PRODUCTS FOR WIRELESS COMMUNICATIONS DATABOOK

1996 Edition

Radio Transceiver Components
Baseband Processing Components
Control and Signal Processing Components
Non-Volatile Memory
Audio Interface Components
Support Circuitry
Power Management
Complete Cordless Phone Solution
Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTm	ELSTARTM	MICROWIRE/PLUSTM	SCXTM
AbuseableTM	Embedded System	MOLETM	SERIES/800 ${ }^{\text {TM }}$
AirShareTM	ProcessortM	MPATM	Series 32000*
AnadigTM	EPTM	MSTTM	SIMPLE SWITCHER*
APPSTM	E-Z-LINKTM	Naked-87M	SNITM
ARi ${ }^{1 \text { TM }}$	FACTTM	National*	SNICTM
ASPECTTM	FACT Quiet Series ${ }^{\text {TM }}$	National Semiconductor*	SofChekTM
AT/LANTICTM	FAIRCADTM	National Semiconductor	SONICTM
Auto-Chem DeflasherTM	FairtechTM	Corp. ${ }^{\circ}$	SpeechProtm
ВСРтм	FAST*	NAX 800 ${ }^{\text {TM }}$	SPiKetm
BI-FETTM	FastLockTM	NeuFuz ${ }^{\text {TM }}$	SPIRETM
BI-FET IITm	FASTrTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refreshim
BI-LINETM	GENIXTM	Nitride Plus Oxide ${ }^{\text {TM }}$	STARTM
BIPLANTM	GNXTM	NMLTM	Starlink ${ }^{\text {TM }}$
BLCTM	GTOTM	NOBUSTM	STARPLEXTM
BLXTM	HEX 3000 ${ }^{\text {TM }}$	NSC800 ${ }^{\text {m }}$	ST-NICTM
BMACTM	HiSeCtm	NSCISETM	SuperATTM
Boomer ${ }^{\text {8 }}$	HPCTM	NSX-16TM	Super-Block ${ }^{\text {TM }}$
Brite-LiteTM	HyBaltm	NS-XC-16TM	SuperChip ${ }^{\text {TM }}$
BSITM	${ }^{3} \mathrm{~L}$ -	NTERCOM ${ }^{\text {TM }}$	Superl/OTm
BSI-2TM	ICMTM	NURAMTM	SuperScriptim
CDDTM	Integral ISETM	OPALTM	Switchers Made Simple ${ }^{(1)}$
CDLTM	IntelisplayTM	OvertureTM	SYS32TM
CGSTM	Inter-LERICTM	OXISSTM	TapePak*
CIM ${ }^{\text {TM }}$	Inter-RICTM	$\mathrm{P}^{2} \mathrm{CMOSTM}$	TDSTM
CIMBUSTM	ISETM	Perfect Watch ${ }^{\text {TM }}$	TeleGate ${ }^{\text {TM }}$
CLASICTM	ISE/06TM	PLANTM	The National Anthem ${ }^{\text {c }}$
COMBO*	ISE/08TM	PLANARTM	TinyPaKTM
COMBO ITM	ISE/16TM	PLAYERTM	TLCTM
COMBO IITM	ISE32TM	PLAYER + TM	TrapezoidaltM
CompactRISCTm	ISOPLANARTM	PLLatinum ${ }^{\text {TM }}$	TRI-CODETM
CompactSPEECHTM	ISOPLANAR-ZTM	Plus-2TM	TRI-POLYTM
COPSTM microcontrollers	LERICTM	Polycraft ${ }^{\text {TM }}$	TRI-SAFETM
COP8TM	LMCMOSTM	POPTM	TRI-STATE*
CRDTM	M ${ }^{2}$ CMOSTM	Power + ControlTM	TROPICTM
CROSSVOLTTM	Macrobus ${ }^{\text {TM }}$	POWERplanarTM	Tropic Pele'tM
CSNITM	Macrocomponent ${ }^{\text {TM }}$	QSTM	Tropic ReeftM
CTITM	MACSITM	QUAD3000TM	TURBOTRANSCEIVERTM
CYCLONETM	MAPLTM	Quiet Series ${ }^{\text {TM }}$	TWISTERTM
DA4TM	MAXI-ROM ${ }^{\text {® }}$	QUIKLOOKTM	VIPTM
DENSPAKTM	MicrobusTM data bus	RATTM	VR32Tm
DIBTM	MICRO-DACTM	RICTM	WATCHDOGTM
DISCERNTM	μ Pot ${ }^{\text {TM }}$	RICKITTM	XMOSTM
DISTILLTM	μ talker ${ }^{\text {TM }}$	RTX16TM	XPUTM
DNR ${ }^{\text {® }}$	MicrotalkerTM	SCANTM	Z STARTM
DPVM ${ }^{\text {TM }}$	MICROWIRETM	SCENICTM	883B/RETSTM
E2CMOSTM			883S/RETSTM

I2CTM is a trademark of Philips.
PAL® is a registered trademark of and used under license from Advanced Micro Devices, Inc.
PC-AT® is a registered trademark of International Business Machines Corp.
TouchToneTM is a trademark of Western Electric Co., Inc.
Z80 ${ }^{\circ}$ is a registered trademark of Zilog Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NationalSemiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Product Status Definitions

Definition of Terms

Data Sheet Identlfication	Product Status	Definition
Advance Intormation	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Prellminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identlification Noted	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	
Ohsolete	Noduction	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Introduction..
Section 1 Radio Transceiver Components PHASE-LOCK-LOOPS
LMX1501A/LMX1511 PLLatinum 1.1 GHz Frequency Synthesizers for RF Personal Communications 1-3
LMX2314/LMX2315 PLLatinum 1.2 GHz Frequency Synthesizers for RF Personal Communications 1-22
LMX2301 PLLatinum 160 MHz Frequency Synthesizer for RF Personal Communications $1-40$
LMX2305 PLLatinum 550 MHz Frequency Synthesizer for RF Personal Communications 1-41
LMX2320/LMX2325 PLLatinum Frequency Synthesizers for RF Personal Communications 1-42
LMX2330A/LMX2331A/LMX2332A PLLatinum Dual Frequency Synthesizers for RF Personal Communications 1-60
LMX2335/LMX2336/LMX2337 PLLatinum Dual Frequency Synthesizers for RF Personal Communications 1-75
SINGLE CHIP RADIO TRANSCEIVER
LMX3160 Single Chip Radio Transceiver 1-90
LOW NOISE AMPLIFIER
LMX2216 0.1 GHz to 2.0 GHz Low Noise Amplifier/Mixer for RF Personal Communications 1-105
INTERMEDIATE FREQUENCY RECEIVER
LMX2240 Intermediate Frequency Receiver 1-116
RADIO TRANSCEIVER APPLICATION NOTES
AN-1000 A Fast Locking Scheme for PLL Frequency Synthesizers 1-126
AN-1001 An Analysis and Performance Evaluation of a Passive Filter Design
Technique for Charge Pump Phase-Locked Loops 1-131
AN-935 Upgrading from the MB150X to National LMX1501A: Replacement Issues 1-138
AN-908 Specification for the DECT ARi Interface to the Radio Frequency Front End 1-141
AN-885 Introduction to Single Chip Microwave PLLs 1-149
AN-884 Integrated LNA and Mixer Basics 1-154
Section 2 Baseband Processing Components BASEBAND PROCESSOR
LMX2411 Baseband Processor for Radio Communications 2-3
Section 3 Control and Signal Processing Components MICROCONTROLLER
COP8 Devices Selection Guide 3-3
COP472-3 Liquid Crystal Display Controller 3-10
DIGITAL SPEECH PROCESSOR
NSAM265SR/NSAM265SF CompactSPEECH Digital Speech Processors 3-16
MICROCONTROLLER APPLICATION NOTES
AN-953 LCD Triplex Drive with COP820CJ 3-20
AN-666 DTMF Generation with a 3.58 MHz Crystal 3-44
AN-952 Low Cost A/D Conversion Using COP800 3-72
Section 4 Non-Volatile Memory NAND FLASH
NM29N16 16 MBit (2M x 8-Bit) CMOS NAND FLASH E2PROM 4-3
NM29A040 4-Mbit CMOS Serial FLASH E2PROM 4-34

Table of Contents ${ }_{(\text {Conininues) }}$

Section 4 Non-Volatile Memory (Continued) LOW VOLTAGE EEPROMS
NM28C64/NM28C64L/NM28C64A 64K (8K x 8) Parallel Extended Voltage Range CMOS EEPROMs 4-45
NM24C02L/NM24C04L/NM24C08L/NM24C16L 2K-/4K-/8K-/16K-Bit Serial EEPROMs (I2C Synchronous 2-Wire Bus) 4-54
NM93C06L/NM93C46L/NM93C56L/NM93C66L 256-/1024-/2048-/4096-Bit Serial EEPROMs with Extended Voltage (2.0V to 5.5V) (MICROWIRE Bus Interface) 4-66
LOW VOLTAGE EEPROM APPLICATION NOTES
AB-15 Protecting Data in Serial EEPROMs 4-75
AN-338 Designing with the NM93C06: A Versatile Simple to Use EEPROM $4-77$
AN-423 The NM93C46-An Amazing Device 4-83
AN-758 Using National's MICROWIRE EEPROM 4-86
AN-794 Using an EEPROM-I²C Interface NM24C02/03/04/05/08/09/16/17 4-97
AN-822 Enhancing the Performance of Serial CMOS EEPROMs 4-106
AN-841 Software for Interfacing the COP800 Family Microcontrollers to National's MICROWIRE EEPROMs 4-116
AN-870 Upgrade to National's Wide Voltage Range, Zero Standby Current EEPROMs 4-122
AN-910 Interfacing the NM29N16 in a Microcontroller Environment 4-124
AN-921 National's Flash Memories-Hardware Design Guides 4-134
AN-922 NAND Flash Operation 4-143
Section 5 Audio Interface Components AUDIO AMPLIFIER
LM4861 Boomer $1 / 2$ Watt Audio Power Amplifier with Shutdown Mode 5-3
Section 6 Support Circuitry OPERATIONAL AMPLIFIERS
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 6-3
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 6-19
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 6-37
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 6-48
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 6-65
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 6-81
DISCRETE COMPONENTS
MOSFET Selection Guide 6-92
NDS351N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-94
NDS352P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-99
NDS355N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-104
NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-109
Section 7 Power Management TEMPERATURE SENSORS
LM45B/LM45C SOT-23 Precision Centigrade Temperature Sensors 7-3
LM50B/LM50C SOT-23 Precision Centigrade Temperature Sensors 7-10
VOLTAGE REFERENCES
LM4040 Precision Micropower Shunt Voltage Reference 7-16
LM4041 Precision Micropower Shunt Voltage Reference 7-35
LOW DROPOUT VOLTAGE REGULATORS
LP2950/A-XX and LP2951/A-XX Series of Adjustable Micropower Voltage Regulators 7-47
LP2956/LP2956A Dual Micropower Low-Dropout Voltage Regulators 7-62
LP2960 Adjustable Micropower 0.5A Low-Dropout Voltage Regulator 7-75

Table of Contents ${ }_{(\text {Conininues) }}$

Section 7 Power Management (Continued)LP2980 Micropower SOT, 50 mA Ultra Low-Dropout Regulator7-90
LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout VoltageRegulators7-103
SWITCHING REGULATORS
LM2574/LM2574HV Series SIMPLE SWITCHER 0.5A Step-Down Voltage Regulators. 7-118
LM2594 SIMPLE SWITCHER Power Converter 150 KHz 0.5A Step-Down Voltage Regulator 7-136
BATTERY CHARGE CONTROLLER
LM3420-4.2, -8.4, -12.6, -16.8 Lithium-Ion Battery Charge Controllers 7-158
Section 8 Complete Cordless Phone SolutionNCL354 Cordless Telephone IC Chipset8-3
Section 9 Physical Dimensions
Physical Dimensions 9-3
Bookshelf
Distributors
Worldwide Sales Offices

Alpha-Numeric Index

AB-15 Protecting Data in Serial EEPROMs 4-75
AN-338 Designing with the NM93C06: A Versatile Simple to Use EEPROM 4-77
AN-423 The NM93C46-An Amazing Device 4-83
AN-666 DTMF Generation with a 3.58 MHz Crystal 3-44
AN-758 Using National's MICROWIRE EEPROM 4-86
AN-794 Using an EEPROM-I2C Interface NM24C02/03/04/05/08/09/16/17 4-97
AN-822 Enhancing the Performance of Serial CMOS EEPROMs 4-106
AN-841 Software for Interfacing the COP800 Family Microcontrollers to National's MICROWIRE EEPROMs 4-116
AN-870 Upgrade to National's Wide Voltage Range, Zero Standby Current EEPROMs 4-122
AN-884 Integrated LNA and Mixer Basics 1-154
AN-885 Introduction to Single Chip Microwave PLLs 1-149
AN-908 Specification for the DECT ARi Interface to the Radio Frequency Front End 1-141
AN-910 Interfacing the NM29N16 in a Microcontroller Environment 4-124
AN-921 National's Flash Memories-Hardware Design Guides 4-134
AN-922 NAND Flash Operation 4-143
AN-935 Upgrading from the MB150X to National LMX1501A: Replacement Issues 1-138
AN-952 Low Cost A/D Conversion Using COP800 3-72
AN-953 LCD Triplex Drive with COP820CJ 3-20
AN-1000 A Fast Locking Scheme for PLL Frequency Synthesizers 1-126
AN-1001 An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops 1-131
COP472-3 Liquid Crystal Display Controiler 3-10
LM45B SOT-23 Precision Centigrade Temperature Sensor 7-3
LM45C SOT-23 Precision Centigrade Temperature Sensor 7-3
LM50B SOT-23 Precision Centigrade Temperature Sensor 7-10
LM50C SOT-23 Precision Centigrade Temperature Sensor 7-10
LM2574 Series SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator 7-118
LM2574HV Series SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator 7-118
LM2594 SIMPLE SWITCHER Power Converter 150 KHz 0.5A Step-Down Voltage Regulator 7-136
LM3420-4.2 Lithium-Ion Battery Charge Controller 7-158
LM3420-8.4 Lithium-Ion Battery Charge Controller 7-158
LM3420-12.6 Lithium-Ion Battery Charge Controller 7-158
LM3420-16.8 Lithium-Ion Battery Charge Controller 7-158
LM4040 Precision Micropower Shunt Voltage Reference 7-16
LM4041 Precision Micropower Shunt Voltage Reference 7-35
LM4861 Boomer $1 / 2$ Watt Audio Power Amplifier with Shutdown Mode 5-3
LM6142 Dual High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifier 6-81
LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifier 6-81
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 6-48
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 6-65
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 6-3
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 6-19
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 6-37
LMX1501A PLLatinum 1.1 GHz Frequency Synthesizer for RF Personal Communications 1-3
LMX1511 PLLatinum 1.1 GHz Frequency Synthesizer for RF Personal Communications 1-3
LMX2216 0.1 GHz to 2.0 GHz Low Noise Amplifier/Mixer for RF Personal Communications 1-105
LMX2240 Intermediate Frequency Receiver 1-116
LMX2301 PLLatinum 160 MHz Frequency Synthesizer for RF Personal Communications 1-40
LMX2305 PLLatinum 550 MHz Frequency Synthesizer for RF Personal Communications 1-41
LMX2314 PLLatinum 1.2 GHz Frequency Synthesizer for RF Personal Communications 1-22

Alpha-Numeric Index ${ }_{\text {(Contivaed) }}$

LMX2315 PLLatinum 1.2 GHz Frequency Synthesizer for RF Personal Communications 1-22
LMX2320 PLLatinum 2.0 GHz Frequency Synthesizer for RF Personal Communications 1-42
LMX2325 PLLatinum 2.5 GHz Frequency Synthesizer for RF Personal Communications 1-42
LMX2330A PLLatinum 2.5 GHz/510 MHz Dual Frequency Synthesizer for RF Personal Communications 1-60
LMX2331A PLLatinum 2.0 GHz/510 MHz Dual Frequency Synthesizer for RF Personal Communications 1-60
LMX2332A PLLatinum 1.2 GHz/510 MHz Dual Frequency Synthesizer for RF Personal Communications 1-60
LMX2335 PLLatinum 1.1 GHz/1.1 GHz Dual Frequency Synthesizer for RF Personal Communications $1-75$
LMX2336 PLLatinum 2.0 GHz/1.1 GHz Dual Frequency Synthesizer for RF Personal Communications 1-75
LMX2337 PLLatinum $500 \mathrm{MHz} / 500 \mathrm{MHz}$ Dual Frequency Synthesizer for RF Personal Communications 1-75
LMX2411 Baseband Processor for Radio Communications 2-3
LMX3160 Single Chip Radio Transceiver 1-90
LP2950/A-XX Series of Adjustable Micropower Voltage Regulators 7-47
LP2951/A-XX Series of Adjustable Micropower Voltage Regulators 7-47
LP2952 Adjustable Micropower Low-Dropout Voltage Regulator 7-103
LP2952A Adjustable Micropower Low-Dropout Voltage Regulator 7-103
LP2953 Adjustable Micropower Low-Dropout Voltage Regulator 7-103
LP2953A Adjustable Micropower Low-Dropout Voltage Regulator 7-103
LP2956 Dual Micropower Low-Dropout Voltage Regulator 7-62
LP2956A Dual Micropower Low-Dropout Voltage Regulator 7-62
LP2960 Adjustable Micropower 0.5A Low-Dropout Voltage Regulator 7-75
LP2980 Micropower SOT, 50 mA Ultra Low-Dropout Regulator 7-90
NCL354 Cordless Telephone IC Chipset 8-3
NDS351N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-94
NDS352P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-99
NDS355N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-104
NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-109
NM24C02L 2K-Bit Serial EEPROM (I2C Synchronous 2-Wire Bus) 4-54
NM24C04L 4K-Bit Serial EEPROM (I²C Synchronous 2-Wire Bus) 4-54
NM24C08L 8K-Bit Serial EEPROM (I2C Synchronous 2-Wire Bus) 4-54
NM24C16L 16K-Bit Serial EEPROM (I2C Synchronous 2-Wire Bus) 4-54
NM28C64 64K (8K x 8) Parallel Extended Voltage Range CMOS EEPROM 4-45
NM28C64A 64K (8K x 8) Parallel Extended Voltage Range CMOS EEPROM 4-45
NM28C64L 64K (8K x 8) Parallel Extended Voltage Range CMOS EEPROM 4-45
NM29A040 4-Mbit CMOS Serial FLASH E2PROM 4-34
NM29N16 16 MBit (2M x 8-Bit) CMOS NAND FLASH E2PROM 4-3
NM93C06L 256-Bit Serial EEPROM with Extended Voltage (2.0 V to 5.5 V) (MICROWIRE Bus Interface) 4-66
NM93C46L 1024-Bit Serial EEPROM with Extended Voltage (2.0V to 5.5V) (MICROWIRE Bus Interface) 4-66
NM93C56L 2048-Bit Serial EEPROM with Extended Voltage (2.0V to 5.5V) (MICROWIRE Bus Interface) 4-66
NM93C66L 4096-Bit Serial EEPROM with Extended Voltage (2.0V to 5.5V) (MICROWIRE Bus Interface) 4-66
NSAM265SF CompactSPEECH Digital Speech Processor 3-16
NSAM265SR CompactSPEECH Digital Speech Processor 3-16

Personal Wireless Communication System

This data book collects into one complete reference National Semiconductor products that meet the needs of OEMs for the wireless industry. This data book includes existing products as well as some products that are in advanced design stages.

Future revisions of this data book will include new individual products as well as total system solutions for wireless communications.
The data book is organized around the seven blocks shown in the figure.

Radio Transceiver

The PLLatinum ${ }^{\text {TM }}$ phase-lock-loop product family consists of single and dual PLLs that operate up to 2.5 GHz . Each of the single and dual mode PLLatinum PLLs was designed with a dual modulus prescaler with 64/65 and 128/129 divide ratios available. PLLatinum PLLs generate a very stable low noise signal making them idèal for AMPS, DECT, GSM, IS-136, and IS-95. Because the PLLs were designed with wireless communication requirements in mind, their use can lead to significant savings in integration time.
The LMX3160 is a single chip transceiver solution for DECT applications. The LMX3160 transmitter includes a 1.1 GHz PLL, a frequency doubler, and a high frequency doubler. The receiver consists of a 2.0 GHz low noise mixer, an intermediate frequency amplifier, a high gain limiting amplifier, a frequency discriminator and a received signal strength indicator (RSSI). The LMX3160's high level of integration and low current consumption make it ideal for DECT and PCS applications.

Baseband Processing

The LMX2240 Intermediate Frequency Receiver and the LMX2411 Baseband Processor are designed for use in DECT as well as other digital cellular telephone designs. The LMX2240 consists of a high gain limiting amplifier, a frequency discriminator, and a received signal strength indicator (RSSI). The LMX2240 supports single conversion receivers which reduces power requirements, size, and cost.
The LMX2411 contains both transmit and receive functions. The transmitter utilizes a low power high speed digital-to analog converter (DAC) and a mask programmable ROM to generate a Gaussian filter pulse shape. The receiver includes a high speed, low power voltage comparator with DC compensation.

Control and Signal Processing

The COP-8 family of microcontrollers offers a wide variety of RAM size, ROM size, UART and WATCHDOGTM functionality and interrupt sources. All COP-8 microcontrollers are based on the same CMOS process, use MICROWIRETM serial communication, and have the same development tools which allow for significant reductions in design and integration time.
The NSAM265SF Digital Speech Processor with CompactSPEECH provides digital answering machine functionality by integrating a 16 -bit RISC processor and a Digital Signal Processor (DSP) into one chip. CompactSPEECH implements voice compression and decompression, tone detection and generation, time and date stamp and other answering machine functions in firmware to reduce the cost and complexity associated with designing a digital answering machine.

Non-Volatile Memory

National Semiconductor has a complete line of low voltage EEPROM devices to meet the needs of the wireless com-
munications market. All EEPROMs are designed using a 0.8 micron CMOS process that allows for access times as low as 100 ns with 3.0 V operation.
The EEPROM family is a complete line of low voltage low power memory devices. With memory sizes between 2 k and 16k and access times between 120 ns 200 ns.

Audio Interface

National Semiconductor's Boomer® family of audio products includes the LM4861 low voltage CMOS audio amplifier. The LM4861 is rated at 0.5 W into 8Ω with less than 1% Total Harmonic Distortion (THD). With a voltage range of 2.7 V to 5.5 V , the LM4861 is ideal for low voltage wireless communication units.

Support Circuitry

The Tiny CMOS line of rail-to-rail operational amplifiers and the dual and quad rail-to-rail CMOS operational amplifiers in this book are ideal for mobile communications. The Tiny CMOS family provides rail-to-rail input and output, high open loop gain, and low distortion in a SOT $23-5$ package. The dual and quad operational amplifiers provide multiple rail-torail input and output operational amplifiers and a high Com-mon-Mode Voltage Range that make them unique and practical for wireless communication designs. This data book includes a listing of the SO-8 family of single and dual CMOS FETs as well as other N and P -channel FETs that are suited for wireless communication products.

Power Management

National Semiconductor's line of Temperature Sensors, Voltage References, and Low Drop Out Voltage Regulators are ideal for wireless applications. Precision Centigrade Temperature Sensors do not require calibration or trimming. Their accuracy, $\pm 2^{\circ} \mathrm{C}$ at room temperature, low power, and their small packaging, SOT-23, make them ideal for wireless applications.
Precision Micropower Shunt Voltage References are available in a SOT-23 surface mount package. The LM4040 reduces design complexity by eliminating the need for any external stabilizing capacitor and by being available with several fixed reverse breakdown voltages between $2,500 \mathrm{~V}$ and $10,000 \mathrm{~V}$.
National Semiconductor has a line Micropower Voltage Regulators. Micropower voltage regulators are available with fixed $3.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V outputs or with adjustable output voltages. The LP2950 line guarantees 100 mA output current while the LP2980 line guarantees 50 mA output current.

Complete Cordless Phone Solution

National Semiconductor has developed a CMOS chipset that includes all major functionality for $46 / 49 \mathrm{MHz}$ cordless phones. The chipset offers OEMs a compact, low power cordless phone solution that significantly reduces time to market.

Section 1
Radio Transceiver Components
Section 1 Contents
PHASE-LOCK-LOOPS
LMX1501A/LMX1511 PLLatinum 1.1 GHz Frequency Synthesizers for RF Personal Communications 1-3
LMX2314/LMX2315 PLLatinum 1.2 GHz Frequency Synthesizers for RF Personal Communications 1-22
LMX2301 PLLatinum 160 MHz Frequency Synthesizer for RF Personal Communications 1-40
LMX2305 PLLatinum 550 MHz Frequency Synthesizer for RF Personal Communications 1-41
LMX2320/LMX2325 PLLatinum Frequency Synthesizers for RF Personal Communications 1-42
LMX2330A/LMX2331A/LMX2332A PLLatinum Dual Frequency Synthesizers for RF Personal Communications 1-60
LMX2335/LMX2336/LMX2337 PLLatinum Dual Frequency Synthesizers for RF Personal Communications $1-75$
SINGLE CHIP RADIO TRANSCEIVER
LMX3160 Single Chip Radio Transceiver 1-90
LOW NOISE AMPLIFIER
LMX2216 0.1 GHz to 2.0 GHz Low Noise Amplifier/Mixer for RF Personal Communications 1-105
INTERMEDIATE FREQUENCY RECEIVER
LMX2240 Intermediate Frequency Receiver 1-116
RADIO TRANSCEIVER APPLICATION NOTES
AN-1000 A Fast Locking Scheme for PLL Frequency Synthesizers 1-126
AN-1001 An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops 1-131
AN-935 Upgrading from the MB150X to National LMX1501A: Replacement Issues 1-138
AN-908 Specification for the DECT ARi Interface to the Radio Frequency Front End 1-141
AN-885 Introduction to Single Chip Microwave PLLs 1-149
AN-884 Integrated LNA and Mixer Basics 1-154

LMX1501A/LMX1511 PLLatinum ${ }^{\text {TM }}$ 1.1 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX1501A and the LMX1511 are high performance frequency synthesizers with integrated prescalers designed for RF operation up to 1.1 GHz . They are fabricated using $\mathrm{Na}-$ tional's ABiC IV BiCMOS process.
The LMX1501A and the LMX1511 contain dual modulus prescalers which can select either a 64/65 or a 128/129 divide ratio at input frequencies of up to 1.1 GHz . Using a proprietary digital phase locked loop technique, the LMX1501A/11's linear phase detector characteristics can generate very stable, low noise local oscillator signals.
Serial data is transferred into the LMX1501A and the LMX1511 via a three line MICROWIRETM interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX1501A and the LMX1511 feature very low current consumption, typically 6 mA at 3 V .
The LMX1501A is available in a JEDEC 16 -pin surface mount plastic package. The LMX1511 is available in a TSSOP 20-pin surface mount plastic package.

Features

- RF operation up to 1.1 GHz
- 2.7 V to 5.5 V operation
- Low current consumption:
$\mathrm{I}_{\mathrm{CC}}=6 \mathrm{~mA}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- Dual modulus prescaler: 64/65 or 128/129
- Internal balanced, low leakage charge pump
- Small-outline, plastic, surface mount JEDEC, 0.150" wide, (1501A) or TSSOP, $0.173^{\prime \prime}$ wide, (1511) package

Applications

- Cellular telephone systems (AMPS, NMT, ETACS)
- Portable wireless communications (PCS/PCN, Cordless)
- Advanced cordless telephone systems (CT-1/CT-1+, CT-2, ISM902-928)
- Other wireless communication systems

Block Diagram

Connection Diagrams

TL/W/12340-2
JEDEC 16-Lead (0.150" Wide) Small
Outline Molded Package (M)
Order Number LMX1501AM or LMX1501AMX
See NS Package Number M16A

LMX1511

TL/W/12340-3
20-Lead ($0.173^{\prime \prime}$ Wide) Thin Shrink Small Outline Package (TM)
Order Number LMX1511TM or LMX1511TMX
See NS Package Number MTC20

Pin Descriptions

Pln No.	Pin No.	Pin Name	1/0	Description
1501A	1511	1501A/1511		
1	1	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input. A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate. May also be used as a buffer for an externally provided reference oscillator.
2	3	OSC ${ }_{\text {OUT }}$	0	Oscillator output.
3	4	V_{p}		Power supply for charge pump must be $\geq \mathrm{V}_{\mathrm{CC}}$.
4	5	V_{CC}		Power supply voltage input. Input may range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
5	6	D_{0}	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
6	7	GND		Ground.
7	8	LD	0	Lock detect. Output provided to indicate when the VCO frequency is in "lock". When the loop is locked, the pin's output is HIGH with narrow low pulses.
8	10	$\mathrm{fin}^{\text {N }}$	1	Prescaler input. Small signal input from the VCO.
9	11	CLOCK	1	High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.
10	13	DATA	1	Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.
11	14	LE	1	Load enable input (with internal pull-up resistor). When LE transitions HIGH, data stored in the shift registers is loaded into the appropriate latch (control bit dependent). Clock must be low when LE toggles high or low. See Serial Data Input Timing Diagram.
12	15	FC	1	Phase control select (with internal pull-up resistor). When FC is LOW, the polarity of the phase comparator and charge pump combination is reversed.
X	16	BISW	0	Analog switch output. When LE is HIGH, the analog switch is ON, routing the internal charge pump output through BISW (as well as through D_{0}).
13		f_{r}	0	Monitor pin of phase comparator input. Programmable reference divider output.
14		f_{p}	0	Monitor pin of phase comparator input. Programmable divider output.
X	17	fout	0	Monitor pin of phase comparator input. CMOS Output.
15	18	ϕ_{p}	0	Output for external charge pump. ϕ_{p} is an open drain N -channel transistor and requires a pull-up resistor.
16	20	ϕ_{r}	0	Output for external charge pump. ϕ_{r} is a CMOS logic output.
X	2,9,12,19	NC		No connect.

Functional Block Diagram

Functional Block Diagram (Continued)

TL/W/12340-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallabillty and specifications.
Power Supply Voltage

$V_{C C}$	-0.3 V to +6.5 V
V_{P}	-0.3 V to +6.5 V
Voltage on Any Pin	
with GND $=0 \mathrm{~V}\left(\mathrm{~V}_{1}\right)$	-0.3 V to +6.5 V
Storage Temperature Range $\left(T_{S}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature $\left(T_{L}\right)$ (solder, 4 sec.)	$+260^{\circ} \mathrm{C}$

$$
\begin{aligned}
& -0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \\
& -0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V}
\end{aligned}
$$

$$
-0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V}
$$

$$
\begin{aligned}
& \text { Storage Temperature Range (} T_{S} \text {) } \\
& \text { Lead Temperature }\left(T_{1}\right) \text { (solder, } 4 \mathrm{sec} \text {.) }
\end{aligned}
$$

Recommended Operating

 ConditionsPower Supply Voltage

$$
\begin{array}{lr}
V_{C C} & 2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
V_{\mathrm{P}} & V_{\mathrm{CC}} \text { to } 5.5 \mathrm{~V} \\
\text { Operating Temperature }\left(\mathrm{T}_{\mathrm{A}}\right) & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
\text { Note 1: Absolute Maximum Ratings indicate limits beyond which damage to } \\
\text { the device may occur. Operating Ratings indicate conditions for which the } \\
\text { device is intended to be functional, but do not guarantee specific pertorm- } \\
\text { ance limits. For guaranteed specifications and test conditions, see the Elec- } \\
\text { trical Charateristics. The guaranteed specifications, apply only for the test } \\
\text { conditions listed. }
\end{array}
$$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		6.0	8.0	mA
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		6.5	8.5	mA
f	Maximum Operating Frequency		1.1			GHz
fosc	Maximum Oscillator Frequency		20			MHz
f_{ϕ}	Maximum Phase Detector Frequency	:	10			MHz
Pfin	Input Sensitivity	$V_{C C}=2.7 \mathrm{~V}$ to 5.5 V	-10		+6	dBm
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity	$\mathrm{OSC}_{\text {IN }}$	0.5			V_{PP}
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage	*	$0.7 \mathrm{~V}_{\mathrm{CC}}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	*			$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current (Clock, Data)	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
IIL	Low-Level Input Current (Clock, Data)	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Oscillator Input Current	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
1 LL		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current (LE, FC)	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
IIL	Low-Level Input Current (LE, FC)	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100		1.0	$\mu \mathrm{A}$

*Except f_{IN} and $\mathrm{OSC}_{\mathrm{IN}}$

Electrical Characteristics $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ID_{0}-source	Charge Pump Output Current	$\mathrm{V}_{\mathrm{D}_{0}}=\mathrm{V}_{\mathrm{P}} / 2$	\cdot	-5.0		mA
$\mathrm{I}_{\mathrm{D}_{0} \text {-sink }}$		$V_{D_{0}}=V_{p} / 2$		5.0		mA
$\mathrm{I}_{\mathrm{D}_{\mathrm{O}}-\mathrm{Tri}}$	Charge Pump TRI-STATE* Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{0}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$	-5.0		5.0	nA
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}^{* *}$	$V_{C C}-0.8$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}^{* *}$			0.4	V
V_{OH}	High-Level Output Voltage (OSC OUT $^{\text {) }}$)	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.8$			V
V_{OL}	Low-Level Output Voltage (OSC OUT $^{\text {) }}$	$\mathrm{IOL}=200 \mu \mathrm{~A}$			0.4	V
lOL	Open Drain Output Current (ϕ_{p})	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0			mA
$\mathrm{IOH}^{\text {l }}$	Open Drain Output Current (ϕ_{p})	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
RON	Analog Switch ON Resistance (1511)			100		Ω
t_{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
${ }^{\text {t }} \mathrm{CH}$	Data to Clock Hold Time	See Data Input Timing	10			ns
$\mathrm{t}_{\mathrm{CWH}}$	Clock Pulse Width High	See Data Input Timing	50			ns
tCWL	Clock Pulse Width Low	See Data Input Timing	50			ns
t_{ES}	Clock to Enable Set Up Time	See Data Input Timing	50			ns
$\mathrm{t}_{\mathrm{E} W}$	Enable Pulse Width	See Data Input Timing	50			ns

**Except OSCOUT

Typical Performance Characteristics

TL./W/12340-5

Charge Pump Current vs $\mathrm{D}_{\mathbf{0}}$ Voltage

TL/W/12340-7

TL/W/12340-6

Typical Performance Characteristics (Continued)

Input Sensitivity vs Frequency

TL/W/12340-11
Input Srnsitivity at Temperature Variation; $\mathbf{V C C}_{\mathbf{C c}}=\mathbf{5 V}$

LMX1501A Input Impedance vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ to $1,600 \mathrm{MHz}$

TL/W/12340-15

Input Sensitivity vs Frequency

Input Sensitivity at Temperature
Variation, $\mathbf{V}_{\mathbf{c c}}=\mathbf{3 V}$

LMX1511 Input Impedance vs Frequency

$V_{C C}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ to $1,600 \mathrm{MHz}$

TL/W/12340-16
Marker $1=500 \mathrm{MHz}$, Real $=69$, Imag. $=-330$
Marker $2=900 \mathrm{MHz}$, Real $=36$, Imag. $=-193$
Marker $3=1 \mathrm{GHz}$, Real $=35$, Imag. $=-172$
Marker $4=1,500 \mathrm{MHz}$, Real $=30$, Imag. $=-106$

Charge Pump Current Specification Definitions

TL/W/12340-17
$11=C P$ sink current at $V_{D_{0}}=V_{P}-\Delta V$
$14=C P$ source current at $V_{D_{0}}=V_{P}-\Delta V$
$12=C P$ sink current at $V_{D_{0}}=V_{P} / 2$
$15=C P$ source current at $V_{D_{0}}=V_{P} / 2$
$13=C P$ sink current at $V_{D_{0}}=\Delta V$
I6 $=C P$ source current at $V_{D_{0}}=\Delta V$
$\Delta V=$ Voltage offset from positive and negative rails. Dependent on $V C O$ tuning range relative to $V_{C C}$ and ground. Typical values are between 0.5 V and 1.0 V .

1. $I_{D_{0}}$ vs $V_{D_{0}}=$ Charge Pump Output Current magnitude variation vs Voltage $=$

$$
[1 / 2 *|11|-||3|] /[1 / 2 *\{|11|+|13|\}] * 100 \% \text { and }[1 / 2 *| | 14|-|16|] /[1 / 2 *\{|14|+|16|\}] * 100 \%
$$

2. $I_{D_{0-\text { sink }}}$ vs $I_{D_{0-s o u r c e ~}}=$ Charge Pump Output Current Sink vs Source Mismatch $=$
$[||2|-|15|] /[1 / 2 *\{|12|+|15|\}] * 100 \%$
3. $I_{D_{0}}$ vs $T_{A}=$ Charge Pump Output Current magnitude variation vs Temperature $=$
[|12@ temp|-|12@ $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 12$ @ $25^{\circ} \mathrm{C} \mid * 100 \%$ and $\left[\mid 15\right.$ @ temp|-|15@ $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 15$ @ $25^{\circ} \mathrm{C} \mid * 100 \%$
4. $K_{\phi}=$ Phase detector/charge pump gain constant $=1 / 2^{\bullet}\{|12|+|15|\}$

RF Sensitivity Test Block Diagram

Note 1: $N=10,000 \quad R=50 \quad P=64$
Note 2: Sensitivity limit is reached when the error of the divided RF output, fout, is greater than or equal to $\mathbf{1 ~ H z}$.

Functional Description

The simplified block diagram below shows the 19-bit data register, the 14 -bit R Counter and the S Latch, and the 18-bit N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first. If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the S Latch (prescaler select: 64/65 or 128/129). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter (programmable divider).

TL/W/12340-19

PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)

If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129). Serial data format is shown below.

—_ Divide ratio of the programmable reference divider ___

14-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide Ratio R	\mathbf{S}													
$\mathbf{1 4}$	\mathbf{S}	$\mathbf{1 3}$	\mathbf{S}											
$\mathbf{1 0}$	\mathbf{S}	8	$\mathbf{7}$	6	5	4	3	2	1					
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 16383
S1 to S14: These bits select the divide ratio of the programmable reference divider.
C: Control bit (set to HIGH level to load R counter and S Latch) Data is shifted in MSB first.

1-BIT PRESCALER SELECT (S LATCH)

Prescaler Select \mathbf{P}	\mathbf{S} 15
$128 / 129$	0
$64 / 65$	1

Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)

The N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bit (last bit shifted into the Data Register) is LOW, data is transferred from the 19-bit shift register into a 7 -bit latch (which sets the 7-bit Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter). Serial data format is shown below.

TL/W/12340-21
Note: S8 to S18: Programmable counter divide ratio control bits (3 to 2047)

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

Divide Ratlo A	\mathbf{S}	$\mathbf{7}$	$\mathbf{6}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{4}$	\mathbf{S}						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Note: Divide ratio: 0 to 127

$$
B \geq A
$$

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio B	\mathbf{S} 18	\mathbf{S}									
$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	11	10	$\mathbf{9}$	$\mathbf{8}$				
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited) $B \geq A$

PULSE SWALLOW FUNCTION

$f_{\text {VCO }}=[(P \times B)+A] \times f_{\text {OSc }} / R$
$f_{V C O}$ Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127, A \leq B$)
fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16383)
P: Preset modulus of dual modulus prescaler (64 or 128)

Functional Description (Continued)

SERIAL DATA INPUT TIMING

TL/W/12340-22
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditlons: The Serial Data Input Timing is tested using a symmetrical waveform around $V_{C C} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of 2.2 V @ $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

Phase Characteristics

In normal operation, the FC pin is used to reverse the polarity of the phase detector. Both the internal and any external charge pump are affected.
Depending upon VCO characteristics, FC pin should be set accordingly:

When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT;
When VCO characteristics are like (2), FC should be set LOW.
When FC is set HIGH or OPEN CIRCUIT, the monitor pin of the phase comparator input, $f_{\text {out }}$, is set to the reference
 divider output, f_{r}. When FC is set LOW, $\mathrm{f}_{\text {out }}$ is set to the programmable divider output, f_{p}.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

TL/W/42340-24
Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{0} pin when the loop is locked.
$F C=H I G H$

Analog Switch (1511 only)

The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the D_{o} pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).

Typical Crystal Oscillator Circuit

A typical circuit which can be used to implement a crystal oscillator is shown below.

TL/W/12340-26

Typical Lock Detect Circuit

A lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.

TL/W/12340-27

Typical Application Example

TL/W/12340-28

Operational Notes:

- VCO is assumed AC coupled.
${ }^{* *} R_{I N}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. f_{IN} RF impedance ranges from 40Ω to 100Ω.
***50 termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. $O S C_{\mid N}$ may be $A C$ or $D C$ coupled. $A C$ coupling is recommended because the input circuit provides its own bias. (See Figure below)

Proper use of grounds and bypass capacitors is essential to achieve a high level of performance.
Crosstalk between pins can be reduced by careful board layout.
This is a static sensitive device. It should be handled only at static free work stations.

Application Information

LOOP FILTER DESIGN

A block diagram of the basic phase locked loop is shown.

TL/W/12340-30
FIGURE 1. Basic Charge Pump Phase Locked Loop

An example of a passive loop filter configuration, including the transfer function of the loop filter, is shown in Figure 2.

TL/W/12340-31

$$
Z(s)=\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2}
$$

FIGURE 2. 2nd Order Passive Filter
Define the time constants which determine the pole and zero frequencies of the filter transfer function by letting

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{1}=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C}_{2}}{\mathrm{C} 1+\mathrm{C} 2} \tag{1b}
\end{equation*}
$$

The PLL linear model control circuit is shown along with the open loop transfer function in Figure 3. Using the phase detector and VCO gain constants [$\mathrm{K} \phi$ and $\mathrm{K}_{\mathrm{VCO}}$] and the loop filter transfer function [Z(s)], the open loop Bode plot can be calculated. The loop bandwidth is shown on the Bode plot ($\omega \mathrm{p}$) as the point of unity gain. The phase margin is shown to be the difference between the phase at the unity gain point and -180°.

TL/W/12340-33
Open Loop Gain $=\theta_{\mathrm{i}} / \theta_{\mathrm{e}}=\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
$=\mathrm{K}_{\phi} \mathrm{Z}(\mathrm{s}) \mathrm{K}_{\mathrm{vco}} / \mathrm{Ns}$
Closed Loop Gain $=\theta_{0} / \theta_{\mathrm{i}}=\mathrm{G}(\mathrm{s}) /[1+\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})]$

TL/W/12340-32
FIGURE 3. Open Loop Transfer Function
Thus we can calculate the 3rd order PLL Open Loop Gain in terms of frequency
$\left.G(s) \bullet H(s)\right|_{s=j} \bullet \omega=\frac{-K_{\phi} \bullet K_{V C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2}$
From equation 2 we can see that the phase term will be dependent on the single pole and zero such that

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{3}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\frac{d \phi}{d \omega}=\frac{T 2}{1+(\omega \bullet T 2)^{2}}-\frac{T 1}{1+(\omega \cdot T 1)^{2}}=0 \tag{4}
\end{equation*}
$$

we find the frequency point corresponding to the phase inflection point in terms of the filter time constants T1 and T2. This relationship is given in equation 5 .

$$
\begin{equation*}
\omega_{\mathrm{p}}=1 / \sqrt{T 2 \bullet \mathrm{~T} 1} \tag{5}
\end{equation*}
$$

For the loop to be stable the unity gain point must occur before the phase reaches $\mathbf{- 1 8 0}$ degrees. We therefore want the phase margin to be at a maximum when the magnitude of the open loop gain equals 1 . Equation 2 then gives

$$
\begin{equation*}
C 1=\frac{K \phi \bullet K_{V C O} \bullet T 1}{\omega_{p}^{2} \bullet N \bullet T 2}\left\|\frac{\left(1+j \omega_{p} \bullet T 2\right)}{\left(1+j \omega_{p} \bullet T 1\right)}\right\| \tag{6}
\end{equation*}
$$

Application Information (Continued)

Therefore, if we specify the loop bandwidth, ω_{p}, and the phase margin, ϕ_{p}, Equations 1 through 6 allow us to calculate the two time constants, T1 and T2, as shown in equations 7 and 8 . A common rule of thumb is to begin your design with a 45° phase margin.

$$
\begin{gather*}
\mathrm{T} 1=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}} \tag{7}\\
\mathrm{~T} 2=\frac{1}{\omega_{\mathrm{p}}^{2} \cdot \mathrm{~T} 1} \tag{8}
\end{gather*}
$$

From the time constants T 1 , and T 2 , and the loop bandwidth, ω_{p}, the values for $\mathrm{C} 1, \mathrm{R} 2$, and C 2 are obtained in equations 9 to 11.

$$
\begin{gather*}
\mathrm{C} 1=\frac{\mathrm{T} 1}{\mathrm{~T} 2} \cdot \frac{\mathrm{~K} \phi \cdot \mathrm{~K}_{\mathrm{VCO}}}{\omega_{\mathrm{p}}^{2} \bullet \mathrm{~N}} \sqrt{\frac{1+\left(\omega_{\mathrm{p}} \cdot \mathrm{~T} 2\right)^{2}}{1+\left(\omega_{\mathrm{p}} \cdot \mathrm{~T} 1\right)^{2}}} \tag{9}\\
\mathrm{C} 2=\mathrm{C} 1 \cdot\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) \tag{10}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{11}
\end{gather*}
$$

Kvco (MHz/V) Voltage Controlled Oscillator (VCO) Tuning Voltage constant. The frequency vs voltage tuning ratio.
$K \phi(\mathrm{~mA}) \quad$ Phase detector/charge pump gain constant. The ratio of the current output to the input phase differential.
$\mathrm{N} \quad$ Main divider ratio. Equal to $\mathrm{RF}_{\text {opt }} / \mathrm{f}_{\text {ref }}$
$\mathrm{RF}_{\text {opt }}(\mathrm{MHz}) \quad$ Radio Frequency output of the VCO at which the loop filter is optimized.
$\mathrm{f}_{\mathrm{ref}}(\mathrm{kHz}) \quad$ Frequency of the phase detector inputs. Usually equivalent to the RF channel spacing.

In choosing the loop filter components a trade off must be made between lock time, noise, stability, and reference spurs. The greater the loop bandwidth the faster the lock time will be, but a large loop bandwidth could result in higher reference spurs. Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input, VCO and division ratios used. The reference spurs can be reduced by reducing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will decrease as a result.

THIRD ORDER FILTER

A low pass filter section may be needed for some applications that require additional rejection of the reference sidebands, or spurs. This configuration is given in Figure 4. In order to compensate for the added low pass section, the component values are recalculated using the new open loop unity gain frequency. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C1 and C2 while slightly decreasing R2.
The added attenuation from the low pass filter is:

$$
\begin{equation*}
\text { ATTEN }=20 \log \left[\left(2 \pi f_{\text {ref }} \bullet R 3 \bullet C 3\right)^{2}+1\right] \tag{12}
\end{equation*}
$$

Defining the additional time constant as

$$
\begin{equation*}
\mathrm{T} 3=\mathrm{R} 3 \cdot \mathrm{C} 3 \tag{13}
\end{equation*}
$$

Then in terms of the attenuation of the reference spurs added by the low pass pole we have

$$
\begin{equation*}
\mathrm{T} 3=\sqrt{\frac{10 \text { ATTEN } / 20-1}{\left(2 \pi \bullet \mathrm{f}_{\mathrm{ref}}\right)^{2}}} \tag{14}
\end{equation*}
$$

We then use the calculated value for loop bandwidth ω_{c} in equation 11, to determine the loop filter component values in equations $15-17 . \omega_{c}$ is slightly less than ω_{p}, therefore the frequency jump lock time will increase.

$$
\begin{align*}
& \mathrm{T} 2=\frac{1}{\omega_{\mathrm{c}}^{2} \bullet(\mathrm{~T} 1+\mathrm{T} 3)} \tag{15}\\
& \omega_{\mathrm{c}}=\frac{\tan \phi \bullet(\mathrm{T} 1+\mathrm{T} 3)}{\left[(\mathrm{T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \bullet \mathrm{~T} 3\right]} \bullet\left[\sqrt{1+\frac{(\mathrm{T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \bullet \mathrm{~T} 3}{[\tan \phi \bullet(\mathrm{~T} 1+\mathrm{T} 3)]^{2}}}-1\right] \tag{16}\\
& \mathrm{C} 1=\frac{\mathrm{T} 1}{\mathrm{~T} 2} \bullet \frac{\mathrm{~K}_{\phi} \bullet \mathrm{K}_{\mathrm{VCO}}}{\omega_{\mathrm{c}}^{2} \bullet \mathrm{~N}} \bullet\left[\frac{\left(1+\omega_{\mathrm{c}}^{2} \bullet \mathrm{~T} 2^{2}\right)}{\left(1+\omega_{\mathrm{c}}^{2} \bullet \mathrm{~T} 1^{2}\right)\left(1+\omega_{\mathrm{c}}^{2} \bullet \mathrm{~T} 3^{2}\right)}\right]^{1 / 2} \tag{17}
\end{align*}
$$

Application Information (Continued)

Example \#1
$K_{\text {Vco }}=19.3 \mathrm{MHz} / \mathrm{V}$
$\mathrm{K}_{\phi}=5 \mathrm{~mA}$ (Note 1)
$\mathrm{RF}_{\text {opt }}=886 \mathrm{MHz}$
$F_{\text {ref }}=25 \mathrm{kHz}$
$N=R F_{\text {opt }} / f_{\text {ret }}=35440$
$\omega_{\mathrm{p}}=2 \pi{ }^{*} 5 \mathrm{kHz}=3.1415 e 4$
$\phi_{\mathrm{p}}=43^{\circ}$
ATTEN $=10 \mathrm{~dB}$

$$
\begin{aligned}
& \mathrm{T} 1=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}}=1.38 \mathrm{e}-5 \\
& T 3=\sqrt{\frac{10(10 / 20)-1}{(2 \pi \cdot 25 e 3)^{2}}}=9.361 \mathrm{e}-6 \\
& \omega_{c}=\frac{\left(\tan 43^{\circ}\right) \bullet(1.38 e-5+9.361 e-6)}{\left[(1.38 \theta-5+9.361 e-6)^{2}+1.38 e-5 \cdot 9.361 e-6\right]} \\
& \cdot\left[\sqrt{1+\frac{(1.38 e-5+9.361 e-6)^{2}+1.38 e-5 \cdot 9.361 e-6}{\left[\left(\tan 43^{\circ}\right) \cdot(1.38 e-5+9.361 e-6)\right]^{2}}}-1\right] \\
& =1.8101 \mathrm{e} 4 \\
& \mathrm{~T} 2=\frac{1}{(1.8101 \mathrm{e} 4)^{2} \cdot(1.38 \mathrm{e}-5+9.361 \mathrm{e}-6)}=1.318 \mathrm{e}-4 \\
& C 1=\frac{1.38 e-5}{1.318 e-4} \frac{(5 e-3) \bullet 19.3 e 6}{(1.8101 e 4)^{2} \bullet(35440)} \bullet\left[\frac{\left[1+(1.8101 e 4)^{2} \bullet(1.318 e-4)^{2}\right]}{\left[1+(1.8101 e 4)^{2} \bullet(1.38 e-5)^{2}\right]\left[1+(1.8101 e 4)^{2} \bullet(9.361 e-6)^{2}\right]}\right]^{1 / 2} \\
& =2.153 \mathrm{nF} \\
& \mathrm{C} 2=2.153 \mathrm{nF}\left(\frac{1.318 \theta-4}{1.384 \theta-5}-1\right)=18.35 \mathrm{nF} \\
& R 2=\frac{1.318 \theta-4}{18.35 \theta-9}=7.18 \mathrm{k} \Omega
\end{aligned}
$$

if we choose R3 $=120 \mathrm{k}$; then $\mathrm{C} 3=\frac{9.361 \mathrm{e}-6}{120 \mathrm{e} 3}=78 \mathrm{pF}$.
Converting to standard component values gives the following filter values, which are shown in Figure 4.

$$
\begin{aligned}
& \mathrm{C} 1=2200 \mathrm{pF} \\
& \mathrm{R} 2=8.2 \mathrm{k} \Omega \\
& \mathrm{C} 2=0.018 \mu \mathrm{~F} \\
& \mathrm{R} 3=120 \mathrm{k} \Omega \\
& \mathrm{C} 3=78 \mathrm{pF}
\end{aligned}
$$

Note 1: See related equation for K_{ϕ} in Charge Pump Current Specification Definitions. For this example $V_{p}=5.0 \mathrm{~V}$. The value for K_{ϕ} can then be approximated using the curves in the Typical Performance Characteristics for Charge Pump Current vs D_{0} Voltage. The units for K_{ϕ} are in mA . You may also use $\mathrm{K}_{\phi}=(5 \mathrm{~mA} / 2 \pi \mathrm{rad})$, but in this case you must convert Kvco to (rad/V) multiplying by 2π.

FIGURE 5. PLL Reference Spurs
The reference spurious level is $<-66 \mathrm{dBc}$, due to the loop filter attenuation and the low spurious noise level of the LMX1511.

FIGURE 7. PLL Phase Nolse © $\mathbf{1 5 0} \mathbf{~ H z ~ O f f s e t ~}$

FIGURE 6. PLL Phase Noise 3.5 kHz Offset The phase noise level at 3 kHz offset is $-65 \mathrm{dBc} / \mathrm{Hz}$.

$$
\begin{array}{lll}
T_{1} 1.333 \mathrm{~ms} & T_{2}-178 \mu \mathrm{~s} & \Delta-1.511 \mathrm{~ms} \\
F_{1} 915.001000 \mathrm{MHz} & \mathrm{~F}_{2} 914.999000 \mathrm{MHz} & \Delta-2.000 \mathrm{kHz}
\end{array}
$$

TL/W/12340-42
FIGURE 8. Frequency Jump Lock Tlme
Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. Figure 8 shows the switching waveforms for a frequency jump of $857 \mathrm{MHz}-915 \mathrm{MHz}$. By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within $\pm 1 \mathrm{kHz}$. The lock time is seen to be $<1.6 \mathrm{~ms}$ for a frequency jump of 58 MHz .

Application Information (Continued)

EXTERNAL CHARGE PUMP

The LMX PLLatimum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump. Although the superior performance of NSC's on board charge pump eliminates the need for an external charge pump in most applications, certain system requirements are more stringent. In these cases, using an external charge pump allows the designer to take direct control of such parameters as charge pump voltage swing, current magnitude, TRI-STATE leakage, and temperature compensation.
One possible architecture for an external charge pump current source is shown in Figure 9. The signals ϕ_{p} and ϕ_{r} in the diagram, correspond to the phase detector outputs of the LMX1501/1511 frequency synthesizers. These logic signals are converted into current pulses, using the circuitry shown in Figure 9, to enable either charging or discharging of the loop filter components to control the output frequency of the PLL.
Referring to Figure 9, the design goal is to generate a 5 mA current which is relatively constant to within 5 V of the power supply rail. To accomplish this, it is important to establish as large of a voltage drop across R5, R8 as possible without saturating Q2, Q4. A voltage of approximately 300 mV provides a good compromise. This allows the current source reference being generated to be relatively repeatable in the absence of good Q1, Q2/Q3, Q4 matching. (Matched transistor pairs is recommended.) The $\phi \mathrm{p}$ and $\phi \mathrm{r}$ outputs are rated for a maximum output load current of 1 mA while 5 mA current sources are desired. The voltages developed across R4, 9 will consequently be approximately 258 mV , or 42 mV $<\mathrm{RB}, 5$, due to the current density differences $\left\{0.026^{*} 1 \mathrm{n}\right.$ (5 $\mathrm{mA} / 1 \mathrm{~mA})$) through the Q1, Q2/Q3, Q4 pairs.
In order to calculate the value of R7 it is necessary to first estimate the forward base to emitter voltage drop (Vfn,p) of the transistors used, the V_{OL} drop of $\phi \mathrm{p}$, and the V_{OH} drop of ϕ r's under 1 mA loads. (ϕ p's $\mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}$ and $\phi \mathrm{r} ; \mathrm{s} \mathrm{V}_{\mathrm{OH}}$ < 0.1V.)
Knowing these parameters along with the desired current allow us to design a simple external charge pump. Separating the pump up and pump down circuits facilitates the nodal analysis and give the following equations.

$$
\begin{aligned}
& R_{4}=\frac{V_{R 5}-V_{T} \bullet \ln \left(\frac{i_{\text {source }}}{i_{p \text { max }}}\right)}{i_{\text {source }}} \\
& R_{9}=\frac{V_{R 8}-V_{T} \bullet \ln \left(\frac{i_{\text {sink }}}{i_{n \text { max }}}\right)}{i_{\text {sink }}} \\
& R_{5}=\frac{V_{R 5} \bullet\left(\beta_{p}+1\right)}{i_{p \text { max }} \bullet\left(\beta_{p}+1\right)-i_{\text {source }}} \\
& R_{8}=\frac{V_{R 8} \bullet\left(\beta_{n}+1\right)}{i_{r \text { max }} \bullet\left(\beta_{n}+1\right)-i_{\text {sink }}} \\
& R_{6}=\frac{\left(V_{p}-V_{V O L \phi p}\right)-\left(V_{R 5}+V f p\right)}{i_{p \text { max }}} \\
& R_{7}=\frac{\left(V_{P}-V_{V O H \phi r}\right)-\left(V_{R 8}+V f n\right)}{i_{\text {max }}}
\end{aligned}
$$

EXAMPLE

Typical Device Parameters $\beta_{\mathrm{n}}=100, \beta_{\mathrm{p}}=50$
Typical System Parameters $\quad V_{P}=5.0 \mathrm{~V}$;
$\mathrm{V}_{\text {cntl }}=0.5 \mathrm{~V}-4.5 \mathrm{~V}$;
$V_{\phi p}=0.0 \mathrm{~V}, \mathrm{~V}_{\phi \mathrm{r}}=5.0 \mathrm{~V}$
Design Parameters
$I_{\text {SINK }}=I_{\text {SOURCE }}=5.0 \mathrm{~mA}$;
$V_{\mathrm{fn}}=\mathrm{V}_{\mathrm{fp}}=0.8 \mathrm{~V}$
$I_{\text {max }}=I_{\mathrm{pmax}=1 \mathrm{~mA}}$
$V_{\text {R8 }}=V_{\text {R } 5}=0.3 V$
$V_{\mathrm{OL} \phi \mathrm{p}}=V_{\mathrm{OH} \phi \mathrm{r}}=100 \mathrm{mV}$

TL/W/12340-46
FIGURE 9
Therefore select

$$
\begin{aligned}
& \mathrm{R}_{4}=\mathrm{R}_{9}=\frac{0.3 \mathrm{~V}-0.026 \cdot 1 \mathrm{n}(5.0 \mathrm{~mA} / 1.0 \mathrm{~mA})}{5 \mathrm{~mA}}=51.6 \Omega \\
& \mathrm{R}_{5}=\frac{0.3 \mathrm{~V} \cdot(50+1)}{1.0 \mathrm{~mA} \cdot(50+1)-5.0 \mathrm{~mA}}=332 \Omega \\
& \mathrm{R}_{8}=\frac{0.3 \mathrm{~V} \cdot(100-1)}{1.0 \mathrm{~mA} \cdot(100+1)-5.0 \mathrm{~mA}}=315.6 \Omega \\
& \mathrm{R}_{6}=\mathrm{R}_{7}=\frac{(5 \mathrm{~V}-0.1 \mathrm{~V})-(0.3 \mathrm{~V}+0.8 \mathrm{~V})}{1.0 \mathrm{~mA}}=3.8 \mathrm{k} \Omega
\end{aligned}
$$

LMX2314/LMX2315 PLLatinum ${ }^{\text {TM }}$ 1.2 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX2314 and the LMX2315 are high performance frequency synthesizers with integrated prescalers designed for RF operation up to 1.2 GHz . They are fabricated using Na tional's ABiC IV BiCMOS process.
The LMX2314 and the LMX2315 contain dual modulus prescalers which can select either a 64/65 or a 128/129 divide ratio at input frequencies of up to 1.2 GHz . Using a proprietary digital phase locked loop technique, the LMX2314/15's linear phase detector characteristics can generate very stable, low noise local oscillator signals.
Serial data is transferred into the LMX2314 and the LMX2315 via a three line MICROWIRETM interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2314 and the LMX2315 feature very low current consumption, typically 6 mA at 3 V .
The LMX2314 is available in a JEDEC 16-pin surface mount plastic package. The LMX2315 is available in a TSSOP 20-pin surface mount plastic package.

Features

- RF operation up to 1.2 GHz
- 2.7 V to 5.5 V operation
- Low current consumption:
$\mathrm{I}_{\mathrm{CC}}=6 \mathrm{~mA}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- Dual modulus prescaler: 64/65 or 128/129
- Internal balanced, low leakage charge pump
- Power down feature for sleep mode:
$\mathrm{I}_{\mathrm{CC}}=30 \mu \mathrm{~A}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- Small-outline, plastic, surface mount JEDEC, $0.150^{\prime \prime}$ wide, (2314) or TSSOP, 0.173" wide, (2315) package

Applications

- Cellular telephone systems (GSM, IS-54, IS-95, RCR-27)
- Portable wireless communications (DECT, ISM902-928 CT-2)
■ Other wireless communication systems

Block Diagram

TL／W／11766－2
JEDEC 16－Lead（0．150＂Wide）Small Outline Molded Package（M）
Order Number LMX2314M or LMX2314MX
See NS Package Number M16A

LMX2315

TL／W／11766－3

20－Lead（0．173＂Wide）Thin Shrink Small Outline Package（TM） Order Number LMX2315TM or LMX2315TMX

See NS Package Number MTC20

Pin Descriptions

Pin No．	Pin No．	Pin Name	1／0	Description
2314	2315	2314／2315	110	Descriplon
1	1	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input．A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator．The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate．May also be used as a buffer for an externally provided reference oscillator．
2	3	OSC ${ }_{\text {OUT }}$	0	Oscillator output．
3	4	V_{P}		Power supply for charge pump．Must be $\geq \mathrm{V}_{\mathrm{CC}}$ ．
4	5	$V_{C C}$		Power supply voltage input．Input may range from 2．7V to 5.5 V ．Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane．
5	6	D_{0}	0	Internal charge pump output．For connection to a loop filter for driving the input of an external VCO．
6	7	GND		Ground．
7	8	LD	0	Lock detect．Output provided to indicate when the VCO frequency is in＂lock＂． When the loop is locked，the pin＇s output is HIGH with narrow low pulses．
8	10	f_{IN}	1	Prescaler input．Small signal input from the VCO．
9	11	CLOCK	1	High impedance CMOS Clock input．Data is clocked in on the rising edge，into the various counters and registers．
10	13	DATA	1	Binary serial data input．Data entered MSB first．LSB is control bit．High impedance CMOS input．
11	14	LE	1	Load enable input（with internal pull－up resistor）．When LE transitions HIGH，data stored in the shift registers is loaded into the appropriate latch（control bit dependent）．Clock must be low when LE toggles high or low．See Serial Data Input Timing Diagram．
12	15	FC	1	Phase control select（with internal pull－up resistor）．When FC is LOW，the polarity of the phase comparator and charge pump combination is reversed．
X	16	BISW	0	Analog switch output．When LE is HIGH，the analog switch is ON，routing the internal charge pump output through BISW（as well as through D_{0} ）．
13	17	fout	0	Monitor pin of phase comparator input．CMOS output．
14	18	ϕ_{p}	0	Output for external charge pump．ϕ_{p} is an open drain N－channel transistor and requires a pull－up resistor．
15	19	PWDN	1	Power Down（with internal pull－up resistor）． PWDN $=$ HIGH for normal operation． PWDN＝LOW for power saving． Power down function is gated by the return of the charge pump to a TRI－STATE condition．
16	20	ϕ_{r}	0	Output for external charge pump．ϕ_{r} is a CMOS logic output．
X	2，9，12	NC		No connect．

Functional Block Diagram

X signifies a function not bonded out to a pin
TL／W／11766－4
Note 1：The power down function is gated by the charge pump to prevent any unwanted frequency jumps．Once the power down pin is brought low the part will go into power down mode when the charge pump reaches a TRI－STATE condition．

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifled d please contact the National S Office/Distributors for avallability	ces are required, conductor Sales specifications.
Power Supply Voltage	
$V_{C C}$	-0.3 V to +6.5 V
V_{P}	-0.3 V to +6.5 V
Voltage on Any Pin with GND $=O V\left(V_{1}\right)$	-0.3 V to +6.5 V
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (TL) (solder, 4 sec.$)$	$+260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Power Supply Voltage

$V_{C C}$	2.7 V to 5.5 V
V_{P}	$V_{C C}$ to +5.5 V
Operating Temperature $\left(T_{A}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to	
the device may occur. Operating Ratings indicate conditions for which the	
devici is intended to be functional, but do not guarantee specific perform-	
ance limits. For guaranteed specifications and test conditions, see the Elec-	
trical Characteristics. The guaranteed specifications apply only for the test	
conditions listed.	

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Power Supply Current	$\mathrm{V}_{C C}=3.0 \mathrm{~V}$		6.0	8.0	mA
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		6.5	8.5	mA
ICC-PWDN	Power Down Current	$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$		30	180	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		60	350.	$\mu \mathrm{A}$
$\mathrm{fin}^{\text {l }}$	Maximum Operating Frequency		1.2			GHz
fosc	Maximum Oscillator Frequency		20			MHz
		No Load on OSC Out	40			MHz
f_{ϕ}	Maximum Phase Detector Frequency		10		.	MHz
Pf IN	Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.3 V	-15		$+6$	dBm
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$ to 5.5 V	-10		+6	
Vosc	Oscillator Sensitivity	$\mathrm{OSC}_{\text {IN }}$	0.5			$V_{p p}$
V_{H}	High-Level Input Voltage	*	$0.7 \mathrm{~V}_{\mathrm{CC}}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	*			$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current (Clock, Data)	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
ILL	Low-Level Input Current (Clock, Data)	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{IIH}_{\mathrm{H}}$	Oscillator Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
ILL		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100		"	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current (LE, FC)	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
ILL	Low-Level Input Current (LE, FC)	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100		1.0	$\mu \mathrm{A}$

-Except $f_{i N}$ and OSG $_{\text {IN }}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }^{1} \mathrm{D}_{0}$-source	Charge Pump Output Current	$\mathrm{V}_{\mathrm{D}_{0}}=\mathrm{V}_{\mathrm{P}} / 2$	-	-5.0		mA
${ }^{D_{0} \text {-sink }}$		$V_{D_{0}}=V_{P} / 2$		5.0		mA
${ }^{D_{0}-T r i}$	Charge Pump TRI-STATE ${ }^{\text {® }}$ Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{0}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=85^{\circ} \mathrm{C} \end{aligned}$	-2.5		2.5	nA
$\mathrm{I}_{\mathrm{o}} \mathrm{vs} \mathrm{V}_{\mathrm{D}_{0}}$	Charge Pump Output Current Magnitude Variation vs Voltage (Note 1)	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{D_{0}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$			15	\%
$I_{D_{0}-\text { sink }} \mathrm{vs}$ $I_{D_{0}} \text {-source }$	Charge Pump Output Current Sink vs Source Mismatch (Note 2)	$\begin{aligned} & V_{D_{0}}=V_{P} / 2 \\ & T=25^{\circ} \mathrm{C} \end{aligned}$			10	\%
$\mathrm{I}_{\mathrm{o}} \mathrm{vs}$ T	Charge Pump Output Current Magnitude Variation vs Temperature (Note 3)	$\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{D}_{\mathrm{O}}}=\mathrm{V}_{\mathrm{P}} / 2 \end{aligned}$		10		\%
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}^{* *}$	$V_{C C}-0.8$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}^{* *}$			0.4	V
VOH	High-Level Output Voltage (OSCOUT)	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	$V_{C C}-0.8$			V
V_{OL}	Low-Level Output Voltage (OSCOUT)	$\mathrm{lOL}=200 \mu \mathrm{~A}$			0.4	V
lOL	Open Drain Output Current ($\phi_{\text {p }}$)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0			mA
IOH	Open Drain Output Current (ϕ_{p})	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
RON	Analog Switch ON Resistance (2315)			100		Ω
t_{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
${ }^{\text {t }} \mathrm{CH}$	Data to Clock Hold Time	See Data Input Timing	10			ns
t ${ }^{\text {CWH }}$	Clock Pulse Width High	See Data Input Timing	50			ns
${ }_{\text {t CWL }}$	Clock Pulse Width Low	See Data Input Timing	50			ns
tes	Clock to Enable Set Up Time	See Data Input Timing	50			ns
tew	Enable Pulse Width	See Data Input Timing	50			ns

**Except OSCout
Notes 1, 2, 3: See related equations in Charge Pump Current Specification Definitions

Typical Performance Characteristics

TL／W／11766－29

Charge Pump Current vs $\mathrm{D}_{\mathbf{0}}$ Voltage

TL／W／11766－31

Charge Pump Current Variation

TL／W／11766－32

Oscillator Input Sensitivity

Typical Performance Characteristics (Continued)

Input Sensitivity vs Frequency

TL/W/11766-35
Input Sensitivity at Temperature
Variation, $\mathbf{V C c}_{\mathbf{c c}}=\mathbf{5 V}$

TL/W/11766-37

LMX2314 Input Impedance vs Frequency

$V_{C C}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ to $1,600 \mathrm{MHz}$

TL/W/11766-40

[^0]Input Sensitivity vs Frequency

TL/W/11766-36
Input Sensitivity at Temperature Variation, $\mathbf{V C c}_{\mathbf{C c}}=\mathbf{3 V}$

TL/W/11766-38
LMX2315 Input Impedance vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ to $1,600 \mathrm{MHz}$

TL/W/11766-39
Marker $1=500 \mathrm{MHz}$, Real $=69$, Imag. $=-330$
Marker $2=900 \mathrm{MHz}$, Real $=36$, Imag. $=-193$
Marker $3=1 \mathrm{GHz}$, Real $=35$, Imag. $=-172$
Marker $4=1,500 \mathrm{MHz}$, Real $=30$, Imag. $=-106$

Charge Pump Current Specification Definitions

$11=C P$ sink current at $V_{D_{0}}=V_{P}-\Delta V$
$14=C P$ source current at $V_{D_{0}}=V_{P}-\Delta V$
$12=C P$ sink current at $V_{D_{0}}=V_{P} / 2$
$15=C P$ source current at $V_{D_{0}}=V_{P} / 2$
$13=C P$ sink current at $V_{D_{0}}=\Delta V$
$16=C P$ source current at $V_{D_{0}}=\Delta V$
$\Delta V=$ Voltage offset from positive and negative rails. Dependent on $V C O$ tuning range relative to $V_{C C}$ and ground. Typical values are between 0.5 V and 1.0 V .

1. $I_{D_{0}}$ vs $V_{D_{0}}=$ Charge Pump Output Current magnitude variation vs Voltage $=$

$$
[1 / 2 *|11|-|13|] /[1 / 2 *\{|11|+|13|\}] * 100 \% \text { and }[1 / 2 *|14|-\mid 16]] /[1 / 2 *\{|14|+|16|\}] * 100 \%
$$

2. $I_{D_{0-\text { sink }}}$ vs $I_{D_{0-s o u r c e}}=$ Charge Pump Output Current Sink vs Source Mismatch $=$
$[|12|-|15|] /[1 / 2 \cdot\{|12|+|15|\}] * 100 \%$
3. I_{D} vs $\mathrm{T}_{\mathrm{A}}=$ Charge Pump Output Current magnitude variation vs Temperature $=$
[|2 © temp| - |12 @ $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 12$ @ $25^{\circ} \mathrm{C} \mid * 100 \%$ and [| 15 @ temp| - $\mid 15$ @ $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 15$ @ $25^{\circ} \mathrm{C} \mid \cdot 100 \%$
4. $\mathrm{K} \phi=$ Phase detector/charge pump gain constant $=$
$1 / 2 \cdot\{| | 2|+|15|\}$
TL/W/11766-41

RF Sensitivity Test Block Diagram

Note 1: $N=10,000 \quad R=50 \quad P=64$
Note 2: Sensitivity limit is reached when the error of the divided RF output, fout, is greater than or equal to $\mathbf{1} \mathbf{~ H z}$.

Functional Description

The simplified block diagram below shows the 19 -bit data register, the 14 -bit R Counter and the S Latch, and the 18 -bit N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first. If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the S Latch (prescaler select: 64/65 or 128/129). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter (programmable divider).

PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)

If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129). Serial data format is shown below.

14-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide Ratio R	$\begin{gathered} S \\ 14 \end{gathered}$	$\begin{gathered} S \\ 13 \end{gathered}$	$\begin{gathered} S \\ 12 \end{gathered}$		$\begin{gathered} S \\ 10 \end{gathered}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & S \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	S	$\begin{aligned} & S \\ & 5 \end{aligned}$	4	3	2	S
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-		-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 16383
S1 to S14: These bits select the divide ratio of the programmable reference divider.
C: Control bit (set to HIGH level to load R counter and S Latch) Data is shifted in MSB first.

Functional Description（Continued）

PROGRAMMABLE DIVIDER（N COUNTER）

The N counter consists of the 7 －bit swallow counter（A counter）and the 11－bit programmable counter（B counter）．If the Control Bit（last bit shifted into the Data Register）is LOW，data is transferred from the 19－bit shift register into a 7 －bit latch（which sets the 7－bit Swallow（A）Counter）and an 11－bit latch（which sets the 11－bit programmable（B）Counter）．Serial data format is shown below．

TL／W／11766－7
Note：S8 to S18：Programmable counter divide ratio control bits（3 to 2047）

7－BIT SWALLOW COUNTER DIVIDE RATIO （A COUNTER）

Divide Ratlo A	\mathbf{S}						
0	4	3	2	1			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Note：Divide ratio： 0 to 127

$B \geq A$

11－BIT PROGRAMMABLE COUNTER DIVIDE RATIO （B COUNTER）

Divide Ratlo B	\mathbf{S}	$\mathbf{1 8}$	\mathbf{S}								
$\mathbf{1 5}$	\mathbf{S}	\mathbf{S}									
$\mathbf{1 3}$	12	11	10	$\mathbf{9}$	8						
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Note：Divide ratio： 3 to 2047 （Divide ratios less than 3 are prohibited） $B \geq A$
PULSE SWALLOW FUNCTION
$\mathrm{f}_{\mathrm{VCO}}=[(\mathrm{P} \times \mathrm{B})+\mathrm{A}] \times \mathrm{fosc}_{\mathrm{ol}} / \mathrm{R}$
fvco：Output frequency of external voltage controlled oscil－ lator（VCO）
B：Preset divide ratio of binary 11－bit programmable counter（3 to 2047）
A：Preset divide ratio of binary 7－bit swallow counter （ $0 \leq A \leq 127, A \leq B$ ）
fosc：Output frequency of the external reference frequency oscillator
R：Preset divide ratio of binary 14－bit programmable ref－ erence counter（3 to 16383）
P：Preset modulus of dual modulus prescaler（64 or 128）

Functional Description (Continued)
SERIAL DATA INPUT TIMING

TL/W/11766-8
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{Cc}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and 2.6 V @ $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

Phase Characteristics

In normal operation, the FC pin is used to reverse the polarity of the phase detector. Both the internal and any external charge pump are affected.
Depending upon VCO characteristics, FC pin should be set accordingly:

When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT;
When VCO characteristics are like (2), FC should be set LOW.
When FC is set HIGH or OPEN CIRCUIT, the monitor pin of the phase comparator input, $f_{\text {out }}$, is set to the reference
 divider output, f_{r}. When FC is set LOW, $f_{\text {out }}$ is set to the programmable divider output, f_{p}.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

TL/W/11766-10
Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{0} pin when the loop is locked.
$\mathrm{FC}=\mathrm{HIGH}$

Analog Switch (2315 only)

The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the D_{0} pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).

Typical Crystal Oscillator Circuit

A typical circuit which can be used to implement a crystal oscillator is shown below.

TL/W/11766-12

Typical Lock Detect Circuit

A lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.

TL/W/11766-13

Typical Application Example

TL/W/11766-14

* VCO is assumed AC coupled.
** $R_{\mathbb{I N}}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. f_{I} RF impedance ranges from 40Ω to 100Ω.
*** 50Ω termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. $\mathrm{OSC}_{I N}$ may be AC or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below)

Proper use of grounds and bypass capacitors is essential to achieve a high level of performance.
Crosstalk between pins can be reduced by careful board layout.
This is a static sensitive device. It should be handled only at static free work stations.

Application Information

LOOP FILTER DESIGN

A block diagram of the basic phase locked loop is shown．

TL／W／11766－16
FIGURE 1．Basic Charge Pump Phase Locked Loop

An example of a passive loop filter configuration，including the transfer function of the loop filter，is shown in Figure 2.

TL／W／11766－17

$$
Z(s)=\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2}
$$

FIGURE 2．2nd Order Passive Filter
Define the time constants which determine the pole and zero frequencies of the filter transfer function by letting

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T} 1=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \tag{1b}
\end{equation*}
$$

The PLL linear model control circuit is shown along with the open loop transfer function in Figure 3．Using the phase detector and VCO gain constants［ $\mathrm{K} \phi$ and $\mathrm{K}_{\mathrm{VCO}}$ ］and the loop filter transfer function［Z（s）］，the open loop Bode plot can be calculated．The loop bandwidth is shown on the Bode plot（ $\omega \mathrm{p}$ ）as the point of unity gain．The phase margin is shown to be the difference between the phase at the unity gain point and -180° ．

TL／W／11766－18
Open Loop Gain $=\theta_{\mathrm{i}} / \theta_{\mathrm{e}}=\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
$=\mathrm{K} \phi \mathrm{Z}(\mathrm{s}) \mathrm{K}_{\mathrm{VCO}} / \mathrm{Ns}$
Closed Loop Gain $=\theta_{0} / \theta_{\mathrm{i}}=\mathrm{G}(\mathrm{s}) /[1+\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})]$

TL／W／11766－19
FIGURE 3．Open Loop Transfer Function
Thus we can calculate the 3rd order PLL Open Loop Gain in terms of frequency
$\left.G(s) \bullet H(s)\right|_{s=j} \bullet \omega=\frac{-K \phi \bullet K_{V C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2}$
From equation 2 we can see that the phase term will be dependent on the single pole and zero such that

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \cdot \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{3}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\frac{d \phi}{d \omega}=\frac{T 2}{1+(\omega \cdot T 2)^{2}}-\frac{T 1}{1+(\omega \bullet T 1)^{2}}=0 \tag{4}
\end{equation*}
$$

we find the frequency point corresponding to the phase in－ flection point in terms of the filter time constants T1 and T2． This relationship is given in equation 5.

$$
\begin{equation*}
\omega_{\mathrm{p}}=1 / \sqrt{T 2 \cdot \mathrm{~T} 1} \tag{5}
\end{equation*}
$$

For the loop to be stable the unity gain point must occur before the phase reaches -180 degrees．We therefore want the phase margin to be at a maximum when the magni－ tude of the open loop gain equals 1．Equation 2 then gives

$$
\begin{equation*}
\mathrm{C} 1=\frac{K \phi \cdot K_{V C O} \bullet T 1}{\omega_{\mathrm{p}}^{2} \bullet N \bullet T 2}\left\|\frac{\left(1+j \omega_{\mathrm{p}} \bullet T 2\right)}{\left(1+j \omega_{\mathrm{p}} \bullet \mathrm{~T} 1\right)}\right\| \tag{6}
\end{equation*}
$$

Application Information (Continued)

Therefore, if we specify the loop bandwidth, ω_{p}, and the phase margin, ϕ_{p}, Equations 1 through 6 allow us to calculate the two time constants, T1 and T2, as shown in equations 7 and 8. A common rule of thumb is to begin your design with a 45° phase margin.

$$
\begin{gather*}
T 1=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}} \tag{7}\\
\mathrm{~T} 2=\frac{1}{\omega_{\mathrm{p}}^{2} \cdot \mathrm{~T} 1} \tag{8}
\end{gather*}
$$

From the time constants $T 1$, and T2, and the loop bandwidth, ω_{p}, the values for C1, R2, and C2 are obtained in equations 9 to 11.

$$
\begin{gather*}
\mathrm{C} 1=\frac{\mathrm{T} 1}{\mathrm{~T} 2} \bullet \frac{\mathrm{~K} \phi \bullet \mathrm{~K}_{\mathrm{VCO}}}{\omega_{\mathrm{p}}^{2} \bullet \mathrm{~N}} \sqrt{\frac{1+\left(\omega_{\mathrm{p}} \bullet \mathrm{~T} 2\right)^{2}}{1+\left(\omega_{\mathrm{p}} \bullet \mathrm{~T} 1\right)^{2}}} \tag{9}\\
\mathrm{C} 2=\mathrm{C} 1 \bullet\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) \tag{10}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{11}
\end{gather*}
$$

$\mathrm{K}_{\mathrm{VCO}}(\mathrm{MHz} / \mathrm{V}) \quad$ Voltage Controlled Oscillator (VCO) Tuning Voltage constant. The frequency vs voltage tuning ratio.
$K \phi$ (mA) Phase detector/charge pump gain constant. The ratio of the current output to the input phase differential.
$\mathrm{N} \quad$ Main divider ratio. Equal to $\mathrm{RF}_{\text {opt }} / \mathrm{f}_{\text {ref }}$ RF opt $^{(M H z)} \quad$ Radio Frequency output of the VCO at which the loop filter is optimized.
$f_{\text {ref }}(\mathrm{kHz}) \quad \begin{aligned} & \text { Frequency of the phase detector in- } \\ & \text { puts. Usually equivalent to the RF } \\ & \text { channel spacing. }\end{aligned}$

In choosing the loop filter components a trade off must be made between lock time, noise, stability, and reference spurs. The greater the loop bandwidth the faster the lock time will be, but a large loop bandwidth could result in higher reference spurs. Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input, VCO and division ratios used. The reference spurs can be reduced by reducing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will decrease as a result.

THIRD ORDER FILTER

A low pass filter section may be needed for some applications that require additional rejection of the reference sidebands, or spurs. This configuration is given in Figure 4. In order to compensate for the added low pass section, the component values are recalculated using the new open loop unity gain frequency. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C 1 and C 2 while slightly decreasing R2.
The added attenuation from the low pass filter is:

$$
\begin{equation*}
\text { ATTEN }=20 \log \left[\left(2 \pi f_{\text {ref }} \bullet \mathrm{R} 3 \bullet \mathrm{C} 3\right)^{2}+1\right] \tag{12}
\end{equation*}
$$

Defining the additional time constant as

$$
\begin{equation*}
\mathrm{T} 3=\mathrm{R} 3 \cdot \mathrm{C} 3 \tag{13}
\end{equation*}
$$

Then in terms of the attenuation of the reference spurs added by the low pass pole we have

$$
\begin{equation*}
\mathrm{T} 3=\sqrt{\frac{10 \text { ATTEN } / 20-1}{\left(2 \pi \bullet \mathrm{f}_{\mathrm{ref}}\right)^{2}}} \tag{14}
\end{equation*}
$$

We then use the calculated value for loop bandwidth ω_{c} in equation 11, to determine the loop filter component values in equations $15-17 . \omega_{c}$ is slightly less than ω_{p}, therefore the frequency jump lock time will increase.

$$
\begin{align*}
& T 2=\frac{1}{\omega_{c}^{2} \bullet(T 1+T 3)} \tag{15}\\
& \omega_{c}=\frac{\tan \phi \bullet(T 1+T 3)}{\left[(T 1+T 3)^{2}+T 1 \bullet T 3\right]} \bullet\left[\sqrt{1+\frac{(T 1+T 3)^{2}+T 1 \bullet T 3}{[\tan \phi \bullet(T 1+T 3)]^{2}}}-1\right] \tag{16}\\
& C 1=\frac{T 1}{T 2} \bullet \frac{K \phi \bullet K_{V C O}}{\omega_{c}^{2} \bullet N} \bullet\left[\frac{\left(1+\omega_{c}^{2} \bullet T 2^{2}\right)}{\left(1+\omega_{c}^{2} \bullet T 1^{2}\right)\left(1+\omega_{c}^{2} \bullet T 3^{2}\right)}\right]^{1 / 2} \tag{17}
\end{align*}
$$

Application Information (Continued)

Consider the following application example:

Example \#1

$K_{V C O}=20 \mathrm{MHz} / \mathrm{V}$
$\mathrm{K} \phi=5 \mathrm{~mA}$ (Note 1)
$\mathrm{RF}_{\text {opt }}=900 \mathrm{MHz}$
$\mathrm{F}_{\text {ref }}=200 \mathrm{kHz}$
$N=R F_{\text {opt }} / f_{\text {ref }}=4500$
$\omega_{\mathrm{p}}=2 \pi * 20 \mathrm{kHz}=1.25605$
$\phi_{\mathrm{p}}=45^{\circ}$
ATTEN $=20 \mathrm{~dB}$

$$
\begin{aligned}
\mathrm{T} 1= & \frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}}=3.29 \mathrm{e}-6 \\
\mathrm{~T} 3= & \sqrt{\frac{10(20 / 20)-1}{(2 \pi \cdot 200 \mathrm{e} 3)^{2}}}=2.387 \mathrm{e}-6 \\
\omega_{\mathrm{c}}= & \frac{(3.29 e-6+2.387 \mathrm{e}-6)}{\left[(3.29 \mathrm{e}-6+2.387 e-6)^{2}+3.29 e-6 \cdot 2.387 \mathrm{e}-6\right]} \\
& \bullet\left[\sqrt{1+\frac{(3.29 \mathrm{e}-6+2.387 e-6)^{2}+3.29 \mathrm{e}-6 \cdot 2.387 e-6}{[(3.29 \mathrm{e}-6+2.387 e-6)]^{2}}}-1\right] \\
= & 7.045 \mathrm{e} 4 \\
\mathrm{~T} 2= & \frac{1}{(7.045 e 4)^{2} \bullet(3.29 \mathrm{e}-6+2.387 e-6)}=3.549 \mathrm{e}-5 \\
\mathrm{C} 1= & \frac{3.29 \mathrm{e}-6}{3.549 \mathrm{e}-5} \frac{(5 \mathrm{e}-3) \cdot 20 \mathrm{e} 6}{(7.045 \mathrm{e} 4)^{2} \bullet 4500} \bullet\left[\frac{\left[1+(7.045 \mathrm{e} 4)^{2} \bullet(3.549 \mathrm{e}-5)^{2}\right]}{\left[1+(7.045 \mathrm{e} 4)^{2} \bullet(3.29 \mathrm{e}-6)^{2}\right]\left[1+(7.045 \mathrm{e} 4)^{2} \bullet(2.387 \mathrm{e}-6)^{2}\right]}\right]^{1 / 2} \\
= & 1.085 \mathrm{nF} \\
\mathrm{C} 2= & 1.085 \mathrm{nF} \cdot\left(\frac{3.55 \mathrm{e}-5}{3.29 \mathrm{e}-6}-1\right)=10.6 \mathrm{nF} ; \\
\mathrm{R} 2= & \frac{3.55 \mathrm{e}-5}{10.6 e-9}=3.35 \mathrm{k} \Omega ;
\end{aligned}
$$

if we choose $\mathrm{R} 3=22 \mathrm{k}$; then $\mathrm{C} 3=\frac{2.34 \mathrm{e}-6}{22 \mathrm{e} 3}=106 \mathrm{pF}$.
Converting to standard component values gives the following filter values, which are shown in Figure 4.

$$
\begin{aligned}
& \mathrm{C1}=1000 \mathrm{pF} \\
& \mathrm{R} 2=3.3 \mathrm{k} \Omega \\
& \mathrm{C} 2=10 \mathrm{nF} \\
& \mathrm{R} 3=22 \mathrm{k} \Omega \\
& \mathrm{C} 3=100 \mathrm{pF}
\end{aligned}
$$

Note 1: See related equation for $K \phi$ in Charge Pump Current Specification Definitions. For this example $\mathrm{V}_{\mathrm{P}}=5.0 \mathrm{~V}$. The value of $\mathrm{K} \phi$ can then be approximated using the curves in the Typical Peformance Characteristics for Charge Pump Current vs. Doltage. The units for $K \phi$ are in mA. You may also use $\mathrm{K} \phi=(5 \mathrm{~mA} / 2 \pi \mathrm{rad})$, but in this case you must convert $\mathrm{K}_{\mathrm{vco}}$ to (rad/V) multiplying by 2π.

TL/W/11766-20
FIGURE 4. $\mathbf{\sim} \mathbf{2 0} \mathbf{k H z}$ Loop Filter

Application Information (Continued)

MEASUREMENT RESULTS

FIGURE 5. PLL Reference Spurs
The reference spurious level is $<-74 \mathrm{dBc}$, due to the loop filter attenuation and the low spurious noise level of the LMX2315.

FIGURE 6. PLL Phase Noise 10 kHz Offset
The phase noise level at 10 kHz offset is $-80 \mathrm{dBc} / \mathrm{Hz}$.

FIGURE 7. PLL Phase Nolse @ 1 kHz Offset The phase noise level at 1 kHz offset is $-79.5 \mathrm{dBc} / \mathrm{Hz}$.

TL/W/11766-24
FIGURE 8. Frequency Jump Lock Time
Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. Figure 8 shows the switching waveforms for a frequency jump of 865 MHz to 915 MHz . By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within $\pm 500 \mathrm{~Hz}$. The lock time is seen to be less than 500μ sor a frequency jump of 50 MHz .

Application Information (Continued)

EXTERNAL CHARGE PUMP

The LMX PLLatimum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump. Although the superior performance of NSC's on board charge pump eliminates the need for an external charge pump in most applications, certain system requirements are more stringent. In these cases, using an external charge pump allows the designer to take direct control of such parameters as charge pump voltage swing, current magnitude, TRI-STATE leakage, and temperature compensation.
One possible architecture for an external charge pump current source is shown in Figure 9. The signals ϕ_{p} and ϕ_{r} in the diagram, correspond to the phase detector outputs of the LMX2314/2315 frequency synthesizers. These logic signals are converted into current pulses, using the circuitry shown in Figure 9, to enable either charging or discharging of the loop filter components to control the output frequency of the PLL.
Referring to Figure 9, the design goal is to generate a 5 mA current which is relatively constant to within 5 V of the power supply rail. To accomplish this, it is important to establish as large of a voltage drop across R5, R8 as possible without saturating Q2, Q4. A voltage of approximately 300 mV provides a good compromise. This allows the current source reference being generated to be relatively repeatable in the absence of good Q1, Q2/Q3, Q4 matching. (Matched transistor pairs is recommended.) The $\phi \mathrm{p}$ and $\phi \mathrm{r}$ outputs are rated for a maximum output load current of 1 mA while 5 mA current sources are desired. The voltages developed across R4, 9 will consequently be approximately 258 mV , or 42 mV < R8, 5, due to the current density differences $\left\{0.026^{\prime \prime}\right.$ in ($5 \mathrm{~mA} / 1 \mathrm{~mA}$) \} through the Q1, Q2/Q3, Q4 pairs. In order to calculate the value of R7 it is necessary to first estimate the forward base to emitter voltage drop (Vfn,p) of the transistors used, the $V_{O L}$ drop of ϕp, and the $V_{O H}$ drop of ϕ r's under 1 mA loads. ($\phi \mathrm{p}$'s $\mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}$ and ϕ r's $\mathrm{V}_{\mathrm{OH}}<0.1 \mathrm{~V}$.)
Knowing these parameters along with the desired current allow us to design a simple external charge pump. Separating the pump up and pump down circuits facilitates the nodal analysis and give the following equations.

$$
\begin{aligned}
& R_{4}=\frac{V_{R 5}-V_{T} \bullet \ln \left(\frac{i_{\text {source }}}{i_{p \text { max }}}\right)}{i_{\text {source }}} \\
& R_{9}=\frac{V_{R 8}-V_{T} \bullet \ln \left(\frac{i_{\text {sink }}}{i_{n \text { max }}}\right)}{i_{\text {sink }}} \\
& R_{5}=\frac{V_{R 5} \bullet\left(\beta_{p}+1\right)}{i_{p \text { max }} \bullet\left(\beta_{p}+1\right)-i_{\text {source }}} \\
& R_{8}=\frac{V_{R 8} \bullet\left(\beta_{n}+1\right)}{i_{r \max } \bullet\left(\beta_{n}+1\right) i_{\text {sink }}} \\
& R_{6}=\frac{\left(V_{p}-V_{V O L \phi p}\right)-\left(V_{R 5}+V f p\right)}{i_{p \max }} \\
& R_{7}=\frac{\left(V_{P}-V_{V O H \phi r}\right)-\left(V_{R 8}+V f n\right)}{i_{\max }}
\end{aligned}
$$

EXAMPLE

Typical Device Parameters $\quad \beta_{\mathrm{n}}=100, \beta_{\mathrm{p}}=50$
Typical System Parameters
$\mathrm{V}_{\mathrm{p}}=5.0 \mathrm{~V}$;
$V_{\mathrm{cntl}}=0.5 \mathrm{~V}-4.5 \mathrm{~V}$;
$\mathrm{V}_{\phi \mathrm{p}}=0.0 \mathrm{~V} ; \mathrm{V}_{\phi r}=5.0 \mathrm{~V}$
Design Parameters
$I_{\text {SINK }}=I_{\text {SOURCE }}=5.0 \mathrm{~mA}$;
$V_{f n}=V_{f p}=0.8 \mathrm{~V}$
$I_{\text {max }}=I_{\text {max }}=1 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{RB}}=\mathrm{V}_{\mathrm{R} 5}=0.3 \mathrm{~V}$
$V_{O L \phi p}=V_{O H \phi r}=100 \mathrm{mV}$

FIGURE 9
Therefore select

$$
\begin{aligned}
& R_{4}=R_{9}=\frac{0.3 \mathrm{~V}-0.026 \cdot 1 \mathrm{n}(5.0 \mathrm{~mA} / 1.0 \mathrm{~mA})}{5 \mathrm{~mA}}=51.6 \Omega \\
& \mathrm{R}_{5}=\frac{0.3 \mathrm{~V} \cdot(50+1)}{1.0 \mathrm{~mA} \cdot(50+1)-5.0 \mathrm{~mA}}=332 \Omega \\
& \mathrm{R}_{8}=\frac{0.3 \mathrm{~V} \cdot(100-1)}{1.0 \mathrm{~mA} \cdot(100+1)-5.0 \mathrm{~mA}}=315.6 \Omega \\
& \mathrm{R}_{6}=\mathrm{R}_{7}=\frac{(5 \mathrm{~V}-0.1 \mathrm{~V})-(0.3 \mathrm{~V}+0.8 \mathrm{~V})}{1.0 \mathrm{~mA}}=3.8 \mathrm{k} \Omega
\end{aligned}
$$

LMX2301
 PLLatinum ${ }^{\text {TM }} 160$ MHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX2301 is a high performance frequency synthesizer designed for RF operation up to 160 MHz . It is fabricated using National's ABiC IV BiCMOS process.
Using a proprietary digital phase locked loop technique, the LMX2301's linear phase detector characteristics can generate very stable, low noise local oscillator signals.
Serial data is trarıiserred into the LMX2301 via a three line MICROWIRETM interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V .
The LMX2301 features very low current consumption, typically 2 mA at 3 V .
The LMX2301 is available in a TSSOP 20-pin surface mount plastic package.

Features

■ RF operation up to 160 MHz

- 2.7 V to 5.5 V operation
- Low current consumption: $\mathrm{I}_{\mathrm{CC}}=2 \mathrm{~mA}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- Internal balanced, low leakage charge pump

E Thin Small-outline, plastic, surface mount TSSOP, $0.173^{\prime \prime}$ wide package

Applications

- Analog Cellular telephone systems (AMPS, ETACS, NMT)
- Portable wireless communications (PCS/PCN, cordless)
- Other wireless communication systems

Block Diagram

National Semiconductor

ADVANCE INFORMATION

LMX2305
 PLLatinum ${ }^{\text {TM }} 550 \mathrm{MHz}$ Frequency Synthesizer for RF Personal Communications

General Description

The LMX2305 is a high performance frequency synthesizer with an integrated prescaler designed for RF operation up to 550 MHz . It is fabricated using National's ABiC IV BiCMOS process.
The LMX2305 contains a dual modulus prescaler which can select either a 64/65 or a 128/129 divide ratio at input frequencies of up to 550 MHz . Using a proprietary digital phase locked loop technique, the LMX2305's linear phase detector characteristics can generate very stable, low noise local oscillator signals.
Serial data is transferred into the LMX2305 via a three line MICROWIRETM interface (Data, Enable, Clock). Supply voltage can range from 2.65 V to 5.5 V . The LMX2305 features very low current consumption, typically 3.0 mA at 2.75 V .
The LMX2305 is available in a TSSOP 20-pin surface mount plastic package.

Features

- RF operation up to 550 MHz

E 2.65 V to 5.5 V operation

- Low current consumption: $l_{C C}=3.0 \mathrm{~mA}$ (typ) at $V_{C C}=2.75 \mathrm{~V}$
- Dual modulus prescaler: 64/65 or 128/129
- Internal balanced, low leakage charge pump

■ Small-outline, plastic, surface mount TSSOP, 0.173" wide package

Applications

- Analog Cellular telephone systems (AMPS, ETACS, NMT)
E Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Other wireless communication systems

Block Diagram

LMX2320/LMX2325 PLLatinum ${ }^{\text {TM }}$ Frequency Synthesizer for RF Personal Communications LMX2325 2.5 GHz LMX2320 2.0 GHz

General Description

The LMX2320 and the LMX2325 are high performance frequency synthesizers with integrated prescalers designed for RF operation up to 2.5 GHz . They are fabricated using Na tional's ABiC IV EiCMOS process.
A 64/65 or a 128/129 divide ratio can be selected for the LMX2320 RF synthesizer at input frequencies of up to 2.0 GHz , while $32 / 33$ and $64 / 65$ divide ratios are available in the 2.5 GHz LMX2325. Using a proprietary digital phase locked loop technique, the LMX2320/25's linear phase detector characteristics can generate very stable, low noise local oscillator signals.
Serial data is transferred into the LMX2320 and the LMX2325 via a three line MICROWIRETM interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2320 and the LMX2325 feature very low current consumption, typically 10 mA and 11 mA respectively.
The LMX2320 and the LMX2325 are available in a TSSOP 20-pin surface mount plastic package.

Features

- RF operation up to 2.5 GHz
- 2.7 V to 5.5 V operation
- Low current consumption
- Dual module prescaler: LM2325

32/33 or 64/65
LM2320
64/65 or 128/129

- Internal balanced, low leakage charge pump
- Power down feature for sleep mode: $I_{C C}=30 \mu \mathrm{~A}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
■ Small-outline, plastic, surface mount TSSOP, 0.173" wide

Applications

- Cellular telephone systems (RCR-27)
- Portable wireless communications (DECT, PHS)
- CATV
- Other wireless communication systems

Block Diagram

Connection Diagrams

LMX2320/LMX2325

TL/W/12339-2
20-Lead ($0.173^{\prime \prime}$ Wide) Thin Shrink Small Outline Package (TM) Order Number LMX2325TM, LMX2325TMX, LMX2320TM or LMX2320TMX See NS Package Number MTC20

Pin Descriptions

Pin No.	Pin Name	1/0	Description
1	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input. A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate. May also be used as a buffer for an externally provided reference oscillator.
3	OSCOUT	0	Oscillator output.
4	V_{P}		Power supply for charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
5	$V_{C C}$		Power supply voltage input. Input may range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
6	D_{0}	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
7	GND		Ground.
8	LD	0	Lock detect. Output provided to indicate when the VCO frequency is in "lock". When the loop is locked, the pin's output is HIGH with narrow low pulses.
10	fin	1	Prescaler input. Small signal input from the VCO.
11	CLOCK	1	High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.
13	DATA	1	Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.
14	LE	1	Load enable input (with internal pull-up resistor). When LE transitions HIGH, data stored in the shift registers is loaded into the appropriate latch (control bit dependent). Clock must be low when LE toggles high or low. See Serial Data Input Timing Diagram.
15	FC	1	Phase control select (with internal pull-up resistor). When FC is LOW, the polarity of the phase comparator and charge pump combination is reversed.
16	BISW	0	Analog switch output. When LE is HIGH, the analog switch is ON, routing the internal charge pump output through BISW (as well as through D_{o}).
17	fout	0	Monitor pin of phase comparator input. CMOS output.
18	ϕ_{p}	0	Output for external charge pump. ϕ_{p} is an open drain N -channel transistor and requires a pull-up resistor.
19	PWDN	1	Power Down (with internal pull-up resistor). PWDN $=$ HIGH for normal operation. PWDN = LOW for power saving. Power down function is gated by the return of the charge pump to a TRI-STATE condition.
20	ϕ_{r}	0	Output for external charge pump. ϕ_{r} is a CMOS logic output.
2,9,12	NC		No connect.

Functional Block Diagram

TL/W/12339-3
Note 1: The prescalar for the LMX2320 is either 64/65 or 128/129, while the prescalar for the LMX2325 is $32 / 33$ or 64/65.
Note 2: The power down function is gated by the charge pump to prevent unwanted frequency jumps. Once the power down pin is brought low the part will go into power down mode when the charge pump reaches a TRI-STATE condition.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.	
Power Supply Voltage	
$V_{\text {cc }}$	-0.3 V to +6.5 V
V_{P}	-0.3 V to +6.5 V
Voltage on Any Pin with GND $=0 \mathrm{~V}\left(\mathrm{~V}_{1}\right)$	-0.3 V to +6.5 V
Storage Temperature Range (T_{s})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (T) (solder, 4 sec.$)$	$+260^{\circ} \mathrm{C}$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Power Supply Voltage

Recommended Operating

 ConditionsPower Supply Voltage

$V_{C C}$	2.7 V to 5.5 V
V_{P}	$V_{C C}$ to +5.5 V
Operating Temperature $\left(T_{A}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
IcC	Power Supply Current	LMX2320	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		10	13.5	mA
		LMX2325	$V_{C C}=3.0 \mathrm{~V}$		11	15	mA
ICC-PWDN	Power Down Current		$V_{C C}=3.0 \mathrm{~V}$		30	180	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		60	350	$\mu \mathrm{A}$
$\mathrm{fin}^{\text {N }}$	Maximum Operating Frequency	LMX2320		2.0			GHz
		LMX2325		2.5			
fosc	Maximum Oscillator Frequency			20			MHz
			No Load on OSC ${ }_{\text {out }}$	40			MHz
f_{ϕ}	Maximum Phase Detector Frequency			10			MHz
$\mathrm{Pf}_{\mathrm{IN}}$	Input Sensitivity		$V_{C C}=2.7 \mathrm{~V}$ to 3.3 V	-15		+6	dBm
			$V_{C C}=3.3 \mathrm{~V}$ to 5.5 V	-10		+6	
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity		$\mathrm{OSC}_{\text {IN }}$	0.5			V_{PP}
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		*	$0.7 \mathrm{~V}_{\mathrm{CC}}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		*			$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{IIH}_{\mathrm{H}}$	High-Level Input Current (Clock, D		$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
ILL	Low-Level Input Current (Clock, D		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{IIH}_{\mathrm{H}}$	Oscillator Input Current		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$			$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$
IIH	High-Level Input Current (LE, FC)		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{I}_{1 / 2}$	Low-Level Input Current (LE, FC)		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100		1.0	$\mu \mathrm{A}$

${ }^{* E x c e p t} f_{\text {iN }}$ and $\mathrm{OSC}_{\text {iN }}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\mathrm{D}_{0} \text {-source }}$	Charge Pump Output Current	$\mathrm{V}_{\mathrm{D}_{0}}=\mathrm{V}_{\mathrm{p}} / 2$		-2.5		mA
$l_{D_{0} \text {-sink }}$		$V_{D_{0}}=V_{p} / 2$		2.5		mA
$I_{D_{0}-T r i}$	Charge Pump TRI-STATE® Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq V_{D_{0}} \leq V_{P}-0.5 \mathrm{~V} \\ & T=85^{\circ} \mathrm{C} \end{aligned}$	-2.5		2.5	nA
$\mathrm{I}_{\mathrm{D}_{0}}$ vs $\mathrm{V}_{\mathrm{D}_{0}}$	Charge Pump Output Current Magnitude Variation vs Voltage (Note 1)	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{0}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$.		15	\%
$I_{D_{0} \text {-sink }}$ vs ${ }^{D_{0} \text {-source }}$	Charge Pump Output Current Sink vs Source Mismatch (Note 2)	$\begin{aligned} & V_{D_{0}}=V_{P} / 2 \\ & T=25^{\circ} \mathrm{C} \end{aligned}$:		10	\%
$\mathrm{I}_{\mathrm{o}} \mathrm{vs}$ T	Charge Pump Output Current Magnitude Variation vs Temperature (Nnte 3)	$\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C} \\ & V_{D_{0}}=V_{P} / 2 \end{aligned}$		10		\%
VOH	High-Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}^{* *}$	$V_{c c}-0.8$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{IOL}^{\text {O }}=1.0 \mathrm{~mA}^{* *}$			0.4	V
VOH	High-Level Output Voltage (OSCOUT)	$\mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	$V_{c c}-0.8$			V
V_{OL}	Low-Level Output Voltage (OSCOUT)	$\mathrm{lOL}=200 \mu \mathrm{~A}$			0.4	V
1 OL	Open Drain Output Current (ϕ_{p})	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0			mA
IOH	Open Drain Output Current ($\phi_{\text {p }}$)	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
RON	Analog Switch ON Resistance (2315)			100		Ω
tcs	Data to Clock Set Up Time	See Data Input Timing	50			ns
t_{CH}	Data to Clock Hold Time	See Data Input Timing	10			ns
town	Clock Pulse Width High	See Data Input Timing	50			ns
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low	See Data Input Timing	50		-	ns
$t_{E S}$	Clock to Enable Set Up Time	See Data Input Timing	50			ns
$\mathrm{t}_{\mathrm{E} W}$	Enable Pulse Width .	See Data Input Timing	50			ns

**Except OSCOUT
Notes 1, 2, 3: See related equations in Charge Pump Current Specification Definitions

Typical Performance Characteristics

TL/W/12339-4

Charge Pump Current vs $\mathbf{D}_{\mathbf{0}}$ Voltage

TL/W/12339-40

Charge Pump Current Variation

TL/W/12339-5

Charge Pump Current vs $\mathrm{D}_{\mathbf{0}}$ Voltage

Sink vs Source Mismatch vs $\mathrm{D}_{\mathbf{0}}$ Voltage

Typical Performance Characteristics (Continued)

Input Sensitivity vs Frequency

Input Sensitivity at Temperature Variation, $\mathbf{V C c}_{\mathbf{c c}}=\mathbf{5 V}$

TL/W/12339-13

LMX2320/25 Input Impedance vs Frequency $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=500 \mathrm{MHz}$ to 3000 MHz

TL/W/12339-15

$$
\begin{aligned}
& 1=1.5 \mathrm{GHz}, \text { Real }=48, \mathrm{Im}=-128 \\
& 2=1.8 \mathrm{GHz}, \text { Real }=44, \mathrm{Im}=-102 \\
& 3=2.0 \mathrm{GHz}, \text { Real }=42, \mathrm{Im}=-90 \\
& 4=2.5 \mathrm{GHz}, \text { Real }=36, \mathrm{Im}=-72
\end{aligned}
$$

Charge Pump Current Specification Definitions

TL/W/12339-16
$11=C P$ sink current at $V_{D_{0}}=V_{P}-\Delta V$
$14=C P$ source current at $V_{D_{0}}=V_{P}-\Delta V$
$12=C P$ sink current at $V_{D_{0}}=V_{P} / 2$
$15=C P$ source current at $V_{D_{o}}=V_{P} / 2$
$13=C P$ sink current at $V_{D_{0}}=\Delta V$
$16=C P$ source current at $V_{D_{0}}=\Delta V$
$\Delta V=$ Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V_{CC} and ground. Typical values are between 0.5 V and 1.0 V .

1. $I_{D_{0}}$ vs $V_{D_{0}}=$ Charge Pump Output Current magnitude variation vs Voltage $=$
$\left[1 / 2{ }^{*}|11|-|13|\right] /\left[1 / 22^{*}| | 11|+|13|]\right] * 100 \%$ and $\left[1 /\left.2\right|^{*}|14|-||6|] /\left[1 / 22^{*}| | 14|+||6||]\right] * 100 \%\right.$
2. $I_{D_{0-s i n k}}$ vs $I_{D_{0-s o u r c e}}=$ Charge Pump Output Current Sink vs Source Mismatch $=$ $[||2|-|15|] /[1 / 2 *\{|12|+|15|\}] * 100 \%$
3. $I_{D_{0}}$ vs $T_{A}=$ Charge Pump Output Current magnitude variation vs Temperature $=$

4. $\mathrm{K} \phi=$ Phase detector/charge pump gain constant $=$

$$
1 / 2 *| | 12|+|15|\}
$$

RF Sensitivity Test Block Diagram

Note 1: $N=10,000 \quad R=50 \quad P=64$
Note 2: Sensitivity limit is reached when the error of the divided RF output, fout, is greater than or equal to 1 Hz .

Functional Description

The simplified block diagram below shows the 19 -bit data register, the 14 -bit R Counter and the S Latch, and the 18 -bit N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first. If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the S Latch (prescaler select: LMX2320: 64/65 or 128/129; LMX2325 32/33 and 64/65). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter (programmable divider).

TL/W/12339-18

PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)

If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129 for the LMX2320; or $32 / 33$ or $64 / 65$ for the LMX2325). Serial data format is shown below.

TL/W/12339-6

14-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide Ratio R	$\begin{gathered} S \\ 14 \end{gathered}$	$\begin{gathered} S \\ 13 \end{gathered}$		$\begin{gathered} S \\ 11 \end{gathered}$	$\begin{gathered} S \\ 10 \end{gathered}$	$\left\|\begin{array}{l} \mathbf{s} \\ \mathbf{9} \end{array}\right\|$	$\left\|\begin{array}{l} S \\ 8 \end{array}\right\|$	$\begin{array}{\|l\|} \hline S \\ 7 \end{array}$	$\begin{aligned} & S \\ & 6 \end{aligned}$	$\begin{gathered} S \\ 5 \end{gathered}$	$\begin{aligned} & s \\ & 4 \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & S \\ & 2 \\ & \hline \end{aligned}$	S
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Prescaler Select		\mathbf{S}
LMX2320	LMX2325	15
$128 / 129$	$64 / 65$	0
$64 / 65$	$32 / 33$	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 16383
S1 to S14: These bits select the divide ratio of the programmable reference divider.
C: Control bit (set to HIGH level to load R counter and S Latch) Data is shifted in MSB first.

Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)
The N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bit (last bit shifted into the Data Register) is LOW, data is transferred from the 19-bit shift register into a 7 -bit latch (which sets the 7-bit Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter). Serial data format is shown below.

Note: S8 to S18: Programmable counter divide ratio control bits (3 to 2047)

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

Divide Ratio A	\mathbf{S}	$\mathbf{7}$	$\mathbf{6}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{4}$	\mathbf{S}	2	1				
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Note: Divide ratio: 0 to 127 $B \geq A$

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (BCOUNTER)

Divide Ratio B	\mathbf{S} 18	\mathbf{S}	$\mathbf{1 7}$	\mathbf{S}							
$\mathbf{1 4}$	\mathbf{S}										
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited) $B \geq A$

PULSE SWALLOW FUNCTION

$f_{V C O}=[(P \times B)+A] \times f_{O S C} / R$
$\mathrm{f}_{\mathrm{V} C O}$: Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 11 -bit programmable counter (3 to 2047).
A: Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127, A \leq B$)
fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16383)
P: Preset modulus of dual modulus prescaler (64 or 128 for 2320 or 32 or 64 for 2325)

Functional Description (Continued)

SERIAL DATA INPUT TIMING

TL/W/12339-21
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{CC}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and 2.6 V @ $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

Phase Characteristics

In normal operation, the FC pin is used to reverse the polarity of the phase detector. Both the internal and any external charge pump are affected.
Depending upon VCO characteristics, FC pin should be set accordingly:

When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT;
When VCO characteristics are like (2), FC should be set LOW.
When FC is set HIGH or OPEN CIRCUIT, the monitor pin of the phase comparator input, fout, is set to the reference divider output, f_{r}. When FC is set LOW, $f_{\text {out }}$ is set to the programmable divider output, f_{p}.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

TL/W/12339-23
Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{0} pin when the loop is locked.
$\mathrm{FC}=\mathrm{HIGH}$

Analog Switch

The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the D_{o} pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).

Typical Crystal Oscillator Circuit

A typical circuit which can be used to implement a crystal oscillator is shown below.

TL/W/12339-25

Typical Lock Detect Circuit

A lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.

Typical Application Example

Operatlonal Notes:
TL/W/12339-27

* VCO is assumed AC coupled.
** $\mathrm{R}_{\text {IN }}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. fin RF impedance ranges from 40Ω to 100Ω.
** 50Ω termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. $O S C_{\mid N}$ may be $A C$ or $D C$ coupled. $A C$ coupling is recommended because the input circuit provides its own bias. (See Figure below)

Proper use of grounds and bypass capacitors is essential to achieve a high level of performance.
Crosstalk between pins can be reduced by careful board layout.
This is a static sensitive device. It should be handled only at static free work stations.

Application Information

LOOP FILTER DESIGN

A block diagram of the basic phase locked loop is shown.

TL/W/12339-29
FIGURE 1. Basic Charge Pump Phase Locked Loop

An example of a passive loop filter configuration, including the transfer function of the loop filter, is shown in Figure 2.

TL/W/12339-30

$$
Z(s)=\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2}
$$

FIGURE 2. 2nd Order Passive Filter
Define the time constants which determine the pole and zero frequencies of the filter transfer function by letting

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T} 1=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \tag{1b}
\end{equation*}
$$

The PLL linear model control circuit is shown along with the open loop transfer function in Figure 3. Using the phase detector and VCO gain constants [$\mathrm{K} \phi$ and K VCO] and the loop filter transfer function [Z(s)], the open loop Bode plot can be calculated. The loop bandwidth is shown on the Bode plot ($\omega \mathrm{p}$) as the point of unity gain. The phase margin is shown to be the difference between the phase at the unity gain point and -180°.

TL/W/12339-32
Open Loop Gain $=\theta_{i} / \theta_{e}=H(s) G(s)$
$=\mathrm{K} \phi \mathrm{Z}(\mathrm{s}) \mathrm{K}_{\mathrm{VCO}} / \mathrm{Ns}$
Closed Loop Gain $=\theta_{0} / \theta_{\mathrm{i}}=\mathrm{G}(\mathrm{s}) /[1+\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})]$

TL/W/12339-31
FIGURE 3. Open Loop Transfer Function
Thus we can calculate the 3rd order PLL Open Loop Gain in terms of frequency
$\left.G(s) \bullet H(s)\right|_{s=j} \bullet \omega=\frac{-K \phi \bullet K_{v c o}(1+j \omega \bullet T 2)}{\omega^{2} C t \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2}$
From equation 2 we can see that the phase term will be dependent on the single pole and zero such that

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{3}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\frac{d \phi}{d \omega}=\frac{T 2}{1+(\omega \bullet T 2)^{2}}-\frac{T 1}{1+(\omega \bullet T 1)^{2}}=0 \tag{4}
\end{equation*}
$$

we find the frequency point corresponding to the phase inflection point in terms of the filter time constants T1 and T2. This relationship is given in equation 5.

$$
\begin{equation*}
\omega_{\mathrm{p}}=1 / \sqrt{T 2 \bullet T 1} \tag{5}
\end{equation*}
$$

For the loop to be stable the unity gain point must occur before the phase reaches -180 degrees. We therefore want the phase margin to be at a maximum when the magnitude of the open loop gain equals 1. Equation 2 then gives

$$
\begin{equation*}
C 1=\frac{K \phi \bullet K_{V C O} \bullet T 1}{\omega_{p}^{2} \bullet N \bullet T 2}\left\|\frac{\left(1+j \omega_{p} \bullet T 2\right)}{\left(1+j \omega_{p} \bullet T 1\right)}\right\| \tag{6}
\end{equation*}
$$

Application Information (Continued)

Therefore, if we specify the loop bandwidth, ω_{p}, and the phase margin, ϕ_{p}, Equations 1 through 6 allow us to calculate the two time constants, T1 and T2, as shown in equations 7 and 8. A common rule of thumb is to begin your design with a 45° phase margin.

$$
\begin{gather*}
\mathrm{T} 1=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}} \tag{7}\\
\mathrm{~T} 2=\frac{1}{\omega_{\mathrm{p}}^{2} \cdot \mathrm{~T} 1} \tag{8}
\end{gather*}
$$

From the time constants $T 1$, and $T 2$, and the loop bandwidth, ω_{p}, the values for C1, R2, and C2 are obtained in equations 9 to 11.

$$
\begin{gather*}
\mathrm{C} 1=\frac{\mathrm{T} 1}{\mathrm{~T} 2} \cdot \frac{\mathrm{~K} \phi \bullet \mathrm{~K}_{\mathrm{VCO}}}{\omega_{\mathrm{p}}^{2} \bullet \mathrm{~N}} \sqrt{\frac{1+\left(\omega_{\mathrm{p}} \bullet \mathrm{~T} 2\right)^{2}}{1+\left(\omega_{\mathrm{p}} \bullet \mathrm{~T} 1\right)^{2}}} \tag{9}\\
\mathrm{C} 2=\mathrm{C} 1 \bullet\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) \tag{10}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{11}
\end{gather*}
$$

K vco ($\mathrm{MHz} / \mathrm{V}$)	Voltage Controlled Oscillator (VCO) Tuning Voltage constant. The frequency vs voltage tuning ratio.
$K \phi(m A)$	Phase detector/charge pump gain constant. The ratio of the current output to the input phase differential.
N	Main divider ratio. Equal to $\mathrm{RF}_{\text {opt }} / \mathrm{f}_{\text {ref }}$
RF ${ }_{\text {opt }}(\mathrm{MHz})$	Radio Frequency output of the VCO at which the loop filter is optimized.
$\mathrm{fref}^{(k H z)}$	Frequency of the phase detector inputs. Usually equivalent to the RF channel spacing.

In choosing the loop filter components a trade off must be made between lock time, noise, stability, and reference spurs. The greater the loop bandwidth the faster the lock time will be, but a large loop bandwidth could result in higher reference spurs. Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input, VCO and division ratios used. The reference spurs can be reduced by reducing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will decrease as a result.

