pm 7 \mathrm{~A}$ | 50 ms | High-side |
| M08A | SO-8 | 2.5 k units on Tape and Reel | |
| LM3813MX-1.0 | $\pm 1 \mathrm{~A}$ | 50 ms | Low-side |
| M08A | SO-8 | 95 units in Rails | |
| LM3813MX-7.0 | $\pm 1 \mathrm{~A}$ | 50 ms | Low-side |
| M08A | SO-8 | 2.5 k units on Tape and Reel | |

\# Suffix M indicates that the part is available in Surface Mount package. Suffix X indicates that the part is available in 2.5 k units on Tape and Reel.

* Current is sampled over a fixed interval. The average current during this interval is indicated by the duty cycle of the PWM output during next interval.
\# The Package code M08A is internal to National Semiconductor and indicates an 8-lead surface mount package, SO-8.

Pin Description (High-Side, LM3812)

Pin	Name	Function
1	SENSE,$+ \mathrm{V}_{\text {DD }}$	High side of internal current sense, also supply voltage.
2	SENSE-	Low side of internal current sense.
3	FLTR +	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	$\overline{\text { SD }}$	Shutdown pin. Connected to V_{DD} through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically $3 \mu \mathrm{~A})$.
6	PWM	PWM output indicates the current magnitude and direction.
7	GND	Ground
8	GND	Ground

Pin Description (Low-Side, LM3813)

Pin	Name	Function
1	SENSE + GND	High side of internal current sense, also ground.
2	SENSE-	Low side of internal current sense.
3	FLTR+	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	$\overline{\text { SD }}$	Shutdown pin. Connected to $V_{\text {DD }}$ through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically $3 \mu \mathrm{~A})$.
6	PWM	PWM output indicates the current magnitude and direction.
7	GND	Ground
8	V $_{\text {DD }}$	V_{DD} (supply)

LM3814/LM3815

Fast Current Gauge IC with Ultra Low Loss Sense Element and PWM Output

General Description

The LM3814/LM3815 Current Gauges provide easy to use precision current measurement with virtually zero insertion loss (typically 0.004Ω). The LM3814 is used for high-side sensing and the LM3815 is used for low-side sensing.
A Delta Sigma analog to digital converter is incorporated to precisely measure the current and to provide a current averaging function. Current is averaged over 6 msec time periods in order to provide immunity to current spikes. The ICs have a pulse-width modulated (PWM) output which indicates the current magnitude and direction. The shutdown pin can be used to inhibit false triggering during start-up, or to enter a low quiescent current mode.
The LM3814 and LM3815 are factory-set in two different current options. The sense range is $-1 A$ to $+1 A$ or $-7 A$ to $+7 A$. The user specifies a particular part number to match the current range for a given application. The sampling interval for these parts is 6 ms . If larger sampling interval is desired for better accuracy, please refer to the data sheets for the part numbers LM3812 and LM3813.

Key Specifications

- Ultra low insertion loss (typically 0.004Ω)
- 2 V to 5.25 V supply range
- $\pm 3.5 \%$ accuracy at room temperature (includes accuracy of the internal sense element) (LM3814-1.0, LM3815-1.0)
- Low quiescent current in shutdown mode (typically 2.5 $\mu \mathrm{A}$)
- 6 msec sampling interval

Features

- No external sense element required
- PWM output indicates the current magnitude and direction
- PWM output can be interfaced with microprocessors
- Precision $\Delta \Sigma$ current-sense technique
- Low temperature sensitivity
- Internal filtering rejects false trips
- Internal Power-On-Reset (POR)

Applications

- Battery charge/discharge gauge
- Motion control diagnostics
- Power supply load monitoring and management
- Resettable smart fuse

Top Vlew LM3815
for Low-Side Sensing

Ordering Information

Order No.*	Sense Range	Sampling Interval*	Sensing Method	NS Package Number	Package Type	Supplied As:
LM3814M-1.0	$\pm 1 \mathrm{~A}$	6 ms	High-side	M08A	SO-8	95 units in Rails
LM3814MX-1.0	$\pm 1 \mathrm{~A}$	6 ms	High-side	M08A	SO-8	2.5 k units on Tape and Reel
LM3814M-7.0	$\pm 7 \mathrm{~A}$	6 ms	High-side	M08A	SO-8	95 units in Rails
LM3814MX-7.0	$\pm 7 \mathrm{~A}$	6 ms	High-side	M08A	SO-8	2.5 k units on Tape and Reel
LM3815M-1.0	$\pm 1 \mathrm{~A}$	6 ms	Low-side	M08A	SO-8	95 units in Rails
LM3815MX-1.0	$\pm 1 \mathrm{~A}$	6 ms	Low-side	M08A	SO-8	2.5 k units on Tape and Reel
LM3815M-7.0	$\pm 7 \mathrm{~A}$	6 ms	Low-side	M08A	SO-8	95 units in Rails
LM3815MX-7.0	$\pm 7 \mathrm{~A}$	6 ms	Low-side	M08A	SO-8	2.5 k units on Tape and Reel

\# Suffix M indicates that the part is available in Surface Mount package. Suffix X indicates that the part is available in 2.5 k units on Tape and Reel.

* Current is sampled over a fixed interval. The average current during this interval is indicated by the duty cycle of the PWM output during next interval.
* The Package code M08A is internal to National Semiconductor and indicates an 8-lead surface mount package, SO-8.

Pin Description (High-Side, LM3814)

Pin	Name	Function
1	SENSE,$+ \mathrm{V}_{\mathrm{DD}}$	High side of internal current sense, also supply voltage.
2	SENSE-	Low side of internal current sense.
3	FLTR +	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	$\overline{\text { SD }}$	Shutdown pin. Connected to V_{DD} through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically $3 \mu \mathrm{~A}$).
6	PWM	PWM output indicates the current magnitude and direction.
7	GND	Ground
8	GND	Ground

Pin Description (Low-Side, LM3815)

Pin	Name	Function
1	SENSE + , GND	High side of internal current sense, also ground.
2	SENSE-	Low side of internal current sense.
3	FLTR+	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	$\overline{\text { SD }}$	Shutdown pin. Connected to $V_{D D}$ through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically $3 \mu \mathrm{~A})$.
6	PWM	PWM output indicates the current magnitude and direction.
7	GND	Ground
8	$V_{D D}$	$V_{D D}$ (supply)

LM3822

Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output

General Description

The LM3822 Current Gauge provides easy to use precision current measurement with virtually zero insertion loss (typically 0.003Ω). The LM3822 is used for high-side sensing.
A Delta Sigma analog to digital converter is incorporated to precisely measure the current and to provide a current averaging function. Current is averaged over 50 msec time periods in order to provide immunity to current spikes. The ICs have a pulse-width modulated (PWM) output which indicates the current magnitude and direction. The shutdown pin can be used to inhibit false triggering during start-up, or to enter a low quiescent current mode.
The LM3822 is factory-set in two different current options. The sense range is -1.0 A to +1.0 A or -2.0 A to +2.0 A . The sampling interval for this part is 50 ms . If faster sampling is desired, please refer to the data sheet for the part number LM3824.

Key Specifications

- Ultra low insertion loss (typically 0.003Ω)
- 2 V to 5.5 V supply range
- $\pm 2 \%$ accuracy at room temperature for the 1A device (includes accuracy of the internal sense element)
- Low quiescent current in shutdown mode (typically $1.8 \mu \mathrm{~A})$
- 50 msec sampling interval
- In MSOP-8 Package

Features

- No external sense element required
- PWM output indicates the current magnitude and direction
- PWM output is easily interfaced with microprocessors and controllers
- Precision $\Delta \Sigma$ current-sense technique
- Low temperature sensitivity
- Internal filtering rejects false trips
- Internal Power-On-Reset (POR)
- DC Offset is less than 1 mA for 1A part

Applications

- Battery charge/discharge gauge
- Motion control diagnostics
- Power supply load monitoring and management
- Resettable smart fuse

Ordering Information

Order No.*	Sense Range	Sampling Interval*	Sensing Method	NS Package Number	Package Type	Supplied As:

* Current is sampled over a fixed interval. The average current during this interval is indicated by the duty cycle of the PWM output during next interval.

Pin Description (High-Side, LM3822)

Pin	Name	Function
1	SENSE,$+ V_{D D}$	High side of internal current sense, also supply voltage.
2	GND	Supply Ground.
3	FLTR+	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	$\overline{S D}$	Shutdown input. Connected to $V_{D D}$ through a pull-up resistor for normal operation. When low, the LM3822 is put into a low current mode.
6	TEST	Connect to GND for normal operation.
7	PWM	Digital output indicates the current magnitude and direction.
8	SENSE-	Low side of internal current sense.

LM3824

Precision Current Gauge IC with Internal Zero Ohm Sense Element and PWM Output

General Description

The LM3824 Current Gauge provides easy to use precision current measurement with virtually zero insertion loss (typically 0.003Ω). The LM3824 is used for high-side sensing.
A Delta Sigma analog to digital converter is incorporated to precisely measure the current and to provide a current averaging function. Current is averaged over 6 msec time periods in order to provide immunity to current spikes. The ICs have a pulse-width modulated (PWM) output which indicates the current magnitude and direction. The shutdown pin can be used to inhibit false triggering during start-up, or to enter a low quiescent current mode.
The LM3824 is factory-set in two different current options. The sense range is -1.0 A to +1.0 A or -2.0 A to +2.0 A . The sampling interval for this part is 6 ms . If a more precise measurement is required, please refer to LM3822 datasheet.

Key Specifications

- Ultra low insertion loss (0.003s2)
- 2 V to 5.5 V supply range
- $\pm 3 \%$ accuracy at room temperature for the 1 A device (includes accuracy of the internal sense element)
- Low quiescent current in shutdown mode (typically $1.8 \mu \mathrm{~A}$)
- 6 msec sampling interval
- In MSOP-8 Package

Features

- No external sense element required
- PWM output indicates the current magnitude and direction
- PWM output is easily interfaced with microprocessors and controllers
- Precision $\Delta \Sigma$ current-sense technique
- Low temperature sensitivity
- Internal filtering rejects false trips
- Internal Power-On-Reset (POR)
- DC Offset is less than 8 mA for 1A part

Applications

- Battery charge/discharge gauge
- Motion control diagnostics
- Power supply load monitoring and management
- Resettable smart fuse

Connection Diagram

Ordering Information

Order No.*	Sense Range	Sampling Interval*	Sensing Method	NS Package Number	Package Type	Supplied As:
LM3824MM-1.0	$\pm 1.0 \mathrm{~A}$	6 ms	High-side	MUA08A	MSOP-8	Tape and Reel (1000 units/reel)
LM3824MMX-1.0	$\pm 1.0 \mathrm{~A}$	6 ms	High-side	MUA08A	MSOP-8	Tape and Reel (3500 units/reel)
LM3824MM-2.0	$\pm 2.0 \mathrm{~A}$	6 ms	High-side	MUA08A	MSOP-8	Tape and Reel (1000 units/reel)
LM3824MMX-2.0	$\pm 2.0 \mathrm{~A}$	6 ms	High-side	MUA08A	MSOP-8	Tape and Reel (3500 units/reel)

* Current is sampled over a fixed interval. The average current during this interval is indicated by the duty cycle of the PWM output during next interval.

Pin Description (High-Side, LM3824)

Pin	Name	Function
1	SENSE,$+ \mathrm{V}_{\mathrm{DD}}$	High side of internal current sense, also supply voltage.
2	GND	Supply Ground.
3	FLTR +	Filter input - provides anti-aliasing for delta sigma modulator.
4	FLTR-	Filter input.
5	SD	Shutdown input. Connected to $V_{D D}$ through a pull-up resistor for normal operation. When low, the LM3824 is put into a low current mode.
6	TEST	Connect to GND for normal operation.
7	PWM	Digital output indicates the current magnitude and direction.
8	SENSE-	Low side of internal current sense.

LMC6953

PCI Local Bus Power Supervisor

General Description

The LMC6953 is a voltage supervisory chip designed to meet PCl (Peripheral Component Interconnect) Specifications Revision 2.1. It monitors 5 V and 3.3 V power supplies. In cases of power-up, power-down, brown-out, power failure and manual reset interrupt, the LMC6953 provides an active low reset. RESET holds low for 100 ms after both 5 V and 3.3V powers recover, or after manual reset signal returns to high state. The external capacitor on pin 8 adjusts the reset delay.
This part is ideal on PCI motherboards or add-in cards to ensure the integrity of the entire system when there is a fault condition. The active low reset sets the microprocessor or local device in a known state.
The LMC6953 has a built-in bandgap reference that accurately determines all the threshold voltages. The internal reset delay circuitry eliminates additional discrete components.

Features

- Compliant to PCI specifications revision 2.1.
- Under and over voltage detectors for 5 V and 3.3 V
- Power failure detection (5 V falling under 3.3 V by 300 mV max)
- Manual reset input pin
- Guaranteed $\overline{\text { RESET }}$ assertion at $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$
- Integrated reset delay circuitry
- Open drain output
- Adjustable reset delay
- Response time for over and under voltage detection: 490 ns Max
- Power failure response time: 90 ns Max
- Requires minimal external components

Applications

- Desktop PCs
- PCI-Based Systems
- Network servers

Typical Application Circuits

On Add-in Cards

Connection Diagram

$$
\begin{aligned}
& \text { 8-Pin SO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Top View }
\end{aligned}
$$

Ordering Information

Package	Industrial Temp Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathbf{C}$	NSC Drawing	Supplied As
8-Pin Small Outline	LMC6953CM	M08A	Rails
	LMC6953CMX		2.5 k Tape and Reel

LP3470

Tiny Power On Reset Circuit

General Description

The LP3470 is a micropower CMOS voltage supervisory circuit designed to monitor power supplies in microprocessor ($\mu \mathrm{P}$) and other digital systems. It provides maximum adjustability for power-on-reset (POR) and supervisory functions. It is available in the following six standard reset threshold voltage ($\mathrm{V}_{\mathrm{RTH}}$) options: $2.63 \mathrm{~V}, 2.93 \mathrm{~V}, 3.08 \mathrm{~V}, 4.00 \mathrm{~V}, 4.38 \mathrm{~V}$, and 4.63 V . If other voltage options between 2.4 V and 5.0 V are desired please contact your National Semiconductor representative.
The LP3470 asserts a reset signal whenever the V_{CC} supply voltage falls below a reset threshold. The reset time-out period is adjustable using an external capacitor. Reset remains asserted for an interval (programmed by an external capacitor) after V_{CC} has risen above the threshold voltage.
The device is available in the tiny SOT23-5 package.

Key Specifications

- $\pm 1 \%$ Reset Threshold Accuracy Over Temperature

■ Standard Reset Threshold Voltages: 2.63V, 2.93V, $3.08 \mathrm{~V}, 4.00 \mathrm{~V}, 4.38 \mathrm{~V}$, and 4.63 V

- Custom Reset Threshold Voltages: For other voltages between 2.4 V and 5.0 V contact your National Semiconductor representative
- Very Low Quiescent Current ($16 \mu \mathrm{~A}$ typical)
- Guaranteed $\overline{\text { Reset }}$ valid down to $\mathrm{V}_{\mathrm{CC}}=0.5 \mathrm{~V}$

Features

- Tiny SOT23-5 Package
- Open Drain Reset Output
- Programmable Reset Timeout Period Using an External Capacitor
- Immune to Short V_{cc} Transients

Applications

- Critical $\mu \mathrm{P}$ and $\mu \mathrm{C}$ Power Monitoring
- Intelligent Instruments
- Computers
- Portable/Battery-Powered Equipments

Pin Configuration and Basic Operating Circuit

Pin Configuration

Top View
See NS Package Number MF05A

Ordering Information

Operating Temperature Range	Order Number	Nominal $\mathbf{V}_{\text {RTH }} \mathbf{(V)}$	Package Marking	Package Type	Supplied As

Section 15
 Voltage References

Section 15 Contents

Voltage Reference Selection Guide 15-3
LM10 Operational Amplifier and Voltage Reference. 15-9
LM129/LM329 Precision Reference 15-10
LM199/LM299/LM399/LM3999 Precision Reference 15-12
LM134/LM234/LM334 3-Terminal Adjustable Current Sources. 15-14
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode 15-15
LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode 15-17
LM185/LM285/LM385 Adjustable Micropower Voltage References 15-19
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode 15-21
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode 15-23
LM4040 Precision Micropower Shunt Voltage Reference 15-25
LM4041 Precision Micropower Shunt Voltage Reference 15-28
LM4050 Precision Micropower Shunt Voltage Reference 15-30
LM4051 Precision Micropower Shunt Voltage Reference 15-32
LM4120 Precision Micropower Low Dropout Voltage Reference 15-34
LM4121 Precision Micropower Low Dropout Voltage Reference 15-36
LM4130 Precision Micropower Low Dropout Voltage Reference 15-38
LM4140 High Precision Low Noise Low Dropout Voltage Reference 15-40
LM431 Adjustable Precision Zener Shunt Regulator 15-42
LM4431 Micropower Shunt Voltage Reference 15-45
LM611 Operational Amplifier and Adjustable Reference. 15-46
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 15-47
LM614 Quad Operational Amplifier and Adjustable Reference 15-48
LMV431/LMV431A/LMV431B Low-Voltage (1.24V) Adjustable Precision Shunt Regulators. 15-49

Voltage Reference Selection Guide

Low Dropout Voltage References

Output Voltage	Device	Voltage Tolerance$\begin{gathered} \text { Max, } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Temperature Drift		Load Reg. $\% / m A$	Output Current	Quiescent Current ($\mu \mathrm{A}$)
			ppm/ ${ }^{\circ} \mathrm{C}$ (Max)	Over Range			
0.2 (Adj)	キLM10B	$\pm 2.5 \%$	20 typ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01\%	0 mA	0.27
	\#LM10C	$\pm 5.0 \%$	30 typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.01\%	0 mA	0.30
1.024	LM4140A-1.0	0.1\%	3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140B-1.0	0.1\%	6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140C-1.0	0.1\%	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
1.250	LM4121AI-1.2	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01	$\pm 5 \mathrm{~mA}$	160
	LM41211-1.2	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01	$\pm 5 \mathrm{~mA}$	160
	LM4140A-1.2	0.1\%	3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140B-1.2	0.1\%	6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140C-1.2	0.1\%	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
$\begin{aligned} & 1.250 \\ & \text { (Adj.) } \end{aligned}$	LM4121AI-ADJ	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01	$\pm 5 \mathrm{~mA}$	160
	LM4121I-ADJ	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01	$\pm 5 \mathrm{~mA}$	160
1.800	LM4120AI-1.8	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM4120I-1.8	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
2.048	LM4120AI-2.0	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM41201-2.0	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM4130AI-2.0	0.05\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32	20 mA	50
	LM4130BI-2.0	0.2\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32	20 mA	50
	LM4130CI-2.0	0.1\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32	20 mA	50
	LM4130DI-2.0	0.4\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32	20 mA	50
	LM4130EI-2.0	0.5\%	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32	20 mA	50
	LM4140A-2.0	0.1\%	3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140B-2.0	0.1\%	6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140C-2.0	0.1\%	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
2.50	LM4120AI-2.5	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	50
	LM41201-2.5	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	50
	LM4130AI-2.5	0.05\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25	20 mA	50
	LM4130BI-2.5	0.2\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25	20 mA	50
	LM4130CI-2.5	0.1\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25	20 mA	50
	LM4130DI-2.5	0.4\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25	20 mA	50
	LM4130EI-2.5	0.5\%	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25	20 mA	50
	LM4140A-2.5	0.1\%	3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140B-2.5	0.1\%	6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
	LM4140C-2.5	0.1\%	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	8 mA	230
3.0	LM4120AI-3.0	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM4120I-3.0	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
3.3	LM4120AI-3.3	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM41201-3.3	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160

Low Dropout Voltage References (Continued)

Output Voltage	Device	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Load Reg. \%/mA	Output Current	Quiescent Current ($\mu \mathrm{A}$)
			ppm/ ${ }^{\circ} \mathrm{C}$ (Max)	Over Range			
4.096	LM4120AI-4.1	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM41201-4.1	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM4130AI-4.1	0.05\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	20 mA	50
	LM4130BI-4.1	0.2\%	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	20 mA	50
	LM4130Cl-4.1	0.1\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	20 mA	50
	LM4130DI-4.1	0.4\%	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	20 mA	50
	LM4130EI-4.1	0.5\%	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	20 mA	50
	LM4140A-4.1	0.1\%	3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5	8 mA	230
	LM4140B-4.1	0.1\%	6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5	8 mA	230
	LM4140C-4.1	0.1\%	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5	8 mA	230
5.0	LM4120AI-5.0	0.2\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160
	LM4120AI-5.0	0.5\%	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.04	$\pm 5 \mathrm{~mA}$	160

\ddagger Reference has on-board Op Amp.

Shunt References

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Voltage Tolerance Max,$T_{A}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance Ω (Typ)
			$\begin{gathered} \text { ppm } /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{gathered}$	Over Range		
1.225*	LM4041AI-1.2	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
	LM4041BI-1.2	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
	LM4041Cl-1.2	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
	LM4041DI-1.2	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0 Max
	LM4041El-1.2	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0 Max
	LM4041CE-1.2	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
	LM4041DE-1.2	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
	LM4041EE-1.2	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0 Max
	LM4051Al-1.2	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	0.3
	LM4051BI-1.2	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	0.3
	LM4051Cl-1.2	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	0.3
1.22	LM113-2	$\pm 1 \%$	$\begin{gathered} 100 \\ \text { (Typ) } \\ \hline \end{gathered}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
	LM113-1	$\pm 2 \%$	$\begin{gathered} 100 \\ \text { (Typ) } \end{gathered}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
	LM113	$\pm 5 \%$	$\begin{gathered} 100 \\ \text { (Typ) } \\ \hline \end{gathered}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
	LM313	$\pm 5 \%$	$\begin{gathered} 100 \\ \text { (Typ) } \\ \hline \end{gathered}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max

Shunt References
(Continued)

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Voltage Tolerance Max,$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance Ω (Typ)
			ppm/ ${ }^{\circ} \mathrm{C}$ (Max)	Over Range		
1.235	LM185BX-1.2	$\pm 1 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM185BY-1.2	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM185-1.2	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM285BX-1.2	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM285BY-1.2	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM 285-1.2	$\pm 1 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM385BX-1.2	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
	LM385BY-1.2	$\pm 1 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
	LM385B-1.2	$\pm 1 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
	LM385M3-1.2*	+ 2\%, -2.4\%	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
	LM385-1.2	+2\%, -2.4\%	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
$\begin{aligned} & 1.24 \text { to } 5.3 \\ & \text { (Adj.) } \end{aligned}$	LM185B	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM185BX	$\pm 1 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM185BY	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM285BX	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM285BY	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM285	$\pm 2 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
	LM385BX	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
	LM385BY	$\pm 1 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
	LM385	$\pm 2 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
$\begin{aligned} & 1.225 \text { to } 10 \mathrm{~V} \\ & \text { (Adj.) } \end{aligned}$	LM4041DE-ADJ	$\pm 1 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4041DI-ADJ	$\pm 1 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4041CE-ADJ	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4041CI-ADJ	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4051AI-ADJ	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4051BI-ADJ	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
	LM4051CI-ADJ	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
$\begin{aligned} & 1.24 \text { to } 30 \mathrm{~V} \\ & \text { (Adj.). } \end{aligned}$	LMV431AI	$\pm 1 \%$	129	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mu \mathrm{~A}$ to 20 mA	0.25
	LMV431AC	$\pm 1 \%$	129	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mu \mathrm{~A}$ to 20 mA	0.25
	LMV4311	$\pm 1.5 \%$	129	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mu \mathrm{~A}$ to 20 mA	0.25
	LMV431C	$\pm 1.5 \%$	129	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mu \mathrm{~A}$ to 20 mA	0.25
$\begin{gathered} 1.24 \text { to } 6.3 \\ \text { (Adj.) } \end{gathered}$	†LM6111M	$\pm 0.6 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM611C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	†tLM613AM	$\pm 0.6 \%$	80	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	†tLM613M	$\pm 2.0 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM613AI	$\pm 0.6 \%$	80	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM613\|	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM613C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	¥LM614M	$\pm 2.0 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM614I	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
	LM614C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
2.49	LM136A	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
	LM136	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
	LM236A	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
	LM236	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
	LM336	$\pm 4 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
	LM336B	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4

Shunt References (Continued)

Reverse Breakdown Voltage (V_{R})	Device	Voltage Tolerance Max,$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance Ω (Typ)
			ppm/ ${ }^{\circ} \mathrm{C}$ (Max)	Over Range		
2.5*	LM4040AI-2.5	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
	LM4040BI-2.5	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
	LM4040CI-2.5	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
	LM4040DI-2.5	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.9 Max
	LM4040EI-2.5	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040CE-2.5	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
	LM4040DE-2.5	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.9 Max
	LM4040EE-2.5	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4050A-2.5	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 15 mA	0.3
	LM4050B-2.5	$\pm 0.2 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 15 mA	0.3
	LM4050C-2.5	$\pm 0.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 15 mA	0.3
	LM4431-2.5	$\pm 2.0 \%$	30 Typ.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$45 \mu \mathrm{~A}$ to 15 mA	1.0
2.5	LM185BX-2.5	$\pm 1.5 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM185BY-2.5	$\pm 1.5 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM185B-2.5	$\pm 1.5 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM285BX-2.5	$\pm 1.5 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM285BY-2.5	$\pm 1.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM285-2.5	$\pm 1.5 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM385BX-2.5	$\pm 1.5 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM385BY-2.5	$\pm 1.5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM385B-2.5	$\pm 1.5 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
	LM385M3-2.5*	$\pm 3 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
	LM385-2.5	$\pm 3 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
$\begin{aligned} & 2.5 \text { to } 36 \\ & \text { (Adj) } \end{aligned}$	LM431CI	$\pm 0.5 \%$	55	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1 mA to 100 mA	0.5
	LM431CC	$\pm 0.5 \%$	55	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 100 mA	0.5
	LM431BI	$\pm 1 \%$	55	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1 mA to 100 mA	0.5
	LM431BC	$\pm 1 \%$	55	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 100 mA	0.5
	LM431AI	$\pm 2 \%$	55	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1 mA to 100 mA	0.75
	LM431AC	$\pm 2 \%$	55	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 100 mA	0.75
4.096*	LM4040A-4.1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
	LM4040B-4.1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
	LM4040C-4.1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
	LM4040D-4.1	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$73 \mu \mathrm{~A}$ to 15 mA	1.3 Max
	LM4050A-4.1	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	0.5
	LM4050B-4.1	$\pm 0.2 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	0.5
	LM4050C-4.1	$\pm 0.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	0.5
5.0	LM136A	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
	LM136	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
	LM236A	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
	LM236	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
	LM336B	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.4 Max
	LM336	$\pm 4 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.4 Max

Shunt References (Continued)

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance Ω (Тур)
			ppm/ ${ }^{\circ} \mathrm{C}$ (Max)	Over Range		
5.0*	LM4040AI-5.0	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040BI-5.0	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040CE-5.0	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040CI-5.0	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040DE-5.0	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
	LM4040DI-5.0	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.5 Max
	LM4050A-5.0	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	0.5
	LM4050B-5.0	$\pm 0.2 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	0.5
	LM4050C-5.0	$\pm 0.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	0.5
6.9	LM129A	+3\%, -2%	10	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
	LM129B	+ 3\%, -2%	20	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
	LM129C	+ 3\%, -2%	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
	LM329A	$\pm 5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
	LM329B	$\pm 5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
	LM329C	$\pm 5 \%$	20	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
	LM329D	$\pm 5 \%$	100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.95	LM199A	$\pm 2 \%$	0.5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
	LM299	$\pm 2 \%$	1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
	LM399A	$\pm 5 \%$	1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
	LM399	$\pm 5 \%$	2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
8.192*	LM4040A-8.2	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
	LM4040B-8.2	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
	LM4040C-8.2	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
	LM4040D-8.2	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$96 \mu \mathrm{~A}$ to 15 mA	1.9 Max
	LM4050A-8.2	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.6
	LM4050B-8.2	$\pm 0.2 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.6
	LM4050C-8.2	$\pm 0.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.6
10.0*	LM4040A-10.0	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
	LM4040B-10.0	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
	LM4040C-10.0	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
	LM4040D-10.0	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$110 \mu \mathrm{~A}$ to 15 mA	2.3 Max
	LM4050A-10.0	$\pm 0.1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.7
	LM4050B-10.0	$\pm 0.2 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.7
	LM4050C-10.0	$\pm 0.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	0.7

*Available in SOT23-3 or SSOT23-3 Package.
\dagger LM611 has on-board Op Amp.
\dagger LM613 has on-board Dual Op Amp and Dual Comparator.
\$LM614 has on-board Quad Op Amp.

Current References

All have an output current range of $2 \mu \mathrm{~A}$ to 10 mA , and an operating voltage range of 1 V to 40 V .

Device	Operating Temperature Range	Set Current Error			Set Current Temperature Dependence*
		$2 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$ to 1 mA	1 mA to 5mA	
LM134	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	$\pm 5 \%$	0.96 T to 0.104T
LM234	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	$\pm 5 \%$	0.96 T to 0.104T
LM234-3	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 1 \%$	N/A	0.98T to 0.102T
LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 2 \%$	N/A	0.97 T to 0.103T

All have an output current range of $2 \mu \mathrm{~A}$ to 10 mA , and an operating voltage range of 1 V to 40 V .

Device	Operating Temperature Range	Set Current Error			Set Current Temperature Dependence*
		$2 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$ to 1 mA	1 mA to 5 mA	
LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 12 \%$	$\pm 6 \%$	$\pm 8 \%$	0.96 T to 0.104T

* Set current changes linearly with temperature at a rate of $0.33 \% /{ }^{\circ} \mathrm{C}$.

"Reference Grade" Voltage Regulators

Please refer to the Low Dropout Regulators Selection Guide for many voltage regulators having a maximum voltage tolerance (at $T_{A}=25^{\circ} \mathrm{C}$) of between $\pm 0.5 \%$ and $\pm 1.5 \%$.

LM10

Operational Amplifier and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.
The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV .
The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.
The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for
analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.
This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Features

- input offset voltage: 2.0 mV (max)
- input offset current: 0.7 nA (max)
- input bias current: 20 nA (max)
- reference regulation: 0.1% (max)
- offset voltage drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- reference drift: $0.002 \% /{ }^{\circ} \mathrm{C}$

Connection and Functional Diagrams

Order Number LM10BH, LM10CH, LM10CLH or LM10H/883 available per SMA\# 5962-8760401 See NS Package Number H08A

Small Outline Package (WM)

Order Number LM10CWM or LM10CWMX
See NS Package Number M14B

LM129/LM329

Precision Reference

General Description

The LM129 and LM329 family are precision multi-current temperature-compensated 6.9 V zener references with dynamic impedances a factor of 10 to 100 less than discrete diodes. Constructed in a single silicon chip, the LM129 uses active circuitry to buffer the internal zener allowing the device to operate over a 0.5 mA to 15 mA range with virtually no change in performance. The LM129 and LM329 are available with selected temperature coefficients of $0.001,0.002$, 0.005 and $0.01 \% /{ }^{\circ} \mathrm{C}$. These references also have excellent long term stability and low noise.
A new subsurface breakdown zener used in the LM129 gives lower noise and better long-term stability than conventional IC zeners. Further the zener and temperature compensating transistor are made by a planar process so they are immune to problems that plague ordinary zeners. For example, there is virtually no voltage shift in zener voltage due to temperature cycling and the device is insensitive to stress on the leads.
The LM129 can be used in place of conventional zeners with improved performance. The low dynamic impedance simplifies biasing and the wide operating current allows the replacement of many zener types.

The LM129 is packaged in a 2-lead TO-46 package and is rated for operation over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM329 for operation over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ is available in both a hermetic TO-46 package and a TO-92 epoxy package.

Features

- 0.6 mA to 15 mA operating current
- 0.6Ω dynamic impedance at any current
- Available with temperature coefficients of $0.001 \% /{ }^{\circ} \mathrm{C}$
- $7 \mu \mathrm{~V}$ wideband noise
- 5% initial tolerance
- 0.002\% long term stability
- Low cost
- Subsurface zener

Connection Diagrams

Metal Can Package (T0-46)

Pin 2 is electrically connected to case
Bottom View
Order Number LM129AH, LM129AH/883, LM129BH, LM129BH/883, LM129CH, LM329AH, LM329BH, LM329CH or LM329DH See NS Package H02A

Plastic Package (TO-92)

Bottom View
Order Number LM329BZ, LM329CZ or LM329DZ See NS Package Z03A

Typical Applications

Simple Reference

LM199/LM299/LM399/LM3999 Precision Reference

General Description

The LM199 series are precision, temperature-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.
The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.
The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299 is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
The LM3999 is packaged in a standard TO-92 package and is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Features

- Guaranteed $0.0001 \% /^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance - 0.5Ω
- Initial tolerance on breakdown voltage - 2%
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current - $500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
m Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$
- Long term stability - 20 ppm
- Proven reliability, low-stress packaging in TO-46 integrated-circuit hermetic package, for low hysteresis after thermal cycling. 33 million hours MTBF at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{J}}=+86^{\circ} \mathrm{C}\right)$
- Certified long term stability available
- MIL-STD-883 compliant

Connection Diagrams

Metal Can Package (TO-46)

Top View
LM199/LM299/LM399 (See Table on fourth page) NS Package Number H04D

Plastic Package TO-92

Bottom View LM3999 (See Table on fourth page) NS Package Number Z03A

Functional Block Diagrams

LM199/LM299/LM399

LM3999

0

LM134/LM234/LM334

3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.
The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the current sources include bias networks, surge protection, low power reference, ramp generation,

LED driver, and temperature sensing. The LM234-3 and LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.
The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic, TO-92 and SO-8 plastic packages.

Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
- $\pm 3 \%$ initial accuracy

Connection Diagrams

SO-8
Surface Mount Package

Order Number LM334M or L.M334MX

See NS Package Number M08A

SO-8 Alternative Pinout Surface Mount Package

Order Number LM334SM or LM334SMX
See NS Package Number M08A

TO-46
Metal Can Package

V^{-}Pin is electrically connected to case.
Bottom View
Order Number LM134H, LM234H or LM334H See NS Package Number H03H

TO-92 Plastic Package

Bottom View
Order Number LM334Z, LM234Z-3 or LM234Z-6
See NS Package Number Z03A

θ
 National Semiconductor

LM136-2.5/LM236-2.5/LM336-2.5V
 Reference Diode

General Description

The LM136-2.5/LM236-2.5 and LM336-2.5 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low-temperature-coefficient 2.5 V zener with 0.2Ω dynamic impedance. A third terminal on the LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-2.5 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5 V logic supplies. Further, since the LM136-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-2.5 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-2.5 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LM336-2.5 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. See the connection diagrams for available packages.

Features

Connection Diagrams

TO-92
Plastic Package

Bottom View
Order Number LM236Z-2.5,
LM236AZ-2.5, LM336Z-2.5 or LM336BZ-2.5 See NS Package Number Z03A

TO-46 Metal Can Package

Bottom View
Order Number LM136H-2.5,
LM136H-2.5/883, LM236H-2.5,
LM136AH-2.5, LM136AH-2.5/883 or LM236AH-2.5
See NS Package Number H03H

Connection Diagrams (Continued)

Order Number LM236M-2.5, LM236AM-2.5, LM336M-2.5 or LM336BM-2.5
See NS Package Number M08A

Typical Applications

Wide Input Range Reference

${ }^{\dagger}$ Adjust to 2.490 V
*Any silicon signal diode

LM136-5.0/LM236-5.0/LM336-5.0
 5.0V Reference Diode

General Description

The LM136-5.0/LM236-5.0/LM336-5.0 integrated circuits are precision 5.0 V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0 V zener with 0.6Ω dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-5.0 series is useful as a precision 5.0 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0 V makes it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-5.0 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-5.0 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM336-5.0 is rated for operation over a
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. See the connection diagrams for available packages. For applications requiring 2.5 V see LM136-2.5.

Features

- Adjustable 4 V to 6 V
- Low temperature coefficient
- Wide operating current of $600 \mu \mathrm{~A}$ to 10 mA
- 0.6Ω dynamic impedance
- $\pm 1 \%$ initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

Connection Diagrams

TO-92
Plastic Package

Bottom View
Order Number LM236AZ-5.0, LM336Z-5.0 or LM336BZ-5.0 See NS Package Number Z03A

TO-46
Metal Can Package

Bottom View
Order Number LM136H-5.0,
LM136H-5.0/883, LM236H-5.0, LM136AH-5.0, LM136AH-5.0/883, or LM236AH-5.0
See NS Package Number H03H

Connection Diagrams (Continued)

SO Package

Order Number LM336M-5.0 or LM336BM-5.0 See NS Package Number M08A

Typical Applications

5.0V Reference with Minimum Temperature Coefficient

\dagger Adjust to 5.00 V

* Any silicon signal diode

Trimmed 4V to 6V Reference with Temperature Coefficient Independent of Breakdown Voltage

LM185/LM285/LM385
 Adjustable Micropower Voltage References

General Description

The LM185/LM285/LM385 are micropower 3-terminal adjustable band-gap voltage reference diodes. Operating from 1.24 to 5.3 V and over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long-term stability result.
Careful design of the LM185 has made the device tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation. The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose ana\log circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range, while the LM285 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185 is available in a hermetic TO-46 package and a leadless chip carrier package, while the LM285/LM385 are available in a iow-cost TO-92 molded package, as well as S.O.

Features

- Adjustable from 1.24 V to 5.30 V
- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- 1% and 2% initial tolerance
- 1Ω dynamic impedance
- Low temperature coefficient

Connection Diagrams

TO-92
Plastic Package

Bottom View

TO-46
Metal Can Package

Bottom View

SOIC Package

20-Leadless Chip Carrier

Top View

Ordering Information

Package	Temperature Range			NSC Drawing
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
TO-46	LM185BH			H03H
	LM185BH/883			
	LM185BYH			
	LM185BYH/883			
TO-92		LM285BXZ	LM385BXZ	Z03A
		LM285BYZ	LM385BYZ	
		LM285Z	LM385BZ	
			LM385Z	
8-Pin SOIC		LM285M	LM385M	M08A
		LM285BYM	LM385BM	
20-Leadless Chip Carrier	LM185BE/883			E20A

Block Diagram

Typical Applications

$$
V_{\text {OUT }}=1.24\left(\frac{R 3}{R 2}+1\right)
$$

LM185-1.2/LM285-1.2/LM385-1.2

Micropower Voltage Reference Diode

General Description

The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.
Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185-1.2 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-1.2 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-1.2 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-1.2/ LM285-1.2 are available in a hermetic TO-46 package and the LM285-1.2/LM385-1.2 are also available in a low-cost TO-92 molded package, as well as SO and SOT-23. The LM185-1.2 is also available in a hermetic leadless chip carrier package.

Features

- $\pm 4 \mathrm{mV}(\pm 0.3 \%)$ max. initial tolerance (A grade)
- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- 0.6Ω max dynamic impedance (A grade)
- Low temperature coefficient
- Low voltage reference-1.235V
- 2.5 V device and adjustable device also available
- LM185-2.5 series and LM185 series, respectively

Connection Diagrams

Bottom View
Order Number LM285Z-1.2, LM285BXZ-1.2, LM285BYZ-1.2 LM385Z-1.2, LM385BZ-1.2
LM385BXZ-1.2 or LM385BYZ-1.2
See NS Package Number Z03A

Connection Diagrams (Continued)

Order Number LM285M-1.2, LM285BXM-1.2, LM285BYM-1.2

LM385M-1.2, LM385BM-1.2
LM385BXM-1.2 or LM385BYM-1.2
See NS Package Number M08A

TO-46
Metal Can Package (H)

Bottom View
Order Number LM185H-1.2, LM185H-1.2/883, LM185BXH-1.2, LM185BYH-1.2
LM285H-1.2 or LM285BXH-1.2 See NS Package Number H02A

LM185-2.5/LM285-2.5/LM385-2.5

Micropower Voltage Reference Diode

General Description

The LM185-2.5/LM285-2.5/LM385-2.5 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a $20 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM-185-2.5 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-2.5 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-2.5 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part. For applications requiring 1.2V see LM185-1.2.

The LM185-2.5 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-2.5 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-2.5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-2.5/ LM285-2.5 are available in a hermetic TO-46 package and the LM285-2.5/LM385-2.5 are also available in a low-cost TO-92 molded package, as well as S.O. and SOT-23. The LM185-2.5 is also available in a hermetic leadless chip carrier package.

Features

- $\pm 20 \mathrm{mV}$ ($\pm 0.8 \%$) max. initial tolerance (A grade)
- Operating current of $20 \mu \mathrm{~A}$ to 20 mA
- 0.6Ω dynamic impedance (A grade)
- Low temperature coefficient
- Low voltage reference- 2.5 V
- 1.2 V device and adjustable device also available-LM185-1.2 series and LM185 series, respectively

Connection Diagrams

TO-92
Plastic Package

Bottom View
Order Number LM285Z-2.5, LM285BXZ-2.5, LM285BYZ-2.5
LM385Z-2.5, LM385AXZ-2.5
LM385AYZ-2.5, LM385BZ-2.5, LM385BXZ-2.5 or LM385BYZ-2.5 See NS Package Number Z03A

SO Package

Order Number LM285M-2.5, LM285BXM-2.5, LM285BYM-2.5 LM385M-2.5, LM385BM-2.5 LM385BXM-2.5 or LM385BYM-2.5 See NS Package Number M08A

SOT-23

* Pin 3 is attached to the Die Attach Pad (DAP) and should be connected to Pin 2 or left floating.

Order Number LM385M3-2.5
See NS Package Number MA03B

Connection Diagrams (Continued)

LCC
Leadless Chip Carrier

Order Number LM185E-2.5/883 See NS Package Number E20A

TO-46
Metal Can Package

Bottom View
Order Number LM185H-2.5, LM185H-2.5/883, LM185BXH-2.5, LM185BXH-2.5/883, LM185BYH-2.5, LM185BYH2.5/883, LM285H-2.5, or LM285BYH-2.5
See NS Package Number H02A

LM4040

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature ($3 \mathrm{~mm} x$ 1.3 mm) SOT-23 surface-mount package. The LM4040's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM4040-2.5 to $100 \mu \mathrm{~A}$ for the LM4040-10.0. All versions have a maximum operating current of 15 mA .
The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ (A grade) at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.
Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2 V . Please see the LM4041 data sheet.

Features

- Small packages: SOT-23, TO-92
- No output capacitor required
- Tolerates capacitive loads
- Fixed reverse breakdown voltages of $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, $5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V

Key Specifications (LM4040-2.5)

- Output voltage tolerance

(A grade, $25^{\circ} \mathrm{C}$)	$\pm 0.1 \%$ (max)
Low output noise	
(10 Hz to 10 kHz)	$35 \mu \mathrm{~V}_{\text {rms }}($ typ $)$
Wide operating current range	$60 \mu \mathrm{~A}$ to 15 mA
- Industrial temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended temperature range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Low temperature coefficient	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagrams

*This pin must be left floating or connected to pin 2.
Top View
See NS Package Number M03B (JEDEC Registration TO-236AB)

Bottom View
See NS Package Number Z03A

Ordering Information

Industrial Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	Package	
	M3 (SOT-23)	Z (TO-92)
$\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4040AIM3-2.5, LM4040AIM3-4.1, LM4040AIM3-5.0, LM4040AIM3-8.2, LM4040AIM3-10.0 See NS Package Number M03B	LM4040AIZ-2.5, LM4040AIZ-4.1, LM4040AIZ-5.0, LM4040AIZ-8.2, LM4040AIZ-10.0 See NS Package Number Z03A
$\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4040BIM3-2.5, LM4040BIM3-4.1, LM4040BIM3-5.0, LM4040BIM3-8.2, LM4040BIM3-10.0 See NS Package Number M03B	LM4040BIZ-2.5, LM4040BIZ-4.1, LM4040BIZ-5.0, LM4040BIZ-8.2, LM4040BIZ-10.0 See NS Package Number Z03A
$\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4040CIM3-2.5, LM4040CIM3-4.1, LM4040CIM3-5.0, LM4040CIM3-8.2, LM4040CIM3-10.0 See NS Package Number M03B	LM4040CIZ-2.5, LM4040CIZ-4.1, LM4040CIZ-5.0, LM4040CIZ-8.2, LM4040CIZ-10.0 See NS Package Number Z03A
$\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4040DIM3-2.5, LM4040DIM3-4.1, LM4040DIM3-5.0, LM4040DIM3-8.2, LM4040DIM3-10.0 See NS Package Number M03B	LM4040DIZ-2.5, LM4040DIZ-4.1, LM4040DIZ-5.0, LM4040DIZ-10.0, See NS Package Number Z03A
$\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4040EIM3-2.5 See NS Package Number M03B	LM4040EIZ-2.5 See NS Package Number Z03A

Ordering Information (Continued)
Extended Temperature Range ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Reverse Breakdown Voltage Tolerance at $25{ }^{\circ} \mathbf{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	Package
	M3 (SOT-23) See NS Package Number M03B
$\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4040CEM3-2.5, LM4040CEM3-5.0
$\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4040DEM3-2.5, LM4040DEM3-5.0
$\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4040EEM3-2.5

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	Field Definition
R2A	First Field:
R4A	$\mathrm{R}=$ Reference
R5A	Second Field:
R8A	$2=2.500 \mathrm{~V}$ Voltage Option
ROA	$4=4.096 \mathrm{~V}$ Voltage Option
R2B	$5=5.000 \mathrm{~V}$ Voltage Option
R4B	$8=8.192 \mathrm{~V}$ Voltage Option
R5B	$0=10.000 \mathrm{~V}$ Voltage Option
R8B	
ROB	Third Field:
R2C	$\mathrm{A}-\mathrm{E}=$ Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
R4C	$A= \pm 0.1 \%, B= \pm 0.2 \%, C=+0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%$
R5C	
R8C	
ROC	
R2D	
R4D	
R5D	
R8D	
ROD	
R2E	

LM4041

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4041 precision voltage reference is available in the sub-miniature ($3 \mathrm{~mm} x$ 1.3 mm) SOT-23 surface-mount package. The LM4041's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4041 easy to use. Further reducing design effort is the availability of a fixed (1.225V) and adjustable reverse breakdown voltage. The minimum operating current is $60 \mu \mathrm{~A}$ for the LM4041-1.2 and the LM4041-ADJ. Both versions have a maximum operating current of 12 mA .
The LM4041 utilizes fuse and zener-zap reverse breakdown or reference voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ (A grade) at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Features

- Small packages: SOT-23, and TO-92
- No output capacitor required
- Tolerates capacitive loads
- Reverse breakdown voltage options of 1.225 V and adjustable

Key Specifications (LM4041-1.2)

- Output voltage tolerance (A grade, $25^{\circ} \mathrm{C}$)
- Low output noise
(10 Hz to 10 kHz)
- Wide operating current range
- Industrial temperature range
- Extended temperature range
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low temperature coefficient
$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Automotive
- Precision Audio Components

Connection Diagrams

SOT-23

*This pin must be left floating or connected to pin 2.

Top View
See NS Package Number M03B
(JEDEC Registration TO-236AB)

TO-92

Bottom View
See NS Package Number Z03A

Ordering Information

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	Package	
	M3 (SOT-23)	Z (T0-92)
$\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4041AIM3-1.2 See NS Package Number M03B	LM4041AIZ-1.2 See NS Package Number Z03A
$\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4041BIM3-1.2 See NS Package Number M03B	LM4041BIZ-1. 2 See NS Package Number Z03A
$\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4041CEM3-1.2 LM4041CIM3-1.2 LM4041CEM3-ADJ LM4041CIM3-ADJ See NS Package Number M03B	LM4041CIZ-1.2, LM4041CIZ-ADJ See NS Package Number Z03A
$\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4041DEM3-1.2 LM4041DIM3-1.2 LM4041DEM3-ADJ LM4041DIM3-ADJ See NS Package Number M03B	LM4041DIZ-1.2, LM4041DIZ-ADJ See NS Package Number Z03A
$\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4041EEM3-1.2 LM4041EIM3-1.2 See NS Package Number M03B	LM4041EIZ-1.2 See NS Package Number Z03A

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	
R1A	First Field:
R1B	R Reference
R1C	Second Field:
R1D	$1=1.225 \mathrm{~V}$ Voltage Option
R1E	A $=$ Adjustable
	Third Field:
	A-E $=$ Initial Reverse Breakdown
RAC	Voltage or Reference Voltage Tolerance
RAD	A $= \pm 0.1 \%, B= \pm 0.2 \%, C= \pm 0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%$

LM4050

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4050 precision voltage reference is available in the sub-miniature ($3 \mathrm{~mm} x$ 1.3 mm) SSOT-23 surface-mount package. The LM4050's design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM4050-2.5 to $100 \mu \mathrm{~A}$ for the LM4050-10.0. All versions have a maximum operating current of 15 mA .
The LM4050 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ (A grade) at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.
All grades and voltage options of the LM4050 operate between $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. Selected parts can operate in the extended temperature range, from $-40^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$.

Features

■ Small packages: SSOT-23

- No output capacitor required
- Tolerates capacitive loads
- Fixed reverse breakdown voltages of $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, $5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V

Key Specifications (LM4050-2.5)

- Output voltage tolerance (A grade, $25^{\circ} \mathrm{C}$) $\pm 0.1 \%$ (max)
- Low output noise (10 Hz to 10 kHz)
■ Wide operating current range
- Industrial temperature range

■ Extended temperature range

- Low temperature coefficient

$$
41 \mu \mathrm{~V}_{\mathrm{rms}} \text { (typ) }
$$

$60 \mu \mathrm{~A}$ to 15 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagrams

SSOT-23

*This pin must be leff floating or connected to pin 2.
Top View
See NS Package Number MF03A

Ordering Information

Industrial Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Reverse Breakdown Voltage Tolerance at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	LM4050 Supplied as 1000 Units, Tape and Reel	LM4050 Supplied as 3000 Units, Tape and Reel
$\pm 0.1 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4050AIM3-2.5	LM4050AIM3X-2.5
	LM4050AIM3-4.1	LM4050AIM3X-4.1
	LM4050AIM3-5.0	LM4050AIM3X-5.0
	LM4050AIM3-8.2	LM4050AIM3X-8.2
	LM4050AIM3-10	LM4050AIM3X-10
$\pm 0.2 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4050BIM3-2.5	LM4050BIM3X-2.5
	LM4050BIM3-4.1	LM4050BIM3X-4.1
	LM4050BIM3-5.0	LM4050BIM3X-5.0
	LM4050BIM3-8.2	LM4050BIM3X-8.2
	LM4050BIM3-10	LM4050BIM3X-10
$\pm 0.5 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4050CIM3-2.5	LM4050CIM3X-2.5
	LM4050CIM3-4.1	LM4050CIM3X-4.1
	LM4050CIM3-5.0	LM4050CIM3X-5.0
	LM4050CIM3-8.2	LM4050CIM3X-8.2
	LM4050CIM3-10	LM4050CIM3X-10

Extended Temperature Range ($-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$)

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	LM4050 Supplied as $\mathbf{1 0 0 0}$ Units, Tape and Reel	LM4050 Supplied as 3000 Units, Tape and Reel
$\pm 0.5 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4050CEM3-2.5	LM4050CEM3X-2.5

SSOT-23 Package Marking Information

Only three fields of marking are possible on the SSOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	
RCA	First Field:
RDA	R $=$ Reference
REA	Second Field:
RFA	$C=2.500 \mathrm{~V}$ Voltage Option
RGA	$\mathrm{D}=4.096 \mathrm{~V}$ Voltage Option
RCB	$\mathrm{E}=5.000 \mathrm{~V}$ Voltage Option
RDB	$\mathrm{F}=8.192 \mathrm{~V}$ Voltage Option
REB	$\mathrm{G}=10.000 \mathrm{~V}$ Voltage Option
RFB	
RGB	Third Field:
RCC	A-C=Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
RDC	A $= \pm 0.1 \%, B= \pm 0.2 \%, C=+0.5 \%$,
REC	
RFC	
RGC	

National Semiconductor

LM4051

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4051 precision voltage reference is available in the sub-miniature ($3 \mathrm{~mm} x$ 1.3 mm) SSOT-23 surface-mount package. The LM4051's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4051 easy to use. Further reducing design effort is the availability of a fixed $(1.225 \mathrm{~V})$ and adjustable reverse breakdown voltage. The minimum operating current is $60 \mu \mathrm{~A}$ for the LM4051-1.2 and the LM4051-ADJ. Both versions have a maximum operating current of 12 mA . The LM4051 comes in three grades (A, B, and C). The best grade devices (A) have an initial accuracy of 0.1%, while the B-grade have 0.2% and the C -grade 0.5%, all with a tempco of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ guaranteed from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
The LM4051 utilizes fuse and zener-zap trim of reference voltage during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ (A grade) at $25^{\circ} \mathrm{C}$.

Features

- Small packages: SSOT-23
- No output capacitor required

Key Specifications (LM4051-1.2)

- Output voltage tolerance
(A grade, $25^{\circ} \mathrm{C}$) $\pm 0.1 \%(\max)$
- Low output noise
(10 Hz to 10 kHz)
■ Wide operating current range
- Industrial temperature range (tempco guaranteed from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
- Low temperature coefficient

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Automotive and Industrial
- Precision Audio Components
- Base Stations
- Battery Chargers
- Medical Equipment
- Communication
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max) $60 \mu \mathrm{~A}$ to 12 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Reverse breakdown voltage options of 1.225 V and adjustable

Connection Diagrams

SSOT-23

Top View
See NS Package Number MF03A

Ordering Information

Reverse Breakdown Voltage Tolerance at 25 Average Reverse Breakdown Voltage Temperature Coefficient	LM4051 Supplied as $\mathbf{1 0 0 0}$ Units, Tape and Reel	LM4051 Supplied as $\mathbf{3 0 0 0}$ Units, Tape and Reel	Part Marking
$\pm 0.1 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4051AIM3-1.2	LM4051AIM3X-1.2	RIA
	LM4051AIM3-ADJ	LM4051AIM3X-ADJ	RHA
$\pm 0.2 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4051BIM3-1.2	LM4051BIM3X-1.2	RIB
	LM4051BIM3-ADJ	LM4051BIM3X-ADJ	RHB
$\pm 0.5 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4051CIM3-1.2	LM4051CIM3X-1.2	RIC
	LM4051CIM3-ADJ	LM4051CIM3X-ADJ	RHC

SOT-23 Package Marking Information

Only three fields of marking are possible on the SSOT-23's small surface. This table gives the meaning of the three fields.

Field Definition
First Field:
$R=$ Reference
Second Field:
I = 1.225 V Voltage Option
H = Adjustable
Third Field:
A-C $=$ Initial Reverse Breakdown
Voltage or Reference Voltage Tolerance
A $= \pm 0.1 \%, B= \pm 0.2 \%, C= \pm 0.5 \%$

LM4120

Precision Micropower Low Dropout Voltage Reference

General Description

The LM4120 is a precision low power low dropout bandgap voltage reference with up to 5 mA output current source and sink capability.

This series reference operates with input voltages as low as 2 V and up to 12 V consuming $160 \mu \mathrm{~A}$ (Typ.) supply current. In power down mode, device current drops to less than $2 \mu \mathrm{~A}$. The LM4120 comes in two grades (A and Standard) and seven voltage options for greater flexibility. The best grade devices (A) have an initial accuracy of 0.2%, while the standard have an initial accuracy of 0.5%, both with a tempco of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ guaranteed from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The very low dropout voltage, low supply current and power-down capability of the LM4120 makes this product an ideal choice for battery powered and portable applications.
The device performance is guaranteed over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, while certain specs are guaranteed over the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$). Please contact National for full specifications over the extended temperature range. The LM4120 is available in a standard 5 -pin SOT-23 package.

Features

- Small SOT23-5 package
- Low dropout voltage: 120 mV Typ @ 1 mA
- High output voltage accuracy: 0.2\%

■ Source and Sink current output:

- Supply current:
- Low Temperature Coefficient: $160 \mu \mathrm{~A}$ Typ.
- Enable pin

■ Fixed output voltages: $\quad 1.8,2.048,2.5,3.0,3.3,4.096$ and 5.0 V

- Industrial temperature Range: $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- (For extended temperature range, $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, contact National Semiconductor)

Applications

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive \& Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment

Functional Block Diagram

Connection Diagram

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

Ordering Information
Industrial Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

Initial Output Voltage Accuracy at $25^{\circ} \mathrm{C}$ And Temperature Coefficient	LM4120 Supplied as 1000 Units, Tape and Reel	LM4120 Supplied as 3000 Units, Tape and Reel	Top Marking
0.2\%, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4120AIM5-1.8	LM4120AIM5X-1.8	R21A
	LM4120AIM5-2.0	LM4120AIM5X-2.0	R14A
	LM4120AIM5-2.5	LM4120AIM5X-2.5	R08A
	LM4120AIM5-3.0	LM4120AIM5X-3.0	R15A
	LM4120AIM5-3.3	LM4120AIM5X-3.3	R16A
	LM4120AIM5-4.1	LM4120AIM5X-4.1	R17A
	LM4120AIM5-5.0	LM4120AIM5X-5.0	R18A
0.5\%, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	LM4120IM5-1.8	LM4120IM5X-1.8	R21B
	LM4120IM5-2.0	LM4120IM5X-2.0	R14B
	LM4120IM5-2.5	LM4120IM5X-2.5	R08B
	LM41201M5-3.0	LM4120IM5X-3.0	R15B
	LM41201M5-3.3	LM4120IM5X-3.3	R16B
	LM4120IM5-4.1	LM41201M5X-4.1	R17B
	LM4120IM5-5.0	LM4120IM5X-5.0	R18B

SOT-23 Package Marking Information

Only four fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the four fields.

First Field:
$R=$ Reference
Second and third Field:
$21=1.800 \mathrm{~V}$ Voltage Option
$14=2.048 \mathrm{~V}$ Voltage Option
$08=2.500 \mathrm{~V}$ Voltage Option
$15=3.000 \mathrm{~V}$ Voltage Option
$16=3.300 \mathrm{~V}$ Voltage Option
$17=4.096 \mathrm{~V}$ Voltage Option
$18=5.000 \mathrm{~V}$ Voltage Option

Field Information

rst Field:
R = Reference
cond and third Field:
$21=1.800 \mathrm{~V}$ Voltage Option
$14=2.048 \mathrm{~V}$ Voltage Option
$08=2.500 \mathrm{~V}$ Voltage Option
$15=3.000 \mathrm{~V}$ Voltage Option
$16=3.300 \mathrm{~V}$ Voltage Option
$18=5.000 \mathrm{~V}$ Voltage Option
Fourth Field:
$A-B=$ Initial Reference Voltage Tolerance
$A= \pm 0.2 \%$
$B= \pm 0.5 \%$

LM4121

Precision Micropower Low Dropout Voltage Reference

General Description

The LM4121 is a precision bandgap voltage reference available in a fixed 1.25 V and adjustable version with up to 5 mA current source and sink capability.
This series reference operates with input voltages as low as 1.8 V and up to 12 V consuming $160 \mu \mathrm{~A}$ (Typ.) supply current. In power down mode, device current drops to less than $2 \mu \mathrm{~A}$. The LM4121 comes in two grades A and Standard. The best grade devices (A) have an initial accuracy of 0.2%, while the standard have an initial accuracy of 0.5%, both with a tempco of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ guaranteed from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The very low operating voltage, low supply current and power-down capability of the LM4121 makes this product an ideal choice for battery powered and portable applications.
The device performance is guaranteed over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, while certain specs are guaranteed over the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$). Please contact National for full specifications over the extended temperature range. The LM4121 is available in a standard 5-pin SOT-23 package.

Features (LM4121-1.2)

- Small SOT23-5 package
- Low voltage operation
- High output voltage accuracy:
- Source and Sink current output: $\pm 5 \mathrm{~mA}$
- Supply current: $160 \mu \mathrm{~A}$ Typ.
- Low Temperature Coefficient: $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Enable pin
- Output voltages: $\quad 1.25 \mathrm{~V}$ and Adjustable
- Industrial temperature Range:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- (For extended temperature range, $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, contact National Semiconductor)

Applications

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive \& Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment

Block Diagram

* Resistors are removed on the LM4121-ADJ
\dagger LM4121-ADJ only

Connection Diagram

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

Ordering Information

Industrial Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

Initial Output Voltage Accuracy at $25^{\circ} \mathrm{C}$ And Temperature Coefficient	LM4121 Supplied as 1000 Units, Tape and Reel	LM4121 Supplied as $\mathbf{3 0 0 0}$ Units, Tape and Reel	Top Marking
$0.2 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4121AIM5-1.2	LM4121AIM5X-1.2	R19A
	LM4121AIM5-ADJ	LM4121AIM5X-ADJ	R20A
$0.5 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	LM4121IM5-1.2	LM4121IM5X-1.2	R19B
	LM4121IM5-ADJ	LM4121IM5X-ADJ	R20B

SOT-23 Package Marking Information

Only four fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the four fields.

\quad Field Information
First Field:
R $=$ Reference
Second and third Field:
$19=1.250 \mathrm{~V}$ Voltage Option
$20=$ Adjustable
Fourth Field:
A-B $=$ Initial Reference Voltage Tolerance
A $= \pm 0.2 \%$
B $= \pm 0.5 \%$

LM4130

Precision Micropower Low Dropout Voltage Reference

General Description

The LM4130 family of precision voltage references performs comparable to the best laser-trimmed bipolar references, but in cost effective CMOS technology. Key to this break through is the use of EEPROM registers for correction of curvature, tempco, and accuracy on a CMOS bandgap architecture that allows package level programming to overcome assembly shift. The shifts in voltage accuracy and tempco during assembly of die into plastic packages limit the accuracy of references trimmed with laser techniques.
Unlike other LDO references, the LM4130 requires no output capacitor. Neither is a buffer amplifier required, even with loads up to 20 mA . These advantages and the SOT23 packaging are important for cost-critical and space-critical applications.
Series references provide lower power consumption than shunt references, since they don't have to idle the maximum possible load current under no load conditions. This advantage, the low quiescent current $(75 \mu \mathrm{~A})$, and the low dropout voltage (275 mV) make the LM4130 ideal for battery-powered solutions.
The LM4130 is available in five grades (A, B, C, D and E) for greater flexibility. The best grade devices (A) have an initial accuracy of 0.05% with guaranteed temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less, while the lowest grade parts (E) have an initial accuracy of 0.5% and a tempco of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Features

- Smail SOT23-5 package
- High output voltage accuracy
0.05\%
- Low Temperature Coefficient
- Stable with capacitive loads to $100 \mu \mathrm{~F}$
- Low dropout voltage
$\leq 275 \mathrm{mV}$ @ 10 mA
- Supply Current $\leq 75 \mu \mathrm{~A}$
- Full accuracy
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Extended operation to $125^{\circ} \mathrm{C}$
- Excellent load and line regulation
- Output current 20 mA
- Output impedance $<1 \Omega$
- Voltage options:
$2.048 \mathrm{~V}, 2.500 \mathrm{~V}$, and 4.096 V

Applications Summary

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive \& Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment
- Servo systems

Connection Diagram and Pin Configuration

*Optional, Recommended for improved transient response and input noise reduction.
(See Application Information)

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

Ordering Information

Industrial Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

Initial Output Voltage Accuracy at $\mathbf{2 5}^{\circ} \mathrm{C}$ And Temperature Coefficient	LM4130 Supplied as 1000 Units, Tape and Reel	LM4130 Supplied as 3000 Units, Tape and Reel	Part Marking
0.05\%, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4130AIM5-2.0	LM4130AIM5X-2.0	R02A
	LM4130AIM5-2.5	LM4130AIM5X-2.5	R03A
	LM4130AIM5-4.1	LM4130AIM5X-4.1	R04A
0.2\%, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4130BIM5-2.0	LM4130BIM5X-2.0	R02B
	LM4130BIM5-2.5	LM4130BIM5X-2.5	R03B
	LM4130BIM5-4.1	LM4130BIM5X-4.1	R04B
0.1\%, $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4130CIM5-2.0	LM4130CIM5X-2.0	R02C
	LM4130CIM5-2.5	LM4130CIM5X-2.5	R03C
	LM4130CIM5-4.1	LM4130CIM5X-4.1	R04C
0.4\%, $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4130DIM5-2.0	LM4130DIM5X-2.0	R02D
	LM4130DIM5-2.5	LM4130DIM5X-2.5	R03D
	LM4130DIM5-4.1	LM4130DIM5X-4.1	R04D
0.5\%, $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4130EIM5-2.0	LM4130EIM5X-2.0	R02E
	LM4130EIM5-2.5	LM4130EIM5X-2.5	R03E
	LM4130EIM5-4.1	LM4130EIM5X-4.1	R04E

SOT23-5 Package Marking Information

Only four fields of marking are possible on the SOT23-5's small surface. This table gives the meaning of the four fields.

\quad Field Information
First Field:
$R=$ Reference
Second and Third Field:
$02=2.048 \mathrm{~V}$ Voltage Option
$03=2.50 \mathrm{~V}$ Voltage Option
$04=4.096 \mathrm{~V}$ Voltage Option
Fourth Field:
A-E $=$ Initial Reference Voltage Tolerance and Temperature Coefficient
A $= \pm 0.05 \%, 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
B $= \pm 0.2 \%, 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
C $= \pm 0.1 \%, 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
D $= \pm 0.4 \%, 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$E= \pm 0.5 \%, 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

CNational Semiconductor

LM4140

High Precision Low Noise Low Dropout Voltage Reference

General Description

The LM4140 series of precision references are designed to combine high accuracy，low drift and noise with low power dissipation in a small package．
The LM4140 is the industry＇s first reference with output volt－ age options lower than the bandgap voltage．
The key to the advance performance of the LM4140 is the use of EEPROM registers and CMOS DACs for temperature coefficient curvature correction and trimming of the output voltage accuracy of the device during the final production testing．
The major advantage of this method is the much higher reso－ lution available with DACs than is available economically with most methods utilized by other bandgap references．
The low input and dropout voltage，low supply current and output drive capability of the LM4140 makes this product an ideal choice for battery powered and portable applications．
The LM4140 is available in three grades（A，B，C）with 0.1% initial accuracy and 3,6 and $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coeffi－ cients．For even lower Tempco，contact National Semicon－ ductor．
The device performance is specified over the temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and is available in compact 8 －pin SO package．
For other output voltage options from 0.5 V to 4.5 V ，con－ tact National Semiconductor．

Features

－High initial accuracy：0．1\％
－Ultra low noise
－Low Temperature Coefficient： $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$（A grade）
－Low voltage operation： 1.8 V
－SO－8 package
－Low dropout voltage： 20 mV （typ）＠1mA
－Supply Current： $230 \mu \mathrm{~A}$（typ），$\leq 1 \mu \mathrm{~A}$ disable mode
－Enable pin
－Output voltage options： $1.024 \mathrm{~V}, 1.250 \mathrm{~V}, 2.048 \mathrm{~V}, 2.500 \mathrm{~V}$ ， and 4.096 V
－Custom voltages from 0.5 V to 4.5 V
－Temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Applications Summary

－Portable，battery powered equipment
－Instrumentation and test equipment
－Automotive
－Industrial process control
－Data acquisition systems
－Medical equipment
－Precision scales
－Servo systems
－Battery charging

Typical Application

Cout，Output bypass capacitor．See text for selection detail．

Typical Temperature Coefficient （Sample of 5 Parts）

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

Ordering Information Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Initial Output Voltage Accuracy @ $25^{\circ} \mathrm{C}$ and Temperature Coefficient	LM4140 Supplied as 95 Units, Tape and Reel	LM4140 Supplied as 2500 Units, Tape and Reel
0.1\%, $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4140ACM-1.0	LM4140ACMX-1.0
	LM4140ACM-1.2	LM4140ACMX-1.2
	LM4140ACM-2.0	LM4140ACMX-2.0
	LM4140ACM-2.5	LM4140ACMX-2.5
	LM4140ACM-4.1	LM4140ACMX-4.1
0.1\%, $6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4140BCM-1.0	LM4140BCMX-1.0
	LM4140BCM-1.2	LM4140BCMX-1.2
	LM4140BCM-2.0	LM4140BCMX-2.0
	LM4140BCM-2.5	LM4140BCMX-2.5
	LM4140BCM-4.1	LM4140BCMX-4.1
$0.1 \%, 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4140CCM-1.0	LM4140CCMX-1.0
	LM4140CCM-1.2	LM4140CCMX-1.2
	LM4140CCM-2.0	LM4140CCMX-2.0
	LM4140CCM-2.5	LM4140CCMX-2.5
	LM4140CCM-4.1	LM4140CCMX-4.1

Connection Diagram

See NS Package Number M08A

Pin Functions

$\mathbf{V}_{\text {ref }}$ (Pin 6):	Reference Output. Capable of sourcing up to 8mA.
Input (Pin 2):	Positive Supply.
Ground (Pins 1, 4, 7, 8):	Negative Supply or Ground Connection. These pins must be connected to ground.
Enable (Pin 3):	Pulled to input for normal operation. Forcing this pin to ground will turn-off the output.
NC (Pin 5):	This pin must be left open.

LM431
 Adjustable Precision Zener Shunt Regulator

General Description

The LM431 is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. It is now available in a chip sized package (4-Bump micro SMD) using National's micro SMD package technology. The output voltage may be set at any level greater than $2.5 \mathrm{~V}\left(\mathrm{~V}_{\text {REF }}\right)$ up to 36 V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications.

Features

- Average temperature coefficient $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- Fast turn-on response
- Low output noise
- LM431 in micro SMD package

Connection Diagrams

SO-8: 8-Pin Surface Mount

SOT-23: 3-Lead Small Outline

4-Bump micro SMD

Ordering Information

Package	Typical Accuracy Order Number/Package Marking			Temperature Range	Transport Media	NSC Drawing
	0.5\%	1\%	2\%			
TO-92	LM431CCZI LM431CCZ	LM431BCZ/ LM431BCZ	LM431ACZ/ LM431ACZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Rails	Z03A
	LM431CIZI LM431CIZ	LM431BIZ/ LM431BIZ	LM431AIZ LM431AIZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
SO-8	$\begin{aligned} & \text { LM431CCM/ } \\ & \text { 431CCM } \end{aligned}$	LM431BCM/ 431BCM	LM431ACM/ LM431ACM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Rails and Tape \&Reel	M08Á
	LM431CIM/ 431CIM	LM431BIM/ 431BIM	LM431AIM/ LM431AIM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
SOT-23	LM431CCM3/ N1B	$\begin{aligned} & \text { LM431BCM3/ } \\ & \text { N1D } \end{aligned}$	$\begin{aligned} & \text { LM431ACM3/ } \\ & \text { N1F } \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Rails and Tape \&Reel	MF03A
	LM431CIM3 N1A	LM431BIM3 N1C	LM431AIM3 N1E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
micro SMD	-	-	$\begin{aligned} & \text { LM431AIBP } \\ & \text { LM431AIBPX(Note 1) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	250 Units Tape and Reel 3k Units Tape and Reel	BPA04AFA

Note 1: The micro SMD package marking is a 1 digit manufacturing Date Code only
micro SMD Top View Marking Example
X = Date Code

Symbol and Functional Diagrams

DC Test Circuits

FIGURE 1. Test Circuit for $\mathbf{V}_{\mathbf{z}}=\mathbf{V}_{\text {REF }}$

Note: $V_{Z}=V_{\text {REF }}(1+R 1 / R 2)+I_{\text {REF }}{ }^{*} 1$
FIGURE 2. Test Circuit for $\mathbf{V}_{\mathbf{Z}}>\mathbf{V}_{\text {REF }}$

FIGURE 3. Test Circuit for Off-State Current

LM4431

Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4431 voltage reference is available in the sub-miniature ($3 \mathrm{~mm} \times 1.3 \mathrm{~mm}$) SOT-23 surface-mount package. The LM4431's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4431 easy to use. The operating current range is $100 \mu \mathrm{~A}$ to 15 mA .
The LM4431 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the parts have an accuracy of better than $\pm 2.0 \%$ at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Features

- Small package: SOT-23
- No output capacitor required
- Tolerates capacitive loads
- Fixed reverse breakdown voltage of 2.50 V

Key Specifications

- Output voltage tolerance $25^{\circ} \mathrm{C}$: $\pm 2.0 \%$ (max)
- Low output noise (10 Hz to 10 kHz): $35 \mu \mathrm{~V}_{\mathrm{rms}}$ (typ)
- Wide operating current range: $100 \mu \mathrm{~A}$ to 15 mA
- Commercial temperature range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Low temperature coefficient: $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Power Supplies

Connection Diagram

SOT-23

* This pin must be left floating or connected to pin 2.

Order Number LM4431M3-2.5
See NS Package Number M03B
(JEDEC Registration TO-236AB)

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. The following table gives the meaning of the three fields.

Part Marking	
S2E	First Field:
	S = Reference
	Second Field:
	$2=2.500 \mathrm{~V}$ Voltage Option
	Third Field:
	$\mathrm{E}=$ Initial Reverse Breakdown Voltage Tolerance of $\pm 2.0 \%$

LM611

Operational Amplifier and Adjustable Reference

General Description

The LM611 consists of a single-supply op-amp and a programmable voltage reference in one space saving 8 -pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with a wide output swing op-amp makes the LM611 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-Block ${ }^{\text {TM }}$ family, the LM611 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP

- Low operating current: $\quad 300 \mu \mathrm{~A}$ (op amp)
- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in low cost 8-pin DIP
- Available in plastic package rated for Military Temperature Range Operation
REFERENCE
- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Reference floats above ground
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and Mass Flow Control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

LM613

Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16 -pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-Block ${ }^{\text {TM }}$ family, the LM613 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP
■ Low operating current (Op Amp): $300 \mu \mathrm{~A}$

- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temp. Range Operation

REFERENCE

■ Adjustable output voltage: 1.2 V to 6.3 V

- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagram

Top View

Ultra Low Noise, 10.00V Reference. Total output noise is typically $14 \mu \mathrm{~V}_{\text {RMs }}$.

DS009226-43

[^18]
LM614

Quad Operational Amplifier and Adjustable Reference

General Description

The LM614 consists of four op-amps and a programmable voltage reference in a 16 -pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with four wide output swing op-amps makes the LM614 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's new Super-Block ${ }^{\text {™ }}$ family, the LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

Op Amp

- Low operating current: $\quad 300 \mu \mathrm{~A}$
- Wide supply voltage range: 4 V to 36 V
- Wide common-mode range: V^{-}to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage: $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temperature Range Operation

Reference

- Adjustable output voltage: 1.2 V to 6.3 V
- Tight initial tolerance available: $\pm 0.6 \%$
- Wide operating current range: $17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver and signal processing
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagram

Ordering Information

ReferenceTolerance \& $V_{\text {os }}$	Temperature Range			Package	
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Commercial } \\ 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{gathered}$		
$\pm 0.6 \%$ @ $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max V os $\leq 3.5 \mathrm{mV} \max$	LM614AMJ/883 (Note 13)	-	-	16-pin Ceramic DIP	J16A
$\begin{aligned} & \pm 2.0 \% @ \\ & 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \\ & \mathrm{V}_{\mathrm{os}} \leq 5.0 \mathrm{mV} \end{aligned}$	-	LM614IWM LM614IWMX	LM614CWM LM614CWMX	16-pin Wide Surface Mount	M16B

LMV431/LMV431A/LMV431B

Low-Voltage (1.24V) Adjustable Precision Shunt Regulators

General Description

The LMV431, LMV431A and LMV431B are precision 1.24 V shunt regulators capable of adjustment to 30V. Negative feedback from the cathode to the adjust pin controls the cathode voltage, much like a non-inverting op amp configuration (Refer to Symbol and Functional diagrams). A two resistor voltage divider terminated at the adjust pin controls the gain of a 1.24 V band-gap reference. Shorting the cathode to the adjust pin (voltage follower) provides a cathode voltage of a 1.24 V .
The LMV431, LMV431A and LMV431B have respective initial tolerances of $1.5 \%, 1 \%$ and 0.5%. The LMV431 and LMV431A are available in commercial and Industrial temperature ranges. The LMV431B is only available in commercial temperature range.
The LMV431, LMV431A and LMV431B functionally lends themselves to several applications that require zener diode type performance at low voltages. Applications include a 3 V to 2.7 V low drop-out regulator, an error amplifier in a 3 V off-line switching regulator and even as a voltage detector. These parts are typically stable with capacitive loads greater than 10 nF and less than 50 pF .
The LMV431, LMV431A and LMV431B provide performance at a competitive price.

Features

- Low Voltage Operation/Wide Adjust Range (1.24V/30V)
- 0.5\% Initial Tolerance (LMV431B)
- Temperature Compensated for Industrial Temperature Range (39 PPM/ ${ }^{\circ} \mathrm{C}$ for the LMV431AI)
- Low Operation Current ($55 \mu \mathrm{~A}$)
- Low Output Impedance (0.25Ω)
- Fast Turn-On Response
- Low Cost

Applications

- Shunt Regulator
- Series Regulator
- Current Source or Sink
- Voltage Monitor
- Error Amplifier
- 3V Off-Line Switching Regulator
- Low Dropout N -Channel Series Regulator

Connection Diagrams

Top View

Symbol and Functional Diagrams

Simplified Schematic

Ordering Information

Package	Temperature Range	Voltage Tolerance	Part Number	Package Marking	Drawing Number
TO92	Industrial Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1\%	LMV431AIZ	LMV431AIZ	Z03A
		1.5\%	LMV431IZ	LMV431IZ	
	Commerial Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.5\%	LMV431BCZ	LMV431BCZ	
		1\%	LMV431ACZ	LMV431ACZ	
		1.5\%	LMV431CZ	LMV431CZ	
SOT23-5	Industrial Range$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	1\%	LMV431AIM5	N08A	MF05A
		1\%	LMV431AIM5X	N08A	
		1.5\%	LMV431IM5	N08B	
		1.5\%	LMV431IM5X	N08B	
	Commercial Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.5\%	LMV431BCM5	N09C	
		0.5\%	LMV431BCM5X	N09C	
		1\%	LMV431ACM5	N09A	
		1\%	LMV431ACM5X	N09A	
		1.5\%	LMV431CM5	N09B	
		1.5\%	LMV431CM5X	N09B	

DC/AC Test Circuits for Table and Curves

FIGURE 1. Test Circuit for $\mathbf{V}_{\mathbf{Z}}=\mathbf{V}_{\text {REF }}$

Note: $\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\mathrm{REF}}(1+\mathrm{R} 1 / \mathrm{R} 2)+\mathrm{I}_{\mathrm{REF}} \cdot \mathrm{R} 1$
FIGURE 2. Test Circuit for $\mathbf{V}_{\mathbf{Z}}>\mathrm{V}_{\text {REF }}$

FIGURE 3. Test Circuit for Off-State Current

N

Section 16 Voltage Regulators - Linear

Section 16 Contents

Linear Voltage Regulators Selection Guide 16-3
Voltage Regulators Definition Of Terms 16-5
LM105/LM305/LM305A Voltage Regulators 16-6
LM109/LM309 5-Volt Regulator 16-7
LM117/LM317A/LM317 3-Terminal Adjustable Regulator 16-8
LM117HV/LM317HV 3-Terminal Adjustable Regulator 16-9
LM123/LM323A/LM323 3-Amp, 5-Volt Positive Regulator 16-11
LM133/LM333 3-Ampere Adjustable Negative Regulators 16-12
LM137/LM337 3-Terminal Adjustable Negative Regulators 16-13
LM137HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 16-14
LM138/LM338 5-Amp Adjustable Regulators 16-15
LM340/LM78MXX Series 3-Terminal Positive Regulators 16-16
LM150/LM350A/LM350 3-Amp Adjustable Regulators 16-17
LM317L 3-Terminal Adjustable Regulator 16-18
LM320L/LM79LXXAC Series 3-Terminal Negative Regulators 16-20
LM325 Dual Voltage Regulator 16-21
LM330 3-Terminal Positive Regulator 16-22
LM337L 3-Terminal Adjustable Regulator 16-23
LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators 16-24
LM723/LM723C Voltage Regulator 16-25
LM78XX Series Voltage Regulators 16-27
LM78LXX Series 3-Terminal Positive Regulators 16-29
LM79XX Series 3-Terminal Negative Regulators 16-30
LM79MXX Series 3-Terminal Negative Regulators 16-31
(1)National Semiconductor

Linear Voltage Regulators Selection Guide

Positive Regulators

Output Current (A)	Device	Output Voltage (V)	Qulescent Current or Min Load (mA) (Note 1)	Max Input Voltage (V)	Max Load Regulation \%	Operating Temp Range (Note 3)	Package Availability (Note 4)	Additional Features
100 mA	LM317L	Adj. (1.2 to 37)	5	40	1.5	Industrial	M, Z	
	LM325	15	3	30	0.07	Commercial	H	Dual \pm Tracking Outputs
	LM78Lxx	5, 6.2, 8.2, 9, 12, 15	5	35	1	Ext Commercial	M, Z	
200 mA	LM109	5	10	35	1	Military	H	
	LM309	5	10	35	1	Ext Commercial	H	
500 mA	LM341	5, 12, 15	10	35	2	Industrial	T	
	LM78MXX	5, 12, 15	10	35	2	Industrial	H, T	
	LM117A	Adj. (1.2 to 37)	5	40	0.3	Military	H	
	LM317A	Adj. (1.2 to 37)	10	40	0.5	Industrial	H	
	LM317	Adj. (1.2 to 37)	10	40	0.5	Ext Commercial	H	
	LM117HV	Adj. (1.2 to 57)	12	60	0.5	Military	H	
	LM317HV	Adj. (1.2 to 57)	12	60	0.3	Ext Commercial	H	
1A	LM109K	5	10	35	1	Military	K	
	LM309K	5	10	35	1	Ext Commercial	K	
	LM317	Adj. (1.2 to 37)	10	40	0.5	Ext Commercial	MP	
	LM340	5, 12, 15	8	35	1	Commercial	K, S, T	
	LM340A	5, 12, 15	6	35	0.3	Commercial	T	
1.5A	LM117	Adj. (1.2 to 37)	10	35	0.3	Military	K, WG	
	LM317	Adj. (1.2 to 37)	10	35	0.5	Ext Commercial	K, MP, S, T	
	LM117HV	Adj. (1.2 to 57)	12	60	0.3	Military	K	
	LM317HV	Adj. (1.2 to 57)	12	60	0.5	Ext Commercial	K, T	
3A	LM123	5	20	20	1	Military	K	
	LM323A	5	20	20	2	Industrial	K	
	LM323	5	20	20	2	Ext Commercial	K	
	LM150	Adj. (1.2 to 33)	5	35	0.3	Military	K	
	LM350A	Adj. (1.2 to 33)	10	35	0.3	Industrial	K	
	LM350	Adj. (1.2 to 33)	10	35	0.5	Ext Commercial	K	
5A	LM138	Adj. (1.2 to 32)	5	40	0.3	Military	K	
	LM338	Adj. (1.2 to 32)	10	40	0.5	Ext Commercial	K, T	
Imax Set By	LM105	Adj. (4.5 to 40)	2	50	0.05	Military	H	45 mA Output w/o Pass
External	LM305A	Adj. (4.5 to 40)	2	50	0.2	Commercial	H	45 mA Output w/o Pass
Pass	LM305	Adj. (4.5 to 30)	2	40	0.2	Commercial	H	45 mA Output w/o Pass
Element	LM723	Adj. (2 to 37)	4	40	0.2	Military	H, J	Low Noise, High Quality Reference
	LM723C	Adj. (2 to 37)	4	40	0.3	Commercial	H, N	Low Noise, High Quality Reference

Negative Regulators

Output Current (A)	Device	Output Voltage (V)	Quiescent Current or Min Load (mA) (Note 1)	Max Input Voltage (V)	Max Load Regulation \%	Operating Temp Range (Note 3)	Package Availability (Note 4)	Additional Features
100 mA	LM325	-15	5	-30	0.06	Commercial	H	Dual \pm Tracking Output
	LM337L	Adj. (-1.2 to -37)	5	-40	1.5	Industrial	M, Z	
	LM320L	-5, -12, -15	6	-35	1	Commercial	M, Z	
	LM79Lxx	-5, -12, -15	6	-35	1	Ext Commercial	M, Z	
500 mA	LM137	Adj. (-1.2 to -37)	5	-40	1	Military	H	
	LM337	Adj. (-1.2 to -37$)$	10	-40	1.5	Ext Commecial	H	
	LM137HV	Adj. (-1.2 to -47)	5	-50	1	Military	H	
	LM337HV	Adj. (-1.2 to -47)	10	-50	1.5	Ext Commercial	H	
	LM79Mxx	-5, -12, -15	3	-35 (Note 2)	2	Ext Commercial	T	
1A	LM337	Adj. (-1.2 to -37)	10	-40	1.5	Ext Commercial	MP	
1.5A	LM120	-5, -12, -15	2	-35 (Note 2)	1	Military	K	
	LM320	-5, -12, -15	3	-35 (Note 2)	1	Ext Commercial	T	
	LM79xx	-5, -12, -15	3	-35 (Note 2)	1	Ext Commercial	T	
	LM137	Adj. (-1.2 to -37)	5	-40	1	Military	K	
	LM337	Adj. (-1.2 to -37)	10	-40	1.5	Ext Commercial	K, T	
	LM137HV	Adj. (-1.2 to -47)	5	-50	1	Military	K	
	LM337HV	Adj. (-1.2 to -47)	10	-50	1.5	Ext Commercial	K	
3A	LM133	Adj. (-1.2 to -32)	5	-35	0.5	Military	K	
	LM333	Adj. (-1.2 to -32)	5	-35	1	Industrial	K	

Note 1: Max quiescent current for fixed or minimum load for adjustables.
Note 2: Maximum input voltage is -25 V for -5 V version.
Note 3: Operating temp range:
Commercial $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ext Commercial $=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Industrial $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military $=-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note 4: Under Package Availability, the letter identifies the type of package.
H = Metal Can (TO-99)
$J=$ Ceramic Dual-In-Line Package
$K=$ Metal Can (TO-3)
$N=$ Molded Dual-In-Line Package
$M=$ SOIC
MP = SOT223 (3 Lead Surface Mount)
$S=$ TO-263 (Power Surface Mount)
$T=T O-220$
WG = Ceramic SOIC
$Z=T O-92$

Voltage Regulators Definition Of Terms

Current-Limit Sense Voltage: The voltage across the current-limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage.
Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
Input Voltage Range: The range of dc input voltages over which the regulator will operate within specifications.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long term Stability: Output voltage stability under accelerated life-test conditions at $125^{\circ} \mathrm{C}$ with maximum rated voltages and power dissipation for 1000 hours.
Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.
Output Noise Voltage: The RMS ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Output Voltage Range: The range of regulated output voltages over which the specifications apply.
Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.
Quiescent Current: That part of the input current to the regulator that is not delivered to the load.
Ripple Rejection: The line regulation for ac input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.
Standby Current Drain: The part of the operating current of the regulator which does not contribute to the load current. (See Quiescent Current)
Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
Thermal Regulation: Percentage change in output voltage for a given change in power dissipation over a specified time period.

National Semiconductor

LM105/LM305/LM305A Voltage Regulators
 General Description

The LM105 series are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5 V . Important characteristics of the circuits are:

- Output voltage adjustable from 4.5 V to 40 V
- Output currents in excess of 10A possible by adding external transistors
- Load regulation better than 0.1%, full load with current limiting
- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Ripple rejection on $0.01 \% \mathrm{~V}$
- 45 mA output current without external pass transistor (LM305A)
Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in a TO-99 metal can.
The LM105 is specified for operation for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+125^{\circ} \mathrm{C}$, and the LM305/LM305A is specified for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Top View
Order Number LM105H, LM105H/883, SMD \#5962-8958801, LM305H or LM305AH See NS Package Number H08C

LM109/LM309 5-Volt Regulator

General Description

The LM109 series are complete 5V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems association with single-point regulation. The devices are available in two standard transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA , if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1A.
The regulators are essentially blowout proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.
Considerable effort was expended to make these devices easy to use and to minimize the number of external components. It is not necessary to bypass the output, although this
does improve transient response somewhat. Input bypassing is needed, however, if the regulator is located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.
Although designed primarily as a fixed-voltage regulator, the output of the LM109 series can be set to voltages above 5 V , as shown. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

Features

- Specified to be compatible, worst case, with TTL and DTL
- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required

Schematic Diagram

LM117/LM317A/LM317 3-Terminal Adjustable Regulator

General Description

The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.
Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential volt-
age, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.
Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment pin and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
For applications requiring greater output current, see LM150 series (3A) and LM138 series (5A) data sheets. For the negative complement, see LM137 series data sheet.

Features

- Guaranteed 1\% output voltage tolerance (LM317A)
- Guaranteed max. $0.01 \% / \mathrm{V}$ line regulation (LM317A)
- Guaranteed max. 0.3% load regulation (LM117)
- Guaranteed 1.5A output current
- Adjustable output down to 1.2 V
- Current limit constant with temperature
- P^{+}Product Enhancement tested
- 80 dB ripple rejection
- Output is short-circuit protected

Typical Applications

DS009063-1
Full output current not available at high input-output voltages
*Needed if device is more than 6 inches from filter capacitors.
\dagger Optional-improves transient response. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.

LM117 Series Packages

Part Number Suffix	Package	Design Load Current
K	TO-3	1.5 A
H	TO-39	0.5A
T	TO-220	1.5 A
E	LCC	0.5A
S	TO-263	1.5 A
EMP	SOT-223	1 A
MDT	TO-252	0.5 A

SOT-223 vs D-Pak (TO-252) Packages

Scale 1:1

LM117HV/LM317HV

3-Terminal Adjustable Regulator

General Description

The LM117HV/LM317HV are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 57 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117HV is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM117HV series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3-terminal regulators.
Besides replacing fixed regulators, the LM117HV is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e. do not short the output to ground.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117HV can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The LM117HVK STEEL and LM317HVK STEEL are packaged in standard TO-3 transistor packages, while the LM117HVH and LM317HVH are packaged in a solid Kovar base TO-39 transistor package. The LM317HVT uses a TO220 plastic package. The LM117HV is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, and the LM317HV from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Adjustable output down to 1.2 V
- Guaranteed 1.5 A output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection
- Output is short-circuit protected
- ${ }^{+}$Product Enhancement tested

Typical Applications

Full output current not available at high input-output voltages
\dagger Optional-improves transient response. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*Needed if device is more than 6 inches from filter capacitors.
$\dagger+\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}} \mathrm{R}_{2}$

Typical Applications (Continued)

Digitally Selected Outputs

5V Logic Regulator with
Electronic Shutdown*

*Min. output $\approx 1.2 \mathrm{~V}$
*Sets maximum VOUT

LM123/LM323A/LM323

3-Amp, 5-Volt Positive Regulator

General Description

The LM123 is a three-terminal positive regulator with a preset 5 V output and a load driving capability of 3 amps. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.
The LM323A offers improved precision over the standard LM323. Parameters with tightened specifications include output voltage tolerance, line regulation, and load regulation. The 3 amp regulator is virtually blowout proof. Current limiting, power limiting, and thermal shutdown provide the same high level of reliability obtained with these techniques in the LM109 1 amp regulator.
No external components are required for operation of the LM123. If the device is more than 4 inches from the filter capacitor, however, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used on the input. A $0.1 \mu \mathrm{~F}$ or larger capacitor may be used on the output to reduce load transient spikes created by fast switching digital logic, or to swamp out stray load capacitance.

An overall worst case specification for the combined effects of input voltage, load currents, ambient temperature, and power dissipation ensure that the LM123 will perform satisfactorily as a system element.
For applications requiring other voltages, see LM150 series adjustable regulator data sheet.
Operation is guaranteed over the junction temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for LM123, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM323A, and $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM323. A hermetic TO-3 package is used for high reliability and low thermal resistance.

Features

- Guaranteed 1\% initial accuracy (A version)
- 3 amp output current
- Internal current and thermal limiting
- 0.01Ω typical output impedance
- 7.5 V minimum input voltage
- 30W power dissipation
- P^{+}Product Enhancement tested

Connection Diagram

Typical Applications

*Required if LM123 is more than 4 " from filter capacitor.
\dagger Regulator is stable with no load capacitor into resistive loads.

LM133/LM333

3-Ampere Adjustable Negative Regulators

General Description

The LM133/LM333 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -3.0 A over an output voltage range of -1.2 V to -32 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM133 series features internal current limiting, thermal shutdown and safe-area compensation, making them substantially immune to failure from overloads.
The LM133/LM333 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM133/ LM333 are ideal complements to the LM150/LM350 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -32 V
- 3.0 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.2%
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P^{+}Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

Connection Diagrams

TO-3
Metal Can Package

DS009065-1
Bottom View Steel TO-3 Metal Can Package (K STEEL)

Order Number LM133K STEEL or LM333K STEEL
See NS Package Number K02A

TO-220
Plastic Package

Front View
3-Lead TO-220 Plastic Package (T)
Order Number LM333T
See NS Package Number T03B

LM137/LM337

3-Terminal Adjustable Negative Regulators

General Description

The LM137/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.
The LM137/LM337 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137/ LM337 are ideal complements to the LM117/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -37 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, $0.002 \% / \mathrm{W}$
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P^{+}Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

LM137 Series Packages and Power Capability

Device	Package	Rated Power Dissipation	Design Load Current
LM137/337	TO-3 (K)	20 W	1.5 A
	TO-39 (H)	2W	0.5 A
LM337	TO-220 (T)	15 W	1.5 A
LM337	SOT-223	2 W	1 A
	$(M P)$		

Typical Applications

Adjustable Negative Voltage Regulator

Full output current not available at high input-output voltages
$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120}\right)+\left(-\mathrm{I}_{\mathrm{ADJ}} \times \mathrm{R} 2\right)$
$\dagger \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4 from power-supply filter capacitor
Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients

Comparison between SOT-223 and D-Pak (TO-252) Packages

Scale 1:1

LM137HV/LM337HV
 3-Terminal Adjustable Negative Regulators (High Voltage)

General Description

The LM137HV/LM337HV are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -47 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137HV series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.
The LM137HV/LM337HV serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137HV/LM337HV are ideal complements to the LM117HV/LM317HV adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -47 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, 0.002\%/W
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- ${ }^{+}$Product Enhancement tested
- Standard 3-lead transistor package
- Output short circuit protected

Typical Applications

$\dagger \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4^{4} from power-supply filter capacitor.

National Semiconductor

LM138/LM338

5-Amp Adjustable Regulators

General Description

The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1.2 V to 32 V output range. They are exceptionally easy to use and require only 2 resistors to set the output voltage. Careful circuit design has resulted in outstanding load and line regulation-comparable to many commercial power supplies. The LM138 family is supplied in a standard 3-lead transistor package.
A unique feature of the LM138 family is time-dependent current limiting. The current limit circuitry allows peak currents of up to 12 A to be drawn from the regulator for short periods of time. This allows the LM138 to be used with heavy transient loads and speeds start-up under full-load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe area protection for the power transistor. Overload protection remains functional even if the adjustment pin is accidentally disconnected.

Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An output capacitor can be added to improve transient response, while bypassing the adjustment pin will increase the regulator's ripple rejection.

Besides replacing fixed regulators or discrete designs, the LM138 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., do not short-circuit output to ground. The part numbers in the LM138 series which have a K suffix are packaged in a standard Steel TO-3 package, while those with a T suffix are packaged in a TO-220 plastic package. The LM138 is rated for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$, and the LM338 is rated for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$.

Features

- Guaranteed 7A peak output current
- Guaranteed 5A output current
- Adjustable output down to 1.2 V
- Guaranteed thermal regulation
- Current limit constant with temperature
- P^{+}Product Enhancement tested
- Output is short-circuit protected

Applications

- Adjustable power supplies
- Constant current regulators
- Battery chargers

Connection Diagrams (See Physical Dimension section for further information)
(TO-3 STEEL) Metal Can Package

Bottom View
Order Number LM138K STEEL or LM338K STEEL See NS Package Number K02A
(TO-220)
Plastic Package

Front View
Order Number LM338T
See NS Package Number T03B

LM340/LM78MXX Series

3-Terminal Positive Regulators

General Description

The LM140/LM340A/LM340/LM7800C monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.
Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
The $5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V regulator options are available in the steel TO-3 power package. The LM340A/LM340/LM7800C series is available in the TO-220 plastic power package, and the LM340-5.0 is available in the SOT-223 package, as well as the LM340-5.0 and LM340-12 in the surface-mount TO-263 package.

Features

- Complete specifications at 1A load
- Output voltage tolerances of $\pm 2 \%$ at $T_{j}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM340A)
- Line regulation of 0.01% of $\mathrm{V}_{\text {OUT }} / \mathrm{V}$ of $\Delta \mathrm{V}_{\text {IN }}$ at 1 A load (LM340A)
- Load regulation of 0.3% of $\mathrm{V}_{\text {OUT }} / \mathrm{A}$ (LM340A)
- Internal thermal overload protection
- Internal short-circuit current limit
- Output transistor safe area protection
- \mathbf{P}^{+}Product Enhancement tested

Device	Output Voltages	Packages
LM140	5,12, 15	TO-3 (K)
LM340A/LM340	5,12, 15	TO-3 (K), TO-220 (T), SOT-223 (MP), TO-263 (S) $(5 \mathrm{~V}$ and 12V only)
LM7800C	$5,8,12$, 15	TO-220 (T)

Typical Applications

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter.
**Although no output capacitor is needed for stability, it does help transient response. (If needed, use $0.1 \mu \mathrm{~F}$, ceramic disc).

Current Regulator

$\mathrm{I}_{\text {OUT }}=\frac{\mathrm{V} 2-3}{\mathrm{R} 1}+\mathrm{l}_{\mathrm{Q}}$
$\Delta \mathrm{I}_{\mathrm{Q}}=1.3 \mathrm{~mA}$ over line and toad changes.

Adjustable Output Regulator

$V_{\text {OUT }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 25 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{I}_{\mathrm{Q}}$, load regulation $\left(L_{r}\right) \approx[(R 1+R 2) / R 1]\left(L_{r}\right.$ of $\left.L M 340-5\right)$.

Comparison between SOT-223 and D-Pak (TO-252) Packages

$\square=0=0$ \qquad
SOT-223

回

TO-252
DSOO7781-38

Scale 1:1

LM150/LM350A/LM350

3-Amp Adjustable Regulators

General Description

The LM150 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 3A over a 1.2 V to 33 V output range. They are exceptionally easy to use and require only 2 external resistors to set the output voltage. Further, both line and load regulation are comparable to discrete designs. Also, the LM150 is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM150 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is accidentally disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An output capacitor can be added to improve transient response, while bypassing the adjustment pin will increase the regulator's ripple rejection.
Besides replacing fixed regulators or discrete designs, the LM150 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.
By connecting a fixed resistor between the adjustment pin and output, the LM150 can be used as a precision current
regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The part numbers in the LM150 series which have a K suffix are packaged in a standard Steel TO-3 package, while those with a T suffix are packaged in a TO-220 plastic package. The LM150 is rated for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$, while the LM350A is rated for $-40^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}$, and the LM350 is rated for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$.

Features

- Adjustable output down to 1.2 V
- Guaranteed 3A output current
- Guaranteed thermal regulation
- Output is short circuit protected
- Current limit constant with temperature
- P^{+}Product Enhancement tested
- 86 dB ripple rejection
- Guaranteed 1% output voltage tolerance (LM350A)
- Guaranteed max. $0.01 \% / \mathrm{V}$ line regulation (LM350A)
- Guaranteed max. 0.3\% load regulation (LM350A)

Applications

- Adjustable power supplies
- Constant current regulators
- Battery chargers

Connection Diagrams

Case is Output

> Bottom View
> Order Number LM150K STEEL or LM350K STEEL
> See NS Package Number K02A
> Order Number LM150K/883
> See NS Package Number K02C

LM317L

3-Terminal Adjustable Regulator

General Description

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM317L is available packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM317L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficuit to achieve with standard 3-terminal regulators.
Besides replacing fixed regulators, the LM317L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The LM317L is available in a standard TO-92 transistor package, the SO-8 package, and 6-Bump micro SMD package. The LM317L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range.

Features

- Adjustable output down to 1.2 V
- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% \mathrm{~V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection
- Available in TO-92, SO-8, or 6-Bump micro SMD package
- Output is short circuit protected
- See AN-1112 for micro SMD considerations

Connection Diagrams

TO-92 Plastic package

8-Pin SOIC

Top View

Connection Diagrams (Continued)

micro SMD Laser Mark
X = Date Code

*NC = Not Internally connected.
Top View
(Bump Side Down)

Package	Part Number	Package Marking	Media Transport	NSC Drawing
TO-92	LM317LZ	LM317LZ	1.8 k Units per Box	Z03A
8-Pin SOIC	LM317LM	LM317LM	Rails	M08A
6-Bump micro SMD	* LM317LIBP	-	250 Units Tape and Reel	BPA06HPA
	* LM317LIBPX	-	$3 k$ Units Tape and Reel	

Note: The micro SMD package marking is a single digit manufacturing Date Code only.

LM320L/LM79LXXAC Series 3-Terminal Negative Regulators

General Description

The LM320L/LM79LXXAC dual marked series of 3-terminal negative voltage regulators features fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V with output current capabilities in excess of 100 mA . These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent transient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.
The LM320L/LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable volt-
ages and currents. The LM79LXXAC series is available in the 3 -lead TO-92 package, and SO-8; 8 lead package. The LM320L series is available in the 3-lead TO-92 package.
For output voltage other than $-5 \mathrm{~V},-12 \mathrm{~V}$ and -15 V , the LM137L series provides an output voltage range from 1.2 V to 47 V .

Features

- Preset output voltage error is less than $\pm 5 \%$ overload, line and temperature
- Specified at an output current of 100 mA
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than $0.07 \% \mathrm{~V}_{\text {OUT }} / \mathrm{V}$
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\text {out }} / \mathrm{mA}$

Typical Applications

*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
**Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

$-\mathrm{V}_{0}=-5 \mathrm{~V}-\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \cdot \mathrm{R} 2$,
$5 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{I}_{\mathrm{Q}}$

Connection Diagrams

SO-8 Plastic (Narrow Body)

Top View
Order Number LM79L05ACM, LM79L12ACM
LM79L15ACM, LM79L05ACMX, LM79L12ACMX or LM79L15ACMX
See NS Package Number M08A

TO-92 Plastic Package (Z)

Bottom View
Order Number LM320LZ-5.0, LM79L05ACZ, LM320LZ-12, LM79L12ACZ, LM320LZ-15 or LM79L15ACZ
See NS Package Number Z03A

LM325

Dual Voltage Regulator

General Description

This dual polarity tracking regulator is designed to provide balanced positive and negative output voltages at current up to 100 mA , and is set for $\pm 15 \mathrm{~V}$ outputs. Input voltages up to $\pm 30 \mathrm{~V}$ can be used and there is provision for adjustable current limiting. The device is available in two package types to accommodate various power requirements and temperature ranges.

Features

- $\pm 15 \mathrm{~V}$ tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 2%
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

National Semiconductor

LM330

3-Terminal Positive Regulator

General Description

The LM330 5V 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.
The low dropout voltage makes the LM330 useful for certain battery applications since this feature allows a longer battery discharge before the output falls out of regulation. For example, a battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the system and load voltage. Supporting this feature, the LM330 protects both itself and regulated systems from negative voltage inputs resulting from reverse installations of batteries.
Other protection features include line transient protection up to 26 V , when the output actually shuts down to avoid damaging internal and external circuits. Also, the LM330 regulator cannot be harmed by a temporary mirror-image insertion.

Features

- Input-output differential less than 0.6 V
- Output current of 150 mA
- Reverse battery protection
- Line transient protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- P^{+}Product Enhancement tested

Schematic and Connection Diagrams

(TO-220)
Plastic Package

Front View
Order Number LM330T-5.0 See NS Package Number T03B

LM337L

3-Terminal Adjustable Regulator

General Description

The LM337L is an adjustable 3 -terminal negative voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Furthermore, both line and load regulation are better than standard fixed regulators. Also, the LM337L is packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM337L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, only a single $1 \mu \mathrm{~F}$ solid tantalum output capacitor is needed unless the device is situated more than 6 inches from the input filter capacitors, in which case an input bypass is needed. A larger output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM337L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM337L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The LM337L is available in a standard TO-92 transistor package and a SO-8 surface mount package. The LM337L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.
For applications requiring greater output current in excess of 0.5 A and 1.5A, see LM137 series data sheets. For the positive complement, see series LM117 and LM317L data sheets.

Features

- Adjustable output down to 1.2 V
- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection
- Output is short circuit protected

Connection Diagram

Bottom View

Top View

Order Number LM337LM or LM337LZ See NS Package Number M08A or Z03A

LM341/LM78MXX Series
 3-Terminal Positive Voltage Regulators

General Description

The LM341 and LM78MXX series of three-terminal positive voltage regulators employ built-in current limiting, thermal shutdown, and safe-operating area protection which makes them virtually immune to damage from output overloads. With adequate heatsinking, they can deliver in excess of 0.5 A output current. Typical applications would include local (on-card) regulators which can eliminate the noise and degraded performance associated with single-point regulation.

Features

- Output current in excess of 0.5A
- No external components
- Internal thermal overioad protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation
- Available in TO-220, TO-39, and TO-252 D-PAK packages
- Output voltages of $5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V

Connection Diagrams

TO-39 Metal Can Package (H)

Bottom View
Order Number LM78M05CH, LM78M12CH or LM78M15CH
See NS Package Number H03A

TO-220 Power Package (T)

Top View
Order Number LM341T-5.0, LM341T-12, LM341T-15, LM78M05CT, LM78M12CT or LM78M15CT See NS Package Number T03B

T0-252

Top View
Order Number LM78M05CDT See NS Package Number TD03B

LM723／LM723C
 Voltage Regulator

General Description

The LM723／LM723C is a voltage regulator designed prima－ rily for series regulator applications．By itself，it will supply output currents up to 150 mA ；but external transistors can be added to provide any desired load current．The circuit fea－ tures extremely low standby current drain，and provision is made for either linear or foldback current limiting．
The LM723／LM723C is also useful in a wide range of other applications such as a shunt regulator，a current regulator or a temperature controller．
The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range，instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Features

－ 150 mA output current without external pass transistor
－Output currents in excess of 10A possible by adding external transistors
－Input voltage 40 V max
－Output voltage adjustable from 2 V to 37 V
－Can be used as either a linear or a switching regulator

Connection Diagrams

Note：Pin 5 connected to case．
Top View
Order Number LM723H，LM723H／883 or LM723CH See NS Package H10C

Connection Diagrams (Continued)

Order Number LM723E/883 See NS Package E20A

Equivalent Circuit*

*Pin numbers refer to metal can package.

Typical Application

Note: R3 $=\frac{\text { R1 R2 }}{\text { R1 }+ \text { R2 }}$
for minimum temperature drift.
Typical Performance

Regulated Output Voltage	5 V
Line Regulation $\left(\Delta \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}\right)$	0.5 mV
Load Regulation $\left(\Delta \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\right)$	1.5 mV

FIGURE 1. Basic Low Voltage Regulator
(Vout $=2$ to 7 Volts)

LM78XX

Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.
Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the out-
put, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

Connection Diagrams

Metal Can Package
TO-3 (K)
Aluminum

Bottom View
Order Number LM7805CK,
LM7812CK or LM7815CK See NS Package Number KC02A

LM78LXX Series

3-Terminal Positive Regulators

General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment.
The LM78LXX is available in the plastic TO-92 (Z) package, the plastic SO-8 (M) package and a chip sized package (8-Bump micro SMD) using National's micro SMD package technology. With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area pro-
tection for the output transistors is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Features

- LM78L05 in micro SMD package
- Output voltage tolerances of $\pm 5 \%$ over the temperature range
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and plastic SO-8 low profile packages
- No external components
- Output voltages of $5.0 \mathrm{~V}, 6.2 \mathrm{~V}, 8.2 \mathrm{~V}, 9.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$

Connection Diagrams

SO-8 Plastic (M)
(Narrow Body)

8-Bump micro SMD

Top View
(Bump Side Down)
(TO-92) Plastic Package (Z)

DS007744-3
Bottom View
micro SMD Marking Orientation

LM79XX Series

3-Terminal Negative Regulators

General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.
These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overioad conditions.
Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a

Connection Diagrams

resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.
For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

Typical Applications

*Required if regulator is separated from filter capacitor by more than $3^{\prime \prime}$. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

LM79MXX Series 3-Terminal Negative Regulators

General Description

The LM79MXX series of 3 -terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79MXX series is packaged in the TO-220 power package, and is capable of supplying 0.5 A of output current.
These regulators employ internal current limiting, safe area protection, and thermal shotdown for protection against virtually all overload conditions.
Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with
a resistor divider. The low quiescent current of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.
For output voltage other than $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V the LM137 series provides an output voltage range from -1.2 V to -57 V .

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output cl'rrent
- 4% tolerance on preset output voltage

Connection Diagram

0

Section 17
 Voltage Regulators -Low-Dropout

Section 17 Contents
Low Dropout Regulators Selection Guide 17-4
Low-Dropout Voltage Regulators Definition Of Terms 17-7
LM1084 5A Low Dropout Positive Regulators 17-8
LM1085 3A Low Dropout Positive Regulators 17-10
LM1086 1.5A Low Dropout Positive Regulators 17-12
LM1117 800mA Low-Dropout Linear Regulator 17-15
LM2930 3-Terminal Positive Regulator 17-18
LM2931 Series Low Dropout Regulators 17-19
LM2936-3.0 Ultra-Low Quiescent Current 3.0V Regulator. 17-23
LM2936-3.3 Ultra-Low Quiescent Current 3.3V Regulator 17-25
LM2936-5.0 Ultra-Low Quiescent Current 5V Regulator 17-27
LM2937 500 mA Low Dropout Regulator 17-29
LM2937-2.5, LM2937-3.3 400mA and 500mA Voltage Regulators 17-31
LM2940/LM2940C 1A Low Dropout Regulator 17-33
LM2941/LM2941C 1A Low Dropout Adjustable Regulator 17-35
LM2984 Microprocessor Power Supply System 17-36
LM2990 Negative Low Dropout Regulator 17-37
LM2991 Negative Low Dropout Adjustable Regulator 17-39
LM3460-1.2, -1.5 Precision Controller for GTLp and GTL Bus Termination. 17-41
LM3480 100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator. 17-43
LM3490 100 mA , SOT-23, Quasi Low-Dropout Linear Voltage Regulator with Logic-Controlled ON/OFF 17-45
LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion 17-47
LMS1585A/LMS1587 5A and 3A Low Dropout Fast Response Regulators. 17-49
LMS8117 1A Low-Dropout Linear Regulator. 17-52
LP2950/LP2951 Series of Adjustable Micropower Voltage Regulators 17-55
LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage Regulators. 17-58
LP2954/LP2954A 5V and Adjustable Micropower Low-Dropout Voltage Regulators 17-60
LP2956/LP2956A Dual Micropower Low-Dropout Voltage Regulators. 17-62
LP2957/LP2957A 5V Low-Dropout Regulator for μ P Applications 17-64
LP2960 Adjustable Micropower 0.5A Low-Dropout Regulators 17-65
LP2966 Dual 150mA Ultra Low-Dropout Regulator 17-66
LP2975 MOSFET LDO Driver/Controller 17-69
LP2978 Micropower SOT, 50 mA Low-Noise Ultra Low-Dropout Regulator Designed for Use with Very Low ESR Output Capacitors. 17-71
LP2980 Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 and micro SMD Packages 17-73
LP2980-ADJ Micropower SOT, 50 mA Ultra Low-Dropout Adjustable Voltage Regulator 17-77
LP2980LV Micropower SOT, 50 mA Low-Voltage Low-Dropout Regulator For Applications With Output Voltages < 2V 17-79
LP2981 Micropower 100 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages 17-81
LP2982 Micropower 50 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages 17-84
LP2985 Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages Designed for Use with Very Low ESR Output Capacitors 17-88
LP2986 Micropower, 200 mA Ultra Low-Dropout Fixed or Adjustable Voltage Regulator 17-93
LP2987/LP2988 Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with Programmable Power-On Reset Delay; Low Noise Version Available (LP2988) 17-96
LP2989 Micropower/Low Noise, 500 mA Ultra Low-Dropout Regulator For Use with Ceramic Output Capacitors 17-101
LP2989LV Micropower 500 mA Low Noise Low Dropout Regulator for Applications with Output Voltages < 2V Designed for Use with Very Low ESR Output Capacitors 17-103
LP3961/LP3964 800mA Fast Ultra Low Dropout Linear Regulators 17-105
LP3962/LP3965 1.5A Fast Ultra Low Dropout Linear Regulators 17-111
LP3963/LP3966 3A Fast Ultra Low Dropout Linear Regulators 17-117

National Semiconductor

Low Dropout Regulators Selection Guide

Output Current	Device	Output Voltage Accuracy (Note 1)	Output Voltage (V)				Dropout Voltage V (max) (Note 2)	Quiescent Current mA (max) (Note 3)	Max. Input Voltage
			3.0	3.3	5.0	Other Available Voltages			
50 mA	LP2980A	0.5\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.5,2.6,2.7,2.8, \\ & 2.9,3.1,3.2,3.5, \\ & 3.6,3.8,4.0,4.5, \\ & 4.7 \end{aligned}$	0.15	0.095	$\begin{gathered} 16 \\ \text { (Note 4) } \end{gathered}$
	LP2980LVA	0.5\%				1.5, 1.8	(Note 5)	0.085	16
	LP2978A	1\%				3.8	0.15	0.095	16
	LP2980	1\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.5,2.6,2.7,2.8, \\ & 2.9,3.1,3.2,3.5, \\ & 3.6,3.8,4.0,4.5, \\ & 4.7 \end{aligned}$	0.15	0.095	16
	LP2980LV	1\%				1.5, 1.8	(Note 5)	0.085	16
	LP2980-ADJ	1\%				Adjustable	0.15	0.095	16
	LP2982A	1\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.5,2.75,2.8,3.6, \\ & 3.8,4.0,4.5,4.7 \end{aligned}$	0.15	0.095	16
	LP2978	1.5\%				3.8	0.15	0.095	16
	LP2982	1.5\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & \hline 2.5,2.75,2.8,3.6, \\ & 3.8,4.0,4.5,4.7 \\ & \hline \end{aligned}$	0.15	0.095	16
	LM2936	3\%F			\checkmark		0.4	0.015	40
100mA	LP2950AC	0.5\%	\checkmark	\checkmark	\checkmark		0.45	0.12	30
	LP2951AC	0.5\%	\checkmark	\checkmark	\checkmark	Adjustable (Note 6)	0.45	0.12	30
	LP2981A	0.75\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.5,2.7,2.8,2.9, \\ & 3.1,3.2,3.6,3.8, \\ & 4.0,4.5,4.7 \end{aligned}$	0.25	0.095	16
	LP2981	1.25\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.5,2.7,2.8,2.9, \\ & 3.1,3.2,3.6,3.8, \\ & 4.0,4.5,4.7 \end{aligned}$	0.25	0.095	16
	LP2951	1\%			\checkmark	Adjustable (Note 6)	0.45	0.12	30
	LP2951C	1\%	\checkmark	\checkmark	\checkmark	Adjustable (Note 6)	0.45	0.12	30
	LM2931A	4\%			\checkmark		0.6	1.0	26
	LM3480	4\%		\checkmark	\checkmark	12, 15	1.1	4 T	30
	LM3490	4\%		\checkmark	\checkmark	12, 15	1.1	4 T	30
	LM2931	5\%			\checkmark		0.6	1.0	26
	LM2931C	5\%				Adjustable (Note 6)	0.6	1.0	26

Output Current	Device	Output Voltage Accuracy (Note 1)	Output Voltage (V)				Dropout Voltage V (max) (Note 2)	Quiescent Current mA (max) (Note 3)	Max. Input Voltage
			3.0	3.3	5.0	Other Available Voltages			
150mA	$\begin{aligned} & \text { LP2966 (2 } \\ & \text { outputs) } \end{aligned}$	1\%	\checkmark	\checkmark	\checkmark	1.8, 2.5, 2.8, 3.6	0.195	0.45	7
	LP2967	1\%		\checkmark		2.5, 2.6, 2.8	275	<2.0	16
	LP2985A	1\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.8,3.1,3.2,3.6, \\ & 3.8,4.0,4.7,4.8 \end{aligned}$	0.35	0.095	16
	LP2985	1.5\%	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 2.8,3.1,3.2,3.6, \\ & 3.8,4.0,4.7,4.8 \end{aligned}$	0.35	0.095	16
	LP2985LV	1.5\%				1.5, 1.8, 3.0		0.095	16
	LP3962	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5	38	15	7
	LP3965	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5, Adjustable	38	15	7
	LM2930	6\%			\checkmark	8	0.6	7	26
200 mA	LP2986A	0.5\%	\checkmark	\checkmark	\checkmark	Adjustable (Note 6)	0.23	0.12	16
	LP2987A	0.5\%	\checkmark	\checkmark	\checkmark	2.8, 3.2, 3.8	0.23	0.12	16
	LP2988A	0.5\%	\checkmark	\checkmark	\checkmark	2.8, 3.2, 3.8	0.23	0.12	16
	LP2986	1\%	\checkmark	\checkmark	\checkmark	Adjustable (Note 6)	0.23	0.12	16
	LP2987	1\%	\checkmark	\checkmark	\checkmark	2.8, 3.2, 3.8	0.23	0.12	16
	LP2988	1\%	\checkmark	\checkmark	\checkmark	2.8, 3.2, 3.8	0.23	0.12	16
250 mA	LP2952A	0.5\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.17	30
	LP2953A	0.5\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.17	30
	LP2953AM	0.5\%			\checkmark	Adjustable (Note 6)	0.6	0.17	30
	LP2954A	0.5\%			\checkmark	Adjustable (Note 6)	0.6	0.15	30
	LP2956A	0.5\%			\checkmark	Adjustable (Note 6)	0.6	0.25	30
	LP2957A	0.5\%			\checkmark		0.6	0.20	30
	LP2952	1\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.17	30
	LP2953	1\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.17	30
	LP2954	1\%			\checkmark	Adjustable (Note 6)	0.6	0.15	30
	LP2956	1\%			\checkmark	Adjustable (Note 6)	0.6	0.25	30
	LP2957	1\%			\checkmark		0.6	0.20	30
300 mA	LP3963	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5	80	15	7
	LP3966	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5, Adjustable	80	15	7
500 mA	LP2960A	0.8\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.6	30
	LP2960	1.5\%		\checkmark	\checkmark	Adjustable (Note 6)	0.6	0.6	30
	LP2989A	0.75\%				2.5	425	<0.8	16
	LP2989	1.25\%				2.5	425	<0.8	16
	LP2989LV	0.75\%				1.8		<0.8	16
	$\begin{gathered} \text { LM2984 (3 } \\ \text { outputs) } \\ \hline \end{gathered}$	3\%			\checkmark		0.8	5 T	26
	LM2937	3\%		\checkmark	\checkmark	2.5, 8, 10, 12, 15	1.0F	10	26

Output Current	Device	Output Voltage Accuracy (Note 1)	Output Voltage (V)				Dropout Voltage V (max) (Note 2)	Quiescent Current mA (max) (Note 3)	Max. Input Voltage
			3.0	3.3	5.0	Other Available Voltages			
800 mA	LM1117	1\%		\checkmark	\checkmark	2.85, Adjustable	1.3F	10	20
	LP3961	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5	240	15	7
	LP3964	$\pm 1.5 \%$		\checkmark	\checkmark	1.8, 2.5, Adjustable	240	15	7
1.0A	LM2990	2\%				-5, -5.2, -12, -15	1.0T	5	-26
	LM2991	2\%				Adjustable	1.07	5	-26
	LM2940 (Mil)	3\%			\checkmark	8, 12, 15	0.7	15	26
	LM2940	3\%			\checkmark	8, 9, 10, 12	0.8	15	26
	LM2940C	3\%			\checkmark	9, 12, 15	0.8	15	26
	LM2941	3\%				Adjustable	0.8	15	26
	LM2941C	3\%				Adjustable	0.8	15	26
	LM3940	3\%		\checkmark			0.8	15	7.5
1.5A	LM1086	1\%		\checkmark	\checkmark	2.85, Adjustable	1.5F	10	30
3A	LM1085	1\%		\checkmark	\checkmark	12, Adjustable	1.5F	10	30
5A	LM1084	1\%		\checkmark	\checkmark	12, Adjustable	1.5F	10	30
Controller	LM3411A (Note 7)	0.5\%		\checkmark	\checkmark			0.125	
	LM3411 (Note 7)	1\%		\checkmark	\checkmark			0.125	
	LP2975A	1.5\%		\checkmark	\checkmark	12, Adjustable (Note 6)	-	0.24	24
	LP2975	2.5\%		\checkmark	\checkmark	12, Adjustable (Note 6)	-	0.24	24
	LM3460	2.5\%				1.2, 1.5	-	0.125	-

Note 1: " F " denotes accuracy for full temperature range: otherwise, accuracy is at $25^{\circ} \mathrm{C}$.
Note 2: Dropout voltage is given for full load. " F " denotes value for full temperature range, and " T " denotes typical value; otherwise, values are maximum at $25^{\circ} \mathrm{C}$.
Note 3: Quiescent current is given for minimum load. " F " denotes value for full temperature range, and " T " denotes typical value; otherwise, values are maximum at $25^{\circ} \mathrm{C}$.
Note 4: 20 V version available upon request.
Note 5: Minimum input voltage required to maintain regulation is 2.20 V .
Note 6: Denotes products with fixed output voltages that also provide adjustment control of the output voltage.
Note 7: Refer to Voltage Control and Supervisor Products section for product data for the LM3411A/LM3411 regulator controller.

Low-Dropout Voltage Regulators Definition Of Terms

Dropout Voltage: The input-voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at $\left(\mathrm{V}_{\text {OUT }}+5 \mathrm{~V}\right)$ input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathbf{V}_{\mathbf{o}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

LM1084

5A Low Dropout Positive Regulators

General Description

The LM1084 is a series of low dropout voltage positive regulators with a maximum dropout of 1.5 V at 5 A of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

The LM1084 is available in an adjustable version, which can set the output voltage with only two external resistors. It is also available in three fixed voltages: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ and 12.0 V . The fixed versions intergrate the adjust resistors.
The LM1084 circuit includes a zener trimmed bandgap reference, current limiting and thermal shutdown.
The LM1084 series is available in TO-220 and TO-263 packages. Refer to the LM1085 for the 3A version, and the LM1086 for the 1.5A version.

Features

- Available in $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable Versions
- Current Limiting and Thermal Protection
- Output Current
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Line Regulation $\quad 0.015 \%$ (typical)
- Load Regulation
0.1\% (typical)

Applications

- Post Regulator for Switching DC/DC Conveter
- High Efficiency Linear Regulators
- Battery Charger

Connection Diagrams

Ordering Information

Package	Temperature Range	Part Number	Transport Media	NSC Drawing
3-lead TO-263	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1084IS-ADJ	Rails	TS3B
		LM1084ISX-ADJ	Tape and Reel	
		LM1084IS-12	Rails	
		LM1084ISX-12	Tape and Reel	
		LM1084IS-3.3	Rails	
		LM1084ISX-3.3	Tape and Reel	
		LM1084IS-5.0	Rails	
		LM1084ISX-5.0	Tape and Reel	
3-lead TO-220	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1084IT-ADJ	Rails	T03B
		LM1084IT-12	Rails	
		LM1084IT-3.3	Rails	
		LM1084IT-5.0	Rails	

Simplified Schematic

LM1085

3A Low Dropout Positive Regulators

General Description

The LM1085 is a series of low dropout positive voltage regulators with a maximum dropout of 1.5 V at 3 A of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

The LM1085 is available in an adjustable version, which can set the output voltage with only two external resistors. It is also available in three fixed voltages: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ and 12.0 V . The fixed versions integrate the adjust resistors.
The LM1085 circuit includes a zener trimmed bandgap reference, current limiting and thermal shutdown.
The LM1085 series is available in TO-220 and TO-263 packages. Refer to the LM1084 for the 5A version, and the LM1086 for the 1.5 V version.

Features

- Available in $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable Versions
- Current Limiting and Thermal Protection
- Output Current
- Line Regulation
0.015\% (typical) 0.1\% (typical)

Applications

- High Efficiency Linear Regulators
- Battery Charger
- Post Regulation for Switching Supplies
- Constant Current Regulator
- Microprocessor Supply

Connection Diagrams

Basic Functional Diagram, Adjustable Version

DS 100947-65

Application Circuit

*needed if device is far from filter capacitors
$\dagger_{\mathrm{V}_{\text {OUT }}}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
DS100947-52
1.2V to 15V Adjustable Regulator

Ordering Information

Package	Temperature Range	Part Number	Transport Media	NSC Drawing
3-lead TO-263	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1085IS-ADJ	Rails	TS3B
		LM1085ISX-ADJ	Tape and Reel	
		LM1085IS-12	Rails	
		LM1085ISX-12	Tape and Reel	
		LM1085IS-3.3	Rails	
		LM1085ISX-3.3	Tape and Reel	
		LM1085IS-5.0	Rails	
		LM1085ISX-5.0	Tape and Reel	
3-lead TO-220	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1085IT-ADJ	Rails	T03B
		LM1085IT-12	Rails	
		LM1085IT-3.3	Rails	
		LM1085IT-5.0	Rails	

Simplified Schematic

LM1086

1.5A Low Dropout Positive Regulators

General Description

The LM1086 is a series of low dropout positive voltage regulators with a maximum dropout of 1.5 V at 1.5 A of load current. It has the same pin-out as National Semiconductor's industry standard LM317.
The LM1086 is available in an adjustable version, which can set the output voltage with only two external resistors. It is also available in four fixed voltages: $2.5 \mathrm{~V}, 2.85 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V . The fixed versions integrate the adjust resistors.

The LM1086 circuit includes a zener trimmed bandgap reference, current limiting and thermal shutdown.
The LM1086 series is available in TO-220 and TO-263 packages. Refer to the LM1084 for the 5A version, and the LM1085 for the 3A version.

Features

- Available in $2.5 \mathrm{~V}, 2.85 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and Adjustable Versions
- Current Limiting and Thermal Protection
- Output Current
- Line Regulation
0.015\% (typical)
- Load Regulation

Applications

- SCSI-2 Active Terminator
- High Efficiency Linear Regulators
- Battery Charger
- Post Regulation for Switching Supplies
- Constant Current Regulator
- Microprocessor Supply

Connection Diagrams

Top View

Basic Functional Diagram, Adjustable Version

TO-263

Top View

*NEEDED IF device is far from filter capacitors
${ }^{+} V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)$
DS100948-52
1.2V to 15V Adjustable Regulator

Ordering Information

Package	Temperature Range	Part Number	Transport Media	NSC Drawing
3-lead TO-263	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1086IS-ADJ	Rails	TS3B
		LM1086ISX-ADJ	Tape and Reel	
		LM1086IS-2.85	Rails	
		LM1086ISX-2.85	Tape and Reel	
		LM1086IS-3.3	Rails	
		LM1086ISX-3.3	Tape and Reel	
		LM1086IS-5.0	Rails	
		LM1086ISX-5.0	Tape and Reel	
	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1086CS-ADJ	Rails	
		LM1086CSX-ADJ	Tape and Reel	
		LM1086CS-2.5	Rails	
		LM1086CSX-2.5	Tape and Reel	
		LM1086CS-2.85	Rails	
		LM1086CSX-2.85	Tape and Reel	
		LM1086CS-3.3	Rails	
		LM1086CSX-3.3	Tape and Reel	
		LM1086CS-5.0	Rails	
		LM1086CSX-5.0	Tape and Reel	
3-lead TO-220	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1086IT-ADJ	Rails	T03B
		LM1086IT-2.85	Rails	
		LM1086IT-3.3	Rails	
		LM1086IT-5.0	Rails	
	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM1086CT-ADJ	Rails	
		LM1086CT-2.85	Rails	
		LM1086CT-3.3	Rails	
		LM1086CT-5.0	Rails	

Simplified Schematic

National Semiconductor

LM1117

800mA Low-Dropout Linear Regulator

General Description

The LM1117 is a series of low dropout voltage regulators with a dropout of 1.2 V at 800 mA of load current. It has the same pin-out as National Semiconductor's industry standard LM317.
The LM1117 is available in an adjustable version, which can set the output voltage from 1.25 V to 13.8 V with only two external resistors. In addition, it is also available in five fixed voltages, $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.85 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V .
The LM1117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within $\pm 1 \%$.
The LM1117 series is available in SOT-223, TO-220, and TO-252 D-PAK packages. A minimum of $10 \mu \mathrm{~F}$ tantalum capacitor is required at the output to improve the transient response and stability.

Features

- Available in $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.85 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable Versions
- Space Saving SOT-223 Package
- Current Limiting and Thermal Protection
- Output Current

800 mA

- Temperature Range
$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Line Regulation 0.2\% (Max)
- Load Regulation
0.4\% (Max)

Applications

- 2.85V Model for SCSI-2 Active Termination
- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- Battery Charger
- Battery Powered Instrumentation

Typical Application

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter. DS100919-28

Ordering Information

Package	Temperature Range	Packaging Marking	Transport Media	NSC Drawing
	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
3-lead SOT-223	LM1117MPX-ADJ	N03A	Tape and Reel	MA04A
	LM1117MPX-1.8	N12A	Tape and Reel	
	LM1117MPX-2.5	N13A	Tape and Reel	
	LM1117MPX-2.85	N04A	Tape and Reel	
	LM1117MPX-3.3	N05A	Tape and Reel	
	LM1117MPX-5.0	N06A	Tape and Reel	
3-lead TO-220	LM1117T-ADJ	LM1117T-ADJ	Rails	T03B
	LM1117T-2.85	LM1117T-2.85	Rails	
	LM1117T-3.3	LM1117T-3.3	Rails	
	LM1117T-5.0	LM1117T-5.0	Rails	
3-lead TO-252	LM1117DTX-ADJ	LM1117DT-ADJ	Tape and Reel	TD03B
	LM1117DTX-1.8	LM1117DT-1.8	Tape and Reel	
	LM1117DTX-2.5	LM1117DT-2.5	Tape and Reel	
	LM1117DTX-2.85	LM1117DT-2.85	Tape and Reel	
	LM1117DTX-3.3	LM1117DT-3.3	Tape and Reel	
	LM1117DTX-5.0	LM1117DT-5.0	Tape and Reel	

Block Diagram

LM2930

3-Terminal Positive Regulator

General Description

The LM2930 3-terminal positive regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Efficient use of low input voltages obtained, for example, from an automotive battery during cold crank conditions, allows 5 V circuitry to be properly powered with supply voltages as low as 5.6 V . Familiar regulator features such as current limit and thermal overload protection are also provided.
Designed originally for automotive applications, the LM2930 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (40V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2930 cannot be harmed by temporary mirror-image insertion.
Fixed outputs of 5 V and 8 V are available in the plastic TO-220 and TO-263 power packages.

Features

- Input-output differential less than 0.6 V
- Output current in excess of 150 mA
- Reverse battery protection
- 40 V load dump protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- P^{+}Product Enhancement tested

Voltage Range

- LM2930T-5.0: 5V
- LM2930T-8.0: 8 V
- LM2930S-5.0: 5 V
- LM2930S-8.0: 8V

Connection Diagrams

(TO-220)
Plastic Package

Front View
Order Number LM2930T-5.0 or LM2930T-8.0 See NS Package Number T03B
(TO-263)
Plastic Surface-Mount Package

Top View

Side View
Order Number LM2930S-5.0 or LM2930S-8.0 See NS Package Number TS3B

LM2931

Series Low Dropout Regulators

General Description

The LM2931 positive voltage regulator features a very low quiescent current of 1 mA or less when supplying 10 mA loads. This unique characteristic and the extremely low input-output differential required for proper regulation (0.2 V for output currents of 10 mA) make the LM2931 the ideal regulator for standby power systems. Applications include memory standby circuits, CMOS and other low power processor power supplies as well as systems demanding as much as 100 mA of output current.
Designed originally for automotive applications, the LM2931 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (60 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2931 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.
The LM2931 family includes a fixed 5 V output ($\pm 3.8 \%$ tolerance for A grade) or an adjustable output with ON/OFF pin.

Both versions are available in a TO-220 power package, TO-263 surface mount package, and an 8-lead surface mount package. The fixed output version is also available in the TO-92 plastic and 6-Bump micro SMD packages.

Features

- Very low quiescent current
- Output current in excess of 100 mA
- Input-output differential less than 0.6 V
- Reverse battery protection
- 60 V load dump protection
- -50 V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Mirror-image insertion protection
- Available in TO-220, TO-92, TO-263, SO-8 or 6-Bump micro SMD packages
- Available as adjustable with TTL compatible switch
- See AN-1112 for micro SMD considerations

Connection Diagrams

FIXED VOLTAGE OUTPUT

TO-220 3-Lead Power Package

Front View

TO-263 Surface-Mount Package

Top View

Side View

TO-92 Plastic Package

Bottom View
*NC = Not internally connected. Must be electrically isolated from the rest of the circuit for the micro SMD package.

Top View

Connection Diagrams (Continued)

ADJUSTABLE OUTPUT VOLTAGE

TO-220 5-Lead Power Package

micro SMD Laser Mark
X = Date Code

TO-263
5-Lead Surface-Mount Package

Side View

8-Pin Surface Mount

Top View

Ordering Information

Output Number	Package	Part Number	Package Marking	Transport Media	NSC Drawing
5 V	3-Pin TO-220	LM2931T-5.0	LM2931T-5.0	Rails	T03B
		LM2931AT-5.0	LM2931AT-5.0	Rails	
	3-Pin TO-263	LM2931S-5.0	LM2931S-5.0	Rails	TS3B
		LM2931AS-5.0	LM2931AS-5.0	Rails	
	TO-92	LM2931Z-5.0	LM2931Z-5	1.8k Units per Box	Z03A
		LM2931AZ-5.0	LM2931AZ	1.8k Units per Box	
	$\begin{aligned} & 8 \text { 8-Pin } \\ & \text { SOIC } \end{aligned}$	LM2931M-5.0	2931M-5.0	Rails	M08A
		LM2931AM-5.0	2931AM-5.0	Rails	
	* 6-Bump micro SMD	LM2931IBPX-5.0	-	Tape and Reel	BPA06HTA
Adjustable, 3 V to 24 V	5-Pin TO-220	LM2931CT	LM2931CT	Rails	T05A
	5-Pin TO-263	LM2931CS	LM2931CS	Rails	TS5B
	$\begin{aligned} & \text { 8-Pin } \\ & \text { SOIC } \end{aligned}$	LM2931CM	LM2931CM	Rails	M08A
3.3 V	* 6-Bump micro SMD	LM2931IBPX-3.3	-	Tape and Reel	BPA06HTA

Note: The micro SMD package marking is a single digit manufacturing Date Code Only.

Typical Applications

*Required if regulator is located far from power supply filter.
** C 2 must be at least $100 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

LM2931 Adjustable Output

$V_{\text {OUT }}=$ Reference Voltage $\times \frac{R 1+R 2}{R 1}$
Note: Using 27k for R1 will automatically compensate for errors in $\mathrm{V}_{\text {OUT }}$ due to the input bias current of the ADJ pin (approximately $1 \mu \mathrm{~A}$).

LM2936-3.0

Ultra-Low Quiescent Current 3.0V Regulator

General Description

The LM2936-3.0 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than $20 \mu \mathrm{~A}$ quiescent current at a $100 \mu \mathrm{~A}$ load, the LM2936-3.0 is ideally suited for automotive and other battery operated systems. The LM2936-3.0 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936-3.0 has a 40 V maximum operating voltage limit, a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and $\pm 3 \%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936-3.0 is available in a TO-92 package, a SO-8 surface mount package, as well as SOT-223 and TO-252 surface mount power packages.

Features

- Ultra low quiescent current $\left(\mathrm{l}_{\mathrm{Q}} \leq 20 \mu \mathrm{~A}\right.$ for $\left.\mathrm{l}_{\mathrm{O}} \leq 100 \mu \mathrm{~A}\right)$
- Fixed $3.0 \mathrm{~V}, 50 \mathrm{~mA}$ output
- Output tolerance $\pm 3 \%$ over line, load, and temperature
- Dropout voltage typically $200 \mathrm{mV} @ \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$
- Reverse battery protection
- - 50 V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40 V operating voltage limit

Typical Application

* Required if regulator is located more than 2 " from power supply filter capacitor.
** Required for stability. Must be rated for $22 \mu \mathrm{~F}$ minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

Connection Diagrams

Top View
Order Number LM2936DT-3.0 See NS Package Number TD03B

SOT-223
TAB is GND

Vin Gnd Vout
DS200016-26
Top View
Order Number LM2936MP-3.0 See NS Package Number MA04A

Order Number LM2936M-3.0 See NS Package Number M08A

LM2936-3.3

Ultra-Low Quiescent Current 3.3V Regulator

General Description

The LM2936-3.3 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than $20 \mu \mathrm{~A}$ quiescent current at a $100 \mu \mathrm{~A}$ load, the LM2936-3.3 is ideally suited for automotive and other battery operated systems. The LM2936-3.3 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936-3.3 has a 40V maximum operating voltage limit, a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and $\pm 3 \%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936-3.3 is available in a TO-92 package, a SO-8 surface mount package, as well as SOT-223 and TO-252 surface mount power packages.

Features

- Ultra low quiescent current ($\mathrm{I}_{\mathrm{Q}} \leq 20 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{O}} \leq 100 \mu \mathrm{~A}$)
- Fixed $3.3 \mathrm{~V}, 50 \mathrm{~mA}$ output
- Output tolerance $\pm 3 \%$ over line, load, and temperature
- Dropout voltage typically $200 \mathrm{mV} @ \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$
- Reverse battery protection
- -50 V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40 V operating voltage limit

Typical Application

*Required if regulator is located more than 2 " from power supply filter capacitor.
** Required for stability. Must be rated for $22 \mu \mathrm{~F}$ minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

Connection Diagrams

SOT-223
TAB is GND

Vin Gnd Vout
Top View
Order Number LM2936MP-3.3
See NS Package Number MA04A

Connection Diagrams (Continued)

Order Number LM2936M-3.3 See NS Package Number M08A

Bottom View

Order Number LM2936Z-3.3
See NS Package Number Z03A

LM2936-5.0

Ultra-Low Quiescent Current 5V Regulator

General Description

The LM2936 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than $15 \mu \mathrm{~A}$ quiescent current at a $100 \mu \mathrm{~A}$ load, the LM2936 is ideally suited for automotive and other battery operated systems. The LM2936 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936 has a 40V maximum operating voltage limit, $a-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and $\pm 3 \%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936 is available in a TO-92 package, a SO-8 surface mount package, and a TO-252 surface mount power package.

Features

- Ultra low quiescent current $\left(\mathrm{I}_{\mathrm{Q}} \leq 15 \mu \mathrm{~A}\right.$ for $\left.\mathrm{I}_{\mathrm{O}} \leq 100 \mu \mathrm{~A}\right)$
- Fixed $5 \mathrm{~V}, 50 \mathrm{~mA}$ output
- Output tolerance $\pm 3 \%$ over line, load, and temperature
- Dropout voltage typically 200 mV @ $\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$
- Reverse battery protection
- -50 V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40V operating voltage limit

Typical Application

*Required if regulator is located more than $2^{2 "}$ from power supply filter capacitor.
** Required for stability. Must be rated for $10 \mu \mathrm{~F}$ minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

Connection Diagrams

TO-252
TAB is GND

Top View
Order Number LM2936DT-5.0 See NS Package Number TD03B

SOT-223
TAB is GND

Top View
Order Number LM2936MP-5.0
See NS Package Number MA04A

Connection Diagrams (Continued)

Top View
Order Number LM2936M-5.0
See NS Package Number M08A

Bottom View
Order Number LM2936Z-5.0
See NS Package Number Z03A

LM2937

500 mA Low Dropout Regulator

General Description

The LM2937 is a positive voltage regulator capable of supplying up to 500 mA of load current. The use of a PNP power transistor provides a low dropout voltage characteristic. With a load current of 500 mA the minimum input to output voltage differential required for the output to remain in regulation is typically 0.5 V (1 V guaranteed maximum over the full operating temperature range). Special circuitry has been incorporated to minimize the quiescent current to typically only 10 mA with a full 500 mA load current when the input to output voltage differential is greater than 3 V .
The LM2937 requires an output bypass capacitor for stability. As with most low dropout regulators, the ESR of this capacitor remains a critical design parameter, but the LM2937 includes special compensation circuitry that relaxes ESR requirements. The LM2937 is stable for all ESR below 3Ω. This allows the use of low ESR chip capacitors.
Ideally suited for automotive applications, the LM2937 will protect itself and any load circuitry from reverse battery con-
nections, two-battery jumps and up to $+60 \mathrm{~V} /-50 \mathrm{~V}$ load dump transients. Familiar regulator features such as short circuit and thermal shutdown protection are also built in.

Features

- Fully specified for operation over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Output current in excess of 500 mA
- Output trimmed for 5% tolerance under all operating conditions
- Typical dropout voltage of 0.5 V at full rated load current
- Wide output capacitor ESR range, up to 3Ω
- Internal short circuit and thermal overload protection
- Reverse battery protection
- 60 V input transient protection
- Mirror image insertion protection

Connection Diagram and Ordering Information

TO-220 Plastic Package

Front View
Order Number LM2937ET-5.0, LM2937ET-8.0, LM2937ET-10, LM2937ET-12 or LM2937ET-15 See NS Package Number T03B

SOT-223 Plastic Package

Front View
Order Number LM2937IMP-5.0, LM2937IMP-8.0, LM2937IMP-10, LM2937IMP-12 or LM2937IMP-15
See NS Package Number MP04A

TO-263 Surface-Mount Package

Side View

Order Number LM2937ES-5.0, LM2937ES-8.0,
LM2937ES-10, LM2937ES-12 or LM2937ES-15
See NS Package Number TS3B

Connection Diagram and Ordering Information (Continued)

Temperature Range	Output Voltage					NSC Package Drawing	Package
	5.0	8.0	10	12	15		
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	LM2937ES-5.0	LM2937ES-8.0	LM2937ES-10	LM2937ES-12	LM2937ES-15	TS3B	TO-263
	LM2937ET-5.0	LM2937ET-8.0	LM2937ET-10	LM2937ET-12	LM2937ET-15	T03B	TO-220
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$	LM2937IMP-5.0	LM2937IMP-8.0	LM2937IMP-10	LM2937IMP-12	LM2937IMP-15	MP04A	SOT-223
	LM2937IMPX-5.0	LM2937IMPX-8.0	LM2937IMPX-10	LM2937IMPX-12	LM2937IMPX-15	MP04A	SOT-223 in Tape and Reel
SOT-223 Package Markings	L71B	L72B	L73B	L74B	L75B		

The small physical size of the SOT-223 package does not allow sufficient space to provide the complete device part number. The actual devices will be labeled with the package markings shown.

LM2937-2.5, LM2937-3.3
 400mA and 500mA Voltage Regulators

General Description

The LM2937-2.5 and LM2937-3.3 are positive voltage regulators capable of supplying up to 500 mA of load current. Both regulators are ideal for converting a common 5 V logic supply, or higher input supply voltage, to the lower 2.5 V and 3.3 V supplies to power VLSI ASIC's and microcontrollers. Special circuitry has been incorporated to minimize the quiescent current to typically only 10 mA with a full 500 mA load current when the input to output voltage differential is greater than 5 V .
The LM2937 requires an output bypass capacitor for stability. As with most regulators utilizing a PNP pass transistor, the ESR of this capacitor remains a critical design parameter, but the LM2937-2.5 and LM2937-3.3 include special compensation circuitry that relaxes ESR requirements. The LM2937 is stable for all ESR ratings less than 5Ω. This allows the use of low ESR chip capacitors.
The regulators are also suited for automotive applications, with built in protection from reverse battery connections,
two-battery jumps and up to $+60 \mathrm{~V} /-50 \mathrm{~V}$ load dump transients. Familiar regulator features such as short circuit and thermal shutdown protection are also built in.

Features

- Fully specified for operation over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Output current in excess of $500 \mathrm{~mA}(400 \mathrm{~mA}$ for SOT-223 package)
- Output trimmed for 5% tolerance under all operating conditions
- Wide output capacitor ESR range, 0.01Ω up to 5Ω
- Internal short circuit and thermal overload protection
- Reverse battery protection
- 60 V input transient protection
- Mirror image insertion protection

Connection Diagram and Ordering Information

TO-220 Plastic Package

Front View
Order Number LM2937ET-2.5, LM2937ET-3.3, See NS Package Number T03B

SOT-223 Plastic Package

Front View
Order Number LM2937IMP-2.5, LM2937IMP-3.3, See NS Package Number MA04A

Connection Diagram and Ordering Information (Continued)

Temperature Range	Output Voltage		NSC Package Drawing	
	2.5	3.3		TO-263
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$	LM2937ES-2.5	LM2937ES-3.3	T03B	TO-220
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	LM2937ET-2.5	LM2937ET-3.3	MA04A	SOT-223
SOT-223 Package	L68B	LM2937IMP-3.3		
Markings		L69B		

The small physical size of the SOT-223 package does not allow sufficient space to provide the complete device part number. The actual devices will be labeled with the package markings shown.

LM2940/LM2940C
 1A Low Dropout Regulator

General Description

The LM2940/LM2940C positive voltage regulator features the ability to source 1A of output current with a dropout voltage of typically 0.5 V and a maximum of 1 V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3 V . The quiescent current with 1A of output current and an input-output differential of 5 V is therefore only 30 mA . Higher quiescent currents only exist when the regulator is in the dropout mode ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 3 \mathrm{~V}$).
Designed also for vehicular applications, the LM2940/ LM2940C and all regulated circuitry are protected from reverse battery installations or 2-battery jumps. During line transients, such as load dump when the input voltage can
momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both the internal circuits and the load. The LM2940/ LM2940C cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Features

- Dropout voltage typically $0.5 \mathrm{~V} @ \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$
- Output current in excess of 1A
- Output voltage trimmed before assembly
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- P^{+}Product Enhancement tested

Typical Application

*Required if regulator is located far from power supply filter.
**COUT must be at least $22 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.

Ordering Information

Temperature Range	Output Voltage						Package
	5.0	8.0	9.0	10	12	15	
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	LM2940CT-5.0		LM2940CT-9.0		LM2940CT-12	LM2940CT-15	TO-220
	LM2940CS-5.0		LM2940CS-9.0		LM2940CS-12	LM2940CS-15	TO-263
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	LM2940T-5.0	LM2940T-8.0	LM2940T-9.0	LM2940T-10	LM2940T-12		TO-220
	LM2940S-5.0	LM2940S-8.0	LM2940S-9.0	LM2940S-10	LM2940S-12		TO-263
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$	LM2940IMP-5.0	LM2940IMP-8.0	LM2940IMP-9.0	LM2940IMP-10	LM2940IMP-12	LM2940IMP-15	SOT-223
	LM2940IMPX-5.0	LM2940IMPX-8.0	LM2940IMPX-9.0	LM2940IMPX-10	LM2940IMPX-12	LM2940IMPX-15	SOT-223 in Tape and Reel
SOT-223 Package Marking	L53B	L54B	LOEB	L55B	L56B	L70B	

The physical size of the SOT-223 is too small to contain the full device part number. The package markings indicated are what will appear on the actual device.