THIRD ORDER FILTER

A low pass filter section may be needed for some applications that require additional rejection of the reference sidebands, or spurs. This configuration is given in Figure 4. In order to compensate for the added low pass section, the component values are recalculated using the new open loop unity gain frequency. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C1 and C2 while slightly decreasing R2.
The added attenuation from the low pass filter is:

$$
\begin{equation*}
\text { ATTEN }=20 \log \left[\left(2 \pi f_{\mathrm{ref}} \bullet \mathrm{R} 3 \bullet \mathrm{C} 3\right)^{2}+1\right] \tag{12}
\end{equation*}
$$

Defining the additional time constant as

$$
\begin{equation*}
\mathrm{T} 3=\mathrm{R} 3 \cdot \mathrm{C} 3 \tag{13}
\end{equation*}
$$

Then in terms of the attenuation of the reference spurs added by the low pass pole we have

$$
\begin{equation*}
\mathrm{T} 3=\sqrt{\frac{10 \text { ATTEN } / 20-1}{\left(2 \pi \bullet \mathrm{f}_{\mathrm{ref}}\right)^{2}}} \tag{14}
\end{equation*}
$$

We then use the calculated value for loop bandwidth ω_{c} in equation 11, to determine the loop filter component values in equations 15-17. ω_{c} is slightly less than ω_{p}, therefore the frequency jump lock time will increase.

$$
\begin{align*}
& T 2=\frac{1}{\omega_{c}^{2} \bullet(T 1+T 3)} \tag{15}\\
& \omega_{c}=\frac{\tan \phi \bullet(T 1+T 3)}{\left[(T 1+T 3)^{2}+T 1 \cdot T 3\right]} \cdot\left[\sqrt{1+\frac{(T 1+T 3)^{2}+T 1 \bullet T 3}{[\tan \phi \bullet(T 1+T 3)]^{2}}}-1\right] \tag{16}\\
& C 1=\frac{T 1}{T 2} \cdot \frac{K \phi \bullet K v c o}{\omega_{c}{ }^{2} \bullet N} \cdot\left[\frac{\left(1+\omega_{c}^{2} \bullet T 2^{2}\right)}{\left(1+\omega_{c}^{2} \cdot T 1^{2}\right)\left(1+\omega_{c}^{2} \bullet T 3^{2}\right)}\right]^{1 / 2} \tag{17}
\end{align*}
$$

Application Information (Continued)

Consider the following application example:

Example \#1

$\mathrm{K}_{\mathrm{VCO}}=34 \mathrm{MHz} / \mathrm{V}$
$K \phi=2.8 \mathrm{~mA}$ (Note 1)
$\mathrm{RF}_{\mathrm{opt}}=1665 \mathrm{MHz}$
$F_{\text {ref }}=300 \mathrm{kHz}$
$\mathrm{N}=\mathrm{RF}_{\mathrm{opt}} / \mathrm{f}_{\mathrm{ref}}=5550$
$\omega_{\mathrm{p}}=2 \pi * 20 \mathrm{kHz}=1.256 e 5$
$\phi_{\mathrm{p}}=43$
ATTEN $=12 \mathrm{~dB}$

$$
\begin{aligned}
& \mathrm{T} 1=\frac{\sec \phi-\tan \phi}{\omega_{\mathrm{p}}}=3.462 \theta-6 \\
& \mathrm{~T} 3=\sqrt{\frac{10(12 / 20)-1}{(2 \pi \bullet 300 e 3)^{2}}}=9.16 e-7 \\
& \omega_{\mathrm{C}}=\frac{\tan 43(3.862 \mathrm{e}-6+9.16 e-7)}{\left.(3.462 \theta-6+9.16 e-7)^{2}+3.462 \mathrm{e}-6 \cdot 9.16 \mathrm{e}-7\right)} \\
& \bullet\left[\sqrt{1+\frac{(3.462 \theta-6+9.16 e-7)^{2}+3.462 e-6 \cdot 9.16 e-7}{[\tan 43(3.462 \theta-6+9.16 e-7)]^{2}}}-1\right] \\
& \mathrm{T} 2=\frac{1}{(9.682 \theta 4)^{2}(3.462 \theta-6+9.16 \theta-7)}=2.437 \theta-5 \\
& C 1=\frac{3.462 \theta-6}{2.437 \theta-5} \frac{(2.8 \theta-3) \cdot 34 e 6}{(9.682 \theta 4)^{2} \cdot 5550} \cdot\left[\frac{\left[1+(9.682 \theta 4)^{2} \cdot(2.437 e-5)^{2}\right]}{\left[1+(9.682 e 4)^{2}(3.462 \theta-6)^{2}\right]\left[1+(9.682 e 4)^{2} \cdot(9.16 \theta-7)^{2}\right]}\right]^{1 / 2} \\
& =0.63 \mathrm{nF} \\
& \mathrm{C} 2=0.63 \mathrm{nF}\left(\frac{2.437 e-5}{3.402 e-6}-1\right)=3.88 \mathrm{nF} \text {; } \\
& R 2=\frac{2.437 \theta-5}{3.88 \theta-9}=6.28 \mathrm{k} \Omega ;
\end{aligned}
$$

if we choose R3 $=27 \mathrm{k}$; then $\mathrm{C} 3=\frac{9.16 \mathrm{e}-7}{27 \mathrm{e} 3}=34 \mathrm{pF}$.
Converting to standard component values gives the following filter values, which are shown in Figure 4.

$$
\begin{aligned}
& \mathrm{C} 1=560 \mathrm{pF} \\
& \mathrm{R} 2=6.8 \mathrm{k} \Omega \\
& \mathrm{C} 2=2700 \mathrm{pF} \\
& \mathrm{R} 3=27 \mathrm{k} \Omega \\
& \mathrm{C} 3=56 \mathrm{pF}
\end{aligned}
$$

Note 1: See related equation for $K \phi$ in Charge Pump Current Specification Definitions. For this example $V_{P}=3.3 \mathrm{~V}$. The value for $K \phi$ can then be approximated using the curves in the Typical Performance Characteristics for Charge Pump Current vs. Doltage. The units for $K \phi$ are in mA. You may also use $\mathrm{K} \phi=(2.8 \mathrm{~mA} / 2 \pi$ rad $)$, but in this case you must convert Kvco to ($\mathrm{r} \geqslant \mathrm{d} / \mathrm{V}$) multiplying by 2π.

TL/W/12339-33
FIGURE 4. $\boldsymbol{\sim} \mathbf{2 0} \mathbf{~ k H z}$ Loop Filter

Application Information (Continued)

MEASUREMENT RESULTS

MKR 300 kHz

FIGURE 5. PLL Reference Spurs
The reference spurious level is $<-65 \mathrm{dBc}$, due to the loop filter attenuation and the low spurious noise level of the LMX2320.

FIGURE 6. PLL Phase Noise 20 kHz Offset
The phase noise level at 20 kHz offset is $-80 \mathrm{dBc} / \mathrm{Hz}$.

FIGURE 7. PLL Phase Noise @ $\mathbf{1 5 0 ~ H z ~ O f f s e t ~}$
The phase noise level at 150 Hz offset is $-81.1 \mathrm{dBc} / \mathrm{Hz}$. The spurs at 60 and 180 Hz offset are due to 60 Hz line noise from the power supply.

FIGURE 8. Frequency Jump Lock Time
Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. Figure 8 shows the switching waveforms for a frequency jump of 1650.9 MHz to 1683.9 MHz . By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within $\pm 1 \mathrm{kHz}$. The lock time is seen to be less than $500 \mu \mathrm{~s}$ for a frequency jump of 33 MHz .

Application Information (Continued) EXTERNAL CHARGE PUMP

The LMX PLLatinum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump. Although the superior performance of NSC's on board charge pump eliminates the need for an external charge pump in most applications, certain system requirements are more stringent. In these cases, using an external charge pump allows the designer to take direct control of such parameters as charge pump voltage swing, current magnitude, TRI-STATE leakage, and temperature compensation.
One possible architecture for an external charge pump current source is shown in Figure 9. The signals ϕ_{p} and ϕ_{r} in the diagram, correspond to the phase detector outputs of the 2320/25 frequency synthesizers. These logic signals are converted into current pulses, using the circuitry shown in Figure 9, to enable either charging or discharging of the loop filter components to control the output frequency of the PLL.
Referring to Figure 9, the design goal is to generate a 5 mA current which is relatively constant to within 5 V of the power supply rail. To accomplish this, it is important to establish as large of a voltage drop across R5, R8 as possible without saturating Q2, Q4. A voltage of approximately 300 mV provides a good compromise. This allows the current source reference being generated to be relatively repeatable in the absence of good Q1, Q2/Q3, Q4 matching. (Matched transistor pairs is recommended.) The $\phi \mathrm{p}$ and $\phi \mathrm{r}$ outputs are rated for a maximum output load current of 1 mA while 5 mA current sources are desired. The voltages developed across R4, 9 will consequently be approximately 258 mV , or 42 mV less than R8, 5 , due to the current density differences $\left\{0.026^{*} 1 \mathrm{n}(5 \mathrm{~mA} / 1 \mathrm{~mA})\right.$) through the Q1, Q2/Q3, Q4 pairs. In order to calculate the value of R7 it is necessary to first estimate the forward base to emitter voltage drop (Vfn,p) of the transistors used, the V_{OL} drop of $\phi \mathrm{p}$, and the V_{OH} drop of ϕ r's under 1 mA loads. ($\phi \mathrm{p}$'s $\mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}$ and ($\phi \mathrm{r}, \mathrm{s} \mathrm{V}_{\mathrm{OH}}$ < 0.1V).
Knowing these parameters along with the desired current allow us to design a simple external charge pump. Separating the pump up and pump down circuits facilitates the nodal analysis and give the following equations.

$$
\begin{aligned}
& R_{4}=\frac{V_{R 5}-V_{T} \bullet \ln \left(\frac{i_{\text {source }}}{i_{p \text { max }}}\right)}{i_{\text {source }}} \\
& R_{9}=\frac{V_{R 8}-V_{T} \cdot \ln \left(\frac{i_{\text {sink }}}{i_{n \text { max }}}\right)}{i_{\text {sink }}} \\
& R_{5}=\frac{V_{R 5} \bullet\left(\beta_{p}+1\right)}{i_{p \text { max }} \bullet\left(\beta_{p}+1\right)-i_{\text {source }}} \\
& R_{8}=\frac{V_{R 8} \bullet\left(\beta_{n}+1\right)}{\left.i_{r}+1 \beta_{n}+1\right) i_{\text {sink }}} \\
& R_{6}=\frac{\left(V_{p}-V_{V O L \phi p}\right)-\left(V_{R 5}+V f p\right)}{i_{p \text { max }}}
\end{aligned}
$$

$$
R_{7}=\frac{\left(V_{P}-V_{V O H \phi p}\right)-\left(V_{R 8}+V f n\right)}{i_{\max }}
$$

EXAMPLE

Typical Device Parameters $\quad \beta_{\mathrm{n}}=100, \beta_{\mathrm{p}}=50$
Typical System Parameters
$V_{p}=5.0 \mathrm{~V}$;
$\mathrm{V}_{\text {cntl }}=0.5 \mathrm{~V}-4.5 \mathrm{~V}$;
$\mathrm{V}_{\phi \mathrm{p}}=0.0 \mathrm{~V}, \mathrm{~V}_{\phi r}=5.0 \mathrm{~V}$
Design Parameters
$I_{\text {SINK }}=I_{\text {SOURCE }}=5.0 \mathrm{~mA}$;
$\mathrm{Vfn}=\mathrm{Vfp}=0.8 \mathrm{~V}$
$I_{r_{\text {max }}}=I_{P_{\text {max }}}=1 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{R} 8}=\mathrm{V}_{\mathrm{R} 5}=0.3 \mathrm{~V}$
$V_{O L \phi p}=V_{O H \phi p}=100 \mathrm{mV}$

TL/W/12339-39
FIGURE 9
Therefore select

$$
\begin{aligned}
& \mathrm{R}_{4}=\mathrm{R}_{9}=\frac{0.3 \mathrm{~V}-0.026 \cdot 1 \mathrm{n}(5.0 \mathrm{~mA} / 1.0 \mathrm{~mA})}{5 \mathrm{~mA}}=51.6 \Omega \\
& \mathrm{R}_{5}=\frac{0.3 \mathrm{~V} \cdot(50+1)}{1.0 \mathrm{~mA} \cdot(50+1)-5.0 \mathrm{~mA}}=332 \Omega \\
& \mathrm{R}_{8}=\frac{0.3 \mathrm{~V} \cdot(100+1)}{1.0 \mathrm{~mA} \cdot(100+1)-5.0 \mathrm{~mA}}=315.6 \Omega \\
& R_{6}=R_{7}=\frac{(5 \mathrm{~V}-0.1 \mathrm{~V})-(0.3 \mathrm{~V}+0.8 \mathrm{~V})}{1.0 \mathrm{~mA}}=3.8 \mathrm{k} \Omega
\end{aligned}
$$

LMX2330A/LMX2331A/LMX2332A PLLatinum ${ }^{\text {TM }}$ Dual Frequency Synthesizer for RF Personal Communications

LMX2330A $2.5 \mathrm{GHz} / 510 \mathrm{MHz}$ LMX2331A $2.0 \mathrm{GHz} / 510 \mathrm{MHz}$ LMX2332A $1.2 \mathrm{GHz} / 510 \mathrm{MHz}$ General Description

The LMX233xA family of monolithic, integrated dual frequency synthesizers, including prescalers, is to be used as a local oscillator for RF and first IF of a dual conversion transceiver. It is fabricated using National's ABiC IV silicon BiCMOS process.
The LMX233xA contains dual modulus prescalers. A 64/65 or a $128 / 129$ prescaler ($32 / 33$ or $64 / 65$ in the 2.5 GHz LMX2330A) can be selected for the RF synthesizer and a 8/9 or a 16/17 prescaler can be selected for the IF synthesizer. Using a digital phase locked loop technique, the LMX233×A can generate a very stáble, low noise signal for the RF and IF local oscillator. Serial data is transferred into the LMX233xA via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX233xA family features very low current consumption;
LMX2330A-13 mA at 3V, LMX2331A-12 mA at 3V, LMX2332A-8 mA at 3V.
The LMX233xA are available in a TSSOP 20-pin surface mount plastic package.

Features

■ 2.7 V to 5.5 V operation

- Low current consumption
- Selectable powerdown mode: ICC $=1 \mu \mathrm{~A}$ typical at 3 V
- Dual modulus prescaler: LMX2330A
(RF) $32 / 33$ or $64 / 65$
LMX2331A/32A
(RF) $64 / 65$ or $128 / 129$
LMX2330A/31A/32A
(IF) $8 / 9$ or $16 / 17$
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable Fastlock ${ }^{\text {TM }}$ mode

Applications

- Portable Wireless Communications (PCS/PCN, cordless)
- Cordless and: cellular telephone systems
- Wireless Local Area Networks (WLANs)
- Cable TV tuners (CATV)

■ Other wireless communication systems

Functional Block Diagram

Order Number LMX2330ATM, LMX2331ATM or LMX2332ATM NS Package Number MTC20

Pin Description

Pin No.	Pin Name	1/0	Description
1	$\mathrm{V}_{\mathrm{CC}} 1$	-	Power supply voltage input. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 1$ must equal $\mathrm{V}_{\mathrm{CC}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	V 1 1	-	Power Supply for RF charge pump. Must be $\geq \mathrm{V}_{C C}$.
3	DoRF	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	GND	-	Ground.
5	$\mathrm{f}_{\mathrm{IN}} \mathrm{RF}$	1	RF prescaler input. Small signal input from the VCO.
6	$\overline{\mathrm{fiN}} \mathrm{RF}$	1	RF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
7	GND	-	Ground.
8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
9	GND	-	Ground.
10	FoLD	0	Multiplexed output of the RF/IF programmable or reference dividers, RF/IF lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
11	Clock	I	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 22-bit shift register.
12	Data	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
13	LE	I	Load enable CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
14	GND	-	Ground.
15	$\overline{\mathrm{fiN}} \mathrm{IF}$	1	IF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
16	$\mathrm{f}_{\mathrm{I}} \mathrm{IF}$	1	IF prescaler input. Small signal input from the VCO.
17	GND	-	Ground.
18	$\mathrm{D}_{0} \mathrm{IF}$	0	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	V 2	-	Power Supply for IF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
20	$V_{c c}{ }^{2}$	-	Power supply voltage input. Input may range from 2.7 V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{CC}} 2$ must equal $\mathrm{V}_{\mathrm{CC}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

Block Diagram

Note 1: The RF prescalar for the LMX2331A/32A is either $6 \dot{4} / 65$ or $128 / 129$, while the prescalar for the LMX2330A is 32/33 or 64/65.
Note 2: $V_{c c} 1$ supplies power to the RF prescaler, N -counter and phase detector. $\mathrm{V}_{\mathrm{Cc}} 2$ supplies power to the IF prescaler, N -counter and phase detector, RF and IF R-counters along with the $\mathrm{OSC}_{\mathrm{IN}}$ buffer and all digital circuitry. $\mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}} 2$ are separated by a diode and must be run at the same voltage level.
Note 3: $\mathrm{V}_{\mathrm{P}} 1$ and $\mathrm{V}_{\mathrm{P}} 2$ can be run independently as long as $\mathrm{V}_{\mathrm{P}} \geq \mathrm{V}_{\mathrm{C}}$.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Power Supply Voltage

V_{cc}	-0.3 V to +6.5 V
V_{p}	-0.3 V to +6.5 V
Voltage on Any Pin with GND $=O V\left(V_{1}\right)$	-0.3 V to +6.5 V
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder 4 sec.) (T_{L})	$+260^{\circ} \mathrm{C}$

VCC
-
-0.3 V to +6.5 V
Storage Temperature Range (Ts) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics $V_{C C}=3.0 \mathrm{~V}, V_{P}=3.0 V_{i}-40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
Icc	Power Supply Current	LMX2330A RF + IF		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		13		mA
		LMX2330A RF Only			10			
		LMX2331A RF + IF			12			
		LMX2331A RF Only			9			
		LMX2332A IF + RF	.		8			
		LMX2332A RF Only			5			
		LMX233XA IF Only			3			
ICC-PWDN	Powerdown Current		$V_{C C}=3.0 \mathrm{~V}$		1	25	$\mu \mathrm{A}$	
$\mathrm{fin}^{\text {RF }}$	Operating Frequency	LMX2330A		500		2.5	GHz	
		LMX2331A		200		2.0		
		LMX2332A		100		1.2		
$\mathrm{f}_{\mathrm{I}} \mathrm{IF}$	Operating Frequency	LMX233XA		45		510	MHz	
fosc	Maximum Oscillator Frequency			40			MHz	
\mathbf{f}_{ϕ}	Maximum Phase Detector Frequency			10			MHz	
Pfin RF	RF Input Sensitivity		$V_{C C}=3.0 \mathrm{~V}$	-15		+4	dBm	
			$V_{C C}=5.0 \mathrm{~V}$	-10		+4	dBm	
Pfin IF	IF Input Sensitivity		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-10		+4	dBm	
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity		$\mathrm{OSC}_{\text {in }}$	0.5			V_{PP}	
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		*	$0.8 \mathrm{~V}_{C C}$			V	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		*			$0.2 \mathrm{~V}_{\mathrm{CC}}$	V	
$\xrightarrow{\mathrm{IH}_{\mathrm{H}}}$	High-Level Input Current		$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}^{*}$	-1.0		1.0	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Low-Level Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}^{*}$	-1.0		1.0	$\mu \mathrm{A}$	
$\xrightarrow{\text { IH }}$	Oscillator Input Current		$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{IIL}^{\text {L }}$	Oscillator Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$	
V_{OH}	High-Level Output Voitage		$\mathrm{IOH}^{\prime}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V	
V_{OL}	Low-Level Output Voltage		$\mathrm{l}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V	
t_{CS}	Data to Clock Set Up Time		See Data Input Timing	50			ns	
${ }^{t_{C H}}$	Data to Clock Hold Time		See Data Input Timing	10			ns	
${ }^{\text {t }}$ CWH	Clock Pulse Width High		See Data Input Timing	50	.		ns	
$\mathrm{t}_{\text {CWL }}$	Clock Pulse Width Low		See Data Input Timing	50			ns	
$t_{\text {ES }}$	Clock to Load Enable Set Up Time		See Data Input Timing	50			ns	
$\mathrm{t}_{\text {EW }}$	Load Enable Pulse Width		See Data Input Timing	50			ns	

*Clock, Data and LE does not include $f_{\mathbb{I N}} R F, \mathrm{f}_{\mathrm{N}} \mathrm{IF}$ and $\mathrm{OSC}_{\mathrm{IN}}$.

Recommended Operating Conditions

Power Supply Voltage

$V_{C C}$	2.7 V to 5.5 V
V_{P}	$V_{C C}$ to +5.5 V
Operating Temperature $\left(T_{A}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to	
the device may occur. Recommended Operating Conditions indicate condi-	
tions for which the device is intended to be functional, but do not guarantee	
specific performance limits. For guaranteed specifications, and test condi-	
tions, see the Electrical Characteristics. The guaranteed specifications apply	
only for the test conditions listed.	

Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee tions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Charge Pump Characteristics $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
$\mathrm{I}_{\mathrm{D}_{0} \text {-SOURCE }}$	Charge Pump Output Current	$\mathrm{V}_{\mathrm{D}_{\mathrm{o}}}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CP}_{\mathrm{o}}}=\mathrm{HIGH}^{* *}$		-5.0		mA
$\mathrm{I}_{\mathrm{D}_{\mathrm{O}} \text {-SINK }}$		$V_{D_{0}}=V_{P} / 2, I_{C P_{0}}=H_{\text {l }} \mathrm{CH}^{* *}$		5.0		mA
$\mathrm{I}_{\mathrm{D}_{0} \text {-SOURCE }}$		$\mathrm{V}_{\mathrm{D}_{\mathrm{O}}}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CP}_{0}}=\mathrm{LOW}^{* *}$		-1.25		mA
$\mathrm{I}_{\mathrm{D}_{0} \text {-SINK }}$		$\mathrm{V}_{\mathrm{D}_{0}}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CP}_{0}}=\mathrm{LOW} * *$		1.25		mA
$I_{D_{0}-T R I}$	Charge Pump TRI-STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{D_{0}} \leq \mathrm{V}_{P}-0.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	-2.5		2.5	nA
$\mathrm{I}_{\mathrm{D} \text {-SiNK }}$ vs $I_{D_{0}}$-SOURCE	CP Sink vs Source Mismatch (Note 2)	$\begin{aligned} & V_{D_{O}}=V_{P} / 2 \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		3	10	\%
$I_{D_{0}}$ vs $V_{D_{0}}$	CP Current vs Voltage (Note 1)	$\begin{aligned} & 0.5 \leq V_{D_{0}} \leq V_{P}-0.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		10	15	\%
$\mathrm{I}_{\mathrm{D}_{0} \text { vs } T_{A}}$	CP Current vs Temperature (Note 3)	$\begin{aligned} & V_{D_{0}}=V_{P} / 2 \\ & -40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C} \end{aligned}$		10		\%

** See PROGRAMMABLE MODES for $\mathrm{I}_{\mathrm{CP}}^{\mathrm{o}}$ description.
Notes 1, 2, 3: See charge pump current specification definitions below.

Charge Pump Current Specification Definitions

TL/W/12331-25
II $=C P$ sink current at $V_{D_{0}}=V_{P}-\Delta V$
$14=C P$ source current at $V_{D_{0}}=V_{P}-\Delta V$
$12=C P$ sink current at $V_{D_{0}}=V_{P} / 2$
$15=C P$ source current at $V_{D_{0}}=V_{P} / 2$
$13=C P$ sink current at $V_{D_{0}}=\Delta V$
$16=C P$ source current at $V_{D_{0}}=\Delta V$
$\Delta V=$ Voltage offset from positive and negative rails. Dependent on $V C O$ tuning range relative to $V_{C C}$ and ground. Typical values are between 0.5 V and 1.0 V .

1. $I_{D_{0}}$ vs $V_{D_{0}}=$ Charge Pump Output Current magnitude variation vs Voltage $=$
$\left[1 / 2^{*}\{|11|-|13|\}\right] /\left[1 / 2^{*}(| | 1|+|13|\}] * 100 \%\right.$ and $\left[1 / 2^{*}\{| | 4|-|16|\}] /\left[1 / 2^{*}(|14|+||6|\}] * 100 \%\right.\right.$
2. $I_{D_{0-s i n k}}$ vs $I_{D_{0-s o u r c e}}=$ Charge Pump Output Current Sink vs Source Mismatch $=$
$[|12|-|15|] /[1 / 2 *\{|12|+|15|\}] * 100 \%$
3. $I_{D_{0}}$ vs $T_{A}=$ Charge Pump Output Current magnitude variation vs Temperature $=$
[$\mid 12$ © temp $|-| 12$ © $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 12$ @ $25^{\circ} \mathrm{C} \mid * 100 \%$ and $\left[\mid 15\right.$ @ temp| $-\mid 15$ @ $\left.25^{\circ} \mathrm{C} \mid\right] / \mid 15$ @ $25^{\circ} \mathrm{C} \mid \cdot 100 \%$

RF Sensitivity Test Block Diagram

Note 1: $N=10,000 \quad R=50 \quad P=64$
Note 2: Sensitivity limit is reached when the error of the divided RF output, F_{0} LD, is $\geq 1 \mathrm{~Hz}$.

Typical Performance Characteristics

Icc vs Vcc
LMX2330A

TL/W/1233i-31
Icc vs VCc
LMX2332A

TL/W/12331-32
IDo TRI-STATE
vs Do Voltage

TL/W/12331-4

Typical Performance Characteristics (Continued)

Charge Pump Current vs D_{0} Voltage
$\mathbf{I}_{\mathbf{C P}}=\mathbf{H I G H}$

Charge Pump Current Variation
(See Note 1 under Charge Pump Current Specification Definitions)

RF Input Impedance
$V_{C C}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=50 \mathrm{MHz}$ to 3 GHz

Marker $1=1 \mathrm{GHz}$, Real $=101$, Imag. $=-144$
Marker $2=2 \mathrm{GHz}$, Real $=37$, Imag. $=-54$
Marker $3=3 \mathrm{GHz}$, Real $=22$, Imag. $=-2$
Marker $4=500 \mathrm{MHz}$, Real $=209$, Imag. $=-232$

Sink vs Source Mismatch
(See Note 2 under Charge Pump Current Specification Definitions)

IF Input Impedance
$V_{C C}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$ to 1000 MHz

Marker $1=100 \mathrm{MHz}$, Real $=589$, Imag. $=-209$
Marker $2=200 \mathrm{MHz}$, Real $=440$, Imag. $=-286$
Marker $3=300 \mathrm{MHz}$, Real $=326$, Imag. $=-287$
Marker $4=500 \mathrm{MHz}$, Real $=202$, Imag. $=-234$

Typical Performance Characteristics (Continued)

LMX2332A RF Sensitivity vs Frequency

TL/W/12331-42
Osclllator Input Sensitivity vs Frequency

LMX2331A RF Sensitivity vs Frequency

IF Input Sensitivity vs Frequency

Functional Description

The simplified block diagram below shows the 22-bit data register, two 15-bit R Counters and the 15- and 18-bit N Counters (intermediate latches are not shown). The data stream is clocked (on the rising edge of LE) into the DATA input, MSB first. The last two bits are the Control Bits. The DATA is transferred into the counters as follows:

Control BIts		DATA Location
C1	C2	
0	0	IF R Counter
0	1	RF R Counter
1	0	IF N Counter
1	1	RF N Counter

TL/W/12331-1

PROGRAMMABLE REFERENCE DIVIDERS (IF AND RF R COUNTERS)

If the Control Bits are 00 or 01 (00 for IF and 01 for RF) data is transferred from the 22 -bit shift register into a latch which sets the 15 -bit R Counter. Serial data format is shown below.

TL/W/12331-14

15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide	\mathbf{R}														
Ratio	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\bullet															
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 32767
R1 to R15: These bits soloct the divide ratio of the programmable roference divider. Data is shifted in MSB lirst.

Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)
The N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bits are 10 or 11 (10 for IF counter and 11 for RF counter) data is transferred from the 22-bit shift register into a 4 -bit or 7 -bit latch (which sets the Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter), MSB first. Serial data format is shown below. For the IF N counter bits 5, 6, and 7 are don't care blts. The RF N counter does not have don't care bits.

TL/W/12331-15

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

RF

Divide Ratio A	\mathbf{N}	$\mathbf{7}$	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}
$\mathbf{4}$	\mathbf{N}	\mathbf{N}					
$\mathbf{2}$	$\mathbf{1}$						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Notes: Divide ratio: 0 to 127 $B \geq A$

Divide	N	N	N	N	N	N	N
Ratio A	7	6	5	4	3	2	1
0	X	X	X	0	0	0	0
1	X	X	X	0	0	0	1
\bullet							
15	X	X	X	1	1	1	1

$\mathrm{X}=$ DON'T CARE condition

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio B	N 18	N 17	N 16	N 15	N 14	N 13	N 12	N 11	N $\mathbf{1 0}$	N	N
9	8										
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)

$$
B \geq A
$$

PULSE SWALLOW FUNCTION
$f_{V C O}=[(P \times B)+A] \times f_{O S C} / R$
fVco: Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter
($0 \leq A \leq 127$ (RF), $0 \leq A \leq 15$ (IF\}, $A \leq B$)
$f_{\text {OSC: }}$ Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 15-bit programmable reference counter (3 to 32767)
P : Preset modulus of dual modulus prescaler (for IF; $P=8$ or 16;
for RF; LMX2330A: $P=32$ or $64 \quad$ LMX2331A/32A: $P=64$ or 128)

Functional Description (Continued)

PROGRAMMABLE MODES

Several modes of operation can be programmed with bits R16-R19 including the phase detector polarity, charge pump TRI-STATE and the output of the FoLD pin. The prescaler and powerdown modes are selected with bits N19 and N20. The programmable modes are shown in Table I. Truth table for the programmable modes and F_{0} LD output are shown in Table II and Table III.

TABLE I. Programmable Modes

C1	C2	R16	R17	R18	R19	R20
0	0	IF Phase Detector Polarity	IF ICP	IF D_{0} TRI-STATE	IF LD	IF F 0
0	1	RF Phase Detector Polarity	RF ICP	RF D_{0} TRI-STATE	RF LD	RF F F_{0}

C1	C2	N19	N20
1	0	IF Prescaler	Pwdn IF
1	1	RF Prescaler	Pwdn RF

TABLE II. Mode Select Truth Table

	Phase Detector Polarity	Do TRI-STATE	ICP (Note 1)	IF Prescaler	2330A RF Prescaler	2331A/32A RF Prescaler	Pwdn (Note 2)
0	Negative	Normal Operation	LOW	$8 / 9$	$32 / 33$	$64 / 65$	Pwrd Up
1	Positive	TRI-STATE	HIGH	$16 / 17$	$64 / 65$	$128 / 129$	Pwrd Dn

Note 1: The $\mathrm{I}_{\mathrm{CP}_{0}}$ LOW current state $=1 / 4 \times \mathrm{I}_{\mathrm{CP}_{0}}$. HIGH current.
Nete 2: Activation of the IF PLL or RF PLL powerdown modes result in the disabling of the respective N counter divider and debiasing of its respective fiN inputs (to a high impedance state). Powerdown forces the respective charge pump and phase comparator logic to a TRI-STATE condition after charge pump event. The R counter functionality does not become disabled until both IF and RF powerdown bits are activated. The MICROWIRETM control register remains active amd capable of loading and latching data during all of the powerdown modes.

TABLE III. The FoLD (Pin 10) Output Truth Table :

RF R[19] (RF LD)	IF R[19] (IF LD)	RF R[20] (RF Fo	IF R[20] (IF Fo)	Fo Output State
0	0	0	0	Disabled (Note 1)
0	1	0	0	IF Lock Detect (Note 2)
1	0	0	0	RF Lock Detect (Note 2)
1	1	0	0	RF/IF Lock Detect (Note 2)
X	0	0	1	IF Reference Divider Output
X	0	1	0	RF Reference Divider Output
X	1	0	1	IF Programmable Divider Output
X	1	1	0	RF Programmable Divider Output
0	0	1	1	Fastlock (Note 3)
0	0	1	1	For Internal Use Only
1	1	1	1	For Internal Use Only
1				Counter Reset (Note 4)

$X=$ don't care condition
Note 1: When the F_{0} LD output is disabled, it is actively pulled to a low logic state.
Note 2: Lock detect output provided to indicate when the VCO frequency is in "lock." When the loop is locked and a lock detect mode is selected, the pins output is HIGH, with narrow pulses LOW. In the RF/IF lock detect mode a locked condition is indicated when RF and IF are both locked.
Note 3: The Fastlock mode utilizes the F_{0} LD output pin to switch a second loop filter damping resistor to ground during fastlock operation. Activation of Fastlock occurs whenever the RF loop's Icpo magnitude bit \#17 is selected HIGH (while the \#19 and \#20 mode bits are set for Fastlock).
Note 4: The Counter Reset mode bits R19 and R20 when activated reset all counters. Upon removal of the Reset bits then N counter resumes counting in "close" alignment with the R counter. (The maximum error is one prescalar cycle.) If the Reset bits are activated the R counter is also forced to Reset, allowing smooth acquisition upon powering up.

Functional Description (Continued)

PHASE DETECTOR POLARITY
Depending upon VCO characteristics, R16 bit should be set accordingly: (see figure right)

When VCO characteristics are positive like (1), R16 should be set HIGH;
When VCO characteristics are negative like (2), R16 should be set LOW.

SERIAL DATA INPUT TIMING

TL/W/12331-17
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditlons: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{CC}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of 2.2 V @ $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} \oplus \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

TL/W/12331-18
Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{0} pin when the loop is locked.
$\mathrm{R16}=\mathrm{HIGH}$

Typical Application Example

TL/W/12331-19
Operational Notes:

- VCO is assumed AC coupled.
** $R_{I N}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. fiN RF impedance ranges from 40Ω to 100Ω. fiN IF impedances are higher.
*** 50Ω termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. OSC in may be AC or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below)

TL/W/12331-20
Proper use of grounds and bypass capacitors is essential to achieve a high level of performance. Crosstalk between pins can be reduced by careful board layout.
This is a static sensitive device. It should be handled only at static free work stations.

Application Information

A block diagram of the basic phase locked loop is shown in Figure 1.

TL/W/12331-21
FIGURE 1. Basic Charge Pump Phase Locked Loop

LOOP GAIN EQUATIONS

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain ($K \phi$), the VCO gain ($\mathrm{K} \mathrm{VCO} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in equation 2.

FIGURE 2. PLL Linear Model

TL/W/12331-22
FIGURE 3. Passive Loop Filter
Open loop gain $=\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})=\Theta \mathrm{i} / \Theta_{\mathrm{e}}$

$$
\begin{equation*}
=\mathrm{K}_{\phi} \mathrm{Z}(\mathrm{~s}) \mathrm{K}_{\mathrm{vco}} / \mathrm{Ns} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Z(s)=\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2} \tag{2}
\end{equation*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{equation*}
\mathrm{T}_{1}=\mathrm{R}_{2} \cdot \frac{\mathrm{C}_{1} \cdot \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{3b}
\end{equation*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $\mathrm{K}_{\phi}, \mathrm{K}_{\mathrm{VCO}}$, and N .
$\left.G(s) \bullet H(s)\right|_{s=j} \cdot \omega=\frac{-K_{\phi} \bullet K_{V C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2}$

From equation 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in equation 5.

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{5}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter ϕ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45 degrees.
If we were now to redefine the cut off frequency, wp', as double the frequency which gave us our original loop bandwidth, wp, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed Fastlock scheme, the higher spur levels and wider loop filter conditions would exist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve of Figure 4 over to a different cutoff frequency, illustrated by the dotted line, without affecting the relative open loop gain and phase relationships. To maintain the same gain/phase relationship at twice the original cutoff frequency, other terms in the gain and phase equations 4 and 5 will have to compensate by the corresponding " $1 / w$ " or " $1 / w 2$ " factor. Examination of equations 3 and 5 indicates the damping resistor variable R2 could be chosen to compensate the " w "" terms for the phase margin. This implies that another resistor of equal value to R2 will need to be switched in parallel with R2 during the initial lock period. We must also insure that the magnitude of the open loop gain, $\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ is equal to zero at $\mathrm{wp}{ }^{\prime}=2 \mathrm{wp} . \mathrm{K}_{\mathrm{vco}}, \mathrm{K} \phi, \mathrm{N}$, or the net product of these terms can be changed by a factor of 4 , to counteract the w^{2} term present in the denominator of equation 3. The $K \phi$ term was chosen to complete the transformation because it can readily be switch between 1X and 4 X values. This is accomplished by increasing the charge pump output current from 1 mA in the standard mode to 4 mA in Fastlock.

Application Information (Continued)

TL/W/12331-29
FIGURE 4. Open Loop Response Bode Plot

FASTLOCK CIRCUIT IMPLEMENTATION

A diagram of the Fastlock scheme as implemented in Na tional Semiconductors LMX233xA PLL is shown in Figure 5. When a new fr qquency is loaded, and the RF Icpobit is set high the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NivOS on chip device switches in a second R2 resistor element to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration ensures that as long as a second identical damping resistor is wired in appropriately,
the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the user can return the PLL to standard low noise operation by sending a MICROWIRE instruction with the RF Icpop bit set low. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between Fastlock and standard mode.

TL/W/12331-30
FIGURE 5. Fastlock PLL Architecture

LMX2335/LMX2336/LMX2337
 PLLatinum ${ }^{\text {TM }}$ Dual Frequency Synthesizer for RF Personal Communications

LMX2335
 LMX2336
 1.1 GHz/1.1 GHz
 LMX2337
 2.0 GHz/1.1 GHz $550 \mathrm{MHz} / 550 \mathrm{MHz}$
 General Description

The LMX2335, LMX2336 and LMX2337 are monolithic, integrated dual frequency synthesizers, including two high frequency prescalers, and are designed for applications requiring two RF phase-lock loops. They are fabricated using National's ABiC IV silicon BiCMOS process.

The LMX2335/36/37 contains two dual modulus prescalers. A 64/65 or a $128 / 129$ prescaler can be selected for each RF synthesizer. A second reference divider chain is included in the IC for improved system noise. Using a digital phase locked loop technique, the LMX2335/36/37 can generate two very stable, low noise signals for the RF local oscillators.

Serial data is transferred into the LMX2335/36/37 via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7V to 5.5 V . The LMX2335/36/37 feature very low current consumption; LMX2335/37-9 mA at 3V, LMX2336-13 mA at 3V. The LMX2335/37 are available in a JEDEC 16 -pin surface mount plastic package. The LMX2336 is available in a TSSOP 20-pin surface mount plastic package.

Features

- 2.7 V to 5.5 V operation
- Low current consumption
- Selectable powerdown mode: ICc $=1 \mu \mathrm{~A}$ (typ)
- Dual modulus prescaler: 64/65 or 128/129
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels

■ Selectable Fastlock ${ }^{\text {TM }}$ mode

Applications

■ Cellular telephone systems (AMPS, ETACS, RCR-27)

- Cordless telephone systems
(DECT, ISM , PHS, CT-1 +)
- Personal Communication Systems
(DCS-1800, PCN-1900)
- Dual Mode PCS phones
- CATV
- Other wireless communication systems

Functional Block Diagram

Connection Diagrams

Small Outline Molded Package (M)

TL/W/12332-2
Order Number LMX2335M/LMX2337M
NS Package Number M16A

LMX2336

TL/W/12332-16
Order Number LMX2336TM NS Package Number MTC20

Pin Description

Pin No. 2335/37	Pin No. 2336	Pin Name	1/0	Description
1	1	$\mathrm{V}_{\mathrm{CC}} 1$		Power supply voltage input. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 1$ must equal $\mathrm{V}_{\mathrm{Cc}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	2	$\mathrm{V}_{\mathrm{p}} 1$		Power supply for RF1 charge pump. Must be $\geq \mathrm{V}_{\text {cc }}$.
3	3	$\mathrm{D}_{0} 1$	0	RF1 charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	4	GND		Ground.
5	5	fin^{1}	1	First RF prescaler input. Small signal input from the VCO.
X	6	$\overline{\mathrm{fIN}} 1$	1	RF 1 prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
X	7	GND		Ground.
6	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
7	9	$\mathrm{OSC}_{\text {out }}$	0	Oscillator output.
8	10	FoLD	0	Multiplexed output of the programmable or reference dividers, lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
9	11	Clock	1	High impedance CMOS Clock input. Data for the various latches is clocked in on the rising edge, into the 20-bit shift register.
10	12	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
11	13	LE	1	Load enable CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
X	14	GND		Ground.
X	15	$\overline{F_{I N}} 2$	1	RF2 prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
12	16	fin^{2}	1	RF2 prescaler input. Small signal input from the VCO.
13	17	GND		Ground.
14	18	$\mathrm{D}_{0} 2$	0	RF2 charge pump output. For connection to a loop filter for driving the input of an external VCO.
15	19	$\mathrm{V}_{\mathrm{p}} 2$		Power supply for RF2 charge pump. Must be $\geq \mathrm{V}_{\text {cc }}$.
16	20	$\mathrm{V}_{\mathrm{cc}}{ }^{2}$		Power supply voltage input. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 2$ must equal $\mathrm{V}_{\mathrm{CC}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

Block Diagram

Note 1: $V_{C C} 1$ supplies power to the RF1 prescalar, N -counter and phase detector. V_{CC} 2 supplies power to the RF2 prescaler, N -counter and phase detector, RF1 and RF2 R-dividers along with the OSC $_{\text {IN }}$ buffer and all digital circuitry. $\mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}}{ }^{2}$ are separated by a diode and must be run at the same voltage level.
Note 2: V_{p} 1 and V_{p} 2 can be run independently as long as $\mathrm{V}_{\mathrm{P}} \geq \mathrm{V}_{\mathrm{Cc}}$.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified d please contact the National S Office/Distributors for avallability	vices are required, miconductor Sales and specifications.
Power Supply Voltage	
$V_{\text {cc }}$	-0.3 V to +6.5 V
V_{P}	-0.3 V to +6.5 V
Voltage on Any Pin	
Storage Temperature Range ($\mathrm{T}_{\mathrm{s} \text {) }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder 4 sec .) (T_{L})	$+260^{\circ} \mathrm{C}$

Absolute Maximum Ratings (Note 1) Office/Distributors for availability and specifications.
ower Supply Voltage

$$
V_{P}
$$

$$
-0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V}
$$

-0.3 V to +6.5 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Power Supply Voltage

$V_{C C}$ V_{P}

Operating Temperature (T_{A})
2.7 V to 5.5 V
V_{CC} to +5.5 V

Note 1:
 the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
ICC	Power Supply Current	LMX2335/37 RF1 and RF2		$V_{C C}=2.7 \mathrm{~V}$ to 5.5 V	.	9	12	mA
ICC		LMX2335/37 RF1 only	$\mathrm{V}_{\mathrm{CC}} 2.7 \mathrm{~V}$ to 5.5V		5	7	mA	
ICC		$\begin{aligned} & \text { LMX2336 } \\ & \text { RF1 and RF2 } \end{aligned}$	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 5.5 V		13	18	mA	
		LMX2336 RF1 only	$V_{C C}=2.7 \mathrm{~V}$ to 5.5 V	-	7	11	mA	
fin 1	Operating Frequency	LMX2335		0.100		1.1	GHz	
fin^{2}			- ${ }^{\text {- }}$	0.050		1.1	GHz	
fl^{1}		LMX2336	.	0.200	- .	2.0	GHz	
fin^{2}				0.050		1.1	GHz	
$\mathrm{f}_{\mathrm{IN}} 1$		LMX2337		100		550	MHz	
$\mathrm{f}_{\mathrm{IN}} 2$				50		550	MHz	
ICC-PWDN	Powerdown Current	LMX2335/2336	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$		1	25	$\mu \mathrm{A}$	
		LMX2337	.			100		
fosc	Maximum Oscillator Frequency			20	.		MHz	
fosc			No load on OSC ${ }_{\text {out }}$	40			MHz	
f_{ϕ}	Maximum Phase Detector Frequency		\cdots		10		MHz	
Pfin	RF Input Sensitivity	\%	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{f}>100 \mathrm{MHz}$	-15		+4	dBm	
Pfin			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{f}>100 \mathrm{MHz}$	-10		+4		
			$\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{f}<100 \mathrm{MHz}$	-10		0		
$V_{\text {OSC }}$	Oscillator Sensitivity		$\mathrm{OSC}_{\text {in }}$	0.5			V_{PP}	
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		**	$0.8 \mathrm{~V}_{\mathrm{CC}}$			V	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		**			$0.2 \mathrm{~V}_{C C}$	V	
$\mathrm{IIH}^{\text {r }}$	High-Level Input Current		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}^{* *}$	-1.0		1.0	$\mu \mathrm{A}$	
$\mathrm{IIL}^{\text {L }}$	Low-Level Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}^{* *}$	-1.0		1.0	$\mu \mathrm{A}$	
$\mathrm{IIH}^{\text {H }}$	Oscillator Input Current		$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Oscillator Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{D}_{0} \text {-SOURCE }}$	Charge Pump Output Current		$\mathrm{V}_{\mathrm{D}_{\mathrm{o}}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{I}_{\mathrm{CP}_{\mathrm{o}}}=L_{\text {LOW }}{ }^{*}$		-1.25		mA	
$\mathrm{I}_{\mathrm{D}_{0} \text {-SINK }}$			$\mathrm{V}_{\mathrm{D}_{\mathrm{o}}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{I}_{\mathrm{CP}_{\mathrm{o}}}=\mathrm{LOW}^{*}$		1.25		mA	
$\mathrm{I}_{\mathrm{D}_{0} \text {-SOURCE }}$			$\mathrm{V}_{\mathrm{D}_{0}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{I}_{\mathrm{CP}_{0}}=\mathrm{HIGH}^{*}$		-5.0		mA	
$\mathrm{I}_{\mathrm{D}_{0} \text {-SINK }}$			$V_{D_{0}}=V_{C C} / 2, I_{C P_{0}}=\mathrm{HIGH}^{*}$		5.0		mA	
${ }^{1} \mathrm{D}_{0}$-TRI	Charge Pump TRI-STATE Current	$\begin{aligned} & \text { LMX2335 } \\ & \text { LMX2336 } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~V} \leq V_{D_{0}} \leq V_{C C}-0.5 \mathrm{~V} \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	-5.0		5.0	nA	
${ }^{1} \mathrm{D}_{0}$-TRI	Charge Pump TRI-STATE Current	LMX2337	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{\mathrm{O}}} \leq \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$		5		nA	

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified (Continued)

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
V_{OH}	High-Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$V_{C C}-0.4$			V
V OL	Low-Level Output Voltage	$\mathrm{lOL}=500 \mu \mathrm{~A}$			0.4	V
t_{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
${ }^{t_{C H}}$	Data to Clock Hold Time	See Data Input Timing	10			ns
${ }^{\text {t }}$ CWH	Clock Pulse Width High	See Data Input Timing	50			ns
$t_{\text {cWL }}$	Clock Pulse Width Low	See Data Input Timing	50			ns
t_{ES}	Clock to Load Enable Set Up Time	See Data Input Timing	50			ns
$\mathrm{t}_{\text {EW }}$	Load Enable Pulse Width	See Data Input Timing	50			ns

*See PROGRAMMABLE MODES for $\mathrm{I}_{\mathrm{CP}}^{0}$ description.
${ }^{*}$ Clock, Data and LE does not include $f_{I N} 1, f_{I N} 2$ and $O S C_{i n}$.

Typical Performance Characteristics (Continued)

TL/W/12332-19

TL/W/12332-21

LMX2335 Input Impedance

$V_{C C}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{I}}=50 \mathrm{MHz}$ to 1.5 GHz

TL/W/12332-23

[^1]

TL/W/12332-20

Charge Pump Current vs D_{o} Voltage

 $I_{C P}=L O W$

TL/W/12332-22
LMX2336 Input Impedance
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f} \mathrm{IN}=50 \mathrm{MHz}$ to 2.5 GHz

TL/W/12332-24
Marker $1=1 \mathrm{GHz}$, Real $=97$, Image $=-146$
Marker $2=1.89 \mathrm{GHz}$, Real $=43$, Image $=-67$
Marker $3=2.5 \mathrm{GHz}$, Real $=30$, Image $=-33$
Marker $4=500 \mathrm{MHz}$, Real $=189$, Image $=-233$

Typical Performance Characteristics (Conitinued)

Functional Description

The simplified block diagram below shows the 22-bit data register, two 15-bit R Counters and two 18 -bit N Counters (intermediate latches are not shown). The data stream is clocked (on the rising edge of LE) into the DATA input, MSB first. The last two bits are the Control Bits. The DATA is transferred into the counters as follows:

Control Bits		DATA Location
C 1	C 2	
0	0	RF2 R Counter
0	1	RF1 R Counter
1	0	RF2 N Counter
1	1	RF1 N Counter

TL/W/12332-1

Functional Description (Continued)

PROGRAMMABLE REFERENCE DIVIDERS (RF1 AND RF2 R COUNTERS)

If the Control Bits are 00 or 01 (00 for RF2 and 01 for RF1) data is transferred from the 22-bit shift register into a latch which sets the 15 -bit R Counter. Serial data format is shown below.

15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide	\mathbf{R}														
Ratlo	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{3}$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\bullet															
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 32767
R1 to R15: These bits select the divide ratio of the programmable reference divider.
Data is shifted in MSB first.

PROGRAMMABLE DIVIDER (N COUNTER)

Each N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bits are 10 or 11 (10 for RF2 counter and 11 for RF1 counter) data is transferred from the 20-bit shift register into a 7-bit latch (which sets the Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter), MSB first. Serial data format is shown below.

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

Divide Ratio A	\mathbf{N} $\mathbf{7}$	\mathbf{N}	$\mathbf{6}$	\mathbf{N}			
$\mathbf{5}$	\mathbf{N}	$\mathbf{4}$	$\mathbf{3}$	\mathbf{N}	\mathbf{N}		
$\mathbf{2}$	$\mathbf{1}$						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Notes: Divide ratio: 0 to 127
$B \geq A$
$A<P$

Functional Description (Continued)

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio B	$\begin{aligned} & N \\ & 18 \end{aligned}$	$\begin{gathered} N \\ 17 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 16 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & 15 \end{aligned}$	$\begin{aligned} & N \\ & 14 \end{aligned}$	$\begin{aligned} & N \\ & 13 \end{aligned}$	$\begin{aligned} & N \\ & 12 \end{aligned}$	$\begin{gathered} N \\ 11 \end{gathered}$	$\begin{gathered} N \\ 10 \end{gathered}$	$\begin{aligned} & N \\ & 9 \end{aligned}$	N 8
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet	\bullet	\bullet	-	\bullet	-	-	-	-	-	-	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)
$B \geq A$

PULSE SWALLOW FUNCTION

$\mathrm{f}_{\mathrm{VCO}}=[(\mathrm{P} \times \mathrm{B})+\mathrm{A}] \times \mathrm{fosc} / \mathrm{R}$
$f_{V C O}$ Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
A: Preset divide ratio of binary, 7 -bit swallow counter

$$
(0 \leq \mathrm{A} \leq \mathrm{P} ; \mathrm{A} \leq \mathrm{B})
$$

fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 15-bit programmable reference counter (3 to 32767)
P : Preset modulus of dual modulus prescaler ($\mathrm{P}=64$ or 128)

PROGRAMMABLE MODES

Several modes of operation can be programmed with bits R16-R19 including the phase detector polarity, charge pump tristate and the output of the FoLD pin. The prescaler and power down modes are selected with bits N19 and N20. The programmable modes are shown in Table I. Truth table for the programmable modes and FoLD output are shown in Table II and Table III.

TABLE I. Programmable Modes

C1	C2	R16	R17	R18	R19	R20
0	0	RF2 Phase Detector Polarity	RF2 ICP	RF2 D_{0} TRI-STATE	RF2 LD	RF2 F F_{0}
0	1	RF1 Phase Detector Polarity	RF1 ICP	RF1 D_{0} TRI-STATE	RF1 LD	RF1 F F_{0}

C1	C2	N19	N20
1	0	RF2 Prescaler	Pwdn RF2
1	1	RF1 Prescaler	Pwdn RF1

Functional Description (Continued)
TABLE II. Mode Select Truth Table

	Phase Detector Polarity(3)	D $_{\mathbf{0}}$ TRI-STATE	$\mathbf{I C P}_{\mathbf{o}}{ }^{\text {(1) }}$	RF1 Prescaler	RF2 Prescaler	Pwdn(2)
0	Negative	Normal Operation	LOW	$64 / 65$	$64 / 65$	pwrd up
1	Positive	TRI-STATE	HIGH	$128 / 129$	$128 / 129$	pwrd dn

Note 1: The $\mathrm{I}_{\mathrm{CP}_{0}}$ LOW current state $=1 / 4 \times \mathrm{I}_{\mathrm{CP}}^{\mathrm{O}} \mathrm{HIGH}$ current.
Note 2: Activation of the RF2 PLL or RF1 PLL powerdown modes result in the disabling of the respective N counter divider and debiasing of ts respective $f_{I N}$ inputs (to a high impedance state). Powerdown forces the respective charge pump and phase comparator logic to a TRI-STATE condition. The R counter and Oscillator functionality does not become disabled until both RF2 and RF1 powerdown bits are activated. The OSC in pin reverts to a high impedance state when this condition exists. The MICROWIRETM control register remains active and capable of loading and latching data during all of the powerdown modes.

Note 3: PHASE DETECTOR POLARITY
Depending upon VCO characteristics, the R16 bits should be set accordingly:
When VCO characteristics are positive like (1), R16 should be set HIGH;
When VCO characteristics are negative like (2), R16 should be set LOW.

VCO Characteristics

TL/W/12332-7
TABLE III. The FoLD Output Truth Table

RF1 R[19] (RF1 LD)	RF2 R[19] (RF2 LD)	RF1 R[20] (RF1 Fo)	RF2 R[20] (RF2 FO)	FoLD Output State
0	0	0	0	Disabled (Note 1)
0	1	0	0	RF2 Lock Detect (Note 2)
1	0	0	0	RF1 Lock Detect (Note 2)
1	1	0	0	RF1/RF2 Lock Detect (Note 2)
X	0	0	1	RF2 Reference Divider Output
X	0	1	0	RF1 Reference Divider Output
X	1	0	1	RF2 Programmable Divider Output
X	1	1	0	RF1 Programmable Divider Output
0	0	1	1	Fastlock (Note 3)
0	1	1	1	For Internal use only
1	0	1	1	For Internal use only
1	1	1	1	Counter Reset (Note 4)

X-don't care condition

Note 1: When the F LD output is disabled it is actively pulled to a low logic state.
Note 2: Lock detect output provided to indicate when the VCO frequency is in "lock". When the loop is locked and a lock detect mode is selected, the pins output is HIGH, with narrow pulses LOW. In the RF1/RF2 lock detect mode a locked condition is indicated when RF2 and RF1 are both locked.
Note 3: The Fastlock mode utilized the FoLD output pin to switch a second loop filter damping resistor to ground during fastlock operation. Activation of Fastlock occurs whenever the RF loop's Icpo magnitude bit \#17 is selected HIGH (while the \#19 and \#20 mode bits are set for Fastlock).
Note 4: The Counter Reset mode bits R19 and R20 when activated reset all counters. Upon removal of the Reset bits the N counter resumes counting in "close" alignment with the R counter. (The maximum error is one prescalar cycle). If the Reset bits are activated the R counter is also forced to Reset, allowing smooth acquisition upon powering up.

Functional Description (Continued)

SERIAL DATA INPUT TIMING

TL/W/12332-8
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $V_{C C} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of 2.2 V @ $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and 2.6 V @ $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

TL/W/12332-9
Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{0} pin when the loop is locked

Typical Application Example

TL/W/12332-10

- VCO is assumed AC coupled.
** R R_{IN} increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. f_{IN} RF impedance ranges from 40Ω to 100Ω. f_{IN} IF impedances are higher.
*** 50Ω termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. OSC $_{\text {in }}$ may be $A C$ or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below).

TL/W/12332-11
Proper use of grounds and bypass capacitors is essential to achieve a high level of performance. Crosstalk between pins can be reduced by careful board layout.
This is a static sensitive device. It should be handled only at static free work stations.

Application Information

A block diagram of the basic phase locked loop is shown in Figure 1.

TL/W/12332-12
FIGURE 1. Conventional PLL Architecture

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain (K_{ϕ}), the VCO gain ($\mathrm{K}_{\mathrm{VCO}} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in equation 2.

figure 2. PLL Linear Model

TL/W/12332-13
FIGURE 3. Passive Loop Filter

$$
\begin{align*}
& \text { Open } \\
& \text { Loop }=H(s) G(s)=\frac{\Theta_{i}}{\Theta_{\theta}}=\frac{K_{\phi} Z(s) K_{V C O}}{N s} \tag{1}\\
& \quad Z(s)=\frac{s(C 2 \bullet R 2)+1}{S^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2} \tag{2}
\end{align*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{gather*}
\mathrm{T}_{1}=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \tag{3a}\\
\mathrm{~T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{3b}
\end{gather*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time contants T1 and T2, and the design constants $\mathrm{K} \phi, \mathrm{K}_{\mathrm{VCO}}$, and N .
$\left.G(s) \cdot H(s)\right|_{S=j \bullet w}=\frac{-K \phi \cdot K_{V C O}(1+j w \bullet T 2)}{w^{2} C 1 \bullet N(1+j w \bullet T 1)} \cdot \frac{T 1}{T 2}$
From equation 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in equation 5.

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \mathrm{C} \tag{5}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter ϕ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45 degrees.
If we were now to redefine the cut off frequency, wp', as double the frequency which gave us our original loop bandwidth, wp, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed Fastlock scheme, the higher spur levels and wider loop filter conditions would exist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve Figure 4 over to a different cutoff frequency, illustrated by dotted line, without affecting the relative open loop gain and phase relationships. To maintain the same gain/ phase relationship at twice the original cutoff frequency, other terms in the gain and phase equations 4 and 5 will have to compensate by the corresponding " $1 / w$ " or " $1 / w 2$ " factor. Examination of equations 3 and 5 indicates the damping resistor variable R2 could be chosen to compensate with " w " terms for the phase margin. This implies that another resistor of equal value to R2 will need to be switched in parallel with R2 during the initial lock period. We must also insure that the magnitude of the open loop gain, $\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ is equal to zero at wp' $=2 \mathrm{wp} . \mathrm{K}_{\mathrm{vco}}, \mathrm{K} \phi, \mathrm{N}$, or the net product of these terms can be changed by a factor of 4 , to counteract with \mathbf{w}^{2} term present in the denominator of

Application Information (Continued)

equation 3. The K ϕ term was chosen to complete the transformation because it can readily be switched between $1 X$ and 4 X values. This is accomplished by increasing the charge pump output current from 1 mA in the standard mode to 4 mA in Fastlock.

Fastlock Circult Implementatlon

A diagram of the Fastlock scheme as implemented in Na tional Semiconductors LMX2335/36/37 PLL is shown in Figure 5. When a new frequency is loaded, and the RF1 $I_{C P o}$ bit is set high, the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NMOS on chip device switches in a
second R2 resistor element to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration ensures that as long as a second identical damping resistor is wired in appropriately, the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the user can return the PLL to standard low noise operation by sending a MICROWIRE instruction with the RF1 ICPo bit set low. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between Fastlock and standard mode.

TL/W/12332-15
FIGURE 4.Open Loop Response Bode Plot

TL/W/12332-18
FIGURE 5. Fastlock PLL Architecture

LMX3160 Single Chip Radio Transceiver

General Description

The Single Chip Radio Transceiver is a monolithic, integrated radio transceiver optimized for use in the Digital European Cordless Telecommunications (DECT) system as well as other mobile telephony and wireless communications applications. It is fabricated using National's ABiC \vee BiCMOS process ($\mathrm{f} \mathrm{T}=18 \mathrm{GHz}$).
The Single Chip Radio Transceiver contains both transmit and receive functions. The transmitter includes a 1.1 GHz phase locked loop (PLL), a frequency doubler, and a high frequency buffer. The receiver consists of a 2.0 GHz low noise mixer, an intermediate frequency (IF) amplifier, a high gain limiting amplifier, a frequency discriminator, a received signal strength indicator (RSSI), and an analog DC compensation loop. The PLL, doubler, and buffers can be used to implement open loop modulation. The circuit features an onboard voltage regulator to allow wide supply voltages. In addition, the on board voltage regulator has two outputs for regulated discrete stages in the Rx and Tx chain.
The IF amplifier, high gain limiting amplifier, and discriminator operate in the 40 to 150 MHz frequency range, and the total IF gain is 85 dB . The use of the limiter and the discriminator provides a low cost, high performance demodulator
for communications systems. The RSSI output can be used for channel quality monitoring.
The Single Chip Radio Transceiver is available in a 48-pin $7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ PQFP surface mount plastic package.

Features

- Single chip solution for DECT RF transceiver
- RF sensitivity to -93 dBm ; RSSI sensitivity to $-100 \mathrm{dBm}$
a Two regulated voltage outputs for discrete amplifier $V_{C C}$
- High gain (85 dB) intermediate frequency strip
- Allows unregulated $3.0 \mathrm{~V}-5.5 \mathrm{~V}$ supply voltage range
- Power down mode for increased current savings
- System noise figure 5.4 dB (typ)

Applications

- Digital European Cordless Telecommunications (DECT)
- Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Other wireless communications systems

TL/W/12493-1
This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.

LMX3160 Pin Diagram

TL/W/12493-2

PIn No.	Pin Name	I/O	
1	$V_{\text {CC }}$	-	Power supply voltage input to mixer. Connect to VBAT
2	MIXER $_{\text {OUT }}$	O	IF output signal of the mixer.
3	V $_{\text {CC }}$	-	Power supply voltage input to mixer. Connect to VBAT
4	GND	-	Ground.
5	RFIN	1	RF input to the mixer.
6	GND	-	Ground.
7	Tx V $_{\text {REG }}$	O	Supply voltage to external gain stage.
8	$V_{\text {CC }}$	-	Power supply voltage input to analog sections of doubler/PLL. Connect to VBAT
9	GND	-	Ground.
10	TxOUT	O	Doubler output.
11	GND	-	Ground.
12	$V_{\text {CC }}$	-	Power supply voltage input to analog sections of doubler/PLL. Connect to VBAT
13	GND	-	Ground.
14	GND	-	Ground.
15	fIN	I	RF Input to doubler and PLL.
16	CE	I	Chip Enable. LOW powers down entire part. Before taking HIGH all μ wire instructions should be loaded for R, N, F latches. Taking CE HIGH will power up the appropriate chip blocks depending on the state of bits F6, F7, F14, and F15. The CE state change will also load the PLL N and R counters to the correct divide ratios.

LMX3160 Pin Diagram (Continued)			
Pin No.	Pln Name	1/0	Description
17	V_{P}	-	Power supply for charge pump.
18	D_{0}	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
19	$V_{C C}$	-	Power supply input for CMOS section of PLL. Connect to VBAT
20	GND		Ground.
21	Out 0/FLo	1/0	Programmable CMOS output. Can be used for FastLockTM output (See Programmable Modes).
22	Out 1/Rx PD	1/0	Programmable CMOS output. Can be used for hardwire receiver power down (See Programmable Modes).
23	Out 2/Tx PD	$1 / 0$	Programmable CMOS output. Can be used for hardwire transmitter power down (See Programmable Modes).
24	PLL PD	1	PLL PD = LOW for PLL normal operations. PLL PD = HIGH for PLL power saving.
25	Clock	1	High impedance CMOS clock input.
26	Data	1	Binary serial data input. Data entered MSB first. High impedance CMOS input.
27	LE	1	Load enable input.
28	$\mathrm{OSC}_{\text {IN }}$	1	Oscillator input.
29	S Field	1	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled, and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator is held by the external capacitor.
30	RSSIOUT	0	Voltage output of the received signal strength indicator (RSSI).
31	Thresh	0	Threshold level to external comparator.
32	DC COMPIN	1	Input to DC compensation circuit.
33	DISCOUT	0	Demodulated output of discriminator.
34	GND	-	Ground. .
35	$V_{C C}$	-	Power supply input to discriminator circuit. Connect to VBAT
36	QUADIN	1	Quadrature input.
37	$V_{C C}$	-	Power supply input to limiter output stage. Connect to VBAT
38	GND	-	Ground.
39	LIMOUT	0	Limiter output to the quadrature tank.
40	GND	-	Ground.
41	V_{CC}	-	Power supply input for limiter. Connect to VBAT
42	LIM ${ }_{\text {IN }}$	1	IF input to the limiter.
43	GND	-	Ground. ...
44	GND	-	Ground.
45	IFOUT	0	IF output to bandpass filter.
46	$V_{C C}$	-	Power supply input for IF amplifier. Connect to VBAT
47	IFin	, 1	IF input to IF amplifier. ..
48	Rx $\mathrm{V}_{\text {REG }}$	-	Supply voltage to external LNA.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablilty and specifications.

Power Supply Voltage (V_{CC}) V_{p}
Voltage on Any Pin with $\mathrm{GND}=\mathrm{OV}\left(\mathrm{V}_{\mathrm{l}}\right)$
Storage Temperature Range (T_{S})
Lead Temp. (solder, 4 sec$)\left(\mathrm{T}_{\mathrm{L}}\right)$

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \\
\\
-0.3 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+260^{\circ} \mathrm{C}
\end{array}
$$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Recommended Operating

 Conditions| Supply Voltage $\left(V_{C C}\right)$ | 3.0 V to 5.5 V |
| :--- | ---: |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |

Electrical Characteristics

The following specifications are guaranteed over the recommended operating conditions unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RxIcc	Receive Mode Current Consumption (Note 1)	Tx PLL Powered Down	,	38	45	mA
Tx lcc	Transmit Mode Current Consumption (Note 2)	Rx PLL Powered Down		20	25	mA
IPD	Power Down Current	Tx, Rx, PLL Off		1	10	$\mu \mathrm{A}$
f_{RF}	RF Frequency Range		1.7		2.0	GHz
$f_{\text {max }}$	Maximum IF Input Frequency		120	150		MHz
$f_{\text {min }}$	Minimum IF Input Frequency			18	20	MHz
MIXER NF Single Side Band Noise Figure						
				5.9	7	dB
GA	Gain		16	18		dB
OIP3	Output Intercept Point		-2	1		dBm
RF-RL	RF Return Loss	$\mathrm{Z}_{0}=50 \Omega$		15		dB
IF-RL	IF Return Loss	$Z_{0}=200 \Omega$		15		dB
$\mathrm{fin}^{\text {-RF }}$	f_{IN} to RF Isolation	.		30		dB
$\mathrm{f}_{\mathbf{I N} \text {-IF }}$	f_{1} to IF Isolation			30		dB
RF-IF	RF to IF Isolation	-		30		dB

Electrical Characteristics The following specifications are guaranteed over the recommended operating conditions unless otherwise specified (Continued)

Electrical Characteristics The following specifications are guaranteed over the recommended operating conditions unless otherwise specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
FREQUENCY SYNTHESIZER						
Vosc	Oscillator Sensitivity		0.5	1.0		$V_{\text {PP }}$
$\mathrm{I}_{0 \text { o-source }}$	Charge Pump Output Current	$V_{\text {do }}=V_{p} / 2, I_{\text {cpo }}=$ LOW (Note 4)		-1.5		mA
${ }^{1} \mathrm{D}_{0 \text { - }}{ }^{\text {dink }}$		$\mathrm{V}_{\mathrm{do}}=\mathrm{V}_{\mathrm{p}} / 2, \mathrm{I}_{\mathrm{cpo}}=$ LOW $($ Note 4)		1.5		mA
$\mathrm{I}_{\text {O-source }}$		$\mathrm{V}_{\mathrm{do}}=\mathrm{V}_{\mathrm{p}} / 2, \mathrm{I}_{\mathrm{cpo}}=$ HIGH (Note 4)		-6.0		mA
$I_{D_{0-\text { ink }}}$		$\mathrm{V}_{\mathrm{do}}=\mathrm{V}_{\mathrm{p}} / 2, \mathrm{I}_{\mathrm{cpo}}=$ HIGH (Note 4)		6.0		mA
$\mathrm{I}_{\mathrm{D}_{0} \text {-Tri }}$.	$\begin{aligned} & 0.5 \leq V_{\mathrm{do}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1.0	0.1	1.0	$n A$
V_{OH}	High-Level Output Voltage	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{IOL}=1.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		$\mathrm{V}_{\mathrm{CC}}-0.8$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage				0.8	V
IN	Input Current	GND $<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	mA
t_{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
${ }^{\mathrm{t}_{\mathrm{CH}}}$	Data to Clock Hold Time	See Data Input Timing	10			ns
${ }^{\text {t }}$ WH	Clock Pulse Width High	See Data Input Timing	50			ns
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low	See Data Input Timing	50			ns
$t_{\text {ES }}$	Clock to Load Enable Set Up Time	See Data Input Timing	50			ns
tew	Load Enable Pulse Width	See Data Input Timing	50			ns

DC COMPENSATION SAMPLE AND HOLD CIRCUIT

$\mathrm{V}_{\text {S }}$	Input Offset Voltage				3	mV
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	Input/Output Voltage Swing	Centered at 1.5 V		1.0		$\mathrm{~V}_{\mathrm{PP}}$
$\mathrm{R}_{\text {SH }}$	Sample and Hold Resistor	,	224		336	Ω
D_{V}	Threshold Input Voltage Droop	$\mathrm{C}_{\text {hold }}=2700 \mathrm{pF}$		1	10	$\mathrm{mV} / \mathrm{ms}$

Note 1: This includes 5 mA current sourced from the $R x V_{\text {REG }}$ pin for the external receive LNA as shown in the application diagram.
Note 2: This includes 5 mA current sourced from the $T x V_{\text {REG }}$ pin for the external transmit buffer used before the power amplifier as shown in the application diagram.
Note 3: Measured at the output of external gain stage.
Note 4: See programmable modes for $I_{c p o}$ description.

Serial Data Input Timing

TL/W/12493-3
Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{CC}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ and $2.6 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

PLL Functional Description

The simplified block diagram below shows the 20 -bit data register, 18 -bit F latch, 12 bit N counter, and 6 bit R counter.

TL/W/12493-4

PLL Functional Description (Continued)

The data stream is clocked on the rising edge of LE into the DATA input, MSB first. The last two bits are the control bits. DATA is transferred into the counters as follows:

Control Blts		DATA Location
C1	C2	
0	0	N Counter
0	1	R Counter
1	X	F Latch

$x=$ Dont Care

Programmable Divider (N Counters)

The N counter consists of the 6 -bit swallow counter (A counter) and the 6 -bit programmable counter (B counter). When the control bits are " 00 " data is transferred from the 20-bit shift register into two 6-bit latches. One latch sets the A counter while the other sets the B counter, MSB first. Serial data format is shown below.
LSB

C1	C2	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	X	X	X	X	X	X

Control Bits
Divide Ratio of Programmable Divider, N
Don't Care

6-Bit Swallow Counter Divide Ratio (A Counter)

Divide Ratio A	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Notes: Divide ratio: 0 to 63
$B \geq A$

6-Bit Programmable Counter Divide Ratio (B Counter)

Divide Ratio B	N12	N11	N10	N9	N8	N7
3	0	0	0	0	1	1
4	0	0	0	1	0	0
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Notes: Divide ratio: 3 to 63
$B \geq A$

Programmable Reference Dividers (R Counters)

If the control bits are " 01 " data is transferred from the 20 -bit shift register into a latch which sets the 6 -bit R counter. Serial data format is shown below.

> LSB MSB

C1	C2	R1	R2	R3	R4	R5	R6	X	X	X	X	X	X	X	X	X	X	X	X

Control Bits
Divide Ratio of Reference Divider
Don't Care

Divide Ratio R	R6	R5	R4	R3	R2	R1
3	0	0	0	0	1	1
4	0	0	0	1	0	0
$*$	$*$	$*$	$*$	$*$	$*$	$*$
63	1	1	1	1	1	1

Note: Divide ratio: 3 to 63

Pulse Swallow Function

$f_{\mathrm{vco}}=[(P \times B)+A] \times f_{o s c} / R$
$f_{\text {vco: }}$ Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 6-bit programmable counter (3 to 63)
A: \quad Preset divide ratio of binary 6-bit swallow counter ($0 \leq A \leq P, A \leq B$)
fosc: Output frequency of the external reference frequency oscillator
R: \quad Preset divide ratio of binary 6-bit programmable reference counter (3 to 63)
P: Preset modulus of dual modulus prescaler (32 or 64)

Receiver Functional Description

The simplified block diagram below shows the mixer, IF amplifier, limiter, and discriminator. In addition, the DC compensation circuit, doubler, and voltage regulator (for external LNA) are shown.

TL/W/12493-5
Note: Receiver power down can be controlled by software through the F Latch or hardwire through the Rx PD pin. This is determined by the state of F14 and F15 (See Programmable Modes).

Transmitter Functional Description

The simplified block diagram below shows the doubler and voltage regulator (for external transmit gain stage).

TL/W/12493-6
Note: Transmitter power down can be controlled by software through the F Latch or hardwire through the Rx PD pin. This is determined by the state of F14 and F15 (See Programmable Modes).

Programmable Function Latch (F Latch)

If the control bits are " 1 X " data is transferred from the 20 -bit shift register into the 18 -bit F latch. Serial data format is shown below.
LSB

C1	C2	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18

Control Bits

Programmable Modes

Several modes of operation can be programmed with the function register bits F1-F18, including the phase detector polarity, charge pump TRI-STATE ${ }^{\oplus}$ and CMOS outputs. In addition, software or hardwire power down modes may be selected with bits F14 and F15. The programmable modes are latched in when the control bits are: C1 $=1, \mathrm{C} 2=\mathrm{X}$. Truth tables for the programmable modes are shown in Tables I-III.

TABLE I. Programmable Modes

F1	Prescaler Mod Select (32/64)
F2	Phase Detector Polarity
F3	Charge Pump Current
F4	Charge Pump TRI-STATE
F5	Don't Care
F6	Receive Section Power Down
F7	Transmit Section Power Down
F8	Out 0 CMOS Output/FastLock Output
F9	Out 1 CMOS Output/Receive Section Power Down Input
F10	Out 2 CMOS Output/Transmit Section Power Down Input
F11	Don't Care
F12	FastLock Auto/man select
F13	Out 0 Normal CMOS/FastLock Switch
F14	Mode Select. See Mode Select Table
F15	Mode Select. See Mode Select Table
F16	Auto FastLock Counter Bit \# 16
F17	Auto FastLock Counter Bit \# 32
F18	Auto FastLock Counter Bit \#64

Functional Description

F1	Pre-scaler modules select. LOW selects $32 / 33$ and HIGH selects $64 / 65$.
F2	Phase Detector Polarity. F2 is used to reverse the polarity of the phase detector. Depending upon V_{CO} characteristics, F2 should be set accordingly: When VCO characteristics are positive, F2 should be set HIGH; When VCO characteristics are negative, F2 should be set LOW.
F3	Charge pump current. LOW selects low charge pump current ($1 \mathrm{X} \mathrm{I}_{\mathrm{cpo}}$). High selects HIGH charge pump current ($4 X I_{\text {cpo }}$).
F4	Charge Pump TRi-STATE.
F5	Don't Care.
F6-F7	Power down. When F14 $=0$ and F15 $=0$, F6 controls the state of the receive section and F7 controls the state of the transmit section. A LOW powers up the section while a HIGH powers down the section.
F8-F10	CMOS Outputs. When F13 is LOW, F8 controls sets state of Out 0 (pin 21). When in normal power down mode (F14 $=$ $0, F 15=0$), F 9 and F 10 sets the state of Out 1 (pin 22) and Out 2 (pin 23) respectively.
F11	Don't Care.
F12	FastLock Auto/Manual Mode Select. When F13 HIGH, selects auto or manual FastLock mode.
F13	Out 0 (pin 21) Normal/FastLock select. When LOW the state of Out 0 (pin 21) is controlled by F8. When HIGH Out 0 is used for FastLock.
F14-F15	Power Down Mode Control. See Table III.
F16-F18	FastLock Timeout Counter. See Table IV for counter values.

Table II. Mode Select Truth Table

| | F1
 Pre-scaler Mod. | F2
 Phase Det. polarity | F3
 Icpo | F6-F7
 Do TRI-STATE | F8-F10
 Power Down Modes |
| :--- | :---: | :--- | :---: | :--- | :--- | :--- |
| CMOS Outputs | | | | | |

TABLE IIIa. Power Down Modes

Function	F15	F14
Software Control	0	0
Test Mode (See Note)	0	1
Test Mode (See Note)	1	0
Hardwire Power Down	1	1

Note: Not used in application.

TABLE IIIb. Power Control Modes

		High	Low
Software Control	F6	Receiver Off	Receiver On
	F7	Transmitter Off	Transmitter On
Hardwire Control	Rx PD	Receiver Off	Reciever On
	Tx PD	Transmitter Off	Transmitter On
	PLDD PD	PLL Off	PLL On

TABLE IV. Charge Pump Output, Out 0, and FastLock Decoding

F3	F12	F13	
0	X	0	$\mathrm{I}_{\mathrm{cpo}}=1 \mathrm{X}$, No FastLock, Out $0=\mathrm{F8}$
1	X	0	$\mathrm{I}_{\mathrm{cpo}}=4 \mathrm{X}$, No FastLock, Out $0=\mathrm{F8}$
0	0	1	$\mathrm{I}_{\mathrm{cpo}}=1 \mathrm{X}$, Manual FastLock, Out $0=F L_{0}$
1	0	1	$\mathrm{I}_{\mathrm{cpo}}=4 \mathrm{X}$, Manual FastLock, Out $0=F L_{0}$
X	1	1	$\mathrm{I}_{\mathrm{cpo}}=$ Set by \# reference cycles present in F counter, Auto FastLock, Out $0=\mathrm{FL}_{\mathrm{o}}$

TABLE V. FastLock Timeout Counter Value Programming

Time Out (\# Reference Cycles)	8	24	40	56	72	88	104	120
F16	0	1	0	1	0	1	0	1
F17	0	0	1	1	0	0	1	1
F18	0	0	0	0	1	1	1	1

Example: To set FastLock timeout for 24 reference cycles, set F16 $=$ HIGH, F17 $=$ LOW, and F18 $=$ LOW.

Typical Application Block Diagram

Note 1: Connected when using FastLock.
System: DECT-System + 3V Only

		Data Per Stage			-	Cumulative Data			
\#	Component	Gain	N Fig	OIP3	\#	Gain	N Fig	IIP3	OIP3
1	Filter/Switch	-2.0	2.0	100.0	1	-2.0	2.0	97.9	95.9
2	Discrete LNA	10.0	2.0	7.0	2	8.0	4.0	-1.0	7.0
3	Filter	-2.0	2.0	100.0	3	6.0	4.2	-1.0	5.0
4	Mixer	18.0	5.9	1.0	4	24.0	5.2	-23.0	1.0
5	SAW	-11.0	11.0	100.0	5	13.0	5.3	-23.0	-10.0
6	IF Amplifier	25.0	4.0	57.0	6	38.0	5.4	-23.0	15.0
7	BPF (LC)	-2.0	2.0	100.0	7	36.0	5.4	-23.0	13.0
8	IF Limiter	60.0	18.0	68.0	8	96.0	5.4	-29.2	66.8
SYSTEM CUMULATIVE VALUES									
	Sensitivity (@ $\mathbf{2 5}^{\circ} \mathrm{C}$) Required Eb/No	$\begin{array}{r} -93 \\ 14 \end{array}$	Bm		Gain N Fig IIP3 OIP3	$\begin{gathered} 96.0 \mathrm{~dB} \\ 5.4 \mathrm{~dB} \\ -23.0 \mathrm{dBm} \\ 66.8 \mathrm{dbm} \end{gathered}$			

Note: Assumes 50 dB attenuation of interferer by the SAW filter and 8 dB attenuation by the LC filter.

Application Information

TL/W/12493-8
FIGURE 1. Conventional PLL Architecture

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain (K_{ϕ}), the VCO gain ($\mathrm{K}_{\mathrm{vco}} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in Equation 2.

FIGURE 2. PLL Linear Model

TL/W/12493-10
FIGURE 3.

PASSIVE LOOP FILTER

Open loop gain $=H(s) G(s)=\Theta i / \Theta e=K_{\phi} Z(s) K_{v c o} / N s$

$$
\begin{equation*}
\dot{Z}(\mathrm{~s})=\frac{\mathrm{s}(C 2 \bullet R 2)+1}{\mathrm{~s}^{2}(C 1 \cdot C 2 \bullet R 2)+\mathrm{sC1}+\mathrm{sC2}} \tag{1}
\end{equation*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{equation*}
T 1=R 2 \cdot \frac{C 1 \cdot C 2}{C 1+C 2} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
T 2=R 2 \cdot C 2 \tag{3b}
\end{equation*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $\mathrm{K}_{\phi}, \mathrm{K}_{\mathrm{vco}}$, and N .

$$
\begin{equation*}
\left.G(S) \bullet H(S)\right|_{S=j \bullet \omega} \frac{-K_{\phi} \bullet K_{v c o}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2} \tag{4}
\end{equation*}
$$

From Equation 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in Equation 5.

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet T 2)-\tan ^{-1}(\omega \bullet T 1)+180^{\circ} \tag{5}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter ϕ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45°.
If we were now to redefine the cut off frequency, $\omega_{p}{ }^{\prime}$, as double the frequency which gave us our original loop bandwidth, wp, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed FastLock scheme, the higher spur levels and wider loop filter conditions would exist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve of Figure 4 over to a different cutoff frequency, illustrated by the dotted line, without affecting the relative open loop gain and phase relationships. To maintain the same gain/phase relationship at twice the original cutoff frequency, other terms in the gain and phase equations 4 and 5 will have to compensate by the corresponding " $1 / \omega$ " or " $1 / \omega$ " factor. Examination of equations 3 and 5 indicates the damping resistor variable R2 could be chosen to compensate the " ω " terms for the phase margin. This implies that another resistor of equal value to R2 will need to be
switched in parallel with R2 during the initial lock period. We must also insure that the magnitude of the open loop gain, $\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ is equal to zero at $\omega_{\mathrm{p}}^{\prime}=2 \omega_{\mathrm{p}} . \mathrm{K}_{\mathrm{vco}}, \mathrm{K}_{\phi}, \mathrm{N}$, or the net product of these terms can be changed by a factor of 4 to counteract the ω^{2} term present in the denominator of Equation 3. The $\mathrm{K} \phi$ term was chosen to complete the transformation because it can readily be switched between $1 X$ and 4 X values. This is accomplished by increasing the charge pump output current from 1.5 mA in the standard mode to 6 mA in FastLock.

FastLock Circuit Implementation

A diagram of the FastLock scheme as implemented in Na tional Semiconductors LMX3160 is shown in Figure 5. When a new frequency is loaded, the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NMOS on chip device switches in a second R2 resistor element to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration ensures that as long as a second identical damping resistor is wired in appropriately, the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the PLL will then return to standard, low noise operation. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between FastLock and standard mode.

TL/W/12493-11
Flgure 4. Open Loop Response Bode Plot

TL/W/12493-12
FIGURE 5. FastLock PLL Architecture

LMX2216

0.1 GHz to 2.0 GHz Low Noise Amplifier/Mixer for RF Personal Communications

General Description

The LMX2216 is a monolithic, integrated low noise amplifier (LNA) and mixer suitable as a first stage amplifier and downconverter for RF receiver applications. The wideband operating capabilities of the LMX2216 allow it to function over frequencies from 0.1 GHz to 2.0 GHz . It is fabricated using National Semiconductor's ABiC IV BiCMOS process.

All input and output ports of the LMX2216 are single-ended. The LNA input and output ports are designed to interface to a 50Ω system. The Mixer input ports are matched to 50Ω. The output port is matched to 200Ω. The only external components required are DC blocking capacitors. The balanced architecture of the LMX2216 maintains consistent operating parameters from unit to unit, since it is implemented in a monolithic device. This consistency provides manufacturers a significant advantage since tuning procedures-often needed with discrete designs-can be reduced or eliminated.
The low noise amplifier produces very flat gain over the entire operating range. The doubly-balanced, Gilbert-cell mixer provides good LO-RF isolation and cancellation of secondorder distortion products. A power down feature is implemented on the LMX2216 that is especially useful for standby operation common in Time Division Multiple Access (TDMA) and Time Division Duplex (TDD) systems.

The LMX2216 is available in a narrow-body 16-pin surface mount plastic package.

Features

- Wideband RF operation from 0.1 GHz to 2.0 GHz
- No external biasing components necessary
- 3V operation
\square LNA input and output ports matched to 50Ω
- Mixer input ports matched to 50Ω, output port matched to 200Ω.
- Doubly balanced Gilbert cell mixer (single ended input and output)
- Low power consumption
- Power down feature
- Small outline, plastic surface mount package

Applications

■ Digital European Cordless Telecommunications (DECT)

- Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Digital cellular telephone systems
m Other wireless communications systems

Functional Block/Pin Diagram

Pin Description

Pin No.	Pin Name	I/O	
1	VCC M	I	Voltage supply for the mixer. The input voltage level to this pin should be a DC Voltage ranging from 2.85 V to 3.15 V.
2	GND		Ground
3	LNA		

$$
\begin{aligned}
& \text { Absolute Maximum Ratings } \\
& \text { If Military/Aerospace specified devices are required, } \\
& \text { please contact the National Semiconductor Sales } \\
& \text { Office/Distributors for availability and speclfications. } \\
& \text { Supply Voltage }\left(V_{\mathrm{CC}}\right) \\
& \text { Storage Temperature (TS) } \\
& \text { Operating Temperature }\left(\mathrm{T}_{\mathrm{O}}\right)
\end{aligned}
$$

Recommended Operating Conditions
Supply Voltage (VCC
$2.85 \mathrm{~V}-3.15 \mathrm{~V}$
Operating Temperature $\left(T_{A}\right)$
RFIN
LOIN
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
0.1 GHz to 2.0 GHz
0.1 GHz to 2.0 GHz

Electrical Characteristics: LNA

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$ and $\mathrm{f}_{\mathrm{i}}=2.0 \mathrm{GHz} @-30 \mathrm{dBm}$ unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Supply Current	In Operation		6.5	8.0	mA
ICC-PWDN	Supply Current	In Power Down Mode			10	$\mu \mathrm{A}$
G	Gain		9	10		dB
$\mathrm{P}_{1 \mathrm{~dB}}$	Output 1 dB Compression Point		-5.0	-3.0		dBm
OIP3	Output 3rd Order Intercept Point		5.0	7.0		dBm
NF	Single Side Band Noise Figure			4.8	6.0	dB
RLIN	Input Return Loss		10	15		dB
RLOUT	Output Return Loss		10	11		dB

Electrical Characteristics: Mixer $\left(V_{C C}=+3.0 \mathrm{~V} \pm 5 \%, T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{f}_{\mathrm{RF}}=2.0 \mathrm{GHz} @\right.$ $-30 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=1.89 \mathrm{GHz} @ 0 \mathrm{dBm} ; \mathrm{f}_{\mathrm{IF}}=110 \mathrm{MHz}$ unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ICC	Supply Current	In Operation		9.0	12.0	mA
ICC-PWDN	Supply Current	In Power Down Mode			10	$\mu \mathrm{A}$
G_{C}	Conversion Gain (Single Side Band)		4.0	6.0		dB
$\mathrm{P}_{1 \mathrm{~dB}}$	Output 1 dB Compression Point		-13.0	-9.0		dBm
OIP3	Output Third Order Intercept Point		-3.0	0.0		dBm
SSB NF	Single Side Band Noise Figure			17	18	dB
DSB NF	Double Side Band Noise Figure			14	15	dB
LO-RF	LO to RF Isolation		20	30		dB
LO-IF	LO to IF Isolation		20	30		dB
RF RL	RF Return Loss		10	15		dB
LO RL	LO Return Loss		10	15		dB
IF RL	IF Return Loss			15		dB
$\mathrm{Z}_{\text {IF }}$	IF Port Impedance			200		Ω

Electrical Characteristics: Power Down

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IH}	High Level Input Voltage		$\mathrm{V}_{\mathrm{CC}}-0.8$			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage				0.8	V
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$	-10.0		10.0	$\mu \mathrm{~A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	-10.0		10.0	$\mu \mathrm{~A}$

Typical Application Block Diagram

FIGURE 2

Typical Characteristics
 LNA

LNA Current Composition vs Supply Voltage with Temperature as a Parameter

TL/W/11814-3
LNA POUT vs PIN with
Temperature as a Parameter

TL/W/11814-6

LNA Pout vs Pin with Supply Voltage as a Parameter

LNA Pout vs $\mathrm{P}_{\text {IN }}$ with
Temperature as a Parameter

TL/W/11814-7

Typical Characteristics (Continued)

LNA (Continued)

TL/W/11814-8
LNA Gain vs Frequency with
Temperature as a Parameter

TL/W/11814-10
LNA Input Return Loss vs Frequency with Voltage as a Parameter

TL/W/11814-12

LNA Noise Flgure vs Frequency with Supply Voltage as a Parameter

TL/W/11814-9
LNA Noise Figure vs Frequency with Temperature as a Parameter

TL/W/11814-11

Typical Characteristics (Continued) MIXER

Mixer Noise Figure (Double Sideband)

 vs Frequency with SupplyVoltage as a Parameter

TL/W/11814-22

Mixer Noise Figure (Double Sideband) vs Frequency with Temperature as a Parameter

Typical Characteristics (Continued)
MIXER (Continued)

Typical Characteristics (Continued)
 MIXER (Continued)

Functional Description

TL/W/11814-13
FIGURE 3. Block Diagram of the LMX2216

Functional Description (Continued)

THE LNA

The LNA is a common emitter stage with active feedback. This feedback network allows for wide bandwidth operation while providing the necessary optimal input impedance for low noise performance. The power down feature is implemented using a CMOS buffer and a power-down switch. The power down switch is implemented with CMOS devices. During power down, the switch is open and only leakage currents are drawn from the supply.

THE MIXER

The mixer is a Gilbert cell architecture, with the RF input signal modulating the LO signal and single ended output taken from the collector of one of the upper four transistors. The power down circuitry of the mixer is similar to that of the LNA. The power down switch is used to provide or cut off bias to the Gilbert cell.

Typical Low Noise Amplifier

FIGURE 4. Typical LNA Structure
A typical low noise amplifier consists of an active amplifying element and input and output matching networks. The input matching network is usually optimized for noise performance, and the output matching network for gain. The active element is chosen such that it has the lowest optimal noise figure, $\mathrm{F}_{\mathrm{MIN}}$, an intrinsic property of the device. The noise figure of a linear two-port is a function of the source admittance and can be expressed by

$$
F=F_{M I N}+\frac{R_{\mathrm{n}}}{G_{G}}\left[\left(G_{O N}-G_{G}\right)^{2}+\left(B_{O N}-B_{G}\right)^{2}\right]
$$

where $\mathrm{G}_{\mathrm{G}}+j \mathrm{~B}_{\mathrm{G}}=$ generator admittance presented to the input of the two port,
$\mathrm{G}_{\mathrm{ON}}+\mathrm{jB}_{\mathrm{ON}}=$ generator admittance at which optimum noise figure occurs,
$R_{n}=$ empirical constant relating the sensitivity of the noise figure to generator admittance.

Typical Gilbert Cell

TL/W/11814-15
FIGURE 5. Typical Gilbert Cell Circuit Diagram
The Gilbert cell shown above is a circuit which multiplies two input signals, RF and LO. The input RF voltage differentially modulates the currents on the collectors of the transistors Q1 and Q2, which in turn modulate the LO voltage by varying the bias currents of the transistors Q3, Q4, Q5, and Q6. Assuming that the two signals are small, the result is a product of the two signals, producing at the output a sum and difference of the frequencies of the two input signals. If either of these two signals are much larger than the threshold voltage V_{T}, the output will contain other mixing products and higher order terms which are undesirable and may need to be attenuated or filtered out.
Analysis of the Gilbert cell shows that the output, which is the difference of the collector currents of Q3 and Q6, is related to the two inputs by the equation:

$$
\Delta I=I_{C 3}-I_{C 6}=I_{E E}\left[\tanh \left(\frac{\mathrm{~V}_{\mathrm{AF}}}{2 \mathrm{~V}_{\mathrm{T}}}\right)\right]\left[\tanh \left(\frac{\mathrm{V}_{\mathrm{LO}}}{2 \mathrm{~V}_{\mathrm{T}}}\right)\right]
$$

and the hyperbolic tangent function can be expressed as a Taylor series

$$
\tanh (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots
$$

Assuming that the RF and LO signals are sinusoids.

$$
\begin{aligned}
& V_{\mathrm{RF}}=A \cos \left(\omega_{\mathrm{RF}} \mathrm{t}+\phi_{\mathrm{RF}}\right) \\
& \mathrm{V}_{\mathrm{LO}}=\mathrm{Bcos}\left(\omega_{\mathrm{LO}} \mathrm{t}+\phi_{\mathrm{LO}}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
\Delta I= & I_{E E}\left[A \cos \left(\omega_{R F} t+\phi_{R F}\right)-\frac{A^{3}}{3} \cos ^{3}\left(\omega_{R F} t+\phi_{R F}\right)+\ldots\right] \\
& \cdot\left[B \cos \left(\omega_{L O} t+\phi_{L O}\right)-\frac{B^{3}}{3} \cos ^{3}\left(\omega_{L O} t+\phi_{L O}\right)+\ldots\right]
\end{aligned}
$$

The lowest order term is a product of two sinusoids, yielding a sum of two sinusoids,

$$
I_{E E} \frac{A B}{2}\left[\begin{array}{l}
\cos \left(\left(\omega_{R F}+\omega_{L O}\right) t+\phi_{R F}+\phi_{L O}\right) \\
+\cos \left(\left(\omega_{R F}-\omega_{L O}\right) t+\phi_{R F}-\phi_{L O}\right)
\end{array}\right]
$$

one of which is the desired intermediate frequency signal.

Figures of Merit

GAIN (G)

Many different types of gain are specified in RF engineering. The type referred to here is called transducer gain and is defined as the ratio of the power delivered to the load to the available power from the source,

$$
\mathrm{G}=\frac{\mathrm{P}_{\mathrm{OUT}}}{\mathrm{P}_{\mathrm{IN}}}=\frac{\mathrm{V}_{\mathrm{OUT}}^{2} / R_{\mathrm{L}}}{V_{\mathrm{IN}}^{2} / R_{\mathrm{S}}}=4 \frac{\mathrm{R}_{\mathrm{S}} \mathrm{~V}_{\mathrm{OUT}}^{2}}{R_{\mathrm{L}} V_{\mathrm{IN}}^{2}}
$$

where $V_{\text {OUT }}$ is the voltage across the load R_{L} and $V_{I N}$ is the generator voltage with internal resistance Rs. In terms of scattering parameters, transducer gain is defined as

$$
G=20 \log \left(\left|S_{21}\right|\right)
$$

where S_{21} is the forward transmission parameter, which can be measured using a network analyzer.

1 dB COMPRESSION POINT ($\mathrm{P}_{1 \mathrm{~dB}}$)

A measure of amplitude linearity, 1 dB compression point is the point at which the actual gain is 1 dB below the ideal linear gain. For a memoryless two-port with weak nonlinearity, the output can be represented by a power series of the input as

$$
v_{0}=k_{1} v_{i}+k_{2} v_{i}^{2}+k_{3} v_{i}^{3}+\ldots
$$

For a sinusoidal input,

$$
v_{i}=A \cos \omega_{1} t
$$

the output is

$$
\begin{aligned}
v_{0}=\frac{1}{2} & k_{2} A^{2}+\left(k_{1} A+\frac{3}{4} k_{3} A^{3}\right) \cos \omega_{1} t \\
& +\frac{1}{2} k_{2} A^{2} \cos 2 \omega_{1} t+\frac{1}{4} k_{3} A^{3} \cos 3 \omega_{1} t
\end{aligned}
$$

assuming that all of the fourth and higher order terms are negligible. For an amplifier, the fundamental component is the desired output, and it can be rewritten as

$$
k_{1} A\left[1+\frac{3}{4}\left(k_{3} / k_{1}\right) A^{2}\right] .
$$

This fundamental component is larger than $\mathrm{k}_{1} \mathrm{~A}$ (the ideally linear gain) if $k_{3}>0$ and smaller if $k_{3}<0$. For most practical devices, $\mathrm{k}_{3}<0$, and the gain compresses as the amplitude A of the input signal gets larger. The 1 dB compression point can be expressed in terms of either the input power or the output power. Measurement of $\mathrm{P}_{1 \mathrm{~dB}}$ can be made by increasing the input power while observing the output power until the gain is compressed by 1 dB .

THIRD ORDER INTERCEPT (OIP_{3})

Third order intercept is another figure of merit used to characterize the linearity of a two-port. It is defined as the point at which the third order intermodulation product equals the ideal linear, uncompressed, output. Unlike the $\mathrm{P}_{1 \mathrm{~dB}}$, OIP_{3} involves two input signals. However, it can be shown mathematically (similar derivation as above) that the two are closely related and $\mathrm{OP}_{3} \approx \mathrm{P}_{1 \mathrm{~dB}}+10 \mathrm{~dB}$. Theses two figures of merit are illustrated in Figure 6.

FIGURE 6. Typical Pout-Pin Characteristics

NOISE FIGURE (NF)

Noise figure is defined as the input signal to noise ratio divided by the output signal to noise ratio. For an amplifier, it can also be interpreted as the amount of noise introduced by the amplifier itself seen at the output. Mathematically,

$$
\begin{gathered}
F=\frac{S_{i} / N_{i}}{S_{0} / N_{0}}=\frac{S_{i} / N_{i}}{G_{a} S_{i} /\left(N_{a}+G_{a} N_{i}\right)}=\frac{N_{a}+G_{a} N_{i}}{G_{a} N_{i}} \\
N F=10 \log (F)
\end{gathered}
$$

where S_{i} and N_{i} represent the signal and noise power levels available at the input to the amplifier, S_{O} and N_{O} the signal and noise power levels available at the output, G_{a} the available gain, and Na the noise added by the amplifier. Noise figure is an important figure of merit used to characterize the performance of not only a single component but also the entire system. It is one of the factors which determine the system sensitivity.

IMAGE FREQUENCY, DSB/SSB NF

Image frequency refers to that frequency which is also down-converted by the mixer, along with the desired RF component, to the intermediate frequency. This image frequency is located at the same distance away from the LO, but on the opposite side of the RF. For most mixers, it must be filtered out before the signal is down-converted; otherwise, an image-reject mixer must be used. Figure 7 illustrates the concept.

FIGURE 7. Input and Output Spectrum of Mixers

Figures of Merit (Continued)

Due to the presence of image frequencies and the method in which noise figure is defined, noise figures can be measured and specified in two ways: double side band (DSB) or single side band (SSB). In DSB measurements, the image frequency component of the input noise source is not filtered and contributes to the total output noise at the intermediate frequency. In SSB measurements. the image frequency is filtered and the output noise is not caused by this frequency component. In most mixer applications where only one side band is wanted, SSB noise figure is 3 dB higher than DSB noise figure.
In this application, the LMX2216 is used in a radio receiver front end, where it amplifies the signal from the antenna and then down converts it to an intermediate frequency. The image filter placed between the LNA and the mixer attenu-
ates the image frequency. The mixer is shown to use an LO signal generated by a PLL synthesizer, but, depending on the type of application, the LO signal could be generated by a device as simple as a free-running oscillator. The IF output is then typically filtered by a channel-select filter following the mixer, and this signal can then be demodulated or go through another down conversion, depending upon the intermediate frequency and system requirements. This external filter rejects adjacent channels and also attenuates any LO feed through. Figure 9 shows a cascade analysis of a typical RF front-end subsystem in which the LMX2216 is used. It includes the bandpass filter and the switch through which the input RF signal goes in a radio system before reaching the LNA. Typical values are used for the insertion loss of the various filters in this example.

TL/W/11814-18
FIGURE 8. Typical Applications CIrcult of the LMX2216

Data per Stage					Cumulative Data				
\# Comp		Gain	N Fig	OIP3	\#	Gain	N Fig	IIP3	OIP3
1	Filter	-2.0	2.0	100.0	1	-2.0	2.0	97.9	95.9
2	Switch	-0.6	0.6	100.0	2	-2.6	2.6	96.6	94.0
3	LNA	12.3	3.7	6.0	3	9.7	6.3	-3.7	6.0
4	Filter	-3.0	3.0	100.0	4	6.7	6.4	-3.7	3.0
5	Mixer	5.8	13.7	3.0	5	12.5	9.6	-10.5	2.0
6	Filter	-3.0	3.0	100.0	6	9.5	9.7	-10.5	-1.0
System Cumulative Values									
				dB					
				dBm					
				dBm					

FIGURE 9. Cascade Analysis Example

LMX2240
 Intermediate Frequency Receiver

General Description

The LMX2240 is a monolithic, integrated intermediate frequency receiver suitable for use in Digital European Cordless Telecommunications (DECT) systems as well as other mobile telephony and wireless communications applications. It is fabricated using National's ABiCTM IV BiCMOS process ($\mathrm{f}_{\mathrm{T}}=15 \mathrm{GHz}$).
The LMX2240 consists of a high gain limiting amplifier, a frequency discriminator, and a received signal strength indicator (RSSI). The high gain limiting amplifier and discriminator operate in the 40 MHz to 150 MHz frequency range, and the limiter has approximately 70 dB of gain. The use of the limiter and the discriminator provides a low cost, high performance demodulator for communications systems. The RSSI output can be used for channel quality monitoring.
The LMX2240 is intended to support single conversion receivers. This device saves power, size, and cost by eliminating the second local oscillator (LO), second converter (mixer), and additional filters. The LMX2240 is recommended for systems with channel bandwidths of 300 kHz to 2.5 MHz .
The LMX2240 is available in a 16 -pin JEDEC surface mount plastic package.

Features

- Typical operation at 110 MHz

■ RF sensitivity to -75 dBm; RSSI sensitivity to $-82 \mathrm{dBm}$

- High gain (70 dB) limiting amplifier.
- Average current consumption: $480 \mu \mathrm{~A}$ for DECT handset (burst mode)
- +3 V operation
- Power down mode for increased current savings
- Part of a complete receiver solution with the LMX2216 LNA/Mixer, the LMX2315/20 Phase-locked Loop, and the LMX2411 Baseband Processor
- Compliant to ARi1 ${ }^{\text {TM }}$ specification

Applications

- Digital European Cordless Telecommunications (DECT)
- Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Digital cellular telephone systems
- Other wireless communications systems

Functional Block Diagram

TL./W/11755-1

Connection Diagram

TL/W/11755-2
Top View
Order Number LMX2240M See NS Package Number M16A

Pin Description

Pin No.	Pin Name	1/0	Description
1	PD	1	Power Down; a HIGH signal switches the part to power down mode.
2	RSSI Out	0	Voltage output of the received signal strength indicator (RSSI).
3	NC		No connection
4	GND		Ground
5	GND		Ground
6	MID	0	Mid-range output of the discriminator; can be used for comparator threshold.
7	Demod Out	0	Demodulated output of the discriminator.
8	$\mathrm{V}_{\text {CC }}$ (Mixer)		Source voltage for the mixer (discriminator).
9	$\mathrm{V}_{\text {CC }}$ (Lim.)		Source voltage for the limiter.
10	Quad In	I	Quadrature input. A DC path from source through an inductor must be present at this pin, but, there must be no series resistance (a parallel resistor to the inductor is acceptable).
11	Lim. Out	0	Limiter output to the quadrature tank.
12	GND		Ground
13	GND		Ground
14	Comp.		Compensation pin for the limiter. See Applications Information for capacitor value.
15	Comp.		Compensation pin for the limiter. See Applications Information for capacitor value.
16	IF In	1	IF input to the limiter.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Supply Voltage (VCC)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range (T_{S})
Lead Temperature (T_{L})
(Soldering, 10 seconds)

Electrical Characteristics

The following specifications apply for supply voltage $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V} \pm 5 \%, \mathrm{f}_{\mathrm{IN}}=120 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Value Typ	Max	Units
$I_{D D}$	Supply Current			8	10	mA
$I_{P D}$	Power Down Current			115	200	$\mu \mathrm{~A}$
$f_{\text {max }}$	Maximum IF Input Frequency		120	150		MHz
$f_{\min }$	Minimum IF Input Frequency			10		MHz

IF LIMITER

NF	IF Limiter Noise Figure	-		11.5	12.5	dB
A_{V}	Limiter Gain	$Z_{L}=1000 \Omega$		70.		dB
sens	Limiter/Disc. Sensitivity	BER $=0.001$		-75		dBm
$1 \mathrm{~F}_{\text {in }}$	- IF Limiter Input Impedance	\cdots	150		225	Ω
$1 F_{\text {out }}$	IF Limiter Output Impedance	.		250		Ω
$\mathrm{V}_{\text {max }}$	Maximum Input Voltage Level			500		mV PP
$V_{\text {out }}$	Output Swing		350	500		V_{PP}
Lim	Input Limiting Point			-70		dBm

DISCRIMINATOR

$V_{\text {out }}$	Discriminator Output Peak-to-Peak Voltage (Note 1)	See Test Circuit	1.0	1.2		$V_{P P}$
$\mathrm{V}_{\text {OS }}$	Disc. Output DC Voltage (Pin 7)		1.4		1.7	V
MID	Mid-Range Output (Pin 6)	. .. -	1.4	,	1.7	V
DISC $_{\text {in }}$	Disc. Input Impedance			1000		Ω
DISC ${ }_{\text {out }}$	Disc. Output Impedance			150		$\boldsymbol{\Omega}$
RSSI						
RSSI	RSSI Dynamic Range			70		dB
RSSI ${ }_{\text {out }}$	RSSI Output Voltage	$\operatorname{Pin}=-80 \mathrm{dBm}$	0.35	0.5	0.8	V
		Pin $=0 \mathrm{dBm}$	1.15	1.5	1.8	V
	RSSI Slope	$\mathrm{Pin}=-70 \mathrm{dBm}$ to -20 dBm	11	16		$\mathrm{mV} / \mathrm{dB}$
	RSSI Linearity			3		dB

Note 1: The discriminator output peak-to-peak voltage is measured by operating the discriminator mixer with two separate inputs (i.e., as a mixer). A beat frequency of 1 kHz is generated, and this tone's output swing is guaranteed to be at least 1.0 V PP. When the mixer is configured as a discriminator with the limiter and a tank circuit, the guaranteed 1.0 VPP output translates to $\left(1.0 \mathrm{~V}{ }^{*}(36 / 180)=\right) 200 \mathrm{mVPP}$ demodulated output, assuming at least 36° phase shift across the band of interest from the tank circuit.

Typical Application Block Diagram

Functional Description

OVERVIEW

The LMX2240 IF demodulator is a low power IF processor that includes a frequency discriminator, an IF hard limiting amplifier, and a received signal strength indicator (RSSI). The LMX2240 is capable of differentially demodulating an FM or AM signal with as high an IF as 150 MHz , avoiding a costly second down-conversion. The RSSI output can be used for time gated channel measurements required in TDMA and other systems. Other features include high receiver sensitivity and a power down mode to allow for standby operation.

THE LIMITING AMPLIFIER

The limiting amplifier has a typical gain of 70 dB and a sensitivity of about -75 dBm . This allows it to be used in the DECT system with 20 dB net RF gain in front of it to achieve a sensitivity of -95 dBm . The limiter is a five stage amplifier with internal compensation at each stage to ensure stability. Two external compensation capacitors are also required to further enhance stability. The input to the limiter is a relatively low impedance to allow easy matching to typical IF surface acoustic wave (SAW) filters. The output of the limiter is connected off chip to an external quadrature tank circuit as well as connected internally to the discriminator (mixer). The output impedance of the limiter is 250Ω (typical).

THE RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)
The RSSI circuit has a range of 70 dB . Its output voltage is proportional to the logarithm of the input signal level. The RSSI circuit has a sensitivity of -82 dBm . The output voltage of the circuit ranges from 0.5 V to 1.5 V typically.

THE FREQUENCY DISCRIMINATOR

The frequency discriminator is a Gilbert cell mixer that requires an external tank circuit to create a 90° phase shift at the desired frequency. The output of this circuit is centered at 1.5 V by an internal level shifting circuit, and a mid-range voltage (at 1.5 V) is also provided. The sensitivity of the discriminator to phase inaccuracies is $5.5 \mathrm{mV} /$ degree (see Applications Information). This means that for a phase imbalance of 10°, the received eye diagram will be shifted by about 55 mV off of the 1.5 V mid-range voltage. For the typical case, this amounts to about 10% of the output eye diagram (for 400 mV PP output).

Typical Performance Characteristics

Typical Performance Characteristics (Continuad)

Mid-Range (Reference) Voltage vs Supply with Temperature as a Parameter

TL/W/11755-8

Limiter Output Power vs Frequency with Voltage as a Paramerer

TL/W/11755-9

Typical Performance Characteristics (Continued)

TL/W/11755-12

RSSI Output vs Input Power with
Temperature as a Parameter

Automatic Test Circuit

Typical Application Example

$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 5=\mathrm{C} 6=100 \mathrm{pF} \pm 10 \%$ NPO Ceramic

$C 4=1 \mathrm{pF} \pm 10 \%$ NPO Ceramic	$C 7=C 9=0.01 \mu \mathrm{~F} \pm 10 \%$ NPO Ceramic
$C 8=82 \mathrm{pF} \pm 10 \%$ X7R Ceramic	$\mathrm{R} 1=4 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Thin Film Carbon
$\mathrm{R} 2=880 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Thin Film Carbon	Tank $=$ Toko $\# 638 A H-0294$

Tank $=$ Toko \#638AH-0294
All supporting components 0603 surface mount except tank.

Applications Information

THE INTERMEDIATE FREQUENCY LIMITER

The IF limiter has a large amount of gain at high enough frequency to cause concern about oscillation. To ensure that the limiter does not oscillate, a few precautions should be taken. The compensation capacitors that are used should be chosen to roll off any unwanted frequencies below the band of interest. The capacitor should be a high Q, RF type ceramic chip capacitor. For DECT, the capacitor value should be 100 pF , and the capacitors should be soldered as close to the LMX2240 as possible. This will create a pass band from 40 MHz to 150 MHz . The AC coupling capacitor at the input to the limiter (from the SAW filter) should be the same value as the compensation capacitors.

THE DISCRIMINATOR

There are two types of discriminator that can be used to demodulate FM signals. The first is a delay line discriminator, which uses a delay in one path of the received signal to introduce a phase difference between it and the received signal. The operation of the delay line discriminator is derived in the inset box. The other type of discriminator relies on a quadrature tank to directly introduce a phase shift in the received signal. This is the type of implementation that is commonly used in mobile communications because of its relative ease of construction and low cost.
The discriminator operates best when the inputs to it are hard-limited (i.e., square edges). If the input signal is small enough such that the IF amplifier cannot limit it, the output voltage swing of the limiter will suffer. Typically, the minimum voltage swing the discriminator can see and still fully switch is about 100 mV Pp. The two inputs to the discriminator can be of different peak-to-peak voltage swings as long as both are over the lower limit. This allows the quadrature tank circuit to have some insertion loss. In fact, up to 8 dB insertion loss can be tolerated while still ensuring that the discriminator output won't suffer.
The quadrature circuit can also affect the discriminator output voltage swing. The discriminator output voltage swing specified assumes perfect quadrature at the frequency of interest (mixer operation). With available analog components, perfect quadrature is not possible. This is due in part to the high frequency of the IF and the proportionally very narrow bandwidth of the desired signal. For example, a DECT signal is about 1 MHz wide, which is $<1 \%$ of the IF at which the demodulation occurs. This makes the quadrature circuit difficult to achieve. With moderately high Q components, however, a reasonable phase shift can be achieved with a single pole tank. This is illustrated by the following equation: the output of the discriminator is given by

$$
\begin{equation*}
\mathrm{DISC}_{o u t}=\cos \left(\omega_{c} t\right) \cdot \cos \left(\omega_{c} t+\phi\right) \tag{1}
\end{equation*}
$$

which results in

$$
\mathrm{DISC}_{\text {out }}=\cos \left(\omega_{c} t+\omega_{c} t+\phi\right)+\cos \left(\omega_{c} t-\omega_{c} t-\phi\right) .
$$

When the double frequency component is filtered out with a low pass filter, the cosine of the phase remains

$$
\begin{equation*}
\operatorname{DISC}_{\text {out }}=\cos (-\phi)=\cos (\phi) \tag{3}
\end{equation*}
$$

It can be seen that at 90° phase shift, the output will be zero. At 0°, the output will be 0.5 , and at 180°, it will be -0.5 . The output swing is then set by the multiplication of the cosine term with the discriminator output amplifier's gain.

With a circuit that gives an output peak-to-peak voltage of $1.0 \mathrm{~V}_{\mathrm{PP}}(\mathrm{min})$ with ideal quadrature, the slope is seen to be $5.5 \mathrm{mV} /$ degree. With a practical quadrature tank circuit at 110.6 MHz , the phase shift over a 1 MHz bandwidth is about $45^{\circ}-50^{\circ}$, which translates to an output peak-to-peak voltage of about 250 mV Pp.

Assume the FM modulated signal is denoted as

$$
\begin{equation*}
s(t)=\cos (\omega c t+m(t)), \tag{4}
\end{equation*}
$$

where $m(t)=m \int_{-\infty}^{t} b(t) d t$,
and $b(t)$ is the modulating baseband signal. The constant m is defined as $m=2 \Delta f T b$. The signal $s(t)$ must be delayed by some τ so that

$$
\begin{equation*}
l(t)=s(t+\tau)=\cos (\omega c(t+\tau)+m(t+\tau)) \tag{5}
\end{equation*}
$$

If the delay τ is such that

$$
\begin{equation*}
\omega c t=2 n \pi+\frac{\pi}{2}, \quad n=0,1,2,3, \ldots, \tag{6}
\end{equation*}
$$

then $s(t+\tau)=\sin (\omega c t+m(t+\tau))$,
and multiplying (4) and (7) yields

$$
\begin{align*}
s(t) I(t)= & \cos (\omega c t+m(t)) \sin (\omega c t+m(t+\tau)) \\
= & \frac{1}{2} \sin (2 \omega c t+m(t)+m(t+\tau)) \tag{8}\\
& +\frac{1}{2} \sin (m(t+\tau)-m(t)) .
\end{align*}
$$

The double frequency component can be filtered off with a lowpass filter. If τ is kept small,

$$
\begin{align*}
\frac{1}{2} \sin (m(t+\tau)-m(t)) & \approx \frac{1}{2}[m(t+\tau)-m(t)] \\
& =\frac{m}{2} \int_{-\infty}^{t+\tau} b(t) d t- \\
& \frac{m}{2} \int_{-\infty}^{t} b(t) d t \tag{9}\\
& =\frac{m}{2} \int_{t}^{t+\tau} b(t) d t \\
& \approx \tau \frac{m}{2} b(t) .
\end{align*}
$$

The object for a delay line, then, is to maximize the delay while retaining the approximations necessary to satisfy (9), $\tau<0.1 \mathrm{~Tb}$.

A Fast Locking Scheme for PLL Frequency Synthesizers

ABSTRACT

Frequency synthesizers are used in a large number of time division multiplexed (TDMA) and frequency hopping wireless applications where quickly attaining frequency lock is critical. A new frequency synthesizer is described which employs a scheme for reducing lock time by a factor of two using a conventional phase locked loop architecture. Faster lock is attained by shifting the loop filter's zero and pole corner frequencies while maintaining the PLL's gain/phase margin characteristics.

INTRODUCTION

RF system designers of TDMA based cellular systems, such as PHS, GSM and IS-54, need local oscillator (L.O.) or frequency synthesizer blocks capable of tuning to a new channel within a small fraction of each time slot. The suppression of reference spurs and phase noise is also critical for these modern digital standards. Base station and data transmission applications are now striving to utilize all the time slots available in each frame using a single synthesizer. This push towards a "zero blind slot" solution has put stringent demands upon the radio frontend's L.O. section.
The communication systems channel spacing determines the upper bound for the synthesizer's frequency resolution and loop filter bandwidth. More closely spaced channels dictate that the synthesizer's frequency resolution be finer, which in turn means the loop makes frequency corrections less often. A wider loop filter bandwidth would make it easier to attain lock within a given time constraint, but the price paid is less attenuation of the reference frequency sidebands and a higher integrated phase noise for the locked condition. An examination of the equations which govern the responsiveness of a closed loop system will provide some solutions to this dilemma.

National Semiconductor Application Note 1000
 David Byrd
 Craig Davis
 William O. Keese

CLOSED LOOP OPERATION

The basic phase-lock-loop configuration we will be considering is shown in Figure 1. The PLL consists of a high-stability crystal reference oscillator, a frequency synthesizer, such as the National Semiconductor LMX2335TM, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, as well as programmable reference [R] and feedback [N] frequency dividers. A passive loop filter configuration is desirable for its simplicity, low cost, and low phase noise.
The VCO frequency is established by dividing the crystal reference signal down via the R counter to obtain a frequency that sets the tuning resolution of the L.O. This reference signal, fr , is then presented to the input of a phase detector and compared with another signal, $f p$, the feedback signal, which was obtained by dividing the VCO frequency down by way of the N counter. The phase detector's current source outputs pump charge into the loop filter, which then converts the charge into the VCO's control voltage. The phase/ frequency comparators function is to adjust the voltage presented to the VCO until the feedback signals frequency (and phase) match that of the reference signal. When this "phase-locked" condition exists, the VCO's frequency will be N times that of the comparison frequency.
Increasing the value of the N counter by 1 will cause the phase comparator to initially sense a frequency error between the reference and feedback signals. The feedback loop responds and eventually shifts the VCO frequency to be N+1 times the reference signal. The VCO's frequency has in effect increased by the minimum tuning resolution of the PLL. The rate at which the transition to the new operating frequency occurs is determined by the closed loop gain and stability criteria.

TL/W/12472-1
FIGURE 1. Conventional PLL. Architecture

LOOP GAIN EQUATIONS

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain ($K \phi$), the VCO gain ($\mathrm{Kvco} / \mathrm{s}$), and the loop filter gain Z(s) divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in equation 2. [Ref 5]

FIGURE 2. PLL Linear Model

TL/W/12472-3
FIGURE 3. Passive Loop Filter

$$
\begin{align*}
\text { Open loop gain } & =H(s) G(s)=\Theta i / \Theta e \\
& =K \phi Z(s) K v c o / N s \tag{1}\\
Z(s)= & \frac{s(C 2 \bullet R 2)+1}{\left.s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2\right)} \tag{2}
\end{align*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{equation*}
\mathrm{T} 1=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{3b}
\end{equation*}
$$

The 3rd order PLL. Open Loop Gain can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $\mathrm{K} \phi, \mathrm{Kvco}$, and N .

$$
\begin{equation*}
\left.G(s) \bullet H(s)\right|_{s=j \bullet \omega}=\frac{-K \phi \bullet K v c o(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \cdot \frac{T 1}{T 2} \tag{4}
\end{equation*}
$$

From equation 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in equation 5.

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{5}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter ϕ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45°. Given the pressure to minimize lock time, the cutoff frequency of the loop would be selected just wide enough to suppress the PLL's reference frequency spurs to a tolerable level.
If we were now to redefine the cut off frequency, $\omega_{\mathrm{p}}{ }^{\prime}$, as double the frequency which gave us our desired level of spurs, ω_{p}, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed FastLockTM scheme, the higher spur levels and wider loop filter conditions would ex ist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve of Figure 4 over to a different cutoff frequency, illustrated by the dotted line, without affecting the relative open loop gain and phase relationships. To maintain the same gain/phase relationship at twice the original cutoff frequency, other terms in the gain and phase equations 4 and 5 will have to compensate by the corresponding " $1 / \omega$ " or " $1 / \omega^{2}$ " factor. Examination of equations 3 and 5 indicates the damping resistor variable R2 could be chosen to compensate the " ω " terms for the phase margin. This implies that another resistor of equal value to R2 will need to be switched in parallel with R2 during the initial lock period. We "must also insure that the magnitude of the open loop gain, $H(s) G(s)$ is equal to zero at $\omega_{p}^{\prime}=2 \omega_{p}$. Kvco, $K \phi, N$, or the net product of these terms can be changed by a factor of 4 , to counteract the ω^{2} term present in the denominator of equation 3. Altering Kvco could be difficult at best, however, both N and $K \phi$ gain terms are readily available in an integrated PLL IC. The $\mathrm{K} \phi$ term was chosen to complete the transformation because it can readily be switched between 1X and 4X values. This is accomplished by increasing the charge pump output current from 1 mA in the standard mode to 4 mA in FastLock. Changing the N gain term could also have been chosen to accomplish our objective. In fact, doing so causes the PLL's reference frequency to be pushed over in the frequency domain along with the loop cutoff frequency. Unfortunately changing N also means changing the R counter value by the same factor. And while this is feasible, it probably means employing fractional counter techniques along with all the associated problems of this approach, as an N/4 term may no longer be an integer.