Temperature Range	Output Voltage				Package
	$\mathbf{5 . 0}$	$\mathbf{8 . 0}$	$\mathbf{1 2}$	$\mathbf{1 5}$	
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	LM2940J-5.0/883	LM2940J-8.0/883	LM2940J-12/883	LM2940J-15/883	J 16 A
	$5962-8958701 \mathrm{EA}$	$5962-9088301$ QEA	$5962-9088401$ QEA	$5962-9088501$ QEA	
	LM2940WG5.0/883			WG16A	
	$5962-8958701 \mathrm{XA}$				

[^19]
Connection Diagrams

(TO-220) Plastic Package

Front View
Order Number LM2940CT-5.0, LM2940CT-9.0, LM2940CT-12, LM2940CT-15, LM2940T-5.0, LM2940T-8.0, LM2940T-9.0, LM2940T-10 or LM2940T-12
See NS Package Number TO3B

16-Lead Dual-in-Line Package (J)

Top View
Order Number LM2940J-5.0/883 (5962-8958701EA), LM2940J-8.0/883 (5962-9088301QEA), LM2940J-12/883 (5962-9088401QEA), LM2940J-15/883 (5962-9088501QEA) See NS Package Number J16A
(TO-263) Surface-Mount Package

Top View

Order Number LM2940CS-5.0, LM2940CS-9.0, LM2940CS-12, LM2940CS-15, LM2940S-5.0, LM2940S-8.0, LM2940S-9.0, LM2940S-10 or LM2940S-12 See NS Package Number TS3B

Side View

Front View Order Part Number LM2940IMP-5.0, LM2940IMP-8.0, LM2940IMP-9.0, LM2940IMP-10, LM2940IMP-12 or LM2940IMP-15 See NS Package Number MP04A

16-Lead Ceramic Surface-Mount Package (WG)

Top View
Order Number LM2940WG5.0/883 (5962-8958701XA) See NS Package Number WG16A

National Semiconductor

LM2941／LM2941C
 1A Low Dropout Adjustable Regulator

General Description

The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5 V and a maximum of 1 V over the entire temperature range．Furthermore，a quiescent current reduction circuit has been included which reduces the ground pin current when the differential between the input voltage and the output volt－ age exceeds approximately 3 V ．The quiescent current with 1 A of output current and an input－output differential of 5 V is therefore only 30 mA ．Higher quiescent currents only exist when the regulator is in the dropout mode（ $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 3 \mathrm{~V}$ ）． Designed also for vehicular applications，the LM2941 and all regulated circuitry are protected from reverse battery instal－ lations or two－battery jumps．During line transients，such as load dump when the input voltage can momentarily exceed the specified maximum operating voltage，the regulator will
automatically shut down to protect both the internal circuits and the load．Familiar regulator features such as short circuit and thermal overload protection are also provided．

Features

－Output voltage adjustable from 5 V to 20 V
－Dropout voltage typically $0.5 \mathrm{~V} @ \mathrm{I}_{0}=1 \mathrm{~A}$
－Output current in excess of 1 A
－Trimmed reference voltage
－Reverse battery protection
－Internal short circuit current limit
－Mirror image insertion protection
－ P^{+}Product Enhancement tested
－TTL，CMOS compatible ON／OFF switch

Connection Diagram and Ordering Information

TO－220 Plastic Package

Front View
Order Number LM2941T or LM2941CT See NS Package Number TO5A

TO－263 Surface－Mount Package

Order Number LM2941S or LM2941CS
See NS Package Number TS5B

16－Lead Ceramic Dual－in－Line Package

Top View
Order Number LM2941J／883 5962－9166701QEA
See NS Package Number J16A

16－Lead Ceramic Surface Mount Package

Front View
Order Number LM2941WG／883
5962－9166701QYA
See NS Package Number WG16A

National Semiconductor

LM2984

Microprocessor Power Supply System

General Description

The LM2984 positive voltage regulator features three independent and tracking outputs capable of delivering the power for logic circuits, peripheral sensors and standby memory in a typical microprocessor system. The LM2984 includes circuitry which monitors both its own high-current output and also an external $\mu \mathrm{P}$. If any error conditions are sensed in either, a reset error flag is set and maintained until the malfunction terminates. Since these functions are included in the same package with the three regulators, a great saving in board space can be realized in the typical microprocessor system. The LM2984 also features very low dropout voltages on each of its three regulator outputs (0.6 V at the rated output current). Furthermore, the quiescent current can be reduced to 1 mA in the standby mode.
Designed also for vehicular applications, the LM2984 and all regulated circuitry are protected from reverse battery installations or 2-battery jumps. Familiar regulator features such as short circuit and thermal overload protection are also provided. Fixed outputs of 5 V are available in the plastic TO-220 power package.

Features

- Three low dropout tracking regulators
- Output current in excess of 500 mA
- Fully specified for $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
- Low quiescent current standby regulator
- Microprocessor malfunction RESET flag
- Delayed RESET on power-up
- Accurate pretrimmed 5V outputs
- Reverse battery protection
- Overvoltage protection
- Reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- ON/OFF switch for high current outputs
- P^{+}Product Enhancement tested

Typical Application Circuit

DS011252-1
Cout must be at least $10 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

Order Number LM2984T
See NS Package Number TA11B

LM2990

Negative Low Dropout Regulator

General Description

The LM2990 is a three-terminal, low dropout, 1 ampere negative voltage regulator available with fixed output voltages of $-5,-5.2,-12$, and -15 V .
The LM2990 uses new circuit design techniques to provide low dropout and low quiescent current. The dropout voltage at 1 A load current is typically 0.6 V and a guaranteed worst-case maximum of 1 V over the entire operating temperature range. The quiescent current is typically 1 mA with 1A load current and an input-output voltage differential greater than 3 V . A unique circuit design of the internal bias supply limits the quiescent current to only 9 mA (typical) when the regulator is in the dropout mode $\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V}\right)$. Output voltage accuracy is guaranteed to $\pm 5 \%$ over load, and temperature extremes.
The LM2990 is short-circuit proof, and thermal shutdown includes hysteresis to enhance the reliability of the device when overloaded for an extended period of time. The

LM2990 is available in a 3-lead TO-220 package and is rated for operation over the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- 5% output accuracy over entire operating range
- Output current in excess of 1A
- Dropout voltage typically 0.6 V at 1 A load
- Low quiescent current
- Internal short circuit current limit
- Internal thermal shutdown with hysteresis
- Functional complement to the LM2940 series

Applications

- Post switcher regulator
- Local, on-card, regulation
- Battery operated equipment

Typical Application

*Required if the regulator is located further than 6 inches from the power supply filter capacitors. A $1 \mu \mathrm{~F}$ solid tantalum or a $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor is recommended.
**Required for stability. Must be at least a $10 \mu \mathrm{~F}$ aluminum electrolytic or a $1 \mu \mathrm{~F}$ solid tantalum to maintain stability. May be increased without bound to maintain regulation during transients. Locate the capacitor as close as possible to the regulator. The equivalent series resistance (ESR) is critical, and should be less than 10Ω over the same operating temperature range as the regulator.

Ordering Information and Connection Diagrams

Temperature Range	Output Voltage				Package
	-5.0	-5.2	-12	-15	
$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	LM2990T-5.0	LM2990T-5.2	LM2990T-12	LM2990T-15	TO-220
	LM2990S-5.0		LM2990S-12	LM2990S-15	TO-263
$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	LM2990J-5.0-QML 5962-9571101QEA		$\begin{aligned} & \text { LM2990J-12-QML } \\ & \text { 5962-9571001QEA } \end{aligned}$	LM2990J-15-QML 5962-9570901QEA	J16A
	$\begin{aligned} & \text { LM2990WG5.0-QML } \\ & \text { 5962-9571101QXA } \end{aligned}$				WG16A

O.
Ondering Information and
Connection Diagrams (Continued)

Order Number LM2990T-5.0, LM2990T-5.2, LM2990T-12 or LM2990T-15
See NS Package Number T03B

16-Lead Ceramic Dual-in-Line Package

Top View
Order Number
LM2990J-5.0-QML (5962-9571101QEA),
LM2990J-12-QML (5962-9571001QEA), or LM2990J-15-QML (5962-9570901QEA), See NS Package Number J16A

TO-263 Surface-Mount Package

Side View
Order Number LM2990S-5.0, LM2990S-12 or LM2990S-15
See NS Package Number TS3B

16-Lead Ceramic Surface Mount Package

LM2991

Negative Low Dropout Adjustable Regulator

General Description

The LM2991 is a low dropout adjustable negative regulator with a output voltage range between -3 V to -24 V . The LM2991 provides up to 1A of load current and features a $\overline{O n}$ /Off pin for remote shutdown capability.
The LM2991 uses new circuit design techniques to provide a low dropout voltage, low quiescent current and low temperature coefficient precision reference. The dropout voltage at 1 A load current is typically 0.6 V and a guaranteed worst-case maximum of 1 V over the entire operating temperature range. The quiescent current is typically 1 mA with a 1 A load current and an input-output voltage differential greater than 3 V . A unique circuit design of the internal bias supply limits the quiescent current to only 9 mA (typical) when the regulator is in the dropout mode $\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V}\right)$. The LM2991 is short-circuit proof, and thermal shutdown includes hysteresis to enhance the reliability of the device when inadvertently overloaded for extended periods. The LM2991 is available in 5-lead TO-220 and TO-263 packages and is rated for operation over the automotive temperature range of $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Mil-Aero versions are also available.

Features

- Output voltage adjustable from -3 V to -24 V , typically -2 V to -25 V
- Output current in excess of 1A
- Dropout voltage typically 0.6 V at 1 A load
- Low quiescent current
- Internal short circuit current limit
- Internal thermal shutdown with hysteresis
- TTL, CMOS compatible $\overline{O N} / O F F$ switch
- Functional complement to the LM2941 series

Applications

- Post switcher regulator
- Local, on-card, regulation
- Battery operated equipment

Typical Application

$V_{\text {OUT }}=V_{\text {REF }}(1+R 2 / R 1)$
*Required if the regulator is located further than 6 inches from the power supply filter capacitors. A $1 \mu \mathrm{~F}$ solid tantalum or a $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor is recommended.
**Required for stability. Must be at least a $10 \mu \mathrm{~F}$ aluminum electrolytic or a $1 \mu \mathrm{~F}$ solid tantalum to maintain stability. May be increased without bound to maintain regulation during transients. Locate the capacitor as close as possible to the regulator. The equivalent series resistance (ESR) is critical, and should be less than 10Ω over the same operating temperature range as the regulator.

Connection Diagrams and Ordering Information

Front View
Order Number LM2991T
See NS Package Number T05A

5-Lead TO-220
Bent, Staggered Leads

Front View
Order Number LM2991T Flow LB03 See NS Package Number T05D

TO263
5-Lead Surface-Mount Package

Top View

Side View
Order Number LM2991S
See NS Package Number TS5B

16-Lead Ceramic Dual-in-Line Package

Top View
Order Number LM2991J-QMLV
5962-9650501VEA
Order Number LM2991J-QML 5962-9650501QEA
See NS Package Number J16A

16-Lead Ceramic Surface-Mount Package

Order Number LM2991WG-QML 5962-9650501QXA
See NS Package Number WG16A

LM3460-1.2, -1.5

Precision Controller for GTLp and GTL Bus Termination

General Description

The LM3460 is a monolithic integrated circuit designed for precision control of GTLplus and GTL Bus termination. This controller is available in a tiny SOT23-5 package, and includes an internally compensated op amp, a bandgap reference, an NPN output transistor, and voltage setting resistors. A trimmed precision bandgap voltage reference utilizes temperature drift curvature correction for excellent voltage stability over the operating range. The precision output control enables the termination voltage to maintain tight regulation, despite fast switching requirements on the bus.
The LM3460 controller is designed to be used with a high current (> 7A) NPN pass transistor to provide the high current needed for the bus termination. The wide bandwidth of the feedback loop provides excellent transient response, and greatly reduces the output capacitance required, thus reducing cost and board space requirements.

Features

- Precision output (1\%)
- Output voltage can be adjusted
- Extremely fast transient response in GTLp and GTL bus termination
- Tiny SOT23-5 package
- Output voltage capability for GTL or GTLp
- Low temperature coefficient

Applications

- GTL bus termination (1.2V output 7A)
- GTLp bus termination (1.5 V output 7A)
- Adjustable high-current linear regulator

Connection Diagram and Package Information

*This resistor is not used on the LM3460-1.2
LM3460 Functional Diagram

5-Lead Outline Package (M5)
Actual Size

*No internal connection, but should be soldered to PC board for best heat transfer.

Top View
See NS package Number MF05A

Ordering Information

Voltage	Order Number	Package Marking	Supplied As
1.5	LM3460M5-1.5	D06A	1000 Unit Increments on Tape and Reel
1.5	LM3460M5X-1.5	D06A	3000 Unit Increments on Tape and Reel
1.2	LM3460M5-1.2	D09A	1000 Unit Increments on Tape and Reel
1.2	LM3460M5X-1.5	D09A	3000 Unit Increments on Tape and Reel

MARKING CODE: The first letter " D " identifies the part as a Driver, and the next two numbers define the voltage for the part. The fourth letter indicates the grade, with " A " designating the prime grade of product.
AVAILABILITY: The SOT23-5 package is only available in quantity of 1000 on tape and reel (designated by the letters "M5" in the part number), or in quantity of 3000 on tape and reel (indicated by the letters "M5X" in the part number).

Typical Applications

FIGURE 1. 1.5V Typical Application (See Application Information Section)

FIGURE 2. 1.2V Typical Application (See Application Information Section)

LM3480

100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator

General Description

The LM3480 is an integrated linear voltage regulator. It features operation from an input as high as 30 V and a guaranteed maximum dropout of 1.2 V at the full 100 mA load. Standard packaging for the LM3480 is the 3 -lead SuperSOT® package.
The 5,12 , and 15 V members of the LM3480 series are intended as tiny alternatives to industry standard LM78LXX series and similar devices. The 1.2 V quasi low dropout of LM3480 series devices makes them a nice fit in many applications where the 2 to 2.5 V dropout of LM78LXX series devices precludes their (LM78LXX series devices) use.
The LM3480 series features a 3.3 V member. The SOT packaging and quasi low dropout features of the LM3480 series converge in this device to provide a very nice, very tiny 3.3 V , 100 mA bias supply that regulates directly off the system $5 \mathrm{~V} \pm 5 \%$ power supply.

Key Specifications

- 30V maximum input for operation
- 1.2V guaranteed maximum dropout over full load and temperature ranges
- 100 mA guaranteed minimum load current
- $\pm 5 \%$ guaranteed output voltage tolerance over full load and temperature ranges
- -40 to $+125^{\circ} \mathrm{C}$ junction temperature range for operation

Features

- $3.3,5,12$, and 15 V versions available
- Packaged in the tiny 3-lead SuperSOT package

Applications

- Tiny alternative to LM78LXX series and similar devices
- Tiny $5 \mathrm{~V} \pm 5 \%$ to $3.3 \mathrm{~V}, 100 \mathrm{~mA}$ converter
- Post regulator for switching DC/DC converter
- Bias supply for analog circuits

Typical Application Circuit

DS100070-2

Connection Diagram

Ordering Information

Output Voltage (V)	Order Number (Note 2)	Package Marking (Note 3)	Comments
3.3	LM3480IM3-3.3	LOA	1000 Units on Tape and Reel
3.3	LM3480IM3X-3.3	LOA	3000 Units on Tape and Reel
5	LM3480IM3-5.0	LOB	1000 Units on Tape and Reel
5	LM3480IM3X-5.0	LOB	3000 Units on Tape and Reel
12	LM3480IM3-12	LOC	1000 Units on Tape and Reel
12	LM3480IM3X-12	LOC	3000 Units on Tape and Reel
15	LM3480IM3-15	LOD	1000 Units on Tape and Reel
15	LM3480IM3X-15	LOD	3000 Units on Tape and Reel

LM3490

100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator with Logic-Controlled ON/OFF

General Description

The LM3490 is an integrated linear voltage regulator. It features operation from an input as high as 30 V and a guaranteed maximum dropout of 1.2 V at the full 100 mA load. Standard packaging for the LM3490 is the 5-lead SOT-23 package. A logic-controlled ON/OFF feature makes the LM3490 ideal for powering subsystems ON and OFF as needed.
The 5, 12, and 15 V members of the LM3490 series are intended as tiny alternatives to industry standard LM78LXX series and similar devices. The 1.2 V quasi low dropout of LM3490 series devices makes them a nice fit in many applications where the 2 to 2.5 V dropout of LM78LXX series devices precludes their (LM78LXX series devices) use.
The LM3490 series features a 3.3V member. The SOT packaging and quasi low dropout features of the LM3490 series converge in this device to provide a very nice, very tiny 3.3V, 100 mA bias supply that regulates directly off the system $5 \mathrm{~V} \pm 5 \%$ power supply.

Key Specifications

- 30 V maximum input for operation
- 1.2 V guaranteed maximum dropout over full load and temperature ranges
- 100 mA guaranteed load current
- $\pm 5 \%$ guaranteed output voltage tolerance over full load and temperature ranges
- -40 to $+125^{\circ} \mathrm{C}$ junction temperature range for operation

Features

- 3.3, 5,12 , and 15 V versions available
- Logic-controlled ON/OFF
- Packaged in the tiny 5-lead SOT-23 package

Applications

- Tiny alternative to LM78LXX series and similar devices
- Tiny $5 \mathrm{~V} \pm 5 \%$ to $3.3 \mathrm{~V}, 100 \mathrm{~mA}$ converter
- Post regulator for switching DC/DC converter
- Bias supply for analog circuits

Typical Application Circuit

Connection Diagram

Top View
SOT-23 Package
5-Lead, Molded-Plastic Small-Outline Transistor (SOT) Package Package Code MF05A(Note 1)

Ordering Information

Output Voltage (V)	Order Number (Note 2)	Package Marking (Note 3)	Comments
3.3	LM3490IM5-3.3	L78B	1000 Units on Tape and Reel
3.3	LM3490IM5X-3.3	L78B	3000 Units on Tape and Reel
5	LM3490IM5-5.0	L79B	1000 Units on Tape and Reel
5	LM3490IM5X-5.0	L79B	3000 Units on Tape and Reel
12	LM3490IM5-12	L80B	1000 Units on Tape and Reel
12	LM3490IM5X-12	L80B	3000 Units on Tape and Reel
15	LM3490IM5-15	L81B	1000 Units on Tape and Reel
15	LM3490IM5X-15	L81B	3000 Units on Tape and Reel

National Semiconductor

LM3940

1A Low Dropout Regulator for 5V to 3.3V Conversion

General Description

The LM3940 is a 1 A low dropout regulator designed to provide 3.3 V from a 5 V supply.

The LM3940 is ideally suited for systems which contain both 5 V and 3.3 V logic, with prime power provided from a 5 V bus.
Because the LM3940 is a true low dropout regulator, it can
hold its 3.3 V output in regulation with input voltages as low as 4.5 V .
The T0-220 package of the LM3940 means that in most applications the full 1A of load current can be delivered without using an additional heatsink.
The surface mount TO-263 package uses minimum board space, and gives excellent power dissipation capability when soldered to a copper plane on the PC board.

Features

- Output voltage specified over temperature
- Excellent load regulation
- Guaranteed 1A output current
- Requires only one external component
- Built-in protection against excess temperature
- Short circuit protected

Applications

- Laptop/Desktop Computers
- Logic Systems

Typical Application

*Required if regulator is located more than 1 " from the power supply filter capacitor or if battery power is used.
**See Application Hints.

Connection Diagram/Ordering Information

3-Lead TO-220 Package
(Front View)
Order Part Number LM3940IT-3.3 NSC Drawing Number TO3B

3-Lead TO-263 Package
(Front View)
Order Part Number LM3940IS-3.3 NSC Drawing Number TS3B

3-Lead SOT-223
(Front View)
Order Part Number LM3940IMP-3.3
Package Marked L52B
NSC Drawing Number MA04A

16-Lead Ceramic Dual-in-Line Package (Top View)
Order Part Number LM3940J-3.3-QML 5962-9688401QEA
NSC Drawing Number J16A

16-Lead Ceramic Surface-Mount Package (Top View)
Order Part Number LM3940WG-3.3-QML 5962-9688401QXA
NSC Drawing Number WG16A

LMS1585A/LMS1587

5A and 3A Low Dropout Fast Response Regulators

General Description

The LMS1585A and LMS1587 are low dropout positive regulators with output load current of 5A and 3A respectively. Their low dropout voltage (1.2 V) and fast transient response make them an excellent solution for low voltage microprocessor applications.
The LMS1585A/87 are available in adjustable versions, which can set the output voltage with only two external resistors. In addition, they are also available in 1.5 V and 3.3 V fixed voltage version (Note 9).
The LMS1585A/87 circuits include a zener trimmed bandgap reference, current limiting and thermal shutdown.
The LMS1585A/87 series are available in TO-220 and TO263 packages.

Features

- Fast transient response
- Available in Adjustable, 1.5 V , and 3.3 V versions
- Current limiting and thermal protection
- Commercial temp. range
$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Industrial temp. range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Line regulation 0.005\% (typical) 0.05\% (typical)
- Load regulation
- Direct replacement for $L T^{\text {TM }} 1585 \mathrm{~A} / 87$

Applications

- Pentium ${ }^{\text {TM }}$ processor supplies
- PowerPC ${ }^{\text {M }}$ supplies
- Other 2.5 V to 3.6 V microprocessor supplies
- Low voltage logic supplies

Typical Application

* REQUIRED FOR STABILITY

DS101197-1

Connection Diagrams

Ordering Information

Output Current	Package	Temperature Range	Part Number	Transport Media	NSC Drawing
3A	TO-263	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1587CS-ADJ	Rails	TS3B
			LMS1587CSX-ADJ	Tape and Reel	
			LMS1587CS-1.5	Rails	
			LMS1587CSX-1.5	Tape and Reel	
			LMS1587CS-3.3	Rails	
			LMS1587CSX-3.3	Tape and Reel	
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1587IS-ADJ	Rails	
			LMS1587ISX-ADJ	Tape and Reel	
			LMS1587IS-1.5	Rails	
			LMS1587ISX-1.5	Tape and Reel	
			LMS1587IS-3.3	Rails	
			LMS1587ISX-3.3	Tape and Reel	
	TO-220	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1587CT-ADJ	Rails	T03B
			LMS1587CT-1.5	Rails	
			LMS1587CT-3.3	Rails	
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1587IT-ADJ	Rails	
			LMS1587IT-1.5	Rails	
			LMS1587IT-3.3	Rails	
5A	TO-263	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1585ACS-ADJ	Rails	TS3B
			LMS1585ACSX-ADJ	Tape and Reel	
			LMS1585ACS-1.5	Rails	
			LMS1585ACSX-1.5	Tape and Reel	
			LMS1585ACS-3.3	Rails	
			LMS1585ACSX-3.3	Tape and Reel	
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1585AIS-ADJ	Rails	
			LMS1585AISX-ADJ	Tape and Reel	
			LMS1585AIS-1.5	Rails	
			LMS1585AISX-1.5	Tape and Reel	
			LMS1585AIS-3.3	Rails	
			LMS1585AISX-3.3	Tape and Reel	
	TO-220	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1585ACT-ADJ	Rails	T03B
			LMS1585ACT-1.5	Rails	
			LMS1585ACT-3.3	Rails	
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LMS1585AIT-ADJ	Rails	
			LMS1585AIT-1.5	Rails	
			LMS1585AIT-3.3	Rails	

National Semiconductor

LMS8117

1A Low-Dropout Linear Regulator

General Description

The LMS8117 is a series of low dropout voltage regulators with a dropout of 1.2 V at 1 A of load current. It has the same pin-out as National Semiconductor's industry standard LM317.
The LMS8117 is available in an adjustable version, which can set the output voltage from 1.25 V to 13.8 V with only two external resistors. In addition, it is also available in two fixed voltages, 1.8 V and 3.3 V .
The LMS8117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within $\pm 1 \%$.
The LMS8117 series is available in SOT-223 and TO-252 D-PAK packages. A minimum of $10 \mu \mathrm{~F}$ tantalum capacitor is required at the output to improve the transient response and stability.

Features

- Available in $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$, and Adjustable Versions
- Space Saving SOT-223 and TO-252 Packages
- Current Limiting and Thermal Protection
- Output Current

1A

- Temperature Range
$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Line Regulation 0.2\% (Max)
- Load Regulation
0.4\% (Max)

Applications

- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- Battery Charger
- Battery Powered Instrumentation

Typical Application

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter

Ordering Information

Package	Temperature Range (T_{J})	Packaging Marking	Transport Media	NSC Drawing
	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
3-lead SOT-223	LMS8117AMP-ADJ	LSOA	1k Tape and Reel	MP04A
	LMS8117AMPX-ADJ	LSOA	2k Tape and Reel	
	LMS8117AMP-1.8	LS00	1k Tape and Reel	
	LMS8117AMPX-1.8	LS00	2k Tape and Reel	
	LMS8117AMP-3.3	LS01	1k Tape and Reel	
	LMS8117AMPX-3.3	LS01	2k Tape and Reel	
3-lead TO-252	LMS8117ADT-ADJ	LMS8117ADT-ADJ	Rails	TD03B
	LMS8117ADTX-ADJ	LMS8117ADT-ADJ	2.5k Tape and Reel	
	LMS8117ADT-1.8	LMS8117ADT-1.8	Rails	
	LMS8117ADTX-1.8	LMS8117ADT-1.8	2.5k Tape and Reel	
	LMS8117ADT-3.3	LMS8117ADT-3.3	Rails	
	LMS8117ADTX-3.3	LMS8117ADT-3.3	2.5k Tape and Reel	

Connection Diagrams

TO-252

Top View

DS101196-1

General Description

The LP2950 and LP2951 are micropower voltage regulators with very low quiescent current ($75 \mu \mathrm{~A}$ typ.) and very low dropout voltage (typ. 40 mV at light loads and 380 mV at 100 mA). They are ideally suited for use in battery-powered systems. Furthermore, the quiescent current of the LP2950/ LP2951 increases only slightly in dropout, prolonging battery life.
The LP2950-5.0 is available in the surface-mount D-Pak package, and in the popular 3-pin TO-92 package for pin-compatibility with older 5 V regulators. The 8 -lead LP2951 is available in plastic, ceramic dual-in-line, or metal can packages and offers additional system functions.
One such feature is an error flag output which warns of a low output voltage, often due to falling batteries on the input. It may be used for a power-on reset. A second feature is the logic-compatible shutdown input which enables the regulator to be switched on and off. Also, the part may be pin-strapped for a $5 \mathrm{~V}, 3 \mathrm{~V}$, or 3.3 V output (depending on the version), or programmed from 1.24 V to 29 V with an external pair of resistors.
Careful design of the LP2950/LP2951 has minimized all contributions to the error budget. This includes a tight initial tolerance (. 5% typ.), extremely good load and line regulation
(. 05% typ.) and a very low output voltage temperature coefficient, making the part useful as a low-power voltage reference.

Features

- 5 V , 3 V , and 3.3 V versions available
- High accuracy output voltage
- Guaranteed 100 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Use as Regulator or Reference
- Needs minimum capacitance for stability
- Current and Thermal Limiting
- Stable with low-ESR output capacitors

LP2951 versions only

- Error flag warns of output dropout
- Logic-controlled electronic shutdown
- Output programmable from 1.24 to 29 V

Block Diagram and Typical Applications

Connection Diagrams

TO-92 Plastic Package (Z)

Bottom View

Metal Can Package (H)

Dual-In-Line Packages (\mathbf{N}, \mathbf{J}) Surface-Mount Package (M, MM)

Top View

10-Lead Ceramic Surface-Mount Package (WG)

Ordering Information

Package	Output Voltage			Temperature (${ }^{\circ} \mathrm{C}$)
	3.0 V	3.3V	5.0 V	
TO-92 (Z)	LP2950ACZ-3.0 LP2950CZ-3.0	LP2950ACZ-3.3 LP2950CZ-3.3	$\begin{aligned} & \text { LP2950ACZ-5.0 } \\ & \text { LP2950CZ-5.0 } \end{aligned}$	$-40<\mathrm{T}_{\mathrm{J}}<125$
TO-252 (D-Pak)	LP2950CDT-3.0	LP2950CDT-3.3	LP2950CDT-5.0	$-40<\mathrm{T}_{\mathrm{J}}<125$
N (N-08E)	LP2951ACN-3.0 LP2951CN-3.0	LP2951ACN-3.3 LP2951CN-3.3	LP2951ACN LP2951CN	$-40<T_{J}<125$
M (M08A)	LP2951ACM-3.0 LP2951CM-3.0	LP2951ACM-3.3 LP2951CM-3.3	LP2951ACM LP2951CM	$-40<\mathrm{T}_{\mathrm{J}}<125$
MM (MUA08A) in Tape and Reel	LP2951ACMM-3.0 LP2951CMM-3.0	LP2951ACMM-3.3 LP2951CMM-3.3	LP2951ACMM LP2951CMM	$-40<\mathrm{T}_{\mathrm{J}}<125$
J (J08A)			LP2951ACJ LP2951CJ LP2951J LP2951J/883 5926-3870501MPA	$-40<\mathrm{T}_{\mathrm{J}}<125$ $-55<\mathrm{T}_{J}<150$
H (H08C)			$\begin{aligned} & \text { LP2951H/883 } \\ & 5962-3870501 \mathrm{MGA} \end{aligned}$	$-55<\mathrm{T}_{\mathrm{J}}<150$
WG (WG10A)			$\begin{aligned} & \text { LP2951WG/883 } \\ & \text { 5962-3870501MXA } \end{aligned}$	$-55<\mathrm{T}_{J}<150$

Package Marking for MM Package:

Order Number	Package Marking
LP2951ACMM	LODA
LP2951CMM	LODB
LP2951ACMM-3.3	LOCA
LP2951CMM-3.3	LOCB
LP2951ACMM-3.0	LOBA
LP2951CMM-3.0	LOBB

LP2952/LP2952A/LP2953/LP2953A

Adjustable Micropower Low-Dropout Voltage Regulators

General Description

The LP2952 and LP2953 are micropower voltage regulators with very low quiescent current ($130 \mu \mathrm{~A}$ typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). They are ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.
The LP2952 and LP2953 retain all the desirable characteristics of the LP2951, but offer increased output current, additional features, and an improved shutdown function.
The internal crowbar pulls the output down quickly when the shutdown is activated.
The error flag goes low if the output voltage drops out of regulation.
Reverse battery protection is provided.
The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.
The parts are available in DIP and surface mount packages.

Features

- Output voltage adjusts from 1.23 V to 29 V
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection
- 50 mA (typical) output pulldown crowbar
- 5 V and 3.3 V versions available

LP2953 Versions Only

- Auxiliary comparator included with CMOS/TTL compatible output levels. Can be used for fault detection, low input line detection, etc.

Applications

- High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Snap-ON/Snap-OFF regulator

Block Diagrams

Pinout Drawings

LP2952
16-Pin SO

Ordering Information

LP2952

Order Number	Temp. Range $\left(\mathbf{T}_{\mathbf{J}}\right){ }^{\circ} \mathbf{C}$	Package	NSC Drawing Number
LP2952IN, LP2952AIN, LP2952IN-3.3, LP2952AIN-3.3	-40 to +125	14-Pin Molded DIP	N14A
LP2952IM, LP2952AIM, LP2952IM-3.3, LP2952AIM-3.3	-40 to	16-Pin Surface Mount	M16A

LP2953

Order Number	Temp. Range $\left(\mathrm{T}_{\mathrm{J}}\right){ }^{\circ} \mathrm{C}$	Package	
LP2953IN, LP2953AIN, LP2953IN-3.3, LP2953AIN-3.3	$\begin{aligned} & -40 \text { to } \\ & +125 \end{aligned}$	$\begin{gathered} 16-\mathrm{Pin} \\ \text { Molded DIP } \end{gathered}$	N16A
LP2953IM, LP2953AIM, LP2953IM-3.3, LP2953AIM-3.3	$\begin{aligned} & -40 \text { to } \\ & +125 \end{aligned}$	16-Pin Surface Mount	M16A
LP2953AMJ/883 5962-9233601MEA LP2953AMJ-QMLV 5962-9233601VEA	$\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$	16-Pin Ceramic DIP	J16A
LP2953AMWG/883 5962-9233601QXA LP2953AMWG-QMLV 5962-9233601VXA	$\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$	16-Pin Ceramic Surface Mount	WG16A

LP2954/LP2954A
 5V and Adjustable Micropower Low-Dropout Voltage Regulators

General Description

The LP2954 is a 5V micropower voltage regulator with very low quiescent current ($90 \mu \mathrm{~A}$ typical at 1 mA load) and very low dropout voltage (typically 60 mV at light loads and 470 mV at 250 mA load current).
The quiescent current increases only slightly at dropout ($120 \mu \mathrm{~A}$ typical), which prolongs battery life.
The LP2954 with a fixed 5 V output is available in the three-lead TO-220 and TO-263 packages. The adjustable LP2954 is provided in an 8-lead surface mount, small outline package. The adjustable version also provides a resistor network which can be pin strapped to set the output to 5 V .
Reverse battery protection is provided.
The tight line and load regulation (0.04% typical), as well as very low output temperature coefficient make the LP2954 well suited for use as a low-power voltage reference.
Output accuracy is guaranteed at both room temperature and over the entire operating temperature range.

Features

- 5 V output within 1.2% over temperature (A grade)
- Adjustable 1.23 to 29 V output voltage available (LP2954IM and LP2954AIM)
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Reverse battery protection
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Pin compatible with LM2940 and LM340 (5V version only)
- Adjustable version adds error flag to warn of output drop and a logic-controlled shutdown

Applications

- High-efficiency linear regulator
- Low dropout battery-powered regulator

Package Outline and Ordering Information

TO-220 3-Lead Plastic Package

SO-8 Small Outline Surface Mount

DS011128-33
Top View
Order Number LP2954AIM or LP2954IM See NS Package M08A

Package Outline and Ordering Information
 (Continued)

TO-263 3-Lead Plastic Surface-Mount Package

Side View
Order Number LP2954AIS or LP2954IS See NS Package TS3B
Ordering Information

Order Number	Temp. Range $\left(T_{J}\right){ }^{\circ} \mathbf{C}$	Package (JEDEC)	NS Package Number
LP2954AIT	-40 to +125	TO-220	TO3B
LP2954IT	-40 to +125	TO-263	TS3B
LP2954AIS		SO-8	M08A
LP2954IS	-40 to +125		
LP2954AIM			

LP2956/LP2956A

Dual Micropower Low-Dropout Voltage Regulators

General Description

The LP2956 is a micropower voltage regulator with very low quiescent current ($170 \mu \mathrm{~A}$ typical at light loads) and very low dropout voltage (typically 60 mV at 1 mA load current and 470 mV at 250 mA load current on the main output).
The LP2956 retains all the desirable characteristics of the LP2951, but offers increased output current (main output), an auxiliary LDO adjustable regulated output (75 mA), and additional features.
The auxiliary output is always on (regardless of main output status), so it can be used to power memory circuits.
Quiescent current increases only slightly at dropout, which prolongs battery life.
The error flag goes low if the main output voltage drops out of regulation.
An open-collector auxiliary comparator is included, whose inverting input is tied to the 1.23 V reference.
Reverse battery protection is provided.
The parts are available in DIP and surface mount packages.

Features

- Output voltage adjusts from 1.23 V to 29 V
- Guaranteed 250 mA current (main output)
- Auxiliary LDO (75 mA) adjustable output
- Auxiliary comparator with open-collector output
- Shutdown pin for main output
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection

Applications

- High-efficiency linear regulator
- Low dropout battery-powered regulator
- $\mu \mathrm{P}$ system regulator with switchable high-current V_{CC}

Block Diagram

Connection Diagrams

	16-Pin DIP	
5 V TAP - 1	16	- COMP IN
feedback - 2	215	- AUX FB
InPut-3	$3 \quad 14$	- aux out
GROUND - 4	413	- ground
GROUND - 5	512	- ground
OUTPUT - 6	611	- COMP OUT
$\mathrm{NC}-7$	710	- $\overline{\text { ERROR }}$
SENSE - 8	$8 \quad 9$	- shutdown

Order Number LP2956IN or LP2956AIN See NS Package Number N16A Order Number LP2956AMJ-QML or 5962-9554701QEA See NS Package Number J16A

Order Number LP2956IM or LP2956AIM See NS Package Number M16A

LP2957/LP2957A

5V Low-Dropout Regulator for $\mu \mathrm{P}$ Applications

General Description

The LP2957 is a 5V micropower voltage regulator with electronic shutdown, error flag, very low quiescent current ($150 \mu \mathrm{~A}$ typical at 1 mA load), and very low dropout voltage (470 mV typical at 250 mA load current).
Output can be wired for snap-on/snap-off operation to eliminate transition voltage states where $\mu \mathrm{P}$ operation may be unpredictable.
Output crowbar (50 mA typical pull-down current) will bring down the output quickly when the regulator snaps off or when the shutdown function is activated.

The part has tight line and load regulation (0.04\% typical) and low output temperature coefficient ($20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical).
The accuracy of the 5 V output is guaranteed at room temperature and over the full operating temperature range.
The LP2957 is available in the five-lead TO-220 and TO-263 packages.

Features

- 5V output within 1.4\% over temperature (A grade)
- Easily programmed for snap-on/snap-off output
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low Input-Output voltage required for regulation
- Reverse battery protection
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Error flag signals when output is out of regulation

Applications

- High-efficiency linear regulator
- Battery-powered regulator

Package Outline

LP2960

Adjustable Micropower 0.5A Low-Dropout Regulators

General Description

The LP2960 is a micropower voltage regulator with very low dropout voltage (12 mV typical at 1 mA load and 470 mV typical at 500 mA load) and very low quiescent current ($450 \mu \mathrm{~A}$ typical at 1 mA load).
The LP2960 is ideally suited for battery-powered systems: the quiescent current increases only slightly at dropout, which prolongs battery life.
The LP2960 retains all the desirable characteristics of the LP2953, and offers increased output current.
The error flag goes low any time the output drops more than 5% out of regulation.
Reverse battery protection is provided.
The LP2960 requires only $10 \mu \mathrm{~F}$ of output capacitance for stability (5V version).
The internal voltage reference is made available for external use, providing a low-T.C. reference with very good regulation characteristics.
The parts are available in 16-pin plastic DIP and 16-pin surface mount packages.

Features

- Output voltage adjusts from $1.23 \mathrm{~V}-29 \mathrm{~V}$
- Guaranteed 500 mA output current
- 5 V and 3.3 V versions available
- 16-pin DIP and 16-pin SO packages
- Low dropout voltage
- Low quiescent current
- Tight line and load regulation
- Low temperature coefficient
- Current limiting and thermal protection
- Logic-level shutdown
- Can be wired for snap-ON and snap-OFF
- Reverse battery protection

Applications

- High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Cellular telephones

Block Diagram

National Semiconductor

LP2966

Dual 150mA Ultra Low-Dropout Regulator

General Description

The LP2966 dual ultra low-dropout (LDO) regulator operates from a +2.70 V to +7.0 V input supply. Each output delivers 150 mA over full temperature range. The IC operates with extremely low drop-out voltage and quiescent current, which makes it very suitable for battery powered and portable applications. Each LDO in the LP2966 has independent shutdown capability. The LP2966 provides low noise performance with low ground pin current in an extremely small MSOP-8 package (refer to package dimensions and connection diagram for more information on MSOP-8 package). A wide range of preset voltage options are available for each output. In addition to the voltage combinations listed in the ordering information table, many more are available upon request with minimum orders. In all, 256 voltage combinations are possible.

Key Specifications

Dropout Voltage: Varies linearly with load current. Typically 0.9 mV at 1 mA load current and 135 mV at 150 mA load current.
Ground Pin Current: Typically $300 \mu \mathrm{~A}$ at 1 mA load current and $340 \mu \mathrm{~A}$ at 100 mA load current (with one shutdown pin pulled low).
Shutdown Mode: Less than $1 \mu \mathrm{~A}$ quiescent current when both shutdown pins are pulled low.
Error Flag: Open drain output, goes low when the corresponding output drops 10% below nominal.
Precision Output Voltage: Multiple output voltage options available ranging from 1.8 V to 5.0 V with a guaranteed accuracy of $\pm 1 \%$ at room temperature.

Features

- Ultra low drop-out voltage
- Low ground pin current
- < $1 \mu \mathrm{~A}$ quiescent current in shutdown mode
- Independent shutdown of each LDO regulator
- Output voltage accuracy $\pm 1 \%$
- Guaranteed 150 mA output current at each output
- Low output noise
- Error Flags indicate status of each output
- Available in MSOP-8 surface mount packages
- Low output capacitor requirements ($1 \mu \mathrm{~F}$)
- Operates with Low ESR ceramic capacitors in most applications
- Over temperature/over current protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular and Wireless Applications
- Palmtop/Laptop Computer
- GPS systems
- Flat panel displays
- Post regulators
- USB applications
- Hand held equipment and multimeters
- Wireless data terminals
- Other battery powered applications

Typical Application Circuit

* $\overline{S D 1}$ and $\overline{S D 2}$ must be actively terminated through a pull up resistor. Tie to $V_{\mathbb{I}}$ if not used.
**ERROR1 and ERROR2 are open drain outputs. These pins must be connected to ground if not used.
\# Minimum output capacitance is $1 \mu \mathrm{~F}$ to insure stability over full load current range. More capacitance improves superior dynamic performance and provides additional stability margin.

Block Diagram

Connection Diagram

Top View
Mini SO-8 Package
8-Lead Small Outline Integrated Circuit (SOIC)
Package Code: MSOP-8
Pin Description

Pin	Name	Function
1	VIN	Input Supply pin
2	$\overline{\text { SD1 }}$	Active low shutdown pin for output 1
3	$\overline{\text { SD2 }}$	Active low shutdown pin for output 2
4	GND	Ground
5	$\overline{\text { ERROR2 }}$	Error flag for output 2 - Normally high impedance, should be connected to ground if not used.
6	$\overline{\text { ERROR1 }}$	Error flag for output 1 - Normally high impedance, should be connected to ground if not used.
7	VOUT2	Output 2
8	VOUT1	Output 1

Ordering Information

The following voltage options and their combinations are possible.
$5.0 \mathrm{~V}, 4.0 \mathrm{~V}, 3.8 \mathrm{~V}, 3.6 \mathrm{~V}, 3.3 \mathrm{~V}, 3.2 \mathrm{~V}, 3.1 \mathrm{~V}, 3.0 \mathrm{~V}, 2.9 \mathrm{~V}, 2.8 \mathrm{~V}, 2.7 \mathrm{~V}, 2.6 \mathrm{~V}, 2.5 \mathrm{~V}, 2.4 \mathrm{~V}, 2.0 \mathrm{~V}$ and 1.8 V

TABLE 1.

Output Voltage 1	Output Voltage 2	Order Number	Package Marking	Supplied As:
5.0	5.0	LP2966IMM-5050	LAFB	1000 units on tape and reel
5.0	5.0	LP2966IMMX-5050	LAFB	3500 units on tape and reel
3.6	3.6	LP2966IMM-3636	LAEB	1000 units on tape and reel
3.6	3.6	LP2966IMMX-3636	LAEB	3500 units on tape and reel
3.3	3.6	LP2966IMM-3336	LAHB	1000 units on tape and reel
3.3	3.6	LP2966IMMX-3336	LAHB	3500 units on tape and reel
3.3	3.3	LP2966IMM-3333	LADB	1000 units on tape and reel
3.3	3.3	LP2966IMMX-3333	LADB	3500 units on tape and reel
3.3	2.5	LP2966IMM-3325	LARB	1000 units on tape and reel
3.3	2.5	LP2966IMMX-3325	LARB	3500 units on tape and reel
3.0	3.0	LP2966IMM-3030	LACB	1000 units on tape and reel
3.0	3.0	LP2966IMMX-3030	LACB	3500 units on tape and reel
2.8	3.0	LP2966IMM-2830	LASB	1000 units on tape and reel
2.8	3.0	LP2966IMMX-2830	LASB	3500 units on tape and reel
2.8	2.8	LP2966IMM-2828	LABB	1000 units on tape and reel
2.8	2.8	LP2966IMMX-2828	LABB	3500 units on tape and reel
2.5	2.5	LP2966IMM-2525	LAAB	1000 units on tape and reel
2.5	2.5	LP2966IMMX-2525	LAAB	3500 units on tape and reel
1.8	3.3	LP2966IMM-1833	LCFB	1000 units on tape and reel
1.8	3.3	LP2966IMMX-1833	LCFB	3500 units on Tape and reel
1.8	1.8	LP2966IMM-1818	LA9B	1000 units on tape and reel
1.8	1.8	LP2966IMMX-1818	LA9B	3500 units on tape and reel

The voltage options and combinations shown in Table 1 are available. For other custom voltage options or combinations of voltage options, please contact your nearest National Semiconductor Sales Office.

National Semiconductor

LP2975

MOSFET LDO Driver/Controller

General Description

A high-current LDO regulator is simple to design with the LP2975 LDO Controller. Using an external P-FET, the LP2975 will deliver an ultra low dropout regulator with extremely low quiescent current.
High open loop gain assures excellent regulation and ripple rejection performance.
The trimmed internal bandgap reference provides precise output voltage over the entire operating temperature range.
Dropout voltage is "user selectable" by sizing the external FET: the minimum input-output voltage required for operation is the maximum load current multiplied by the $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ of the FET.
Overcurrent protection of the external FET is easily implemented by placing a sense resistor in series with $\mathrm{V}_{\mathbf{I N}}$. The 57 mV detection threshold of the current sense circuitry minimizes dropout voltage and power dissipation in the resistor. The standard product versions available provide output voltages of $12 \mathrm{~V}, 5 \mathrm{~V}$, or 3.3 V with guaranteed $25^{\circ} \mathrm{C}$ accuracy of 1.5% ("A" grade) and 2.5\% (standard grade).

Features

- Simple to use, few external components
- Ultra-small mini SO-8 package
- 1.5% (A grade) precision output voltage
- Low-power shutdown input
- $<1 \mu \mathrm{~A}$ in shutdown
- Low operating current ($180 \mu \mathrm{~A}$ typical $@ \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$)
- Wide supply voltage range (1.8 V to 24 V)
- Built-in current limit amplifier
- Overtemperature protection
- $12 \mathrm{~V}, 5 \mathrm{~V}$, and 3.3 V standard output voltages
- Can be programmed using external divider
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- High-current 5V to 3.3 V regulator
- Post regulator for switching converter
- Current-limited switch

Block Diagram

Connection Diagram

Surface Mount Mini SO-8 Package

Top View
For Order Numbers
See Table 1 of this Document See NS Package Number MUA08A

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage	Grade	Order Information	Package Marking	Supplied As:
12	A	LP2975AIMMX-12	L47A	3500 Units on Tape and Reel
12	A	LP2975AIMM-12	L47A	1000 Units on Tape and Reel
12	STD	LP2975IMMX-12	L47B	3500 Units on Tape and Reel
12	STD	LP2975IMM-12	L47B	1000 Units on Tape and Reel
5.0	A	LP2975AIMMX-5.0	L46A	3500 Units on Tape and Reel
5.0	A	LP2975AIMM-5.0	L46A	1000 Units on Tape and Reel
5.0	STD	LP2975IMMX-5.0	L46B	3500 Units on Tape and Reel
5.0	STD	LP2975IMM-5.0	L46B	1000 Units on Tape and Reel
3.3	A	LP2975AIMMX-3.3	L45A	3500 Units on Tape and Reel
3.3	A	LP2975AIMM-3.3	L45A	1000 Units on Tape and Reel
3.3	STD	LP2975IMMX-3.3	L45B	3500 Units on Tape and Reel
3.3	STD	LP2975IMM-3.3	L45B	1000 Units on Tape and Reel

LP2978

Micropower SOT, 50 mA Low-Noise Ultra Low-Dropout Regulator
 Designed for Use with Very Low ESR Output Capacitors

General Description

The LP2978 is a 50 mA , fixed-output voltage regulator designed to provide ultra low-dropout and low noise in battery powered applications.
Using an optimized VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, the LP2978 delivers unequalled performance in all specifications critical to battery-powered designs:
Dropout Voltage: Typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.
Ground Pin Current: Typically $350 \mu \mathrm{~A} @ 50 \mathrm{~mA}$ load, and $75 \mu \mathrm{~A} @ 1 \mathrm{~mA}$ load.
Enhanced Stability: The LP2978 is stable with output capacitor ESR as low as $5 \mathrm{~m} \Omega$, which allows the use of ceramic capacitors on the output.
Sleep Mode: Less than $1 \mu \mathrm{~A}$ quiescent current when ON/OFF pin is pulled low.
Smallest Possible Size: SOT-23 package uses absolute minimum board space.
Precision Output: 1\% tolerance output voltages available (A grade).
Low Noise: By adding a 10 nF bypass capacitor, output noise can be reduced to $30 \mu \mathrm{~V}$ (typical).

Features

- Ultra low dropout voltage
- Smallest possible size (SOT-23 Package)
- Requires minimum external components
- Stable with low-ESR output capacitor
- <1 $\mu \mathrm{A}$ quiescent current when shut down
- Low ground pin current at all loads
- Output voltage accuracy 1\% (A Grade)
- High peak current capability
- Wide supply voltage range (16 V max)
- Low $\mathrm{Z}_{\text {Out }}: 0.3 \Omega$ typical (10 Hz to 1 MHz)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range
- Custom voltages available

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

Basic Application Circuit

*ON/OFF input must be actively terminated. Tie to V_{IN} if this function is not to be used.
**Minimum capacitance is shown to ensure stability (may be increased without limit). Ceramic capacitor required for output (see Application Hints).
${ }^{* * *}$ Reduces output noise (may be omitted if application is not noise critical). Use ceramic or film type with very low leakage current (see Application Hints).

Connection Diagram

See NS Package Number MF05A

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied As:
3.8	A	LP2978AIM5X-3.8	LØLA	3000 Units on Tape and Reel
3.8	A	LP2978AIM5-3.8	LØLA	1000 Units on Tape and Reel
3.8	STD	LP2978IM5X-3.8	LØLB	3000 Units on Tape and Reel
3.8	STD	LP2978IM5-3.8	LØLB	1000 Units on Tape and Reel

LP2980

Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 and micro SMD Packages

General Description

The LP2980 is a 50 mA , fixed-output voltage regulator designed specifically to meet the requirements of battery-powered applications.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2980 delivers unequaled performance in all specifications critical to battery-powered designs:
Dropout Voltage. Typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.

Ground Pin Current. Typically $375 \mu \mathrm{~A} @ 50 \mathrm{~mA}$ load, and 80 $\mu \mathrm{A}$ @ 1 mA load.
Sleep Mode. Less than $1 \mu \mathrm{~A}$ quiescent current when $\mathrm{ON} /$ OFF pin is pulled low.
Smallest Possible Size. SOT-23 and micro SMD packages use an absolute minimum board space.
Minimum Part Count. Requires only $1 \mu \mathrm{~F}$ of external capacitance on the regulator output.

Precision Output. 0.5\% tolerance output voltages available (A grade).
$5.0 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3.0 V versions available as standard products.

Features

- Ultra low dropout voltage
- Output voltage accuracy 0.5\% (A Grade)
- Guaranteed 50 mA output current
- Smallest possible size (SOT-23, micro SMD package)
- Requires only $1 \mu \mathrm{~F}$ external capacitance
- $<1 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all load currents
- High peak current capability (150 mA typical)
- Wide supply voltage range (16 V max)
- Fast dynamic response to line and load
- Low $Z_{\text {Out }}$ over wide frequency range
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

Connection Diagram and Ordering Information

5-Lead Small Outline Package (M5)

Top View
See NS Package Number MF05A For ordering information see Table 1
micro SMD, 5 Bump Package (BPA05)

Note: The actual physical placement of the package marking will vary from part to part. The package marking " X " will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View
See NS Package Number BPA05

Ordering Information

TABLE 1. Package Marking and Order Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
5-Lead Small Outline Package (M5)				
For output voltages $\leq 2.3 \mathrm{~V}$, refer to LP2980LV datasheet. If a non-standard voltage is required, see LP2980-ADJ.				
2.5	A	LP2980AIM5X-2.5	LONA	3000 Units on Tape and Reel
2.5	A	LP2980AIM5-2.5	LONA	1000 Units on Tape and Reel
2.5	STD	LP2980IM5X-2.5	LONB	3000 Units on Tape and Reel
2.5	STD	LP29801M5-2.5	LONB	1000 Units on Tape and Reel
2.6	A	LP2980AIM5X-2.6	L48A	3000 Units on Tape and Reel
2.6	A	LP2980AIM5-2.6	L48A	1000 Units on Tape and Reel
2.6	STD	LP2980IM5X-2.6	L48B	3000 Units on Tape and Reel
2.6	STD	LP29801M5-2.6	L48B	1000 Units on Tape and Reel
2.7	A	LP2980AIM5X-2.7	L26A	3000 Units on Tape and Reel
2.7	A	LP2980AIM5-2.7	L26A	1000 Units on Tape and Reel
2.7	STD	LP2980IM5X-2.7	L26B	3000 Units on Tape and Reel
2.7	STD	LP29801M5-2.7	L26B	1000 Units on Tape and Reel
2.8	A	LP2980AIM5X-2.8	L13A	3000 Units on Tape and Reel
2.8	A	LP2980AIM5-2.8	L13A	1000 Units on Tape and Reel
2.8	STD	LP2980IM5X-2.8	L13B	3000 Units on Tape and Reel
2.8	STD	LP29801M5-2.8	L13B	1000 Units on Tape and Reel
2.9	A	LP2980AIM5X-2.9	L12A	3000 Units on Tape and Reel
2.9	A	LP2980AIM5-2.9	L12A	1000 Units on Tape and Reel
2.9	STD	LP2980IM5X-2.9	L12B	3000 Units on Tape and Reel
2.9	STD	LP29801M5-2.9	L12B	1000 Units on Tape and Reel
3.0	A	LP2980AIM5X-3.0	L02A	3000 Units on Tape and Reel
3.0	A	LP2980AIM5-3.0	L02A	1000 Units on Tape and Reel
3.0	STD	LP2980IM5X-3.0	L02B	3000 Units on Tape and Reel
3.0	STD	LP29801M5-3.0	L02B	1000 Units on Tape and Reel
3.1	A	LP2980AIM5X-3.1	L30A	3000 Units on Tape and Reel
3.1	A	LP2980AIM5-3.1	L30A	1000 Units on Tape and Reel

Ordering Information (Continued)
TABLE 1. Package Marking and Order Information (Continued)

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:

For output voltages $\leq 2.3 \mathrm{~V}$, refer to LP2980LV datasheet. If a non-standard voltage is required, see LP2980-ADJ.

3.1	STD	LP2980IM5X-3.1	L30B	3000 Units on Tape and Reel
3.1	STD	LP2980IM5-3.1	L30B	1000 Units on Tape and Reel
3.2	A	LP2980AIM5X-3.2	L31A	3000 Units on Tape and Reel
3.2	A	LP2980AIM5-3.2	L31A	1000 Units on Tape and Reel
3.2	STD	LP2980IM5X-3.2	L31B	3000 Units on Tape and Reel
3.2	STD	LP2980IM5-3.2	L31B	1000 Units on Tape and Reel
3.3	A	LP2980AIM5X-3.3	L00A	3000 Units on Tape and Reel
3.3	A	LP2980AIM5-3.3	L00A	1000 Units on Tape and Reel
3.3	STD	LP2980IM5X-3.3	L00B	3000 Units on Tape and Reel
3.3	STD	LP29801M5-3.3	LOOB	1000 Units on Tape and Reel
3.5	A	LP2980AIM5X-3.5	L27A	3000 Units on Tape and Reel
3.5	A	LP2980AIM5-3.5	L27A	1000 Units on Tape and Reel
3.5	STD	LP2980IM5X-3.5	L27B	3000 Units on Tape and Reel
3.5	STD	LP29801M5-3.5	L27B	1000 Units on Tape and Reel
3.6	A	LP2980AIM5X-3.6	L28A	3000 Units on Tape and Reel
3.6	A	LP2980AIM5-3.6	L28A	1000 Units on Tape and Reel
3.6	STD	LP2980IM5X-3.6	L28B	3000 Units on Tape and Reel
3.6	STD	LP29801M5-3.6	L28B	1000 Units on Tape and Reel
3.8	A	LP2980AIM5X-3.8	L21A	3000 Units on Tape and Reel
3.8	A	LP2980AIM5-3.8	L21A	1000 Units on Tape and Reel
3.8	STD	LP2980IM5X-3.8	L21B	3000 Units on Tape and Reel
3.8	STD	LP29801M5-3.8	L21B	1000 Units on Tape and Reel
4.0	A	LP2980AIM5X-4.0	L25A	3000 Units on Tape and Reel
4.0	A	LP2980AIM5-4.0	L25A	1000 Units on Tape and Reel
4.0	STD	LP2980IM5X-4.0	L25B	3000 Units on Tape and Reel
4.0	STD	LP29801M5-4.0	L25B	1000 Units on Tape and Reel
4.5	A	LP2980AIM5X-4.5	LOXA	3000 Units on Tape and Reel
4.5	A	LP2980AIM5-4.5	LOXA	1000 Units on Tape and Reel
4.5	STD	LP2980IM5X-4.5	LOXB	3000 Units on Tape and Reel
4.5	STD	LP2980IM5-4.5	LOXB	1000 Units on Tape and Reel
4.7	A	LP2980AIM5X-4.7	L37A	3000 Units on Tape and Reel
4.7	A	LP2980AIM5-4.7	L37A	1000 Units on Tape and Reel
4.7	STD	LP2980IM5X-4.7	L37B	3000 Units on Tape and Reel
4.7	STD	LP2980IM5-4.7	L37B	1000 Units on Tape and Reel
5.0	A	LP2980AIM5X-5.0	L01A	3000 Units on Tape and Reel
5.0	A	LP2980AIM5-5.0	L01A	1000 Units on Tape and Reel
5.0	STD	LP2980IM5X-5.0	L01B	3000 Units on Tape and Reel
5.0	STD	LP29801M5-5.0	L01B	1000 Units on Tape and Reel

micro SMD, 5 Bump Package (BPA05)

3.3	A	LP2980AIBP-3.3		250 Units on Tape and Reel
3.3	A	LP2980AIBPX-3.3		3000 Units on Tape and Reel
3.3	STD	LP2980IBP-3.3		250 Units on Tape and Reel
3.3	STD	LP2980IBPX-3.3		3000 Units on Tape and Reel
5.0	A	LP2980AIBP-5.0		250 Units on Tape and Reel
5.0	A	LP2980AIBPX-5.0		3000 Units on Tape and Reel
5.0	STD	LP2980IBP-5.0		250 Units on Tape and Reel

Ordering Information (Continued)

TABLE 1. Package Marking and Order Information (Continued)

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
micro SMD, 5 Bump Package (BPA05)				
5.0	STD	LP2980IBPX-5.0		3000 Units on Tape and Reel

LP2980-ADJ

Micropower SOT, 50 mA Ultra Low-Dropout Adjustable Voltage Regulator

General Description

The LP2980-ADJ is a 50 mA adjustable voltage regulator designed to provide ultra low dropout in battery powered applications.
Using an optimized VIP ${ }^{\text {TM }}$ (vertically Integrated PNP) process, the LP2980-ADJ delivers unequalled performance in all specifications critical to battery-powered designs:
Adjustable Output: output voltage can be set from 1.23 V to 15V.
Precision Reference: 0.75% tolerance.
Dropout Voltage: typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.
Ground Pin Current: typically $320 \mu \mathrm{~A} @ 50 \mathrm{~mA}$ load, and 80 $\mu \mathrm{A} @ 1 \mathrm{~mA}$ load.
Sleep Mode: less than $1 \mu \mathrm{~A}$ quiescent current when on/off pin is pulled low.
Smallest Possible Size: SOT-23 package uses minimum board space.

Features

- Ultra low dropout voltage
- Output adjusts from 1.23 V to 15 V
- Guaranteed 50 mA output current
- Uses tiny SOT-23 package
- Requires few external components
- <1 $\mu \mathrm{A}$ quiescent current when shutdown
- Low ground pin current at all loads
- High peak current capability (150 mA typical)
- Wide supply voltage range ($2.5 \mathrm{~V}-16 \mathrm{~V}$)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Camcorder, Personal Stereo, Camera

Block Diagram

5-Lead Small Outline Package (M5)

Top View
See NS Package Number MA05B
For ordering Information, refer to Table 1 in this document

Basic Application Circuit

*ON/OFF INPUT MUST BE ACTIVELY TERMINATED. TIE TO VIN IF THIS FUNCTION IS NOT TO BE USED.
**MINIMUM CAPACITANCE IS SHOWN TO ENSURE STABILITY OVER
FULL LOAD CURRENT RANGE (SEE APPLICATION HINTS).

Ordering Information

TABLE 1. Package Marking and Ordering Information

Grade	Order Information	Package Marking	Supplied as
STD	LP2980IM5X-ADJ	L06B	3k Units on Tape and Reel
STD	LP2980IM5-ADJ	L06B	250 Units on Tape and Reel

For fixed output voltage versions, see LP2980 and LP2980LV datasheets.

Micropower SOT, 50 mA Low-Voltage Low-Dropout Regulator For Applications With Output Voltages $<2 V$

General Description

The LP2980LV is a 50 mA , fixed-output voltage regulator designed for high performance in applications requiring output voltages below 2 V .
Using an optimized VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, the LP2980LV delivers unequalled performance in all specifications critical to battery-powered designs:
Low Ground Pin Current. Typically $280 \mu \mathrm{~A} @ 50 \mathrm{~mA}$ load, and $75 \mu \mathrm{~A} @ 1 \mathrm{~mA}$ load.
Sleep Mode. Less than $1 \mu \mathrm{~A}$ quiescent current when $\mathrm{ON} /$ OFF pin is pulled low.
Smallest Possible Size. SOT-23 package uses absolute minimum board space.
Precision Output. 0.5% tolerance output voltages available (A grade).

Features

- Guaranteed 50 mA output current
- Smallest possible size (SOT-23 Package)
- Requires few external components
- $<1 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all load currents
- Output voltage accuracy 0.5\% (A Grade)
- High peak current capability (150 mA typical)
- Wide supply voltage range (16 V max)
- Fast dynamic response to line and load
- Low $\mathrm{Z}_{\text {OUT }} 0.1 \Omega$ typical (10 Hz to 1 MHz)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

Connection Diagram

5-lead Small Outline Package (M5)

For Ordering Information See Table 1 See NS Package Number MA05B

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
1.5 V	A	LP2980AIM5X-1.5	LANA	3k Units on Tape and Reel
1.5 V	A	LP2980AIM5-1.5	LANA	250 Units on Tape and Reel
1.5 V	STD	LP2980IM5X-1.5	LANB	3k Units on Tape and Reel
1.5 V	STD	LP2980IM5-1.5	LANB	250 Units on Tape and Reel
1.8 V	A	LP2980AIM5X-1.8	LAGA	3k Units on Tape and Reel
1.8 V	A	LP2980AIM5-1.8	LAGA	250 Units on Tape and Reel
1.8 V	STD	LP2980IM5X-1.8	LAGB	3k Units on Tape and Reel
1.8 V	STD	LP2980IM5-1.8	LAGB	250 Units on Tape and Reel

For output voltages $>\mathbf{2 V}$, refer to LP2980 datasheet. If a non-standard voltage is required, see LP2980-ADJ.

Basic Application Circuit

LP2981

Micropower 100 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages

General Description

The LP2981 is a 100 mA , fixed-output voltage regulator designed specifically to meet the requirements of battery-powered applications.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2981 delivers unequaled performance in all specifications critical to battery-powered designs:
Dropout Voltage. Typically 200 mV @ 100 mA load, and 7 mV @ 1 mA load.
Ground Pin Current. Typically $600 \mu \mathrm{~A} @ 100 \mathrm{~mA}$ load, and $80 \mu \mathrm{~A} @ 1 \mathrm{~mA}$ load.
Sleep Mode. Less than $1 \mu \mathrm{~A}$ quiescent current when $\mathrm{ON} /$ OFF pin is pulled low.
Smallest Possible Size. SOT-23 and micro SMD packages use an absolute minimum board space.
Precision Output. 0.75% tolerance output voltages available (A grade).
Eleven voltage options, from 2.5 V to 5.0 V , are available as standard products.

Features

- Ultra iow dropout voltage

■ Output voltage accuracy 0.75\% (A Grade)

- Guaranteed 100 mA output current
- Smallest possible size (SOT-23, micro SMD package)
- $<1 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all load currents
- High peak current capability (300 mA typical)
- Wide supply voltage range (16 V max)
- Fast dynamic response to line and load
- Low $\mathrm{Z}_{\text {Out }}$ over wide frequency range
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

Connection Diagrams

5-Lead Small Outline Package (M5)

Top View
See NS Package Number MF05A
For ordering information see Table 1
micro SMD, 5 Bump Package (BPA05)

Note: The actual physical placement of the package marking will vary from part to part. The package marking " X " will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View
See NS Package Number BPA05

Ordering Information

TABLE 1. Package Marking and Order Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
5-Lead Small Outline Package (M5)				
2.5	A	LP2981AIM5X-2.5	LOCA	3000 Units on Tape and Reel
2.5	A	LP2981AIM5-2.5	LOCA	1000 Units on Tape and Reel
2.5	STD	LP2981IM5X-2.5	LOCB	3000 Units on Tape and Reel
2.5	STD	LP2981IM5-2.5	LOCB	1000 Units on Tape and Reel
2.7	A	LP2981AIM5X-2.7	LODA	3000 Units on Tape and Reel
2.7	A	LP2981AIM5-2.7	LODA	1000 Units on Tape and Reel
2.7	STD	LP2981IM5X-2.7	LODB	3000 Units on Tape and Reel
2.7	STD	LP2981IM5-2.7	LODB	1000 Units on Tape and Reel
2.8	A	LP2981AIM5X-2.8	L77A	3000 Units on Tape and Reel
2.8	A	LP2981AIM5-2.8	L77A	1000 Units on Tape and Reel
2.8	STD	LP2981IM5X-2.8	L77B	3000 Units on Tape and Reel
2.8	STD	LP2981IM5-2.8	L77B	1000 Units on Tape and Reel
2.9	A	LP2981AIM5X-2.9	LOVA	3000 Units on Tape and Reel
2.9	A	LP2981AIM5-2.9	LOVA	1000 Units on Tape and Reel
2.9	STD	LP2981IM5X-2.9	LOVB	3000 Units on Tape and Reel
2.9	STD	LP2981IM5-2.9	LOVB	1000 Units on Tape and Reel
3.0	A	LP2981AIM5X-3.0	L05A	3000 Units on Tape and Reel
3.0	A	LP2981AIM5-3.0	L05A	1000 Units on Tape and Reel
3.0	STD	LP2981IM5X-3.0	L05B	3000 Units on Tape and Reel
3.0	STD	LP2981IM5-3.0	L05B	1000 Units on Tape and Reel
3.1	A	LP2981AIM5X-3.1	L38A	3000 Units on Tape and Reel
3.1	A	LP2981AIM5-3.1	L38A	1000 Units on Tape and Reel
3.1	STD	LP2981IM5X-3.1	L38B	3000 Units on Tape and Reel
3.1	STD	LP2981IM5-3.1	L38B	1000 Units on Tape and Reel
3.2	A	LP2981AIM5X-3.2	L35A	3000 Units on Tape and Reel
3.2	A	LP2981AIM5-3.2	L35A	1000 Units on Tape and Reel
3.2	STD	LP2981IM5X-3.2	L35B	3000 Units on Tape and Reel

Ordering Information
 (Continued)

TABLE 1. Package Marking and Order Information (Continued)

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:

5-Lead Small Outline Package (M5)

3.2	STD	LP2981IM5-3.2	L35B	1000 Units on Tape and Reel
3.3	A	LP2981AIM5X-3.3	L04A	3000 Units on Tape and Reel
3.3	A	LP2981AIM5-3.3	L04A	1000 Units on Tape and Reel
3.3	STD	LP2981IM5X-3.3	L04B	3000 Units on Tape and Reel
3.3	STD	LP2981IM5-3.3	L04B	1000 Units on Tape and Reel
3.6	A	LP2981AIM5X-3.6	LOJA	3000 Units on Tape and Reel
3.6	A	LP2981AIM5-3.6	LOJA	1000 Units on Tape and Reel
3.6	STD	LP2981IM5X-3.6	LOJB	3000 Units on Tape and Reel
3.6	STD	LP2981IM5-3.6	LOJB	1000 Units on Tape and Reel
3.8	A	LP2981AIM5X-3.8	L36A	3000 Units on Tape and Reel
3.8	A	LP2981AIM5-3.8	L36A	1000 Units on Tape and Reel
3.8	STD	LP2981IM5X-3.8	L36B	3000 Units on Tape and Reel
3.8	STD	LP2981IM5-3.8	L36B	1000 Units on Tape and Reel
4.0	A	LP2981AIM5X-4.0	LOZA	3000 Units on Tape and Reel
4.0	A	LP2981AIM5-4.0	LOZA	1000 Units on Tape and Reel
4.0	STD	LP2981IM5X-4.0	LOZB	3000 Units on Tape and Reel
4.0	STD	LP2981IM5-4.0	LOZB	1000 Units on Tape and Reel
4.7	A	LP2981AIM5X-4.7	LOGA	3000 Units on Tape and Reel
4.7	A	LP2981AIM5-4.7	LOGA	1000 Units on Tape and Reel
4.7	STD	LP2981IM5X-4.7	LOGB	3000 Units on Tape and Reel
4.7	STD	LP2981IM5-4.7	LOGB	1000 Units on Tape and Reel
5.0	A	LP2981AIM5X-5.0	L03A	3000 Units on Tape and Reel
5.0	A	LP2981AIM5-5.0	L03A	1000 Units on Tape and Reel
5.0	STD	LP2981IM5X-5.0	L03B	3000 Units on Tape and Reel
5.0	STD	LP2981IM5-5.0	L03B	1000 Units on Tape and Reel

micro SMD, 5 Bump Package (BPA05)

2.5	A	LP2981AIBP-2.5		250 Units on Tape and Reel
2.5	A	LP2981AIBPX-2.5		3000 Units on Tape and Reel
2.5	STD	LP2981IBP-2.5		250 Units on Tape and Reel
2.5	STD	LP2981IBPX-2.5		3000 Units on Tape and Reel
3.2	A	LP2981AIBP-3.2		250 Units on Tape and Reel
3.2	A	LP2981AIBPX-3.2		3000 Units on Tape and Reel
3.2	STD	LP2981IBP-3.2		250 Units on Tape and Reel
3.2	STD	LP2981IBPX-3.2		3000 Units on Tape and Reel
3.3	A	LP2981AIBP-3.3		250 Units on Tape and Reel
3.3	A	LP2981AIBPX-3.3		3000 Units on Tape and Reel
3.3	STD	LP2981IBP-3.3		250 Units on Tape and Reel
3.3	STD	LP2981IBPX-3.3		3000 Units on Tape and Reel

LP2982

Micropower 50 mA Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages

General Description

The LP2982 is a 50 mA , fixed-output voltage regulator designed to provide ultra low dropout and lower noise in battery powered applications.
Using an optimized VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, the LP2982 delivers unequaled performance in all specifications critical to battery-powered designs:
Dropout Voltage: Typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.
Ground Pin Current: Typically $375 \mu \mathrm{~A} @ 50 \mathrm{~mA}$ load, and $80 \mu \mathrm{~A} @ 1 \mathrm{~mA}$ load.
Sleep Mode: Less than $1 \mu \mathrm{~A}$ quiescent current when on/off pin is pulled low.
Smallest Possible Size: SOT-23 and micro SMD packages use absolute minimum board space.
Precision Output: 1.0\% tolerance output voltages available (A grade).
Low Noise: By adding an external bypass capacitor, output noise can be reduced to $30 \mu \mathrm{~V}$ (typical).
Ten output voltage versions, from 2.5 V to 5.0 V , are available as standard products.

Features

- Ultra low dropout voltage
- Guaranteed 50 mA output current
- Typical dropout voltage 180 mV @ 80 mA
- Smallest possible size (SOT-23, micro SMD package)
- Requires minimum external components
- < $1 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all loads
- Output voltage accuracy 1.0\% (A Grade)
- High peak current capability (150 mA typical)
- Wide supply voltage range (16 V max)
- Low $\mathrm{Z}_{\text {Out }} 0.3 \Omega$ typical (10 Hz to 1 MHz)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range
- Custom voltages available

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

Connection Diagram

5-Lead Small Outline Package (M5)

Top View
See NS Package Number MF05A For ordering information see Table 1
micro SMD, 5 Bump Package (BPA05)

Note: The actual physical placement of the package marking will vary from part to part. The package marking " X " will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View
See NS Package Number BPA05

Basic Application Circuit

*ON/ $\overline{O F F}$ input must be actively terminated. Tie to $\mathrm{V}_{\text {IN }}$ if this function is not to be used.
**Minimum capacitance is shown to insure stability over full load current range. More capacitance provides superior dynamic performance (see Application Hints).
***See Application Hints.