FIGURE 4. Open Loop Response Bode Plot

CIRCUIT IMPLEMENTATION

A diagram of the FastLock scheme as implemented in National Semiconductors LMX2335 PLL is shown in Figure 5. When a new frequency is loaded, the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NMOS on chip device switches in a second resistor element, R2, to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration
ensures that as long as a second identical damping resistor is wired in appropriately, the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the PLL will then return to standard, low noise operation. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between FastLock and standard mode.

FIGURE 5. FastLock PLL Architecture

RESULTS

An LMX2335 PLL was utilized to address the following IS-54 application constraints:

$$
\begin{gathered}
\text { Fvco }=900 \mathrm{MHz}, \quad \mathrm{Kv}=20 \mathrm{MHz} / \mathrm{V}, \\
\text { Channel spacing }=30 \mathrm{kHz} .
\end{gathered}
$$

The PLL's device attributes were as follows:

$$
\begin{array}{cc}
\mathrm{K} \phi=1 \mathrm{~mA} / 2 \pi, & \mathrm{~N}=30,000, \\
\text { Fref }=30 \mathrm{kHz}, & \mathrm{FO}=3 \mathrm{kHz} .
\end{array}
$$

The loop filter values used were:

$$
\mathrm{C} 1=1800 \mathrm{pF}, \quad \mathrm{R} 2=12 \mathrm{k} \Omega, \quad \mathrm{C} 2=0.012 \mu \mathrm{~F}
$$

The modulation domain analyzer graphs in Figures 6-9 show the transient lock responses for the normal 1 mA mode condition side by side with the response for the FastLock mode. The FastLock operation in Figure 9 shows lock being attained within 1 ms (to within $\pm 1 \mathrm{kHz}$) for a frequency jump of 50 MHz , compared with 1.8 ms for the standard condition (Figure 8). As much as a 2 kHz frequency disturbance can result when switching back to normal operation after steady state is fully attained. By switching out of the FastLock mode when the PLL has settled to near the desired frequency tolerance, almost the entire 2 X increase in lock time can be achieved.

SUMMARY

The FastLock circuitry of the LMX2335 frequency synthesizer provides a means of improving TDMA channel switching speed, without compromising reference spur quality or phase noise. Zero blind slot RF synthesizer designs can more easily be attained through this technique.

REFERENCES

[1] W. Shepherd, Phase Locked Loop, U.S. Patent \# 4,980,653, 1990.
[2] Eitan Sharoni, Digital Control Speeds Synthesizer Switching, Microwaves and RF, pp. 107-112, 4/1987.
[3] S. Swisher, et. al., Synchronized Frequency Synthesizer with High Speed Lock, U.S. Patent \#4,330,758, 1982.
[4] K. Arnold, Low Noise Frequency Synthesizer Using Half Integer Dividers and Analog Gain Compensation, U.S. Patent \#5,307,071, 1994.
[5] Keese, W.O., An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge-Pump Phase-Locked Loops, RF Expo West, January 1995.
[6] Barker, Cynthia, Introduction to Single Chip Microwave PLLs, National Semiconductor Application Note, AN885, March 1993.

FIGURE 6. Normal Swltching Waveform

FIGURE 8. Normal Mode Lock Time

FIGURE 7. FastLock Switching Waveform

FIGURE 9. FastLock Mode Lock Time

An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops

The high performance of today's digital phase-lock loop makes it the preferred choice for generation of stable, low noise, tunable local oscillators in wireless communications applications. This paper investigates the design of passive loop filters for Frequency Synthesizers utilizing a PhaseFrequency Detector and a current switch charge pump such as National Semiconductor's PLLatinum™ Series. Passive filter design for a TYPE II third order phase-lock loop is discussed in depth, with some discussion of higher order filters included. Specific test results are presented for a GSM synthesizer design. Optimization of phase-lock loop performance with respect to different parameters is discussed.
The basic phase-lock-loop configuration we will be considering is shown in Figure 1. The PLL consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2315TM, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, and programmable frequency dividers. A passive filter is desirable for its simplicity, low cost, and low phase noise.
In most standard PLL's there are several design parameters which can be treated as constant values. This linear approximation provides a good estimation of loop performance. The values of the PLL filter design constants depend on
the specific application. For example, $\mathrm{K} \phi$ is determined by the synthesizer charge pump output current magnitude. The notation and definitions for these values along with standard units used throughout this paper are given in Table I below.

TABLE I. PLL Filter Design Constants

Kvco - (MHz/Volt)

Voltage Controlled Oscillator (VCO) Tuning Voltage constant. The frequency vs voltage tuning ratio.

$\mathrm{K} \phi$ - (mA/2 $\pi \mathrm{rad}$)

Phase detector/charge pump constant. The ratio of the current output to the input phase differential.
RFopt - (MHz)
Radio Frequency output of the VCO at which the loop filter is optimized.
Fref - (kHz)
Frequency of the phase detector inputs. Usually equivalent to the RF channel spacing.

N

Main divider ratio. Equal to RFopt/Fref.

TL/W/12473-1
FIGURE 1. Basic Charge Pump Phase Locked Loop

[^2]Some basic knowledge of control loop theory is necessary in order to understand PLL filter dynamics. For a more thorough treatment consult references [1] through [6]. A linear mathematical model representing the phase of the PLL in the locked state is presented in Figure 2. An additional integrator is needed in the transfer function for the forward gain and is usually lumped together with the VCO in the literature, references [1-4]. Using the simplified diagram in Figure 2, and feedback theory, one may obtain the equations for the phase transfer functions presented in Table II.

FIGURE 2. PLL Linear Model

TABLE II. PLL. Phase Transfer Functions

```
Forward loop galn \(=\mathrm{G}(\mathrm{s})=\Theta \circ / \mathrm{s}_{\mathrm{e}}\)
    \(=\mathbf{K} \phi \mathbf{Z}(\mathrm{s}) \mathrm{Kvco} / \mathrm{s}\)
Reverse loop galn \(=H(s)=\Theta i / \Theta o=1 / N\)
Open loop galn \(=H(s) G(s)=\Theta i / \Theta e\)
    \(=\mathbf{K} \phi \mathbf{Z}(\mathrm{s}) \mathrm{Kvco} / \mathrm{Ns}\)
Closed loop gain \(=\Theta \circ / \Theta i=G(s) /[1-H(s) G(s)]\)
```

The standard passive loop filter configuration for a type II current mode charge pump PLL is shown in Figure 3. The loop filter is a complex impedance in parallel with the input capacitance of the VCO, or in other words, a driving point immitance.

TL/W/12473-3
FIGURE 3. 2nd Order Passive Filter
The phase detector's current source outputs pump charge into the loop filter, which then converts the charge into the VCO's control voltage. The shunt capacitor C1 is recommended to avoid discrete voltage steps at the control port of the VCO due to the instantaneous changes in the charge pump current output. A low pass filter section may be needed for some high performance synthesizer applications that require additional rejection of the reference sidebands, known as spurs.
One method of filter design uses the open loop gain bandwidth and phase margin to determine the component values. Locating the point of minimum phase shift at the unity gain frequency of the open loop response as shown in Figure 4 ensures loop stability. The phase relationship between
the pole and zero also allows easy determination of the loop filter component values. The phase margin, ϕ_{p}, is defined as the difference between 180° and the phase of the open loop transfer function at the frequency, ω_{p}, corresponding to $0-\mathrm{dB}$ gain. The phase margin is chosen between 30° and 70°. When designing for a higher phase margin you trade off higher stability for a slower loop response time and less attenuation of Fref. A common rule of thumb is to begin your design with a 45° phase margin.

TL/W/12473-4
FIGURE 4. Open Loop Response Bode Plot
The impedance of the second order filter in Figure 3 is

$$
\begin{equation*}
Z(s)=\frac{s(C S \cdot R 2)+1}{s^{2}(C 1 \cdot C 2 \cdot R 2)+s C 1+s C 2} \tag{1}
\end{equation*}
$$

Define the time constants which determine the pole and zero frequencies of the filter transfer function by letting

$$
\begin{equation*}
\mathrm{T} 1=\mathrm{R} 2 \cdot \frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \quad(2 \mathrm{a}) \quad \mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{2b}
\end{equation*}
$$

Thus the 3rd order PLL Open Loop Gain in Table II can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $K \phi$, Kvco, and N.
$\left.G(s) \bullet H(s)\right|_{s=j \bullet \omega}=\frac{-K p d \cdot K v c o(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \cdot \frac{T 1}{T 2}$
From equation 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in equation 4. The available phase margin therefore is proportional to the ratio of C1 and C2.

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \bullet \mathrm{~T} 2)-\tan ^{-1}(\omega \bullet \mathrm{~T} 1)+180^{\circ} \tag{4}
\end{equation*}
$$

By setting the derivative of the phase margin equal to zero as shown in equation 5

$$
\begin{equation*}
\frac{d \phi}{d \omega}=\frac{T 2}{1+(\omega \cdot T 2)^{2}}-\frac{T 1}{1+(\omega \cdot T 1)^{2}}=0 \tag{5}
\end{equation*}
$$

the frequency point corresponding to the phase inflection point is found in terms of the filter time constants T1 and T2. This relationship is given in equation 6.

$$
\begin{equation*}
\omega_{p}=1 / \sqrt{T 2 \cdot T 1} \tag{6}
\end{equation*}
$$

To insure loop stability, we want the phase margin to be maximum when the magnitude of the open loop gain equals 1. Equation 2 then gives

$$
\begin{equation*}
C_{1}=\frac{K p d \bullet K v c o \bullet T 1}{\omega_{p}^{2} \bullet N \bullet T 2}\left\|\frac{\left(1+j \omega_{p} \bullet T 2\right)}{\left(1+j \omega_{p} \bullet T 1\right)}\right\| \tag{7}
\end{equation*}
$$

Therefore, if the loop bandwidth, ω_{p}, and the phase margin, ϕ_{p}, are specified, equations 1 through 7 allow us to calculate the two time constants, T1 and T2.
The formulas for $T 1$ and $T 2$ are shown in equations 8 and 9 .

$$
\begin{gather*}
\mathrm{T} 1=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}} \tag{B}\\
\mathrm{~T} 2=\frac{1}{\omega_{\mathrm{p}}^{2}} \cdot \mathrm{~T} 1 \tag{9}
\end{gather*}
$$

From the time constants, $\mathrm{T} 1, \mathrm{~T} 2$, and the loop bandwidth, ω_{p}, the values for C1, R2, and C2 are obtained in equations 10 to 12.

$$
\begin{gather*}
\mathrm{C} 1=\frac{\mathrm{T} 1}{\mathrm{~T} 2} \cdot \frac{\mathrm{Kpd} \bullet \mathrm{Kvco}}{\omega_{\mathrm{p}}^{2} \bullet \mathrm{~N}} \sqrt{\frac{1+\left(\omega_{\mathrm{p}} \cdot \mathrm{~T} 2\right)^{2}}{1+\left(\omega_{\mathrm{p}} \cdot \mathrm{~T} 1\right)^{2}}} \tag{10}\\
\mathrm{C} 2=\mathrm{C} 1 \cdot\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) \tag{11}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{12}
\end{gather*}
$$

Current switching noise in the dividers and the charge pump at the reference rate, Fref, may cause unwanted FM sidebands at the RF output. In wireless communications, the phase detector comparison frequency is generally a multiple of the RF channel spacing. These spurious sidebands can cause noise in adjacent channels. Additional filtering of the reference spurs is often times necessary, depending on how narrow your loop filter is. This is usually the case in today's TDMA digital cellular standards, such as GSM, PDC, PHS, or IS-54. The sub-millisecond lock times necessary for switching between channel frequencies makes a relatively wide loop filter mandatory. For these performance critical synthesizer applications placing a series resistor and a shunt capacitor prior to the VCO provides a low pass pole for more attenuation of unwanted spurs. The use of a passive loop filter eliminates the noise contributions from an op amp in an active filter. This is critical due to the strict RMS. phase error, and integrated phase noise requirements. The recommended filter configuration is shown in Figure 5.
The added attenuation from the low pass filter is:

$$
\begin{equation*}
\text { ATTEN }=20 \log \left[(2 \pi \text { Fref } \bullet \mathrm{R} 3 \cdot \mathrm{C} 3)^{2}+1\right] \tag{13}
\end{equation*}
$$

Defining the additional filter time constant as

$$
\begin{equation*}
\mathrm{T} 3=\mathrm{R} 3 \cdot \mathrm{C} 3 \tag{14}
\end{equation*}
$$

Then in terms of the attenuation of the reference spurs added by the low pass pole we have

$$
\begin{equation*}
T 3=\sqrt{\frac{10(\mathrm{ATiN} / 20)-1}{(2 \pi \bullet \text { Fref })^{2}}} \tag{15}
\end{equation*}
$$

TL/W/12473-5
FIGURE 5. 3rd Order Lowpass Filter
The additional pole must be lower than the reference frequency, in order to significantly attenuate the spurs, but must be at least 5 times higher than the loop bandwidth, or the loop will almost assuredly become unstable. In order to compensate for the added low pass section, the filter component values are recalculated using the new open loop unity gain frequency, ω_{c}, as in equation 17. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing C 1 and C 2 while slightly decreasing R2. Note that ω_{c} is slightly $<\omega_{p}$, therefore the frequency jump lock time will increase. Although not exact, the linear assumptions used in this design technique provide suprisingly good results for loop filter bandwidths of up to $1 / 5$ of the reference rate. The derivation of ω_{c} is included in the appendix.

$$
\begin{gather*}
T 2=1 / \omega_{c}^{2} \bullet(T 1+T 3) \tag{16}\\
\omega_{c}=\frac{\tan \phi \bullet(T 1+T 3)}{\left[(T 1+T 3)^{2}+T 1 \bullet T 3\right]} \times \\
{\left[\sqrt{1+\frac{(T 1+T 3)^{2}+T 1 \bullet T 3}{[\tan \phi \bullet(T 1+T 3)]^{2}}}-1\right]} \tag{17}\\
C 1=\frac{T 1}{T 2} \frac{\mathrm{Kpd} \cdot \mathrm{Kvco}}{\omega_{c}^{2} \bullet N} \times \\
{\left[\frac{\left(1+\omega_{c}^{2} \bullet T 2^{2}\right)}{\left(1+\omega_{c}^{2} \bullet T 1^{2}\right)\left(1+\omega_{c}^{2} \bullet T 3^{2}\right)}\right]^{1 / 2}} \tag{18}
\end{gather*}
$$

Similar to the 2nd Order filter we have

$$
\begin{gather*}
\mathrm{C} 2=\mathrm{C} 1 \cdot\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) ; \tag{11}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{12}
\end{gather*}
$$

The only component values that need to be determined comprise the added low pass pole. Since these values are solely determined from equations 13 and 14, their values are somewhat arbitrary. It is not prudent, however to have a capacitor value for C3 which is equal to or greater than the other capacitors. As rule of thumb choose C3 \leq C1/10, otherwise T3 will interact with the primary poles of the filter. Likewise, choose R3 at least twice the value of R2. When selecting C3 you must also take into account the input capacitance of the VCO tuning varactor diode which will add in parallel.

The following example is a typical synthesizer developed for the Global System Mobile (GSM) digital cellular standard using the described filter design technique. The RF channel spacing is 200 kHz , and a typical synthesizer frequency range is from $865 \mathrm{MHz}-915 \mathrm{MHz}$. Since the addition of a low pass filter will reduce the closed loop bandwidth slightly, select an initial design value which is slightly larger than desired.

$$
\begin{aligned}
& \text { Example } \\
& \text { Kvco }=20 \mathrm{MHz} / \mathrm{V} \text {. } \\
& \mathbf{K p h i}=5 \mathrm{~mA} \\
& \text { RFopt }=900 \mathrm{MHz} \\
& \text { Fref = } 200 \mathrm{kHz} \\
& \mathbf{N}=\text { RFopt/Fref }=4500 \\
& \omega_{\mathrm{p}}=2 \pi * 20 \mathrm{kHz}=1.256 \mathrm{e} 5 \\
& \phi_{\mathrm{p}}=45^{\circ} \\
& \text { ATTEN }=20 \mathrm{~dB} \\
& \mathrm{~T}_{1}=\frac{\sec \phi_{\mathrm{p}}-\tan \phi_{\mathrm{p}}}{\omega_{\mathrm{p}}}=3.29 e-6 \\
& T 3=\sqrt{\frac{10(20 / 20)-1}{(2 \pi \cdot 200 \theta 3)^{2}}}=2.387 e-6 \\
& \dot{\omega}_{\mathrm{C}}=\frac{(3.29 e-6+2.387 e-6)}{\left[(3.29 \theta-6+2.387 e-6)^{2}+3.29 e-6 \cdot 2.387 e-6\right]} \times \\
& {\left[\sqrt{1+\frac{(3.29 \theta-6+2.387 e-6)^{2}+3.29 \theta-6 \cdot 2.387 \theta-6}{[(3.29 e-6+2.387 e-6)]^{2}}}-1\right]} \\
& \omega_{\mathrm{c}}=7.045 \text { e4 } \\
& \mathrm{T} 2=\frac{1}{(7.045 e 4)^{2}} \cdot(3.29 \theta-6+2.387 \theta-6)=3.549 \theta-5 \\
& C 1=\frac{3.29 e-6}{3.549 \theta-5} \frac{(5.0 e-3) \cdot 20 e+6}{(7.045 e 4)^{2} \cdot 4500} \times \\
& {\left[\frac{\left[1+(7.045 e 4)^{2} \bullet(3.549 \theta-5)^{2}\right]}{\left[1+(7.045 e 4)^{2} \bullet(3.29 e-6)^{2} \| 1+(7.045 \theta)^{2} \bullet(2.39 \theta-6)^{2]}\right]}\right]^{1 / 2}}
\end{aligned}
$$

FIGURE 6. Test Fixture Schematic

Figures 7 to 9 show HP8566 Spectrum Analyzer measurements of the RF output. The measured closed loop filter bandwidth is between 15 kHz and 17.5 kHz . The reference spurious level is $\leq 70 \mathrm{dBc}$, due to the loop filter attenuation and the low spurious noise level of the LMX2315. The phase noise level at 1 kHz offset in Figure 9 is $-79.5 \mathrm{dBc} /$ Hz . This correlates to a phase noise floor of $\leq 150 \mathrm{dBc} / \mathrm{Hz}$. The relatively flat PLL closed loop characteristics gives a measured RMS. phase error of $<2^{\circ}$, and is also an indicator of good loop stability.
Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. The HP53310A Modulation Domain Analyzer plots in Figures 10 and 11 show the positive and negative switching waveforms for a frequency jump of $865 \mathrm{MHz}-915 \mathrm{MHz}$. The well balanced charge pump of the LMX2315 frequency synthesizer causes the waveforms to be nearly inverted replicas of each other. Narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within $\pm 500 \mathrm{~Hz}$. The lock time is seen in Figure 12 to be $<500 \mu \mathrm{~s}$ for a frequency jump of 50 MHz .

CONCLUSION

An analysis of a frequency domain design technique for passive filters in charge pump phase-locked loops was presented. Measurements of a PLL designed using this method show good results in a practical synthesizer realization. The results demonstrate a high performance synthesizer in conjunction with a passive loop filter provide a fast switching, low noise frequency source for today's challenging digital wireless telecommunications standards.

FIGURE 7. PLL Output Spectrum 100 kHz span

FIGURE 8. PLL 200 kHz Reference spurs

CENTER 900.0000 MHz
SPAN 10.0 kHz SWP 3. 00 sec

TL/W/12473-9
FIGURE 9. PLL Close in Phase Noise

TL/W/12473-12
FIGURE 10. PLL Positive Frequency Jump Waveform

FIGURE 11. PLL Negative Frequency Jump Waveform

FIGURE 12. PLL Frequency Jump Lock Time

APPENDIX

Derivation of ωc
The impedance of the loop filter shown in Figure 5 is

$$
\begin{equation*}
Z_{T}(s)=\frac{Z(s) \cdot\left(\frac{1}{s \mathrm{C} 3}\right)}{Z(s)+R 3+\left(\frac{1}{s \mathrm{C} 3}\right)} \tag{19}
\end{equation*}
$$

where $Z(s)$ is given by equation 1.
Knowing that

$$
\begin{gathered}
\mathrm{C} 1 \geq 10 \mathrm{C} 3 ; \\
\mathrm{T} 3=\mathrm{R} 3 \cdot \mathrm{C} 3
\end{gathered}
$$

and by substituting
along with equations $2 \mathrm{a}, 2 \mathrm{~b}$.
simplifies the third order equation for the open loop gain to

$$
\begin{gather*}
\left.G(s) \bullet H(s)\right|_{s=j \bullet \omega}=\frac{-K p d \bullet K v c o(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \frac{T 1}{T 2} \bullet \frac{1}{(1+j \omega \bullet T 3)} \tag{20}\\
\phi(\omega) \propto(1+\omega \bullet T 2) \bullet(1-\omega \bullet T 1) \bullet(1-\omega \bullet T 3) \tag{21}
\end{gather*}
$$

Similar to equation 9

$$
\begin{equation*}
T 2=\frac{1}{\omega^{2}(T 1+T 3)} \tag{22}
\end{equation*}
$$

Substituting (22) into (21) gives

$$
\begin{equation*}
\phi(\omega) \infty 2-\omega^{2} \bullet \mathrm{~T} 1 \bullet \mathrm{~T} 3-\mathrm{j} \omega \bullet(\mathrm{~T} 1+\mathrm{T} 3)+\frac{j}{\omega \bullet(\mathrm{~T} 1+\mathrm{T} 3)}-\frac{j \omega \bullet \mathrm{~T} 1 \bullet \mathrm{~T} 3}{(\mathrm{~T} 1+\mathrm{T} 3)} \tag{23}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\tan \phi=\frac{-\omega \bullet(T 1+T 3)-\frac{\omega \bullet T 1 \bullet T 3}{(T 1+T 3)}+\frac{1}{\omega \bullet(T 1+T 3)}}{2-\omega^{2} \bullet T 1 \bullet T 3} \tag{24}
\end{equation*}
$$

Assuming

$$
\begin{equation*}
\omega^{2} \bullet T 1 \cdot T 2<2 \tag{25}
\end{equation*}
$$

After some manipulation we arrive at the characteristic equation

$$
\begin{equation*}
\omega^{2}+\omega \frac{2 \tan \phi \cdot(\mathrm{~T} 1+\mathrm{T} 2)}{\left[(\mathrm{T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \cdot \mathrm{~T} 3\right]}-\frac{1}{(\mathrm{~T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \cdot \mathrm{~T} 3}=0 \tag{26}
\end{equation*}
$$

Taking the negative root, and multiplying through gives the expression for the closed loop bandwidth, ω_{c}, equation (20).

$$
\omega_{\mathrm{C}}=\frac{\tan \phi \bullet(\mathrm{T} 1+\mathrm{T} 3)}{\left[(\mathrm{T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \bullet \mathrm{~T} 3\right]} \bullet\left[\sqrt{1+\frac{(\mathrm{T} 1+\mathrm{T} 3)^{2}+\mathrm{T} 1 \bullet \mathrm{~T} 3}{[\tan \phi \bullet(\mathrm{~T} 1+\mathrm{T} 3)]^{2}}}-1\right]
$$

REFERENCES

[1] Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design, Prentice-Hall, 1983
[2] Egan, W.F., Frequency Synthesis by Phase Lock, John Wiley \& Sons, 1981.
[3] Best, Roland E., Phase-Locked Loops Theory, Design, and Applications, 2nd ed., McGraw-Hill Inc, 1993.
[4] Gardner, F.M., Phase-Locked Loop Techniques, 2nd ed., John Wiley \& Sons, 1980
[5] Gardner, F.M., Charge-Pump Phase-Lock Loops, IEEE Trans. Commun., vol. COM-28, pp 1849-1858, Nov 1980
[6] Barker, Cynthia, Introduction to Single Chip Microwave PLLs, National Semiconductor Application Note, AN885, March 1993

Upgrading from the MB150X to National LMX1501A: Replacement Issues

Abstract

Compatibility of the LMX1501AM with the MB1501(std, and options H, and L) and MB1502 (in the FPT-16P-M06 package option) is inspected with emphasis on issues related to dual sourcing, or replacement of the MB150X parts with the LMX1501A. The devices are fundamentally similar, with identical (1501) or compatible (1502) pin outs, and identical programming specifications. Some key differences are found, however, which require attention. These include, package size and footprint, charge pump characteristics, loop filter configh.ation, and programming timing. In many cases the LMX1501A will easily replace MB150X components with few or no changes at all. This will not be true in all cases, however, particularly when data sheet programming specifications of the MB150X or LMX1501A have not been followed, or when high charge pump tuning voltages are required.

SIMILARITIES

- Architecture
- Pinout
- Operating voltage (V_{CC})
- Programming content, format, and levels
- Temperature range
- RF fin sensitivity and impedance

DIFFERENCES

- Package Size/Footprint
- Charge pump magnitude, balance, deadband
- Charge pump maximum supply voltage
- Loop filter configuration
- Programming timing. (Faster, t_{ES})
- Icc vs $V_{C C}$ dependency

a) LMX1501A/MB1501

COMMON ELEMENTS

The LMX1501A and MB1501(H/L)-2 have a great deal in common. Both devices consist of 1.1 GHz programmable prescalers with an option of 64/65 or 128/129 dual modulus division. Both have a reference divider channel. Both have an internal phase detector and charge pump circuit, and outputs which allow use of an external charge pump circuit. The MB1501 and the LMX1501A share pinout and definitions, and the LMX1501A and MB1502 have compatible pinouts, shown in Figure 1. The components operate over the same temperature and voltage ranges (except the MB1502 operates only at 5 V) and are programmed with the same information in the same format. For all these similarities, there are a number of key distinctions. This application note is focused on those issues which are relevant to replacing the MB150X with the LMX1501A. This means that certain performance improvements in the LMX1501A are not listed at length, and no effort is made to compare and contrast the parts generally. Full specifications are available in the LMX1501A data sheet-Lit. \# 108500.

PHYSICAL DIFFERENCES

Footprint. The MB1501 and MB1502 are packaged in a EIAJ standard SO 16. This package has a pin to pin pitch of 0.050 in . with a body width of $0.209^{\prime \prime}$. The NSC LMX1501A is packaged in a standard JEDEC SO 16, which has the same pin to pin pitch, but a body wldth of $0.153^{\prime \prime}$. Figure 2 shows an overlay of the JEDEC package on a PCB showing (typical) EIAJ solder pads. Figures 3 and 4 show the dimensions of the two packages. Re-layout of the PCB is advisable, but probably not mandatory. Although not optimal, lengthening the solder pads by $0.35^{\prime \prime}$ will accommodate both package types. Corrective action: re-design the PCB using a smaller footprint.

FIGURE 2. Footprint Overlay

FIGURE 3. LMX1501A Outline Drawing

TL/W/12029-5
FIGURE 4. MB150X Outline Drawing

Loop Filter Configuration. Figure 5 shows a loop filter topology which is often found with MB150X components. It is unusual in its placement of a series resistor before the integrating capacitor. This resistor effectively causes the voltage at the charge pump (CP) output to increase instantaneously as the CP delivers large current pulses. For the MB150X, since the sink current is much higher than the source current, the delivered pump up current is limited by this resistor, which makes the negative frequency lock time increase. Because of the low output of the MB150X charge pump source current, the series R does not noticeably degrade performance, and it allows an additional lowpass filter function to cope with the large spurious response caused by time and current imbalance. The LMX1501A, however, with a balanced CP design, is sensitive to this resistance. It causes current limiting in the CP output, D_{O}, which decreases the phase detector gain. This effect is most noticeable in large frequency steps or steps towards the high end of the tuning range. Fortunately, this resistance can be removed with no ill effect. The dramatically lower spurious content of the LMX1501A eases the filter requirement substantially. Corrective Action: remove and short the series resistor at Do.

TL/W/12029-6
FIGURE 5. Loop Filters

ELECTRICAL DIFFERENCES

Charge pump output magnitude and balance of the source and sink currents can be seen in Figure 6. Laboratory measurements of the LMX1501A/MB1501 sink and source currents using an HP4145A Semiconductor Parameter Analyzer are shown for $V_{C C}=V_{P P}=5 \mathrm{~V}$.

TL/W/12029-7
FIGURE 6. Charge Pump Magnitude and Balance
Clearly, from the sample tested, the LMX1501A has better balance between the sink and source currents. The positive and negative lock times are therefore nearly equivalent, and the spurious energy is greatly reduced. Since the overall magnitude of the charge pump currents are markedly different, the PLL dynamics will change due to the change in the closed loop gain. In order to take full advantage of the superior performance of the LMX1501A charge pump, loop filter component values should be optimized corresponding to the LMX1501A phase detector gain. If an external charge pump implementation is used, no modification is necessary. Correct/ve Actlon: Optimize component values for appropriate loop gain.

Max voltage on the internal (D_{O}), and external ($\phi_{\mathrm{r}}, \phi_{\mathrm{p}}$) charge pump of the MB150X is 10 V , and 6 V for the LMX1501A. Although the bulk of applications, do not require VCO tuning voltages above 5 V , certain systems use higher $V_{C C}$'s. The LMX1501A cannot attain voltages higher than 6 V because of the N -channel breakdown voltage. For the charge pump of the LMX1501A to drive voltages greater than 6 V one may use an active loop filter to provide the DC gain needed. Unfortunately, this is a redesign, and reduces the tuning sensitivity of the PLL. Correct/ve Act/on: If Vp < 6V, No Action needed.

SOFTWARE COMPATIBILITY

If the specifications for the MB150X for the data timing are met, the LMX1501A will also program correctiy, since the programming protocol is identical. If t_{ES}, the clock to enable set-up time, equals 0 ns , then the LMX1501A will not program correctiy, while the MB15XX will continue to function out of spec. The data input timing of the LMX1501A is more than fast enough to accept MB150X programming, since the specification for setup and hold times are $\geq 50 \mathrm{~ns}$, and the MB150X specification calls for setup and hold times of $\geq 1 \mu \mathrm{~s}$. Correctlve Actlon: Make sure Clock returns to a low state before the rising edge of Load Enable.

ADDITIONAL NOTES

The major differences between the LMX1501AM and the MB150X that merit attention when replacing or dual sourcing have been discussed. Although the user may realize additional performance advantages from the LMX1501A, such as power dissipation, phase noise, lock time, and spurious performance, these are not discussed in depth, with the emphasis put on fundamental similarities and differences in the functional operation of the parts. With attention to the package size, loop filter, and programming, the LMX1501A will easily replace the MB150X series for many applications.

FIGURE 7. Data Input Timing

Specification for the DECT ARilim Interface to the Radio Frequency Front End

INTRODUCTION

This document will describe the I/O necessary to drive the National Semiconductor DECT radio frequency (RF) front end chip set. This is intended to help the system designer define the control signals for the RF front end, implemented as a direct modulation, single conversion receiver architecture. A single conversion transmitter and dual conversion receiver can be added with a second PLL and some other minor changes.

1.0 DECT SYSTEM OVERVIEW

$1.1 \mathrm{I} / \mathrm{O}$ Requirements

The National Semiconductor solution for the DECT RF front end includes microwave circuits, frequency synthesizers, and pre-baseband functions (modems, DACs, RSSI, etc.). From the block diagram in Figure 1, it can be seen that the analog microwave circuits require only a power down signal, but that the digital circuits will require more control signals. The requirements for each part will be described in detail below.

1.2 The Front End Function

The Radio Frequency (RF) Front End serves as the air interface for the communication link. When transmitting, the user transmit data is shaped by the lowpass filter in the baseband processor (LMX2411). This shaped data is then transformed into a modulated waveform by modulating a Voltage Controlled Oscillator (VCO). This modulated signal is amplified to the proper output level by the power amplifier and output through a switch (or circulator), the roofing filter, and the antenna.
When receiving, the signal is input through the antenna, the switch (or circulator), and the roofing filter. The signal is amplified with the low noise amplifier and downconverted
with the mixer (LMX2216B) to a fixed intermediate frequency. Channel changes are done by changing the local oscillator frequency driving the mixer with the frequency synthesizer (LMX2320). The intermediate frequency is then stripped of its information by a limiter/discriminator (LMX2240). Data values are then recovered from the signal (LMX2411) and sent to the burst mode controller. The received signal strength is also recovered (LMX2240) and filtered. The RSSI signal is digitized by an ADC on the burst mode controller or on the microprocessor.
To accomplish modulation of the VCO, the phase-locked loop that is used to set the channel frequency must be opened. This is done by powering down the LMX2320 PLL using the Power Down (PD) pin. When this is done, the charge pump output shifts to a TRI-STATE® mode, effectively preserving the loop voltage. The modulating signal is then added to the loop voltage by a resistive adder. The DECT TDMA/TDD bursts are short enough that with appropriate components and careful design, the discharge of the loop filter voltage (frequency accuracy) is within DECT specifications. Note that this method only requires a VCO to have a single tuning port.
A critical feature of open loop modulation is control over the VCO load. The receive power down signal turns the receive mixer on and off, changing its impedance. The LO switch transitions from this mixer to the power amplifier input. The power amplifier input impedance is a function of the power amplifier power down signal and of input power to it. The timing and sequence of these control signals will affect the VCO frequency error (jump) and should be carefully managed once the PA, switch, mixer, and VCO are chosen. See Section 2.5 for more details on open loop modulation.

TL/W/11912-1
FIGURE 1. Typical DECT RF Front-End Subsystem with ARI ${ }^{1}$ Dividing Line Indicated

2.0 SYSTEM CONTROL SIGNAL REQUIREMENTS

FIGURE 2. A Typical Timing Dlagram for the RF Front End Power Down Signals (during Active Locked Mode).

Symbol	Parameter	Time before Burst			Time after Burst			Unit
		Min	Typ	Max	Min	Typ	Max	
VCOPD	VCO Power Down	10						ms
PLL_PWR_LWN	PLL Power Down HIGH	30	150	400				$\mu \mathrm{s}$
TPAPD	Power Amplifier Power Down	15	27	40	0			$\mu \mathrm{s}$
TX_PWR__DWN	Transmit Section Power Down	30	50	240	0			$\mu \mathrm{s}$
TSWp	T/R Switch Positive Signal	15	27	40		27		$\mu \mathrm{s}$
TSWn	T/R Switch Negative Signal	15	27	40		27		$\mu \mathrm{s}$
RX_PWR__DWN	Receiver Section Power Down		60			15		$\mu \mathrm{S}$
S_FIELD	DC Compensation Circuit Enable		0					$\mu \mathrm{S}$

In Figure 2 above, the timing diagram for the overall front end power down signals is shown. Note that this is a typical case, and that in fact there are some signals that will vary in length. The table below shows the ranges of values for the various power down signals. In the table, the times are referenced to either the time required before a burst (timeslot) starts or the time required after a burst ends.
In the above table and in Figure 2, it can be noticed that the VCO is turned on and left on for the entire active locked period, while the PLL is powered down between bursts. The transmit and receive power down signals, as well as the switch signals (see Section 2.3), are toggled for each burst to conserve current. The numbers given in the table and Figure 2 represent a typical DECT application. The power amplifier should be ramped both on and off in 27μ s each (DECT specification, Part 2: Physical Layer, Sections 5.25.3, Figure 13). The S_FIELD signal should be enabled at the start of the burst and last for 30 bits of the 32-bit preamble. This allows for some timing offsets in the burst mode logic. The transmit/receive switches need to be thrown at the same time or before the power amplifier begins its final
power up, so their times are chosen to be the same before the burst, but they are delayed while the power amplifier turns off to avoid any more amplitude modulation of the signal than necessary and to correctly terminate the power amplifier. The phase locked loop and the transmit section must be turned on 400μ s before PLL__PWR_DWN goes LOW so that the loop compensates for the mid band voltage of the modulating signal. This is why they have two different power down signals offset in Figure 2. In transmit mode, the PLL must first settle to the transmit frequency and then be opened to allow modulation to take place. The transmit DAC's output should be at mid-range voltage prior to opening the loop to ensure that the loop centers on the correct frequency and then deviates equally to each side based on the modulation (see Figure 3). This is achieved by toggling TX PD LOW (i.e., powering up the transmit portion) on the LMX2411 and holding Tx Data constant (either HIGH or LOW). The first edge on Tx Data will synchronize the LMX2411 to the transmit data and will also start transmission of the data through the digital filter.

TL/W/11912-3

The receiver must be powered up $60 \mu \mathrm{~s}$ before a receive burst to allow the receive chain to fully power up and settle. Note that some standard products, such as the Sierra Semiconductor SC14400, have burst mode control signals that comply with the ARi1. The SC14400, for example, provides 9 pins for power down and load enable functions that are fully flexible with respect to timing. These signals can switch at any bit time, as long as only one is switched at a time. Also, two of these pins are higher in current to support the current required for PIN diode switches. A typical order of power down signals for one burst is the following:
Action:

1) Program PLL to the transmit frequency
2) Turn on PLL
3) Turn on Baseband Processor transmit section
4) Throw LO switch to "Transmit" position
5) After loop settles, open PLL
6) Throw RF output switch (if any) to "Transmit" position
7) Ramp on power amplifier
8) Transmit data
9) Ramp off power amplifier
10) Throw Transmit/Receive switches to "Receive" position
11) Turn off Baseband Processor transmit section
12) PAUSE
13) Program PLL to the receive frequency
14) Turn on PLL
15) Turn on receiver section
16) Receive data; generate S_FIELD signal for DC compensation
17) Turn off receiver section
18) Turn off PLL
19) Repeat steps 13) through 18) to monitor a second channel.
It is interesting to note that the unlocked output from the synthesizer is very low in noise. The user should consider using the unlocked LO during receive mode. This would result in a lower noise LO, but it could also result in more frequency drift. The drift specification in DECT is $13 \mathrm{kHz} / \mathrm{ms}$. Presently, National Semiconductor has observed typical drift measurements of $55 \mathrm{kHz} /$ second, or 55 $\mathrm{Hz} / \mathrm{ms}$.

2.1 The Receive Chain

The LMX2216B is the Low Noise Amplifier and Mixer, and the LMX2240 is the Intermediate Frequency Receiver. For DECT, these functions should be active only during receive
mode. To accomplish this, the power down pin of either part should be driven low to activate the device and high to power it down. This polarity is chosen so that the user can simply ground the power down pin to permanently activate the part. The power down signal for each part should be the global receive power down (RX_PWR_DWN) signal for the entire receiver. This and all global power down signals should be CMOS power down signals unless noted otherwise. Using CMOS signals and CMOS power down switches on board each IC reduces power consumption and avoids the longer power up times that would be governed by decoupling capacitors on regulated supplies.
In addition to the power down signal, the analog output of the LMX2240's RSSI circuit should be sent to either the burst mode controller (e.g., Sierra SC14400) or to the microcontroller (e.g., Mitsubishi M37702) for digitization and peak hold by the ADC. Note that the microcontroller's ADC may not be fast enough to do the peak hold function digitally. In that case, an analog peak hold circuit must be added before the input to the microcontroller's ADC.

2.2 The Phase Locked Loop (PLL)
 Frequency Synthesizer

The LMX2320 is the 2.0 GHz frequency synthesizer. This part is provided with a power down pin as well as three pins to be used for serial programming of the desired center frequency and step size. The power down pin requires a separate control signal (PLL__PWR_DWN) because the synthesizer may be operating during both transmit and receive modes. The programming interface is a three wire MICROWIRETM-compatible interface with write-only capability. The Load Enable (LE) pin is active low. When the LE pin goes high, the loaded data is sent to the appropriate register in the synthesizer.
The timing for the LMX2320 is as follows. When the LE pin is low, the LMX2320 is ready for data from the channel controller (microprocessor or burst mode controller). On each rising edge of the clock, a serial bit is loaded from the data input. When LE goes high, the data is loaded into the prescaler and reference registers, and the channel is changed. The data cannot be shifted into the shift register until LE goes low.
The LMX2320 has two registers that need to be programmed. The Reference divider (R Counter) is a counter that divides the (crystal) reference frequency. It is programmed with a 14-bit word when the control bit is high, or " 1 ". A fifteenth bit is used to set the programmable (128/129 or 64/65) prescaler. The frequency divider (N Counter) divides the input frequency and is programmed with a 18 -bit word when the control bit is a low, or " 0 ". The structure of the words is given on the following page.

To program the R Counter, the data should be the following ($\mathrm{P}=$ " 1 " for $64 / 65, \mathrm{P}=$ " 0 " for 128/129):

\mathbf{P}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	C
d^{*}	d	d	d	d	d	d	d	d	d	d	d	d	d	d	1

*d signifies a desired data bit, i.e., a "1" or a " 0 "

To program the N Counter, the data should be the following:

D_{17}	D_{16}	D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	C
d^{*}	d	0																

*d signifies a desired data bit, i.e., a " 1 " or a " 0 "

For DECT operation using a 10.368 MHz crystal and a reference, or step size, of 1.728 MHz ,

$$
\begin{aligned}
& R=6 \\
& N=1089 \ldots 1098 \\
& P=64
\end{aligned}
$$

For further information, please consult the LMX2320 Data Sheet.

2.3 The Voltage Controlled Oscillator (VCO) and Transmit/Receive (T/R) Switches

The VCO power down signal will probably originate from the LP2951 regulator directly. When the regulator is powered up, the VCO will be powered up. This is due largely to the long turn on times for VCO's. The VCO's individual data sheets must be consulted for turn on time, as these may vary among manufacturers.
Up to two switch functions are required. The first is the signal control between the antenna and the Low Noise Amplifier (LNA) or power amplifier. A quarter wave length pin diode switch directs the RF signal to the LNA with low power dissipation. In transmit mode, current is passed through two PIN
diodes to provide a low loss connection from the power amplifier to the antenna, and to isolate the LNA. Note that this switch can be replaced by a circulator.
The second switch controls the output of the VCO. This switch directs the VCO output to the receiver mixer or directly to the power amplifier input. Figure 4 shows these functions below. Presently, two VCO manufacturers, ALPS and muRata, produce wideband VCOs which span the entire 130 MHz needed to achieve a single conversion receiver.

2.4 The Power Amplifier

The power amplifier requires a separate TPAPD signal for turning the PA on because of the power amplifier ramping required by DECT. (TX_PWR_DWN must turn on earlier to allow the PLL to lock to the correct frequency and not be offset by the mid band voltage of the LMX2411.) The power amplifier can be ramped with a single RC circuit or with a more complex raised cosine shaping. The technique used will depend on the power amplifier manufacturer's circuit. One circuit which has been used at National for GaAs power amplifiers is shown in Figure 5.

FIGURE 4. Block Diagram of the Possible Switches Necessary In the RF Front End

TL/W/11912-5
FIGURE 5. The Circuit for the Power Amplifier Ramping Used by National Semiconductor and Its Typical Performance

2.5 The Baseband Processor

2.5.1 General Functlons

The LMX2411 is the baseband processor, or the interface between the RF front end and the digital back end. It functions in both the transmit mode and the receive mode, although only part of the chip is powered up at any given time. The LMX2411 has two power down pins, Tx PD and Rx PD, that should be driven with the appropriate global power down signal. This power down configuration reduces current consumption. In addition to the power down pins, the LMX2411 requires a Sys Clock and Tx Data input,' a control signal input for its DC compensation circuit (S-Field), and a Comp Out output line.
The Sys Clk input can be one of three system clocks commonly used in DECT: 10.368 MHz (9 x), 13.824 MHz (12x), and 18.432 MHz (16 x). This clock is used to clock the ROM filter and shift the TX Data bits through the ROM addresses. Tx Data is the actual information data to be transmitted and is input from the burst mode controller. The control line that is needed for the DC compensation circuit, S__FIELD, also comes from the burst mode controller. This should only enable the DC compensation circuit during 30 bits of the DECT preamble to allow for 3 bits of timing inaccuracy. The DC compensation on the LMX2411 is an analog loop using a sample and hold circuit. The DC compensation method using the sample and hold circuit is intended to provide a fast RC averaging over a known sequence (DECT preamble). The analog method can be used without an S_FIELD signal, providing a long term average of the DC value through the use of a large capacitor on pin 2 of the LMX2411. However, this technique is not recommended due to its long start-up time and its sensitivity to long strings of 1 's and 0 's. Note that some burst mode controllers, in particular the Si erra SC14400, can support both this method and a digital DC compensation loop (see DC Compensation). The only output of the LMX2411 is the comparator output, which provides a CMOS level output ready for timing recovery to the digital back end.

2.5.2 Open Loop Modulation

Open loop modulation is a technique that allows for a relatively simple implementation as long as frequency pushing and load pulling effects can be controlled. The loop is opened by powering down the PLL, which in the LMX2320 results in a TRI-STATE at the charge pump output. For short bursts, the loop filter will not lose the charge, and the center frequency will not drift. Figure 6 shows a sample circuit for modulating on an open loop. Note that the VCO requires only one tuning port for both locking and modulation. R_{1} and R_{2} will vary depending on which wideband VCO is used. The proper equation to be used in determining R_{1} and R_{2} is below:

$$
\begin{equation*}
V_{D A C} * \frac{R_{2}}{R_{1}+R_{2}} * K_{V}=576 \mathrm{kHz} \tag{1}
\end{equation*}
$$

In this case, K_{V} is the VCO sensitivity, expressed in $\mathrm{MHz} / \mathrm{V}$, and $\mathrm{V}_{\mathrm{DAC}}$ is nominally 1 V . Generally, R_{1} will be on the order of $50 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$, and the ratio of R_{1} to R_{2} will vary from $30: 1$ to $50: 1$ for wideband VCOs, and will be smaller for narrowband VCOs. Also, the 576 kHz is the peak-to-peak frequency deviation for DECT, which means the peak frequency deviation is half of that, or 288 kHz .
It should be noted that the schematic in Figure 6 contains a unity gain buffer op amp at the output of the PLL's loop filter. This op amp must have a low output impedance so as not to affect the voltage summing node for open loop modulation. This op amp will be necessary when using VCO's with high varactor leakage to prevent the varactor from discharging the loop capacitor and therefore causing frequency drift. This buffer should be powered up whenever the VCO is powered up, and so should be connected to the VCO's power down line. Figure 7 shows a plot of typical frequency jump and drift that can be expected from open loop modulation when the load pulling and frequency pushing effects have been properly controlled.

FIGURE 6. Circuit Dlagram for Direct, Open Loop Modulation

FIGURE 7. Plot of Frequency Discriminator Output of Unmodulated Open Loop Carrier over a $400 \mu s$ Burst Showing the Loop Opening at $60 \mu \mathrm{~s}$ and the Resulting (Lack of) Drift. Units are $\mathrm{kHz} / \mu \mathrm{s}$.

Frequency pushing is controlled by putting a series 10Ω resistor and a shunt $1 \mu \mathrm{~F}$ to $4 \mu \mathrm{~F}$ capacitor on the VCO VCC line from the LP2951 voltage regulator. Load pulling is controlled by using an attenuator and an RF buffer between the VCO and the power amplifier. The power amplifier and T/R switch both affect load pulling. RF coupling can also cause frequency drift, and this is controlled by providing good shielding between the power amplifier and the VCO.

2.5.3 DC Compensation

Compensation of the drift in DC of the demodulated eye due to frequency error, co-channel interference, or temperature effects can be'implemented by using an analog "sample and hold" technique, or by using a digital duty cycle detection. In the analog method, the received, demodulated signal is input both to the comparator "+" input and to the sample-and-hold (S\&H) buffer amplifier. The S\&H buffer allows a single RC filter to average the DC value of the received signal without distorting it. This DC value is connected to the "-" input of the comparator. When the signal S__FIELD is used (named after the synchronization field in DECT), this circuit can acquire the DC voltage during the preamble and then hold it (with the external capacitor) for the duration of the burst. This solution avoids the problem of long strings of 1's and 0's that conventional continuous averaging circuits have while still reacting quickly to acquire the proper DC average at the beginning of a burst. This solution is provided internally to the LMX2411. Figure 8 shows a typical response curve of the DC threshold level from initial startup. Note that the discharge of the capacitor is very low, which means that once the first burst acquisition has been done, all following bursts should be recovered with minimal CRC errors.
Another method of DC compensation is to monitor the duty cycle of the output of Comp Out, and adjust the level of an external threshold DAC that drives the LMX2411's comparator threshold directly. The digital method has the added advantage that the last value of the DAC can be pre-loaded for each timeslot, thus introducing memory into the system. The Sierra SC14400 supports both DC compensation methods.

2.6 Summary of ARi ${ }^{1}$ Signals

The following is a summary of all thirteen (13) signals that are contained in the ARi ${ }^{1}$ specification and their descriptions.

2.6.1 Tx Interface

2.6.1.1 TX_PWR_DWN

This signal is used to change the transmitter between power down and active modes. TX_PWR_DWN should go low 460 bits $(400 \mu \mathrm{~s})$ prior to start of transmission.

2.6.1.2 TPAPD

This signal is used for turning the power amplifier on and off. This signal should enable the power amplifier 31 bits ($27 \mu \mathrm{~s}$) prior to start of transmission.

2.6.1.3 TSWp/TSWn

These signals are used for the $T x / R x$ switch at the antenna and/or VCO output. They are inverse signals of each other, and one or both may be used in a given implementation. In the case of TSWp, a "LOW" signal indicates the output of the VCO goes to the Rx mixer. A "HIGH" signal indicates the output of the VCO goes to the power amplifier. For TSWn, the polarity is reversed. This signal should switch approximately 30 bits ($27 \mu \mathrm{~s}$) before the start of either transmission or reception of the signal.

2.6.1.4 TX_DATA

Data to be transmitted. This is sent three bit times prior to start of transmission to account for three bit delay in the ROM filter. Also, three padding bits are added at the end of the burst to ensure the last desired bit is transmitted. The polarity of this signal determines reset state of LMX2411 ROM address. See the LMX2411 data sheet for more details.

2.6.1.5 SYS_CLK

This is the reference clock for both the LMX2411 and the LMX2320. It should have a frequency of either 10.368 MHz , 13.824 MHz , or 18.432 MHz and should be active anytime the transmitter or frequency synthesizer is active. This signal can be a CMOS signal or have a voltage swing with as little as 500 mV Pp.

2.6.2 Rx Interface

2.6.2.1 RX_PWR_DWN

This signal is used for the $R x$ to change between power down and active modes. RX__PWR__DWN should go LOW 70 bits $(60 \mu \mathrm{~s})$ prior to start of reception of the signal.

2.6.2.2 RSSI

This is the analog RSSI signal that originates from the LMX2240. This signal should be connected to an ADC that is either in the burst mode logic or the microcontroller.

TL/W/11912-8
FIGURE 8. Plot of DC Compensation Circuit Response vs Time from Full Discharge of Hold Capacitor

2.6.2.3 RX__DATA

Demodulated, received data for input to the burst mode controller. This is the output from the comparator.

2.6.2.4 S_FIELD

This signal is used to enable the analog DC compensation circuit on the LMX2411. This signal should go LOW 2 bits (2 $\mu \mathrm{s}$) to 0 bits ($0 \mu \mathrm{~s}$) before the start of reception of the signal. This signal should go HIGH 32 bits ($29 \mu \mathrm{~s}$) to 30 bits (27 $\mu \mathrm{s}$) later for an effective 30 -bit averaging period for the sample and hold circuit.

2.6.3 Synthesizer Interface

2.6.3.1 PLL__PWR__DWN

This signal changes the phase-locked loop (PLL) frequency synthesizer between power down and active modes. PLL_ PWR_DWN should go HIGH between 115 bits ($100 \mu \mathrm{~s}$) and 461 bits $(400 \mu \mathrm{~s})$ before the PLL will be locked. Note that this results in a blind slot implementation for DECT. PLL__PWR_DWN should go LOW 31 bits (27 us) before the start of a transmission to unlock the PLL. NOTE: THE LMX2320 PLL CAN BE PROGRAMMED IN THE POWER DOWN STATE.

2.6.3.2 ENABLE

Enable signal for the LMX2320 programming interface.

2.6.3.3 DATA

Data line for the LMX2320 programming interface.

2.6.3.4 CLOCK

Clock line for the LMX2320 programming interface.

2.6.4 System Signals

2.6.4.1 VCO__PD

May be used as a system PD as well by connecting to an LP2951 (or equivalent) voltage regulator output. To power down the VCO, the regulator would be turned off, which would also turn off the entire RF front end.

2.6.4.2 $\mathrm{V}_{\mathrm{BAT}}$

The battery voltage that presumably will come from 3 NiCad battery cells or their equivalents. This is the power supply that is regulated on board the RF front end. All ICs are driven by this except the power amplifier, which operates directly from the battery. This signal should be connected directly to the battery with short lead lengths to minimize losses during times when the power amplifier is on and also to avoid lead inductances which cause variations in V_{CC} and $V_{\text {bat }}$.

2.6.4.3 GND

This is the return path to the battery.

3.0 ELECTRICAL SPECIFICATIONS

The RF front end runs on a single $+3 V$ supply. The table below gives the pertinent electrical specifications to interface to the RF front end's CMOS circuitry.

ELECTRICAL CHARACTERISTICS

(The following specifications apply for supply voltage $V_{C C}=+3 V \pm 5 \% V$ unless otherwise specified).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit

DIGITAL INTERFACE SECTION

V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CC}}-0.4$			V
$\mathrm{~V}_{\mathrm{OL}}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{IH}}$	High-Level Input Voltage		$V_{\mathrm{CC}}-0.8$			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-Level Input Voltage				0.8	V
I_{N}	Input Current	GND $<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	mA
t_{CS}	Data to Clock Setup Time	See Data Input Timing	50			ns
t_{CH}	Data to Clock Hold Time	See Data Input Timing	0			ns
$\mathrm{t}_{\mathrm{CWH}}$	Clock Pulse Width High	See Data Input Timing	50		ns	
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low	See Data Input Timing	50		ns	
t_{ES}	Clock to Enable Setup Time	See Data Input Timing	50		ns	
t_{EW}	Enable Pulse Width	See Data Input Timing	50		ns	

Note 1: DC Electrical Characteristics for the digital section apply to all digital input and output pins. This includes Clock, Data, LE, PD, Tx Data, Tx PD, Rx PD, Comp Out and S-Fieid.

SERIAL DATA INPUT TIMING

$$
T L / W / 11912-9
$$

NOTES: Parenthesis data indicates programmable reference divider data. Data shifted into register on clock rising edge.

Introduction to Single Chip Microwave PLLs

Abstract

Synthesizer and Phase Locked Loop (PLL) figures of merit including phase noise, spurious output and lock time, at microwave frequencies, are examined. Measurement methods for these parameters and supporting software are discussed in detail. The requirements for the loop filler, the charge pump, the dual modulus prescaler and their effects on PLL performance are analyzed.

\section*{INTRODUCTION}

Phase Locked Loops are used for many radio applications including frequency synthesizers, carrier recovery and clock recovery circuits, tunable filters, frequency multipliers, re-

ceiver demodulators and modulators. This application note will concentrate on the use of a PLL as a frequency synthesizer, as shown in Figure 1.
There are two main reasons for using a PLL as a frequency synthesizer. One is to translate the frequency accuracy of a high quality signal source to a tunable signal source. The second is to translate the noise characteristics of a high quality signal source to a lower quality signal source. The block diagram of a basic PLL is shown in Figure 1. The high quality signal source, in this case, is a crystal reference.
A single chip PLL consists of the reference divider, the main divider (including a dual modulus prescaler), the phase detector and a charge pump.

TL/W/11815-1
FIGURE 1. Block Diagram of a Basic Phase Locked Loop

SYNTHESIZER AND PLL FIGURES OF MERIT

Phase noise is a measure of the spectral purity of the tone produced by the PLL. It is dependent on the noise characteristics of the crystal oscillator reference and the VCO as well as some noise contribution of the dividers. Phase noise is defined as the ratio of the single sideband power (within a 1 Hz bandwidth at some offset frequency) to the total carrier power. Phase noise is often measured in units of $\mathrm{dBc} / \mathrm{Hz}$.
Spurious output is a measure of the level of the reference spurs (sometimes referred to as reference sidebands) on the output tone. The reference spurs appear on the output tone at the center frequency \pm the reference frequency and at integer multiples of the reference frequency. For example, a PLL operating at 836 MHz with a reference frequency of 25 kHz will have reference spurs at 836.025 MHz , $835.075 \mathrm{MHz}, 836.050 \mathrm{MHz}, 835.050 \mathrm{MHz}$, etc.
Lock time or switching speed is a measure of the settling time of the PLL once a change in frequency has been initiated. The frequency step and the frequency accuracy to define "locked" must both be defined for this measurement to be useful.

PHASE NOISE MEASUREMENT METHODS

The phase noise characteristics of the PLL can be measured on a spectrum analyzer or using a phase noise test set. The spectrum analyzer test technique is described here. Phase noise is measured in units of $\mathrm{dBc} / \mathrm{Hz}$. This is done at several offsets from the output signal such as 1 $\mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz . The spectrum analyzer is tuned to the desired center frequency and the span is adjusted so the appropriate offset frequency can be viewed. The differ-
ence between the level of the carrier and the noise level minus $10[\log$ (resolution bandwidth)] is equal to the phase noise in $\mathrm{dBc} / \mathrm{Hz}$. The resolution bandwidth is read directly from the spectrum analyzer. The phase noise result in $\mathrm{dBc} / \mathrm{Hz}$ is a negative number. Since phase noise is measured in $\mathrm{dBc} / \mathrm{Hz}$ the measurement is always normalized to a 1 Hz bandwidth. The video averaging feature of the analyzer is used to better determine the noise level. An example of such a measurement, for the LMX1501A PLL using a reference frequency of 25 kHz , is shown in Figure 2. Refer to the LMX1501A data sheet for application circuits.

TL/W/11815-2
FIGURE 2. An 826 MHz Synthesizer Phase Noise Measurement © $100 \mathrm{kHz}=-116 \mathrm{dBc} / \mathrm{Hz}$. Using the LMX1501A PLL.

Example Phase Noise Calculation

 phase noise$$
\begin{aligned}
(@ 100 \mathrm{kHz}) & =-76 \mathrm{dBc}-10 \bullet \log (\text { res.BW) } \\
& =-76 \mathrm{dBc}-10 \cdot \log (10 \mathrm{kHz}) \\
& =(-76-10 \cdot 4) \mathrm{dBc} / \mathrm{Hz} \\
& =-116 \mathrm{dBc} / \mathrm{Hz}
\end{aligned}
$$

REFERENCE SIDEBAND MEASUREMENT METHÓDS

The reference sidebands can be seen on a spectrum analyzer and are measured in dBc . The analyzer is set to the desired center frequency and the span is set to allow the reference sidebands to be viewed. For example, to see the reference spurs for a 1.7 MHz reference frequency the span would be set to 10 MHz . The spurious output is the difference between the level of the PLL tone (at the center frequency) and the level of the reference spur (at the center frequency \pm the reference frequency). In Figure 3 , the reference sidebands for a 1.7 MHz reference frequency are about 78 dB down from the PLL tone, or -78 dBc . Refer to the LMX2320 data sheet for application circuits.

TL/W/11815-3
FIGURE 3. An 1881 MHz Synthesizer with a Reference Frequency of 1.7 MHz and Sidebands @ $1.7 \mathrm{MHz}=-78 \mathrm{dBc}$. Using the LMX2320 PLL.
SWITCHING SPEED MEASUREMENT METHODS
Switching speed is measured on an oscilloscope by probing the VCO tuning voltage. The transient response will be seen
directly. This method shows the damping characteristics of the loop but does not provide the accuracy of the frequency match.
Figure 4 illustrates an evaluation method using a mixer to determine the accuracy of the frequency match. The signal generator is phase locked to the crystal reference input to the PLL. This is accomplished by using a signal generator for the crystal reference and having the 10 MHz reference used as an external reference for the other signal generator. The output of the VCO is mixed with a signal (from a signal generator) at the desired frequency (using the mixer as a phase detector). When the frequencies are matched a DC voltage appears at the output of the mixer. When the frequencies are mismatched a beat note appears at the output of the mixer. Either of these signals is viewed on a scope. The peak to peak amplitude of the beat note represents a phase offset of $\pm 180^{\circ}$. The slope of the beat note represents a change in phase divided by time, which is equivalent to frequency. This frequency represents the frequency mismatch. As the slope of the line approaches zero the frequencies converge, and the loop locks. This method gives a frequency accuracy within 100 Hz .
An example of the above two types of switching speed measurements is shown in Figure 4. Channel 1 shows the VCO tuning voltage and channel 2 shows the output of the mixer IF port.
A third method uses a spectrum analyzer to view the transient response by setting the frequency span to 0 Hz . The display is effectively now frequency versus time. The video band width should be set on maximum. The frequency offset will be equal to the resolution bandwidth setting at 10 dB down from the top on the vertical axis. This is due to the filter characteristics of the analyzer. To be fully accurate the external trigger of the analyzer should be triggered off the loading of the new frequency. This method is not recommended for measuring lock times under 10 milliseconds because on some spectrum analyzers the display response time of the analyzer is longer than a few milliseconds and erroneous data can result. A modulation domain analyzer can also be used to measure switching speed. It displays frequency versus time directly but it is not available in all labs.

TL/W/11815-5
FIGURE 4. Test Setup and Lock Time for 10 MHz Step $=1.77 \mathrm{~ms}$. using a LMX1501A with a Reference Frequency of $\mathbf{2 5} \mathbf{~ k H z}$.

SUPPORTING SOFTWARE

A software program of some kind is needed in order to program the PLL chip to test it. National Semiconductors LMX series of PLL chips are programmed via a three line MICROWIRETM serial interface (clock, data, load ènable). National Semiconductor Corporation provides a DOS program to allow the user to program the chip from the parallel port of a DOS personal computer. The user enters the frequency of operation, the reference frequency and the crystal frequency then presses one key to load in the appropriate divider values. The frequency can be tuned in steps of the reference frequency and a switching mode is available to test the lock time. The user enters the number of steps and the PLL will switch between the two frequencies. The user interface for the program is function key driven. Detailed operating instructions are provided with the software. For more information on the PLL software program contact:

(in Asla Pacific region)

Wireless Communications Product Applications
National Semiconductor Hong Kong Ltd.
Ocean Center 15/F, Straight Block
5 Canton Road
Tsimshatsui, Kowloon, Hong Kong
852-737-1800

(in Europe)

Wireless Communications Field Applications
National Semiconductor European Headquarters
Industriestrasse 10
D-8080 Furstenteldbruck
Germany
49-8141-103-557
(in Japan)
Innovative Product Application Engineering
Communication Business Center
National Semiconductor Japan Ltd.
Sansei-doh Shinjuku Bldg. 5F
4-15-3 Nishi Shinjuku
Shinjuku-ku, Tokyo, Japan
81-3-3299-7001

(In North or South America)

Wireless Communications Applications
National Semiconductor Corp.
1090 Kifer Rd.
Santa Clara, CA
(408) 721-4748

LOOP FILTER

The design of the loop filter involves a trade off between reference sidebands and switching speed. The loop filter must be designed for the correct balance between reference spurs and lock time that the system requires. Generally, the narrower the loop bandwidth the lower the reference spurs but the longer the lock time. The circuit in Figure 5 shows a type 2 third order passive loop filter configuration and its transfer function.

FIGURE 5. Passive Loop Filter Circult and Loop Filter Transfer Function.

A type 2 loop has two integrators within the loop, a VCO and an integrator/filter. The order of the loop is determined by number of poles of the transfer function. Using the phase detector and VCO constants (K_{ϕ} and K_{v}) and the loop filter transfer function ($G_{L F}$) the open loop Bode plot can be calculated. K_{ϕ} and K_{V} are available from the PLL IC and VCO manufacturers. The control circuit, the open loop transfer function and the open loop Bode plot are shown in Figure 6. The loop bandwidth is shown on the Bode plot as (ω_{p}) the point of unity gain.

TL/W/11815-9
FIGURE 6. Control Circult, Open Loop Equation and Bode Plot

CHARGE PUMP AND PHASE DETECTOR

A current charge pump and a phase frequency detector are implemented in National Semiconductor's LMX series of PLL chips. To increase the VCO frequency the charge pump outputs a pump up (source) current. To decrease the VCO frequency the charge pump outputs a pump down (sink) current. This current pulse charges the voltage of the capacitor C 1 . The charge pump is capable of supplying a controlled charge to the loop filter over a wide range of voltages, as shown in Figure 7.
The phase detector and charge pump are difficult to characterize separately. The figures of merit for the combination include linearity, sensitivity and deadband range. The linearity of the charge produced by the charge pump with respect to the detected phase error is critical to providing low spurious and low phase noise. The sensitivity $\left(K_{\phi}\right)$ is measured in $\mathrm{mA} / \mathrm{radian}$ and depends on the charge pump current capability. Current mode charge pumps commonly have a dead zone where the gain changes dramatically for a very small phase error. The divider outputs fr and fp are a series of pulses whose relative timing reflect the phase or frequency error, as shown in Figure 8. At some point the pulses are too close together for the phase frequency detector to dis-
tinguish them. This is the deadband or dead zone, as shown in Figure 9. The LMX series of PLLs use a proprietary feedback method to minimize deadband.

FIGURE 7. Charge Pump Current vs Voltage for the LMX Serles of PLL Chips

TL/W/11815-11
FIGURE 8. Phase/Frequency Error Pulses

Phase Detector/Charge Pump Linearlty

TL/W/11815-10
FIGURE 9. Charge Pump Current vs. Phase Error, showing Deadband.

DUAL MODULUS PRESCALER

Dual modulus prescalers allow operation of the divider chain at high frequencies while most of the divider operates at a lower frequency. However, this capability sets limits on the range of the divider. The divider is made up of an A counter and a B counter. The A counter is the swallow counter and the B counter is the programmable divider. The condition for a legal divide ratio is that $B \geq A$.
The necessary divide number (N) is calculated by dividing the desired frequency by the reference frequency.

$$
\begin{gathered}
f_{\text {out }}=N f_{\text {ref }}=\frac{N}{R} f_{\text {crystal }} \\
R=\text { reference divide ratio }=\frac{\text { crystal frequency }}{f_{\text {ref }}}
\end{gathered}
$$

The output frequency must be an integer multiple of the reference frequency. Once the divide ratio is calculated a check can be made to determine whether it is above the minimum continuous divide ratio. The minimum continuous divide ratio is equal to $P(P-1)$ where P is the prescaler divider. For example the minimum divide ratio for a 64/65 prescaler is $64(64-1)$ or 4032 . If the divide ratio required (N) is below the minimum continuous divide ratio it may be a legal number but it must be verified that $B \geq A$. The values for A and B can be calculated from the following equations:

$$
\begin{aligned}
& B=N \operatorname{div} P \\
& A=N \bmod P
\end{aligned}
$$

A divide ratio that is above the minimum continuous divide ratio or satisfies the condition $B \geq A$ is a legal divide number. The PLL will not operate if it is programmed with an illegal divide number. For example, in choosing a prescaler for a DECT (Digital European Cordless Telephony) system the required divide ratios for the transmit side would be 1089 to 1098. The frequencies of operation for DECT are
1881.792MHz to 1897.344 MHz with a channel spacing of 1.728 MHz . The reference frequency used is 1.728 MHz .

$$
\frac{1881.792}{1.728}=1089 \quad \text { and } \quad \frac{1897.344}{1.728}=1098
$$

The minimum continuous divide ratio for a 64/65 prescaler is $64(64-1)$ or 4032. The minimum continuous divide ratio for a $128 / 129$ prescaler is $128(128-1)$ or 16,256 . For DECT the divide ratios required do not exceed the minimum continuous divide ratio for a $64 / 65$ or $128 / 129$ prescaler. Therefore, it must be verified that the condition of $B \geq A$ holds true. This is determined as follows:

TABLE I. Example Dual Modulus Prescaler Calculation

N	$64 / 65$		128/129	
	B	A	B	A
1089	17	1	8	65
1090	17	2	8	66
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
1097	17	9	8	73
1098	17	10	8	74

For the $64 / 65$ prescaler, Table 1 shows $B \geq A$ therefore it can be used. The 128/129 prescaler cannot be used since A > B. The above calculation demonstrates that a 64/65 prescaler can be used in the DECT system for the transmit PLL.

CONCLUSION

The performance of a PLL as a frequency synthesizer is measured in terms of phase noise, spurious output and lock time. The techniques for measuring these parameters have been discussed. The loop filter, charge pump/phase detector and dual modulus prescaler and their impact on PLL performance have been analyzed. Example performance metrics were demonstrated for National Semiconductor's LMX series of PLL chips. These ICs provide the capability to produce a low power, low noise, low spurious and fast switching frequency synthesizer. With a properly designed loop filter excellent performance can be achieved. The LMX series of PLL chips provide the building block around which a high performance frequency synthesizer can be designed.

References

W.F. Egan: Frequency Synthesizers By Phase Lock, John Wiley and Sons, 1981
F.M. Gardner: Phaselock Techniques, Wiley, 1989
F.M. Gardner: "Charge-Pump Phase-Lock Loops", IEEE Transactions on Communications, Com-28, No. 11, November 1980
U.L. Rohde: Digital PLL Frequency Synthesizers:' Theory and Design, Prentice Hall, 1983

Integrated LNA and Mixer Basics

Abstract

Basic theory and operation of low noise amplifiers and mixers are presented. Important figures of merits of these two devices such as gain, noise figure, compression point, and third order intercept point are introduced and derived. Measurement methods of these figures of merit are also described.

LNA

Low noise amplifiers (LNAs) are widely used in wireless communications. They can be found in almost all RF and microwave receivers in commercial applications such as cordless telephones, cellular phones, wireless local area networks, and satellite uplinks and downlinks and in military applications such as doppler radars and signal interceptors. Depending upon the system in which they are used, low noise amplifiers can adopt many design topologies and structures-those used in military applications tend to be discrete, large in size, and consume high power, whereas those in commercial applications aim toward high integration and low voltage and bias currents. The LMX2215 and LMX2216B, for example, can be classified into the latter catergory. LNAs are usually placed at the front-end of a receiver system, immediately following the antenna. A band pass filter may be required in front of it if there are many adjacent interfering bands leaking through the antenna, but this filter generally degrades the noise performance of the system. The purpose of an LNA is to boost the desired signal power while adding as little noise and distortion as possible so that retrieval of this signal is possible in the later stages in the system. With this in mind, low noise amplifier designers have developed many design concepts and theories applied to low noise amplifiers and important figures of merit used to characterize and compare their performance. These concepts and figures of merit are discussed in the following sections.

MIXER

Mixers are found in virtually all wireless communication systems. They are frequency translating devices that convert input signals from one frequency to another by mixing these signals with another signal of known frequency. One reason frequency translation is a necessary process in wireless transmission is that information signals such as human speech or digital data are usually low frequency signals and are not suitable for a wireless channel. Another is that wireless channels are common channels that are shared by many signals and these signals must be separated into different frequency bins so that electronic circuits (which contain frequency selective components) can keep them from destructively interfering with each other. Among many other properties, frequency is one that is most easily exploited in signal identification.
Mixers can be classified into two broad categories: passive or active. The most commonly available and used are passive diode mixers since they are easier to design and more thoroughly understood. Active mixers, on the other hand,
involve transistors and the most popular ones are built from the basic Gilbert cell structure. Some higher frequency active mixers exploit the nonlinear characteristics of high gain transistors and can perform the mixing action using only one transistor. Among these types, the Gilbert cell structure has the most desirable characteristics in terms of isolation and harmonic suppression due to its balanced structure. The LMX2215, LMX2216B, and LMX2213B use the Gilbert cell (the LMX2216B is the 3V equivalent of the LMX2215, and the LMX2213B is the LMX2216B without the LNA).
Most down converting mixers are three-port devices, as shown in Figure 1. They take two input signals: the RF and the LO (local oscillator) signals. The output is a mixing product of these two inputs and is an intermediate frequency (IF) signal. There are self-oscillating mixers which provide their own LO signal by having an internal resonating element coupled with the RF input. The LMX2215 and LMX2216B require external LO drives.

TL/W/11808-1 FIGURE 1. Three-Port Mixer

Mixers perform the mixing operation by multiplying the two input signals. The output, IF, is the product of the two signals RF and LO, and it contains the sum and difference of the two input frequencies. In receivers, the lower frequency component is usually the desired one and can be obtained by lowpass filtering the mixer output signal. Derivations of the mixer effect are shown below in the section on nonlinearities (OIP_{3}).

CONCEPTS

Noise

Noise in electrical systems is defined as random fluctuations in voltage and current. It can be generated internally by components employed in the system or externally by electrical radiation from other systems or induced mechanical vibrations. RF and microwave oscillators, for example, are very susceptible to external radiation if they are not properly shielded. They are also susceptible to mechanical vibrations, a phenomenon called microphonics, if they are not sufficiently isolated from physical contact with nearby objects. Integrated low noise amplifiers are, on the other hand, most vulnerable to noise that is generated by their own transistors and resistors. Transistors exhibit flicker noise, which is caused by a change in conductance caused by a relatively slow process (e.g. the exchange of charge with surface traps or metallic impurities through tunneling), and shot noise, which is due to random one-way crossings of some barrier by discrete quantities of charge. For amplifiers at radio and microwave frequencies, flicker noise is negligible since it's power spectrum has a $1 / \mathrm{f}$ property. The
power spectral density of flicker noise is described by equation (1) below:

$$
\begin{equation*}
G_{i}(f)=C_{1} \frac{f a}{f b} \tag{1}
\end{equation*}
$$

where $a \sim 1$ to $2, b \sim 1$, and C_{1} is a device dependent constant. Shot noise power, however, depends on the net total current crossing the pn junctions, and its power spectral density is given by

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}}(\mathrm{f})=\mathrm{ql} \tag{2}
\end{equation*}
$$

where q is the electronic charge and I is the total current. Resistors exhibit thermal noise, which is generated by the random movement of electrons inside the resistive material at a non zero absolute temperature. The thermal noise power (per unit of frequency) of resistors, thus, depends on temperature and the resistance value of the resistors. However, the available thermal noise power depends solely on temperature. Equation (3) gives the power spectral density of thermal noise

$$
\begin{equation*}
\mathrm{G}_{\mathrm{v}}(\mathrm{f})=\mathrm{KTR} \tag{3}
\end{equation*}
$$

where K is the Boltzmann's constant, T is the absolute temperature in Kelvins, and R is the resistance.
The combined effect from the noise sources mentioned above and all other possible noise sources is often treated as though it were caused by only thermal noise. Moreover, LNAs are sometimes specified, not by their noise figure, but by their noise temperature, the temperature at which a resistor would generate the equivalent noise power.

Nolse Figure (NF)

Noise figure is noise factor in decibel units (dB) and is an important figure of merit used to characterize the performance of not only a single component but also the entire system. It is one of the factors which determine the system sensitivity. Noise factor is defined as the input signal to noise ratio divided by the output signal to noise ratio. For an amplifier, it can also be interpreted as the amount of noise introduced by the amplifier seen at the output besides that which is caused by the noise of the input signal. Mathematically,

$$
\begin{gather*}
F=\frac{S_{i} / N_{i}}{S_{0} / N_{0}}=\frac{S_{i} / N_{i}}{G_{a} S_{i} /\left(N_{a}+G_{a} N_{i}\right)}=\frac{N_{a}+G_{a} N_{i}}{G_{a} N_{i}} \tag{4}\\
N F=10 \log (F) \tag{5}
\end{gather*}
$$

where S_{i}, and N_{i}, represent the signal and noise power levels available at the input to the amplifier, S_{O} and N_{0} the signal and noise power levels available at the output, G_{a} the available gain, and N_{a} the noise added by the amplifier. For a mixer which is used in applications where the desired signal power is contained in only one sideband, N_{i} is interpreted as the input noise contained in only one sideband. Therefore, in specifying noise figure for mixers, the term sin-gle-sideband or double-sideband must be noted to indicate how N_{i} was measured. In most communication receivers, single-sideband noise figure is the "true" noise figure and is 3 dB higher than double-sideband noise figure.

Design for Optimum Noise Performance

Based on the above equations, noise models for transistors can be developed. Furthermore, analysis of these models
shows that for an amplifier using bipolar transistors, the only noise determining factor is the input match (which can also be translated into a bias current dependence). If resistors are also employed in the matching networks, then these will affect the noise performance as well. For each transistor operating at a particular frequency and bias current, there exists an optimum input match $\Gamma_{o p t}=R_{o p t}+j X_{o p t}(6)$, which will yield an optimum noise figure $F_{\text {opt }}$ This input match can be obtained by measurements using a noise figure meter and a vector network analyzer. A matching network designed to present this optimum impedance at the input of the transistor yields the optimum noise performance. The noise figure of the resulting amplifier can be calculated using the following formula,

$$
\begin{equation*}
F=F_{o p t}+\frac{4 R_{n}}{Z_{0}} \frac{\left|\Gamma_{\mathrm{s}}-\Gamma_{\mathrm{opt}}\right|^{2}}{\left|1+\Gamma_{\mathrm{opt}}\right|^{2}\left(1-\left|\Gamma_{\mathrm{s}}\right|^{2}\right)} \tag{7}
\end{equation*}
$$

where $R_{n}=$ noise resistance
$Z_{0}=$ system impedance
$\Gamma_{\mathrm{S}}=$ input reflection coefficient seen by the device (see Figure 1).

TL/W/11808-2
FIGURE 2. Typical LNA Topology
Note that if the input match is perfect, the noise figure is Fopt. This value is usually not achievable in practice and tradeoffs between noise performance, match to available filters, gain, and stability is often required.

Noise Figure Measurements

Noise figure can be measured using a noise figure meter, which consists of a noise source and an RF receiver. The noise source is placed at the input of the device under test (DUT), and the output of the DUT is connected to the receiver (see Figure 3). There are several methods which noise figure receivers use to calculate noise figure, one of which involves computing the Y factor. With this method, the noise source (an avalanche diode) is cycled between two effective noise temperatures: T_{h} and T_{c}, shown in Figure 4. T_{h} corresponds to the hot temperature, when the diode is bias with a DC current, and T_{C} corresponds to the cold temperature, when the diode is off. The receiver detects the noise power at the output of the DUT under these two temperatures and computes the straight-line noise characteristics, from which the noise added, N_{a}, can be determined. Along with N_{a}, the noise figure meter also measures the available gain of the DUT to compute the noise figure using equations (4) and (5). Figures 3 and 4 below illustrate the measurement setup and the straight-line noise characteristic.

TL/W/11808-3
FIGURE 3. Nolse Figure Measurement Setup

TL/W/11808-4
FIGURE 4. Nolse Power vs Nolse Source Temperature
GAIN (G)
At radio and microwave frequencies, efficiency in transmission of signal power is of great importance. For this reason, RF and microwave circuits are optimized for power gain instead of voltage or current gain as commonly found in most low frequency circuits. The unit of power used to specify absolute power level is the dBm, or decibels referenced to 1 mW . Power levels in dBm can be computed from the equation

$$
\begin{equation*}
P(\mathrm{dBm})=10 \log \left(\frac{P(\mathrm{~mW})}{1 \mathrm{~mW}}\right) \tag{8}
\end{equation*}
$$

In cases where the load impedance is known or assumed, equivalent voltage levels can be used to specify power levels indirectly. In these cases, the unit $\mathrm{dB} \mu \mathrm{V}$ is often used. A similar equation converts $\mu \mathrm{V}$ units to $\mathrm{dB} \mu \mathrm{V}$ units.

$$
\begin{equation*}
V(\mathrm{~dB} \mu \mathrm{~V})=20 \log \left(\frac{V(\mu \mathrm{~V})}{1 \mu V}\right) \tag{9}
\end{equation*}
$$

The importance of power transfer is one of the reasons for which power gain, and not voltage or current gain, is often used to specify RF and microwave devices. Many different types of power gain are used in RF engineering. The type used here is called transducer gain, which is defined as the ratio of the power delivered to the load to the available power from the source,

$$
\begin{equation*}
G=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{V_{\text {out }}^{2} / R_{L}}{V_{\text {in }}^{2} / 4 R_{S}}=4 \frac{R_{S}}{R_{L}} \frac{V_{\text {out }}^{2}}{V_{\text {in }}^{2}} \tag{10}
\end{equation*}
$$

where $V_{\text {out }}$ is the voltage across the load R_{L}, and $V_{\text {in }}$ is the generator voltage with internal resistance R_{s}. In terms of scattering parameters, transducer gain is defined as

$$
\begin{equation*}
G=20 \log \left(\left|S_{21}\right|\right) \tag{11}
\end{equation*}
$$

where S_{21} is the forward transmission parameter, which can be measured using a network analyzer.

1 dB COMPRESSION POINT ($\mathrm{P}_{1 \mathrm{~dB}}$)

A measure of amplitude linearity, 1 dB compression point is the point at which the actual gain is 1 dB below the ideal linear gain. For a memoryless two-port network with weak nonlinearity, the output can be represented by a power series of the input as

$$
\begin{equation*}
v_{0}=k_{1} v_{i}+k_{2} v_{i}^{2}+k_{3} v_{i}^{3}+\ldots \tag{12}
\end{equation*}
$$

For a sinusoidal input,

$$
\begin{equation*}
v_{i}=A \cos \omega_{1} t \tag{13}
\end{equation*}
$$

the output is

$$
\begin{align*}
v_{0}= & \frac{1}{2} k_{2} A^{2}+\left(k_{1} A+\frac{3}{4} k_{3} A^{3}\right) \cos \omega_{1} t \\
& +\frac{1}{2} k_{2} A^{2} \cos 2 \omega_{1} t+\frac{1}{4} k_{3} A^{3} \cos 3 \omega_{1} t \tag{14}
\end{align*}
$$

assuming that all of the fourth and higher order terms are negligible. For an amplifier, the fundamental component is the desired output, and it can be rewritten as

$$
\begin{equation*}
k_{1} A\left[1+\frac{3}{4}\left(k_{3} / k_{1}\right) A^{2}\right] \tag{15}
\end{equation*}
$$

This fundamental component is larger than $k_{1} A$ (the ideally linear gain) if $k_{3}>0$ and smaller if $k_{3}<0$. For most practical devices, $\mathrm{k}_{3}<0$, and the gain compresses as the amplitude A of the input signal gets larger. The 1 dB compression point can be expressed in terms of either the input power or the output power. Measurement of $\mathrm{P}_{\text {1dB }}$ can be made by increasing the input power while observing the output power until the gain is compressed by 1 dB .
$P_{1 d B}$ is an important characteristic of a device since it indicates the upper limit of the power level of the input signal without saturating the device and generating nonlinear effects.

THIRD ORDER INTERCEPT (OIP $_{3}$)

Third order intercept is another figure of merit used to characterize the linearity of a two-port. It is defined as the point at which the third order intermodulation product equals the ideal linear, uncompressed, output. Unlike the $\mathrm{P}_{1 \mathrm{~dB}}, \mathrm{OIP}_{3}$ involves two input signals. However, it can be shown mathematically (similar derivation as above) that the two are closely related and $\mathrm{OIP}_{3} \approx \mathrm{P}_{1 \mathrm{~dB}}+10 \mathrm{~dB}$. Theses two figures of merit are illustrated in Figure 5 below.

FIGURE 5. Typical $P_{\text {out }}-P_{\text {In }}$ Characteristics

Third order intermodulation products are important since their frequencies are located close to the wanted signal frequency, making them more difficult to be rejected by practical filters. If the two-port network is an LNA used in a receiver, intermodulation products at the output of the LNA can mask out signals from adjacent channels. For example, the third order intermodulation products resulted from 2 channels at 1 MHz apart, $\mathrm{f} 1=408 \mathrm{MHz}$ and $\mathrm{f} 2=409 \mathrm{MHz}$, will be at 407 MHz and 410 MHz , a 1 MHz offset from f1 and f2. Similarly, two channels $f 4=411 \mathrm{MHz}$ and $55=412 \mathrm{MHz}$ will produce intermodulation products at 410 MHz and 413 MHz . If $\mathrm{f} 3=410 \mathrm{MHz}$ is the desired signal, it will be interfered with by the intermodulation products created by its adjacent channels $\mathbf{f 1}, \mathfrak{f 2}, \mathfrak{f 4}$, and $\mathfrak{f 5}$.
To see how third order intermodulation products come about, assume that the input to a two-port with the same output-input relationship as stated in the above section consists of a sum of two sinusoids:

$$
\begin{equation*}
v_{i}=A\left(\cos \omega_{1} f+\cos \omega_{2} t\right) \tag{16}
\end{equation*}
$$

Then, the output voltage is

$$
\begin{align*}
v_{0} & =k_{1} A\left(\cos \omega_{1} t+\cos \omega_{2} t\right) \\
& +k_{2} A^{2}\left(\cos \omega_{1} t+\cos \omega_{2} t\right)^{2} \tag{17}\\
& +k_{3} A^{3}\left(\cos \omega_{1} t+\cos \omega_{2} t\right)^{3}+\ldots
\end{align*}
$$

Expanding these square and cube terms and ignoring the higher order terms, the output voltage is seen to contain not only harmonics of each of the two individual input frequencies but also the intermodulation terms:

$$
\frac{3}{4} k_{3} A^{3} \cos \left(2 \omega_{2} \pm \omega_{1}\right) t
$$

and

$$
\frac{3}{4} k_{3} A^{3} \cos \left(2 \omega_{1} \pm \omega_{2}\right) t
$$

The amplitude of these terms are proportional to the cube of the amplitude of the input signals; therefore, these terms increase three times faster than the fundamental term as the input signals increase, as can be seen in Figure 5.

MATCHING

Matching and microwave circuit design are to some designers synonymous. It is the act of making the source and load impedances matched to achieve the desired amount of power reflected and power transferred. Matching is required if the circuit is to yield optimum gain and return loss. Poorly matched devices can cause large amount of reflected power, poor noise performance, and low gain. For an LNA, power reflected caused by improper input match can travel back to the antenna and be re-radiated. Poor input match can also reduce the gain of the LNA and causes the system to have non-optimum noise performance.
Amplifiers can achieve maximum gain and return loss when they are presented with conjugate impedances at the input and output ports. There are two types of matching networks: resistive and reactive. Resistive matching networks rely on resistive elements for matching, usually have wider bandwidths, and consume more power than their reactive counterparts, which use lossless elements (capacitors and inductors). Simple matching networks can be designed with the help of the Smith chart, but more complicated ones often require the use of a computer and some type of network synthesis software.

Standard input and output impedances of most microwave instruments are 50Ω. Therefore, microwave and RF devices are designed to have 50Ω input and output impedances so that they can be easily characterized. In a communication system, however, not every component can be designed or optimized for 50Ω impedances due to other constraints. While most RF ceramic or helical filters have 50Ω impedances, most available SAW filters used to filter intermediate frequencies, for example, exhibit 200Ω impedances, IF ceramic filters usually have impedances of 330Ω, and crystal filters have $1 \mathrm{k} \Omega$ impedances. So, devices that are designed to be used with these components may have input or output impedances that are different from 50Ω and need matching networks to perform the necessary impedance transformation for proper characterization. In this case, simple narrow band LC matching networks can be designed to operate at the frequency of interest. Narrow band matches are also useful to reduce NF in some devices and to trade current for voltage in low headroom power amplifiers (such as 3 V devices). Shown below is an example of a 50Ω to 200Ω matching network

TL/W/11808-6

FIGURE 6. 50 2 -200 Ω Matching Network

The actual values of inductance and capacitance for the above network depend on the frequency of operation, f, and can be obtained using the following equations

$$
\begin{equation*}
\frac{L}{C}=10000, \quad L C=\frac{0.75}{(2 \pi f)^{2}} \tag{18}
\end{equation*}
$$

In general, for a step-up transformer where $Z_{\text {in }}<Z_{\text {I }}$ and both are real impedances, the following equations apply:

$$
\begin{equation*}
\frac{L}{C}=Z_{\text {in }} Z_{I}, \quad L C=\frac{1-Z_{\text {in }} / Z_{1}}{(2 \pi f)^{2}} \tag{19}
\end{equation*}
$$

MIXER CONVERSION GAIN

Conversion gain of mixers is defined as the delivered IF power divided by the available input RF power. The term conversion is used to refer to the frequency converting action of the mixer. Conversion gain can be measured using similar method and equipment setup as those used to measure amplifier gain. More details on conversion gain measurement are deferred to a later application note.

MIXER ISOLATION

Isolation is a measure of how much power is coupled from one port to the next. The two most useful isolation measurements are LO-to-IF isolation and LO-to-RF isolation. The former indicates how much LO power leaks through the output IF port, and the latter indicates how much LO power leaks through the input RF port. LO appearing at the output IF port can be attenuated easily by a lowpass filter since the two frequencies are far apart, but it is more difficult to suppress at the RF port. LO leakage through the RF port usually results in a re-radiation through the antenna if the mixer is used as the first downconverter in a wireless receiver.

MIXER NOISE FIGURE (DSB vs SSB)

Mixer noise figures can be measured and specified in two ways: double side band or single side band. Double side band noise figure measurements involve measuring the noise power contained in both the IF and image components, whereas single side band measurements demand that the image component be filtered out, and only the noise power in the IF component is measured. The DSB method assumes that the gain of the DUT is the same at both image and intermediate frequencies, so it is not recommended for a narrowband DUT or a high intermediate frequency. The SSB method does not require this assumption but does require an external image frequency filter at the input of the DUT. SSB noise figure is used in most applications where the desired information is contained only in the intermediate frequency and the image frequency is rejected. If the DSB measurement method is employed, 3 dB must be added to the measured noise figure to arrive at the SSB noise figure number.

MEASUREMENT TECHNIQUES

Gain, Return Loss, and $P_{1 d B}$

Gain, return loss, and $P_{1 \mathrm{~dB}}$ of the LNA can be measured using a standard scalar S parameter test set which includes a signal generator (e.g., HP8350), a scalar network analyzer (e.g., HP8757) with detector and directional bridge, a twoway splitter, and a variable attenuator. Figure 7 shows the setup.

FIGURE 7. Gain, RL, P1dB Measurement Setup
After the signal generator is set to sweep over the desired frequency range and the variable attenuator at the desired value, the system can be calibrated using standard short and open terminations. Once calibrated, gain measurement can be obtained by setting the scalar analyzer to display the corrected (memory subtracted) channel B power divided by channel R power. This method allows the calculation to remain valid as the signal generator output power is changed. The variable attenuator value must be set such that the input power into the DUT is far (at least 10 dB) below the expected 1 dB compression point so that the DUT is operating in its linear region. To measure input return loss, the analyzer should display the corrected channel A divided by channel R power. Most analyzers allow : dual channel displays, in which case, gain and return loss can be obtained in one plot. $\mathrm{P}_{1 \mathrm{~dB}}$ can be obtained by gradually decreasing the attenuator value until the observed gain is 1 dB below the linear gain.

Intercept Point (OIP_{3})

Output third order intercept point measurement requires two signal generators, a combiner, and a spectrum analyzer. The input of the DUT is a sum of two continuous wave RF signals at Δf apart, combined by the combiner, and the output is displayed on the spectrum analyzer. The power level of the two input signals are such that the DUT is operating in the linear range, and Δf is about a few hundred kHz or a few MHz . The intercept point is obtained by dividing the measured power level difference between the fundamental and the third order mixing product components (denoted by D in Figure 8) by 2 and adding the result to the power level of the fundamental component (P_{0}). The frequency spectrum observed on the spectrum analyzer may look similar to that illustrated by the Figure below.

TL/W/11808-8
FIGURE 8. Third Order Intermodulation
As shown above, the output third order intercept point is given by the following equation:

$$
O I P_{3}=P_{0}+\frac{D}{2}
$$

This equation is a direct result of the fact the third order products grow three times faster than the fundamental term, as mentioned earlier.

CONCLUSION

Basic theory and operation of low noise amplifiers and mixers have been presented, together with the most important figures of merit and measurement methods. Also discussed were fundamental concepts on noise in electrical systems, particularly how it is generated and measured as applied to low noise amplifiers.

REFERENCES

1. 'Fundamentals of RF and Microwave Noise Figure Measurements," Hewlett Packard, Application Note 57-1.
2. Vendelin, G.D., Pavio, A.M. and Rohde, U.L. "Microwave Circuit Design", John Wiley \& Sons, New York, 1990.
3. Maas, S.A. "Microwave Mixers", Artech House, 1986.
4. Spencer, R.R. "Noise in Electronic Devices, Circuits, and Systems", University of California, Davis, 1991.

Section 2
Baseband Processing Components

Section 2 Contents
 BASEBAND PROCESSOR

LMX2411 Baseband Processor for Radio Communications2-3

LMX2411
 Baseband Processor for Radio Communications

General Description

The LMX2411 is a monolithic, integrated baseband processor suitable for use in Digital European Cordless Telecommunications (DECT) systems as well as other mobile telephony and wireless communications applications. It is fabricated using National's ABiC IV BiCMOS process (iT $=$ 15 GHz).
The LMX2411 contains both transmit and receive functions. The transmitter utilizes a low power, high speed digital-toanalog converter (DAC) and a mask programmable Read Only Memory (ROM) to generate a Gaussian filter pulse shape. The receiver includes a high speed, low power voltage comparator for making hard decisions on incoming data and a CMOS switch coupled with a sample and hold circuit for DC compensation. Supply voltage can range from 2.85 V to 3.6 V . The LMX2411 features very low current consumption of 2.5 mA transmit and 5 mA receive (steady state). It also has separate power down pins for transmit and receive functions to further reduce power consumption.
The LMX2411 can be used with the LMX2216B LNA/Mixer, the LMX2240 IF Receiver, and the LMX2320 Phase-Locked Loop to form a complete RF front end solution. These chips form the major blocks of an RF front end solution for DECT. The LMX2411 is available in a 16 -pin JEDEC surface mount plastic package.

Features

- High speed voltage comparator (40 ns settling time)
- Generates Gaussian filtered modulating signal for a direct VCO modulator
■ Bit rates to $1.152 \mathrm{Mb} / \mathrm{s}$ (DECT)
■ Supports $10.368,13.824$, and 18.432 MHz system clocks through pin selection
- On-chip DC compensation circuit
- Average current consumption 0.6 mA for DECT handset (burst mode operation)
- Power down mode for extended battery life

1. Compatible with Sierra SC14400 and Philips PCD5040 DECT Burst Mode Controllers

Applications

- Digital European Cordless Telecommunications (DECT)
- Portable wireless communications (PCS/PCN, cordless)
- Wireless local area networks (WLANs)
- Other wireless communications systems

This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.

Functional Block Diagram

LMX2411 Connection Diagram

> Small Outline Package-(SOP)

	O		
Comp in 1			ROM Sell
Thresh 2			ROM $\mathrm{Sel}^{\text {l }}$
$A V_{D O} 3$		14	Comp Ou
AGnd 4		13	Rx PD
AGnd 5		12	$\overline{\text { S-Field }}$
DAC Out 6		11	Tx Data
DGnd 7		10	Sys CIk
DV DD^{8}		9	Tx PD

Order Number LMX2411M

 See NS Package Number M16A
Pin Description

Pin No.	Pin Name	I/O	Description
1	Comp In	I	Positive input to the threshold comparator
2	Thresh	I/O	Negative input to the threshold comparator. This pin should be connected to a DC voltage only if the internal DC compensation circuit is not used. When the DC compensation loop is used, this pin should have a capacitor to ground on it.
3	VDD		Supply voltage
4	GND		Ground
5	GND		Ground
6	DAC Out	O	Output of the Gaussian filter for modulating a VCO
7	GND		Ground
8	VDD		Supply voltage
9	Tx PD	I	Transmitter power down. DAC is set to 128 (HEX 80) (Mid-range) when this is HIGH.
10	Sys CIk	I	Oversampling input clock from the system (9x, 12x, or 16x the bit rate). If 12x or 16x is used, the effective sampling rate for the ROM filter is 6x or 8x, respectively.
11	Tx Data	I	Transmit data input
12	S-Field	I	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled, and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.
13	Rx PD	I	Receiver power down pin; should be grounded if power down is not used.
14	Comp Out	O	Comparator output
15	ROM Sel2	I	ROM selection pin 2. Selects the oversampling clock to be used for the ROM filter.
16	ROM Sel1	I	ROM selection pin 1. Selects the oversampling clock to be used for the ROM filter.

Gaussian ROM Selection Table

ROM Sel2	ROM Sel1	Function
0	0	10.368 MHz System CIk ROM is selected
0	1	13.824 MHz System CIk ROM is selected
1	0	18.432 MHz System CIk ROM is selected
1	1	Reserved

Absolute Maximum Ratings
 If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
 Power Supply Voltage (V_{CC})
 6.5 V
 Storage Temperature Range (T_{s}) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Lead Temperature (T_{1})
 (Soldering, 10 Seconds) $+260^{\circ} \mathrm{C}$

DC Electrical Characteristics

The following specifications are guaranteed over the recommended operating conditions.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
DIGITAL INTERFACE SECTION (Note 1)						
V_{OH}	High Level Output Voltage	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{C C}-0.4$			V
V_{OL}	Low Level Output Voltage	$\mathrm{OLL}=1.0 \mathrm{~mA}$			0.4	V
V_{IH}	High Level Input Voltage		$\mathrm{V}_{\mathrm{CC}}-0.8$			v
V_{LL}	Low Level Input Voltage				0.8	v
In	Input Current	GND $<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$

Note 1: DC Electrical Characteristics for the digital section apply to all digital input and output pins. This includes Tx Data, Tx PD, Rx PD, Comp Out, ROM Sel1, ROM Sel2, and S-Field.

Electrical Characteristics The following specifications are guaranteed over recommended operating conditions, and oscillator (Sys Clk) frequency of 10.368 MHz unless otherwise specified.

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$I_{R x}$	Rx Mode Current Consumption (Note 1)	Tx Mode Off		6	7	mA
$I_{T x}$	Tx Mode Current Consumption (Note 2)	Rx Mode Off		3.5	5	mA
$I_{P D}$	Standby Current (Power Down)	Tx and Rx Mode Off		50	100	$\mu \mathrm{~A}$

SYSTEM CLK INPUT

$V_{\text {OSC }}$	Oscillator Sensitivity	Sys CIk Input	0.5			$V_{\text {PP }}$
$f_{\text {OSC }}$	Maximum Oscillator Frequency	$40 \%<$ Duty Cycle $<60 \%$	19			MHz
$V_{\text {OFF }}$	Oscillator DC Offset			1.5		V
IOSC	Oscillator Input Current	GND $<\mathrm{V}_{\text {IN }}<V_{\text {CC }}$		± 30	± 50	$\mu \mathrm{~A}$

TRANSMIT ROM FILTER

ts	DAC Voltage Settling Time to within $1 / 2$ LSB	CLOAD $=3 \mathrm{pF}$ All 0's to all 1's		100		ns
RoUT	Output Impedance (Pin 6)		2.9		4.1	$\mathrm{k} \Omega$
$V_{\text {OUT }}$	Output Voltage Swing (Pin 6) (Note 3)	Measured from 0V	0.95		1.05	V
	DAC Midband Voltage	DAC Code $=10000000$	479		529	mV
	Gaussian Filter Pulse Response Accuracy (Note 4)				± 0.5	$\%$
	ISI from Gaussian Filter (Note 5)	$\mathrm{B}_{\mathrm{b}} \mathrm{T}=0.5$ Filter		11		$\%$

DC COMPENSATION SAMPLE AND HOLD CIRCUIT

$V_{O S}$	Input Offset Voltage				3	mV
$V_{1 / O}$	Input/Output Voltage Swing	Centered at 1.5V		1		V_{PP}
R_{SH}	Sample and Hold Resistor		2240		3360	Ω
D_{V}	Threshold Input Voltage Droop	$\mathrm{C}_{\text {HOLD }}=2700 \mathrm{pF}$ (Pin 2)		1	10	$\mathrm{mV} / \mathrm{ms}$

Electrical Characteristics The following specifications are guaranteed over recommended operating conditions, and oscillator (Sys Clk) frequency of 10.368 MHz unless otherwise specified. (Continued)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
COMPARATOR						
${ }^{\text {tSET }}$	Settling Time	100 mV step with 5 mV Overdrive; 20 pF load		40		ns
V_{IN}	Input Voltage Range	Centered at 1.5V	1.1		2	V
IBIAS	Comp In Bias Current (Pin 1)			,	4	$\mu \mathrm{A}$
I_{t}	Threshold Input Bias Current			2.7	27	nA
V_{10}	Input Offset Voltage				3	mV

Note 1: Average current consumption for an 8% power up duty cycle is $8 \% \times 6 \mathrm{~mA}=0.48 \mathrm{~mA}$; average current consumption for a 40% power up duty cycle is $40 \% \times 6 \mathrm{~mA}=2.4 \mathrm{~mA}$.
Note 2: Average current consumption for a 5% power up duty cycle is $5 \% \times 3.5 \mathrm{~mA}=0.175 \mathrm{~mA}$.
Note 3: Output range $=0$ to ($V_{\text {REF }}^{*} 0.8$). $V_{\text {REF }}$ is an internal bandgap reference which produces a voltage of nominally $1.25 \mathrm{~V} \pm 50 \mathrm{mV}$.
Note 4: Pulse response accuracy is measured as a percentage of the measured output pulse response vs. the calculated ideal Gaussian pulse response.
Note 5: ISI is Inter-symbol Interference, and is defined as the smallest peak-to-peak voltage obtained by an alternating bit pattern divided by the largest peak-topeak voltage obtained by alternating four 1's and four 0's.

Typical Performance Characteristics

TL/W/11911-3

TL/W/11911-4

Typical Performance Characteristics (Continued)

TL/W/11911-6

DC Comp. Circuit Response vs Time (from Full Discharge of Hold Capacitor)
(See Application Circuit)

TL/W/11911-7

Typical Application Block Diagram

Functional Description

OVERVIEW

The LMX2411 is a $3 V$ integrated circuit designed to be capable of regenerating received GMSK data and generating GMSK transmitter drive signals to meet the specifications of the Digital European Cordless Telecommunications (DECT) standard.
The transmit portion of the LMX2411 functions as a pulse shaper for incoming serial data, delivering a filtered data stream capable of modulating a VCO. The ROM and supporting logic is designed to create Gaússian filter pulse responses. The output of the LPF ROM and DAC is the modulating baseband drive signal that is fed to a VCO.
The receiver section of the LMX2411 processes the filtered data stream produced by a demodulator (e.g., the LMX2240). The data stream is compared against a threshold voltage determined by the DC compensation circuit. This DC compensation circuit allows control over DC drift due to temperature, frequency drift, component tolerance, and aging.

THE TRANSMIT ROM FILTER

The LMX2411 uses a mask-programmable Read-Only Memory (ROM) look-up table to construct pulse responses of a Gaussian filter shape. For DECT, this filter is half the bandwidth of the bit rate ($\mathrm{B}_{\mathrm{b}} \mathrm{T}=0.5$). The output of the ROM addresses a (voltage mode output) digital-to-analog converter (DAC). The LMX2411 ROM Filter supports three different system clocks selected by two external pins. These pins (ROM Sel1 and ROM Sel2) choose the proper oversampling clock. When the 12x or 16 x clock is chosen, a divide by 2 flip flop is enabled to give the ROM a $6 x$ or $8 x$
clock from which to operate. However, when the 9x oversampling clock (10.368 MHz) is chosen, the divide by 2 circuit is not enabled. The Tx Data is synchronized with the Sys Clk in the following manner: When Tx PD is taken LOW, the first edge (rising or falling) of Tx Data initializes an internal counter, so that the data bits are sampled near their center. The power up state of the three bit memory in the ROM filter depends on the state of Tx Data during power down. If Tx Data is LOW when the Tx PD pin is HIGH, the ROM filter register will be set to 010. If Tx Data is HIGH when the Tx PD pin is HIGH, the ROM filter register will be set to 101. This allows the filter to be set for either base station or handset operation.

THE COMPARATOR AND ANALOG DC COMPENSATION CIRCUIT

The high speed comparator's threshold can be set either by an external voltage or by using the internal DC compensation circuit. When using the internal DC compensation loop, the received, demodulated signal is input both to the comparator " + " input and to the sample-and-hold (S\&H) buffer amplifier. The S\&H buffer allows a single RC filter to average the DC value of the received signal without distorting it. This DC value is connected to the "-" input of the comparator. When the signal S-Field is used (named after the synchronization field in DECT), this circuit can acquire the DC voltage during the preamble and then hold it (with the external capacitor) for the duration of the burst. This solution avoids the problem of long strings of 1 's and 0 's that conventional continuous averaging circuits have while still reacting quickly to acquire the proper DC average at the beginning of a burst.

Typical Application Examples

$\mathrm{C} 1=1 \mu \mathrm{~F} \pm 10 \%$ Tantalum (polarized) $\quad \mathrm{C} 2=0.01 \mu \mathrm{~F} \pm 10 \%$ NPO Ceramic C3 $=0.01 \mu \mathrm{~F} \pm 10 \%$ NPO Ceramic $\quad C_{\text {HOLD }}=2700 \mathrm{pF} \pm 10 \%$ NPO Ceramic R1 and R2 are $5 \% 1 / 4 \mathrm{~W}$ Thin Film Carbon (values calculated from equation (1)) LPF $=1 \mathrm{MHz}$ low pass filter (Toko H354LAl-2484DDD)

Application Information

THE TRANSMIT DAC

The transmit DAC uses a voltage mode output. By nature, the output impedance of voltage mode DACs is relatively high. To conserve current, the output impedance of the LMX2411 was designed at $3 \mathrm{k} \Omega$. This results in very low current consumption in the resistor strings, but also results in low drive capability. The user should be aware that in order to achieve the minimum settling time, the maximum capacitive load for the DACs should be no more than 3 pF . To achieve a settling time suitable for DECT bit rates, the maximum capacitive load the transmit DAC should see is about 15 pF .
VCO modulation of a TDD and/or TDMA radio requires some compromise to the VCO phase-locked loop circuitry. A common practice is to use a very narrow PLL loop bandwidth to avoid distorting the modulating signal. However, this is not an effective technique when fast switching is required. Rapid s'witching times demand a wide loop bandwidth. A typical loop bandwidth of 20 kHz will distort the lower frequency components of the DECT modulating signal.

TL/W/11911-11

FIGURE 1. Illustration of a Circuit That Could Be Used to Modulate an Open Loop VCO.
An alternate modulation technique is to open the loop by powering down the PLL, which in the LMX2320 results in a TRI-STATE ${ }^{\circledR}$ at the charge pump output. For short bursts, the loop filter will not lose the charge, and the center frequency will not drift. Figure 1 shows a sample circuit for modulating on an open loop. Note that the VCO requires only one tuning port for both locking and modulation. R1 and R2 will vary depending on which wideband VCO is used. The proper equation to be used in determining R1 and R2 is below:

$$
\begin{equation*}
V_{D A C} * \frac{R 2}{R 1+R 2} * K_{V}=576 \mathrm{kHz} \tag{1}
\end{equation*}
$$

In this case, K_{V} is the VCO sensitivity, expressed in $\mathrm{MHz} / \mathrm{V}$, and $\mathrm{V}_{\text {DAC }}$ is nominally 1 V . Generally, R1 will be on the order of $50 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$, and the ratio of R1 to R2 will vary from 30:1 to $50: 1$ for wideband VCOs, and will be smaller for narrowband VCOs. Also, the 576 kHz is the peak to peak frequency deviation for DECT, which means the peak is half of that, or 288 kHz .
The Gaussian filter ROM DAC uses a three bit memory to represent the filter's pulse response. The result is an effective 3 bit time delay from input of the first bit to when that bit
is actually output from the filter. When using the LMX2411 transmit section, the bits must be sent two bit times before they must be seen at the antenna to account for this small delay in the ROM DAC. There is also a half bit sample delay to allow the 2411 to sample the data near the center of the bit. Also, the end of the information data stream must be padded by 3 bits to push the last data bit through the filter. Finally, it should be noted that after the Tx PD pin goes low, the ROM filter output will be at the mid-band voltage until the first edge of Tx Data, which is used for synchronizing the internal clock with the transmitted data.
The three bit address of the ROM filter is preset to an alternating pattern when Tx PD is HIGH. The value of the alternating pattern depends on the polarity of Tx Data when Tx PD is HIGH. If Tx Data is HIGH (handset), the three bit memory is set to 101, and if Tx Data is LOW (base station), the three bit memory is set to 010 . This allows for either the base station or handset preamble.
When beginning the burst for open loop modulation, the Tx Data line should be held constant at the polarity opposite to the first bit to be transmitted. For handsets, this means TX Data should be HIGH; for base stations, this means Tx Data should be LOW. When Tx PD goes LOW, the output of the ROM filter will stay at mid-band (DAC code "10000000") until the first edge on Tx Data. This allows the DAC average output voltage to be added to the PLL loop voltage while the center frequency is being acquired, thus avoiding a frequency offset problem.

THE DC COMPENSATION LOOP

The analog DC compensation loop is designed to provide a simple yet accurate way to track and correct the effects of DC drift due to center frequency drift. This loop will provide accurate representations of the center voltage of the received signal. However, on initial startup (i.e., full Hold capacitor discharge), the average DC value will not be recovered until the end of the DECT synchronization word for the first burst. The second and subsequent bursts should have the DC value recovered within the first few bits of the synchronization field. This means that in normal situations, the receiver will miss the first burst due to lack of synchronization (i.e., too many errors in the CRC).
It should be noted, however, that because the droop in the sample and hold circuit is small, a normal DECT conversation can take place without degradation. The Typical Performance Characteristics plots should be consulted for expected droop values and DC compensation loop performance.
Some burst mode controllers support a digital DC compensation method (i.e., Sierra SC14400). In this method, the duty cycle of the incoming signal is monitored by a counter, and an update value is sent to a DAC that sets the threshold value for the comparator. In this case, the LMX2411 should have the pin for S-Field pulled HIGH, and the output of the BMC's DAC should be input directly to the comparator's threshold input (pin 2).

Section 3
Control and
Signal Processing
Components

Section 3 Contents
MICROCONTROLLER
COP8 Devices Selection Guide . 3-3
COP472-3 Liquid Crystal Display Controller . 3-10
DIGITAL SPEECH PROCESSOR
NSAM265SR/NSAM265SF CompactSPEECH Digital Speech Processors 3-16
MICROCONTROLLER APPLICATION NOTES
AN-953 LCD Triplex Drive with COP820CJ . 3-20
AN-666 DTMF Generation with a 3.58 MHz Crystal. 3-44
AN-952 Low Cost A/D Conversion Using COP800 . 3-72

The 8-Bit COP8 ${ }^{\text {TM }}$ Family: Optimized for Value

Key Features

- High-performance 8-bit microcontroller
- Full 8 -bit architecture and implementation
- $1 \mu \mathrm{~s}$ instruction-cycle time
- High code efficiency with single-byte, multiple-function instructions
- UART
- A/D converter
- WATCHDOGTm/clock monitor
- Brown Out Detect
- On-chip ROM from 768 bytes to 16 k bytes
- On-chip RAM to 256 bytes
- EEPROM
- M ${ }^{2}$ CMOSTM fabrication
- MICROWIRE/PLUSTM serial interface
- Wide operating voltage range: +2.3 V to +6 V
- Military temp range available: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- MIL-STD-883C versions available
- 16- to 44-pin packages

The COP8 combines a powerful single-byte, multiple-function instruction set with a memory-mapped core architecture.

Key Applications

- Automotive systems
- Process control
- Robotics
- Telecommunications
- AC-motor control
- DC-motor control
- Keyboard controllers
- Modems
- RS232C controllers
- Toys and games
- Industrial control
- Small appliances

The COP8 family offers high performance in a low-cost, easy-to-design-in package.

An Example of COP888 Block Dlagram (COP888CF)

Embedded Control: Practical Solutions to Real Problems

Microcontrollers have played an important role in the semiconductor industry for quite some time. Unlike microprocessors, which typicaliy address a range of more compute intensive, general purpose applications, microcontrollers are based on a central processing unit, data memory and input/ output circuitry that are designed primarily for specific, single function applications.
During the 1970s, microcontrollers were initially used in simple applications such as calculators and digital watches. But the combination of decreasing costs and increasing integration and performance has created many new application opportunities over the years. Even as the bulk of application growth occurs in the 8-bit arena, the same issues that system designers were concerned with in the 4-bit world continue in force today. These include cost/performance tradeoffs, low power and low voltage capabilities, time to market, space/pin efficiency and ease of design.

- Cost/Performance. A price difference of just a few pennies can be ine gating factor in today's 8 -bit design decisions. Manufacturers must offer a wide range of cost/ performance options in order to meet customer demands.
- Low Power and Low Voltage. The increasing range of mobile and/or battery-powered applications is placing a premium on low-power, low-voltage, CMOS and BiCMOS embedded control solutions.
- Time to Market. All 8-bit microcontroller's architecture, functionality and feature set have a major influence on product design cycles in today's competitive market, with its shrinking windows of opportunity.
- Space/Pin Efficiency. Real estate and board configuration considerations demand maximum space and I/O pin efficiency, particularly given today's high integration and small product form factors.
- Ease of Design. A familiar and easy to use application design environment-including complete development tool support-is one of the driving factors affecting today's 8-bit microcontroller design decisions.
All of these issues must be considered when searching for the appropriate 8 -bit microcontroller to meet specific application needs. And that's why National Semiconductor's COP8 family of 8-bit microcontrollers is enjoying widespread success in today's global embedded control marketplace.
One of the leaders in the design, manufacture and sale of 8 bit microcontrollers is National Semiconductor. Long a prominent player in the worldwide microcontroller market, National and its COP8 family of products spans today's range of applications, providing customers with a wealth of options at every price/performance point in the 8-bit microcontroller market.
National's 8-bit COP8 microcontrollers enable the company to meet a wide range of embedded control application requirements. COP8 microcontrollers offer users cost-effective solutions at virtually every price/performance point in today's market for 8 bit applications.
Designers can select from a variety of building blocks centered around a common memory-mapped core and modified Havvard architecture. These building blocks include ROM, RAM, user programmable memory, UART, comparator, A/D and I/O functions.
The COP8 family incorporates $1 \mu \mathrm{~s}$ instruction cycle times, watchdog and clock monitors, multi-input wake up
circuitry and National's MICROWIRE/PLUSTM interface. In addition, National's COP8 microcontrollers are available in a wide variety of temperature range configurations from $-55^{\circ} \mathrm{C}$ on up through $+125^{\circ} \mathrm{C}$-optimizing them for rugged industrial and military applications.

COP8 Benefits

The COP8 family provides designers with a number of features that result in substantial benefits. These include a code-efficient instruction set, low power/voltage features, efficient I/O, a flexible and configurable design methodology, robust design tools and electromagnetic interference (EMI) control.
The COP8 family's compact, efficient and easy-to-program instruction set enables designers to reduce time to market for their products. Thanks to the instruction set, efficient ROM utilization lowers costs while providing the opportunity to integrate additional functionality on-chip. Low voltage operation, low current drain, multi-input wakeup and several power saving modes reduce power consumption for today's increasing range of handheld, battery-driven applications. And an array of user-friendly development tools-including hardware from MetaLink, and state of the industry assemblers, C compilers, and a "fuzzy logic" design environment help design engineers save valuable development time.
National's Configurable Controller Methodology (CCM) for the COP8 family creates "whole products" that are bugfree, fully tested and characterized, and supported by a range of documentation and hardware/software tools. National developed CCM because the majority of customer requests for new products have typically called for reconfigurations of existing proven blocks-such as RAM, ROM, timers, comparators, UARTs, and I/O.
In addition, COP8 products incorporate circuitry that guards against electromagnetic interference-an increasing problem in todays microcontroller board designs. Nationals patented EMI reduction technology offers low EMI clock circuitry, EMI-optimized pinouts gradual turn-on outputs (GTO) an on-chip choke device and to help customers circumvent many of the EMI issues influencing embedded control designs.

A Growing Family

National's wide-ranging COP8 family is well-positioned to meet the expanding variety of consumer 8 -bit microcontroller applications. Available in a wealth of different ROM (768 bytes to 16 k bytes) and RAM ($64 \times 8,128 \times 8$, and 512×8) configurations, COP8 microcontrollers provide designers with cost-effective solutions at every price/performance point in todays market. And the recent introduction of the new COP912C-National's first 8 bit microcontroller priced below 50ϕ per unit when purchased in volume quantitiescontinues to drive prices down in the highly competitive 8-bit market.
A code-efficient instruction set: Low power operation. I/O pin efficiency. A "whole product" philosophy that includes superior development tools, documentation and support. These are the reasons that National's COP8 family is a key player in the worldwide 8-bit microcontroller market. As that market continues to expand. National continues its microcontroller technology research and development effortsan ongoing commitment that began during the infancy of embedded control and continues in full force today.

COP8 Features/Benefits Analysis

	Key Features	Benefits
Instruction Set	- Efficient Instruction Set (77\% Single Byte/Single Cycle) - Easy To Program - Compact Instruction Set - Multi Function Instructions - Ten Addressing Modes	- Efficient ROM Utilization (compact code) - Low Cost Microcontroller (small ROM size) - Fast Time To Market
Low Power	- Low Voltage Operation - Lower Current Drain - Multi-Input Wakeup - Power Savings Modes (HALT/IDLE)	- Lower Power Consumption for Hand Held Battery Driven Applications
Efficient 1/O	- Software Programmable I/O - Efficient Pin Utilization - Breadth of Available Packages - Package Types Including Variety of Low Pin Count Devices - High Current Outputs - Schmitt Trigger Inputs	- Multiple Use of I/O Pins - Economical Use of External Components (lower system cost) - Cleaner Hardware Design - Choice of Optimum Package Type (price/ outline/pinout)
Flexible/Powerful On-Board Features	- Smart 16-Bit Timers (processor independent PWM) - Comparators - UART - Multi-Input Wakeup - Multi-Source Hardware Interrupts - MICROWIRE/PLUS Serial Interface - Application Specific Features (CAN, Motor Control Timers, etc.)	- Timers Allow Less Software/Process Overhead for Frequency - Measurement (capture) and PWM - Cleaner Hardware (eliminating the need for external components) - Overall Cost Reduction
Safety/SoftwareRunaway Protection	- WATCHDOG - Software Interrupt - Clock Monitor - Brown Out Detection	- No Need for External Protection Circuitry - Brown Out Detection Allows the Use of Low Cost Power Supply
Development Tools	Hardware: - New, User Friendly, Development Tool Hardware from MetaLink - Low Cost Version of the Development Tool (Debug Module) - Various Third Party Programmers for Programming OTPs Software: - New, User Friendly Assembler, a C Compiler and a "Fuzzy" Logic Design Environment	- Saves Engineering Development Time—Fast Time to Market

COP8 Features/Applications Matrix

Market Segment		Applications	Applications Features/Functions	Microcontroller Features Required	Appropriate COP8 Devices
Consumer	Children Toys and Games	Basketball/Baseball Games Children Electronic Toys Darts Throws Juke Box Pinball Laser Gun	Battery Driven Replacing Discrete with Low Cost Driving Piezo/Speaker/LEDs Directly Very Cost Sensitive	Very Low Price Low Power Consumption Wide Voltage Range High Current Outputs , Small Packages	COP912C COP920C/COP922C
	Electronic Audio Items	Audio Greeting Cards Electronic Musical Equipment	Battery Driven Tone Generation Low Power	Wide Voltage Range Low Power Consumptión Efficient Table Lookup Flexible Timer	```COP912C COP820C/840C/880C```
	Electronic Appliances/ Tools	Small Appliances: Irons Coffee Makers Digital Scales Microwave Ovens Cookers Food Processors Blenders	Low Cost Power Supply Temp Measurement Safety Features Noise Immunity Driving LEDs/Relays/Heating Elements	Brown Out Detection On-Board Comparator High Current Outputs Watchdog/Software Interrupt Schmtt Trigger Inputs 16-Bit PWM Timer	COP820/840 COP820CJ Family
		Household Appliances: Oven Control Dishwasher Washing Machine/Dryer Vacuum Cleaner Electronic Heater Electronic Home Control (Doorbell, Light Dimmer, Climate) Sewing Machine	Rely on Hard-Wire Relay Circuits, Timers, Counters, Mechanical Sequence Controllers Temp Control Noise Immunity Safety Features Timing Control Main Driven	Brown Out Detection On-Board Comparator On-Board A/D Watchdog/Soft Interrupt Schmitt Trigger Inputs Flexible Timers PWM Outputs High Current Outputs Safety Features	$\begin{aligned} & \text { COP820CJ (on-board } \\ & \text { comparator) } \\ & \text { COP888CF (on-board A/D) } \end{aligned}$
	Portable/ Handheld/ Battery Powered	Scales Multimeters (portable) Electronic Key Laptop/Notebook Keyboard Mouse Garage Door Opener TV/Electronic Remote Control Portable PRP or Retail Pos Device Jogging Monitor Smart Cards	Battery Driven Minimal Power Consumption Low Voltage Sensing Measurement Standby Mode Flexible Package Offerings Small Physical Size	Low Voltage Operation Low Power Consumption Wide Voltage Range Power Saving Modes Multi-Input Wakeup On-Board Comparator Small Packages	COP820CJ COP840/COP880 COP888CL (Keyboards) COP8646 (Smart Cards)
Personal Communications		Cordless Phone (base/handset) Phone Dialer Answering Machine Feature Phone PBX Card CB Radios/Digital Tuners Cable Converter	Low Power Timing Serial Interfaces Low Voltage Tone Dialing Battery Saving Functions Small Physical Size	Low Current Drain Low Voltage Operation Standby Mode UART Serial Synchronous Interface 16-Bit Timers Schmitt Trigger Inputs LED Direct Drive Sufficient I/O in Small Packages	Cordless Phone: COP840/COP880 Feature Phone PBX Card: COP888CG/COP888EG Others: Generic COP8 Devices

COP8 Features/Applications Matrix (Continued)

COP8 Family

COP8 Family Selection Guide

Common Features:		- Multi-Source Interrupt - Pinout - Instruction Set				- MICROWIRE Serial Communication - $1 \mu \mathrm{~s}$ Instruction Cycle Time - Wide Power Supply-2.3V to 6.0V						- CMOS Process Technology - Halt Mode - Software Selectable I/O				- Wide Temperature Range - Development Tools - OTP Emulators (Note 2)	
Comm Temp $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Ind } \\ & \text { Temp } \\ & -\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to }} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Mil } \\ \text { Temp } \\ -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Memory		I/OPins	Packages				Features							
			ROM (Bytes)	RAM (Bytes)		\# of Pins	N	WM	V	Interrupt Sources	Timers PWM/ Capture	Comparators	UART	WATCHDOG		$\begin{gathered} \text { Idle } \\ \text { Timer } \end{gathered}$	Additional Features
	$\begin{aligned} & \text { COP823CJ } \\ & \text { COP822CJ } \\ & \text { COP820CJ } \end{aligned}$		$\begin{aligned} & 1.0 \mathrm{k} \\ & 1.0 \mathrm{k} \\ & 1.0 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$ 64	$\begin{array}{r} 11 \\ 15 \\ 23 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 20 \\ & 28 \\ & \hline \end{aligned}$	x x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		3 3 3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$		Brown Out Detection Modulator, Special PWM, Timer, High Current Outputs
COP942CJ COP940CJ	COP842CJ COP840CJ	COP642CJ COP640CJ	$\begin{aligned} & 2.0 \mathrm{k} \\ & 2.0 \mathrm{k} \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \end{aligned}$	$\begin{aligned} & 15 \\ & 23 \end{aligned}$	20	x	x		3	1	1		x x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		Brown Out Detection Modulator, Special PWM Timer, High Current Outputs
COP912C COP922C COP920C COP942C COP940C COP981C COP980C	COP822C COP820C COP842C COP840C COP881C COP880C	COP622C COP620C COP642C COP640C COP681C (Note 1) COP680C (Note 1)	$\begin{aligned} & 768 \\ & 1.0 \mathrm{k} \\ & 1.0 \mathrm{k} \\ & 2.0 \mathrm{k} \\ & 2.0 \mathrm{k} \\ & 4.0 \mathrm{k} \\ & \\ & 4.0 \mathrm{k} \end{aligned}$	64 64 64 128 128 128 128	15 15 23 15 23 23 35	$\begin{array}{\|c\|} \hline 20 \\ 20 \\ 28 \\ 20 \\ 28 \\ 28 \\ \\ 40 / 44 \\ \hline \end{array}$	x x	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$						
	COP8622C COP86L22C COP8620C COP86L20C COP8642C COP86L42C COP8640C COP86L40C	COP6622C COP6622C COP6620C COP6620C COP6642C COP6642C COP6640C COP6640C	1.0k 1.0k 1.0k 1.0k 2.0k 2.0k 2.0k 2.0k	64 64 64 64 64 64 64 64	$\begin{aligned} & 15 \\ & 15 \\ & 23 \\ & 23 \\ & 15 \\ & 15 \\ & 23 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 28 \\ & 28 \\ & 20 \\ & 20 \\ & 28 \\ & 28 \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} x \\ x \end{array}\right\|$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$,					$\begin{gathered} 64 \times 8 \\ \text { EEPROM } \\ \text { IN } \\ \text { RAM } \end{gathered}$
COP984CL COP988CL	COP884CL COP888CL	COP684CL COP688CL	$\begin{aligned} & \text { 4.0k } \\ & 4.0 \mathrm{k} \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \end{aligned}$	$\begin{gathered} 23 \\ 33 / 39 \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ 40 / 44 \end{array}$	x	x	x	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Clock Monitor
COP984CF COP988CF	COP884CF COP888CF		$\begin{aligned} & 4.0 \mathrm{k} \\ & 4.0 \mathrm{k} \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \end{aligned}$	$\begin{array}{\|c\|} \hline 23 \\ 33 / 37 \end{array}$	$\begin{array}{\|c\|} \hline 28 \\ 40 / 44 \end{array}$	x x	x	x	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	8 Channel (8-bit) A/D
Note 1: MIL-STD-883 in J Pkg Note 2: Contact sales office for availability.			$\begin{aligned} & \mathrm{N}=\text { Plastic DIP } \\ & \mathrm{V}=\text { Plastic Leaded Chip Carrier (PLCC) } \end{aligned}$					WM $=$ Small Outtine Package -Wide Body									- .

COP8 Family Selection Guide (Continued)

COP472-3 Liquid Crystal Display Controller

General Description

The COP472-3 Liquid Crystal Display (LCD) Controller is a peripheral member of the COPSTM family, fabricated using CMOS technology. The COP472-3 drives a multiplexed liquid crystal display directly. Data is loaded serially and is held in internal latches. The COP472-3 contains an on-chip oscillator and generates all the multi-level waveforms for backplanes and segment outputs on a triplex display. One COP472-3 can drive 36 segments multiplexed as 3×12 ($41 / 2$ digit display). Two COP472-3 devices can be used together to drive 72 segments (3×24) which could be an $81 / 2$ digit display.

Features
■ Direct interface to TRIPLEX LCD
■ Low power dissipation ($100 \mu \mathrm{~W}$ typ.)

- Low cost
- Compatible with all COPS processors
- Needs no refresh from processor
- On-chip oscillator and latches
- Expandable to longer displays
- Operates from display voltage
- MICROWIRETM compatible serial I/O
- 20-pin Dual-In-Line package and 20-pin SO

Block Diagram

Absolute Maximum Ratings

Voltage at CS, DI, SK pins
Voltage at all other Pins Operating Temperature Range
$-0.3 V$ to +9.5 V
-0.3 V to $V_{D D}+0.3 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 Seconds)
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (depends on display characteristics)

Parameter	Conditions	Min	Max	Units
Power Supply Voltage, VDD		3.0	5.5	Volts
Power Supply Current, IDD (Note 1)	$V_{D D}=5.5 \mathrm{~V}$		250	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		100	$\mu \mathrm{A}$
$\begin{gathered} \text { Input Levels } \\ \text { DI, SK, CS } \\ V_{I L} \\ V_{I H} \\ \hline \end{gathered}$		0.7 $V_{\text {DD }}$	$\begin{aligned} & 0.8 \\ & 9.5 \\ & \hline \end{aligned}$	Volts Volts
$\begin{gathered} \text { BPA (as Osc. in) } \\ V_{\mathrm{IL}} \\ V_{I H} \\ \hline \end{gathered}$		$\mathrm{V}_{\mathrm{DD}}-0.6$	$\begin{gathered} 0.6 \\ V_{D D} \\ \hline \end{gathered}$	Volts Volts
```Output Levels, BPC (as Osc. Out) \(\mathrm{V}_{\mathrm{OL}}\) \(\mathrm{VOH}_{\mathrm{OH}}\)```		$\mathrm{V}_{\mathrm{DD}}-0.4$	$\begin{gathered} 0.4 \\ V_{D D} \\ \hline \end{gathered}$	Volts   Volts
Backplane Outputs (BPA, BPB, BPC)   $V_{B P A, ~ B P B, ~ B P C ~ O N ~}^{\text {O }}$   $V_{B P A, B P B, B P C} O F F$	During BP+ Time	$\begin{gathered} V_{D D}-\Delta V \\ 1 / 3 V_{D D}-\Delta V \\ \hline \end{gathered}$	$\begin{gathered} V_{D D} \\ 1 / 3 V_{D D}+\Delta V \end{gathered}$	Volts   Volts
$V_{B P A}$, BPB, BPC ON   VBPA, BPB, BPC OFF	During BP-Time	$\begin{gathered} 0 \\ 2 / 3 V_{D D}-\Delta V \end{gathered}$	$\begin{gathered} \Delta V \\ 2 / 3 V_{D D}+\Delta V \end{gathered}$	Volts Volts
$\begin{aligned} & \text { Segment Outputs }\left({S A_{1}}^{\sim} \sim S A_{4}\right) \\ & V_{\text {SEG }} \text { ON } \\ & V_{\text {SEG }} \text { OFF } \\ & \hline \end{aligned}$	During $\mathrm{BP}+$ Time	$\begin{gathered} 0 \\ 2 / 3 V_{D D}-\Delta V \end{gathered}$	$\begin{gathered} \Delta V \\ 2 / 3 V_{D D}+\Delta V \end{gathered}$	Volts Volts
$\begin{aligned} & V_{S E G} O N \\ & V_{S E G} O F F \end{aligned}$	During BP- Time	$\begin{gathered} V_{D D}-\Delta V \\ 1 / 3 V_{D D}-\Delta V \end{gathered}$	$\begin{gathered} V_{D D} \\ 1 / 3 V_{D D}+\Delta V \end{gathered}$	Volts   Volts
Internal Oscillator Frequency		15	80	kHz
Frame Time (Int. Osc. $\div$ 192)		2.4	12.8	ms
Scan Frequency ( $1 / T_{\text {SCAN }}$ )		39	208	Hz
SK Clock Frequency		4	250	kHz
SK Width		1.7		$\mu \mathrm{s}$
DI Data Setup, tsetup Data Hold, thOLD		$\begin{aligned} & 1.0 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \text { CS } \\ & \text { t SETUP }^{t_{\text {HOLD }}} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
Output Loading Capacitance			100	pF

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at VDD.
Note 2: $\Delta V=0.05 V_{D D}$.

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Voltage at CS, DI, SK Pins
Voltage at All Other Pins
-0.3 V to +9.5 V
-0.3 V to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$
Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (depends on display characteristics)

Parameter	Conditions	. Min	Max	Units
Power Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$		3.0	5.5	Volts
Power Supply Current, IDD (Note 1)	$V_{D D}=5.5 \mathrm{~V}$		300	$\cdots \mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		120	$\mu \mathrm{A}$
$\begin{gathered} \text { Input Levels } \\ \text { DI, SK, CS } \\ V_{I L} \\ V_{I H} \\ \hline \end{gathered}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & 0.8 \\ & 9.5 \end{aligned}$	Volts Volts
$\begin{gathered} \text { BPA (as Osc. In) } \\ V_{\text {IL }} \\ V_{I H} \\ \hline \end{gathered}$	: ${ }^{\text {- }}$	$V_{D D}-0.6$	$\begin{gathered} 0.6 \\ V_{D D} \end{gathered}$	Volts   Volts
Output Levels, BPC (as Osc. Out) VOL $\mathrm{VOH}_{\mathrm{OH}}$		$V_{D D}-0.4$	$\begin{aligned} & 0.4 \\ & V_{D D} \end{aligned}$	Volts Volts
Backplane Outputs (BPA, BPB, BPC)   $V_{B P A, B P B, B P C} O N$   $V_{B P A, ~ B P B, ~ B P C ~}$ OFF	During $\mathrm{BP}+\text { Time }$	$\begin{gathered} V_{D D}-\Delta V \\ 1 / 3 V_{D D}-\Delta V \\ \hline \end{gathered}$	$\begin{gathered} V_{D D} \\ 1 / 3 V_{D D}+\Delta V \end{gathered}$	Volts Volts
$V_{B P A, B P B, B P C} O N$   $V_{B P A, ~ B P B, ~ B P C ~ O F F ~}^{\text {O }}$	During BP-Time	$\begin{gathered} 0 \\ 2 / 3 V_{D D}-\Delta V \end{gathered}$	$\begin{gathered} \Delta V \\ 2 / 3 V_{D D}+\Delta V \end{gathered}$	Volts Volts
$\begin{aligned} & \text { Segment Outputs }\left(S A_{1} \sim S A_{4}\right) \\ & V_{S E G} \text { ON } \\ & V_{S E G} \text { OFF } \\ & \hline \end{aligned}$	During BP+ Time	$\begin{gathered} 0 \\ \hline 2 / 3 V_{D D}-\Delta V \\ \hline \end{gathered}$	$\begin{gathered} \Delta V \\ 2 / 3 V_{D D}+\Delta V . \\ \hline \end{gathered}$	Volts   Volts
$\begin{aligned} & v_{\text {SEG }} O N \\ & v_{\text {SEG }} O F F \end{aligned}$	During BP- Time	$\begin{aligned} & V_{D D}-\Delta V \\ & 1 / 3 V_{D D}-\Delta V \end{aligned}$	VDD $1 / 3 \vee D D+\Delta V$	Volts   Volts
Internal Oscillator Frequency		15	80	kHz
Frame Time (Int. Osc. $\div 192$ )		2.4	12.8	ms
Scan Frequency ( $1 / T_{\text {SCAN }}$ )		39	208	' Hz
SK Clock Frequency		4	250	kHz
SK Width		1.7	$\cdots$	$\mu \mathrm{S}$
DI   Data Setup, tsetup   Data Hold, thold		$\begin{aligned} & 1.0 \\ & 100 \end{aligned}$	.	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
CS   ${ }^{\text {tsetup }}$   thold		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	ハ,	$\begin{array}{r} \mu \mathrm{S} \\ \mu \mathrm{~s} \end{array}$
Output Loading Capacitance			100	pF

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at $V_{D D}$.
Note 2: $\Delta V=0.05 V_{D D}$.


Top View

Pin	Descriptlon
$\overline{C S}$	Chip select
$V_{D D}$	Power supply (display voltage)
GND	Ground
DI	Serial data input
SK	Serial clock input
$\mathrm{BP}_{A}$	Display backplane A (or oscillator in)
$\mathrm{BP}_{\mathrm{B}}$	Display backplane B
BPC	Display backplane C (or oscillator out)
SA1 $\sim$ SC4	12 multiplexed outputs



FIGURE 4. Backplane and Segment Waveforms

TL/DD/6932-4


TL/DD/6932-5

FIGURE 5. Typical Display Internal Connections
Epson LD-370

## Functional Description

The COP472-3 drives 36 bits of display information organized as twelve segments and three backplanes. The COP472-3 requires 40 information bits: 36 data and 4 control. The function of each control bit is described below. Display information format is a function of the LCD interconnections. A typical segment/backplane configuration is illustrated in Figure 5, with this configuration the COP472-3 will drive 4 digits of 9 segments.
To adapt the COP472-3 to any LCD display configuration, the segment/backplane multiplex scheme is illustrated in Table I.
Two or more COP472-3 chips can be cascaded to drive additional segments. There is no limit to the number of COP472-3's that can be used as long as the output loading capacitance does not exceed specification.

TABLE I. COP472-3 Segment/Backplane Multiplex Scheme

Blt Number	Segment, Backplane	Data to Numeric Display	
1	SA1, BPC	SH	Digit 1
2	SB1, BPB	SG	
3	SC1, BPA	SF	
4	SC1, BPB	SE	
5	SB1, BPC	SD	
6	SA1, BPB	SC	
7	SA1, BPA	SB	
8	SB1, BPA	SA	
9	SA2, BPC	SH	Digit 2
10	SB2, BPB	SG	
11	SC2, BPA	SF	
12	SC2, BPB	SE	
13	SB2, BPC	SD	
14	SA2, BPB	SC	
15	SA2, BPA	SB	
16	SB2, BPA	SA	
17	SA3, BPC	SH	Digit 3
18	SB3, BPB	SG	
19	SC3, BPA	SF	
20	SC3, BPB	SE	
21	SB3, BPC	SD	
22	SA3, BPB	SC	
23	SA3, BPA	SB	
24	SB3, BPA	SA	
25	SA4, BPC	SH	Digit 4
26	SB4, BPB	SG	
27	SC4, BPA	SF	
28	SC4, BPB	SE	
29	SB4, BPC	SD	
30	SA4, BPB	SC	
31	SA4, BPA	SB	
32	SB4, BPA	SA	
33	SC1, BPC	SPA	Digit 1
34	SC2, BPC	SP2	Digit 2
35	SC3, BPC	SP3	Digit 3
36	SC4, BPC	SP4	Digit 4
37	not used		
38	Q6		
39	Q7		
40	SYNC		

## SEGMENT DATA BITS

Data is loaded in serially, in sets of eight bits. Each set of segment data is in the following format:

SA	SB	SC	SD	SE	SF	SG	SH

Data is shifted into an eight bit shift register. The first bit of the data is for segment $H$, digit 1 . The eighth bit is segment A, digit 1. A set of eight bits is shifted in and then loaded into the digit one latches. The second set of 8 bits is loaded into digit two latches. The third set into digit three latches, and the fourth set is loaded into digit four latches.

## CONTROL BITS

The fifth set of 8 data bits contains special segment data and control data in the following format:

SYNC	Q 7	Q 6	X	SP 4	SP 3	SP 2	SP 1

The first four bits shifted in contain the special character segment data. The fifth bit is not used. The sixth and seventh bits program the COP472-3 as a stand alone LCD driver or as a master or slave for cascading COP472-3's. BPC of the master is connected to BPA of each slave. The following table summarizes the function of bits six and seven:

Q7	Q6	Function	BPC Output	BPA Output
1	1	Slave	Backplane	Oscillator
			Output	Input
0	1	Stand Alone	Backplane	Backplane
			Output	Output
1	0	Not Used	Internal	Oscillator
			Osc. Output	Input
0	0	Master	Internal	Backplane
			Osc. Output	Output

The eighth bit is used to synchronize two COP472-3's to drive an $81 / 2$-digit display.

## LOADING SEQUENCE TO DRIVE A 4½-DIGIT DISPLAY

Steps:

1. Turn $\overline{C E}$ low.
2. Clock in 8 bits of data for digit 1.
3. Clock in 8 bits of data for digit 2.
4. Clock in 8 bits of data for digit 3.
5. Clock in 8 bits of data for digit 4.
6. Clock in 8 bits of data for special segment and control function of BPC and BPA.

0	0	1	1	SP 4	SP 3	SP 2	SP 1

7. Turn $\overline{C S}$ high.

Note: $\overline{C S}$ may be turned high after any step. For example to load only 2 digits of data, do steps $1,2,3$, and 7.
CS must make a high to low transition before loading data in order to reset internal counters.

## LOADING SEQUENCE TO DRIVE AN 81 12 -DIGIT DISPLAY

Two or more COP472-3's may be connected together to drive additional segments. An eight digit multiplexed display is shown in Figure 7. The following is the loading sequence to drive an eight digit display using two COP472-3's. The right chip is the master and the left the slave.

## Steps:

1. Turn CS low on both COP472-3's.
2. Shift in 32 bits of data for the slave's four digits.
3. Shift in 4 bits of special segment data: a zero and three ones.

| 1 | 1 | 1 | 0 | SP 4 | SP 3 | SP 2 | SP 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | This synchronizes both the chips and BPA is oscillator input. Both chips are now stopped.

4. Turn CS high to both chips.
5. Turn CS low to master COP472-3.
6. Shift in 32 bits of data for the master's 4 digits.
7. Shift in four bits of special segment data, a one and three zeros.

0	0	0	1	SP 4	SP 3	SP 2	SP 1

This sets the master COP472-3 to BPA as a normal backplane output and BPC as oscillator output. Now both the chips start and run off the same oscillator.
8. Turn $\overline{C S}$ high.

The chips are now synchronized and driving 8 digits of display. To load new data simply load each chip separately in the normal manner, keeping the correct status bits to each COP472-3 (0110 or 0001).


TL/DD/6832-6
FIGURE 6. System Diagram - $41 / 2$ Diglt Display


TL/DD/6932-7
FIGURE 7. System Dlagram - 81/2 Digit Display

# NSAM265SR/NSAM265SF CompactSPEECH ${ }^{\text {TM }}$ Digital Speech Processors 

## General Description

The NSAM265SR and the NSAM265SF are members of National Semiconductor's CompactSPEECH, Digital Speech processors family. These processors provide Digital Answering Machine (DAM) functionality to embedded systems. Both processors are based on the NSAM265.
Unless specified otherwise, all references to the CompactSPEECH processor in this document apply to both the NSAM265SR and the NSAM265SF.
The CompactSPEECH processor integrates the functions of a traditional Digital Signal Processing (DSP) chip and a general purpose 16-bit RISC processor. The device contains system support functions such as DRAM Controller, Interrupt Control Unit, Codec Interface, MICROWIRETM interface, WATCHDOGTM timer and a Clock Generator.
The CompactSPEECH processor operates as a slave peripheral that is controlled by an external microcontroller via a serial MICROWIRE interface. In a typical DAM environment the microcontroller controls the analog circuits, buttons and display, and activates the CompactSPEECH by sending it commands. The CompactSPEECH processor executes the commands and returns status information to the microcontroller.
The CompactSPEECH firmware implements voice compression and decompression, tone detection and generation, message storage management, on-chip speech synthesis for time and day stamp, and support for user-defined voice prompts in various languages.
The NSAM265SR CompactSPEECH supports DRAM/ ARAM for message storage while the NSAM265SF supports FLASH/AFLASH. In all other respects, the processors are identical.
The CompactSPEECH implements echo cancellation techniques to support improved DTMF tone detection during message playback.
CompactSPEECH supports speech synthesis: the technology used to create voice prompts from predefined words and phrases stored in a vocabulary.
The CompactSPEECH can synthesize messages in various languages, in addition to the on-chip English vocabulary, via the International Vocabulary Support (IVS) mechanism. Synthesized messages can be stored on an external ROM. One ROM can contain several vocabularies in various languages. The NSAM265SF can also store vocabularies on FLASH memory. DAM manufacturers can thus create machines that "speak" in different languages, simply by using other vocabularies. For more details about IVS, refer to the IVS User's Manual.

## Features

- Designed around a 16-bit RISC processor
- 16-bit architecture and implementation
- 20.48 MHz operation.
- On-chip DSP Module (DSPM) for high speed DSP operations
- On-chip Codec clock generation and interface
- Power-down mode
- MICROWIRE interface to an external microcontroller
- Storage and management of messages
- Programmable message tag for message categorization, e.g., Mailboxes, InComing Messages (ICM), OutGoing Messages (OGM)
- Skip forward or backward during message playback
- Variable speed playback

■ Built-in vocabulary for speech synthesis, and support for external vocabularies. using expansion ROM

- Multi-lingual speech synthesis using International Vocabulary Support (IVS)
- DTMF and single tone generation and detection
- DTMF tone detection during OutGoing Message playback
- Telephone line functions, including busy and dial tone detection
- Real-time clock
- Direct access to message memory

■ Supports long-frame and short-frame codecs

- Available in PLCC 68-pin, and PQFP 100-pin packages

NSAM265SR only

- On-chip ARAM/DRAM Controller for 4-Mbit ( $1 \mathrm{M} \times 4$ ) and $16-\mathrm{Mbit}(4 \mathrm{M} \times 4)$ devices
- 15 minutes recording on a 4-Mbit ARAM
- Supports various ARAM configurations. No glue logic required
■ Storage of up to 1600 messages
- Production diagnostics support


## NSAM265SF only

■ Supports 4-Mbit and 8-Mbit, byte wide, FLASH/ AFLASH devices
■ Up to 15 minutes recording on a 4-Mbit FLASH

- Supports various AFLASH configurations. No glue logic required for a single AFLASH configuration
- The number of messages that can be stored is limited only by memory size
- Supports prerecorded IVS and OGM on FLASH


## Block Diagrams



TL/EE/12500-1

NSAM265SR Basic Configuration


TL/EE/12500-2

## Physical Dimensions inches (millimeters)



Physical Dimensions inches (millimeters) (Continued)



TL/EE/12500-4
68-Pin Plastic Leaded Chip Carrier (V) Order Number NSAM265SRA/SFA NS Package Number V68A

## LCD Triplex Drive with COP820CJ

## National Semiconductor

Application Note 953
Klaus Jaensch and
Siegfried Rueth


The multiplex rate of a LCD is determined by the number of its backplanes (segment-common planes). The number of segments controlled by one line (with one segment pin) is equal to the number of backplanes on the LCD. So, a three way multiplexed LCD has three backplanes and three segments are controlled with one segment pin. For example in a three way multiplexed LCD with three segment inputs (SA, SB, SC) one can drive a 7-segment digit plus two special segments.
These are $3 \times 3=7+2=9$ segments. The special segments can have an application specific image. ("+", "一", ".", "mA", . . . etc).

## ABOUT MULTIPLEXED LCD'S

There is a wide variety of LCD's, ranging from static devices to multiplexed versions with multiplex rates of up to 1:256.

## INTRODUCTION

There are many applications which use a microcontroller in combination with a Liquid Crystal Display. The normal method to control a LCD panel is to connect it to a special LCD driver device, which receives the display data from a microcontroller. A cheaper solution is to drive the LCD directly from the microcontroller. With the flexibility of a COP8 microcontroller the multiplexed LCD direct drive is possible. This application note shows a way how to drive a three way multiplexed LCD with up to 36 segments using a 28 -pin COP800 device.


TL/DD/12076-1
FIGURE 1. Schematic for LCD Triplex Driver


A typical configuration of a triplex LCD is a four digit display with 8 special segments (thus having a total of 36 segments). Fifteen outputs of the COP8 are needed; $4 \times 3$ segment pins and 3 backplane pins.
Common to all LCD's is that the voltage across backplane(s) and segment(s) has to be an AC-voltage. This is to avoid electrochemical degradation of the liquid crystal layer. A segment being "off" or "on" depends on the r.m.s. voltage across a segment.
The maximum attainable ratio of "on" to "off" r.m.s. voltage (discrimination) is determined by the multiplex ratio. It is given by:
$\left(V_{\text {ON }} / V_{\text {OFF }}\right) \max =\operatorname{SQR}((\operatorname{SQR}(N)+1) /(\operatorname{SQR}(N)-1))$
N is the multiplex ratio.

The maximum discrimination of a 3 way multiplexed LCD is 1.93, however, it is also possible to order a customized display with a smaller ratio. With the approach used in this application note, it may not be possible to acheive the optimum contrast acheived with a standard 3 way muxed driver. As a result of decreased discrimination (1.93 to 1.73) the user may have to live with a tighter viewing angle and a tighter temperature range.
In this application you get a VrmsOFF voltage of $0.408^{*}$ Vop and a VrmsON voltage of $0.707^{* V o p . ~ V o p ~ i s ~ t h e ~ o p e r a t i n g ~}$ voltage of the LCD. Typical Vop values range from $3 \mathrm{~V}-5 \mathrm{~V}$. With the optoelectrical curve of the LCD you can evaluate the maximum contrast of the LCD by calculating the difference between the relative. "OFF" contrast and the relative "ON" contrast.

In this example:

$$
\begin{aligned}
& \mathrm{VrmsON}=0.707^{\circ} \mathrm{Vop} \\
& \mathrm{VrmsOFF}=0.408^{\circ} \mathrm{Vop}
\end{aligned}
$$

FIGURE 3. Example Curve: Contrast vs r.m.s. Drive Voltage

The backplane signals are generated with the voltage steps 0V, Vop/2 and Vop at the backplanes; also see Figure 4. Two resistors are necessary for each backplane to establish all these levels.
The backplane connection scheme is shown in Figure 1.
The Vop/2 level is generated by switching the appropriate COP's port pin to Hi-Z.
The following timing considerations show a simple way how to establish a discrimination ratio of 1,732 .

## TIMING CONSIDERATIONS

A Refresh cycle is subdivided in 6 timephases. Figure 4 shows the timing for the backplanes during the equal distant timephases 0... 5 .

## Backplane Control



BP2


BP3


TL/DD/12076-4
Note: After timephase 5 is over the backplane control timing starts with timephase 0 again.

FIGURE 4. Backplane Timing

While the backplane control timing continuously repeats atter 6 timephases, the segment control depends on the combination of segments just being activated.

TABLE I. Possible Segment ON/OFF Variations

Tlphtab Address	Segment A	Segment B	Segment C
0	off	off	off
1	on	off	off
2	off	on	off
3	on	on	off
4	off	off	on
5	on	off	on
6	off	on	on
7	on	on	on

Figure 5 through Figure 12 below show all possible combinations of controlling a "Segment Triple" with help of the 3 backplane conriections and one segment pin. The segment switching has to be done according to the ON/OFF combination required (see also Table I).
Each figure shows in the first 3 graphs the constant backplane timing.
The 4th graph from the top shows the segment control timing necessary to switch the 3 segments (SA/SB/SC), activated from one pin, in the eight possible ways.
The 3 lower graphs show the resulting r.m.s. voltages across the 3 segments (SA, SB, SC).

## Segment/Backplane Control-Timing



BP 1 VOP




TL/DD/12076-5
tiphtab address $=0$







TL/DD/12076-6
tiphtab address $=1$
FIGURE 6

## Segment/Backplane Control-Timing




BP3 vop

tiphtab address $=2$







TL/DD/12076-8
tiphtab address $=3$
FIGURE 8

## Segment/Backplane Control-Timing





TL/DD/12076-9
tiphtab address $=4$

tiphtab address $=5$
FIGURE 10


BP3


TL/DD/12076-11
tiphtab address $=6$


BP 1 VOP


TL/DD/12076-12
tiphtab address $=7$
FIGURE 12

## REFRESH FREQUENCY

One period with six timephases is called a refresh cycle (also see Figure 4).
The retresh cycle should be in a frequency range of 30 ... 60 Hz . A frequency below 30 Hz will cause a flickering display. On the other hand, current consumption increases with the LCD's frequency. So it is also recommended to choose a frequency below 60 Hz .
In order to periodically update the $\mu$ C's port pins (involved in backplane or segment control) at the beginning of a new timephase, the COP8 needs a timebase of typ. 4 ms which is realized with an external RC-circuit at the GO/INT pin.
The GO pin is programmable as input (Schmitt Trigger). The conditions for the external interrupt could be set for a low to high transition on the GO pin setting the IPND-flag (external interrupt pending flag) upon an occurrence of such a transition. The external capacitor can be discharged, with the GO pin configured as Push/Pull output and programmed to " 0 ". When, switching G0 as input the Cap. will be charged through the resistor, until the threshold voltage of the Schmitt-Trigger input is reached. This triggers the external interrupt. The first thing the interrupt service routine has to do is to discharge the capacitor and switch GO as input to restart the procedure.
This timing method has the advantage, that the timer of the device is free for other tasks (for example to do an A/D conversion).
The time interval between two interrupts depends on the RC circuit and the threshold of the GO Schmitt Trigger $V_{T H}$.
The refresh frequency is independent of the clock frequency provided to the COPs device.
The variations of "threshold" levels relative to $V_{C C}$ (over process) are as follows:

$$
\begin{aligned}
& \left(V_{T H} / V_{C C}\right) \min =0.376 \\
& \left(V_{T H} / V_{C C}\right)^{m a x}=0.572
\end{aligned}
$$

at $V_{C C}=5 \mathrm{~V}$
Charge Time:

$$
T=-\left(\ln \left(1-V_{\mathrm{TH}} / V_{\mathrm{CC}}\right)^{*} \mathrm{RC}\right)
$$

To prevent a flickering display one should aim at a minimum refresh frequency of $\mathrm{f}_{\text {refr }}=30 \mathrm{~Hz}$. This means an interrupt frequency of $f_{\text {int }}=6 \times 30 \mathrm{~Hz}=180 \mathrm{~Hz}$. So, the maximum charge up time $T_{\max }$ must not exceed 5.5 ms ( $\mathrm{T}_{\min }=$ 2.78 ms ).

With the formula:

$$
\begin{gathered}
R C_{\max }=T_{\max } /\left(-\ln \left(1-\left(V_{\tau H} / V_{\mathbf{c C}}\right) \max \right)\right)=5.5 \mathrm{~ms} \times 0.849 \\
R C_{\max }=6.48 \mathrm{~ms} \\
\left(R C_{\min }=5.98 \mathrm{~ms}\right)
\end{gathered}
$$

The maximum RC time-constant is calculated. The minimum RC time constant can be calculated similarly.
A capacitor in the nF-range should be used (e.g. 68 nF ), because a bigger one needs too much time to discharge. To discharge a 68 nF Cap., the G0 pin of the device has to be low for about $40 \mu \mathrm{~s}$.

On the other hand the capacitor should be large enough to reduce noise susceptibility.
When the RC combination is chosen, one can calculate the maximum refresh frequency by using the minimum values of the RC constant and the minimum threshold voltage:

$$
\begin{gathered}
T_{\min }=R C_{\min } *\left(-\ln \left(1-\left(V_{T H} / V_{C C}\right) \min =R C_{\min }{ }^{*} 0.472\right.\right. \\
\text { and } \\
f_{\text {refr, } \max }=f_{\text {int }, \text { max }} / 6=1 /\left(T_{\text {min }} * 6\right)
\end{gathered}
$$

In the above example one timephase would be minimum 2.82 ms long. This means that about 250 instructions could be executed during this time.

## SOFTWARE

The software for the triplex LCD drive-demo is composed of three parts:

1. The initialization routine is executed only once after resetting the device, as part of the general initialization routine of the main program. The function of this routine is to configure the ports, set the timephase counter (tiphase) to zero, discharge the external capacitor and enable the external interrupt.
The initialization routine needs 37 bytes ROM.
Figure 13 shows the flowchart of this routine.


TL/DD/12076-13
FIGURE 13. Flowchart for Initlalization Routine
2. The update routine calculates the port-data for each timephase according to the BCD codes in the RAM locations 'digit1' . . . 'digit4' and the special segments. This routine is only called if the display image changes.

The routine converts the BCD code to a list 18t, which is used by the refresh routine. Figure 14 gives an overview and illustrates the data flow in this routine.

In Figure 15 the data flow chart is filled with example data according to the display image in Figure 16.
First the routine creates the seg1st (4 bytes long), which contains the "on/off" configuration of each segment of the display. The display, has 36 segments but the 4 bytes have only 32 bits, so the four special segments $\mathbf{S 1}$ are stored in the specbuf location. The bcdsegtab table (in ROM) contains the LOOK-UP data for all possible Hex numbers from 0 to $F$.
The routine takes three bits at the beginning of each timephase from the seg1st.

These 3 bits address the 8 bytes of the tiphtab table in ROM. Each byte of this table contains the time curve for a segment pin (only 6 bits out of 8 are used). Using this information, the program creates the lists for port D and port L (pod1st, pol1st). Every byte of this list contains the timing representatives for the pins DO-D3 and LO-L7, to allow an easy handling of the refresh routine.
The external interrupt has to be disabled while the copy routine is working, because the mixed data of two different display images would result in improper data on the display. Figure 17 shows the flowchart of the update routine. The Flowchart of the convert subroutine is shown in Figure 18.

## MEMORY REQUIREMENTS

ROM: 152 bytes incl. look up tables
RAM: 43 bytes (Figure 15 illustrates the RAM locations) .


FIGURE 14. Data Flow Chart for Update Routine


FỊGURE 15. Data Fiow Chart for Update Routine

3. The refresh routine is the interrupt service routine of the external interrupt and is invoked at the beginning of a new timephase. First the routine discharges the external capacitor and switches the GO/INT pin back to the input mode, to initialize the next timephase. The backplane ports G2, G4 and G5 and the segment pin ports D and L are updated by this routine according to the actual timephase. For the backplanes the data are loaded from the bptab table in ROM.
Table II shows how the bptab values are gathered. Figure 20 shows the flowchart for the refresh routine.
TIME REQUIREMENTS
The routine runs max. 150 cycles.

For a non flickering display, the refresh frequency must be 30 Hz minimum. One refresh cycle has six timephases and is max. 33 ms long. So each timephase is 5.5 ms long. With an oscillator (CKI) frequency of 2 MHz , one instruction cycle takes $1 /(2 \mathrm{MHz} / 10)=5 \mu \mathrm{~s}$ to execute. During one timephase the controller can execute:
$5.5 \mathrm{~ms} / 5 \mu \mathrm{~s}=1100$ cycles. So the refresh routine needs $134 / 1100=0.122=12.2 \%$ of the whole processing time (in this case).
With a refresh frequency of 50 Hz the routine needs about $20.1 \%$ of the whole processing time.
The refresh routine needs about 103 ROM bytes.

TABLE II. Phase Values

Tiphase	G5	G4	G2	Portg Data	Hex	Portg Config.	Hex
0	0/0	0/0	1/1	XX00X1XX	04	XX00X1XX	04
1	0/0	1/1	0/0	XX01X0XX	10	XX01X0XX	10
2	1/1	$0 / 0$	0/0	XX10X0XX	20	XX10X0XX	20
3	0/0	0/0	0/1	Xx00x0xx	00	Xx00x1XX	04
4	0/0	$0 / 1$	0/0	XX00x0xx	00	XX01X0XX	10
5	0/1	0/0	0/0	XX00X0XX	00	XX10X0XX	20

data/configuration register of portg
$0 / 0$ : Hi-Z input
$0 / 1$ : output low
1/1: output high

## SUMMARY OF IMPORTANT DATA

LCD type: $\quad 3$ way multiplexed
Amount of segments: 36
$\mathrm{V}_{\mathrm{OP}}=\left(\mathrm{V}_{\mathrm{CC}}\right)$ (range): $\quad 2.5 \mathrm{~V}$ to 6 V
Oscillator frequency: $\quad 2 \mathrm{MHz}$ (typ.)
Instruction cycle time: $\quad 5 \mu \mathrm{~s}$
ROM requirements:
init routine: $\quad 37$ bytes
update routine: 152 bytes
refresh routine: 103 bytes
total: 292 bytes
RAM requirements:
permanent use: 25 bytes
temporary use: 18 bytes
stack: 6 bytes
total: $\quad 49$ bytes
(also see Figure 19)
Timer: not used
External interrupt: with RC circuit used as time-base generator
Ports D, L: used for LCD control
Port G: $\quad 3$ G-pins are still free for other purposes +
Port l: can be used as key-inp.



FIGURE 18. Flowchart for Convert Subroutine

ram location table



TL/DD/12076-19

FIGURE 19. RAM Assignment


FIGURE 20. Flowchart for Refresh-Routine

## Llsting

```
; DEMO EOR COP820CJ:
; 3 WAY MULTIPLEXED LCD DRIVER DEMO
; CONSTANT DISPLAY "01A3" and two special segments on
 .incld cop820cj.inc
```

; RAM assignments
tiphase=01E special=01F
digitl=020 digit2=021 digit3=022 digit $4=023$
accsto $=024$
bsto $=025$
pswsto $=026$
;register definition:

$$
\begin{aligned}
& \text { podbuf }=0 £ 0 \\
& \text { polbuf }=0 £ 1 \\
& \text { pogdbuf }=0 £ 2 \\
& \text { pogcbuf }=0 £ 3 \\
& \text { flags }=0 £ 4
\end{aligned}
$$

; flag definition in flags byte
ld $s p, \# 02 f$
ld portlc, \#0ff
ld portgc,\#037
1d portgd, \#00
ld tiphase, \#00
id psw, \#002
ld sp, \#02f
ld portlc, \#0ff
ld portgc, \#037
Id portgd, \#00
Id tiphase, 400
Id psw, \#002
;this byte must contain the ; on/off configuration of ;the extra segments ; ('-','low bat',etc.)
; in these RAM locations the ; BCD code of the dispiay ; digits are stored.
;
; accu buffer used during ;interrupt service routine ;b buffer ;psw buffer
; portd buffer
;portl buffer ;portgd buffer ; portgc buffer ; flag byte for podfla

```
podfla=07
;************** initialization routine
init:
 podfla=07
 initialization routine
```

;initialize stackpoinこer
;port 1 output
;port g:G1,G2,G4,G5 are
; outputs
;all outputs low, all ; inputs Hi-Z
; C at GO is discharged
; begin with timephase 0
;ext. interrupt enabie


```
x a,specbuf
ifnc
rbit #2,temp
ld a,temp
x a,[x+]
iIbne #04
jp nxtdig
sbit #podfla,flags
jsr convert
```

; shift with carry
shwc:


```
;prepare for next
;special segment
; special bit not set ?
;then reset it in the
; temp byte
;store temp
;to the seglst list
;if not last digit
;load data for next digit
; set flag for working at
;port d list
; convert 3 bits from the
; segment bytes to the
;timephaselist for portd
```

```
;b points seglst
;load special segment bit
;to carry
;prepare for next
;special segment
; shift the segmentbyte
;three positions right
; and append the special
;segment bit
;
;store shifted byte
end of segment list
;then shift the next
; segment byte
;reset flag for working
;at port l list
; convert 3 bits of the
; segment bytes to the
;timephaselist for port l
;b points segmnet list
;load segment byte
; shift the segmentbyte
;three positions rigḥt
; store shifted byte
; end of segment list
; not reached ?
; segment byte
```

jsr convert ; convert 3 bits of the ; segment bytes to the ; timephaselist for port 1
; copy portdata to the iist on which the refresh routine will access copy:
nxtd:
nxti:
rbit \#eni, psw
; disable interrupt to
;prevent fail display
;b points podlst
; $x$ points refresh list
; load portbyte
; swap it
;store it to refresh list
;increment $x$
;if the end of the podlst
;is not reached
; then next timephase
;b points pollst
; $x$ points refresh list
;increment $x$
;load portbyte ; swap it
; store it to refresh list ;if the end of the pollst ;is not reached ;then next timephase ; refresh routine allowed ; again
ret ;end of update routine
; subroutines for update routine:
convert:
ld $x$, \#seglst
; $x$ points segment list ld $a,[x+]$ iload segment byte and a; \#007 add $a, \#$ (tiphtab) laid
ld b, \#pollst
ifbit \#podfla,flags
1d b, \#podist
;mask out first three bits ; pointer on timephase table ; load timephase curve for ; one segment pin
;b points list for portd ; working at podlst ? ; then $b$ points on podist
; shift timephase data according to 3 bits ( 8 combinations are ;possible with 3 segments)
tipsh:

	$x a, t e m p$	
nxtphsh:	istore timephase curve to	
	itemp buffer	

TL/DD/12076-24
eplst:

$$
\begin{aligned}
& x \text { a,temp } \\
& \text { ld } a,[b] \\
& \text { rrc } a \\
& x \text { a, }[b+] \\
& \text { ld } a, \# p o l l s t \\
& \text { ifeq } a, b \\
& \text { jp eplst } \\
& \text { ifbne \#0c } \\
& \text { jp nxtphsh } \\
& \text { ld } a, \# L(s e g l s t+4) \\
& \text { ifgt } a, x \\
& \text { jp nxtsg1 } \\
& \text { ret }
\end{aligned}
$$

Id $a,[b]$ iload portbyte
reca $\quad$ ishift in one bit from

```
;carry bit
;carry bit
;store shifted portbyte
;again
;then return
;store shifted curve
;end of podlst ?
;
;else end of pollst
;
iif the end of the segment
;list is not reached
;work at next segment byte
```

bcdsegtab:
; in this bytes are the on/off configuration of the segments ; for a digit are stored. there are only 7 bits of each byte ; the configuration of the 2 special segments is stored ; in the 'special' byte.

tiphtab:

```
; one pin controls 3 segments. there are 8 possible
; combinations. for each combination there is one byte.
; 6 bits of one byte control the pin for each timephase.
```

    . BYTE 007, OOE, 015,01C, 023,02A, 031,038
    ; ************** interrupt service routine
. $=0 \mathrm{ff}$
refresh:
$x$ a,accsto .. istore accu
Id $a, b$;store $b$
$x$ a,bsto i i
1d b, \#portgd
rbit \#00, (b)
Id $a,[b+]$
; discharge C
;increment $b$ ( $b=\#$ portgc)
sbit \#00, [b] ;by switching GO to a
; low output

```
rbit #00,[b]
ld b,#psw
rbit #ipnd,[b]
ld a,[b]
x a,pswsto
ld a,tiphase
add a,tiphase
x a,b
ld a,[b+]
x a,podbuf
ld a,[b+]
x a,polbuf
ld a,b
add a, #L(bptab) -2
x a,b
ld a,b
laid
x a,pogdbuf
ld a,[b+]
ld a,b
laid
x a,pogcbuf
ld b,#podbuf
ld a,[b+]
x a,portd
1d a,[b+]
x a,portld
ld portgc,#00
1d a,[b+]
x a,portgd
ld a,[b+]
x a,porrgc
ld a,tiphase
inc a
ifeq a,#06
ld a,#00
x a,tiphase
ld b,#pswsto
rc
;
;refresh port g data
;
;refresh port g config.
;update timephase counter
;
;tiphase = 0..5
;
;
;restore carry bit
;
```

TL/DD/12076-26


## DTMF Generation with a 3.58 MHz Crystal

DTMF (Dual Tone Multiple Frequency) is associated with digital telephony, and provides two selected output frequencies (one high band, one low band) for a duration of 100 ms . DTMF generation consists of selecting and combining two audio tone frequencies associated with the rows (low band frequency) and columns (high band frequency) of a pushbutton touch tone telephone keypad.
This application note outlines two different methods of DTMF generation using a COP820C/840C microcontroller clocked with a 3.58 MHz crystal in the divide by 10 mode. This yields an instruction cycle time of $2.79 \mu \mathrm{~s}$. The application note also provides a low true row/column decoder for the DTMF keyboard.
The first method of DTMF generation provides two PWM (Pulse Width Modulation) outputs on pins G3 and G2 of the G port for 100 ms . These two PWM outputs represent the selected high band and low band frequencies respectively, and must be combined externally with an LM324 op amp or equivalent feed back circuit to produce the DTMF signal.
The second method of DTMF generation uses ROM lookup tables to simulate the two selected DTMF frequencies. These table lookup values for the selected high band and low band frequencies are then combined arithmetically. The high band frequencies contain a higher bias value to compensate for the DTMF requirement that the high band frequency component be 2 dB above the low band frequency component to compensate for losses in transmission. The resultant value from the arithmetic combination of sine wave values is output on L port pins LO to L5, and must be combined externally with a six input resistor ladder network to produce the DTMF signal. This resultant value is updated every $118 \mu \mathrm{~s}$. The COP820C/840C timer is used to time out the 100 ms duration of the DTMF. A timer interrupt at the end of the 100 ms is used to terminate the DTMF output. The external ladder network need not contain any active components, unlike the first method of DTMF generation with the two PWM outputs into the LM324 op amp.
The associated COP820C/840C program for the DTMF generation is organized as three subroutines. The first subroutine (KBRDEC) converts the low true column/row input from the DTMF keyboard into the associated DTMF hexadecimal digit. In turn, this hex digit provides the input for the other two subroutines (DTMFGP and DTMFLP), which represent the two different methods of DTMF generation. These three subroutines contain 35, 94, and 301 bytes of COP820C/840C code respectively, including all associated ROM tables. The Program Code/ROM table breakdowns are 19/16, 78/16, and 88/213 bytes respectively.

## DTMF KEYBOARD MATRIX

The matrix for selecting the high and low band frequencies associated with each key is shown in Figure 1. Each key is uniquely referenced by selecting one of the four low band frequencies associated with the matrix rows, coupled with selecting one of the four high band frequencies associated with the matrix columns. The low band frequencies are

National Semiconductor Application Note 666 Verne H. Wilson
$697 \mathrm{~Hz}, 770 \mathrm{~Hz}, 852 \mathrm{~Hz}$, and 941 Hz , while the high band frequencies are $1209 \mathrm{~Hz}, 1336 \mathrm{~Hz}, 1477 \mathrm{~Hz}$, and 1633 Hz . The DTMF keyboard input decode subroutine assumes that the keyboard is encoded in a low true row/column format, where the keyboard is strobed sequentially with four low true column selects with each returning a low true row select. The low true column and row selects are encoded in the upper and lower nibbles respectively of the accumulator, which serves as the input to the DTMF keyboard input decode subroutine. The subroutine will then generate the DTMF hexadecimal digit associated with the DTMF keyboard input digit.
The DTMF keyboard decode subroutine (KBRDEC) utilizes a common ROM table lookup for each of the two nibbles representing the low true column and row encodings for the keyboard. The only legal low true nibbles for a single key input are E, D, B, and 7. All other low true nibble values represent multiple keys, no key, or no column strobe. Results from two legal nibble table lookups (from the same 16 byte ROM table) are combined to form a hex digit with the binary format of 0000RRCC, where RR represents the four row values and CC represents the four column values. The illegal nibbles are trapped, and the subroutine is exited with a RET (return) command to indicate multiple keys or no key. A pair of legal nibble table lookups result in the subroutine being exited with a RETSK (return and skip) command to indicate a single key input. This KBRDEC subroutine uses 35 bytes of code, consisting of 19 bytes of program code and 16 bytes of ROM table.

## DTMF GENERATION USING PWM AND AN OP AMP

The first DTMF generation method (using the DTMFGP subroutine) generates the selected high band and low band frequencies as PWM (Pulse Width Modulation) outputs on pins G3 and G2 respectively of the G port. The COP820C/ 840C microcontrollers each contain only one timer, and three times must be generated to satisfy the DTMF application. These three times are the half periods of the two selected frequencies and the 100 ms duration period. Obviously the single timer can only generate one of the required times, while the program must generate the two remaining times. The solution lies in dividing the 100 ms duration time by the half periods for each of the eight DTMF frequencies, and then examining the respective high band and low band quotients and remainders. Naturally these divisions must be normalized to the instruction cycle time ( tc ). 100 ms represents 35796 tc's. The results of these divisions are detailed in Table 1 .
The four high band frequencies are produced by running the COP820C/840C timer in PWM (Pulse Width Modulation) mode, while the program produces the four low band frequencies and the 100 ms duration timeout. The programmed times are achieved by using three programmed register counters R0, R2 and R3, with a backup register R1 to reload the counter RO. These three counters represent the half period, the 100 ms quotient, and the 100 ms remainder associated with each of the four low band frequencies.


FIGURE 1. DTMF Keyboard Matrix

TABLE I. Frequency Half Periods, Quotlents and Remainders

	Freq. Hz	Half Perlod In $\mu \mathbf{s}$	Half Perlod In tc's	$\begin{gathered} 100 \mathrm{~ms} / 0.5 \mathrm{P} \\ \text { In tc's } \end{gathered}$	
				Quotient	Remainder
Low Band Frequencies	697	717.36	257	139	73
	770	649.35	232	154	68
	852	586.85	210	170	96
	941	531.35	190	188	76
High Band Frequencies	1209	413.56	148	241	128
	1336	374.25	134	267	18
	1477	338.53	121	295	101
	1633	306.18	110	325	46

Note: 100 ms represents 35796 tc's.

The DTMFGP subroutine starts by transforming the DTMF hex digit in the accumulator (with binary format 0000RRCC) into low and high frequency vectors with binary formats 0011 RR11 and $0011 \mathrm{CC00}$ respectively. The transformation of the hex digit 0000RRCC (where RR is the row select and CC is the column select) into the frequency vectors is shown in Table II. The conversion produces a timer vector 0011 CC 00 (T), and three programmed counter vectors for R1, R2, and R3. The formats for the three counter vectors are 0011RR11 (F), 0011RR10 (Q), and 0011RR01 (R). These four vectors created from the core vector are used as
inputs for a 16 byte ROM table using the LAID (Load Accumulator InDirect) instruction. One of these four vectors (the $T$ vector) is a function of the column bits (CC), while the other three vectors ( $F, Q, R$ ) are a function of the row bits (RR). This correlates to only one parameter being needed for the timer (representing the selected high band frequency), while three parameters are needed for the three counters (half period, 100 ms quotient, 100 ms remainder) associated with the low band frequency and 100 ms duration. The frequency parameter ROM translation table, accessed by the $T, F, Q$, and $R$ vectors, is shown in Table III.

TABLE II. DTMF Hex Dlgit Translation


TABLE III. Frequency Parameter ROM Translation Table


The theory of operation in producing the selected low band frequency starts with loading the three counters with values obtained from a ROM table. The half period for the selected frequency is counted out, after which the G2 output bit is toggled. During this half period countout, the quotient counter is decremented. This procedure is repeated until the quotient counter counts out, after which the program branches to the remainder loop. During the remainder loop, the remainder counter counts out to terminate the 100 ms . Following the remainder countout, the G2 and G3 bits are both reset, after which the DTMF subroutine is exited. Great care must be taken in time balancing the half period loop for
the selected low band frequency. Furthermore, the toggling of the G2 output bit (achieved with either a set or reset bit instruction) must also be exactly time balanced to maintain the half period time integrity. Local stall loops (consisting of a DRSZ instruction followed by a JP jump back to the DRSZ for a two byte, six instruction cycle loop) are embedded in both the half period and remainder loops. Consequently, the ROM table parameters for the half period and remainder counters are approximately only one-sixth of what otherwise might be expected. The program for the half period loop, along with the detailed time balancing of the loop for each of the low band frequencies, is shown in Figure 2.


FIGURE 2. Time Balancing for Half Perlod Loop
Table III
Remainder
$[(10-1)$
$[(9-1)$
$[(14-1)$
$[(10-1)$
$\begin{array}{cc}\text { Stall } & \text { R Loop } \\ \text { Loop } & \text { Overhead }\end{array}$
$+20$
$+20$
$+20$
$+20$

Total Cycles
$=74$
$=68$
$=98$
$=74$

Table I Remainder

73
68
96
76

Note that the $Q$ value in Table III is one greater than the quotient in Table I to compensate for the fact that the quotient count down to zero test is performed early in the half period loop. The overhead in the remainder loop is 20 instruction cycles. The detailed time balancing for the remainder loop is shown in Table IV.
The selected high band frequency is achieved by loading the half period count in tc's minus one (from Table III) into the timer autoreload register and running the timer in PWM output mode. The minus one is necessary since the timer toggles the G3 output bit when it underflows (counts down through zero), at which time the contents of the autoreload register are transferred into the timer.
In summary, the input digit from the keyboard (encoded in low true column/row format) is translated into a digit matrix vector XXXXRRCC which is checked for 1001RRCC to indicate a single key entry. No key or multiple key entries will set a flag and terminate the DTMF subroutine. The digit matrix vector for a single key is transformed into the core vector 0000RRCC. The core vector is then translated into four other vectors (T, F, Q, R) which in turn are used to select four parameters from a 16 byte ROM table. These four parameters are used to load the timer, and the respective half period, quotient, and remainder counters. The 16 byte ROM table must be located starting at ROM location 0030 (or OX30) in order to minimize program size, and has reference setups with the "OR A, \# 033" instruction for the F vector and the "OR A, \# 030" instruction for the T vector.
The three parameters associated with the two R bits of the core vector require a multi-level table lookup capability with the LAID instruction. This is achieved with the following section of code in the DTMF subroutine:

	LD	B,\#R1
LUP:	X	A, [B]
	LD	A, [B,]
	LAID	
	X	A, [B+]
	DEC	A
	IFBNE	\#4
	JP	LUP

This program loads the $F$ frequency vector into $R 1$, and then decrements the vector each time around the loop. The vector is successively moved with the exchange commands from R1 to R2 to R3 as one of the same exchange commands loads the data from the ROM table into R1, R2, and R3. This successive decrementation of the $F$ vector changes the $F$ vector into the $Q$ vector, and then changes the $Q$ vector into the $R$ vector. These vectors are used to access the ROM table with the LAID instruction. The B pointer is incremented each time around the loop after it has been used to store away the three selected ROM table parameters (one per loop). These three parameters are stored in sequential RAM locations R1, R2, and R3. The IFBNE test instruction is used to skip out of the loop once the three selected ROM table parameters have been accessed and stored away.
The timer is initialized to a count of 15 so that the first timer underflow and toggling of the G3 output bit (with timer PWM mode and G3 toggle output selected) will occur at the same time as the first toggling of the G2 output bit. The half period counts for the high band frequencies minus one are stored in the timer section of the ROM table. The selected value from this frequency ROM table is stored in the timer autoreload register. The timer is selected for PWM output mode and started with the instruction LD [B], \# OBO where the B pointer is selecting the CNTRL register at memory location OEE.
This first DTMF generation subroutine for the COP820C/ 840 C uses 94 bytes of code, consisting of 78 bytes of program code and 16 bytes of ROM table. A program test routine to sequentially call the DTMFGP subroutine for each of the 16 keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the 10 input pin of the I port is used to select which DTMF generation subroutine is to be used. The DTMFGP subroutine is selected with $10=0$.

## A TYPICAL OP AMP CONFIGURATION FOR MIXING THE TWO DTMF PWM OUTPUTS IS SHOWN IN FIGURE 3.



TL/DD/10740-23
FIGURE 3. Typical Op Amp Configuration for Mixing DTMF PWM Outputs

## DTMF GENERATION USING A RESISTOR LADDER NETWORK

The second DTMF generation method (using the DTMFLP subroutine) generates and combines values from two table lookups simulating the two selected sine waves. The high band frequency table values have a higher base line value (16 versus 13) than the low band frequency table values. This higher bias for the high frequency values is necessary to satisfy the DTMF requirement that the high band DTMF frequencies need a value 2 dB greater than the low band DTMF frequencies to compensate for losses in transmission.
The resultant value from arithmetically combining the table lookup low band and high band frequency values is output on pins LO to L5 of the L port in order to feed into a six input external resistor ladder network. The resultant value is updated every $1171 / 3 \mu \mathrm{~s}$ (one cycle of the LUP42 program loop). The LUP42 program loop contains 42 instruction cycles (tc's) of $2.7936511 \mu \mathrm{~s}$ each for a total loop time of $1171 / 3 \mu \mathrm{~s}$. The COP820C/840C timer is used to count out the 100 ms DTMF duration time.
An interrupt from the timer terminates the 100 ms DTMF output. Note that the Stack Pointer (SP) must be adjusted following the timer interrupt before returning from the DTMFLP subroutine.
The DTMFLP subroutine starts by quadrupling the value of the DTMF hex digit value in the accumulator, and then adding an offset value to reach the first value in the telephone key table. The telephone key ROM table contains four values associated with each of the 16 DTMF hex keys. These four values represent the low and high frequency table sizes and table starting addresses associated with the pair of frequencies (one low band, one high band) associated with each DTMF key. The FRLUP section of the program loads the four associated telephone key table values from the ROM table into the registers LFTBSZ (Low Freq Table Size), LFTADR (Low Freq Table Address), HFTBSZ (High Freq Table Size), and HFTADR (High Freq Table Address). The program then initializes the timer and autoreload register, starts the timer, and then jumps to LUP42. Note that the timer value in tc's is 100 ms plus one LUP42 time, since the initial DTMF output is not until the end of the LUP42 program.
Multiples of the magic number $118 \mu \mathrm{~s}$ (approximately) are close approximations to all eight of the DTMF frequencies. The LUP42 program uses 42 instruction cycles (of $2.7936511 \mu \mathrm{seach}$ ) to yield a LUP42 time of $1171 / 3 \mu \mathrm{~s}$. The purpose of the LUP42 program is to update the six L port outputs by accessing and then combining the next set of
values from the selected low band and high band sine wave frequency tables in the ROM. The ROM table offset frequency pointers (LFPTR and HFPTR) must increment each time and then wrap around from top to bottom of the two selected ROM tables. The ROM table size parameters (LFTBSZ and HFTBSZ) for the selected frequencies are tested during each LUP42 to determine if the wrap around from ROM table top to bottom is necessary. The wrap around is implemented by clearing the frequency pointer in question. Note that the ROM tables are mapped from a reference of 0 to table size minus one, so that the table size is used in a direct comparison with the frequency offset pointer to test for the need for a wrap around. Also note that the offset pointer incremented value is used during the following LUP42 cycle, while the pre-incremented vaiue of the pointer is used during the current cycle. However, it is the incremented value that is tested versus the table size for the need to wrap around.
After the low band and high band ROM table sine wave frequency values are accessed in each cycle of the LUP42 program, they are added together and then output to pins L0-L5 of the L port. As stated previously, the low band frequency values have a lower bias than the high band frequency values to compensate for the required 2 dB offset. Specifically, the base line and maximum values for the low frequency values are 13 and 26 respectively, while the base line and maximum values for the high frequency values are 16 and 32 respectively. Thus the combined base line value is 29 , while the combined maximum value is 58 . This gives a range of values on the L. port output (LO-L5) from 0 to 58 .
The minimum time necessary for the LUP42 update program loop is 36 instruction cycles including the jump back to the start of the loop. Consequently, two LAID instructions are inserted just prior to the jump back instruction at the end of LUP42 to supply the six extra NOP instruction cycles needed to increase the LUP42 instruction cycles from 36 to 42. A three cycle LAID instruction can always be used to simulate three single cycle NOP instructions if the accumulator data is not needed.
Table $V$ shows the multiple LUP42 approximation to the eight DTMF frequencies, including the number of sine wave cycles and data points in the approximation. As an example, three cycles of a sine wave with a total of 19 data points across the three cycles is used to approximate the 1336 Hz DTMF frequency. The 19 cycles of LUP42 times the LUP42 time of $1171 / 3 \mu \mathrm{~s}$ is divided into the three cycles to yield a value of 1345.69 Hz . This gives an error of $+0.73 \%$ when compared with the DTMF value of 1336 Hz . This is well within the $1.5 \%$ North American DTMF error range.

## TABLE V. DTMF Frequency Approximation Table

DTMF	\# of Sine   Freq.
Wave Cycles	

\# of Data
Points
49
11
10
9
7
19
23
21
Calculation
$4 /(49 \times 1171 / 3)$
$1 /(11 \times 1171 / 3)$
$1 /(10 \times 1171 / 3)$
$1 /(9 \times 1171 / 3)$
$1 /(7 \times 1171 / 3)$
$3 /(19 \times 1171 / 3)$
$4 /(23 \times 1171 / 3)$
$4 /(21 \times 1171 / 3)$

Approx.   Freq.	\% Error
$=695.73$	-0.18
$=774.79$	+0.62
$=852.27$	+0.03
$=946.97$	+0.63
$=1217.53$	+0.71
$=1345.69$	+0.73
$=1482.21$	+0.35
$=1623.38$	-0.59

The frequency approximation is equal to the number of cycles of sine wave divided by the time in the total number of LUP42 cycles before the ROM table repeats.
The values in the DTMF sine wave ROM tables are calculated by computing the sine value at the appropriate points, scaling the sine value up to the base line value, and then adding the result to the base line value. The following example will help to clarify this calculation.
Consider the three cycles of sine wave across 19 data points for the 1336 Hz high band frequency. The first value in the table is the base line value of 16 . With $2 \pi$ radians per sine wave cycle, the succeeding values in the table represent the sine values of $1 \times(6 \pi / 19), 2 \times(6 \pi / 19)$, $3 \times$ $(6 \pi / 19), \ldots$, up to $18 \times(6 \pi / 19)$. Consider the seventh and eighth values in the table, representing the sine values of $6 \times(6 \pi / 19)$ and $7 \times(6 \pi / 19)$ respectively. The respective calculatons of $16 \times \sin [6 \times(6 \pi / 19)]$ and $16 \times \sin [7$ $\times(6 \pi / 19)$ ] yield values of -5.20 and 9.83 . Rounding to the nearest integer gives values of -5 and 10. When added to the base line value of 16 , these values yield the results 11 and 26 for the seventh and eighth values in the 1336 Hz DTMF ROM table. Symmetry in the loop of 19 values in the DTMF table dictates that the fourteenth and thirteenth values in the table are 21 and 6 , representing values of 5 and -10 from the calculations.
The area under a half cycle of sine wave relative to the area of the surrounding rectangle is $2 / \pi$, where $\pi$ radians represent the sine wave half cycle. This surrounding rectangle has a length of $\pi$ and a height of 1 , with the height representing the maximum sine value. Consequently, the area of the surrounding rectangle is $\pi$. The integral of the area under the half sine wave from 0 to $\pi$ is equal to 2. The ratio of $2 / \pi$ is equal to $63.66 \%$, so that the total of the values for each half sine wave should approximate $63.66 \%$ of the sum of the max values. The maximum values (relative to the base line) are 13 and 16 respectively for the low and high band DTMF frequencies.
For the previous 1336 Hz example, the total of the absolute values for the 19 sine values from the 1336 Hz ROM
table is equal to 196. The surrounding rectangle for the three cycles of sine wave is 19 by 16 for a total area of 304. The ratio of $196 / 304$ is $64.47 \%$ compared with the $2 / \pi$ ratio of $63.66 \%$. Thus the sine wave approximation gives an area abundance of $0.81 \%$ (equal to 64.47 - 63.66).
An application of the sine wave area criteria is shown in the generation of the DTMF 852 Hz frequency. The ten sine values calculated are $0,7.64,12.36,12.36,7.64,0,-7.64$, $-12.36,-12.36$, and -7.64 . Rounding off to the nearest integer yields values of $0,8,12,12,8,0,-8,-12,-12$ and -8 . The total of these values (absolute numbers) is 80 , while the area of the surrounding rectangle is $130(10 \times 13)$. The ratio of $80 / 130$ is $61.54 \%$ compared with the $2 / \pi$ ratio of $63.66 \%$. Thus the sine wave approximation gives an area deficiency of $2.12 \%$ (equal to $63.66-61.54$ ), which is overly deficient. Consequently, two of the ten sine values are augmented to yield sine values of $0,8,12,13^{*}, 8,0,-8$, $-12,-13^{*}$, and -8 . This gives an absolute total of 82 and a ratio of $82 / 130$, which equals $63.08 \%$ and serves as a much better approximation to the $2 / \pi$ ratio of $63.66 \%$.
The sine wave area criteria is also used to modify two values in the DTMF 941 Hz frequency. The nine sine values calculated are $0,8.36,12.80,11.26,4.45,-4.45,-11.26$, -12.80 , and -8.36 . Rounding off to the nearest integer yields values of $0,8,13,11,4,-4,-11,-13$, and -8 . The total of these values (absolute numbers) is 72 , while the area of the surrounding rectangle is $117(9 \times 13)$. The ratio of $72 / 117$ is $61.54 \%$ compared to the $2 / \pi$ ratio of $63.66 \%$. Thus the sine wave approximation gives an area deficiency of $2.12 \%$ (equal to $63.66-61.54$ ), which is overly deficient. Rounding up the two values of 4.45 and -4.45 to 5 and -5 , rather than down to 4 and -4 , yields values of $0,8,13,11$, $5,-5,-11,-13$ and -8 . This gives an absolute total of 74 and a ratio of $74 / 117$," which equals $63.25 \%$ and serves as a much better approximation to the $2 / \pi$ ratio of $63.66 \%$. With these modified values for the 852 and 941 DTMF frequencies, the area criteria ratio of $2 / \pi=63.66 \%$ for the sine wave compared to the surrounding rectangle has the following values:

DTMF	Sum of	Rectangle	Percentage	Diff.
Freq.	Values	Area	P	
697 Hz	406	$49 \times 13=637$	$63.74 \%$	$+0.08 \%$
770 Hz	92	$11 \times 13=143$	$64.34 \%$	$+0.68 \%$
852 Hz	82	$10 \times 13=130$	$63.08 \%$	$-0.58 \%$
941 Hz	74	$9 \times 13=117$	$63.25 \%$	$-0.41 \%$
1209 Hz	72	$7 \times 16=112$	$64.29 \%$	$+0.63 \%$
1336 Hz	196	$19 \times 16=304$	$64.47 \%$	$+0.81 \%$
1477 Hz	232	$23 \times 16=368$	$63.04 \%$	$-0.62 \%$
1633 Hz	216	$21 \times 16=336$	$64.29 \%$	$+0.63 \%$

The LUP42 program loop is interrupted by the COP820C/ 840 C timer after 100 ms of DTMF output. As stated previously, the Stack Pointer (SP) must be adjusted (incremented by 2) following the timer interrupt before returning from the DTMFLP subroutine.
This second DTMF generation subroutine for the COP820C/840C uses 301 bytes of code, consisting of 88 bytes of program code and 213 bytes of ROM table. The following is a summary of the DTMFLP subroutine code allocation.

DTMFLP Code	\# of   Allocation
1. Subroutine Header Code	42
2. Interrupt Code	16
3. LUP42 Code	30
4. Telephone Key Table	64
5. Sine Value Tables	149
Total	301

A program test routine to sequentially call the DTMFLP subroutine for each of the 16 DTMF keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the 10 pin of the I port is used to select which DTMF generation subroutine is to be used. The DTMFLP subroutine is selected with $10=1$
A TYPICAL RESISTOR LADDER NETWORK IS SHOWN IN FIGURE 4.

## SUMMARY

In summary, the DTMF35 program assumes a COP820C/ 840 C clocked with a 3.58 MHz crystal in divide by 10 mode. The DTMF35 program contains three subroutines, KBRDEC, DTMFGP, and DTMFLP. The KBRDEC subroutine is a low true DTMF keyboard decoder, while the DTMFGP and DTMFLP subroutines represent the alternative methods of DTMF generation.

The KBRDEC subroutine provides a low true decoding of the DTMF keyboard input and assumes that the keyboard input has been encoded in a low true column/row format, with the columns of the keyboard being sequentially strobed.
The DTMFGP subroutine produces two PWM (Pulse Width Modulation) outputs (representing the selected high and low band DTMF frequencies) for combination with an external op amp network (LM324 or equivalent).

The DTMFLP subroutine produces six bits of combined high band and low band DTMF frequency output for combination in an external resistor ladder network. This output represents a combined sine wave simulation of the two selected DTMF frequencies by combining values from two selected ROM tables, and updating these values every $118 \mu \mathrm{~s}$.
The three DTMF35 subroutines contain the following number of bytes of program and ROM table memory:

Subroutine	\# of Bytes   of Program	\# of Bytes   of ROM Table	Total \#   of Bytes
KBRDEC	19	16	35
DTMFGB	78	16	94
DTMFLP	88	213	301

```
DTMF GENERATION WITH A 3.58 MHZ VERNE H. WILSON
 CRYSTAL FOR COP820C/840C
 10/28/89
DTMF - DUAL TONE MULTIPLE FREQUENCY
PROGRAM NAME: DTMF35.MAC
 .TITLE DTMF35
 .CHIP 840
THIS DTMF PROGRAM IS BASED ON A COP820C/840C RUNNING
WITH A CKI CLOCK OF 3.579545 MHZ (TV COLOR CRYSTAL
FREQUENCY) IN DIVIDE BY 10 MODE, FOR AN INSTRUCTION
CYCLE TIME OF 2.7936511 MICROSECONDS.
THIS PROGRAM CONTAINS THREE SUBROUTINES, ONE FOR A
LOW TRUE ROW/COLUMN DTMF KEYBOARD DECODING (KBRDEC),
AND THE OTHER TWO (DTMFGP, DTMFLP) FOR ALTERNATE
METHODS OF DTMF GENERATION.
KEYBOARD INPUT DATA IS IN ACCUMULATOR WITH A
 LOW TRUE FORMAT AS FOLLOWS:
 BITS 7 TO 4 : LOW TRUE COLUMN VALUE (E,D,B,7)
 BITS 3 TO 0 : LOW TRUE ROW VALUE (E,D,B,7)
ASSUMPTION MADE THAT COLUMN STROBES (LOW TRUE) ARE
 OUTPUT, WHILE ROW VALUES (LOW TRUE) ARE INPUT.
THE FIRST METHOD OF DTMF GENERATION CONSISTS OF
GENERATING TWO PWM OUTPUTS ON THE G PORT G2 AND G3
OUTPUT PINS. THESE TWO OUTPUTS NEED TO BE MIXED
EXTERNALLY WITH AN APPROPIATE LM324 OP AMP FEEDBACK
CIRCUIT TO GENERATE THE DTMF.
THE SECOND METHOD OF DTMF GENERATION USES ROM LOORUP
TABLES TO SIMULATE THE TWO DTMF SINE WAVES AND
COMBINES THEM ARITHMETICALLY. THE RESULT IS OUTPUT ON
THE LOWER SIX BITS OF THE L PORT (LO - L5). THESE SIX
OUTPUTS ARE COMBINED EXTERNALLY WITH A LADDER NETWORK
TO GENERATE THE DTMF.
THE SECOND DTMF GENERATION METHOD USES APPROXIMATELY
THREE TIMES AS MUCH ROM CODE (INCLUDING PROGRAM CODE
AND ROM TABLES) AS THE FIRST METHOD, BUT HAS THE
ADVANTAGE OF ELIMINATING THE COST OF THE EXTERNAL
ACTIVE COMPONENT (LM324 OR EQUIVALENT).
BOTH OF THE DTMF SUBROUTINES GENERATE THEIR OUTPUTS
FOR A PERIOD OF 100 MILLISECONDS.
```



```
100
101
102
103
104
105
106
107
0020 EE
0 0 2 1 ~ D D ~
 0 0 2 2 ~ B B
 0 0 2 3 7 7
 0 0 2 4 ~ E D ~
 0 0 2 5 ~ D B
 0 0 2 6 ~ B 7
 0027 7E
108
1090028 EB
 0029 D7
 002A BE
 002B 7D
 002C E7
 O02D DE
 002E BD
 002F 7B
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
```




$\begin{aligned} & 185 \\ & 186 \end{aligned}$		
187		
188		
189		
190	0030	93
191	0031	OA
192	0032	8C
193	0033	26
194	0034	85
195	0035	09
196	0036	9B
197	0037	21
198	0038	78
199	0039	OE
200	003A	$A B$
201	003B	$1 F$
202	003C	6D
203	003D	OA
204	003E	BD
205	003F	1 A
206		
207		
208		
209	0040	DED5
210	0042	9B3F
211	0044	6B
212	0045	6A
213	0046	5F
214	0047	A6
215	0048	AE
216	0049	9733
217	004B	DEF1
218	004D	A6
219	004E	AE
220	004F	A4
221	0050	A2
222	0051	8B
223	0052	44
224	0053	F9
225	0054	5F
226	0055	AE
227	0056	65
228	0057	A0
229	0058	B0
230	0059	B0
231	005A	9730
232	005C	A4
233	005D	DEEA
234	005F	9A0F
235	0061	9A00


. FORM				
;				
; FREQUENCY AND 100 MSEC PARAMETER TABLE				
	. BYTE	10		; R
	. BYTE	140		: 0
	. BYTE	38		; $\mathbf{F}$
	. BYTE	133		; $\mathbf{T}$
	. BYTE	9		; R
	. BYTE	155		; 0
	. BYTE	33		; F
	. BYTE	120		: $\mathbf{T}$
	. BYTE	14		: R
	. BYTE	171	$\bigcirc$	; 0
	. BYTE	31		; F
	. BYTE	109		; $\mathbf{T}$
: :	. BYTE	10		; R
	. BYTE	189		; 0
	. BYTE	26		; $\mathbf{F}$
;				
;				
DTMFGP	LD	B.\#PORTGC	;	CONFIGURE G PORT
	LD	[B-],\#03F	;	FOR OUTPUTS
	RBIT	3. [B]	;	OPTIONAL HB RESET
	RBIT	$2,[B]$	;	OPTIONAL LB RESET
.	LD	B,\#KDATA		
	X	A, [ B]	;	Store key value
	LD	A, [ B$]$	;	key value to acc
$\because$	OR	A, \#033	;	Create lb freq vector
	LD	B, \#R1	;	from key value
LUP:	X	A, [B]		
	LD	A, [B]	;	THREE PARAMETERS
	LAID		;	FROM LOW BAND
	X	A, [ $\mathrm{B}^{+}$]	;	FREQ ROM TABLE
	DEC	A	;	TO R1, R2, R3
	IFBNE	\#4		
	JP	LUP		
	LD	B, \#KDATA		
	LD	A, [B]	;	KEY VALUE TO ACC
	SWAP	A	;	CREATE HB FREQ VECTOR
	RC		;	from key value
	RRC:	A		
	RRC	A		
	OR	A, \#030		
	LAID		;	HB FREQ TABLE
	LD	B, \#TMRLO	;	(1 PARAMETER)
	LD	[ $\mathrm{B}+\mathrm{]}$, \#15	;	INSTRUCTION CYCLE
	LD	$[B+]$ \# 0	;	TIME UNTIL TOGGLE


236	0063	A2
237	0064	9A00
238	0066	9EBO
239	0068	DED4
240	006A	DCFI
241	006C	BB
242	006D	72
243	006E	03
244	006F	B2
245	0070	7A
246	0071	03
247	0072	B8
248	0073	6A
249	0074	B2
250	0075	C2
251	0076	01
252	0077	OE
253	0078	C0
254	0079	FE
255		
256	007A	BE
257	007B	921F
258	007D	EE
259	007E	B8
260	007F	B8
261	0080	9226
262	0082	E9
263	0083	A4
264	0084	B8
265	0085	E6
266	0086	C3
267	0087	FE
268	0088	BDEE6C
269	008B	6B
270	008C	6A
271	008D	8E
272		
273		
274		




326	008E	BCDIFF	D'THFLP:	LD	PORTLC, \#0FF		INITIALIZE PORT L
328	0091	BCDOID		LD	PORTLD, \#29	;	FOR NO TONE OUT
329	0094	BC0500		LD	LFPTR, \#0	;	IHITIALIZE OFFSET
330	0097	58		LD	B, \#HFPTR	;	POIUTERS FOR
331	0098	9A00		LD	[ $\mathrm{B}+\mathrm{]}$, \# 0	;	DTMF SINE WAVE
332	009A	AO		RC		;	TABLE LOOKUP
333	009B	65		SWAP	A	;	QUADRUPLE KEY
334	009C	B0		RRC	A	;	VALUE AND ADD
335	009D	во		RRC	A	;	OFFSET FOR KEY
336	009E	94B8		ADD	A, \#088	;	TABLE LOOKUP
337	00AO	A6	FRLUP:	X	A, [B]	;	LOAD FOUR VALUES
338	00A1	AE		LD	A, [B]	;	FROM ROM KEY
339	00A2	A 4		LAID		;	TABLE INTO LOW
340	00A3	A2		X	A, [ $\mathrm{B}^{+}$]	;	FREQ LFTBSZ,
341	00A4	8A		INC	A	;	LFTADR, AND HI
342	00A5	4C		IFBNE	\#0C	;	FREO HFTBSZ.
343	00A6	F9		JP	FRLUP	;	HFTADR
344	00A7	DEEA		LD	B,\#TMRLO	;	IHITIALIZE TIMER
345	00A9	9A00		LD	[ $\mathrm{B}+\mathrm{l}$ ], \#0	;	WITH A tC COUNT
346	00AB	9A8C		LD	[ $\mathrm{B}+\mathrm{]}$, \#\#140	;	EQUIVALENT TO
347	00AD	9A00		LD	[ $\mathrm{B}+$ ], \#0	;	100 MSEC PLUS
348	00AF	9ABC		LD	[ $\mathrm{B}+\mathrm{]}$, \#140	;	A LUP42 TIME
349	00B1	9A80		LD	[ $\mathrm{B}+\mathrm{]}$, \#080	;	TIMER PWM, NO OUT
350	0083	9 Bll		LD	[B-],\#011	;	ENABLE TMR INTRPT
351	0085	7C		SBIT	TRUN, [B]	;	START TIMER
352	0086	210F		JMP	LUP42		
353			;				
354			;				
355			;				
356			;				
357			; TELEPH	HE KEY	LE:		
358			;				
359			; TAB	F FORHA			
360			;	PARALIE	1: \# OF LOW	REQ	table values
361			;	PARAME	2: BASE ADD	OF	LOW FREQ VALUES
362			;	PARAME	3: \# OF HI	FRE	Q table values
363			;	PARAME	4: BASE ADD	OF	high fred values
364							
365			; KEY 1				
366	0088	31		. BYTE	49,02D, 7,07C		
	0089	2D					
	00BA	07					
	00BB	7 C			$\cdots$		
367							
368			; KEY 2				
369	00BC	31		. BYTE	49,02D,19,083		
	00BD	2D					
	OOBE	13					
	00BF						
370			;				

```
371
372 00C0 31
 00C1 2D
 00C2 17
 00C3 96
373
374
 00C5 2D
 00C6 15
 00C7 AD
376
```



```
 00C9 5E
 00CA }0
 00CB 7C
379
380
 OOCD 5E
 OOCE 13
 00CF }8
382
383 ,
384 00DO OB
 OOD1 5E
 00D2 17
 00D3 96
385
386
387 00D4 OB
 OOD5 5E
 00D6 15
 00D7 AD
388
 #;
 00D8 0A
 00D969
 00DA }0
 00DB 7C
391
392
393 OODC OA
 OODD 69
 OODE 13
 OODF 83
394
#
395 ; KEY 9
396 00EO OA .BYTE 10,069,23,096
```




## 488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

## 518

## 519

## 520

 521|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THE PREQUENCY APPROXIMATION IS EQUAL TO THE NUMBER |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CYCLES OF SINE WAVE DIVIDED BY THE TIME IN THE TOTAL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NUMBER OF LUP42 CYCLES BEFORE THE REPETITION OF THE ROM TABLE. AS AN EXAMPLE, CONSIDER THE THREE CYCLES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OF SINE WAVE AND 19 VALUES IN THE ASSOCIATED 1336 HZ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ROM TABLE. THE 19 CYCLES OF LUP42 TIMES THE LUP42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TIME OF 117 1/3 USEC IS DIVIDED INTO THE THREE CYCLES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OF SINE KAVE TO YIELD A VALUE OF 1345.69 HZ AS THE 1336 HZ APPROXIMATION. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE VALUES IN THE ROM TABLES FOR THE DTMF SINE WAVES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SHOULD WRAP AROUND END TO END IN EITHER DIRECTION TO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FORM A SYMETRICAL LOOP. THE FIRST VALUE IN THE ROM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TABLE REPRESENTS THE BASE LINE FOR THAT FREQUENCY. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE HIGH BAND DTMF FREQUENCIES HAVE A BASE LINE VALUE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | OF 16 AND A MAXIMUM VALUE OF 32. THE LOW BAND DTMF |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FREQUENCIES HAVE A BASE LINE VALUE OF 13 aND A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAXIMUM VALUE OF 26. THIS DIFFERENCE IN BASE LINE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | VALUES IS NECESSARY TO SATISFY THE REQUIREMENT OF THE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HIGH BAND FREQUENCIES NEEDING A LEVEL 2 dB ABOVE THE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LEVEL OF THE LOW BAND PREQUENCIES TO COMPENSATE FOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LOSSES IN TRAMSMISSION. THE SUM OF THE TWO BASE LINE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| VALUES YIELDS A BASE LIAE VALUE OF 29, WHILE THE SUM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OF THE TWO MAXIMUM VALUES YIELDS A MAXIMUM VALUE OF |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 58. THUS THE SIX BIT DTMF OUTPUT FROM THE L PORT TO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE LADDER NETWORK RANGES FROM 0 TO 58, WITH A BASE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LINE VALUE OF 29. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE VALUES IN THE DTMF SINE WAVE TABLES ARE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CALCULATED BY COMPUTING THE SINE VALUE AT THE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| APPROPIATE POINTS, SCALING THE SINE VALUE UP TO THE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BASE LINE VALUE, AND THEN ADDING THE RESULT TO THE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BASE LINE VALUE. THE FOLLOWING EXAMPLE WILL HELP TO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLARIFY THIS CALCULATION. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CONSIDER THE THREE CYCLES OF SINE WAVE ACROSS 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | DATA POINTS FOR THE 1336 HZ DTMF HIGH BAND FREQUENCY |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | THE FIRST VALUE IN THE TABLE IS THE BASE LINE VALUE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OF 16. WITH 2 PI RADIANS PER SINE WAVE CYCLE, |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE SUCCEEDING VALUES IN THE TABLE REPRESENT THE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| : 3 X (6 PI / 19) , . . . UP TO 18 X (6 PI / 19). |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| : LET US NOW CONSIDER THE SEVENTH AND EIGHTH VALUES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| : IN THE TABLE, REPRESENTING THE SIME VALUES OF |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| : $6 \times(6 \mathrm{PI} / \mathrm{19})$ AND 7 X ( $6 \mathrm{PI} / \mathrm{l}$ (9) RESPECTIVELY. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| THE CALCULATIONS OF 16 X SIN [6 X (6 PI / 19)] AND |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 X SIN [7 X (6 PI / 19)] YIELD VALUES OF - 5. 20 AND 9.83 RESPECTIVELY. ROUNDED TO THE NEAREST INTEGER |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




```
571
572
5 7 3
574
575
576
577
5 7 8 0 1 6 9 ~ O D
 016A 15
 016B }1
 016C 1A
 016D 15
 016E OD
 016F 05
 0170 01
 0 1 7 1 0 0
 0172 05
5 7 9
580
581
582
583
584
585
586
5870173 OD
 0174 15
 0175 1A
 0176 18
 0177 12
 0178 08
 017902
 017A 00
 017B 05
588
589
590
5 9 1
592
593
594
595
596
597 017C 10
 017D 1D
 017E 20
 017F 17
 0 1 8 0 0 9
 0 1 8 1 0 0
 018203
598
LF852: 1 CYCLE OF SIME WAVE SPREAD
 ACROSS 10 TIMING LOOP (LUP42) CYCLES
 FREQ. = 1 / (10 X 117 1/3)=852.27 HZ
 ERROR = (852.27-852) / 852 = + 0.03 %
 .BYTE 13,21,25,26,21,13,5,1,0,5
LF941: 1 CYCLE OF SINE WAVE SPREAD
 ACROSS 9 TIMING LOOP (LUP42) CYCLES
 FREQ. = 1 / (9 X 117 1/3) = 946.97 HZ
 ERROR = (946.97-941)/941=+0.63%
 .BYTE 13,21,26,24,18,8,2,0,5
 HF1209: 1 CYCLE OF SINE WAVE SPREAD
 ACROSS 7 TIMING LOOP (LUP42) CYCLES
 FREO. = 1 / (7 X 117 1/3) = 1217.53 HZ
 ERROR = (1217.53-1209) / 1209 = + 0.71 %
 .BYTE 16,29,32,23,9,0,3
```



```
 01A7 OC
 01A8 1C
 01A9 1F
 01AB 03
 01AC 02
6 1 9
620
6 2 1
6 2 2
623
624
625
626
6 2 7 ~ 0 1 A D ~ 1 0 ~
 OlAE 1F
 01AF 1B
 01B0 09
 01B1 00
 01B2 0B
 01B3 1D
 01B4 1.
 O1B5 OE
 01B6 00
628 01B7 07
 01B8 19
 01B9 20
 01BA 12
 01BB 02
 01BC 03
 O1BD 15
 O1BE 20
 01BF 17
 01C0 05
629 01C1 01
6 3 0
6 3 1
6 3 2
```

.BYTE 7,25,32,18,2,3,21,32,23,5


670
671
6720211 5F
6730212 AE
6740213 95F0
675021565
676 0216 A4
677 0217 AO
6780218 BO
6790219 во
680 021A A6
681 021B 950F
682 021D A4
683 021E 84
684 021F 930F
6850221 8E
6860222 8D
.687
. 688
689
690
.691
:
ḰBRDEC:

\section*{| LD |
| :--- |
| $\mathbf{X}$ | <br> LD <br> AND <br> SWAP <br> LAID}

RC
RRC
RRC
X
AND
LAID
ADD
IFGT
RET
RETSK

B, \#KDATA
A, [B]
A,[B] : A, \#OFO
A

A
A
A. [B]

- STORE RESULT
- EXTRACT LOW TRUE ROW

A,[B] : ADD TO PRODUCE OOOORRCC
A, \#OF ; RETURN IF MULTIPLE KEYS,
NO KEYS, OR NO COLUMN
RETURN AND SKIP
IF SIMGLE KEY

B	OOFE		BYP 1	0072		BYP2	0075.		BYPA	0019	
BYPB	001B		CNTRL	OOEE		DTMFGP	0040		DTMFLP	008E	
FINI	0086		FRLUP	00AO		HFPTR	0007		HFTADR	0008	
HFTBSZ	000A		INTRPT	00FF	*	RBRDEC	0210		RDATA	0000	
LFPTR	0005		LFTADR	0009		LPTBSZ	0008		LOOP	0006	
LUP	004D		LUP1	006C		LUP2.	0078		Lup42	010F	
PORTD	OODC		PORTGC	00D5		PORTGD	00D4		PORTI	0007	
PORTLC	00D1		PORTLD	OODO		PSW	00EF		RO	00FO	
R1	00F1		82	00F2		R3	00F3		SP	OOFD	
START	0000	*	TAUHI	OOED	*	taulo	OOEC	*	TEMP	0006	
TMRHI	00EB	*	TMRLO	OOEA		TRUN	0004		X	00FC	

## Low Cost A/D Conversion Using COP800

## INTRODUCTION

Many microcontroller applications require a low cost analog to digital conversion. In most cases the controller applications do not need high accuracy and short conversion time. This appnote describes a simple method for performing analog to digital conversion by reducing external elements and costs.

## PRINCIPLE OF A/D CONVERSION

The principle of the single slope conversion technique is to measure the time it takes for the RC network to charge up to the threshold level on the port pin, by using Timer T1 in the input capture mode. The cycle count obtained in Timer T1 can be converted into voltage, either by direct calculation or by using a suitable approximation.
Figure 1 shows the block diagram for the simple A/D conversion which measures the temperature.

## BASIC CIRCUIT IMPLEMENTATION

Usually most applications use a comparator to measure the time it takes for a RC network to charge up to the voltage level on the comparator input. To reduce cost, it is possible to switch both inputs as shown in Figure 2.
Port G3 is the Timer T1 input. Ports G2/G1 are general purpose I/O pins that can be configurated using the I/O configurations (push-pull output/tristate). All Port G pins are Schmitt Trigger inputs. $\mathrm{R}_{\text {LIM }}$ is required to reduce the discharge current.

## GENERAL IMPLEMENTATION

The temperature is measured with a NTC which is linearized with a parallel resistor. Using a parallel resistor, a linearization in the range of 100 Kelvin can be reached. The value of the resistor can be calculated as follow:

$$
R_{p}=R_{t m} *\left(B-2 T_{m}\right) /\left(B+2 T_{m}\right)
$$

$\mathrm{R}_{\mathrm{tm}} \quad$ Value of the NTC at a medium temperature
$\mathrm{T}_{\mathrm{m}} \quad$ Medium Temperature
B NTC-material constant

National Semiconductor Application Note 952

The linearization reduces the code, improves the accuracy and the tolerance of the NTC-R network (e.g. NTC = $100 \mathrm{k} \Omega \pm 10 \%, \mathrm{R}=12 \mathrm{k} \Omega \pm 1 \%, \mathrm{NTC} / / \mathrm{R} \pm 2 \%)$. Using that method the useful range does not cover the whole operating temperature range of the NTC.

## GENERAL ACCURACY CONSIDERATIONS

Using a single slope A/D conversion the accuracy is dependent on the following parameters:

- Stability of the Clock frequency
- Time constant of the RC network
- Accuracy of the Schmitt Trigger level
- Non-linearity of the RC-network

Figure 3. The maximum failure that appears when a sawtooth is generated without using a current source. In the current application the maximum failure would be more than $15 \%$ without using methods for reducing the non-linearities of RC-network/NTC-network.


FIGURE 2. Basic Circult Implementation


TL/DD/12075-1
FIGURE 1. Simple A/D Conversion


TL/DD/12075-3
FIGURE 3. Single Slope A/D Conversion

The maximum error occurs when the gradient of the exponential function (RC) equals the gradient of the straight line (counter).
To reduce the error that is caused by the non-linearity of the RC-network a offset should be added to the calculated value. The offset reduce the failure to the middle.
Further, the accuracy can be improved by using a relative measurement method. The following diagram shows the method.


TL/DD/12075-4
FIGURE 4. Accuracy Improvement

Measurement:

- Timer Capture mode: $\mathrm{R}_{\mathrm{CAL}}{ }^{*} \mathrm{C}$ is measured
- Timer Capture mode: $\mathrm{R}_{\mathrm{NTC} / / \mathrm{R}^{*} \mathrm{C} \text { is measured }}$ Calculation:
- Build the vertical-component ( $\mathrm{R}_{\text {TMIN }}$ - $\mathrm{R}_{\text {TMAX }}$ ) of the triangle
- Calculate the slope
- Calculate the actual temperature

Using this method the accuracy is primarily dependent on the accuracy of $\mathrm{R}_{\text {TMIN }}$ and $\mathrm{R}_{\text {TMAX }}$ and independent of the stability of the system clock, the capacitor and the threshold of the Schmitt Trigger level. The variation of the capacitor only leads to variation of the resolution.
The following diagram shows the ideal resistance/temperature characteristic of a NTC which is linearized with a parallel resistor.


FIGURE 5. Resistance vs Temperature Characterlstics

## APPLICATION EXAMPLE

The following application example for temperature measurement demonstrates the procedure. The temperature is measured from $20^{\circ}$ to $100^{\circ}$ and is displayed on a Triplex LCD display.

$\mathrm{NTC}_{20}$	$=100 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{\mathrm{P}}$	$=12 \mathrm{k} \Omega \pm 1 \%$
$\mathrm{~T}_{\mathrm{m}}$	$=333 \mathrm{Kelvin} \rightarrow 60$ Degrees
B	$=4800$ Kelvin
$\mathrm{NTC}_{20} / / \mathrm{R}_{\mathrm{P}}$	$=10.7 \mathrm{k} \Omega \pm 2 \%$
$\mathrm{R}_{\mathrm{CAL}}$	$=10.7 \mathrm{k} \Omega \pm 1 \%$
$\mathrm{~T}_{\text {MIN }}$	$=20 \mathrm{Degree}$
$\mathrm{R}_{\text {TMIN }}$	$=10.7 \mathrm{k} \Omega$
$\mathrm{T}_{\text {MAX }}$	$=100$ Degree

$\mathrm{R}_{\text {TMAX }}=2.8 \mathrm{k} \Omega$
$\mathrm{C} \quad=1 \mu \mathrm{~F}$
RC-Clock $=2 \mathrm{MHz} \rightarrow 200 \mathrm{kHz}$ instruction cycle, $5 \mu \mathrm{~s}$
Timeconst. $=\mathrm{R}_{\mathrm{CAL}} * \mathrm{C} \rightarrow 0.0107 \mathrm{~s}$
Resolution $=2140 \rightarrow 11$ byte, depends which Cap. value is used

Accuracy $= \pm 2$ Degree
This temperature measurment example shows a low cost technique ideally suited for cost sensitive applications which do not need high accuracy.
Figure 6 shows the complete circuit of the demoboard using the Triplex LCD method and the low cost A/D conversion technique.
The Triplex LCD drive technique is documented in a separate application note.


TL/DD/12075-7
FIGURE 6. Circuit Diagram
Pressing key 1, key 2 the temperature is displayed in Degree/Fahrenheit.
Pressing key 3 , key 4 Up/Down counter is displayed.

## SOURCE CODE

Figure 7 shows the flow chart of the program.


FIGURE 7. Flow Chart

The following code is required to implement the function. It does not include the code for the Triplex LCD drive.

```
RAM = 17 Byte;
ROM = 450 Byle; Optimization is possible about 50 byte if the B - pointer consistent is used!
;*****************************A/D-CONVERSION**************************************
;
;
;*****************************VAR.DECLARIATION**********************************
.SECT REGPAGE,REG
COUNTI: .DSB 1
COUNT2: .DSB 1
;
.SECT BASEPAGE,BASE
ZL: .DSB 1 ;TEMPORARY
YL: .DSB 1 ;TEMPORARY
;
.SECTRAMPAGE,RAM
CALIBLO: .DSB 1 ;CALIBRATION-VALUE
CALIBHI: .DSB 1
NTCLO: .DSB 1 ;NTC-VALUE
NTCHI: .DSB 1
TEMP: .DSB 2 ;TEMP.-VALUE
KORRL: .DSB 2
COMPL: .DSB I
COMPH: .DSB 1
CONTROL: .DSB 1 ;STATUS REGISTER
;*********************************STARTMAN PROGRAM}\mp@subsup{}{}{******************************
MANN: LD SP,#06F ;INIT SPACKPOINTER
 JSR DISCH ;DISCHARGEC(A/D-CONVERSION)
 JSR CALB ;INIT CAPTURE MODE FOR UREF. MEASURMENT
POLL: IFBIT 3,PORTGP ;POLL -MODE (TIO-PORT)
 JP CAL
 JP POLL
CAL: LD B,#CALIBLO
 JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
 JSR CALCR ;SLOPE IS CALCULATED
NEW: JSR DISCH ;DISCHARGE C (A/D-CONVERSION).
 JSR NTC ;INIT CAPTURE MODEFOR UNTC MEASURMENT
POLL1:IFBIT 3.PORTGP ;POLL-MODE
 JP CAL1
 JP POLL1
CAL1: LD B.#NTCLO
 JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
 JSR CALCN ;TEMPERATURE IS CALCULATED
 JSR DISCH ;DISCHARGE C (A/D-CONVERSION)
 JSR DCHECK ;REDUCE THE DISPLAY FLICKERING
 JMP NEW
.ENDSECT
```

```
;**
```

.SECT CODE1,ROM
;THIS ROUTINE IS REQUIRED TO REDUCE THE NOICE ON THE LINE AND THE ; DISPLAY FLICKERING.
.SECT CODE1,ROM
DCHECK: ;COMPARE TWO VALUES, IF EQUAL THEN
LD A,CONTROL ;DISPLAY IT, OTHERWISE THE OLD VALUE
XOR A,\#080 ;IS DISPLAYED
X A,CONTROL
IFBIT 7,CONTROL
JSR SAVE ;TEMP. SAVE
JSR COMP ;COMPARE
RET

## ;*******************************************************************

; HANDLER FOR CAPTURE MODE
CAPTH: RBIT TPND,PSW ;RESET TIMER PENDING
RBIT TRUN,PSW ;STOP TIMER
LD A, \#0FF
SC
SUBC A,TAULO
X A, $[\mathrm{B}+\mathrm{]}$;STORE THE CAPTURED VALUE
LD A, \#OFF
SUBC A,TAUHI
X A,[B+] ;STORE THE CAPTURED VALUE
RET

; CALIBRATION SUBROUTINE, UREF IS MEASURED
CALB:
RBIT 3,PORTGD
RBIT 3,PORTGC
LD PORTCD, \#00
LD PORTCC,\#00
TICAP HIGH
LD B,\#CALIBLO SBIT 0,PORTCD
SBIT 0,PORTCC
SBIT TRUN,CNTRL ;START TIMER CAPTURE MODE
RET
;**************************************
NTC:
RBIT 3,PORTGD
RBIT 3,PORTGC LD PORTCD.\#00 LD PORTCC,\#00
TICAP HIGH
LD B,\#NTCLO
SBIT 1.PORTCD ;CONFIGURE C1 TO OUTPUT HIGH
SBIT 1,PORTCC ;CHARGE CAP. SBIT TRUN,CNTRL ;START TIMER CAPTURE MODE RET

```
*************************************水**
;DISCHARGE - ROUTINE
DISCH:
 LD PORTCD,#000
 LD PORTCC,#000
 RBIT TIO,PORTGD ;DISCHARGE CAP.
 SBIT TIO,PORTGC
 LD COUNT1,#H(500) ;DISCHARGE TIME
 LD COUNT2,#L(500)
 JSR Cl
 RET
;THIS SUBROUTINE CALCULATES THE SLOPE
;THE FOLLOWING CALCULATIONS ARE DONE
;KORR=CALIB/11 KOHM (RCALIB.=11KOHM)
;KORR=KORR*2,8KOHM (T=100 DEGREE, RNTC=2,8KOHM)
;CALIB=CALIB-KORR
;DIV=CALIB\80 (TEMPRANGE=80 DEGREE,100-20), SLOPE IS CALCULATED
CALCR:
;KORR=CALIB/11KOHM
 LD ZL,#L(110)
 LD ZL+1,#H(110)
 LD A,CALIBLO
 X A,YL
 LD A,CALIBHI
 X A,YL+1
 JSR DIVBIN16 ;SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
 LD A,YL
 X A,KORRL
;**
;KORR=KORR*28
 LD A,KORRL
 X A,ZL
 LD A,#28
 X A,YL
 JSR MULBIN8 ;SUBROUTINE MULTIPLY TWO 8 BIT VALUES
 LD A,YL
 X A,KORRL
 LD A,YL+1
 X A,KORRL+1
:**
;KORR=CALIB-KORR
 LD B,#CALIBLO
 LD A,[B+]
 SC
 SUBC A,KORRL
 X A,KORRL
 LD A,[B]
```

```
 SUBC A,KORRL+1
 X A,KORRL+1
;***
;DIV=KORR/80
 LD ZL,#L(80)
 LD ZL+1,#H(80)
 LD A,KORRL
 X A,YL
 LD A,KORRL+1
 X A,YL+1
 JSR DIVBIN16 :SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
 LD A,YL
 X A,DIV
 RET
;***
;THIS SUBROUTINE CALCULATES THE TEMPERATURE
;THE FOLLOWING CALCULATIONS ARE DONE
;TEMP=CALIB-NTC
;TEMP=TEMP/DIV
;ADD OFFSET }20\mathrm{ DEGREE
;CONVERSION FROM HEX TO BCD
;***
;TEMP=CALIB-NTC
CALCN: LD B,#CALIBLO
 LD A,[B+]
 SC
 SUBC A,NTCLO
 X A,TEMP
 LD A.[B]
 SUBC A,NTCHI
 IFNC
 JMP ERR
 X A,TEMP+1
;**
;TEMP=TEMP/DIV
 LD A,TEMP
 X A,YL
 LD A,TEMP+1
 X A,YL+1
 LD A,DIV
 X A.ZL
 CLRA
 X A.ZL+1
 JSR DIVBIN16 ;SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
 LD A.YL
 ADD A,#20 :ADD TEMPERATURE OFFSET
 IFGT A.#56 :IF TEMPERATURE IS HIGER THAN 56 DEGREE THEN
 JSR CORR ;ADD CORRECTION. OFFSET
```

;*********************************************************************************
;HEX TO BCD CONVERSION
X A,ZL
LD A,ZL
IFGT A,\#100 ;IF TEMPERATURE IS MORE THAN 100 DEGREE THEN
JP ERR
JSR BINBCD ;SUBROUTINE BINARY TO BCD CONVERSION;
LD A,BCDLO
X A,TEMP
LD A,BCDLO+1
X A,TEMP+1
RET
ERR: LD A,\#OOE ;ERROR MESSAGE IS DISPLAYED
X A,TEMP
CLR A
X A,TEMP+1
RET
;****************************************************************************
COMP:LD A,COMPL ;IF THE LAST BOTH MEASURMENTS ARE EQUAL
SC ;THEN DISPLAY
SUBC A,TEMP
IFEQ A,\#0
JP DISPLAY
RET ;OTHERWISE DISPLAY THE OLD VALUE
DISPLAY:LD A,TEMP
X A,PB+2
LD A,TEMP+1
M1: X A,PB+3
JSR LCDDR ;UPDATE THE DISPLAY
JSR DEL ;DELAY TIME
RET
******************************************************************************
SAVE: LD A,TEMP ;TEMPORARY SAVE
X A,COMPL
LD A,TEMP+1
X A,COMPH
RET
;**************************************************************************************

```

Section 4 Non-Volatile Memory
Section 4 Contents
NAND FLASH
NM29N16 16 MBit (2M x 8-Bit) CMOS NAND FLASH E2PROM 4-3
NM29A040 4-Mbit CMOS Serial FLASH E2PROM 4-34
LOW VOLTAGE EEPROMS
NM28C64/NM28C64L/NM28C64A 64K (8K x 8) Parallel Extended Voltage Range CMOS EEPROMs 4-45
NM24C02L/NM24C04L/NM24C08L/NM24C16L 2K-/4K-/8K-/16K-Bit Serial EEPROMs (\({ }^{2} \mathrm{C}\) Synchronous 2-Wire Bus) 4-54
NM93C06L/NM93C46L/NM93C56L/NM93C66L 256-/1024-/2048-/4096-Bit Serial EEPROMs with Extended Voltage (2.0V to 5.5V) (MICROWIRE Bus Interface) 4-66
LOW VOLTAGE EEPROM APPLICATION NOTES
\(A B-15\) Protecting Data in Serial EEPROMs 4-75
AN-338 Designing with the NM93C06: A Versatile Simple to Use EEPROM 4-77
AN-423 The NM93C46-An Amazing Device 4-83
AN-758 Using National's MICROWIRE EEPROM 4-86
AN-794 Using an EEPROM-1²C Interface NM24C02/03/04/05/08/09/16/17 4-97
AN-822 Enhancing the Performance of Serial CMOS EEPROMs 4-106
AN-841 Software for Interfacing the COP800 Family Microcontrollers to National's MICROWIRE EEPROMs 4-116
AN-870 Upgrade to National's Wide Voltage Range, Zero Standby Current EEPROMs 4-122
AN-910 Interfacing the NM29N16 in a Microcontroller Environment 4-124
AN-921 National's Flash Memories-Hardware Design Guides 4-134
AN-922 NAND Flash Operation 4-143

\section*{NM29N16 \\ 16 MBit (2M x 8 Bit) CMOS NAND FLASH E2PROM}

\section*{General Description}

The NM29N16 is a 16 Mbit (2 Mbyte) NAND FLASH. The device is organized as an array of 512 blocks, each consisting of 16 pages. Each page contains 264 bytes. All commands and data are sent through eight I/O pins. To read data, a page is first transferred out of the array to an on-chip buffer. Sending successive read pulses (\(\overline{R E}\) low) reads out successive bytes of data. The erase operation is implemented in either a single block (4 kbytes) or on multiple blocks at the same time. Programming the device requires sending address and data information to the on-board buffer and then issuing the program command. Typical program time for 264 bytes is \(400 \mu \mathrm{~s}\). All erase and program operations are internally timed.
The NM29N16 incorporates a number of features that make it ideal for portable applications requiring high density storage. These features include single 5 V operation, high read/ write endurance (250k cycle), and low current operation (15 mA during reads). The device comes in a TSOP Type II package which meets the requirements of PCMCIA cards. The NM29N16 is suited for numerrious applications such as Solid State Drives (SSD), Audio Recording, and Image Storage for digital cameras.

\section*{Features}

■ Single \(5 \mathrm{~V} \pm 5 \%\) power supply
- Write/Erase endurance of 250,000 cycles, target of 1,000,000 cycles
- Fast Erase/Program Times
- Average Program Time of \(400 \mu \mathrm{~s} / 264\) bytes
- Typical Block Erase Time of 6 ms

■ Organized as 512 blocks, each consisting of 16 pages of 264 bytes
- Read/Program in pages of 264 bytes
- Erase in Blocks of 4 kbytes
- High Performance Read Access times
- Initial \(25 \mu\) s page transfer
- Sequential 80 ns access
- Low Operating Current
- Typical Read current of 15 mA
- Typical Program current of 40 mA
- Typical Erase current of 20 mA
-Standby current less than \(100 \mu \mathrm{~A}\) (CMOS)
- Command Register for Mode Control:
- Read
- Auto Page Program
- Auto Block Erase
- Auto Multi-Block Erase

400 mil TSOP Type II Package
JEDEC standard pinout

\section*{Block Diagram}

TL/D/11915-1

Pin Connection (Top View)

Pin Assignment
\begin{tabular}{|l|l|}
\hline \(\mathrm{I} / \mathrm{O}_{\mathrm{I}-8}\) & I/O Port \\
\hline\(\overline{\mathrm{CE}}\) & Chip Enable \\
\hline\(\overline{\mathrm{WE}}\) & Write Enable \\
\hline\(\overline{\mathrm{RE}}\) & Read Enable \\
\hline CLE & Command Latch Enable \\
\hline ALE & Address Latch Enable \\
\hline\(\overline{\mathrm{WP}}\) & Write Protect \\
\hline\(R / \bar{B}\) & Ready/Busy \\
\hline\(V_{C C} / V_{S S}\) & Power Supply/Ground \\
\hline
\end{tabular}

NM29N16R

TL/D/11915-3

TL/D/11915-85

\section*{Number of Valid Blocks (1)}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Symbol } & \multirow{2}{|c|}{ Parameter } & \multicolumn{3}{|c|}{ NM29N16 } & \multirow{2}{*}{ Units } \\
\cline { 3 - 5 } & & Min & Typ & Max & \\
\hline NVB \(^{2}\) & Valid Block Number & 502 & 508 & 512 & Blocks \\
\hline
\end{tabular}

Note 1: The NM29N16S/R may include unusable blocks. Refer to notification (17) toward the end of this document.
Capacitance* \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)\)
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline Symbol & Parameter & Condition & Min & Type & Max & Units \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) & Input & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) & & 5 & 10 & pF \\
\hline \(\mathrm{C}_{\text {OUT }}\) & Output & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & & 5 & 10 & pF \\
\hline
\end{tabular}
*This parameter is periodically sampled and is not \(100 \%\) tested

\begin{abstract}
Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
\begin{tabular}{|c|c|}
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}\)) & -0.6 V to 7.0 V \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{IN}}\)) & -0.6 V to 7.0 V \\
\hline Input/Output Voltage (\(\mathrm{V}_{1 / \mathrm{O}}\)) & -0.6 V to \(\mathrm{V}_{\mathrm{CC}} \pm 0.5 \mathrm{~V}(\leq 7 \mathrm{~V})\) \\
\hline Power Dissipation (\(\mathrm{P}_{\mathrm{D}}\)) & 0.5W \\
\hline Soldering Temperature (\(\mathrm{T}_{\text {sold }}\) & (10 seconds) . \(260^{\circ} \mathrm{C}\) \\
\hline Storage Temperature (\(\mathrm{T}_{\text {stg }}\)) & \(-55^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Operating Temperature (\(\mathrm{T}_{\text {opr }}\)) & \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{lcccc}
& Min & Typ & Max & Units \\
Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}\right)\) & 4.75 & 5.0 & 5.25 & V \\
High Level Input Voltage \(\left(\mathrm{V}_{\mathrm{IH}}\right)\) & 2.4 & & \(\mathrm{~V}_{\mathrm{CC}}+0.5\) & V \\
Low Level Input Voltage \(\left(\mathrm{V}_{\mathrm{IL}}\right)\) & \(-0.3^{*}\) & & 0.6 & V \\
*-2V (Pulse Width \(<20 \mathrm{~ns}\)) & & & &
\end{tabular}

\section*{DC Operating Characteristics (\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\))}

\section*{Pin Functions}

The NM29N16 is a sequential access memory which utilizes time sharing input of address and data information.
Command Latch Enable: CLE The CLE input signal is used to control the input of commands into the internal command register. The command is latched into the command register from the I/O port at the rising edge of the WE signal while CLE is high.
Address Latch Enable: ALE The ALE signal is used to control the input of either address information or input data into the internal address/data register. Address information is latched at the rising edge of WE if ALE is high. Input data is latched if ALE is low.
Chip Enable : \(\overline{\mathbf{C E}}\) The device goes into a low power standby mode during a read operation when \(\overline{C E}\) goes high. The \(\overline{C E}\) signal is ignored when the device is in a busy state (\(R / \bar{B}\) \(=\mathrm{L}\)) such as during a program or erase operation and will not go into standby mode if a CE high signal is input.
Write Enable : \(\bar{W} E\) The \(\overline{W E}\) signal is used to strobe data into the I/O port.

Read Enable: \(\overline{\operatorname{RE}}\) The \(\overline{\mathrm{RE}}\) signal strobes data output. Data is available \(t_{\text {REA }}\) after the falling edge of \(\overline{R E}\). The internal column address counter is also incremented (Address +1) with this falling edge.
I/O Port: I/O 1-8 The I/O 1-8 pins are used as the port for transferring address, command and input/output data information to or from the device.
Write Protect : \(\overline{\mathrm{WP}}\) The \(\overline{\mathrm{WP}}\) signal is used to protect the device from inadvertent programming or erasing. The internal voltage regulator is reset when \(\overline{\mathrm{WP}}\) is low. This signal is usually used for protecting the data during the power on/off sequence when the input signals are invalid.
Ready/Busy: \(\mathrm{R} / \overline{\mathrm{B}}\) The \(\mathrm{R} / \overline{\mathrm{B}}\) output signal is used to indicate the operating condition of the device. The R/但 signal is in a busy state \((R / \bar{B}=L)\) during the program, erase or read operations and will return to a ready state \((R / \bar{B}=H)\) after completion. The output buffer of this signal is an open drain.

\section*{AC Test Conditions}
Input Level
Input Comparison Level
Output Data Comparison Level
Output Load
\(2.4 \mathrm{~V} / 0.4 \mathrm{~V}\)
\(2.2 \mathrm{~V} / 0.8 \mathrm{~V}\)
\(2.0 \mathrm{~V} / 0.8 \mathrm{~V}\)
\(1 T T L \& C_{L}(100 \mathrm{pF})\)

\section*{AC Electrical Characteristics (\(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+5 \%\))}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min & Max & Unit & Notes \\
\hline tCLS & CLE Setup Time & 20 & & ns & \\
\hline \({ }_{\text {t }}\) LH & CLE Hold Time & 40 & & ns & \\
\hline tcs & CE Setup Time & 20 & & ns & \\
\hline \({ }^{\text {t }}\) CH & CE Hold Time & 40 & & ns & \\
\hline twp & Write Pulse Width & 40 & & ns & \\
\hline \(t_{\text {ALS }}\) & ALE Setup Time & 20 & & ns & \\
\hline \(t_{\text {ALH }}\) & ALE Hold Time & 40 & & ns & \\
\hline tos & Data Setup Time & 30 & & ns & \\
\hline \(\mathrm{t}_{\mathrm{DH}}\) & Data Hold Time & 20 & & ns & \\
\hline twc & Write Cycle Time . & 80 & & ns & (1) \\
\hline twh & WE High Hold Time : & 20 & & ns & \\
\hline \(t_{\text {RR }}\) & Ready to \(\overline{\overline{R E}}\) Falling Edge & 20 & & ns & \\
\hline \(\mathrm{t}_{\mathrm{RC}}\) & Read Cycle Time & 80 & & ns & \\
\hline \(t_{\text {REA }}\) & \(\overline{\mathrm{RE}}\) Access Time (Serial Data Access) & & 48 & ns & \\
\hline tCEH & \(\overline{\text { CE }}\) High Time at the Last Address in Serial Read Cycle & 300 & & ns & (3) \\
\hline \(\cdots{ }^{\text {R REAID }}\) & \(\overline{\mathrm{RE}}\) Access Time (ID Read) & & 90 & ns & \\
\hline \(t_{\text {RHZ }}\) & \(\overline{\text { RE High to Output High Impedance }}\) & 5 & 20 & ns & \\
\hline \({ }^{\text {t }} \mathrm{CHZ}\) & \(\overline{\text { CE High to Output High Impedance }}\) & & 30 & ns & \\
\hline \(t_{\text {REH }}\) & \(\overline{\text { AE High Hold Time }}\) & 20 & & ns & \\
\hline \(\mathrm{t}_{\text {IR }}\) & Output High Impedance to \(\overline{\text { RE }}\) Rising Edge & 0 & & ns & \\
\hline \(t_{\text {trsto }}\) & \(\overline{\mathrm{RE}}\) Access Time (Status Read) & & 48 & ns & \(\cdots\) \\
\hline tCSTO & \(\overline{C E}\) Access Time (Status Read) & & 60 & ns & \\
\hline \(t_{\text {RHW }}\) & \(\overline{\text { RE High to WE Low }}\) & 0 & & ns & \\
\hline tWHC & \(\overline{\text { WE High to CE Low }}\) & 50 & & ns & \\
\hline tWHR : & WE High to \(\overline{\text { RE Low }}\) & 50 & \(\checkmark\) & ns & \\
\hline \(t_{\text {AR1 }}\) & ALE Low to \(\overline{\text { RE L L }}\) L (Address Register Read, ID Read) & 250 & & ns & \\
\hline \({ }_{\text {t }}\) R & \(\overline{\mathrm{CE}}\) Low to \(\overline{\mathrm{RE}}\) Low (Address Register Read, ID Read) & 250 & & ns & - . \\
\hline \(t_{\text {R }}\) & Memory Cell Array to Starting Address & & 25 & \(\mu \mathrm{s}\) & \\
\hline twb & WE High to Busy & & 200 & ns & \\
\hline \(\mathrm{t}_{\text {AR2 }}\) & ALE Low to \(\overline{\mathrm{RE}}\) low (Read Cycle) & 150 & & ns & \\
\hline \(t_{\text {RB }}\) & \(\overline{\mathrm{RE}}\) Last Clock Rising Edge to Busy (At Sequential Read) & & 200 & ns & \\
\hline \(t_{\text {CRY }}\) & \(\overline{C E}\) High to Ready (in case of interception by \(\overline{C E}\) at Read Mode) & & \(100+\operatorname{tr}(\mathrm{R} / \overline{\mathrm{B}})\) & ns & (2) \\
\hline
\end{tabular}

AC Electrical Characteristics \(\left(T_{A}=-25^{\circ} \mathrm{C}\right.\) to \(+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\) (Continued)
Note 1: In case that CLE, ALE, CE are input with clock, twc exceeds 80 ns . Transition time \(\mathrm{t}_{\mathrm{T}} \leq 5 \mathrm{~ns}\)
\(\frac{\text { set-up time }}{20 \mathrm{~ns}}+\frac{\text { hold time }}{40 \mathrm{~ns}}+\frac{\mathrm{twp}}{40 \mathrm{~ns}}+\frac{\mathrm{txx}}{}+\frac{4 \mathrm{t}_{\mathrm{T}}}{20 \mathrm{~ns}}\)

TL/D/11915-5
Note 2: \(\overline{C E}\) high to Ready time depends on Pull up resister tied to \(R / \bar{B}\) pin. (Refer to notification (11) toward the end of this document.)
Note 3: In the case that CE turns to a high level after accessing the last address (263) in read mode (1) or (2), CE high time must keep equal to or greater than 300 ns when the delay time of \(\overline{C E}\) against \(\overline{R E}\) is 0 to 200 ns as shown below.
In the second case, the device will not turn to a "Busy" state when the CE delay time is less than 30 ns .