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
5-Lead Small Outline Package (M5)				
2.5	A	LP2982AIM5X-2.5	L58A	3000 Units on Tape and Reel
2.5	A	LP2982AIM5-2.5	L58A	1000 Units on Tape and Reel
2.5	STD	LP2982IM5X-2.5	L58B	3000 Units on Tape and Reel
2.5	STD	LP2982IM5-2.5	L58B	1000Units on Tape and Reel
2.6	A	LP2982AIM5X-2.6	LBYA	3000 Units on Tape and Reel
2.6	A	LP2982AIM5-2.6	LBYA	1000 Units on Tape and Reel
2.6	STD	LP2982IM5X-2.6	LBYB	3000 Units on Tape and Reel
2.6	STD	LP2982IM5-2.6	LBYB	1000Units on Tape and Reel
2.8	A	LP2982AIM5X-2.8	L60A	3000 Units on Tape and Reel
2.8	A	LP2982AIM5-2.8	L60A	1000 Units on Tape and Reel
2.8	STD	LP2982IM5X-2.8	L60B	3000 Units on Tape and Reel
2.8	STD	LP2982IM5-2.8	L60B	1000 Units on Tape and Reel
3.0	A	LP2982AIM5X-3.0	L20A	3000 Units on Tape and Reel
3.0	A	LP2982AIM5-3.0	L20A	1000 Units on Tape and Reel
3.0	STD	LP2982IM5X-3.0	L20B	3000 Units on Tape and Reel
3.0	STD	LP2982IM5-3.0	L20B	1000 Units on Tape and Reel
3.3	A	LP2982AIM5X-3.3	L19A	3000 Units on Tape and Reel
3.3	A	LP2982AIM5-3.3	L19A	1000 Units on Tape and Reel
3.3	STD	LP2982IM5X-3.3	L19B	3000 Units on Tape and Reel
3.3	STD	LP2982IM5-3.3	L19B	1000 Units on Tape and Reel
3.6	A	LP2982AIM5X-3.6	LOBA	3000 Units on Tape and Reel
3.6	A	LP2982AIM5-3.6	LOBA	1000 Units on Tape and Reel
3.6	STD	LP2982IM5X-3.6	LOBB	3000 Units on Tape and Reel
3.6	STD	LP2982IM5-3.6	LOBB	1000 Units on Tape and Reel
3.8	A	LP2982AIM5X-3.8	L76A	3000 Units on Tape and Reel
3.8	A	LP2982AIM5-3.8	L76A	1000 Units on Tape and Reel
3.8	STD	LP2982IM5X-3.8	L76B	3000 Units on Tape and Reel
3.8	STD	LP2982IM5-3.8	L76B	1000 Units on Tape and Reel
4.0	A	LP2982AIM5X-4.0	L29A	3000 Units on Tape and Reel
4.0	A	LP2982AIM5-4.0	L29A	1000 Units on Tape and Reel
4.0	STD	LP2982IM5X-4.0	L29B	3000 Units on Tape and Reel
4.0	STD	LP2982IM5-4.0	L29B	1000 Units on Tape and Reel
4.5	A	LP2982AIM5X-4.5	LA8A	3000 Units on Tape and Reel
4.5	A	LP2982AIM5-4.5	LA8A	1000 Units on Tape and Reel
4.5	STD	LP2982IM5X-4.5	LA8B	3000 Units on Tape and Reel
4.5	STD	LP2982IM5-4.5	LA8B	1000 Units on Tape and Reel
4.7	A	LP2982AIM5X-4.7	LOHA	3000 Units on Tape and Reel
4.7	A	LP2982AIM5-4.7	LOHA	1000 Units on Tape and Reel
4.7	STD	LP2982IM5X-4.7	LOHB	3000 Units on Tape and Reel
4.7	STD	LP2982IM5-4.7	LOHB	1000 Units on Tape and Reel
5.0	A	LP2982AIM5X-5.0	L18A	3000 Units on Tape and Reel
5.0	A	LP2982AIM5-5.0	L18A	1000 Units on Tape and Reel
5.0	STD	LP2982IM5X-5.0	L18B	3000 Units on Tape and Reel
5.0	STD	LP2982IM5-5.0	L18B	1000 Units on Tape and Reel
5.3	A	LP2982AIM5X-5.3	LBZA	3000 Units on Tape and Reel

Ordering Information (Continued)
TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage (V)	Grade		Order Information Marking	Supplied as:
5-Lead Small Outline Package (M5)	LBZA	1000 Units on Tape and Reel		
5.3	A	LP2982AIM5-5.3	LBZB	3000 Units on Tape and Reel
5.3	STD	LP2982IM5X-5.3	LBZB	1000 Units on Tape and Reel
5.3	STD	LP2982IM5-5.3		
micro SMD, 5 Bump Package (BPA05)		250 Units on Tape and Reel		
2.8	A	LP2982AIBP-2.8		3000 Units on Tape and Reel
2.8	A	LP2982AIBPX-2.8		250 Units on Tape and Reel
2.8	STD	LP2982IBP-2.8		3000 Units on Tape and Reel
2.8	STD	LP2982IBPX-2.8		250 Units on Tape and Reel
3.0	A	LP2982AIBP-3.0		2000 Units on Tape and Reel
3.0	A	LP2982AIBPX-3.0		3000 Units on Tape and Reel
3.0	STD	LP2982IBP-3.0		
3.0	STD	LP2982IBPX-3.0		

LP2985

Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator in SOT-23 and micro SMD Packages Designed for Use with Very Low ESR Output Capacitors

General Description

The LP2985 is a 150 mA , fixed-output voltage regulator designed to provide ultra low-dropout and low noise in battery powered applications.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2985 delivers unequalled performance in all specifications critical to battery-powered designs:
Dropout Voltage: Typically 300 mV @ 150 mA load, and 7 mV @ 1 mA load.
Ground Pin Current: Typically $850 \mu \mathrm{~A}$ @ 150 mA load, and $75 \mu \mathrm{~A} @ 1 \mathrm{~mA}$ load.
Enhanced Stability: The LP2985 is stable with output capacitor ESR as low as $5 \mathrm{~m} \Omega$, which allows the use of ceramic capacitors on the output.
Sleep Mode: Less than $1 \mu \mathrm{~A}$ quiescent current when ON/OFF pin is pulled low.
Smallest Possible Size: SOT-23 and micro SMD packages use absolute minimum board space.
Precision Output: 1\% tolerance output voltages available (A grade).
Low Noise: By adding a 10 nF bypass capacitor, output noise can be reduced to $30 \mu \mathrm{~V}$ (typical).
Multiple voltage options, from 2.5 V to 5.0 V , are available as standard products. Consult factory for custom voltages.

Features

- Ultra low dropout voltage
- Guaranteed 150 mA output current
- Smallest possible size (SOT-23, micro SMD package)
- Requires minimum external components
- Stable with low-ESR output capacitor
- <1 $\mu \mathrm{A}$ quiescent current when shut down
- Low ground pin current at all loads
- Output voltage accuracy 1\% (A Grade)
- High peak current capability
- Wide supply voltage range (16 V max)
- Low $\mathrm{Z}_{\text {Out }}: 0.3 \Omega$ typical (10 Hz to 1 MHz)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range
- Custom voltages available

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Basic Application Circuit

*ON/OFF input must be actively terminated. Tie to $\mathrm{V}_{\mathbb{I N}}$ if this function is not to be used.
${ }^{* *}$ Minimum capacitance is shown to ensure stability (may be increased without limit). Ceramic capacitor required for output (see Application Hints).
***Reduces output noise (may be omitted if application is not noise critical). Use ceramic or film type with very low leakage current (see Application Hints).

Connection Diagrams

5-Lead Small Outline Package (M5)

Top View
See NS Package Number MF05A For ordering information see Table 1
micro SMD, 5 Bump Package (BPA05)

Note: The actual physical placement of the package marking will vary from part to part. The package marking " X " will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View
See NS Package Number BPA05

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
5-Lead Small Outline Package (M5)				
For output voltages $\leq 2.3 \mathrm{~V}$, refer to LP2985LV datasheet.				
2.5	A	LP2985AIM5X-2.5	LAVA	3000 Units on Tape and Reel
2.5	A	LP2985AIM5-2.5	LAVA	1000 Units on Tape and Reel
2.5	STD	LP2985IM5X-2.5	LAVB	3000 Units on Tape and Reel
2.5	STD	LP2985IM5-2.5	LAVB	1000 Units on Tape and Reel
2.6	A	LP2985AIM5X-2.6	LCEA	3000 Units on Tape and Reel
2.6	A	LP2985AIM5-2.6	LCEA	1000 Units on Tape and Reel
2.6	STD	LP2985IM5X-2.6	LCEB	3000 Units on Tape and Reel
2.6	STD	LP2985IM5-2.6	LCEB	1000 Units on Tape and Reel
2.7	A	LP2985AIM5X-2.7	LALA	3000 Units on Tape and Reel
2.7	A	LP2985AIM5-2.7	LALA	1000 Units on Tape and Reel
2.7	STD	LP2985IM5X-2.7	LALB	3000 Units on Tape and Reel
2.7	STD	LP2985IM5-2.7	LALB	1000 Units on Tape and Reel
2.8	A	LP2985AIM5X-2.8	LOKA	3000 Units on Tape and Reel
2.8	A	LP2985AIM5-2.8	LOKA	1000 Units on Tape and Reel
2.8	STD	LP2985IM5X-2.8	LOKB	3000 Units on Tape and Reel
2.8	STD	LP2985IM5-2.8	LOKB	1000 Units on Tape and Reel
2.9	A	LP2985AIM5X-2.9	LAXA	3000 Units on Tape and Reel
2.9	A	LP2985AIM5-2.9	LAXA	1000 Units on Tape and Reel
2.9	STD	LP2985IM5X-2.9	LAXB	3000 Units on Tape and Reel
2.9	STD	LP2985IM5-2.9	LAXB	1000 Units on Tape and Reel
3.0	A	LP2985AIM5X-3.0	LOOA	3000 Units on Tape and Reel
3.0	A	LP2985AIM5-3.0	L0OA	1000 Units on Tape and Reel
3.0	STD	LP2985IM5X-3.0	LOOB	3000 Units on Tape and Reel
3.0	STD	LP2985IM5-3.0	LOOB	1000 Units on Tape and Reel
3.1	A	LP2985AIM5X-3.1	LOPA	3000 Units on Tape and Reel
3.1	A	LP2985AIM5-3.1	LOPA	1000 Units on Tape and Reel
3.1	STD	LP2985IM5X-3.1	LOPB	3000 Units on Tape and Reel
3.1	STD	LP2985IM5-3.1	LOPB	1000 Units on Tape and Reel
3.2	A	LP2985AIM5X-3.2	LOQA	3000 Units on Tape and Reel
3.2	A	LP2985AIM5-3.2	LOQA	1000 Units on Tape and Reel
3.2	STD	LP2985IM5X-3.2	LOQB	3000 Units on Tape and Reel
3.2	STD	LP2985IM5-3.2	LOQB	1000 Units on Tape and Reel
3.3	A	LP2985AIM5X-3.3	LORA	3000 Units on Tape and Reel
3.3	A	LP2985AIM5-3.3	LORA	1000 Units on Tape and Reel
3.3	STD	LP2985IM5X-3.3	LORB	3000 Units on Tape and Reel
3.3	STD	LP2985IM5-3.3	LORB	1000 Units on Tape and Reel
3.5	A	LP2985AIM5X-3.5	LAIA	3000 Units on Tape and Reel
3.5	A	LP2985AIM5-3.5	LAIA	1000 Units on Tape and Reel
3.5	STD	LP2985IM5X-3.5	LAIB	3000 Units on Tape and Reel
3.5	STD	LP2985IM5-3.5	LAIB	1000 Units on Tape and Reel
3.6	A	LP2985AIM5X-3.6	LOSA	3000 Units on Tape and Reel
3.6	A	LP2985AIM5-3.6	LOSA	1000 Units on Tape and Reel
3.6	STD	LP2985IM5X-3.6	LOSB	3000 Units on Tape and Reel
3.6	STD	LP2985IM5-3.6	LOSB	1000 Units on Tape and Reel

Ordering Information (Continued)
TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:

For output voltages $\leq 2.3 \mathrm{~V}$, refer to LP2985LV datasheet.

3.8	A	LP2985AIM5X-3.8	LOYA	3000 Units on Tape and Reel
3.8	A	LP2985AIM5-3.8	LOYA	1000 Units on Tape and Reel
3.8	STD	LP2985IM5X-3.8	LOYB	3000 Units on Tape and Reel
3.8	STD	LP2985IM5-3.8	LOYB	1000 Units on Tape and Reel
4.0	A	LP2985AIM5X-4.0	LOTA	3000 Units on Tape and Reel
4.0	A	LP2985AIM5-4.0	LOTA	1000 Units on Tape and Reel
4.0	STD	LP2985IM5X-4.0	LOTB	3000 Units on Tape and Reel
4.0	STD	LP2985IM5-4.0	LOTB	1000 Units on Tape and Reel
4.5	A	LP2985AIM5X-4.5	LA7A	3000 Units on Tape and Reel
4.5	A	LP2985AIM5-4.5	LA7A	1000 Units on Tape and Reel
4.5	STD	LP2985IM5X-4.5	LA7B	3000 Units on Tape and Reel
4.5	STD	LP2985IM5-4.5	LA7B	1000 Units on Tape and Reel
4.7	A	LP2985AIM5X-4.7	LAJA	3000 Units on Tape and Reel
4.7	A	LP2985AIM5-4.7	LAJA	1000 Units on Tape and Reel
4.7	STD	LP2985IM5X-4.7	LAJB	3000 Units on Tape and Reel
4.7	STD	LP2985IM5-4.7	LAJB	1000 Units on Tape and Reel
4.8	A	LP2985AIM5X-4.8	LAKA	3000 Units on Tape and Reel
4.8	A	LP2985AIM5-4.8	LAKA	1000 Units on Tape and Reel
4.8	STD	LP2985IM5X-4.8	LAKB	3000 Units on Tape and Reel
4.8	STD	LP2985IM5-4.8	LAKB	1000 Units on Tape and Reel
5.0	A	LP2985AIM5X-5.0	LOUA	3000 Units on Tape and Reel
5.0	A	LP2985AIM5-5.0	LOUA	1000 Units on Tape and Reel
5.0	STD	LP2985IM5X-5.0	LOUB	3000 Units on Tape and Reel
5.0	STD	LP2985IM5-5.0	LOUB	1000 Units on Tape and Reel

micro SMD, 5 Bump Package (BPA05)

2.4	A	LP2985AIBP-2.4		250 Units on Tape and Reel
2.4	A	LP2985AIBPX-2.4		3000 Units on Tape and Reel
2.4	STD	LP2985IBP-2.4		250 Units on Tape and Reel
2.4	STD	LP2985IBPX-2.4		3000 Units on Tape and Reel
2.5	A	LP2985AIBP-2.5		250 Units on Tape and Reel
2.5	A	LP2985AIBPX-2.5		3000 Units on Tape and Reel
2.5	STD	LP2985IBP-2.5		250 Units on Tape and Reel
2.5	STD	LP2985IBPX-2.5		3000 Units on Tape and Reel
2.8	A	LP2985AIBP-2.8		250 Units on Tape and Reel
2.8	A	LP2985AIBPX-2.8		3000 Units on Tape and Reel
2.8	STD	LP2985IBP-2.8		250 Units on Tape and Reel
2.8	STD	LP2985IBPX-2.8		2500 Units on Tape and Reel
2.9	A	LP2985AIBP-2.9		3000 Units on Tape and Reel
2.9	A	LP2985AIBPX-2.9		250 Units on Tape and Reel
2.9	STD	LP2985IBP-2.9		2000 Units on Tape and Reel
2.9	STD	LP2985IBPX-2.9		3000 Units on Tape and Reel
3.0	A	LP2985AIBP-3.0		250 Units on Tape and Reel
3.0	A	LP2985AIBPX-3.0		3000 Units on Tape and Reel
3.0	STD	LP2985IBP-3.0		250 Units on Tape and Reel
3.0	STD	LP2985IBPX-3.0		
3.3	A	LP2985AIBP-3.3		

Ordering Information (Continued)
TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:
micro SMD, 5 Bump Package (BPA05)				
3.3	A	LP2985AIBPX-3.3		3000 Units on Tape and Reel
3.3	STD	LP2985IBPX-3.3		250 Units on Tape and Reel
3.3	STD	LP2985IBPX-3.3		3000 Units on Tape and Reel
3.6	A	LP2985AIBP-3.6		250 Units on Tape and Reel
3.6	A	LP2985AIBPX-3.6		3000 Units on Tape and Reel
3.6	STD	LP2985IBP-3.6		250 Units on Tape and Reel
3.6	STD	LP2985IBPX-3.6		3000 Units on Tape and Reel
4.0	A	LP2985AIBP-4.0		250 Units on Tape and Reel
4.0	A	LP2985AIBPX-4.0		2000 Units on Tape and Reel
4.0	STD	LP2985IBP-4.0		3000 Units on Tape and Reel
4.0	STD	LP2985IBPX-4.0		250 Units on Tape and Reel
5.0	A	LP2985AIBP-5.0		3000 Units on Tape and Reel
5.0	A	LP2985AIBPX-5.0		250 Units on Tape and Reel
5.0	STD	LP2985IBP-5.0		3000 Units on Tape and Reel
5.0	STD	LP2985IBPX-5.0		

LP2986

Micropower, 200 mA Ultra Low-Dropout Fixed or Adjustable Voltage Regulator

General Description

The LP2986 is a 200 mA precision LDO voltage regulator which offers the designer a higher performance version of the industry standard LP2951.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2986 delivers superior performance:
Dropout Voltage: Typically 180 mV @ 200 mA load, and 1 mV @ 1 mA load.
Ground Pin Current: Typically 1 mA @ 200 mA load, and $200 \mu \mathrm{~A} @ 10 \mathrm{~mA}$ load.
Sleep Mode: The LP2986 draws less than $1 \mu \mathrm{~A}$ quiescent current when shutdown pin is pulled low.
Error Flag: The built-in error flag goes low when the output drops approximately 5% below nominal.
Precision Output: The standard product versions available can be pin-strapped (using the internal resistive divider) to provide output voltages of $5.0 \mathrm{~V}, 3.3 \mathrm{~V}$, or 3.0 V with guaranteed accuracy of 0.5% ("A" grade) and 1% (standard grade) at room temperature.

Features

- Ultra low dropout voltage
- Guaranteed 200 mA output current
- SO-8 and mini-SO8 surface mount packages
- <1 $\mu \mathrm{A}$ quiescent current when shutdown
- Low ground pin current at all loads
- 0.5% output voltage accuracy (" A " grade)
- High peak current capability (400 mA typical)
- Wide supply voltage range (16 V max)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Camcorder, Personal Stereo, Camera

Block Diagram

Connection Diagram and Ordering Information

Surface Mount Packages:
Mini SO-8 Package Type MM: See NS Package Drawing Number MUA08A SO-8 Package Type M: See NS Package Drawing Number M08A

Top View
For ordering information, refer to Table 1 of this document.

Basic Application Circuits

* Minimum capacitance shown to assure stability, but may be increased without limit. Larger output capacitor provides improved dynamic response.
** Shutdown input must be actively terminated. Tie to $V_{I N}$ if not used.

Basic Application Circuits (Continued)

* Minimum capacitance shown to assure stability, but may be increased without limit. Larger output capacitor provides improved dynamic response.
** Shutdown input must be actively terminated. Tie to $V_{\text {IN }}$ if not used.

Ordering Information

TABLE 1. Package Marking and Ordering Information

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
5	A	LP2986AIMMX-5.0	L41A	3500 Units on Tape and Reel
5	A	LP2986AIMM-5.0	L41A	1000 Units on Tape and Reel
5	STD	LP2986IMMX-5.0	L41B	3500 Units on Tape and Reel
5	STD	LP2986IMM-5.0	L41B	1000 Units on Tape and Reel
3.3	A	LP2986AIMMX-3.3	L40A	3500 Units on Tape and Reel
3.3	A	LP2986AIMM-3.3	L40A	1000 Units on Tape and Reel
3.3	STD	LP2986IMMX-3.3	L40B	3500 Units on Tape and Reel
3.3	STD	LP2986IMM-3.3	L40B	1000 Units on Tape and Reel
3.0	A	LP2986AIMMX-3.0	L39A	3500 Units on Tape and Reel
3.0	A	LP2986AIMM-3.0	L39A	1000 Units on Tape and Reel
3.0	STD	LP2986IMMX-3.0	L39B	3500 Units on Tape and Reel
3.0	STD	LP2986IMM-3.0	L39B	1000 Units on Tape and Reel
5	A	LP2986AIMX-5.0	2986 AIM5.0	2500 Units on Tape and Reel
5	A	LP2986AIM-5.0	$2986 A I M 5.0$	Shipped in Anti-Static Rails
5	STD	LP2986IMX-5.0	2986 M5.0	2500 Units on Tape and Reel
5	STD	LP2986IM-5.0	$2986 I M 5.0$	Shipped in Anti-Static Rails
3.3	A	LP2986AIMX-3.3	$2986 A I M 3.3$	2500 Units on Tape and Reel
3.3	A	LP2986AIM-3.3	2986 AIM3.3	Shipped in Anti-Static Rails
3.3	STD	LP2986IMX-3.3	$2986 I M 3.3$	2500 Units on Tape and Reel
3.3	STD	LP2986IM-3.3	$2986 I M 3.3$	Shipped in Anti-Static Rails
3.0	A	LP2986AIMX-3.0	2986 AIM3.0	2500 Units on Tape and Reel
3.0	A	LP2986AIM-3.0	$2986 A I M 3.0$	Shipped in Anti-Static Rails
3.0	STD	LP2986IMX-3.0	$2986 I M 3.0$	2500 Units on Tape and Reel
3.0	STD	LP2986IM-3.0	$2986 I M 3.0$	Shipped in Anti-Static Rails

0

LP2987/LP2988

Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with Programmable Power-On Reset Delay; Low Noise Version Available (LP2988)

General Description

The LP2987/8 are fixed-output 200 mA precision LDO voltage regulators with power-ON reset delay which can be implemented using a single external capacitor.
The LP2988 is specifically designed for noise-critical applications. A single external capacitor connected to the Bypass pin reduces regulator output noise.
Using an optimized VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, these regulators deliver superior performance:
Dropout Voltage: 180 mV @ 200 mA load, and 1 mV @ 1 mA load (typical).
Ground Pin Current: 1 mA @ 200 mA load, and $200 \mu \mathrm{~A}$ @ 10 mA load (typical).
Sleep Mode: The LP2987/8 draws less than $2 \mu \mathrm{~A}$ quiescent current when shutdown pin is held low.
Error Flag/Reset: The error flag goes low when the output drops approximately 5% below nominal. This pin also provides a power-ON reset signal if a capacitor is connected to the DELAY pin.
Precision Output: Standard product versions of the LP2987 and LP2988 are available with output voltages of $5.0 \mathrm{~V}, 3.8 \mathrm{~V}$, $3.3 \mathrm{~V}, 3.2 \mathrm{~V}, 3.0 \mathrm{~V}$, or 2.8 V , with guaranteed accuracy of 0.5% ("A" grade) and 1\% (standard grade) at room temperature.

Features

- Ultra low dropout voltage
- Power-ON reset delay requires only one component
- Bypass pin for reduced output noise (LP2988)
- Guaranteed continuous output current 200 mA
- Guaranteed peak output current > 250 mA
- SO-8 and mini SO-8 surface mount packages
- <2 $\mu \mathrm{A}$ quiescent current when shutdown
- Low ground pin current at all loads
- 0.5% output voltage accuracy (" A " grade)
- Wide supply voltage range (16 V max)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Camcorder, Personal Stereo, Camera

Block Diagrams

Connection Diagram (LP2987)

Surface Mount Packages:

Mini SO-8 Package Type MM: See NS Package Drawing Number MUA08A SO-8 Package Type M: See NS Package Drawing Number M08A

Top View
For ordering information, refer to Table 1 in this document.

Ordering Information (LP2987)

TABLE 1. Package Marking and Ordering Information

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
5	A	LP2987AIMMX-5.0	L44A	3500 Units on Tape and Reel
5	A	LP2987AIMM-5.0	L44A	1000 Units on Tape and Reel
5	STD	LP2987IMMX-5.0	L44B	3500 Units on Tape and Reel
5	STD	LP2987IMM-5.0	L44B	1000 Units on Tape and Reel
3.8	A	LP2987AIMMX-3.8	L96A	3500 Units on Tape and Reel
3.8	A	LP2987AIMM-3.8	L96A	1000 Units on Tape and Reel
3.8	STD	LP2987IMMX-3.8	L96B	3500 Units on Tape and Reel
3.8	STD	LP2987IMM-3.8	L96B	1000 Units on Tape and Reel
3.3	A	LP2987AIMMX-3.3	L43A	3500 Units on Tape and Reel
3.3	A	LP2987AIMM-3.3	L43A	1000 Units on Tape and Reel
3.3	STD	LP2987IMMX-3.3	L43B	3500 Units on Tape and Reel
3.3	STD	LP2987IMM-3.3	L43B	1000 Units on Tape and Reel
3.2	A	LP2987AIMMX-3.2	L66A	3500 Units on Tape and Reel
3.2	A	LP2987AIMM-3.2	L66A	1000 Units on Tape and Reel
3.2	STD	LP2987IMMX-3.2	L66B	3500 Units on Tape and Reel
3.2	STD	LP2987IMM-3.2	L66B	1000 Units on Tape and Reel
3.0	A	LP2987AIMMX-3.0	L42A	3500 Units on Tape and Reel
3.0	A	LP2987AIMM-3.0	L42A	1000 Units on Tape and Reel
3.0	STD	LP2987IMMX-3.0	L42B	3500 Units on Tape and Reel
3.0	STD	LP2987IMM-3.0	L42B	1000 Units on Tape and Reel
2.8	A	LP2987AIMMX-2.8	L89A	3500 Units on Tape and Reel
2.8	A	LP2987AIMM-2.8	L89A	1000 Units on Tape and Reel
2.8	STD	LP2987IMMX-2.8	L89B	3500 Units on Tape and Reel
2.8	STD	LP2987IMM-2.8	L89B	1000 Units on Tape and Reel
5	A	LP2987AIMX-5.0	2987AIM5.0	2500 Units on Tape and Reel
5	A	LP2987AIM-5.0	2987AIM5.0	Shipped in Anti-Static Rails
5	STD	LP2987IMX-5.0	2987IM5.0	2500 Units on Tape and Reel
5	STD	LP2987IM-5.0	2987IM5.0	Shipped in Anti-Static Rails
3.8	A	LP2987AIMX-3.8	2987AIM3.8	2500 Units on Tape and Reel
3.8	A	LP2987AIM-3.8	2987AIM3.8	Shipped in Anti-Static Rails
3.8	STD	LP2987IMX-3.8	29871M3.8	2500 Units on Tape and Reel
3.8	STD	LP2987IM-3.8	2987IM3.8	Shipped in Anti-Static Rails
3.3	A	LP2987AIMX-3.3	2987AIM3.3	2500 Units on Tape and Reel
3.3	A	LP2987AIM-3.3	2987AIM3.3	Shipped in Anti-Static Rails

Ordering Information (LP2987) (Continued)
TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
3.3	STD	LP2987IMX-3.3	29871M3.3	2500 Units on Tape and Reel
3.3	STD	LP2987IM-3.3	2987IM3.3	Shipped in Anti-Static Rails
3.2	A	LP2987AIMX-3.2	2987AIM3.2	2500 Units on Tape and Reel
3.2	A	LP2987AIM-3.2	2987AIM3.2	Shipped in Anti-Static Rails
3.2	STD	LP2987IMX-3.2	29871M3.2	2500 Units on Tape and Reel
3.2	STD	LP2987AIM-3.2	2987IM3.2	Shipped in Anti-Static Rails
3.0	A	LP2987IMX-3.0	2987AIM3.0	2500 Units on Tape and Reel
3.0	A	LP2987AIM-3.0	2987AIM3.0	Shipped in Anti-Static Rails
3.0	STD	LP2987IMX-3.0	2987IM3.0	2500 Units on Tape and Reel
3.0	STD	LP2987IM-3.0	29871M3.0	Shipped in Anti-Static Rails
2.8	A	LP2987AIMX-2.8	2987AIM2.8	2500 Units on Tape and Reel
2.8	A	LP2987AIM-2.8	2987AIM2.8	Shipped in Anti-Static Rails
2.8	STD	LP2987IMX-2.8	2987IM2.8	2500 Units on Tape and Reel
2.8	STD	LP298AIM-2.8	298AIM2.8	Shipped in Anti-Static Rails

Connection Diagram (LP2988)

Surface Mount Packages:
Mini SO-8 Package Type MM: See NS Package Drawing Number MUA08A SO-8 Package Type M: See NS Package Drawing Number M08A

Top View
For ordering information, refer to Table 2 in this document.

Ordering Information (LP2988)

TABLE 2. Package Marking and Ordering Information

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
5	A	LP2988AIMMX-5.0	L51A	3500 Units on Tape and Reel
5	A	LP2988AIMM-5.0	L51A	1000 Units on Tape and Reel
5	STD	LP2988IMMX-5.0	L51B	3500 Units on Tape and Reel
5	STD	LP2988IMM-5.0	L51B	1000 Units on Tape and Reel
3.8	A	LP2988AIMMX-3.8	LOAA	3500 Units on Tape and Reel
3.8	A	LP2988AIMM-3.8	LOAA	1000 Units on Tape and Reel
3.8	STD	LP2988IMMX-3.8	LOAB	3500 Units on Tape and Reel
3.8	STD	LP2988IMM-3.8	LOAB	1000 Units on Tape and Reel
3.3	A	LP2988AIMMX-3.3	L50A	3500 Units on Tape and Reel
3.3	A	LP2988AIMM-3.3	L50A	1000 Units on Tape and Reel
3.3	STD	LP2988IMMX-3.3	L50B	3500 Units on Tape and Reel
3.3	STD	LP2988IMM-3.3	L50B	1000 Units on Tape and Reel
3.2	A	LP2988AIMMX-3.2	L67A	3500 Units on Tape and Reel
3.2	A	LP2988AIMM-3.2	L67A	1000 Units on Tape and Reel
3.2	STD	LP2988IMMX-3.2	L67B	3500 Units on Tape and Reel
3.2	STD	LP2988IMM-3.2	L67B	1000 Units on Tape and Reel
3.0	A	LP2988AIMMX-3.0	L49A	3500 Units on Tape and Reel
3.0	A	LP2988AIMM-3.0	L49A	1000 Units on Tape and Reel
3.0	STD	LP2988IMMX-3.0	L49B	3500 Units on Tape and Reel
3.0	STD	LP2988IMM-3.0	L49B	1000 Units on Tape and Reel
2.8	A	LP2988AIMMX-2.8	LOIA	3500 Units on Tape and Reel
2.8	A	LP2988AIMM-2.8	LOIA	1000 Units on Tape and Reel
2.8	STD	LP2988IMMX-2.8	LOIB	3500 Units on Tape and Reel
2.8	STD	LP2988IMM-2.8	LOIB	1000 Units on Tape and Reel
5	A	LP2988AIMX-5.0	2988AIM5.0	2500 Units on Tape and Reel
5	A	LP2988AIM-5.0	2988AIM5.0	Shipped in Anti-Static Rails
5	STD	LP2988IMX-5.0	2988IM5.0	2500 Units on Tape and Reel
5	STD	LP2988IM-5.0	2988IM5.0	Shipped in Anti-Static Rails
3.8	A	LP2988AIMX-3.8	2988AIM3.8	2500 Units on Tape and Reel
3.8	A	LP2988AIM-3.8	2988AIM3.8	Shipped in Anti-Static Rails
3.8	STD	LP2988IMX-3.8	2988IM3.8	2500 Units on Tape and Reel
3.8	STD	LP2988IM-3.8	29881M3.8	Shipped in Anti-Static Rails
3.3	A	LP2988AIMX-3.3	2988AIM3.3	2500 Units on Tape and Reel
3.3	A	LP2988AIM-3.3	2988AIM3.3	Shipped in Anti-Static Rails

Ordering Information (LP2988) (Continued)
TABLE 2. Package Marking and Ordering Information (Continued)

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
3.3	STD	LP2988IMX-3.3	2988IM3.3	2.5k Units on Tape and Reel
3.3	STD	LP2988IM-3.3	2988IM3.3	Shipped in Anti-Static Rails
3.2	A	LP2988AIMX-3.2	2988AIM3.2	2500 Units on Tape and Reel
3.2	A	LP2988AIM-3.2	2988AIM3.2	Shipped in Anti-Static Rails
3.2	STD	LP2988IMX-3.2	2988IM3.2	2500 Units on Tape and Reel
3.2	STD	LP2988IM-3.2	2988IM3.2	Shipped in Anti-Static Rails
3.0	A	LP2988AIMX-3.0	2988AIM3.0	2500 Units on Tape and Reel
3.0	A	LP2988AIM-3.0	2988AIM3.0	Shipped in Anti-Static Rails
3.0	STD	LP2988IMX-3.0	2988IM3.0	2500 Units on Tape and Reel
3.0	STD	LP2988IM-3.0	2988IM3.0	Shipped in Anti-Static Rails
2.8	A	LP2988AIMX-2.8	2988AIM2.8	2500 Units on Tape and Reel
2.8	A	LP2988AIM-2.8	2988AIM2.8	Shipped in Anti-Static Rails
2.8	STD	LP2988IMX-2.8	2988IM2.8	2500 Units on Tape and Reel
2.8	STD	LP2988IM-2.8	2988IM2.8	Shipped in Anti-Static Rails

LP2989

Micropower/Low Noise, 500 mA Ultra Low-Dropout Regulator
For Use with Ceramic Output Capacitors

General Description

The LP2989 is a fixed-output 500 mA precision LDO regulator designed for use with ceramic output capacitors.
Output noise can be reduced to $18 \mu \mathrm{~V}$ (typical) by connecting an external 10 nF capacitor to the bypass pin.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2989 delivers superior performance:
Dropout Voltage: Typically 310 mV @ 500 mA load, and 1 mV @ $100 \mu \mathrm{~A}$ load.
Ground Pin Current: Typically $3 \mathrm{~mA} @ 500 \mathrm{~mA}$ load, and $110 \mu \mathrm{~A} @ 100 \mu \mathrm{~A}$ load.
Sleep Mode: The LP2989 draws less than $0.8 \mu \mathrm{~A}$ quiescent current when shutdown pin is pulled low.
Error Flag: The built-in error flag goes low when the output drops approximately 5% below nominal.
Precision Output: Guaranteed output voltage accuracy is 0.75% ("A" grade) and 1.25% (standard grade) at room temperature.

Features

- Ultra low dropout voltage
- Guaranteed 500 mA continuous output current
- Very low output noise with external capacitor
- SO-8 surface mount package
- $<0.8 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all loads
- 0.75% output voltage accuracy ("A" grade)
- High peak current capability (800 mA typical)
- Wide supply voltage range (16 V max)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Notebook/Desktop PC
- PDA/Palmtop Computer
- Wireless Communication Terminals
- SMPS Post-Regulator

Block Diagram

Connection Diagram

Surface Mount Packages:
SO-8 Package Type M: See NS Package Drawing Number M08A

Ordering Information

TABLE 1. Package Marking and Ordering Information for SO-8 (M) Devices

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
2.5	A	LP2989AIMX-2.5	2989 AIM2.5	2500 Units on Tape and Reel
2.5	A	LP2989AIM-2.5	2989 AIM2.5	Shipped in Anti-Static Rails
2.5	STD	LP2989IMX-2.5	2989 IM2.5	2500 Units on Tape and Reel
2.5	STD	LP2989IM-2.5	$29891 M 2.5$	Shipped in Anti-Static Rails
3.3	A	LP2989AIMX-3.3	2989 AIM3.3	2500 Units on Tape and Reel
3.3	A	LP2989AIM-3.3	2989 AIM3.3	Shipped in Anti-Static Rails
3.3	STD	LP2989IMX-3.3	$29891 M 3.3$	2500 Units on Tape and Reel
3.3	STD	LP2989IM-3.3	29891 M3.3	Shipped in Anti-Static Rails

Basic Application Circuit

*Capacitance values shown are minimum required to assure stability, but may be increased without limit. Larger output capacitor provides improved dynamic response.
**Shutdown must be actively terminated (see App. Hints). Tie to INPUT (Pin4) if not used.

LP2989LV

Micropower 500 mA Low Noise Low Dropout Regulator for Applications with Output Voltages < 2V Designed for Use with Very Low ESR Output Capacitors

General Description

The LP2989LV is a 500 mA fixed-output voltage regulator designed to provide high performance and low noise in applications requiring output voltages $<2 \mathrm{~V}$.
Output noise can be reduced to $18 \mu \mathrm{~V}$ (typical) by connecting an external 10 nF capacitor to the bypass pin.
Using an optimized VIP ${ }^{\text {TM }}$ (Vertically Integrated PNP) process, the LP2989LV delivers superior performance:
Ground Pin Current: Typically $3 \mathrm{~mA} @ 500 \mathrm{~mA}$ load, and $110 \mu \mathrm{~A}$ @ $100 \mu \mathrm{~A}$ load.
Sleep Mode: The LP2989LV draws less than $0.8 \mu \mathrm{~A}$ quiescent current when shutdown pin is pulled low.
Error Flag: The built-in error flag goes low when the output drops approximately 5% below nominal.
Precision Output: Guaranteed output voltage accuracy is 0.75% ("A" grade) and 1.25\% (standard grade) at room temperature.

Features

- Ultra low dropout voltage
- Guaranteed 500 mA continuous output current
- Very low output noise with external capacitor
- SO-8 surface mount package
- $<0.8 \mu \mathrm{~A}$ quiescent current when shutdown
- Low ground pin current at all loads
- 0.75% output voltage accuracy (" A " grade)
- High peak current capability (800 mA typical)
- Wide supply voltage range (16 V max)
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Notebook/Desktop PC
- PDA/Palmtop Computer
- Wireless Communication Terminals
- SMPS Post-Regulator

Block Diagram

Connection Diagram

Surface Mount Packages:

SO-8 Package Type M: See NS Package Drawing Number M08A

Ordering Information

TABLE 1. Package Marking and Ordering Information for SO-8 (M) Devices

Output Voltage	Grade	Order Information	Package Marking	Supplied as:
1.8	A	LP2989AIMX-1.8	$2989 A I M 1.8$	2500 Units on Tape and Reel
1.8	A	LP2989AIM-1.8	$2989 A I M 1.8$	Shipped in Anti-Static Rails
1.8	STD	LP2989IMX-1.8	$2989 I M 1.8$	2500 Units on Tape and Reel
1.8	STD	LP298IM-1.8	$2989 I M 1.8$	Shipped in Anti-Static Rails

For output voltages $\geq 2 \mathrm{~V}$, see LP2989 datasheet.

Basic Application Circuit

*Capacitance values shown are minimum required to assure stability, but may be increased without limit. Larger output capacitor provides improved dynamic response.
**Shutdown must be actively terminated (see App. Hints). Tie to INPUT (Pin4) if not used.

LP3961/LP3964

800mA Fast Ultra Low Dropout Linear Regulators

General Description

The LP3961/LP3964 series of fast ultra low-dropout linear regulators operate from $\mathrm{a}+2.5 \mathrm{~V}$ to +7.0 V input supply. Wide range of preset output voltage options are available. These ultra low dropout linear regulators respond very fast to step changes in load which makes them suitable for low voltage microprocessor applications. The LP3961/LP3964 are developed on a CMOS process which allows low quiescent current operation independent of output load current. This CMOS process also allows the LP3961/LP3964 to operate under extremely low dropout conditions.
Dropout Voltage: Ultra low dropout voltage; typically 24 mV at 80 mA load current and 240 mV at 800 mA load current.

Ground Pin Current: Typically 4 mA at 800 mA load current.
Shutdown Mode: Typically $15 \mu \mathrm{~A}$ quiescent current when the shutdown pin is pulled low.
$\overline{\text { Error }}$ Flag: $\overline{\text { Error }}$ flag goes low when the output voltage drops 10% below nominal value (for LP3961).
SENSE: Sense pin improves regulation at remote loads. (For LP3964)
Precision Output Voltage: Multiple output voltage options are available ranging from 1.2 V to 5.0 V and adjustable, with a guaranteed accuracy of $\pm 1.5 \%$ at room temperature, and $\pm 3.0 \%$ over all conditions (varying line, load, and temperature).

Features

- Ultra low dropout voltage
- Low ground pin current
- Load regulation of 0.02%
- $15 \mu \mathrm{~A}$ quiescent current in shutdown mode
- Guaranteed output current of 0.8A DC
- Available in SOT-223,TO-263 and TO-220 packages
- Output voltage accuracy $\pm 1.5 \%$
- Error flag indicates output status (LP3961)
- Sense option improves better load regulation (LP3964)
- Extremely low output capacitor requirements
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Microprocessor power supplies
- GTL, GTL+, BTL, and SSTL bus terminators
- Power supplies for DSPs
- SCSI terminator
- Post regulators
- High efficiency linear regulators
- Battery chargers
- Other battery powered applications

Typical Application Circuits

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.
$* \overline{S D}$ and $\overline{\mathrm{ERROR}}$ pins must be pulled high through a $10 \mathrm{k} \Omega$ pull-up resistor. Connect the $\overline{\mathrm{ERROR}}$ pin to ground if this function is not used. See applications section for more information.

Typical Application Circuits (Continued)

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.
$* \overline{\text { SD }}$ and $\overline{E R R O R}$ pins must be pulled high through a $10 \mathrm{k} \Omega$ pull-up resistor. Connect the $\overline{\operatorname{ERROR}}$ pin to ground if this function is not used. See applications section for more information.

Block Diagram LP3961

Block Diagram LP3964

Block Diagram LP3964-ADJ

Connection Diagrams

Top View
SOT 223-5 Package

Connection Diagrams (Continued)

Top View
TO220-5 Package
Bent, Staggered Leads

Top View
TO263-5 Package

Pin Description for SOT223-5 Package

Pin \#	LP3961		LP3964	
	Name	Function	Name	Function
1	$\overline{\mathrm{SD}}$	Shutdown	$\overline{\mathrm{SD}}$	Shutdown
2	$\mathrm{~V}_{\text {IN }}$	Input Supply	$\mathrm{V}_{\text {IN }}$	Input Supply
3	$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {OUT }}$	Output Voltage
4	$\overline{\text { ERROR }}$	$\overline{\text { ERROR Flag }}$	SENSE/ADJ	Remote Sense Pin or output Adjust Pin
5	GND	Ground	GND	Ground

Pin Description for TO220-5 and TO263-5 Packages

Pin \#	LP3961			LP3964
	Name	Function	Name	Function
1	$\overline{\mathrm{SD}}$	Shutdown	$\overline{\mathrm{SD}}$	Shutdown
2	$\mathrm{~V}_{\text {IN }}$	Input Supply	$\mathrm{V}_{\text {IN }}$	Input Supply
3	GND	Ground	GND	Ground
4	$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {OUT }}$	Output Voltage
5	$\overline{\text { ERROR }}$	ERROR Flag	SENSE/ADJ	Remote Sense Pin or output Adjust Pin

Ordering Information

Package Type Designator is "MP" for SOT223 package, " T " for TO220 package, and " S " for TO263 package.
TABLE 1. Package Marking and Ordering Information

Output Voltage	Order Number	Description (Current, Option)	Package Type	Package Marking	Supplied As:
5.0	LP3961EMP-5.0	800mA, E- $\overline{\text { rror }}$ Flag	SOT223-5	LBSB	1000 units on Tape and Reel
5.0	LP3961EMPX-5.0	800mA, E-Eror Flag	SOT223-5	LBSB	2000 units on Tape and Reel
3.3	LP3961EMP-3.3	800mA, Error Flag	SOT223-5	LAZB	1000 units on Tape and Reel
3.3	LP3961EMPX-3.3	800mA, E- $\overline{\text { Error }}$ Flag	SOT223-5	LAZB	2000 units on Tape and Reel
2.5	LP3961EMP-2.5	800mA, Error Flag	SOT223-5	LBBB	1000 units on Tape and Reel
2.5	LP3961EMPX-2.5	800mA, Error Flag	SOT223-5	LBBB	2000 units on Tape and Reel
1.8	LP3961EMP-1.8	800mA, Error Flag	SOT223-5	LBAB	1000 units on Tape and Reel
1.8	LP3961EMPX-1.8	800mA, Error Flag	SOT223-5	LBAB	2000 units on Tape and Reel
5.0	LP3964EMP-5.0	800mA, SENSE	SOT223-5	LBUB	1000 units on Tape and Reel
5.0	LP3964EMPX-5.0	800mA, SENSE	SOT223-5	LBUB	2000 units on Tape and Reel
3.3	LP3964EMP-3.3	800mA, SENSE	SOT223-5	LBJB	1000 units on Tape and Reel
3.3	LP3964EMPX-3.3	800mA, SENSE	SOT223-5	LBJB	2000 units on Tape and Reel
2.5	LP3964EMP-2.5	800mA, SENSE	SOT223-5	LBHB	1000 units on Tape and Reel
2.5	LP3964EMPX-2.5	800mA, SENSE	SOT223-5	LBHB	2000 units on Tape and Reel
1.8	LP3964EMP-1.8	800mA, SENSE	SOT223-5	LBFB	1000 units on Tape and Reel
1.8	LP3964EMPX-1.8	800mA, SENSE	SOT223-5	LBFB	2000 units on Tape and Reel
ADJ	LP3964EMP-ADJ	800mA, ADJ	SOT223-5	LBPB	1000 units on Tape and Reel

Ordering Information (Continued)
TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage	Order Number	Description (Current, Option)	Package Type	Package Marking	Supplied As:
ADJ	LP3964EMPX-ADJ	800mA, ADJ	SOT223-5	LBPB	2000 units on Tape and Reel
5.0	LP3961ES-5.0	800mA, Error Flag	TO263-5	LP3961ES-5.0	Rail
5.0	LP3961ESX-5.0	800mA, Error Flag	TO263-5	LP3961ESX-5.0	Tape and Reel
3.3	LP3961ES-3.3	800mA, Ērror Flag	TO263-5	LP3961ES-3.3	Rail
3.3	LP3961ESX-3.3	800mA, Error Flag	TO263-5	LP3961ES-3.3	Tape and Reel
2.5	LP3961ES-2.5	800mA, Error Flag	TO263-5	LP3961ES-2.5	Rail
2.5	LP3961ESX-2.5	800mA, Error Flag	TO263-5	LP3961ES-2.5	Tape and Reel
1.8	LP3961ES-1.8	800mA, Error Flag	TO263-5	LP3961ES-1.8	Rail
1.8	LP3961ESX-1.8	800mA, Error Flag	TO263-5	LP3961ES-1.8	Tape and Reel
5.0	LP3964ES-5.0	800mA, SENSE	TO263-5	LP3964ES-5.0	Rail
5.0	LP3964ESX-5.0	800mA, SENSE	TO263-5	LP3964ES-5.0	Tape and Reel
3.3	LP3964ES-3.3	800mA, SENSE	TO263-5	LP3964ES-3.3	Rail
3.3	LP3964ESX-3.3	800mA, SENSE	TO263-5	LP3964ES-3.3	Tape and Reel
2.5	LP3964ES-2.5	800 mA , SENSE	TO263-5	LP3964ES-2.5	Rail
2.5	LP3964ESX-2.5	800 mA , SENSE	T0263-5	LP3964ES-2.5	Tape and Reel
1.8	LP3964ES-1.8	800 mA , SENSE	TO263-5	LP3964ES-1.8	Rail
1.8	LP3964ESX-1.8	800 mA , SENSE	TO263-5	LP3964ES-1.8	Tape and Reel
ADJ	LP3964ES-ADJ	800 mA , ADJ	TO263-5	LP3964ES-ADJ	Rail
ADJ	LP3964ESX-ADJ	800 mA , ADJ	TO263-5	LP3964ES-ADJ	Tape and Reel
5.0	LP3961ET-5.0	800mA, E- $\overline{\text { rror }}$ Flag	TO220-5	LP3961ET-5.0	Rail
3.3	LP3961ET-3.3	800 mA , Error Flag	TO220-5	LP3961ET-3.3	Rail
2.5	LP3961ET-2.5	800mA, Error Flag	TO220-5	LP3961ET-2.5	Rail
1.8	LP3961ET-1.8	800mA, Error Flag	TO220-5	LP3961ET-1.8	Rail
5.0	LP3964ET-5.0	800 mA , SENSE	TO220-5	LP3964ET-5.0	Rail
3.3	LP3964ET-3.3	800 mA , SENSE	TO220-5	LP3964ET-3.3	Rail
2.5	LP3964ET-2.5	800 mA , SENSE	TO220-5	LP3964ET-2.5	Rail
1.8	LP3964ET-1.8	800mA, SENSE	TO220-5	LP3964ET-1.8	Rail
ADJ	LP3964ET-ADJ	800mA, ADJ	TO220-5	LP3964ET-ADJ	Rail

LP3962/LP3965

1.5A Fast Ultra Low Dropout Linear Regulators

General Description

The LP3962/LP3965 series of fast ultra low-dropout linear regulators operate from $\mathrm{a}+2.5 \mathrm{~V}$ to +7.0 V input supply. Wide range of preset output voltage options are available. These ultra low dropout linear regulators respond very fast to step changes in load which makes them suitable for low voltage microprocessor applications. The LP3962/LP3965 are developed on a CMOS process which allows low quiescent current operation independent of output load current. This CMOS process also allows the LP3962/LP3965 to operate under extremely low dropout conditions.
Dropout Voltage: Ultra low dropout voltage; typically 38 mV at 150 mA load current and 380 mV at 1.5 A load current.
Ground Pin Current: Typically 5mA at 1.5A load current.
Shutdown Mode: Typically $15 \mu \mathrm{~A}$ quiescent current when the shutdown pin is pulled low.
Error Flag: $\overline{\text { Error }}$ flag goes low when the output voltage drops 10% below nominal value (for LP3962).
SENSE: Sense pin improves regulation at remote loads. (For LP3965)
Precision Output Voltage: Multiple output voltage options are available ranging from 1.2 V to 5.0 V and adjustable, with a guaranteed accuracy of $\pm 1.5 \%$ at room temperature, and $\pm 3.0 \%$ over all conditions (varying line, load, and temperature).

Features

- Ultra low dropout voltage
- Low ground pin current
- Load regulation of 0.04%
- $15 \mu \mathrm{~A}$ quiescent current in shutdown mode
- Guaranteed output current of 1.5A DC
- Available in SOT-223,TO-263 and TO-220 packages
- Output voltage accuracy $\pm 1.5 \%$
- Error flag indicates output status (LP3962)
- Sense option improves better load regulation (LP3965)
- Extremely low output capacitor requirements
- Overtemperature/overcurrent protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Microprocessor power supplies
- GTL, GTL+, BTL, and SSTL bus terminators
- Power supplies for DSPs
- SCSI terminator
- Post regulators
- High efficiency linear regulators
- Battery chargers
- Other battery powered applications

Typical Application Circuits

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.

* $\overline{\text { SD }}$ and $\overline{\mathrm{ERROR}}$ pins must be pulled high through a $10 \mathrm{k} \Omega$ pull-up resistor. Connect the $\overline{\mathrm{ERROR}}$ pin to ground if this function is not used. See applications section for more information.

Typical Application Circuits (Continued)

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.

* $\overline{\text { SD }}$ and $\overline{\text { ERROR }}$ pins must be pulled high through a $10 \mathrm{k} \Omega$ pull-up resistor. Connect the $\overline{\mathrm{ERROR}}$ pin to ground if this function is not used. See applications section for more information.

Block Diagram LP3962

Block Diagram LP3965

Block Diagram LP3965-ADJ

Connection Diagrams

Top View
SOT 223-5 Package

Connection Diagrams (Continued)

Top View
TO263-5 Package

Pin Description for SOT223-5 Package

Pin \#	LP3962		LP3965	
	Name	Function	Name	Function
1	$\overline{\text { SD }}$	Shutdown	$\overline{\mathrm{SD}}$	Shutdown
2	$\mathrm{~V}_{\text {IN }}$	Input Supply	$\mathrm{V}_{\text {IN }}$	Input Supply
3	$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {OUT }}$	Output Voltage
4	ERROR	ERROR Flag	SENSE/ADJ	Remote Sense Pin or Output Adjust Pin
5	GND	Ground	GND	Ground

Pin Description for TO220-5 and TO263-5 Packages

Pin \#	LP3962		LP3965	
	Name	Function	Name	Function
1	$\overline{\mathrm{SD}}$	Shutdown	$\overline{\mathrm{SD}}$	Shutdown
2	$\mathrm{~V}_{\text {IN }}$	Input Supply	$\mathrm{V}_{\text {IN }}$	Input Supply
3	GND	Ground	GND	Ground
4	$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {OUT }}$	Output Voltage
5	ERROR	ERROR Flag	SENSE/ADJ	Remote Sense Pin or Output Adjust Pin

Ordering Information

Order Number - $\overline{\mathrm{LP}} \overline{3962} \overline{\mathrm{EMP}}-\overline{2.5}$ for 1 k units on tape and reel

Package Type Designator is "MP" for SOT223 package, " T " for TO220 package, and "S" for TO263 package.
TABLE 1. Package Marking and Ordering Information

Output Voltage	Order Number	Description (Current, Option)	Package Type	Package Marking	Supplied As:
5.0	LP3962EMP-5.0	1.5A, Error Flag	SOT223-5	LBTB	1000 units on Tape and Reel
5.0	LP3962EMPX-5.0	1.5A, Error Flag	SOT223-5	LBTB	2000 units on Tape and Reel
3.3	LP3962EMP-3.3	1.5A, Error Flag	SOT223-5	LBEB	1000 units on Tape and Reel
3.3	LP3962EMPX-3.3	1.5A, Ėrror Flag	SOT223-5	LBEB	2000 units on Tape and Reel
2.5	LP3962EMP-2.5	1.5A, Error Flag	SOT223-5	LBDB	1000 units on Tape and Reel
2.5	LP3962EMPX-2.5	1.5A, Ėrror Flag	SOT223-5	LBDB	2000 units on Tape and Reel
1.8	LP3962EMP-1.8	1.5A, E-Eror Flag	SOT223-5	LBCB	1000 units on Tape and Reel
1.8	LP3962EMPX-1.8	1.5A, Error Flag	SOT223-5	LBCB	2000 units on Tape and Reel
5.0	LP3965EMP-5.0	1.5A, SENSE	SOT223-5	LBVB	1000 units on Tape and Reel
5.0	LP3965EMPX-5.0	1.5A, SENSE	SOT223-5	LBVB	2000 units on Tape and Reel
3.3	LP3965EMP-3.3	1.5A, SENSE	SOT223-5	LBNB	1000 units on Tape and Reel
3.3	LP3965EMPX-3.3	1.5A, SENSE	SOT223-5	LBNB	2000 units on Tape and Reel
2.5	LP3965EMP-2.5	1.5A, SENSE	SOT223-5	LBLB	1000 units on Tape and Reel
2.5	LP3965EMPX-2.5	1.5A, SENSE	SOT223-5	LBLB	2000 units on Tape and Reel
1.8	LP3965EMP-1.8	1.5A, SENSE	SOT223-5	LBKB	1000 units on Tape and Reel
1.8	LP3965EMPX-1.8	1.5A, SENSE	SOT223-5	LBKB	2000 units on Tape and Reel
ADJ	LP3965EMP-ADJ	1.5A, ADJ	SOT223-5	LBRB	1000 units on Tape and Reel

Ordering Information (Continued)

TABLE 1. Package Marking and Ordering Information (Continued)

Output Voltage	Order Number	Description (Current, Option)	Package Type	Package Marking	Supplied As:
ADJ	LP3965EMPX-ADJ	1.5A, ADJ	SOT223-5	LBRB	2000 units on Tape and Reel
5.0	LP3962ES-5.0	1.5A, Ėror Flag	TO263-5	LP3962ES-5.0	Rail
5.0	LP3962ESX-5.0	1.5A, Error Flag	TO263-5	LP3962ESX-5.0	Tape and Reel
3.3	LP3962ES-3.3	1.5A, Ėror Flag	TO263-5	LP3962ES-3.3	Rail
3.3	LP3962ESX-3.3	1.5A, Error Flag	TO263-5	LP3962ES-3.3	Tape and Reel
2.5	LP3962ES-2.5	1.5A, Error Flag	TO263-5	LP3962ES-2.5	Rail
2.5	LP3962ESX-2.5	1.5A, Error Flag	TO263-5	LP3962ES-2.5	Tape and Reel
1.8	LP3962ES-1.8	1.5A, E-	TO263-5	LP3962ES-1.8	Rail
1.8	LP3962ESX-1.8	1.5A, Error Flag	TO263-5	LP3962ES-1.8	Tape and Reel
5.0	LP3965ES-5.0	1.5A, SENSE	TO263-5	LP3965ES-5.0	Rail
5.0	LP3965ESX-5.0	1.5A, SENSE	TO263-5	LP3965ES-5.0	Tape and Reel
3.3	LP3965ES-3.3	1.5A, SENSE	TO263-5	LP3965ES-3.3	Rail
3.3	LP3965ESX-3.3	1.5A, SENSE	TO263-5	LP3965ES-3.3	Tape and Reel
2.5	LP3965ES-2.5	1.5A, SENSE	TO263-5	LP3965ES-2.5	Rail
2.5	LP3965ESX-2.5	1.5A, SENSE	TO263-5	LP3965ES-2.5	Tape and Reel
1.8	LP3965ES-1.8	1.5A, SENSE	TO263-5	LP3965ES-1.8	Rail
1.8	LP3965ESX-1.8	1.5A, SENSE	TO263-5	LP3965ES-1.8	Tape and Reel
ADJ	LP3965ES-ADJ	1.5A, ADJ	TO263-5	LP3965ES-ADJ	Rail
ADJ	LP3965ESX-ADJ	1.5A, ADJ	TO263-5	LP3965ES-ADJ	Tape and Reel
5.0	LP3962ET-5.0	1.5A, Error Flag	TO220-5	LP3962ET-5.0	Rail
3.3	LP3962ET-3.3	1.5A, Error Flag	TO220-5	LP3962ET-3.3	Rail
2.5	LP3962ET-2.5	1.5A, Error Flag	TO220-5	LP3962ET-2.5	Rail
1.8	LP3962ET-1.8	1.5A, Error Flag	TO220-5	LP3962ET-1.8	Rail
5.0	LP3965ET-5.0	1.5A, SENSE	TO220-5	LP3965ET-5.0	Rail
3.3	LP3965ET-3.3	1.5A, SENSE	TO220-5	LP3965ET-3.3	Rail
2.5	LP3965ET-2.5	1.5A, SENSE	TO220-5	LP3965ET-2.5	Rail
1.8	LP3965ET-1.8	1.5A, SENSE	TO220-5	LP3965ET-1.8	Rail
ADJ	LP3965ET-ADJ	1.5A, ADJ	TO220-5	LP3965ET-ADJ	Rail

National Semiconductor

LP3963/LP3966

3A Fast Ultra Low Dropout Linear Regulators

General Description

The LP3963/LP3966 series of fast ultra low-dropout linear regulators operate from $\mathrm{a}+2.5 \mathrm{~V}$ to +7.0 V input supply. Wide range of preset output voltage options are available. These ultra low dropout linear regulators respond very fast to step changes in load which makes them suitable for low voltage microprocessor applications. The LP3963/LP3966 are developed on a CMOS process which allows low quiescent current operation independent of output load current.This CMOS process also allows the LP3963/LP3966 to operate under extremely low dropout conditions.
Dropout Voltage: Ultra low dropout voltage; typically 80 mV at 300 mA load current and 800 mV at 3 A load current.

Ground Pin Current: Typically 6mA at 3A load current.
Shutdown Mode: Typically $15 \mu \mathrm{~A}$ quiescent current when the shutdown pin is pulled low.
Error Flag: Error flag goes low when the output voltage drops 10\% below nominal value (for LP3963).
SENSE: Sense pin improves regulation at remote loads. (For LP3966)
Precision Output Voltage: Multiple output voltage options are available ranging from 1.2 V to 5.0 V and adjustable, with a guaranteed accuracy of $\pm 1.5 \%$ at room temperature, and $\pm 3.0 \%$ over all conditions (varying line, load, and temperature).

Typical Application Circuits

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.

* $\overline{S D}$ and $\overline{E R R O R}$ pins must be pulled high through a $10 k \Omega$ pull-up resistor. Connect the $\overline{E R R O R}$ pin to ground if this function is not used. See applications section for more information.

Typical Application Circuits (Continued)

\# Minimum output capacitance is $10 \mu \mathrm{~F}$ to ensure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin.
$* \overline{S D}$ and $\overline{E R R O R}$ pins must be pulled high through a $10 \mathrm{k} \Omega$ pull-up resistor. Connect the $\overline{\operatorname{ERROR}}$ pin to ground if this function is not used. See applications section for more information.

Block Diagram LP3963

Block Diagram LP3966

Block Diagram LP3966-ADJ

Connection Diagrams

Connection Diagrams (Continued)

Pin Description for TO220-5 and TO263-5 Packages

Pin \#	LP3963		LP3966	
	Name	Function	Name	Function
1	$\overline{\mathrm{SD}}$	Shutdown	$\overline{\mathrm{SD}}$	Shutdown
2	$\mathrm{~V}_{\text {IN }}$	Input Supply	$\mathrm{V}_{\text {IN }}$	Input Supply
3	GND	Ground	GND	Ground
4	$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {OUT }}$	Output Voltage
5	$\overline{\text { ERROR }}$	$\overline{\text { ERROR Flag }}$	SENSE/ADJ	Remote Sense Pin/Output Adjust Pin

Ordering Information

Package Type Designator is " T " for TO220 package, and " S " for TO263 package.

Ordering Information (Continued)

TABLE 1. Package Marking and Ordering Information

Output Voltage	Order Number	Description (Current, Option)	Package Type	Package Marking	Supplied As:
5.0	LP3963ES-5.0	3A, Error Flag	TO263-5	LP3963ES-5.0	Rail
5.0	LP3963ESX-5.0	3A, Error Flag	TO263-5	LP3963ESX-5.0	Tape and Reel
3.3	LP3963ES-3.3	3A, Error Flag	TO263-5	LP3963ES-3.3	Rail
3.3	LP3963ESX-3.3	3A, Error Flag	TO263-5	LP3963ES-3.3	Tape and Reel
2.5	LP3963ES-2.5	3A, Error Flag	TO263-5	LP3963ES-2.5	Rail
2.5	LP3963ESX-2.5	3A, Error Flag	TO263-5	LP3963ES-2.5	Tape and Reel
1.8	LP3963ES-1.8	3A, Error Flag	TO263-5	LP3963ES-1.8	Rail
1.8	LP3963ESX-1.8	3A, Error Flag	TO263-5	LP3963ES-1.8	Tape and Reel
5.0	LP3966ES-5.0	3A, SENSE	TO263-5	LP3966ES-5.0	Rail
5.0	LP3966ESX-5.0	3A, SENSE	TO263-5	LP3966ESX-5.0	Tape and Reel
3.3	LP3966ES-3.3	3A, SENSE	TO263-5	LP3966ES-3.3	Rail
3.3	LP3966ESX-3.3	3A, SENSE	TO263-5	LP3966ES-3.3	Tape and Reel
2.5	LP3966ES-2.5	3A, SENSE	TO263-5	LP3966ES-2.5	Rail
2.5	LP3966ESX-2.5	3A, SENSE	TO263-5	LP3966ES-2.5	Tape and Reel
1.8	LP3966ES-1.8	3A, SENSE	TO263-5	LP3966ES-1.8	Rail
1.8	LP3966ESX-1.8	3A, SENSE	TO263-5	LP3966ES-1.8	Tape and Reel
ADJ	LP3966ES-ADJ	3A, ADJ	TO263-5	LP3966ES-ADJ	Rail
ADJ	LP3966ESX-ADJ	3A, ADJ	TO263-5	LP3966ES-ADJ	Tape and Reel
5.0	LP3963ET-5.0	3A, Error Flag	TO220-5	LP3963ET-5.0	Rail
3.3	LP3963ET-3.3	3A, Error Flag	TO220-5	LP3963ET-3.3	Rail
2.5	LP3963ET-2.5	3A, Error Flag	TO220-5	LP3963ET-2.5	Rail
1.8	LP3963ET-1.8	3A, Error Flag	TO220-5	LP3963ET-1.8	Rail
5.0	LP3966ET-5.0	3A, SENSE	TO220-5	LP3966ET-5.0	Rail
3.3	LP3966ET-3.3	3A, SENSE	TO220-5	LP3966ET-3.3	Rail
2.5	LP3966ET-2.5	3A, SENSE	TO220-5	LP3966ET-2.5	Rail
1.8	LP3966ET-1.8	3A, SENSE	TO220-5	LP3966ET-1.8	Rail
ADJ	LP3966ET-ADJ	3A, ADJ	TO220-5	LP3966ET-ADJ	Rail

0

Section 18 Voltage Regulators - Switching and SIMPLE SWITCHER ${ }^{\circledR}$

Section 18 Contents
Switching Regulators Selection Guide 18-4
Switching Regulators Definition Of Terms 18-7
LM1575/LM2575/LM2575HV Series SIMPLE SWITCHER® 1A Step-Down Voltage Regulator 18-9
LM1577/LM2577 SIMPLE SWITCHER ${ }^{\circledR}$ Step-Up Voltage Regulator 18-12
LM2524D/LM3524D Regulating Pulse Width Modulator. 18-13
LM2574/LM2574HV SIMPLE SWITCHER ${ }^{\circledR}$ 0.5A Step-Down Voltage Regulator 18-14
LM2576/LM2576HV Series SIMPLE SWITCHER® ${ }^{\circledR}$ 3A Step-Down Voltage Regulator 18-16
LM2578A/LM3578A Switching Regulator 18-18
LM2585 SIMPLE SWITCHER ${ }^{\circledR}$ 3A Flyback Regulator 18-19
LM2586 SIMPLE SWITCHER ${ }^{\circledR}$ 3A Flyback Regulator with Shutdown 18-20
LM2587 SIMPLE SWITCHER ${ }^{\circledR}$ 5A Flyback Regulator 18-22
LM2588 SIMPLE SWITCHER ${ }^{\circledR}$ 5A Flyback Regulator with Shutdown 18-23
LM2594/LM2594HV SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 0.5A Step-Down Voltage Regulator 18-25
LM2595 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 1A Step-Down Voltage Regulator 18-27
LM2596 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 3A Step-Down Voltage Regulator 18-29
LM2597/LM2597HV SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 0.5A Step-Down Voltage Regulator, with Features 18-31
LM2598 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 1A Step-Down Voltage Regulator, with Features 18-32
LM2599 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 3A Step-Down Voltage Regulator, with Features 18-34
LM2621 Low Input Voltage, Step-Up DC-DC Converter. 18-35
LM2636 5-Bit Programmable Synchronous Buck Regulator Controller 18-37
LM2637 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers 18-40
LM2638 Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers 18-41
LM2639 5-Bit Programmable, High Frequency Multi-phase PWM Controller 18-42
LM2640 Dual Adjustable Step-Down Switching Power Supply Controller 18-43
LM2641 Dual Adjustable Step-Down Switching Power Supply Controller 18-47
LM2650 Synchronous Step-Down DC/DC Converter 18-51
LM2651 1.5A High Efficiency Synchronous Switching Regulator 18-53
LM2653 1.5A High Efficiency Synchronous Switching Regulator 18-55
LM2655 2.5A High Efficiency Synchronous Switching Regulator 18-56
LM2670 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator with Sync 18-59
LM2671 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 500mA Step-Down Voltage Regulator with Features 18-61
LM2672 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features 18-62
LM2673 SIMPLE SWITCHER ${ }^{\circledR}$ 3A Step-Down Voltage Regulator with Adjustable Current Limit. 18-63
LM2674 SIMPLE SWITCHER® Power Converter High Efficiency 500 mA Step-Down Voltage Regulator 18-65
LM2675 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator 18-66
LM2676 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator 18-67
LM2677 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 5A Step-Down Voltage Regulator with Sync 18-69
LM2678 SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 5A Step-Down Voltage Regulator 18-71
LM2679 SIMPLE SWITCHER ${ }^{\circledR}$ 5A Step-Down Voltage Regulator with Adjustable Current Limit. 18-73
LM2825 Integrated Power Supply 1A DC-DC Converter 18-75
LM3478 High Efficiency Low-Side N-Channel Controller for Switching Regulator 18-76
LM3488 High Efficiency Low-Side N-Channel Controller for Switching Regulators 18-78
LM2720 5-Bit Programmable, High Frequency Multi-phase PWM Controller 18-80

Switching Regulators Selection Guide

 SWITCHING REGULATORS FOR COMPUTING VOLTAGE CONVERSION| Part
 Number | Number Of Regulated Voltages | Linear Regulator Output (Note 1) | Switching Regulator | | | Input
 Voltage | | Switching Frequency | Applications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Output AdJ. Range (V), Output Current | Initial Accuracy (Note 2) | $\begin{aligned} & \text { 5-Bit } \\ & \text { DAC } \end{aligned}$ | Min | Max | | |
| Notebook and Battery Voltage Conversion | | | | | | | | | |
| LM2640 | 3 | 5 V | 2.2 to 6 V , controller | 2\% | | 5.5 | 30 | 200 | Main V3.3, V5; $\mathrm{V}_{\text {Standby }} 5 \mathrm{~V}$ |
| LM2641 | 3 | 5V | 2.2 to 6V, controller | 2\% | | 5.5 | 30 | 300 | Main V3.3, V5; $\mathrm{V}_{\text {Standey }} 5 \mathrm{~V}$ |
| LM2650 | 1 | | 1.5 to 16V, 3A | 5\% | | 4.5 | 18 | 90-300 | Main V3.3, V5; $\mathrm{V}_{\mathrm{GTL}} ; \mathrm{V}_{\text {AGP }}$ |
| LM2651 | 1 | | 1.5 to 3.3V, 1.5A | 3.8\% | | 4 | 14 | 90-300 | Main V3.3, V5;
 $V_{\text {GTL }} ; V_{\text {AGP }}$ |
| LM2653 | 1 | | 1.5 to 3.3V, 1.5A | | | 4 | 12 | 300 | CPU $\mathrm{V}_{1 / 0} ; \mathrm{V}_{\mathrm{L} 2} ;$ Video Chip Supply |
| LM2655 | 1 | | 1.5 to $3.3 \mathrm{~V}, 1.5 \mathrm{~A}$ | 3.5\% | | 4 | 14 | 300 | CPU $\mathrm{V}_{1 / 0} ; \mathrm{V}_{\mathrm{L} 2}$; Video Chip Supply |
| LM2621 | 1 | | $\begin{aligned} & 1.2 \text { to } 14 \mathrm{~V}, 1 \mathrm{~A} \\ & \text { (Note 3) } \end{aligned}$ | 3\% | | 0.65 | 22 | 400-2000 | PC Card Supply, TFT/LCD Bias Supply |

LM2636	1		$\begin{aligned} & 1.3 \text { to } 3.5 \mathrm{~V}, \\ & \text { controller } \end{aligned}$	1.5\%	\checkmark	4.5	5.5	50-1000	$\begin{aligned} & \text { CPU } V_{\text {CORE }}, V_{I / O} ; \\ & V_{\text {GTL }} V_{\text {AGP }} \end{aligned}$
LM2637	3	1.5V, 2.5 V	1.3 to 3.5 V , controller	1.5\%	\checkmark	4.75	5.25	50-1000	CPU $V_{\text {CORE }}, V_{\text {I/O }}$; $V_{G T L} ; V_{\text {CLK }} ; V_{\text {AGP }}$
LM2638	3	1.5V, 2.5 V	$\begin{aligned} & 1.3 \text { to } 3.5 \mathrm{~V}, \\ & \text { controller } \end{aligned}$	1.5\%	\checkmark	4.75	5.25	50-1000	$\begin{aligned} & \hline \text { CPU } \mathrm{V}_{\text {CORE }}, \mathrm{V}_{\mathrm{IOO}} ; \\ & \mathrm{V}_{\text {GTL }} ; \mathrm{V}_{\text {CLK }} \\ & \mathrm{V}_{\text {AGP }} \mathrm{V}_{\text {STANDBY }} \\ & 2.5 \mathrm{~V}, 3.3 \mathrm{~V} \\ & \hline \end{aligned}$
LM2639	1		$\begin{aligned} & 1.3 \text { to } 3.5 \mathrm{~V} \text {, } \\ & \text { Controller } \end{aligned}$	1.5\%	\checkmark	4.75	5.25	$\begin{gathered} \hline 40-10,000 \\ \text { (3 or } 4 \\ \text { phase) } \\ \hline \end{gathered}$	CPU $V_{\text {CORE }}, V_{\text {I/O }}$; $\mathrm{V}_{\mathrm{GtL}} ; \mathrm{V}_{\mathrm{AGP}}$
LM2720	1		$\begin{aligned} & 1.3 \text { to } 3.5 \mathrm{~V} \text {, } \\ & \text { Controller } \end{aligned}$	1.5\%	\checkmark	4.75	5.25	$\begin{gathered} \hline 40-10,000 \\ \text { (3 or } 4 \\ \text { phase) } \\ \hline \end{gathered}$	CPU $V_{\text {CORE }}, V_{\text {I/O }}$; $\mathrm{V}_{\mathrm{GTL}} ; \mathrm{V}_{\mathrm{AGP}}$

Note 1: For LM2637 and LM2638, output voltages of linear controllers default to the fixed values shown but are also adjustable.
Note 2: Accuracy of switching controller over temperature.
Note 3: LM2621 is a boost converter with a 2.85A (typ) switch. Maximum load current is up to 1A in most applications, but it is limited at lower input voltages. Consult datasheet for further information.

HIGH-PERFORMANCE \& GENERAL-PURPOSE SWITCHING REGULATORS (includes SIMPLE SWITCHER ${ }^{\circledR}$ power converters)

Part Number	Output Voltage (Note 4)	Input Voltage		Operating Temperature (Note 5)	Switching Frequency	Conversion Efficiency	Package (Note 6)
		Min	Max				
BUCK CONVERTERS							
$\mathbf{5 0 0}$ mA Output Current							
LM2671	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	8 V	40 V	Ind	260-400	94\%	M,N
LM2674	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	8 V	40 V	Ind	260	94\%	M,N
LM2594/ HV	3.3V, 5V, 12V, Adj	4.75 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Ind	150	88\%	M,N
LM2597/HV	3.3V, 5V, 12V, Adj	4.75 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Ind	150	88\%	M,N
LM2574/ HV	3.3V, 5V, 12V, 15V, Adj	4.75 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Ind	52	80\%	M,N
1.0 A Output Current							
LM2672	3.3V, 5V, 12V, Adj	8 V	40 V	Ind	260-400	94\%	M,N
LM2675	3.3V, 5V, 12V, Adj	8V	40 V	Ind	260	94\%	M,N
LM2595	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	4.75 V	40 V	Ind	150	90\%	S, T
LM2595Mil	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	4.75 V	40 V	Mil	150	90\%	J
LM2598	3.3V, 5V, 12V, Adj	4.75 V	40 V	Ind	150	90\%	S, T
LM1575/HV	5V, 12V, 15V, Adj	4.75 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Mil	52	85\%	K
LM2575/ HV	3.3V, 5V, 12V,15V, Adj	4.75 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Ind	52	85\%	M, N, S, T
1.5 A Output Current							
LM2651	1.8, 2.5, 3.3, Adj	4	14	Ind	300	93\%	MTC
LM2653	Adj (1.5 to 3.3V)	4	14	Ind	300	93\%	MTC
2.5 A Output Current							
LM2655	3.3, Adj	4	14	Ind	300	93\%	MTC
3.0 A Output Current							
LM2670	3.3V, 5V, 12V, Adj	8 V	40 V	Ind	260-400	94\%	S, T
LM2673	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	8 V	40 V	Ind	260	94\%	S, T
LM2676	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	8 V	40 V	Ind	260	94\%	S, T
LM2596	3.3V, 5V, 12V, Adj	4.75 V	40 V	Ind	150	90\%	S, T
LM2599	3.3V, 5V, 12V, Adj	4.75 V	40 V	Ind	150	90\%	S, T
LM2576/ HV	3.3V, 5V, 12V,15V, Adj	6 V	$40 \mathrm{~V} / 60 \mathrm{~V}$	Ind	52	85\%	S, T
5.0 A Output Current							
LM2677	3.3V, 5V, 12V, Adj	8V	40 V	Ind	260	92\%	S, T
LM2678	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{Adj}$	8 V	40 V	Ind	260	92\%	S, T
LM2679	3.3V, 5V, 12V, Adj	8 V	40 V	Ind	260	92\%	S, T

BOOST/FLYBACK CONVERTERS
2.85 A Switch Current

LM2621
3.0 A Switch Current
 LM2585 $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, Adj 4 V 40 V Ind $400-2000$ 87% MM LM2586 $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, Adj 4 V 40 V Ind 100 90% S, T LM1577 $12 \mathrm{~V}, 15 \mathrm{~V}$, Adj 3.5 V 40 V Ind 52 80% K LM2577 $12 \mathrm{~V}, 15 \mathrm{~V}$, Adj 3.5 V 40 V Ind 52 80% M, N, S, T 5.0 A Switch Current LM2587 $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, Adj 4 V 40 V Ind 100 90% S, T LM2588 $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, Adj 4 V 40 V Ind $100-200$ 90% S, T

PWM CONTROLLERS \& MULTI-PURPOSE SWITCHING REGULATORS

Part Number	Input Voltage Range	Output Adj. Range	Switching Frequency (kHz)	Output	Package (Note 6)
LM1578A	2 V to 40 V	1.0 V min.	0.001 to100	Open Transistor (0.75A)	H08
LM2578A	2 V to 40 V	1.0 V min.	0.001 to100	Open Transistor (0.75A)	N08
LM3578A	2 V to 40 V	1.0 V min.	0.001 to100	Open Transistor (0.75A)	M08, N08
LM2630	4.5 V to 30 V	1.8 to 6 V	200 to 400	FET drive	MTC20
LM2631	4.5 V to 30 V	1.5 to 6V	200 to 400	FET drive	MTC20
LM2524D	5 V to 40 V	1.5 V min.	1 to 550	Dual Alternating Open Transistor (0.2A)	N16
LM3524D	5 V to 40 V	1.5 V min.	1 to 550	Dual Alternating Open Transistor (0.2A)	M16, N16
LM2640	5.5 V to 30 V	2.2 to 6V	200	FET drive	MTC28
LM2641	5 V to 30 V	7 V to 15 V	300	FET drive	MTC28
LM3478	2.95 V to 40 V	1.25 V	100 to 1000	Low-Side N-Channel FET drive	MSOP-8
LM3488	2.95 V to 40 V	1.25 V	100 to 1000	Low-Side N-Channel FET drive	MSOP-8

INTEGRATED POWER SUPPLY SELECTION GUIDE

Integrated power supplies provide a complete DC-DC Converter, including capacitors and inductor, in a single molded dual-in-line package.