Programming and Erasing Characteristic (\(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\))
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Symbol } & \multicolumn{1}{|c|}{ Parameter } & Min & Typ & Max & Unit & Notes \\
\hline t PROG & Average Programming Time & & \(300-1000\) & 5000 & \(\mu \mathrm{~s}\) & \\
\hline N & Divided Number on Same Page & & & 10 & Cycles & \((1)\) \\
\hline\(t_{\text {BERASE }}\) & Block Erasing Time & 6 & 6 & 110 & ms & \\
\hline\(t_{\text {MBERASE }}\) & Multi-Block Erasing Time & \(6-12\) & \(6-12\) & 150 & ms & \((2)\) \\
\hline\(t_{\text {SR }}\) & Suspend Input to Ready & & & 2 & ms & \\
\hline\(N_{\text {W/E }}\) & Number Write/Erase Cycles & & \(2.5 \times 10^{5}\) & & Cycles & \\
\hline
\end{tabular}

Note 1: Refer to the notification (16) toward the end of this document
Note 2: tmberase depends on the number of blocks to be erased (\(\min 6 \mathrm{~ms}+15 \mu \mathrm{~s} \times\) Erase block number)

\section*{Schematic Cell Layout and Address Assignment}

Programming is done in page units of 264 Bytes while the erase operation is carried out in blocks of 4 kBytes.

A page consists of 264 bytes in which 256 bytes are for main memory and 8 bytes are for redundancy or other uses.
1 page \(=264\) bytes
1 Block \(=264\) bytes \(\times 16\) pages \(=(4 k+128)\) bytes
Total device density \(=(264\) bytes \() \times(16\) pages \() \times(512\) block \()\) \(=17.3\) MBits (2.162 MBits)

The address is acquired through the I/O port using three consecutive clock cycles as shown in Table I.

TL/D/11915-28
FIGURE 1. NM29N16 Schematic Cell Layout

TABLE I. Addressing
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \(I / O_{1}\) & \(I / O_{2}\) & \(I / O_{3}\) & \(I / O_{4}\) & \(I / O_{5}\) & \(I / O_{6}\) & \(I / O_{7}\) & \(I / O_{8}\) \\
\hline First Cycle & \(A_{0}\) & \(A_{1}\) & \(A_{2}\) & \(A_{3}\) & \(A_{4}\) & \(A_{5}\) & \(A_{6}\) & \(A_{7}\) \\
\hline Second Cycle & \(A_{8}\) & \(A_{9}\) & \(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) & \(A_{14}\) & \(A_{15}\) \\
\hline Third Cycle & \(A_{16}\) & \(A_{17}\) & \(A_{18}\) & \(A_{19}\) & \(A_{20}\) & \(* L\) & \(* L\) & \({ }^{*} \mathrm{~L}\) \\
\hline
\end{tabular}
\(\mathrm{A}_{0}-\mathrm{A}_{7}:\) Byte (Column) Address
\(\mathrm{A}_{8}-\mathrm{A}_{11}\) : Page Address in Block
\(\mathrm{A}_{12}-\mathrm{A}_{20}\) : Block Address
* 1/O 6-8 at the third cycle must be set low

\section*{Operation Mode: Logic and Command Tables}

The operation modes such as Program, Erase, Read, Erase Suspend, and Reset are controlled by the twelve different command operations shown in Table III. The Address, Command Input and Data Input/Output are controlled by the CLE, ALE, \(\overline{C E}, \overline{W E}, \overline{R E}\) and \(\overline{\mathrm{WP}}\) signals as shown in Table II.

TABLE II. Logic Table
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & CLE & ALE & \(\overline{\text { CE }}\) & \(\overline{\text { WE }}\) & \(\overline{\text { RE }}\) & \(\overline{\text { WP }}\) \\
\hline Command Input & H & L & L & \(\uparrow\) & H & \(*\) \\
\hline Data Input & L & L & L & \(\uparrow\) & H & \(*\) \\
\hline Address Input & L & H & L & \(\uparrow\) & H & \(*\) \\
\hline Address Output & L & H & L & H & \(\downarrow\) & \(*\) \\
\hline Serial Data Output & L & L & L & H & \(\downarrow\) & \(*\) \\
\hline During Programming (Busy) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & H \\
\hline During Erasing (Busy) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & H \\
\hline Program, Erase Inhibit & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & L \\
\hline
\end{tabular}
\(\mathrm{H}: \mathrm{V}_{\mathrm{IH}}, \mathrm{L}: \mathrm{V}_{\mathrm{IL}} \quad *: \mathrm{V}_{\mathrm{IH}}\) or \(\mathrm{V}_{\mathrm{IL}}\)

Operation Mode: Logic and Command Tables (Continued)
TABLE III. Command Table (HEX Data)
\begin{tabular}{|l|c|c|c|}
\hline & First Cycle & Second Cycle & \begin{tabular}{c}
Acceptable Command \\
During Busy
\end{tabular} \\
\hline Sequential Data Input & 80 & & \\
\hline Read Mode (1) & 00 & & \\
\hline Read Mode (2) & 50 & & \\
\hline Reset & FF & & Yes \\
\hline Auto Program & 10 & & \\
\hline Auto Block Erase & 60 & D0 & \\
\hline Auto Multi Block Erase & \(60 . . .60\) & D0 & \\
\hline Suspend in Erasing & B0 & & Yes \\
\hline Resume & D0 & & Yes \\
\hline Status Read & 70 & & \\
\hline Register Read & E0 & & \\
\hline ID Read & 90 & & \\
\hline
\end{tabular}

Once the device is set into Read mode by " 00 H " or " 50 H " command, additional Read commands are not needed for sequential page read operations. Table III shows the operation mode for Reads.

TABLE IV. Operation Mode for Reads
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & CLE & ALE & CE & WE & RE & I \(\mathbf{O}_{1}-\mathbf{I} / \mathbf{O}_{\mathbf{8}}\) & Power \\
\hline Read Mode & L & L & L & H & L & Data Output & Active \\
\hline Output Deselect & L & L & L & H & H & High Impedance & Active \\
\hline Standby & L & L & H & H & * & High Impedance & Standby \\
\hline
\end{tabular}

\section*{Device Operation}

\section*{READ MODE (1)}

The Read mode (1) is set by issuing a " OOH " command to the command register. Refer to Figure 2 below for timing details and block diagram.

TL/D/11915-29

A data transfer operation from the cell array to the register starts at the rising edge of WE in the third cycle (after latching the address information). The device will be in a busy state during this transfer period.
After the transfer period the device returns to a ready state. Serial data can be output synchronously with the RE clock from the designated starting pointer indicated during the address input cycle.

FIGURE 2. Read Mode (1) Operation

\section*{Device Operation (Continued)}

READ MODE (2)
The Read mode (2) is the same timing as Read mode (1) but it is used to access information in the extra 8 byte redundancy area of the page. The starting pointer is therefore assigned between byte 256 and 263.

TL/D/11915-31
FIGURE 3. Read Mode (2) Operation

SEQUENTIAL READ (1) (2)
This mode allows sequential read without the additional address input

TL/D/11915-32
FIGURE 4. Sequential Read
Sequential Read mode (1) outputs the address 0 to 263 while Sequential Read mode (2) outputs the redundant address location only. When the pointer reaches the last address, the device continues to output last data with each \(\overline{\mathrm{RE}}\) clcck signal.

\section*{Device Operation (Continued)}

\section*{STATUS READ}

The NM29N16S/R automatically implements the execution and verification of the program and erase operations. The status read function is used to monitor the Ready/Busy status of the device, determines the pass/fail result of a program or erase operation, and determines if the device is in a suspend or protect mode. The device status is output through the I/O port using the \(\overline{\mathrm{RE}}\) clock after a " 70 H " command input. The resulting information is outlined in Table V.

TABLE V. Status Output Table
\begin{tabular}{|c|c|c|c|}
\hline & Status & \multicolumn{2}{|c|}{Output} \\
\hline I/O 1 & Pass/Fail & Pass: "0" & Fail : "1" \\
\hline 1/O2 & Not Used & "0" & \\
\hline 1/O 3 & Not Used & "0" & \\
\hline 1/04 & Not Used & "0" & \\
\hline 1/O5 & Not Used & "0" & \\
\hline 1/06 & .. Suspend & Suspended: "1" & Not suspended: '0" \\
\hline 1/07 & Ready/Busy & Ready: "1" & Busy: "0" \\
\hline 1/0 8 & Write Protect & Protect: "0" & Not Protect: "l" \\
\hline
\end{tabular}

The Pass/Fail status in I/O 1 is only valid when the device is in the Ready state. The device will always indicate a Pass status while in the Busy state at Read mode.

Application example with multiple devices is shown in Figure 5 below.

TL/D/11915-33
FIGURE 5. Status Read Timing Application Example
Note: If the \(\mathrm{R} / \overline{\mathrm{B}}\) pin signals of multiple devices are common-wired as shown in the diagram, the status Read function can be used to determine the status of each individually selected device.

\section*{Device Operation (Continued)}

\section*{AUTO PAGE PROGRAM}

The NM29N16S/R implements the automatic page program operation by receiving a "10H" program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detail timing chart).

TL/D/11915-34

The data is transferred (programmed) from the register to the selected page at the rising edge of WE following the " 10 H " command input. The programmed data is transferred back to the register after programming to be automatically verified by the device. If the program does not succeed, the above program/. verity operation is repeated by the device until success or the maximum loop number set in the device.

TL/D/11915-35
If the device failed, the bit by bit pass/fail result can be verified by the following sequence:

THE VERIFICATION RESULT IS OUTPUT BY BIT UNIT \(\left(\begin{array}{l}\text { PASS: } \\ \text { FAIL: } \\ \text { ' } 1 '\end{array}\right)\)

TL/D/11915-36
FIGURE 6. Auto Page Program

\section*{AUTO BLOCK ERASE/AUTO MULTI-BLOCK ERASE}

The block erase operation starts with the rising edge of \(\overline{\mathrm{WE}}\) after the erase execution command "DOH" which follows the erase setup command " 60 H ". This two cycle process for erase operations acts as an extra layer protection from accidental erasure of data due to possible external noise issues. The device automatically executes the erase and verify operations.
Multiple blocks can be simultaneously erased by inputting the " 60 H " setup command and the block address for all desired blocks before issuing the "DOH" command to start the erase operation. The length of the erase busy period will depend upon the number of blocks. The command sequence is shown as follows:

FIGURE 7. Auto Block Erase Operation

\section*{Device Operation (continued)}

\section*{AUTO MULTI BLOCK ERASE}

TL/D/11915-38
Busy duration will be approximately (erase time + verity time) calculated as, \(\mathrm{t}_{\text {MBERASE }}=6 \mathrm{~ms}+15 \mu \mathrm{~s} \times\) Erase block number

TL/D/11915-39
FIGURE 8. Auto Block/Auto Multı Block Erase Operation

\section*{SUSPEND/RESUME ERASE OPERATION}

Because a multi-block erase operation can keep the device in a busy state for an extended period of time, the NM29N16S/R has the ability to suspend the erase operation to allow program or read operations to be performed on the device. The block diagram and command sequence on this operation are shown as below. (Refer to the detail timing chart).

TL/D/11915-40
FIGURE 9. Suspend/Resume Erase Operation
The BO...DO suspend/resume cycle can be repeated up to 20 times during a multi-block erase operation. After the resume command input, the erase operation continues from the point at which it left off and does not have to restart.

\section*{Device Operation (Continued)}

\section*{RESET}

The reset mode compulsorily stops all operations. For example; in the case of a program or erase operation, the regulated voltage is discharged to OV and the device will go to a wait state. The address and data register are set as follows after a reset:
- Address Register: All "0"
- Data Register: " All " 1 "
- Operation Mode: Wait State

The response after "FFH" reset command input during each operation is as follows:
- In the case that reset (FFH) command is input during programming:

FIGURE 10. Reset During Programming
- In the case that reset (FFH) command is input during erasing:

TL/D/11915-42
FIGURE 11. Reset During Erasing
- In the case that reset (FFH) command is input during read operation:

TL/D/11915-43
FIGURE 12. Reset During Read
- In the case that reset (FFH) command is input during suspend:

FIGURE 13. Reset During Suspend

\section*{Device Operation (Continued)}
- In the case that the status read command \((70 \mathrm{H})\) is input after reset:

FIGURE 14. Read After Reset
- However the following operation is prohibited. If the following operation is executed, set up for address and data register can not be guaranteed.

FIGURE 15. Prohibited Reset
- In the case that the reset command is input in succession:

TL/D/11915-47
FIGURE 16. Consecutive Resets

\section*{ID READ}

The NM29N16S/R contains an ID code to identify the device type and the manufacturer. The ID codes are read out using the following timing conditions:

TABLE VI. Code Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(1 / 08\) & \(1 / 07\) & \(1 / 06\) & \(1 / 05\) & \(1 / 04\) & \(1 / 03\) & I/O2 & I/O1 & Hex Data \\
\hline Maker Code & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \(8 F H\) \\
\hline Device Code & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 64 H \\
\hline
\end{tabular}

Refer to the timing specifications for the access time of tread, tcR, \(t_{\text {AR2 }}\)

\section*{Timing Diagrams}

Latch Timing Chart for Command/Address/Data

TL/D/11915-7

TL/D/11915-8

Serial Read Cycle

Timing Diagrams (Continued)

Address Input Cycle

TL/D/11915-9

Data Input Cycle

Timing Diagrams (Continued)

Status Read Cycle

TL/D/11915-11

Read Cycle (1)

Timing Diagrams (Continued)

Read Cycle (1): Terminated by \(\overline{C E}\)

TL/D/11915-13

Read Cycle (2)

Timing Diagrams (Continued)

Sequential Read Timing

TL/D/11915-15

TL/D/11915-16

Timing Diagrams (Continued)

Auto Program and Register Read

(a): Continued

Timing Diagrams (Continued)

TL./D/11915-19

Timing Diagrams (Continued)
Auto Multi Block Erase Timing

TL/D/11915-20

TL/D/11915-21
(a): Continued

Timing Diagrams (Continued)

TL/D/11915-24

Register Read Cycle

TL/D/11915-25

\section*{Supplementary Device Operation}

\section*{(1) PROHIBITION OF UNSPECIFIED COMMANDS}

The operation commands are listed in Table III. Data input as a command other than the specified commands in Table III is prohibited. Stored data may be corrupted if an unspeclfied command is entered during the command cycle.
(2) POINTER CONTROL FOR " 00 H ", " 50 H "

The NM29N16S/R has two read modes to set the destination of the pointer in either the maln memory area of a page or the redundancy area. The pointer can be designated at any location between 0 and 25 E in read mode (1) and between 256 and 263 in read mode (2). Figure 17 shows the block diagram of their operations.

FIGURE 17. Pointer Control
The pointer is set to region " \(A\) " by the " \(00 H\) " command and to region " \(B\) " by the " \(50 H\) " command.
(Example)
The " 00 H " command needs to be input to set the pointer back to region " A " when the pointer exists in region " B ".

TL/D/11915-50
FIGURE 18. Example for Pointer Set

\section*{(3) ACCEPTABLE COMMANDS AFTER SERIAL INPUT COMMAND OF " 80 H "}

Once the serial input command (" 80 H ") is input, do not input any command other than the program execution command (" 10 H ") or the reset command ("FFH") during programming.

TL/D/11915-51
FIGURE 19. Reset After Serial Input
If a command other than " 10 H " or " FFH " is input, the program operation is not performed.

\section*{Supplementary Device Operation (Continued)}

\section*{(4) STATUS READ DURING READ OPERATION}

TL/D/11915-53
The device status can be read out by inputting the status read command " 70 H " during the read mode. Once the device is set to the status read mode after the " 70 H " command input, the device does not return to the read mode. Therefore, the status read during the read operation is prohibited. However, when the read command " \(00 \mathrm{H}^{\prime}\) " is input during [A], the status mode is reset, then the device returns to the read mode. In this case, the data output starts from N address without address input.
(5) SUSPEND COMMAND "BOH"

The following issues need to be observed when the device is interrupted by a " BOH " command during block erasing.

TL/D/11915-54
Although the device status changes from busy to ready after "BOH" is input, the following two cases cannot be recognized.
— After a "BOH" command input, Busy \(\rightarrow\) Ready
— After an erase operation is finished with "DOH', Busy \(\rightarrow\) Ready
Therefore, the device status needs to be checked to see whether or not the "BOH" command has been accepted by issuing a
" 70 H " command after the device goes to ready.
The device responds as follows when a "DOH" command (Resume) is input instead of "70H".
— " BOH " has been accepted : Erase operation is executed. (The device is busy.)
- "BOH" has not been accepted. (Erase operation has been completed) : "DOH" command cannot be accepted. (The device is in ready.)
Each case above is confirmed by monitoring the \(R / \bar{B}\) signal.
(6) PROGRAM FAIL

\section*{FIGURE 20. Program Fail}

When the programming result for the page address \(M\) is "Fail", do not try to program the page to address \(N\) in another block. Because the previous input data is lost, the same sequence of " 80 H " command, address and data input is necessary.

\section*{Supplementary Device Operation (Continued)}

\section*{(7) DATA TRANSFER}

The data in page Address \(M\) cannot be automatically transferred to page address \(N\). If the following sequence is executed, the data will be inverted (i.e., " 1 " data will become " 0 " and " 0 " will become " 1 ").

FIGURE 21. Page to Page Transfer
(8) BLOCK ERASE AFTER SUSPEND COMMAND "BOH"

TL/D/11915-57
A block erase command is prohibited when the device has been suspended by inputting "BOH" during a block erase or multiblock erase operation. Only a program or read operation is allowed during this erase suspend interruption.
(9) INTERRUPTION OF AN ERASING BLOCK

After a "BOH" command input, neither a program nor a read operation is allowed for the accessed block which is currently in an erase operation.

TL/D/11915-58

\section*{(10) ADDRESSING FOR PROGRAM OPERATION}

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block (i.e., Row 16 must be programmed before row 15, etc.). Random page address input is prohibited. Programming must be executed in order from the NAND cell transistor closest to ground to the one closest to the bit line. Refer to the diagram below.

TL/D/11915-59
Correspondence of internal and external address
NAND address \(\rightarrow A_{8}-A_{11}\left\{\begin{array}{c}000: ~ R 16 \\ \downarrow \\ 111: ~ R 1\end{array}\right.\)
FIGURE 22. Page Program In Order within a Block
The order of the external address from \(A_{8}\) to \(A_{11}\) corresponds to the device internal page address from R16 to R1.

\section*{Supplementary Device Operation (Continued)}
(11) R/B: TERMINATION FOR THE READY/BUSY PIN (R/信)

A pull-up resistor needs to be used for termination because the R/佼 buffer consists of an open drain circuit.

TL/D/11915-63
FIGURE 23. Ready/Busy Pin Termination

\section*{(12) STATUS AFTER POWER ON}

Although the device is set to read mode after power-up, the following sequence is recommended because each input signal may not be stable at power on.
- Operation mode : Read mode (1)
- Address register : All "0"
- Data register : Indeterminacy
- High voltage generation circuit : Off state

Recommended sequence

TL/D/11915-64

\section*{(13) POWER ON/OFF SEQUENCE}

The \(\overline{W P}\) signal is useful for protecting against data corruption at power on/off. The following timing is recommended:

FIGURE 24. NM29N16 Power On/Off Sequence

\section*{Supplementary Device Operation (Conitinuad)}
(14) NOTIFICATION FOR \(\overline{W P}\) SIGNAL

The erase and program operations are reset when WP goes low. The following conditions must be recognized:

\section*{Program}

TL/D/11915-66

\section*{Erase}

TL/D/11915-68

In the case that \(\overline{W P}\) goes high during erase/program operation

The previous operation is reset even when \(\overline{W P}\) returns to high level and the device waits for the next command. The same loading sequence as after the reset command is needed to restart the operation.

\section*{Supplementary Device Operation (Continued)}
(15) IN THE CASE THAT 4 ADDRESS CYCLES ARE INPUT

Although the device may acquire the fourth address, it is ignored inside the chip.
At Read operation:

TL/D/11915-71
FIGURE 25
At programming operation:

TL/D/11915-72
FIGURE 26
(16) DIVIDED PROGRAM IN THE SAME PAGE (PARTIAL PAGE PROGRAM)

The device allows a page to be divided typically into 10 segments and to program each page segment selectively as follows:
the first programming

THE SECOND PROGRAMMING
 DATA PATTERN 2

\section*{Supplementary Device Operation (Continued)}

\section*{(17) BAD BLOCK IDENTIFICATION}

The NM29N16 may contain unusable blocks. To simplify identification, usable or good blocks leave the factory in the erased state. On initial power up (after board assembly), reading all the bytes in a usable block will result in FFH being read out. Unusable or bad blocks will read out some data other than FFH. These blocks should be mapped out of the system and not used. The valid number of blocks is as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline & Min & Typ & Max & Unit \\
\hline Number of good blocks & 502 & 508 & 512 & Block \\
\hline
\end{tabular}

TL/D/11915-83

C: Checkboard Pattern, AAH
C: Inverse Checkerboard Pattern, 55H
Blank Check: Usable blocks will read out 'FFH' for all bytes in block

FIGURE 37. Identification of Bad Blocks at Initial Power Up

\section*{Supplementary Device Operation (Continued)}
(18) ERROR IN PROGRAM OR ERASE OPERATION (FAIL AT STATUS READ)

The device may fail during a program or erase operation due to exceeding write/erase cycle limits, for example. The following system architecture will enable high system reliability if a failure occurs:

\section*{Program}

When the error happens in Block A, try to reprogram the data into another Block B by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a "bad block" table or other appropriate scheme).

\section*{Erase}

When the error oocurs after an erase operation, prevent future accesses to this bad block (again by creating a table within the system or other appropriate scheme).

\section*{NM29A040}

\section*{4-Mbit CMOS Serial FLASH E²PROM}

\section*{General Description}

The NM29A040 is a 4-Mbit Flash memory designed with a MICROWIRETM serial interface. All of the features of the device are designed to provide the most cost effective solution for applications requiring low bandwidth file storage. Examples of these applications include digital answering machines and personal digital recorders (digital audio) or FAX and digital scanners (digital imaging). The Serial Flash requires only a single 5 V power supply, has a small erase block size (4 kbytes) and a low EMI serial interface.
The NM29A040 has been designed to work seamlessly with National's CompactRISCTM family (e.g. NSAM266). In this manner National is able to provide the complete system solution to digital audio recording (processor, CODEC, Flash memory, software) or digital imaging.

\section*{Features}
- Single \(5 \mathrm{~V} \pm 10 \%\) power supply
- 4 kbyte erase block
- Organized as 128 Blocks per 4-Mbit Device
- 128 pages per block
- 32 bytes per page (256 bits)
- MICROWIRETM compatible interface
- Low operating current (typical)
-5 mA read current
- 15 mA write current
- 10 mA erase current
\(-5 \mu \mathrm{~A}\) standby current
- Target 100k write/erase cycle endurance - Offered in PLCC and SOIC packages

Block Diagram

TL/D/12475-1

\section*{Connection Diagrams}

TL/D/12475-2
NS Package Number V28A

Small Outline Package (M)

NS Package Number MA28A

Pin Assignments
\begin{tabular}{|l|l|}
\hline DO & Serial Data Output \\
\hline DI & Serial Data Input \\
\hline SK & Serial Data Clock \\
\hline\(\overline{C S}\) & Chip Select \\
\hline NC & No Connection \\
\hline
\end{tabular}

\section*{Ordering Information}

Commercial Temperature Range \(\left(0^{\circ} \mathrm{C}\right.\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM29A040V \\
NM29A040M \\
\hline
\end{tabular}

Extended Temp. Range \(\left(-40^{\circ} \mathrm{C}\right.\) to \(+85^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM29A040EV \\
NM29A040EM \\
\hline
\end{tabular}

\section*{Pin Functions}

\section*{SERIAL DATA INPUT: DI}

The DI pin is used for transferring in commands and data. Data is latched on the rising edge of SK.

\section*{SERIAL DATA OUT: DO}

The DO pin is used for transferring out status and data. Data output will change following the falling edge of SK.

\section*{CHIP SELECT: \(\overline{C S}\)}

This signal indicates which device is selected. When this signal is inactive the device ignores SK. This signal can be tied to ground when there is only one Serial Flash device. The \(\overline{C S}\) pin may be pulled high to reset the device.

\section*{SERIAL DATA CLOCK: SK}

This is the standard synchronous MICROWIRE clock which determines the rate of data transfer. On each toggle, one data bit is shifted into or out of the Serial Flash.

\section*{System Concepts}

The NM29A040 is a 4-Mbit NAND Flash designed to provide the most cost effective solution for file storage applications. These applications include digital audio recording, digital image storage and data logging applications.
For digital audio storage, the NM29A040 has been matched with National's NSAM266 voice processor. Applications that can benefit from this combination include digital answering machines, personal digital recorders, pagers and voicemail systems. When combined with National Semiconductor's CompactSPEECHTM embedded software and the NSAM266 processor, customers can quickly bring to market systems capable of recording up to 15 minutes of audio on
a single 4 Mb device. Multiple NM29A040's can be used to extend the record time.
Digital imaging applications include FAX machines, handheld scanners and digital cameras. Combining the NM29A040 with the CompactRISC family of embedded processors can enable complete solutions for image storage.
Data logging applications can take advantage of the NM29A040's simple interface and nonvolatility to allow simple 8-bit microcontroller based systems to have access to over 4 Mb of storage. The nonvolatility ensures data integrity in remote, battery powered applications.

TL/D/12475-4
FIGURE 1. Digital Audlo Recording Solution
TABLE I. Data Transfer Rates
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Transfer Rates } & \multicolumn{2}{c|}{ Total Time } \\
\cline { 2 - 5 } & Page & Block & Page & Block \\
\hline Read & \begin{tabular}{c}
\(1.02 \mathrm{Mbits} / \mathrm{s}\) \\
\((127.5 \mathrm{kbytes} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c}
\(2.61 \mathrm{Mbits} / \mathrm{s}\) \\
\((325.8 \mathrm{kbytes} / \mathrm{s})\)
\end{tabular} & \(251 \mu \mathrm{~s}\) & 12.6 ms \\
\hline Write & \begin{tabular}{c}
\(406.3 \mathrm{kbits} / \mathrm{s}\) \\
\((50.8 \mathrm{kbytes} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c}
\(536.4 \mathrm{kbits} / \mathrm{s}\) \\
\((67.1 \mathrm{kbytes} / \mathrm{s})\)
\end{tabular} & \(630 \mu \mathrm{~s}\) & 61.1 ms \\
\hline Erase & - & - & - & 6 ms \\
\hline
\end{tabular}

\section*{Device Operation}

The basic functions required for storing messages or images on the NM29A040 are Page Read, Page Write, and Block Erase. These functions can be implemented by combining the different instructions for the NM29A040 in the following sequences.

\section*{PAGE READ}

Page Read will read out the 32 bytes of a page for the specified address. To continue reading the page at the next address, an Increment command (90H) can be issued. In this way the system can avoid repeatedly using the three byte Set-Address command. The Increment command is then followed by the Read command and proceeds in the same manner as shown in Figure 2.

FIGURE 2. Page Read Sequence

\section*{PAGE WRITE}

Page Write sequence will write up to 32 bytes into a specified page. Like the Page Read sequence, the Increment command can be used to quickly set the address to the next page for writing data sequentially into a block.

TL.D/12475-6
FIGURE 3. Page Write Sequence

TL/D/12475-5

\section*{Device Operation (Continued)}

\section*{BLOCK ERASE}

The Block Erase sequence erases a specified block (4 kB) of data. Flash memory devices require that a block be in an erased state prior to writing to a memory cell. In this manner, a block must be erased prior to the recording of any messages or storage of any images.

TL/D/12475-7
FIGURE 4. Block Erase Sequence

\section*{Functional Description}

ORGANIZATION
The NM29A040 is a 4-Mbit device organized as 128 blocks of 128 pages. A block is the smallest unit that can be erased and is 4 kbytes in size. Within a block are 16 master pages, each 256 bytes long. A master page is further segmented into 8 pages with each page being 32 bytes long. Read and write operations always operate on a page at a time.

TL/D/12475-8
FIGURE 5. Array Organization

TL/D/12475-9
FIGURE 6. Block Organization

\section*{WRITE ONCE BLOCK}

The NM29A040 contains 127 blocks (blocks 0 thru block 126) which are fully accessible to the user for reading, writing and erasing. The final block, number 127, has been set aslde as a write once block. The pages in this block may only be written to once. Once the data is written, it may not be erased. In this manner, block 127 may be used for storing system configuration information that cannot be lost.

\section*{Instruction Set}

The NM29A040 has 12 instructions which are described in Table II. All instructions are one byte long and specified in the following manner:

TL/D/12475-10
FIGURE 7. Command Byte
The MSB is always a " 1 " and is considered the start bit. The next 4 bits are the instruction opcode. These instruction opcodes are listed in Table II. The final 3 bits are reserved and must always be " 0 ". Data input of a command other than those listed in Table II is prohibited. Data may be corrupted if unspecified commands are used.

TABLE II. Instruction Set
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Instruction } & \begin{tabular}{c}
Start \\
Blt
\end{tabular} & Opcode & Reserved & \begin{tabular}{c}
Hex \\
Command
\end{tabular} \\
\hline Get-Status & \(\mathbf{1}\) & 0000 & 000 & 80 H \\
\hline Set-Address & \(\mathbf{1}\) & 0001 & 000 & 88 H \\
\hline Increment & \(\mathbf{1}\) & 0010 & 000 & 90 H \\
\hline Read & \(\mathbf{1}\) & 0011 & 000 & 98 H \\
\hline Write & \(\mathbf{1}\) & 0100 & 000 & AOH \\
\hline Erase & \(\mathbf{1}\) & 0101 & 000 & A8H \\
\hline Data-Shift-In & \(\mathbf{1}\) & 0110 & 000 & BOH \\
\hline Data-Shift-Out & \(\mathbf{1}\) & 0111 & 000 & B8H \\
\hline Write Enable & \(\mathbf{1}\) & 1100 & 000 & EOH \\
\hline Write Disable & \(\mathbf{1}\) & 1101 & 000 & E8H \\
\hline Write Last Block & \(\mathbf{1}\) & 1110 & 000 & FOH \\
\hline Read Last Block & \(\mathbf{1}\) & 1010 & 000 & DOH \\
\hline
\end{tabular}

\section*{GET-STATUS}

The Get-Status command allows the user to determine the status of the NM29A040. It may be issued whether the device is busy or not. The output is a status byte which indicates the internal state of the Serial Flash. The output byte is defined as:

TL/D/12475-11
FIGURE 8. Get-Status Byte
Bit 7 of the status byte tells whether the device is busy performing an operation (write, erase, etc.) or is ready for a new command. Bit 6 tells if an operation just completed was performed successfully. Bit 5 tells if the device is in a write enabled or disabled mode. The remaining bits are reserved for future use and may appear as any value (" 1 " or " 0 ").

Bit 7 of the status byte tells whether the device is busy performing an operation (write, erase, etc.) or is ready for a new command. Bit 6 tells if an operation just completed was performed successfully. Bit 5 tells if the device is in a write enabled or disabled mode. The remaining bits are reserved for future use and may appear as any value (" 1 " or " 0 ").

TL/D/12475-12

\section*{FIGURE 9. Get-Status Sequence}

\section*{SET-ADDRESS}

The Set-Address command defines which page and block of the memory is affected by an operation. The Set-Address command is followed by two bytes, the first indicating the block number and the second indicating the page number. The block number chooses one of the 127 blocks while the page number chooses one of the 128 pages within the given block. The Set-Address command is usually followed by a Read, Write, or Data-Shift-In command. Between the page address byte and the next command there is a delay of \({ }^{\text {t }}\) SADD. The address that is selected remains the active address until a new Set-Address or Increment command is given.

\section*{INCREMENT}

The increment command automatically increments the selected page address. When the Increment command is given after the last page in a block has been read, the address will roll over to the first page in the following block. When the last page in Block 126 is read out followed by an Increment command, the new address is indeterminate.

FIGURE 10. Increment Sequence

\section*{READ}

The Read command transfers data from the selected page of the memory array into the on-chip buffer. To read the data out through DO, the Read command is followed by the two byte Data-Shift-Out command. There is a delay of \(t_{R}\) between the Read command and the Data-Shift-Out command as the data is transferred from the array to the on-chip buffer. During \(t_{\mathrm{R}}\) the status byte will indicate that the part is busy.

\section*{WRITE}

The Write command programs data from the on-chip buffer into a page in the memory array for the currently selected address. A security code 55 H follows the Write command to ensure against accidental Writes. Get-Status may be used to ensure that the operation was successful. The Write command will be ignored if Write-Enable has not been set.

\section*{Instruction Set (Continued)}

\section*{ERASE}

The Erase command erases a single block. The Erase command is followed by a single byte telling which block to erase. In this manner, no Set-Address sequence is required to erase a block. Following the block address byte is a single byte security code, 55 H , that is used to prevent inadvertent erasure. Get-Status may be used to check if the operation was completed successfully.

\section*{DATA-SHIFT-IN}

The Data-Shift-In command is used to send data into the on-chip buffer. The number of bits sent into the buffer is determined by an 8 -bit argument following the command. The argument is always 1 less than the actual number of bits to shift in. For example, to shift in all 32 bytes (256 bits), the argument would be FFH (255). To shift in just the first 4 bytes (32 bits), the argument would be 1FH (31). Following the argument, the data is shifted in through DI. Data-Shift-In may come before or after the Set-Address sequence when performing a page write operation.

\section*{DATA-SHIFT-OUT}

The Data-Shift-Out command is used to shift data out of the on-chip buffer through DO. The number of bits sent out is determined by an 8 -bit argument following the command. The argument is always 1 less than the actual number of bits to shift out. For example, to shift out all 32 bytes (256 bits), the argument would be FFH (255). To shift out the first 2 bytes (16 bits), the argument would be OFH (15). Following the argument, the data is shifted out through DO.

\section*{WRITE ENABLE}

The Write Enable command is used as a security check against inadvertant writes or erases to the device. When this command is issued, any subsequent Write or Erase commands proceed in the normal fashion. If the Write Enable command is not given or the device is in the Write Disable mode then a write to any page or erase to any block will not be allowed. Use the Get-Status command to determine whether the device currently is in the Write Enabled or Disabled mode. The NM29A040 will always power up in the Write Disable mode.

\section*{WRITE DISABLE}

The Write Disable command is used to prevent inadvertant writes or erases. Once this command is executed, all subsequent Write or Erase commands will not be accepted.

\section*{READ LAST BLOCK}

The Read Last Block command is used to read the contents of block 127. The Read Last Block operation procedes like a normal read operation except that the block number is ignored in the Set-Address sequence. The block address is automatically set to block 127. The Set Address command. is still necessary to set the page to be read.

\section*{WRITE LAST BLOCK}

The Write Last Block command writes in a page of data to the currently selected page of Block 127. A Set-Address sequence and Data-Shift-In sequence must precede the Write Last Block command. Once the information has been written into the memory array, it may not be erased.

Notifications

\section*{(1) Interruption by \(\overline{\mathbf{C S}}\) Going High}

When the NM29A040 begins reading a page from-the array (\(t_{R}\)), writing a page to the array (tPROG), or erasing a block (tberase), the operation will complete regardless of the state of CS. The CS pin may go high during these operations. If CS is held low during these operations the DO pin will reflect the state of the operation with a low state (busy) while the operation is being executed. When the operation is completed, DO will pull high to reflect the ready state.
(2) Device Reset

The NM29A040 is reset whenever CS changes from low to high. The command register will be cleared at this point. As long as the device is powered, the data register will continue to hold whatever data is in the register. To clear the data register, use the Data-Shift-In command and shift in 33 bytes of " 00 H ". The state of CS does not affect on-going operations as described in Notification (1).

\section*{(3) Wrlte Disable at Power-Up}

On power-up, the NM29A040 is set in the write disable mode. This prevents any spurious writes to the device. To enable writes or erases, the Write Enable (EOH) command must be given.
(4) Multiple Programs to a Page

It is possible to program a page more than one time between block erases. Bétween block erases a bit (cell) may only be programmed once. After a block is erased, all bytes will read as "FFH". When less than 32 bytes need to be programmed into a page, the remaining bytes may be masked by writing "FFH" to those locations. In this way the cells are not changed from their erased states. Later, these bytes can be programmed with the desired data. It is suggested that the number of writes to a page between block erasses be held to as few as possible.
\begin{tabular}{c|c|c|c|}
& \multicolumn{2}{c}{ Byte 0-7 } & Byte 8-15 \\
1st & Byte 16-23 & Byte 24-31 \\
Program & Data & FFH & FFH \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c|c|}
& \multicolumn{1}{c}{ Byte 0-7 } & Byte 8-15 & Byte 16-23 & Byte 24-31 \\
\begin{tabular}{|c|c|c|}
2nd \\
Program & FFH & Data \\
\hline
\end{tabular} & FFH & FFH \\
\hline
\end{tabular}

FIGURE 11. Multiple Page Program

\section*{(5) Identification of Unusable Blocks}

The NM29A040 may contain unusable blocks. These unusable blocks are due to bit errors in the block. An unusable block will not affect adjacent blocks. The location of these blocks may be found pre-programmed in Block 127. Each page in Block 127 corresponds to a block in the array at a similar address. For example, Page 3 in Block 127 corresponds to Block 3. If Block 3
is a usable block, then all bytes in Page 3 of Block 127 will read out "FFH". If Block 3 is an unusable block, then some of the bytes in Page 3 of Block 127 will read out data other than "FFH". For customers using the NM29A040 with the NSAM266 speech processor, the embedded CompactSPEECH embedded software automatically locates the unusable blocks and works around these locations when performing Read, Write and Erase operations.

Absolute Maximum Ratings
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
\begin{tabular}{|c|c|}
\hline Supply (\(\mathrm{V}_{\mathrm{CC}}\)) & -0.6 V to 7.0 V \\
\hline Input Voltage (VIN) & -0.6 V to 7.0 V \\
\hline Input/Output Voltage (\(\mathrm{V}_{1 / \mathrm{O}}\)) \(\quad-0.6 \mathrm{~V}\) & \(\mathrm{V}_{C C} \pm 0.5 \mathrm{~V}(\leq 7 \mathrm{~V})\) \\
\hline Power Dissipation (PD) & 300 mW \\
\hline Soldering Temperature (\(\left.\mathrm{T}_{\text {solder }}, 10 \mathrm{sec}.\right)\) & \(260^{\circ} \mathrm{C}\) \\
\hline Storage Temperature (\(\mathrm{T}_{\text {stg }}\)) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating Temperature (\(\mathrm{T}_{\text {opr }}\)) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{ccccc}
& MIn & Typ & Max & Units \\
Power Supply (\(\mathrm{V}_{\mathrm{CC}}\)) & 4.50 & 5.0 & 5.50 & V
\end{tabular}

\section*{DC Operating Characteristics \(\left(T_{A}=0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right)\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{ILI}^{\text {l }}\) & Input Leakage Current & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}-\mathrm{V}_{\mathrm{CC}}\) & & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline Lo & Output Leakage Current & \(\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}-\mathrm{V}_{\text {CC }}\) & & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline ICC01 & Operating Current Data Input/Output & \(\mathrm{t}_{\text {CYCLE }}=500 \mathrm{~ns}\) & & 5 & 20 & mA \\
\hline ICC02 & Programming Current & & & 15 & 60 & mA \\
\hline ICC03 & Erasing Current & & & 10 & 40 & mA \\
\hline l CCS1 & Standby Current & \(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}\) & & 120 & 500 & \(\mu \mathrm{A}\) \\
\hline ICCS2 & Standby Current & \(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\) & & 5 & 50 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \(\mathrm{IOH}=-400 \mu \mathrm{~A}\) & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \(\mathrm{IOL}=2.1 \mathrm{~mA}\) & & & 0.4 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & & 2.0 & & \(\mathrm{V}_{\mathrm{CC}}+0.5\) & V \\
\hline \(V_{\text {IL }}\) & Low Level Input Voltage & & \(-0.3^{*}\) & & 0.8 & V \\
\hline
\end{tabular}
- -2V (Pulse width \(\leq 20 \mathrm{~ns}\))

AC Electrical Characteristics (\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{f}_{\mathbf{S K}}\) & SK Clock Frequency & & 0 & & 4 & MHz \\
\hline \(\mathrm{t}_{\text {SKH }}\) & SK High Time & & 125 & & & ns \\
\hline \(\mathrm{t}_{\text {SKL }}\) & SK Low Time & & 125 & & & ns \\
\hline tsks & SK Setup Time & Relative to \(\overline{\mathrm{CS}}\) Falling Edge & 50 & & & ns \\
\hline \(t_{C S}\) & Minimum \(\overline{\text { CS }}\) High Time & & 250 & & & ns \\
\hline tcss & \(\overline{\mathrm{CS}}\) Setup Time & Relative to SK Rising Edge & 100 & & & ns \\
\hline \(t_{\text {DIS }}\) & DI Setup Time & Relative to SK Rising Edge & 50 & & & ns \\
\hline \({ }_{\text {c }}\) CH & \(\overline{\text { CS Hold Time }}\) & Relative to SK Falling Edge & 50 & & & ns \\
\hline \(t_{\text {DIH }}\) & DI Hold Time & Relative to SK Rising Edge & 20 & & & ns \\
\hline tDF & \(\overline{\mathrm{CS}}\) to DO in TRI-STATE \({ }^{\text {® }}\) & AC Test & & & 100 & ns \\
\hline \(\mathrm{t}_{\mathrm{DH}}\) & DO Hold Time & Relative to SK Falling Edge & 0 & & & ns \\
\hline \(t_{\text {PD }}\) & Output Delay & Relative to SK Falling Edge & & & 100 & ns \\
\hline \(t_{\text {SADD }}\) & Set Address Time & AC Test & & & 150 & \(\mu \mathrm{S}\) \\
\hline tPROG & Page Program Time & & & 400 & 5000 & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {beRASE }}\) & Block Erase Time & & & 6 & 100 & ms \\
\hline \(t_{\text {R }}\) & Page Read Transfer Time & & & 9 & 25 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Number of Valid Blocks}

The NM29A040 may contain unusable blocks. These unusable blocks should not be used to store data. Notification (5) describes how to identify unusable blocks.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Symbol & Parameter & Min & Typ & Max & Units \\
\hline NVB & Number of Valid Blocks(1) & 117 & TBD & \(127(2)\) & Block \\
\hline
\end{tabular}

Note 1: A valid block is a block having all 4096 bytes usable. An unusable block is a block in which one bit is unusable.
Note 2: Not including Block 127.

\section*{Timing Diagrams}

Note: To avoid putting the device in an unknown state, DI should be held low when not clocking in data/commands.

\section*{Set Address Timing}

Note: \(\overline{C S}\) may pull high during \(t_{S A D D}, t_{R}, t_{\text {PROG }}\), and \(t_{\text {BERASE }}\). However, DO will only reflect the status (ready/busy) while \(\overline{C S}\) is low.

Timing Diagrams (Continued)

Read Timing

Write Timing

Erase Timing

\section*{NM28C64/C64L/C64A}

64k (8k x 8) Parallel Extended Voltage Range CMOS EEPROM

\section*{General Description}

The NM28C64/C64L/C64A are fast, single-power supply CMOS EEPROM organized as 8 k by 8 bits. Both READ and WRITE modes function over the full \(\mathrm{V}_{\mathrm{CC}}\) range of \(2.7 \mathrm{~V}-\) 5.5 V .

In-system programming of the part requires only a simple interface. On-chip address and data latches, self-timed write cycle with auto-clear and \(V_{C C}\) power-up/down protection eliminate the need for extemal timing and protection hardware.
\(\overline{\text { DATA }}\) and Toggle-Bit Polling and a RDY/ \(\overline{B U S Y}\) pin provide a convenient means for determining the beginning and end of the internal self-timed WRITE cycle.
Both internal hardware and software WRITE protection are provided. Page organization permits the loading of from one to 32 bytes into a data register, the entire page is programmed at one time in 10 ms .

\section*{Features}
- Voltage Supply
- Full Read and Write operation
- C64: 4.5 V to 5.5 V
- C64L: 2.7V to 3.6 V
- C64A: 2.7V to 5.5 V
- Low Power Dissipation
- 8 mA Active Current
\(-50 \mu \mathrm{~A}\) CMOS Standby Current
- Read Access Time
-200 ns at 2.7 V
-120 ns at 4.5 V
- 32 Byte Page Write
- End of Write Detection
- DATA Polling on \(1 / \mathrm{O}_{7}\)
- Toggle Bit Polling on \(1 / O_{6}\)
- READY/BUSY Open Drain Output
- Hardware Data Protection
- High Reliability CMOS Technology
— Endurance 100,000 Cycles
- Data Retention: 10 years
- Low Voltage CMOS and TTL Compatible inputs and Outputs
- JEDEC Standard Byte-Wide Pinout
- Commercial and Industrial Temperature Ranges

\section*{Block Diagram}

TL/D/12398-1

\section*{Pin Configurations}

TSOP (T) Package Type I

Top View

\section*{Ordering Information}
\begin{tabular}{|rll|}
\hline Commercial Temperature Range \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) \\
\hline Order Number & \(: 4.5 \mathrm{~V}-5.5 \mathrm{~V}\) \\
\hline NM28C64N28 & \\
\hline NM28C64T28 & \\
\hline
\end{tabular}

Extended Temperature Range \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|ccc|}
\hline & Order Number & 4.5V-5.5V \\
\hline\(\vdots\) & NM28C64EN28 \\
& NM28C64ET28 \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline & Order Number \\
\hline NM28C64LN28 & \\
\hline NM28C64LT28 & \\
\hline
\end{tabular}
\begin{tabular}{|ccc|}
\hline & Order Number & 2.7V-3.6V \\
\hline\(\cdots\) & NM28C64LEN28 & \\
& & NM28C64LET28
\end{tabular}
\begin{tabular}{|lll|}
\hline Order Number & \(2.7 V-5.5 V\) \\
\hline NM28C64AN28 & \\
NM28C64AT28 & \\
\hline
\end{tabular}
\begin{tabular}{|ccc|}
\hline & Order Number & 2.7V-5.5V \\
\hline & NM28C64AEN28 & \\
& NM28C64AET28 & \\
\hline
\end{tabular}

\section*{Functional Description \\ DEVICE OPERATION}

\section*{Read Mode}

Data are transferred from the addressed memory location to the external data bus when WE is held HIGH, \(\overline{O E}\) is held LOW, and CE is held LOW. The 2 -line control architecture of the \(\overline{O E}\) and \(\overline{C E}\) pins eliminates bus contention in a system environment. When either the \(\overline{\mathrm{OE}}\) or \(\overline{\mathrm{CE}}\) lines are set HIGH, the NM28C64A releases the data bus:

\section*{Write Mode}

A write cycle is initiated when both the \(\overline{W E}\) and \(\overline{C E}\) lines are LOW and \(\overline{\mathrm{OE}}\) is HIGH. The address is latched on the falling edge of either \(\overline{W E}\) or \(\overline{C E}\), whichever occurs last. The data are latched on the rising edge of either the \(\overline{W E}\) or \(\overline{C E}\), whichever occurs first. It takes approximately 10 ms for the write cycle to erase the addressed memory locations and store the new data.

\section*{Page Write}

From one to thirty-two bytes can be written to the selected page address (A5-A12) during any write operation. The page address is latched once the data-load cycle is started. The data latch loading may be intermpted in order to fetch data from another system location. However, data loading must continue again within the byte load cycle time (\(\mathrm{t}_{\mathrm{BLC}}\)), otherwise the internal programming cycle will begin. When returning to loading data into the latches, the page address is ignored because of the latched-page register.
There are no page write window limitations; the page write window can continue indefinitely as long as the tBLC MAX time is not exceeded.
The program cycle first erases data located in the addressed cells, then writes the new data into these addressed cells. A page write does not rewrite the entire page, only those locations selected during data-latch loading.

\section*{Write Abort}

During a data load cycle in preparation for programming, \(\overline{O E}\) must be held at \(V_{I H}\). If \(\overline{O E}\) is held LOW during the rising edge of \(\overline{C E}\) (\(\overline{C E}\) controlled WRITE), or \(\overline{W E}\) (\(\overline{W E}\)-controlled WRITE), the WRITE operation is aborted and the data latches are reset.

\section*{RDY/BUSY}

The RDY/EUSY pin is an open drain output that monitor the status of a write cycle. The open drain connection allows for OR-tying several devices to the same RDY/BUSY pin. This output is actively pulled LOW during the write cycle and released at the end of the cycle.
Additional methods for monitoring status and internal programming cycles are provided.

TL/D/12398-5

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Temperature Under Bias
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
All Input Voltage
(including NC pins)
with Respect to Ground \(\quad-0.6 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}\)
Lead Temperature
(Soldering, 10 seconds) \(+300^{\circ} \mathrm{C}\)

All Output Voltages with
Respect to Ground
-0.6 V to \(\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}\)
Voltage on \(\overline{O E}\) and A9
with Respect to Ground
-0.6 V to +13.5 V
ESD Rating
2000 V
Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DC and AC Operating Range}
\begin{tabular}{|l|c|c|c|c|}
\cline { 3 - 5 } \multicolumn{2}{c|}{} & NM28C64 & NM28C64L & NM28C64A \\
\hline \multirow{3}{c|}{\begin{tabular}{l}
Operating \\
Temperature (Case)
\end{tabular}} & Comm. & \(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\) \\
\hline & Indust. & \(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) Power Supply & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & \(2.7 \mathrm{~V}-5.5 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{Operating Modes}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & \(\overline{\mathrm{CE}}\) & \(\overline{\mathrm{OE}}\) & \(\overline{\mathrm{WE}}\) & \(\mathrm{I} / \mathrm{O}\) & Power & A9 \\
\hline Standby & \(\mathrm{V}_{\mathrm{IH}}\) & X & X & High Z & Standby & \\
\hline Read & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{D}_{\mathrm{OUT}}\) & Active & \\
\hline Write (\(\overline{\mathrm{WE}}\) Controlled) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(工\) & \(\mathrm{D}_{\mathrm{IN}}\) & Active & \\
\hline Write (\(\overline{\mathrm{CE}}\) Controlled) & I & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{D}_{\mathrm{IN}}\) & Active & \\
\hline Read and Write Inhibit & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & High Z & Active & \\
\hline Output Disable & X & \(\mathrm{V}_{\mathrm{IH}}\) & X & High Z & & \\
\hline Chip Erase & & \(\mathrm{V}_{\mathrm{IL}}\) & \(12 \mathrm{~V} \pm 0.5 \mathrm{~V}\) & \(工 \mathrm{~V}\) & \(\mathrm{D}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}\) & Active \\
\hline Chip ID Read & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{D}_{\mathrm{OUT}}\) & Active & \(12 \mathrm{~V} \pm 0.5 \mathrm{~V}\) \\
\hline Chip ID Write & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{D}_{\mathrm{IN}}\) & Active & \(12 \mathrm{~V} \pm 0.5 \mathrm{~V}\) \\
\hline
\end{tabular}
* \(\overline{O E}\) must be raised to 12 V prior to establishing the condition \(\overline{C E}=W E=V_{I L}\) to initiate a chip-erase cycle.

\section*{DC Characteristics}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Test Conditions & Min & Max & Units \\
\hline lil & Input Load Current & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{CC}}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline Lo & Output Leakage Current & \(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{CC}}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {SB }}\) & \(\mathrm{V}_{\mathrm{CC}}\) Standby Current CMOS & \(\overline{C E}=V_{C C}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline ICC & \(V_{\text {CC }}\) Active Current AC & \(f=5 \mathrm{MHz} ; \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} ; \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}\) & & 8.0 & mA \\
\hline \(V_{\text {IL }}\) & Input Low Voltage & & & 0.6 & \(V\) \\
\hline \(\mathrm{V}_{1 H}\) & Input High Voltage & & 2.0 & & V \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output Low Voltage & \(\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}\) & & 0.3 & V \\
\hline & & \(\mathrm{IOL}=2 \mathrm{~mA}\) for RDY/BUSY & & 0.3 & V \\
\hline \(\mathrm{VOH}^{\text {O }}\) & Output High Voltage & \(\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\) & 2.0 & & V \\
\hline
\end{tabular}

Capacitance (\(\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|l|l|c|c|c|}
\hline Symbol & Conditions & Typ & Max & Units \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) & \(\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}\) & 4 & 6 & pF \\
\hline \(\mathrm{C}_{\mathrm{VO}}\) & \(\mathrm{V}_{1 / \mathrm{O}}=\mathrm{OV}\) & 8 & 12 & pF \\
\hline
\end{tabular}

\section*{AC Read Characteristics-NM28C64}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \(V_{\text {cc }}\) & Min & Typ & Max & Units \\
\hline \(t_{\text {ACC }}\) & Address to Output Delay & 4.5V-5.5V & & & 120 & ns \\
\hline \(\mathrm{t}_{\text {CE }}\) & CE to Output Delay & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 120 & ns \\
\hline toe & \(\overline{\text { OE }}\) to Output Delay & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & 50 & ns \\
\hline \({ }^{\text {toh }}\) & Output Hold from Address Change & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & & ns \\
\hline \(t_{L Z}\) (Note 1) & CE Low to Output Active & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & & ns \\
\hline tolz (Note 1) & OE Low to Output Active & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{HZ}}\) (Notes 1, 2) & CE High to Output Float & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 50 & ns \\
\hline \(\mathrm{t}_{\mathrm{OHZ}}\) (Notes 1, 2) & OE High to Output Float & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 50 & ns \\
\hline
\end{tabular}

AC Read Characteristics-NM28C64L
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline , Symbol & Parameter & VCC & Min & Typ & Max & Units \\
\hline \(t_{\text {ACC }}\) & Address to Output Delay & 2.7V-3.6V & & & 200 & ns \\
\hline tce & \(\overline{\text { CE }}\) to Output Delay & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & & & 200 & ns \\
\hline \(\mathrm{t}_{\mathrm{OE}}\) & \(\overline{\text { OE }}\) to Output Delay & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & 0 & & 80 & ns \\
\hline \({ }^{\mathrm{O}} \mathrm{OH}\) & Output Hold from Address Change & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & 0 & & & ns \\
\hline \(t_{L Z}\) (Note 1) & \(\overline{\mathrm{CE}}\) Low to Output Active & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & 0 & & & ns \\
\hline tolz (Note 1) & OE Low to Output Active & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & 0 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{HZ}}\) (Notes 1, 2) & CE High to Output Float & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & & & 50 & ns \\
\hline \(\mathrm{t}_{\mathrm{OHz}}\) (Notes 1, 2) & \(\overline{\text { OE High to Output Float }}\) & \(2.7 \mathrm{~V}-3.6 \mathrm{~V}\) & & & 50 & ns \\
\hline
\end{tabular}

\section*{AC Read Characteristics-NM28C64A}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Vcc & Min & Typ & Max & Units \\
\hline \multirow[t]{2}{*}{\(t_{\text {ACC }}\)} & \multirow[t]{2}{*}{Address to Output Delay} & 2.7V-4.4V & & & 200 & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 120 & ns \\
\hline \multirow[t]{2}{*}{\({ }^{\text {t }}\) CE} & \multirow[t]{2}{*}{\(\overline{\mathrm{CE}}\) to Output Delay} & 2.7V-4.4V & & & 200 & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & , & & 120 & ns \\
\hline \multirow[t]{2}{*}{toe} & \multirow[t]{2}{*}{\(\overline{\text { OE to Output Delay }}\)} & 2.7V-4.4V & & & 80 & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & 50 & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{OH}}\)} & \multirow[t]{2}{*}{Output Hold from Address Change} & \(2.7 \mathrm{~V}-4.4 \mathrm{~V}\) & & & & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & & ns \\
\hline \multirow[t]{2}{*}{\(t_{L Z}(\) Note 1)} & \multirow[t]{2}{*}{\(\overline{C E}\) Low to Output Active} & 2.7V-4.4V & 0 & & & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & & ns \\
\hline \multirow[t]{2}{*}{tolz (Note 1)} & \multirow[t]{2}{*}{\(\overline{\text { OE Low to Output Active }}\)} & \(2.7 \mathrm{~V}-4.4 \mathrm{~V}\) & 0 & & & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & 0 & & & ns \\
\hline \multirow[t]{2}{*}{\(t_{H Z}\) (Notes 1, 2)} & \multirow[t]{2}{*}{\(\overline{\mathrm{CE}}\) High to Output Float} & \(2.7 \mathrm{~V}-4.4 \mathrm{~V}\) & & & 50 & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 50 & ns \\
\hline \multirow[t]{2}{*}{tohz (Notes 1, 2)} & \multirow[t]{2}{*}{\(\overline{\text { OE High to Output Float }}\)} & \(2.7 \mathrm{~V}-4.4 \mathrm{~V}\) & & & 50 & ns \\
\hline & & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & & & 50 & ns \\
\hline
\end{tabular}

Note 1: This parameter is characterized and is not 100\% tested.
Note 2: Output floating (High \(\mathbf{Z}\)) is defined as the state when the external data line is no longer driven by the output buffer.

TL/D/12398-6

\section*{AC Write Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Condition & Min & Typ & Max & Units \\
\hline \(t_{\text {Wc }}\) & Write Cycle Time & & & & 10 & ms \\
\hline \(\mathrm{t}_{\mathrm{AH}}\) & Address Hold Time & & 100 & , & & ns \\
\hline \(t_{\text {AS }}\) & Address Setup & & 10 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{CH}}\) & Write Hold Time & & 0 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{CS}}\) & Write Setup Time & & 0 & & & ns \\
\hline \(t_{\text {DH }}\) & Data Hold & & 10 & & & ns \\
\hline \(t_{\text {DS }}\) & Data Setup Time & & 100 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{OEH}}\) & \(\overline{\text { OE High Hold Time }}\) & & 10 & & & ns \\
\hline toes & \(\overline{\text { OE High Setup Time }}\) & & 10 & & & ns \\
\hline \(\mathrm{t}_{\text {RB }}\) & \(\overline{\text { WE Low to RSY/BUSY Low }}\) & & & & 120 & ns \\
\hline twp & Write Pulse Width (\(\overline{\mathrm{WE}}\) or \(\overline{\mathrm{CE}}\)) & & 150 & & & ns \\
\hline \(t_{\text {BLC }}\) & Byte Load Cycle Time & & 1 & & 100 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\text {INIT }}\) & Write Inhibit Period after Power Up & & 5 & & 15 & ms \\
\hline
\end{tabular}

\section*{AC Write Waveforms- \(\overline{W E}\) Controlled}

dATA OUT

TL/D/12398-7

\section*{AC Write Waveforms- \(\overline{\text { CE }}\) Controlled}

\section*{Page Write Cycle}

\section*{Data Polling Waveforms (Note 1)}

TL/D/12398-10

Toggle Bit Timing Diagram (Note 1)

*Starting and ending state of 106 will vary, depending upon actual twc.

Note 1: Polling operations are by definition read cycles and are therefore subject to read cycle timings

National Semiconductor

\title{
NM24C02L/C04L/C08L/C16L 2K-/4K-/8K-/16K-Bit Serial EEPROM (I2C Synchronous 2-Wire Bus)
}

\section*{General Description}

The NM24C02L/C04L/C08L/C16L devices are 2048/ 4096/8192/16,384 bits, respectively, of CMOS non-volatile electrically erasable memory. These devices conform to all specifications in the \(I^{2} \mathrm{C} 2\)-wire protocol and are designed to minimize device pin count and simplify PC board layout requirements.
This communicatiJn protocol uses CLOCK (SCL) and DATA I/O (SDA) lines to synchronously clock data between the master (for example a microprocessor) and the slave EEPROM device(s). In addition, this bus structure allows for a maximum of 16 K of EEPROM memory. This is supported by the NSC family in \(2 \mathrm{~K}, 4 \mathrm{~K}, 8 \mathrm{~K}\) and 16 K devices, allowing the user to configure the memory as the application requires with any combination of EEPROMs (not to exceed 16K).
National EEPROMs are designed and tested for applications requiring high endurance, high reliability and low power consumption.

\section*{Features}

■ Extended Operating Voltage: \(2.5 \mathrm{~V} \rightarrow 5.5 \mathrm{~V}\) :
- Low Power CMOS
- 2 mA active current typical
\(-60 \mu \mathrm{~A}\) standby current typical
- 2-wire \(I^{2} \mathrm{C}\) serial interface
- Provides bidirectional data transfer protocol
- Sixteen byte page write mode
- Minimizes total write time per byte
- Self timed write cycle
- Typical write cycle time of 5 ms

■ Endurance: \(10^{6}\) data changes
- Data retention greater than 40 years
- Packages available: 8 pin mini-DIP, 8 and 14 pin SO

\section*{Functional Diagram}
\(v_{c C}\)
\(v_{s s}\) —

\section*{Connection Diagrams}

See NS Package Number N08E (N)

Top View
See NS Package Number M08A (M8)

See NS Package Number M14B (M)

Pin Names
\begin{tabular}{|l|l|}
\hline\(A 0, A 1, A 2\) & Device Address Inputs \\
\hline\(V_{\text {SS }}\) & Ground \\
\hline SDA & Data I/O \\
\hline SCL & Clock Input \\
\hline NC & No Connection (Float, GND, or \(V_{C C}\)) \\
\hline\(V_{C C}\) & Power Supply \\
\hline
\end{tabular}

\section*{Ordering Information}

Commercial Temperature Range (\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM24C02LN/NM24C04LN/NM24C08LN/NM24C16LN \\
NM24C02LM8/NM24C04LM8/NM24C08LM/NM24C16LM \\
\hline
\end{tabular}

Extended Temperature Range (\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM24C02LEN/NM24C04LEN/NM24C08LEN/NM24C16LEN \\
NM24C02LEM8/NM24C04LEM8/NM24C08LEM/NM24C16LEM \\
\hline
\end{tabular}

\section*{Standard Voltage (4.5V \(\leq \mathbf{V}_{\mathbf{C C}} \leq 5.5 \mathrm{~V}\)) Specifications}

\section*{Absolute Maximum Ratings}

If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Ambient Storage Temperature All Input or Output Voltages with Respect to Ground
Lead Temperature
(Soldering, 10 seconds)
ESD Rating
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
+6.5 V to -0.3 V
\(+300^{\circ} \mathrm{C}\)

DC and AC Electrical Characteristics

\section*{Operating Conditions}

Ambient Operating Temperature
\begin{tabular}{lr}
NM24C02L/C04L/C08L/C16L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
NM24C02LE/C04LE/C08LE/C16LE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
NM24C02LM/C04LM/C08LM/C16LM & \\
(Mil. Temperature) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Positive Power Supply (VCC) & 4.5 V to 5.5 V
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Llmits} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min & \begin{tabular}{l}
Typ \\
(Note 1)
\end{tabular} & Max & \\
\hline ICCA & Active Power Supply Current & \(\mathrm{f}_{\text {SCL }}=100 \mathrm{kHz}\) & & 2.0 & 3.0 & mA \\
\hline \(\mathrm{I}_{\text {SB }}\) & Standby Current & \(\mathrm{V}_{\text {IN }}=\mathrm{GND}\) or \(\mathrm{V}_{\text {CC }}\) & & 60 & 100 & \(\mu \mathrm{A}\) \\
\hline ILI & Input Leakage Current & \(V_{\text {IN }}=G N D\) to \(V_{C C}\) & & 0.1 & 10 & \(\mu \mathrm{A}\) \\
\hline ILO & Output Leakage Current & \(V_{\text {OUT }}=\mathrm{GND}\) to \(\mathrm{V}_{\mathrm{CC}}\) & & 0.1 & 10 & \(\mu \mathrm{A}\) \\
\hline \(V_{\text {IL }}\) & Input Low Voltage & & -0.3 & & \(\mathrm{V}_{\mathrm{CC}} \times 0.3\) & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & Input High Voltage & , & \(\mathrm{V}_{\text {CC }} \times 0.7\) & & \(\mathrm{V}_{\mathrm{CC}}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output Low Voltage & \(\mathrm{lOL}^{\prime}=3 \mathrm{~mA}\) & & & 0.4 & V \\
\hline
\end{tabular}

Capacitance \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\)
\begin{tabular}{c|c|c|c|c}
\hline Symbol & Test & Conditions & Max & Units \\
\hline \(\mathrm{C}_{\mathrm{I} / \mathrm{O}}\) (Note 2) & Input/Output Capacitance (SDA) & \(\mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{OV}\) & 8 & pF \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) (Note 2) & Input Capacitance (AO, A1, A2, SCL) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & 6 & pF \\
\hline
\end{tabular}

\section*{AC Conditions of Test}
\begin{tabular}{|l|c|}
\hline Input Pulse Levels & \(\mathrm{V}_{\mathrm{CC}} \times 0.1\) to \(\mathrm{V}_{\mathrm{CC}} \times 0.9\) \\
\hline \begin{tabular}{l}
Input Rise and \\
Fall Times
\end{tabular} & 10 ns \\
\hline \begin{tabular}{l}
Input and Output \\
Timing Levels
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}} \times 0.5\) \\
\hline Output Load & \begin{tabular}{c}
1 TTL Gate and \\
\(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\)
\end{tabular} \\
\hline
\end{tabular}

Note 1: Typical values are for \(T_{A}=25^{\circ} \mathrm{C}\) and nominal supply voltage (5 V). Note 2: This parameter is periodically sampled and not 100\% tested.
\begin{tabular}{|c|c|c|c|c|}
\hline ead and & \[
\text { LTAGE }\left(2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}\right.
\] cle Limits & SP & ATIO & \\
\hline Symbol & Parameter & Min & Max & Units \\
\hline \({ }_{\text {f }}\) & SCL Clock Frequency & & 80 & kHz \\
\hline \(\mathrm{T}_{1}\) & Noise Suppression Time Constant at SCL, SDA Inputs & & 100 & ns \\
\hline \(t_{\text {AA }}\) & SCL Low to SDA Data Out Valid & 0.3 & 7.0 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\text {BUF }}\) & Time the Bus Must Be Free before a New Transmission Can Start & 6.7 & & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{t}_{\mathrm{HD}:}\) STA & Start Condition Hold Time & 4.5 & & \(\mu \mathrm{s}\) \\
\hline tLOW & Clock Low Period & 6.7 & & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {HIGH }}\) & Clock High Period & 4.5 & & \(\mu \mathrm{s}\) \\
\hline tsu:STA & Start Condition Setup Time (for a Repeated Start Condition) & 6.7 & & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {HD: }}\) DAT & Data in Hold Time & 0 & & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{t}_{\text {SU:DAT }}\) & Data in Setup Time & 500 & & ns \\
\hline \(\mathrm{t}_{\mathrm{R}}\) & SDA and SCL Rise Time & & 1 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\mathrm{F}}\) & SDA and SCL Fall Time & & 300 & ns \\
\hline tSu:STO & Stop Condition Setup Time & 6.7 & & \(\mu \mathrm{S}\) \\
\hline \(t_{\text {DH }}\) & Data Out Hold Time & 300 & & ns \\
\hline \(\mathrm{t}_{\text {WR }}\) (Note 3) & Write Cycle Time & & 15 & ms \\
\hline
\end{tabular}

Note 3: The write cycle time (\(\mathrm{t}_{\mathrm{wR}}\)) is the time from a valid stop condition of a write sequence to the end of the internal erase/program cycle. During the write cycle, the NM24CxxL bus interface circuits are disabled, SDA is allowed to remain high per the bus-level pull-up resistor, and the device does not respond to its slave address.

\section*{Bus Timing}

Read and Write Cycle Limits (4.5V \(\leq \mathrm{V}_{\mathrm{Cc}} \leq 5.5 \mathrm{~V}\))

Note 3: The write cycle time (\(\mathrm{t}_{\mathrm{WR}}\)) is the time from a valid stop condition of a write sequence to the end ot the internal erase/program cycle. During the write cycle, the NM24CxxL bus interface circuits are disabled, SDA is allowed to remain high per the bus-level pull-up resistor, and the device does not respond to its slave address.

\section*{Bus Timing}

\section*{Bus Timing (Continued)}

\section*{BACKGROUND INFORMATION (I2C Bus)}

As mentioned, the \(I^{2} \mathrm{C}\) bus allows synchronous bidirectional communication between transmitter/Receiver using the SCL (clock) and SDA (Data I/O) lines. All communication must be started with a valid START condition, concluded with a STOP condition and acknowledged by the Receiver with an ACKNOWLEDGE condition.
In addition, since the I2C bus is designed to support other devices such as RAM, EPROM, etc., the device type identifier string must follow the START condition. For EEPROMs, this 4-bit string is 1010 .
As shown below, the EEPROMS on the I2C bus may be configured in any manner required, providing the total memory addressed does not exceed 16K (16,834 bits). EEPROM memory addressing is controlled by two methods:
- Hardware configuring the A0, A1 and A2 pins (Device Address pins) with pull-up or pull-down resistors. ALL UNUSED PINS MUST BE GROUNDED (Tied to VSS).
- Software addressing the required PAGE BLOCK within the device memory array (as sent in the Slave Address string).
Addressing an EEPROM memory location involves sending a command string with the following information:
[DEVICE TYPE]-[DEVICE ADDRESS]-[PAGE BLOCK ADDRESS]-[BYTE ADDRESS]
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ DEFINITIONS } \\
\hline WORD & 8 bits (byte) of data. \\
\hline PAGE & \begin{tabular}{l}
16 sequential addresses (one byte \\
each) that may be programmed \\
during a "Page Write". programming \\
cycle.
\end{tabular} \\
\hline PAGE BLOCK & \begin{tabular}{l}
2,048 (2K) bits organized into 16 \\
pages of addressable memory. \\
(8 bits) \(\times(16\) bytes) \(\times(16\) pages) \(=\) \\
2,048 bits.
\end{tabular} \\
\hline MASTER & \begin{tabular}{l}
Any I2C device CONTROLLING the \\
transfer of data (such as a \\
microprocessor).
\end{tabular} \\
\hline SLAVE & \begin{tabular}{l}
Device being controlled (EEPROMs \\
are always considered Slaves).
\end{tabular} \\
\hline TRANSMITTER & \begin{tabular}{l}
Device currently SENDING data on \\
the bus (may be either a Master OR \\
Slave).
\end{tabular} \\
\hline RECEIVER & \begin{tabular}{l}
Device currently receiving data on \\
the bus (Master or Slave).
\end{tabular} \\
\hline
\end{tabular}

\section*{Example of 16K (Maximum Size) of Memory on 2-Wire Bus}

TL/D/11738-7
Note: The SDA pull-up resistor is required due to the open-drain/open-collector output of \({ }^{12} \mathrm{C}\) bus devices.
Note: The SCL pull-up resistor is recommended because of the normal SCL line inactive "high" state.
Note: It is recommended that the total line capacitance be less than 400 pF .
Note: Specific timing and addressing considerations are described in greater detail in the following sections.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Device} & \multicolumn{3}{|c|}{Address Pins} & \multirow{2}{*}{Memory Size} & \multirow[t]{2}{*}{Number of Page Blocks} \\
\hline & AO & A1 & A2 & & \\
\hline NM24C02L & DA & DA & DA & 2048 Bits & 1 \\
\hline NM24C04L & \(V_{S S}\) & DA & DA & 4096 Bits & 2 \\
\hline NM24C08L & \(\mathrm{V}_{\text {SS }}\) & \(V_{S S}\) & DA & 8192 Bits & 4 \\
\hline NM24C16L & \(V_{S S}\) & \(V_{S S}\) & \(V_{S S}\) & 16,384 Bits & 8 \\
\hline
\end{tabular}

DA: Device Address

\section*{Pin Descriptions}

\section*{SERIAL CLOCK (SCL)}

The SCL input is used to clock all data into and out of the device.

\section*{SERIAL DATA (SDA)}

SDA is a bidirectional pin used to transfer data into and out of the device. It is an open drain output and may be wireORed with any number of open drain or open collector outputs.

\section*{DEVICE ADDRESS INPUTS (A0, A1, A2)}

Device address pins A0, A1 and A2 are connected to \(\mathrm{V}_{\mathrm{CC}}\) or \(V_{S S}\) to configure the EEPROM address. The following table (Table A) shows the active pins across the NM24CxxL device family.

TABLE A
\begin{tabular}{|c|c|c|c|cc|}
\hline Device & A0 & A1 & A2 & Effects of Addresses \\
\hline NM24C02L & ADR & ADR & ADR & \(2^{3}=8 \quad(8) \times(2 \mathrm{~K})=16 \mathrm{~K}\) \\
\hline NM24C04L & \(X\) & ADR & ADR & \(2^{2}=4 \quad(4) \times(4 \mathrm{~K})=16 \mathrm{~K}\) \\
\hline NM24C08L & \(X\) & \(X\) & ADR & \(2^{1}=2 \quad(2) \times(8 \mathrm{~K})=16 \mathrm{~K}\) \\
\hline NM24C16L & \(X\) & \(X\) & \(X\) & \(2^{0}=1 \quad(1) \times(16 \mathrm{~K})=16 \mathrm{~K}\) \\
\hline
\end{tabular}

ADR: Denotes an active pin used for device addressing \(X\) : Not used for addressing (Must be tied to Ground/VSs)

\section*{Device Operation}

The NM24CxxL supports a bidirectional bus oriented protocol. The protocol defines any device that sends data onto the bus as a transmitter and the receiving device as the receiver. The device controlling the transfer is the master and the device that is controlled is the slave. The master will always initiate data transfers and provide the clock for both transmit and receive operations. Therefore, the NM24CxxL will be considered a slave in all applications.

\section*{CLOCK AND DATA CONVENTIONS}

Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions. Refer to Figures 1 and 2.

\section*{START CONDITION}

All commands are preceded by the start condition, which is a HIGH to LOW transition of SDA when SCL is HIGH. The NM24CxxL continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met.

\section*{STOP CONDITION}

All communications are terminated by a stop condition, which is a LOW to HIGH transition of SDA when SCL is HIGH. The stop condition is also used by the NM24CxxL to place the device in the standby power mode.

\section*{Write Cycle Timing}

FIGURE 2. Definition of Start and Stop

\section*{Device Operation（Continued）}

FIGURE 3．Acknowledge Response from Receiver

\section*{ACKNOWLEDGE}

Acknowledge is a software convention used to indicate suc－ cessful data transfers．The transmitting device，either mas－ ter or slave，will release the bus after transmitting eight bits． During the ninth clock cycle the receiver will pull the SDA line LOW to acknowledge that it received the eight bits of data．Refer to Figure 3.
The NM24CxxL device will always respond with an acknowl－ edge after recognition of a start condition and its slave ad－ dress．If both the device and a write operation have been
selected，the NM24CxxL will respond with an acknowledge after the receipt of each subsequent eight bit word．
In the read mode the NM24CxxL slave will transmit eight bits of data，release the SDA line and monitor the line for an acknowledge．If an acknowledge is detected and no stop condition is generated by the master，the slave will continue to transmit data．If an acknowledge is not detected，the slave will terminate further data transmissions and await the stop condition to return to the standby power mode．

\section*{Device Addressing}

Following a start condition the master must output the address of the slave it is accessing. The most significant four bits of the slave address are those of the device type identifier (see Figure 4). This is fixed as 1010 for all four devices: NM24C02L, NM24C04L, NM24C08L and NM24C16L.

TL/D/11738-13

TL/D/11738-14

FIGURE 4. Slave Addresses

\section*{DEVICE ADDRESSING}

Refer to the following table for Slave Addresss string details:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Device & A0 & A1 & A2 & Number of Page Blocks & Page Block Addresses \\
\hline NM24C02L & A & A & A & 1 (2K) & (NONE) \\
\hline NM24C04L & P & A & A & 2 (4K) & 01 \\
\hline NM24C08L & P & P & A & 4 (8K) & \(\begin{array}{llll}00 & 01 & 10 & 11\end{array}\) \\
\hline NM24C16L & P & P & P & 8 (16K) & 000001010011 ... 111 \\
\hline
\end{tabular}

A: Refers to a hardware configured Device Address pin
P: Refers to an internal PAGE BLOCK memory segment
All \(I^{2} \mathrm{C}\) EEPROMs use an internal protocol that defines a PAGE BLOCK size of 2 K bits (for Word addresses 0000 through 1111). Therefore, address bits A0, A1 or A2 (if designated "P') are used to access a PAGE BLOCK in conjunction with the Word address used to access any individual data byte (Word).
The last bit of the slave address defines whether a write or read condition is requested by the master. \(A\) " 1 " indicates that a read operation is to be executed, and a " 0 " initiates the write mode.
A simple review: After the NM24C02L/C04L/C08L/C16L recognizes the start condition, the devices interfaced to the \({ }^{2} \mathrm{C}\) bus wait for a slave address to be transmitted over the SDA line. If the transmitted slave address matches an address of one of the devices, the designated slave pulls the line LOW with an acknowledge signal and awaits further transmissions.

\section*{Write Operations}

\section*{byte write}

For a write operation a second address field is required which is a word address that is comprised of eight bits and provides access to any one of the 256 words in the selected page of memory. Upon receipt of the word address the NM24CxxL responds with an acknowledge and waits for the next eight bits of data, again, responding with an acknowledge. The master then terminates the transfer by generating a stop condition, at which time the NM24CxxL begins the internal write cycle to the nonvolatile memory. While the internal write cycle is in progress the NM24CxxL inputs are disabled, and the device will not respond to any requests from the master. Refer to Figure 5 for the address, acknowledge and data transfer sequence.

\section*{PAGE WRITE}

The NM24CxxL is capable of a sixteen byte page write operation: It is initiated in the same manner as the byte write operation; but instead of terminating the write cycle after the first data word is tranferred, the master can transmit up to fifteen more words. After the receipt of each word, the NM24CxxL will respond with an acknowledge.

After the receipt of each word, the internal address counter increments to the next address and the next SDA data is accepted. If the master should transmit more than sixteen words prior to generating the stop condition, the address counter will "roll over" and the previously written data will be overwritten. As with the byte write operation, all inputs are disabled until completion of the internal write cycle. Refer to Figure 6 for the address, acknowledge and data transfer sequence.

\section*{ACKNOWLEDGE POLLING}

Once the stop condition is issued to indicate the end of the host's write operation the NM24CxxL initiates the internal write cycle. ACK polling can be initiated immediately. This involves issuing the start condition followed by the slave address for a write operation. If the NM24CxxL is still busy with the write operation no ACK will be returned. If the NM24CxxL has completed the write operation an ACK will be returned and the host can then proceed with the next read or write operation.

TL/D/11738-16
FIGURE 5. Byte Write

FIGURE 6. Page Write

\section*{Read Operations}

Read operations are initiated in the same manner as write operations, with the exception that the \(\mathrm{R} / \overline{\mathrm{W}}\) bit of the slave address is set to a one. There are three basic read operationns: current address read, random read and sequential read.

\section*{CURRENT ADDRESS READ}

Internally the NM24CxxL contains an address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address \(n\), the next read operation would access data from address \(n+1\). Upon receipt of the slave address with \(R / \bar{W}\) set to one, the NM24CxxL issues an acknowledge and transmits the eight bit word. The master will not acknowledge the transfer but does generate a stop condition, and therefore the NM24CxxL discontinues tranmission. Refer to Figure 7 for the sequence of address, acknowledge and data transfer.

\section*{RANDOM READ}

Random read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/ \(\bar{W}\) bit set to one, the master must first perform a "dummy" write operation. The master issues the start condition, slave address and then the word address it is to read. After the word address acknowledge, the,
master immediately reissues the start condition and the slave address with the R/ \(\bar{W}\) bit set to one. This will be followed by an acknowledge from the NM24CxxL and then by the eight bit word. The master will not acknowledge the transfer but does generate the stop condition, and therefore the NM24CxxL discontinues transmission. Refer to Figure 8 for the address, acknowledge and data transfer sequence.

\section*{SEQUENTIAL READ}

Sequential reads can be initiated as either a current address read or random access read. The first word is transmitted in the same manner as the other read modes; however, the master now responds with an acknowledge, indicating it requires additional data. The NM24CxxL continues to output data for each acknowledge received. The read operation is terminated by the master not responding with an acknowledge or by generating a stop condition.
The data output is sequential, with the data from address n followed by the data from \(\mathrm{n}+1\). The address counter for read operations increments all word address bits, allowing the entire memory contents to be serially read during one operation. After the entire memory has been read, the counter "rolls over" and the NM24CxxL continues to output data for each acknowledge received. Refer to Figure 9 for the address, acknowledge and data transfer sequence.

FIGURE 7. Current Address Read

TL/D/11738-19
FIGURE 8. Random Read

FIGURE 9. Sequential Read

FIGURE 10. Typical System Configuration

\title{
NM93C06L/C46L/C56L/C66L 256-/1024-/2048-/4096-Bit Serial EEPROM with Extended Voltage (2.0V t0 5.5V) (MICROWIRE \({ }^{\text {TM }}\) Bus Interface)
}

\section*{General Description}

The NM93C06L/C46L/C56L/C66L devices are 256/1024/2048/4096 bits, respectively, of non-volatile electrically erasable memory divided into 16/64/128/256 x 16-bit registers (addresses). The NM93CxxL Family functions in an extended voltage operating range, requires only a single power supply and is fabricated using National Semiconductor's floating gate CMOS technology for high reliability, high endurance and low power consumption. These devices are available in an SO package for small space considerations.
The EEPROM Interfacing is MICROWIRE compatible for simple interface to standard microcontrollers and microprocessors. There are 7 instructions that control these devices: Read, Erase/Write Enable, Erase, Erase All, Write, Write All, and Erase/Write Disable. The ready/busy status is available on the DO pin during programming.

\section*{Features}
- 2.0 V to 5.5 V operation in Read mode
- 2.5 V to 5.5 V operation in all other modes
- Typical active current of \(400 \mu \mathrm{~A}\); Typical standby current of \(25 \mu \mathrm{~A}\)
- No erase required before write
- Reliable CMOS floating gate technology
- MICROWIRE compatible serial I/O
- Self-timed programming cycle
- Device status during programming mode
- 40 years data retention
m Endurance: \(10^{6}\) data changes
- Packages available: 8-pin SO, 8-pin DIP

\section*{Block Diagram}

TL/D/10045-1

\section*{Connection Diagrams}

Dual-In-Line Package (N) and 8-Pin SO (M8)

Top View
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c|}{ Pin Names } \\
\hline CS & Chip Select \\
\hline SK & Serial Data Clock \\
\hline DI & Serial Data Input \\
\hline DO & Serial Data Output \\
\hline GND & Ground \\
\hline\(V_{\text {CC }}\) & Power Supply \\
\hline
\end{tabular}

\section*{Ordering Information}

Commercial Temp. Range (\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM93C06LN/NM93C46LN \\
NM93C56LN/NM93C66LN \\
NM93C06LM8/NM93C46LM8 \\
NM93C56LM8/NM93C66LM8 \\
\hline
\end{tabular}

Extended Temp. Range (\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\))
\begin{tabular}{|c|}
\hline Order Number \\
\hline NM93C06LEN/NM93C46LEN \\
NM93C56LEN/NM93C66LEN \\
NM93C06LEM8/NM93C46LEM8 \\
NM93C56LEM8/NM93C66LEM8 \\
\hline
\end{tabular}

Alternate (Turned) SO Pinout
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Order Number } \\
\hline NM93C06TLM8/NM93C46TLM8/NM93C56TLM8 \\
NM93C06TLEM8/NM93C46TLEM8/NM93C56TLEM8 \\
\hline
\end{tabular}

Alternate SO Pinout (TM8)

TL/D/10045-12
NS Package Number M08A

\section*{Operating Conditions}

Ambient Operating Temperature
\begin{tabular}{lr}
NM93C06L-NM93C66L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
NM93C06LE-NM93C66LE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\end{tabular}

Power Supply (\(\mathrm{V}_{\mathrm{CC}}\)) Range
Read Mode
2.0 V to 5.5 V

Bulk (ERAL/WRALL) Programming \(\quad 3.0 \mathrm{~V}\) to 5.5 V All Other Modes

DC and AC Electrical Characteristics: \(2 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Part Number & Conditions & Min & Max & Units \\
\hline ICCA & Operating Current & . & \(\mathrm{CS}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{SK}=250 \mathrm{kHz}\) & , & 1 ; & mA \\
\hline ICCS & Standby Current & \% & \(\mathrm{CS}=\mathrm{V}_{\mathrm{IL}}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \mathrm{ILL} \\
& \mathrm{IOL}
\end{aligned}
\] & Input Leakage Output Leakage & & \begin{tabular}{l}
\[
V_{I N}=O V \text { to } V_{C C}
\] \\
(Note 4)
\end{tabular} & & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IH}}
\end{aligned}
\] & Input Low Voltage Input High Voltage & ' & \(\cdots\) & \[
\begin{gathered}
-0.1 \\
0.8 V_{C C}
\end{gathered}
\] & \[
\begin{aligned}
& 0.15 V_{C C} \\
& V_{C C}+1
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OL}}\) \\
\(\mathrm{V}_{\mathrm{OH}}\)
\end{tabular} & Output Low Voltage Output High Voltage & - & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}
\end{aligned}
\] & \({ }^{-1} \mathrm{~V}_{\mathrm{CC}}\) & 0.1 V CC & V \\
\hline \({ }_{\text {f }}\) & SK Clock Frequency & , & (Note 5) & 0 & 250 & kHz \\
\hline \({ }^{\text {tSKH }}\) & SK High Time & & , & 1 & & \(\mu \mathrm{S}\) \\
\hline tSKL & SK Low Time & & - \(\quad\). & 1 & & \(\mu \mathrm{S}\) \\
\hline tSKS & SK Setup Time & \(\because\) & SK Must Be at \(V_{I L}\) for tsks before CS goes high & 0.2 & & \(\mu \mathrm{S}\) \\
\hline \({ }^{\text {t CS }}\) & Minimum CS Low Time & & (Note 2) & 1 & & \(\mu \mathrm{S}\) \\
\hline tcss & CS Setup Time & . & & 0.2 & & \(\mu \mathrm{S}\) \\
\hline \({ }^{\text {to }}\) \% & DO Hold Time & & \(\cdots\) & 70 & & ns \\
\hline tols & DI Setup Time & & & 0.4 & & \(\mu \mathrm{S}\) \\
\hline \({ }^{\text {t }}\) CSH & CS Hold Time & & & 0 & & \(\mu \mathrm{S}\) \\
\hline \({ }^{\text {t }}\) IH & Di Hold Time & & & 0.4 & & \(\mu \mathrm{s}\) \\
\hline tPD1 & Output Delay to "1" & & & & 2 & \(\mu \mathrm{s}\) \\
\hline tppo & Output Delay to "0" & & & & 2 & \(\mu \mathrm{S}\) \\
\hline tsv & CS to Status Valid & & & & 1 & \(\mu \mathrm{S}\) \\
\hline \(t_{\text {bF }}\) & CS to DO in TRI-STATE \({ }^{*}\) & & \(C S=V_{\text {IL }}\) & & 0.4 & \(\mu \mathrm{S}\) \\
\hline twp & Write Cycle Time & & & & 15 & ms \\
\hline
\end{tabular}

\section*{DC and AC Electrical Characteristics: 4.5V < VCC \(<5.5 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Part Number & Conditions & Min & Max & Units \\
\hline ICCA & Operating Current & & \(\mathrm{CS}=\mathrm{V}_{\mathrm{IH}}, \mathrm{SK}=1 \mathrm{MHz}\) & & 1 & mA \\
\hline ICCS & Standby Current & & \(\mathrm{CS}=\mathrm{V}_{\mathrm{IL}}\) & . & 50 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IL}} \\
& \mathrm{IOL}^{2}
\end{aligned}
\] & Input Leakage Output Leakage & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{N}}=O \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
& \text { (Note 4) }
\end{aligned}
\] & & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& V_{\mathrm{IL}} \\
& V_{\mathrm{IH}}
\end{aligned}
\] & Input Low Voltage Input High Voltage & & & \[
\begin{gathered}
-0.1 \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
v_{C C}+1
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL} 1} \\
& \mathrm{~V}_{\mathrm{OH} 1}
\end{aligned}
\] & Output Low Voltage Output High Voltage & & \[
\begin{aligned}
& \mathrm{IOL}_{\mathrm{OL}}=2.1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & 0.4 & V \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL} 2} \\
& \mathrm{~V}_{\mathrm{OH} 2}
\end{aligned}
\] & Output Low Voltage Output High Voltage & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{OL}}=-10 \mu \mathrm{~A}
\end{aligned}
\] & \(V_{C C}-0.2\) & 0.2 & V \\
\hline \(\mathrm{f}_{\text {SK }}\) & SK Clock Frequency & & (Note 5) & 0 & 1 & MHz \\
\hline \({ }^{\text {tSKH }}\) & SK High Time & NM93C06L-NM93C66L NM93C06LE-NM93C66LE & & \[
\begin{aligned}
& 250 \\
& 300 \\
& \hline
\end{aligned}
\] & & ns \\
\hline \(\mathrm{t}_{\text {SKL }}\) & SK Low Time & & & 250 & & ns \\
\hline tSKS & SK Setup Tlme & & SK Must Be at \(\mathrm{V}_{\text {IL }}\) for tsks \(^{\text {SK }}\) before CS goes high & 50 & & ns \\
\hline tcs & Minimum CS Low Time & & (Note 2) & 250 & . & ns \\
\hline tcss & CS Setup Time & & & 50 & & ns \\
\hline \({ }^{\text {t }}\) D & DO Hold Time & & & 70 & & ns \\
\hline tols & DI Setup Time & NM93C06L-NM93C66L NM93C06LE-NM93C66LE & & \[
\begin{aligned}
& 100 \\
& 200 \\
& \hline
\end{aligned}
\] & & ns \\
\hline \({ }^{\text {t }}\) CSH & CS Hold Time & & & 0 & & ns \\
\hline \(\mathrm{t}_{\text {DIH }}\) & DI Hold Time & & & 20 & & ns \\
\hline tPD & Output Delay to "1" & & & & 500 & ns \\
\hline tPDO & Output Delay to " 0 " & & & & 500 & ns. \\
\hline \(\mathrm{t}_{\mathrm{SV}}\) & CS to Status Valid & & . & & 500 & ns \\
\hline \(t_{\text {b }}\) & CS to DO in TRI-STATE & \(\cdots\) & \(\mathrm{CS}=\mathrm{V}_{\mathrm{IL}}\) & & 100 & ns. \\
\hline \(t_{\text {WP }}\) & Write Cycle Time & & . & & 10 & ms \\
\hline
\end{tabular}

Capacitance (Note 3)
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\)
\begin{tabular}{|l|l|c|c|c|}
\hline Symbol & \multicolumn{1}{|c|}{ Test } & Typ & Max & Units \\
\hline \(\mathrm{C}_{\text {OUT }}\) & Output Capacitance & & 5 & pF \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) & Input Capacitance & & 5 & pF \\
\hline
\end{tabular}

Note 1: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and operation of the device at these or any other conditions above those incicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 2: CS (Chip Select) must be brought low (to \(V_{I V}\)) for an interval of tcs in order to reset all internal device registers (device reset) prior to beginning another opcode cycle (this is shown in the opcode diagrams in the following pages).
Note 3: This parameter is periodically sampled and not \(100 \%\) tested.
Note 4: Typical leakage values are in the 20 nA range.
Note 5: The shortest allowable SK clock period = \(1 /\) fSK (as shown under the \(\mathrm{f}_{\text {SK }}\) parameter). Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not allowable to set \(1 / \mathrm{t}_{\text {SK }}=\mathrm{t}_{\text {SKH }}\) (minimum) \(+\mathrm{t}_{\text {SKL }}\) (minimum) for shorter SK cycle time operation.

\section*{AC Test Conditions}
\begin{tabular}{|c|c|c|c|c|}
\hline Vcc Range & \[
\begin{gathered}
\mathbf{V}_{\mathrm{IL}} / V_{\mathrm{IH}} \\
\text { Input Levels }
\end{gathered}
\] & \begin{tabular}{l}
\[
V_{\mathrm{IL}} / V_{\mathrm{IH}}
\] \\
Timing Levels
\end{tabular} & \[
\begin{gathered}
V_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}} \\
\text { Timing Levels }
\end{gathered}
\] & IOL/IOH \\
\hline \[
\begin{gathered}
2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\
\text { (Extended Voltage Levels) }
\end{gathered}
\] & \(0.3 \mathrm{~V} / 1.8 \mathrm{~V}\) & 1.0 V & \(0.8 \mathrm{~V} / 1.5 \mathrm{~V}\) & \(\pm 10 \mu \mathrm{~A}\) \\
\hline \[
\begin{gathered}
4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\
\text { (TTL Levels) }
\end{gathered}
\] & 0.4V/2.4V & 1.0V/2.0V & 0.4V/2.4V & -2.1 mA/0.4 mA \\
\hline \multicolumn{5}{|c|}{Output Load: 1 TTL Gate (\(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\))} \\
\hline
\end{tabular}

\section*{Functional Description}

The NM93C06L/C46L/C56L/C66L device have 7 instructions as described below. Note that the MSB of any instruction is a " 1 " and is viewed as a start bit in the interface sequence. For the C06 and C46 the next 8 bits carry the op code and the 6 -bit address for register selection. For the C56 and C66 the next 10-bits carry the op code and the 8bit address for register selection.

\section*{Read (READ):}

The READ instruction outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the selected memory register into a 16 -bit serial-out shift register. A dummy bit (logical 0) precedes the 16 -bit data output string. Output data changes are initiated by a low to high transition of the SK clock.

\section*{Erase/Write Enable (WEN):}

When \(\mathrm{V}_{\mathrm{CC}}\) is applied to the part, it powers up in the Erase/ Write Disable (WDS) state. Therefore, all programming modes must be preceded by an Erase/Write Enable WEN
instruction. Once an Erase/Write Enable instruction is executed, programming remains enabled until an Erase/Write Disable (WDS) instruction is executed or \(V_{\mathrm{CC}}\) is completely removed from the part.

\section*{Erase (ERASE):}

The ERASE instruction will program all bits in the selected register to the logical " 1 " state. CS is brought low.following the loading of the last address bit. This falling edge of the CS pin initiates the self-timed programming cycle.
The DO pin indicates the READY/BUSY status of the chip if \(C S\) is brought high after the \(\mathrm{t}_{\mathrm{CS}}\) interval. \(\mathrm{DO}=\) logical " 0 " indicates that programming is still in progress. \(\mathrm{DO}=\) logical " 1 " indicates that the register, at the address specified in the instruction, has been erased, and the part is ready for another instruction.

\section*{Functional Description (Continued)}

Write (WRITE):
The WRITE instruction is followed by 16 bits of data to be written into the specificed address. After the last bit of data is put on the data-in (DI) pin, CS must be brought low before the next rising edge of the SK clock. This falling edge of CS initiates the self-timed programming cycle. The DO pin indicates the READY/BUSY status of the chip if CS is brought high after the tcs interval. \(\mathrm{DO}=\) logical 0 indicates that programming is still in progress. \(\mathrm{DO}=\) logical 1 indicates that the register at the address specified in the instruction has been written with the data pattern specified in the instruction and the part is ready for another instruction.
Erase All (ERAL):
The ERAL instruction will simultaneously program all registers in the memory array and set each bit to the logical " 1 "
state. The Erase All cycle is identical to the ERASE cycle except for the different op-code. As in the ERASE mode, the DO pin indicates the READY/BUSY status of the chip if CS is brought high after the tes interval.

Wrlte All (WRALL):
The WRALL instruction will simultaneously program all registers with the data pattern specified in the instruction. As in the WRITE mode, the DO pin indicates the READY/BUSY status of the chip if CS is brought high after the \(\mathrm{t}_{\mathrm{CS}}\) interval.

Write Disable (WDS):
To protect against accidental data distrub, the WDS instruction disables all programming modes and should follow all programming operations. Execution of a READ instruction is independent of both the WEN and WDS instructions.

Note: NSC CMOS EEPROMs do not require an "ERASE" or "ERASE ALL" operation prior to the "WRITE" and "WRITE ALL" instructions. The "ERASE" and "ERASE ALL" instructions are included to maintain compatibility with earlier technology EEPROMs.

\section*{Instruction Set for the NM93C06L and NM93C46L}
\begin{tabular}{l|c|c|c|c|l}
\hline Instruction & SB & Op Code & Address & Data & \multicolumn{1}{|c}{ Comments } \\
\hline READ & 1 & 10 & A5-A0 & & Reads data stored in memory at specified address. \\
\hline WEN & 1 & 00 & \(11 X X X X\) & & Enable all programming modes. \\
\hline ERASE & 1 & 11 & A5-A0 & & Erase selected register. \\
\hline WRITE & 1 & 01 & A5-A0 & D15-D0 & Writes selected register. \\
\hline ERAL & 1 & 00 & \(10 X X X X\) & & Erases all registers. \\
\hline WRALL & 1 & 00 & \(01 X X X X\) & D15-D0 & Writes all registers. \\
\hline WDS & 1 & 00 & \(00 X X X X\) & & Disables all programming modes. \\
\hline
\end{tabular}

Note: Address bits A5 and A4 become "Don't Care" for the NM93C06L.
Instruction Set for the NM93C56L and NM93C66L
\begin{tabular}{l|c|c|c|c|l}
\hline Instruction & SB & Op Code & Address & Data & \multicolumn{1}{c}{ Comments } \\
\hline READ & 1 & 10 & A7-A0 & & Reads data stored in memory at specified address. \\
\hline WEN & 1 & 00 & 11 XXXXXX & & Enable all programming modes. \\
\hline ERASE & 1 & 11 & A7-A0 & & Erase selected register. \\
\hline WRITE & 1 & 01 & A7-A0 & D15-D0 & Writes selected register. \\
\hline ERAL & 1 & 00 & \(10 X X X X X X\) & & Erases all registers. \\
\hline WRALL & 1 & 00 & \(01 X X X X X X\) & D15-D0 & Writes all registers. \\
\hline WDS & \(\cdot 1\) & 00 & \(00 X X X X X X\) & & Disables all programming modes. \\
\hline
\end{tabular}

Note: Address bit A7 is "Don't Care" for the NM93C56L.

Timing Diagrams

READ

TL/D/10045-5

Timing Diagrams (Continuod)

WRITE

TL/D/ 10045-8

WRALL

\section*{Timing Diagrams (Continued)}

TL/D/10045-10

ERAL

\section*{Protecting Data in Serial EEPROMs}

National offers a broad line of serial interface EEPROMs which share a common set of features:
- Low cost
- Single supply in all modes \((+5 \mathrm{~V} \pm 10 \%)\)
- TTL compatible interface
- MICROWIRETM compatible interface
- Read-Only mode or read-write mode

This Application Brief will address protecting data in any of National's Serial Interface EEPROMs by using read-only mode.
Whereas EEPROM is non-volatile and does not require \(V_{C C}\) to retain data, the problem exists that stored data can be destroyed during power transitions. This is due to either uncontrolled interface signals during power transitions or noise on the power supply lines. There are various hardware design considerations which can help eliminate the problem although the simplest most effective method may be the following programming method.
All National Serial EEPROMs, when initially powered up are in the Program Disable Mode*. In this mode, the EEPROM will abort any requested Erase or Write cycles. Prior to Eras-

National Semiconductor Application Brief 15 Paul Lubeck
ing or Writing it is necessary to place the device in the Program Enable Modet. Following placing the device in the Program Enable Mode, Erase and Write will remain enabled until either executing the Disable instruction or removing \(V_{C C}\). Having \(V_{C C}\) unexpectedly removed often results in uncontrolled interface signals which could result in the EEPROM interpreting a programming instruction causing data to be destroyed.
Upon power up the EEPROM will automatically enter the Program Disable Mode. Subsequently the design should incorporate the following to achieve protection of stored data.
1) The device powers up in the read-only mode. However, as a backup, the EWDS instruction should be executed as soon as possible after \(V_{C C}\) to the EEPROM is powered up to ensure that it is in the read-only mode.
2) Immediately preceding a programming instruction (ERASE, WRITE, ERAL or WRAL), the EWEN instruction should be executed to enable the device for programming; the EWDS instruction should be executed immediately following the programming instruction to return *EWDS or WDS, depending on exact device.
\(\dagger\) EWEN or WEN, depending on exact device.

TL/D/7085-1
FIGURE 1. EWEN, EWDS Instruction Timing

TL/D/7085-2
*EWDS must be executed before \(\mathrm{V}_{\mathrm{C}}\) drops below 4.5 V to prevent accidental data loss during subsequent power down and/or power up transients.
FIGURE 2. Typical Instruction Flow for Maximum Data Protection
the device to the read-only mode and protect the stored data from accidental disturb during subsequent power transients or noise.
3) Special care must be taken in designs in which programming instructions are initiated to store data in the EEPROM after the main power supply has gone down. This is usually accomplished by maintaining \(V_{C C}\) for the EEP. ROM and its controller on a capacitor for a sufficient amount of time (approximately 50 ms , depending on the clock rate) to complete these operations. This capacitor
must be large enough to maintain \(V_{C C}\) between 4.5 and 5.5 volts for the total duration of the store operation, \(\mathbb{N}\) CLUDING the execution of the EWDS instruction immediately following the last programming instruction. FAIL: URE TO EXECUTE THE LAST EWDS INSTRUCTION BEFORE VCC DROPS BELOW 4.5 VOLTS MAY CAUSE INADVERTENT DATA DISTURB DURING SUBSE. QUENT POWER DOWN AND/OR POWER UP TRANSIENTS.

\section*{Designing with the NM93C06 \\ A Versatile Simple to Use E \({ }^{2}\) PROM}

This application note outlines various methods of interfacing an NM93C06 with the COPSTM family of microcontrollers and other microprocessors. Figures 1-6 show pin connections involved in such interfaces. Figure 7 shows how parallel data can be converted into a serial format to be inputted to the NM93C06; as well as how serial data outputted from an NM93C06 can be converted to a parallel-format.
The second part of the application note summarizes the key points covering the critical electrical specifications to be kept in mind when using the NM93C06.
The third part of the application note shows a list of various applications that can use a NM93C06.

\section*{GENERIC CONSIDERATIONS}

A typical application should meet the following generic criteria:
1. Allow for no more than 10,000 E/W cycles for optimum and reliable performance.
2. Allow for any number of read cycles.
3. Allow for an erase or write cycle that operates in the \(10-30 \mathrm{~ms}\) range, and not in the tens or hundreds of ns range as used in writing RAMs. (Read vs write speeds are distinctly different by orders of magnitude in \(E^{2} \mathrm{P}\) ROM, not so in RAMs.)

National Semiconductor
Application Note 338
Masood Alavi
4. No battery back-up required for data-retention, which is fully non-volatile for at least 10 years at room-ambient.

\section*{SYSTEM CONSIDERATIONS}

When the control processor is turned on and off, power supply transitions between ground and operating voltage may cause undesired pulses to occur on data, address and control lines. By using WEEN and WEDS instructions in conjunction with a LO-HI transition on CS, accidental erasing or writing into the memory is prevented.
The duty cycle in conjunction with the maximum frequency translates into having a minimum Hi-time on the SK clock. If the minimum SK clock high time is greater than \(1 \mu \mathrm{~s}\), the duty cycle is not a critical factor as long as the frequency does not exceed the 250 kHz max. On the low side no limit exists on the minimum frequency. This makes it superior to the COP499 CMOS-RAM. The rise and fall times on the SK clock can also be slow enough not to require termination up to reasonable cable-lengths.
Since the device operates off of a simple 5 V supply, the signal levels on the inputs are non-critical and may be operated anywhere within the specified input range.

FIGURE 1. NM93C06--COP420 Interface

TL/D/5286-2
FIGURE 2. NM93CO6-Standard \(\mu\) P Interface Vla COP Processor

TL/D/5286-3
\[
\begin{aligned}
& \text { PAO } \rightarrow \begin{array}{l}
\text { SK } \\
\text { PA1 }
\end{array} \\
& \text { PA2-7 }\left.\rightarrow \begin{array}{l}
\text { DI/DO }
\end{array}\right\} \text { Common to all 9306's } \\
& \text { CSS for } 6-9306 ' s
\end{aligned}
\]
* SK ls generated on port pins by blt-set and blt-clear operations in software. A symmetrical duty cycle is not critical.
* CS is set in software. To generate \(10-30 \mathrm{~ms}\) write/erase the timer/counter is used. During write/erase. SK may be turned off.

FIGURE 3. NSC800TM to NM93C06 Interface (also Valid for 8085/8085A and 8156)

FIGURE 4. Z80-NM93C06 Interface Using Z80-PIO Chip

TL/D/5286-5
* SK and DI are generated by software. It should be noted that at \(2.72 \mu \mathrm{~s} /\) Instruction. The minimum SK perlod achievable will be \(10.88 \mu \mathbf{8}\) or \(\mathbf{9 2} \mathbf{k H z}\), well within the NM93C06 frequency range.
* DO may be brought out on a separate port pin if desired.

FIGURE 5. 48 Series \(\mu\) P-NM93C06 Interface

TL/D/5286-6

Expander outputs
\(\left.\begin{array}{l}\mathrm{DI} \\ \mathrm{SK}\end{array}\right\}\) (COMMON)
Port 4 CS1
CS2
Port 5-6 CS3-CS10
Port 7 DO (COMMON)
FIGURE 6. 8048 I/O Expansion

FIGURE 7. Converting Parallel Data Into Serlal Input for NM93C06

\section*{THE NM93C06A}

Extremely simple to interface with any \(\mu \mathrm{P}\) or hardware logic. The device has six pins for the following functions:
\begin{tabular}{lll}
Pin 1 & CS* & HI enabled \\
Pin 2 & SK & Serial Clock input \\
Pin 3 & DI & \begin{tabular}{l}
For instruction or data \\
input
\end{tabular} \\
Pin 4 & DO** & \begin{tabular}{l}
For data read, TRI-STATE© \\
otherwise
\end{tabular} \\
Pin 5 & GND & \\
Pin 8 & VCC & For 5V power \\
Pins 6-7 & No Connect & No termination required
\end{tabular}
*Following an E/W instruction feed, CS is also toggled low for 10 ms (typical) for an E/W operation. This internally turns the VPP generator on (HI-LO on CS) and off (LO-HI on CS).
**DI and DO can be on a common line since DO is TRISTATED when unselected DO is only on in the read mode.

\section*{USING THE NM93C06}

\section*{The following points are worth noting:}
1. SK clock frequency should be in the \(0-250 \mathrm{kHz}\) range. With most \(\mu \mathrm{Ps}\) this is easily achieved when implemented in software by bit-set and bit-clear instructions, which take 4 instructions to execute a clock or a frequency in the 100 kHz range for standard \(\mu \mathrm{P}\) speeds. Symmetrical duty cycle is irrelevant if SK HI time is \(\geq\) \(2 \mu \mathrm{~s}\).
2. CS low period following an E/W instruction must not exceed the 30 ms max. It should best be set at typical or minimum spec of 10 ms . This is easily done by timer or a software connect. The reason is that it minimizes the 'on time' for the high VPP internal voltage, and so maximizes endurance. SK-clock during this period may be turned off if desired.
3. All E/W instructions must be preceded by EWEN and should be followed by an EWDS. This is to secure the stored data and avoid inadvertent erase or write.
4. A continuously 'on' SK clock does not hurt the stored data. Proper sequencing of instructions and data on DI is essential to proper operation.
5. Stored data is fully non-volatile for a minimum of ten years independent of \(V_{\mathrm{Cc}}\), which may be on or off. Read cycles have no adverse effects on data retention.
6. Up to \(10,000 \mathrm{E} / \mathrm{W}\) cycles/register are possible. Under typical conditions, this number may actually approach 1 million. For applications requiring a large number of cycles, redundant use of internal registers beyond 10,000 cycles is recommended.
7. Data shows a fairly constant E/W Programming behavior over temperature. In this sense E2PROMs supersede EPROMs which are restricted to room temperature programming.
8. As shown in the timing diagrams, the start bit on DI must be set by a ZERO - ONE transition following a CS enable (ZERO - ONE), when executing any instruction. ONE CS enable transition can only execute ONE instruction.
9. In the read mode, following an instruction and data train, the DI can be a don't care, while the data is being outputted i.e., for next 17 bits or clocks. The same is true for other instructions after the instruction and data has been fed in.
10. The data-out train starts with a dummy bit 0 and is terminated by chip deselect. Any extra SK cycle after 16 bits is not essential. If CS is held on after all 16 of the data bits have been outputted, the DO will output the state of DI till another CS LO-HI transition starts a new instruction cycle.
11. When a common line is used for \(D I\) and \(D O\), a probable overlap occurs between the last bit on DI and start bit on DO.
12. After a read cycle, the CS must be brought low for 1 SK clock cycle before another instruction cycle can start.
All commands, data in, and data out are shifted in/out on rising edge of SK clock.
Write/erase is then done by pulsing CS low for 10 ms .
All instructions are initiated by a LO-HI transition on CS followed by a LO-HI transition on DI.
READ - After read command is shifted in Dl becomes don't care and data can be read out on data out, starting with dummy bit zero.
WRITE - Write command shifted in followed by data in (16 bits) then CS pulsed low for 10 ms minimum.

INSTRUCTION SET
\begin{tabular}{|l|c|c|c|c|l|}
\hline Instruction & SB & Opcode & Address & Data & \multicolumn{1}{c|}{ Comments } \\
\hline READ & 01 & \(10 x x\) & A3A2A1A0 & & Read Register A3A2A1AO \\
\hline WRITE & 01 & \(01 x x\) & A3A2A1AO & D15-D0 & Write Register A3A2A1A0 \\
\hline ERASE & 01 & \(11 \times x\) & A3A2A1A0 & & Erase Register A3A2A1A0 \\
\hline EWEN & 01 & 0011 & XXXX & & Erase/Write Enable \\
\hline EWDS & 01 & 0000 & XXXX & & Erase/Write Disable \\
\hline ERAL & 01 & 0010 & XXXX & & Erase All Registers \\
\hline WRAL & 01 & 0001 & XXXX & D15-D0 & Write All Registers \\
\hline
\end{tabular}

NM93C06 has 7 instructions as shown. Note that MSB of any given instruction is a " 1 " and is viewed as a start bit in the interface sequence. The next 8 bits carry the op code and the 4 -bit address for 1 of 16,16 -bit registers.
X is a don't care state.
The following is a list of various systems that could use a
NM93C06
A. Airline term.nal

Alarm system
Analog switch network
Auto calibration system
Automobile odometer
Auto engine control
Avionics fire control
B. Bathroom scale

Blood analyzer
Bus interface
C. Cable T.V. tuner

CAD graphics
Calibration device
Calculator-user programmable
Camera system
Code identifier
Communications controller
Computer terminal
Control panel
Crystal oscillator
D. Data acquisition system

Data terminal
E. Electronic circuit breaker

Electronic DIP switch
Electronic potentiometer
Emissions analyzer
Encryption system
Energy management system
F. Flow computer

Frequency synthesizer
Fuel computer.
G. Gas analyzer

Gasoline pump
H. Home energy management

Hotel lock
I. Industrial control

Instrumentation
J. Joulemeter
K. Keyboard -softkey
L. Laser machine tool
M. Machine control

Machine process control
Medical imaging
Memory bank selection
Message center control
Mobile telephone

\section*{Modem}

Motion picture projector
N. Navigation receiver

Network system
Number comparison
O. Oilfield equipment
P. PABX

Patient monitoring
Plasma display driver
Postal scale
Process control
Programmable communications
Protocol converter
Q. Quiescent current meter
R. Radio tuner

Radar dectector
Refinery controller
Repeater
Repertory dialer
S. Secure communications system

Self diagnostic test equipment
Sona-Bouy
Spectral scanner
Spectrum analyzer
T. Telecommunications switching system

Teleconferencing system
Telephone dialing system
T.V. tuner

Terminal
Test equipment
Test system
TouchTone dialers
Traffic signal controller
U. Ultrasound diagnostics Utility telemetering
V. Video games

Video tape system
Voice/data phone switch
W. Winchester disk controller
X. X-ray machine Xenon lamp system
Y. YAG-laser controller
Z. Zone/perimeter alarm system

\section*{The NM93C46-An Amazing Device}

Question: What has 8 pins, runs on 5 V and can store any one of more than \(10^{300}\) unique bit patterns?
Answer: The NM93C46-a 1024-bit serial EEPROM.
Surprised? It is easy to check:
\[
\begin{aligned}
& 2^{1024}=\text { number of possible combinations } \\
& 2^{10}=10^{3} \\
& 2^{1024 \cong}\left(2^{10}\right)^{102}=\left(10^{3}\right)^{102}=10^{306}
\end{aligned}
\]
\(10^{306}\) combinations are more than enough for any conceivable security application, serial number, or station I.D. many times over. Although the NM93C46 is a small part both physically and in memory size, its capacity to store unique codes is boundless.
Figure 1 shows the pin assignments and pin names for the NM93C46. Pins 6 and 7 are not connected, leaving only 6 active pins on the device. The DO pin is not active while data is being loaded through the DI pin. DI and DO can be tied together, creating a device that requires a 5 -wire interface. This interface may be useful in security applications. The EEPROM could be built into a module that could be used as a "smart key" in electronic security systems. The key would be read whenever it was inserted into a 5 -contact keyhole and access would be granted or denied as determined by the stored code. If only 256 bits of the EEPROM were to be used to store the code, this would still provide \(10^{77}\) possible combinations. The remainder of the memory in the key could be used for data collection or to keep a record of where the key had been. It should be noted that ability to write data into the key allows the key to be immediately erased if it is misused.
Dual-In-Line Package

TL/D/8611-1

\section*{Pin Names}
\begin{tabular}{ll}
CS & Chip Select \\
SK & Serial Clock \\
DI & Data Input \\
DO & Data Output \\
VCC & \(+5 V\) \\
GND & Ground \\
NC & No Connection
\end{tabular}
FIGURE 1

The 5 -contact key is nice, but a 4 -contact key is at least \(20 \%\) better. Figure 2 shows how the addition of a retriggerable one-shot can achieve this reduction. This circuit puts some timing constraints on the serial clock signal, but these are easily met. The output pulse of the one-shot should remain high for a period that is slightly longer than one serial clock cycle to prevent the NM93C46 from being reset. (The falling edge of CS must occur before the rising edge of the serial clock after the last bit of a write command is transmitted.)

TL/D/8611-2
One-shot is retriggerable MM74HC123

\section*{FIGURE 2}

A circuit for a 3-contact key is shown in Figure 3. A filter capacitor, diode and one-shot have been added. Both oneshots are triggered whenever a pulse to ground occurs on the power supply contact. The capacitor and diode provide power to the NM93C46 and the one-shots during this brief power interruption. An operational amplifier can be used as the power source and can easily generate the required waveform. Both the serial clock and chip select signals are recovered from this waveform.

FIGURE 3
By adding more circuitry to the key, it is possible to achieve a 2-contact interface. A circuit for this interface is shown in Figure 4.
Commands and data are transmitted to the key by superimposing a pulse-vidth-modulated code on the power supply contact. The voltage swings between 8 V and 16 V at point 1 . A regulated 5 V is supplied to the circuits in the key by a local regulator. Resistors R1 and R2 form a divider to create a 3 V reference for the operational amplifier. R3 and R4 are used as a divider that converts the 8 V to 16 V signal at point 1 to a signal at point 2 that swings between 2 V and 4 V . The output of the operational amplifier now follows the signal at point 1 but swings from 0 V to 5 V . This signal is used to trigger the one-shots as in the 3-contact circuit, and appears
at the DI pin as a pulse-width-modulated signal. Command and data signals may now be entered. Data is read from the key by monitoring the power supply current. When the DO pin is in TRI-STATE \({ }^{(1)}\) or outputs a one, transistor T2 is turned off. When DO outputs a zero, T2 is turned on and current flows through R5. The value of R5 may be chosen to create whatever current change is needed to detect the state of DO. The current should be tested when the voltage at point 1 is 16 V . The resistor in this example will produce a 10 mA change.
Figure 5 shows a typical read sequence for the circuit shown in Figure 4.

\section*{CONCLUSION}

This application note describes a number of circuits that are useful in security and data collection systems. These circuits should be considered only the beginning. It no longer makes sense to install DIP switches to select access codes in garage door openers, cordless and mobile phones, or any other microcontroller-based system. "Smart keys" can be used to gain access to databases and can be invalidated over normal communication lines if they are abused. It boggles the mind to consider what can be done with so many unique codes.
Note: The circuits in this application note feature the NM93C46. The NM93C06 is a pin-compatible part that stores 256 bits.
\(R 1=20 K\)
\(R 2=30 K\)
\(R 3=15 K\)
\(R 4=5 K\)
One-Shot \(A=1 / 2\) MM74HC123
TL/D/8611-4

TL/D/8611-5
FIGURE 5

\section*{Using National's MICROWIRE \({ }^{\text {TM }}\) EEPROM}

National Semiconductor manufactures a wide range of low density serial EEPROMs that use the MICROWIRE interface as a means of communication. Although all of these devices use the MICROWIRE interface, there are slight variations in interfacing due to differences in memory sizes, features, and technology used to implement the device. Additionally, the MICROWIRE interface does not specifically define any protocol, it only defines a basic set of signal lines to interconnect two or more devices. Due to these reasons, additional information is necessary to fully understand how to best interface to National's family of MICROWIRE EEPROM.
The goal of this application guide is to cover a diversity of information in renard to basic timing, interfacing options, and functionality of different EEPROMs. I will use an outline approach, so the appropriate heading can be located easily. Each section attempts to be stand alone so the information can be easily extracted. The outline appears below:

\section*{OUTLINE}

\subsection*{1.0 Description of EEPROM Families}

\subsection*{1.1 CMOS EEPROM}

\subsection*{1.1.1 NM93C Family}
1.1.2 NM93CS Family
1.1.3 Variations
2.0 HARDWARE CONNECTIONS
2.1. INTERFACE PIN DESCRIPTIONS
2.1.1-Chip Select
2.1.2 Serial Clock
2.1.3 Data-In (DI)
2.1.4 Data-Out (DO)
2.1.5 Program Enable (PE)
2.1.6 Protect Register Enable (PRE)
2.1.7 Organization (ORG)
2.1.8 Status (RDY/BUSY)
2.2. FOUR WIRE BUS
2.3. THREE WIRE BUS
3.0 TIMING CONSIDERATIONS
3.1 BUS TIMING
3.2 INSTRUCTION SEQUENCE DESCRIPTIONS
3.2.1 Read Cycle
3.2.2 Sequential Read
3.2.3 Erase and Erase All
3.2.4 Write and Write All
3.2.5 Program Enable and Program Disable
3.2.6 Protect Register Read
3.2.7 Protect Register Enable
3.2.8 Protect Register Disable
3.2.9 Protect Register Clear
3.2.10 Protect Register Write
3.3. INTERFACING SOLUTIONS
4.0 CONCLUSION

\subsection*{1.0 Description of EEPROM Families}

\subsection*{1.1 CMOS EEPROM}

National builds a range of MICROWIRE CMOS EEPROMs in memory sizes ranging from 256 -bit to 4906 -bit. The NM93C family is the base family and the NM93CS is a similar family with additional features, there are also other devices with slight variations on the interface. All these devices are available with certain "standard" options such as operating temperature ranges and operating voltage ranges, packaging options and test options. These options being fairly standard variations for semiconductor devices, will not be addressed beyond this. The purpose of this article is to address basic functionality and interfacing, including various tricks to simplify or modify the interface.