MS 101096-1

Part Number	$\mathbf{V}_{\text {IN }}$	$\mathbf{V}_{\text {out }}$	$\mathbf{I}_{\text {out }}$	Application	Package (Note 6)
LM2825-3.3	4.75 V to 40 V	3.3 V	1 A	Buck	N24
LM2825-5.0	7 V to 40 V	5.0 V	1 A	Buck	N24
LM2825-12	15 V to 40V	12 V	0.75 A	Buck	N24
LM2825-ADJ	4.5 V to 40V	1.23 V to 8V	1 A	Buck	N24
LM2825H-ADJ	9 V to 40 V	7 V to 15 V	0.55 A	Buck	N24

Note 4: All switching converters have Current Limiting and Thermal Shutdown features Adj output voltage can be set typically from 1.23 V to ($\mathrm{V}_{\mathrm{IN}} \mathrm{max}-3 \mathrm{~V}$).
Note 5: Under Temp. Range the letters indicate temperature range. Ind = Industrial Temperature of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Mil $=$ Military Temperature of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
Note 6: Under Package, the letter identifies the type of package. Numbers following the package letter indicate number of pins.
MM = Miniature Small Outline Molded Package (MSOP)
K = Metal Can (TO-3)
M = Small Outline Molded Package (Surface Mount)
MTC = Molded Thin Shrink Small Outline Package (TSSOP)
$N=$ Molded Dual-In-Line Package
$S=$ TO-263 (Power Surface Mount)
K = TO-220 (Power Through Hole)
$\mathrm{J}=$ Aluminum Nitride Ceramic Dual-In-Line Package

Switching Regulators Definition Of Terms

Boost Regulator: A switching regulator topology in which a lower DC voltage is converted to a higher DC voltage. Also known as a Step-Up Regulator.
Buck Regulator: A switching regulator topology in which a higher DC voltage is converted to a lower DC voltage. Also known as a Step-Down Regulator
Buck-Boost Regulator: A switching regulator topology in which a positive DC voltage is converted to a negative DC voltage without the use of a transformer. A variation of this topology produces a positive DC output voltage which is between the positive DC output voltage maximum and minimum limits, i.e., providing both buck and boost functions.
Burst Mode: The mode of operation in a switching regulator that results when the load current is reduced to the point where the minimum duty cycle of each pulse provides more energy than the load demands, thus causing the controller to "skip" pulses (or sets of pulses) to maintain the output voltage at its correct value.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Duty Cycle (D): The ratio of the period time the output switch os ON to the total oscillator period.

$$
\mathrm{D}=\mathrm{t}_{\mathrm{ON}} / \mathrm{T}
$$

Capacitor Ripple Current: The RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature. This parameter is specified by the capacitor manufacturer, and must be considered when a capacitor is used as a part of a switching regulator input or output filter.
Catch Diode: The diode which provides a return path for the load current when the regulator switch is OFF. For switching regulators, the types of diodes normally used include Schottky-barrier, fast-recovery, and ultra-fast recovery. Also known as a steering diode or free-wheeling diode.
Collector Saturation Voltage: With the emitter grounded and the switch ON, the collector-to-emitter voltage of an NPN transistor switch at a specified collector current.
Compensation: The circuitry required to provide adequate stability for the regulator control loop.
Continuous Mode Operation: Relates to the inductor current. In the continuous mode, the inductor current is always greater than zero. In discontinuous mode, the inductor current falls to zero before the end of each switching cycle.
Current Limit Sense Voltage: For regulator ICs that have externally-controlled limit, the current limit sense voltage is the voltage that must be applied (between two specified pins) to turn the output transistor OFF and start other current limit functions within the IC.
Current-Mode Control: A method of feedback control used in switching regulators where both the output voltage and the switch current are used to control the switching element.

Diode Recovery Time: The period of time it takes the current through a diode to return to zero after the forward voltage is removed (i.e., the diode is turned OFF).
Discontinuous Mode Operation: See Continuous Mode Operation
Efficiency (η): The proportion of input power actually delivered to the load.

$$
\eta=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\frac{P_{\text {OUT }}}{P_{\text {OUT }}+P_{\text {LOSS }}}
$$

Electromagnetic Interference (EMI): A generic term which is used to refer to any type of unwanted electromagnetic radiation coming from a system such as a switching regulator.
Emitter Saturation Voltage: With the collector pulled up to the DC input voltage and the switch ON, the collector-to-emitter voltage of a NPN transistor switch at a specified emitter current.
Error Amplifier (or Comparator): An amplifier (or comparator) which is used to detect the difference between a feedback voltage (usually proportional to the output voltage) and a DC reference voltage. The resulting error voltage is used in the regulator control circuitry to adjust the switch on-time. This error amplifier may be either a transconductance-type or an operational amplifier.
ESR: A parasitic element of every capacitor, the ESR (equivalent series resistance) is the purely resistive component of a real capacitor's impedance. It is modeled as a resistor in series with the capacitive element, and its value is usually determined by the device construction.
ESL: A parasitic element of every capacitor, which limits its effectiveness at high frequencies. The ESL (equivalent series inductance) is the pure inductance component of a device. Its value is usually determined by the device construction, especially its leads. It is modeled as an inductor in series with the capacitive element.
E.Top: See Operating Volt-Microsecond Constant.

Flyback Regulator: A switching regulator topology in which a DC voltage is converted to another DC voltage by means of a transformer which stores energy delivered by a switch during the switch ON time, and transfers the energy to an output storage capacitor during the switch OFF time.
Inductor Ripple Current ($\Delta \mathrm{I}_{\mathrm{IND}}$): The peak-to-peak value of the inductor current waveform, typically a sawtooth waveform when the regulator is operating in the continuous mode.
Inductor Saturation: The condition which exists when an inductor cannot hold any more magnetic flux. When an inductor saturates, its inductance appears to decrease and the resistive component dominates. Inductor current is then limited only by the DC resistance of the wire and the available source current.

Inverting Regulator: A switching regulator which converts a positive DC voltage to a negative DC voltage. The buck-boost topology is often used for this function.
Magnetic Flux Interference: Unwanted interference emitted by magnetic components (transformers and inductors) in the form of magnetic flux. Magnetic flux interference can be minimized by the use of magnetic cores (such as toroid or pot core) which contain the flux, or by shielding with materials such as steel or mu-metal. Aluminium and copper are not effective in shielding flux.
Operating Volt-Microsecond Constant: The product (in Volts X microseconds) of the voltage applied to the switching regulator inductor and the period of time the voltage is applied. Abbreviated as E.TOP, this constant is a measure of the energy-handling capability of an inductor, and is dependent upon the type of core used, its core area, the number of turns of wire used, and the applied duty cycle.
Oscillator Frequency: The frequency of the internal oscillator used in the control of the switching regulator. Generally the same as the switching frequency, for most regulators the oscillator frequency is fixed, either internally or by an external resistor and/or capacitor.
Output Ripple Voltage: The AC component of the switching regulator output voltage. It is usually dominated by the output capacitor ESR multiplied by the applied ripple current, but may have high-frequency spikes caused by effects of output capacitor ESL.
Pulse-Width Modulation (PWM): A method of control used in a switching regulator where the duty cycle of the switching element is used to control the output voltage.
Radio Frequency Interference (RFI): High-frequency electromagnetic radiation resulting from the high switching speeds of switching transistors and rectifiers, often causing problems in nearby circuitry that is sensitive to the large
noise "spikes" that are often associated with it. RFI can be easily shielded by a good electrical conductor such as copper or aluminium.
Snubber: A network used to limit the voltage developed across a component. The network usually consists of a zero diode, or a diode in series with a parallel resistor and capacitor. In a switching regulator, the snubber is most often used to limit the switch voltage of a flyback regulator.
Soft Start: In a switching regulator, a soft start limits the duty cycle of the regulator during start up. This in turn limits the energy the regulator demands from its source while building up the output voltage from its initial condition of 0 V .
Standby Quiescent Current: For a regulator with an ON/OFF pin, this is the supply current (or ground pin current) required by the regulator IC when in the standby (OFF) mode.
Switch: In a switching regulator, a transistor or MOSFET used to deliver energy, in pulses, into energy storage devices (such as inductors, transformers, or capacitors) for use by a load.

Switching Frequency: See Oscillator Frequency.

Step Response: The transient response of a regulator output after the load current is "stepped" from one value to another. This test is often used for evaluating the loop stability of a regulator.
Transient Response Time: The period of time it takes the output of a regulator to return to a steady-state value after a change in line voltage or load current. See also Step Response.
Voltage Mode Control: A method of control used in a switching regulator where the feedback from the output voltage is used to provide control of the switching element.

LM1575/LM2575/LM2575HV Series SIMPLE SWITCHER ${ }^{\circledR}$ 1A Step-Down Voltage Regulator

General Description

The LM2575 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2575 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.
A standard series of inductors optimized for use with the LM2575 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.23 V to 37 V (57 V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 1A output current
- Wide input voltage range, 40 V up to 60 V for HV version
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection
- P^{+}Product Enhancement tested

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regualtor for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical Application (Fixed Output Voltage Versions)

Note: Pin numbers are for the TO-220 package.

Block Diagram and Typical Application

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
R1 $=$ Open, R2 $=0 \Omega$
Note: Pin numbers are for the TO-220 package.
FIGURE 1.
Connection Diagrams (XX indicates output voltage option. See Ordering Information table for complete part number.)

Connection Diagrams (XX indicates output voltage option. See Ordering Information table for complete part number.) (Continued)

Ordering Information

Package Type	NSC Package Number	Standard Voltage Rating (40V)	High Voltage Rating (60V)	Temperature Range
$\begin{aligned} & \text { 5-Lead TO-220 } \\ & \text { Straight Leads } \end{aligned}$	T05A	LM2575T-3.3 LM2575T-5.0 LM2575T-12 LM2575T-15 LM2575T-ADJ	LM2575HVT-3.3 LM2575HVT-5.0 LM2575HVT-12 LM2575HVT-15 LM2575HVT-ADJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
5-Lead TO-220 Bent and Staggered Leads	T05D	LM2575T-3.3 Flow LB03 LM2575T-5.0 Flow LB03 LM2575T-12 Flow LB03 LM2575T-15 Flow LB03 LM2575T-ADJ Flow LB03	LM2575HVT-3.3 Flow LB03 LM2575HVT-5.0 Flow LB03 LM2575HVT-12 Flow LB03 LM2575HVT-15 Flow LB03 LM2575HVT-ADJ Flow LB03	
16-Pin Molded DIP	N16A	LM2575N-5.0 LM2575N-12 LM2575N-15 LM2575N-ADJ	LM2575HVN-5.0 LM2575HVN-12 LM2575HVN-15 LM2575HVN-ADJ	
24-Pin Surface Mount	M24B	LM2575M-5.0 LM2575M-12 LM2575M-15 LM2575M-ADJ	LM2575HVM-5.0 LM2575HVM-12 LM2575HVM-15 LM2575HVM-ADJ	
5-Lead TO-236 Surface Mount	TS5B	LM2575S-3.3 LM2575S-5.0 LM2575S-12 LM2575S-15 LM2575S-ADJ	LM2575HVS-3.3 LM2575HVS-5.0 LM2575HVS-12 LM2575HVS-15 LM2575HVS-ADJ	
16-Pin Ceramic DIP	J16A	LM1575J-3.3-QML LM1575J-5.0-QML LM1575J-12-QML LM1575J-15-QML LM1575J-ADJ-QML		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$

LM1577/LM2577 SIMPLE SWITCHER ${ }^{\circledR}$ Step-Up Voltage Regulator

General Description

The LM1577/LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), flyback, and forward converter switching regulators. The device is available in three different output voltage versions: 12V, 15V, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and flyback transformers designed to work with these switching regulators.
Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and undervoltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

Features

- Requires few external components
- NPN output switches 3.0 A , can stand off 65 V
- Wide input voltage range: 3.5 V to 40 V
- Current-mode operation for improved transient response, line regulation, and current limit
- 52 kHz internal oscillator
- Soft-start function reduces in-rush current during start-up
- Output switch protected by current limit, under-voltage lockout, and thermal shutdown

Typical Applications

- Simple boost regulator
- Flyback and forward regulators
- Multiple-output regulator

Typical Application

Note: Pin numbers shown are for TO-220 (T) package.

Ordering Information

Temperature Range	Package Type	Output Voltage			NSC Package Drawing	Package
		12V	15V	ADJ		
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	24-Pin Surface Mount	LM2577M-12	LM2577M-15	LM2577M-ADJ	M24B	SO
	16-Pin Molded DIP	LM2577N-12	LM2577N-15	LM2577N-ADJ	N16A	N
	5-Lead Surface Mount	LM2577S-12	LM2577S-15	LM2577S-ADJ	TS5B	TO-263
	5-Straight Leads	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05A	TO-220
	5-Bent Staggered	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05D	TO-220
	Leads	Flow LB03	Flow LB03	Flow LB03		
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$	4-Pin TO-3	LM1577K-12/883	LM1577K-15/883	LM1577KADJ/883	K04A	TO-3

LM2524D/LM3524D

Regulating Pulse Width Modulator

General Description

The LM3524D family is an improved version of the industry standard LM3524. It has improved specifications and additional features yet is pin for pin compatible with existing 3524 families. New features reduce the need for additional external circuitry often required in the original version.
The LM3524D has a $\pm 1 \%$ precision 5 V reference. The current carrying capability of the output drive transistors has been raised to 200 mA while reducing $\mathrm{V}_{\text {CEsat }}$ and increasing $\mathrm{V}_{\text {CE }}$ breakdown to 60 V . The common mode voltage range of the error-amp has been raised to 5.5 V to eliminate the need for a resistive divider from the 5 V reference.

In the LM3524D the circuit bias line has been isolated from the shut-down pin. This prevents the oscillator pulse amplitude and frequency from being disturbed by shut-down. Also at high frequencies ($\cong 300 \mathrm{kHz}$) the max. duty cycle per output has been improved to 44% compared to 35% max. duty cycle in other 3524s.
In addition, the LM3524D can now be synchronized externally, through pin 3 . Also a latch has been added to insure
one pulse per period even in noisy environments. The LM3524D includes double pulse suppression logic that insures when a shut-down condition is removed the state of the T-flip-flop will change only after the first clock pulse has arrived. This feature prevents the same output from being pulsed twice in a row, thus reducing the possibility of core saturation in push-pull designs.

Features

- Fully interchangeable with standard LM3524 family
- $\pm 1 \%$ precision 5 V reference with thermal shut-down
- Output current to 200 mA DC
- 60V output capability
- Wide common mode input range for error-amp
- One pulse per period (noise suppression)
- Improved max. duty cycle at high frequencies
- Double pulse suppression
- Synchronize through pin 3

Block Diagram

LM2574／LM2574HV

SIMPLE SWITCHER ${ }^{\circledR}$ 0．5A Step－Down Voltage Regulator

General Description

The LM2574 series of regulators are monolithic integrated circuits that provide all the active functions for a step－down （buck）switching regulator，capable of driving a 0.5 A load with excellent line and load regulation．These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ ，and an adjustable output version．
Requiring a minimum number of external components，these regulators are simple to use and include internal frequency compensation and a fixed－frequency oscillator．
The LM2574 series offers a high－efficiency replacement for popular three－terminal linear regulators．Because of its high efficiency，the copper traces on the printed circuit board are normally the only heat sinking needed．
A standard series of inductors optimized for use with the LM2574 are available from several different manufacturers． This feature greatly simplifies the design of switch－mode power supplies．
Other features include a guaranteed $\pm 4 \%$ tolerance on out－ put voltage within specified input voltages and output load conditions，and $\pm 10 \%$ on the oscillator frequency．External shutdown is included，featuring $50 \mu \mathrm{~A}$（typical）standby cur－ rent．The output switch includes cycle－by－cycle current limit－ ing，as well as thermal shutdown for full protection under fault conditions．

Features

－ $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ ，and adjustable output versions
－Adjustable version output voltage range，1．23V to 37 V （ 57 V for HV version）$\pm 4 \%$ max over line and load conditions
－Guaranteed 0.5 A output current
－Wide input voltage range， 40 V ，up to 60 V for HV version
－Requires only 4 external components
－ 52 kHz fixed frequency internal oscillator
－TTL shutdown capability，low power standby mode
－High efficiency
－Uses readily available standard inductors
－Thermal shutdown and current limit protection

Applications

－Simple high－efficiency step－down（buck）regulator
－Efficient pre－regulator for linear regulators
－On－card switching regulators
－Positive to negative converter（Buck－Boost）

Typical Application（Fixed Output Voltage Versions）

Note：Pin numbers are for 8 －pin DIP package．

Connection Diagrams

* No internal connection, but should be soldered to PC board for best heat transfer.

Top View

Order Number LM2574-3.3HVN, LM2574HVN-5.0, LM2574HVN-12, LM2574HVN-15, LM2574HVN-ADJ, LM2574N-3.3, LM2574N-5.0, LM2574N-12,

LM2574N-15 or LM2574N-ADJ
See NS Package Number N08A

14-Lead Wide

Order Number LM2574HVM-3.3, LM2574HVM-5.0, LM2574HVM-12, LM2574HVM-15, LM2574HVM-ADJ, LM2574M-3.3 LM2574M-5.0, LM2574M-12,

LM2574M-15 or LM2574M-ADJ
See NS Package Number M14B

LM2576/LM2576HV Series

SIMPLE SWITCHER ${ }^{\circledR}$ 3A Step-Down Voltage Regulator

General Description

The LM2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required.
A standard series of inductors optimized for use with the LM2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}$, 12 V , 15 V , and adjustable output versions
- Adjustable version output voltage range, 1.23 V to 37 V (57 V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 3A output current
- Wide input voltage range, 40 V up to 60 V for HV version
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection
- P+ Product Enhancement tested

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical Application
(Fixed Output Voltage Versions)

Block Diagram

3.3 V R2 $=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
R1 $=$ Open, R2 $=0 \Omega$
Patent Pending

Ordering Information

Temperature Range	Output Voltage					NS Package Number	Package Type
	3.3	5.0	12	15	ADJ		
$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \\ & \leq 125^{\circ} \mathrm{C} \end{aligned}$	LM2576HVS-3.3	LM2576HVS-5.0	LM2576HVS-12	LM2576HVS-15	LM2576HVS-ADJ	TS5B	TO-263
	LM2576S-3.3	LM2576S-5.0	LM2576S-12	LM2576S-15	LM2576S-ADJ		
	LM2576HVSX-3.3	LM2576HVSX-5.0	LM2576HVSX-12	LM2576HVSX-15	LM2576HVSX-ADJ	TS5B Tape \& Reel	
	LM2576SX-3.3	LM2576SX-5.0	LM2576SX-12	LM2576SX-15	LM2576SX-ADJ		
	LM2576HVT-3.3	LM2576HVT-5.0	LM2576HVT-12	LM2576HVT-15	LM2576HVT-ADJ	T05A	TO-220
	LM2576T-3.3	LM2576T-5.0	LM2576T-12	LM2576T-15	LM2576T-ADJ		
	LM2576HVT-3.3 Flow LB03	LM2576HVT-5.0 Flow LB03	LM2576HVT-12 Flow LB03	LM2576HVT-15 Flow LB03	LM2576HVT-ADJ Flow LB03	T05D	
	LM2576T-3.3 Flow LB03	LM2576T-5.0 Flow LB03	LM2576T-12 Flow LB03	LM2576T-15 Flow LB03	LM2576T-ADJ Flow LB03		

National Semiconductor

LM2578A/LM3578A

Switching Regulator

General Description

The LM2578A is a switching regulator which can easily be set up for such DC-to-DC voltage conversion circuits as the buck, boost, and inverting configurations. The LM2578A features a unique comparator input stage which not only has separate pins for both the inverting and non-inverting inputs, but also provides an internal 1.0 V reference to each input, thereby simplifying circuit design and p.c. board layout. The output can switch up to 750 mA and has output pins for its collector and emitter to promote design flexibility. An external current limit terminal may be referenced to either the ground or the $\mathrm{V}_{\text {in }}$ terminal, depending upon the application. In addition, the LM2578A has an on board oscillator, which sets the switching frequency with a single external capacitor from <1 Hz to 100 kHz (typical).
The LM2578A is an improved version of the LM2578, offering higher maximum ratings for the total supply voltage and output transistor emitter and collector voltages.

Features

- Inverting and non-inverting feedback inputs
- 1.0 V reference at inputs
- Operates from supply voltages of 2 V to 40 V
- Output current up to 750 mA , saturation less than 0.9 V
- Current limit and thermal shut down
- Duty cycle up to 90%

Applications

- Switching regulators in buck, boost, inverting, and single-ended transformer configurations
- Motor speed control
- Lamp flasher

Functional Diagram

LM2585

SIMPLE SWITCHER ${ }^{\text {® }}$ 3A Flyback Regulator

General Description

The LM2585 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 3.0A NPN device that can stand-off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains a 100 kHz fixed-frequency internal oscillator that permits the use of small magnetics. Other features include soft start mode to reduce in-rush current during start up, current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is guaranteed for the power supply system.

Features

- Requires few external components
- Family of standard inductors and transformers
- NPN output switches 3.0 A , can stand off 65 V
- Wide input voltage range: 4 V to 40 V
- Current-mode operation for improved transient response, line regulation, and current limit
- 100 kHz switching frequency
- Internal soft-start function reduces in-rush current during start-up
- Output transistor protected by current limit, under voltage lockout, and thermal shutdown
- System Output Voltage Tolerance of $\pm 4 \%$ max over line and load conditions

Typical Applications

- Flyback regulator
- Multiple-output regulator
- Simple boost regulator
- Forward converter

Flyback Regulator

Ordering Information

Package Type	NSC Package Drawing	Order Number
5-Lead TO-220 Bent, Staggered Leads	T05D	LM2585T-3.3, LM2585T-5.0, LM2585T-12, LM2585T-ADJ
5-Lead TO-263	TS5B	LM2585S-3.3, LM2585S-5.0, LM2585S-12, LM2585S-ADJ
5-Lead TO-263 Tape and Reel	TS5B	LM2585SX-3.3, LM2585SX-5.0, LM2585SX-12, LM2585SX-ADJ

LM2586

SIMPLE SWITCHER ${ }^{\circledR}$ 3A Flyback Regulator with
 Shutdown

General Description

The LM2586 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 3.0A NPN device that can stand-off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains an adjustable frequency oscillator that can be programmed up to 200 kHz . The oscillator can also be synchronized with other devices, so that multiple devices can operate at the same switching frequency.
Other features include soft start mode to reduce in-rush current during start up, and current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. The device also has a shutdown pin, so that it can be turned off externally. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is guaranteed for the power supply system.

Features

- Requires few external components
- Family of standard inductors and transformers
- NPN output switches 3.0 A , can stand off 65 V
- Wide input voltage range: 4 V to 40 V
- Adjustable switching frequency: 100 kHz to 200 kHz
- External shutdown capability
- Draws less than $60 \mu \mathrm{~A}$ when shut down
- Frequency synchronization
- Current-mode operation for improved transient response, line regulation, and current limit
- Internal soft-start function reduces in-rush current during start-up
- Output transistor protected by current limit, under voltage lockout, and thermal shutdown
- System output voltage tolerance of $\pm 4 \%$ max over line and load conditions

Typical Applications

- Flyback regulator
- Forward converter
- Multiple-output regulator
- Simple boost regulator

Flyback Regulator

Ordering Information

Package Type	NSC Package Drawing	Order Number
7-Lead TO-220 Bent, Staggered Leads	TA07B	LM2586T-3.3, LM2586T-5.0, LM2586T-12, LM2586T-ADJ
7-Lead TO-263	TS7B	LM2586S-3.3, LM2586S-5.0, LM2586S-12, LM2586S-ADJ
7-Lead TO-263 Tape and Reel	TS7B	LM2586SX-3.3, LM2586SX-5.0, LM2586SX-12, LM2586SX-ADJ

LM2587

SIMPLE SWITCHER ${ }^{\circledR}$ 5A Flyback Regulator

General Description

The LM2587 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.

Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 5.0A NPN device that can stand-off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains a 100 kHz fixed-frequency internal oscillator that permits the use of small magnetics. Other features include soft start mode to reduce in-rush current during start up, current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is guaranteed for the power supply system.

Features

- Requires few external components
- Family of standard inductors and transformers
- NPN output switches 5.0 A , can stand off 65 V
- Wide input voltage range: 4 V to 40 V
- Current-mode operation for improved transient response, line regulation, and current limit
- 100 kHz switching frequency
- Internal soft-start function reduces in-rush current during start-up
- Output transistor protected by current limit, under voltage lockout, and thermal shutdown
- System Output Voltage Tolerance of $\pm 4 \%$ max over line and load conditions

Typical Applications

- Flyback regulator
- Multiple-output regulator
- Simple boost regulator
- Forward converter

Flyback Regulator

Ordering Information

Package Type	NSC Package Drawing	Order Number
5-Lead TO-220 Bent, Staggered Leads	T05D	LM2587T-3.3, LM2587T-5.0, LM2587T-12, LM2587T-ADJ
5-Lead TO-263	TS5B	LM2587S-3.3, LM2587S-5.0, LM2587S-12, LM2587S-ADJ
5-Lead TO-263 Tape and Reel	TS5B	LM2587SX-3.3, LM2587SX-5.0, LM2587SX-12, LM2587SX-ADJ

LM2588

SIMPLE SWITCHER ${ }^{\circledR}$ 5A Flyback Regulator with Shutdown

General Description

The LM2588 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.

Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 5.0A NPN device that can stand-off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains an adjustable frequency oscillator that can be programmed up to 200 kHz . The oscillator can also be synchronized with other devices, so that multiple devices can operate at the same switching frequency.
Other features include soft start mode to reduce in-rush current during start up, and current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. The device also has a shutdown pin, so that it can be turned off externally. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is guaranteed for the power supply system.

Features

- Requires few external components
- Family of standard inductors and transformers
- NPN output switches 5.0 A , can stand off 65 V
- Wide input voltage range: 4 V to 40 V
- Adjustable switching frequency: 100 kHz to 200 kHz
- External shutdown capability
- Draws less than $60 \mu \mathrm{~A}$ when shut down
- Frequency synchronization
- Current-mode operation for improved transient response, line regulation, and current limit
- Internal soft-start function reduces in-rush current during start-up
- Output transistor protected by current limit, under voltage lockout, and thermal shutdown
- System output voltage tolerance of $\pm 4 \%$ max over line and load conditions

Typical Applications

- Flyback regulator
- Forward converter
- Multiple-output regulator
- Simple boost regulator

Flyback Regulator

Ordering Information

Package Type	NSC Package Drawing	Order Number
7-Lead TO-220 Bent, Staggered Leads	TA07B	LM2588T-3.3, LM2588T-5.0, LM2588T-12, LM2588T-ADJ
7-Lead TO-263	TS7B	LM2588S-3.3, LM2588S-5.0, LM2588S-12, LM2588S-ADJ
7-Lead TO-263 Tape and Reel	TS7B	LM2588SX-3.3, LM2588SX-5.0, LM2588SX-12, LM2588SX-ADJ

LM2594/LM2594HV

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 0.5A Step-Down Voltage Regulator

General Description

The LM2594/LM2594HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version, and are packaged in a 8 -lead DIP and a 8 -lead surface mount package.
Requiring a minimum number of external components, these regulators are simple to use and feature internal frequency compensation \dagger, a fixed-frequency oscillator, and improved line and load regulation specifications.
The LM2594/LM2594HV series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2594/LM2594HV series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $85 \mu \mathrm{~A}$ standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

The LM2594HV is for applications requiring an input voltage up to 60 V .

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2V to 37 V (57 V for the HV version) $\pm 4 \%$ max over line and load conditions
- Available in 8 -pin surface mount and DIP-8 package
- Guaranteed 0.5A output current
- Input voltage range up to 60 V
- Requires only 4 external components
- 150 kHz fixed frequency internal oscillator
- TTL Shutdown capability
- Low power standby mode, I_{Q} typically $85 \mu \mathrm{~A}$
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative convertor

Typical Application (Fixed Output Voltage Versions)

Connection Diagrams and Order Information

Top View
Order Number LM2594N-3.3, LM2594N-5.0, LM2594N-12 or LM2594N-ADJ LM2594HVN-3.3, LM2594HVN-5.0, LM2594HVN-12 or LM2594HVN-ADJ See NS Package Number N08E

8-Lead Surface Mount (M)

Top View
Order Number LM2594M-3.3, LM2594M-5.0, LM2594M-12 or LM2594M-ADJ LM2594HVM-3.3, LM2594HVM-5.0, LM2594HVM-12 or LM2594HVM-ADJ See NS Package Number M08A
*No internal connection, but should be soldered to pc board for best heat transfer.
\ddagger Patent Number 5,382,918.

LM2595

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 1A Step-Down Voltage Regulator

General Description

The LM2595 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation \dagger, and a fixed-frequency oscillator.
The LM2595 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package. Typically, for output voltages less than 12 V , and ambient temperatures less than $50^{\circ} \mathrm{C}$, no heat sink is required.
A standard series of inductors are available from several different manufacturers optimized for use with the LM2595 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $85 \mu \mathrm{~A}$ stand-by current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- 3.3V, 5 V , 12 V , and adjustable output versions
- Adjustable version output voltage range, 1.2V to 37 V $\pm 4 \%$ max over line and load conditions
- Available in TO-220 and TO-263 (surface mount) packages
- Guaranteed 1A output load current
- Input voltage range up to 40 V
- Requires only 4 external components
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- TTL shutdown capability
- Low power standby mode, I_{Q} typically $85 \mu \mathrm{~A}$
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter

Note: \dagger Patent Number $5,382,918$.

Typical Application (Fixed Output Voltage Versions)

Connection Diagrams and Ordering Information

Bent and Staggered Leads, Through Hole Package 5-Lead TO-220 (T)

Order Number LM2595T-3.3, LM2595T-5.0, LM2595T-12 or LM2595T-ADJ See NS Package Number T05D

Order Number LM2595S-3.3, LM2595S-5.0, LM2595S-12 or LM2595S-ADJ See NS Package Number TS5B

16-Lead Ceramic Dual-in-Line Package (J)

Order Number LM2595J-3.3-QML (5962-9687901QEA),
LM2595J-5.0-QML (5962-9650301QEA),
LM2595J-12-QML (5962-9650201QEA),
or LM2595J-ADJ-QML (5962-9650401QEA)
See NS Package Number J16A
For specifications and information about Military-Aerospace products, please see the Mil-Aero web page at http://www.national.com/appinfo/milaero/index.html.

LM2596

SIMPLE SWITCHER® Power Converter 150 kHz 3A Step-Down Voltage Regulator

General Description

The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation \dagger, and a fixed-frequency oscillator.
The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5 -lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package.
A standard series of inductors are available from several different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $80 \mu \mathrm{~A}$ standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2 V to 37 V $\pm 4 \%$ max over line and load conditions
- Available in TO-220 and TO-263 packages
- Guaranteed 3A output load current
- Input voltage range up to 40 V
- Requires only 4 external components
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- TTL shutdown capability
- Low power standby mode, I_{Q} typically $80 \mu \mathrm{~A}$
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- On-card switching regulators
- Positive to negative converter

Note: \dagger Patent Number 5,382,918.

Typical Application (Fixed Output Voltage Versions)

Connection Diagrams and Ordering Information

Bent and Staggered Leads, Through Hole Package
5-Lead TO-220 (T)

Order Number LM2596T-3.3, LM2596T-5.0, LM2596T-12 or LM2596T-ADJ See NS Package Number T05D

Order Number LM2596S-3.3, LM2596S-5.0,
LM2596S-12 or LM2596S-ADJ
See NS Package Number TS5B

LM2597/LM2597HV
 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 0.5A Step-Down Voltage Regulator, with Features

General Description

The LM2597/LM2597HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version, and are packaged in an 8 -lead DIP and an 8 -lead surface mount package.
This series of switching regulators is similar to the LM2594 series, with additional supervisory and performance features added.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation \dagger, improved line and load specifications, fixed-frequency oscillator, $\overline{\text { Shutdown } / S o f t-s t a r t, ~ e r r o r ~ f l a g ~}$ delay and error flag output.
The LM2597/LM2597HV series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2597/LM2597HV series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $85 \mu \mathrm{~A}$ standby current. Self protection features include a two stage current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

The LM2597HV is for use in applications requiring and input voltage up to 60 V .

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2V to 37 V (57V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 0.5 A output current
- Available in 8-pin surface mount and DIP-8 package
- Input voltage range up to 60 V
- 150 kHz fixed frequency internal oscillator
- Shutdown /Soft-start
- Out of regulation error flag
- Error output delay
- Bias Supply Pin (V_{BS}) for internal circuitry improves efficiency at high input voltages
- Low power standby mode, I_{Q} typically $85 \mu \mathrm{~A}$
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative converter

Typical Application (Fixed Output Voltage Versions)

[^20]LM2598

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 1A Step-Down Voltage Regulator, with Features

General Description

The LM2598 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
This series of switching regulators is similar to the LM2595 series, with additional supervisory and performance features added.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation \dagger, improved line and load specifications, fixed-frequency oscillator, $\overline{\text { Shutdown } / S o f t-s t a r t, ~ e r r o r ~ f l a g ~}$ delay and error flag output.
The LM2598 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 7-lead TO-220 package with several different lead bend options, and a 7 -lead TO-263 surface mount package. Typically, for output voltages less than 12 V , and ambient temperatures less than $50^{\circ} \mathrm{C}$, no heat sink is required.
A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2598 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. Ex-
ternal shutdown is included, featuring typically $85 \mu \mathrm{~A}$ standby current. Self protection features include a two stage current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2 V to 37 V $\pm 4 \%$ max over line and load conditions
- Guaranteed 1A output current
- Available in 7-pin TO-220 and TO-263 (surface mount) package
- Input voltage range up to 40 V
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- Shutdown /Soft-start
- Out of regulation error flag
- Error output delay
- Low power standby mode, I_{Q} typically $85 \mu \mathrm{~A}$
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative converter

Typical Application (Fixed Output Voltage Versions)

Connection Diagrams and Order Information

Bent and Staggered Leads, Through Hole Package 7-Lead TO-220 (T)

DS012593-50
Order Number LM2598T-3.3, LM2598T-5.0, LM2598T-12 or LM2598T-ADJ
See NS Package Number TA07B

LM2599

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 3A Step-Down Voltage Regulator, with Features

General Description

The LM2599 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
This series of switching regulators is similar to the LM2596 series, with additional supervisory and performance features added.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation \dagger, improved line and load specifications, fixed-frequency oscillator, Shutdown/Soft-start, error flag delay and error flag output.
The LM2599 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators.
Available in a standard 7-lead TO-220 package with several different lead bend options, and a 7 -lead TO-263 Surface mount package.
A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2599 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $80 \mu \mathrm{~A}$
standby current. Self protection features include a two stage current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2V to 37 V $\pm 4 \%$ max over line and load conditions
- Guaranteed 3A output current
- Available in 7-pin TO-220 and TO-263 (surface mount) Package
- Input voltage range up to 40 V
- 150 kHz fixed frequency internal oscillator
- $\overline{\text { Shutdown/Soft-start }}$
- Out of regulation error flag
- Error output delay
- Low power standby mode, I_{Q} typically $80 \mu \mathrm{~A}$
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative converter

Note: † Patent Number 5,382,918.

Typical Application (Fixed Output Voltage Versions)

LM2621

Low Input Voltage, Step-Up DC-DC Converter

General Description

The LM2621 is a high efficiency, step-up DC-DC switching regulator for battery-powered and low input voltage systems. It accepts an input voltage between 1.2 V and 14 V and converts it into a regulated output voltage. The output voltage can be adjusted between 1.24 V and 14 V . It has an internal $0.17 \Omega \mathrm{~N}$-Channel MOSFET power switch. Efficiencies up to 90% are achievable using the LM2621.
The high switching frequency (adjustable up to 2 MHz) of the LM2621 allows for tiny surface mount inductors and capacitors. Because of the unique constant-duty-cycle gated oscillator topology very high efficiencies are realized over a wide load range. The supply current is reduced to $80 \mu \mathrm{~A}$ because of the BiCMOS process technology. In the shutdown mode, the supply current is less than $2.5 \mu \mathrm{~A}$.
The LM2621 is available in a Mini-SO-8 package. This package uses half the board area of a standard 8 -pin SO and has a height of just 1.09 mm .

Features

- Small Mini-SO8 Package (Half the Footprint of Standard 8-Pin SO Package)
- 1.09 mm Package Height
- Up to 2 MHz Switching Frequency
- 1.2 V to 14 V Input Voltage
- 1.24V-14V Adjustable Output Voltage
- Up to 1A Load Current
- 0.17Ω Internal MOSFET
- Up to 90% Regulator Efficiency
- $80 \mu \mathrm{~A}$ Typical Operating Current
- $<2.5 \mu \mathrm{~A}$ Guaranteed Supply Current In Shutdown

Applications

- PDAs, Cellular Phones
- 2-Cell and 3-Cell Battery-Operated Equipment
- PCMCIA Cards, Memory Cards
- Flash Memory Programming
- TFT/LCD Applications
- 3.3V to 5.0 V Conversion
- GPS Devices
- Two-Way Pagers
- Palmtop Computers
- Hand-Held Instruments

Typical Application Circuit

Connection Diagram

Top View

Ordering Information

Order Number	Package Type	NSC Package Drawing	Package Marking	Supplied As
LM2621MMX	Mini SO-8	MUA08A	S06A	3000 Units on Tape and Reel
LM2621MM	Mini SO-8	MUA08A	S06A	1000 Units on Tape and Reel

LM2636

5-Bit Programmable Synchronous Buck Regulator Controller

General Description

The LM2636 is a high speed controller designed specifically for use in synchronous DC/DC buck converters for advance d microprocessors. A 5-bit DAC accepts the VID code directly from the CPU and adjusts the output voltage from 1.3 V to 3.5 V . It provides the power good, over-voltage protection, and output enable features as required by Intel VRM specifications. Current limiting is achieved by monitoring the voltage drop across the $r_{\text {DS_on }}$ of the high side MOSFET, which eliminates an expensive current sense resistor.
The LM2636 employs a fixed-frequency voltage mode PWM architecture. To provide a faster response to a large and fast load transient, two ultra-fast comparators are built in to monitor the output voltage and override the primary control loop when necessary. The PWM frequency is adjustable from 50 kHz to 1 MHz through an external resistor. The wide range of PWM frequency gives the power supply designer the flexibility to make trade-offs between load transient response performance, MOSFET cost and the overall efficiency. The adaptive non-overlapping MOSFET gate drivers help avoid any potential shoot-through problem while maintaining high efficiency. BiCMOS gate drivers with rail-to-rail swing ensure that no spurious turn-on occur. When only 5 V is available, a bootstrap structure can be employed to accommodate an NMOS high side switch. The precision reference trimmed to
2.5\% over temperature is available externally for use by other regulators. Dynamic positioning of load voltage, which heips cut the number of output capacitors, can also be implemented easily.

Features

- 1.3 V to 3.5 V 5 -bit programmable output voltage
- Synchronous rectification
- Power Good flag and output enable
- Over-voltage protection

■ Initial Output Accuracy: 1.5\% over temperature

- Current limit without external sense resistor
- Adaptive non-overlapping MOSFET gate drives
- Adjustable switching frequency: 50 kHz to 1 MHz
- Dynamic output voltage positioning
- 1.256 V reference voltage available externally
- Plastic SO-20 package and TSSOP-20 package

Applications

- Motherboard power supply/VRM for Cyrix Gxm, Cyrix Gxi, Cyrix MII, Pentium ${ }^{\text {TM }}$ II, Pentium Pro, 6x86 and K6 processors
m 5 V to $1.3 \mathrm{~V}-3.5 \mathrm{~V}$ high current power supplies

Typical Application

*: Place close to SENSE pin.
DS100834-1
FIGURE 1. 5V to 1.3V-3.5V, 14A Power Supply

TOP VIEW

Plastic TSSOP-20
Order Number LM2636MTC See NS Package Number MTC20

Pin Descriptions

LSGATE (Pin 1): Gate drive for the low-side N-channel MOSFET. This signal is interlocked with HSGATE (Pin 20) to avoid a shoot-through problem.
BOOTV (Pin 2): Power supply for high-side N-channel MOSFET gate drive. The voltage should be at least one gate threshold above the converter input voltage to properly operate the high-side N-FET.
PGND (Pin 3): Ground for high current circuitry. It should be connected to system ground.
SGND (Pin 4): Ground for signal level circuitry. It should be connected to system ground.
$\mathbf{V}_{\mathbf{c c}}$ (Pin 5): Power supply for the controller.
SENSE (Pin 6): Converter output voltage sensing. It provides input for power good, fast dual comparator control loop, and over-voltage protection circuitry. It is recommended that a $0.1 \mu \mathrm{~F}$ capacitor be connected between this pin and ground to avoid potential noise problems.
IMAX (Pin 7): Current limit threshold setting. It sinks a fixed $180 \mu \mathrm{~A}$ current. By connecting a resistor between the high side MOSFET drain and this pin, a fixed voltage drop can be built across the resistor. This voltage drop is compared with the V_{DS} of the high-side N -MOSFET to determine if an overcurrent condition has occurred.
IFB (Pin 8): High-side N-MOSFET source voltage sensing. This pin is one $V_{D s}$ below drain voltage. When this voltage is lower than that of IMAX pin during the time the high-side FET
is on, it means V_{DS} is higher than the preset voltage across the IMAX resistor, which can be interpreted as an overcurrent condition.
$\mathbf{V}_{\text {REF }}$ (Pin 9): Bandgap reference voltage. This voltage is mainly for use by other power supplies on the motherboard which need a reference.
EA_OUT (Pin 10): Output of the error amplifier. The voltage level on this pin is compared with an internally generated ramp signal to determine the duty cycle. This pin is necessary for compensating the primary control loop.
FB (Pin 11): Inverting input of the error amplifier. A pin necessary for compensating the control loop.
FREQ_ADJ (Pin 12): Switching frequency adjustment. Switching frequency can be adjusted by changing the grounding resistance on this pin.
PWRGD (Pin 13): Power Good. There are two windows around the DAC output voltage that are associated with PWRGD pin, the $\pm 10 \%$ window and the $\pm 8 \%$ window. If PWRGD is initially high (open drain state) and output voltage travels out of $\pm 10 \%$ window, PWRGD goes to low (low impedance to ground). If PWRGD is initially low and output voltage travels into the $\pm 8 \%$ window and has stayed within the window for at least 10 ms , PWRGD goes to high. A PWRGD high means the output voltage is at least within the $\pm 10 \%$ window whereas a PWRGD low indicates the output voltage is definitely outside the $\pm 8 \%$ window.
VID4:0 (Pins 14, 15, 16, 17, 18): Voltage Identification Code. The five pins accept an open-ground pattern 5-bit binary code from outside the chip (typically from the CPU) for generating the desired output voltage. Each VID pin is internally pulled up to V_{cc} via a $90 \mu \mathrm{~A}$ current source. Table 1 shows the code table.

OUTEN (Pin 19): Output Enable. The output voltage is disabled when this pin is pulled low. It is internally pulled up to V_{CC} via a $90 \mu \mathrm{~A}$ current source.
HSGATE (Pin 20): Gate drive for the high-side N-channel MOSFET. This signal is interlocked with LSGATE (Pin 1) to avoid a shoot-through problem.

TABLE 1. VID Code and DAC Output

$\mathbf{V}_{\mathbf{I D} 4}$	$\mathbf{V}_{\mathbf{I D} \mathbf{3}}$	$\mathbf{V}_{\mathbf{I D} \mathbf{2}}$	$\mathbf{V}_{\mathbf{I D} \mathbf{1}}$	$\mathbf{V}_{\mathbf{I D O}}$	Rated Output Voltage (V)
0	1	1	1	1	1.30
0	1	1	1	0	1.35
0	1	1	0	1	1.40
0	1	1	0	0	1.45
0	1	0	1	1	1.50
0	1	0	1	0	1.55
0	1	0	0	1	1.60
0	1	0	0	0	1.65
0	0	1	1	1	1.70
0	0	1	1	0	1.75
0	0	1	0	1	1.80
0	0	1	0	0	1.85
0	0	0	1	1	1.90
0	0	0	1	0	1.95
0	0	0	0	1	2.00

Pin Descriptions (Continued)
TABLE 1. VID Code and DAC Output (Continued)

$\mathbf{V}_{\mathbf{I D} \mathbf{4}}$	$\mathbf{V}_{\mathbf{I D 3}}$	$\mathbf{V}_{\mathbf{I D} \mathbf{2}}$	$\mathbf{V}_{\mathbf{I D} \mathbf{1}}$	$\mathbf{V}_{\mathbf{I D O}}$	Rated Output Voltage $\mathbf{(V)}$
0	0	0	0	0	2.05
1	1	1	1	1	(shutdown)
1	1	1	1	0	2.1
1	1	1	0	1	2.2
1	1	1	0	0	2.3
1	1	0	1	1	2.4
1	1	0	1	0	2.5
1	1	0	0	1	2.6
1	1	0	0	0	2.7
1	0	1	1	1	2.8
1	0	1	1	0	2.9
1	0	1	0	1	3.0
1	0	1	0	0	3.1
1	0	0	1	1	3.2
1	0	0	1	0	3.3
1	0	0	0	1	3.4
1	0	0	0	0	3.5

Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers

General Description

The LM2637 provides a comprehensive embedded power supply solution for motherboards hosting high performance MPUs such as $\mathrm{M} \mathrm{I}^{\mathrm{TM}}$, Pentium ${ }^{\text {TM }} \mathrm{II}$, K6-2 and other similar high performance MPUs. The LM2637 incorporates a 5-bit programmable, synchronous buck switching controller and two high-speed linear regulator controllers in a 24 -pin SO package.
Switching Section - The switching regulator controller features a 5-bit programmable DAC, over-current and over-voltage protection, under-voltage latch-off, a power good signal, and output enable. The 5-bit DAC has a typical tolerance of 1%. There are two user-selectable over-current protection methods. One provides accurate over-current protection with the use of an external sense resistor. The other saves cost by taking advantage of the r_{DS} on of the high-side FET. The over voltage protection provides two levels of protection. The first level keeps the high-side FET off and the low-side FET on. The second provides a gate signal that can be used to fire an external SCR.
Linear Section - The two linear regulator controllers feature wide control bandwidth, N-FET and NPN transistor driving capability, and an adjustable output voltage. The wide control bandwidth makes meeting fast load transient response requirement such as that of the GTL+ bus an easy job. In minimum configuration, the two controllers default to 1.5 V and 2.5 V respectively.

Both linear controllers have under voltage latch-off.

Features

- Provides 3 regulated voltages
- Power Good flag and output enable
- Under-voltage latch-off Switching Section
- Synchronous rectification
- 5-bit DAC programmable from 3.5 V to 1.3 V
- Typical 1\% DAC tolerance

■ Switching frequency: 50 kHz to 1 MHz

- Two levels of over-voltage protection
- Two methods of over-current protection
- Adaptive non-overlapping FET gate drives
- Soft start without external capacitor Linear Section
- N-FET and NPN driving capability
- Ultra fast response speed
- Output voltages default to 1.5 V and 2.5 V yet adjustable

Applications

- Embedded power supplies for PC motherboards
- Triple DC/DC power supplies
- Programmable high current DC/DC power supply

Pin Configuration

> 24-Lead SOIC
> Top View
> NS Package Number M24B

LM2638

Motherboard Power Supply Solution with a 5-Bit Programmable Switching Controller and Two Linear Regulator Controllers

General Description

The LM2638 provides a comprehensive embedded power supply solution for motherboards hosting high performance MPUs such as Pentium ${ }^{\text {TM }} \mathrm{II}, \mathrm{M} \mathrm{II}^{\mathrm{TM}}, \mathrm{K6}^{\mathrm{TM}}-2$ and other similar high performance MPUs. The LM2638 incorporates a 5-bit programmable, synchronous buck switching controller and two high-speed linear regulator controllers in a 24-pin SO package. In a typical application, the switching controller supplies the MPU core, and the linear regulator controllers supply the GTL+ bus and the clock or graphics chip core. A charge pump pin helps provide the necessary voltage to power the linear sections when 12 V is shut off during system standby such as STR mode.

Switching Section - The switching regulator controller features an Intel-compatible, 5 -bit programmable output voitage, over-current and over-voltage protection, a power good signal, and a logic-controlled output enable. There are two user-selectable over-current protection methods. One provides accurate over-current protection with the use of an external sense resistor. The other saves cost by taking advantage of the r_{Ds} on of the high-side FET. When there is an over voltage, the controlier turns off the high side FET and turns on the low side.

Linear Section - The two linear regulator controllers feature wide control bandwidth, N-FET and NPN transistor driving capability and an adjustable output. The wide control bandwidth makes meeting the GTL+ bus transient response requirement an easy job. In minimum configuration, the two controllers default to 1.5 V and 1.25 V respectively.

Both linear controllers have under voltage latch-off.

Features

- Provides 3 regulated voltages
- Power Good flag and output enable
- Charge pump pin Switching Section
- Synchronous rectification
- 5-bit DAC programmable down to 1.3 V
- Typical $\pm 1 \%$ DAC tolerance
- Switching frequency: 50 kHz to 1 MHz
- Over-voltage protection
- Two methods of over-current protection
- Adaptive non-overlapping FET gate drives
- Soft start without external capacitor Linear Section
- N-FET and NPN drive capability
- Ultra fast response speed
- Under voltage latch-off at 0.63 V
- Output voltages default to 1.5 V and 2.5 V yet adjustable

Applications

- Embedded power supplies for motherboards
- Triple DC/DC power supplies
- Programmable high current DC/DC power supply

Pin Configuration

24-Lead SOIC

Top View
Order Number LM2638M
See NS Package Number M24B

LM2639

5-Bit Programmable, High Frequency Multi-phase PWM Controller

General Description

The LM2639 provides an attractive solution for power supplies of high power microprocessors (such as Pentium IITM, $\mathrm{M} \mathrm{I}{ }^{\mathrm{TM}}, \mathrm{K6}^{\mathrm{TM}}-2, \mathrm{~K}^{\mathrm{TM}}-3$, etc.) exhibiting ultra fast load transients. Compared to a conventional single-phase supply, an LM2639 based multi-phase supply distributes the thermal and electrical loading among components in multiple phases and greatly reduces the corresponding stress in each component. The LM2639 can be programmed to control either a 3 -phase converter or a 4-phase converter. Phase shift among the phases is 120° in the case of three phase and 90° with four-phase. Because the power channels are out of phase, there can be significant ripple cancellation for both the input and output current, resulting in reduced input and output capacitor size. Due to the nominal operating frequency of 2 MHz per phase, the size of the output inductors can be greatly reduced which results in a much faster load transient response and a dramatically shrunk output capacitor bank. Microprocessor power supplies with all surface mount components can be easily built.

The internal high speed transconductance amplifier guarantees good dynamic performance. The output drive voltages can be adjusted through a resistor divider to control switching loss in the external FETs.
The internal master clock frequency of up to 8 MHz is set by an external reference resistor. An external clock of 10 MHz can also be used to drive the chip to achieve frequency control and multi-chip operation.

The LM2639 also provides input under-voltage lock-out with hysteresis and input over-current protection.

Features

- Ultra fast load transient response
- Enables all surface-mount-design
- Selectable 2, 3, 4 phase operation
- Clock frequency from 40 kHz to 10 MHz
- Precision load current sharing
- 5-bit programmable from 3.5 V to 1.3 V
- VID code compatible to VRM 8.X specification
- Output voltage is 2.0 V for VID code 11111
- Selectable internal or external clock

■ Digital 16-step soft start

- Input under-voltage lock-out, over-current protection

Applications

- Servers and workstations
- High current, ultra-fast transient microprocessors

Pin Configuration

LM2640

Dual Adjustable Step-Down Switching Power Supply Controller

General Description

The LM2640 is a dual step-down power supply controller intended for application in notebook personal computers and other battery-powered equipment.
Fixed-frequency synchronous drive of logic-level N -channel power MOSFETs is combined with an optional pulse-skipping mode to achieve ultra efficient power conversion over a 1000:1 load current range. The pulse-skipping mode can be disabled in favor of fixed-frequency operation regardless of the load current level.
High DC gain and current-mode feedback control assure excellent line and load regulation and a wide loop bandwidth for fast response to dynamic loads.
An internal oscillator fixes the switching frequency at 200 kHz . Optionally, switching can be synchronized to an external clock running as fast as 400 kHz .
An optional soft-start feature limits current surges from the input power supply at start up and provides a simple means of start-up sequencing.
Logic-level inputs allow the controllers to be turned ON and OFF separately.

Key Specifications

- 96% efficient
- 5.5 to 30 V input range
- Dual outputs adjustable from 2.2 to 6 V
- 0.5% typical load regulation error
- $0.002 \% / \mathrm{V}$ typical line regulation error

Features

- 200 kHz fixed-frequency switching
- Switching synchronization with an external signal up to 400 kHz
- Optional pulse-skipping mode
- Adjustable secondary feedback
- Input undervoltage lockout
- Output undervoltage shutdown protection
- Output overvoltage shutdown protection
- Programmable soft-start (each controller)
- $5 \mathrm{~V}, 50 \mathrm{~mA}$ linear regulator output
- Precision 2.5 V reference output
- 28-pin TSSOP

Applications

- Notebook and subnotebook computers
- Wireless data terminals
- Battery-powered instruments

Connection Diagram and Ordering Information

Pin Description (Refer to Typical Application Circuits)

Pin \#	Name	Function
1	CSH2	The sense point for the positive side of the voltage across the current sense resistor (R13) placed in series with output \#2.
2	FB2	The regulated output voltage appearing at output \#2 is sensed using this pin by connecting it to the center of the output resistive divider (R15 and R16).
3	COMP2	An R-C network made up of R11, C10, and C12 is connected to this pin which provides loop compensation for regulated output \#2.
4	SS2	This provides programmable soft-start for the \#2 output along with capacitor C15.
5	ON/OFF2	This pin turns off only output \#2.
6	$\overline{\text { SD }}$	The part can be put into "sleep" mode using this pin, where both outputs are off and the internal chip functions are shut down.
7	SYNC	The internal oscillator may be synchronized to an external clock via this pin.
8	GND	Connect this pin to circuit Signal Ground.
9	REF	Internal 2.5V reference voltage. This voltage is turned off by the $\overline{\mathrm{SD}}$ pin, but remains on if either or both ON/OFF pins are pulled low, which turns off the regulated output(s).
10	2NDFB/FPWM	A 12 V supply can be generated using an auxiliary winding on the 5 V output inductor. Feedback to control this 12 V output is brought in through this pin. If the 12 V supply is not required, this pin can also force the chip to operate at fixed frequency at light loads by pulling the pin low (this is the "forced-PWM" mode of operation). This will prevent the converter from operating in pulse-skipping mode.
11	ON/OFF1	This pin turns off only output \#1.
12	SS1	This provides programmable soft-start for the \#1 output along with capacitor C3.
13	COMP1	An R-C network made up of R6, C5, and C7 is connected to this pin which provides loop compensation for regulated output \#1.
14	FB1	The regulated output voltage appearing at output \#1 is sensed using this pin by connecting it to the center of the output resistive divider (R1 and R2).
15	CSH1	The sense point for the positive side of the voltage across the current sense resistor (R4) placed in series with output \#1.
16	HDRV1	The drive for the gate of the high-side switching FET used for output \#1.
17	SW1	This is the switching output drive point of the two power FETs which produce output \#1.
18	CBOOT1	The bootstrap capacitor (C8) for output \#1 is returned to this point.
19	LDRV1	The drive for the gate of the low-side switching FET (synchronous rectifier) used for output \#1.
20	PGND	Connect this pin to circuit Power Ground.
21	CSL1	The sense point for the negative side of the voltage across the current sense resistor (R4) placed in series with output \#1.
22	LIN	This pin provides a low-current (50 mA max) 5 V output. This output is always on, and can not be turned off by either the $\overline{S D}$ or ON/OFF pins.
23	IN	This is the connection for the main input power.
24	LDRV2	The drive for the gate of the low-side switching FET (synchronous rectifier) used for output \#2.
25	CBOOT2	The bootstrap capacitor (C9) for output \#2 is returned to this point.
26	SW2	This is the switching output drive point of the two power FETs which produce output \#2.
27	HDRV2	The drive for the gate of the high-side switching FET used for output \#2.
28	CSL2	The sense point for the negative side of the voltage across the current sense resistor (R13) placed in series with output \#2.

DS100148-3
Note: Alternate recommended inductor is Sumida CDRH-125-100MC. If this inductor is used, R6 should be changed to 3.3 k and R 11 should be 5.1 k . FIGURE 1. Application With 5V/3A and 3.3V/4A Outputs

FIGURE 2. Application With 5V/3A, 3.3V/4A, and 12V/0.3A Outputs

LM2641

Dual Adjustable Step-Down Switching Power Supply Controller

General Description

The LM2641 is a dual step-down power supply controller intended for application in notebook personal computers and other battery-powered equipment.
Fixed-frequency synchronous drive of logic-level N -channel power MOSFETs is combined with an optional pulse-skipping mode to achieve ultra efficient power conversion over a 1000:1 load current range. The pulse-skipping mode can be disabled in favor of fixed-frequency operation regardless of the load current level.
High DC gain and current-mode feedback control assure excellent line and load regulation and a wide loop bandwidth for fast response to dynamic loads.
An internal oscillator fixes the switching frequency at 300 kHz . Optionally, switching can be synchronized to an external clock running as fast as 400 kHz .
An optional soft-start feature limits current surges from the input power supply at start up and provides a simple means of start-up sequencing.
Logic-level inputs allow the controllers to be turned ON and OFF separately.

Key Specifications

- 96\% efficient
- 5.5 to 30 V input range
- Dual outputs adjustable from 2.2 to 8 V
- 0.5% typical load regulation error
- $0.002 \% / \mathrm{V}$ typical line regulation error

Features

■ 300 kHz fixed-frequency switching

- Switching synchronization with an external signal up to 400 kHz
- Optional pulse-skipping mode
- Adjustable secondary feedback
- Input undervoltage lockout
- Output undervoltage shutdown protection
- Output overvoltage shutdown protection
- Programmable soft-start (each controller)
- $5 \mathrm{~V}, 50 \mathrm{~mA}$ linear regulator output
- Precision 2.5 V reference output
- 28-pin TSSOP

Applications

- Notebook and subnotebook computers
- Wireless data terminals
- Battery-powered instruments

Connection Diagram and Ordering Information

Top View
Order Number LM2641MTC-ADJ
See NS Package Number MTC28

Pin Description (Refer to Typical Application Circuits)

Pin \#	Name	Function
1	CSH2	The sense point for the positive side of the voltage across the current sense resistor (R13) placed in series with output \#2.
2	FB2	The regulated output voltage appearing at output \#2 is sensed using this pin by connecting it to the center of the output resistive divider (R15 and R16).
3	COMP2	An R-C network made up of R11, C10, and C12 is connected to this pin which provides loop compensation for regulated output \#2.
4	SS2	This provides programmable soft-start for the \#2 output along with capacitor C15.
5	ON/OFF2	This pin turns off only output \#2.
6	$\overline{\text { SD }}$	The part can be put into "sleep" mode using this pin, where both outputs are off and the internal chip functions are shut down.
7	SYNC	The internal oscillator may be synchronized to an external clock via this pin.
8	GND	Connect this pin to circuit Signal Ground.
9	REF	Internal 2.5 V reference voltage. This voltage is turned off by the $\overline{\mathrm{SD}}$ pin, but remains on if either or both ON/OFF pins are pulled low, which turns off the regulated output(s).
10	2NDFB/FPWM	A 12 V supply can be generated using an auxiliary winding on the 5 V output inductor. Feedback to control this 12 V output is brought in through this pin. If the 12 V supply is not required, this pin can also force the chip to operate at fixed frequency at light loads by pulling the pin low (this is the "forced-PWM" mode of operation). This will prevent the converter from operating in pulse-skipping mode.
11	ON/OFF1	This pin turns off only output \#1.
12	SS1	This provides programmable soft-start for the \#1 output along with capacitor C3.
13	COMP1	An R-C network made up of R6, C5, and C7 is connected to this pin which provides loop compensation for regulated output \#1.
14	FB1	The regulated output voltage appearing at output \#1 is sensed using this pin by connecting it to the center of the output resistive divider (R1 and R2).
15	CSH1	The sense point for the positive side of the voltage across the current sense resistor (R4) placed in series with output \#1.
16	HDRV1	The drive for the gate of the high-side switching FET used for output \#1.
17	SW1	This is the switching output drive point of the two power FETs which produce output \#1.
18	CBOOT1	The bootstrap capacitor (C8) for output \#1 is returned to this point.
19	LDRV1	The drive for the gate of the low-side switching FET (synchronous rectifier) used for output \#1.
20	PGND	Connect this pin to circuit Power Ground.
21	CSL1	The sense point for the negative side of the voltage across the current sense resistor (R4) placed in series with output \#1.
22	LIN	This pin provides a low-current (50 mA max) 5 V output. This output is always on, and can not be turned off by either the $\overline{\mathrm{SD}}$ or ON/OFF pins.
23	IN	This is the connection for the main input power.
24	LDRV2	The drive for the gate of the low-side switching FET (synchronous rectifier) used for output \#2.
25	CBOOT2	The bootstrap capacitor (C9) for output \#2 is returned to this point.
26	SW2	This is the switching output drive point of the two power FETs which produce output \#2.
27	HDRV2	The drive for the gate of the high-side switching FET used for output \#2.
28	CSL2	The sense point for the negative side of the voltage across the current sense resistor (R13) placed in series with output \#2.

DS100949-3
FIGURE 1. Application With 5V/3A and 3.3V/4A Outputs

LM2650

Synchronous Step-Down DC/DC Converter

General Description

The LM2650 is a step-down DC/DC converter featuring high efficiency over a 3A to milliamperes load range. This feature makes the LM2650 an ideal fit in battery-powered applications that demand long battery life in both run and standby modes.
The LM2650 also features a logic-controlled shutdown mode in which it draws at most $25 \mu \mathrm{~A}$ from the input power supply. The LM2650 employs a fixed-frequency pulse-width modulation (PWM) and synchronous rectification to achieve very high efficiencies. In many applications, efficiencies reach $95 \%+$ for loads around 1 A and exceed 90% for moderate to heavy loads from 0.2A to 2A.
A low-power hysteretic or "sleep" mode keeps efficiencies high at light loads. The LM2650 enters and exits sleep mode automatically as the load crosses "sleep in" and "sleep out" thresholds. The LM2650 provides nodes for programming both thresholds via external resistors. A logic input allows the user to override the automatic sleep feature and keep the LM2650 in PWM mode regardless of the load level.
An optional soft-start feature limits current surges from the input power supply at start up and provides a simple means of sequencing multiple power supplies.

Features

- Ultra high efficiencies (95% possible)
- High efficiency over a 3A to milliamperes load range
- Synchronous switching of internal NMOS power FETs
- Wide input voltage range (4.5 V to 18 V)
- Output voltage adjustable from 1.5 V to 16 V
- Automatic low-power sleep mode
- Logic-controlled micropower shutdown ($l_{\text {QsD }} \leq 25 \mu \mathrm{~A}$)
- Frequency adjustable up to 300 kHz
- Frequency synchronization with external signal
- Programmable soft-start
- Short-circuit current limiting
- Thermal shutdown
- Available in 24-lead Small-Outline package

Applications

- Notebook and palmtop personal computers
- Portable data terminals
- Modems
- Portable Instruments
- Global positioning devices (GPSs)
- Battery-powered digital devices

Typical Application

[^21]

Pin Descriptions
 (Refer to the Block Diagrams)

Pins	Description
1, 12	SUB: These pins make electrical contact with the substrate of the die. Ground them. For best thermal performance, ground them to the same large, uninterrupted copper plane as the PGND pins.
2	SLEEP LOGIC: Use this logic input to select the conversion mode; low selects PWM, high selects sleep, and high impedance (open) permits the LM2650 to move freely and automatically between the modes, using PWM for moderate to heavy loads and sleep for light loads.
3, 4, 9, 10	PGND: The ground return of the power stage. The power stage consists of the two power switches Q1 and Q2, the gate drivers DH and DL, and the linear voltage regulators VRegH and VRegL. For best electrical and thermal performance, ground these pins to a large, uninterrupted copper plane.
5, 8	SW: The output node of the power stage. It swings from slightly below ground to slightly below the voltage to $\mathrm{PV}_{\text {IN }}$. To minimize the effects of switching noise on nearby circuitry, keep all traces originating from SW short and to the point. Route all traces carrying signals well away from the SW traces.
6, 7	$\mathbf{P V}_{\text {IN }}$: The positive supply rail of the power stage. Bypass each $\mathrm{PV}_{\text {IN }}$ pin to PGND with a $0.1 \mu \mathrm{~F}$ capacitor. Use capacitors having low ESL and low ESR, and locate them close to the IC.
11	BOOT: The positive supply rail of the high-side gate driver DH . Connect a $0.1 \mu \mathrm{~F}$ capacitor from this node to SW. Bootstrapping action creates a supply rail about 9 V above that at $\mathrm{PV}{ }_{\mathrm{IN}}$, and DH uses this rail to override the gate of the NMOS power FET Q1. Overriding ensures low $\mathrm{R}_{\mathrm{DS}(\mathrm{on)}}$.
13	FB: The feedback input.
14	V_{DD} : An internal regulator steps the input voltage down to a 4 V rail used by the signal-level circuitry. V_{DD} is the output node of this regulator. Bypass V_{DD} to GND close to the IC with a $0.2 \mu \mathrm{~F}$ capacitor.
15	COMP: The inverting input of the error amplifier EA.
16	EA OUT: The output node of the error amplifier EA.
17	SS: The soft start node. Connect a capacitor from SS to GND.
18	GND: The ground return of the signal-level circuitry.
19	\mathbf{V}_{IN} : The positive supply rail of the internal 4 V regulator. Bypass V_{IN} to GND close to the IC with a $0.1 \mu \mathrm{~F}$ capacitor.
20	FREQ ADJ: The LM2650 switches at a nominal 90 kHz . Connect a resistor between FREQ ADJ and GND to adjust the frequency up from the nominal. Use the graph under Typical performance Characteristics to select the resistor.
21	SYNC: The synchronization input. If the switching frequency is to be synchronized with an external clock signal, apply the clock signal here.
22	SD: Use this logic input to control shutdown; pull low for operation, high for shutdown.
23	SLEEP OUT ADJ (SOA): The value of the resistor connected between SIA and ground programs the sleep-in threshold. Higher values program lower thresholds.
24	SLEEP IN ADJ (SIA): The value of the resistor connected between SIA and ground programs the sleep-in threshold. Higher values program lower thresholds.

LM2651

1.5A High Efficiency Synchronous Switching Regulator

General Description

The LM2651 switching regulator provides high efficiency power conversion over a 100:1 load range (1.5 A to 15 mA). This feature makes the LM2651 an ideal fit in battery-powered applications that demand long battery life in both run and standby modes.
Synchronous rectification is used to achieve up to 97% efficiency. At light loads, the LM2651 enters a low power hysteretic or "sleep" mode to keep the efficiency high. In many applications, the efficiency still exceeds 80% at 15 mA load. A shutdown pin is available to disable the LM2651 and reduce the supply current to less than $10 \mu \mathrm{~A}$.
The LM2651 contains a patented current sensing circuitry for current mode control. This feature eliminates the external current sensing resistor required by other current-mode DC-DC converters.
The LM2651 has a 300 kHz fixed frequency internal oscillator. The high oscillator frequency allows the use of extremely small, low profile components.
A programmable soft-start feature limits current surges from the input power supply at start up and provides a simple means of sequencing multiple power supplies.
Other protection features include input undervoltage lockout, current limiting, and thermal shutdown.

Features

- Ultra high efficiency up to 97%
- High efficiency over a 1.5 A to milliamperes load range
- 4 V to 14 V input voltage range
- $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or ADJ output voltage
- Internal MOSFET switch with low $\mathrm{R}_{\mathrm{DS}(\text { (on })}$ of $75 \mathrm{~m} \Omega$
- 300 kHz fixed frequency internal oscillator
- $7 \mu \mathrm{~A}$ shutdown current
- Patented current sensing for current mode control
- Input undervoltage lockout
- Adjustable soft-start
- Current limit and thermal shutdown
- 16-pin TSSOP package

Applications

- Personal digital assistants (PDAs)
- Computer peripherals
- Battery-powered devices
- Handheld scanners
- High efficiency 5 V conversion

Typical Application

DS100925-1

Connection Diagram

DS100925-2

Ordering Information

$\mathbf{V}_{\text {out }}$	Part Number		Package Type	NSC Package Drawing
	Supplied as 94 Units, Rail	Supplied as 2.5k Units, Tape and Reel		MTC16
1.8	LM2651MTC-1.8	LM2651MTCX-1.8		
2.5	LM2651MTC-2.5	LM2651MTCX-2.5	LM2651MTCX-3.3	
3.3	LM2651MTC-3.3	LM2651MTC-ADJ	LM2651MTCX-ADJ	
ADJ				

Pin Description

Pin	Name	Function
1,2	SW	Switched-node connection, which is connected with the source of the internal high-side MOSFET.
$3-5$	VIN	Main power supply pin.
6	VCB	Bootstrap capacitor connection for high-side gate drive.
7	AVIN	Input supply voltage for control and driver circuits.
8	$\overline{\text { SD}}($ SS $)$	Shutdown control input, active low. This pin can also function as soft-start control pin. A capacitor connected from this pin to ground sets the ramp time to full current output.
9	FB	Output voltage feedback input. Connected to the output voltage.
10	COMP	Compensation network connection. Connected to the output of the voltage error amplifier.
11	NC	No internal connection.
$12-13$	AGND	Low-noise analog ground.
$14-16$	PGND	Power ground.

National Semiconductor

LM2653

1.5A High Efficiency Synchronous Switching Regulator

General Description

The LM2653 switching regulator provides high efficient power conversion over a 100:1 load range (1.5A to 15 mA). This feature makes the LM2653 an ideal fit in battery-powered applications.
Synchronous rectification is used to achieve up to 97% efficiency. At light loads, the LM2653 enters a low power hysteretic or "sleep" mode to keep the efficiency high. In many applications, the efficiency still exceeds 80% at 15 mA load. A shutdown pin is available to disable the LM2653 and reduce the supply current to $7 \mu \mathrm{~A}$.

All the power, control, and drive functions are integrated within the ICs. The ICs contain patented current sensing circuity for current mode control. This feature eliminates the external current sensing resistor required by other current-mode DC-DC converters.
The ICs have a 300 kHz fixed frequency internal oscillator. The high oscillator frequency allows the use of extremely small, low profile components.

Protection features include thermal shutdown, input undervoltage lockout, adjustable soft-start, cycle by cycle current limit, output overvoltage and undervoltage protections.

- 4 V to 14 V input voltage range
- 1.5 V to 5.0 V adjustable output voltage
- 0.1Ω Switch On Resistance
- 300 kHz fixed frequency internal oscillator
- $7 \mu \mathrm{~A}$ shutdown current
- Patented current sensing for current mode control
- Input undervoltage lockout
- Output overvoltage shutdown protection
- Output undervoltage shutdown protection
- Adjustable soft-start
- Adjustable PGOOD delay
- Current limit and thermal shutdown

Applications

- Webpad
- Personal digital assistants (PDAs)
- Computer peripherals
- Battery-powered devices
- Notebook computer video supply
- Handheld scanners
- GXM I/O and core voltage
- High efficiency 5 V conversion

Features

- Efficiency up to 97%

Typical Application

LM2655

2.5A High Efficiency Synchronous Switching Regulator

General Description

The LM2655 is a current-mode controlled PWM step-down switching regulator. It has the unique ability to operate in synchronous or asynchronous mode. This gives the designer flexibility to choose between the high efficiency of synchronous operation, or the low solution cost of asynchronous operation. Along with flexibility, the LM2655 offers high power density with the small footprint of a TSSOP-16 package.
High efficiency ($>90 \%$) is obtained through the use of an internal low ON-resistance ($33 \mathrm{~m} \Omega$) MOSFET, and an external N -Channel MOSFET. This feature, together with its low quiescent current, makes the LM2655 an ideal fit in portable applications.
Integrated in the LM2655 are all the power, control, and drive functions for asynchronous operation. In addition, a low-side driver output allows easy synchronous operation. The IC uses patented current sensing circuitry that eliminates the external current sensing resistor required by other currentmode DC-DC converters. A programmable soft-start feature limits start up current surges and provides a means of sequencing multiple power supplies.