\subsection*{1.1.1 NM93C Family}

The NM93C family of EEPROM is available in 256-, 1024-, 2048 -, and 4096-bit sizes. All of these are internally organized in 16 -bit words, therefore all data transactions deal with 16 bits. This family of EEPROMs has 7 instructions that deal with read, write, and a basic level of data protection. The instructions are listed in Table I. It is important to note that there is a basic difference in length of the instruction between the NM93C06 or NM93C46 and the NM93C56 or NM93C66. This is due to the larger devices needing additional address bits.
The NM93C family of EEPROM, like all of National's serial EEPROMs have a basic level of write protection that can be turned on or off by the use of the ERASE/WRITE DISABLE (EWDS) and ERASE/WRITE ENABLE (EWEN) instructions. Although there are two erase instructions included in the NM93C family, these are included only for compatibility with older EEPROMs that require erase before write. These EEPROMs don't require erase before write and it is recommended that in application the erase not be used as this adversely affects endurance.

\subsection*{1.1.2 NM93CS Family}

The NM93CS EEPROMs are identical to the NM93C family in memory sizes and organization. Making them different, they have two additional functions, sequential read and user configurable write protection, and don't have either of the erase functions, ERASE and ERASE-ALL as they are not needed. Like all of the CMOS EEPROMs, these have self timed programming cycles and operate from a single external supply of either 4.5 V to 5.5 V or 2.0 V to 5.5 V . In these devices it is necessary to eliminate the erase cycles from the code as they may adversely affect the performance of the device.
As these have additional functions, the instruction set includes a total of 10 instructions, 3 that operate on the memory array, 2 that deal with the basic write protection and 5 that deal with the user configurable write protection. Refer
to the NM93CS instruction set table (Table II) for definitions of these instructions. As with the NM93C family, there is a basic difference in instruction length depending on memory size.

To further increase data security in these EEPROMs there are also two additional input signals defined, Program Enable (PE) and Protect Register Enable (PRE). These signals are on pins that are unused on the NM93C family providing upward compatibility to the NM93CS devices.

TABLE I. NM93C Family Instruction Set Table
\begin{tabular}{l|c|c|c|l|l}
\hline Instruction & SB & Op Code & Address & \multicolumn{1}{|c|}{ Data } & \multicolumn{1}{|c}{ Comments } \\
\hline READ & 1 & 10 & A7/A5-AO & & Reads data stored in memory. \\
\hline EWEN & 1 & 00 & 11 XXXX & & Write enable must precede all programming modes. \\
\hline ERASE & 1 & 11 & A5-A0 & & Erase register A5A4A3A2A1AO. \\
\hline WRITE & 1 & 01 & A5-A0 & D15-D0 & Writes register. \\
\hline ERAL & 1 & 00 & \(10 X X X X\) & & Erase all registers. \\
\hline WRAL & 1 & 00 & \(01 X X X X\) & D15-D0 & Writes all registers. \\
\hline EWDS & 1 & 00 & \(00 X X X X\) & & Disables all programming instructions. \\
\hline
\end{tabular}

TABLE II. NM93CS Family Instruction Set Table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Instruction & SB & Op Code & Address & Data & PRE & PE & Comments \\
\hline READ & 1 & 10 & A5-A0 & & 0 & X & Reads data stored in memory, starting at specified address. \\
\hline WEN & 1 & 00 & 11XXXX & & 0 & 1 & Write enable must precede all programming modes. \\
\hline WRITE & 1 & 01 & A5-A0 & D15-D0 & 0 & 1 & Writes register if address is unprotected. \\
\hline WRALL & 1 & 00 & 01XXXX & D15-D0 & 0 & 1 & Writes all registers. Valid only when Protect Register is cleared. \\
\hline WDS & 1 & 00 & 00XXXX & & 0 & X & Disables all programming instructions. - \\
\hline PRREAD & 1 & 10 & XXXXXX & & 1 & X & Reads address stored in Protect Register. \\
\hline PREN & 1 & 00 & 11XXXX & & 1 & 1 & Must immediately precede PRCLEAR, PRWRITE, and PRDS instructions. \\
\hline PRCLEAR & 1 & 11 & 111111 & & 1 & 1 & Clears the Protect Register so that no registers are protected from WRITE. \\
\hline PRWRITE & 1 & 01 & A5-A0 & & 1 & 1 & Program address into Protect Register. Thereafter, memory addresses \(\geq\) the address in Protect Register are protected from WRITE. \\
\hline PRDS & 1 & 00 & 000000 & - & 1 & 1 & One time only instruction after which the address in the Protect Register cannot be altered. \\
\hline
\end{tabular}

\subsection*{1.1.3 Variations}

There are two variations on the standard implementation of the Microwire bus. Both variations can be viewed as enhancements. The first enhancement is a Organization (ORG) input that allows the user to select the internal configuration of the memory as either 8 bits wide or 16 bits wide. When the input is high or unconnected, the device is configured as 16 bits wide, when the ORG input is at a low level, the memory is configured as 8 bits wide, but twice as deep. The feature is present on both the NM93C46A and the NM59C11.
The second variation is the STATUS output. This is the Busy/Ready polling to indicate programming status. All other devices have this feature on the Data-Out (DO) output, the NM59C11 alone has status available as a separate output and not on the Data-Out output. This can simplify interfacing to a bidirectional data bus.

\subsection*{2.0 Hardware Connection}

\subsection*{2.1 INTERFACE PIN DESCRIPTIONS}

In this section, each possible input or output will be described followed by the most popular variations of bus connections. Not all devices have all of the described I/Os. The I/Os are available according to Table III, I/O Functionality.

\subsection*{2.1.1 CHIP SELECT (CS)}

Chip Select is used to differentiate between various devices on the same Microwire bus. In the case of EEPROM it cannot be tied high even if it is the only device on the bus as it performs several additional functions. As it applies to any of the Microwire EEPROMs, the rising edge resets the internal circuitry of the device, a function necessary prior to initiating any new cycle. As shown in the functional block diagram (Figure 1) chip select also gates the data input and clock input, thus disabling these functions.

During the course of clocking in the start bit, op-code address and data-in or data-out, chip select must be held high continuously, otherwise the internal circuits will be reset and the cycle will have to be started again with a new start bit.
During programming cycles chip select initiates the internal programming cycle. The falling edge of chip select will start the internal programming cycle when a programming opcode has been entered (Erase, Write, Erase All, Write All) and then, in conjunction with Data-Out (DO), will indicate if programming is complete (except the NMOS NMC9306). If programming is complete, Data-Out will drive high, if incomplete it will drive low. In the case of the NMC9306, the user must provide the programming time and in this case chip select must be held low for a minimum of 10 ms , then brought high and clocked to end the programming cycle.

\section*{Several additional notes in regard to chip select:}

If a programming cycle is partially clocked in and then chip select dropped, the EEPROM may enter into a programming mode. This is determined by how many bits have been clocked in when chip select is dropped. If the start bit, opcode, and all of the address has been clocked in, a programming cycle will be initiated with no or partial data. If less than a complete address has been clocked in, the programming cycle will not be initiated. Refer to Figure 2, reference line 1.
In the case of the NM59C11, a programming cycle will not be entered unless a full data field has been clocked in. A full data field may be either 8 or 16 bits depending on the logic level present at the ORG input. A programming cycle will be entered at reference line 2 in Figure 2 for the NM59C11.
Chip select hold time at the end of a cycle is referenced to the last rising edge of clock (SK). The hold time from the rising edge is the same as the minimum SK high time for the particular device. This is stated in the datasheets as 0 ns hold time from the falling edge of SK which assumes that SK high time is always minimum. In this case SK can be left in the high state or taken low at a later time. Internally chip select gates SK, therefore SK is not critical.

TABLE III. I/O Functionality by Device
\begin{tabular}{l|c|c|c|c|c|c|c|c}
& CS & SK & DI & DO & PE & PRE & ORG & STAT \\
\hline NM93C Family & X & X & X & X & & & & \\
\hline NM93CS Family & X & X & X & X & X & X & & \\
\hline NM93C46A & X & X & X & X & & & X & \\
\hline NM59C11 & X & X & X & X & & & X & X \\
\hline
\end{tabular}

FIGURE 1. Block Dlagram

FIGURE 2. Programming Cycle Point of No Return

\subsection*{2.1.2 SERIAL CLOCK (SK)}

The clock input is used to clock all data, address, op-code, and start bits into or out of the EEPROMs. SK clocks both input and output on the rising edge only, the falling edge has no effect on the devices. The only function it is not necessary for is the Busy/Ready Polling which is an asynchronous function.
Since SK is gated by ship select, it is a "Don't Care" any time chip select is low. It is also don't care prior to a start bit being clocked in and during Busy/Ready Polling. During these conditions Data-In (DI) must be held at a low level, otherwise a start bit will be interpreted.
If it is desirable to insert additional clock cycles during a instruction sequence for the purpose of byte aligning the data, there are several places in the data stream they may be inserted as described below:
- On any instruction, zeros can be clocked into the DI input before the start bit. Any number of clock cycles may be added if Data-ln (DI) is held at zero. The first 1 clocked in will be interpreted as the start bit. This requires special precautions if a bidirectional data bus is used (Data-In tied to Data-Out) as the Busy/Ready Polling will interfere with the Data-In if it is not cleared out at the end of each programming cycle. See Section 2.3, THREE WIRE BUS, for more information.
- During a Read instruction, it is allowable to continue to clock the device after the 16 bits of data has been clocked out. In the case of the NM93CS family this will cause the memory to increment to the next register and present its contents on the Data-Out pin. In the case of all other devices, whatever was present on the Data-In pin will become present on the Data-Out pin (Fall thru). Refer to Figure 1, Block Diagram.
- During a Write or Write-All, additional clock cycles may be added after address AO and before the valid data. The EEPROM will write into the memory the most recent 16 bits, or in the case of the NM93C46A, the most recent 8 bits or 16 bits depending on the status of the ORG input. Adding additional clocks after the valid data will cause the data to be misaligned. In the case of the NM59C11, the device counts the data bits clocked in and automatically enters the programming mode when it receives a full data field, therefore bits cannot be inserted between A0 and valid data.
- During the EWEN, Erase, Erase All, EWDS, WEN, WDS cycles, it is not necessary to clock in a data field, although it is mandatory to clock in a complete address field, even if the addresses are "Don't Care". Additional clocks can be added after the address field.

\subsection*{2.1.3 DATA-IN (DI)}

The Data-In input receives the Start-Bit, Address, and input data in a serial stream, each bit clocked in on the rising edge of SK. DI is gated by the chip select to provide a high degree of noise immunity. As shown in the block diagram, Data-In is routed to both the instruction shift register and the data shift register. When the start bit is clocked into the last bit of the instruction register, the clock is switched to the data register to receive input data and clock data out simultaneous. The Data-Out remains in high impedance unless a read cycle or Busy/Ready status is being done. The safest state is to keep the Data-In pin in a low level as a start bit is a high level.

\subsection*{2.1.4 DATA-OUT (DO)}

The Data-Out (DO) output sends read data onto the microwire bus and is clocked out on the rising edge of SK. It also carries the programming status after a programming cycle which is an asynchronous function that does not require the clock. At all other times the Data-Out is in the high impedance state. During a Read cycle, the Data-Out output begins to drive actively after the last address bit (AO) is clocked in. During the Busy/Ready polling it begins to drive active after chip select is raised to a high level.
During the Busy/Ready Polling, the Data-Out output drives low while the device is still in the internal programming cycle. After the EEPROM has completed the internal programming cycle, the Data-Out pin will drive high when chip select is high. Subsequently, if chip select is brought high again, Data-Out will again drive high indicating it has completed the programming cycle. To clear the Busy/Ready Polling it is necessary to raise chip select and clock in a start bit. Once the start bit is clocked in, Data-Out will return to the high impedance state. It is not necessary to continue with a cycle after this start bit has been clocked in, although it is permissible to start a new cycle with this start bit. This clearing of the Busy/Ready status may be necessary if a bidirectional data bus is used (Data-In tied to Data-Out) as the Data-Out output will interfere with the new data being presented on the Data-In input.

\subsection*{2.1.5 PROGRAM ENABLE (PE)}

The program enable (PE) input will enable all programming cycles when it is held at a high level during the duration of a programming cycle. Conversely, it will disable all programming, including programming of the protect register, while it is held low. This input has no affect on any other cycle, so it may be permanently tied high or low, or may be used in an active mode. This input is available on the NM93CS family only.

\subsection*{2.1.6 PROTECT REGISTER ENABLE (PRE)}

The protect register enable (PRE) input is used to switch between memory operations and protect register operations since the same op-codes are used for both. With the PRE input high, the op-codes define operations in the protect register, with the PRE input low, the op-codes define operations in the memory. This pin may be tied high or low, or used in the active mode. This input is available on the NM93CS family only.

\subsection*{2.1.7 ORGANIZATION (ORG)}

The Organization input (ORG) is used to control the internal organization of the memory. The two selectable organizations are 16 -bit words and 8 -bit words. Simply by holding the ORG pin at a high level, 16 -bit words are selected, by holding the input at a low level 8 -bit words are selected. When in the 8-bit mode, one additional address bit is required in the instruction sequence since the depth of the memory is doubled. This input is available only on certain device types, refer to the individual datasheets.

\subsection*{2.1.8 STATUS (RDY/BUSY)}

The status output indicates the programming cycle status after a programming cycle. When the device is in the programming mode and therefore cannot accept any other cycles, this pin will be low. After completion of the cycle the STATUS pin will be driven high. When this function is present, the Busy/Ready Polling is not available on the Data-Out

FIGURE 3. Possible Locations for Additional SK Cycles
output. In some systems, particularly those using a bi-directional data bus, this can simplify interfacing by eliminating the possible contention between the Ready indication and the incoming data from the host device. This output is available only on certain device types, refer to the individual datasheets.

\subsection*{2.2 FOUR WIRE BUS}

The 4 wire bus is the simplest interconnection between the EEPROM and the host device. In most cases the only signals necessary to provide are clock, chip select, Data-In and Data-Out as shown in Figure 5. The PRE, PE, ORG, and STATUS pins are not shown as they are variations on this and the 3 wire bus connection. Multiple devices can be connected to the microwire bus, the only limitations being loading and available chip select means. In some systems it is necessary to have a bi-directional data line as described below in 3 wire bus.

TL/D/11169-7
FIGURE 5. Four Wire Connection

\subsection*{2.3 THREE WIRE BUS}

The 3 wire bus operates in the same mode as the 4 wire bus with the exception that the Data-In and Data-Out pins on the EEPROM are tied together. When using this connection, there are two precautions that need to be observed.
- When Data-In is tied to Data-Out, there is a possible conflict between address A0 in the instruction sequence
and the dummy bit. This only occurs during a READ cycle. This is not harmful to the device and the internal circuitry of the EEPROM guarantees that the device will function properly under this condition. To decrease the noise created by the condition, a resistor may be placed in the locations indicated in Figure 6. The timing diagram in Figure 7 shows the bus conflict.
- The second possible area of conflict occurs when the Busy/Ready status is on the Data-Out output. Since the device will continue to indicate a Ready status indefinitely after a programming cycle (until a start-bit is clocked in), this can conflict with the beginning of the next cycle if leading zeros are clocked in (See Figure 7). The solution is to either use a separate cycle to clear the Ready bit or to eliminate any leading zeros from the instruction sequence. If the Busy/Ready Polling is not used in the application, the easiest solution is to use the NM59C11 that does not have the polling on Data-Out but has it on a separate output.

TL/D/11169-8
FIGURE 6. Three Wire Connection Showing Optional Resistor

TL/D/11169-9
FIGURE 7. Three Wire Connection Bus Conflict Areas

\subsection*{3.0 Timing Considerations}

The following information describing the Microwire bus timing must be used in conjunction with the datasheet as it is an expansion and clarification of the datasheet. First, the basic timings with respect to the clock (SK) will be described, followed by instruction sequence timing, and finally, specific information in each instruction sequence.

\subsection*{3.1. BUS TIMING}

The synchronous data timing shown in Figure 8 is similar to that shown in the various datasheets. There is one significant modification to the timing specification though, the chip select (CS) hold time is referenced to the rising edge of the clock rather than the falling edge. With this modification, the hold time specification must be changed to be the same as
the minimum clock (SK) high time. Other significant points are:
- The only active edge of the clock is the rising edge.
- The only time the clock is necessary is when clocking data into or out of the EEPROM. It is not necessary during Busy/Ready Polling.
- The clock may be left in either the high state or low state between cycles. It is safer to leave the clock in the low state.
- When chip select (CS) is high, clock (SK) is a critical signal. With the exceptions noted in Section 2.1.2 tilted SERIAL CLOCK (SK), no additional clock cycles or noise that crosses the \(\mathrm{V}_{\mathrm{IH}}\) or \(\mathrm{V}_{\mathrm{IL}}\) thresholds can be tolerated.

FIGURE 8. Synchronous Timing

\subsection*{3.2 INSTRUCTION SEQUENCE DESCRIPTIONS}

\subsection*{3.2.1 READ CYCLE}

The READ cycle requires the host to raise chip select (CS) and then clock in thru the Data-In (DI) pin a start-bit, opcode, and address. Following clocking in the last address bit, the Data-Out (DO) output comes out of the high impedance state and drives a low level on the output. This is referred to as the dummy bit and is a good indication that a READ mode has been successfully entered if difficulty is encountered during initial debug of a system. The dummy bit is clocked out of the EEPROM on the same rising edge of SK that clocks in the last address bit, A0. This is shown in Figure 9.

\subsection*{3.2.2 SEQUENTIAL READ}

Sequential read is a read mode available only on the NM93CS family. It is entered by entering a READ cycle and clocking out the first 16 -bit word. After reading the first 16 -bit word if chip select (CS) is kept high, address \(A+1\) may be clocked out followed by address A +2 and so on. When the maximum address is reached, the memory continues in the sequential read mode at address 0 . In this manner, the host may operate the memory in a continuous loop read. When initiating a SEQUENTIAL READ, the first data
word is proceeded by a dummy bit as in a standard READ, although the dummy bit is supressed in all subsequent data words as shown in Figüre 9.

\subsection*{3.2.3 ERASE AND ERASE ALL}

The ERASE cycles return the contents of the EEPROM to a clear state which is read as 1 's. It is not necessary for any of the CMOS EEPROM described in this article, and is included in the NM93C family, NM93C46A, and NM59C11 only for compatibility with older devices that require erasing. It is recommended that the erase cycles be eliminated from the instructions to simplify the code, speed up writing and to improve the endurance obtained in the application. These modes are entered by clocking in a start-bit, op-code, and address. It is not necessary to clock in the data field as it is assumed to be all 1 's. It is necessary to clock in the address, even in the case of ERASE-ALL where it is "don't care" in all except the first two bits of the address field which is used as additional op-code bits. After the full address field has been clocked in, chip select must be returned to a low level in initiate the erase cycle. In all devices, except the NMC9306, programming completion can be determined by Polling as shown in Figure 4, or a simple 10 ms timeout will guarantee programming is complete if polling is not used.

TL/D/11169-12
FIGURE 9. Sequential Read Sequence

TL/D/11169-6
FIGURE 4. Busy/Ready Polling Sequence

\subsection*{3.2.4 WRITE AND WRITE ALL}

The Write and Write All cycles will write a specified data word into the specified address, or in the case of Write All, the same data pattern will be written into all locations. In all devices a new data pattern may be directly written over an existing data pattern without erasing the first data pattern. The write mode is entered by clocking in a start-bit, opcode, address, and data. The full address field must be clocked in for the Write All even though it is don't care in all but the first 2 bits. It is also necessary to clock in a full data field to assure correct alignment of data. The write cycle will be initiated after 8 - or 16 -bit have been clocked into the device in some of the devices and in other devices after chip select is brought low regardless of how many data bits have been clocked in. Refer to the specific datasheets to determine which method is used.

\subsection*{3.2.5 PROGRAM ENABLE AND PROGRAM DISABLE}

Program enable and program disable are the instructions that enable or disable writing and, where included, erasing. The instruction name varies depending on the specific device but includes EWEN, EWDS, WEN, and WDS. These instructions enable or disable the entire memory array with a single instruction. All devices power up in the disable mode and once placed in the enabled mode remain enabled until a disable instruction is performed or \(\mathrm{V}_{\mathrm{CC}}\) is cycled. These instructions provide the most basic level of data protection. Although since most lost data is the result of the host device becoming uncontrolled and performing the ."Program Subroutine" it may be helpful to structure the software such that the enable command is not included in the "Program Subroutine" but is in a separate subroutine. If a greater degree of data security is needed, a NM93CS family device is recommended, or other more elaborate schemes involving redundant data storage and polling.

\subsection*{3.2.6 PROTECT REGISTER READ}

The protect register read (PRREAD) command is the same as a word read command except the input PRE must be held at a high level and the address is don't care. In spite of the address being don't care, the entire address field must be clocked in. On'the Data-Out pin the contents of the protect register will be clocked out MSB first descending to LSB.

\subsection*{3.2.7 PROTECT REGISTER ENABLE}

Similar to the programming enable instructions described above, the PREN instruction is necessary to perform any programming instruction the affects the Protect Register. Unlike the enable instructions described above, a PREN must immediately proceed each programming instruction that involves the protect register. The Protect Register programming instructions are PRCLEAR, PRWRITE, and PRDS.

\subsection*{3.2.8 PROTECT REGISTER DISABLE}

The protect register disable instruction permanently disables any further programming instructions to the protect register. Therefore it can only be performed once in the lifetime of a NM93CS device. The purpose of it is to permanently configure a portion of the EEPROM as true ROM and a portion as Read/Write EEPROM. Great caution should be exercised prior to executing this instruction as there is no second chance. It is performed by sending a start-bit, op-
code and an address field of all 0's while both the PRE and PE inputs are at a high level. This instruction must be immediately proceeded by a PREN instruction.

\subsection*{3.2.9 PROTECT REGISTER CLEAR}

The protect register clear instruction will clear the contents of the Protect Register making the entire contents of the EEPROM alterable only if the PRDS instruction has not previously been executed. This is done by clocking in a startbit, op-code, and address field of all ones. This instruction must be immediately proceeded by PREN instruction and requires that both PRE and PE inputs be held at a high level.

\subsection*{3.2.10 PROTECT REGISTER WRITE}

The Protect Register write command (PRWRITE) allows the host to write the protect register with the address where the memory is to be segmented into ROM and EEPROM. The defined address is the first ROM address and the ROM field then continues to the top of memory. To execute this command a start-bit, op-code, and address must be clocked in, the address field containing the memory address that defines the ROM/EEPROM boundary. The PRE and PE inputs must be held at a high level.

\subsection*{3.3 INTERFACING SOLUTIONS}

When interfacing serial microwire EEPROMs to microcontrollers there is an apparent conflict that occurs when selecting clock polarity and phase. This can be easily overcome in most situations, although when using some microcontrollers that do not allow selection of either clock polarity or clock phase, the only solution may be to resort to bit set and bit reset instructions to interface to the EEPROM rather than use of the serial interface provided on the microcontroller.
In the instance where there is a dedicated serial interface provided, the conflict typically occurs as follows. Figure 10 demonstrates an EEPROM READ as this involves data being transferred from the micro to the EEPROM (Start bit, opcode, and address) and data transferred from the EEPROM to the micro (address contents). The conflict occurs in this example when the micros clock sets data up on the falling edge of SK and expects the EEPROM to accept it on the rising edge, but then expects the EEPROM to do the same when it sends data back to the micro.
1. The micro sets up a data bit. A propagation delay after the falling edge the data bit is valid at the EEPROM DI pin.
2. The EEPROM uses the rising edge of SK to clock the data bit into its internal register.
3. When the data direction changes the EEPROM sets the data up starting at the rising edge of SK.
4. The micro attempts to clock the data bit in that was set up on clock edge 3.
This example will work if the micro requires 20 ns or less data hold time after edge 4. If greater than 20 ns is required, an alternate strategy is needed.
1a. The micro sets up the data bit on the rising edge and a propagation delay later it is valid at the EEPROM.
2 a . The EEPROM clocks the data into its internal register. The EEPROM requires only 10 ns data hold time, which can normally be guaranteed.

3a. The EEPROM sets the Data-Out up on the rising edge.
4 a . The micro clocks the data into it's internal registers on the falling edge of the clock and a minimum data setup and hold time is guaranteed for the micro based on the minimum high and low time of the SK clock used in the application.
It should be noted that in the second example, CS (chip select) is asserted when SK is low. If this cannot be done, the DI input should be low when CS is asserted. If both DI and SK are high when CS is asserted the EEPROM will
recognize this as a rising edge of SK. To accommodate this in a design, it is allowable to clock in any number of logic zeros prior to the start bit.

\subsection*{4.0 Conclusion}

The serial EEPROM offered by National all share a common structure. Separating them are various features that give benefit to various applications such as the need for a bi-directional data bus or need for one byte word width. There are a number of "tricks" that may simplify interfacing to these which can easily be understood with the help of a functional block diagram. Given this information the overall job of using a serial interface EEPROM will be simpler.

TL/D/11169-13

CS

FIGURE 10

\title{
Using an EEPROM\({ }^{12}{ }^{\text {CTM }}\) Interface NM24C02/03/04/05/08/09/ 16/17
}

\section*{INTRODUCTION}

National Semiconductor's NM24C EEPROMs are designed to interface with Inter-Integrated Circuit \(\left({ }^{2} \mathrm{C}\right)\) buses and hardware. NSC's electrically erasable programmable read only memories (EEPROMs) offer valuable security features (write protection), two write modes, three read modes and a wide variety of memory sizes. Applications for the \({ }^{2} \mathrm{C}\) bus and NM24C memories are included in SANs (small-area networks), stereos, televisions, automobiles and other scaled-down systems that don't require tremendous speeds but instead cost efficiency and design simplicity.

\section*{I2C BACKGROUND}

The I2C bus configuration is an amalgam of microcontrollers and peripheral controllers. By definition: a device that transmits signals onto the \(I^{2} \mathrm{C}\) bus is the "transmitter" and a device that receives signals is the "receiver"; a device that controls signal transfers on the line in addition to controlling the clock frequency is the "master" and a device that is controlled by the master is the "slave". The master can transmit or receive signals to or from a slave, respectively, or control signal transfers between two slaves, where one is the transmitter and the other is the receiver. It is possible to combine several masters, in addition to several slaves, onto an \(I^{2} \mathrm{C}\) bus to form a multimaster system. If more than one master simultaneously tries to control the line, an arbitration procedure decides which master gets priority. The maximum number of devices connected to the bus is dictated by the maximum allowable capacitance on the lines, 400 pF , and the protocol's addressing limit of 16 k ; typical device capacitance is 10 pF . Up to eight E2PROMs can be connected to an \(I^{2} \mathrm{C}\) bus, depending on the size of the memory device implemented.
Simplicity of the I2C system is primarily due to the bidirectional 2-wire design, a serial data line (SDA) and serial clock line (SKL), and to the protocol format. Because of the effi-
cient 2-wire configuration used by the \({ }^{2} \mathrm{C}\) interface compared to that of the MICROWIRETM and SPI interface, reduced board space and pin count allows the designer to have more creative flexibility while reducing interconnecting cost.

\section*{OPERATING NATIONAL SEMICONDUCTOR'S NM24Cs}

The NM24C E2PROMs require only six simple operating codes for transmitting or receiving bits of information over the 2 -wire \(\mathrm{I}^{2} \mathrm{C}\) bus. These fields are explained in greater detail below and briefly described hereafter: a start bit, a 7bit slave address, a read/write bit which defines whether the slave is a transmitter or receiver, an acknowledge bit, message bits divided into 8 -bit segments and a stop bit.
For efficient and faster serial communication between devices, the NM24C Family features page write and sequential read.
The NM24C03/C05/C09/C16/C17 Family offers a security feature in addition to standard features found in the NM24C02/C04/C08/C16 Family. The security feature is beneficial in that it allows Read Only Memory (ROM) to be implemented in the upper half of the memory to prevent any future programming in that particular chip section; the remaining memory that has not been write protected can still be programmed. The security feature in the NM24C03/ C05/C09/C17 Family does not require immediate implementation when the device is interfaced to the \(I^{2} \mathrm{C}\) bus, which gives the designer the option to choose this feature at a later date. Table I displays the following parameters: memory content, write protect and the maximum number of individual \({ }^{2} \mathrm{C}\) E 2 PROMs allowed on an \({ }^{2} \mathrm{C}\) bus at one time if the total line capacitance is kept below 400 pF .
Code used to interface the NM24Cs with National Semiconductor's COP8 Microcontroller Family is listed in a latter section of this application note for further information to the reader.

TABLEI
\begin{tabular}{|c|c|c|c|}
\hline Part No. & \begin{tabular}{c}
Number of \\
256x8 Page Blocks
\end{tabular} & \begin{tabular}{c}
Write Protect \\
Feature
\end{tabular} & \begin{tabular}{c}
Max. \\
Parts
\end{tabular} \\
\hline NM24C02 & 1 & No & 8 \\
\hline NM24C03 & 1 & Yes & 8 \\
\hline NM24C04 & 2 & No & 4 \\
\hline NM24C05 & 2 & Yes & 4 \\
\hline NM24C08 & 4 & No & 2 \\
\hline NM24C09 & 4 & Yes & 2 \\
\hline NM24C16 & 8 & No & 1 \\
\hline NM24C17 & 8 & Yes & 1 \\
\hline
\end{tabular}

FIGURE 1. \({ }^{2}\) C - -Bus Configurations

TL/D/11268-2
FIGURE 2. \({ }^{2}\) ² Bus Timing

\section*{Start Condition}
- Clock and Data line high (Bus free)
- Change Data line from high to low
- After \(\mathrm{t}_{\mathrm{HS}(\mathrm{Min})}=4 \mu \mathrm{~s}\) the master supplies the clock

Acknowledge
- Transmitting device releases the Data line
- The receiving device pulls the Data line low during the ACK-clock if there is no error
- If there is no ACK, the master will generate a Stop Condition to abort the transfer

Stop Condition
- Clock line goes high
- After \(\mathrm{t}_{\mathrm{HP}(\mathrm{Min})}=4.7 \mu \mathrm{~s}\) the Data lines go high
- The master maintains the Data and Clock line high
- Next Start Condition after \(\mathrm{t}_{\mathrm{FB}(\mathrm{Min})}=\) 4:7 \(\mu \mathrm{S}\) is possible

\section*{START/STOP CONDITIONS}

If both the data and clock lines are HIGH, the bus is not busy. To attain control of the bus, a start condition is needed from a master; and to release the lines, a stop condition is required.
Start Condition: HIGH-to-LOW transition of the data line while the clock line is in a HIGH state.
Stop Condition: LOW-to-HIGH transition of the data line while the clock line is in a HIGH state.
The master always generates the start and stop conditions. After the start condition the bus is in the busy state. The bus becomes free after the stop condition.

\section*{DATA BIT TRANSFER}

After a start condition " S " one databit is transferred during each clock pulse. The data must be stable during the HIGHperiod of the clock. The data line can only change when the clock line is at a LOW level.
Normally each data transfer is done with 8 data bits and 1 acknowledge bit (byte format with acknowledge).

\section*{ACKNOWLEDGE}

Each data transfer needs to be acknowledged. The master generates the acknowledge clock pulse. The transmitter releases the data line (SDA = HIGH) during the acknowledge clock pulse. If there was no error detected, the receiver will pull down the SDA-line during the HIGH period of the acknowledge clock pulse.
If a slave receiver is not able to acknowledge, the slave will keep the SDA line HIGH and the master can then generate a STOP condition to abort the transfer.
If a master receiver keeps the SDA line HIGH, during the acknowledge clock pulse the master signals the end of data transmission and the slave transmitter release the data line to allow the master to generate a STOP-condition.

\section*{ARBITRATION}

Only in multimaster systems.
If more than one device are potential masters and more than one desires access to the bus, an arbitration procedure takes place: if a master transmits a HIGH level and another master transmits a LOW level, the master with the LOW level will get the bus and the other master will release the bus; and the clock line switches immediately to the slave receiver mode. This arbitration could carry on through many bits (address bits and data bits are used for arbitration).

\section*{FORMATS}

There are three data transfer formats supported:
- Master transmitter writes to slave receiver; no direction change
- Master reads immediately after sending the address byte
- Combined format with multiple read or write tranfers.

\section*{ADDRESSING}

The 7 -bit address of an \({ }^{2} \mathrm{C}\) device and the direction of the following data is coded in the first byte after the start condition:

TL/D/11268-3
A " 0 " on the least significant bit indicates that the master will write information to the selected Slave address device; a " 1 " indicates that the master will read data from the slave. Some slave addresses are reserved for future use. These are all addresses with the bit combinations 1111XXX and 0000 XXX. The address 00000000 is used for a general call address, for example, to initialize all \(1^{2} \mathrm{C}\) devices (refer to \({ }^{2} \mathrm{C}\) bus specification for detailed information).

The master becomes a master receiver after first ACK
Combined Formats

Read or Write Read or Write
\(n\) bytes Data + ACK \(\quad n\) bytes Data + ACK
\(\mathrm{S}=\) Start Condition \(\quad \mathrm{A}=\) Acknowledge \(\quad \mathrm{P}=\) Stop Condition
FIGURE 3. \(1^{2} \mathrm{C}\)-Bus Transfer Formats

\section*{TIMING}

The master can generate a maximum clock frequency of 100 KHz . The minimum LOW period is defined as \(4.7 \mu \mathrm{~s}\); the minimum HIGH period width is \(4 \mu \mathrm{~s}\); the maximum rise
time on SDA and SCL is \(1 \mu \mathrm{~S}\); and the maximum fall time on SDA and SCL is 300 ns .
Figure 4 shows the detailed timing requirements.
\begin{tabular}{|c|c|c|c|c|}
\hline Symbol & Parameter & Min & Max & Units \\
\hline \(\mathrm{fSCL}^{\text {L }}\) & SCL Clock Frequency & 0 & 100 & kHz \\
\hline \(\mathrm{t}_{\mathrm{BUF}}\) & Time the Bus Must Be Free before a New Transmission Can Start & 4.7 & , & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {HD }} ;\) STA & Hold Time Start Condition. After this Period the First Clock Pulse is Generated & 4.0 & & \(\mu \mathrm{S}\) \\
\hline thow & The LOW Period of the Clock & 4.7 & & \(\mu \mathrm{s}\) \\
\hline tsu; STA & Setup Time for Start Condition (Only Relevant for a Repeated Start Condition) & 4.7 & . & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{t}_{\mathrm{HD}} ;\) DAT & Data in Hold Time & \[
\begin{gathered}
5 \\
0^{*}
\end{gathered}
\] & & \(\mu \mathrm{S}\) \(\mu \mathrm{s}\) \\
\hline \(t_{\text {SU; }}\) DAT & Setup Time Data & 250 & & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Rise Time of Both SDA and SCL Lines & & 1 & \(\mu \mathrm{S}\) \\
\hline \(t_{f}\) & Fall time of Both SDA and SCL Lines & & 300 & ns \\
\hline \(\mathrm{t}_{\text {SU: }}\) STO & Setup Time for Stop Condition & 4.7 & & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}
*Note that a transmitter must internally provide at least a hold time to bridge the undefined region (max. 300 ns) of the falling edge of SCL.
FIGURE 4. \({ }^{2} \mathrm{C}\)-Bus Timing Requirements

TL/D/11268-7
FIGURE 5. \({ }^{2}\) C Bus EEPROM/ \(\mu\) Controller Configuration Used for Sample Code

\section*{SOFTWARE TASKS}
I. Write fixed values to E2PROM cells
II. Read values back from E2PROM and save in RAM locations from COP
Note: I2C Bus Modes Used:
\[
\begin{aligned}
& \text { Master Transmitter } \begin{array}{l}
\text { SDA } \rightarrow \text { Slave Receiver } \\
\text { Master Receiver } \\
\leftarrow \text { SCL } \rightarrow \text { SDA }
\end{array} \text { Slave Receiver }
\end{aligned}
\]

\section*{REMARKS}
- The I2C bus, 2-wire serial interface generally requires a pull-up resistor on the SDA line and the SCL. line, depending on whether TTL or CMOS hardware interfacing exists.
- \({ }^{2} \mathrm{C}\) bus compatible \(\mu \mathrm{C}\) 's or peripherals have OPEN DRAIN outputs at SDA and SCL.
- COP800 does not have OPEN DRAIN outputs, but the "bus requirements" can be met by switching SDA and SCL connections into TRI-STATE \({ }^{(1)}\) for the following cases:
The bus is not accessed
A slave has to send an acknowledge bit.
- MICROWIRE can not be used for I2C bus operations.
- Current sink capability on SDA and SCL must be 3 mA to maintain "Low Level" (an I2C bus spec.).
.TITLE IIC - EEPROM ROUTINES .INCLD COP800.INC
.CHIP 840
LIST X'21
* * *TASK RELATED RAM - DECLARE***

LD PSW,
LD CNTRL,
LD FLAG,
.FOPM

; (2 BYTE SUCCESSIVE WRITE)
SBIT 0 ,
LD B,
RBIT 2 [B],
JSR STACON
JSR WAIT

\section*{STACON:} RBIT 3 , LD B,

LOPA:
LD BITCO,
LOPA 1:
IFBIT 0, [B]
JP ONE,
RBIT 2,
JP CLK
ONE:
SBIT 2,
JP CLK

CLK:
SBIT 3,
NOP
NOP
NOP
RBIT 3,
RBIT 2,
.FORM
LD A, [B]
RRCA,
\(X A,[B]\)
DRSZBTCO
JP LOPA1,
LD A, \([B+]\),
IFBIT 1 ,
JMP,
JSR ACK,

IFBIT 0 ,
JP CEC1,
IFBNE
JMP LOPA,
RET

\section*{CEC1:}

IFBNE,
JMP LOPA,
\begin{tabular}{ll}
PORTLD & ;FINISH START COND. \\
\#EEADR & ;PREPARE TO CLOCK \\
\#OUT ADDRESS.
\end{tabular}

PORTLD ; SET BIT LEVEL "1" ; ENSURE SAME BIT ;LENGTH
;DOCLOCK PULSE
; ENSURE 4 USEC
;SWITCH ALSO SDA LOW
;ROTATE BYTE ONE
; BIT POS. RIGHT
;AND SAVE
; CHECK IF 8 BITS
;SHIFTED
;DECREMENT 8
;CHECK IF READ
; 3RD BYTE IS NEXT?
; IF SO, THEN READ.
;GET ACKNOWLEDGED
; WHEN 8 BITS ARE
; SHIFTED.
;CHECK IF READ
; OR WRITE OPERATION.
; ON READ (HERE)
; IF NOT 2 BYTES YET
; AFTER EE-ADDRESS AND ;WORD ADDRESS ARE SHFT.
; 1ST AND 2ND DATA-
; BYTE (3RD + 4TH)

STP:
SBIT 3,
NOP,
SBIT 2,
RET,
.FORM
;** GET BBIT OF DATA FROM EE-PROM **

GETDAT:
JSR ACK
LD B,
JP
GETDAT:
JSR ACK,

GETDAT1:
LD BITCO,
RBIT 2,
RBIT 2 ,
LOPB:
SBIT 3,
RBIT 7, [B]
IFBIT 2,
SBIT 7, [B]
RBIT 3,
DRSZ BITCO,
JP SHFT
LD A, [B+],
IFBNE
JMP GETDT,
SBIT 2,
JMP STP
.FORM
SHFT:

\footnotetext{
LD A, [B],
RRC A
\(X A,[B]\)
JP LOPB
; * * SIMPLE ROUTING TO DO 40 MSEC DELAY **
}

PORTL ;ESTABLISH STOP. ;CONDITION
PORTLD
\begin{tabular}{ll}
& ;GET ACKNOWLEDGMENT \\
\#EEREAD & ;POINT FIRST READ RAM \\
GETDT1 & ;AND READ IN
\end{tabular}
;ACKNOWLEDGMENT TOEE; PROM WHEN 8 BITS ; ARE SHIFTED IN.
```

\#008 ; INIT BIT COUNTER
PORTLC ;BEFORE READING, PUT
PORTLD ;'SDA' INTO HIGH-Z.

```

PORTL ;DOCLOCK HIGH ; READ IN EEDATA ; IN SETS OF 8 BITS
;DOCLOCKLOW
; CHECK IF 8 BITS ;ARE SHIFTED
; INCREMENT B
;CHECKIF 4 BYTES ; ARE SHIFTED IN? ; PUT L2=0 ;WHEN TRUE, DO STOP ;CONDITION AND ; RETURN

WAIT:
LD 0F1
LOPD:
LD OF2,
LOPC:
DRSZ OF2,
JP LOPC,
DRSZOF1, JP LOPD RET

ACK1:
SBIT 2, JP ACLK,

ACK:
RBIT 2,
ACLK:
SBIT 3,
NOP
NOP
NOP
RBIT 3,
SBIT 2,
RET
.END

\section*{Enhancing the Performance of Serial CMOS EEPROMs}

National Semiconductor
Application Note 822
Sean Long

TABLE OF CONTENTS
1.0 COMPARING SERIAL EEPROM INTERFACE STANDARDS
2.0 I2CTM BUS MEMORY SIZE
2.1 12C Bus Concept
2.2 EEPROM Memory on the I2C Bus
2.3 Bank Switching I2C EEPROMs
3.0 ACCESSING SERIAL EEPROMs
3.1 \({ }^{2} \mathrm{C}\) System
3.1.1 Random Read
3.1.2 Sequential Read
3.1.3 Current Address Read
3.1.4 Byte Write
3.1.5 Page Write
3.1.6 Typical \(\mathrm{T}_{\mathrm{wr}}\) vs Maximum \(\mathrm{T}_{\mathrm{wr}}\)
3.2 MICROWIRETM Systems
3.2.1 Read Mode
3.2.2 Sequential Read
3.2.3 Write Mode
3.2.4 Typical \(\mathrm{T}_{\text {wp }}\) vs Maximum \(\mathrm{T}_{\text {wp }}\)
4.0 WRITE PROTECTED MEMORY SYSTEMS
\(4.1 \quad 1^{2} \mathrm{C}\) EEPROMs
4.2 MICROWIRETM EEPROMs
5.0 EEPROM ENDURANCE AND SYSTEM LIFETIME
5.1 EEPROM Definitions
5.2 Read Cycles
5.3 Data Changes and Endurance
6.0 CONCLUSION

\section*{INTRODUCTION}

This application note presents a number of solutions to help a system designer overcome some possible limitations of serial Electrically Erasable PROMs (EEPROMs) to obtain greater system performance and flexibility.
This note assumes that the reader is familiar with National Semiconductor's range of MICROWIRE EEPROMs (NM93Cxx and NM93CSxx) and \(\mathrm{I}^{2} \mathrm{C}\) (NM24Cxx) devices.

\subsection*{1.0 COMPARING SERIAL EEPROM INTERFACE STANDARDS}

The two industry standard serial interfaces for EEPROMs are the MICROWIRE and I \({ }^{2} \mathrm{C}\)-bus specifications. The key features of these two interfaces are shown in Figure 1.

\section*{Serial Interface Standards}

MICROWIRE

\begin{tabular}{|l|c|c|}
\hline & MICROWIRE & I2C \\
\hline Max Bus Speed & 1 MHz & 100 kHz \\
\hline Number of Active Pins & 4 & 2 \\
\hline Maximum Memory & N/A & 16 kbit \\
\hline Acknowledge & No & Yes \\
\hline Data Size & 8- or 16-Bit & 8 -Bit \\
\hline Block Write & No & Yes \\
\hline Sequential Read & Yes & Yes \\
\hline Number of Devices on Bus & Limited by Port Pins & 32 Functions, 256 Total Devices \\
\hline
\end{tabular}

FIGURE 1. MICROWIRE vs I²C

The key advantages of the MICROWIRE interface compared to the \(\mathrm{I}^{2} \mathrm{C}\)-bus are:
- Higher system speed (1 MHz vs 100 kHz)
- Greater memory size (unlimited vs 16 kbit maximum)
- Address programming pins are not required on peripherals
The key advantages of the \(I^{2} \mathrm{C}\)-bus are:
- Only requires 2 pins (SDA and SCL)
- Allows easy implementation of a multi-master system

Both interface standards are supported by a variety of microcomputers; some have dedicated interfaces built-in (for example National Semiconductor's COPSTM), while other microcomputers can interface to either standard by toggling I/O port pins as required.

\subsection*{2.0 I²C-BUS MEMORY SIZE \(^{2}\)}

\section*{\(2.1{ }^{12} \mathrm{C}\)-Bus Concept}

The \(1^{2} \mathrm{C}\)-bus uses two wires, serial data (SDA) and serial clock (SCL) to carry information between various integrated circuits connected to the bus. Each device is recognized by a unique address and can operate as either a transmitter or receiver depending on the function of the individual device. A typical \(\mathrm{I}^{2} \mathrm{C}\)-bus system is shown in Figure 2.

TL/D/11429-4
FIGURE 2. A Typical I²C-Bus System
In addition to transmitters and receivers, devices can also be defined as masters or slaves when performing data transfers.

A master is: - the device which initiates data transfer
- generates clock signals
- terminates a data transfer
- e.g., a microcomputer

A slave is: - the device addressed by a master
- e.g., a memory

Note: The I2C-bus is a multi-master bus; each master generates its own clock signals when transferring data on the bus.

\subsection*{2.2 EEPROM Memory on the \(1^{2} \mathrm{C}\)-Bus}

The \(I^{2} \mathrm{C}\)-bus specification allows a maximum of 16 kbits of EEPROM. The 4-bit device type identifier string which follows the START condition is 1010 for EEPROMs. National Semiconductor manufactures a range of different size \({ }^{2} \mathrm{C}\) EEPROMs (\(2 k, 4 k, 8 k\), and 16 kbits) to allow a system designer to select the amount of memory required.
EEPROMs on the \(1^{2} \mathrm{C}\)-bus may be configured in any manner required, providing the total memory addressed does not exceed 16 kbits. EEPROM memory Addressing is controlled by two methods:
- Hardware configuring the A0, A1, and A2 pins (device address pins) with pull-up or pull-down resistors
- Software addressing the required PAGE BLOCK within the device memory array (as sent in the slave address string)

\section*{Pin Descriptions}

Serial Clock (SCL)
Serial Data (SDA)

Device Address Inputs connected to \(V_{C C}\) or \(V_{S S}\) to configure EEPROM address
\begin{tabular}{|c|c|c|c|c|c|}
\hline Device & A0 & A1 & A2 & \multicolumn{2}{|c|}{ Effect of Address } \\
\hline NM24C02/03 & ADR & ADR & ADR & \(2^{3}=8\) & \((8) \times(2 k)=16 k\) \\
NM24C04/05 & \(X\) & ADR & ADR & \(2^{2}=4\) & \((4) \times(4 k)=16 k\) \\
NM24C08/09 & \(X\) & \(X\) & ADR & \(21=2\) & \((4) \times(8 k)=16 k\) \\
NM24C16/17 & \(X\) & \(X\) & \(X\) & \(2^{2}=1\) & \((1) \times(16 k)=16 k\) \\
\hline
\end{tabular}

ADR-active pin used for device addressing
\(X-\) not used for addressing (must be tied to ground \(/ V_{\text {SS }}\))
Many applications now require greater than 16 kbits of EEPROM on an \({ }^{2} \mathrm{C}\) system. For the purpose of this application note we will consider how to use multiple 16 kbit (NM24C16/17) devices in an \({ }^{2} \mathrm{C}\) bus system to increase the total memory size.

\subsection*{2.3 Bank Switching I2C EEPROMs}

A circuit to increase the EEPROM memory size of the \(I^{2} \mathrm{C}\) bus, while still maintaining full software and hardware compatibility, is shown in Figure 3.
The circuit connects the serial clock (SCL) to each memory device, but the serial data (SDA) is connected by a multiplexed, bidirectional analog switch (MM74HC4051). The MM74HC4051 is an 8-channel analog multiplexer which connects together the outputs of 8 digitally controlled ana\(\log\) switches, thus achieving an 8-channel multiplexer. These switches are bidirectional, allowing any analog input to be used as an output and vice-versa. They have a low "on" resistance, typically \(50 \Omega\) or less.

The MM74HC4051 is controlled by four inputs; INH which enables the switches to be "on" and inputs A, B and C which select one of the eight switches. The master (microcontroller) generates these four control signals to the MM74HC4051 directly.
In this case a typical software flow would be:
- set microcontroller port pins to select the NM24C16/17 required
- [DEVICE TYPE] \(\rightarrow\) [DEVICE ADDRESS] \(\rightarrow\) [PAGE BLOCK ADDRESS] \(\rightarrow\) [BYTE ADDRESS]
This means that this low cost solution still maintains full \({ }^{2} \mathrm{C}\)-bus compatibility.

\section*{Worst Case Analysis}
\begin{tabular}{|c|c|}
\hline \(\mathbf{1 2}^{2} \mathrm{C}\)-Bus Specification & \begin{tabular}{l}
MM74HC4051 \\
Solution Specification
\end{tabular} \\
\hline \[
\begin{aligned}
\mathrm{C}_{\max } & =400 \mathrm{pF} \text { (Note 1) } \\
\mathrm{f}_{\max } & =100 \mathrm{kHz} \text { (Note 2) } \\
& =10 \mu \mathrm{~s} \text { Period } \\
\text { I OL }^{\max } & =3 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{C}_{\mathrm{IN}} & =90 \mathrm{pF} \max \\
\mathrm{t}_{\mathrm{PD}} & =15 \mathrm{~ns} \text { max } \\
& =5 \mathrm{~ns} \text { typical } \\
& \mathrm{R}_{\mathrm{ON} \text { max }}
\end{array}
\] \\
\hline
\end{tabular}

Note 1: The maximum number of devices connected to the \(1^{2} \mathrm{C}\)-bus is controlled by the maximum allowable capacitance which is 400 pF per line.
Note 2: The maximum \(\mathrm{I}_{2} \mathrm{C}\) system clock is 100 kHz . The propagation delay through the MM74HC4051 is small enough to ensure that data set-up time of 250 ns min is not violated.

\subsection*{3.0 ACCESSING SERIAL EEPROMs}

\section*{\(3.1{ }^{12} \mathrm{C}\) System}

\section*{READ Operations}

\subsection*{3.1.1. Random Read}

Random read allows the master to access any memory location in a random manner. The master first performs a "dummy" write operation, then issues a start condition followed by the slave address and then the word address to be read. (See Figure 4.)

FIGURE 4. Random Read

\subsection*{3.1.2 Sequential Read}

A sequential read operation allows the master to read a continuous stream of data from the memory without having to keep clocking in the word address and waiting for the memory to assert the ACK signal.
Sequential reads can be initiated as either a current address read or random access read. The first word is transmitted as normal, however, the master now responds with an acknowledge (ACK) to indicate that it requires additional data. The memory continues to output data for each ACK received until the master does not send an ACK and generates a STOP condition.
The address counter increments all word address bits, allowing the entire memory contents to be read during one operation. When the top memory address is reached then the counter "rolls-over" to zero and continues counting. (See Figure 5.)

\subsection*{3.1.3. Current Address Read}

Internally the NM24Cxx devices contain an address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address \(n\), the next read operation would access data from address \(n+1\), without the need for the master to transmit the 8 -bit word address and then wait for the NM24Cxx acknowledge signal before transmitting the data. (See Figure 6.)

\section*{Write Operations}

\subsection*{3.1.4 Byte Write}

The normal write sequence is shown in Figure 7.

FIGURE 7. Byte Write
The master clocks the data into the NM24Cxx, and upon receipt of the ACK generates a STOP condition, at which time the NM24Cxx begins the internal write cycle to the nonvolatile memory. While the internal write cycle is in progress the NM24Cxx inputs are disabled, and the device will not respond to any requests from the master.
All NM24Cxx EEPROMs have a Write cycle time of \(\mathrm{T}_{\mathrm{wr}}=10 \mathrm{~ms}\) MAXIMUM for 5 V systems.

\subsection*{3.1.5 Page Write}

The NM24Cxx devices are capable of a sixteen byte page write. The master starts the operation in the same manner as the byte write but instead of terminating it continues to transmit up to fifteen more words. The internal address counter in the memory automatically increments to the next address. When the master has finished writing data to the memory, it terminates the write cycle in the usual way when an internal write cycle occurs in the memory.
This method results in a single \(T_{w r}\) delay instead of sixteen. This is useful for applications such as saving data after detecting a power failure when speed of writing is critical.

FIGURE 8. Page Write

\subsection*{3.1.6 Typical \(\mathrm{T}_{\text {wr }}\) vs Maximum \(\mathrm{T}_{\text {wr }}\)}

Good design practice recommends using "worst-case" timing calculations rather than typical figures. After a master had initiated an internal write cycle in the memory there are two options before the next cycle can begin:
1. Master waits \(T_{w r} M A X=10 \mathrm{~ms}\)
- this ensures that all "worst-case" write cycles will be finished
or
2. Master "polls" memory to detemine if the write cycle is complete \(\mathrm{T}_{\mathrm{wr}}\) TYP \(=5 \mathrm{~ms}\)

With option 2 the master can start polling immediately after starting the internal memory write cycle as follows:
[STOP] \(\rightarrow\) [START] \(\rightarrow\) [SLAVE ADDRESS FOR WRITE OPERATION] \(\rightarrow\) [POLL ACK]
IF no ACK then NM24Cxx still BUSY doing internal write
else NM24Cxx completed write cycle
master can proceed with next read or write operation.
This method can make significant improvements to overall system performance.
Note: After receiving a no acknowledge the master should output a stop condition to free the \({ }^{12} \mathrm{C}\)-bus for other operations.

\subsection*{3.2 MICROWIRE Systems}

\subsection*{3.2.1 Read Mode}

A typical Read access is shown in Figure 9. The rising edge of CS is used to select and reset the EEPROM. Then the microcomputer clocks in the start bit and opcode for a read cycle using serial clock (SK) and Data \(\ln\) (DI pins). This is followed by the address where data is to be read from, after which the data is output via Data Out (DO) pin.

SYNCHRONOUS DATA TIMING

FIGURE 9. Read Mode

\subsection*{3.2.2. Sequential Read}

All National's NM93CSxx devices support sequential read allowing the complete memory array to be read in a single operation.

\section*{CMOS: Sequential Read}

Allows the user to obtain an endless loop of data simply by entering the read mode.
\(\rightarrow\) Reduces overhead
\(\rightarrow 50 \%\) faster read
Note: The NM93Cxx devices do NOT support sequential read.
FIGURE 10. Sequential Read

\subsection*{3.2.3 Write Mode}

A write cycle is entered in a similar way to a read cycle; first the start bit and opcode for a write cycle are clocked in via DI, followed by the address and data to be written. The self timed programming cycle is initiated by bringing CS low before the next rising edge of SK as shown in Figure 11.

\subsection*{3.2.4 Typical \(\mathrm{T}_{\text {wp }}\) vs Maximum \(\mathrm{T}_{\text {wp }}\)}

When the MICROWIRE EEPROMs the designer has three options to determine when the device has finished a programming cycle (either a write or erase instruction) as shown in Figure 11.
Option 1: \(\mu\) processor \(/ \mu\) controller waits for \(T_{\text {wp(max) }}=10 \mathrm{~ms}\)
Option 2: \(\mu\) processor/ \(\mu\) controller polls Data-Out (DO) for Busy/Ready status \(\mathbf{T}_{\text {wp(typ) }}=3 \mathrm{~ms}\)
Option 3: if using the NM59C11 there is a separate RDY/BUSY pin: \(\mathbf{T}_{\mathbf{w p}(t y p)}=\mathbf{3} \mathbf{~ m s}\)

WRITE:

All MICROWIRE EEPROMs can use options 1 or 2, and in the case of the NM59C11 there is a separate RDY/BUSY pin which the microcontroller/microprocessor can poll to determine the programming status.

\subsection*{4.0 WRITE PROTECTED MEMORY}

\section*{\(4.11^{2} \mathrm{C}\) EEPROMs}

National Semiconductor manufactures two versions of \({ }^{2} \mathrm{C}\) EEPROMs: a "standard" version (NM24C02/04/08/16) and a "secure" version (NM24C03/05/09/17). The "secure" devices are fully software compatible with the standard devices plus they use one of the unused pins to implement a hardware write protect for the upper half block of the memory array.

FIGURE 12. I2 \({ }^{2}\) Secure Memory System
If the master does attempt to write to the protected memory, then the NM24C03/05/09/17 will accept the slave and word addresses, but will not generate an ACK, thus the programming cycle will not be started when the STOP condition is asserted.

\subsection*{4.2 MICROWIRE EEPROMs}

All NM93CSxx devices have the security feature which allows the user to define a portion of the memory to be write protected, either permanently or temporarily. This is useful for storing secure information in a system, such as calibration data. To control the secure memory involves a combination of setting a hardware pin and various software instructions as shown in Figure 13.
- Protect Register:

Input PRE must be high and PREN instruction executed before a write to protect register
- Disable Cell: Set via PRDS instruction, input PRE must be high and PREN instruction executed PRDS is a one time only instruction
- Address in register defines first location to be protected
- Protect register may be altered unless PRDS is executed

TL/D/11429-15
FIGURE 13. Memory Protect Register
Data in serial MICROWIRE EEPROMs is further protected from spurious write cycles (especially during power transitions) by including a program disable mode which will automatically abort any requested Erase or Write cycles. Figure 14 shows the suggested instruction flow for maximum data integrity with National's MICROWIRE EEPROMs.

*EWDS must be executed before \(V_{C C}\) drops below 4.5 V to prevent accidental data loss during subsequent power down and/or power up transients.
FIGURE 14. Protecting Data in Serial EEPROMs

\section*{Typical Instruction flow for Maximum Data Protection}
- Although EEPROM in non-volatile, the problem exists that stored data can be destroyed during power transitions.
- All National Semiconductor serial EEPROMs when initially powered up are in Program Disable Mode. In this mode it will abort any requested Erase or Write cycles.

\subsection*{5.0 EEPROM ENDURANCE AND SYSTEM LIFETIME}

\subsection*{5.1 EEPROM Definitions}

The two main specifications which determine the system reliability and lifetime of an EEPROM are Endurance and Data Retention.

Endurance: The number of data changes of an EEPROM before any bit fails to write correctly.
Data Retention: The ability of an EEPROM cell to retain charge once it has been programmed for extended periods under static or dynamic conditions of voltage or temperature.
Parameters which affect Endurance are:
- Programming Duty Cycle and Waveform: Although the NM93Cxx devices can have a FSK (max) 1 MHz , it is important to make sure that the duty cycle is such that \(\mathrm{t}_{\text {SKH }}\) (SK high time) and \(\mathrm{t}_{\text {SKL }}\) (SK low time) have a minimum value of 250 ns.
- Ambient Write Cycle Temperature: The colder the operating temperature the better the endurance will be. For example \(25^{\circ} \mathrm{C}\) vs \(90^{\circ} \mathrm{C}\) will show approximately a \(2: 1\) improvement.
- Programming Time: All National EEPROMs are self-timed and the programming time cannot be varied by the user, guaranteeing reliabie system and lifetime performance.
- Programming Voltage: The lower the programming voltage \(\mathrm{V}_{\mathrm{PP}}\) the longer the required timing period \(T_{\text {wp }}\). All National's EEPROMs operate from a single \(V_{C C}\) supply and have an on-board \(V_{P P}\) generator which is \(V_{C C}\) independent. This ensures that all National EEPROMs are both easy to use and highly reliable. The programming voltage cannot be varied by the user.

\subsection*{5.2 Read Cycles}

Read cycles are non-destructive so all EEPROMs have the capability for an infinite number of reads.

\subsection*{5.3 Data Changes}

With an EEPROM it is important to look at the endurance or number of write cycles the device can support. There are three types of write sequence to consider with EEPROM technology:

\section*{1) Erase before Write}

As the names suggests, a memory location must be erased before it can be written to. A typical software flow for a write instruction is:
- send ERASE instruction to memory address \(n\)
- send WRITE instruction to memory address \(n\)

Disadvantages
- must perform 2 dedicated instructions
- slower system performance (2 instruction cycles, 2 TWP \(_{\text {WP }}\) delays)
- each write operation requires 2 data changes;
i.e., endurance specification is effectively halved
2) Autoerase
- send WRITE instruction
- EEPROM automatically performs ERASE instruction, then performs the WRITE operation Disadvantages
- still need 2 data changes for each WRITE cycle, thus reducing system performance and halving endurance rating
3) Direct Write
- single WRITE instruction, no ERASE needed
- writes over existing memory contents
- eliminates ERASE cycles

\section*{Advantages}
- single instruction, faster system performance
- single data change for each WRITE instruction

All National Semiconductor CMOS EEPROMs (both MICROWIRE and \(I^{2} \mathrm{C}\)) use Direct Write method giving the highest system performance, reliability and endurance characteristics of CMOS EEPROMs available on the market today.
When looking at EEPROM endurance specifications it is necessary to look more specifically at the number of data changes (ERASE \& WRITE) per write cycle. National specifies 1 write cycle to be 2 data changes (to be consistent with other manufacturer's datasheets whose products are either Erase before Write or Auto Erase), so the figure of 500 k Write cycles is actually equivalent to an endurance figure of 1 Million (106) data changes.
National Semiconductor produce full product qualification booklets giving process performance and reliability characteristics; for a copy contact your local National Sales representative.

\subsection*{6.0 CONCLUSION}

National Semiconductor offer the widest range of serial EEPROMs covering two main industry standard serial interfaces; MICROWIRE: e.g. NM93Cxx, NM93CSxx size: 256 -bit \(\rightarrow 4\) kbit (16 kbit coming)
\({ }^{12} \mathrm{C}\) :
e.g. NM24Cxx
size: \(2 \mathrm{k} \rightarrow 16\) kbits
All these EEPROMs offer the same high specifications of:
Endurance: \(\quad 10^{6}\) data changes
Direct Write: no erase cycle required
Data Retention: \(\quad \because\) greater than 40 years
Self-Timed Write Cycle: typical write cycle time 5 ms
Sequential Read: NM93CSxx, NM24Cxx devices
Memory Protect: NM93CSxx, NM24C03/05/09/17
These features make them easy to use, allowing the system designer to achieve high performance, highly reliable systems. REFERENCES
National Semiconductor Memory Databook
National Semiconductor CMOS Logic Databook

\title{
Software for Interfacing the COP800 Family Microcontrollers to
} National's MICROWIRE \({ }^{\text {TM }}\) EEPROMs

If it's desirable to use both types in the same socket without being forced to make software changes, one must be careful not to use the sequential read capability of the "CS" series. Both types of parts should be tested in the socket before the software is frozen.

\section*{NM93C06 to COP8XX Famlly Software Detalls}

Always consult the latest data sheets for information about timing variables mentioned in the text that follows. These numbers were correct at the time that this application note was written but are subject to change.
1. The SK clock frequency must not exceed 1 MHz . Consult the processor data sheet for details.
2. The CS low time following a write must exceed 250 ns . This starts the internally timed write operation. The DO line will leave the high impedance state if CS goes high again and will drive low until the internal write cycle is complete. After DO returns high, indicating "ready" the first rising edge of SK with CS high and DI high will return the DO pin to the high impedance condition. This condition is normally the start bit of the next instruction.
The DO pin will be low for up to 10 ms and then go high to indicate that the write is complete. If a new instruction is attempted before the DO pin returns high it will be ignored and the DO pin will not go tristate. The DO pin will always go to the tristate condition when CS is low.
3. Opcodes are either 2-bits or 4-bits long depending on the instruction type and are always preceded by a "start-bit" of a logic one. Any number of leading zeros can be clocked in before the start-bit (the sample assembly code inserts seven). Addresses are either 6 or 8 -bits long depending on the density of the device. The combined opcode and address field is 8 -bits for the smaller devices (93C06 and 93C46) and 10-bits for the larger devices (93C56 and 93C66). On the opcode types that do not use addresses, all of the "dummy" address bits must be clocked anyway (the combined opcode/address field is constant number of clock cycles).
4. On read operations the data out stream starts with a dummy zero. On NM93Cxx family EEPROMs, it is acceptable but not required to have extra clocks after the 16th actual data bit. On NM93CSxx family EEPROMs, extra clocks after the 16th actual data bit will begin to read the next data word.

\section*{Notes on the Assembly Code：}

The subroutines that follow are adequate to quickly pilot the programmers task of addressing a serial EEPROM of the NM93Cxx family．Additional subroutines can very easily be adapted from these to handle the additional opcode types of the NM93CSxx series parts．Enough code has been in－ cluded to allow the code to operate in a stand－alone fash－ ion．However，when integrating the routines in to another program，initialization statements affecting global variables such as initializing the stack point or the X or B registers will need to be moved，deleted or replaced by statements in the main program．
The assembly code uses a software timer loop to time out the write time of the EEPROM．The programmer should be
aware that it is possible to use the EEPROMs own internal timer to accomplish this task．This is done by monitoring the EEPROMs DO line after taking the EEPROMs CS line low to start a write and then setting CS high again to re－enable the DO output．The write is complete when the DO（of the EEPROM）drives high．Using the EEPROMs internal timer will allows the microcontroller time to accomplish some oth－ er task in the 10 ms that the write or erase operation re－ quires．If the DO line is to be used to indicate that the write is complete，other MICROWIRE components on the bus must wait for the EEPROM writes to time out before being accessed（the DO line is in use）．
The code was tested on a COP820 device via a Metalink In Circuit Emulator．The code should translate to other COP800 devices with little or no modification．

NM93C06 and NM93C46 Opcodes and Address Fields＊
\begin{tabular}{|l|l|cccccccc|}
\hline WREN & Write Enable & 0 & 0 & 1 & 1 & X & X & X & X \\
WRDI & Write Disable & 0 & 0 & 0 & 0 & X & X & X & X \\
ERAL & Erase All & 0 & 0 & 1 & 0 & X & X & X & X \\
WRAL & Write All & 0 & 0 & 0 & 1 & X & X & X & X \\
READ & Read & 1 & 0 & A5 & A4 & A3 & A2 & A1 & A0 \\
WRITE & Write & 0 & 1 & A5 & A4 & A3 & A2 & A1 & A0 \\
\hline
\end{tabular}

NM93C56 and NM93C66 Opcodes and Address Fields＊
\begin{tabular}{|l|l|cccccccccc|}
\hline WREN & Write Enable & 0 & 0 & 1 & 1 & X & X & X & X & X & X \\
WRDI & Write Disable & 0 & 0 & 0 & 0 & X & X & X & X & X & X \\
ERAL & Erase All & 0 & 0 & 1 & 0 & X & X & X & X & X & X \\
WRAL & Write All & 0 & 0 & 0 & 1 & X & X & X & X & X & X \\
READ & Read & 1 & 0 & A7 & A6 & A5 & A4 & A3 & A2 & A1 & AO \\
WRITE & Write & 0 & 1 & A7 & A6 & A5 & A4 & A3 & A2 & A1 & A0 \\
\hline
\end{tabular}
＂Note：All Opcode／Address Fields must be preceded with a leading＂ 1 ＂as a start－bit．

Read Cycle

Write Cycle

FIGURE 3. Read and Write cycle waveforms. Notice that one leading zero is shown before the start-bit. The actual code inserts seven.
```

;**********************************************************
; THIS PROGRAM PROVIDES SUBROUTINES TO HANDLE COP82O OPERÁTIONS ON
; THE NM93CO6 EEPROM I.E., WRITES, READS, ERASES, ENABLES AND DISABLES
;***********************************************************
.INCLD COP820.INC
;Reserving RAM locations for key variables
RDATL = 1 ;LOWER BYTE OF THE NM93CO6 MEMORY DATA READ
RDATH = 2 ;UPPER BYTE OF THE NM93CO6 MEMORY DATA READ
WDATL = 3 ;LOWER BYTE OF THE DATA TO BE WRITTEN TO NM93CO6
WDATH = 4 ;UPPER BYTE OF THE DATA TO BE WRITTEN TO NM93CO6
ADRESS = 5 ;THE LOWER 4-BITS OF THIS LOCATION CONTAINS THE ADDRESS
;OF THE NM93CO6 MEMORY LOCATIONS TO BE READ/WRITTEN
;THE UPPER NIBBLE MUST BE ZEROS
SNDBUF = 0 ;USED FOR THE COMMAND BYTE TO BE WRITTEN (Local Scratch Pad)
DLYH = OFO ;LOCATIONS RESERVED FOR WRITE TIMEOUT VALUES
DLYL = OFl
FLAGS = 6 ;USED FOR PROGRAM FLAGS (Local Scratch Pad)
;
;FLAG VALUE DEFINITIONS
;00 ERASE, ENABLE, DISABLE, ERASE ALL
;01 READ CONTENTS OF NM93C06 REGISTER
;03 WRITE TO NM93CO6 REGISTER
;OTHERS ILLEGAL COMBINATION

```
```

;THE INTERFACE BETWEEN THE COP820C/840C AND THE NM93CO6 (256-BIT EEPROM)
;CONSISTS OF FOUR LINES. THE GO(CHIP SELECT LINE), G4(SERIAL OUT SO);
;G5(SERIAL CLOCK SK) AND G6(SERIAL IN SI).
;*******************************************
;
;INITIALIZATION, MODIFY MOVE OR DELETE WHEN INTEGRATING INTO MAIN PROGRAM
;USE ONLY IF SP WAS NOT PREVIOUSLY INITIALIZED
LD SP,\#O2F ;INITIALIZE STACK POINTER
LD PORTGC,\#031;SETUP GO, G4, G5 AS OUTPUT
LD PORTGD,\#OOO;INITIALIZE G DATA REG TO ZERO
LD CNTRL,\#OO8 ;ENABLE MSEL, SELECT MW RATE OF 2TC
LD X,\#SIOR ;SET THE X REGISTER TO POINT TO SIOR
LD B,\#PSW ;SET THE B REGISTER TO POINT TO PSW

```
;EXAMPLE SUBROUTINE CALLS ONLY, DO NOT INCLUDE IN FINAL CODE LOAD
;ADDRESS IN LOCATION "ADRESS" HIGH AND LOW BYTE TO BE WRITTEN INTO
;WDATH AND WDATL AND CALL THE SUBROUTINE,
 JSR EWEN
 JSR WRITE
 JSR EWDS
 JSR READ
DONE: JP DONE
;THIS ROUTINE ERASES THE MEMORY LOCATION POINTED TO BY THE ADDRESS
;CONTAINED IN THE LOCATION "ADRESS" . THE LOWER NIBBLE OF THE VALUE
;IN THE LOCATION "ADRESS" IS THE NM93CO6 REGISTER ADDRESS. THE UPPER
;NIBBLE SHOULD BE SET TO ZERO.
;
ERASE: LD A,ADRESS
 OR A,\#OCO
 X A,SNDBUF
 LD FLAGS,\#00
 JSR INIT
 RET
;
;THIS ROUTINE ENABLES PROGRAMMING THE NM93CO6 (EWEN).
;
EWEN: LD SNDBUF,\#030
 LD FLAGS,\#00
 JSR INIT
 RET
;
;THIS ROUTINE DISABLES PROGRAMMING OF NM93C06.
;
EWDS: LD SNDBUF,\#OO
 LD FLAGS,\#00
 JSR INIT
 RET
;
;THIS ROUTINE ERASES ALL REGISTERS OF NM93CO6.
;
ERAL: LD SNDBUF,\#020
 LD FLAGS,\#00
 JSR INIT
 RET
```

;
;THIS ROUTINE READS THE CONTENTS OF THE NM93C06 REGISTER. THE ADDRESS
;IS SPECIFIED IN THE LOWER NIBBLE OF LOCATION "ADRESS" . THE UPPER
;NIBBLE SHOULD BE SET TO ZERO. THE 16-BIT CONTENTS OF NM93CO6 REGISTER ARE
;STORED IN RDATL AND RDATH.
;
READ: LD A,ADRESS
OR A,\#080
X A,SNDBUF
LD FLAGS,\#O1
JSR INIT
RET
;
;THIS WRITES A 16-BIT VALUE STORED IN WDATL AND WDADTH TO THE EEPROM
;REGISTER WHOSE ADDRESS IS CONTAINED IN THE LOWER NIBBLE OF THE
;LOCATION "ADRESS". THE UPPER NIBBLE OF THE ADDRESS SHOULD BE SET TO ZERO.
;
WRITE: LD A,ADRESS
OR A,\#O40
X A,SNDBUF
LD FLAGS,\#03
JSR INIT
RET
;
;THIS ROUTINE SENDS OUT THE START BIT AND COMMAND BYTE. IT ALSO
;DECIPHERS THE CONTENTS OF THE FLAG LOCATION AND MAKES A DECISION
;REGARDING WRITE, READ OR RETURN TO THE CALLING ROUTINE.
;
INIT: SBIT 0,PORTGD ;SET CHIP SELECT HIGH
LD SIOR,\#OO1 ;LOAD SIOR WITH SIART BIT
SBIT BUSY,[B] ;SEND OUT THE START BIT
PUNT1: IFBIT BUSY,[B]
JP PUNTI
LD A,SNDBUF
X A,[X] ;LOAD SIOR WITH COMMAND BYTE
SBIT BUSY,[B] ;SEND OUT COMMAND BYTE
PUNT2: IFBIT BUSY,[B]
JP PUNT2
IFBIT O,FLAGS
;ANY FURTHER PROCESSING?
JP NOTDON ;YES
RBIT 0,PORTGD ;NO, RESET CS AND REIURN
RET
;
NOTDON:IFBIT 1,FLAGS ;READ OR WRITE?
JP WR93C ;JMP TO WRITE ROUTINE
LD SIOR,\#000 ;NO READ NM93C06
SBIT BUSY,PSW ;DUMMY CLOCK TO READ ZERO
RBIT BUSY,[B]
SBIT BUSY,[B]
PUNT3: IFBIT BUSY,[B]
JP PUNT3
X A,[X]
SBIT BUSY,[B]
X A,RDATH

```
```

PUNT4: IFBIT BUSY,[B]
JP PUNT4
ID A,[X]
X A,RDATL
RBIT 0,PORTGD
RET
WR93C: LD A,WDATH
X A,[X]
SBIT BUSY,[B]
PUNT5: IFBIT BUSY,[B]
JP PUNT5
LD A,WDATL
X A,[X]
SBIT BUSY,[B]
PUNT6: IFBIT BUSY,[B]
JP PUNT6
RBIT. O,PORTGD
JSR TOUT
RET
;
;ROUTINE TO GENERATE DELAY FOR WRITE
;*****************************************
;
TOUT: LD DLYY,\#OO7 ;CHECK YOUR OSCILLATOR--PROCESSOR COMBINATION
;TUNE FOR 1O MS DELAY
WAIT: LD DLYL,\#OFF
WAITI: DRSZ DLYL
JP WAITl
DRSZ DLYH
JP WAIT
RET
.END

```

\title{
Upgrade to National's Wide Voltage Range, Zero Standby Current EEPROMs
}

\section*{ABSTRACT}

National's NM93C06L, NM93C46L, and NM93C56L EEPROMs and the new NM93C06/46/56LZ series devices operate across a 2.0 V to 5.5 V range suitable for unregulated battery powered operation. In addition, the new NM93C06/46/56LZ devices have ultra-low standby currents ideal for portable applications using very small batteries.

\section*{PERSONAL ELECTRONICS GAIN SOPHISTICATION}

Many personal electronic items have moved from being perceived as trendy novelties to being viewed as mainstream personal or business appliances. Consumer familiarity, in turn, produces sophistication in the market for features. The ability to retain memory through battery changes and other types of power failure is highly desirable. Implementation of such sophisticated features requires RAM with battery back up or EEPROM memory.
Battery backed up RAM is usually far more expensive and functionally less attractive than EEPROM memory. Battery backed up RAM requires:
1. RAM
2. Battery holder
3. Battery
4. A door or other method to allow the battery to be replaced
5. New batteries to be located and replaced by the owner EEPROM on the other hand requires:

\section*{1. EEPROM.}

Serial EEPROM is invariably the cheapest and most compact solution for memory requirements up to 16 kbits.

\section*{CORDLESS PHONES}

Memory dialing, noise reduction signal processing, and mul-ti-channel operation with low noise channel selection capability, are now standard features for better quality cordless phones. Cordless phones are now moving to serial EEPROMs which can retain memory dial phone numbers and other parameters even through the inevitable dead battery and line power outage events.
Cordless phones have limited battery life. Memory dial data and other feature settings stored in RAM are subject to loss from dead batteries if implemented in the hand unit, or line power outages if maintained in the base unit. Reprogramming ten or more numbers for a memory dialer each time this happens is not desirable. Implementation of memory dialing and other features in the environment of a cordless phone requires RAM with a battery back up or EEPROM memory.

National Semiconductor
Application Note 870
Robert Stodieck

The length of time a phone can be left off its charger when not in use without the battery going dead is called standby. The cordless phone in standby normally leaves the radio receiver on to listen for incoming calls so that it can ring locally.
Standby and off hook time power consumption are dominated by the linear circuitry of the radio transmitter and receiver. Furthermore, the batteries in this application are relatively large and are frequently recharged. Thus, this application does not usually require the extremely low standby currents that can be achieved with the "LZ" series serial EEPROMs. But a broad range of \(V_{C C}\) voltages are encountered in this application. Most cordless phones use a stack of three Ni Cad batteries for power. This produces a nominal voltage of 3.6 V , but during charging this may go as high as 4.0 V , and may drop into the 2.7 V range in use. Some types of cordless phones use other battery technologies and battery counts. For example, stacks of 2 lead acid cells are also used producing a 4 V nominal \(\mathrm{V}_{\mathrm{CC}}\). The 2.0 V to \(5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}\) range allowed by the "L" series of serial EEPROMs accommodates all the common \(V_{C C}\) ranges.

\section*{PAGERS}

Paging units are a second example of high technology electronics gone blasé. Unlike cordless phones, pagers use regulated batteries for power and thus, do not need wide \(\mathrm{V}_{\mathrm{CC}}\) range EEPROMs. Since the batteries are small and power is a concern, low voltage operation is an advantage, as are very low standby currents used by the "LZ" series.

\section*{ELECTRONIC CAMERAS}

All electronic cameras also make use of the NM93C46LZ and NM93C56LZ devices. This application generally uses regulated batteries to guarantee a constant 5 V . But the batteries tend to be small and the camera spends much of its life on the shelf. Parameters stored in the electronic memory on these new cameras include shutter speed and focus calibrations that must never be lost in the life of the camera, and the frame counts and other details that change in service but which must not be lost when the battery dies.
The parameters connected with the many features found on these cameras are best retained in EEPROM. The small batteries and the long periods of inactivity involved require an EEPROM with very low standby currents to avoid running down the battery when not in use. With a standby current of less than \(1 \mu A\), the " \(L Z\) " series parts handle these applications with ease.

\section*{LEARNING REMOTE CONTROL UNITS}

Alas, you have taught your new remote control unit to control the volume on your TV, it has mastered the slow advance on the video cassette recorder, it turns on and off the CD player, and your local soap opera is recorded daily
thanks to VCR PlusTM function. If the designer hasn't stored the critical information required in an EEPROM, one had better hope the battery never dies, or one will again become a slave to his "personal assistant" while retraining the beast. Owners of many first generation VCRs and televisions with digital random access tuners know the feeling well. Random access tuners allow their owners to skip over all the channels that could not be accessed in the area or that the owner simply did not like. But, if the power cord was even briefly disturbed or if the power went down, the tuner had to be retrained, a time consuming operation.
Both learning remote controls and digital tuners are more likely now to cure these problems by using EEPROM. TV and VCRs do not need low voltage, wide \(\mathrm{V}_{\mathrm{CC}}\) range, or low standby current parts, but the remote control units frequently do. The scenario is familiar:
1. Unregulated batteries are used.
2. The batteries are not large or frequently recharged.
3. The units spend relatively little time actually in use.
4. Long battery life is desirable.

Smart remote controls benefit from the wide \(\mathrm{V}_{\mathrm{CC}}\) range and low standby characteristics of the NM93C46LZ and NM93C56LZ serial EEPROMs.

\section*{SUMMARY}

Serial EEPROMs offer by far the most compact and low cost non-volatile memory solutions for common consumer applications. The need for serial EEPROMs continues to grow with increasing consumer sophistication and growth of the personal electronics market. National's LZ products have wide operating voltage ranges and very low standby power and are particularly appropriate for battery powered applications of all types.

\section*{Interfacing the NM29N16 in a Microcontroller Environment}

\section*{INTRODUCTION}

The NM29N16 is a 2Mbyte NAND Flash EEPROM memory that operates from a single 5 V supply. This device does not have the parallel data, address, and control bus interfaces traditionally found on memory devices. The NM29N16 uses a byte wide serial interface with internal address, data, and control registers. The serial interface dramatically reduces the number of pins required to interface to the NM29N16. While the interface is nontraditional, it can easily be interfaced to standard microcontrollers. This application note describes how the NM29N16 can be interfaced to the Motorola 68 HC 11 microcontroller.

\section*{68HC11 INTERFACE}

The NM29N16 can be interfaced to a microcontroller using the data bus, control bus, and a few I/O port bits. Figure 1 shows the NM29N16 interfaced to a minimal 68HC11 system. The 68HC11 is configured in the expanded multiplexed mode which allows access to external memory devices. Most microcontrollers offer a mode that allows access to external memory and the NM29N16 should fit easily into all of these environments.
The I/Os of the NM29N16 were connected directly to the \(68 \mathrm{HC11}\) data bus. The NM29N16 occupies addresses C 000 H to DFFFFH in the 68 HC 11 memory map due to the use of a three to eight (74HCT138) address decoder. While 8Kbytes of memory is taken in this design, the NM29N16 only requires a single address (C 000 H) out of that block. Due to timing constraints, the RE (Read Enable) and WE (Write Enable) signals must be ORed with the COOOH address decode signal. CE (Chip Enable), CLE (Command Latch Enable), and ALE (Address Latch Enable) are controlled directly from three \(68 \mathrm{HC} 11 \mathrm{I} / \mathrm{O}\) port bits. The R/B (Ready/Busy) status output of the NM29N16 is polled by one I/O port bit.
A MAX707 \(\mu \mathrm{P}\) supervisory chip is used to drive the \(\overline{\text { RESET }}\) input of the 68HC11. The MAX707 forces its RESET output low until \(\mathrm{V}_{\mathrm{CC}}\) reaches 4.75 V . Once \(\mathrm{V}_{\mathrm{CC}}\) exceeds 4.75 V the RESET output remains low for an additional 200 ms before going high. This \(\overline{\text { RESET output is also used to drive the WP }}\) (Write Protect) input of the NM29N16 to insure against inadvertent writes when \(\mathrm{V}_{\mathrm{CC}}\) is below 4.75 V .

National Semiconductor Application Note 910

\section*{68HC11 TO NM29N16 COMMUNICATION}

Information is transferred back and forth with a series of read and write operations that access the NM29N16 data, address and control registers. Loading the address register is accomplished by bringing CE low, ALE high and then loading data through the data bus with write operations to address C 000 H . Control register access is performed in a similar manner except that CLE is brought high instead of ALE. Data register access is performed when both ALE and CLE are low.
The EEPROM array in the NM29N16 is not directiy accessible from the controller. An intermediate data register is used to transfer a page (264 bytes) of information back and forth between the EEPROM memory and the external controller. There are three basic forms of data transfers; erase operations that operate on a 16 page block, program operations that alter the contents of a single page, and read operations. During these three operations the \(R / \bar{B}\) output goes low until the transfer or erase has completed.
A read operation is performed with a four step sequence. The command register is first loaded with the read instruction. The address register is then loaded with the page and byte address to access. At this point an internal recall operation is performed to transfer the contents of an EEPROM page to the 264 byte data register. After the recall has completed the accessed data is finally accessible by reading the contents of the data register. This is accomplished by pulsing \(\overline{\mathrm{RE}}\) low to read out sequential bytes.
Erase and program operations are performed similarly by accessing the data, control, and address registers. The simple access to these registers allow software routines that are as simple as that required to interface with a traditional parallel memory device.

\section*{SOFTWARE DRIVERS FOR A 68HC11 TO NM29N16 INTERFACE}

A software listing is provided to demonstrate several features of the NM29N16. Different subroutines were developed that perform the basic read and write functions. These routines can be used with only minor modifications to interface the NM29N16 to any microcontroller.

```

***********************************************************************

* This code was developed to demonstrate how the NM29N16 EEPROM can be *
* interfaced to the MC68HCll microcontroller. The software includes
* several subroutines that perform various interface functions. The
* subroutines include:
* 
* RDPAG : Read a page of information (264 bytes) out of the NM29N16*
* RDDAT1 : Read a byte from data memory *
* RDRED1 : Read a byte from redundancy memory
* PGMRED : Program a byte in redundancy memory
* PGMDAT : Program a byte in data memory
* PGMPAG : Program an entire page (256 bytes data, }8\mathrm{ redundancy)
* ERASE1 : Erase a block (16 pages)
* STATUS : Read the Status Register
* READID : Read the manufacturer code and the device code
* INIT : Tag blocks that are not fully functional
* The 68HCll interfaces to the NM29N16 by using the data bus, control
* bus, and a few I/O port lines. The NM29N16 requires only one address*
* location when configured in this manner. The data bus is directly
* connected to the EEPROM. Three I/O lines drive CLE, ALE, and CE.
* One I/O line is used to monitor the R/B output.
* The mainline was used to test the functionality of the subroutines.
* The subroutines can be copied directly into a customer's program and
* be expected to operate as described. The final mainline only
* performs a block erase and verify.
************************************************************************
******************************
* ADDRESS LOCATION EQUATES *
*******************************

DDRD	EQU	$\$ 09$	port D direction register $=\$ 1009$
PORTD	EQU	$\$ 08$	port D data register
FLASH	EQU	$\$ C 000$	
NM29N16 $=\$ C 000$ to $\$ D F F F$			

*************************

* BIT POSITION EQUATES *
************************

CEBIT	EQU	$\$ 20$
CLEBIT	EQU	$\$ 10$
ALEBIT	EQU	$\$ 08$

*****************************
******************************
HIPG EQU \$0180 high order page pointer
LOPG EQU \$0181 low order page pointer
ADD EQU \$0182 byte pointer within a page
DATVAL EQU \$0183 data transfer register
*****************
****************

```
\begin{tabular}{|c|c|c|c|}
\hline & ORG & \$FFFE & reset vector to \$E000 \\
\hline & FDB & \$E000 & \\
\hline \multicolumn{4}{|l|}{*****************************} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{* PROGRAM STARTING LOCATION * *****************************}} \\
\hline & & & \\
\hline \multirow{9}{*}{BEGIN:} & ORG & \$E000 & program execution begins at \$E000 \\
\hline & LDS & \#\$01FF & initialize stack pointer \\
\hline & LDX & \#\$1000 & initialize "address index register" \\
\hline & LDAA & \#\$FF & initialize I/O ports \\
\hline & STAA & PORTD, X . & \\
\hline & LDAA & \#\$3B & \\
\hline & STAA & DDRD, X & \\
\hline & BCLR & PORTD, \(X\) \#CLEBIT & \\
\hline & BCLR & PORTD, X \#ALEBIT & CE=1 CLE=0 ALE=0 initially \\
\hline \multicolumn{4}{|l|}{************} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{* MAINLINE *}} \\
\hline & & & \\
\hline & LDAA & \#\$00 & \\
\hline & STAA & LOPG & \\
\hline & STAA & HIPG & \\
\hline & JSR & ERASE1 & \\
\hline & JSR & STATUS & \\
\hline LOOP: & BRA & LOOP & wait until reset loop \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{* RDPAGE copies a page from the NM29N16 into SRAM memory on the 68HCl1.*} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
* All 264 bytes (data and redundancy) are copied into the SRAM buffer. \\
* The page number to be transfered is passed in the variables LOPG and
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{* HIPG. The EEPROM data is copied into the 68HCll SRAM between *} \\
\hline \multicolumn{4}{|l|}{* addresses 0000 H and 0107H.} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{17}{*}{RDPAGE:} & BSET & PORTD, X \#CLEBIT & \\
\hline & BCLR & PORTD, X \#CEBIT & \\
\hline & LDAA & \#\$00 & \\
\hline & STAA & FLASH & load READ(1) instruction into \\
\hline & BSET & PORTD, X \#CEBIT & the command register \\
\hline & BCLR & PORTD, X \#CLEBIT & \\
\hline & BSET & PORTD, X \#ALEBIT & \\
\hline & BCLR & PORTD,X \#CEBIT & \\
\hline & LDAA & \#\$00 & load the byte pointer in the address \\
\hline & STAA & FLASH & register with 00 H (start of page) \\
\hline & LDAA & LOPG & \\
\hline & STAA & FLASH & load low order page number \\
\hline & LDAA & HIPG & \\
\hline & STAA & FLASH & load high order page number \\
\hline & BCLR & PORTD, X \#ALEBIT & \\
\hline & JSR & WAIT & wait for recall into data register \\
\hline & LDY & \#\$0000 & \\
\hline \multirow[t]{6}{*}{NEXTR :} & LDAA & FLASH & read data from EEPROM and fill SRAM \\
\hline & STAA & \$00, Y & buffer with data register contents \\
\hline & INY & & \\
\hline & CPY & \#\$0108 & loop until all 264 bytes have \\
\hline & BNE & NEXTR & been transfered \\
\hline & BSET & PORTD,X \#CEBIT & \\
\hline
\end{tabular}
***************************** * PROGRAM STARTING LOCATION *

* RDDATl and RDRED1 are used to read the contents of a single address *
* in the EEPROM array. Data can be read from either the DATA portion *
* of the array (RDDAT1) or the REDUNDANT portion (RDRED1). The
* location to be accessed is defined in the variables ADD, LOPG, and
* HIPAG. LOPG and HIPG define the page to be accessed and ADD
* HIPAG. LOPG and HIPG define the page to be accessed and ADD
* indicates a position within the page. ADD can range between 0 and
* 255 for DATA accesses or between 0 and 7 for REDUNDANT accesses.
* The value in the chosen location is returned in the variable DATVAL.*

\begin{tabular}{|c|c|c|c|}
\hline RDDAT1: & LDAA & \#\$00 & READ (1) command \\
\hline & BRA & RDJMP & \\
\hline RDRED1: & LDAA & \#\$50 & READ (2) command \\
\hline RDJMP : & BSET & PORTD, X \#CLEBIT & \\
\hline & BCLR & PORTD, X \#CEBIT & \\
\hline & STAA & FLASH & load appropriate READ command into \\
\hline & BSET & PORTD, X \#CEBIT & the command retister \\
\hline & BCLR & PORTD, X \#CLEBIT & \\
\hline - & BSET & PORTD, X \#ALEBIT & \\
\hline & BCLR & PORTD, X \#CEBIT & \\
\hline & LDAA & ADD & load the byte address into the \\
\hline & STAA & FLASH & address register - \\
\hline & LDAA & LOPG & \\
\hline & STAA & FLASH & load the low order page number \\
\hline & LDAA & HIPG & \\
\hline & STAA & FLASH & load the high order page number \\
\hline & BCLR & PORTD, X \#ALEBIT & \\
\hline & JSR & WAIT & wait for recall to data register \\
\hline & LDAA & FLASH & load the value from the chosen \\
\hline & LDAA & FLASH & \\
\hline & STAA & DATVAL & address and save the result in DATVAL \\
\hline & BSET & PORTD, X \#CEBIT & \\
\hline & JSR & WAIT & pause until EEPROM is idle \\
\hline & RTS & & \\
\hline
\end{tabular}

* PGMRED, PGMDAT, and PGMPAG are used to program either a single byte *
* or an entire page. During program operations the entire data register*
* must be loaded and then the contents transfered to an EEPROM page.
* EEPROM bits can only be flipped from a one (erased state) to a zero
* (programmed state) during a program operation. To program a single
* byte the entire data register must be filled with FFH except for the
* byte that is to be programmed. During the programming cycle bits
* that are zero in the data register will force the corresponding bits
* in the chosen page to the zero state, other bits will remain
* unchanged.
*
* These routines use a SRAM data array located on the \(68 \mathrm{HC11}\) between
* These routines use a SRAM data array located on the 68HC11 between *
\(*\) address 0000 H and 0107 H . This array is transfered byte for byte into *
* the NM29N1.6 data register during the data load portion of the
* programming cycle. If single byte is to be altered the location
* in the SRAM array corresponding to the address to be programmed is
* loaded with the new data and all other addresses in the array are
* filled with FFH.
```

* The routines PGMRED and PGMDAT are used to program a single byte in
* redundant or data memory respectively. The data value to be updated
* is contained in the variable DATVAL, the page number is contained in
* PGLO and PGHI, and the byte position within the page is contained in
* ADD.
* 
* The routine PGMPAG assumes that the SRAM array already has the data
* that will be programmed into the EEPROM. PGLO and PGHI contain the
* page number to be programmed.
************t******************t******************************************

PGMRED:	JSR	FILLFF
	LDY	\#\$0100
	BRA	PGMB
PGMDAT:	JSR	FILLFF
	LDY	\#\$0000
PGMB:	LDAB	ADD
	ABY	
	LDAA	DATVAL
	STAA	\$00,Y

    fill SRAM array with FFH
    fill SRAM array with FFH
load Y with data memory offset
data or redundant address to alter
calculate absolute address in page
write new data byte into SRAM array
PGMPAG: BSET PORTD,X \#CLEBIT
BCLR PORTD,X \#CEBIT
LDAA \#\$80 load command register with
STAA FLASH
BCLR PORTD,X \#CLEBIT
BSET . PORTD,X \#ALEBIT
LDAA \#\$00
STAA FLASH
LDAA LOPG
STAA FLASH
LDAA HIPG
STAA FIPG
BCLR PORTD,X \#ALEBIT
LDY \#\$0000
LOADB: LDAA \$OO,Y
STAA FLASH
INY \#\$0108
BNE LOAD
BSET PORTD,X \#CLEBIT
LDAA \#\$10
STAA FLASH
BSET PORTD,X \#CEBIT
BCLR PORTD,X \#CLEBIT
JSR WAIT
RTS
FILLFF: LDY \#$000
    LDAA #$FF
LOOPF: STAA \$OO,Y
INY \#\$0108
BNE LOOPF
RTS
*************************************************************************

* ERASE1 performs an erase operation on a single block (16 pages). The *
* block to be erased is specified in the variables LOPG and HIPG. The *
* lower 4 bits of LOPG are not used so that the least significant bit of*

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{17}{*}{ERASE1:} & BSET & PORTD, X \#CLEBIT & \\
\hline & BCLR & PORTD, X \#CEBIT & \\
\hline & LDAA & \#\$60 & load command register with \\
\hline & STAA & FLASH & block erase command \\
\hline & BCLR & PORTD, X \#CLEBIT & \\
\hline & BSET & PORTD, X \#ALEBIT & \\
\hline & LDAA & LOPG & load low order block number \\
\hline & STAA & FLASH & (XXXX0123) \\
\hline & LDAA & HIPG & load high order block number \\
\hline & STAA & FLASH & (45678XXX) \\
\hline & BCLR & PORTD, X \#ALEBIT & \\
\hline & BSET & PORTD, X \#CLEBIT & \\
\hline & LDAA & \#\$D0 & load command register with erase \\
\hline & STAA & FLASH & execution command \\
\hline & BCLR & PORTD, X \#CLEBIT & \\
\hline & BSET & PORTD, X \#CEBIT & \\
\hline & \begin{tabular}{l}
JSR \\
RTS
\end{tabular} & WAIT & pause until EEPROM is idle \\
\hline
\end{tabular}

* STATUS is used to read the NM29N16 status register. This command can *
* be used after erase and program cycles to determine if the results *
* were successfull. The contents of the status register are returned in*
* the variable DATVAL.


```

*********************************************************************

* READID is used to read the NM29N16 device and manufacturer codes. *
* The manufacturer code is returned in the A register and the device*
* code is returned in the B register.
*********************************************************************

```
READID: BSET PORTD,X \#CLEBIT
 BCLR PORTD, \(x\) \#CEBIT
 LDAA \#\$90 load the command register with
 STAA FLASH the ID read command
 BSET PORTD,X \#CEBIT
 BCLR PORTD, X \#CLEBIT
 BSET PORTD, X \#ALEBIT
 BCLR PORTD, X \#CEBIT
 LDAA \#\$00 load the address register with
 STAA FLASH
 BCLR PORTD,X \#ALEBIT
 LDAA FLASH \(\quad\) read the manufacturer code

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{14}{*}{DONEAA:} & JSR & ERASE1 \\
\hline & JSR & STATUS \\
\hline & LDAA & DATVAL \\
\hline & ANDA & \#01 \\
\hline & BNE & BADBLK \\
\hline & LDAA & \#\$55 \\
\hline & JSR & FILLXX \\
\hline & LDY & BLOCK \\
\hline & LDAB & \#\$0F \\
\hline & CLC & \\
\hline & ABY & \\
\hline & STY & HIPG \\
\hline & LDAA & \#\$00 \\
\hline & STAA & ADD \\
\hline \multirow[t]{10}{*}{LOOP55:} & JSR & PGMPAG \\
\hline & JSR & Status \\
\hline & LDAA & DATVAL \\
\hline & ANDA & \#\$01 \\
\hline & BNE & BADBLK \\
\hline & LDAA & LOPG \\
\hline & ANDA & \#\$0F \\
\hline & BEQ & DONE55 \\
\hline & DEC & LOPG \\
\hline & BRA & LOOP55 \\
\hline \multirow[t]{12}{*}{DONE55:} & JSR & ERASE1 \\
\hline & JSR & Status \\
\hline & LDAA & DATVAL \\
\hline & ANDA & \#01 \\
\hline & BNE & BADBLK \\
\hline & LDAA & \#\$F0 \\
\hline & STAA & DATVAL \\
\hline & LDY & BLOCK \\
\hline & STY & HIPG \\
\hline & LDAA & \#\$00 \\
\hline & STAA & ADD \\
\hline & JSR & PGMRED \\
\hline \multirow[t]{8}{*}{BADBLK:} & LDY & BLOCK \\
\hline & CPY & \#\$1FFO \\
\hline & BEQ & DONE \\
\hline & CLC & \\
\hline & LDAB & \#\$10 \\
\hline & ABY & \\
\hline & STY & BLOCK \\
\hline & JMP & LOOP1 \\
\hline DONE: & RTS & \\
\hline FILLXX: & LDY & \#\$0000 \\
\hline \multirow[t]{5}{*}{LOOPF2:} & STAA & \$00, Y \\
\hline & INY & \\
\hline & CPY & \#\$0108 \\
\hline & BNE & LOOPF2 \\
\hline & RTS & \\
\hline
\end{tabular}
```