Features

- Ultra-high efficiency up to 96%
- 4 V to 14 V input voltage range
- Internal high-side MOSFET with low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.033 \Omega$
- 300 kHz fixed frequency internal oscillator
- Low-side drive for synchronous operation
- Guaranteed less than $12 \mu \mathrm{~A}$ shutdown current
- Patented current sensing for current mode control
- Programmable soft-start
- Input undervoltage lockout
- Output overvoltage shutdown protection
- Output undervoltage shutdown protection
- Thermal Shutdown
- 16-pin TSSOP package

Applications

- Hard disk drives
- Internet appliances
- TFT monitors
- Computer peripherals
- Battery powered devices

Typical Application

Connection Diagram

Order Number LM2655MTC-ADJ See NS Package Number MTC16

Block Diagram

Pin Description

Pin	Name	Function
$1-2$	SW	Switched-node connection, which is connected to the source of the internal high-side MOSFET.
$3-5$	$\mathrm{PV}_{\text {IN }}$	Main power supply input pin. Connected to the drain of the internal high-side MOSFET.
6	$\mathrm{~V}_{\mathrm{CB}}$	Bootstrap capacitor connection for high-side gate drive.
7	$\mathrm{AV}_{\text {IN }}$	Input voltage for control and drive circuits.
8	$\overline{\mathrm{SD}}$ (SS)	Shutdown control input, active low. This pin can also function as soft-start control pin. Connect a capacitor from this pin to ground.
9	FB	Output voltage feedback input. Connected to the output voltage.
10	COMP	Compensation network connection. Connected to the output of the voltage error amplifier.
11	$\mathrm{~L}_{\text {DELAY }}$	A capacitor between this pin to ground sets the delay from when the output voltage reaches 80\% of its nominal to when the undervoltage latch protection is enabled.
12	LDR	Low-side FET gate drive pin.
14	GND	Power ground.
PV		Main power supply input pin. Connected to the drain of the internal high-side MOSFET.

Ordering Information

Supplied as $\mathbf{1 0 0 0}$ units Tape and Reel	Supplied as $\mathbf{3 0 0 0}$ units, Tape and Reel
LM2655MTC-3.3	LM2655MTCX-3.3
LM2655MTC-ADJ	LM2655MTCX-ADJ

LM2670

SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator with Sync

General Description

The LM2670 series of regulators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 3A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimum number of external components. The switching clock frequency can be provided by an internal fixed frequency oscillator (260 KHz) or from an externally provided clock in the range of 280 KHz to 400 Khz which allows the use of physically smaller sized components. A family of standard inductors for use with the LM2670 are available from several manufacturers to greatly simplify the design process. The external Sync clock provides direct and precise control of the output ripple frequency for consistent filtering or frequency spectrum positioning.
The LM2670 series also has built in thermal shutdown, current limiting and an ON/OFF control input that can power down the regulator to a low $50 \mu \mathrm{~A}$ quiescent current standby condition. The output voltage is guaranteed to a $\pm 2 \%$ tolerance.

Features

- Efficiency up to 94%
- Simple and easy to design with (using off-the-shelf external components)
- $150 \mathrm{~m} \Omega$ DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37 V) versions
- $50 \mu \mathrm{~A}$ standby current when switched OFF
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- External Sync clock capability (280 KHz to 400 KHz)
- 260 KHz fixed frequency internal oscillator
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency ($>90 \%$) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers
- Communications and radio equipment regulator with synchronized clock frequency

Typical Application

Connection Diagram and Ordering Information

Order Number
LM2670S-3.3, LM2670S-5.0, LM2670S-12 or LM2670S-ADJ See NSC Package Number TS7B

TO-220 Package
Top View

Order Number
LM2670T-3.3, LM2670T-5.0,
LM2670T-12 or LM2670T-ADJ
See NSC Package Number TA07B

LM2671

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 500mA Step-Down Voltage Regulator with Features

General Description

The LM2671 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 500 mA load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and $5,514,947$), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.
The LM2671 series operates at a switching frequency of 260 kHz , thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency ($>90 \%$), the copper traces on the printed circuit board are the only heat sinking needed.
A family of standard inductors for use with the LM2671 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.
Other features include a guaranteed $\pm 1.5 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring typically $50 \mu \mathrm{~A}$ stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2671 buck regulator design procedure, there exists computer design software, LM267X Made Simple (version 6.0).

Features

- Efficiency up to 96%
- Available in SO-8 and 8-pin DIP packages
- Computer Design Software LM267X Made Simple (version 6.0)
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
. $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range: 1.21 V to 37 V
- $\pm 1.5 \%$ max output voltage tolerance over line and load conditions
- Guaranteed 500 mA output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8 V to 40 V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90\%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators

Typical Application (Fixed Output Voltage Versions)

LM2672

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features

General Description

The LM2672 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and $5,514,947$), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.
The LM2672 series operates at a switching frequency of 260 kHz , thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency ($>90 \%$), the copper traces on the printed circuit board are the only heat sinking needed.
A family of standard inductors for use with the LM2672 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.
Other features include a guaranteed $\pm 1.5 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring typically $50 \mu \mathrm{~A}$ stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2672 buck regulator design procedure, there exists computer design software, LM267X Made Simple version 6.0.

Features

- Efficiency up to 96%
- Available in SO-8 and 8-pin DIP packages
- Computer Design Software LM267X Made Simple version 6.0
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range: 1.21 V to 37 V
- $\pm 1.5 \%$ max output voltage tolerance over line and load conditions
- Guaranteed 1A output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8 V to 40 V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90\%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators

Typical Application (Fixed Output Vottage Versions)

LM2673

SIMPLE SWITCHER ${ }^{\circledR}$ 3A Step-Down Voltage Regulator with Adjustable Current Limit

General Description

The LM2673 series of regulators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 3A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimum number of external components. A high fixed frequency oscillator (260 KHz) allows the use of physically smaller sized components. A family of standard inductors for use with the LM2673 are available from several manufacturers to greatly simplify the design process.
Other features include the ability to reduce the input surge current at power-ON by adding a softstart timing capacitor to gradually turn on the regulator. The LM2673 series also has built in thermal shutdown and resistor programmable current limit of the power MOSFET switch to protect the device and load circuitry under fault conditions. The output voltage is guaranteed to a $\pm 2 \%$ tolerance. The clock frequency is controlled to within a $\pm 11 \%$ tolerance.

Features

- Efficiency up to 94%
- Simple and easy to design with (using off-the-shelf external components)
- Resistor programmable peak current limit over a range of 2 A to 5 A .
- $150 \mathrm{~m} \Omega$ DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37 V) versions
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- 260 KHz fixed frequency internal oscillator
- Softstart capability
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency ($>90 \%$) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers

Typical Application

Connection Diagram and Ordering Information

Order Number LM2673S-3.3, LM2673S-5.0, LM2673S-12 or LM2673S-ADJ
See NSC Package Number TS7B

LM2674

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 500 mA Step-Down Voltage Regulator

General Description

The LM2674 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 500 mA load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and $5,514,947$) and a fixed frequency oscillator.
The LM2674 series operates at a switching frequency of 260 kHz , thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency ($>90 \%$), the copper traces on the printed circuit board are the only heat sinking needed.
A family of standard inductors for use with the LM2674 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.
Other features include a guaranteed $\pm 1.5 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring typically $50 \mu \mathrm{~A}$ stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2674 buck regulator design procedure, there exists computer design software, LM267X Made Simple (version 6.0).

Features

- Efficiency up to 96%
- Available in SO-8 and 8-pin DIP packages
- Computer Design Software LM267X Made Simple (version 6.0)
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21 V to 37 V
- $\pm 1.5 \%$ max output voltage tolerance over line and load conditions
- Guaranteed 500 mA output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8 V to 40 V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90\%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- Positive-to-Negative Converter

Typical Application

LM2675

SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter High Efficiency 1A Step-Down Voltage Regulator

General Description

The LM2675 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and $5,514,947$) and a fixed frequency oscillator.
The LM2675 series operates at a switching frequency of 260 kHz , thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency ($>90 \%$), the copper traces on the printed circuit board are the only heat sinking needed.
A family of standard inductors for use with the LM2675 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.
Other features include a guaranteed $\pm 1.5 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring typically $50 \mu \mathrm{~A}$ stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2675 buck regulator design procedure, there exists computer design software, LM267X Made Simple version 6.0.

Features

- Efficiency up to 96%
- Available in SO-8 and 8-pin DIP packages
- Computer Design Software LM267X Made Simple (version 6.0)
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21 V to 37 V
- $\pm 1.5 \%$ max output voltage tolerance over line and load conditions
- Guaránteed 1A output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8 V to 40 V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90\%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- Positive-to-Negative Converter

Typical Application

National Semiconductor

LM2676

SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 3A Step-Down Voltage Regulator

General Description

The LM2676 series of regulators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 3A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimum number of external components. A high fixed frequency oscillator (260 KHz) allows the use of physically smaller sized components. A family of standard inductors for use with the LM2676 are available from several manufacturers to greatly simplify the design process.
The LM2676 series also has built in thermal shutdown, current limiting and an ON/OFF control input that can power down the regulator to a low $50 \mu \mathrm{~A}$ quiescent current standby condition. The output voltage is guaranteed to a $\pm 2 \%$ tolerance. The clock frequency is controlled to within a $\pm 11 \%$ tolerance.

Features

- Efficiency up to 94%
- Simple and easy to design with (using off-the-shelf external components)
- $150 \mathrm{~m} \Omega$ DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37V) versions
- $50 \mu \mathrm{~A}$ standby current when switched OFF
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- 260 KHz fixed frequency internal oscillator
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency (>90\%) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers

Typical Application

Order Number
LM2676S-3.3, LM2676S-5.0,
LM2676S-12 or LM2676S-ADJ
See NSC Package Number TS7B

LM2677

SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 5A Step-Down Voltage Regulator with Sync

General Description

The LM2677 series of regulators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 5A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimum number of external components. The switching clock frequency can be provided by an internal fixed frequency oscillator $(260 \mathrm{KHz})$ or from an externally provided clock in the range of 280 KHz to 400 Khz which allows the use of physically smaller sized components. A family of standard inductors for use with the LM2677 are available from several manufacturers to greatly simplify the design process. The external Sync clock provides direct and precise control of the output ripple frequency for consistent filtering or frequency spectrum positioning.
The LM2677 series also has built in thermal shutdown, current limiting and an ON/OFF control input that can power down the regulator to a low $50 \mu \mathrm{~A}$ quiescent current standby condition. The output voltage is guaranteed to a $\pm 2 \%$ tolerance.

Features

- Efficiency up to 92%
- Simple and easy to design with (using off-the-shelf external components)
- 100 ms 2 DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37 V) versions
- $50 \mu \mathrm{~A}$ standby current when switched OFF
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- External Sync clock capability (280 KHz to 400 KHz)
- 260 KHz fixed frequency internal oscillator
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency (>90\%) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers
- Communications and radio equipment regulator with synchronized clock frequency

Typical Application

TO-263 Package Top View

Order Number
LM2677S-3.3, LM2677S-5.0, LM2677S-12 or LM2677S-ADJ See NSC Package Number TS7B

TO-220 Package

Top View

Order Number LM2677T-3.3, LM2677T-5.0, LM2677T-12 or LM2677T-ADJ See NSC Package Number TA07B

LM2678

SIMPLE SWITCHER ${ }^{\circledR}$ High Efficiency 5A Step-Down Voltage Regulator

General Description

The LM2678 series of regulators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 5 A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimum number of external components. A high fixed frequency oscillator (260 KHz) allows the use of physically smaller sized components. A family of standard inductors for use with the LM2678 are available from several manufacturers to greatly simplify the design process.
The LM2678 series also has built in thermal shutdown, current limiting and an ON/OFF control input that can power down the regulator to a low $50 \mu \mathrm{~A}$ quiescent current standby condition. The output voltage is guaranteed to a $\pm 2 \%$ tolerance. The clock frequency is controlled to within a $\pm 11 \%$ tolerance.

Features

- Efficiency up to 92%
- Simple and easy to design with (using off-the-shelf external components)
- 120 ms DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37 V) versions
- $50 \mu \mathrm{~A}$ standby current when switched OFF
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- 260 KHz fixed frequency internal oscillator
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency (>90\%) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers

Typical Application

Connection Diagram and Ordering Information

Order Number
LM2678S-3.3, LM2678S-5.0, LM2678S-12 or LM2678S-ADJ
See NSC Package Number TS7B

LM2679

SIMPLE SWITCHER ${ }^{\circledR}$ 5A Step-Down Voltage Regulator with Adjustable Current Limit

General Description

The LM2679 series of reguiators are monolithic integrated circuits which provide all of the active functions for a step-down (buck) switching regulator capable of driving up to 5A loads with excellent line and load regulation characteristics. High efficiency ($>90 \%$) is obtained through the use of a low ON-resistance DMOS power switch. The series consists of fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V and an adjustable output version.
The SIMPLE SWITCHER concept provides for a complete design using a minimurn number of external components. A high fixed frequency oscillator (260 KHz) allows the use of physically smaller sized components. A family of standard inductors for use with the LM2679 are available from several manufacturers to greatly simplify the design process.
Other features include the ability to reduce the input surge current at power-ON by adding a softstart timing capacitor to gradually turn on the regulator. The LM2679 series also has built in thermal shutdown and resistor programmable current limit of the power MOSFET switch to protect the device and load circuitry under fault conditions. The output voltage is guaranteed to a $\pm 2 \%$ tolerance. The clock frequency is controlled to within a $\pm 11 \%$ tolerance.

Features

- Efficiency up to 92%
- Simple and easy to design with (using off-the-shelf external components)
- Resistor programmable peak current limit over a range of 3 A to 7A.
- $120 \mathrm{~m} \Omega$ DMOS output switch
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output and adjustable (1.2V to 37 V) versions
- $\pm 2 \%$ maximum output tolerance over full line and load conditions
- Wide input voltage range: 8 V to 40 V
- 260 KHz fixed frequency internal oscillator
- Softstart capability
- -40 to $+125^{\circ} \mathrm{C}$ operating junction temperature range

Applications

- Simple to design, high efficiency (>90\%) step-down switching regulators
- Efficient system pre-regulator for linear voltage regulators
- Battery chargers

Typical Application

Connection Diagram and Ordering Information

Order Number
LM2679T-3.3, LM2679T-5.0,
LM2679T-12 or LM2679T-ADJ
See NSC Package Number TA07B

LM2825

Integrated Power Supply 1A DC-DC Converter

General Description

The LM2825 is a complete 1A DC-DC Buck converter packaged in a 24 -lead molded Dual-In-Line integrated circuit package.
Contained within the package are all the active and passive components for a high efficiency step-down (buck) switching regulator. Available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V , as well as two adjustable versions, these devices can provide up to 1A of load current with fully guaranteed electrical specifications.
Self-contained, this converter is also fully protected from output fault conditions, such as excessive load current, short circuits, or excessive temperatures.

Highlights

- No external components required (fixed output voltage versions)
- Integrated circuit reliability
- MTBF over 20 million hours
- Radiated EMI meets Class B stipulated by CISPR 22
- High power density, $35 \mathrm{~W} / \mathrm{in}^{3}$
- 24-pin DIP package profile ($1.25 \times 0.54 \times 0.26$ inches)

Features

- Minimum design time required
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V fixed output versions
- Two adjustable versions allow 1.23 V to 15 V outputs
- Wide input voltage range, up to 40 V
- Low-power standby mode, I_{Q} typically $65 \mu \mathrm{~A}$
- High efficiency, typically 80%
- $\pm 4 \%$ output voltage tolerance
- Excellent line and load regulation
- TTL shutdown capability/programmable Soft-start
- Thermal shutdown and current limit protection
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature range

Applications

- Simple high-efficiency step-down (buck) regulator
- On-card switching regulators
- Efficient pre-regulator for linear regulators
- Distributed power systems
- DC/DC module replacement

DS012661-27

Standard Application

(Fixed output voltage versions)

Radiated EMI

Radiated emission of electromagnetic fields is measured at 10 m distance. The emission levels are within the Class B limits stipulated by CISPR 22.

$30 \ldots .230 \mathrm{MHz}$	$30 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$
$230 \ldots .1000 \mathrm{MHz}$	$37 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$
$1 . \ldots .10 \mathrm{GHz}$	$46 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$

Connection Diagram

"NC (Do not use)" pins: See Figure 11.
Top View
Ordering Information
Order Number LM2825N-3.3, LM2825N-5.0, LM2825N-12, LM2825N-ADJ or LM2825HN-ADJ
See NS Package Number NA24F

LM3478

High Efficiency Low-Side N-Channel Controller for Switching Regulator

General Description

The LM3478 is a versatile Low-Side N-FET switching regulator controller. It is suitable for use in topologies requiring low side FET, such as boost, flyback, SEPIC, etc. Moreover, the LM3478 can be operated at extremely high switching frequency in order to reduce the overall solution size. The switching frequency of LM3478 can be adjusted to any value between 100 kHz and 1 MHz by using a single external resistor. Current mode control provides superior bandwidth and transient response, besides cycle-by-cycle current limiting. Output current can be programmed with a single external resistor.
TheLM3478 has built in features such as thermal shutdown, short-circuit protection, over voltage protection, etc. Power saving shutdown mode reduces the total supply current to $5 \mu \mathrm{~A}$ and allows power supply sequencing. Internal soft-start limits the inrush current at start-up.

Key Specifications

■ Wide supply voltage range of 2.95 V to 40 V

- 100 kHz to 1 MHz Adjustable clock frequency
- $\pm 2.5 \%$ (over temperature) internal reference
- $10 \mu \mathrm{~A}$ shutdown current

Features

- 8-lead Mini-SO8 (MSOP-8) package
- Internal push-pull driver with 1A peak current capability
- Current limit and thermal shutdown
- Frequency compensation optimized with a capacitor and a resistor
- Internal softstart
- Current Mode Operation
- Undervoltage Lockout with hysteresis

Applications

- Distributed Power Systems
- Battery Chargers
- Offline Power Supplies
- Telecom Power Supplies
- Automotive Power Systems

Typical Application Circuit

Typical High Efficiency Step-Up (Boost) Converter

Connection Diagram

8 Lead Mini SO8 Package (MSOP-8 Package)

Package Marking and Ordering Information

Order Number	Package Type	Package Marking	Supplied As:
LM3478MM	MSOP-8	S14B	1000 units on Tape and Reel
LM3478MMX	MSOP-8	S14B	3500 units on Tape and Reel

Pin Description

Pin Name	Pin Number	Description
I SEN	1	Current sense input pin. Voltage generated across an external sense resistor is fed into this pin.
COMP	2	Compensation pin. A resistor, capacitor combination connected to this pin provides compensation for the control loop.
FB	3	Feedback pin. The output voltage should be adjusted using a resistor divider to provide 1.25V at this pin.
AGND	4	Analog ground pin.
PGND	5	Power ground pin.
DR	6	Drive pin of the IC. The gate of the external MOSFET should be connected to this pin.
FAD/SD	7	Frequency adjust and Shutdown pin. A resistor connected to this pin sets the oscillator frequency. A high level on this pin for \geq $30 \mu s$ will turn the device off. The device will then draw less than $10 \mu \mathrm{~A}$ from the supply.

LM3488

High Efficiency Low-Side N-Channel Controller for Switching Regulators

General Description

The LM3488 is a versatile Low-Side N-FET high performance controller for switching regulators. It is suitable for use in topologies requiring low side FET, such as boost, flyback, SEPIC, etc. Moreover, the LM3488 can be operated at extremely high switching frequency in order to reduce the overall solution size. The switching frequency of LM3488 can be adjusted to any value between 100 kHz and 1 MHz by using a single external resistor or by synchronizing it to an external clock. Current mode control provides superior bandwidth and transient response, besides cycle-by-cycle current limiting. Output current can be programmed with a single external resistor.
TheLM3488 has built in features such as thermal shutdown, short-circuit protection, over voltage protection, etc. Power saving shutdown mode reduces the total supply current to $5 \mu \mathrm{~A}$ and allows power supply sequencing. Internal soft-start limits the inrush current at start-up.

Key Specifications

- Wide supply voltage range of 2.95 V to 40 V
- 100 kHz to 1 MHz Adjustable and Synchronizable clock frequency
- $\pm 1.5 \%$ (over temperature) internal reference
- $5 \mu \mathrm{~A}$ shutdown current

Features

- 8-lead Mini-SO8 (MSOP-8) package
- Internal push-pull driver with 1A peak current capability
- Current limit and thermal shutdown
- Frequency compensation optimized with a capacitor and a resistor
- Internal softstart
- Current Mode Operation
- Undervoltage Lockout with hysteresis

Applications

- Distributed Power Systems
- Notebook, PDA, Digital Camera, and other Portable Applications
- Offline Power Supplies
- Set-Top Boxes

Typical Application Circuit

Typical SEPIC Converter

Connection Diagram

8 Lead Mini SO8 Package (MSOP-8 Package)

Package Marking and Ordering Information

Order Number	Package Type	Package Marking	Supplied As:
LM3488MM	MSOP-8	S21B	1000 units on Tape and Reel
LM3488MMX	MSOP-8	S21B	3500 units on Tape and Reel

Pin Description

Pin Name	Pin Number	Description
I $_{\text {SEN }}$	1	Current sense input pin. Voltage generated across an external sense resistor is fed into this pin.
COMP	2	Compensation pin. A resistor, capacitor combination connected to this pin provides compensation for the control loop.
FB	3	Feedback pin. The output voltage should be adjusted using a resistor divider to provide 1.25V at this pin.
AGND	4	Analog ground pin.
PGND	5	Power ground pin.
DR	6	Drive pin of the IC. The gate of the external MOSFET should be connected to this pin.
FA/SYNC/SD	7	Frequency adjust, synchronization, and Shutdown pin. A resistor connected to this pin sets the oscillator frequency. An external clock signal at this pin will synchronize the controller to the frequency of the clock. A high level on this pin for $\geq 30 \mu s$ will turn the device off. The device will then draw less than 10 supply. from the

LM2720

5-Bit Programmable, High Frequency Multi-phase PWM Controller

General Description

The LM2720 provides an attractive solution for power supplies of high power microprocessors exhibiting ultra fast load transients. Compared to a conventional single-phase supply, an LM2720 based multi-phase supply distributes the thermal and electrical loading among components in multiple phases and greatly reduces the corresponding stress in each component. The LM2720 can be programmed to control either a 3-phase converter or a 4-phase converter. Phase shift among the phases is 120° in the case of three phase and 90° with four-phase. Because the power channels are out of phase, there can be significant ripple cancellation for both the input and output current, resulting in reduced input and output capacitor size. Due to the nominal operating frequency of 2 MHz per phase, the size of the output inductors can be greatly reduced which results in a much faster load transient response and a dramatically shrunk output capacitor bank. Microprocessor power supplies with all surface mount components can be easily built.
The internal high speed transconductance amplifier guarantees good dynamic performance.
The internal master clock frequency of up to 8 MHz is set by an external reference resistor. An external clock of 10 MHz can also be used to drive the chip to achieve frequency control and multi-chip operation.

The LM2720 also provides input under-voltage lock-out with hysteresis, input over-current protection and output voltage power good detection.

Features

- Ultra fast load transient response
- Enables all surface-mount-design
- Selectable 2, 3, 4 phase operation
- Clock frequency from 40 kHz to 10 MHz
- Precision load current sharing
- 5-bit programmable from 3.5 V to 1.3 V
- VID code compatible to VRM 8.X specification
- Output voltage is 2.0 V for VID code 11111
- Selectable internal or external clock
- Digital 16-step soft start
- Input under-voltage lock-out, over-current protection
- Open-drain power good signal output

Applications

- Servers and workstations
- High current, ultra-fast transient microprocessors

Pin Configuration

24-Pin Plastic SOIC		
$v_{c c} 5 v-1$	24	- Pwrgd
Divsel-2	23	- Drv3
Cliksel-3	22	- Drv1
Extalk - 4	21	- $\mathrm{v}_{\mathrm{Cc}}{ }^{12 v}$
Rref -5	20	- Drvo
Vido - 6	19	- Drv2
Vid $1-7$	18	- GND
Vid2 -8	17	- Enable
Vid3 -9	16	- FBG
Vid4 - 10	15	- Bgout
OC +11	14	- FB
OC- 12	13	- Comp
	Top	

θ

Section 19
 Voltage Regulators and
 Converters - Switched Capacitor

Section 19 Contents

Switched Capacitor Converter Selection Guide 19-3
LM2660/LM2661 Switched Capacitor Voltage Converter 19-4
LM2662/LM2663 Switched Capacitor Voltage Converter 19-5
LM2664 Switched Capacitor Voltage Converter 19-6
LM2665 Switched Capacitor Voltage Converter 19-7
LM2681 Switched Capacitor Voltage Converter 19-8
LM2682 Switched Capacitor Voltage Doubling Inverter 19-9
LM2685 Dual Output Regulated Switched Capacitor Voltage Converter 19-10
LM2686 Regulated Switched Capacitor Voltage Converter 19-12
LM2687 Low Noise Regulated Switched Capacitor Voltage Inverter 19-14
LM2765 Switched Capacitor Voltage Converter 19-16
LM2766 Switched Capacitor Voltage Converter 19-18
LM2767 Switched Capacitor Voltage Converter 19-20
LM3350 Switched Capacitor Voltage Converter 19-22
LM3351 Switched Capacitor Voltage Converter 19-23
LM3352 Regulated 200 mA Buck-Boost Switched Capacitor DC/DC Converter 19-24
LM828 Switched Capacitor Voltage Converter 19-26
LMC7660 Switched Capacitor Voltage Converter 19-27
MAX660 Switched Capacitor Voltage Converter 19-28

Switched Capacitor Converter Selection Guide

Part Number	Function	Output Impedance (ohms)	Output Current (mA)	$\begin{gathered} \text { Input } \\ \text { Range (V) } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Oscillator Frequency (kHz)	Package (Note 2)
DOUBLER/SPLITTER						
LM2660	$2\left(\mathrm{~V}_{\text {in }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	10/80	MSOP-8/SO-8
LM2661	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	80	MSOP-8/SO-8
LM2662	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	3.5	200	1.5 to 5.5	20/150	SO-8
LM2663	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	3.5	200	1.5 to 5.5	150	SO-8
LM2665	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	12	40	1.8 to 5.5	160	SOT23-6
LM2681	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	15	20	2.5 to 5.5	160	SOT23-6
LM2682	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	90	10	2.0 to 5.5	6	MSOP-8/SO-8
LM2685	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	20	50	2.85 to 6.5	130	TSSOP-14
LM2686	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	5.0	50	2.85 to 6.5	130	TSSOP-14
LM2765	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	20	20	1.8 to 5.5	50	SOT23-6
LM2766	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	20	20	1.8 to 5.5	200	SOT23-6
LM2767	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	20	15	1.8 to 5.5	11	SOT23-5
LMC7660	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	55	20	1.5 to 10	10	SO-8 / N-8
MAX660	$2\left(\mathrm{~V}_{\text {IN }}\right)$ or $1 / 2\left(\mathrm{~V}_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	10/80	MSOP-8/SO-8
FRACTIONAL						
LM3350	$3 / 2\left(\mathrm{~V}_{\text {IN }}\right)$ or 2/3 ($\mathrm{V}_{\text {IN }}$)	4.2/1.8	50	1.5 to 5.5	1600	MSOP-8
LM3351	$3 / 2\left(\mathrm{~V}_{\text {IN }}\right)$ or 2/3 ($\mathrm{V}_{\text {IN }}$)	4.2/1.8	50	1.5 to 5.5	400	MSOP-8
LM3352	Regulated Output, 2.5 V , 3.0 V , or 3.3 V	n/a	200	2.5 to 5.5	1000	TSSOP-16
INVERTER						
LM2660	$-\left(\mathrm{V}_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	10/80	MSOP-8/SO-8
LM2661	$-\left(V_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	80	MSOP-8/SO-8
LM2662	$-\left(\mathrm{V}_{\text {IN }}\right)$	3.5	200	1.5 to 5.5	20/150	MSOP-8/SO-8
LM2663	$-\left(\mathrm{V}_{\text {IN }}\right)$	3.5	200	1.5 to 5.5	150	SO-8
LM2664	$-\left(\mathrm{V}_{\text {IN }}\right)$	12	40	1.8 to 5.5	160	SOT23-6
LM2682	-($\mathrm{V}_{\text {IN }}$)	90	10	2.0 to 5.5	6	MSOP-8/SO-8
LM2685	$-\left(\mathrm{V}_{\text {IN }}\right.$	20	50	2.85 to 6.5	130	TSSOP-14
LM2686	$-\left(\mathrm{V}_{\text {IN }}\right)$	5.0	50	2.85 to 6.5	130	TSSOP-14
LM2687	$-\left(\mathrm{V}_{\text {IN }}\right)$	30	10	2.7 to 5.5	100	MSOP-8
LM828	-($\mathrm{V}_{\text {IN }}$)	20	25	1.8 to 5.5	12	SOT23-5
LMC7660	$-\left(\mathrm{V}_{\text {IN }}\right)$	55	20	1.5 to 10	10	SO-8 / N-8
MAX660	$-\left(\mathrm{V}_{\text {IN }}\right)$	6.5	100	1.5 to 5.5	10/80	MSOP-8/SO-8

Note 1: For voltage splitting function, the applied input voltage can be up to twice the specified Input Range.
Note 2: Package designation includes the number of pins.

LM2660/LM2661

Switched Capacitor Voltage Converter

General Description

The LM2660/LM2661 CMOS charge-pump voltage converter inverts a positive voltage in the range of 1.5 V to 5.5 V to the corresponding negative voltage. The LM2660/LM2661 uses two low cost capacitors to provide 100 mA of output current without the cost, size, and EMI related to inductor based converters. With an operating current of only $120 \mu \mathrm{~A}$ and operating efficiency greater than 90% at most loads, the LM2660/LM2661 provides ideal performance for battery powered systems. The LM2660/LM2661 may also be used as a positive voltage doubler.
The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the LM2660/LM2661 with an external clock. For LM2660, a frequency control (FC) pin selects the oscillator frequency of 10 kHz or 80 kHz . For LM2661, an external shutdown (SD) pin replaces the FC pin. The SD pin can be used to disable the device and reduce the quiescent current to $0.5 \mu \mathrm{~A}$. The oscillator frequency for the LM2661 is 80 kHz .

Features

- Inverts or doubles input supply voltage
- Narrow SO-8 and Mini SO-8 Package
- 6.5Ω typical output resistance
- 88% typical conversion efficiency at 100 mA
- (LM2660) selectable oscillator frequency: $10 \mathrm{kHz} / 80 \mathrm{kHz}$
- (LM2661) low current shutdown mode

Applications

- Laptop computers
- Cellular phones
- Medical instruments
- Operational amplifier power supplies
- Interface power supplies
- Handheld instruments

Basic Application Circuits

Splitting \mathbf{V}_{IN} in Half

LM2662/LM2663

Switched Capacitor Voltage Converter

General Description

The LM2662/LM2663 CMOS charge-pump voltage converter inverts a positive voltage in the range of 1.5 V to 5.5 V to the corresponding negative voltage. The LM2662/LM2663 uses two low cost capacitors to provide 200 mA of output current without the cost, size, and EMI related to inductor based converters. With an operating current of only $300 \mu \mathrm{~A}$ and operating efficiency greater than 90% at most loads, the LM2662/LM2663 provides ideal performance for battery powered systems. The LM2662/LM2663 may also be used as a positive voltage doubler.
The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the LM2662/LM2663 with an external clock. For LM2662, a frequency control (FC) pin selects the oscillator frequency of 20 kHz or 150 kHz . For LM2663, an external shutdown (SD) pin replaces the FC pin. The SD pin can be used to disable the device and reduce the quiescent current to $10 \mu \mathrm{~A}$. The oscillator frequency for LM2663 is 150 kHz .

Features

- Inverts or doubles input supply voltage
- Narrow SO-8 Package
- 3.5Ω typical output resistance
- 86% typical conversion efficiency at 200 mA
- (LM2662) selectable oscillator frequency: $20 \mathrm{kHz} / 150 \mathrm{kHz}$
- (LM2663) low current shutdown mode

Applications

- Laptop computers
- Cellular phones
- Medical instruments
- Operational amplifier power supplies
- Interface power supplies
- Handheld instruments

Basic Application Circuits

* See Application Information for selecting D_{1}

DS100003-2

Splitting V_{IN} in Half

National Semiconductor

LM2664

Switched Capacitor Voltage Converter

General Description

The LM2664 CMOS charge-pump voltage converter inverts a positive voltage in the range of +1.8 V to +5.5 V to the corresponding negative voltage of -1.8 V to -5.5 V . The LM2664 uses two low cost capacitors to provide up to 40 mA of output current.
The LM2664 operates at 160 kHz oscillator frequency to reduce output resistance and voltage ripple. With an operating current of only $220 \mu \mathrm{~A}$ (operating efficiency greater than 91% with most loads) and $1 \mu \mathrm{~A}$ typical shutdown current, the LM2664 provides ideal performance for battery powered systems. The device is in SOT-23-6 package.

Features

- Inverts Input Supply Voltage
- SOT23-6 Package
- 12Ω Typical Output Impedance
- 91\% Typical Conversion Efficiency at 40 mA
- $1 \mu \mathrm{~A}$ Typical Shutdown Current

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Suppliers
- Interface Power Suppliers
- Handheld Instruments

Basic Application Circuits

+5 V to -10V Converter

LM2665

Switched Capacitor Voltage Converter

General Description

The LM2665 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +2.5 V to +5.5 V . Two low cost capacitors and a diode (needed during start-up) are used in this circuit to provide up to 40 mA of output current. The LM2665 can also work as a voltage divider to split a voltage in the range of +1.8 V to +11 V in half.
The LM2665 operates at 160 kHz oscillator frequency to reduce output resistance and voltage ripple. With an operating current of only $650 \mu \mathrm{~A}$ (operating efficiency greater than 90% with most loads) and $1 \mu \mathrm{~A}$ typical shutdown current, the LM2665 provides ideal performance for battery powered systems. The device is in SOT-23-6 package.

Features

- Doubles or Splits Input Supply Voltage
- SOT23-6 Package
- 12Ω Typical Output Impedance
- 90% Typical Conversion Efficiency at 40 mA
- $1 \mu \mathrm{~A}$ Typical Shutdown Current

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Suppliers
- Interface Power Suppliers
- Handheld Instruments

Basic Application Circuits

LM2681

Switched Capacitor Voltage Converter

General Description

The LM2681 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +2.5 V to +5.5 V . Two low cost capacitors and a diode (needed during start-up) is used in this circuit to provide up to 20 mA of output current. The LM2681 can also work as a voltage divider to split a voltage in the range of +1.8 V to +11 V in half.
The LM2681 operates at 160 kHz oscillator frequency to reduce output resistance and voltage ripple. With an operating current of only $550 \mu \mathrm{~A}$ (operating efficiency greater than 90% with most loads) the LM2681 provides ideal performance for battery powered systems. The device is in SOT-23-6 package.

Features

- Doubles or Splits Input Supply Voltage
- SOT23-6 Package
- 15Ω Typical Output Impedance
- 90% Typical Conversion Efficiency at 20 mA

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Suppliers
- Interface Power Suppliers
- Handheld Instruments

Basic Application Circuits

Splitting $\mathbf{V}_{\text {in }}$ in Half

LM2682

Switched Capacitor Voltage Doubling Inverter

General Description

The LM2682 is a CMOS charge-pump voltage inverter capable of converting positive voltage in the range of +2.0 V to +5.5 V to the corresponding doubled negative voltage of -4.0 V to -11.0 V respectively. The LM2682 uses three low cost capacitors to provide 10 mA of output current without the cost, size, and EMI related to inductor based circuits. With an operating current of only $150 \mu \mathrm{~A}$ and an operating efficiency greater than 90% with most loads, the LM2682 provides ideal performance for battery powered systems. The LM2682 offers a switching frequency of 6 kHz .

Features

- Inverts then doubles input supply voltage
- Small MSOP-8 package (mini SO-8) and SO-8 package
- 90Ω typical output impedance
- 94% typical power efficiency at 10 mA

Applications

- LCD contrast biasing
- GaAs power amplifier biasing
- Interface power supplies
- Handheld instrumentation
- Laptop computers and PDAs

Typical Operating Circuit and Pin Configuration

Ordering Information

Order Number	Package	Package Number	Package Marking	Supplied As
LM2682MM	MSOP-8	MUA08A	S11A	Tape and Reel (1000 units/reel)
LM2682MMX	MSOP-8	MUA08A	S11A	Tape and Reel (3500 units/reel)
LM2682M	SO-8	M08A	LM2682M	Rail (95 units/rail)
LM2682MX	SO-8	M08A	LM2682M	Tape and Reel (2500 units/reel)

LM2685

Dual Output Regulated Switched Capacitor Voltage Converter

General Description

The LM2685 CMOS charge-pump voltage converter operates as an input voltage doubler, +5 V regulator and inverter for an input voltage in the range of +2.85 V to +6.5 V . Five low cost capacitors are used in this circuit to provide up to 50 mA of output current at $+5 \mathrm{~V}(\pm 5 \%)$, and 15 mA at -5 V . The LM2685 operates at a 130 kHz switching frequency to reduce output resistance and voltage ripple. With an operating current of only $800 \mu \mathrm{~A}$ (operating efficiency greater than 80% with most loads) and $6 \mu \mathrm{~A}$ typical shutdown current, the LM2685 is ideal for use in battery powered systems. The device is in a small 14-pin TSSOP package.

Features

- +5 V regulated output
- Inverts $\mathrm{V}_{05}(+5 \mathrm{~V})$ to $\mathrm{V}_{\mathrm{NEG}}(-5 \mathrm{~V})$
- Doubles input supply voltage
- TSSOP-14 package
- 80% typical conversion efficiency at 25 mA
- Input voltage range of 2.85 V to 6.5 V
- Independent shutdown control pins

Applications

- Cellular phones
- Pagers
- PDAs
- Handheld instrumentation
- 3.3 V to 5 V voltage conversion applications

Typical Application and Connection Diagram

Ordering Information

Order Number	Package Type	NSC Package Drawing	Supplied As
LM2685MTC	TSSOP-14	MTC14	94 Units, Rail
LM2685MTCX	TSSOP-14	MTC14	2.5k Units, Tape and Reel

Pin Description

Pin No.	Name	Function
1	$\mathrm{V}_{\text {IN }}$	Power supply input voltage.
2	GND	Power supply ground.
3	$\mathrm{V}_{\text {NEG }}$	Negative output voltage created by inverting V_{05}.
4	$\mathrm{V}_{\text {NSW }}$	$\mathrm{V}_{\text {NEG }}$ output connected through a series switch, NSW.
5	CE	Chip enable input. This pin is high for normal operation and low for shutdown. (See Shutdown and Load Disconnect section in the Detailed Device Description division).
6	SDP	Positive side shutdown input. This pin is low for normal operation and high for positive side shutdown and $\mathrm{V}_{\text {PSW }}$ load disconnect. (See Shutdown and Load Disconnect section in the Detailed Device Description division).
7	SDN	Negative side shutdown input. This pin is low for normal operation and high for negative side shutdown and $\mathrm{V}_{\text {NSw }}$ load disconnect. (See Shutdown and Load Disconnect section in the Detailed Device Description division).
8	$\mathrm{C}_{2}{ }^{-}$	The negative terminal of inverting charge-pump capacitor, C 2.
9	$\mathrm{C}_{2}{ }^{+}$	The positive terminal of inverting charge-pump capacitor, C2.
10	V_{05}	Regulated +5 V output.
11	$\mathrm{V}_{\text {PSW }}$	V_{05} output connected through a series switch, PSW.
12	$\mathrm{V}_{\text {DBL }}$	Voltage Doubler Output. (2.85V $\leq \mathrm{V}_{\text {IN }} \leq 5.4 \mathrm{~V}$. See Voltage Doubler section).
13	$\mathrm{C}_{1}{ }^{+}$	The positive terminal of doubling charge-pump capacitor, C1.
14	$\mathrm{C}_{1}{ }^{-}$	The negative terminal of doubling charge-pump capacitor, C1.

LM2686

Regulated Switched Capacitor Voltage Converter

General Description

The LM2686 CMOS charge-pump voltage converter operates as an input voltage doubler and a +5 V regulator for an input voltage in the range of +2.85 V to +6.5 V . Three low cost capacitors are used in this circuit to provide up to 50 mA of output current at $+5.0 \mathrm{~V}(\pm 5 \%)$. The LM2686 operates at a 130 kHz switching frequency to reduce output resistance and voltage ripple. With an operating current of only $450 \mu \mathrm{~A}$ (operating efficiency greater than 80% with most loads) and $6.0 \mu \mathrm{~A}$ typical shutdown current, the LM2686 is ideal for use in battery powered systems. The device is in a small 14-pin TSSOP package.

Features

- +5 V regulated output
- Doubles input supply voltage
- TSSOP 14 package
- 80% typical conversion efficiency at 25 mA
- Input voltage range of 2.85 V to 6.5 V
- Independent shutdown control pins

Applications

- Cellular phones
- Pagers
- PDAs
- Handheld Instrumentation
- 3.3V to 5V Voltage Conversion Applications

Typical Application and Connection Diagram

DS101141-1

14-Pin TSSOP

Ordering Information

Order Number	Package Type	NSC Package Drawing	Supplied As
LM2686MTC	TSSOP-14	MTC14	94 Units, Rail
LM2686MTCX	TSSOP-14	MTC14	$2.5 k$ Units, Tape and Reel

Pin Description

Pin No.	Name	Function
1	$\mathrm{V}_{\text {IN }}{ }^{\text {a }}$	Power supply input voltage.
2	GND**	Power supply ground.
3	GND*********	Power supply ground.
4	GND**	Power supply ground.
5	CE	Chip enable input. This pin is high for normal operation and low for shutdown and $\mathrm{V}_{\text {psw }}$ load disconnect.
6	SD	Shutdown input. This pin is low for normal operation and high for shutdown and $\mathrm{V}_{\text {PSW }}$ load disconnect.
7	$\mathrm{V}_{\mathrm{IN}}{ }^{*}$	Power supply input voltage.
8	NC	No connection.
9	NC	No connection.
10	V_{05}	Regulated +5 V output.
11	$\mathrm{V}_{\text {PSW }}$	V_{05} output connected through a series switch, PSW.
12	$\mathrm{V}_{\text {DBL }}$	Output of doubled input voltage.
13	$\mathrm{C}_{1}{ }^{+}$	The positive terminal of doubling charge-pump capacitor, C 1.
14	$\mathrm{C}_{1}{ }^{-}$	The negative terminal of doubling charge-pump capacitor, C1.

* All $\mathrm{V}_{\text {IN }}$ pins, pin 1 and pin 7 must be tied together for proper operation.
** All ground pins, pin 2, pin 3 and pin 4 must be tied together for proper operation.

LM2687

Low Noise Regulated Switched Capacitor Voltage Inverter

General Description

The LM2687 CMOS Negative Regulated Switched Capacitor Voltage Inverter delivers a very low noise adjustable output for an input voltage in the range of +2.7 V to +5.5 V . Four low cost capacitors are used in this circuit to provide up to 10 mA of output current. The regulated output for the LM2687 is adjustable between -1.5 V and -5.2 V . The LM 2687 operates at 100 kHz (typical) switching frequency to reduce output resistance and voltage ripple. With an operating current of only $500 \mu \mathrm{~A}$ (charge pump power efficiency greater than 90% with most loads) and $0.05 \mu \mathrm{~A}$ typical shutdown current, the LM2687 provides ideal performance for cellular phone power amplifier bias and other low current, low noise negative voltage needs. The device comes in a small 8-pin MSOP package.

Features

- Inverts and regulates the input supply voltage
- Small MSOP-8 package
- 91% typical charge pump power efficiency at 10 mA
- Low output ripple (1 mV typical)
- Shutdown lowers Quiescent current to $0.05 \mu \mathrm{~A}$ (typical)

Applications

- Wireless Communication Systems
- Cellular Phone Power Amplifier Biasing
- Interface Power Supplies
- Handheld Instrumentation
- Laptop Computers and PDA's

Typical Application Circuit

Connection Diagram

8-Pin MSOP

Ordering Information

Device Order Number	Package Number	Package Marking*	Supplies As
LM2687MM	MUA08A	S12A	Tape and Reel (1000 units/reel)
LM2687MMX	MUA08A	S12A	Tape and Reel (3500 units/reel)

Note: * The small physical size of the MSOP-8 package does not allow for the full part number marking. Devices will be marked with the designation shown in the column Package Marking.

Pin Description

Pin No.	Name	Function
1	Cap +	Positive terminal for C_{1}.
2	GND	Ground.
3	Cap-	Negative terminal for C_{1}.
4	$\overline{\mathrm{SD}}$	Active low, logic-level shutdown input.
5	$\mathrm{~V}_{\mathrm{NEG}}$	Negative unregulated output voltage.
6	$\mathrm{~V}_{\mathrm{FB}}$	Feedback input. Connect V_{FB} to an external resistor divider between $\mathrm{V}_{\text {OUT }}$ and a positive adjust voltage $\mathrm{V}_{\mathrm{ADJ}}\left(0 \leq \mathrm{V}_{\mathrm{ADJ}} \leq \mathrm{V}_{I \mathrm{~N}}\right) . \mathrm{DO}$ NOT leave unconnected.
7	$\mathrm{~V}_{\mathrm{OUT}}$	Regulated negative output voltage.
8	$\mathrm{~V}_{\mathrm{IN}}$	Positive power supply input.

National Semiconductor

LM2765

Switched Capacitor Voltage Converter

General Description

The LM2765 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +1.8 V to +5.5 V . Two low cost capacitors and a diode are used in this circuit to provide up to 20 mA of output current.
The LM2765 operates at 50 kHz switching frequency to reduce output resistance and voltage ripple. With an operating current of only $130 \mu \mathrm{~A}$ (operating efficiency greater than 90% with most loads) and $0.1 \mu \mathrm{~A}$ typical shutdown current, the LM2765 provides ideal performance for battery powered systems. The device is manufactured in a SOT-23-6 package.

Features

- Doubles Input Supply Voltage
- SOT23-6 Package
- 20Ω Typical Output Impedance
- 90\% Typical Conversion Efficiency at 20 mA
- $0.1 \mu \mathrm{~A}$ Typical Shutdown Current

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Supplies
- Interface Power Supplies
- Handheld Instruments

Basic Application Circuit

DS101281-1

Connection Diagram

6-Lead SOT (M6)

$$
\begin{aligned}
& \text { ! } \\
& \text { Actual Size }
\end{aligned}
$$

Top View With Package Marking

Ordering Information

Order Number	Package Number	Package Marking	Supplied as
LM2765M6	MA06A	S15B (Note 1)	Tape and Reel (1000 units/reel)
LM2765M6X	MA06A	S15B (Note 1)	Tape and Reel (3000 units/reel)

Note 1: The small physical size of the SOT-23 package does not allow for the full part number marking. Devices will be marked with the designation shown in the column Package Marking

Pin Description

Pin	Name	Function
1	V+	Power supply positive voltage input.
2	GND	Power supply ground input.
3	CAP-	Connect this pin to the negative terminal of the charge-pump capacitor.
4	SD	Shutdown control pin, tie this pin to ground in normal operation.
5	CAP +	Positive voltage output. Capactor this pin to the positive terminal of the charge-pump
6		

LM2766

Switched Capacitor Voltage Converter

General Description

The LM2766 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +1.8 V to +5.5 V . Two low cost capacitors and a diode are used in this circuit to provide up to 20 mA of output current.
The LM2766 operates at 200 kHz switching frequency to reduce output resistance and voltage ripple. With an operating current of only $350 \mu \mathrm{~A}$ (operating efficiency greater than 90% with most loads) and $0.1 \mu \mathrm{~A}$ typical shutdown current, the LM2766 provides ideal performance for battery powered systems. The device is manufactured in a SOT-23-6 package.

Features

- Doubles Input Supply Voltage
- SOT23-6 Package
- 20Ω Typical Output Impedance
- 90\% Typical Conversion Efficiency at 20 mA
- $0.1 \mu \mathrm{~A}$ Typical Shutdown Current

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Supplies
- Interface Power Supplies
- Handheld Instruments

Basic Application Circuit

Connection Diagram

6-Lead SOT (M6)

I

Actual Size

Top View With Package Marking

Ordering Information

Order Number	Package Number	Package Marking	Supplied as
LM2766M6	MA06A	S16B (Note 1)	Tape and Reel (1000 units/reel)
LM2766M6X	MA06A	S16B (Note 1)	Tape and Reel (3000 units/reel)

Note 1: The small physical size of the SOT-23 package does not allow for the full part number marking. Devices will be marked with the designation shown in the column Package Marking

Pin Description

Pin	Name	Function
1	V+	Power supply positive voltage input.
2	GND	Power supply ground input.
3	CAP	Connect this pin to the negative terminal of the charge-pump capacitor.
4	$\overline{\text { SD }}$	Shutdown control pin, tie this pin to $\mathrm{V}+$ in normal operation.
5	$\mathrm{~V}_{\text {OUT }}$	Positive voltage output.
6	CAP +	Connect this pin to the positive terminal of the charge-pump capacitor.

LM2767

Switched Capacitor Voltage Converter

General Description

The LM2767 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +1.8 V to +5.5 V . Two low cost capacitors and a diode are used in this circuit to provide at least 15 mA of output current. The LM2767 operates at 11 kHz switching frequency to avoid audio voice-band interference. With an operating current of only $40 \mu \mathrm{~A}$ (operating efficiency greater than 90% with most loads), the LM2767 provides ideal performance for battery powered systems. The device is manufactured in a SOT23-5 package.

Features

- Doubles Input Supply Voltage
- SOT23-5 Package
- 20Ω Typical Output Impedance
- 96% Typical Conversion Efficiency at 15 mA

Applications

- Cellular Phones
- Pagers
- PDAs, Organizers
- Operational Amplifier Power Suppliers
- Interface Power Suppliers
- Handheld Instruments

Basic Application Circuit

Ordering Information

Order Number	Package Number	Package Marking	Supplied as
LM2767M5	MA05B	S17B (Note 1)	Tape and Reel (1000 units/reel)
LM2767M5X	MA05B	S17B (Note 1)	Tape and Reel (3000 units/reel)

Note 1: The small physical size of the SOT-23 package does not allow for the full part number marking. Devices will be marked with the designation shown in the column Package Marking.

Connection Diagram

Top View With Package Marking
Pin Description

Pin	Name	Function
1	V OUT $^{\text {GND }}$	Positive voltage output.
2	CAP-	Power supply ground input. 3\quadConnect this pin to the negative terminal of the charge-pump capacitor.
4	CAP +	Power supply positive voltage input. Connect this pin to the positive terminal of the charge-pump capacitor.
5		

National Semiconductor

LM3350

Switched Capacitor Voltage Converter

General Description

The LM3350 is a CMOS charge-pump voltage converter which efficiently provides a 3.3 V to 5 V step-up, or 5 V to 3.3 V step-down. The LM3350 uses four small, low cost capacitors to provide the voltage conversion. It eliminates the cost, size and radiated EMI related to inductor based circuits, or the power loss of a linear regulator. Operating power conversion efficiency greater than 90% provides ideal performance for battery powered portable systems.
The architecture provides a fixed voltage conversion ratio of $3 / 2$ or $2 / 3$. Thus it can be used for other DC-DC conversions as well.

Key Specifications

- 800 kHz switch frequency allows use of very small, inexpensive capacitors.
- 4.2Ω typical step-up output impedance
- 1.8Ω typical step-down output impedance
- 90% typical power conversion efficiency at 50 mA
- 250 nA typical shutdown current

Features

- Conversion of 3.3 V to 5 V , or 5 V to 3.3 V
- Small Mini SO-8 package
- No inductor required

Applications

- Any mixed 5 V and 3.3 V system
- Laptop computers and PDAs
- Handheld instrumentation
- PCMCIA cards

Ordering Information

Order Number	Package Type	NSC Package Drawing	Package Marking	Supplied As
LM3350MMX	Mini SO-8	MUA08A	S00A	3500k Units on Tape and Reel
LM3350MM	Mini SO-8	MUA08A	S00A	1000 Units on Tape and Reel

Basic Operating Circuits

Step-Down Converter

Connection Diagram

Mini SO8 Package

Top View

Switched Capacitor Voltage Converter

General Description

The LM3351 is a CMOS charge-pump voltage converter which efficiently provides a 3.3 V to 5 V step-up, or 5 V to 3.3 V step-down. The LM3351 is pin for pin compatible with the LM3350 but consumes 66% less quiescent current. The LM3351 uses four small, low cost capacitors to provide the voltage conversion. It eliminates the cost, size and radiated EMI related to inductor based circuits, or the power loss of a linear regulator. Operating power conversion efficiency greater than 90% provides ideal performance for battery powered portable systems.
The architecture provides a fixed voltage conversion ratio of $3 / 2$ or $2 / 3$. Thus it can be used for other DC-DC conversions as well.

Key Specifications

- 200 kHz switch frequency allows use of very small, inexpensive capacitors.
- 4.2Ω typical step-up output impedance
- 1.8Ω typical step-down output impedance
- 95% typical power conversion efficiency at 50 mA
- 250 nA typical shutdown current
- Low quiescent current extends battary life

Features

- Conversion of 3.3 V to 5 V , or 5 V to 3.3 V
- Small Mini SO-8 package
- No inductor required

Applications

- Any mixed 5 V and 3.3 V system
- Laptop computers and PDAs
- Handheld instrumentation
- PCMCIA cards

Ordering Information

Order Number	Package Type	NSC Package Drawing	Package Marking	Supplied As
LM3351MMX	Mini SO-8	MUA08A	S05A	3500 Units on Tape and Reel
LM3351MM	Mini SO-8	MUA08A	S05A	1000 Units on Tape and Reel

Basic Operating Circuits

Connection Diagram

LM3352

Regulated 200 mA Buck-Boost Switched Capacitor DC/DC Converter

General Description

The LM3352 is a CMOS switched capacitor DC/DC converter that produces a regulated output voltage by automatically stepping up (boost) or stepping down (buck) the input voltage. It accepts an input voltage between 2.5 V and 5.5 V . The LM3352 is available in three standard output voltage versions: $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$ and 3.3 V . If other output voltage options between 1.8 V and 4.0 V are desired, please contact your Na tional Semiconductor representative.

The LM3352's proprietary buck-boost architecture enables up to 200 mA of load current at an average efficiency greater than 80%. Typical operating current is only $400 \mu \mathrm{~A}$ and the typical shutdown current is only $2.5 \mu \mathrm{~A}$.
The LM3352 is available in a 16 -pin TSSOP package. This package has a maximum height of only 1.1 mm .
The high efficiency of the LM3352, low operating and shutdown currents, small package size, and the small size of the overall solution make this device ideal for battery powered, portable, and hand-held applications.

Features

- Regulated $\mathrm{V}_{\text {Out }}$ with $\pm 3 \%$ accuracy
- Standard output voltage options: $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$ and 3.3 V
- Custom output voltages available from 1.8 V to 4.0 V in 100 mV increments
- 2.5 V to 5.5 V input voltage
- Up to 200 mA output current
- $>80 \%$ average efficiency
- Uses few, low-cost external components
- Very small solution size
- $400 \mu \mathrm{~A}$ typical operating current
- $2.5 \mu \mathrm{~A}$ typical shutdown current
- 1 MHz switching frequency (typical)
- Architecture and control methods provide high load current and good efficiency
- TSSOP-16 package
- Over-temperature protection

Applications

- 1-cell Lilon battery-operated equipment including PDAs, hand-held PCs, cellular phones
- Flat panel displays
- Hand-held instruments
- NiCd, NiMH, or alkaline battery powered systems
- 3.3 V to 2.5 V and 5.0 V to 3.3 V conversion

Typical Operating Circuit

Connection Diagram

Top View
TSSOP-16 Pin Package See NS Package Number MTC16

Ordering Information

Order Number	Package Type	NSC Package Drawing	Supplied As
LM3352MTCX-2.5	TSSOP-16	MTC16	2.5 k Units, Tape and Reel
LM3352MTC-2.5	TSSOP-16	MTC16	94 Units, Rail
LM3352MTCX-3.0	TSSOP-16	MTC16	2.5 k Units, Tape and Reel
LM3352MTC-3.0	TSSOP-16	MTC16	94 Units, Rail
LM3352MTCX-3.3	TSSOP-16	MTC16	2.5 k Units, Tape and Reel
LM3352MTC-3.3	TSSOP-16	MTC16	94 Units, Rail

Pin Description

Pin Number	Name	
1	GND	Gunction
2	C3-	Negative Terminal for C3
3	C3+	Positive Terminal for C3
4	C2-	Negative Terminal for C2
5	C2+	Positive Terminal for C2
6	C1-	Negative Terminal for C1
7	C1 2	Positive Terminal for C1
8	V OuT	Regulated Output Voltage
9	GND	Ground*
10	VIN $_{\text {IN }}$	Input Supply Voltage
11	NC	This pin must be left unconnected.
12	GND	Ground*
13	$\overline{\text { SD }}$	Active Low CMOS Logic-Level Shutdown Input
14	GND	Ground*
15	CFIL	Filter Capacitor; A 1 μ F ceramic capacitor is suggested.
16	GND	Ground*

*All GND pins of the LM3352 must be connected to the same ground.

LM828

Switched Capacitor Voltage Converter

General Description

The LM828 CMOS charge-pump voltage converter inverts a positive voltage in the range of +1.8 V to +5.5 V to the corresponding negative voltage of -1.8 V to -5.5 V . The LM828 uses two low cost capacitors to provide up to 25 mA of output current.
The LM828 operates at 12 kHz switching frequency to reduce output resistance and voltage ripple. With an operating current of only $40 \mu \mathrm{~A}$ (operating efficiency greater than 96% with most loads), the LM828 provides ideal performance for battery powered systems. The device is in a tiny SOT-23-5 package.

Features

- Inverts Input Supply Voltage
- SOT-23-5 Package
- 20Ω Typical Output Impedance
- 97\% Typical Conversion Efficiency at 5 mA

Applications

- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Supplies
- Interface Power Supplies
- Handheld Instruments

Basic Application Circuits

DS100137-2

LMC7660

Switched Capacitor Voltage Converter

General Description

The LMC7660 is a CMOS voltage converter capable of converting a positive voltage in the range of +1.5 V to +10 V to the corresponding negative voltage of -1.5 V to -10 V . The LMC7660 is a pin-for-pin replacement for the industry-standard 7660. The converter features: operation over full temperature and voltage range without need for an external diode, low quiescent current, and high power efficiency.
The LMC7660 uses its built-in oscillator to switch 4 power MOS switches and charge two inexpensive electrolytic capacitors.

Features

- Operation over full temperature and voltage range without an external diode
- Low supply current, $200 \mu \mathrm{~A}$ max
- Pin-for-pin replacement for the 7660
- Wide operating range 1.5 V to 10 V
- 97% Voltage Conversion Efficiency
- 95\% Power Conversion Efficiency
- Easy to use, only 2 external components
- Extended temperature range
- Narrow SO-8 Package

Block Diagram

Pin Configuration

Ordering Information

Package	Temperature Range	NSC Drawing
	Industrial $-\mathbf{4 0} \mathbf{}$	

National Semiconductor

MAX660

Switched Capacitor Voltage Converter

General Description

The MAX660 CMOS charge-pump voltage converter inverts a positive voltage in the range of 1.5 V to 5.5 V to the corresponding negative voltage. The MAX660 uses two low cost capacitors to provide 100 mA of output current without the cost, size, and EMI related to inductor based converters. With an operating current of only $120 \mu \mathrm{~A}$ and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery powered systems. The MAX660 may also be used as a positive voltage doubler.
The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the MAX660 with an external clock. A frequency control (FC) pin selects the oscillator frequency of 10 kHz or 80 kHz .

Features

- Inverts or doubles input supply voltage
- Narrow SO-8 Package
- 6.5Ω typical output resistance
- 88% typical conversion efficiency at 100 mA
- Selectable oscillator frequency: $10 \mathrm{kHz} / 80 \mathrm{kHz}$

Applications

- Laptop computers
- Cellular phones
- Medical instruments
- Operational amplifier power supplies
- Interface power supplies
- Handheld instruments

Typical Application Circuits

Voltage Inverter

DS100898-2

Connection Diagram

8-Lead SO

Ordering Information

Order Number	Top Mark	Package	Supplied as
MAX660M	Date Code MAX660M	M08A	Rail (95 units/rail)
MAX660MX	Date Code MAX660M	M08A	Tape and Reel (2500 units/rail)

N

Section 20 Wireless

LMX1600/LMX1601/LMX1602 PLLatinum Low Cost Dual Frequency Synthesizer 20-3
LMX2306/LMX2316/LMX2326 PLLatinum Low Power Frequency Synthesizer for RF Personal Communications 20-6
LMX2324 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 20-8
LMX2330A/LMX2331A/LMX2332A PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-10
LMX2330L/LMX2331L/LMX2332L PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications 20-13
LMX2335/LMX2336/LMX2337 PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-17
LMX2335L/LMX2336L PLLatinum Low Power Dual Frequency Synthesizer for RF Personal Communications 20-20
LMX2350/LMX2352 PLLatinum Fractional N RF / Integer N IF Dual Low Power Frequency Synthesizer 20-24
LMX2353 PLLatinum Fractional N Single 2.5 GHz Frequency Synthesizer 20-27
LMX2370/LMX2371/LMX2372 PLLatinum Dual Frequency Synthesizer for RF Personal Communications 20-29
LMX3161 Single Chip Radio Transceiver 20-33
LMX3162 Single Chip Radio Transceiver 20-37
LMX5080 PLLatinum 2.7 GHz Low Power Dual Modulus Prescaler for RF Personal Communications 20-43
LMX2323 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 20-45
LMX2354 Dual Low Power Frequency Synthesizer 20-47
LMX3305 Triple Phase Locked Loop for RF Personal Communications 20-50
LMX5001 Dedicated Bluetooth Link Controller 20-53

LMX1600/LMX1601/LMX1602
 PLLatinum ${ }^{\text {TM }}$ Low Cost Dual Frequency Synthesizer

LMX1600 2.0 GHz/500 MHz
 LMX1601 1.1 GHz/500 MHz
 LMX1602 \quad 1.1 GHz/1.1 GHz

General Description

The LMX1600/01/02 is part of a family of monolithic integrated dual frequency synthesizers designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using National's 0.5 u ABiC V silicon BiCMOS process.
The LMX1600/01/02 contains two dual modulus prescalers, four programmable counters, two phase detectors and two selectable gain charge pumps necessary to provide the control voltage for two external loop filters and VCO loops. Digital filtered lock detects for both PLLs are included. Data is transferred into the LMX1600/01/02 via a MICROWIRE ${ }^{\text {TM }}$ serial interface (Data, Clock, LE).
V_{Cc} supply voltage can range from 2.7 V to 3.6 V . The LMX1600/01/02 features very low current consumption typically 4.0 mA at 3 V for LMX1601, 5.0 mA at 3 V for LMX1600 or LMX1602. Powerdown for the PLL is hardware controlled.
The LMX1600/01/02 is available in a 16 pin TSSOP surface mount plastic package.

Features

- $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V operation
- Low current consumption:

4 mA @ 3V (typ) for LMX1601
5 mA @ 3V (typ) for LMX1600 or LMX1602

- PLL Powerdown mode: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ typical
- Dual modulus prescaler:
$-2 \mathrm{GHz} / 500 \mathrm{MHz}$ option:
(Main) 32/33 (Aux) 8/9
- 1.1 GHz/500 MHz option:
(Main) 16/17 (Aux) 8/9
- 1.1 GHz/1.1 GHz option:
(Main) 16/17 (Aux) 16/17
Digital Filtered Lock Detects

Applications

- Cordless / Cellular / PCS phones
- Other digital mobile phones

Functional Block Diagram

Connection Diagram

Order Number LMX1600SLB, LMX1601SLB, or LMX1602SLB
NS Package Number SLB16A

Pin Descriptions

Pin No. for 16-pin CSP Package	Pin No. for 16-pin TSSOP Package	Pin Name	I/O	Description
16	1	FoLD	0	Multiplexed output of the Main/Aux programmable or reference dividers and Main/Aux lock detect. CMOS output. (See Programming Description 2.5)
1	2	$\mathrm{OSC}_{\text {IN }}$	I	PLL reference input which drives both the Main and Aux R counter inputs. Has about 1.2V input threshold and can be driven from an external CMOS or TTL logic gate. Typically connected to a TCXO output. Can be used with an external resonator (See Programming Description 2.5.4).
2	3	OSC ${ }_{\text {OUT }}$	0	Oscillator output. Used with an external resonator.
3	4	GND	-	Aux PLL ground.
4	5	$\mathrm{fin}_{\text {Aux }}$	1	Aux prescaler input. Small signal input from the VCO.
5	6	$\mathrm{V}_{\mathrm{CC}_{\text {AUX }}}$	-	Aux PLL power supply voltage input. Must be equal to $\mathrm{V}_{\mathrm{CC}_{\text {MAIN }}}$. May range from 2.7 V to 3.6 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
6	7	$\mathrm{CPO}_{\text {Aux }}$	0	Aux PLL Charge Pump output. Connected to a loop filter for driving the control input of an external VCO.
7	8	$\mathrm{EN}_{\text {AUX }}$	I	Powers down the Aux PLL when LOW (N and R counters, prescaler, and tristates charge pump output). Bringing $\mathrm{EN}_{\text {Aux }}$ HIGH powers up the Aux PLL.
8	9	$\mathrm{EN}_{\text {MAIN }}$	I	Powers down the Main PLL when LOW (N and R counters, prescaler, and tristates charge pump output). Bringing $\mathrm{EN}_{\text {MAIN }}$ HIGH powers up the Main PLL.
9	10	$\mathrm{CPo}_{\text {MAIN }}$	0	Main PLL Charge Pump output. Connected to a loop filter for driving the control input of an external VCO.
10	11	$\mathrm{V}_{\mathrm{CC}_{\text {MAIN }}}$	-	Main PLL power supply voltage input. Must be equal to $\mathrm{V}_{\mathrm{CC}_{\mathrm{AUX}}}$. May range from 2.7 V to 3.6 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
11	12	$\mathrm{fin}_{\text {MAIN }}$	I	Main prescaler input. Small signal input from the VCO.
12	13	GND	-	Main PLL ground.

Pin Descriptions (Continued)

Pin No. for 16-pin CSP Package	Pin No. for 16-pin TSSOP Package	Pin Name	I/O	Description
13	14	LE	I	Load enable high impedance CMOS input. Data stored in the shift registers is loaded into one of the 4 internal latches when LE goes HIGH (control bit dependent).
14	15	Data	I	High impedance CMOS input. Binary serial data input. Data entered MSB first. The last two bits are the control bits.
15	16	Clock	I	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 18-bit shift register.

LMX2306/LMX2316/LMX2326

PLLatinum ${ }^{\text {TM }}$ Low Power Frequency Synthesizer for RF Personal Communications LMX2306 550 MHz LMX2316 1.2 GHz LMX2326 $\quad 2.8$ GHz

General Description

The LMX2306/16/26 are monolithic, integrated frequency synthesizers with prescalers that are designed to be used to generate a very stable low noise signal for controlling the local oscillator of an RF transceiver. They are fabricated using National's ABiC V silicon BiCMOS 0.5μ process.
The LMX2306 contains a 8/9 dual modulus prescaler while the LMX2316 and the LMX2326 have a $32 / 33$ dual modulus prescaler. The LMX2306/16/26 employ a digital phase locked loop technique. When combined with a high quality reference oscillator and loop filter, the LMX2306/16/26 provide the feedback tuning voltage for a voltage controlled oscillator to generate a low phase noise local oscillator signal. Serial data is transferred into the LMX2306/16/26 via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.3 V to 5.5 V . The LMX2306/16/26 feature ultra low current consumption; LMX2306-1.7 mA at 3V, LMX2316-2.5 mA at 3V, and LMX2326-4.7 mA at 3V. The LMX2306/16/26 synthesizers are available in a 16-pin TSSOP surface mount plastic package.

Features

- 2.3 V to 5.5 V operation
- Ultra low current consumption
- $2.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ JEDEC standard compatible
- Programmable or logical power down mode:
- $I_{C C}=1 \mu \mathrm{~A}$ typical at 3 V
- Dual modulus prescaler:
— LMX2306 8/9
— LMX2316/26 32/33
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable FastLock ${ }^{\text {™ }}$ mode with timeout counter
- MICROWIRE ${ }^{\text {TM }}$ Interface
- Digital Lock Detect

Applications

- Portable wireless communications (PCS/PCN, cordless)
- Wireless Local Area Networks (WLANs)
- Cable TV tuners (CATV)
- Pagers
- Other wireless communication systems

Functional Block Diagram

Connection Diagrams

16-Lead (0.173" Wide) Thin Shrink Small Outline Package(TM)
Order Number LMX2306TM, LMX2306TMX, LMX2316TM, LMX2316TMX, LMX2326TM or LMX2326TMX See NS Package Number MTC16

LMX2306/16/26

16-pin Chip Scale Package
Order Number LMX2306SLBX, LMX2316SLBX or LM2326SLBX
See NS Package Number SLB16A

Pin Descriptions

$\begin{aligned} & \text { 16-Pin } \\ & \text { TSSOP } \end{aligned}$	$\begin{aligned} & \text { 16-Pin } \\ & \text { CSP } \end{aligned}$	Pin Name	I/O	Description
1	15	FL。	0	FastLock Output. For connection of parallel resistor to the loop filter. (See Section 1.3.4 FASTLOCK MODES description.)
2	16	$\mathrm{CP}_{\text {。 }}$	0	Charge Pump Output. For connection to a loop filter for driving the input of an external VCO.
3	1	GND		Charge Pump Ground.
4	2	GND		Analog Ground.
5	3	$\overline{\mathrm{fiN}^{\prime}}$	1	RF Prescaler Complementary Input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. The complementary input can be left unbypassed, with some degradation in RF sensitivity.
6	4	$\mathrm{f}_{\text {IN }}$	1	RF Prescaler Input. Small signal input from the VCO.
7	5	$\mathrm{V}_{\mathrm{CC} 1}$		Analog Power Supply Voltage Input. Input may range from 2.3 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane. $\mathrm{V}_{\mathrm{CC} 1}$ must equal $\mathrm{V}_{\mathrm{CC} 2}$.
8	6	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator Input. This input is a CMOS input with a threshold of approximately $\mathrm{V}_{\mathrm{CC}} / 2$ and an equivalent 100 k input resistance. The oscillator input is driven from a reference oscillator.
9	7	GND		Digital Ground.
10	8	CE	1	Chip Enable. A LOW on CE powers down the device and will TRI-STATE the charge pump output. Taking CE HIGH will power up the device depending on the status of the power down bit F2. (See Section 1.3.1 POWERDOWN OPERATION and Section 1.7.1 DEVICE PROGRAMMING AFTER FIRST APPLYING V_{Cc}.)
11	9	Clock	1	High Impedance CMOS Clock Input. Data for the various counters is clocked in on the rising edge into the 21-bit shift register.
12	10	Data	1	Binary Serial Data Input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
13	11	LE	1	Load Enable CMOS Input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 3 appropriate latches (control bit dependent).
14	12	Fo/LD	0	Multiplexed Output of the RF Programmable or Reference Dividers and Lock Detect. CMOS output. (See Table 4.)
15	13	$\mathrm{V}_{\mathrm{CC} 2}$		Digital Power Supply Voltage Input. Input may range from 2.3 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane. $\mathrm{V}_{\mathrm{CC} 1}$ must equal $\mathrm{V}_{\mathrm{CC} 2}$.
16	14	V_{p}		Power Supply for Charge Pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.

LMX2324

PLLatinum ${ }^{\text {TM }}$ 2.0 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX2324 is a high performance frequency synthesizer with integrated $32 / 33$ dual modulus prescaler designed for RF operation up to 2.0 GHz . Using a proprietary digital phase locked loop technique, the LMX2324's linear phase detector characteristics can generate very stable, low noise control signals for UHF and VHF voltage controlled oscillators.

Serial data is transferred into the LMX2324 via a three-line MICROWIRE ${ }^{\text {TM }}$ interface (Data, LE, Clock). Supply voltage range is from 2.7 V to 5.5 V . The LMX2324 features very low current consumption, typically 3.5 mA at 3 V . The charge pump provides 4 mA output current.
The LMX2324 is manufactured using National's ABiC V BiCMOS process and is packaged in a 16 -pin TSSOP and a 16-pin Chip Scale Package (CSP).

Features

- RF operation up to 2.0 GHz
- 2.7 V to 5.5 V operation
- Low current consumption: $I_{C C}=3.5 \mathrm{~mA}(t y p)$ at $\mathrm{V}_{\mathrm{CC}}=$ 3.0V
- Dual modulus prescaler: 32/33
- Internal balanced, low leakage charge pump

Applications

- Cellular telephone systems (GSM, NADC, CDMA, PDC)
- Personal wireless communications (DCS-1800, DECT, CT-1+)
- Wireless local area networks (WLANs)
- Other wireless communication systems

Functional Block Diagram

Connection Diagrams

Order Number LN ${ }^{n}$ 324TM, LM2324TMX See NS Pack: . Number MTC16

Top View
Order Number LMX2324SLBX
See NS Package Number SLB16A

Pin Descriptions

Pin No.		Pin Name	I/O	Description
TSSOP16	CSP16			
2	1	V_{P}	-	Power supply for charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$
3	2	$\mathrm{CP}_{\text {o }}$	0	Internal charge pump output. For connection to a loop filter for driving the voltage control input of an external oscillator.
4	3	GND	-	Ground.
5	4	$\mathrm{f}_{\text {INB }}$	I	RF prescaler complimentary input. In single-ended mode, a bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. The LMX2324 can be driven differentially when the bypass capacitor is omitted.
6	5	f_{IN}	1	RF prescaler input. Small signal input from the voltage controlled oscillator.
7	6	NC		No Connect
8	7	NC		No Connect
9	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. A CMOS inverting gate input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
10	9	NC		No Connect
12	10	Clock	1	High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.
13	11	Data	I	Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.
14	12	LE	I	Load Enable input. When Load Enable transitions HIGH, data is loaded into either the N or R register (control bit dependent). See timing diagram.
15	13	NC		No Connect
11	14	NC		No Connect
16	15	CE	I	CHIP Enable. A LOW on CE powers down the device asynchronously and will TRI-STATE ${ }^{\circledR}$ the charge pump output.
1	16	V_{cc}	1	Power supply voltage input. Input may range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

LMX2330A/LMX2331A/LMX2332A PLLatinum ${ }^{\text {TM }}$ Dual Frequency Synthesizer for RF Personal Communications

LMX2330A
 2.5 GHz/510 MHz
 LMX2331A $2.0 \mathrm{GHz} / 510 \mathrm{MHz}$
 LMX2332A 1.2 GHz/510 MHz

General Description

The LMX233xA family of monolithic, integrated dual frequency synthesizers, including prescalers, is to be used as a local oscillator for RF and first IF of a dual conversion transceiver. It is fabricated using National's ABiC IV silicon BiCMOS process.
The LMX233xA contains dual modulus prescalers. A 64/65 or a $128 / 129$ prescaler ($32 / 33$ or $64 / 65$ in the 2.5 GHz LMX2330A) can be selected for the RF synthesizer and a 8/9 or a $16 / 17$ prescaler can be selected for the IF synthesizer. LMX233XA, which employs a digital phase locked loop technique, combined with a high quality reference oscillator and loop filters, provides the tuning voltages for voltage controlled oscillators to generate very stable low noise RF and IF local oscillator signals. Serial data is transferred into the LMX233xA via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX233xA family features very low current consumption; LMX2330A-13 mA at 3V, LMX2331A-12 mA at 3V, LMX2332A-8 mA at 3V.

The LMX233xA are available in a TSSOP 20-pin surface mount plastic package.

Features

- 2.7 V to 5.5 V operation
- Low current consumption
- Selectable powerdown mode: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ typical at 3 V
- Dual modulus prescaler:

LMX2330A (RF) 32/33 or 64/65
LMX2331A/32A (RF) 64/65 or 128/129
LMX2330A/31A/32A (IF) 8/9 or 16/17

- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable FastLock ${ }^{\text {TM }}$ mode
- Small outline, plastic, surface mount TSSOP 0.173" wide package

Applications

- Portable Wireless Communications (PCS/PCN, cordless)
- Cordless and cellular telephone systems
- Wireless Local Area Networks (WLANs)
- Cable TV tuners (CATV)
- Other wireless communication systems

Functional Block Diagram

Connection Diagram

Thin Shrink Small Outline Package (TM)

Order Number LMX2330ATM, LMX2331ATM or LMX2332ATM NS Package Number MTC20

Pin Description

Pin No.	Pin Name	I/O	Description
1	$\mathrm{V}_{\mathrm{cC}}{ }^{1}$	-	Power supply voltage input for RF analog and RF digital circuits. Input may range from 2.7 V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{CC}} 1$ must equal $\mathrm{V}_{\mathrm{Cc}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	$\mathrm{V}_{\mathrm{p}} 1$	-	Power Supply for RF charge pump. Must be $\geq \mathrm{V}_{\mathrm{cc}}$.
3	$\mathrm{D}_{\mathrm{o}} \mathrm{RF}$	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	GND	-	Ground for RF digital circuitry.
5	$\mathrm{f}_{\text {IN }} \mathrm{RF}$	1	RF prescaler input. Small signal input from the VCO.
6	$\overline{\mathrm{f}_{\text {IN }}} \mathrm{RF}$	1	RF prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
7	GND	-	Ground for RF analog circuitry.
8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
9	GND	-	Ground for IF digital, MICROWIRE ${ }^{\text {TM }}$, F_{0} LD, and oscillator circuits.
10	FobD	0	Multiplexed output of the RF/IF programmable or reference dividers, RF/IF lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
11	Clock	1	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 22-bit shift register.
12	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
13	LE	1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent(.
14	GND	-	Ground for IF analog circuitry.
15	$\overline{\mathrm{f}_{\text {IN }}} \mathrm{IF}$	1	IF prescaler complementry input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
16	$\mathrm{f}_{\text {IN }} \mathrm{IF}$	1	IF prescaler input. Small signal input from the VCO.
17	GND	-	Ground for IF digital, MICROWIRE, F_{0} LD, and oscillator circuits.
18	D IF	0	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	$\mathrm{V}_{\mathrm{p}} 2$	-	Power Supply for IF charge pump. Must be $\geq \mathrm{V}_{\mathrm{cc}}$.

Pin Description (Continued)

Pin No.	Pin Name	I/O	Description
20	$\mathrm{~V}_{\mathrm{Cc}}{ }^{2}$	-	Power supply voltage input for IF analog, IF digital, MICROWIRE, $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$, and oscillator circuits. Input may range from 2.7 V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{cc}} 2$ must equal $\mathrm{V}_{\mathrm{cc}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

Block Diagram

Notes:

The RF prescaler for the LMX2331A/32A is either 64/65 or 128/129, while the prescaler for the LMX2330A is $32 / 33$ or $64 / 65$.
$\mathrm{V}_{c c}{ }^{1}$ supplies power to the RF prescaler, N -counter, R-counter and phase detector. $\mathrm{V}_{\mathrm{Cc}} 2$ supplies power to the IF prescaler, N -counter, phase detector, R -counter along with the $\mathrm{OSC}_{\text {in }}$ buffer, MICROWIRE, and $\mathrm{F}_{0} L D . V_{C C}{ }^{1}$ and $\mathrm{V}_{\mathrm{CC}} 2$ are clamped to each other by diodes and must be run at the same voltage level.
$V_{P} 1$ and $V_{P} 2$ can be run separately as long as $V_{P} \geq V_{C C}$.

LMX2330L/LMX2331L/LMX2332L

PLLatinum ${ }^{\text {TM }}$ Low Power Dual Frequency Synthesizer for RF Personal Communications

LMX2330L $2.5 \mathrm{GHz} / 510 \mathrm{MHz}$
LMX2331L $2.0 \mathrm{GHz} / 510 \mathrm{MHz}$
LMX2332L 1.2 GHz/510 MHz

General Description

The LMX233XL family of monolithic, integrated dual frequency synthesizers, including prescalers, is to be used as a local oscillator for RF and first IF of a dual conversion transceiver. It is fabricated using National's $0.5 \mu \mathrm{ABiC} V$ silicon BiCMOS process.
The LMX233XL contains dual modulus prescalers. A 64/65 or a $128 / 129$ prescaler ($32 / 33$ or $64 / 65$ in the 2.5 GHz LMX2330L) can be selected for the RF synthesizer and a $8 / 9$ or a $16 / 17$ prescaler can be selected for the IF synthesizer. LMX233XL, which employs a digital phase locked loop technique, combined with a high quality reference oscillator, provides the tuning voltages for voltage controlled oscillators to generate very stable, low noise signals for RF and IF local oscillators. Serial data is transferred into the LMX233XL via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX233XL family features very low current consumption;
LMX2330L-5.0 mA at 3V, LMX2331L- 4.0 mA at 3 V , LMX2332L-3.0 mA at 3V.
The LMX233XL are available in a TSSOP 20-pin and CSP 24 -pin surface mount plastic package.

Features

- Ultra low current consumption
- 2.7 V to 5.5 V operation
- Selectable synchronous or asynchronous powerdown mode:
$\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ typical at 3 V
- Dual modulus prescaler:
LMX2330L
(RF) $32 / 33$ or 64/65
LMX2331L/32L
(RF) $64 / 65$ or $128 / 129$
LMX2330L/31L/32L
(IF) $8 / 9$ or $16 / 17$
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels
- Selectable Fastlock ${ }^{\text {TM }}$ mode
- Upgrade and compatible to LMX233XA family

Applications

- Portable Wireless Communications (PCS/PCN, cordless)
- Cordless and cellular telephone systems
- Wireless Local Area Networks (WLANs)
- Cable TV tuners (CATV)
- Other wireless communication systems

Connection Diagrams

Order Number LMX2330LSLB, LMX2331LSLB or LMX2332LSLB
NS Package Number SLB24A

Pin Descriptions

Pin No. LMX233XLSLB 24-pinCSP Package	Pin No. LMX233XLTM 20-pin TSSOP Package	Pin Name	I/O	Description
24	1	$\mathrm{V}_{\mathrm{cc}}{ }^{1}$	-	Power supply voltage input for RF analog and RF digital circuits. Input may range from 2.7 V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{cc}} 1$ must equal $\mathrm{V}_{\mathrm{CC}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	2	$\mathrm{V}_{\mathrm{p}} 1$	-	Power Supply for RF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
3	3	$\mathrm{D}_{0} \mathrm{RF}$	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	4	GND	-	Ground for RF digital circuitry.
5	5	$\mathrm{f}_{\text {IN }} \mathrm{RF}$	1	RF prescaler input. Small signal input from the VCO.
6	6	$\overline{\mathrm{fiN}^{\prime}} \mathrm{RF}$	1	RF prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
7	7	GND	-	Ground for RF analog circuitry.
8	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
10	9	GND	-	Ground for IF digital, MICROWIRE ${ }^{\text {TM }}$, F ${ }_{0}$ LD, and oscillator circuits.
11	10	$\mathrm{F}_{0} \mathrm{LD}$	0	Multiplexed output of the RF/IF programmable or reference dividers, RF/IF lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
12	11	Clock	1	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 22-bit shift register.
14	12	Data	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.

Pin Descriptions (Continued)

Pin No. LMX233XLSLB 24-pinCSP Package	Pin No. LMX233XLTM 20-pin TSSOP Package	$\begin{aligned} & \text { Pin } \\ & \text { Name } \end{aligned}$	I/O	Description
15	13	LE	1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
16	14	GND	-	Ground for IF analog circuitry.
17	15	$\overline{\mathrm{f}_{\text {IN }}} \mathrm{IF}$	1	IF prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
18	16	$\mathrm{f}_{\mathrm{IN}} \mathrm{IF}$	1	IF prescaler input. Small signal input from the VCO.
19	17	GND	-	Ground for IF digital, MICROWIRE, F_{0} LD, and oscillator circuits.
20	18	$\mathrm{D}_{\mathrm{o}} \mathrm{IF}$	0	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
22	19	$\mathrm{V}_{\mathrm{p}} 2$	-	Power Supply for IF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
23	20	$\mathrm{V}_{\mathrm{cc}}{ }^{2}$	-	Power supply voltage input for IF analog, IF digital, MICROWIRE, $F_{0} L D$, and oscillator circuits. Input may range from 2.7 V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{cc}}{ }^{2}$ must equal $\mathrm{V}_{\mathrm{CC}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
1, 9, 13, 21	X	NC	-	No connect.

Block Diagram

Note: The RF prescaler for the LMX2331L/32L is either 64/65 or 128/129, while the prescaler for the LMX2330L is $32 / 33$ or $64 / 65$.
Note: $\mathrm{V}_{\mathrm{CC}} 1$ supplies power to the RF prescaler, N -counter, R -counter and phase detector. $\mathrm{V}_{\mathrm{CC}} 2$ supplies power to the IF prescaler, N -counter, phase detector, R-counter along with the OSC $_{\text {in }}$ buffer, MICROWIRE, and $F_{0} L D . V_{C C} 1$ and $V_{C C} 2$ are clamped to each other by diodes and must be run at the same voltage level.
Note: $\mathrm{V}_{\mathrm{P}} 1$ and $\mathrm{V}_{\mathrm{P}} 2$ can be run separately as long as $\mathrm{V}_{\mathrm{P}} \geq \mathrm{V}_{\mathrm{CC}}$.

LMX2335/LMX2336/LMX2337

PLLatinum ${ }^{\text {TM }}$ Dual Frequency Synthesizer for RF Personal Communications

LMX2335
 LMX2336
 LMX2337
 1.1 GHz/1.1 GHz
 2.0 GHz 1.1 GHz $550 \mathrm{MHz} / 550 \mathrm{MHz}$

General Description

The LMX2335, LMX2336 and LMX2337 are monolithic, integrated dual frequency synthesizers, including two high frequency prescalers, and are designed for applications requiring two RF phase-lock loops. They are fabricated using National's ABiC IV silicon BiCMOS process.
The LMX2335/36/37 contains two dual modulus prescalers. A 64/65 or a 128/129 prescaler can be selected for each RF synthesizer. A second reference divider chain is included in the IC for improved system noise. LMX2335/36/37, which employ a digital phase locked loop technique, combined with a high quality reference oscillator and. loop filters, provide the tuning voltages for voltage controlled oscillators to generate very stable low noise RF local oscillator signals.
Serial data is transferred into the LMX2335/36/37 via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2335/36/37 feature very low current consumption; LMX2335/37-10 mA at 3 V , LMX2336-13 mA at 3V. The LMX2335/37 are available in
both a JEDEC SO and TSSOP 16-pin surface mount plastic package. The LMX2336 is available in a TSSOP 20-pin surface mount plastic package.

Features

- 2.7V to 5.5 V operation
- Low current consumption
- Selectable powerdown mode: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (typ)
- Dual modulus prescaler: 64/65 or 128/129
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels
- Selectable FastLock ${ }^{\text {™ }}$ mode

Applications

- Cellular telephone systems (AMPS, ETACS, RCR-27)
- Cordless telephone systems (DECT, ISM, PHS, CT-1+)
- Personal Communication Systems (DCS-1800, PCN-1900)
- Dual Mode PCS phones
- CATV
- Other wireless communication systems

Functional Block Diagram

Connection Diagrams

> LMX2335/LMX2337
> Order Number LMX2335M/LMX2335TM or
> LMX2337M/LMX2337TM
> NS Package Number M16A and MTC16

LMX2336

Order Number LMX2336TM NS Package Number MTC20

Pin Descriptions

Pin No. 2335/37	Pin No. 2336	Pin Name	1/0	Description
1	1	$\mathrm{V}_{\mathrm{cc}} 1$		Power supply voltage input for RF1 analog and RF1 digital circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{Cc}} 1$ must equal $\mathrm{V}_{\mathrm{Cc}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	2	$\mathrm{V}_{\mathrm{p}} 1$		Power supply for RF1 charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
3	3	$\mathrm{D}_{0} 1$	0	RF1 charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	4	GND		LMX2335/37: Ground for RF1 analog and RF1 digital circuits. LMX2336: Ground for RF digital circuitry.
5	5	$\mathrm{f}_{1 \times 1} 1$	1	First RF prescaler input. Small signal input from the VCO.
X	6	$\overline{\mathrm{f}_{\text {IN }} 1}$	1	RF1 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
X	7	GND		Ground for RF1 analog circuitry.
6	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{cC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
7	9	$\mathrm{OSC}_{\text {out }}$	0	Oscillator output.
8	10	$\mathrm{F}_{0} \mathrm{LD}$	0	Multiplexed output of the programmable or reference dividers, lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
9	11	Clock	1	High impedance CMOS Clock input. Data for the various latches is clocked in on the rising edge, into the 20-bit shift register.
10	12	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
11	13	LE	1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
X	14	GND		Ground for RF2 analog circuitry.
X	15	$\overline{\mathrm{f}_{\text {IN }}} 2$	1	RF2 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
12	16	$\mathrm{f}_{\mathrm{iN}}{ }^{2}$	1	RF2 prescaler input. Small signal input from the VCO.
13	17	GND		LMX2335/37: Ground for RF2 analog, RF2 digital, MICROWIRE ${ }^{\text {TM }}$, F $_{0}$ LD and Oscillator circuits. LMX2336: Ground for RF2 digital, MICROWIRE, FoLD and Oscillator circuits.
14	18	Do2	0	RF2 charge pump output. For connection to a loop filter for driving the input of an external VCO.
15	19	$\mathrm{V}_{\mathrm{p}} 2$		Power supply for RF2 charge pump. Must be $\geq \mathrm{V}_{\mathrm{Cc}}$.

Pin Descriptions (Continued)

Pin No. $\mathbf{2 3 3 5 / 3 7}$	Pin No. $\mathbf{2 3 3 6}$	Pin Name	I/O	Description
16	20	$\mathrm{~V}_{\mathrm{cc}} 2$		Power supply voltage input for RF2 analog. RF2 digital, MICROWIRE, $\mathrm{F}_{\mathrm{o}} L D$ and Oscillator circuits. Input may range from 2.7V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{Cc}} 2$ must equal $\mathrm{V}_{\mathrm{Cc}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

Block Diagram

Note: $\mathrm{V}_{\mathrm{CC}} 1$ supplies power to the RF1 prescaler, N -counter, R-counter, and phase detector. $\mathrm{V}_{\mathrm{CC}} 2$ supplies power to the RF2 prescaler, N -counter, phase detector, R-counter along with the OSC in buffer, MICROWIRE, and $F_{0} L D . V_{C c}{ }^{1}$ and $V_{C C} 2$ are clamped to each other by diodes and must be run at the same voltage level.
$V_{P} 1$ and $V_{P} 2$ can be run separately as long as $V_{P} \geq V_{C C}$

$$
\begin{gathered}
\text { LMX2335/37 Pin \# } \rightarrow 8 / 10 \leftarrow \text { LMX2336 Pin \# } \\
\text { Pin Name } \rightarrow \text { FoLD }_{\text {o }} \\
\text { X signifies a function not available }
\end{gathered}
$$

LMX2335L/LMX2336L

PLLatinum ${ }^{\text {TM }}$ Low Power Dual Frequency Synthesizer for RF Personal Communications

LMX2335L \quad 1.1 GHz/1.1 GHz
LMX2336L \quad 2.0 GHz/1.1 GHz

General Description

The LMX2335L and LMX2336L are monolithic, integrated dual frequency synthesizers, including two high frequency prescalers, and are designed for applications requiring two RF phase-lock loops. They are fabricated using National's $0.5 \mu \mathrm{ABiC} \mathrm{V}$ silicon BiCMOS process.
The LMX2335L/36L contains two dual modulus prescalers. A 64/65 or a 128/129 prescaler can be selected for each RF synthesizer. A second reference divider chain is included in the IC for improved system noise. The LMX2335L/36L combined with a high quality reference oscillator, two loop filters, and two external voltage controlled oscillators generates very stable low noise RF local oscillator signals.
Serial data is transferred into the LMX2335L/36L via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2335L/36L feature very low current consumption; LMX2335L 4.0 mA at 5 V , LMX2336L 5.5 mA at 5 V . The LMX2335L is available in SO, TSSOP and CSP 16-pin surface mount plastic packages. The LMX2336L is available in a TSSOP 20-pin and CSP 24-pin surface mount plastic package.

Features

- Ultra low current consumption
- 2.7 V to 5.5 V operation
- Selectable synchronous and asynchronous powerdown mode:
$\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (typ)
- Dual modulus prescaler: 64/65 or 128/129
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels
- Selectable Fastlock ${ }^{T M}$ mode
- Upgrade and compatible to LMX2335/36
- Small-outline, plastic, surface mount TSSOP package
- LMX2336 available in CSP package

Applications

- Cellular telephone systems (AMPS, ETACS, RCR-27)
- Cordless telephone systems (DECT, ISM , PHS, CT-1+)
- Personal Communication Systems
(DCS-1800, PCN-1900)
- Dual Mode PCS phones
- Cable TV Tuners (CATV)
- Other wireless communication systems

Functional Block Diagram

Connection Diagrams

Order Number LMX2335LM or LM2335LTM NS Package Number M16A and MTC16

LMX2335L (Top View)

Order Number LMX2335LSLB NS Package Number SLB16A

Order Number LMX2336LTM NS Package Number MTC2O

Order Number LMX2336LSLB NS Package Number SLB24A

Pin Descriptions

$\begin{aligned} & \text { Pin No. } \\ & \text { 2336LTM } \end{aligned}$	Pin No. 2336LSLB	$\begin{array}{\|c} \text { Pin No. } \\ \text { 2335LTM } \end{array}$	Pin No. 2335LSLB	Pin Name	1/0	Description
1	24	1	16	$\mathrm{V}_{\mathrm{cc}}{ }^{1}$		Power supply voltage input for RF1 analog and RF1 digital circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{cc}} 1$ must equal $\mathrm{V}_{\mathrm{cc}}{ }^{2}$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	2	2	1	$\mathrm{V}_{\mathrm{p}} 1$		Power supply for RF1 charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
3	3	3	2	$\mathrm{D}_{0} 1$	0	RF1 charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	4	4	3	GND		LMX2335L: Ground for RF1 analog and RF1 digital circuits. LMX2336L: Ground for RF digital circuits.
5	5	5	4	fin^{1}	1	RF1 prescaler input. Small signal input from the VCO.
6	6	X	X	/fin 1	1	RF1 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
7	7	X	X	GND		Ground for RF1 analog circuitry.

Pin Descriptions (Continued)

Pin No. 2336LTM	Pin No. 2336LSLB	Pin No. 2335LTM	Pin No. 2335LSLB	Pin	I/O	Description
8	8	6	5	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
9	10	7	6	$\mathrm{OSC}_{\text {out }}$	0	Oscillator output.
10	11	8	7	F_{0} LD	0	Multiplexed output of the programmable or reference dividers, lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
11	12	9	8	Clock	1	High impedance CMOS Clock input. Data for the various latches is clocked in on the rising edge, into the 20 -bit shift register.
12	14	10	9	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
13	15	11	10	LE	1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
14	16	X	X	GND		Ground for RF2 analog circuitry.
15	17	X	X		1	RF2 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
16	18	12	11	$\mathrm{f}_{\mathrm{IN}} 2$	1	RF2 prescaler input. Small signal input from the VCO.
17	19	13	12	GND		LMX2335L: Ground for RF2 analog, RF2 digital, MICROWIRE, Fo $_{0}$ LD and Oscillator circuits. LMX2336L: Ground for IF digital, MICROWIRE, F_{o} LD and oscillator circuits.
18	20	14	13	Do 2	\bigcirc	RF2 charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	22	15	14	$\mathrm{V}_{\mathrm{p}} 2$		Power supply for RF2 charge pump. Must be $\geq \mathrm{V}_{\mathrm{Cc}}$.
20	23	16	15	$\mathrm{V}_{\mathrm{cc}}{ }^{2}$		Power supply voltage input for RF2 analog, RF2 digital, MICROWIRE, F_{o} LD and oscillator circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{Cc}} 2$ must equal $\mathrm{V}_{\mathrm{cc}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
X	$\begin{gathered} 1,9,13, \\ 21 \end{gathered}$	X	X	NC		No connect.

Block Diagram

Note 1: $\mathrm{V}_{C c} 1$ supplies power to the RF1 prescaler, N-counter, R-counter, and phase detector. $\mathrm{V}_{c c} 2$ supplies power to the RF2 prescaler, N-counter, phase detector, R-counter along with the OSC $_{\text {in }}$ buffer, MICROWIRE, and $F_{0} L D . V_{C C} 1$ and $V_{C C}{ }^{2}$ are clamped to each other by diodes and must be run at the same voitage level.
Note 2: $\mathrm{V}_{\mathrm{P}} 1$ and V_{p} 2 can be run separately as long as $\mathrm{V}_{\mathrm{P}} \geq \mathrm{V}_{\mathrm{Cc}}$.
LMX2335L Pin \# $\rightarrow 8 / 10 \leftarrow$ LMX2336L Pin \#
Pin Name \rightarrow FoLD $_{\text {o }}$
X signifies a function not bonded out to a pin

LMX2350/LMX2352
 PLLatinum ${ }^{\text {TM }}$ Fractional N RF / Integer N IF Dual Low Power Frequency Synthesizer

LMX2350 $2.5 \mathrm{GHz} / 550 \mathrm{MHz}$
 LMX2352 1.2 GHz/550 MHz

General Description

The LMX2350/2352 is part of a family of monolithic integrated fractional $\mathrm{N} /$ Integer N frequency synthesizers designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using National's $0.5 \mu \mathrm{ABiC} V$ silicon BiCMOS process. The LMX2350/2352 contains dual modulus prescalers along with modulo 15 or 16 fractional compensation circuitry in the RF divider. A 16/17 or 32/33 prescale ratio can be selected for the LMX2350, and the LMX2352 provides $8 / 9$ or $16 / 17$ prescale ratios. The IF circuitry for both the LMX2350 and LMX2352 contains an 8/9 prescaler, and is fully programmable. Using a fractional N phase locked loop technique, the LMX2350/52 can generate very stable low noise control signals for UHF and VHF voltage controlled oscillators (VCO's).
For the RF PLL, a highly flexible 16 level programmable charge pump supplies output current magnitudes from $100 \mu \mathrm{~A}$ to 1.6 mA . Two uncommitted CMOS outputs can be used to provide external control signals, or configured to FastLock ${ }^{\text {TM }}$ mode. Serial data is transferred into the LMX2350/2352 via a three wire interface (Data, LE, Clock). Supply voltage can range from 2.7 V to 5.5 V. The LMX2350/

2352 family features very low current consumption; typically LMX2350 (2.5 GHz) 6.75 mA , LMX2352 (1.2 GHz) 5.00 mA at 3.0V. The LMX2350/2352 are available in a 24 -pin TSSOP surface mount plastic package.

Features

- 2.7 V to 5.5 V operation
- Low current consumption LMX2350: $\mathrm{Icc}=6.75 \mathrm{~mA}$ typ at 3 v LMX2352: $\mathrm{Icc}=5.00 \mathrm{~mA}$ typ at 3 v
- Programmable or logical power down mode Icc $=5 \mu \mathrm{~A}$ typ at 3 v
- Modulo 15 or 16 fractional RF N divider supports ratios of $1,2,3,4,5,8,15$, or 16
- Programmable charge pump current levels RF $100 \mu \mathrm{~A}$ to 1.6 mA in $100 \mu \mathrm{~A}$ steps IF $100 \mu \mathrm{~A}$ or $800 \mu \mathrm{~A}$
- Digital filtered lock detect

Applications

- Portable wireless communications (PCS/PCN, cordless)
- Dual mode cellular telephone systems
- Zero blind slot TDMA systems
- Spread spectrum communication systems (CDMA)
- Cable TV Tuners (CATV)

Block Diagram

Connection Diagram

Order Number LMX2350TM or LMX2352TM NS Package Number MTC24

Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	OUTO	0	Programmable CMOS output. Level of the output is controlled by IF_N [17] bit.
2	$\mathrm{VcC}_{\text {RF }}$	-	RF PLL power supply voltage input. Must be equal to $\mathrm{Vcc}_{\mathrm{IF}}$. May range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
3	$\mathrm{V}_{\mathrm{p} \text { PF }}$	-	Power supply for RF charge pump. Must be $\geq \mathrm{V}_{\mathrm{cc}_{\mathrm{CF}}}$ and $\mathrm{V}_{\mathrm{cc}_{\mid F}}$.
4	$\mathrm{CP}_{\text {ORF }}$	0	RF charge pump output. Connected to a loop filter for driving the control input of an external VCO.
5	GND	-	Ground for RF PLL digital circuitry.
6	fin RF	I	RF prescaler input. Small signal input from the VCO.
7	fin RF	I	RF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane.
8	GND	-	Ground for RF PLL analog circuitry.
9	OSCx	I/O	Dual mode oscillator output or RF R counter input. Has a Vcc/2 input threshold when configured as an input and can be driven from an external CMOS or TTL logic gate. Can also be configured as an output to work in conjunction with OSCin to form a crystal oscillator. (See functional description 1.1 and programming description 3.1.)
10	OSCin	1	Oscillator input which can be configured to drive both the IF and RF R counter inputs or only the IF R counter depending on the state of the OSC programming bit. (See functional description 1.1 and programming description 3.1.)
11	FoLD	0	Multiplexed output of N or R divider and RF/IF lock detect. Active High/Low CMOS output except in analog lock detect mode. (See programming description 3.1.5.)
12	RF_EN	1	RF PLL Enable. Powers down RF N and R counters, prescaler, and will TRI-STATE® the charge pump output when LOW. Bringing RF_EN high powers up RF PLL depending on the state of RF_CTL_WORD. (See functional description 1.9.)
13	IF_EN	1	IF PLL Enable. Powers down IF N and R counters, prescaler, and will TRI-STATE the charge pump output when LOW. Bringing IF_EN high powers up IF PLL depending on the state of IF_CTL_WORD. (See functional description 1.9.)
14	CLOCK	I	High impedance CMOS Clock input. Data for the various counters is clocked into the 24 - bit shift register on the rising edge.
15	DATA	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
16	LE	1	Load enable high impedance CMOS input. Data stored in the shift registers is loaded into one of the 4 internal latches when LE goes HIGH. (See functional description 1.7.)

Connection Diagram (Continued)

Pin No.	Pin Name	I/O	Description
17	GND	-	Ground for IF analog circuitry.
18	$\overline{\text { fin IF }}$	I	IF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane.
19	fin IF	I	IF prescaler input. Small signal input from the VCO.
20	GND	-	Ground for IF digital circuitry.
21	$\mathrm{CPo}_{\mathrm{IF}}$	O	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
22	$\mathrm{VP}_{\mathrm{IF}}$	-	Power supply for IF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CCRF}_{\mathrm{RF}}}$ and $\mathrm{V}_{\mathrm{cCIF}}$.
23	$\mathrm{Vcc}_{\mathrm{IF}}$	-	IF power supply voltage input. Must be equal to Vcc Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
24	OUT1	O	Programmable CMOS output. Level of the output is controlled by IF_N [18] bit.

LMX2353

PLLatinum ${ }^{\text {TM }}$ Fractional N Single 2.5 GHz Frequency Synthesizer

General Description

The LMX2353 is a monolithic integrated fractional N frequency synthesizer, designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using $\mathrm{Na}-$ tional's $0.5 \mu \mathrm{ABiC} V$ silicon BiCMOS process. The LMX2353 contains dual modulus prescalers along with modulo 15 or 16 fractional compensation circuitry in the N divider. A 16/17 or $32 / 33$ prescale ratio can be selected for the LMX2353. Using a fractional N phase locked loop technique, the LMX2353 can generate very stable low noise control signals for UHF and VHF voltage controlled oscillators (VCO's).
The LMX2353 has a highly flexible 16 level programmable charge pump supplies output current magnitudes from 100 $\mu \mathrm{A}$ to 1.6 mA . Serial data is transferred into the LMX2353 via a three wire interface (Data, LE, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2353 features very low current consumption; typically 4.5 mA at 3.0 V . The LMX2353 is available in a $16-\mathrm{pin}$ TSSOP or a 16 -pad CSP surface mount plastic package.

Features

- $2.7 \mathrm{~V}-5.5 \mathrm{~V}$ operation
- Low Current Consumption

$$
\mathrm{I}_{\mathrm{cc}}=4.5 \mathrm{~mA} \text { typ } @ \mathrm{~V}_{\mathrm{Cc}}=3.0 \mathrm{~V}
$$

- Programmable or Logical Power Down Mode
$\mathrm{I}_{\mathrm{CC}}=5 \mu \mathrm{~A}$ typ @ $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$
- Modulo 15 or 16 fractional N divider Supports ratios of $1,2,3,4,5,8,15$, or 16
- Programmable charge pump current levels $100 \mu \mathrm{~A}$ to 1.6 mA in $100 \mu \mathrm{~A}$ steps
- Digital Filtered Lock Detect

Applications

- Portable wireless communications (PCS/PCN, cordless)
- Zero blind slot TDMA systems
- Cellular and Cordless telephone systems
- Spread spectrum communication systems (CDMA)

Functional Block Diagram

Connection Diagrams

TOP VIEW
Order Number LMX2353SLBX See NS Package Number SLB16A

Pin Description

Pin No.		Pin Name	I/O	Description
CSP	TSSOP			
16	1	V_{P}	-	Power supply for charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
1	2	CP_{\circ}	0	Charge pump output. Connected to a loop filter for driving the control input of an external VCO.
2	3	GND	-	Ground for PLL digital circuitry.
3	4	f_{IN}	1	RF prescaler input. Small signal input from the VCO.
4	5	$\mathrm{f}_{\text {INB }}$	I	RF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane.
5	6	GND	-	Ground for PLL analog circuitry.
6	7	$\mathrm{OSC}_{\text {in }}$	I	Oscillator input. A CMOS inverting gate input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
7	8	FoLD	0	Multiplexed output of N or R divider and lock detect. CMOS output.
8	9	CE	I	PLL Enable. Powers down N and R counters, prescalers, and TRI-STATE ${ }^{\circledR}$ charge pump output when LOW. Bringing CE high powers up PLL depending on the state of CTL_WORD.
9	10	CLK	I	High impedance CMOS Clock input. Data for the various counters is clocked into the 24-bit shift register on the rising edge.
10	11	DATA	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
11	12	LE	1	Load enable high impedance CMOS input. Data stored in the shift registers is loaded into one of the 4 internal latches when LE goes HIGH.
12	13	GND	-	Ground.
13	14	V_{cc}	-	PLL power supply voltage input. May range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
14	15	OUT1	-	Programmable CMOS output. Level of the output is controlled by F2[18] bit.
15	16	OUT0	-	Programmable CMOS output. Level of the output is controlled by F2[17] bit.

LMX2370/LMX2371/LMX2372
 PLLatinum ${ }^{\text {TM }}$ Dual Frequency Synthesizer for RF Personal Communications

LMX2370 $2.5 \mathrm{GHz} / 1.2 \mathrm{GHz}$
 LMX2371 2.0 GHz/1.2 GHz
 LMX2372 1.2 GHz/1.2 GHz
 General Description

The LMX237x family of monolithic, integrated dual frequency synthesizers, including prescalers, is designed to be used as a first and second local oscillator for dual mode or dual conversion transceivers. It is fabricated using National's 0.5 u ABiCV silicon BiCMOS process. The LMX237x contains two dual modulus prescalers. A $32 / 33$ or a $16 / 17$ prescaler can be selected for the 2.5 GHz and 2.0 GHz RF synthesizers with the $16 / 17$ prescaler rated for input frequencies below 1.2 GHz. A $16 / 17$ or an $8 / 9$ prescaler can be selected for the 1.2 GHz RF synthesizers with the $8 / 9$ prescaler rated for input frequencies below 550 MHz . Using a digital phase locked loop technique, the LMX237x can generate very stable, low noise control signals for UHF and VHF voltage controlled oscillators (VCOs). Serial data is transferred into the LMX237x via a 1.8 V three wire interface (Data, Enable, Clock) compatible with low voltage baseband processors. Supply voltage can range from 2.7V to 5.5V. The LMX237x family features very low current consumption typically: LMX2370-6.0 mA at 3V, LMX2371-5.0 mA at 3V, LMX2372 - 4.0 mA at 3 V .

The LMX237x are available in a 24-pad chip scale (CSP) or a 20 -pin TSSOP surface mount plastic package.

Features

- 2.7V-5.5V operation
- Ultra low current consumption
- Low phase detector noise floor
- Low voltage MICROWIRE ${ }^{\text {TM }}$ interface (1.8 V up to V_{CC})
- Low prescaler values

$$
\begin{aligned}
& 32 / 33 \text { at } \mathrm{f}_{\mathrm{IN}} \leq 2.5 \mathrm{GHz} \\
& 16 / 17 \text { at } \mathrm{f}_{\mathrm{IN}} \leq 1.2 \mathrm{GHz} \\
& 8 / 9 \text { at } \mathrm{f}_{\mathrm{IN}} \leq 550 \mathrm{MHz}
\end{aligned}
$$

- Selectable charge pump current levels
- Selectable FastLock ${ }^{\text {™ }}$ mode
- Enhanced ESD protection
- Available in small 24 -pad chip scale package (3.5×4.5 x 1.0 mm)

Applications

- Portable wireless communications (PCS/PCN, cordless)
- Dual mode cellular telephone systems
- Spread spectrum communication systems (CDMA)
- Cable TV tuners (CATV)

Functional Block Diagram

Connection Diagrams

TSSOP 20-Pin Package

Top View
Order Number LMX2370TM, LMX2370TMX,
LMX2371TM, LMX2371TMX,
LMX2372TM or LMX2372TMX
See NS Package Number MTC20

Top View
Order Number LMX2370SLBX,
LMX2371SLBX or LMX2372SLBX
See NS Package Number SLB24A

Pin Descriptions

Pin Descriptions (Continued)

Pin No.		Pin Name	I/O	Description	
$\begin{gathered} \text { 24-Pin } \\ \text { CSP } \end{gathered}$	$\begin{aligned} & \text { 20-Pin } \\ & \text { TSSOP } \end{aligned}$				
8	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.	
10	9	GND	-	Ground for Aux digital, MICROWIRE, FoLD, and oscillator circuits.	
11	10	Fo/LD	0	Multiplexed output of the Main/Aux programmable or reference dividers, Main/Auxiliary lock detect signals and Fastlock mode. CMOS output (see Programmable Modes in the Datasheet).	
12	11	Clock	1	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 22-bit shift register.	
14	12	Data	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.	
15	13	LE	I	Load enable. High impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).	
16	14	$\mathrm{V} \mu \mathrm{c}$	-	Power supply for MICROWIRE circuitry. Must be $\leq \mathrm{V}_{\mathrm{CC}}$. Typically connected to same supply level as μ processor or baseband controller to enable programming at low voltages.	
17	15	GND	-	Ground for Aux analog circuitry.	
18	16	$\mathrm{f}_{\mathrm{in}} 2$	1	Auxiliary prescaler input. Small signal input from the VCO.	
19	17	GND	-	Ground for Aux digital, MICROWIRE, FoLD, and oscillator.	
20	18	$\mathrm{CP}_{0}{ }^{2}$	0	Aux internal charge pump output. For connection to a loop filter for driving the input of an external VCO.	
22	19	Vp2	-	Power supply for Aux charge pump. Must be \geq V_{Cc}.	

Pin Descriptions (Continued)

Pin No.		Pin 24-Pin CSP	20-Pin TSSOP	Name	I/O

Block Diagram (Note 1)

Note 1: * The numbers in () represent the equivalent chipscale package (CSP) pinout

National Semiconductor

LMX3161

Single Chip Radio Transceiver

General Description

The LMX3161 Single Chip Radio Transceiver is a monolithic, integrated radio transceiver optimized for use in a Digital Enhariced Cordless Telecommunications (DECT) system. It is fabricated using National's ABiC V BiCMOS process ($\mathrm{f}_{\mathrm{T}}=18 \mathrm{GHz}$).
The LMX3161 contains phase locked loop (PLL), transmit and receive functions. The 1.1 GHz PLL block is shared between transmit and receive section. The transmitter includes a frequency doubler, and a high frequency buffer. The receiver consists of a 2.0 GHz low noise mixer, an intermediate frequency (IF) amplifier, a high gain limiting amplifier, a frequency discriminator, a received signal strength indicator (RSSI), and an analog DC compensation loop. The PLL, doubler, and buffers can be used to implement open loop modulation along with an external VCO and loop filter. The circuit features on-chip voltage regulation to allow supply voltages ranging from 3.0 V to 5.5 V . Two additional voltage regulators provide a stable supply source to external discrete stages in the Tx and Rx chains.
The IF amplifier, high gain limiting amplifier, and discriminator are optimized for 110 MHz operation, with a total IF gain of 85 dB . The single conversion receiver architecture pro-
vides a low cost, high performance solution for communications systems. The RSSI output may be used for channel quality monitoring.
The Single Chip Radio Transceiver is available in a 48-pin $7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ PQFP surface mount plastic package.

Features

- Single chip solution for DECT RF transceiver
- RF sensitivity to -93 dBm ; RSSI sensitivity to -100 dBm
- Two regulated voltage outputs for discrete amplifiers
- High gain (85 dB) intermediate frequency strip
- Allows unregulated $3.0 \mathrm{~V}-5.5 \mathrm{~V}$ supply voltage
- Power down mode for increased current savings
- System noise figure 6.5 dB (typ)

Applications

- Digital Enhanced Cordless Telecommunications (DECT)
- Personal wireless communications (PCS/PCN)
- Wireless local area networks (WLANs)
- Other wireless communications systems

Block Diagram

LMX3161 Pin Diagram

Top View
Order Number LMX3161VBH or LMX3161VBHX See NS Package Number VBH48A

LMX3161 Pin Diagram (Continued)

Pin No.	Pin Name	1/0	Description
1	V_{CC}	-	Power supply for CMOS section of PLL and ESD bussing.
2	MIXER ${ }_{\text {OUT }}$	0	IF output from the mixer.
3	V_{Cc}	-	Power supply for mixer section.
4	GND	-	Ground.
5	$\mathrm{RF}_{\text {IN }}$	1	RF input to the mixer.
6	GND	-	Ground.
7	Tx $\mathrm{V}_{\text {REG }}$	-	Regulated power supply for external PA gain stage.
8	V_{Cc}	-	Power supply for analog sections of PLL and doubler.
9	GND	-	Ground.
10	Tx ${ }_{\text {OUT }}$	0	Frequency doubler output.
11	GND	-	Ground.
12	V_{CC}	-	Power supply for analog sections of PLL and doubler.
13	GND	-	Ground.
14	GND	-	Ground.
15	f_{IN}	1	RF Input to PLL and frequency doubler.
16	CE	1	Chip Enable. Pulling LOW powers down entire chip. Taking CE HIGH powers up the appropriate functional blocks depending on the state of bits F6, F7, F11, and F12 programmed in F-latch. It is necessary to initialize the internal registers once, after the power up reset. The registers' contents are kept even in power-down condition.
17	V_{P}	-	Power supply for charge pump.
18	D	0	Charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	V_{Cc}	-	Power supply for CMOS section of PLL and ESD bussing.
20	GND	-	Ground.
21	OUT 0	0	Programmable CMOS output. Refer to Function Register Programming Description section for details.
22	Rx PD/OUT 1	I/O	Receiver power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
23	Tx PD/OUT 2	I/O	Transmitter power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
24	PLL PD	1	PLL power down control input. LOW for PLL normal operations, and HIGH for PLL power saving.
25	CLOCK	1	MICROWIRE ${ }^{\text {TM }}$ clock input. High impedance CMOS input with Schmitt Trigger.
26	DATA	1	MICROWIRE data input. High impedance CMOS input with Schmitt Trigger.
27	LE	1	MICROWIRE load enable input. High impedance CMOS input with Schmitt Trigger.
28	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input. High impedance CMOS input with feedback.
29	$\overline{\text { S FIELD }}$	1	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.
30	RSSI ${ }_{\text {OUT }}$	0	Received signal strength indicator (RSSI) output.
31	THRESH	0	Threshold level to external comparator.
32	DC COMP ${ }_{\text {IN }}$	1	Input to DC compensation circuit.
33	DISC ${ }_{\text {OUt }}$	0	Demodulated output of discriminator.
34	GND	-	Ground.
35	V_{CC}	-	Power supply for the discriminator circuit.
36	QUAD ${ }_{\text {IN }}$	1	Quadrature input for tank circuit.
37	V_{CC}	-	Power supply for limiter output stage.
38	GND	-	Ground.
39	V_{CC}	-	Power supply for limiter gain stages.
40	GND	-	Ground.
41	V_{cc}	-	Power supply for IF amplifier gain stages.

LMX3161 Pin Diagram (Continued)

Pin No.	Pin Name	I/O	Description
42	LIM $_{\text {IN }}$	I	IF input to the limiter.
43	GND	-	Ground.
44	$\mathrm{IF}_{\text {OUT }}$	O	IF output from IF amplifier.
45	$\mathrm{~V}_{\mathrm{CC}}$	-	Power supply for IF amplifier output.
46	GND	-	Ground.
47	$\mathrm{IF}_{\text {IN }}$	I	IF input to IF amplifier.
48	Rx $\mathrm{V}_{\text {REG }}$	-	Regulated power supply for external LNA stages.

National Semiconductor

LMX3162
 Single Chip Radio Transceiver

General Description

The LMX3162 Single Chip Radio Transceiver is a monolithic, integrated radio transceiver optimized for use in ISM 2.45 GHz wireless systems. It is fabricated using National's ABiC V BiCMOS process ($\mathrm{f}_{\mathrm{T}}=18 \mathrm{GHz}$).
The LMX3162 contains phase locked loop (PLL), transmit and receive functions. The 1.3 GHz PLL is shared between transmit and receive sections. The transmitter includes a frequency doubler, and a high frequency buffer. The receiver consists of a 2.5 GHz low noise mixer, an intermediate frequency (IF) amplifier, a high gain limiting amplifier, a frequency discriminator, a received signal strength indicator (RSSI), and an analog DC compensation loop. The PLL, doubler, and buffers can be used to implement open loop modulation along with an external VCO and loop filter. The circuit features on-chip voltage regulation to allow supply voltages ranging from 3.0 V to 5.5 V . Two additional voltage regulators provide a stable supply source to external discrete stages in the Tx and Rx chains.
The IF amplifier, high gain limiting amplifier, and discriminator are optimized for 110 MHz operation, with a total IF gain of 85 dB . The single conversion receiver architecture provides a low cost, high performance solution for communications systems. The RSSI output may be used for channel quality monitoring.

The Single Chip Radio Transceiver is available in a 48 -pin $7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ PQFP surface mount plastic package.

Features

- Single chip solution for ISM 2.45 GHz RF transceiver
- System RF sensitivity to -93 dBm ; RSSI sensitivity to $-100 \mathrm{dBm}$
- Two regulated voltage outputs for discrete amplifiers
- High gain (85 dB) intermediate frequency strip
- Allows unregulated $3.0 \mathrm{~V}-5.5 \mathrm{~V}$ supply voltage
- Power down mode for increased current savings
- System noise figure 6.5 dB (typ)

Applications

- ISM 2.45 GHz frequency band wireless systems
- Personal wireless communications (PCS/PCN)
- Wireless local area networks (WLANs)
- Other wireless communications systems

Block Diagram

LMX3162 Connection Diagram

Top View
Order Number LMX3162VBH or LMX3162VBHX See NS Package Number VBH48A

Pin Descriptions

Pin No.	Pin Name	I/O	Description	
1	V_{cc}	-	Power supply for CMOS section of PLL and ESD bussing.	
2	MIXER ${ }_{\text {OUT }}$	0	IF output from the mixer.	
3	V_{CC}	-	Power supply for mixer section.	
4	GND	-	Ground.	
5	RFin	I	RF input to the mixer.	
6	GND	-	Ground.	

Pin Descriptions (Continued)

Pin No.	Pin Name	I/O	Description	
7	Tx V REG	-	Regulated power supply for external PA gain stage.	
8	V_{Cc}	-	Power supply for analog sections of PLL and doubler.	
9	GND	-	Ground.	
10	Tx OUT	0	Frequency doubler output.	
11	GND	-	Ground.	
12	V_{Cc}	-	Power supply for analog sections of PLL and doubler.	
13	GND	-	Ground.	
14	GND	-	Ground.	
15	f_{IN}	1	RF Input to PLL and frequency doubler.	
16	CE	1	Chip Enable. Pulling LOW powers down entire chip. Taking CE HIGH powers up the appropriate functional blocks depending on the state of bits F6, F7, F11, and F12 programmed in F-latch. It is necessary to initialize the internal registers once, after the power up reset. The registers' contents are kept even in power-down condition.	
17	V_{P}	-	Power supply for charge pump.	$\Psi^{I_{p}}$
18	D	0	Charge pump output. For connection to a loop filter for driving the input of an external VCO.	
19	V_{cc}	-	Power supply for CMOS section of PLL and ESD bussing.	
20	GND	-	Ground.	

Pin Descriptions (Continued)

Pin No.	Pin Name	1/0	Description	
21	OUT 0	0	Programmable CMOS output. Refer to Function Register Programming Description section for details.	
22	Rx PD/OUT 1	I/O	Receiver power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.	
23	Tx PD/OUT 2	I/O	Transmitter power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.	
24	PLL PD	1	PLL power down control input. LOW for PLL normal operations, and HIGH for PLL power saving.	
25	CLOCK	1	MICROWIRE ${ }^{\text {TM }}$ clock input. High impedance CMOS input with Schmitt Trigger.	
26	DATA	1	MICROWIRE data input. High impedance CMOS input with Schmitt Trigger.	$\text { CE } 亠$
27	LE	I	MICROWIRE load enable input. High impedance CMOS input with Schmitt Trigger.	$\underline{=}$
28	$\mathrm{OSC}_{\text {IN }}$	I	Oscillator input. High impedance CMOS input with feedback.	
29	$\overline{\text { S FIELD }}$	I	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.	
30	RSSI ${ }_{\text {OUT }}$	0	Received signal strength indicator (RSSI) output.	
31	THRESH	0	Threshold level to external comparator.	

Pin Descriptions (Continued)

Pin No.	Pin Name	1/0	Description	
32	DC COMP ${ }_{\text {IN }}$	1	Input to DC compensation circuit.	
33	$\mathrm{DISC}_{\text {out }}$	0	Demodulated output of discriminator.	
34	GND	-	Ground.	
35	V_{cc}	-	Power supply for the discriminator circuit.	
36	QUAD $_{\text {IN }}$	1	Quadrature input for tank circuit.	
37	$\mathrm{V}_{C C}$	-	Power supply for limiter output stage.	
38	GND	-	Ground.	
39	V_{CC}	-	Power supply for limiter gain stages.	
40	GND	-	Ground.	
41	V_{Cc}	-	Power supply for IF amplifier gain stages.	
42	$\mathrm{LIM}_{\text {IN }}$	1	IF input to the limiter.	
43	GND	-	Ground.	
44	$\mathrm{IF}_{\text {OUT }}$	0	IF output from IF amplifier.	
45	V_{CC}	-	Power supply for IF amplifier output.	
46	GND	-	Ground.	

Pin Descriptions (Continued)

Pin No.	Pin Name	I/O	Description	
47	$\mathrm{IF}_{\text {IN }}$	1	IF input to IF amplifier.	
48	Rx V $\mathrm{VEG}^{\text {d }}$	-	Regulated power supply for external LNA stages.	

General Description

The LMX5080 integrated dual modulus prescaler, is designed to be used in a synthesized local oscillator for 2.5 GHz wireless transceivers. It is fabricated using National's $0.5 \mu \mathrm{ABiCV}$ silicon BiCMOS process. The LMX5080 contains three dual modulus prescalers. Either a 128/130, $256 / 158$ or a $512 / 514$ prescaler can be selected for up to 2.7 Gz RF input frequencies. The prescaler inputs can be driven either differentially, or single ended with the use of a coupling capacitor on one of the inputs to ground. The LMX5080 CMOS output is optimized to generate very stable, low switching noise output signals. The LMX5080 prescaler can be used in conjunction with a low frequency Phase Lock Loop to form a frequency synthesizer suitable for UHF transceivers. Supply voltage can range from 2.7 V to 5.5 V . The LMX5080 features low current consumption; typically 7.0 mA at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$
The LMX5080 is available in a 8-pin Small Outline (SOP) surface mount plastic package.

Features

- 2.7 V to 5.5 V operation
- Low current consumption: 7 mA (typ) @ 5V
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ low noise CMOS output
- Selectable dual modulus prescaler 128/130
256/258
512/514
- 8-pin small package outline (SOP)

Applications

- 2.5 GHz wireless communications systems (ISM)
- Direct Broadcast Satellite systems (DBS)
- Cable TV tuners (CATV)

Small Outline Package (SOP)

NS Package Number M08A Order Number LMX5080M, LMX5080MX

Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	IN	I	RF small signal prescaler input. Small signal input from the voltage controlled oscillator
2	V	CC	-
Power Supply voltage input may range from 2.7V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.			
3	SW1	I	Divide Ratio Control. CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.
4	OUT	O	Prescaler Output. CMOS level output for connection to low frequency PLL input.
5	GND	-	Ground for analog and digital signals.
6	MC	I	Modulus Control Input. High impedance CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.
7	SW2	I	Divide Ratio Control. High impedance CMOS logic input. Pin functionality is described in the Modulus Control Truth Table.
8	$\overline{\mathrm{~N}}$	I	RF small signal prescaler complementary input. In single-ended mode, a bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. The IN and $\overline{\text { IN }}$ can be driven differentially when the bypass capacitor is omitted.

National Semiconductor

LMX2323

PLLatinum ${ }^{\text {TM }}$ 2.0 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX2323 is a high performance frequency synthesizer with integrated $32 / 33$ dual modulus prescaler designed for RF operation up to 2.0 GHz . Using a proprietary digital phase locked loop technique, the LMX2323's linear phase detector characteristics can generate very stable, low noise control signals for UHF and VHF voltage controlled oscillators.
Serial data is transferred into the LMX2323 via a three-line MICROWIRE ${ }^{\text {TM }}$ interface (Data, LE, Clock). Supply voltage range is from 2.7 V to 5.5 V . The LMX2323 features very low curent consumption, typically 3.5 mA at 3 V . The charge pump provides 4 mA output current.
The LMX2323 is manufactured using National's ABiC V BiCMOS process and is packaged in a 16 -pin TSSOP.

Features

- RF operation up to 2.0 GHz
- 2.7 V to 5.5 V operation
- Low current consumption: Icc $=3.5 \mathrm{~mA}$ (typ) at Vcc=3.0V
- Digital Lock Detect
- Dual modulus prescaler: 32/33
- Internal balanced, low leakage charge pump

Applications

- Cellular telephone systems (GSM, NADC, CDMA, PDC, PHS)
- Personal wireless communications (DCS-1800, DECT, CT-1+)
- Wireless local area networks (WLANs)
- DCS/PCS infrastructure equipment
- Other wireless communication systems

Functional Block Diagram

Top View
Order Number LMX2323TM, LMX2323TMX See NS Package Number MTC16

Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	OSC $_{\text {IN }}$	I	Oscillator input. A CMOS inverting gate input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
3	$\mathrm{~V}_{\mathrm{P}}$	-	Power supply for charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
4	$\mathrm{~V}_{\mathrm{CC}}$	-	Power supply voltage input. Input may range from 2.7V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
5	CP_{o}	O	Internal charge pump output. For connection to a loop filter for driving the voltage control input of an external oscillator.
6	GND	-	Ground.

National Semiconductor

LMX2354

Dual Low Power Frequency Synthesizer

LMX2354 2.5 GHz/550 MHz

General Description

The LMX2354 is part of a family of monolithic integrated fractional $\mathrm{N} /$ Integer N frequency synthesizers designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using National's $0.5 \mu \mathrm{ABiC} V$ silicon BiCMOS process. The LMX2354 contains quadruple modulus prescalers along with modulo 15 or 16 fractional compensation circuitry in the RF divider. The LMX2354 provides a continuous divide ratio of 80 to 32767 in 16/17 / 20/21 (1.2 GHz-2.5 GHz) fractional mode and 40 to 16383 in $8 / 9$ / $12 / 13(550 \mathrm{MHz}-1.2 \mathrm{GHz})$ fractional mode. The IF circuitry for the LMX2354 contains an 8/9 prescaler, and is fully programmable. Using a fractional N phase locked loop technique, the LMX2354 can generate very stable low noise control signals for UHF and VHF voltage controlled oscillators (VCO's).
For the RF PLL, a highly flexible 16 level programmable charge pump supplies output current magnitudes from 100 $\mu \mathrm{A}$ to 1.6 mA . Two uncommitted CMOS outputs can be used to provide external control signals, or configured to FastLock $^{\text {TM }}$ mode. Serial data is transferred into the LMX2354 via a three wire interface (Data, LE, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2354 family features very low current consumption; typically LMX2354 (2.5 GHz) 7.0 mA . The LMX2354 are available in a 24 -pin TSSOP surface mount plastic package and 24-pin CSP.

Features

- Pin compatible/functional equivalent to the LMX2354
- Enhanced Low Noise Fractional Engine
- 2.7 V to 5.5 V operation
- Low current consumption LMX2354: $\mathrm{I}_{\mathrm{CC}}=7 \mathrm{~mA}$ typical at 3V
- Programmable or logical power down mode: $\mathrm{I}_{\mathrm{cc}}=5 \mu \mathrm{~A}$ typical at 3 V
- Modulo 15 or 16 fractional RF N divider supports ratios of $1,2,3,4,5,8,15$, or 16
- Programmable charge pump current levels RF $100 \mu \mathrm{~A}$ to 1.6 mA in $100 \mu \mathrm{~A}$ steps IF $100 \mu \mathrm{~A}$ or $800 \mu \mathrm{~A}$
- Digital filtered lock detect
- Available in 24 -pin TSSOP and 24 -pin CSP

Applications

- Portable wireless communications (PCS/PCN, cordless)
- Dual mode cellular telephone systems
- Zero blind slot TDMA systems
- Spread spectrum communication systems (CDMA)
- Cable TV Tuners (CATV)

Functional Block Diagram

Connection Diagrams

Order Number LMX2354TM or LMX2355TM See NS Package Number MTC24

Pin Descriptions

Pin No.	Pin No.	Pin Name	1/0	Description
1	24	OUTO	0	Programmable CMOS output. Level of the output is controlled by IF_N [17] bit.
2	1	$\mathrm{V}_{\text {Cc }} \mathrm{CF}$	-	RF PLL power supply voltage input. Must be equal to $\mathrm{Vcc}_{\mathrm{IF}}$. May range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
3	2	$\mathrm{V}_{\text {PRF }}$	-	Power supply for RF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}_{\text {RF }}}$ and $\mathrm{V}_{\mathrm{CC}_{\text {IF }}}$.
4	3	$\mathrm{CP}_{\text {ORF }}$	0	RF charge pump output. Connected to a loop filter for driving the control input of an external VCO.
5	4	GND	-	Ground for RF PLL digital circuitry.
6	5	fin RF	1	RF prescaler input. Small signal input from the VCO.
7	6	fin RF	1	RF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane.
8	7	GND	-	Ground for RF PLL analog circuitry.
9	8	$\mathrm{OSC}_{\text {RF }}$	1	Dual mode oscillator output or RF R counter input. Has a $\mathrm{V}_{\mathrm{cC}} / 2$ input threshold when configured as an input and can be driven from an external CMOS or TTL logic gate.
10	9	OSC $_{\text {IF }}$	1	Oscillator input which can be configured to drive both the IF and RF R counter inputs or only the IF R counter depending on the state of the OSC programming bit. (See functional description 1.1 and programming description 3.1.)
11	10	Fo/LD	0	Multiplexed output of N or R divider and RF/IF lock detect. CMOS output. (See programming description 3.1.5.)

Pin Descriptions (Continued)

$\begin{array}{l}\text { Pin } \\ \text { No. }\end{array}$	$\begin{array}{c}\text { Pin } \\ \text { No. }\end{array}$	$\begin{array}{c}\text { Pin } \\ \text { Name }\end{array}$	I/O	Description
12	11	RF_EN	I	$\begin{array}{l}\text { RF PLL Enable. Powers down RF N and R counters, prescaler, and TRI-STATE® charge } \\ \text { pump output when LOW. Bringing RF_EN high powers up RF PLL depending on the state of } \\ \text { RF_CTL_WORD. (See functional description 1.9.) }\end{array}$
13	12	IF_EN	I	$\begin{array}{l}\text { IF PLL Enable. Powers down IF N and R counters, prescaler, and TRI-STATE charge pump } \\ \text { output when LOW. Bringing IF_EN high powers up IF PLL depending on the state of } \\ \text { IF_CTL_WORD. (See functional description 1.9.) }\end{array}$
14	13	CLOCK	I	$\begin{array}{l}\text { High impedance CMOS Clock input. Data for the various counters is clocked into the 24-bit } \\ \text { shift register on the rising edge. }\end{array}$
15	14	DATA	I	$\begin{array}{l}\text { Binary serial data input. Data entered MSB first. The last two bits are the control bits. High } \\ \text { impedance CMOS input. }\end{array}$
16	15	LE	I	$\begin{array}{l}\text { Load Enable high impedance CMOS input. Data stored in the shift registers is loaded into one } \\ \text { of the 4 internal latches when LE goes HIGH. (See functional description 1.7.) }\end{array}$
17	16	GND	-	Ground for IF analog circuitry.
18	17	fin IF	I	$\begin{array}{l}\text { IF prescaler complimentary input. A bypass capacitor should be placed as close as possible } \\ \text { to this pin and be connected directly to the ground plane. }\end{array}$
19	18	fin IF	I	IF prescaler input. Small signal input from the VCO.
20	19	GND	-	Ground for IF digital circuitry.
21	20	CPo	O	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.

LMX3305

Triple Phase Locked Loop for RF Personal Communications

General Description

The LMX3305 contains three Phase Locked Loops (PLL) on a single chip. It has a RF PLL, an IF Rx PLL and an IF Tx PLL for CDMA applications. The RF fractional-N PLL uses a 16/17/20/21 quadruple modulus prescaler for PCS application and a $8 / 9 / 12 / 13$ quadruple modulus prescaler for cellular application. Both quadruple modulus prescalers offer modulo 1 through 16 fractional compensation circuitry. The RF fractional-N PLL can be programmed to operate from 800 MHz to 1400 MHz in cellular band and 1200 MHz to 2300 MHz in PCS band. The IF Rx PLL and the IF Tx PLL are integer- N frequency synthesizers that operate from 45 MHz to 600 MHz with $8 / 9$ dual modulus prescalers. Serial data is transferred into the LMX3305 via a microwire interface (Clock, Data, \& LE).
The RF PLL provides a fastlock feature allowing the loop bandwidth to be increased by 3X during initial lock-on.
The supply voltage of the LMX3305 ranges from 2.7 V to 3.6 V . It typically consumes 9 mA of supply current and is packaged in a 24 -pin CSP package.

Features

- Three PLLs integrated on a single chip
- RF PLL fractional-N counter
- 16/17/20/21 RF quadruple modulus prescaler for PCS application
- 8/9/12/13 RF quadruple modulus prescaler for cellular application
- 2.7 V to 3.6 V operation
- Low current consumption: $\mathrm{I}_{\mathrm{CC}}=9 \mathrm{~mA}$ (typ) at 3.0 V
- Programmable or logical power down mode: $\mathrm{I}_{\mathrm{CC}}=$ $10 \mu \mathrm{~A}$ (typ) at 3.0 V
- RF PLL Fastlock feature with timeout counter
- Digital lock detect
- Microwire Interface with data preset
- 24-pin CSP package

Applications

- CDMA Cellular telephone systems

Block Diagram

Functional Block Diagram

Connection Diagram

Top View
Order Number LMX3305SLBX See NS Package Number SLB24A

Pin Descriptions

Pin No．	Pin Name	1／0	Description
1	RF＿CP。	0	Charge pump output for RF PLL．For connection to a loop filter for driving the input of an external VCO．
2	RF＿GND	PWR	RF PLL ground．
3	RF＿F ${ }_{\text {IN }}$	1	RF prescaler input．Small signal input from the RF Cellular or PCS VCO．
4	RF＿V ${ }_{\text {cc }}$	PWR	RF PLL power supply voltage．Input may range from 2.7 V to 3.6 V ．Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane．$T x V_{C C}=R x V_{C C}=R F V_{C C}$ ．
5	Lock＿Det	0	Multiplexed output of the RF，Rx，and Tx PLL＇s analog or digital lock detects．The outputs from the R， N and Fastlock counters can also be selected for test purposes． Refer to Section 2．3．4 for more detail．
6	N／C		No Connect．
7	RF＿En	1	RF PLL enable pin．A LOW on RF En powers down the RF PLL and TRI－STATE®s the RF PLL charge pump．
8	Rx＿En	1	Rx PLL enable pin．A LOW on Rx En powers down the Rx PLL and TRI－STATEs the Rx PLL charge pump．
9	Tx＿En	1	Tx PLL enable pin．A LOW on Tx En powers down the Tx PLL and TRI－STATEs the Tx PLL charge pump．
10	Clock	1	High impedance CMOS clock input．Data for the various counters is clocked on the rising edge into the CMOS input．
11	Data	1	Binary serial data input．Data entered MSB first．
12	LE	I	High impedance CMOS input．When LE goes LOW，data is transferred into the shift registers．When LE goes HIGH，data is transferred from the internal registers into the appropriate latches．
13	Tx＿Fin	1	Tx prescaler input．Small signal input from the Tx VCO．
14	Tx＿CP。	0	Charge pump output for Tx PLL．For connection to a loop filter for driving the input of an external VCO．
15	Tx＿GND		Tx PLL ground．
16	Tx＿V ${ }_{\text {cc }}$	PWR	Tx PLL power supply voltage input．Input may range from 2.7 V to 3.6 V ．Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane．$T x V_{C C}=R x V_{C C}=R F V_{C C}$ ．
17	$\mathrm{OSC}_{\text {IN }}$	1	PLL reference input which has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TLL logic gate．The R counter is clocked on the falling edge of the $\mathrm{OSC}_{\text {IN }}$ signal．
18	Rx＿V ${ }_{\text {cc }}$	PWR	Rx PLL power supply voltage．Input ranges from 2.7 V to 3.6 V ．Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane．$T x V_{C C}=R x V_{C C}=R F V_{C C}$ ．
19	Rx＿GND	PWR	Rx PLL ground．
20	Rx＿CP。	0	Charge pump output for Rx PLL．For connection to a loop filter for driving the input of an external VCO．
21	Rx＿Fin	1	Rx prescaler input．Small signal input from the Rx VCO．
22	RF＿Sw1	0	An open drain NMOS output which can be use for bandswitching or Fastlocking the RF PLL．（During Fastlock mode a second loop filter damping resistor can be switched in parallel with the first to ground．）Refer to Section 2．5．3 for more detail．
23	RF＿Sw2	0	An open drain NMOS output which can be use for bandswitching or Fastlocking the RF PLL．（During Fastlock mode a second loop filter damping resistor can be switched in parallel with the first to ground．）Refer to Section 2．5．3 for more detail．
24	V_{P}	0	RF PLL charge pump power supply．An internal voltage doubler can be enabled in 3 V applications to allow the RF charge pump to operate over a wider tuning range．

LMX5001

Dedicated Bluetooth Link Controller

General Description

The LMX5001 Dedicated Bluetooth ${ }^{\text {TM }}$ Link Controller has been designed to interface with the LMX3162, Singie Chip Radio Transceiver to provide a rapid design path to a complete Bluetooth physical layer.
The LMX5001 also offers a low power and cost competitive solution to the Bluetooth Link Controller function.
The LMX5001 can be attached to a Link Management Controller, or Host processor performing the Link Management function to implement a complete Bluetooth interface.
Bluetooth is a world-wide recognized wireless communication standard, which operates in the ISM band (2.4 GHz), offering a low cost and convenient wireless replacement for data/voice cable links between fixed and mobile electronic devices.
Utilizing a GFSK modulation scheme, with frequency hopping, Bluetooth is able to offer a low power, low cost, robust and spectrally efficient spread spectrum packet data system.

Features

- Bluetooth Specification 1.0B compliant
- Bluetooth physical layer, available today
- Supports Class 1, 2 and 3 Bluetooth ($20 \mathrm{dBm}, 4 \mathrm{dBm}$ and 0 dBm links)
- 1/8 bit sampling resolution

Power management for Tx, Rx and PLL

- Piconet and Scatternet communication capable
- Good Bluetooth radio range coverage (when coupled with the LMX3162)
- Support for RSSI channel quality monitoring
- Bluetooth Encryption Engine

Applications

- PCMCIA Cards
- Mobile Phones
- Laptop PCs
- Palmitop PCs
- Desktop PCs
- Computer Peripherals
- Wireless Modems
- PDÀs
- Palmtops
- P.O.T.S
- Digital Cameras
- Fax
- Printers
- Bar-code Readers
- Notepads
- Cordless Headsets
- In-vehicle Communications

Block Diagram

Functional Block Diagram

Connection Diagram

DS101340-7

Pin Descriptions

Pin No.	Pin Name	1/0	Description
1	BT_TxData	0	Transmit data
2	VCO_BS	0	VCO band switch control signal.
3	S_FIELD2	0	LMX3162 DC compensation circuit enable. This signal is enabled (low) throughout the correlation phase.
4	S_FIELD1	0	LMX3162 DC compensation circuit enable. At the beginning of the correlation phase this signal is enabled (low) for $15 \mu \mathrm{~s}$. For the remainder of the correlation phase this signal is PWM by $1 / 8$ (cycle time $=1 \mu \mathrm{~s}$).
5	R_OSC	0	LMX3162 4 MHz oscillator input to the PLL synthesizer. This signal is only enabled when the LMX3162 is active.
6	R_DATA	0	MICROWIRE ${ }^{\text {TM }}$ data to LMX3162.
7	R_LE	0	MICROWIRE load enable to LMX3162.
8	R_CLK	0	MICROWIRE clock to LMX3162.
9	PLL_PD	0	LMX3162 PLL power down. This signal is used to open the PLL loop or powering down the PLL. The PLL loop is opened when transmitting to make it possible to FSK modulate the VCO. When receiving it is optional to open the PLL loop (configured by the PLLOpenRX bit in threshold_msb).
10	Tx_PD	0	LMX3162 Transmitter power down. For power conservation, the Transmitter is only powered during Transmit Frames.
11	Rx_PD	0	LMX3162 Receiver power down. For power conservation, the Receiver is only powered during Receive Frames.
12	R_CE	0	LMX3162 chip enable. When the LMX5001 is in Idle Mode the LMX3162 is powered down.
13	V_{CC}	Power	+3.3V
14	GND	Power	OV
15	RFSW1	0	Antenna switch control.
16	RFSW2	0	Antenna switch control: This signal is RFSW1 inverted,
17	PA_ON	0	Switches the external PA on/off for $20 \mathrm{dBm} / 0 \mathrm{dBm}$ transmission, respectively.

Pin Descriptions (Continued)

Pin No.	Pin Name	I/0	Description
18	GPIOO (XTAL Config)	1/0	XTAL configuration during reset (Note 1).
19	GPIO1 (XTAL Config)	1/0	XTAL configuration during reset (Note 1).
20	LPXTALI	1	128 kHz XTAL connection for low power mode. This is used in low power mode. If the low power mode is not used it is not necessary with at XTAL here. External 128 kHz clock can also be feed in here.
21	LPXTALO	0	128 kHz XTAL connection.
22	GPIO2	1/0	General Purpose I/O
23	GPIO3	1/0	General Purpose I/O
24	GPIO4	1/0	General Purpose I/O
25	TxData	1	LCI Data Transmit
26	RxData	0	LCI Data Receive
27	RxFrSync	0	LCI Receive Frame Sync.
28	TrFrSync	0	LCI Transmit Frame Sync.
29	SCLK	0	LCI Serial Clock.
30	PWDN	0	Power Down to Link Management Controller
31	PWDNACK	I	Power Down Acknowledge from Link Management Controller
32	Xtal_adj	0	PWM signal to make adjustments to the XTAL.
33	XTALI	1	16 MHz XTAL connection. (External clock input).
34	XTALO	0	16 MHz XTAL connection.
35	SYSTICK	0	Systick generated from the internal LMX5001 Master/Slave Counter.
36	SYSLOAD	1	When low holds the LMX5001 in Idle Mode. A rising edge causes a system load After a rising edge the LMX5001 will start to load control data from and store status information to the LMC via the LCI.
37	$\mathrm{V}_{\text {cc }}$	Power	
38	GND	Power	
39	Reset	1	Reset. After Reset is released the LMX5001 will be in Idle Mode, awaiting a SYSLOAD.
40	Test0	1	Should be tied low. This signal is used in production test.
41	Test1	1	Should be lied low. This signal is used in production test.
42	CLKOUT	0	Xtal clock output to Link Management Controller. This signal can be disabled using the Sysload Command (for power saving).
43	GPIO5	1/0	General Purpose I/O
44	Q_adj	0	PWM signal to make it possible to adjust the quadrature tank circuit to the LMX3162.
45	RSSI_adj	0	PWM signal for use in creating an RSSI AD converter.
46	COMP_RSSI	I	Output from the external comparator in the RSSI AD converter.
47	S_Field3	0	DC Compensation circuit enable. At the beginning of the correlation phase, this signal is enabled (low) for $15 \mu \mathrm{~s}$.
48	BT_RxData	1	Receive data.

Note 1: During Reset GPIO0 and GPIO1 are sampled to setup the Xtal division ratio. The assumed external Xtal frequency is derived using the following relationship:

GPIO1	GPIO0	Xtal Division Ratio
Low	Low	Divide by 2 (i.e., 16 MHz XTAL or clock input).
Low	High	Divide by 3 (i.e., 24 MHz XTAL or clock input).
High	Low	Divide by 4 (i.e., 32 MHz XTAL or clock input).
High	High	Not used.

After Reset is completed, GPIOO and GPIO1 can be used as normal general purpose I/Os.

N

Section 21
Mil-AeroSection 21 Contents
Military-Aerospace Product Services. 21-3
Radiation Test Results 21-4
SMD/JAN Drawing Cross-Reference 21-8

Onational semiconductor

Military-Aerospace Product Services

National Semiconductor is one of the largest suppliers of IC products for high reliability applications. We've provided analog and mixed-signal engineering for the military, aerospace and space markets for more than 30 years and our future commitment is equally firm.
Our expertise in system design and integration is creating innovative solutions for space, radar, communications, and other applications. For fast, effective product design, development, and delivery, National provides knowledge in systems integration and design, as well as organizational and partnership strategies - whether the product you need comes off-the-shelf or is customized for your environment and application.
National continually evaluates and develops new products for high reliability applications including expanding our space and RHA portfolio, introducing low-voltage analog, interface, and logic components and qualifying PLLs for the wireless market.

Processing Capabilities

Process Flow	Description
SPACE-LEVEL SYSTEMS	
QMLV	QML (DSCC Qualified Manufacturers List) product processed to MIL-PRF-38535 for space-level applications.
QMLV"R"	QML (DSCC Qualified Manufacturers List) product processed to MIL-PRF-38535 with guaranteed RHA radiation assurance testing.
JAN Class S	QPL (DSCC Qualified Products List) products processed to MIL-PRF-38535 Appendix B for space-level applications.
JAN Class S "R"	QPL (DSCC Qualified Products List) products processed to MIL-PRF-38535 Appendix B Level S with guaranteed RHA radiation assurance.
NAVAL/AIR/GROUND SYSTEMS	QML (DSCC Qualified Manufacturers List) product processed to MIL-PRF-38535 for ground applications.
QMLQ	QPL (DSCC Qualified Product List) products processed to MIL-PRF-38535 Appendix A Level B.
JAN Class B	QPL (DSCC Qualified Product List) products processed to MIL-PRF-38535 Appendix A Level B, using space qualified die. Guaranteed RHA radiation assurance testing.
JAN Class B "R"" QMLQ"R"	Standard Microcircuit Drawing tactical-level products processed to QML Level Q with electrical specifications controlled by DSCC. (National's SMD products that include an M or Q in the SMD part number are controlled by and fully compliant with MIL-PRF-38535 QML Q.)
SMD	Products processed to MIL-STD-883 Level B for military with electrical specifications controlled by manufacturer.
/883	COMMERCIAL GRADE SYSTEMS DC, HC
OTHER SERVICES	
Radiation Testing	National Semiconductor has a large radiation-tested product offering, High Reliability devices, which are not currently offered as radiation-tolerant product, may be procured with Total Dose Testing performed as an add-on option. Reports of radiation test, performed by National, are available on many device types upon request.