erase block
see if erase was successful
jump to BADBLK if erase unsuccessful
verify that \$55 can be written to
all pages in the block
start with page 15
page with \$55
see if programming is successful
jump to BADBLK if bad page found
loop until all pages in block
have been verified
step to next page
erase block
see if erase is successful
jump to DATVAL if bad block found
jump to BADBLK if erase unsuccessful
tag good block by writing \$FO into
byte 0, page 0 (redundancy memory)
of the block just verified
exit routine if all }512\mathrm{ blocks
have been tested
step to next block (16 pages)
go verify next block
fill SRAM addresses 0000H to
0107H with value in A reg

```

\section*{SUMMARY}

The NM29N16 provides an extremely flexible interface for many systems. By not utilizing address lines, the device gives designers the ability to incorporate multiple megabytes of memory without the use of an expensive processor or system bus. The application described here is only one example of this. With this architecture, the NM29N16 should enable new types of portable systems to be developed.

\section*{National Flash MemoriesHardware Design Guide}

National offers two types of Flash Devices, namely NOR type and NAND type. The device densities ranging from 1 Mbit to 16 Mbit , suited for various kinds of applications like BIOS code storage, Solid state file storage, Image file storage, etc. Some of the devices also feature Auto program/ erase operations which aid in elegant, compact programming code.

This note describes the various hardware considerations that a system designer has to consider when using National's Flash devices.

\section*{ORGANIZATION}
1. DEVICE CONSIDERATIONS

This section addresses the various issues like programming voltage (VPP) generation and control, \(\mathrm{V}_{\mathrm{CC}}\) considerations, etc.
2. NOR DEVICES

The NOR Flash device section covers the individual design considerations for the following Flash devices

NM28F010: 1 Mbit, byte wide device.
NM28F040: 4 Mbit, byte wide device.
NM28F044: 4 Mbit, byte wide device.
3. NAND DEVICE

This section covers NAND type NM29N16 device, which is a \(16 \mathrm{Mbit}, 5 \mathrm{~V}\) only device ideally suited for large file storage type of applications, like Solid state Disk, PCMCIA based Memory cards, etc.
4. ICP (In-Circuit Programming)

Finally, this note also discusses the In-Circuit Programming (ICP) in general, and the various types of ICP configurations available today.

\subsection*{1.0 DEVICE CONSIDERATIONS}

Vpp Specifications: National's Flash devices have \(\pm 5 \%\) tolerance specification on the 12 V level that is required for \(V_{\text {pp }}\). This specification is guaranteed by most of the off-theshelf industry standard power supplies. In fact the PC-AT© system power supply has a \(+5 \%\) and \(-4 \%\) tolerance specification on the +12 V level.

National Semiconductor
Application Note 921
P. Mohan Prasad

FIGURE 1
The Figure 1 represents a typical MOSFET Switch for the 12V line in the interface design towards Flash devices. MOSFET of the above configuration is available from a number of vendors, and MTD4P05 Motorola device is one good example. The only consideration is that the ON-RESISTANCE of the selected Switch should be low enough to keep the \(\mathrm{V}_{\mathrm{Pp}} 0 / \mathrm{p}\) within \(\pm 5 \%\) tolerance range.
The 12V VPP programming voltage required for Programming/Erasing operations on the device is gated from the source (power supply's +12V TAP) through an enabling circuitry (e.g., a MOSFET Switch) to the Flash memory's VPP pin. An enable signal from the system's control circuitry, say, "VPP_EN" could then be used to switch ON/OFF the 12 V path to the Flash memory's \(\mathrm{V}_{\mathrm{PP}}\) Pin.
Usage of this 12V Switch achieves two purposes:
1. Having the Switch turned off during power up ensures that \(V_{P P}\) voltage at the \(V_{P P}\) Pin of the device doesn't ramp up before the \(\mathrm{V}_{\mathrm{CC}}\) ramps to the required 5 V level, which is a basic requirement for the Flash device.
2. In systems, especially laptop portables, having 12 V supply enabled ON continuously is not a favourable choice in terms of the power drain of the Battery, since the need for 12 V on the \(\mathrm{V}_{\mathrm{PP}}\) Pin is only during Programming/Erasing, etc. operations and not for the typical Read operation. Hence a Switch to turn on the 12V for Vpp only during the required limited times saves considerable power.
Additional Considerations: The Figure 2 shows a typical circuit of a power control circuitry. This kind of a circuitry helps in improving the data integrity. The power sensing device in essence monitors the power supply's 5 V output and

FIGURE 2
asserts a "power OK" signal only when the input \(V_{C C}\) is within the tolerance limits. When the input \(V_{C C}\) levels cross the tolerance level, the "power OK" signal is deasserted (driven low) which in turn switches off the MOSFET switch and thus disabling the 12 V from reaching the \(\mathrm{V}_{\mathrm{Pp}}\) Pin anymore. System's reset signal is also coupled along with this "power OK" signal to take care of power_up and warm reset conditions. "Switch ON" signal is an output from system control circuitry which determines when to apply 12 V at the \(V_{P P}\) pins of the Flash device under normal operations.
\(V_{\text {PP }}\) Generation: In the above discussion it is assumed that the \(12 \mathrm{~V} \pm 5 \%\) supply is readily available in the system, but for systems where this tolerance requirement is not met or when the \(12 \mathrm{~V} \pm 5 \%\) supply is not available at all from the system power supply there are ample VPp Generation circuits available which generally employ one of the following techniques.
1. \(D C\) to \(D C\) conversion.
2. Regulation from a higher voltage (Down conversion).
3. Voltage boosters (5 V to 12 V).

A number of solutions employing the above mentioned techniques are available from National Semiconductor. Please refer to the listing given at the end of this note for the source.
\(V_{c c}\) Specifications: NSC Flash devices have a tolerance specification of \(\pm 5 \%\) on the \(5 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}\) line. Though most of the available Power supplies have a \(\pm 5 \%\) tolerance specification on their +5 V line, variation of this voltage within this tolerance range is dictated by the system loading and switching frequency of the devices at any given instant of time. Proper consideration should be given in choosing a
matched Power supply in terms of the Power wattage against the total expected maximum load on the 5 V line. Also adequate powerline decoupling especially around the memory devices and high speed switching devices should be ensured, which would take care of the \(V_{C C}\) droop caused by device switching to be within the tolerant limits.
Power Sequencing: To protect the device against any data corruption during Power cycling the following power sequencing is required.
Power On Condition: VPP must be applied only after \(V_{C C}\) stabilizes to within \(5 \mathrm{~V} \pm 5 \%\) and while \(\overline{C E}\) is high.
Power Off Condition: \(V_{\text {PP }}\) must be turned off after \(V_{C C}\) stabilizes to within \(5 \mathrm{~V} \pm 5 \%\) and while \(\overline{C E}\) is high. \(\mathrm{V}_{\mathrm{CC}}\) can only be turned off after VPp has reached OV.
The sample circuit shown in Figure 2 employing a power sensing unit inherently takes care of the Power-Sequencing required, without any additional logic.

\subsection*{2.0 NOR DEVICES}

\section*{1. NM28F010 (128k x 8)}
.The following note describes the In-circuit programming aspects for a system using National's NM28F010 Flash memory device.
NM28F010 is a \(1,048,576\) bit Flash Electrically Erasable and Programmable Non-volatile memory device. It features single command for typical operations like READ, CHIP ERASE and PROGRAM allowing ease of use for in-circuit programming from within a system.
Software Considerations: The following two tables depict the various modes of NM28F010 Flash device operation and the command definitions to set to a particular mode.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Command Definition Table} \\
\hline \multirow[t]{2}{*}{Function} & \multirow[t]{2}{*}{No. of Bus Cycles} & \multicolumn{3}{|c|}{First Bus Cycle} & \multicolumn{3}{|c|}{Second Bus Cycle} \\
\hline & & Type & Address & Data & Type & Address & Data \\
\hline Read & 1 & WRITE & * & 00H & NA & . NA & . NA \\
\hline ID Read & 2 & WRITE & * & 90 H & READ & \(0 \times 0 \mathrm{H} / 0 \times 1 \mathrm{H}\) & Mfg/Dev ID \\
\hline Chip Erase & 2 & WRITE & * & 20 H & WRITE & * & 20 H \\
\hline Erase Verify & 2 & WRITE & Byte Address & AOH & READ & * & EV Data \\
\hline Program Setup/ Begin & 2 & WRITE & * & 40 H & WRITE & Byte Address & WR Data \\
\hline Program Verify & 2 & WRITE & Byte Address & COH & READ & * & WV Data \\
\hline Reset & 2 & WRITE & - * & FFH & WRITE & * & FFH. \\
\hline
\end{tabular}
* H or L

TL/D/11952-3
FIGURE 3

Operating Modes: NM28F010 features seven modes of operation as shown in COMMAND DEFINITION TABLE. Setting the device to any particular mode is by writing an appropriate opcode to the Command register of the device. Note that the Command register by itself doesn't occupy any address range of the device and write to the Command register is enabled only when \(V_{P P}\) is at 12 V level.
A detailed description of the various operating modes can be found in NM28F010 data sheets.
Figure 3 depicts a typical wiring diagram of control signals for a system using National's NM28F010 FLASH Memory with a block level specifications of the integral functional units discussed earlier.
Description: Interface to NM28F010 Flash memory is very much similar to that of conventional 27C010 EPROM except that the system's memory write enable MWRITE is also considered.
The DECODE and MEMORY CONTROL logic could be a simple combinatorial PAL®, like 16L8, which takes in the higher order address lines, memory read and memory write control signals as input and generates Flash memory chip select (\(\overline{\mathrm{CS}}\)), output enable (\(\overline{\mathrm{OE})}\) and write enable (\(\overline{\mathrm{WE}}\)).

\section*{2. NM28F040/NM28F044}

NM28F040 and NM28F044 are 4,194,304 bit (\(512 \times 8\)) CMOS Flash devices featuring single command for Read,

Auto Chip erase, Auto Block erase and Auto Program/Verify allowing ease of use for in-circuit programming. NM28F040 is a 32 pin device whereas NM28F044 is a 44 pin device.

\section*{UNIQUE FEATURES}

Block Mode Erase: These Flash devices can either be full chip erased or in terms of a specific block of 16 kbyte. This block mode erase feature allows ease of management of code blocks.
Auto Function: Both these devices feature a unique "AUTO-FINISH" facility for commands like Chip erase, Block erase and Program/Verify. Once after issuing any of the above commands to the device, all that is required is to sample the device data lines, D7 for operation completion (RDY/BUSY) and D4 for status of completion (FAIL/PASS). These devices have the necessary logic built-in inside the chip to do all of the iterative routines of the programming software. Looping through the same part of the code till operation proves to be a success or failure becomes unnecessary and all those iterative functions can now be removed from the code, resulting in a compact elegant programming algorithm.
Software Considerations: The following two tables outline the various operational modes and the command definition to set the various modes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Mode Selection Table} \\
\hline \multicolumn{2}{|c|}{\multirow{2}{*}{Mode}} & \multicolumn{7}{|c|}{Signals} \\
\hline & & \(\overline{C E}\) & \(\overline{O E}\) & Address & Data & VCC & VPP & Power \\
\hline \multirow{3}{*}{READ} & Read & L & L & \begin{tabular}{l}
Read \\
Address
\end{tabular} & Data Output & \multirow{3}{*}{5 V} & \multirow{3}{*}{\(0 \sim V_{C C}\) or 12V} & \multirow[t]{2}{*}{Active} \\
\hline & \begin{tabular}{l}
Output \\
Deselect
\end{tabular} & L & H & * & \multirow[t]{2}{*}{High Impedance} & & & \\
\hline & Standby & H & * & * & & & & Standby \\
\hline \multicolumn{2}{|l|}{COMMAND INPUT} & ㄷ & H & (Note 1) & Command Data & \multirow{4}{*}{5 V} & \multirow{4}{*}{12V} & \multirow{4}{*}{Active} \\
\hline \multicolumn{2}{|l|}{PROGRAM/ERASE} & * & * & * & & & & \\
\hline \multicolumn{2}{|l|}{PROGRAM/ERASE STATUS POLLING} & L & L & * & \begin{tabular}{l}
DO~3,5,6:Z \\
D4-fail/pass \\
D7-rdy/busy
\end{tabular} & & & \\
\hline \multicolumn{2}{|l|}{ID READ} & L & L & 0x0/0x1 & Data Output & & & \\
\hline
\end{tabular}
*H or L
Note 1: Refer COMMAND DEFINITION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Function} & \multirow[t]{2}{*}{No. of Bus Cycles} & \multicolumn{3}{|c|}{First Bus Cycle} & \multicolumn{3}{|c|}{Second Bus Cycle} \\
\hline & & Type & Address & Data & Type & Address & Data \\
\hline Read & 1 & WRITE & * & OOH & NA. & NA & NA \\
\hline ID Read & 2 & WRITE & * & 90H & READ & \(0 \times 0 \mathrm{H} / 0 \times 1 \mathrm{H}\) & Mfg/Dev ID \\
\hline Auto Byte Program & 2 & WRITE & * & 10 H & WRITE & Byte Address & WR Data \\
\hline Auto Chip Erase & 2 & WRITE & * & 30 H & WRITE & * & 30 H \\
\hline Auto Block Erase & 2 & WRITE & * & 20 H & WRITE & Block Address & DOH \\
\hline Reset & 2 & WRITE & * & FFH & WRITE & * \(\quad\), & FFH \\
\hline
\end{tabular}

Operating Modes: Both NM28F044 and NM28F040 feature same modes of operation, viz., Read, ID Read, Reset, Auto Byte Program, Auto Chip Erase and Auto Block Erase. The Read, ID Read and Reset modes of operation of these two devices are the same as that of NM28F010, however the Program and Erase modes are significantly different from NM28F010.
A more detailed description of the various operating modes can be found in the relevant device data sheets.

\section*{HARDWARE CONSIDERATIONS}
1. NM28F044

Designing around NM28F044 is very much similar to NM28F010 which we discussed earlier, but with the following difference:

Two of the data lines, D7 and D4, signify the operation completion and status of completion respectively. Once after issuing any of the Auto Byte Program, Auto Chip Erase and Auto Block Erase commands to the device, all that is required is to do a read on the device after a specified time (depending on the command issued). A High (High logic level) on the data line D7 signifies that the operation for the issued command was completed. The data line stays at Low (Low logic level) if the operation is not completed yet. Similarly, when D7 has become high, a Low (Low logic level) on the D4 line signifies success of the operation and a High (High logic level) signifies failure.

\section*{2．NM28F040}

TL／D／11952－4
（＂＂解＿SEL＂signal could be same as＂EN＿＿VPP＂signal）
FIGURE 4

NM28F040 Flash device is different from NM28F044 Flash device in sense that it doesn＇t have a＂WE＂signal．The ＂CS＂signal in this device acts as a multiplexed pin for both chip select（in the case of a read from the device）and write enable（in the case of a write to the device）．Write mode is differentiated from the READ mode by the following condi－ tions：
\begin{tabular}{ccc}
\(\overline{\mathbf{C S}}\) & \(\overline{\mathrm{OE}}\) & Operation on the Device \\
L & L & READ \\
\({ }^{*}\) & H & WRITE
\end{tabular}
－\(\rightarrow\) CS pulsing when \(\overline{O E}\) is held high
But＂\(\overline{C S}\)＂signal continues to behave like a chip select sig－ nal（read mode）as long as \(\mathrm{V}_{\mathrm{PP}}\) voltage remains below \(\mathrm{V}_{\mathrm{CC}}\) ， no matter whatever operation（READ or WRITE）is done on the device．Figure 4 shows one possible way of interfacing NM28F040 Flash device in a system．
＂便＂Generation：The potential problem of chip select（信） signal glitching and thus leading to the possibilities of cor－ rupting any valid data in the Flash device can be easily sur－ mounted with simple logic．Data corruption chances are possible in NS28F040 Flash device only when 12V power is enabled to the \(\mathrm{V}_{\mathrm{PP}}\) pin of the device and then there is an extraneous cycle happening on the bus（bus cycle to a de－ vice other than the Flash device）．
Memory decode designs in general incorporate a mecha－ nism of gating the decoded signal（from the address bus） with Memory control signals（MREAD and MWRITE）to gen－ erate a valid chip select to the memory．Glitches become apparent when the total time for the address bus to get stabilized to valid logic levels（say，Tsb）and the time to decode the address lines（say，Td）is longer than the Memory control signal（MREAD or MWRITE）driven val－ id delay（say，Tv）．

In systems where both the Address lines and the memory control signals are driven simultaneously this＂glitching＂ scenario is inherent and one common way of eliminating the glitches in the output（chip select）signal is to delay the memory control signal by an amount greater than Tsb＋Td and using this delayed signal for gating purpose．Simple DE－ LAY LINE devices can be used to delay the control signals， as shown in Figure 4.
Processors like 180486，output Address，Memory control （ \(\mathrm{M} / \mathrm{IO}\) ）and Read Write（PW／R）control signals all at the same instant whenever an external cycle is started on the system bus．In this scenario，generating the chip select sig－ nal from address and M／IO and PW／R control signals all
gated together would have the output chip select signal glitching for a period equal to the above mentioned Tsb + Td．But by using a delayed（by an amount Tsb＋Td）mem－ ory READ／WRITE signal for final gating，chances for glitch－ es in the chip select signal is eliminated．
＂WE＿SEL＂Signal：The＂WE＿＿SEL＂signal shown in Fig－ ure 4 is a signal from one of the available general purpose 1／O ports．This signal in most cases is the same as the ＂EN＿VPP＂signal which was discussed earlier．
Prior to doing any write operation on the Flash device，the \(V_{P P}\) circuitry must be turned on so that \(V_{P P}\) voltage at the \(V_{P P}\) pin is 12 V ．＂EN＿＿VPP＂is a signal generated for this purpose．The same signal can be used in the \(\overline{\mathrm{CS}}\) generation logic to gate the decoded address signal with either of the memory control signals（MREAD and MWRITE）which ever becomes valid during a particular Flash device access．The need for having to do this is due to the multiplexed nature of the chip select pin of the Flash device．
The following representative schematic（Figure 5）explains the above discussion．

TL／D／11952－5
FIGURE 5
Common Considerations：In all the three Flash devices discussed so far，it is essential that proper command codes are entered in proper sequence．Inputting any command code other than those described could render an improper device functionality．Also accidental removal of VPP supply during any Erase or Program operation in progress should be taken care of，for in some cases the valid data in the device could get corrupted．It＇s also essential to employ a POWER ON／OFF sequence as described earlier to safe－ guard the valid data against any corruption possibilities dur－ ing power cycling．

\subsection*{3.0 NAND DEVICE}

\section*{NM29N16 (2M x 8-Bit)}

\section*{GENERAL DESCRIPTION}

National's NM29N16 is 16.5 Mbit NAND Electrically Erasable and Programmable device. NM29N16 is a 5V only device, which does not require 12 V for any of the Programming or Erase operations.
Organization: NM29N16 is organized as \((256+8)\) bytes \(x\) 16 Pages \(\times 512\) Blocks. Programming is done in terms of a Page (264 Bytes each) while Erasing is done in terms of a Block or multiples of Blocks (16 Pages each). Figure 6 depicts a conceptual organization of the Device.
NM29N16 is a byte__wide serial type of device in which the Address and Data are time multiplexed on the same I/O pins as there are no separate Address pins. Address in input as three bytes of Data during Address input cycles. The Program and Erase operations are handled automatically by the device, resulting in minimal Processor intervention and elegant programming code.
Additionally, the device aids in mapping out bad memory locations by providing an extra 8 bytes of redundant memory for every page in the device. This feature makes NM29N16 Flash device as an ideal candidate for SOLID STATE FILE STORAGE applications. Alternatively, this redundant 8 byte space per page can be used for normal storage resulting in extra capacity (16.5 Mbits instead of 16 Mbits).
Applications: NM29N16 is ideally suited for applications like,
1. Solid State File Storage
2. Voice Recording
3. Image File Storage, etc.

NM29N16 type of a device is the most sought after in Solid State File Storage where large data is stored and retrieved at a single access (Normally in terms of some specified Blocks Size). With the advent of PCMCIA based systems, Solid State Data Storage has become an intelligent form of Data storage and NM29N16 with its unique features is the ideal candidate for PCMCIA based Solid State Disk.

Device Specific Detalls: NM29N16 has the following control signals, whose combination, as depicted in the following truth table, signify the various operations that can be performed on the device. The control signals are CLE (command latch enable), ALE (address latch enable), \(\overline{C E}\) (chip enable), \(\overline{\text { WE }}\) (write enable), \(\overline{\operatorname{RE}}\) (read enable) and \(\overline{\mathrm{WP}}\) (write protect).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & CLE & ALE & \(\overline{C E}\) & WE & RE & \(\overline{W P}\) \\
\hline Command Input & H & L & L & \(\underline{\square}\) & H & x \\
\hline Data Input & L & L & L & \(\underline{5}\) & H & X \\
\hline Address Input & L & H & L & \(\underline{5}\) & H & x \\
\hline Address Output & L & H & L & H & U & X \\
\hline Serial Data Output & L & L & L & H & u & X \\
\hline During Programming (BUSY) & X & X & X & X & X & H \\
\hline During Erasing (BUSY) & X & X & X & X & X & H \\
\hline Program/Erase Inhibit & X & X & X & X & X & L \\
\hline
\end{tabular} \(H: V_{I H} \quad L: V_{I L} \quad X: V_{I L}\) or \(V_{I H}\)
Operating Modes: The device supports the following modes of operation, viz., Read Mode-1, Read Mode-2, Status Read, ID Read, Auto Page Program, Auto Block Erase, Auto Multi-Block Erase, Suspend/Resume and Reset.
The device is set into any of the above modes by writing an appropriate opcode into the device Command Register. Then if needed the Address and Data registers are updated. Thus programming the device for any mode of operation involves anything from one step to four step process, depending on the mode. Various Command codes (opcodes) needed for those above mentioned modes are listed in the Command Table.

\section*{Command Table}
\begin{tabular}{|l|c|c|}
\hline Modes of Operation & \begin{tabular}{c}
First Cycle \\
(opcode)
\end{tabular} & \begin{tabular}{c}
Second \\
Cycle \#
\end{tabular} \\
\hline Read Mode-1 & 00 & \\
\hline Read Mode-2 & 50 & \\
\hline Reset & FF & \\
\hline Auto Program & 80 & 10 \\
\hline Auto Block Erase & 60 & D0 \\
\hline Auto Multi Block Erase & \(60^{*}\) & D0 \\
\hline Erase Suspend & B0 & \\
\hline Erase Resume & D0 & \\
\hline Status Read & 70 & \\
\hline Register Read & E0 & \\
\hline ID Read & 90 & \\
\hline
\end{tabular}

Note: Second cycle shown above for the Program/Erase operations is a confirmatory cycle. The actual execution begins only after this command write. This feature is to safeguard against any inadvertent erasures, especially during Power Up.
*For Multi-Block erase operations, Command code (60) is repeated for every block to be erased. Typical sequence for a three block erasure would be, <OPCODE "60"> <Add of Block\# 1> <OPCODE "60"> <Add of Block \#2> <OPCODE "60"> <Add of Block\#3> <OPCODE "D0">.
DESCRIPTION OF OPERATIONS: Țere are basically two types of operations performed on the device, viz., READ and WRITE.
READ Type Operations: Read mode-1, Read mode-2, Status read, Register read and ID read are the operations
which conform to Read type. For all these modes the appropriate command code is first written into the device Command register (first cycle). Then depending on the mode issued, address information is written into the Address register, which is essentially three write cycles following the Command input cycle. Then after a specified delay data is read off the Data register through a typical read cycle. Address information is not input for a Status Read operation. All these Registers, viz., Command, Data, Address and Status, do not occupy any of the device's memory location. They are indeed selected by the combination of logic levels of the control signals ALE and CLE. Note also that the Command Register cannot be read back for the contents.
The starting address is composed of 3 bytes, which are entered right after the command input in three successive write cycles. The format of the address is input as shown below:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & I/O1 & I/O2 & I/O3 & I/O4 & I/O5 & I/O6 & I/O7 & I/O8 \\
\hline \begin{tabular}{l}
First Address \\
Cycle
\end{tabular} & A0 & A1 & A2 & A3 & A4 & A5 & A6 & A7 \\
\hline \begin{tabular}{l}
Second Address \\
Cycle
\end{tabular} & A8 & A9 & A10 & A11 & A12 & A13 & A14 & A15 \\
\hline \begin{tabular}{l}
Third Address \\
Cycle
\end{tabular} & A16 & A17 & A18 & A19 & A20 & L & L & L \\
\hline
\end{tabular}

Note: I/O bits 6,7 and 8 should be set to low level during the third address cycle.
A12 to A20 form the Block address (selects one out of 512 Blocks).
A11 to A8 form the Page address (selects one out of 16 pages) within a selected Block.
A0 to A7 form the column address (selects the starting address of the data transfer within a page).

TL/D/11952-7
FIGURE 7

WRITE Type Operations: Operations like Program, Erase, Erase suspend, and Reset conform to Write type of command. Setting the device for these operating modes is similar to earlier described READ type operations. In these modes the device is updated with some new information.
A more detailed description of the various operating modes are found in the Device data sheets. Refer to the table given at the end of this note.
Hardware Interface: The Figure 7 shows one of the methods of interfacing NM28N16 Flash device in a system. A generic Processor (Micro-controller) is assumed in this discussion. The external interface attributes (Bus Control Interface) of this generic processor is commonly found in almost all of the available Processors.
Types of Cycles: The cycle types that are typically performed on NM29N16 Flash device fall into three categories, viz., Command, Address and Data cycles. The following table explains the control signal configuration during these three cycles.
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Cycle Types } & CLE & ALE & \(\overline{\text { CE }}\) & \(\overline{\text { WE }}\) & \(\overline{\text { RE }}\) \\
\hline Command & Input & H & L & L & U & H \\
\hline \multirow{3}{*}{ Address } & Input & L & H & L & U & H \\
\cline { 2 - 7 } & Output & L & H & L & H & U \\
\hline \multirow{3}{*}{ Data } & Input & L & L & L & U & H \\
\cline { 2 - 8 } & Output & L & L & L & H & U \\
\hline
\end{tabular}

The Input/Output cycles (in Address and Data cycles) are differentiated by \(\overline{\mathrm{WE}}\) and \(\overline{\mathrm{RE}}\) pulsing respectively with other being stable. In general all these three cycles happen either \(\overline{R E}\) or \(\overline{W E}\) pulsing during a stable window of the other control signals as shown in the above table.
I/O Port: Having an I/O Port type of interface is necessitated by the fact that the NM29N16 Flash Device control signals are not of the same type which are normally found in common Flash Devices. NM29N16 device is meant for large data storage applications (Memory cards, Solid state disk, etc.) where the device form factor is also crucial. In view of this, the device features an optimized Pinout, resulting in a compact device and yet with a much larger capacity. The control signals of this NM29N16 Flash device is not directly compatible to existing Micro-controller interface control. An 1/O Port type of interface between this Flash device and any common Micro-controller normally considered for this type of an application, simplifies the interfacing task without any complex logic.
The I/O Port shown in the above diagram is any general purpose I/O port, normally found in a system. One such I/O port is availed to establish the key interface to the NM29N16 Flash device. Three control signals, viz., " \(\overline{\mathrm{CS}}\) ", "CLE" and "ALE" are driven by this I/O port as shown. Before doing an actual NM29N16 access, the system CPU initially writes to this I/O Port with the needed signal configuration for the type of the cycle (Command, Address or Data). Then a normal Read or Write cycle to the Flash device memory space would do an actual Read or Write cycle on the device.
Decoder: The decoder unit generates the Read/Write control signals for the Flash device. System address, memory control signals form the input to this unit. This unit could be a combination of discrete devices like 'LS139 or just a combinatorial \(\overline{\text { PAL }}\) like 16L8 device.

Power Monitor: This unit basically monitors the \(V_{C C}\) power point for the required operating level. Whenever the system \(V_{\text {CC }}\) falls out of the \(\pm 5 \%\) tolerance range, this unit generates the system Reset as well as the write protect signal (WP). This unit takes care of the POWERON condition also by keeping the system Reset and WP asserted till the system \(V_{C C}\) reaches the proper required level and thus protecting the data against corruption. Power monitor unit is available from numerous vendors in the form of a single device. Orie typical example of such a device would be Dallas Semiconductor component DS1231.
Ready/Busy Signal: This status output signal can be routed to an Input Port, which the CPU can keep polling for the status of operation completion or alternatively to the system's Interrupt control so as to generate an interrupt upon operation completion.

\subsection*{4.0 ICP (IN-CIRCUIT PROGRAMMING)}

In-circuit programming (ICP) as opposed to device level programming is an efficient method of programming the most widely used programmable devices like, PROM, EPROM, PAL, PLD, Micro-controllers, FPGA, FLASH memory, etc. ICP is a means of programming these devices after they have been assembled into their target boards. There are broadly two categories of In-circuit programming, one being Production oriented and the other being End user oriented.
ICP Benefits: Obvious advantages of ICP over the traditional device-level programming are streamlined manufacturing flow, simplified handling, lesser inventory overheads and reduced production costs. ICP has become a preferred method of programming the device with the gaining usage of surface-mount devices (SMDs) and the Just-in-time production methods.
ICP Configurations: Different configurations are available today to achieve the programming of these devices in their target enclosure.
1. Standalone In-circuit Programmers: This is the Production oriented type of configuration and in this, the target (device assembled) board(s) get plugged on to slots assigned for programming purpose in the Standalone In-circuit Programmer, much like individual devices (ICs) getting plugged into the IC sockets of a Device Programmer. Then the relevant programming algorithm, resident in the In-circuit Programmer, is executed by the In-circuit Programmer to program the device with the proper data. A typical example of this kind of programmer would be DATA I/O's BoardSite. In this case the target boards usually have additional circuitry to isolate the programmable device(s) from the onboard's logic which is essential during the device programming. The level of complexity of this additional logic varies depending on the type of the device and the number of such devices. This kind of configuration is well suited for production site programming where assembled boards are directly programmed for the devices present instead of programming the individual devices and house keeping them before assembly into a particular board.
2. Programming via serial link: In this configuration the target board has a serial link interface for the purpose of programming (or reprogramming) the device(s) on board. This target board is hooked to a conventional Device programmer via the serial interface, in which case the Device Programmer does the programming job as it would program an individual device.

Compared to the earlier discussed Production type ICP, this falls into End-user type of ICP, and this method eases the task of any code update at customer site without having to disassemble the target board from the system. But then a device programmer is required to be carried to the customer site to do any re-programming.
3. In-System Programming: In this configuration, typically a remote host downloads the software to be updated onto the target system through, say, a serial link. Then the target system executes the resident programming algorithm to program the mounted device. Instead of a serial link, a floppy diskette containing the updated code could be downloaded into the target system for programming purposes.
This approach of In-circuit Programming is preferred where frequent code change is involved, especially in customer field locations, where dismantling the whole system for de-
vice replacement purposes is not welcomed and it is not required to carry any device programmer to the customer site.
Flash Memory: An In-circuit Programmable device of particular concern here is a FLASH device which as byfar come in as a drop in replacement for the conventional EPROMs. Apart from delivering the "functional compatibilities", they feature a significant advantage over EPROMs in terms of Re-programming conveniences whenever a code_update is necessitated. Unlike EPROMs which have to be removed from the target board, Ultra-Violet erased, programmed with the new code and then plugged back into the target board, the FLASH devices are erased instantly and re-programmed with the new code all performed when the device is in the target board only, thus bringing all the benefits of ICP.

\section*{NAND FLASH Operation}

\section*{INTRODUCTION}

The NM29N16 is a 16Mb FLASH memory that utilizes the NAND architecture. The device incorporates a number of features that make it suitable for numerous portable applications that need large amounts of data storage but can not use a disk drive due to power or weight considerations. While making such systems possible, the NM29N16 also offers greater performance over disk drives in the area of data transfer time, program time, and endurance.
The following sections give a general overview of the NM29N16 and describe how it operates. The operation of the three basic functions: read, write and program, is gone over in detail followed by the physics behind the device operation.

\section*{GENERAL DESCRIPTION}

The NM29N16 is a unique memory device that does not operate like normal EPROM or SRAM memory devices. All data that is read and written to the device is done in pages, which contain 264 bytes. Data is transferred from/to an onchip buffer that stores the page. When the data is read out, it is read out sequentially, byte after byte, in order. This data transfer method allows the NM29N16 to not have any address pins which simplifies both board layout and the system interface. The device is easily interfaced to high end microprocessors and low end microcontrollers.
The NM29N16 is organized as 8192 pages of data with each page consisting of 264 bytes. Figure 1 gives a threedimensional view of how the device is organized. Each page allows for 256 bytes of data storage plus an additional 8 bytes that may be used for error correction or redundancy.

TL/D/11953-1
FIGURE 1. NM29N16 Conceptual Layout
There are 16 pages to a block (512 blocks in a device). The block is the smallest unit which can be erased (4 kbytes). Each block within the array consists of a chain of 16 NAND cells connected in series. Figure 2 shows a typical cell.

National Semiconductor
Application Note 922
Rob Frizzell

TL/D/11953-2
FIGURE 2. NAND Cell Architecture
A block makes up the collection of 16 pages times the 264 bytes per page.
The NM29N16 is not read and written to like normal memory devices. There are no address or data pins for the NAND device as can be seen in Table I. There are only I/O pins,

TABLE I. Pinout of NM29N16
\begin{tabular}{|c|c|}
\hline \(\mathrm{I} / \mathrm{O1}-8\) & I/O Port \\
\hline\(\overline{\mathrm{CE}}\) & Chip Enable \\
\hline\(\overline{\mathrm{WE}}\) & Write Enable \\
\hline\(\overline{\mathrm{RE}}\) & Read Enable \\
\hline CLE & Command Latch Enable \\
\hline ALE & Address Latch Enable \\
\hline\(\overline{\mathrm{WP}}\) & Write Protect \\
\hline \(\mathrm{R} / \bar{B}\) & Ready/Busy \\
\hline \(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{SS}}\) & Power Supply/Ground \\
\hline
\end{tabular}

TL/Ḍ/11953-3
FIGURE 3. General Timing Sequence
similar to peripheral ICs used in PC's before the advent of chip sets. Like the peripheral ICs, commands are sent to the NAND device to initialize it for the desired operation, be it a read, erase, or program. Address information follows the command to tell the device on which page or block the op eration should take place. Figure 3 shows the basic timing sequence of most operations.
In the following sections each of the main operations and their command sequence will be discussed.

\section*{READ}

The NM29N16 offers a number of different Read modes. These enhance the ease with which the device may fit into numerous designs. Table II lists the different Read modes for the NM29N16 along with the other command modes. These will now be explained in detail.
The default mode of the NM29N16 is Read Mode 1. This mode uses the command 00 H . A Read is initiated by writing the 00 H command to the device followed by an address. The address tells the device what page to pull from the array and at what point within the page to set the pointer. On the rising edge of \(\overline{W E}\), the page will be pulled out of the array and into an on-chip buffer. During this time the R/ \(\bar{B}\) pin goes low. This allows the system to do other operations while polling the \(R / \bar{B}\) pin to return high. The time to pull the page from the array into the buffer is typically \(25 \mu \mathrm{~s}\). Once the page is stored in the buffer it can be read out sequentially. Sending consecutive \(\overline{\mathrm{RE}}\) pulses will read out sequential bytes of data starting at the byte set by the address input-
ted. For example, sending in address \(05 \mathrm{H}-5 \mathrm{FH}-1 \mathrm{FH}\) would result in reading block 501 (1F5H), page 16(FH) starting at byte \(6(05 \mathrm{H})\) of 264 bytes. Figure 4 graphically shows this example.

TABLE II. NM29N16 Command Modes
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & \begin{tabular}{c}
First \\
Cycle
\end{tabular} & \begin{tabular}{c}
Second \\
Cycle
\end{tabular} & \begin{tabular}{c}
Acceptable \\
Command \\
during Busy
\end{tabular} \\
\hline Serial Data Input & 80 & & \\
\hline Read Mode (1) & 00 & & \\
\hline Read Mode (2) & 50 & & \\
\hline Reset & FF & & Yes \\
\hline Auto Program & 10 & & \\
\hline Auto Block Erase & 60 & D0 & \\
\hline Auto Multi Block Erase & \(60 . .60\) & D0 & \\
\hline Suspend in Erasing & B0 & & Yes \\
\hline Resume & DO & & \\
\hline Status Read & 70 & & Yes \\
\hline Register Read & E0 & & \\
\hline ID Read & 90 & & \\
\hline
\end{tabular}

TL/D/11953-4
FIGURE 4. Read Mode 1 Operation

The NM29N16 has a wraparound when the end of a page is met by a RE pulse. After reading out byte 263 and sending in another \(\overline{R E}\) pulse, the device will pull the next consecutive page out of the array. Again, \(\mathrm{R} / \overline{\mathrm{B}}\) will go low for approximately \(25 \mu\) s until the next page is in the on-chip buffer. In this manner the entire device can be read out, page after page. Figure 5 depicts this wraparound feature.

Sequential Read (1)

TL/D/11953-5
FIGURE 5. Read Mode 1 Wraparound
Upon reaching the final byte in the final page, additional \(\overline{\mathrm{RE}}\) pulses will only read out the last byte over and over. In other words, the device will not wrap around to the first page of the array.
The NM29N16 provides eight additional bytes at the end of each page to be used for various functions. A special command, 50 H , is used to read out only these last eight bytes from the page. This is achieved by writing the 50 H command to the device followed by the three part address. The first byte determines the pointer location but in this case only the first three bits (\(\mathrm{I} / \mathrm{O1-3} \mathrm{)} \mathrm{are} \mathrm{recognized} .\mathrm{The} \mathrm{re-}\) maining bits (1/O4-8) are ignored. Again, the device will go through a \(25 \mu\) s delay before the data can be read out with strobes of \(\overline{\mathrm{RE}}\).

The wraparound feature also works with the 50 H command. However, instead of reading out all of the following pages, only the redundant eight bytes are read. Figure 6 shows this action.

Sequential Read (2)
TL/D/11953-6
FIGURE 6. Read Mode 2 Wraparound
A method of checking the status of the NM29N16 is provided via the 70 H command. This command provides automatic program and erase verification. No software is needed to check each of the bytes individually to see if they have been programmed or erased properly. The 70 H command offers the end user the ability to check if the program or erase operation was carried out successfully. This is accomplished after the \(R / \bar{B}\) pin has returned high during a program/erase operation. By issuing the 70 H command following \(R / \bar{B}\) going high, the status of the device will be outputted on 1/O1-8. Figure 7 shows this operation for a page program operation.

TL/D/11953-7
FIGURE 7. Auto Page Program Verify

If I/O 1 is a " 0 ", the operation was successful. If a " 1 " is outputted on I/O1, then the program or erase failed. If an erase failed, then the block that was erased should be mapped by the system as bad and should not be used again. If a page program fails, then the data should be written to another block and again the block should be mapped as bad by the system.
The Register Read command, EOH, allows the system to determine which bits did not program successfully. The EOH command is only used after a failed program attempt. This is done by writing the EOH command followed by consecutive \(\overline{R E}\) pulses. A " 0 " outputted on I/O1 means the bit was programmed successfully while a " 1 " means the programmed bit failed. This information can be used for error correction to increase the accuracy of the data stored.
The final Read mode is the ID Read. Like all FLASH products, the NM29N16 offers a way to identify the manufacturer of the device and the type of device. This is accomplished by issuing the 90 H command followed by the 00 H address. This is a single address input, not a three part input like the other commands. Issuing two RE pulses will output the manufacture code (8FH for National Semiconductor) followed by the device code (64 H for the 16 Mb NAND). Figure 8 shows the timing sequence. Applications such as PCMCIA cards will use this data to identify the card and determine which driver to use for the interface.

\section*{PROGRAM}

The NM29N16 implements an automatic programming algorithm which greatly simplifies the system software. The software for programming the device consists of writing three commands and the data. Programming must be done from the lowest page in the block to the highest. For example, page 16(1FH) in block 1 must be programmed before page 15(1EH) in block 1.
The program mode begins by issuing the 80 H command to the device. This is followed by the three part address of the page and block. The data is then input sequentially starting with the lowest byte. The Program command, 10 H , is then input to start the program operation. The \(\mathrm{R} / \overline{\mathrm{B}}\) line will go low to signal the commencement of the programming as shown in Figure 9. Program time is typically around \(300 \mu \mathrm{~s}\). Upon R/ \(\bar{B}\) going high a Status Read command, 70 H , can be written to the device. This allows the system to verify if the program was a success or not. A " 0 " on I/O1 reports a successful program and a "1" on 1/O1 means a failed program attempt. If the program does fail, the block should be mapped out as a bad block and not written to anymore. Also, the data that was in the on-chip buffer will be lost and will have to be rewritten into the buffer before programming it into a different block. Figure 10 shows this sequence of commands.

TL/D/11953-8
FIGURE 8. ID Read Timing Sequence

TL/D/11953-9
FIGURE 9. Auto Page Program Sequence

FIGURE 10. Program Fail Sequence
TL/D/11953-10

TL/D/11953-12
FIGURE 12. Auto Multi-Block Erase Command Sequence

The NM29N16 allows data to be written to a page when there is less than 264 bytes. Up to 10 sections of the same page may be written to at different times. For example, the system may write 25 bytes to the first part of the page, call them D0-D24. The rest of the page of filled with "1" (FFH) and then programmed. A second 25 bytes can then be stored at D24-D49. Again the rest of the page is filled with "1" along with D0-D24. In this manner, the data that was previously programmed into D0-D24 is masked out from being reprogrammed. The benefit to the system designer is the ability to be able to store small amounts of data in a page and not to waste memory space.
Finally, the NM29N16 allows page to page transfers. However, when this is done the data that is reprogrammed into the new page is inverted (" 0 " \(\rightarrow\) " 1 " and " 1 " \(\rightarrow\) " 0 ").

\section*{ERASE}

The NM29N16 has two modes for block erasure. These are Auto Block Erase and Auto Multi-Block Erase. Two different commands are used in the erase procedure to prevent accidental erasure. These are 60 H to set up the Auto Block Erase and DOH to execute the Erase command. The NM29N16 provides one of the smallest erase block sizes in the industry at 4 kbytes.
The Auto Block Erase, like the Program command, uses an algorithm to handle the entire erase procedure. This helps minimize the work load on the processor. The command sequence for a single block erase is shown in Figure 11.
It starts by writing the 60 H command to the device followed by the two cycle address, which represents the block to be erased. The Erase Execution (DOH) command is then written to confirm the erasure. The \(\mathrm{R} / \overline{\mathrm{B}}\) signal line will drop low for approximately 6 ms while the erase operation is in progress. When the \(R / \bar{B}\) line returns high, the status of the erasure can be checked by issuing the Status Read (70H) command. If the erasure fails (I/O1 outputs " 1 ") then the block should be marked as bad and no further operations should take place on this block.
The Auto Multi-Block Erase operation allows the system to mark multiple random blocks to be erased. A similar sequence as the single block erasure is followed as seen in Figure 12.

After the first address is inputted, it is followed by another 60 H command and a second two cycle block address. This process can be repeated to mark as many blocks for erasure as is desired. When all the blocks have been marked the DOH command is finally inputted and the erasure commences (\(R / \bar{B}\) goes low). The total erase time will be 6 ms plus \(15 \mu \mathrm{~s}\) times the number of blocks that have been marked for erasure.

\section*{PHYSICS OF OPERATION}

The NM29N16 utilizes a different architecture and programming method than the traditional NOR FLASH devices. The main difference in the programming method is the use of Fowler-Nordhiem tunneling for both programming and erasure of the cells. The physical operation behind reading, writing and erasing the NAND device at the cell level is explained in the following sections.
First an explanation of how Fowler-Nordhiem (F-N) tunneling operates is necessary. Figure 13 shows a typical crosssection of a single NAND FLASH cell.

TL/D/11953-13
FIGURE 13. NAND Cell Program/Erase

During program operation the substrate is grounded while the control gate is raised to \(\mathrm{V}_{\mathrm{PP}}\) (\(\mathrm{V}_{\mathrm{PP}}\) is approximately 20 V). This pulls charges from the substrate, tunneling through the oxide to the floating gate where the charge is stored. During erasure the reverse operation is performed with the substrate at \(V_{P P}\) and the control gate grounded. This allows charge to tunnel through the oxide back into the substrate. In contrast to NAND FLASH operation, NOR FLASH uses Hot-Electron Injection (HEI) for programming. In HEI, VPp is applied to both the drain and the control gate while the source is grounded. In this case the charge is injected through the oxide and then collected by the floating gate as shown in Figure 14.

TL/D/11953-14
FIGURE 14. NOR FLASH Cell Program/Erase

TL/D/11953-15
FIGURE 15. NAND FLASH Read Operation

In this case, \(V_{P P}\) is typically on the order of 12V. The main disadvantage that HEI has versus F-N tunneling is that it requires more current to inject the electrons into the floating gate. Therefore it is easier to build NAND FLASH devices that use less power and a single power supply.
The read operation of the NAND cell is displayed in Figure 15. The first part of the read operation involves biasing of the page lines that are not selected along with select line 1 and 2. This way the 16 NAND cells are connected to ground and the bit line. The selected page line is biased at OV. If the floating gate transistor cell is programmed " 1 ", current is allowed to flow from the pre-charged bit line to ground. A cell that is programmed " 0 " does not allow current to flow and the bit line stays charged at the same level (thus the NAND name). Sense amps at the end of the bit line sense the voltage difference and reading out the data into the onchip buffer.
The erase operation of the NAND cell is exhibited in Figure 16. In the erase operation an entire 4 kbyte block is

TL/D/11953-16
FIGURE 16. NAND FLASH Erase Operation
erased at once. As shown in the diagram, all page select lines are set low while the substrate is set at Vpp. The bit line is left open and floats. Electrons tunnel from the floating gate to the substrate thus erasing the cells. An algorithm monitors that all cells in the block are adequately erased.
The NAND FLASH program operation also uses an algorithm to monitor the procedure. Figure 17 shows the operation. First, select line 1 is turned on connecting the 16 NAND cells to the bit line while select line 2 is set low disconnecting the line from ground. Next, a high voltage (approximately 10 V) is applied to all the page lines of the block except the page line that is to be programmed. The page line that is to be programmed is set at \(\mathrm{V}_{\mathrm{PP}}\) (approximately 20 V). If data is to be programmed into the cell, the bit line is set low. This causes a differential of approximately 20 V between the control gate and the substrate, allowing for tunneling into the floating gate. If the cell is not to be programmed, the bit line is set at approximately 10 V . This causes the differential between the control gate and channel to be only 10 V which is not enough to cause tunneling. Again the automatic program algorithm monitors the process for complete programming of the cells.

\section*{POTENTIAL APPLICATIONS}

It should be clear from the above description of the NM29N16 that the device is very flexible in the manner in which it may be used. This makes it an ideal device for numerous applications that require large amounts of bulk data storage or secondary memory storage. Systems that need to store audio, visual or data files, and need to be portable are prime candidates to use NAND FLASH.

FIGURE 17. NAND FLASH Program Operation

Section 5

\section*{Audio Interface}

\section*{Components}

\section*{Section 5 Contents}

\section*{AUDIO AMPLIFIER}

LM4861 Boomer \(1 / 2\) Watt Audio Power Amplifier with Shutdown Mode

National Semiconductor

\section*{LM4861 Boomer \({ }^{\circledR}\) Audio Power Amplifier Series 1/2W Audio Power Amplifier with Shutdown Mode \\ General Description \\ Key Specifications}

The LM4861 is a bridge-connected audio power amplifier capable of delivering 500 mW of continuous average power to an \(8 \Omega\) load with less than \(1 \%\) (THD+N) over the audio spectrum using a 5 V power supply.

Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4861 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.

The LM4861 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4861 can be configured by external gain-setting resistors for differential gains of 1 to 10 without the use of external compensation components.
- THD + N at 500 mW continuous average output power into \(8 \Omega\)

1\% (max)
- Instantaneous peak output power

■ Shutdown current
\(0.6 \mu \mathrm{~A}\) (typ)

\section*{Features}

■ No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SO) packaging
- Compatible with PC power supplies
- Thermal shutdown protection circuitry
- Unity-gain stable
- External Gain Configuration Capability

\section*{Applications}
- Personal computers
- Portable consumer products
- Cellular phones
- Self-powered speakers
- Toys and games

\section*{Typical Application}

FIGURE 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Order Number LM4861M See NS Package Number M08A

\section*{Absolute Maximum Ratings}
\begin{tabular}{lr}
If Military/Aerospace specified devices are required, \\
please contact the National & Semiconductor Sales \\
Office/Distributors for availability and specifications. \\
Supply Voltage & 6.0 V \\
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Input Voltage & -0.3 V to V DD +0.3 V \\
Power Dissipation (Note 3) & Internally limited \\
ESD Susceptibility (Note 4) & 3000 V \\
ESD Susceptibility (Note 5) & 250 V \\
Junction Temperature & \(150^{\circ} \mathrm{C}\)
\end{tabular}

Soldering Information Small Outline Package Vapor Phase (60 sec.) \(215^{\circ} \mathrm{C}\) Infrared (15 sec.) \(220^{\circ} \mathrm{C}\)
See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.

\section*{Operating Ratings}

Temperature Range
\(T_{\text {MIN }} \leq T_{A} \leq T_{M A X}\)
\[
\begin{array}{r}
-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}
\end{array}
\]

Electrical Characteristics (Notes 1, 2)
The following specifications apply for \(V_{D D}=5 \mathrm{~V}, R_{L}=8 \Omega\) unless otherwise specified. Limits apply for \(T_{A}=25^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|c|}{LM4861} & \multirow[b]{2}{*}{Units (Limits)} \\
\hline & & & Typical (Note 6) & Limit (Note 7) & \\
\hline \(V_{\text {DD }}\) & Supply Voltage & \(\cdots\) & & \[
\begin{aligned}
& 2.7 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& V(\min) \\
& V(\max)
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & Quiescent Power Supply Current & \(\mathrm{V}_{\mathrm{IN}}=O \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=O \mathrm{~A}\) (Note 8) & 6.5 & 10.0 & mA (max) \\
\hline \(I_{\text {SD }}\) & Shutdown Current & \(V_{\text {pin1 }}=V_{\text {DD }}\) (Note 9) & 0.6 & & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {OS }}\) & Output Offset Voltage & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & 5.0 & 50.0 & mV (max) \\
\hline \(\mathrm{P}_{\mathrm{O}}\) & Output Power . & THD \(+\mathrm{N}=1 \%\) (max); \(\mathrm{f}=1 \mathrm{kHz}\) & & 0.50 & W (min) \\
\hline THD + N & Total Harmonic Distortion + Noise & \(\mathrm{P}_{\mathrm{O}}=500 \mathrm{mWrms} ; 20 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz}\) & 0.45 & & \% \\
\hline PSRR & Power Supply Rejection Ratio & \(\mathrm{V}_{\mathrm{DD}}=4.9 \mathrm{~V}\) to 5.1 V & 65 & & dB \\
\hline
\end{tabular}

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{J M A X}, \theta_{J A}\), and the ambient temperature \(T_{A}\). The maximum allowable power dissipation is PDMAX \(=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}\) or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4861, \(\mathrm{T}_{J M A X}=\) \(150^{\circ} \mathrm{C}\), and the typical junction-to-ambient thermal resistance, when board mounted, is \(170^{\circ} \mathrm{C} / \mathrm{W}\).
Note 4: Human body model, 100 pF discharged through a \(1.5 \mathrm{k} \Omega\) resistor.
Note 5: Machine Model, \(220 \mathrm{pF}-240 \mathrm{pF}\) discharged through all pins.
Note 6: Typicals are measured at \(25^{\circ} \mathrm{C}\) and represent the parametric norm.
Note 7: Limits are guaranteed to Nationai's AOQL (Average Outgoing Quality Level).
Note 8: The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.
Note 9: Shutdown current has a wide distribution. For power management sensitive designs, contact your local National Semiconductor Sales Office.

High Gain Application Circuit

TL/H/11986-3
FIGURE 2. Audio Ampifier with \(A_{\text {VD }}=\mathbf{2 0}\)

Single Ended Application Circuit

FIGURE 3. Single-Ended Amplifier with \(\mathbf{A}_{\mathbf{V}}=\mathbf{- 1}\)
\({ }^{*} \mathrm{C}_{\mathrm{S}}\) and \(\mathrm{C}_{\mathrm{B}}\) size depend on specific application requirements and constraints. Typical vaiues of \(\mathrm{C}_{\mathrm{S}}\) and \(\mathrm{C}_{\mathrm{B}}\) are \(0.1 \mu \mathrm{~F}\).
**Pin 1 should be connected to \(V_{D D}\) to disable the amplifier or to GND to enable the amplifier. This pin should not be left floating.
***These components create a "dummy" load for pin 8 for stability purposes.

External Components Description (Figures 1, 2)
\begin{tabular}{|c|c|}
\hline Components & Functional Description \\
\hline 1. \(\mathrm{R}_{\mathrm{i}}\) & Inverting input resistance which sets the closed-loop gain in conjunction with \(\mathrm{R}_{\mathrm{f}}\). This resistor also forms a high pass filter with \(C_{i}\) at \(f_{C}=1 /\left(2 \pi R_{i} C_{i}\right)\). \\
\hline 2. \(\mathrm{C}_{\mathrm{i}}\) & Input coupling capacitor which blocks DC voltage at the amplifier's input terminals. Also creates a highpass filter with \(R_{i}\) at \(f_{C}=1 /\left(2 \pi R_{i} C_{i}\right)\). \\
\hline 3. \(\mathrm{R}_{\mathrm{f}}\) & Feedback resistance which sets closed-loop gain in conjuncticn with \(\mathrm{R}_{\mathrm{i}}\). \\
\hline 4. \(\mathrm{C}_{\mathrm{s}}\) & Supply bypass capacitor which provides power supply filtering. Refer to the Appllcation Information section for proper placement and selection of supply bypass capacitor. \\
\hline 5. \(\mathrm{C}_{\mathrm{B}}\) & Bypass pin capacitor which provides half supply filtering. Refer to the Application Information section for proper placement and selection of bypass capacitor. \\
\hline 6. \(\mathrm{C}_{\mathrm{i}}{ }^{*}\) & Used when a differential gain of over 10 is desired. \(\mathrm{C}_{f}\) in conjunction with \(\mathrm{R}_{\mathrm{f}}\) creates a low-pass filter which bandwidth limits the amplifier and prevents high frequency oscillation bursts. \(\quad f_{C}=1 /\left(2 \pi R_{f} C_{f}\right)\) \\
\hline
\end{tabular}
*Optional component dependent upon specific design requirements. Refer to the Application Information section for more information.

\section*{Typical Performance Characteristics}

Supply Current vs Supply Voltage

Supply Current Distribution vs Temperature

Output Power vs Supply Voltage

Open Loop Frequency Response

\section*{Application Information}

\section*{BRIDGE CONFIGURATION EXPLANATION}

As shown in Figure 1, the LM4861 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unitygain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of \(R_{f}\) to \(R_{i}\) while the second amplifier's gain is fixed by the two internal \(40 \mathrm{k} \Omega\) resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase \(180^{\circ}\). Consequently, the differential gain for the IC is:
\[
A_{v d}=2^{*}\left(R_{f} / R_{i}\right)
\]

By driving the load differentially through outputs \(\mathrm{V}_{\mathrm{O} 1}\) and \(\mathrm{V}_{\mathrm{O} 2}\), an amplifier configuration commonly referred to as "bridged mode" is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of its load is connected to ground.
A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping which will damage high frequency transducers used in loudspeaker systems, please refer to the Audio Power Amplifier Design section.
A bridge configuration, such as the one used in Boomer Audio Power Amplifiers, also creates a second advantage over single-ended amplifiers. Since the differential outputs, \(V_{O 1}\) and \(V_{O 2}\), are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor in a single supply, single-ended amplifier, the half-supply bias across the load would result in both increased internal IC power dissipation and also permanent loudspeaker damage. An output coupling capacitor forms a high pass filter with the load requiring that a large value such as \(470 \mu \mathrm{~F}\) be used with an \(8 \Omega\) load to preserve low frequency response. This combination does not produce a flat response down to 20 Hz , but does offer a compromise between printed circuit board size and system cost, versus low frequency response.

\section*{POWER DISSIPATION}

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or singleended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Equation 1 states the maximum power dissipation point for a bridge amplifier operating at a given supply voltage and driving a specified output load.
\[
\begin{equation*}
P_{D M A X}=4^{*}\left(V_{D D}\right)^{2 /\left(2 \pi^{2} R_{L}\right)} \tag{t}
\end{equation*}
\]

Since the LM4861 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. Even with this substantial
increase in power dissipation, the LM4861 does not require heatsinking. From Equation 1, assuming a 5 V power supply and an \(8 \Omega\) load, the maximum power dissipation point is 625 mW . The maximum power dissipation point obtained from Equation 1 must not be greater than the power dissipation that results from Equation 2:
\[
\begin{equation*}
P_{D M A X}=:\left(T_{J M A X}-T_{A}\right) / \theta_{J A} \tag{2}
\end{equation*}
\]

For the LM4861 surface mount package, \(\theta_{\mathrm{JA}}=170^{\circ} \mathrm{C} / \mathrm{W}\) and \(T_{\text {JMAX }}=150^{\circ} \mathrm{C}\). Depending on the ambient temperature, \(T_{A}\), of the system surroundings, Equation 2 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 1 is greater than that of Equation 2, then either the supply voltage must be decreased or the load impedance increased. For the typical application of a 5 V power supply, with an \(8 \Omega\) load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately \(44^{\circ} \mathrm{C}\) provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature can be increased. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers.

\section*{POWER SUPPLY BYPASSING}

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. As displayed in the Typical Performance Characteristics section, the effect of a larger half supply bypass capacitor is improved low frequency THD +N due to increased halfsupply stability. Typical applications employ a 5 V regulator with \(10 \mu \mathrm{~F}\) and a \(0.1 \mu \mathrm{~F}\) bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4861. The selection of bypass capacitors, especially \(\mathrm{C}_{\mathrm{B}}\), is thus dependant upon desired low frequency THD +N , system cost, and size constraints.

\section*{SHUTDOWN FUNCTION}

In order to reduce power consumption while not in use, the LM4861 contains a shutdown pin to externally turn off the amplifier's bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the shutdown pin. Upon going into shutdown, the output is immediately disconnected from the speaker. There is a built-in threshold which produces a drop in quiescent current to \(500 \mu \mathrm{~A}\) typically. For a 5 V power supply, this threshold occurs when 2 V \(3 V\) is applied to the shutdown pin. A typical quiescent current of \(0.6 \mu \mathrm{~A}\) results when the supply voltage is applied to the shutdown pin. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up resistor of \(47 \mathrm{k} \Omega\) will disable the LM4861. There are no soft pull-down resistors inside the LM4861, so a definite shutdown pin voltage must be applied externally, or the internal logic gate will be left floating which could disable the amplifier unexpectedly.

\section*{Application Information (Continued)}

\section*{HIGHER GAIN AUDIO AMPLIFIER}

The LM4861 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential gain of greater than 10 is required, then a feedback capacitor is needed, as shown in Figure 2, to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates unwanted high frequency oscillations. Care should be taken when calculating the -3 dB frequency in that an incorrect combination of \(R_{f}\) and \(C_{f}\) will cause rolloff before 20 kHz . A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is \(R_{f}=100 \mathrm{k} \Omega\) and \(C_{f}=5 \mathrm{pF}\). These components result in a -3 dB point of approximately 320 kHz . Once the differential gain of the amplifier has been calculated, a choice of \(R_{f}\) will result, and \(C_{f}\) can then be calculated from the formula stated in the External Components Description section.

\section*{VOICE-BAND AUDIO AMPLIFIER}

Many applications, such as telephony, only require a voiceband frequency response. Such an application usually requires a flat frequency response from 300 Hz to 3.5 kHz . By adjusting the component values of Figure 2, this common application requirement can be implemented. The combination of \(R_{i}\) and \(C_{j}\) form a highpass filter while \(R_{f}\) and \(C_{f}\) form a lowpass filter. Using the typical voice-band frequency range, with a passband differential gain of approximately 100 , the following values of \(\mathrm{R}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}, \mathrm{R}_{\mathrm{f}}\), and \(\mathrm{C}_{\mathrm{f}}\) follow from the equations stated in the External Components Description section.
\[
R_{i}=10 \mathrm{k} \Omega, R_{f}=510 \mathrm{k}, C_{i}=0.22 \mu \mathrm{~F}, \text { and } \mathrm{C}_{\mathrm{f}}=15 \mathrm{pF}
\]

Five times away from a -3 dB point is 0.17 dB down from the flatband response. With this selection of components, the resulting -3 dB points, \(\mathrm{f}_{\mathrm{L}}\) and \(\mathrm{f}_{\mathrm{H}}\), are 72 Hz and 20 kHz , respectively, resulting in a flatband frequency response of better than \(\pm 0.25 \mathrm{~dB}\) with a rolloff of 6 dB /octave outside of the passband. If a steeper rolloff is required, other common bandpass filtering techniques can be used to achieve higher order filters.

\section*{SINGLE-ENDED AUDIO AMPLIFIER}

Although the typical application for the LM4861 is a bridged monoaural amp, it can also be used to drive a load singleendedly in applications, such as PC cards, which require that one side of the load is tied to ground. Figure 3 shows a common single-ended application, where \(\mathrm{V}_{\mathrm{O}}\) is used to drive the speaker. This output is coupled through a \(470 \mu \mathrm{~F}\) capacitor, which blocks the half-supply DC bias that exists in all single-supply amplifier configurations. This capacitor, designated \(\mathrm{C}_{\mathrm{O}}\) in Figure 3 , in conjunction with \(\mathrm{R}_{\mathrm{L}}\), forms a highpass filter. The -3 dB point of this high pass filter is \(1 /\left(2 \pi R_{L} C_{O}\right)\), so care should be taken to make sure that the product of \(R_{L}\) and \(C_{O}\) is large enough to pass low frequencies to the load. When driving an \(8 \Omega\) load, and if a full audio spectrum reproduction is required, \(\mathrm{C}_{\mathrm{O}}\) should be at least \(470 \mu \mathrm{~F} . \mathrm{V}_{\mathrm{O} 2}\), the output that is not used, is connected through a \(0.1 \mu \mathrm{~F}\) capacitor to a \(2 \mathrm{k} \Omega\) load to prevent instability. While such an instability will not affect the waveform of \(\mathrm{V}_{\mathrm{O}}\), it is good design practice to load the second output.

\section*{AUDIO POWER AMPLIFIER DESIGN}

Design a \(500 \mathrm{~mW} / 8 \Omega\) Audio Amplifler
Given:
\begin{tabular}{lr}
Power Output & 500 mWrms \\
Load Impedance & \(8 \Omega\) \\
Input Level & \(1 \mathrm{Vrms}(\max)\) \\
Input Impedance & \(20 \mathrm{k} \Omega\) \\
Bandwidth & \(20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}\)
\end{tabular}

A designer must first determine the needed supply rail to obtain the specified output power. Calculating the required supply rail involves knowing two parameters, \(V_{\text {opeak }}\) and also the dropout voltage. The latter is typically 0.7 V . \(V_{\text {opeak }}\) can be determined from equation 3.
\[
\begin{equation*}
V_{\text {opeak }}=\sqrt{\left(2 R_{L} P_{O}\right)} \tag{3}
\end{equation*}
\]

For 500 mW of output power into an \(8 \Omega\) load, the required \(V_{\text {opeak }}\) is 2.83 V . A minumum supply rail of 3.53 V results from adding \(V_{\text {opeak }}\) and \(V_{\text {od }}\). But 3.53 V is not a standard voltage that exists in many applications and for this reason, a supply rail of 5 V is designated. Extra supply voltage creates dynamic headroom that allows the LM4861 to reproduce peaks in excess of 500 mW without clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section.
Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 4.
\[
\begin{align*}
& A_{v d} \geq 2^{*} \sqrt{\left(P_{O} R_{V}\right)} /\left(V_{i N}\right)=V_{\text {orms }} / V_{\text {inrms }} \tag{4}\\
& R_{f} / R_{i}=A_{v d} / 2 \tag{5}
\end{align*}
\]

From equation 4, the minimum \(A_{v d}\) is: \(A_{v d}=2\)
Since the desired input impedance was \(20 \mathrm{k} \Omega\), and with a \(A_{v d}\) of 2 , a ratio of \(1: 1\) of \(R_{f}\) to \(R_{i}\) results in an allocation of \(R_{i}=R_{f}=20 \mathrm{k} \Omega\). Since the \(A_{v d}\) was less than 10, a feedback capacitor is not needed. The final design step is to address the bandwidth requirements which must be stated as a pair of -3 dB frequency points. Five times away from a -3 db point is 0.17 dB down from passband response which is better than the required \(\pm 0.25 \mathrm{~dB}\) specified. This fact results in a low and high frequency pole of 4 Hz and 100 kHz respectively. As stated in the External Components section, \(R_{i}\) in conjunction with \(C_{i}\) create a highpass filter.
\(\mathrm{C}_{\mathrm{i}} \geq 1 /\left(2 \pi^{*} 20 \mathrm{k} \Omega^{*} 4 \mathrm{~Hz}\right)=1.98 \mu \mathrm{~F}\); use \(2.2 \mu \mathrm{~F}\).
The high frequency pole is determined by the product of the desired high frequency pole, \(\mathrm{f}_{\mathrm{H}}\), and the differential gain, \(A_{v d}\). With a \(A_{v d}=2\) and \(f_{\mathrm{H}}=100 \mathrm{kHz}\), the resulting GBWP \(=100 \mathrm{kHz}\) which is much smaller than the LM4861 GBWP of 7 MHz . This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4861 can still be used without running into bandwidth problems.

Section 6

\section*{Support Circuitry}
0
Section 6 Contents
OPERATIONAL AMPLIFIERS
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 6-3
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 6-19
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 6-37
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 6-48
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 6-65
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 6-81
DISCRETE COMPONENTS
MOSFET Selection Guide 6-92
NDS351N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-94
NDS352P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-99
NDS355N N-Channel Logic Level Enhancement Mode Field Effect Transistor 6-104
NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor 6-109

National Semiconductor

\section*{LMC7101 Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output}

\section*{General Description}

The LMC7101 is a high performance CMOS operational amplifier available in the space saving SOT 23-5 Tiny package. This makes the LMC7101 ideal for space and weight critical designs. The performance is similar to a single amplifier of the LMC6482/4 type, with rail-to-rail input and output, high open loop gain, low distortion, and low supply currents.
The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

\section*{Features}
- Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO-8 designs
- Guaranteed specs at \(2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}\) supplies
- Typical supply current 0.5 mA at 5 V
- Typical total harmonic distortion of \(0.01 \%\) at 5 V

■ 1.0 MHz gain-bandwidth
- Similar to popular LMC6482/4
- Input common-mode range includes \(\mathrm{V}^{-}\)and \(\mathrm{V}^{+}\)

■ Tiny package outside dimensions- \(120 \times 118 \times 56\) mils, \(3.05 \times 3.00 \times 1.43 \mathrm{~mm}\)

\section*{Applications}
- Mobile communications
- Notebooks and PDAs
- Battery powered products
- Sensor interface

\section*{Connection Diagrams}
\begin{tabular}{|c|c|c|c|c|}
\hline INVERT NON- & Top View & \begin{tabular}{l}
TPUT \\
TL/H/11991-1
\end{tabular} & \[
\begin{array}{r}
\text { OUTPUT } \\
\mathrm{V}^{+} \xlongequal[2]{2} \\
\text { NON-INVERTING } \\
\text { INPUT } \\
3
\end{array}
\] & \begin{tabular}{l}
SOT23-5 \\
TL/H/11991-2 \\
Vlew
\end{tabular} \\
\hline Package & Ordering Information & NSC Drawing Number & Package Marking & Supplied As \\
\hline 8-Pin DIP & LMC7101AIN & N08E & LMC7101AIN & Rails \\
\hline 8-Pin DIP & LMC7101BIN & N08E & LMC7101BIN & Rails \\
\hline 5-Pin SOT 23-5 & LMC7101AIM5 & MA05A & A00A & 250 Units on Tape and Reel \\
\hline 5-Pin SOT 23-5 & LMC7.101BIM5 & MA05A & A00B & 250 Units on Tape and Reel \\
\hline 5-Pin SOT 23-5 & LMC7101AIM5X & MA05A & A00A & 3k Units Tape and Reel \\
\hline 5-Pin SOT 23-5 & LMC7101BIM5X & MA05A & A00B & 3k Units Tape and Reel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings (Note 1)} \\
\hline If Milltary/Aerospace specifie please contact the Nationa Office/Distributors for avallab & \begin{tabular}{l}
ed devices are required, \\
al Semiconductor Sales illity and specifications.
\end{tabular} \\
\hline ESD Tolerance (Note 2) & 2000 V \\
\hline Difference Input Voltage & \(\pm\) Supply Voltage \\
\hline Voltage at Input/Output Pin & \(\left(V^{+}\right)+0.3 V^{\prime}\left(V^{-}\right)-0.3 V\) \\
\hline Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\)) & 16 V \\
\hline Current at Input Pin & 5 \\
\hline Current at Output Pin (Note 3) & \(\pm 35 \mathrm{~mA}\) \\
\hline Current at Power Supply Pin & 35 mA \\
\hline Lead Temp. (Soldering, 10 sec.) & \(260^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Junction Temperature (Note 4) & 15 \\
\hline
\end{tabular}

Recommended Operating Conditions (Note 1)

\(115^{\circ} \mathrm{C} / \mathrm{W}\) \(325^{\circ} \mathrm{C} / \mathrm{W}\)
2.7V Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}\), \(\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ
(Note 5) & \[
\begin{aligned}
& \text { LMC7101AI } \\
& \text { Limit } \\
& \text { (Note } 6 \text {) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { LMC7101BI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline \(V_{\text {OS }}\) & Input Offset Voltage & \(V^{+}=2.7 \mathrm{~V}\) & 0.11 & 6 & 9 & \begin{tabular}{l}
mV \\
max
\end{tabular} \\
\hline TCVOS & Input Offset Voltage Average Drift & & 1 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & 1.0 & 64 & 64 & pA max \\
\hline los & Input Offset Current & & 0.5 & 32 & 32 & pA max \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>1\) & & & Tera \(\boldsymbol{\Omega}\) \\
\hline CMRR & Common-Mode Rejection Ratio & \[
\begin{aligned}
& \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V} \\
& \mathrm{~V}^{+}=2.7 \mathrm{~V}
\end{aligned}
\] & 70 & 55 & 50 & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(V_{C M}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V^{+}=V
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular}} & 0.0 & 0.0 & 0.0 & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 3.0 & 2.7 & 2.7 & \[
\begin{gathered}
\vee \\
\max
\end{gathered}
\] \\
\hline PSRR & Power Supply. Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}^{+}=1.35 \mathrm{~V} \text { to } 1.65 \mathrm{~V} \\
& \mathrm{~V}^{-}=-1.35 \mathrm{~V} \text { to }-1.65 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CM}}=0
\end{aligned}
\] & 60 & 50 & 45 & \[
\begin{aligned}
& \mathrm{dB} \\
& \min
\end{aligned}
\] \\
\hline \(\mathrm{C}_{\text {IN }}\) & Common-Mode Input Capacitance & & 3 & & . & pF \\
\hline \multirow[t]{4}{*}{Vo} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\)} & 2.45 & 2.15 & 2.15 & \(V\) min \\
\hline & & & 0.25 & 0.5 & 0.5 & \(\checkmark\) max \\
\hline & & \multirow[t]{2}{*}{\(R_{L}=10 \mathrm{k} \Omega\)} & 2.68 & 2.64 & 2.64 & \(V\) min \\
\hline & & & 0.025 & 0.06 & 0.06 & \(\checkmark\) max \\
\hline Is & Supply Current & & 0.5 & \[
\begin{gathered}
0.81 \\
\mathbf{0 . 9 5} \\
\hline
\end{gathered}
\] & \[
0.81
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline SR & Slew Rate & (Note 8) & 0.7 & & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline GBW & Gain-Bandwidth Product & & 0.6 & & & MHz \\
\hline
\end{tabular}

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC7101AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC7101BI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline Vos & Input Offset Voltage & & 0.11 & \[
\begin{aligned}
& 4 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 9
\end{aligned}
\] & mV max \\
\hline TCV \({ }_{\text {Os }}\) & Input Offset Voltage Average Drift & & 1 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Current & & 1.0 & 64 & 64 & PA max \\
\hline los & Input Offset Current & & 0.5 & 32 & 32 & pA max \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>1\) & & & Tera \(\Omega\) \\
\hline CMRR & Common-Mode Rejection Ratio & \[
\begin{aligned}
& O V \leq V_{C M} \leq 3 V \\
& V+=3 V
\end{aligned}
\] & 74 & 64 & 60 & \[
\mathrm{db}
\]
\[
\min
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CM}}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{For CMRR \(\geq 50 \mathrm{~dB}\)} & 0.0 & 0.0 & 0.0 & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 3.3 & 3.0 & 3.0 & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline PSRR & \begin{tabular}{l}
Power Supply \\
Rejection Ratio
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=1.5 \mathrm{~V} \text { to } 7.5 \mathrm{~V} \\
& \mathrm{~V}^{-}=-1.5 \mathrm{~V} \text { to }-7.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CM}}=0
\end{aligned}
\] & 80 & 68 & 60 & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline \(\mathrm{C}_{\text {IN }}\) & Common-Mode Input Capacitance & & 3 & & & pF \\
\hline \multirow[t]{4}{*}{Vo} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\)} & 2.8 & 2.6 & 2.6 & \(\checkmark\) min \\
\hline & & & 0.2 & 0.4 & 0.4 & \(V_{\text {max }}\) \\
\hline & & \multirow[t]{2}{*}{\(R_{L}=600 \Omega\)} & 2.7 & 2.5 & 2.5 & \(V\) min \\
\hline & & & 0.37 & 0.6 & 0.6 & \(V_{\text {max }}\) \\
\hline Is & Supply Current & - & 0.5 & \[
\begin{aligned}
& 0.81 \\
& 0.95 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.81 \\
& 0.95
\end{aligned}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline
\end{tabular}

5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ
(Note 5) & \[
\begin{aligned}
& \text { LMC7101AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC7101BI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline \(\mathrm{V}_{\text {OS }}\) & Input Offset Voltage & \(\mathrm{V}+=5 \mathrm{~V}\) & 0.11 & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
7 \\
9
\end{array}
\] & \begin{tabular}{l}
\[
\mathrm{mV}
\] \\
max
\end{tabular} \\
\hline \(\mathrm{TCV}_{\text {OS }}\) & Input Offset Voltage Average Drift & & 1.0 & \(\therefore\) & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Current & & 1 & 64 & 64 & pA max \\
\hline los & Input Offset Current & & 0.5 & 32 & 32 & pA max \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>1\) & & , & Tera \(\Omega\) \\
\hline CMRR & Common-Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}\) & 82 & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{db} \\
& \text { min }
\end{aligned}
\] \\
\hline + PSRR & Positive Power Supply Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
& \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}
\end{aligned}
\] & 82 & \[
\begin{gathered}
70 \\
65
\end{gathered}
\] & \[
65
\] & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}-=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\
& \mathrm{~V}+=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V}
\end{aligned}
\] & 82 & \[
\begin{array}{r}
70 \\
65 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
65 \\
\mathbf{6 2} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CM}}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{For CMRR \(\geq 50 \mathrm{~dB}\)} & -0.3 & \[
\begin{aligned}
& -0.20 \\
& 0.00
\end{aligned}
\] & \[
\begin{array}{r}
-0.20 \\
\mathbf{0 . 0 0}
\end{array}
\] & \[
\min ^{v}
\] \\
\hline & & & 5.3 & \[
\begin{aligned}
& 5.20 \\
& \mathbf{5 . 0 0}
\end{aligned}
\] & \[
\begin{aligned}
& 5.20 \\
& 5.00
\end{aligned}
\] & \begin{tabular}{l}
V \\
max
\end{tabular} \\
\hline \(\mathrm{ClN}_{\mathbf{N}} \ldots\) & Common-Mode Input Capacitance & & 3 . & & ? & pF \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\(R_{L}=2 \mathrm{k} \Omega\)} & 4.9 & \[
\begin{aligned}
& 4.7 \\
& 4.6
\end{aligned}
\] & \[
\begin{aligned}
& 4.7 \\
& 4.6
\end{aligned}
\] & \[
\begin{gathered}
\text { Vin }
\end{gathered}
\] \\
\hline & & & 0.1 & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\underset{\max }{v}
\] \\
\hline & & \multirow[t]{2}{*}{\(R_{L}=600 \Omega\)} & 4.7 & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.3 & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\underset{\max }{V}
\] \\
\hline \multirow[t]{2}{*}{ISC} & \multirow[t]{2}{*}{Output Short Circuit Current} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 24 & \[
\begin{aligned}
& 16 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 11
\end{aligned}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & Sinking, \(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}\) & 19 & \[
\begin{gathered}
11 \\
7.5
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& 7.5
\end{aligned}
\] & \[
m A
\]
\[
\min
\] \\
\hline Is & Supply Current & & 0.5 & \[
\begin{aligned}
& 0.85 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.85 \\
& 1.0
\end{aligned}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline
\end{tabular}

5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathbf{J}}{ }^{\circ}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{l|l|l|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Conditlons & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC7101AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC7101BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline T.H.D. & \begin{tabular}{l}
Total Harmonic \\
Distortion
\end{tabular} & \begin{tabular}{l}
\(F=10 \mathrm{kHz}, A_{V}=-2\) \\
\(R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V} P \mathrm{PP}\)
\end{tabular} & 0.01 & & & \(\%\) \\
\hline SR & Slew Rate & & 1.0 & & & \(\mathrm{~V} / \mu \mathrm{s}\) \\
\hline GBW & Gain_Bandwidth Product & & 1.0 & & & MHz \\
\hline
\end{tabular}

15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 5) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LMC7101AI } \\
& \text { LImit } \\
& \text { (Note 6) }
\end{aligned}
\] & LMC7101BI Limit (Note 6) & Units \\
\hline \(V_{\text {OS }}\) & Input Offset Voltage & & 0.11 & & & mV max \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & & 1.0 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Current & & 1.0 & 64 & 64 & pA max \\
\hline los & Input Offset Current & & 0.5 & 32 & 32 & pA max \\
\hline \(\mathrm{R}_{\mathrm{IN}}\) & Input Resistance & & \(>1\) & & & Tera \(\Omega\) \\
\hline CMRR & Common-Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}\) & 82 & \[
\begin{aligned}
& 70 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline + PSRR & Positive Power Supply Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
& \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}
\end{aligned}
\] & 82 & \[
\begin{array}{r}
70 \\
65
\end{array}
\] & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\min
\end{gathered}
\] \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}^{-}=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\
& \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V}
\end{aligned}
\] & 82 & \[
\begin{array}{r}
70 \\
65 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
65 \\
62 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\min
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {CM }}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V^{+}=5 \mathrm{~V}
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular}} & -0.3 & \[
\begin{gathered}
-0.20 \\
0.00
\end{gathered}
\] & \[
\begin{aligned}
& -0.20 \\
& 0.00
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 15.3 & \[
\begin{gathered}
15.20 \\
15.00
\end{gathered}
\] & \[
\begin{gathered}
15.20 \\
15.00
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(A_{V}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Large Signal \\
Voltage Gain
\end{tabular}} & \[
\begin{array}{lr}
\begin{array}{l}
R_{\mathrm{L}}=2 \mathrm{k} \Omega \\
\text { (Note 7) }
\end{array} & \text { Sourcing } \\
& \text { Sinking }
\end{array}
\] & \[
\begin{gathered}
340 \\
24
\end{gathered}
\] & \[
\begin{gathered}
80 \\
40 \\
15 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 80 \\
& 40 \\
& 15 \\
& 10
\end{aligned}
\] & \(\mathrm{V} / \mathrm{mV}\) \\
\hline & & \(\begin{array}{lr}R_{L}=600 \Omega & \text { Sourcing } \\ \text { (Note 7) } & \text { Sinking }\end{array}\) & \[
\begin{gathered}
300 \\
15
\end{gathered}
\] & \[
\begin{gathered}
34 \\
6
\end{gathered}
\] & \[
\begin{gathered}
34 \\
6
\end{gathered}
\] & V/mV \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & & 3 & & & pF \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V^{+}=15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & 14.7 & \[
\begin{array}{r}
14.4 \\
14.2
\end{array}
\] & \[
\begin{array}{r}
14.4 \\
14.2
\end{array}
\] & \[
\begin{gathered}
V \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 0.16 & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=600 \Omega
\end{aligned}
\]} & 14.1 & \[
\begin{gathered}
13.4 \\
13.0
\end{gathered}
\] & \[
\begin{gathered}
13.4 \\
13.0
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.5 & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) (Note 9) & 50 & \[
\begin{array}{r}
30 \\
20
\end{array}
\] & \[
\begin{array}{r}
30 \\
20 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min} \\
& \hline
\end{aligned}
\] \\
\hline & & Sinking, \(V_{O}=12 \mathrm{~V}\) (Note 9) & 50 & \[
\begin{aligned}
& 30 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline Is & Supply Current & & 0.8 & \[
\begin{array}{r}
1.50 \\
1.71
\end{array}
\] & \[
\begin{aligned}
& 1.50 \\
& 1.71
\end{aligned}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline
\end{tabular}

15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{l|l|l|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Conditions & \(\begin{array}{c}\text { Typ } \\
\text { (Note 5) }\end{array}\) & \(\begin{array}{c}\text { LMC7101AI } \\
\text { Limit } \\
\text { (Note 6) }\end{array}\) & \(\begin{array}{c}\text { LMC7101BI } \\
\text { Limit } \\
\text { (Note 6) }\end{array}\) & Units
\end{tabular}\(\}\)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed Junction temperature at \(150^{\circ} \mathrm{C}\).
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\) and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P D=\) (\(\left.T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: \(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connect to 7.5 V . For Sourcing tests, \(7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12.5 \mathrm{~V}\). For Sinking tests, \(2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}\).
Note 8: \(\mathrm{V}^{+}=15 \mathrm{~V}\). Connected as a Voltage Follower with a 10 V step input. Number specified is the slower of the positive and negative slew rates. \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) connected to 7.5 V . Amp excited with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} P \mathrm{Pp}\).
Note 9: Do not short circuit output to \(\mathrm{V}^{+}\)when \(\mathrm{V}^{+}\)is greater than 12 V or reliability will be adversely affected.

\section*{Typical Performance Characteristics \(\mathrm{v}_{\mathrm{S}}=+2.7 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unloss specified}

\subsection*{2.7V PERFORMANCE}

Sourcing Current vs Output Voltage (2.7V)

\section*{Typical Performance Characteristics}

Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified (Continued)

\section*{3V PERFORMANCE}

Sourcing Current vs Output Voltage (3V)

5V PERFORMANCE

Sinking Current vs Output Voltage (3V)

\section*{CMRR vs Input Voltage (3V)}

input voltage (v)

CMRR vs Input Voltage (5V)

input voltage (v)
TL/H/1199t-3

\section*{Typical Performance Characteristics}
\(\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified (Continued)

Input Voltage vs Output Voltage (15V)
 output voltage (v)

Sinking Current vs Output Voltage (15V)

CMRR vs Input Voltage (15V)

Output Voltage Swing vs Supply Voltage

TL/H/11991-4

\section*{Typical Performance Characteristics}
\(\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified (Continued)

\section*{Typical Performance Characteristics}
\(\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified (Continued)

Non-Inverting Small SIgnal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DVV}\))

Non-Inverting Small Signal Pulse Response

TINE (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Large SIgnal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

\(v_{\text {out }}(v)\)

Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Small SIgnal Pulse Response

TIME (\(1 \mu \mathrm{~g} / \mathrm{DIV}\))

Non-Inverting Large Slgnal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DVV}\))

\(v_{\text {OUT }}(v)\)

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(T_{A}=25^{\circ} \mathrm{C}\) unless specified (Continued)

Stability vs
Capacitive Load

\(v_{\text {out }}(v)\)
TL/H/†1991-7

\section*{Application Information}

\subsection*{1.0 Benefits of the LMC7101 Tiny Amp}

Size. The small footprint of the SOT \(23-5\) packaged Tiny amp, (\(0.120 \times 0.118\) inches, \(3.05 \times 3.00 \mathrm{~mm}\)) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny amp makes it possible to use it in PCMCIA type III cards.
Signal Integrity. Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter.
Simplifled Board Layout. The Tiny amp can simplify board layout in several ways. First, by placing an amp where amps are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.
DIPs available for prototyping. LMC7101 amplifiers packaged in conventional 8 -pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.
Tapes of ten for prototyping. The SOT23-5 packaged devices are available in convenient and economical ten unit tapes for prototypes, evaluation, and small production runs. Low THD. The high open loop gain of the LMC7101 amp allows it to achieve very low audio distortion-typically \(0.01 \%\) at 10 kHz with a \(10 \mathrm{k} \Omega\) load at 5 V supplies. This makes the Tiny an excellent for audio, modems, and low frequency signal processing.
Low Supply Current. The typical 0.5 mA supply current of the LMC7101 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.
Wide Voltage Range. The LMC7101 is characterized at \(15 \mathrm{~V}, 5 \mathrm{~V}\) and 3 V . Performance data is provided at these popular voltages. This wide voltage range makes the LMC7101 a good choice for devices where the voltage may vary over the life of the batteries.

\subsection*{2.0 Input Common Mode Voltage Range}

The LMC7101 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion of the output.
The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins, adversely affecting reliability.

TL/H/11991-8
FIGURE 1. An Input Voltage Signal Exceeds the LMC7101 Power Supply Voltages with No Output Phase Inversion

TL/H/11991-0
FIGURE 2. A \(\pm 7.5 \mathrm{~V}\) Input Signal Greatly
Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to \(\mathrm{R}_{\mathbf{I}}\)

Applications that exceed this rating must externally limit the maximum input current to \(\pm 5 \mathrm{~mA}\) with an input resistor as shown in Figure 3.

TL/H/11991-10
FIGURE 3. Ry input Current Protection for Voltages Exceeding the Supply Voltage

\subsection*{3.0 Rail-To-Rail Output}

The approximate output resistance of the LMC7101 is \(180 \Omega\) sourcing and \(130 \Omega\) sinking at \(V_{S}=3 V\) and \(110 \Omega\) sourcing and \(80 \Omega\) sinking at \(V_{S}=5 \mathrm{~V}\). Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

\subsection*{4.0 Capacitive Load Tolerance}

The LMC7101 can typically directly drive a 100 pF load with \(\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}\) at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive input of multiplexers and \(A / D\) converters.

TL/H/11991-11
FIGURE 4. Resistive Isolation of a 330 pF Capacitive Load

\subsection*{5.0 Compensating for Input Capacitance when Using Large}

\section*{Value Feedback Resistors}

When using very large value feedback resistors, (usually \(>500 \mathrm{k} \Omega\)) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 5), \(\mathrm{C}_{\mathrm{f}}\) is first estimated by:
\[
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{f}
\end{gathered}
\]
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for \(\mathrm{C}_{F}\) may be different. The values of \(\mathrm{C}_{\mathrm{F}}\) should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

TL/H/11991-12
FIGURE 5. Cancelling the Effect of Input Capacitance

\section*{SOT-23-5 Tape and Reel Specification}

TAPE FORMAT
\begin{tabular}{|c|c|c|c|}
\hline Tape Section & \# Cavltles & Cavity Status & Cover Tape Status \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Leader \\
(Start End)
\end{tabular}} & \(0(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(75(\mathrm{~min})\) & Empty & Sealed \\
\hline \multirow{2}{*}{ Carrier } & 3000 & Filled & Sealed \\
\cline { 2 - 4 } & 250 & Filled & Sealed \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Trailer \\
(Hub End) \\
\end{tabular}} & \(125(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(0(\mathrm{~min})\) & Empty & Sealed \\
\hline
\end{tabular}

TAPE DIMENSIONS

\section*{SOT-23-5 Tape and Reel Specification (Continued)}

REEL DIMENSIONS

\subsection*{6.0 SPICE Macromodel}

A SPICE macromodel is available for the LMC7101. This model includes simulation of:
- Input common-mode voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

National Semiconductor

\section*{LMC7111}

\section*{Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output}

\section*{General Description}

The LMC7111 is a micropower CMOS operational amplifier available in the space saving SOT 23.5 package. This makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to design battery monitoring circuits which sense signals above the \(\mathrm{V}+\) supply. The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

\section*{Features}
- Tiny SOT23-5 package saves space
- Very wide common mode input range
- Specified at \(2.7 \mathrm{~V}, 5 \mathrm{~V}\), and 10 V

■ Typical supply current \(25 \mu \mathrm{~A}\) at 5 V
- 50 kHz gain-bandwidth at 5 V
- Similar to popular LMC6462
- Output to within 20 mV of supply rail at 100 k load
- Good capacitive load drive

\section*{Applications}
- Mobile communications
- Portable computing
- Current sensing for battery chargers
- Voltage reference buffering
- Sensor interface

■ Stable bias for GaAs RF amps

\section*{Connection Diagrams}

Actual Size

TL/H/12352-19

\section*{Ordering Information}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Package } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Ordering \\
Information
\end{tabular}} & \begin{tabular}{c}
NSC Drawing \\
Number
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c}
Package \\
Marking
\end{tabular}} & \multicolumn{1}{|c|}{ Transport Media } \\
\hline 8-Pin DIP & LMC7111AIN & N08E & LMC7111AIN & Rails \\
\hline 8-Pin DIP & LMC7111BIN & N08E & LMC7111BIN & Rails \\
\hline 5-Pin SOT23-5 & LMC7111BIM5X & MA05A & A01B & 3k Units on Tape and Reel \\
\hline
\end{tabular}

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabillty and specifications.
ESD Tolerance SOT23-5 (Note 2)
2000V
ESD Tolerance DIP Package (Note 2)
1500 V
Differential Input Voltage
\(\pm\) Supply Voltage
Voltage at Input/Output Pin \(\quad\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}\)
Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\))
Current at Input Pin
Current at Output Pin (Note 3)
Current at Power Supply Pin Lead Temp. (Soldering, 10 sec .)
Storage Temperature Range
Junction Temperature (Note 4)

Operating Ratings (Note 1)
\(\begin{array}{lr}\text { Supply Voltage } & 2.5 \mathrm{~V} \leq \mathrm{V}+\leq 11 \mathrm{~V} \\ \text { Junction Temperature Range } \\ \text { LMC } 7111 \mathrm{AI}, \mathrm{LMC} 7111 \mathrm{BI} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}\end{array}\)
Thermal Resistance (\(\theta_{\mathrm{JA}}\))
N Package, 8-Pin Molded DIP \(\quad 115^{\circ} \mathrm{C} / \mathrm{W}\)
2.7V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(2.7 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{Mn}\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{gathered}
\text { LMC7111AI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { LMC7111BI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline VOS & Input Offset Voltage & \(\mathrm{V}+=2.7 \mathrm{~V}\) & 0.9 & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 9
\end{aligned}
\] & \begin{tabular}{l}
mV \\
max
\end{tabular} \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & & 2.0 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{B}\) & Input Bias Current & (Note 9) & 0.1 & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & \[
\begin{gathered}
\text { pA } \\
\max
\end{gathered}
\] \\
\hline los & Input Offset Current & (Note 9) & 0.01 & \[
\begin{aligned}
& 0.5 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
pA \\
max
\end{tabular} \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>10\) & & , & Tera \(\Omega\) \\
\hline + PSRR & Positive Power Supply Rejection Ratio & \[
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}
\end{aligned}
\] & 60 & \[
\begin{aligned}
& 55 \\
& 50
\end{aligned}
\] & \[
\begin{array}{r}
55 \\
\mathbf{5 0} \\
\hline
\end{array}
\] & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \[
\begin{aligned}
& -2.7 \mathrm{~V} \leq \mathrm{V}^{-} \leq-5.0 \mathrm{~V} \\
& \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}
\end{aligned}
\] & 60 & \[
\begin{aligned}
& 55 \\
& 50
\end{aligned}
\] & \[
\begin{array}{r}
55 \\
50
\end{array}
\] & dB min \\
\hline \(\mathrm{V}_{\mathrm{CM}}\) & Input Common-Mode Voltage Range & \begin{tabular}{l}
\[
\mathrm{V}^{+}=2.7 \mathrm{~V}
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular} & -0.10 & \[
\begin{gathered}
0.0 \\
0.40
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0.40
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 2.8 & \[
\begin{gathered}
2.7 \\
\mathbf{2 . 2 5}
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
2.25
\end{gathered}
\] & \[
\stackrel{V}{\max }
\] \\
\hline \(\mathrm{C}_{1 \mathrm{~N}}\) & Common-Mode Input Capacitance & & 3 & \(\therefore\) & & pF \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=2.7 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\]} & 2.69 & \[
\begin{array}{r}
2.68 \\
2.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.68 \\
& 2.4
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.01 & \[
\begin{aligned}
& 0.02 \\
& 0.08
\end{aligned}
\] & \[
\begin{array}{r}
0.02 \\
0.08
\end{array}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=2.7 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
\]} & 2.65 & \[
\begin{array}{r}
2.6 \\
\mathbf{2 . 4} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.6 \\
\mathbf{2 . 4} \\
\hline
\end{array}
\] & \[
\begin{gathered}
V \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 0.03 & \[
\begin{aligned}
& 0.1 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.3
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\max
\end{gathered}
\] \\
\hline
\end{tabular}
2.7V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(2.7 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typ \\
(Note 5)
\end{tabular} & \[
\begin{aligned}
& \text { LMC7111AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC7111BI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) \\
Sinking, \(V_{O}=2.7 \mathrm{~V}\)
\end{tabular}} & 7 & \[
\begin{gathered}
1 \\
0.7
\end{gathered}
\] & \[
\begin{gathered}
1 \\
0.7
\end{gathered}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & & 7 & \[
\begin{gathered}
1 \\
0.7
\end{gathered}
\] & \[
\begin{gathered}
1 \\
0.7
\end{gathered}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline \multirow[t]{2}{*}{AVOL} & \multirow[t]{2}{*}{Voltage Gain} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sourcing \\
Sinking
\end{tabular}} & 400 & & & \[
\begin{gathered}
\mathrm{V} / \mathrm{mv} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 150 & & * & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mv}\) \\
min
\end{tabular} \\
\hline Is & Supply Current & \[
\begin{aligned}
& \mathrm{V}+=+2.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+12
\end{aligned}
\] & 20 & \[
\begin{aligned}
& 45 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 65 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \(\max\) \\
\hline
\end{tabular}
2.7V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(2.7 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{l|l|l|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Conditions & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC7111AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC71118I \\
LImit \\
(Note 6)
\end{tabular} & \multicolumn{1}{c}{ Units } \\
\hline SR & Slew Rate & (Note 8) & 0.015 & & & \(\mathrm{~V} / \mu \mathrm{s}\) \\
\hline GBW & Gain-Bandwidth Product & & 40 & & & kHz \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at \(150^{\circ} \mathrm{C}\).
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\) and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P_{D}=\) (\(\left.\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: \(\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connected to 1.35 V . For Sourcing tests, \(1.35 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.7 \mathrm{~V}\). For Sinking tests, \(0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 1.35 \mathrm{~V}\).
Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates. Input referred, \(\mathrm{V}+=2.7 \mathrm{~V}\) and \(R_{L}=100 \mathrm{k} \Omega\) connected to 1.35 V . Amp excited with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}\) Pp.
Note 9: Bias Current guaranteed by design and processing.

3V DC Electrical Characteristics Unloss otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}} \doteq 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typ \\
(Note 5)
\end{tabular} & \[
\begin{aligned}
& \text { LMC7111AI } \\
& \text { LImIt } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC7111BI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline \multirow[t]{2}{*}{\[
V_{C M}
\]} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
v+=3 v
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular}} & -0.25 & 0.0 & \[
0.0
\] & \[
\begin{gathered}
V \\
\text { min }
\end{gathered}
\] \\
\hline & & & \(\therefore 3.2\) & \[
\begin{array}{r}
3.0 \\
2.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.0 \\
& 2.8 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\max
\end{gathered}
\] \\
\hline
\end{tabular}
3.3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\) \(3.3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & P Parameter & Conditions & Typ (Note 5) & \[
\begin{gathered}
\text { LMC7111AI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & & Units \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CM}}\)} & \multirow[t]{2}{*}{! 1put Common-Mode Voltage Range} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\mathrm{V}^{+}=3.3 \mathrm{~V}
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular}} & -0.25 & \[
\begin{aligned}
& -0.1 \\
& 0.00
\end{aligned}
\] & \[
\begin{aligned}
& -0.1 \\
& 0.00
\end{aligned}
\] & \[
\underset{\min }{V}
\] \\
\hline & & & 3.5 & \[
\begin{aligned}
& 3.4 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 3.2
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline
\end{tabular}

5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC7111AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & LMC7111BI
Limit
(Note 6) & Units \\
\hline Vos & Input Offset Voltage & \(V+=5 \mathrm{~V}\) & 0.9 & & & \[
\begin{aligned}
& \mathrm{mV} \\
& \max
\end{aligned}
\] \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & - & 2.0 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}{ }^{-}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Eias Current & (Note 9) & 0.1 & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & pA max \\
\hline los & Input Offset Current & (Note 9) & 0.01 & \[
\begin{aligned}
& 0.5 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 10
\end{aligned}
\] & \[
\mathrm{PA}
\]
\[
\max
\] \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>10\) & . & - .. & Tera \(\Omega\) \\
\hline CMRR & Common Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}\) & 85 & 70 & 60 & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline +PSRR & Positive Power Supply Rejection Ratio & \[
\begin{aligned}
& 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 10 \mathrm{~V} \\
& \mathrm{~V}-=0 \mathrm{~V}, V_{O}=2.5 \mathrm{~V}
\end{aligned}
\] & 85 & 70 & 60 : & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \[
\begin{aligned}
& -5 \mathrm{~V} \leq \mathrm{V}-\leq-10 \mathrm{~V} \\
& \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V}
\end{aligned}
\] & 85 & 70 & 60 & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(V_{C M}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\mathrm{V}+=5 \mathrm{~V}
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular}} & -0.3 & \[
\begin{gathered}
-0.20 \\
0.00
\end{gathered}
\] & \[
\begin{aligned}
& -0.20 \\
& 0.00
\end{aligned}
\] & \[
\begin{gathered}
v \\
\min
\end{gathered}
\] \\
\hline & & & 5.25 & \[
\begin{gathered}
5.20 \\
5.00 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 5.20 \\
& 5.00
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline \(\mathrm{C}_{1 \mathrm{~N}}\) & Common-Mode Input Capacitance & & 3 & & & pF \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\]} & 4.99 & 4.98 & 4.98 & Vmin \\
\hline & & & 0.01 & 0.02 & 0.02 & \(V\) max \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\]} & 4.98 & 4.9 & 4.9 & Vmin \\
\hline & & & 0.02 & 0.1 & 0.1 & Vmin \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) \\
Sinking, \(V_{O}=3 V\)
\end{tabular}} & 7 & \[
\begin{gathered}
5 \\
3.5
\end{gathered}
\] & \[
\begin{gathered}
5 \\
3.5 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & & 7 & \[
\begin{gathered}
5 \\
3.5
\end{gathered}
\] & \[
\begin{gathered}
5 \\
3.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Avol} & \multirow[t]{2}{*}{Voltage Gain} & Sourcing & 500 & & & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mv}\) \\
\(\min\)
\end{tabular} \\
\hline & & Sinking & 200 & & & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mv}\) \\
min
\end{tabular} \\
\hline Is & Supply Current & \[
\begin{aligned}
& V^{+}=+5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2
\end{aligned}
\] & 25 & & & \[
\begin{gathered}
\mu \mathrm{A} \\
\max \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 . \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{l|c|c|c|c|c|c}
\hline Symbol & Parameter & Conditions & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC7111AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC7111BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline SR & Slew Rate & \begin{tabular}{c}
Positive Going Slew Rate \\
(Note 8)
\end{tabular} & 0.027 & 0.015 & .0 .010 & \(\mathrm{~V} / \mu \mathrm{s}\) \\
\hline GBW & Gain-Bandwidth Product & & 50 & & & kHz \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at \(150^{\circ} \mathrm{C}\).

Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\) and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P_{D}=\) \(\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connected to 2.5 V . For Sourcing tests, \(2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V}\). For Sinking tests, \(0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}\).
Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive slew rate. The negative slew rate is faster. Input referred, \(\mathrm{V}^{+}=5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) connected to 1.5 V . Amp excited with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{VP}\).
Note 9: Bias Current guaranteed by design and processing.

10V DC Electrical Characteristics Untess otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & \(\cdots\) Parameter & Conditions & Typ (Note 5) & \begin{tabular}{l}
LMC7111AI \\
Limit (Note 6)
\end{tabular} & LMC7111BI Llmit (Note 6) & Units \\
\hline Vos & Input Offset Voltage & \(V^{+}=10 \mathrm{~V}\) & 0.9 & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 9
\end{aligned}
\] & \[
m_{\max }^{m V}
\] \\
\hline TCVOS & Input Offset Voltage Average Drift & & 2.0 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & 0.1 & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & \begin{tabular}{l}
pA \\
max
\end{tabular} \\
\hline los & Input Offset Current & & 0.01 & \[
\begin{aligned}
& 0.5 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
pA \\
max
\end{tabular} \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & \(>10\) & & & Tera \(\Omega\) \\
\hline +PSRR & Positive Power Supply Rejection Ratio & \[
\begin{aligned}
& 5 \mathrm{~V} \leq \mathrm{V}+\leq 10 \mathrm{~V}, \\
& \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}
\end{aligned}
\] & 80 & , & & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \[
\begin{aligned}
& -5 \mathrm{~V} \leq \mathrm{V}-\leq-10 \mathrm{~V} \\
& \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}
\end{aligned}
\] & 80 & . & & \begin{tabular}{l}
dB \\
min
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{CM}}\) & Input Common-Mode Voltage Range & \begin{tabular}{l}
\[
\mathrm{V}+=10 \mathrm{~V}
\] \\
For CMRR \(\geq 50 \mathrm{~dB}\)
\end{tabular} & -0.2 & \[
\begin{aligned}
& -0.15 \\
& 0.00
\end{aligned}
\] & \[
\begin{aligned}
& -0.15 \\
& 0.00
\end{aligned}
\] & \[
\begin{gathered}
V \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 10.2 & \[
\begin{array}{r}
10.15 \\
10.00 \\
\hline
\end{array}
\] & \[
\begin{gathered}
10.15 \\
10.00
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\max
\end{gathered}
\] \\
\hline \(\mathrm{CIN}_{\text {IN }}\) & Common-Mode Input Capacitance & & 3 & & & pF \\
\hline Isc & Output Short Circuit Current (Note 9) & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 30 & \[
\begin{gathered}
20 \\
7
\end{gathered}
\] & \[
\begin{gathered}
20 \\
7
\end{gathered}
\] & \[
\mathrm{mA}
\]
\[
\min
\] \\
\hline & & Sinking, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}\) & 30 & \[
\begin{aligned}
& 20 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 7 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline Avol & Voltage Gain \(100 \mathrm{k} \Omega\) Load & Sourcing & 500 & & & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mv}\) \\
min
\end{tabular} \\
\hline & & Sinking & 200 & & & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mv}\) \\
min
\end{tabular} \\
\hline Is & Supply Current & \[
\begin{aligned}
& V+=+10 V \\
& V_{O}=V+/ 2
\end{aligned}
\] & 25 & \[
\begin{array}{r}
50 \\
65
\end{array}
\] & \[
\begin{aligned}
& 60 \\
& 75
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
max
\end{tabular} \\
\hline \multirow[t]{4}{*}{Vo} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\]} & 9.99 & 9.98 & 9.98 & \(V\) min \\
\hline & & & 0.01 & 0.02 & 0.02 & \(V\) max \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& V^{+}=10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
\]} & 9.98 & 9.9 & 9.9 & \(V\) min \\
\hline & & & 0.02 & 0.1 & 0.1 & Vmin \\
\hline
\end{tabular}

10V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\) \(10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\). Boldface limits apply at the temperature extremes.
\begin{tabular}{l|l|c|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Conditions & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC7111AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC7111BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline SR & Slew Rate & (Note 8) & 0.03 & & & \(\mathrm{~V} / \mu \mathrm{s}\) \\
\hline GBW & Gain-Bandwidth Product & & 50 & & & kHz \\
\hline\(\phi_{\mathrm{m}}\) & Phase Margin & & 50 & & deg \\
\hline \(\mathrm{G}_{\mathrm{m}}\) & Gain Margin & & 15 & & dB \\
\hline & \begin{tabular}{l}
Input-Referred \\
Voltage Noise
\end{tabular} & \begin{tabular}{l}
\(\mathrm{f}=1 \mathrm{kHz}\) \\
\(\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}\)
\end{tabular} & 110 & & \(\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}\) \\
\hline & \begin{tabular}{l}
Input-Referred \\
Current Noise
\end{tabular} & \(\mathrm{f}=1 \mathrm{kHz}\) & 0.03 & & \(\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}\) \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at \(150^{\circ} \mathrm{C}\).
Note 4: The maximum power dissipation is a function of \(T_{J(m a x)}, \theta_{J A}\) and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P_{D}=\) \(\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: \(\mathrm{V}^{+}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connected to 5 V . For Sourcing tests, \(5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 10 \mathrm{~V}\). For Sinking tests, \(0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5 \mathrm{~V}\).
Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates. Input referred, \(\mathrm{V}+=10 \mathrm{~V}\) and \(R_{\mathrm{L}}=100 \mathrm{k} \Omega\) connected to 5 V . Amp excited with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}\) PP.
Note 9: Operation near absolute maximum limits will adversely affect reliability.

Typical Performance Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless speciiled, Single Supply

\subsection*{2.7V PERFORMANCE}

Typical Performance Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified, Single Supply (Continued) 3V PERFORMANCE

Typical Performance Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified, Single Supply (Continued) 5V PERFORMANCE

Typical Performance Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified, Single Supply (Continued) 5V PERFORMANCE (Continued)

Non-Inverting Large Signal Pulse Response at 5V

Inverting Small SIgnal
Pulse Response at 5V

Non-Inverting Large Signal Pulse Response at 5V

Inverting Small Signal Pulse Response at 5V

Inverting Small Signal Pulse Response at 5 V

Inverting Large Signal Pulse Response at 5 V

Inverting Large Signal
Pulse Response at 5V \({ }^{*}\)

Inverting Large Signal
Pulse Response at 5 V

Typical Performance Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless specified, Single Supply (Continued) 10V PERFORMANCE

Voltage Nolse vs Common Mode Voltage © 10V

Common Mode Voltage (V)

Sourcing Output vs Output Voltage

Gain and Phase vs Capacltive Load @ 10V

Non-Inverting Large Signal Pulse Response at 10V

Output Voltage vs Input Voltage © 10V

Sinking Output vs Output Voltage

Gain and Phase vs Capacitive Load © 10V

Inverting Small Signal Pulse Response at 10V

Offset Voltage vs Common Mode Voltage © 10V

Gain and Phase vs Capacitive Load @ 10V

Non-Inverting Small Signal Pulse Response at 10V

Inverting Large Signal Pulse Response at 10V

TL/H/12352-11

\section*{Application Information}

\subsection*{1.0 Benefits of the LMC7111 Tiny Amp}

Size. The small footprint of the SOT 23-5 packaged Tiny amp , (\(0.120 \times 0.118\) inches, \(3.05 \times 3.00 \mathrm{~mm}\)) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny amp makes it possible to use it in PCMCIA type III cards.
Signal Integrity. Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter.
Simplified Board Layout. The-Tiny amp can simplify board layout in several ways. First, by placing an amp where amps are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.
DIPs available for prototyping. LMC7111 amplifiers packaged in conventional 8 -pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.
Low Supply Current. The typical \(25 \mu \mathrm{~A}\) supply current of the LMC7111 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.
Wide Voltage Range. The LMC7111 is characterized at \(2.7 \mathrm{~V}, 3 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}\) and 10 V . Performance data is provided at these popular voltages. This wide voltage range makes the LMC7111 a good choice for devices where the voltage may vary over the life of the batteries.

\subsection*{2.0 Input Common Mode Voltage Range}

The LMC7111 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage.
The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating can cause excessive current to flow in or out of the input pins, adversely affecting reliability.
Applications that exceed this rating must externally limit the maximum input current to \(\pm 5 \mathrm{~mA}\) with an input resistor as shown in Figure 1.

TL/H/12352-14
FIGURE 1. RI Input Current Protection for Voltages Exceeding the Supply Voltage

\subsection*{3.0 Capacitive Load Tolerance}

The LMC7111 can typically directly drive a 300 pF load with \(\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}\) at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 2. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

TL/H/12352-12
FIGURE 2. Resistive Isolation of a \(\mathbf{3 3 0} \mathbf{~ p F}\) Capacitive Load

\subsection*{4.0 Compensating for Input Capacitance when Using Large Value Feedback Resistors}

When using very large value feedback resistors, (usually \(>500 \mathrm{k} \Omega\)) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.
The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 3), \(\mathrm{C}_{\mathrm{f}}\) is first estimated by:
\[
\begin{gathered}
\frac{1}{2 \pi R_{1} C_{I N}} \geq \frac{1}{2 \pi R_{2} C_{f}} \\
\text { or }
\end{gathered}
\]
\[
R_{1} C_{I N} \leq R_{2} C_{f}
\]
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for \(\mathrm{C}_{\mathrm{F}}\) may be different. The values of \(\mathrm{C}_{\mathrm{F}}\) should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

TL/H/12352-13
FIGURE 3. Cancelling the Effect of Input CapacItance

\subsection*{5.0 Output Swing}

The output of the LMC7111 will go to within 100 mV of either power supply rail for a \(10 \mathrm{k} \Omega\) load and to 20 mV of the rail for a \(100 \mathrm{k} \Omega\) load. This makes the LMC7111 useful for driving transistors which are connected to the same power supply. By going very close to the supply, the LMC7111 can turn the transistors all the way on or all the way off.

\subsection*{6.0 Biasing GaAs RF Amplifiers}

The capacitive load capability, low current draw, and small size of the SOT23-5 LMC7111 make it a good choice for providing a stable negative bias to other integrated circuits. The very small size of the LMC7111 and the LM4040 reference take up very little board space.

TL/H/12352-17
\(\mathrm{C}_{\mathrm{F}}\) and \(\mathrm{R}_{\text {isolation }}\) prevent oscillations when driving capacitive loads.

\section*{FIGURE 4. Stable Negative Bias}

\subsection*{7.0 Reference Buffer for A-to-D Converters}

The LMC7111 can be used as a voltage reference buffer for analog-to-digital converters. This works best for A-to-D converters whose reference input is a static load, such as dual slope integrating A-to-Ds. Converters whose reference input is a dynamic load (the reference current changes with time) may need a faster device, such as the LMC7101 or the LMC7131.

The small size of the LMC7111 allows it to be placed close to the reference input. The low supply current (\(25 \mu \mathrm{~A}\) typical) saves power.
For A-to-D reference inputs which require higher accuracy and lower offset voltage, please see the LMC6462 datasheet. The LMC6462 has performance similar to the LMC7111. The LMC6462 is available in two grades with reduced input voltage offset.

\subsection*{8.0 Dual and Quad Devices with Similar Performance}

The LMC6462 and LMC6464 are dual and quad devices with performance similar to the LMC7111. They are available in both conventional through-hole and surface mount packaging. Please see the LMC6462/4 datasheet for details.

\subsection*{9.0 SPICE Macromodel}

A SPICE macromodel is available for the LMC7111. This model includes simulation of:
- Input common-mode voltage range
- Frequency and transient response
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

\subsection*{10.0 Additional SOT23-5 Tiny Devices}

National Semiconductor has additional parts available in the space saving SOT23 Tiny package, including amplifiers,
voltage references, and voltage regulators. These devices include-
LMC7101 1 MHz gain-bandwidth rail-to-rail input and output amplifier-high input impedance and high gain, \(700 \mu \mathrm{~A}\) typical current \(2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}\) and 15 V specifications.
LM7131 Tiny Video amp with 70 MHz gain bandwidth: Specified at \(3 \mathrm{~V}, 5 \mathrm{~V}\) and \(\pm 5 \mathrm{~V}\) supplies.
LMC7211 Comparator in a tiny package with rail-to-rail input and push-pull output. Typical supply current of \(7 \mu \mathrm{~A}\). Typical propagation delay of \(7 \mu \mathrm{~s}\). Specified at \(2.7 \mathrm{~V}, 5 \mathrm{~V}\) and 15 V supplies.
LMC7221 Comparator with an open drain output for use in mixed voltage systems. Similar to the LMC7211, except the output can be used with a pull-up resistor to a voltage different than the supply voltage.
LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator.
LM4040 Precision micropower shunt voltage reference. Fixed voltages of \(2.5000 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}\), 8.192 V and 10.000 V .

LM4041 Precision micropower shunt voltage reference 1.225 V and adjustable.

Contact your National Semiconductor representative for the latest information.

\section*{SOT-23-5 Tape and Reel Specification}

TAPE FORMAT
\begin{tabular}{|c|c|c|c|}
\hline Tape Section & \# Cavities & Cavity Status & Cover Tape Status \\
\hline \multirow{2}{*}{\begin{tabular}{c}
Leader \\
(Start End)
\end{tabular}} & \(0(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(75(\mathrm{~min})\) & Empty & Sealed \\
\hline \multirow{2}{*}{ Carrier } & 3000 & Filled & Sealed \\
\cline { 2 - 4 } & 250 & Filled & Sealed \\
\hline \begin{tabular}{c}
Trailer \\
(Hub End)
\end{tabular} & \(125(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(0(\mathrm{~min})\) & Empty & Sealed \\
\hline
\end{tabular}

\section*{TAPE DIMENSIONS}

\section*{SOT-23-5 Tape and Reel Specification (Continued)} REEL dimensions

National Semiconductor

\section*{LMC7211}

\section*{Tiny CMOS Comparator with Rail-to-Rail Input}

\section*{General Description}

The LMC7211 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes the comparator ideal for space and weight critical designs. The LMC7211 is available in SO-8 surface mount packages and in conventional 8 -pin DIP packages. The LMC7211 is supplied in two offset voltage grades, 5 mV and 15 mV .

The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The rail-to-rail input voltage makes the LMC7211 a good choice for sensor interfacing, such as light detector circuits, optical and magnetic sensors, and alarm and status circuits.

The Tiny Comparator's outside dimensions (length x width x height) of \(3.05 \mathrm{~mm} \times 3.00 \mathrm{~mm} \times 1.43 \mathrm{~mm}\) allow it to fit into tight spaces on PC boards.

\section*{Features}
- Tiny SOT 23-5 package saves space
- Package is less than 1.43 mm thick
- Guaranteed specs at \(2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}\) supplies
- Typical supply current \(7 \mu \mathrm{~A}\) at 5 V
m Response time of \(4 \mu \mathrm{~s}\) at 5 V
■ LMC7211-push-pull output
- Input common-mode range beyond V - and \(\mathrm{V}+\)
- Low input current

\section*{Applications}
- Battery Powered Products
- Notebooks and PDAs
- PCMCIA cards
- Mobile Communications
- Alarm and Security circuits
- Direct Sensor Interface
- Replaces amplifiers used as comparators with better performance and lower current

\section*{Connection Diagrams}

5-Pin SOT23-5

TL/H/12337-2
Top View
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Package } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Ordering \\
Information
\end{tabular}} & \begin{tabular}{c}
NSC Drawing \\
Number
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c}
Package \\
Marking
\end{tabular}} & \multicolumn{1}{|c|}{ Transport Media } \\
\hline 8-Pin DIP & LMC7211AIN & N08E & LMC7211AIN & rails \\
\hline 8-Pin DIP & LMC7211BIN & N08E & LMC7211BIN & rails \\
\hline 8-Pin SO-8 & LMC7211AIM & M08A & LM7211AIM & rails \\
\hline 8-Pin SO-8 & LMC7211BIM & M08A & LM7211BIM & rails \\
\hline 8-Pin SO-8 & LMC7211AIMX & M08A & LM7211AIM & 2.5k units tape and reel \\
\hline 8-Pin SO-8 & LMC7211BIMX & M08A & LM7211BIM & 2.5k units tape and reel \\
\hline 5-Pin SOT 23-5 & LMC7211AIM5X & MA05A & C00A & 3k units tape and reel \\
\hline 5-Pin SOT 23-5 & LMC7211BIM5X & MA05A & C00B & 3k units tape and reel \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
ESD Tolerance (Note 2)
2 kV
Differential Input Voltage \(\quad\left(V_{C C}\right)+0.3 V\) to \(\left(-V_{C C}\right)-0.3 V\)
Voltage at Input/Output Pin \(\left(V_{C C}\right)+0.3 V\) to \(\left(-V_{C C}\right)-0.3 V\)
Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\))
Current at Input Pin (Note 7)
\(\pm 5 \mathrm{~mA}\)
Current at Output Pin (Notes 3, 8) \(\pm 30 \mathrm{~mA}\)
Current at Power Supply Pin 40 mA
Lead Temperature (soldering, 10 sec)
\(260^{\circ} \mathrm{C}\)
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Junction Temperature (Note 4) \(\quad \therefore, 150^{\circ} \mathrm{C}\)

Operating Ratings (Note 1)
Supply Voltage
\(2.7 \leq V_{C C} \leq 15 V\)
Junction Temperature Range
LMC7211AI, LMC7211BI
Thermal Resistance (\(\theta_{\mathrm{JA}}\))
\begin{tabular}{lrl}
N Package, 8 -pin Molded DIP & \(112^{\circ} \mathrm{C} / \mathrm{W}\) \\
SO-8 Package, 8-Pin Surface Mount & \(180^{\circ} \mathrm{C} / \mathrm{W}\) \\
M05A Package, 5 -Pin Surface Mount & \(325^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular}

\subsection*{2.7V Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+12\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC7211AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC7211BI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline Vos & Input Offset Voltage & - " & 3 & \[
\begin{aligned}
& 5 \\
& 8
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
18
\end{array}
\] & \begin{tabular}{l}
mV \\
max
\end{tabular} \\
\hline \multirow[t]{2}{*}{TCV \({ }_{\text {OS }}\)} & Input Offset Voltage Temperature Drift & & 1.0 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline & Input Offset Voltage Average Drift & (Note 10) & 3.3 & & . & \(\mu \mathrm{V} /\) Month \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Current & & 0.04 & & & PA \\
\hline los & Input Offset Current & & 0.02 & \(\cdots\) & & pA \\
\hline CMRR & Common Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}\) & 75 & & & dB \\
\hline PSRR & Power Supply Rejection Ratio & \(2.7 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}\) & 80 & & & dB \\
\hline AV & Voltage Gain & & 100 & & & dB \\
\hline \multirow[t]{2}{*}{CMVR} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & CMRR \(>55 \mathrm{~dB}\) & 3.0 & \[
\begin{array}{r}
2.9 \\
2.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.7
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & CMRR > 55 dB & \(-0.3\) & \[
\begin{gathered}
-0.2 \\
0.0
\end{gathered}
\] & \[
\begin{gathered}
-0.2 \\
0.0
\end{gathered}
\] & \[
\begin{aligned}
& V \\
& \max
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output Voltage High & \(\mathrm{l}_{\text {load }}=2.5 \mathrm{~mA}\) & 2.5 & \[
\begin{array}{r}
2.4 \\
2.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.4 \\
2.3 \\
\hline
\end{array}
\] & \[
\begin{gathered}
V \\
\text { min }
\end{gathered}
\] \\
\hline VOL & Output Voltage Low & \(\mathrm{l}_{\text {load }}=2.5 \mathrm{~mA}\) & 0.2 & \[
\begin{aligned}
& 0.3 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.4
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline Is & Supply Current & VOUT \(=\) Low & \(\cdots 7\) & \[
\begin{array}{r}
12 \\
14
\end{array}
\] & \[
\begin{aligned}
& 12 \\
& 14
\end{aligned}
\] & \[
\underset{\max }{\mu A}
\] \\
\hline
\end{tabular}

\subsection*{5.0V and 15.0V Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}\) and \(15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\).
Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typ \\
(Note 5)
\end{tabular} & \[
\begin{aligned}
& \text { LMC7211AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC7211BI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline \(V_{\text {OS }}\) & Input Offset Voltage & & 3 & \[
\begin{aligned}
& 5 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 18
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{TCV \({ }_{\text {OS }}\)} & \multirow[t]{2}{*}{Input Offset Voltage Temperature Drift} & \(\mathrm{V}+=5 \mathrm{~V}\) & 1.0 & & & \multirow{2}{*}{\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\)} \\
\hline & & \(V+=15 \mathrm{~V}\) & 4.0 & & . & \\
\hline & \multirow[t]{2}{*}{Input Offset Voltage Average Drift} & \(\mathrm{V}+=5 \mathrm{~V}\) & 3.3 & & & \multirow{2}{*}{\(\mu \mathrm{V} / \mathrm{Month}\)} \\
\hline & & \(V+=15 \mathrm{~V}\) & 4.0 & & & \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Current & . & 0.04 & & & pA \\
\hline los & Input Offset Current & & 0.02 & & & pA \\
\hline \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{Common Mode Rejection Ration} & \(\mathrm{V}+=5.0 \mathrm{~V}\) & 75 & & & dB \\
\hline & & \(\mathrm{V}+=15.0 \mathrm{~V}\) & 82 & & & dB \\
\hline PSRR & Power Supply Rejection Ratio & \(5 \mathrm{~V} \leq \mathrm{V}+\leq 10 \mathrm{~V}\) & 80 & & & dB \\
\hline \(A_{V}\) & Voltage Gain & & 100 & & & dB \\
\hline \multirow[t]{4}{*}{CMVR} & \multirow[t]{4}{*}{Input Common-Mode Voltage Range} & \[
\begin{aligned}
& \mathrm{V}+=5.0 \mathrm{~V} \\
& \mathrm{CMRR}>55 \mathrm{~dB}
\end{aligned}
\] & 5.3 & \[
\begin{array}{r}
5.2 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.2 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\min
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{V}+=5.0 \mathrm{~V} \\
& \text { CMRR }>55 \mathrm{~dB}
\end{aligned}
\] & -0.3 & \[
\begin{gathered}
-0.2 \\
0.0
\end{gathered}
\] & \[
\begin{gathered}
-0.2 \\
0.0
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{V}+=15.0 \mathrm{~V} \\
& C M R R>55 \mathrm{~dB}
\end{aligned}
\] & 15.3 & \[
\begin{gathered}
15.2 \\
\mathbf{1 5 . 0}
\end{gathered}
\] & \[
\begin{array}{r}
15.2 \\
15.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{V}+=15.0 \mathrm{~V} \\
& \mathrm{CMRR}>55 \mathrm{~dB}
\end{aligned}
\] & -0.3 & \[
\begin{gathered}
-0.2 \\
0.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-0.2 \\
0.0
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{VOH} & \multirow[t]{2}{*}{Output Voltage High} & \[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \\
& \mathrm{l}_{\text {load }}=5 \mathrm{~mA}
\end{aligned}
\] & 4.8 & \[
\begin{gathered}
4.6 \\
4.45
\end{gathered}
\] & \[
\begin{array}{r}
4.6 \\
4.45 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{V}+=15 \mathrm{~V} \\
& \mathrm{l}_{\mathrm{load}}=5 \mathrm{~mA}
\end{aligned}
\] & 14.8 & \[
\begin{array}{rr}
14.6 \\
14.45 \\
\hline
\end{array}
\] & \[
\begin{gathered}
14.6 \\
14.45 \\
\hline
\end{gathered}
\] & \[
\mathrm{mV}
\]
\[
\min
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Output Voltage Low} & \[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \\
& \mathrm{l}_{\text {load }}=5 \mathrm{~mA}
\end{aligned}
\] & 0.2 & \[
\begin{aligned}
& 0.40 \\
& 0.55
\end{aligned}
\] & \[
\begin{array}{r}
0.40 \\
0.55 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mV} \\
& \max \\
& \hline
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& V+=15 \mathrm{~V} \\
& l_{\text {load }}=5 \mathrm{~mA}
\end{aligned}
\] & 0.2 & \[
\begin{array}{r}
0.40 \\
0.55 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.40 \\
& 0.55 \\
& \hline
\end{aligned}
\] & \[
\mathrm{mV}_{\max }
\] \\
\hline Is & Supply Current & \(\mathrm{V}_{\text {OUT }}=\) Low & 7 & \[
\begin{aligned}
& 14 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 18
\end{aligned}
\] & \[
\mu \mathrm{A}
\]
\[
\max
\] \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Short Circuit Current} & Sourcing & 30 & & & mA \\
\hline & & Sinking (Note 8) & 45 & & & mA \\
\hline
\end{tabular}

\section*{AC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\). Boldface limits apply at the temperature extreme.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Typ (Note 5) & \[
\begin{gathered}
\text { LMC7211AI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { LMC7211BI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline \(\mathrm{t}_{\text {rise }}\). & Rise Time & \multicolumn{2}{|l|}{\[
\begin{aligned}
& f=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF} \\
& \text { Overdrive }=10 \mathrm{mV}(\text { Note } 9)
\end{aligned}
\]} & 0.3 & & . . & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{t}_{\text {fall }}\) & Fall Time & \multicolumn{2}{|l|}{\[
\begin{aligned}
& f=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF}, \\
& \text { Overdrive }=10 \mathrm{mV}(\text { Note } 9)
\end{aligned}
\]} & 0.3 & & & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{4}{*}{\({ }^{\text {tPHL }}\)} & \multirow[t]{4}{*}{Propagation Delay (High to Low) (Note 11)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& f=10 \mathrm{kHz} \\
& \mathrm{Cl}=50 \mathrm{pF} \\
& \text { (Note } 9 \text {) }
\end{aligned}
\]} & 10 mV & 10 & & & \multirow[t]{2}{*}{\(\mu \mathrm{S}\)} \\