National Semiconductor

Radiation Test Results

Linear Products

Total lonizing Dose Results				Single Event Latchup		Process Technology
	Available Guaranteed to (krad)	Typical Performance				
Part Number		Total Dose to Pre-Rad Limit (krad)	Functional Level (krad)	SEL	LET ($\mathrm{MeV} / \mathrm{mg} / \mathrm{cm}^{2}$)	
LF156		10	>15			Bi-FET
LM35AH		100	>100			Bipolar-SiCr
LM101A	100	80-100	>100			Bipolar
LM108A	100	80-100	>100			Bipolar
LM109		20-50	>50			Bipolar
LM111	30	10-30	>20			Bipolar
LM113		100	>100			Bipolar
LM117H	100	20-30	>30	No	>110	Bipolar
LM117K	100	30-40	>50	No	>110	Bipolar
LM118	30	50	>200			Bipolar
LM119	100	10-20	>20	No	>100	Bipolar
LM120-12(H)		>100	>100	No	>110	Bipolar
LM120-12(K)		>100	>100	No	>110	Bipolar
LM120-15(H)		>100	>100			Bipolar
LM120-15(K)		>100	>100			Bipolar
LM124		>100	>125	No	>90	Bipolar
LM124A	100	25-30	>25			Bipolar
LM135		>50	>50			Bipolar
LM136AH-2.5	100	100	>100	No	>110	Bipolar
LM136AH-5.0		30	>100			Bipolar
LM137(H)	30	20-30	50			Bipolar
LM137(K)	30	20-30	50			Bipolar
LM139A	100	50-80	>100	No	>80	Bipolar
LM140-5(H)	100	20	>20			Bipolar
LM140-12(K)		20	>50			Bipolar
LM140-15(H)		>20	>50			Bipolar
LM140-15(K)		>20	>50			Bipolar
LM148	TBD	>20	>20			Bipolar
LM158		12-50	>50	No		Bipolar
LM158A	50	12-50	>50	No		Bipolar
LM185		<10	>10			Bipolar
LM193		<20	>100	No	>110	Bipolar
LM193A		<20	>100	No	>110	Bipolar
LM555		>25	>25			Bipolar
LM723	TBD	50-100	>100			Bipolar
LM1575J-5.0		30	>50			Bipolar
LM1575J-ADJ		30	>50			Bipolar
LM6142AMJ		10	<100			VIP III
LM6161	TBD	50	200			VIP I

Linear Products (Continued)

Total lonizing Dose Results				Single Event Latchup		Process Technology
	Available Guaranteed to (krad)	Typical Performance				
Part Number		Total Dose to Pre-Rad Limit (krad)	Functional Level (krad)	SEL	LET ($\mathrm{MeV} / \mathrm{mg} / \mathrm{cm}^{2}$)	
LM6172	TBD	400	>800			VIP III
LM7171	100	200	>200			VIP III
LM2991J	TBD	10	<30			Bipolar
LMC6062		5	10			CMOS
LMX2305		25	50	No	>84	BiCMOS
LMX2315		25	50	No	>84	BiCMOS
LMX2325		25	50	No	>84	BiCMOS
LP2951	TBD	>75	>100	No	>90	Bipolar
LP2953	TBD	>30	>75			Bipolar

Note 1: Linear products have been irradiated to High Dose rates as required by MIL-STD-883D, Method 1019.4. "Worst-case" conditions for Linear products are derived through Low Dose Rate testing.
Note 2: Using pre-radiation limits provides small additional margin for Linear products that are used in space environments tested at high dose rate.
Note 3: Parts qualified to RHA Level R are guaranteed to meet their post rad specifications after $100 \mathrm{krads}(\mathrm{Si})$ total dose. Rad levels for all other products are typical and are not guaranteed.

LVDS (Low Voltage Differential Signalling) Products

Product	Parameter	$\stackrel{3}{\operatorname{krad}(\mathrm{SI})}$	$\begin{gathered} 10 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 30 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 50 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 100 \\ \operatorname{krad}(\mathbf{S i}) \end{gathered}$	$\begin{gathered} 300 \\ \operatorname{krad}(\mathbf{S i}) \end{gathered}$	$+25^{\circ} \mathrm{C}$ Anneal	$\begin{array}{\|c\|} \hline \text { Single } \\ \text { Event Effects } \\ \text { Heavy lon } \\ \text { Test Results } \\ \text { Latchup } \\ \text { (SEL }\left[\mathrm{MeV} /\left(\mathrm{mg} / \mathrm{cm}^{2}\right)\right] \end{array}$
DS90C031	$I_{\text {ccz }}$	10 mA	10 mA	13 mA	13 mA		Not Available	Not Available	
	D vos	$\pm 25 \mathrm{mV}$	$\pm 25 \mathrm{mV}$	$\pm 35 \mathrm{mV}$	$\pm 35 \mathrm{mV}$		Not Available	Not Available	
	$\mathrm{D}_{\text {VOD }}$	$\pm 35 \mathrm{mV}$	$\pm 35 \mathrm{mV}$	$\pm 45 \mathrm{mV}$	$\pm 45 \mathrm{mV}$		Not Available	Not Available	
	lozı	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$		Not Available	Not Available	
	$\mathrm{I}_{\mathrm{OzH}}$	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$		Not Available	Not Available	
DS90C032	$\mathrm{I}_{\mathrm{CCHQ} 1}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\mathrm{CHO} 2}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\mathrm{CHO}}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\text {CCLQ2 }}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\text {ccle }}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\text {ccza1 }}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\mathrm{CCzQ} 2}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\text {ccza3 }}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\mathrm{CCZQ} 4}$	11 mA	11 mA	25 mA	25 mA		25 mA		
	$\mathrm{I}_{\text {cczo5 }}$	11 mA	11 mA	25 mA	25 mA		25 mA		

Standard Interface Products									
Product	Parameter	$\begin{gathered} 3 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 10 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{array}{\|c\|} 30 \\ \operatorname{krad}(\mathrm{Si}) \end{array}$	$\begin{gathered} 50 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 100 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$\begin{gathered} 300 \\ \operatorname{krad}(\mathrm{Si}) \end{gathered}$	$+25^{\circ} \mathrm{C}$ Anneal	Single Event Effects Heavy lon Test Results Latchup (SEL $\left[\mathrm{MeV} /\left(\mathrm{mg} / \mathrm{cm}^{2}\right)\right]$
DS16F95	All Parameters	Meets Pre-Rad	Not Available	>120					
DS26C31	All Parameters	Meets Pre-Rad	Meets Pre-Rad	-	-	-	-	Not Available	>120
DS26C32	All Parameters	Meets Pre-Rad	Meets Pre-Rad	-	-	-	-	Not Available	>12.0
DS26LS31	All Parameters	Meets Pre-Rad	Meets Pre-Rad	Meets Pre-Rad	Meets Pre-Rad	$\begin{gathered} \text { Meets } \\ \text { Pre-Rad } \end{gathered}$	Meets Pre-Rad	Not Available	>120
DS26LS32	All Parameters	Meets Pre-Rad	Not Available	>120					

High-Performance Op Amps

| Neutron Irradiation
 (Neutron $/ \mathbf{c m}^{2}$) | Total Dose krads(Si) | Dose Rate | Result Summery | *Actual Part
 Tested |
| :---: | :---: | :---: | :---: | :---: | | Other Parts |
| :--- |
| within Process |

CBIC-U (39x39 Mil Die Size) Process Type/Base Chip Technology

1×1012	$30,100,300,1000$	50 rads/sec	Slight change in DC operating point.	CLC109 CLC110 CLC400	CLC111 CLC406 CLC412
Not Available	$10,30,50,100$	570 rads (si)/min	No degradation of gain; slight degradation of bandwidth at initial radiation exposure.	CLC401*	CLC425 CLC522 CLC532

CBIC-U (54x54 Mil Die Size) Process Type/Base Chip Technology

Not Available	10	155 rads/sec	Slight change in DC operating point; no degradation in AC characteristics.	CLC400* CLC401*	CLC402 CLC404 CLC409
Not Available	$10,30,100,300,1000$	140 rads (Si)/sec	Negligible degradation to 1000 krads specification; should meet specification to 3000 krads.	CLC400*	CLC410 CLC420 CLC422
1.85×1014	None	None	Little change in the small signal frequency response over a wide gain range.	CLC401**	CLC500 CLC502
Not Available	$5,10,15,20,25$	500 rads/hour	No degradation of gain; slight degradation of bandwidth at inital radiation exposure	CLC501*	CLC505
6×1011	$30,60,100,150,200$	50 rads/sec	Change in DC bias characteristics; no AC testing performed.	CLC501**	
1×1012	$30,100,300,1000$	50 rads/sec	Slight change in DC operating point		

CBIC-U (76x65 Mil Die Size) Process Type/Base Chip Technology

| Not Available | $30,100,300,1000$ | | CLC533* | CLC415*
 CLC411
 CLC414 |
| :--- | :--- | :--- | :--- | :--- | :--- |

CBIC-V2 (44x44 Mil Die Size) Process Type/Base Chip Technology

Report Available	10			Generic CBIC-V*	CLC449 CLC440 CLC446

High-Performance Op Amps (Continued)

Neutron Irradiation (Neutron/cm ${ }^{2}$)	Total Dose krads(Si)	Dose Rate	Result Summery	*Actual Part Tested	Other Parts within Process
CBIC-R (56x68 Mil Die Size) Process Type/Base Chip Technology					
Reports Available	10	155 rads/sec	Change in outset voltage and bias current; moderate change in transimpedance.	CLC430*	

*Tested
Note: Parts available to RHA are guaranteed to meet their post rad specifications after 100 krad (si) total dose.
Rad levels for all other products are typical and are not guaranteed.

National Semiconductor

SMD/JAN Drawing Cross-Reference

National NSID	SMD/JAN Drawing No.	Function
CLC110AJ-QML	5962-8997501PA	WB Closed Loop Monolithic Buffer Amp
CLC111AJ-QML	5962-9687601MPA	High Speed Buffer
CLC114AE-QML	5962-9233901M2A	Low Power Quad Buffer
CLC114AJ-QML	5962-9233901MCA	Low Power Quad Buffer
CLC400AE-QML	5962-89970012A	General Purpose WB Op Amp
CLC400AJ-QML	5962-8997001PA	General Purpose WB Op Amp
CLC401AJ-QML	5962-8997301PA	General Purpose HG Op Amp
CLC402AJFQML	5962F9203301MPA	Low Gain Fast Settling Op Amp
CLC402AJ-QML	5962-9203301MPA	Fast Settling Op Amp
CLC404J-QML	5962-9099401MPA	Large Signal WB Op Amp
CLC406AJ-QML	5962-9200401MPA	Video Op Amp
CLC409AE-QML	5962-9203401M2A	Low Distortion Op Amp
CLC409AJ-QML	5962-9203401MPA	Low Distortion Op Amp
CLC410AJ-QML	5962-9060001PA	WB Op Amp
CLC411AJ-QML	5962-9456601MPA	High Speed Video Op Amp
CLC412AE-QML	5962-9471901M2A	Low Crosstalk WB Op Amp
CLC412AJ-QML	5962-9471901MPA	Low Crosstalk WB Op Smp
CLC414AE-QML	5962-9169301M2A	General Purpose Quad Op Amp
CLC414AJ-QML	5962-9169301MCA	General Purpose Quad Op Amp
CLC415AJ-QML	5962-9305501MCA	General Purpose Quad Op Amp
CLC420AE-QML	5962-9175801M2A	WB Low Power Op Amp
CLC420AJFQML	5962F9175801MPA	High Speed Op Amp
CLC420AJ-QML	5962-9175801MPA	WB Low Power Op Amp
CLC420AWG-QML	5962-9175801MXA	High Speed Op Amp
CLC420AWGFQML	5962F9175801MXA	High Speed Op Amp
CLC420BE-QML	5962-9175802M2A	WB Low Power Op Amp
CLC420BJ-QML	5962-9175802MPA	WB Low Power Op Amp
CLC425AJ-QML	5962-9325901MPA	Low Noise Op Amp
CLC426AJ-QML	5962-9459701MPA	Low Noise Unity Gain Op Amp
CLC428AJ-QML	5962-9470801MPA	Dual Low Noise Op Amp
CLC430AE-QML	5962-9203001M2A	Video Op Amp
CLC430AJ-QML	5962-9203001MPA	Video Op Amp
CLC430AWG-QML	5962-9203001MXA	Low Gain with Disable Op Amp
CLC431AE-QML	5962-9472501M2A	Dual Video Op Amp
CLC431AJ-QML	5962-9472501MCA	Dual Video Op Amp
CLC432AJ-QML	5962-9472502MPA	Dual Video Op Amp
CLC440AJ-QML	5962-9751801MPA	WB Low Power Op Amp
CLC446AJ-QML	5962-9751901MPA	WB Low Power Op Amp
CLC449AJ-QML	5962-9752001MPA	WB Op Amp
CLC452AJ-QML	5962-9752101MPA	High Output Low Power Line Driver
CLC501AJ-QML	5962-8997401PA	High Gain Op Amp
CLC502AE-QML	5962-9174301M2A	Clamping Op Amp
CLC502AJ-QML	5962-9174301MPA	Clamping Op Amp
CLC505AJ-QML	5962-9099301MPA	High Speed Op Amp

National NSID	SMD/JAN Drawing No.	Function
CLC520AJ-QML	5962-9169401MCA	WB AGC Op Amp
CLC522AE-QML	5962-9451701M2A	WB Variable Gain Op Amp
CLC522AJ-QML	5962-9451701MCA	WB Variable Gain Op Amp
CLC532AE-QML.	5962-9203501M2A	Wide Range Multiplexer
CLC532AJ-QML	5962-9203501MCA	Wide Range Multiplexer
DS1691AJ-SMD	5962-8672101EA	Single Line Driver
DS16F95E/883	5962-89615012A	High Speed Single Transceiver
DS16F95J-QMLV	5962-8961501VPA	High Speed Single Transceiver
DS16F95J/883	5962-8961501PA	High Speed Single Transceiver
DS16F95W-SMD	5962-8961501HA	High Speed Single Transceiver
DS16F95WG/883	5962-8961501QXA	High Speed Single Transceiver
DS1776E/883	5962-9231701M3A	Pi-Bus Transceiver
DS26C31ME/883	5962-9163901M2A	Quad Line Driver
DS26C31MJ/883	5962-9163901MEA	Quad Line Driver
DS26C31MW/883	5962-9163901MFA	Quad Line Driver
DS26C31MWG/883	5962-9163901MXA	Quad Line Driver
DS26C32AME/883	5962-9164001M2A	Quad Line Receiver
DS26C32AMJ/883	5962-9164001MEA	Quad Line Receiver
DS26C32AMW/883	5962-9164001MFA	Quad Line Receiver
DS26C32AMWG/883	5962-9164001MXA	Quad Line Receiver
DS26F31ME/883	5962-7802302M2A	Quad Line Driver
DS26F31MJ-QMLV	5962-7802302VEA	Quad Line Driver
DS26F31MJ/883	5962-7802302MEA	Quad Line Driver
DS26F31MW-QMLV	5962-7802302VFA	Quad Line Driver
DS26F31MW/883	5962-7802302MFA	Quad Line Driver
DS26F32ME/883	5962-7802005M2A	Quad Line Receiver
DS26F32MJ-QMLV	5962-7802005VEA	Quad Line Receiver
DS26F32MJ/883	5962-7802005MEA	Quad Line Receiver
DS26F32MW-QMLV	5962-7802005VFA	Quad Line Receiver
DS26F32MW/883	5962-7802005MFA	Quad Line Receiver
DS26LS31ME-SMD	5962-7802301Q2A	Quad Line Driver
DS26LS31MJ-QMLV	5962-7802301VEA	Quad Line Driver
DS26LS31MJ-SMD	5962-7802301MEA	Quad Line Driver
DS26LS31MW-QMLV	5962-7802301VFA	Quad Line Driver
DS26LS31MW-SMD	5962-7802301MFA	Quad Line Driver
DS26LS32ME/883	5962-7802006Q2A	Quad Line Receiver
DS26LS32MJ/883	5962-7802006QEA	Quad Line Receiver
DS26LS32MW/883	5962-7802006QFA	Quad Line Receiver
DS26LV31W-QML	5962-9858401QFA+	Quad Low Voltage Line Driver
DS26LV32AW-QML	5962-9858501QFA+	Quad Low Voltage Line Receiver
DS7831J-SMD	8004101EA	Dual Differential Line Driver
DS7831W-SMD	8004101FA	Dual Differential Line Driver
DS78C120J/883	5962-8963001EA	Dual Line Receiver
DS78C20J/883	5962-9321101MCA	Dual Line Receiver
DS90C031E-QML	5962-9583301Q2A	Quad LVDS Line Driver
DS90C031W-QML	5962-9583301QFA	Quad LVDS Line Driver
DS90C032E-QML	5962-9583401Q2A	Quad LVDS Line Receiver
DS90C032W-QML	5962-9583401QFA	Quad LVDS Line Receiver
DS9622ME/883	5962-87522012A	Dual Line Receiver
DS9622MJ/883	5962-8752201CA	Dual Line Receiver

National NSID	SMD/JAN Drawing No.	Function
DS9627MJ/883	5962-8978701MEA	Dual Line Receiver
DS9636AJ/883	5962-8752301PA	Dual Line Driver
DS9637AMJ/883	5962-8752401PA	Dual Line Receiver
DS9638J/883	5962-8754601PA	Dual Line Driver
DS96F172ME/883	5962-9076501M2A	Quad Line Driver
DS96F172MJ-QMLV	5962-9076501VEA	Quad Line Driver
DS96F172MJ/883	5962-9076501MEA	Quad Line Driver
DS96F173ME/883	5962-9076602M2A	Quad Line Receiver
DS96F173MJ-QMLV	5962-9076602VEA	Quad Line Receiver
DS96F173MJ/883	5962-9076602MEA	Quad Line Receiver
DS96F173MW/883	5962-9076602MFA	Quad Line Receiver
DS96F174ME/883	5962-9076502M2A	Quad Line Driver
DS96F174MJ-QMLV	5962-9076502VEA	Quad Line Driver
DS96F174MJ/883	5962-9076502MEA	Quad Line Driver
DS96F174MW/883	5962-9076502MFA	Quad Line Driver
DS96F175ME/883	5962-9076601M2A	Quad Line Receiver
DS96F175MJ-QMLV	5962-9076601VEA	Quad Line Receiver
DS96F175MJ/883	5962-9076601MEA	Quad Line Receiver
DS96F175MW/883	5962-9076601MFA	Quad Line Receiver
HPC003U20/883	5962-9054401MYC	16-Bit High Performance Microcontroller
JL101ABCA	JM38510/10103BCA	General Purpose Op Amp
JL101ABGA	JM38510/10103BGA	General Purpose Op Amp
JL101ABHA	JM38510/10103BHA	General Purpose Op Amp
JL101ABPA	JM38510/10103BPA	General Purpose Op Amp
JL101ASGA	JM38510/10103SGA	General Purpose Op Amp
JL101ASHA	JM38510/10103SHA	General Purpose Op Amp
JL101ASPA	JM38510/10103SPA	General Purpose Op Amp
JL108ABCA	JM38510/10104BCA	Precision Op Amp
JL108ABGA	JM38510/10104BGA	Precision Op Amp
JL108ABHA	JM38510/10104BHA	Precision Op Amp
JL108ABPA	JM38510/10104BPA	Precision Op Amp
JL108ABZA	JM38510/10104BZA	Precision Op Amp
JL108ASCA	JM38510/10104SCA	Precision Op Amp
JL108ASGA	JM38510/10104SGA	Precision Op Amp
JL108ASHA	JM38510/10104SHA	Precision Op Amp
JL108ASPA	JM38510/10104SPA	Precision Op Amp
JL109BXA	JM38510/10701BXA	Voltage Regulator
JL109BYA	JM38510/10701BYA	Voltage Regulator
JL109SXA	JM38510/10701SXA	Voltage Regulator
JL111BCA	JM38510/10304BCA	Voltage Comparator
JL111BGA	JM38510/10304BGA	Voltage Comparator
JL111BHA	JM38510/10304BHA	Voltage Comparator
JL111BPA	JM38510/10304BPA	Voltage Comparator
JL111SGA	JM38510/10304SGA	Voltage Comparator
JL111SHA	JM38510/10304SHA	Voltage Comparator
JL111SPA	JM38510/10304SPA	Voltage Comparator
JL117BXA	JM38510/11703BXA	Adjustable Regulator
JL117BYA	JM38510/11704BYA	Adjustable Regulator
JL117SXA	JM38510/11703SXA	Adjustable Regulator
JL117SYA	JM38510/11704SYA	Adjustable Regulator

National NSID	SMD/JAN Drawing No.	Function
JL118BCA	JM38510/10107BCA	Fast Op Amp
JL118GBA	JM38510/10107BGA	Fast Op Amp
JL118BHA	JM38510/10107BHA	Fast Op Amp
JL118BPA	JM38510/10107BPA	Fast Op Amp
JL118SGA	JM38510/10107SGA	Fast Op Amp
JL118SHA	JM38510/10107SHA	Fast Op Amp
JL118SPA	JM38510/10107SPA	Fast Op Amp
JL119BCA	JM38510/10306BCA	High Speed Dual Comparator
JL119BIA	JM38510/10306BIA	High Speed Dual Comparator
JL120-12BXA	JM38510/11502BXA	Voltage Regulator
JL120-12BYA	JM38510/11506BYA	Voltage Regulator
JL120-15BXA	JM38510/11503BXA	Voltage Regulator
JL120-15BYA	JM38510/11507BYA	Voltage Regulator
JL120-15SXA	JM38510/11503SXA	Voltage Regulator
JL120-5BXA	JM38510/11501BXA	Voltage Regulator
JL120-5BYA	JM38510/11505BYA	Voltage Regulator
JL120-5SXA	JM38510/11501SXA	Voltage Regulator
JL120-5SYA	JM38510/11505SYA	Voltage Regulator
JL124ABCA	JM38510/11006BCA	Low Power Quad Op Amp
JL124ABDA	JM38510/11006BDA	Low Power Quad Op Amp
JL124ASCA	JM38510/11006SCA	Low Power Quad Op Amp
JL124ASDA	JM38510/11006SDA	Low Power Quad Op Amp
JL124BCA	JM38510/11005BCA	Low Power Quad Op Amp
JL124BDA	JM38510/11005BDA	Low Power Quad Op Amp
JL124SCA	JM38510/11005SCA	Low Power Quad Op Amp
JL124SDA	JM38510/11005SDA	Low Power Quad Op Amp
JL137BXA	JM38510/11803BXA	Adjustable Regulator
JL137BYA	JM38510/11804BYA	Adjustable Regulator
JL137SXA	JM38510/11803SXA	Adjustable Regulator
JL137SYA	JM38510/11804SYA	Adjustable Regulator
JL139BCA	JM38510/11201BCA	Quad Comparator
JL139BDA	JM38510/11201BDA	Quad Comparator
JL139SCA	JM38510/11201SCA	Quad Comparator
JL139SDA	JM38510/11201SDA	Quad Comparator
JL140-12BXA	JM38510/10703BXA	Voltage Regulator
JL140-12BYA	JM38510/10707BYA	Voltage Regulator
JL140-12SXA	JM38510/10703SXA	Voltage Regulator
JL140-12SYA	JM38510/10707SYA	Voltage Regulator
JL140-15BXA	JM38510/10704BXA	Voltage Regulator
JL140-15BYA	JM38510/10708BYA	Voltage Regulator
JL140-15SYA+	JM38510/10708SYA	Voltage Regulator
JL140-5BXA	JM38510/10702BXA	Voltage Regulator
JL140-5BYA	JM38510/10706BYA	Voltage Regulator
JL140-5SXA	JM38510/10702SXA	Voltage Regulator
JL140-5SYA	JM38510/10706SYA	Voltage Regulator
JL147BCA	JM38510/11906BCA	Wide BW Quad JFET Op Amp
JL148BCA	JM38510/11001BCA	Quad Op Amp
JL148BDA	JM38510/11001BDA	Quad Op Amp
JL148BZA	JM38510/11001BZA	Quad Op Amp
JL148SCA	JM38510/11001SCA	Quad Op Amp

National NSID	SMD/JAN Drawing No.	Function
JL148SDA	JM38510/11001SDA	Quad Op Amp
JL1558BGA	JM38510/10108BGA	Dual Op Amp
JL156BGA	JM38510/11402BGA	JFET Input Op Amp
JL156SGA	JM38510/11402SGA	JFET Input Op Amp
JL193BGA	JM38510/11202BGA	Dual Comparator
JL193BPA	JM38510/11202BPA	Dual Comparator
JL198BGA	JM38510/12501BGA	Monolithic Sample and Hold
JL198SGA	JM38510/12501SGA	Monolithic Sample and Hold
JL2951BPA	5962-3870501BPA	LDO Regulator
JL2951S2A	5962-3870501S2A	LDO Regulator
JL2951SPA	5962-3870501SPA	LDO Regulator
JL411BPA	JM38510/11904BPA	JFET Input Op Amp
JL412BGA	JM38510/1 1905BGA	JFET Input Dual Op Amp
JL412BPA	JM38510/11905BPA	JFET Input Dual Op Amp
JL555BGA	JM38510/10901BGA	Timer
JL555BPA	JM38510/10901BPA	Timer
JL555SGA	JM38510/10901SGA	Timer
JL555SPA	JM38510/10901SPA	Timer
JL723BIA	JM38510/10201BIA	Precision Voltage Regulator
JL723SCA	JM38510/10201SCA	Precision Voltage Regulator
JL723SIA	JM38510/10201SIA	Precision Voltage Regulator
JL741BCA	JM38510/10101BCA	Op Amp
JL741BGA	JM38510/10101BGA	Op Amp
JL741BHA	JM38510/10101BHA	Op Amp
JL741BPA	JM38510/10101BPA	Op Amp
JL741SGA	JM38510/10101SGA	Op Amp
JL741SPA	JM38510/10101SPA	Op Amp
JL747BCA	JM38510/10102BCA	Dual Op Amp
JL747BDA	JM38510/10102BDA	Dual Op Amp
JL747BIA	JM38510/10102BIA	Dual Op Amp
JL747SCA	JM38510/10102SCA	Dual Op Amp
JL747SIA	JM38510/10102SIA	Dual Op Amp
LF147J-SMD	8102306CA	Wide BW Quad JFET Op Amp
LF412MJ-SMD	5962-9676001QPA	JFET Input Dual Op Amp
LM101AHRQML	5962R995101QGA	Single Op Amp
LM101AHRQMLV	5962R995101VGA	Single Op Amp
LM101AJRQML	5962R995101QPA	Single Op Amp
LM101AJRQMLV	5962R995101VPA	Single Op Amp
LM101AWRQML	5962R995101QHA	Single Op Amp
LM101AWRQMLV	5962R995101VHA	Single Op Amp
LM108AHRQML	5962R9863702QGA+	Precision Op Amp
LM108AHRQMLV	5962R9863702VGA+	Precision Op Amp
LM108AJ-8RQML	5962R9863702QPA+	Precision Op Amp
LM108AJ-8RQMLV	5962R9863702VPA+	Precision Op Amp
LM108AJRQML	5962R9863702QCA+	Precision Op Amp
LM108AJRQMLV	5962R9863702VCA+	Precision Op Amp
LM108AWGRQML	5962R9863702QZA+	Precision Op Amp
LM108AWGRQMLV	5962R9863702VZA+	Precision Op Amp
LM108AWRQML	5962R9863702QHA+	Precision Op Amp
LM108AWRQMLV	5962R9863702VHA+	Precision Op Amp

National NSID	SMD/JAN Drawing No.	Function
LM10H/883	5962-8760401GA	Op Amp/Voltage Reference
LM111HPQML	5962P0052401QGA	Single Comparator
LM111HPQMLV	5962P0052401VGA	Single Comparator
LM111J-8PQML	5962P0052401QPA	Single Comparator
LM111J-8PQMLV	5962P0052401VPA	Single Comparator
LM111WGPQML	5962P0052401QZA	Single Comparator
LM111WGPQMLV	5962P0052401VZA	Single Comparator
LM113-1H-QMLV	5962-9684302VXA	Reference Diode
LM113-1H-SMD	5962-8671102XA	Reference Diode
LM113-2H-QMLV	5962-9684303VXA	Reference Diode
LM113H-QMLV	5962-9684301VXA	Reference Diode
LM113H-SMD	5962-8671101XA	Reference Diode
LM113WG-QML	59629684301QZA	Reference Diode
LM113WG-QMLV	59629684301 VZA	Reference Diode
LM117HRQML	5962R9951703QXA	Positive Adjustable Regulator
LM117HRQMLV	5962R9951703VXA	Positive Adjustable Regulator
LM117KRQML	5962R9951704QYA	Positive Adjustable Regulator
LM117KRQMLV	5962R9951704QYA	Positive Adjustable Regulator
LM118HPQML	5962P9853901QGA	Single Op Amp
LM118HPQMLV	5962P9853901VGA	Single Op Amp
LM118J-8PQML	5962P9853901QPA	Single Op Amp
LM118J-8PQMLV	5962P9853901VPA	Single Op Amp
LM118WGPQML	5962P9853901QZA	Single Op Amp
LM118WGPQMLV	5962P9853901VZA	Single Op Amp
LM119H-QMLV	5962-9679801VIA	High Speed Dual Comparator
LM119HRQML	5962R9679801QIA	High Speed Dual Comparator
LM119HRQMLV	5962R9679801VIA	High Speed Dual Comparator
LM119H-SMD	86014011A	High Speed Dual Comparator
LM119J-QMLV	5962-9679801VCA	High Speed Dual Comparator
LM119JRQML	5962R9679801QCA	High Speed Dual Comparator
LM119JRQMLV	5962R9679801VCA	High Speed Dual Comparator
LM119J-SMD	8601401CA	High Speed Dual Comparator
LM119WGRQML	5962R9679801QXA	High Speed Dual Comparator
LM119WGRQMLV	5962R9679801VXA	High Speed Dual Comparator
LM119W-QMLV	5962-9679801VHA	High Speed Dual Comparator
LM119WRQML	5962R9679801QHA	High Speed Dual Comparator
LM119WRQMLV	5962R9679801VHA	High Speed Dual Comparator
LM119W-SMD	8601401HA	High Speed Dual Comparator
LM119WG-SMD	8601401XA	High Speed Dual Comparator
LM124AJ/883	7704302CA	Low Power Quad Op Amp
LM124AJRQML	5962R9950401QCA+	Low Power Quad Op Amp
LM124AJRQMLV	5962R9950401VCA+	Low Power Quad Op Amp
LM124AWG/883	7704302XA	Low Power Quad Op Amp
LM124AWGRQML	5962R9950401QZA+	Low Power Quad Op Amp
LM124AWGRQMLV	5962R9950401VZA+	Low Power Quad Op Amp
LM124AWRQML	5962R9950401QDA+	Low Power Quad Op Amp
LM124AWRQMLV	5962R9950401VDA+	Low Power Quad Op Amp
LM124J/883	7704301CA	Low Power Quad Op Amp
LM124WG/883	7704301XA	Low Power Quad Op Amp
LM129AH-SMD	5962-8992101XA	Precision Voltage Reference

National NSID	SMD/JAN Drawing No.	Function	
LM136AH-2.5RQML	5962R0050101QXA	Reference Diode	
LM136AH-2.5RQV	5962R0050101VXA	Reference Diode	
LM136AH-5.0-SMD	8418002XA	Reference Diode	
LM137HPQML	5962P9951701QXA	Negative Adjustable Regulator	
LM137HPQMLV	5962P9951701VXA	Negative Adjustable Regulator	
LM137H-SMD	7703403XA	Adjustable Regulator	
LM137HVH-SMD	7703404XA	Adjustable Regulator	1
LM137HVK-SMD	7703404YA	Adjustable Regulator	
LM137KPQML	5962P9951702QYA	Negative Adjustable Regulator	
LM137KPQMLV	5962P9951702VYA	Negative Adjustable Regulator	
LM137K-SMD	7703403YA	Adjustable Regulator	
LM139AJ-QMLV	5962-9673801VCA	Quad Comparator	
LM139AJ-SMD	5962-8773901CA	Quad Comparator	
LM139AJRQML	5962R9673801QCA+	Quad Comparator	
LM139AJRQMLV	5962R9673801VCA+	Quad Comparator	
LM139AW-QMLV	5962-9673801VDA	Quad Comparator	
LM139AW-SMD	5962-8773901DA	Quad Comparator	
LM139AWG-QMLV	5962-9673801VXA	Quad Comparator	
LM139AWG-SMD	5962-8773901XA	Quad Comparator	
LM139AWGRQML	5962R9673801QXA+	Quad Comparator	
LM139AWGRQMLV	5962R9673801VXA+	Quad Comparator	
LM139AWRQML	5962R9673801QDA+	Quad Comparator	
LM139AWRQMLV	5962R9673801VDA+	Quad Comparator	
LM150K/883	5962-8767501XA	Adjustable Power Regulator	
LM1575HVK12-QML	5962-9167302QXA	Switching Regulator	
LM1575HVK5-QML	5962-9167202QXA	Switching Regulator	
LM1575HVKAD-QML	5962-9167102QXA	Switching Regulator	
LM1575J-12-QML	5962-9167301QEA	Switching Regulator	
LM1575J-15-QML	5962-9167401QEA	Switching Regulator	
LM1575J-5.0-QML	5962-9167201QEA	Switching Regulator	
LM1575J-ADJ-QML	5962-9167101MEA	Switching Regulator	
LM1575K-5.0-QML	5962-91672.01MXA	Switching Regulator	
LM1575K-ADJ-QML	5962-9167101MXA	Switching Regulator	
LM1575WG5.0-QML	5962-9167201QZA	Switching Regulator	
LM1575WG12-QML	5962-9167301QZA	Switching Regulator	
LM1575WG15-QML	5962-9167401QZA	Switching Regulator	
LM1575WGADJ-QML	5962-9167101QZA	Switching Regulator	
LM1577K-12/883	5962-9216701MXA	Switching Regulator	
LM1577K-ADJ/883	5962-9216601MXA	Switching Regulator	
LM158AHLQML	5962L8771002QGA	Low Power Dual Op Amp	
LM158AHLQMLV	5962L8771002VGA	Low Power Dual Op Amp	
LM158AH-QMLV	5962-8771002VGA	Low Power Dual Op Amp	
LM158AH-SMD	5962-8771002GA	Low Power Dual Op Amp	
LM158AJLQML	5962L8771002QPA	Low Power Dual Op Amp	
LM158AJLQMLV	5962L8771002VPA	Low Power Dual Op Amp	
LM158AJ-QMLV	5962-8771002VPA	Low Power Dual Op Amp	
LM158AJ/883	5962-8771002PA	Low Power Dual Op Amp	
LM158AWGLQML	5962L8771002QXA	Low Power Dual Op Amp	
LM158AWGLQMLV	5962L8771002VXA	Low Power Dual Op Amp	
LM158AWG/883	5962-8771002QXA	Low Power Dual Op Amp	

National NSID	SMD/JAN Drawing No.	Function
LM158AWG-QMLV	5962-8771002VXA	Low Power Dual Op Amp
LM158H-SMD	5962-8771001GA	Low Power Dual Op Amp
LM158J/883	5962-8771001PA	Low Power Dual Op Amp
LM160H/883	5962-8767401GA	High Speed Differential Comparator
LM185BYH-SMD	5962-9091401MXA	Adjustable Voltage Reference
LM185BYH1.2-SMD	5962-8759405XA	Fixed Voltage Reference
LM185BYH2.5-SMD	5962-8759406XA	Fixed Voltage Reference
LM185H-1.2-SMD	5962-8759401XA	Fixed Voltage Reference
LM185H-2.5-SMD	5962-8759402XA	Fixed Voltage Reference
LM185WG-1.2/883	5962-8759401YA	Fixed Voltage Reference
LM193AH-QMLV	5962-9452602VGA	Dual Comparator
LM193AH/883	5962-9452602MGA	Dual Comparator
LM193AJ-QMLV	5962-9452602VPA	Dual Comparator
LM193AJ/883	5962-9452602MPA	Dual Comparator
LM194H/883	5962-8777701XA	Super Mach Pair Op Amp
LM195H/883	5962-8777801XA	Power Transistor
LM195K/883	5962-8777801YA	Power Transistor
LM199AH-SMD	5962-8856101XA	Precision Voltage Reference
LM2940J-12/883	5962-9088401QEA	LDO Regulator
LM2940J-15/883	5962-9088501QEA	LDO Regulator
LM2940J-5.0/883	5962-8958701EA	LDO Regulator
LM2940WG5.0/883	5962-898701XA+	LDO Regulator
LM2940WG5.0/883	5962-8958701XA	LDO Regulator
LM2940WG-12/883	5962-9088401QXA	LDO Regulator
LM2940WG-15/883	5962-9088501QXA	LDO Regulator
LM2941J/883	5962-9166701QEA	Adjustable LDO Regulator
LM2941WG/883	5962-9166701QYA	Adjustable LDO Regulator
LM2990J-12-QML	5962-9571001QEA	LDO Regulator
LM2990J-15-QML	5962-9570901QEA	LDO Regulator
LM2990J-5.0-QML	5962-9571101QEA	LDO Regulator
LM2990WG5.0-QML	5962-9571101QXA	LDO Regulator
LM2990WG-12-QML	5962-9571001QXA	LDO Regulator
LM2990WG-15-QML	5962-9570901QXA	LDO Regulator
LM2991J-QML	5962-9650501QEA	Adjustable LDO Regulator
LM2991J-QMLV	5962-9650501VES	Adjustable LDO Regulator
LM2991WG-QML	5962-9650501QXA	Adjustable LDO Regulator
LM3940J-3.3-QML	5962-9688401QEA	LDO Regulator
LM3940WG3.3-QML	5962-9688401QXA	LDO Regulator
LM6121H/883	5962-9081201MGA	VIP Buffer
LM6121J/883	5962-9081201MPA	VIP Buffer
LM6142AMJ-QML	5962-9550301QPA	VIP Voltage Feedback Dual Op Amp
LM6161J-QMLV	5962-8962101VPA+	VIP Op Amp
LM6161J/883	5962-8962101PA	VIP Op Amp
LM6161W-SMD	5962-8962101HA	VIP Op Amp
LM6161WG-QMLV	5962-8962101VXA+	VIP Op Amp
LM6161WG/883	5962-8962101XA	VIP Op Amp
LM6162J-QMLV	5962-9216501VPA	VIP Op Amp
LM6162J/883	5962-9216501MPA	VIP Op Amp
LM6162WG-QMLV	5962-9216501VXA	VIP Op Amp
LM6162WG/883	5962-9216501MXA	VIP Op Amp

National NSID	SMD/JAN Drawing No.	Function
LM6164J-QMLV	5962-8962401VPA	VIP Op Amp
LM6164J/883	5962-8962401PA	VIP Op Amp
LM6164W-SMD	5962-8962401HA	VIP Op Amp
LM6164WG-QMLV	5962-8962401VXA	VIP Op Amp
LM6164WG/883	5962-8962401XA	VIP Op Amp
LM6165J-QMLV	5962-8962501VPA	VIP Op Amp
LM6165J/883	5962-8962501PA	VIP Op Amp
LM6165WG-QMLV	5962-8962501VXA	VIP Op Amp
LM6165WG/883	5962-8962501XA	VIP Op Amp
LM6172AMJ-QML	5962-9560401QPA	VIP Voltage Feedback Dual Op Amp
LM6172AMWG-QML	5962-9560401QXA	High Speed Dual Op Amp
LM7171AMJ-QML	5962-9553601QPA	VIP Voltage Feedback Op Amp
LM7171AMJ-QMLV	5962-9553601VPA	VIP Voltage Feedback Op Amp
LM7171AMWG-QML	5962-9553601QXA	High Speed Single Op Amp
LM7171AMW-QML	5962-9553601QHA	VIP Voltage Feedback Op Amp
LM7171AMWG-QML	5962-9553601QXA	VIP Voltage Feedback Op Amp
LM7171AMWG-QMLV	5962-9553601VXA	VIP Voltage Feedback Op Amp
LM725H/883	5962-9552901MGA	Instrumentation Op Amp
LM78S40J/883	5962-8876101EA	Switching Regulator
LMC555J/883	5962-8950305PA	CMOS Timer
LMC6061AMJ/883	5962-9460401MPA	CMOS Op Amp
LMC6062AMJ/883	5962-9209403MPA	CMOS Dual Op Amp
LMC6064AMJ/883	5962-9209303MCA	CMOS Quad Op Amp
LMC6462AMJ-QML	5962-9560301QPA	CMOS Dual Op Amp
LMC6464AMJ-QML	5962-9560302QCA	CMOS Quad Op Amp
LMC6464AMWG-QML	5962-9560302QXA	CMOS Quad Op Amp
LMC6482AMJ/883	5962-9453401MPA	CMOS Dual Op Amp
LMC6484AMJ/883	5962-9453402MCA	CMOS Quad Op Amp
LMC6484AMWG/883	5962-9453402QXA	CMOS Quad Op Amp
LMD18200-2D/883	5962-9232501MXA	Dual H-Bridge
LMX2305WG-QML	5962-9855003QXA	0.5 GHZ Frequency Synthesizer
LMX2315WG-QML	5962-9855001QXA	1.2 GHZ Frequency Synthesizer
LMX2325WG-QML	5962-9855002QXA	2.5 GHZ Frequency Synthesizer
LP2951H/883	5962-3870501MGA	Adjustable LDO Regulator
LP2951J/883	5962-3870501MPA	Adjustable LDO Regulator
LP2951WG/883	5962-3870501MXA	Adjustable LDO Regulator
LP2953AMJ-QMLV	5962-9233601VEA	Adjustable LDO Regulator
LP2953AMJ/883	5962-9233601MEA	Adjustable LDO Regulator
LP2953AMWG-QMLV	5962-9233601VXA	Adjustable LDO Regulator
LP2953AMWG/883	5962-9233601QXA	Adjustable LDO Regulator

0

Section 22
Appendices

Section 22 Contents

Device Marking Conventions22-3
National Semiconductor's Die Products 22-7
Package Illustrations 22-8
Authorized Distributors
Worldwide Sales Offices

Device Marking Conventions

National Semiconductor marks devices sold in order to provide device identification and manufacturing traceablility information. The method of presenting the information marked on the device is dependent on the size of the device package and the area available for marking, as well as the nature and specifications of the device.
The information presented here describes the majority of the device markings a customer will observe. Specific package marking for a given device is given in the datasheet for that device. A package may have up to four lines of marking. The following information is usually contained in each line.
First line: Manufacturing information

- Company logo
- Wafer and/or assembly plant codes (optional) (see Table 1 and Table 2)
- Date code (see Table 3, Table 4, and Table 5)
- Die run (wafer lot) code

Second Line: Device part number

- Device family (see Table 6)
- Device type
- Options
- Package code (see Table 7)

Third or fourth line: Optional, depending on device, package size, and customer

- Continuation of device identification (if too long for the second line)
- "Stampoff" number as required by specific customer request and specification
- Notice(s) related to copyright or trademarks

Very small packages, such as SOT-23, SOT-223, SC70, and SC90, are too small to contain all the information discussed above. Device identification marking is assigned differently, consisting of a four-character code:

- Device type (see Table 9)
- Device identification code
- Grade

These small packages also have a date code mark on the underside of the package. This is a one-character alpha code that represents a particular 6-week period during a 3-year span.
The specific marking for a given device can be found in the device datasheet. Other date code information, which would be typically found in the "first line" marking, is identified on the container labels.

Figure 1, Figure 2, and Figure 3 show the typical arrangement of marking on large, medium, and very small packages. Codes that are most often used in the device marking are listed in the following tables. For chip scale packaged devices and all other recent updates, please refer to www.national.com/packaging.

MS101128-1
FIGURE 1. Marking Convention for Larger Packages

FIGURE 2. Marking Convention for Smaller Packages

FIGURE 3. Marking Convention for Very Small Packages

Wafer Fab and Assembly Plant Codes

Table 1 lists single-letter codes for National Semiconductor's wafer fabrication plants. Letters that are not in this list indicate wafer fabrication at one of National Semiconductor's approved sub-contractors.

TABLE 1. Wafer Fab Plant Code

Code	Fab Location
E	Arlington, TX
H	Greenock, UK
J	Greenock, UK
R	Santa Clara, CA
V	South Portland, ME
X	Arlington, TX
0	Multiple Fab Origin
1	USA (Sub-con)
2	Taiwan (Sub-con)
3	USA (Sub-con)
8	Singapore (Sub-con)
M	USA (Sub-con)
N	Israel (Sub-con)
P	China (Sub-con)
W	Japan (Sub-con)
Z	USA (Sub-con)

Table 2 lists single-letter codes for National Semiconductor's device assembly plants. Letters that are not in this list indicate device assembly at another of National Semiconductor's approved sub-contractors.

TABLE 2. Assembly Plant Code

Code	Assembly Location
F	Santa Clara, CA
M	Malacca, Malaysia
S	Singapore
B	Thailand (Sub-con)
D	Philippines (Sub-con)
E	Korea (Sub-con)
G	Canada (Sub-con)
H	Philippines (Sub-con)
I	Indonesia (Sub-con)
J	Japan (Sub-con)
K	Hong Kong (Sub-con)
N	Malaysia (Sub-con)
P	Malaysia (Sub-con)
T	Taiwan (Sub-con)
V	Malaysia (Sub-con)
X	USA (Sub-con)
Y	Malaysia (Sub-con)

Date of Manufacture Codes

Marks indicating the date of manufacture occur in four, three, two, or one digit versions. The date code represents a six-week period in which the device was assembled. The one-digit code is an alpha code for the very small packages, such as SOT, SC70, and SC90, and ranges from A to Z plus the character @, representing a 6 -week period during a 3 -year span. For the four, three, and two digit codes, the allocation of digits between year and week information in each scheme is summarized in Table 3:

TABLE 3. Year Code

Version	Year Digits	Week Range Digits
Four-digit (YYWW)	2	2
Three-digit (YWW)	1	2
Two-digit (YW)	1	1

Year: The year code is the last one or two digits of the calendar year of manufacture. For example, a device manufactured in 1999 would have a one-digit code of " 9 " or a two-digit code of " 99 ".
Week: The week code is based on the starting calendar week of the six-week period during which the device was assembled. Table 4 summarizes the six-week date code schedule for one- and two-digit codes.

TABLE 4. Six-Week Period Code

Six-Week Period		Two-Digit Code	One-Digit Code
From Week	To Week		9
52	05	06	1
06	11	12	2
12	17	18	3
18	23	24	4
24	29	30	5
30	35	36	6
36	41	42	7
42	47	48	8
48	51		

Some example date codes are shown in Table 5:

TABLE 5. Date Code Examples

Date of Manufacture	4-Digit Code	3-Digit Code	2-Digit Code
Calendar week 48, 1999	9948	948	98
Calendar week 6, 2000	0006	006	01
Calendar week 14, 2000	0012	012	02
Calendar week 32, 2001	0130	130	15

Die Run (Wafer Lot) Codes

The die run code is a two letter alpha code, ranging from $A B$ through ZZ for each device, that is automatically assigned to each lot by an internal manufacturing system. When the date code is combined with the die run code, a unique identifier is created. In case of any problems with a device, this identification facilitates backward traceability to manufacturing processes where containment and corrective actions can be defined. These actions, in turn, minimize, and eventually eliminate, any negative impact on customers.

Device Family and Package Codes

TABLE 6. Device Family

ADC, ADCV	Data Conversion
CLC	Comlinear Products
COP	Control Oriented Processor
DAC	Data Conversion
DS, DSV	Interface Products
FPD	Flat Panel Devices
LF	Linear (Bi-FET ${ }^{\text {TM }}$)
LM	Linear (Monolithic)
LMC	Linear CMOS
LMD	Linear DMOS
LMF, MF	Linear Monolithic Filter
LMS	Linear Second Source
LMV	Linear Low Voltage
LMX	Wireless
LP	Linear Low Power
LPC	Linear CMOS (Low Power)
LPV	Linear Low Power, Low Voltage
SC	Digital Cordless Telephony
SCAN	JTAG Products
TP	Telecom Products

TABLE 7. Package Type

BP	Micro Surface-Mount Device (MicroSMD)
D, DH	Ceramic Sidebrazed Dual-In-Line Package
DT, TD	Molded D-Pak (TO-252)
EL	Ceramic Quad Flatpack with J-Bend Lead Form
H, HA	3-Lead Metal Can (TO-46, TO-39)
J, JA	Ceramic Dual-In-Line Package (CerDIP)
K, KA	TO-3 Metal Can (Steel)
LD, LQ, LQA	Leadless Leadframe Package (LLP)
M, MA	Molded Small Outline Package (SO, SOT)
M3, M5, M6,	Molded Small Outline Package (SOT-23)
MF	

MEA, MQ, MS, MSA	Molded Shrink Small Outline Package (SSOP)
MM	Miniature Molded Small Outline Package (MSOP, Mini SO)
MP	Molded Small Outline Package (SOT-223)
MTA, MTC, MTD, MT, MTE	Molded Thin Shrink Small Outline Package (TSSOP)
MW, WM	Wide Body Molded Small Outline Package (SO, SOT)
N, NA	Molded Dual-In-Line Package (DIP)
S, TS	Molded Power Surface Mount Package (TO-263)
SL, SLB	Chip Scale Packaging (CSP)
T, TA	Molded TO-220 Power Package
TF	Molded TO-220 Power Package With Isolated Tab
U, UE	Ceramic Pin Grid Array (PGA)
V, VA	28 \& 44-Lead Molded Plastic Leaded Chip Carrier (PLCC)
VBG, VC, VCC, VCE, VD, VE, VEF, VF, VH, VHG, VI, VJ, VJG, VJQ, VK, VLJ, VM, VN, VNG, VO, VP, VQL, VUL, VUW	Molded Plastic Quad Flat Package (PQFP)
$\begin{gathered} \text { VEH, VF, VH, } \\ \text { VJD, VS, VT, } \\ \text { VU } \\ \hline \end{gathered}$	Molded Plastic Thin Quad Flat Package (TQFP)
W, WA	Ceramic Flatpack
W, WQ	Ceramic Quad Flatpak
WG	Ceramic Small Outline Package and Quad Flatpak with Gullwing Lead Form
Z, ZA	Molded 3-Lead Transistor Package (TO-92)

TABLE 8. Package Type-CLC Products

E	Molded Small Outline Package (SO, SOT)
Q	Molded Plastic Leaded Chip Carrier (PLCC)

Small Surface-Mount Package Marking

For packages such as SOT23 (3-, 5-, and 6-lead), SOT223, and MSOP, there is insufficient space to mark the entire part number, so a four-character code is used instead. The first character represents the device type (see Table 9). The second two characters are a code relating to the device part number and options. The fourth character relates to device performance grade. This four-character "top mark" is usually fully specified in the device datasheet, for all options and grades of the product.

TABLE 9. Device Type Code

A	Amplifier
B	Buffer
C	Comparator
D	Driver
H	Comlinear
L	Low-Dropout Linear Regulator
R	Voltage Reference
S	Switched-Capacitor Voltage Converter
T	Temperature Sensor
Z	Audio

National Semiconductor's Die Products

As system designers search for ways to derive higher performance with reduced power consumption, size and weight - from their circuit designs, they are turning to suppliers of bare die and known good die for cost-effective solutions. Based on module size, design complexity, substrate, and tolerance for rework, the manufacturer must make a trade-off between the average yield for the die selected for module use and the cost of additional die upscreening.
With more than five years of experience in supplying Known Good Die - and the manufacturing expertise of more than thirty years in the semiconductor business National Semiconductor is uniquely equipped to support your KGD needs, evaluation, and selection. The Die Products Business Unit, or DPBU, will work with established customers under non-disclosure agreements to help them balance the trade-off between die cost and expected yields for the wide variety of die products that National Semiconductor offers.
While there is no single answer for all applications, there is a common goal among die customers that we understand. Whether your module supports cellular telephones ... or anti-lock brakes ... or deep-space satellites ... all die customers must procure die that meet their unique yield requirements at a price that allows their end product to be competitive.

Wide Product Availability of Die

To address the needs of Multi Chip, Chip on Board and Flip Chip Module manufacturers, National offers a complete product portfolio in die form.

- Analog
- Interface
- Logic
- Memory
- Microcontrollers
- SCAN boundary test (IEEE 1149.1)
- Networking
- Wireless

Since National has been manufacturing semiconductors for over thirty years, we know the capabilities and limitations of our products. Many of these technologies require little additional screening to meet 99.9% yields. Others require $A C / D C$ probe as well as burn-in to meet similar yields. The DPBU can work with customers to understand the system specifications and long-term reliability requirements. Our product engineers can tailor an electrical test program around your needs ... or take into consideration the historic wafer yield as well as final package yields and offer the most cost-effective, reliable die in the industry.

Shipping Methods

Die provided through National Semiconductor's Die Products Business Unit are shipped to the customer in several methods, based on the customer's request. Whole wafers are shipped in plastic vials enclosed in anti-static bags. For die shipments, customers have a choice of Waffle Packs,

GEL-PAKS@, sawn wafers shipped on adhesive tape, or tape and reel. Information on typical die packaging and labeling is available on request.

Documentation Support

It is great to know that you can get the product you need in die form. However, die by itself is difficult to use, so National Semiconductor makes available all of the documentation you need to assemble our KGD into your multichip module or chip-on-board assembly. Our KGD datasheets, which are available on request, include information such as:

- Electrical specifications
- X, Y Coordinates for the bond pad locations
- A bonding diagram
- Die dimensions
- Bond pad dimensions, including passivation opening size
- Bond pad metal composition and thickness
- Die backside composition
- Die passivation
- Pinout list, including any pads which need to be jumpered or skipped
- Electrical potential of die backside
- LAT attributes data, if specified

Package Illustrations

Package photos are actual size. Please see web site at http://www.national.com/packaging/ for specifications. Many Na tional products are available in wafer, die, and known good die form. Please go to www.national.com/kgd for more information on known good die.

Molded Plastic Leaded Chip Carrier (PLCC)
Product Suffix: V, VA
CLC Product Suffix: Q

MS101192-30
Molded Plastic Quad Flatpak (PQFP)
Product Suffix: VBG, VC, VCC, VCE, VD, VE, VEF, VF, VH, VHG, VI, VJ, VJG, VJQ, VK, VLJ, VM, VN, VNG, VO, VP, VQL, VUL, VUW

Molded Plastic Thin Quad Flatpak (TQFP) Product Suffix: VEH, VJD, VF, VH, VS, VT, VU

Leadless Leadframe Package (LLP) Product Suffix: LD, LQ, LQA

Chip Scale Packaging (CSP) Product Suffix: SL, SLB

MS101192-5
MicroSMD μ SMD
Product Suffix: BP

MS101192-6
SC70
Product Suffix: M7, MG

MS101192-7
Miniature Molded Small Outline Package
(MSOP, Mini SO)
Product Suffix: MM

Molded Dual-in-Line Package (DIP)
Product Suffix: N, NA

Ceramic Flatpak Product Suffix: W, WA

Ceramic Quad Flatpak
Product Suffix: W, WQ

Ceramic Small Outline Integrated Circuit (Gullwing)
(Ceramic SOIC)
Product Suffix: WG

Ceramic Dual-in-Line Package (CerDIP)
Product Suffix: J, JA

MS101192-23
Ceramic Sidebrazed Dual-in-Line Package Product Suffix: D, DH

MS101192-24
Ceramic Quad Flatpak (Gullwing) Product Suffix: WG

Ceramic Quad Flatpak J-Bend Product Suffix: EL

Ceramic Pin Grid Array (PGA) Product Suffix: U, UE

Authorized Distributors

ALABAMA Huntsville	Avnet Electronics (916) 632-4500	Wyle Electronics (203) 269-8077	Wyle Electronics (630) 620-0969
Arrow Electronics	Roseville		Arlington Heights
(256) 864-3350	Future Electronics Corp.	FLORIDA	Avnet Electronics
Avnet Electronics	(916) 783-7877	Altamonte Springs	(847) 797-7300
(256) 837-8700	Wyle Electronics	Arrow Electronics	Chicago
Future Electronics Corp.	(916) 783-9953	(407) 831-0007	Newark Electronics
(256) 971-2010	San Diego	Pioneer Standard	(773) 907-5950
Pioneer Standard	Arrow Electronics	(407) 834-9090	Hoffman Estates
(256) 837-9300	(858) 565-4800	Clearwater	Future Electronics Corp.
Wyle Electronics	Avnet Electronics	Avnet Electronic (727) 507-5000	(847) 882-1255
(256) 830-1119	(858) 385-7500	(727) 507-5000	Itasca
ARIZONA	Future Electronics Corp. (858) 625-2800	Future Electronics Corp. (727) 531-3062	Arrow Electronics (630) 250-0500
Phoenix	Pioneer Standard	Wyle Electronics	Arrow/Zeus
Avnet Electronics	(858) 514-7700	(727) 533-0445	(630) 595-9730
(480) 736-7000	Wyle Electronics	Deerfield Beach	Schaumburg
Future Electronics Corp.	(858) 558-6600	Arrow Electronics	Arrow Electronics
(602) 629-3013	San Jose	(954) 429-8200	(847) 884-0200
Pioneer Standard (602) 231-6400	Arrow/Zeus	Future Electronics Corp. (954) 426-4043	INDIANA
Wyle Electronics	Avnet Elect	Pioneer Standard	Carme
(480) 804-7000	(408) 435-3500	(954) 428-8877	Avnet Electronics
Tempe	Future Electronics Corp.	Wyle Electronics	(317) 575-3500
Arrow Electronics	(408) 434-1122	(954) 420-0500	Fort Wayne
(602) 966-6600	Pioneer Standard	Fort Lauderdale Avnet Electronics	Wyle Electronics (219) 490-2323
CALIFORNIA	(408) 954-9100	(954) 484-5482	Indianapolis
Agoura Hills		Lake Mary	Arrow Electronics
Pioneer Standard	(408) 727-2500	Arrow/Zeus	(317) 913-1100
(818) 865-5800	Woodland Hills	(407) 333-3055	Future Electronics Corp.
Calabasas	Avnet Electronics	Future Electronics Corp.	(317) 913-1355
Arrow Electronics	(818) 594-0404	(407) 444-6302	Pioneer Standard
(818) 878-4345		Maitland	(317) 573-0880
Future Electronics Corp. (818) 871-1740	COLORADO	Wyle Electronics	KANSAS
Wyle Electronics	Englewood	(407) 740-7450	Kansas City
(818) 880-9000	(303) 645-8999	Avnet Electronics	Pioneer Standard
Irvine	Avnet Electronics	(407) 657-3300	(816) 746-9841
Arrow Electronics	(303) 790-1662		Lenexa
(949) 454-4290	Pioneer Standard	GEORGIA	Arrow Electronics
Arrow/Zeus	(303) 773-8090	Duluth	(913) 541-9542
(949) 581-4622	Golden	Arrow Electronics	Overland Park
Avnet Electronics	Future Electronics Corp.	(770) 497-1300	Avnet Electronics
(949) 789-4150	(303) 277-0023	Avnet Electronics	(913) 663-7900
Future Electronics Corp.	Thornton	(770) 623-4400	Future Electronics Corp.
(949) $453-1515$	Wyle Electronics	Future Electronics Corp.	(913) 498-1531
Pioneer Standard (949) 753-5090	(303) 457-9953	(770) 476-3900	KENTUCKY
Wyle Electronics	CONNECTICUT	(770) 623-1003	Lexington
(949) 753-9953	Shelton	Wyle Electronics	Avnet Electronics
Lake Forest	Pioneer Standard	(770) 495-9770	(859) 288-4912
Wyle Electronics	(203) 929-5600	Smyrna	
(949) 609-4900	Wallingford	Avnet Electronics	Baton Rouge
Milpitas	Arrow Electronics	(770) 432-1900	Pioneer Standard
Arrow Electronics	(203) 265-7741		(504) 923-0015
(408) 453-1200	Avnet Electronics	ILLINOIS	
Rocklin	(203) 284-5700	Addison	
Arrow Electronics (916) 624-9744	Future Electronics Corp. (203) 250-0083	Pioneer Standard (630) 495-9680	

Authorized Distributors (Continued)

MARYLAND
Columbia
Arrow/Zeus
(410) 309-1541

Arrow Electronics
(410) 309-0899

Avnet Electronics
(410) 720-3400

Wyle Electronics
(301) 604-8488

Gaithersburg
Pioneer Standard
(301) 921-0660

Linthicum
Future Electronics Corp.
(410) 314-1111

MASSACHUSETTS
Bedford
Wyle Electronics
(781) 271-9953

Bolton
Future Electronics Corp. (978) 779-3000

Lexington
Pioneer Standard (781) 861-9200

Norwood
Gerber Electronics
(781) 769-6000

Peabody
Avnet Electronics
(978) 532-3701

Wilmington
Arrow Electronics
(978) 658-0900

Arrow/Zeus
(978) 658-4776

MICHIGAN
Farmington Hills Future Electronics Corp. (248) 489-1179

Grand Rapids Future Electronics Corp. (616) 698-6800 Pioneer Standard (616) 534-3145

Novi Wyle Electronics (248) 374-9953

Plymouth
Arrow Electronics (734) 455-0850 Avnet Electronics (734) 416-5800 Pioneer Standard (734) 416-2157

MINNESOTA

Bloomington Avnet Electronics (612) 346-3000 Wyle Electronics (612) 853-2280

Chanhassen
Future Electronics Corp.
(952) 934-9100

Eden Prairie
Pioneer Standard
(612) 829-2229

Thief River Falls
Digi-Key Corp.
"Catalog Sales Only"
(800) 338-4105

MISSOURI
Earth City
Avnet Electronics
(314) 770-6300

Pioneer Standard
(314) 209-3000

St. Louis
Arrow Electronics
(314) 567-6888

Future Electronics Corp.
(314) 469-6805

NEW JERSEY
Fairfield
Pioneer Standard
(973) 575-3510

Mt. Laurel
Avnet Electronics
(856) 222-6400

Future Electronics Corp.
(856) 787-9600

Wyle Electronics
(856) 439-9110

Parsippany
Avnet Electronics
(973) 515-1641

Future Electronics Corp.
(973) 299-0400

Pine Brook
Arrow Electronics
(973) 227-7960

Wyle Electronics
(973) 882-8358

Wayne
Wyle Electronics
(973) 237-9010

NEW YORK
Binghamton Pioneer Standard (607) 722-9300

Clifton Park
Pioneer Standard
(578) 371-1929

Commack
Arrow Electronics
(516) 864-6600

Endicott
Avnet Electronics
(607) 785-2345

Hauppauge Arrow Electronics
(631) 851-2300

Avnet Electronics
(631) 434-7400

Future Electronics Corp.
(631) 234-4000

Wyle Electronics
(631) 231-7850

Henrietta
Wyle Electronics
(716) 334-5970

New York
Pioneer Standard
(212) 631-4700

Pittsford
Pioneer Standard
(716) 389-8200

Purchase
Arrow/Zeus
(914) 701-7400

Rochester
Arrow Electronics
(716) 427-0300

Avnet Electronics
(716) 475-9130

Future Electronics Corp. (716) 387-9550

Ronkonkoma
Pioneer Standard (516) 738-1700

Syracuse
Avnet Electronics
(315) 233-5600

Future Electronics Corp.
(315) 451-2371

NORTH CAROLINA
Charlotte
Future Electronics Corp. (704) 547-1107

Cornelius
Future Electronics Corp. (704) 896-9500

Morrisville
Wyle Electronics
(919) 469-1502

Raleigh
Arrow Electronics
(919) 876-3132

Avnet Electronics
(919) 859-9159

Future Electronics Corp.
(919) 790-7111

Pioneer Standard
(919) 845-5100

OHIO

Beavercreek
Future Electronics Corp.
(937) 426-0090

Dayton
Arrow Electronics
(937) 428-7300

Avnet Electronics-DESC
(937) 439-6721

Miamisburg
Pioneer Standard
(937) 428-6900

Wyle Electronics
(937) 436-9953

Solon
Arrow Electronics
(440) 248-3990

Avnet Electronics
(440) 498-1100

Future Electronics Corp.
(440) 248-3222

Pioneer Standard
(440) 519-6200

Wyle Electronics
(440) 248-9996

Worthington
Avnet Electronics
(614) 888-3313

Pioneer Standard
(614) 848-4854

OKLAHOMA

Tulsa
Arrow Electronics
(918) 252-7537

Avnet Electronics
(918) 459-6000

Pioneer Standard
(918) 665-7840

Radio Inc.
(918) 587-9123

OREGON

Beaverton
Arrow Electronics
(503) 629-8090

Avnet Electronics
(503) 526-6200

Lake Oswego
Pioneer Standard
(503) 968-6565

Portland
Future Electronics Corp. (503) 603-0956

Wyle Electronics
(503) 598-9953

PENNSYLVANIA

Horsham Arrow Electronics (215) 956-4800 Pioneer Standard (215) 674-4000

Pittsburgh
Arrow Electronics
(724) 327-1130 Pioneer Standard (412) 782-2300

Wexford
Future Electronics Corp. (724) 935-1113

TEXAS

Austin
Arrow Electronics (512) 835-4180

Avnet Electronics
(512) 219-3700

Future Electronics Corp.
(512) 502-0991

Authorized Distributors (Continued)

TEXAS (Continued)
Minco Technology Labs
"Die Distributor"
(512) 339-3436

Pioneer Standard
(512) 835-4000

Wyle Electronics
(512) 833-9953

Brownsville
Avnet Electronics
(956) 546-6411

Dallas
Avnet Electronics
(214) 553-4300

Pioneer Standard
(972) 419-5500

El Paso
Avnet Electronics
(915) 772-3304

Future Electronics Corp.
(915) 592-3565

Houston
Avnet Electronics
(713) 781-6100

Future Electronics Corp.
(713) 785-1155

Pioneer Standard
(281) 495-4700

Wyle Electronics
(713) 784-9953

Plano
Arrow/Zeus
(972) 380-6464

Future Electronics Corp.
(469) 467-0080

Richardson
Wyle Electronics
(972) 235-9953

UTAH
Salt Lake City
Arrow Electronics
(801) 973-8555

Avnet Electronics
(801) 365-3800

Future Electronics Corp.
(801) 467-4448

West Valley City
Wyle Electronics
(801) 974-9953

WASHINGTON

Bellevue
Arrow Electronics
(425) 643-9992

Pioneer Standard
(425) 644-7500

Bothell
Future Electronics Corp.
(425) 489-3400

Redmond
Avnet Electronics
(425) 882-7000

Wyle Electronics
(425) 881-1150

WISCONSIN

Brookfield
Arrow Electronics
(262) 792-0150

Future Electronics Corp.
(262) 879-0244

Pioneer Standard
(262) 780-3600

Taylor Electric
(262) 241-4321

Wyle Electronics
(262) 879-0434

Pewaukee
Avnet Electronics
(262) 513-1500

CANADA
WESTERN PROVINCES
Burnaby
Arrow Electronics
(604) 421-2333

Avnet Electronics
(604) 444-3810

Calgary
Arrow Electronics
(403) 259-6817

Avnet Electronics
(403) 291-5510

Future Electronics Corp.
(403) 219-3443

Pioneer Standard
(403) 234-8300

Wyle Electronics
(403) 219-0909

Edmonton
Arrow Electronics
(780) 483-6266

Future Electronics Corp.
(780) 438-5888

Richmond Pioneer Standard
(604) 273-5575

Vancouver
Future Electronics Corp.
(604) 294-1166

Wyle Electronics
(604) 789-0266

EASTERN PROVINCES
Dorval
Arrow Electronics
(514) 421-7411

Kanata
Wyle Electronics
(613) 270-9953

Mississauga
Arrow Electronics
(905) 565-4405

Avnet Electronics
(905) 812-4400

Future Electronics Corp.
(905) 612-9200

Pioneer Standard
(905) 405-8300

Wyle Electronics
(905) 212-7100

Nepean
Avnet Electronics
(613) 226-1700

Pioneer Standard
(613) 226-8840

Ottawa
Arrow Electronics
(613) 271-8200

Future Electronics Corp.
(613) 727-1800

Pointe Claire
Future Electronics Corp.
(514) 694-7710

Wyle Electronics
(514) 694-9953

Quebec City
Future Electronics Corp.
(418) 877-6666

Vaudreuil
Future Electronics Corp.
(514) 457-3004

Ville St. Laurent Avnet Electronics
(514) 335-1000

Winnipeg
Arrow Electronics
(204) 632-1260

Future Electronics Corp.
(204) 944-1446

Pioneer Standard
(204) 989-1957

WORLDWIDE SALES OFFICES

AUSTRALIA

National Semiconductor Aus Pty Ltd.
1F., 651 Doncaster Road
Doncaster, Victoria 3108
Australia
Tel: (61) 398489788
Fax: (61) 398489822
$\frac{\text { BRAZIL }}{\text { National Semiconductores da }}$
América do Sul Ltda.
World Trade Center
Av. das Nações Unidas,
12.551 22nd Floor - cj. 2207

04578-903 Brooklyn
São Paulo, SP
Brasil
Tel: (55 11) 3043.7450
Fax: (55 11) 3043.7454

CANADA

National Semiconductor

(Calgary)

2723 37th Ave. N.W., Unit 206
Calgary, Alberta T1Y 5R8
Fax: (403) 219-0909
National Semiconductor
(Ottawa)
14 Teevens Drive
Nepean, Ontario K2H 2E2
Fax: (613) 825-7301

National Semiconductor

(Montreal)
4140 Thimens Blvd.
Saint-Laurent, Quebec H4R 2B9
Fax: (514) 335-6447
FINLAND
National Semiconductor
(U.K.) Ltd.

Sinikalliontie 3A
FIN - 02630 ESPOO, Finland
Tel: (358) 093489760
Fax: (358) 093489766
FRANCE
National Semiconductor
France S.A.R.L.
Le Rio 1,
rue de la Terre de Feu
91952 Courtaboeuf, Cedex
France
Tel: (33) 0169183700
Fax: (33) 0169183769

KOREA
National Semiconductor
Korea Ltd.
13/F, Korea Life Insurance 63 Bldg.
60 Yoido-Dong,
Youngdeungpo-Ku
Seoul 150-763, Korea
Tel: (82) 237716900
Fax: (82) 27848054
MALAYSIA
National Semiconductor
Sdn Bhd
368-3-3 Bellisa Row
Jalan Burma
10350 Penang
Malaysia
Tel: (60) 4228 8689/8179
Fax: (60) 42286176

MEXICO

National Semiconductor
Electronica NSC de
Mexico SA
Avenida de las Naciones No. 1
Piso 33 Oficina 38
Edificio WTC, Col. Napoles
Mexico City 03810 Mexico D.F.
Tel: (52) 54880135
Fax: (52) 54880139

PRC

National Semiconductor
Beijing Liaison Office
Rm 1018, Canway Building
66 Nan Li Shi Road
Beijing 100045, PRC
Tel: (86) 106804 2454/7
Fax: (86) 1068042458
National Semiconductor Shanghai Liaison Office
Room 904-905, Central Plaza No. 227 Haungpi Road North Shanghai 200003, PRC
Tel: (86) 2163758800
Fax: (86) 2163758004
National Semiconductor Guangzhou Liaison Office Room 1809, Goldion Tower, No. 136-138 Tiyu Road East Guangzhou 510620, PRC
Tel: (86) 2038780313
Fax: (86) 2038780312

SINGAPORE

National Semiconductor
Asia Pacific Pte. Ltd.
11 Lorong 3
Toa Payoh, Singapore 319579
Tel: (65) 2525077
Fax: (65) 3566128

SPAIN

National Semiconductor Ltd.
Calle Vinaplana, 31
19005 Guadalajara
Spain
Tel: (34) 949248196
Fax: (34) 949248195

SWEDEN

National Semiconductor AB
Box 1009
Grosshandlarvägen 7
S- 12123 Johanneshov, Sweden
Tel: (46) 087228050
Fax: (46) 087229095

SWITZERLAND

National Semiconductor
(U.K.) Ltd.*

Alte Winterthurerstrasse 53
$\mathrm{CH}-8304$ Wallisellen-Zürich
Switzerland
Tel: (41) 018302727
Fax: (41) 018301900

TAIWAN

National Semiconductor
(Far East) Ltd.
12F, No. 18, Section 1
Chang-An East Road
Taipei, Taiwan R.O.C.
Tel: (886) 225213288
Fax: (886) 225613054

U.K. AND IRELAND

National Semiconductor
(U.K.) Ltd.

1st Fioor, Apple II
Apple Walk, Kembrey Park
Swindon, Wiltshire SN2 8BL
United Kingdom
Tel: (44) 01793614141
Fax: (44) 01793427551
'r

UNITED STATES

National Semiconductor

Corporation
Call your local Distributor/Sales Office. To find the contact nearest you, visit our Contacts web page: www.national.com/contacts

National Semicopaluctor supplies a comprebensive set of support services. Product information-inchuding sales literature and technical assistance, is available from National's custdmer support centers.

To receive sales fiterature and technical assistance, contact the National support center in your area.

Americas Fax: 1-800-737-7018

Email: , support@nsc.com
Phone: 1-800-272-9959

Europe
Fax: $\quad+49$ (0) 180-530 8586
Email: europe.support@nsc.com
Phone:
Deutsch +49(0)6995086208
English $\quad+44$ (0) 8702402171
Français $+33(0) 14191.8790$

Asia Pacific Fax:- 65-2504466
Email: ap.support@nsc.com
Phone: 65-2544466
(IDD telephone charge to be paid by caller)
Japan Fax: : 81-3-5639-7507
Email: \quad nsj.crc@jksmtp.nsc.com
Phone: 81-3-5639-7560

See us on the Worldwide Web at www.national.com

H

For a complete listing of worldwide sales offices, see inside back page.

[^0]: Note 1：LM124A available per JM38510／11006

[^1]: Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
 Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.

[^2]: * $=$ On the $40-$ pin package, Pins 15 and 16 must be connected to GND.

[^3]: Note:
 -X Crystal Oscillator
 -E Halt Mode Enabled

[^4]: Note: Pin out shown for the 28-pin Exposed-DAP TSSOP package. Refer to the Connection Diagrams for the pin out of the 20-pin Exposed-DAP TSSOP and Exposed-DAP LLP packages.

[^5]: $V_{\text {OUT }}=5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{LT}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{UT}}$
 $\mathrm{V}_{\text {OUT }}=0$ for $\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{LT}}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{UT}}$

[^6]: See Ordering Information

[^7]: Note 1：Devices may be ordered by using either order number．

[^8]: $\mathrm{L}=$ Low logic state
 X = Irrelevant
 $H=$ High logic state
 Z = TRI-STATE (high impedance)

[^9]: L = Low logic state

[^10]: $\mathrm{L}=$ Low Logic State Open $=$ TRI-STATE
 $H=$ High Logic State $X=$ Indeterminate State

[^11]: $\mathrm{X}=$ indeterminate
 $Z=$ TRI-STATE
 Note 1: Non Terminated, Open Input only

[^12]: $\mathrm{H}=$ High Level

[^13]: $\mathrm{H}=$ High Level
 L = Low Level
 $X=$ Immaterial
 $Z=$ High Impedance (off)

[^14]: $H=$ High Level

[^15]: Order Number DS90CR218MTD See NS Package Number MTD48

[^16]: \# Indicates Active Low ("Not")

[^17]: \# Indicates Active Low ("Not")

[^18]: *10k must be low t.c. trimpot

[^19]: For information on military temperature range products, please go to the Mil/Aero Web Site at http://www.national.com/appinfo/milaero/index.html.

[^20]: \dagger Patent Number 5,382,918.

[^21]: Converting a Four-Cell Li lon Battery to $\mathbf{5 V}$