\hline & & & 100 mV & 4 & & \(\therefore \quad\). & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=2.7 \mathrm{~V}, \\
& \mathrm{f}=10 \mathrm{kHz}, \\
& \mathrm{CI}=50 \mathrm{pF} \\
& \text { (Note } 9 \text {) }
\end{aligned}
\]} & . 10 mV & 10 & & & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & & & 100 mV & 4 & & \(\cdots\) & \\
\hline \multirow[t]{4}{*}{\(t_{\text {PLH }}\)} & \multirow[t]{4}{*}{Propagation Delay (Low to High) (Note 11)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& f=10 \mathrm{kHz}, \\
& \mathrm{Cl}=50 \mathrm{p} \\
& \text { (Note 9) }
\end{aligned}
\]} & 10 mV & 6 & & & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & & & 100 mV & 4 & & & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=2.7 \mathrm{~V} \\
& \mathrm{f}=10 \mathrm{kHz} \\
& \mathrm{Cl}=50 \mathrm{pF} \\
& \text { (Note 9) }
\end{aligned}
\]} & 10 mV & 7 & S & . & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & & & 100 mV & . 4 & - & & \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of \(150^{\circ} \mathrm{C}\). Output currents in excess of \(\pm 30 \mathrm{~mA}\) over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\), and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage rating.
Note 8: Do not short circuit output to \(\mathrm{V}+\), when \(\mathrm{V}+\) is greater than 12 V or reliability will be adversely affected.
Note 9: \(\mathrm{C}_{\mathrm{L}}\) includes the probe and jig capacitance.
Note 10: Input offset voltage average drift is calculated by dividing the accelerated operating life VOS drift by the equivalent operational time. This represents worst case input conditions and includes the first 30 days of drift.
Note 11: Input step voltage for propagation delay measurement is 2 V .

Typical Performance Characteristics Single Supply \(T_{A}=25^{\circ} \mathrm{C}\) unless specified

Input Overdrive Referenced to \(V_{0 S}\)

Input Overdrive Referenced to \(V_{O S}\)

\section*{Typical Performance Characteristics single Supply, \(T_{A}=25^{\circ} \mathrm{C}\) unless specified (Continued)}

Input Overdrive Referenced to \(V_{0 S}\)

Input Bias Current vs Common Mode Voltage

Response Time for Various Input Overdrives - tplH

Input Overdrive Referenced to \(V_{0 S}\)

Current vs Temperature

TL/H/12337-4

\section*{Application Information}

\subsection*{1.0 Benefits of the LMC7211 Tiny Comparator}

Size. The small footprint of the SOT \(23-5\) packaged Tiny Comparator, (\(0.120 \times 0.118\) inches, \(3.05 \times 3.00 \mathrm{~mm}\)) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny Comparator makes it possible to use it in PCMCIA type III cards.
Simplified Board Layout. The Tiny Comparator can simplify board layout in several ways. First, by placing a comparator where comparators are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny Comparators instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.

DIPs available for prototyping. LMC7211 comparators packaged in conventional 8 -pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.
Low Supply Current. The typical \(7 \mu \mathrm{~A}\) supply current of the LMC7211 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.
Wide Voltage Range. The LMC7211 is characterized at \(15 \mathrm{~V}, 5 \mathrm{~V}\) and 2.7 V . Performance data is provided at these popular voltages. This wide voltage range makes the LMC7211 a good choice for devices where the voltage may vary over the life of the batteries.
Digital Outputs Representing Signal Level. Comparators provide a high or low digital output depending on the voltage levels of the \((+)\) and (-) inputs. This makes comparators useful for interfacing analog signals to microprocessors and other digital circuits. The LMC7211 can be thought of as a one-bit a/d converter.
Push-Pull Output. The push-pull output of the LMC7211 is capable of both sourcing and sinking milliamp level currents even at a 2.7 volt supply. This can allow the LMC7211 to drive multiple logic gates.
Driving LEDs (Light Emitting Diodes). With a 5 volt power supply, the LMC7211's output sinking current can drive small, high efficiency LEDs for indicator and test point circuits. The small size of the Tiny package makes it easy to find space to add this feature to even compact designs.
Input range to Beyond Rail to Rail. The input common mode range of the LMC7211 is slightly larger than the actual power supply range. This wide input range means that the comparator can be used to sense signals close to the power supply rails. This wide input range can make design easier by eliminating voltage dividers, amplifiers, and other front end circuits previously used to match signals to the limited input range of earlier comparators. This is useful to power supply monitoring circuits which need to sense their own power supply, and compare it to a reference voltage which
is close to the power supply voltage. The wide input range can also be useful for sensing the voltage drop across a current sense resistor for battery chargers.
Zero Crossing Detector. Since the LMC7211's common mode input range extends below ground even when powered by a single positive supply, it can be used with large input resistors as a zero crossing detector.
Low Input Currents and High Input Impedance. These characteristics allow the LMC7211 to be used to sense high impedance signals from sensors. They also make it possible to use the LMC7211 in timing circuits built with large value resistors. This can reduce the power dissipation of timing circuits. For very long timing circuits, using high value resistors can reduce the size and cost of large value capacitors for the same R-C time constant.
Direct Sensor Interfacing. The wide input voltage range and high impedance of the LMC7211 may make it possible to directly interface to a sensor without the use of amplifiers or bias circuits. In circuits with sensors which can produce outputs in the tens to hundreds of millivolts, the LMC7211 can compare the sensor signal with an appropriately small reference voltage. This may be done close to ground or the positive supply rail. Direct sensor interfacing may eliminate the need for an amplifier for the sensor signal. Eliminating the amplifier can save cost, space, and design time.

\subsection*{2.0 Low Voltage Operation}

Comparators are the common devices by which analog signals interface with digital circuits. The LMC7211 has been designed to operate at supply voltages of 2.7 V without sacrificing performance to meet the demands of 3 V digital systems.
At supply voltages of 2.7 V , the common-mode voltage range extends 200 mV (guaranteed) below the negative supply. This feature, in addition to the comparator being able to sense signals near the positive rail, is extremely useful in low voltage applications.

TL/H/12337-5
FIGURE 1. Even at Low-Supply Voltage of 2.7V, an Input Signal which Exceeds the Supply Voltages Produces No Phase Inversion at the Output

At \(\mathrm{V}^{+}=2.7 \mathrm{~V}\) propagation delays are \(\mathrm{t}_{\mathrm{PLH}}=4 \mu \mathrm{~s}\) and \(t_{\text {PHL }}=4 \mu \mathrm{~s}\) with overdrives of 100 mV .
Please refer to the performance curves for more extensive characterization.

\section*{Application Information (Continued)}

\subsection*{3.0 Shoot-Through Current}

The shoot-through current is defined as the current surge, above the quiescent supply current, between the positive and negative supplies of a device. The current surge occurs when the output of the device switches states. The shootthrough current results in glitches in the supply voltages. Usually, glitches in the supply lines are prevented by bypass capacitors. When the glitches are minimal, the value of the bypass capacitors can be reduced.

TL/H/12337-6
FIGURE 2. Circuit for Measurement of the Shoot-Through Current

TL/H/12337-7
FIGURE 3. Measurement of the Shoot-Through Current
From Figure 3, the shoot-through current for the LMC7211 can be calculated to be 0.2 mA (typical), and the duration is \(1 \mu \mathrm{~s}\). The values needed for the bypass capacitors can be calculated as follows:

Area of \(\Delta=1 / 2(1 \mu \mathrm{~s} \times 200 \mu \mathrm{~A})\)
\(=100 \mathrm{pC}\)

The capacitor needs to supply 100 picocolumb. To avoid large shifts in the comparator threshold due to changes in the voltage level, the voltage drop at the bypass capacitor should be limited to 100 mV or less.
The charge needed (100 picocolumb) and the allowable voltage drop (100 mV) will give us the minimum capacitor value required.
\[
\begin{aligned}
& \Delta Q=C(\Delta V) \\
& C=\Delta Q / \Delta V=100 \text { picocolumb } / 100 \mathrm{mV} \\
& C=10^{-10 / 10-1}=10^{-9}=1 \mathrm{nF}=0.001 \mu F \\
& 10^{-9}=1 \mathrm{nF}=0.001 \mu F
\end{aligned}
\]

The voltage drop of \(\sim 100 \mathrm{mV}\) will cause a threshold shift in the comparator. This threshold shift will be reduced by the power supply rejection ratio, (PSRR). The PSRR which is applicable here is not the DC value of PSRR (\(\sim 80 \mathrm{~dB}\)), but a transient PSRR which will be usually about \(20 \mathrm{~dB}-40 \mathrm{~dB}\), depending on the circuit and the speed of the transient. This will result in an effective threshold shift of about 1 mV to 10 mV .
For precision and level sensing circuits, it is generally a good goal to reduce the voltage delta on the power supply to a value equal to or less than the hysteresis of the comparator circuit. If the above circuit was to be used with 50 mV of hysteresis, it would be reasonable to increase the bypass capacitor to \(0.01 \mu \mathrm{~F}\) to reduce the voltage delta to 10 mV . Larger values may be useful for obtaining more accurate and consistent switching.
Note that the switching current of the comparator can spread to other parts of the board as noise. The bypass capacitor reduces this noise. For low noise systems this may be reason to make the capacitor larger.
For non-precision circuits, such as using a comparator to determine if a push-button switch is on or off, it is often cheaper and easier to use a larger value of hysteresis and a small value or bypass capacitance. The low shoot-through current of the LMC7211 can allow the use of smaller and less expensive bypass capacitors in non-critical circuits.

\subsection*{4.0 Output Short Circuit Current}

The LMC7211 has short circuit protection of 40 mA . However, it is not designed to withstand continuous short circuits, transient voltage or current spikes, or shorts to any voltage beyond the supplies. A resistor in series with the output should reduce the effect of shorts. For outputs which send signals off PC boards additional protection devices, such as diodes to the supply rails, and varistors may be used.

\subsection*{5.0 Hysteresis}

If the input signal is very slow or very noisy, the comparator output might trip several times as the input signal passes through the threshold. Using positive feedback to add hysteresis to the switching can reduce or eliminate this problem. The positive feedback can be added by a high value resistor (\(\mathrm{R}_{\mathrm{F}}\)). This will result in two switching thresholds, one for increasing signals and one for decreasing signals. A capacitor can be added across \(R_{F}\) to increase the switching speed and provide more short term hysteresis. This can result in greater noise immunity for the circuit.
See Figures 4, 5 and 6.

\section*{Application Information (Continued)}

Note that very heavy loading of the comparator output, such as LED drive or bipolar logic gates, will change the output voltage and shift the voltage thresholds.

TL/H/12337-9
\(R_{F}>R_{1}\) and
\(R_{F}>R_{2}\)
FIGURE 4. Positive Feedback for Hysteresis

FIGURE 5

With Positive Feedback (Hysteresis or Memory)

TL/H/12337-11
FIGURE 6

\subsection*{6.0 Input Protection}

If input signals are like to exceed the common mode range of the LMC7211, or it is likely that signals may be present when power is off, damage to the LMC7211 may occur. Large value (\(100 \mathrm{k} \Omega\) to \(\mathrm{M} \Omega\)) input resistors may reduce the likelihood of damage by limiting the input currents. Since the LMC7211 has very low input leakage currents, the effect on accuracy will be small. Additional protection may require the use of diodes, as shown in Figure 7. Note that diode leakage current may affect accuracy during normal operation. The R.C time constant of \(R_{I N}\) and the diode capacitance may also slow response time.

TL/H/12337-12
FIGURE 7

\subsection*{7.0 Layout Considerations}

The LMC7211 is not an especially fast comparator, so high speed design practices are not required. The LMC7211 is capable of operating with very high impedance inputs, so precautions should be taken to reduce noise pickup with high impedance (\(\sim 100 \mathrm{k} \Omega\) and greater) designs and in electrically noisy environments.
Keeping high value resistors close to the LMC7211 and minimizing the size of the input nodes is a good practice. With multilayer designs, try to avoid long loops which could act as inductors (coils). Sensors which are not close to the comparator may need twisted pair or shielded connections to reduce noise.

\subsection*{8.0 Open Drain Output, Dual Versions}

The LMC7221 is a comparator similar to the LMC7211, but with an open drain output which allows the output voltage to be different (higher or lower) than the supply voltage. The open drain output is like the open collector output of a logic gate. This makes the LMC7221 very useful for mixed voltage systems. Many systems will have different voltages for the analog and microprocessor sections. Please see the LMC7221 datasheet for details.
The performance of the LMC7211 is available in dual devices. Please see the LMC6762 datasheet for details on a dual push-pull output device. For a dual device with open drain outputs, please see the LMC6772 datasheet.

\section*{Application Information (Continued)}

Rail-to-Rail Input Low Power Comparators-
Push-Pull Output
\begin{tabular}{|c|c|c|}
\hline LMC7211 & Tiny, SOT23-5, DIP & Single \\
\hline LMC6762 & SO-8, DIP & Dual \\
\hline \multicolumn{3}{|c|}{Open Drain Output} \\
\hline LMC7221 & Tiny, SOT23-5, DIP & Single \\
\hline LMC6772 & SO-8, DIP & Dual \\
\hline
\end{tabular}

\subsection*{9.0 Additional SOT23-5 Tiny Devices}

National Semiconductor has additional parts available in the space saving SOT23 Tiny package, including amplifiers, voltage references, and voltage regulators. These devices include-

LMC7101 1 MHz gain-bandwidth rail-to-rail input and output amplifier-high input impedance and high gain \(700 \mu \mathrm{~A}\) typical current \(2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}\) and 15 V specifications.
LMC7111 Low power 50 kHz gain-bandwidth rail-to-rail input and output amplifier with \(25 \mu \mathrm{~A}\) typical current specified at \(2.7 \mathrm{~V}, 3.0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}\) and 10 V .
LM7131 Tiny Video amp with 70 MHz gain bandwidth 3V, 5 V and \(\pm 5 \mathrm{~V}\) specifications.
LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator.
LM4040 Precision micropower shunt voltage reference. Fixed voltages of \(2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}\), 8.192 V and 10.000 V .

LM4041 Precision micropower shut voltage reference 1.225 V and adjustable.

Contact your National Semiconductor representative for the latest information.

\subsection*{10.0 Spice Macromodel}

A Spice Macromodel is available for the LMC7211 comparator on the National Semiconductor Amplifier Macromodel disk. Contact your National Semiconductor representative to obtain the latest version.

\section*{REEL DIMENSIONS}

TL/H/12337-13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 mm & 7.00 & 0.059 & 0.512 & 0.795 & 2.165 & \(0.331+0.059 /-0.000\) & 0.567 & \(\mathrm{~W} 1+0.078 /-0.039\) \\
& 330.00 & 1.50 & 13.00 & 20.20 & 55.00 & \(8.40+1.50 /-0.00\) & 14.40 & \(\mathrm{~W} 1+2.00 /-1.00\) \\
\hline Tape Size & A & B & C & D & N & W & W 1 & W 2 \\
W 3 \\
\hline
\end{tabular}

\section*{SOT-23-5 Tape and Reel Specification}
tape format
\begin{tabular}{|c|c|c|c|}
\hline Tape Sectlon & \# Cavitles & Cavity Status & Cover Tape Status \\
\hline \begin{tabular}{c}
Leader \\
(Start End)
\end{tabular} & \(0(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(75(\mathrm{~min})\) & Empty & Sealed \\
\hline Carrier & 3000 & Filled & Sealed \\
\cline { 2 - 4 } & 250 & Filled & Sealed \\
\hline \begin{tabular}{c}
Trailer \\
(Hub End)
\end{tabular} & \(125(\mathrm{~min})\) & Empty & Sealed \\
\cline { 2 - 4 } & \(0(\mathrm{~min})\) & Empty & Sealed \\
\hline
\end{tabular}

TAPE DIMENSIONS

TL/H/12337-14
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 mm & \[
\begin{aligned}
& 0.130 \\
& (3.3)
\end{aligned}
\] & \[
\begin{aligned}
& 0.124 \\
& (3.15)
\end{aligned}
\] & \[
\begin{gathered}
0.130 \\
(3.3)
\end{gathered}
\] & \[
\begin{aligned}
& 0.126 \\
& (3.2)
\end{aligned}
\] & \[
\begin{gathered}
0.138 \pm 0.002 \\
(3.5 \pm 0.05)
\end{gathered}
\] & \[
\begin{gathered}
0.055 \pm 0.004 \\
(1.4 \pm 0.11)
\end{gathered}
\] & \[
\begin{gathered}
0.157 \\
(4) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.315 \pm 0.012 \\
(8 \pm 0.3) \\
\hline
\end{gathered}
\] \\
\hline Tape Size & DIM A & DIM Ao & DIM B & DIM Bo & DIM F & DIM Ko & DIM P1 & DIM W \\
\hline
\end{tabular}

\section*{LMC6482 CMOS Dual}

Rail-To-Rail Input and Output Operational Amplifier

\section*{General Description}

The LMC6482 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6482 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC272 and TLC277.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6482's rail-to-rail output swing. The LMC6482's rail-to-rail output swing is guaranteed for loads down to \(600 \Omega\).
Guaranteed low voltage characteristics and low power dissipation make the LMC6482 especially well-suited for batteryoperated systems.
See the LMC6484 data sheet for a Quad CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)
- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
■ Rail-to-Rail Output Swing (within 20 mV of supply rail, \(100 \mathrm{k} \Omega\) load)
- Guaranteed \(3 \mathrm{~V}, 5 \mathrm{~V}\) and 15 V Performance
- Excellent CMRR and PSRR

82 dB
- Ultra Low Input Current

20 fA
■ High Voltage Gain (\(R_{\mathrm{L}}=500 \mathrm{k} \Omega\))
130 dB
■ Specified for \(2 \mathrm{k} \Omega\) and \(600 \Omega\) loads

\section*{Applications}
- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC272, TLC277

\section*{3V Single Supply Buffer Circuit}

Connection Diagram

TL/H/11713-2

Rail-To-Rail Output

Ordering Information
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ Package } & \multicolumn{2}{|c|}{ Temperature Range } & \multirow{2}{*}{\begin{tabular}{c}
NSC \\
Drawing
\end{tabular}} & \begin{tabular}{c}
Transport \\
Medla
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{c}
Milltary \\
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
Industrial \\
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\end{tabular} & Rail \\
\hline \begin{tabular}{l}
8-Pin \\
Molded DIP
\end{tabular} & LMC6482MN & \begin{tabular}{c}
LMC6482AIN \\
LMC6482IN
\end{tabular} & N08E & R \\
\hline \begin{tabular}{l}
8-pin \\
Small Outline
\end{tabular} & & \begin{tabular}{l}
LMC6482AIM \\
LMC6482IM
\end{tabular} & M08A & \begin{tabular}{c}
Rail \\
Tape and Reel
\end{tabular} \\
\hline \begin{tabular}{l}
8-pin \\
Ceramic DIP
\end{tabular} & LMC6482AMJ/883 & & J08A & Rail \\
\hline
\end{tabular}

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
ESD Tolerance (Note 2)
Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\))
\((\mathrm{V}+)+0.3 \mathrm{~V},\left(\mathrm{~V}-\mathrm{V}^{(2.3 V}\right.\)

Current at Input Pin (Note 12)
Current at Output Pin (Notes 3, 8)
Current at Power Supply Pin
Lead Temperature (Soldering, 10 sec .)
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Junction Temperature (Note 4)

\section*{DC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(R_{\mathrm{L}}>1 \mathrm{M}\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Condltions} & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 5) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LMC6482AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC64821 } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { LMC6482M } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline Vos & Input Offset Voltage & & & 0.11 & \[
\begin{aligned}
& 0.750 \\
& 1.35
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.8
\end{aligned}
\] & mV max \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & & & 1.0 & & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(I_{B}\) & Input Current & (Note 13) & & 0.02 & 4.0 & 4.0 & 10.0 & \begin{tabular}{l}
\[
\mathrm{pA}
\] \\
max
\end{tabular} \\
\hline los & Input Offset Current & (Note 13) & & 0.01 & 2.0 & 2.0 & 5.0 & \[
\mathrm{pA}
\]
\[
\max
\] \\
\hline \(\mathrm{C}_{\text {IN }}\) & Common-Mode Input Capacitance & & & 3 & & & & pF \\
\hline \(\mathrm{R}_{\mathrm{IN}}\) & Input Resistance & & & \(>10\) & & & & Tera \(\Omega\) \\
\hline \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{Common Mode Rejection Ratio} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 0 V \leq V_{C M} \leq 15.0 \mathrm{~V} \\
& V^{+}=15 \mathrm{~V}
\end{aligned}
\]} & 82 & \[
\begin{aligned}
& 70 \\
& 67
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \multirow{2}{*}{\[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}+=5 \mathrm{~V}
\end{aligned}
\]} & 82 & \[
\begin{aligned}
& 70 \\
& 67
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \\
\hline + PSRR & Positive Power Supply Rejection Ratio & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}
\end{aligned}
\]} & 82 & \[
\begin{aligned}
& 70 \\
& 67
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\min
\end{gathered}
\] \\
\hline -PSRR & Negative Power Supply Rejection Ratio & \multicolumn{2}{|l|}{\[
\begin{aligned}
& -5 \mathrm{~V} \leq \mathrm{V}-\leq-15 \mathrm{~V}, \mathrm{~V}+=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V}
\end{aligned}
\]} & 82 & \[
\begin{array}{r}
70 \\
\mathbf{6 7} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
65 \\
\mathbf{6 2} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
65 \\
60 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(V_{C M}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& V+=5 V \text { and } 15 \mathrm{~V} \\
& \text { For CMRR } \geq 50 \mathrm{~dB}
\end{aligned}
\]}} & \(\mathrm{V}-\mathrm{-} 0.3\) & \[
\begin{gathered}
-0.25 \\
0
\end{gathered}
\] & \[
\begin{gathered}
-0.25 \\
0
\end{gathered}
\] & \[
\begin{gathered}
-0.25 \\
0
\end{gathered}
\] & \[
\begin{gathered}
v \\
\max
\end{gathered}
\] \\
\hline & & & & \(\mathrm{V}++0.3 \mathrm{~V}\) & \[
\begin{gathered}
\mathbf{V}^{+}+0.25 \\
\mathbf{v}+
\end{gathered}
\] & \[
\begin{gathered}
V^{+}+0.25 \\
\mathbf{v}+
\end{gathered}
\] & \[
\begin{gathered}
v^{+}+0.25 \\
v^{+}
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{\(A_{V}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
Large Signal \\
Voltage Gain
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\] \\
(Notes 7, 13)
\end{tabular}} & Sourcing & 666 & \[
\begin{aligned}
& 140 \\
& 84
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 72
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & \(\mathrm{V} / \mathrm{mV}\) min \\
\hline & & & Sinking & 75 & \[
\begin{aligned}
& 35 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 18
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} / \mathrm{mV} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& R_{\mathrm{L}}=600 \Omega \\
& (\text { Notes } 7,13)
\end{aligned}
\]} & Sourcing & 300 & \[
\begin{aligned}
& 80 \\
& 48
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & \[
\begin{array}{r}
50 \\
25 \\
\hline
\end{array}
\] & \(\mathrm{V} / \mathrm{mV}\) min \\
\hline & & & Sinking & 35 & \[
\begin{aligned}
& 20 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
15 \\
8
\end{gathered}
\] & \(\mathrm{V} / \mathrm{mV}\) \(\min\) \\
\hline
\end{tabular}

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC6482AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC64821 } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC6482M } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & Units \\
\hline \multirow[t]{8}{*}{Vo} & \multirow[t]{8}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+12
\end{aligned}
\]} & 4.9 & \[
\begin{aligned}
& 4.8 \\
& 4.7
\end{aligned}
\] & \[
\begin{array}{r}
4.8 \\
4.7
\end{array}
\] & \[
\begin{aligned}
& 4.8 \\
& 4.7
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.1 & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\begin{gathered}
0.18 \\
0.24
\end{gathered}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& V^{+}=5 \mathrm{~V} \\
& R_{L}=600 \Omega \text { to } V+/ 2
\end{aligned}
\]} & 4.7 & \[
\begin{array}{r}
4.5 \\
4.24 \\
\hline
\end{array}
\] & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.3 & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.65
\end{aligned}
\] & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2
\end{aligned}
\]} & 14.7 & \[
\begin{gathered}
14.4 \\
14.2
\end{gathered}
\] & \[
\begin{array}{r}
14.4 \\
14.2
\end{array}
\] & \[
\begin{gathered}
14.4 \\
14.2
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.16 & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& \mathbf{0 . 4 5}
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}+/ 2
\end{aligned}
\]} & 14.1 & \[
\begin{gathered}
13.4 \\
13.0
\end{gathered}
\] & \[
\begin{array}{r}
13.4 \\
13.0
\end{array}
\] & \[
\begin{gathered}
13.4 \\
13.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\min
\end{gathered}
\] \\
\hline & & & 0.5 & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& \mathbf{1 . 3}
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
v \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current
\[
\mathrm{V}+=5 \mathrm{~V}
\]} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 20 & \[
\begin{aligned}
& 16 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& \mathbf{1 0}
\end{aligned}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & Sinking, \(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}\) & 15 & \[
\begin{gathered}
11 \\
9.5
\end{gathered}
\] & \[
\begin{gathered}
11 \\
9.5
\end{gathered}
\] & \[
\begin{gathered}
11 \\
8.0
\end{gathered}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current
\[
V^{+}=15 \mathrm{~V}
\]} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 30 & \[
\begin{aligned}
& 28 \\
& 22
\end{aligned}
\] & \[
\begin{array}{r}
28 \\
22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 28 \\
& 20 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & \begin{tabular}{l}
Sinking, \(V_{O}=12 \mathrm{~V}\) \\
(Note 8)
\end{tabular} & 30 & \[
\begin{aligned}
& 30 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 24 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
\mathbf{2 2} \\
\hline
\end{array}
\] & mA \(\min\) \\
\hline \multirow[t]{2}{*}{Is} & \multirow[t]{2}{*}{Supply Current} & Both Amplifiers
\[
\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2
\] & 1.0 & \[
\begin{array}{r}
1.4 \\
1.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.4 \\
& 1.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.4 \\
1.9 \\
\hline
\end{array}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline & & Both Amplifiers
\[
V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2
\] & 1.3 & \[
\begin{aligned}
& 1.6 \\
& 1.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 2.0
\end{aligned}
\] & mA max \\
\hline
\end{tabular}

\section*{AC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\), and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 5) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LMC6482AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LMC6482I } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { LMC6482M } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline SR & Slew Rate & (Note 9) & 1.3 & \[
\begin{aligned}
& 1.0 \\
& 0.7
\end{aligned}
\] & \[
\begin{gathered}
0.9 \\
0.63
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
\mathbf{0 . 5 4}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} / \mu \mathrm{s} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline GBW & Gain-Bandwidth Product & \(V^{+}=15 \mathrm{~V}\) & 1.5 & & & & MHz \\
\hline \(\phi_{\mathrm{m}}\) & Phase Margin & & 50 & & & & Deg \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{m}}\)} & Gain Margin & & 15 & & & & dB \\
\hline & Amp-to-Amp Isolation & (Note 10) & 150 & & & & dB \\
\hline \(e_{n}\) & Input-Referred Voltage Noise & \[
\begin{aligned}
& \mathrm{F}=1 \mathrm{kHz} \\
& \mathrm{~V}_{\mathrm{cm}}=1 \mathrm{~V}
\end{aligned}
\] & 37 & & & & \(\mathrm{nV} / \sqrt{ } \mathrm{Hz}\) \\
\hline \(\mathrm{i}_{\mathrm{n}}\) & Input-Referred Current Noise & \(\mathrm{F}=1 \mathrm{kHz}\) & 0.03 & & & & \(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\) \\
\hline \multirow[t]{2}{*}{T.H.D.} & \multirow[t]{2}{*}{Total Harmonic Distortion} & \[
\begin{aligned}
& \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{V}=-2 \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=4.1 \mathrm{~V} P \mathrm{P}
\end{aligned}
\] & 0.01 & & & & \% \\
\hline & & \[
\begin{aligned}
& F=10 \mathrm{kHz}, A_{V}=-2 \\
& R_{L}=10 \mathrm{k} \Omega, V_{O}=8.5 \mathrm{~V}_{\mathrm{PP}} \\
& V^{+}=10 \mathrm{~V}
\end{aligned}
\] & 0.01 & & & , & \% \\
\hline
\end{tabular}

\section*{DC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC6482AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC6482I } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC6482M } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline Vos & Input Offset Voltage & \(\cdots\) & 0.9 & \[
\begin{aligned}
& 2.0 \\
& 2.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.8
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\max
\end{gathered}
\] \\
\hline TCV \({ }_{\text {os }}\) & Input Offset Voltage Average Drift & & 2.0 & & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{B}\) & Input Bias Current & & 0.02 & & & & pA \\
\hline los & Input Offset Current & & 0.01 & & & . & pA \\
\hline CMRR & Common Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}\) & 74 & 64 & 60 & 60 & \[
d B
\]
\[
\min
\] \\
\hline PSRR & Power Supply Rejection Ratio & \(3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}\) & 80 & 68 & 60 & 60 & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CM}}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & \multirow[t]{2}{*}{For CMRR \(\geq 50 \mathrm{~dB}\)} & \(\mathrm{V}-\mathrm{-0.25}\) & 0 & 0 & 0 & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & & \(v++0.25\) & V + & V+ & V+ & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{4}{*}{Output Swing} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) to \(\mathrm{V}+12\)} & 2.8 & & & & V \\
\hline & & & 0.2 & & & . & V \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=600 \Omega\) to \(\mathrm{V}+/ 2\)} & 2.7 & 2.5 & 2.5 & 2.5 & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.37 & 0.6 & 0.6 & 0.6 & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline is & Supply Current & Both Amplifiers & 0.825 & \[
\begin{aligned}
& 1.2 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 1.6
\end{aligned}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline
\end{tabular}

\section*{AC Electrical Characteristics}

Unless otherwise specified, \(\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\), and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
\begin{tabular}{l|l|l|c|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ Conditions } & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC6482AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC6482I \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC6482M \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
Units
\end{tabular} \\
\hline SR & Slew Rate & (Note 11) & 0.9 & & & & \(\mathrm{~V} / \mu \mathrm{S}\) \\
\hline GBW & Gain-Bandwidth Product & & 1.0 & & & & MHz \\
\hline T.H.D. & Total Harmonic Distortion & \begin{tabular}{l}
\(\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2\) \\
\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{~kJ}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \mathrm{VPP}\)
\end{tabular} & 0.01 & & & & \(\%\) \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a Class 1 device rating.
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of \(150^{\circ} \mathrm{C}\). Output currents in excess of \(\pm 30 \mathrm{~mA}\) over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\), and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(P_{D}=\) \(\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: \(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connected to 7.5 V . For Sourcing tests, \(7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}\). For Sinking tests, \(3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}\).
Note 8: Do not short circuit output to \(\mathrm{V}^{+}\), when \(\mathrm{V}^{+}\)is greater than 13 V or reliability will be adversely affected.
Note 9: \(V^{+}=15 \mathrm{~V}\). Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, \(\mathrm{V}^{+}=15 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) connected to 7.5 V . Each amp excited in turn with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}\).
Note 11: Connected as voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature parameters see RETS6482X.

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise specified

\section*{Typical Performance Characteristics}
\(\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

CMRR vs Frequency

\section*{CMRR vs}

Input Voltage

CMRR vs
Input Voltage

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

Open Loop
Frequency Responce

Gain and Phase vs
Capacitive Load

pen Loop Output Impedance vs Frequency

Non-Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Small Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Non-Inverting Small Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Inverting Large Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Inverting Small Signal Pulse Response

TIME (\(1 \mu \mathrm{~s} / \mathrm{DIV}\))

Stability vs Capacitive Load

\(v_{\text {OUT }}(v)\)

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

\section*{Application Information}

\subsection*{1.0 Amplifier Topology}

The LMC6482 incorporates specially designed wide-compliance range current mirrors and the body effect to extend input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in other CMOS and bipolar rail-to-rail input amplifiers, were not used because of their inherent accuracy problems due to CMRR, cross-over distortion, and open-loop gain variation.
The LMC6482's input stage design is complemented by an output stage capable of rail-to-rail output swing even when driving a large load. Rail-to-rail output swing is obtained by taking the output directly from the internal integrator instead of an output buffer stage.

\subsection*{2.0 Input Common-Mode Voltage Range}

Unlike Bi-FET amplifier designs, the LMC6482 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

TL/H/11713-10
FIGURE 1. An Input Voltage Signal Exceeds the LMC6482 Power Supply Voltages with No Output Phase Inversion
The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

TL/H/11713-39
FIGURE 2. A \(\pm 7.5 \mathrm{~V}\) Input Signal Greatly
Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to \(\mathbf{R}_{\mathbf{I}}\)
Applications that exceed this rating must externally limit the maximum input current to \(\pm 5 \mathrm{~mA}\) with an input resistor \(\left(\mathrm{R}_{\mathrm{l}}\right)\) as shown in Figure 3.

TL/H/11713-11
FIGURE 3. RI Input Current Protection for Voltages Exceeding the Supply Voltages

\subsection*{3.0 Rail-To-Rail Output}

The approximated output resistance of the LMC6482 is \(180 \Omega\) sourcing and \(130 \Omega\) sinking at \(\mathrm{Vs}=3 \mathrm{~V}\) and \(110 \Omega\) sourcing and \(80 \Omega\) sinking at \(\mathrm{Vs}=5 \mathrm{~V}\). Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

\subsection*{4.0 Capacitive Load Tolerance}

The LMC6482 can typically directly drive a 100 pF load with \(V_{S}=15 \mathrm{~V}\) at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive inputs of multiplexers and A/D converters.

TL/H/11713-17
FIGURE 4. Resistive Isolation of a 330 pF Capacitive Load

Application Information (Continued)

FIGURE 5. Pulse Response of the LMC6482 Circuit in Figure 4
Improved frequency response is achieved by indirectly driving capacitive loads, as shown in Figure 6.

TL/H/11713-15
FIGURE 6. LMC6482 Noninverting Amplifier, Compensated to Handle a 330 pF Capacitive Load
R1 and C1 serve to counteract the loss of phase margin by feeding forward the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 are experimentally determined for the desired pulse response. The resulting pulse response can be seen in Figure 7.

TL/H/11713-16
FIGURE 7. Pulse Response of LMC6482 Circuit in Figure 6

\subsection*{5.0 Compensating for Input Capacitance}

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6482. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.

TL/H/11713-19
FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 8), \(\mathrm{C}_{\mathrm{f}}\), is first estimated by:
\[
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
\]
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a bread-board, so the actual optimum value for \(C_{f}\) may be different. The values of \(C_{f}\) should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

\section*{Application Information (Continued)}

\subsection*{6.0 Printed-Circuit-Board Layout for High-Impedance Work}

It is generally recognized that any circuit which must operrate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6482, typically less than 20 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even through it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LM6482's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 9. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of \(10^{12} \Omega\), which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6482's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of \(10^{11} \Omega\) would cause only 0.05 pA of leakage current. See Figures 10a, 10b, 10c for typical connections of guard rings for standard op-amp configurations.

FIGURE 9. Example of Guard Ring in P.C. Board Layout

FIGURE 10. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figüre 11.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 11. Alr WIring

\section*{Application Information (Continued)}

\subsection*{7.0 Offset Voltage Adjustment}

Offset voltage adjustment circuits are illustrated in Figure 12 and 13. Large value resistances and potentiometers are used to reduce power consumption while providing typically \(\pm 2.5 \mathrm{mV}\) of adjustment range, referred to the input, for both configurations with \(V_{S}= \pm 5 \mathrm{~V}\).

TL/H/11713-25
FIGURE 12. Inverting Configuration Offset Voltage Adjustment

TL/H/11713-26
FIGURE 13. Non-Inverting Configuration Offset Voltage Adjustment

\subsection*{8.0 Upgrading Applications}

The LMC6484 quads and LMC6482 duals have industry standard pin outs to retrofit existing applications. System performance can be greatly increased by the LMC6482's features. The key benefit of designing in the LMC6482 is increased linear signal range. Most op-amps have limited input common mode ranges. Signals that exceed this range generate a non-linear output response that persists long after the input signal returns to the common mode range.
Linear signal range is vital in applications such as filters where signal peaking can exceed input common mode ranges resulting in output phase inverison or severe distortion.

\subsection*{9.0 Data Acquisition Systems}

Low power, single supply data acquisition system solutions are provided by buffering the ADC12038 with the LMC6482 (Figure 14). Capable of using the full supply range, the LMC6482 does not require input signals to be scaled down to meet limited common mode voltage ranges. The LMC4282 CMRR of 82 dB maintains integral linearity of a 12 -bit data acquisition system to \(\pm 0.325\) LSB. Other rail-torail input amplifiers with only 50 dB of CMRR will degrade the accuracy of the data acquisition system to only 8 bits.

FIGURE 14. Operating from the same Supply Voltage, the LMC6482 buffers the ADC12038 maintaining excellent accuracy

\section*{Application Information (Continued)}

\subsection*{10.0 Instrumentation Circuits}

The LMC6482 has the high input impedance, large com-mon-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6482 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6482 an excellent choice of noisy or industrial environments. Other applications that
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased tranducers.
A small valued potentiometer is used in series with \(R_{g}\) to set the differential gain of the 3 op -amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier

A 2 op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 16. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

TL/H/11713-30
FIGURE 16. Low-Power Two-Op-Amp Instrumentation Amplifier

Application Information (Continued) 11.0 Spice Macromodel

A spice macromodel is available for the LMC6482. This model includes accurate simulation of:
- Input common-mode voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions
and many more characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

\section*{Typical Single-Supply Applications}

TL/H/11713-31
FIGURE 17. Half-Wave Rectifier with Input Current Protection (RI)

TL/H/11713-32
FIGURE 17A. Half-Wave Rectifier Waveform
The circuit in Figure 17 uses a single supply to half wave rectify a sinusoid centered about ground. \(\mathrm{R}_{\mathrm{l}}\) limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18.

TL/H/11713-33
FIGURE 18. Full Wave Rectifier with Input Current Protection (\(\mathrm{R}_{\mathbf{l}}\))

FIGURE 18A. Full Wave Rectifier Waveform

TL/H/11713-35
FIGURE 19. Large Compliance Range Current Source

\section*{Typical Single-Supply Applications}

TL/H/11713-36
FIGURE 20. Positive Supply Current Sense

FIGURE 21. Low Voltage Peak Detector with Rail-to-Rail Peak Capture Range
In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of \(\mathrm{C}_{\mathrm{H}}\) and diode leakage current. The ultra-low input current of the LMC6482 has a negligible effect on droop.

TL/H/11713-39
FIGURE 22. Rail-to-Rail Sample and Hold
The LMC6482's high CMRR (82 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.

TL/H/11713-27
\[
R 1=R 2, C 1=C 2 ; f=\frac{1}{2 \pi R 1 C 1} ; D F=1 / 2 \sqrt{\frac{C_{2}}{C_{1}}} \sqrt{\frac{R_{2}}{R_{1}}}
\]

FIGURE 23. Rail-to-Rail Single Supply Low Pass Filter
The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the A/D converter. Filter designs can also take advantage of the LMC6482 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

\section*{LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier}

\section*{General Description}

The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC274 and TLC279.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to \(600 \Omega\).
Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for batteryoperated systems.
See the LMC6482 data sheet for a Dual CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)
- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
- Rail-to-Rail Output Swing (within 20 mV of supply rail, \(100 \mathrm{k} \Omega\) load)
m Guaranteed \(3 \mathrm{~V}, 5 \mathrm{~V}\) and 15 V Performance
- Excellent CMRR and PSRR 82 dB
- Ultra Low Input Current 20 fA
a High Voltage Gain (\(\mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega\)) 130 dB
- Specified for \(2 \mathrm{k} \Omega\) and \(600 \Omega\) loads

\section*{Applications}
- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC274, TLC279

3V Single Supply Buffer Circuit

TL/H/11714-2

Connection Diagram

\section*{Ordering Information}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{3}{*}{ Package } & \multicolumn{2}{|c|}{ Temperature Range } & \multirow{2}{*}{\begin{tabular}{c}
NSC
\end{tabular}} & \multirow{2}{*}{\begin{tabular}{c}
Transport \\
Medla
\end{tabular}} \\
\cline { 2 - 3 } & \begin{tabular}{c}
MIIItary \\
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
Industrial \\
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\end{tabular} & DrawIng & \\
\hline \begin{tabular}{l}
14-pin \\
Molded DIP
\end{tabular} & LMC6484MN & \begin{tabular}{c}
LMC6484AIN \\
LMC6484IN
\end{tabular} & N14A & Rail \\
\hline \begin{tabular}{l}
14-pin \\
Small Outline
\end{tabular} & & \begin{tabular}{c}
LMC6484AIM \\
LMC6484IM
\end{tabular} & M14A & \begin{tabular}{c}
Rail \\
Tape and Reel
\end{tabular} \\
\hline \begin{tabular}{l}
14-pin \\
Ceramic DIP
\end{tabular} & LMC6484AMJ/883 & & J14A & Rail \\
\hline
\end{tabular}
\begin{tabular}{lr}
Absolute Maximum Ratings (Note 1) \\
If Military/Aerospace specified devices are required, \\
please contact the National Semiconductor Sales \\
Office/DIstributors for avallability and specifications. \\
ESD Tolerance (Note 2) & 2.0 kV \\
Differential Input Voltage & \(\pm\) Supply Voltage \\
Voltage at Input/Output Pin & \(\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}\) \\
Supply Voltage \(\left(\mathrm{V}^{+}-\mathrm{V}-\right)\) & 16 V \\
Current at Input Pin (Note 12) & \(\pm 5 \mathrm{~mA}\) \\
Current at Output Pin (Notes 3, 8) & \(\pm 30 \mathrm{~mA}\) \\
Current at Power Supply Pin & 40 mA \\
Lead Temp. (Soldering, 10 sec.) & \(260^{\circ} \mathrm{C}\)
\end{tabular}
\begin{tabular}{lr}
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Junction Temperature (Note 4) & \(150^{\circ} \mathrm{C}\)
\end{tabular}

\section*{Operating Ratings (Note 1)}
\begin{tabular}{lr}
Supply Voltage & \(3.0 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}\) \\
Junction Temperature Range & \\
LMC6484AM & \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\) \\
LMC6484AI, LMC64841 & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}\) \\
Thermal Resistance \(\left(\theta_{\mathrm{JA}}\right)\) & \\
N Package, \(14-\) Pin Molded DIP & \(70^{\circ} \mathrm{C} / \mathrm{W}\) \\
M Package, 14-Pin Surface Mount & \(110^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular}

\section*{DC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
Boldface limits apply at the temperature extremes.

\section*{DC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\).
Boldface limits apply at the temperature extremes. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \[
\begin{aligned}
& \text { LMC6484AI } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & LMC6484I Limit (Note 6) & \[
\begin{aligned}
& \text { LMC6484M } \\
& \text { Limit } \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Units \\
\hline \multirow[t]{8}{*}{\(\mathrm{V}_{\mathrm{O}}\)} & \multirow[t]{8}{*}{Output Swing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V+=5 \mathrm{~V} \\
& R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2
\end{aligned}
\]} & 4.9 & \[
\begin{aligned}
& 4.8 \\
& 4.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 4.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 4.7
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.1 & \[
\begin{aligned}
& 0.18 \\
& \mathbf{0 . 2 4}
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.24
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& V+=5 V \\
& R_{L}=600 \Omega \text { to } V+/ 2
\end{aligned}
\]} & 4.7 & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4.24
\end{gathered}
\] & \[
\begin{gathered}
V \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 0.3 & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
0.65
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}+=15 \mathrm{~V} \\
& R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2
\end{aligned}
\]} & 14.7 & \[
\begin{gathered}
14.4 \\
14.2
\end{gathered}
\] & \[
\begin{gathered}
14.4 \\
14.2
\end{gathered}
\] & \[
\begin{gathered}
14.4 \\
14.2
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline & & & 0.16 & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& \mathbf{0 . 4 5}
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.45
\end{aligned}
\] & \[
\begin{gathered}
v \\
\max
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& V+=15 \mathrm{~V} \\
& R_{L}=600 \Omega \text { to } V+/ 2
\end{aligned}
\]} & 14.1 & \[
\begin{aligned}
& 13.4 \\
& 13.0
\end{aligned}
\] & \[
\begin{gathered}
13.4 \\
13.0
\end{gathered}
\] & \[
\begin{aligned}
& 13.4 \\
& 13.0
\end{aligned}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline & & & 0.5 & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current
\[
\mathrm{V}+=5 \mathrm{~V}
\]} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 20 & \[
\begin{aligned}
& 16 \\
& 12 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16 \\
12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 16 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min} \\
& \hline
\end{aligned}
\] \\
\hline & & Sinking, \(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}\) & 15 & \[
\begin{gathered}
11 \\
9.5
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& \mathbf{9 . 5}
\end{aligned}
\] & \[
\begin{gathered}
11 \\
\mathbf{8 . 0}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Isc} & \multirow[t]{2}{*}{Output Short Circuit Current
\[
V^{+}=15 \mathrm{~V}
\]} & Sourcing, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 30 & \[
\begin{aligned}
& 28 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& 28 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& 28 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min}
\end{aligned}
\] \\
\hline & & \begin{tabular}{l}
Sinking, \(V_{O}=12 \mathrm{~V}\) \\
(Note 8)
\end{tabular} & 30 & \[
\begin{array}{r}
30 \\
24 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 24 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& \mathbf{2 2} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~min} \\
& \hline
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Is} & \multirow[t]{2}{*}{Supply Current} & All Four Amplifiers
\[
\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2
\] & 2.0 & \[
\begin{aligned}
& 2.8 \\
& 3.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& \mathbf{3 . 6}
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 3.8
\end{aligned}
\] & \begin{tabular}{l}
mA \\
\(\max\)
\end{tabular} \\
\hline & & All Four Amplifiers
\[
\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2
\] & 2.6 & \[
\begin{aligned}
& 3.0 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& \mathbf{3 . 8}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 3.0 \\
& 4.0
\end{aligned}
\] & \begin{tabular}{l}
mA \\
max
\end{tabular} \\
\hline
\end{tabular}

\section*{AC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & LMC6484A Limit (Note 6) & \[
\begin{aligned}
& \text { LMC6484I } \\
& \text { Limit } \\
& \text { (Note 6) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LMC6484M } \\
& \text { Limit } \\
& \text { (Note 6) }
\end{aligned}
\] & Units \\
\hline SR & Slew Rate & (Note 9) & 1.3 & \[
\begin{aligned}
& 1.0 \\
& 0.7
\end{aligned}
\] & \[
\begin{gathered}
0.9 \\
0.63
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
0.54
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} / \mu \mathrm{s} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline GBW & Gain-Bandwidth Product & \(V+=15 \mathrm{~V}\). & 1.5 & & & & MHz \\
\hline \(\phi_{\mathrm{m}}\) & Phase Margin & & 50 & & & & Deg \\
\hline \(\mathrm{G}_{\mathrm{m}}\) & Gain Margin & & 15 & & & & dB \\
\hline & Amp-to-Amp Isolation & (Note 10) & 150 & & & & dB \\
\hline \(e_{n}\) & Input-Referred Voltage Noise & \[
\begin{aligned}
& f=1 \mathrm{kHz} \\
& V_{\mathrm{CM}}=1 \mathrm{~V}
\end{aligned}
\] & 37 & . & & , & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline \(\mathrm{i}_{\mathrm{n}}\) & Input-Referred Current Noise & \(\mathrm{f}=1 \mathrm{kHz}\) & 0.03 & & & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{T.H.D.} & \multirow[t]{2}{*}{Total Harmonic Distortion} & \[
\begin{aligned}
& f=1 \mathrm{kHz}, A_{V}=-2 \\
& R_{L}=10 \mathrm{k} \Omega, V_{O}=4.1 \mathrm{~V}_{P P}
\end{aligned}
\] & 0.01 & & & & \% \\
\hline & & \[
\begin{aligned}
& f=10 \mathrm{kHz}, A_{V}=-2 \\
& R_{L}=10 \mathrm{k} \Omega, V_{O}=8.5 \mathrm{~V}_{P P} \\
& V^{+}=10 \mathrm{~V}
\end{aligned}
\] & 0.01 & & & & \% \\
\hline
\end{tabular}

\section*{DC Electrical Characteristics}

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 5) }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { LMC6484AI } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { LMC6484I } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { LMC6484M } \\
\text { Limit } \\
\text { (Note 6) } \\
\hline
\end{array}
\] & Units \\
\hline Vos & Input Offset Voltage & & 0.9 & \[
\begin{aligned}
& 2.0 \\
& 2.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.8
\end{aligned}
\] & \[
\mathrm{mV}
\]
\[
\max
\] \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & & 2.0 & & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{B}\) & Input Bias Current & & 0.02 & & & & pA \\
\hline los & Input Offset Current & & 0.01 & & & & pA \\
\hline CMRR & Common Mode Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}\) & 74 & 64 & 60 & 60 & \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline PSRR & \begin{tabular}{l}
Power Supply \\
Rejection Ratio
\end{tabular} & \(3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}\) & 80 & 68 & 60 & 60 & \[
\begin{gathered}
\mathrm{dB} \\
\text { min }
\end{gathered}
\] \\
\hline \(\mathrm{V}_{\text {CM }}\) & Input Common-Mode Voltage Range & For CMRR \(\geq 50 \mathrm{~dB}\) & \(\mathrm{V}-\mathrm{-} 0.25\) & 0 & 0 & 0 & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & & \(\mathrm{V}+{ }^{+} 0.25\) & V+ & V+ & V+ & \[
\begin{gathered}
V \\
\mathrm{~min}
\end{gathered}
\] \\
\hline \(V_{0}\) & Output Swing & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) to \(\mathrm{V}+/ 2\) & 2.8 & & & & V \\
\hline & & & 0.2 & & & & V \\
\hline & & \(R_{L}=600 \Omega\) to \(\mathrm{V}+/ 2\) & 2.7 & 2.5 & 2.5 & 2.5 & \[
\begin{gathered}
V \\
\text { min }
\end{gathered}
\] \\
\hline - & & & 0.37 & 0.6 & 0.6 & 0.6 & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline Is & Supply Current & All Four Amplifiers & 1.65 & \[
\begin{aligned}
& 2.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
3.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.5 \\
3.2 \\
\hline
\end{array}
\] & mA max \\
\hline
\end{tabular}

\section*{AC Electrical Characteristics}

Unless otherwise specified, \(\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}\)
\begin{tabular}{l|l|l|c|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ Condltions } & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LMC6484AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC64841 \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LMC6484M \\
Limit \\
(Note 6)
\end{tabular} & Units
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of \(150^{\circ} \mathrm{C}\). Output currents in excess of \(\pm 30 \mathrm{~mA}\) over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\), and \(T_{A}\). The maximum allowable power dissipation at any amblent temperature is \(P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by festing or statistical analysis.
Note 7: \(V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}\) connected to 7.5 V . For Sourcing tests, \(7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}\). For Sinking tests, \(3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}\).
Note 8: Do not short circuit output to \(\mathrm{V}^{+}\), when \(\mathrm{V}+\) is greater than 13 V or reliability will be adversely affected.
Note 9: \(\mathrm{V}^{+}=15 \mathrm{~V}\). Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, \(\mathrm{V}^{+}=15 \mathrm{~V}\) and \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) connected to 7.5 V . Each amp excited in turn with 1 kHz to produce \(\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{Pp}}\).
Note 11: Connected as Voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6484X.

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise specified

Typical Performance Characteristics
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

\section*{Typical Performance Characteristics}
\(V_{S}=+15 \mathrm{~V}\), Single Supply, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Continued)

\section*{Application Information (Continued)}

\subsection*{1.0 Amplifier Topology}

The LMC6484 incorporates specially designed wide-compliance range current mirrors and the body effect to extend input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in other CMOS and bipolar rail-to-rail input amplifiers, were not used because of their inherent accuracy problems due to CMRR, cross-over distortion, and open-loop gain variation.
The LMC6484's input stage design is complemented by an output stage capable of rail-to-rail output swing even when driving a large load. Rail-to-rail output swing is obtained by taking the output directly from the internal integrator instead of an output buffer stage.

\subsection*{2.0 Input Common-Mode Voltage Range}

Unlike Bi-FET amplifier designs, the LMC6484 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

FIGURE 1. An Input Voltage Signal Exceeds the LMC6484 Power Supply Voltages with No Output Phase Inversion
The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

FIGURE 2. A \(\pm 7.5 \mathrm{~V}\) Input Signal Greatly Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to \(\mathbf{R}_{\mathbf{l}}\)
Applications that exceed this rating must externally limit the maximum input current to \(\pm 5 \mathrm{~mA}\) with an input resistor as shown in Figure 3.

TL/H/11714-11
FIGURE 3. RI Input Current Protection for Voltages Exceeding the Supply Voltage

\subsection*{3.0 Rail-To-Rail Output}

The approximated output resistance of the LMC6484 is \(180 \Omega\) sourcing and \(130 \Omega\) sinking at \(V_{S}=3 \mathrm{~V}\) and \(110 \Omega\) sourcing and \(83 \Omega\) sinking at \(V_{S}=5 \mathrm{~V}\). Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

\subsection*{4.0 Capacitive Load Tolerance}

The LMC6484 can typically directly drive a 100 pF load with \(\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}\) at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

TL/H/11714-17
FIGURE 4. Resistive Isolation of a 330 pF Capacitive Load

Application Information (Continued)

FIGURE 5. Pulse Response of the LMC6484 Circuit in Figure 4
Improved frequency response is achieved by indirectly driving capacitive loads as shown in Figure 6.

TL/H/11714-15
FIGURE 6. LMC6484 Non-Inverting Amplifier, Compensated to Handle a 330 pF Capacitive Load
R1 and C1 serve to counteract the loss of phase margin by feeding forward the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 are experimentally determined for the desired pulse response. The resulting pulse response can be seen in Figure 7.

\subsection*{5.0 Compensating for Input Capacitance}

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6484. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

TL/H/11714-19
FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 8), \(\mathrm{C}_{\mathrm{f}}\), is first estimated by:
\[
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
\]
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for \(\mathrm{C}_{\mathrm{f}}\) may be different. The values of \(\mathrm{C}_{\mathrm{f}}\) should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

\section*{Application Information (Continued)}

\subsection*{6.0 Printed-Circuit-Board Layout for High-Impedance Work}

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. when one wishes to take advantage of the ultra-low input current of the LMC6484, typically less than 20 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6484's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 9. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of \(10^{12} \Omega\), which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6484's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of \(10^{11} \Omega\) would cause only 0.05 pA of leakage current. See Figures 10a, 10b and 10c for typical connections of guard rings for standard op-amp configurations.

TL/H/11714-20
FIGURE 9. Example of Guard Ring in P.C. Board Layout

TL/H/11714-21
(a) InvertIng Amplifier

TL/H/11714-22
(b) Non-Inverting Amplifier

TL/H/11714-23
(c) Follower

FIGURE 10. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 11.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 11. Alr Wiring

\section*{Application Information (Continued)}

\subsection*{7.0 Offset Voltage Adjustment}

Offset voltage adjustment circuits are illustrated in Figures 13 and 14. Large value resistances and potentiometers are used to reduce power consumption while providing typically \(\pm 2.5 \mathrm{mV}\) of adjustment range, referred to the input, for both configurations with \(\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\).

TL/H/11714-25
FIGURE 12. Inverting Configuration Offset Voltage Adjustment

FIGURE 13. Non-Inverting Configuration Offset Voltage Adjustment

TL/H/11714-28
FIGURE 14. Operating from the same Supply Voltage, the LMC6484 buffers the ADC12038 maintalning excellent accuracy

\section*{Application Information (Continued)}

\subsection*{10.0 Instrumentation Circuits}

The LMC6484 has the high input impedance, large com-mon-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6484 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6484 an excellent choice for noisy or industrial environments. Other applications that
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers.
A small valued potentiometer is used in series with Rg to set the differential gain of the 3 op -amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

TL/H/11714-29
FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier

A 2 op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 16. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

TL/H/11714-30
FIGURE 16. Low-Power Two-Op-Amp Instrumentation Amplifier

\section*{Application Information (Continued)}

\subsection*{11.0 Spice Macromodel}

A spice macromodel is available for the LMC6484. This model includes accurate simulation of:
- input common-mode voltage range
- frequency and transient response
- GBW dependence on loading conditions
- quiescent and dynamic supply current
- output swing dependence on loading conditions
and many more characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

\section*{Typical Single-Supply Applications}

TL/H/11714-31
FIGURE 17. Half-Wave Rectifier with Input Current Protection (RI)

TL/H/11714-32
FIGURE 17a. Half-Wave Rectifier Waveform
The circuit in Figure 17 uses a single supply to half wave rectify a sinusoid centered about ground. \(R_{\rho}\) limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18.

TL/H/11714-33
FIGURE 18. Full Wave Rectifier with Input Current Protection (\(\mathrm{R}_{\mathbf{l}}\))

FIGURE 18a. Full Wave Rectifier Waveform

TL/H/11714-35
FIGURE 19. Large Compliance Range Current Source

\section*{Typical Single-Supply Applications (Continued)}

TL/H/11714-36
FIGURE 20. Positive Supply Current Sense

TL/H/11714-37
FIGURE 21. Low Voltage Peak Detector with Rail-to-Rall Peak Capture Range
In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of \(\mathrm{C}_{\mathrm{H}}\) and diode leakage current. The ultra-low input current of the LMC6484 has a negligible effect on droop.

TL/H/11714-38
FIGURE 22. Rall-to-Rall Sample and Hold
The LMC6484's high CMRR (85 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.

\[
R 1=R 2, C 1=C 2 ; f=\frac{1}{2 \pi R 1 C 1} ; D F=\frac{1}{2} \sqrt{\frac{C_{2}}{C_{1}}} \sqrt{\frac{R_{2}}{R_{1}}}
\]

TL/H/11714-27

FIGURE 23. Rall-to-Rail Single Supply Low Pass Filter
The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the A/D converter. Filter designs can also take advantage of the LMC6484 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

\title{
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers
}

\section*{General Description}

Using patent pending new circuit topologies, the LM6142/44 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8 V to over 24 V , the LM6142/44 is an excellent choice for battery operated systems, portable instrumentation and others.
The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
High gain-bandwidth with \(650 \mu \mathrm{~A} /\) Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

Features At \(V_{S}=5 \mathrm{~V}\). Typ unless noted.
- Rail-to-rail input CMVR -0.25 V to 5.25 V

■ Rail-to-rail output swing 0.005 V to 4.995 V
Wide gain-bandwidth: 17 MHz at 50 kHz (typ)
- Slew rate:

Small signal, \(5 \mathrm{~V} / \mu \mathrm{s}\)
Large signal, \(30 \mathrm{~V} / \mu \mathrm{s}\)
- Low supply current \(650 \mu \mathrm{~A} /\) Amplifier

■ Wide supply range 1.8 V to 24 V
- CMRR 107 dB
- Gain 108 dB with \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\)
- PSRR 87 dB

\section*{Applications}
- Battery operated instrumentation
- Depth sounders/fish finders
- Barcode scanners
- Wireless communications
- Rail-to-rail in-out instrumentation amps

\section*{Connection Diagrams}

8-Pin DIP/SO

14-Pin DIP/SO

Top View

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Package} & Temperature Range & Temperature Range & \multirow[b]{2}{*}{NSC
Drawing} \\
\hline & \[
\begin{gathered}
\text { Industrial } \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{gathered}
\] & \[
\begin{gathered}
\text { Military } \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & \\
\hline 8-Pin Molded DIP & LM6142AIN, LM6142BIN & & N08E \\
\hline 8-Pin Small Outline & LM6142AIM, LM6142BIM & & M08A \\
\hline 14-Pin Molded DIP & LM6144AIN, LM6144BIN & & N14A \\
\hline 14-Pin Small Outline & LM6144AIM, LM6144BIM & & M14A \\
\hline 8-Pin CDIP & & LM6142AMJ/883 & D08C \\
\hline
\end{tabular}
\(\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { ESD Tolerance (Note 2) } & 2500 \mathrm{~V} \\ \text { Differential Input Voltage } & 15 \mathrm{~V} \\ \text { Voltage at Input/Output Pin } & \left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V} \\ \text { Supply Voltage (V }{ }^{+}-\mathrm{V}^{-} \text {) } & 35 \mathrm{~V} \\ \text { Current at Input Pin } & \pm 10 \mathrm{~mA} \\ \text { Current at Output Pin (Note 3) } & \pm 25 \mathrm{~mA} \\ \text { Current at Power Supply Pin } & 50 \mathrm{~mA} \\ \text { Lead Temperature (soldering, } 10 \mathrm{sec}) & 260^{\circ} \mathrm{C} \\ \text { Storage Temp. Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Junction Temperature (Note 4) } & 150^{\circ} \mathrm{C}\end{array}\)
5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}+/ 2\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ
(Note 5) & \begin{tabular}{l}
LM6144AI \\
LM6142AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{l}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline Vos & Input Offset Voltage & & 0.3 & \[
\begin{aligned}
& 1.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.3
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\max
\end{gathered}
\] \\
\hline TCV \({ }_{\text {OS }}\) & Input Offset Voltage Average Drift & & 3 & & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(I_{B}\)} & \multirow[t]{2}{*}{Input Bias Current} & & 170 & 250 & 300 & \multirow[b]{2}{*}{nA max} \\
\hline & & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}\) & 180 & \[
\begin{aligned}
& 280 \\
& 526
\end{aligned}
\] & 526 & \\
\hline los & Input Offset Current & & 3 & \[
\begin{aligned}
& 30 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
nA \\
max
\end{tabular} \\
\hline \(\mathrm{R}_{\text {IN }}\) & \begin{tabular}{l}
Input Resistance, \(\mathrm{C}_{\mathrm{M}}\) \\
Common Mode Rejection Ratio
\end{tabular} & & 126 & & & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{Common Mode Rejection Ratio} & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}\) & 107 & \[
\begin{aligned}
& 84 \\
& 78
\end{aligned}
\] & \[
\begin{aligned}
& 84 \\
& 78
\end{aligned}
\] & \multirow{3}{*}{\[
\begin{gathered}
\mathrm{dB} \\
\min
\end{gathered}
\]} \\
\hline & & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}\) & \[
\begin{aligned}
& 82 \\
& 79
\end{aligned}
\] & \[
\begin{aligned}
& 66 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 66 \\
& 64
\end{aligned}
\] & \\
\hline PSRR & \begin{tabular}{l}
Power Supply \\
Rejection Ratio
\end{tabular} & \(5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 24 \mathrm{~V}\) & 87 & \[
\begin{aligned}
& 80 \\
& 78 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 78 \\
& \hline
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {CM }}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & & -0.25 & 0 & 0 & \multirow[t]{2}{*}{V} \\
\hline & & & 5.25 & 5.0 & 5.0 & \\
\hline \(A_{V}\) & Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\) & \[
\begin{aligned}
& 270 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
33 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 80 \\
& 25
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V} / \mathrm{mV}\) \\
min
\end{tabular} \\
\hline \multirow[t]{6}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{6}{*}{Output Swing} & \multirow[t]{2}{*}{\(R_{L}=100 k\)} & 0.005 & \[
\begin{gathered}
0.01 \\
0.013
\end{gathered}
\] & \[
\begin{gathered}
0.01 \\
0.013
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & & 4.995 & \[
\begin{array}{r}
4.98 \\
4.93 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4.98 \\
4.93
\end{array}
\] & \[
\begin{gathered}
\mathrm{V} \\
\min
\end{gathered}
\] \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\)} & 0.02 & & & \(\checkmark\) max \\
\hline & & & 4.97 & & & \(\checkmark\) min \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}\)} & 0.06 & \[
\begin{gathered}
0.1 \\
0.133
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
0.133 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max \\
\hline
\end{gathered}
\] \\
\hline & & & 4.90 & \[
\begin{array}{r}
4.86 \\
4.80 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4.86 \\
4.80 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{V} \\
\min
\end{gathered}
\] \\
\hline
\end{tabular}

\subsection*{5.0V DC Electrical Characteristics}

Unless Otherwise Specified, All Limits Guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}+/ 2\). Boldface limits apply at the temperature extremes. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \begin{tabular}{l}
LM6144AI \\
LM6142AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{l}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline \multirow[t]{4}{*}{Isc} & \multirow[t]{4}{*}{Output Short Circuit Current LM6142} & \multirow[t]{2}{*}{Sourcing} & \multirow[t]{2}{*}{13} & \[
\begin{array}{r}
10 \\
4.9
\end{array}
\] & \[
\begin{aligned}
& 8 \\
& 4
\end{aligned}
\] & \begin{tabular}{l}
mA \\
\(\min\)
\end{tabular} \\
\hline & & & & 35 & 35 & mA max \\
\hline & & \multirow[t]{2}{*}{Sinking} & \multirow[t]{2}{*}{24} & \[
\begin{gathered}
10 \\
5.3
\end{gathered}
\] & \[
\begin{gathered}
10 \\
5.3
\end{gathered}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & & & 35 & 35 & mA max \\
\hline \multirow[t]{4}{*}{Isc} & \multirow[t]{4}{*}{Output Short Circuit Current LM6144} & \multirow[t]{2}{*}{Sourcing} & \multirow[t]{2}{*}{8} & \[
\begin{aligned}
& 6 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
mA \\
min
\end{tabular} \\
\hline & & & & 35 & 35 & mA max \\
\hline & & \multirow[t]{2}{*}{Sinking} & \multirow[t]{2}{*}{22} & \[
\begin{aligned}
& 8 \\
& 4
\end{aligned}
\] & \[
8
\] & mA min \\
\hline & & & & 35 & 35 & mA max \\
\hline Is & Supply Current & Per Amplifier & 650 & \[
\begin{array}{r}
800 \\
\mathbf{8 8 0} \\
\hline
\end{array}
\] & \[
\begin{gathered}
800 \\
\mathbf{8 8 0}
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
max
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.0V AC Electrical Characteristics}

Unless Otherwise Specified, All Limits Guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}_{\mathrm{S}} / 2\). Boldface limits apply at the temperature extremes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{l}
LM6144AI \\
LM6142AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{l}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline SR & Slew Rate & \[
\begin{aligned}
& 8 V_{p-p} @ V_{C C} 12 V \\
& R_{S}>1 \mathrm{k} \Omega
\end{aligned}
\] & 25 & \[
\begin{aligned}
& 15 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 11
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} / \mu \mathrm{s} \\
\mathrm{~min}
\end{gathered}
\] \\
\hline GBW & Gain-Bandwidth Product & \(\mathrm{f}=50 \mathrm{kHz}\) & 17 & \[
\begin{gathered}
10 \\
6
\end{gathered}
\] & \[
\begin{gathered}
10 \\
6
\end{gathered}
\] & \begin{tabular}{l}
MHz \\
min
\end{tabular} \\
\hline \(\phi_{m}\) & Phase Margin & & 38 & & & Deg \\
\hline & Amp-to-Amp Isolation & & 130 & & & dB \\
\hline \(\mathrm{e}_{\mathrm{n}}\) & Input-Referred Voltage Noise & \(\mathrm{f}=1 \mathrm{kHz}\) & 16 & & & \(\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}\) \\
\hline \(i_{n}\) & Input-Referred Current Noise & \(\mathrm{f}=1 \mathrm{kHz}\) & 0.22 & & & \(\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}\) \\
\hline T.H.D. & Total Harmonic Distortion & \(f=10 \mathrm{kHz}, R_{L}=10 \mathrm{k} \Omega\), & 0.003 & & & \% \\
\hline
\end{tabular}

\subsection*{2.7V DC Electrical Characteristics}

Unless Otherwise Specified, All Limits Guaranteed for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}+/ 2\). Boldface limits apply at the temperature extreme
\begin{tabular}{l|l|l|l|c|c|c}
\hline Symbol & \multicolumn{1}{c|}{ Parameter } & Conditions & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LM6144AI \\
LM6142AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units
\end{tabular}

\subsection*{2.7V AC Electrical Characteristics}

Unless Otherwise Specified, All Limits Guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}+/ 2\). Boldface limits apply at the temperature extreme
\begin{tabular}{l|l|c|c|c|c|c}
\hline Symbol & Parameter & Conditions & \begin{tabular}{c}
Typ \\
(Note 5)
\end{tabular} & \begin{tabular}{c}
LM6144AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{c}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline GBW & Gain-Bandwidth Product & \(\mathrm{f}=50 \mathrm{kHz}\) & 9 & & & MHz \\
\hline\(\phi_{\mathrm{m}}\) & Phase Margin & & 36 & & & Deg \\
\hline \(\mathrm{G}_{\mathrm{m}}\) & Gain Margin & & 6 & & & dB \\
\hline
\end{tabular}

\section*{24V Electrical Characteristics}

Unless Otherwise Specified, All Limits Guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=24 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2\) and \(\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega\) to \(\mathrm{V}_{\mathrm{S}} / 2\). Boldface limits apply at the temperature extreme
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typ (Note 5) & \begin{tabular}{l}
LM6144AI \\
LM6142AI \\
Limit \\
(Note 6)
\end{tabular} & \begin{tabular}{l}
LM6144BI \\
LM6142BI \\
Limit \\
(Note 6)
\end{tabular} & Units \\
\hline \(\mathrm{V}_{\text {OS }}\) & Input Offset Voltage & & 1.3 & \[
\begin{gathered}
2 \\
4.8
\end{gathered}
\] & \[
\begin{aligned}
& 3.8 \\
& 4.8
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{mV}
\] \\
\(\max\)
\end{tabular} \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & 174 & & & nA max \\
\hline los & Input Offset Current & & 5 & & & nA max \\
\hline \(\mathrm{R}_{\text {IN }}\) & Input Resistance & & 288 & & & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{Common Mode Rejection Ratio} & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 23 \mathrm{~V}\) & 114 & & & \multirow{3}{*}{\[
\begin{gathered}
\mathrm{dB} \\
\min
\end{gathered}
\]} \\
\hline & & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 24 \mathrm{~V}\) & 100 & & - & \\
\hline PSRR & Power Supply Rejection Ratio & \(\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 24 \mathrm{~V}\) & 87 & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {CM }}\)} & \multirow[t]{2}{*}{Input Common-Mode Voltage Range} & & -0.25 & 0 & 0 & \(V\) min \\
\hline & & & 24.25 & 24 & 24 & \(V\) max \\
\hline \(A_{V}\) & Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\) & 500 & & , & \[
\begin{gathered}
\mathrm{V} / \mathrm{mV} \\
\mathrm{~min} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(V_{0}\)} & \multirow[t]{2}{*}{Output Swing} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\)} & 0.07 & \[
\begin{gathered}
0.15 \\
0.185
\end{gathered}
\] & \[
\begin{gathered}
0.15 \\
0.185
\end{gathered}
\] & \[
\begin{gathered}
V \\
\max
\end{gathered}
\] \\
\hline & & & 23.85 & \[
\begin{gathered}
23.81 \\
23.62
\end{gathered}
\] & \[
\begin{gathered}
23.81 \\
23.62
\end{gathered}
\] & \[
\begin{gathered}
V \\
\min
\end{gathered}
\] \\
\hline Is & Supply Current & Per Amplifier & \[
750
\] & \[
\begin{gathered}
1100 \\
1150
\end{gathered}
\] & \[
\begin{array}{r}
1100 \\
1150
\end{array}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
max
\end{tabular} \\
\hline GBW & Gain-Bandwidth Product & \(f=50 \mathrm{kHz}\) & 18 & & & MHz \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Charactenstics.
Note 2: Human body model, \(1.5 \mathrm{k} \Omega\) in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of \(150^{\circ} \mathrm{C}\).
Note 4: The maximum power dissipation is a function of \(T_{J(\max)}, \theta_{J A}\), and \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is \(\mathrm{P}_{\mathrm{D}}=\) \(\left(T_{j(\max)}-T_{A}\right) / \theta_{J A}\). All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: For guaranteed military specifications see military datasheet MNLM6142AM-X.

Typical Performance Characteristics \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) Unless Otherwise Specified

Open-Loop Transfer Function

Open-Loop Transfer Function

Blas Current vs Supply Voltage

Open-Loop Transfer Function

\section*{Typical Performance Characteristics}
\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) Unless Otherwise Specified（Continued）

\section*{Typical Performance Characteristics}
\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) Unless Otherwise Specified (Continued)

Noise Voltage vs Frequency

Open Loop Gain vs Load, 24V Supply

Noise Current vs Frequency

TL/H/12057-5

\section*{LM6142／44 Application Ideas}

The LM6142 brings a new level of ease of use to opamp system design．
With greater than rail－to－rail input voltage range concern over exceeding the common－mode voltage range is elimi－ nated．
Rail－to－rail output swing provides the maximum possible dy－ namic range at the output．This is particularly important when operating on low supply voltages．
The high gain－bandwidth with low supply current opens new battery powered applications，where high power consump－ tion，previously reduced battery life to unacceptable levels．
To take advantage of these features，some ideas should be kept in mind．

\section*{ENHANCED SLEW RATE}

Unlike most bipolar opamps，the unique phase reversal pre－ vention／speed－up circuit in the input stage causes the slew rate to be very much a function of the input signal amplitude．
Figure 1 shows how excess input signal，is routed around the input collector－base junctions，directly to the current mir－ rors．
The LM6142／44 input stage converts the input voltage change to a current change．This current change drives the current mirrors through the collectors of Q1－Q2，Q3－Q4 when the input levels are normal．
If the input signal exceeds the slew rate of the input stage， the differential input voltage rises above two diode drops． This excess signal bypasses the normal input transistors， （Q1－Q4），and is routed in correct phase through the two additional transistors，（Q5，Q6），directly into the current mir－ rors．
This rerouting of excess signal allows the slew－rate to in－ crease by a factor of 10 to 1 or more．（See Figure 2．）
As the overdrive increases，the opamp reacts better than a conventional opamp．Large fast pulses will raise the slew－ rate to around 30 V to \(60 \mathrm{~V} / \mu \mathrm{s}\) ．

TL／H／12057－7
FIGURE 2
This effect is most noticeable at higher supply voltages and lower gains where incoming signals are likely to be large．
This new input circuit also eliminates the phase reversal seen in many opamps when they are overdriven．
This speed－up action adds stability to the system when driv－ ing large capacitive loads．

\section*{DRIVING CAPACITIVE LOADS}

Capacitive loads decrease the phase margin of all opamps． This is caused by the output resistance of the amplifier and the load capacitance forming an R－C phase lag network． This can lead to overshoot，ringing and oscillation．Slew rate limiting can also cause additional lag．Most opamps with a fixed maximum slew－rate will lag further and further behind when driving capacitive loads even though the differential input voltage raises．With the LM6142，the lag causes the slew rate to raise．The increased slew－rate keeps the output following the input much better．This effectively reduces phase lag．After the output has caught up with the input，the differential input voltage drops down and the amplifier set－ tles rapidly．

FIGURE 1

\section*{LM6142/44 Application Ideas}

\section*{(Continued)}

These features allow the LM6142 to drive capacitive loads as large as 1000 pF at unity gain and not oscillate. The scope photos (Figure 3a and 3b) above show the LM6142 driving a 1000 pF load. In Figure 3a, the upper trace is with no capacitive load and the lower trace is with a 1000 pF load. Here we are operating on \(\pm 12 \mathrm{~V}\) supplies with a 20 Vp-p pulse. Excellent response is obtained with a \(\mathrm{C}_{\mathrm{f}}\) of 10 pF . In Figure 3b, the supplies have been reduced to \(\pm 2.5 \mathrm{~V}\), the pulse is \(4 \mathrm{Vp}-\mathrm{p}\) and \(\mathrm{C}_{f}\) is 39 pF . The best value for the compensation capacitor is best established after the board layout is finished because the value is dependent on board stray capacity, the value of the feedback resistor, the closed loop gain and, to some extent, the supply voltage.
Another effect that is common to all opamps is the phase shift caused by the feedback resistor and the input capacitance. This phase shift also reduces phase margin. This effect is taken care of at the same time as the effect of the capacitive load when the capacitor is placed across the feedback resistor.
The circuit shown in Figure 4 was used for these scope photos.

TL/H/12057-8
FIGURE 3a

TL/H/12057-9
FIGURE 3b

FIGURE 4

\section*{Typical Applications}

\section*{FISH FINDER/ DEPTH SOUNDER.}

The LM6142/44 is an excellent choice for battery operated fish finders. The low supply current, high gain-bandwidth and full rail to rail output swing of the LM6142 provides an ideal combination for use in this and similar applications.

\section*{ANALOG TO DIGITAL CONVERTER BUFFER}

The high capacitive load driving ability, rail-to-rail input and output range with the excellent CMR of 82 dB , make the LM6142/44 a good choice for buffering the inputs of \(A\) to \(D\) converters.

\section*{3 OPAMP INSTRUMENTATION AMP WITH RAIL-TORAIL INPUT AND OUTPUT}

Using the LM6144, a 3 opamp instrumentation amplifier with rail-to-rail inputs and rail to rail output can be made. These features make these instrumentation amplifiers ideal for single supply systems.
Some manufacturers use a precision voltage divider array oi 5 resistors to divide the common-mode voltage to get an input range of rail-to-rail or greater. The problem with this method is that it also divides the signal, so to even get unity gain, the amplifier must be run at high closed loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these precision resistors reduces the CMR as well. Using the LM6144, all of these problems are eliminated.
In this example, amplifiers A and B act as buffers to the differential stage (Figure 5). These buffers assure that the input impedance is over \(100 \mathrm{M} \Omega\) and they eliminate the requirement for precision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintain the CMR set by the matching of R1-R2 with R3-R4.

TL/H/12057-13
FIGURE 5

The gain is set by the ratio of R2／R1 and R3 should equal R1 and R4 equal R2．Making R4 slightly smaller than R2 and adding a trim pot equal to twice the difference between R2 and R4 will allow the CMR to be adjusted for optimum．
With both rail to rail input and output ranges，the inputs and outputs are only limited by the supply voltages．Remember that even with rail－to－rail output，the output can not swing
past the supplies so the combined common mode voltage plus the signal should not be greater than the supplies or limiting will occur．

\section*{SPICE MACROMODEL}

A SPICE macromodel of this and many other National Semi－ conductor opamps is available at no charge from the NSC Customer Response Group at 800－272－9959．

\section*{CNational Semiconductor}

\section*{MOSFET Selection Guide}

\section*{SO-8 DMOS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part Number} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}(\mathrm{V})\)} & \multicolumn{2}{|c|}{\(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \operatorname{Max}(\Omega)\)} & \multirow[b]{2}{*}{\(\mathrm{l} \mathrm{D}_{(A)}\)} & \multirow[b]{2}{*}{\(P_{\text {d }}(W)\)} & \multirow[b]{2}{*}{Configuration} \\
\hline & & \(\mathrm{V}_{\text {GS }}\) @10V & \(\mathrm{V}_{\mathrm{GS}}\) @4.5V & & & \\
\hline \multicolumn{7}{|l|}{N-Channel} \\
\hline NDS9410 & 30 & 0.03 & 0.05 & 7.2 & 2.5 & Single \\
\hline NDS9936 & 30 & 0.05 & 0.08 & 5 & 2 & Dual \\
\hline NDS9945 & 60 & 0.1 & 0.2 & 3.5 & 2 & Dual \\
\hline NDS9955 & 50 & 0.13 & 0.2 & 3 & 2 & Dual \\
\hline NDS9956 & 20 & 0.1 & 0.2 & 3.5 & 2 & Dual \\
\hline NDS9959 & 50 & 0.3 & 0.5 & 2 & 2 & Dual \\
\hline \multicolumn{7}{|l|}{P-Channel} \\
\hline NDS9400 & -20 & 0.25 & 0.4 & -2.5 & 2.5 & Single \\
\hline NDS9405 & -20 & 0.1 & 0.16 & -4.3 & 2.5 & Single \\
\hline NDS9407 & -60 & 0.15 & 0.24 & -3.3 & 2.5 & Single \\
\hline NDS9430 & -20 & 0.06 & 0.115 & -5.3 & 2.5 & Single \\
\hline NDS9435 & -30 & 0.07 & 0.13 & -4.6 & 2.5 & Single \\
\hline NDS9947 & -20 & 0.1 & 0.19 & -3.5 & 2 & Dual \\
\hline NDS9948 & -60 & 0.25 & 0.5 & -2.3 & 2 & Dual \\
\hline NDS9953 & -20 & 0.25 & 0.4 & -2.3 & 2 & Dual \\
\hline \multicolumn{7}{|l|}{Complementary N-P Channel} \\
\hline NDS9942 & \[
\begin{gathered}
20 \\
-20
\end{gathered}
\] & \[
\begin{gathered}
0.125 \\
0.2
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& 0.35
\end{aligned}
\] & \[
\begin{gathered}
3 \\
-2.5
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & N-Channel P-Channel \\
\hline NDS9943 & \[
\begin{gathered}
20 \\
-20 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.125 \\
0.16 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.25 \\
0.3
\end{gathered}
\] & \[
\begin{gathered}
3 \\
-2.8 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & N-Channel P-Channel \\
\hline NDS9952 & \[
\begin{gathered}
25 \\
-25 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
0.25
\end{gathered}
\] & \[
\begin{gathered}
0.15 \\
0.4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
-2.3 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & N-Channel P-Channel \\
\hline NDS9958 & \[
\begin{gathered}
20 \\
-20 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.1
\end{aligned}
\] & \[
\begin{array}{r}
0.15 \\
0.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.5 \\
-3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & N-Channel P-Channel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Part \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\(V_{\text {DS }}(\mathbf{V})\)} & \multicolumn{2}{|c|}{\(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{Max}(\Omega)\)} & \multirow[t]{2}{*}{\(I_{D}(A)\)} & \multirow[t]{2}{*}{\(P_{\text {d }}(W)\)} \\
\hline & & \(\mathrm{V}_{\mathrm{GS}}\) @10V & \(\mathrm{V}_{\mathrm{GS}}\) @ 4.5V & & \\
\hline \multicolumn{6}{|l|}{N-Channel} \\
\hline 2N7002 & 60 & 7.5 & & 0.115 & 0.2 \\
\hline BSS123 & 100 & 6 & & 0.17 & 0.36 \\
\hline BSS138 & 50 & 3.5 & 6 & 0.22 & 0.36 \\
\hline MMBF170 & 60 & 5 & & 0.5 & 0.3 \\
\hline NDS7002A & 60 & 2 & & 0.28 & 0.3 \\
\hline \multicolumn{6}{|l|}{P-Channel} \\
\hline BSS84* & -50 & 10 & & -0.13 & 0.3 \\
\hline NDS0605 & -60 & 5 & 7.5 & -0.18 & 0.36 \\
\hline NDS0610 & -60 & 10 & & -0.12 & 0.36 \\
\hline
\end{tabular}

\section*{SOT-23 SUPERSOTTM-3}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Part \\
Number
\end{tabular}} & \multirow{2}{*}{\(V_{\text {DS }}(\mathbf{V})\)} & \multicolumn{2}{|c|}{\(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{Max}(\Omega)\)} & \multirow{2}{*}{\(\mathrm{ld}(\mathrm{A})\)} & \multirow{2}{*}{\(P_{\text {d }}(W)\)} \\
\hline & & VGS @ 10 V & \(\mathrm{V}_{\text {GS }}\) @ 4.5V & & \\
\hline \multicolumn{6}{|l|}{N-Channel} \\
\hline NDS351N & 30 & & 0.25 & 1.1 & 0.5 \\
\hline NDS355N & 30 & & 0.125 & 1.6 & 0.5 \\
\hline \multicolumn{6}{|l|}{P-Channel} \\
\hline NDS352P & -20 & & 0.5 & -0.85 & 0.5 \\
\hline NDS356P & -20 & & 0.3 & -1.1 & 0.5 \\
\hline
\end{tabular}

\section*{SOT-223 POWERSOT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part Number} & \multirow[t]{2}{*}{\(\mathbf{V}_{\mathrm{DS}}(\mathbf{V})\)} & \multicolumn{2}{|c|}{\(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{Max}(\Omega)\)} & \multirow[b]{2}{*}{\(I_{\text {d }}(\mathrm{A})\)} & \multirow[b]{2}{*}{\(\mathrm{P}_{\mathrm{D}}(\mathrm{W})\)} \\
\hline & & \(\mathrm{V}_{\mathrm{GS}}\) @ 10 V & \(\mathrm{V}_{\mathrm{GS}}\) @4.5V & & \\
\hline
\end{tabular}

\section*{N-Channel}
\begin{tabular}{c|c|c|c|c|c}
\hline NDT014 & 60 & 0.2 & & 2.7 & 3 \\
\hline NDT451N & 30 & 0.05 & 0.1 & 5.5 & 3 \\
\hline NDT3055 & 60 & 0.12 & & 3.7 & 3 \\
\hline NDT3055L & 60 & & 0.15 & 3.5 & 3 \\
\hline P-Channel & & & & \\
\hline NDT452P & -30 & 0.18 & 0.32 & -3 & 3 \\
\hline NDT2955 & -60 & 0.3 & 0.5 & -2.5 & 3 \\
\hline
\end{tabular}

\footnotetext{
*Preliminary information, please contact Discrete POWER \& Signal Technologies Marketing for updated information.
}

\section*{NDS351N}

\section*{N-Channel Logic Level Enhancement Mode Field Effect Transistor}

\section*{General Description}

These N -channel logic level enhancement mode power field effect transistors are produced using National's proprietary high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

\section*{Features}
\(\square 1.1 \mathrm{~A}, 30 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.25 \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}\)
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities
\(\square\) High density cell design for extremely low \(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\)
- Exceptional on-resistance and maximum DC current capability
- Compact industry standard SOT-23 surface mount package

Absolute Maximum Ratings \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|}
\hline Symbol & \multicolumn{2}{|l|}{Parameter} & NDS351N & Units \\
\hline \(V_{\text {DSS }}^{\prime}\) & \multicolumn{2}{|l|}{Drain-Source Voltage} & 30 & V \\
\hline \(V_{\text {GSS }}\) & Gate-Source Voltage & - Continuous & \(\pm 20\) & V \\
\hline \multirow[t]{2}{*}{\(l_{\text {d }}\)} & \multirow[t]{2}{*}{Maximum Drain Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text {-Continuous } \\
& \text { —Pulsed }
\end{aligned}
\]} & \(\pm 1.1\). & \multirow{2}{*}{A} \\
\hline & & & \(\pm 10\) : & \\
\hline \multirow[t]{2}{*}{PD} & \multirow[t]{2}{*}{Maximum Power Dissipation} & \multirow[t]{2}{*}{\[
\begin{aligned}
& @ T_{A}=25^{\circ} \mathrm{C} \\
& \varrho \mathrm{C}_{\mathrm{C}}=25^{\circ} \mathrm{C}
\end{aligned}
\]} & 500 (Note 1) & mW \\
\hline & & & 1.7 (Note 1) & W \\
\hline \(\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}\) & \multicolumn{2}{|l|}{Operating and Storage Temperature Range} & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{c|l|c|c}
\hline\(R_{\theta J A}\) & Thermal Resistance, Junction-to-Ambient & 250 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{R}_{\theta \mathrm{JC}}\) & Thermal Resistance, Junction-to-Case & 75 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Electrical Characteristics (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)} \\
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Units \\
\hline \multicolumn{7}{|l|}{OFF CHARACTERISTICS} \\
\hline BV \({ }_{\text {DSS }}\) & Drain-Source Breakdown Voltage & \(V_{G S}=0 V_{1} I_{D}=250 \mu \mathrm{~A}\) & 30 & & & V \\
\hline \multirow[t]{2}{*}{loss} & \multirow[t]{2}{*}{Zero Gate Voltage Drain Current} & \[
V_{D S}=24 \mathrm{~V}
\] & & & 1 & \(\mu \mathrm{A}\) \\
\hline & & \(V_{G S}=0 V \quad T_{J}=125^{\circ} \mathrm{C}\) & & & 10 & \(\mu \mathrm{A}\) \\
\hline IGSSF & Gate-Body Leakage, Forward & \(\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & . & 100 & nA \\
\hline IGSSR & Gate-Body Leakage, Reverse & \(V_{G S}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & & \(-100\) & nA \\
\hline \multicolumn{7}{|l|}{ON CHARACTERISTICS (Note 2)} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})\)} & \multirow[t]{2}{*}{Gate Threshold Voltage} & \(V_{D S}=V_{G S}, I_{D}=250 \mu \mathrm{~A}\) & 0.8 & 1.6 & 2 & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{T}_{J}=125^{\circ} \mathrm{C}\) & 0.5 & 1.3 & 1.5 & \\
\hline \multirow[t]{3}{*}{\(\mathrm{R}_{\text {DS(ON }}\)} & \multirow[t]{2}{*}{Static Drain-Source On-Resistance} & \(\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.1 \mathrm{~A}\) & & 0.185 & 0.25 & \multirow{3}{*}{\(\Omega\)} \\
\hline & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & 0.26 & 0.37 & \\
\hline & \% - \({ }^{\text {a }}\) & \(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=1.4 \mathrm{~A}\) & & 0.135 & 0.16 & \\
\hline \(\mathrm{ID}(\mathrm{ON})\) & On-State Drain Current & \(\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}\) & 5 & & & A \\
\hline gFS & Forward Transconductance & \(V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.1 \mathrm{~A}\) & 2 & 2.5 & & S \\
\hline \multicolumn{7}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\
& f=1.0 \mathrm{MHz}
\end{aligned}
\]} & & 140 & & pF \\
\hline \(\mathrm{C}_{\text {oss }}\) & Output Capacitance & & & 80 & & pF \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & & 18 & & pF \\
\hline \multicolumn{7}{|l|}{SWITCHING CHARACTERISTICS (Note 2)} \\
\hline \(\left.\mathrm{t}_{\mathrm{D} \text { (}} \mathrm{ON}\right)\) & Turn-On Delay Time & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{D D}=10 \mathrm{~V}, I_{D}=1 \mathrm{~A} \\
& V_{G S}=10 \mathrm{~V}, R_{G E N}=50 \Omega
\end{aligned}
\]} & & 9 & 15 & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Turn-On Rise Time & & & 16 & 30 & ns \\
\hline tD(OFF) & Turn-Off Delay Time & & & 26 & 50 & ns \\
\hline \(t_{i}\) & Turn-Off Fall Time . & & & 19 & 40 & ns \\
\hline \(Q_{g}\) & Total Gate Charge & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.1 \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}
\end{aligned}
\]} & & 2 & 3.5 & nC \\
\hline \(\mathrm{Q}_{\mathrm{gs}}\) & Gate-Source Charge & & & & 1 & nC \\
\hline \(\mathrm{Q}_{\mathrm{gd}}\) & Gate-Drain Charge & & & & 2 & nC \\
\hline \multicolumn{7}{|l|}{DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS} \\
\hline Is & \multicolumn{2}{|l|}{Maximum Continuous Drain-Source Diode Forward Current} & & & 0.6 & A \\
\hline \(I_{\text {SM }}\) & \multicolumn{2}{|l|}{Maximum Pulsed Drain-Source Diode Forward Current} & & & 5 & A \\
\hline \(V_{S D}\) & Drain-Source Diode Forward Voltage & \(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.1 \mathrm{~A}\) (Note 2) & & 0.8 & 1.2 & V \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Note 1: \(\mathrm{R}_{\theta \mathrm{AA}}\) is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. In this case, \(\mathrm{R}_{\theta \mathrm{CA}}\) of \(175^{\circ} \mathrm{C} / \mathrm{W}\) can be achieved with a drain thermal pad of approximately 0.01 square inch of 2 ounce copper. \\
Note 2: Pulse Test: Pulse Width \(\leq 300 \mu \mathrm{~s}\), Duty Cycle \(\leq 2.0 \%\).
\end{tabular}} \\
\hline
\end{tabular}

Typical Electrical Characteristics

FIGURE 1. On-Region Characteristics

FIGURE 3. On-Resistance Variation with Temperature

FIGURE 5. Transfer Characteristics

TL/G/12454-4
FIGURE 2. On-Resistance Variation with Gate Voltage and Drain Current

TL/G/12454-6
FIGURE 4. On-Resistance Variation with Drain Current and Temperature

\(\mathrm{T}_{\mathrm{J}}\), JUNCTION TEMPERATURE (\({ }^{\circ} \mathrm{C}\))
TL/G/12454-8
FIGURE 6. Gate Threshold Variation with Temperature

Typical Electrical Characteristics (Continued)

\(\mathrm{T}_{\mathrm{j}}\), JUNCTION TEMPERATURE (\({ }^{\circ} \mathrm{C}\))
TL/G/12454-9
FIGURE 7. Breakdown Voltage Variation with Temperature

FIGURE 9. Capacitance Characteristics

TL/G/12454-13
FIGURE 11. Switching Test CIrcult

FIGURE 8. Body Diode Forward Voltage Variation with Current and Temperature

TL/G/12454-12
FIGURE 10. Gate Charge Characteristics

FIGURE 12. Switching Waveforms

Typical Electrical Characteristics (Continuod)

FIGURE 13. Transconductance Variation with Drain Current and Temperature

TL/G/12454-17
Note: Characterization performed using a circuit board with \(175^{\circ} \mathrm{C} / \mathrm{W}\) typical case-to-ambient thermal resistance.
FIGURE 15. Transient Thermal Response Curve

\section*{NDS352P}

\section*{P-Channel Logic Level Enhancement Mode Field Effect Transistor}

\section*{General Description}

These P-channel logic level enhancement mode power field effect transistors are produced using National's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management, portable electronics, and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

\section*{Features}

■ \(-850 \mathrm{~mA},-20 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.5 \Omega\), @ \(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}\)
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities
- High density cell design for extremely low \(R_{D S(O N)}\)
- Exceptional on-resistance and maximum DC current capability
■ Compact industry standard SOT-23 surface mount package

SOT-23
(TO-236AB)

TL/G/12455-1

TL/G/12455-2
Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Parameter & NDS352P & Units \\
\hline \(\mathrm{V}_{\text {DSS }}\) & Drain-Source Voltage & -20 & V \\
\hline \(\mathrm{V}_{\text {GSS }}\) & Gate-Source Voltage - Continuous & \(\pm 12\) & V \\
\hline \multirow[t]{2}{*}{\(l^{1}\)} & Maximum Drain Current - Continuous & \(\pm 850\) & mA \\
\hline & - Pulsed & \(\pm 10\) & A \\
\hline \multirow[t]{2}{*}{\(P_{D}\)} & Maximum Power Dissipation \(\quad @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 500 (Note 1) & mW \\
\hline & @ \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & 1.7 (Note 1) & W \\
\hline \(\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}\) & Operating and Storage Temperature Range & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline TL & Maximum Lead Temperature for Soldering Purposes, \(1 / \mathbf{B}^{\prime \prime}\) from Case for 5 Seconds & - 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{4}{|l|}{THERMAL CHARACTERISTICS} \\
\hline \(\mathrm{R}_{\theta \mathrm{JA}}\) & Thermal Resistance, Junction-to-Ambient & 250 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{R}_{\theta \mathrm{JC}}\) & Thermal Resistance, Junction-to-Case & 75 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

Electrical Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Units \\
\hline \multicolumn{7}{|l|}{OFF CHARACTERISTICS} \\
\hline BV \({ }_{\text {DSS }}\) & Drain-Source Breakdown Voltage & \(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}\) & -20 & & & V \\
\hline \multirow[t]{2}{*}{IDSs} & \multirow[t]{2}{*}{Zero Gate Voltage Drain Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{D S}=-16 V \\
& V_{\mathrm{GS}}=0 \mathrm{~V}
\end{aligned}
\]
\[
T_{J}=125^{\circ} \mathrm{C}
\]} & & & -5 & \(\mu \mathrm{A}\) \\
\hline & & & & & -50 & \(\mu \mathrm{A}\) \\
\hline IGSSF & Gate-Body Leakage, Forward & \(\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & & 100 & nA \\
\hline IGSSR & Gate-Body Leakage, Reverse & \(\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & & \(-100\) & nA \\
\hline
\end{tabular}

\section*{ON CHARACTERISTICS (Note 2)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{VGS(TH)} & Gate Threshold Voltage & \(V_{D S}=V_{G S}, I_{D}=-250 \mu \mathrm{~A}\) & -0.8 & -1.6 & -2 & \multirow[b]{2}{*}{V} \\
\hline & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & -0.5 & -1.3 & -1.5 & \\
\hline \multirow[t]{3}{*}{RDS(ON)} & \multirow[t]{3}{*}{Static Drain-Source On-Resistance} & \(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.85 \mathrm{~A}\) & & 0.46 & 0.5 & \multirow{3}{*}{\(\Omega\)} \\
\hline & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & 0.59 & 0.7 & \\
\hline & & \(V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}\) & & & 0.35 & \\
\hline \(\mathrm{I}_{\mathrm{D}}(\mathrm{ON})\) & On-State Drain Current & \(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}\) & -2 & & & A \\
\hline gFs & Forward Transconductance & \(\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.85 \mathrm{~A}\) & & 1.5 & & S \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{oV}, \\
& \mathrm{f}=1.0 \mathrm{MHz}
\end{aligned}
\]} & 125 & pF \\
\hline \(\mathrm{C}_{\text {oss }}\) & Output Capacitance & & 140 & pF \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 45 & pF \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(t \mathrm{D}\) (ON) & Turn-On Delay Time & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega
\end{aligned}
\]} & 8 & 15 & ns \\
\hline \(t_{r}\) & Turn-On Rise Time & & 19 & 30 & ns \\
\hline tD(OFF) & Turn-Off Delay Time & & 64 & 90 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Turn-Off Fall Time & & 61 & 90 & ns \\
\hline \(\mathrm{Q}_{\mathrm{g}}\) & Total Gate Charge & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=-10 V, I_{D}=-0.85 A \\
& V_{G S}=-5 V
\end{aligned}
\]} & 2.2 & 4 & nc \\
\hline \(\mathrm{Q}_{\mathrm{gs}}\) & Gate-Source Charge & & & 1 & nc \\
\hline \(\mathrm{Q}_{\mathrm{gd}}\) & Gate-Drain Charge & & & 2 & nC \\
\hline
\end{tabular}

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
\begin{tabular}{|l|l|l|c|c|c}
\hline\(I_{S}\) & Maximum Continuous Drain-Source Diode Forward Current & & -0.6 & A \\
\hline\(I_{S M}\) & Maximum Pulsed Drain-Source Diode Forward Current & & -5 & A \\
\hline \(\mathrm{~V}_{\mathrm{SD}}\) & \begin{tabular}{l}
Drain-Source Diode \\
Forward Voltage
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=-0.85 \mathrm{~A}\) \\
(Note 2)
\end{tabular} & & -0.92 & -1.2
\end{tabular} V \begin{tabular}{l}
V
\end{tabular}

Note 1: \(R_{\theta J A}\) is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. In this case, \(\mathrm{R}_{\theta \mathrm{CA}}\) of \(175^{\circ} \mathrm{C} / \mathrm{W}\) can be achieved with a drain thermal pad of approximately 0.01 square inch of 2 ounce copper.
Note 2: Pulse Test: Pulse Width \(\leq 300 \mu \mathrm{~s}\), Duty Cycle \(\leq \mathbf{2 . 0 \%}\).

Typical Electrical Characteristics

\(v_{\text {DS }}\), DRAIN-SOURCE VOLTAGE \((v)\) TL/G/12455-3
FIGURE 1. On-Region Characteristics

\(\mathrm{t}_{\mathrm{j}}\), Junction temperature (\({ }^{\circ} \mathrm{C}\))
TL/G/12455-5
FIGURE 3. On-Resistance Variation with Temperature

FIGURE 5. Transfer Characteristics

FIGURE 2. On-Resistance Variation with Drain Current and Gate Voltage

\(I_{0}\), DRAIN CURRENT (A)
TL/G/12455-6
FIGURE 4. On-Resistance Variation with Drain Current and Temperature

FIGURE 6. Gate Threshold Variation with Temperature

Typical Electrical Characteristics (Continued)

FIGURE 7. Breakdown Voltage Varlation with Temperature

TL/G/12455-11
FIGURE 9. Capacitance Characteristics

TL/G/12455-13
FIGURE 11. Switching Test Current

TL/G/12455-10
FIGURE 8. Body Dlode Forward Voltage Variation with Source Current and Temperature

TL/G/12455-12
FIGURE 10. Gate Charge Characteristics

FIGURE 12. Switching Waveforms

Typical Electrical Characteristics (Continued)
 with Drain Current and Temperature

TL/G/12455-17
Note: Characterization performed using a circuit board with \(175^{\circ} \mathrm{C} / \mathrm{W}\) typical case-to-ambient thermal resistance.
FIGURE 15. Transient Thermal Response Curve

National Semiconductor

\section*{N-Channel Logic Level Enhancement Mode Field Effect Transistor}

\section*{General Description}

These N -channel logic level enhancement mode power field effect transistors are produced using Nationals proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMICA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

\section*{Features}

■ 1.6A, 30V, \(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.125 \Omega\) @ \(\mathrm{V}_{\mathrm{OS}}=4.5 \mathrm{~V}\)
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities
- High density cell design for extremely low \(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\)
- Exceptional on-resistance and maximum DC current capability
- Compact industry standard SOT-23 surface mount package

SOT-23

TL/G/12456-1

TL/G/12456-2

Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Parameter & NDS355N & Units \\
\hline \(V_{\text {DSS }}\) & Drain-Source Voltage & 30 & V \\
\hline \(\mathrm{V}_{\mathrm{GSS}}\) & Gate-Source Voltage-Continuous & \(\pm 20\) & V \\
\hline \multirow[t]{2}{*}{1 D} & \multirow[t]{2}{*}{Drain Current-Continuous -Pulsed} & 1.6 & \multirow[t]{2}{*}{A} \\
\hline & & 10 & \\
\hline \multirow[t]{2}{*}{\(P_{D}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) \\
@ \(T_{A}=25^{\circ} \mathrm{C}\)
\end{tabular}} & 500 (Note 1) & mW \\
\hline & & 1.7 (Note 1) & W \\
\hline \(T_{\text {J, }}, T_{\text {STG }}\) & Operating and Storage Temperature Range & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{c|l|c|c}
\hline \(\mathrm{R}_{\theta \mathrm{JA}}\) & Thermal Resistance, Junction to Ambient & 250 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{R}_{\theta \mathrm{JC}}\) & Thermal Resistance, Junction to Case & 75 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

Electrical Characteristics (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Units \\
\hline
\end{tabular}

OFF CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BV \({ }_{\text {dSs }}\) & Drain-Source Breakdown Voltage & \multicolumn{2}{|l|}{\(V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}\)} & 30 & & V \\
\hline \multirow[t]{2}{*}{Ioss} & \multirow[t]{2}{*}{Zero Gate Voltage Drain Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{\mathrm{DS}}=24 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}
\end{aligned}
\]} & & & 1 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline IGSSF & Gate-Body Leakage, Forward & \multicolumn{2}{|l|}{\(V_{G S}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\)} & & 100 & nA \\
\hline IGSSR & Gate-Body Leakage, Reverse & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\)} & & -100 & nA \\
\hline
\end{tabular}

ON CHARACTERISTICS (Note 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})\)} & \multirow[t]{2}{*}{Gate Threshold Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=250 \mu \mathrm{~A}\)} & & 1 & 1.6 & 2 & \multirow[t]{2}{*}{V} \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & 0.5 & 1.3 & 1.5 & \\
\hline \multirow[t]{3}{*}{RDS(ON)} & \multirow[t]{3}{*}{Statc Drain-Source On-Resistance} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=1.6 \mathrm{~A}\)} & & & & 0.125 & \multirow{3}{*}{\(\Omega\)} \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & & 0.25 & \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.9 \mathrm{~A}\)} & & & 0.085 & \\
\hline ID(ON) & On-State Drain Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}\)} & 6 & & & A \\
\hline \(\mathrm{G}_{\mathrm{FS}}\) & Forward Transconductance & \multicolumn{2}{|l|}{\(V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.6 \mathrm{~A}\)} & & 3.5 & & S \\
\hline
\end{tabular}

\section*{DYNAMIC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\
& f=1.0 \mathrm{MHz}
\end{aligned}
\]} & 245 & pF \\
\hline \(\mathrm{C}_{\text {oss }}\) & Output Capacitance & & 128 & pF \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 21 & PF \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\mathrm{D}(\mathrm{ON})}\) & Turn-On Delay Time & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega
\end{aligned}
\]} & 15 & 30 & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Turn-On Rise Time & & 14 & 30 & ns \\
\hline \(\mathrm{t}_{\mathrm{D} \text { (OFF) }}\) & Turn-Off Delay Time & & 12 & 25 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Turn-Off Fall Time & & 4 & 10 & ns \\
\hline \(\mathrm{O}_{\mathrm{g}}\) & Total Gate Charge & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, I_{D}=1.6 \mathrm{~A}, \\
& V_{G S}=5 \mathrm{~V}
\end{aligned}
\]} & 3.5 & 5 & nC \\
\hline \(\mathrm{O}_{\mathrm{gs}}\) & Gate-Source Charge & & & 1 & nC \\
\hline \(\mathrm{O}_{\mathrm{gd}}\) & Gate-Drain Charge & & & 2 & nC \\
\hline
\end{tabular}

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
\begin{tabular}{l|l|c|c|c|c}
\hline\(I_{S}\) & Maximum Continuous Source Current & & & 0.6 & A \\
\hline \(\mathrm{I}_{\mathrm{S} M}\) & Maximum Pulse Source Current (Note 2) & & & 6 & A \\
\hline \(\mathrm{~V}_{\mathrm{SD}}\) & \begin{tabular}{l}
Drain-Source Diode Foward \\
Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}, \mathrm{IS}_{\mathrm{S}}=1.6 \mathrm{~A}\) & & 0.8 & 1.2 \\
\hline
\end{tabular}

Note 1: \(\mathrm{R}_{\theta \mathrm{JA}}\) is the sum of the junction-to-case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. In this case, \(\mathrm{R}_{\theta \mathrm{JA}}\) of \(175^{\circ} \mathrm{C} / \mathrm{W}\) can be achieved with a drain thermal pad of approximately 0.01 square inch of 2 ounce copper.
Note 2: Pulse Test Pulse Width \(\leq \mathbf{3 0 0} \mu \mathrm{s}\), Duty Cycle \(\leq 2.0 \%\).

Typical Electrical Characteristics

FIGURE 1. On-Region Characteristics

FIGURE 3. On-Resistance Variation with Temperature
 TL/G/12456-7
FIGURE 5. Transfer Characteristics

FIGURE 2. On-Resistance Variation with Gate Voltage and Drain Current

FIGURE 4. On-Resistance Variation with Drain Current and Temperature

FIGURE 6. Gate Threshold Variation with Temperature

Typical Electrical Characteristics (Continued)

FIGURE 7. Breakdown Voltages Variation with Temperature

TL/G/12456-11
FIGURE 9. Capacitance Characteristics

TL/G/12456-13
FIGURE 11. Switching Test Circuit

TL/G/12456-10
FIGURE 8. Body Dlode Forward Voltage Variation with Current and Temperature

TL/G/12456-12
FIGURE 10. Gate Charge Characteristics

FIGURE 12. Switching Waveforms

Typical Electrical Characteristics (Continued)

FIGURE 13. Transconductance Variation with Drain Current and Temperature

FIGURE 14. Maximum Safe Operating Area

FIGURE 15. Transient Thermal Response Curve
Note: Characterization performed using a circuit board with \(175^{\circ} \mathrm{C} / \mathrm{W}\) typical case-to-ambient thermal resistance.

\section*{NDS356P}

\section*{P-Channel Logic Level Enhancement Mode Field Effect Transistor}

\section*{General Description}

These P-channel logic level enhancement mode power field effect transistors are produced using Nationals proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computer power management, portable electronics, and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

\section*{Features}
- \(-1.1 \mathrm{~A},-20 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.3 \Omega\) @ \(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}\)
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities
- High density cell design for extremely low \(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\)
- Exceptional on-resistance and maximum DC current capability
- Compact industry standard SOT-23 surface mount package

SOT-23 (TO-236AB)

TL/G/12457-1

TL/G/12457-2

Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Parameter & NDS356P & Units \\
\hline \(V_{\text {DSS }}\) & Drain-Source Voltage & -20 & V \\
\hline \(\mathrm{V}_{\text {GSS }}\) & Gate-Source Voltage-Continuous & \(\pm 12\) & V \\
\hline \multirow[t]{2}{*}{\({ }^{1}\)} & \multirow[t]{2}{*}{Maximum Drain Current-Continuous —Pulsed} & \(\pm 1.1\) & \multirow[t]{2}{*}{A} \\
\hline & & \(\pm 10\) & \\
\hline \multirow[t]{2}{*}{\(P_{D}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) \\
@ \(T_{C}=25^{\circ} \mathrm{C}\)
\end{tabular}} & 500 (Note1) & mW \\
\hline & & 1.7 (Note 1) & W \\
\hline \(\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}\) & Operating and Storage Temperature Range & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{4}{|l|}{THERMAL CHARACTERISTICS} \\
\hline \(\mathrm{R}_{\theta \mathrm{JA}}\) & Thermal Resistance, Junction-to-Ambient & 250 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{R}_{\text {өJC }}\) & Thermal Resistance, Junction-to-Case & 75 (Note 1) & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

Electrical Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & & Min & Typ & Max & Units \\
\hline \multicolumn{8}{|l|}{OFF CHARACTERISTICS} \\
\hline BV \({ }_{\text {DSS }}\) & Drain-Source Breakdown Voltage & \multicolumn{2}{|l|}{\(V_{G S}=O V, I_{D}=-250 \mu \mathrm{~A}\)} & -20 & & \(\cdots\) & V \\
\hline \multirow[t]{2}{*}{IDSS} & \multirow[t]{2}{*}{Zero Gate Voltage Drain Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{D S}=-16 \mathrm{~V} \\
& V_{\mathrm{GS}}=0 \mathrm{~V}
\end{aligned}
\]} & & & & -5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & & \(-20\) & \(\mu \mathrm{A}\) \\
\hline IGSSF & Gate-Body Leakage, Forward & \(\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & & & 100 & nA \\
\hline IGSSR & Gate-Body Leakage, Reverse & \(\mathrm{V}_{\mathrm{GS}}={ }^{\prime}-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\) & & & & \(-100\) & nA \\
\hline
\end{tabular}

ON CHARACTERISTICS (Note 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}\)} & \multirow[t]{2}{*}{Gate Threshold Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS},} \mathrm{l}_{\mathrm{D}}=-250 \mu \mathrm{~A}\)} & & -0.8 & -1.6 & -2 & \multirow[t]{2}{*}{V} \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & -0.5 & -1.3 & \(-1.5\) & \\
\hline \multirow[t]{3}{*}{R \({ }_{\text {DS (ON }}\)} & \multirow[t]{3}{*}{Statc Drain-Source On-Resistance} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.1 \mathrm{~A}\)} & & \% & & 0.3 & \multirow{3}{*}{\(\Omega\)} \\
\hline & & & \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\) & & - & 0.4 & \\
\hline & & \multicolumn{2}{|l|}{\(V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.3 \mathrm{~A}\)} & & & 0.21 & \\
\hline \(\mathrm{I}_{\mathrm{D}(\mathrm{ON})}\) & On-State Drain Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}\)} & -3 & & & A \\
\hline grs & Forward Transconductance & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.1 \mathrm{~A}\)} & & 1.8 & & S \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\
& \mathrm{f}=1.0 \mathrm{MHz}
\end{aligned}
\]} & 180 & pF \\
\hline \(\mathrm{C}_{\text {oss }}\) & Output Capacitance & & 255 & pF \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 60 & pF \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(t_{\text {d(ON }}\) & Turn-On Delay Time & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{D D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \\
& V_{G S}=-10 \mathrm{R}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega
\end{aligned}
\]} & 7 & 15 & ns \\
\hline \(t_{r}\) & Turn-On Rise Time & & 17 & 30 & ns \\
\hline \(t_{\text {d (OFF }}\) & Turn-Off Delay Time & & 56 & 90 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Turn-Off Fall Time & & 41 & 80 & ns \\
\hline \(\mathrm{O}_{\mathrm{g}}\) & Total Gate Charge & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{D S}=-10 \mathrm{~V}, I_{D}=-1.1 A \\
& V_{G S}=-5 V
\end{aligned}
\]} & 3.5 & 5 & nC \\
\hline \(\mathrm{O}_{\mathrm{gs}}\) & Gate-Source Charge & & & 1.5 & nC \\
\hline \(\mathrm{O}_{\mathrm{gd}}\) & Gate-Drain Charge & & & 2 & nC \\
\hline
\end{tabular}

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
\begin{tabular}{l|l|l|c|c|c}
\hline\(I_{S} ;\) & Maximum Continuous Drain-Source Diode Forward Current & & -0.6 & A \\
\hline \(\mathrm{I}_{\mathrm{SM}}\) & Maximum Pulse Drain-Source Diode Forward Current & & -4 & A \\
\hline \(\mathrm{~V}_{\mathrm{SD}} \cdots\) & \begin{tabular}{l}
Drain-Source Diode Foward \\
Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=-1.1 \mathrm{~A}(\) Note 2) & -0.85 & -1.2 & V \\
\hline
\end{tabular}

Note 1: \(\mathrm{R}_{\theta \mathrm{\theta JA}}\) is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. In this case, \(\mathrm{R}_{\theta \mathrm{CA}}\) of \(175^{\circ} \mathrm{C} / \mathrm{W}\) can be achieved with a drain thermal pad of approximately 0.01 square inch of 2 ounce copper.
Note 2: Pulse Test: Pulse Width \(\leq 300 \mu \mathrm{~s}\), Duty Cycle \(\leq \mathbf{2 . 0 \%}\) :

\section*{Typical Electrical Characteristics}

TL/G/12457-3
FIGURE 1. On-Region Characteristics

FIGURE 3. On-Resistance Variation with Temperature

\(V_{G S}\), GATE TO SOURCE VOLTAGE (V) TL/G/12457-7 FIGURE 5. Transfer Characterlstics

TL/G/12457-4
FIGURE 2. On-Resistance Va, lation with Drain Current and Gate Voltage

TL/G/12457-6
FIGURE 4. On-Resistance Varlation with Drain Current and Temperature

\(\mathrm{T}_{\mathrm{J}}\), JUNCTION TEMPERATURE (\({ }^{\circ} \mathrm{C}\))
TL/G/12457-8
FIGURE 6. Gate Threshoid Variation with Temperature

Typical Electrical Characteristics (Continued)

FIGURE 7. Breakdown Voltage Variation with Temperature

FIGURE 9. Capacitance Characteristics

TL/G/12457-13
FIGURE 11. Switching Test Circult

\(V_{S D}\), BODY DIODE FORWARD VOLTAGE \((\mathrm{V})\)
TL/G/12457-10
FIGURE 8. Body Diode Forward Voltage Variation with Source Current and Temperature

TL/G/12457-12
FIGURE 10. Gate Charge Characteristics

TL/G/12457-14
FIGURE 12. Switching Waveforms

FIGURE 13. Transconductance Variation with Drain Current and Temperature

FIGURE 14. Maximum Safe Operating Area

TL/G/12457-17
Note: Characterization performed using a circuit board with \(175^{\circ} \mathrm{C} / \mathrm{W}\) typical case-to-ambient thermal resistance.
FIGURE 15. Transient Thermal Response Curve

Section 7
Power Management
0
Section 7 Contents
TEMPERATURE SENSORS
LM45B/LM45C SOT-23 Precision Centigrade Temperature Sensors 7-3
LM50B/LM50C SOT-23 Precision Centigrade Temperature Sensors 7-10
VOLTAGE REFERENCES
LM4040 Precision Micropower Shunt Voltage Reference 7-16
LM4041 Precision Micropower Shunt Voltage Reference 7-35
LOW DROPOUT VOLTAGE REGULATORS
LP2950/A-XX and LP2951/A-XX Series of Adjustable Micropower Voltage Regulators 7-47
LP2956/LP2956A Dual Micropower Low-Dropout Voltage Regulators 7-62
LP2960 Adjustable Micropower 0.5A Low-Dropout Voltage Regulator 7-75
LP2980 Micropower SOT, 50 mA Ultra Low-Dropout Regulator 7-90
LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage Regulators 7-103
SWITCHING REGULATORS
LM2574/LM2574HV Series SIMPLE SWITCHER 0.5A Step-Down Voltage Regulators 7-118
LM2594 SIMPLE SWITCHER Power Converter 150 KHz 0.5A Step-Down Voltage Regulator 7-136
BATTERY CHARGE CONTROLLER
LM3420-4.2, -8.4, -12.6, -16.8 Lithium-Ion Battery Charge Controllers 7-158

\section*{LM45B/LM45C}

\section*{SOT-23 Precision Centigrade Temperature Sensors}

\section*{General Description}

The LM45 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM45 does not require any external calibration or trimming to provide accuracies of \(\pm 2^{\circ} \mathrm{C}\) at room temperature and \(\pm 3^{\circ} \mathrm{C}\) over a full -20 to \(+100^{\circ} \mathrm{C}\) temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM45's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with a single power supply, or with plus and minus supplies. As it draws only \(120 \mu \mathrm{~A}\) from its supply, it has very low self-heating, less than \(0.2^{\circ} \mathrm{C}\) in still air. The LM45 is rated to operate over a \(-20^{\circ}\) to \(+100^{\circ} \mathrm{C}\) temperature range.

\section*{Applications}
- Battery Management
- FAX Machines
- Printers
- Portable Medical Instruments
- HVAC
- Power Supply Modules
- Disk Drives
- Computers
- Automotive

\section*{Features}
- Calibrated directly in \({ }^{\circ}\) Celsius (Centigrade)
- Linear \(+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) scale factor
- \(\pm 3^{\circ} \mathrm{C}\) accuracy guaranteed
- Rated for full \(-20^{\circ}\) to \(+100^{\circ} \mathrm{C}\) range

■ Suitable for remote applications
■ Low cost due to wafer-level trimming
- Operates from 4.0 V to 10 V

■ Less than \(120 \mu \mathrm{~A}\) current drain
- Low self-heating, \(0.20^{\circ} \mathrm{C}\) in still air
- Nonlinearity only \(\pm 0.8^{\circ} \mathrm{C}\) max over temp
- Low impedance output, \(20 \Omega\) for 1 mA load

\section*{Connection Diagram}

TL/H/11754- \(\dagger\)

> Top View

See NS Package Number M03B
(JEDEC Registration TO-236AB)
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{c}
Order \\
Number
\end{tabular} & \begin{tabular}{c}
SOT-23 \\
Device \\
Marking
\end{tabular} & \multicolumn{1}{c|}{ Supplled As } \\
\hline LM45BIM3 & T4B & 250 Units on Tape and Reel \\
\hline LM45BIM3X & T4B & 3000 Units on Tape and Reel \\
\hline LM45CIM3 & T4C & 250 Units on Tape and Reel \\
\hline LM45CIM3X & T4C & 3000 Units on Tape and Reel \\
\hline
\end{tabular}

\section*{Typical Applications}

TL./H/11754-3
FIGURE 1. Basic Centigrade Temperature Sensor (\(+2.5^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\))

Choose \(R_{1}=-V_{S} / 50 \mu A\)
TL/H/11754-4
\(V_{\text {OUT }}=\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{Temp}^{\circ} \mathrm{C}\right)\)
\(V_{\text {OUT }}=+1,000 \mathrm{mV}\) at \(+100^{\circ} \mathrm{C}\)
\(=+250 \mathrm{mV}\) at \(+25^{\circ} \mathrm{C}\)
\(=-200 \mathrm{mV}\) at \(-20^{\circ} \mathrm{C}\)
FIGURE 2. Full-Range Centigrade
Temperature Sensor (\(-2 \mathbf{0}^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\))

Absolute Maximum Ratings (Note 1)

Supply Voltage
Output Voltage
Output Current
Storage Temperature
Lead Temperature
SOT Package (Note 2):
Vapor Phase (60 seconds)
Infrared (15 seconds)
\[
\begin{array}{r}
+12 \mathrm{~V} \text { to }-0.2 \mathrm{~V} \\
+\mathrm{V}_{\mathrm{S}}+0.6 \mathrm{~V} \text { to }-1.0 \mathrm{~V} \\
10 \mathrm{~mA} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
\]
\(215^{\circ} \mathrm{C}\) \(220^{\circ} \mathrm{C}\)

ESD Susceptibility (Note 3):
Human Body Model Machine Model

2000V TBD

\section*{Operating Ratings (Note 1)}
\begin{tabular}{lr}
Specified Temperature Range & \\
(Note 4) & \(T_{\text {MIN to }}\) TMAX \\
LM45B, LM45C & \(-20^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
LM45B, LM45C & +4.0 V to +10 V
\end{tabular}

Electrical Characteristics Unless otherwise noted, these specifications apply for \(+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}\) and \(\mathrm{I}_{\text {LOAD }}=\) \(+50 \mu \mathrm{~A}\), in the circuit of Figure 2. These specifications also apply from \(+2.5^{\circ} \mathrm{C}\) to \(\mathrm{T}_{\mathrm{MAX}}\) in the circuit of Figure. 1 for \(+\mathrm{V}_{\mathrm{S}}=\) +5 Vdc . Boldface limits apply for \(\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}\) to \(\mathbf{T}_{\text {mAX }}\); all other limits \(\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|c|}{LM45B} & \multicolumn{2}{|c|}{LM45C} & \multirow[b]{2}{*}{Units (Limit)} \\
\hline & & Typical & Limit (Note 5) & Typical & Limit (Note 5) & \\
\hline \begin{tabular}{l}
Accuracy \\
(Note 6)
\end{tabular} & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {MAX }} \\
& T_{A}=\mathrm{T}_{\text {MIN }}
\end{aligned}
\] & , & \[
\begin{aligned}
& \pm 2.0 \\
& \pm 3.0 \\
& \pm 3.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 3.0 \\
& \pm 4.0 \\
& \pm 4.0
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \text { (max) } \\
& { }^{\circ} \mathrm{C} \text { (max) } \\
& { }^{\circ} \mathrm{C} \text { (max) }
\end{aligned}
\] \\
\hline Nonlinearity (Note 7) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}\) & & \(\pm 0.8\) & & \(\pm 0.8\) & \({ }^{\circ} \mathrm{C}\) (max) \\
\hline Sensor Gain (Average Slope) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}\) & & \[
\begin{gathered}
+9.7 \\
+10.3
\end{gathered}
\] & & \[
\begin{array}{r}
+9.7 \\
+10.3
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}(\mathrm{min})\) \\
\(m V /{ }^{\circ} \mathrm{C}\) (max)
\end{tabular} \\
\hline Load Regulation (Note 8) & \(0 \leq \mathrm{l}_{\mathrm{L}} \leq+1 \mathrm{~mA}\) & & \(\pm 35\) & & \(\pm 35\) & mV/mA (max) \\
\hline Line Regulation (Note 8) & \(+4.0 \mathrm{~V} \leq+\mathrm{V}_{S} \leq+10 \mathrm{~V}\) & & \[
\begin{aligned}
& \pm 0.80 \\
& \pm 1.2
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 0.80 \\
& \pm \mathbf{1 . 2}
\end{aligned}
\] & \begin{tabular}{l}
mV/V (max) \\
mV/V (max)
\end{tabular} \\
\hline Quiescent Current (Note 9) & \[
\begin{aligned}
& +4.0 \mathrm{~V} \leq+V_{S} \leq+10 \mathrm{~V},+25^{\circ} \mathrm{C} \\
& +4.0 \mathrm{~V} \leq+V_{S} \leq+10 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 160
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 160
\end{aligned}
\] & \begin{tabular}{l}
\(\mu A\) (max) \\
\(\mu \mathrm{A}\) (max)
\end{tabular} \\
\hline Change of Quiescent Current (Note 8) & \(4.0 \mathrm{~V} \leq+\mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}\) & & 2.0 & & 2.0 & \(\mu \mathrm{A}\) (max) \\
\hline Temperature Coefficient of Quiescent Current & & +2.0 & & +2.0 & & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{C}\) \\
\hline Minimum Temperature for Rated Accuracy & In circuit of Figure \(1, \mathrm{I}_{\mathrm{L}}=0\) & & +2.5 & & +2.5 & \({ }^{\circ} \mathrm{C}\) (min) \\
\hline Long Term Stability (Note 10) & \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MAX }}\), for 1000 hours & \(\pm 0.12\) & & \(\pm 0.12\) & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 3: Human body model, 100 pF discharged through a \(1.5 \mathrm{k} \Omega\) resistor. Machine model, 200 pF discharged directly into each pin.
Note 4: Thermal resistance of the SOT-23 package is \(260^{\circ} \mathrm{C} / \mathrm{W}\), junction to ambient when attached to a printed circuit board with 2 oz. foil as shown in Figure 3.
Note 5: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Accuracy is defined as the error between the output voltage and \(10 \mathrm{mv} /{ }^{\circ} \mathrm{C}\) times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in \({ }^{\circ} \mathrm{C}\)).
Note 7: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.
Note 8: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 9: Quiescent current is measured using the circuit of Figure 1.
Note 10: For best long-term stability, any precision circuit will give best results if the unit is aged at a warm temperature, and/or temperature cycled for at least 46 hours before long-term life test begins. This is especially true when a small (Surface-Mount) part is wave-soldered; allow time for stress relaxation to occur.

\section*{Typical Performance Characteristics}

To generate these curves the LM45 was mounted to a printed circuit board as shown in Figure 3.

Quiescent Current vs Temperature (In Clrcult of Figure 2)

Accuracy vs Temperature

TL/H/11754-5

Thermal Response in Still Alr with Heat Sink (FIgure 3)

Quiescent Current vs Temperature (In Circuit of FIgure 1)

TL/H/11754-23
FIGURE 3. Printed CIrcuit Board Used for Heat Sink to Generate All Curves.
\(1 / 2^{\prime \prime}\) Square Printed Circult Board with 2 oz. Foll or Similar

\section*{Applications}

The LM45 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about \(0.2^{\circ} \mathrm{C}\) of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM45 die would be at an intermediate temperature between the surface temperature and the air temperature.

To ensure good thermal conductivity the backside of the LM45 die is directly attached to the GND pin. The lands and traces to the LM45 will, of course, be part of the printed circuit board, which is the object whose temperature is being measured. These printed circuit board lands and traces will not cause the LM45s temperature to deviate from the desired temperature.
Alternatively, the LM45 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed

\section*{Typical Applications}

\section*{CAPACITIVE LOADS}

Like most micropower circuits, the LM45 has a limited ability to drive heavy capacitive loads. The LM45 by itself is able to drive 500 pF without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 4. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 5.
Any linear circuit connected to wires in a hostile environment can have its performance affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from \(\mathrm{V}_{\text {IN }}\) to ground and a series R-C damper such as \(75 \Omega\) in series with 0.2 or \(1 \mu \mathrm{~F}\) from output to ground, as shown in Figure 5, are often useful.
 TO A HIGH-IMPEDANCE LOAD

TL/H/11754-8
FIGURE 4. LM45 with Decoupling from Capacitive Load
into a threaded hole in a tank. As with any IC, the LM45 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM45 or its connections.

\section*{Temperature Rise of LM45 Due to Self-Heating (Thermal Resistance) \\ \begin{tabular}{cc}
SOT-23** & SOT-23 \\
no heat sink & small heat fin* \\
\(450^{\circ} \mathrm{C} / \mathrm{W}\) & \(260^{\circ} \mathrm{C} / \mathrm{W}\) \\
& \(180^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular}}
- Heat sink used is \(1 / 2^{\prime \prime}\) square printed circuit board with 20 . foil with part attached as shown in Figure 3.
** Part soldered to 30 gauge wire.

FIGURE 5. LM45 with R-C Damper

TL/H/11754-12
FIGURE 6. Temperature Sensor, Single Supply, \(-20^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)

FIGURE 7. 4-to-20 mA Current Source (\(\mathbf{0}^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\))

TL/H/11754-16
FIGURE 9. Centigrade Thermometer (Analog Meter)

TL/H/11754-15
FIGURE 8. Fahrenheit Thermometer

TL/H/11754-17
FIGURE 10. Expanded Scale Thermometer (\(50^{\circ}\) to \(80^{\circ}\) Fahrenheit, for Example Shown)

TL/H/11754-18
FIGURE 11. Temperature To Digital Converter (Serial Output) (+128 \({ }^{\circ} \mathrm{C}\) Full Scale)

Typical Applications (Continued)

TL/H/11754-19
FIGURE 12. Temperature To Digital Converter (Parallel TRI-STATE® Outputs for Standard Data Bus to \(\mu\) P Interface) (\(128^{\circ} \mathrm{C}\) Full Scale)

TL/H/11754-20
* \(=1 \%\) or \(2 \%\) film resistor
-Trim \(R_{B}\) for \(V_{B}=3.075 \mathrm{~V}\)
-Trim \(R_{C}\) for \(V_{C}=1.955 \mathrm{~V}\)
\(-\operatorname{Trim} \mathrm{R}_{\mathrm{A}}\) for \(\mathrm{V}_{\mathrm{A}}=0.075 \mathrm{~V}+100 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}_{\text {ambient }}\)
-Example, \(\mathrm{V}_{\mathrm{A}}=2.275 \mathrm{~V}\) at \(22^{\circ} \mathrm{C}\)
FIGURE 13. Bar-Graph Temperature Display (Dot Mode)

\section*{Typical Applications (Continued)}

FIGURE 14. LM45 With Voltage-To-Frequency Converter And Isolated Output (\(2.5^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C} ; \mathbf{2 5 ~ H z}\) to 1000 Hz)

\section*{Block Diagram}

\section*{LM50B/LM50C \\ SOT-23 Single-Supply Centigrade Temperature Sensor}

\section*{General Description}

The LM50 is a precision integrated-circuit temperature sensor that can sense a \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range using a single positive supply. The LM50's output voltage is linearly proportional to Celsius (Centigrade) temperature \(\left(+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)\) and has a DC offset of +500 mV . The offset allows reading negative temperatures without the need for a negative supply. The ideal output voltage of the LM50 ranges from +100 mV to +1.75 V for a \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range. The LM50 does not require any external calibration or trimming to provide accuracies of \(\pm 3^{\circ} \mathrm{C}\) at room temperature and \(\pm 4^{\circ} \mathrm{C}\) over the full \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range. Trimming and calibration of the LM50 at the wafer level assure low cost and high accuracy. The LM50's linear output, +500 mV offset, and factory calibration simplify circuitry required in a single supply environment where reading negative temperatures is required. Because the LM50's quiescent current is less than \(130 \mu \mathrm{~A}\), self-heating is limited to a very low \(0.2^{\circ} \mathrm{C}\) in still air.

E Battery Management
- Automotive
- FAX Machines
- Printers
m Portable Medical Instruments
- HVAC
- Power Supply Modules

\section*{Features}
- Calibrated directly in \({ }^{\circ}\) Celsius (Centigrade)
- Linear \(+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) scale factor
- \(\pm 2^{\circ} \mathrm{C}\) accuracy guaranteed at \(+25^{\circ} \mathrm{C}\)
- Specified for full \(-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\) range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4.5 V to 10 V
- Less than \(130 \mu \mathrm{~A}\) current drain

■ Low self-heating, less than \(0.2^{\circ} \mathrm{C}\) in still air - Nonlinearity less than \(0.8^{\circ} \mathrm{C}\) over temp

\section*{Applications}
- Computers
- Disk Drives

\section*{Connection Diagram}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Order \\
Number
\end{tabular} & \begin{tabular}{c}
SOT-23 \\
Device Marking
\end{tabular} & Supplied As \\
\hline LM50BIM3 & T5B & 250 Units on Tape and Reel \\
\hline LM50CIM3 & T5C & 250 Units on Tape and Reel \\
\hline LM50BIM3X & T5B & 3000 Units on Tape and Reel \\
\hline LM50CIM3X & T5C & 3000 Units on Tape and Reel \\
\hline
\end{tabular}

See NS Package Number M03B
(JEDEC Registration TO-236AB)

\section*{Typical Applications}

TL/H/12030-3
FIGURE 1. Full-Range Centigrade Temperature Sensor (\(\mathbf{- 4 0 ^ { \circ }} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\))

Absolute Maximum Ratings (Note 1)
\begin{tabular}{lr}
Supply Voltage & +12 V to -0.2 V \\
Output Voltage & \(\left(+\mathrm{V}_{\mathrm{S}}+0.6 \mathrm{~V}\right)\) to -1.0 V \\
Output Current & 10 mA \\
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Lead Temperature & \\
\(\quad\) SOT Package (Note 2): & \\
\(\quad\) Vapor Phase (60 seconds) & \(215^{\circ} \mathrm{C}\) \\
\(\quad\) Infrared (15 seconds) & \(220^{\circ} \mathrm{C}\)
\end{tabular}
\begin{tabular}{lr}
ESD Susceptibility (Note 3): \\
Human Body Model \\
Machine Model & \\
Operating Ratings (Note 1) \\
Oper \\
Specified Temperature Range: \\
TMIN to \(T_{\text {MAX (Note 4) }}\) & \\
LM50C & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
LM50B & \(-25^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Supply Voltage Range (\(+\mathrm{V}_{\mathrm{S}}\)) & +4.5 V to +10 V
\end{tabular}

Electrical Characteristics Unless otherwise noted, these specifications apply for \(\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}_{\mathrm{DC}}\) and \(\mathrm{I}_{\mathrm{LOAD}}=\) \(+0.5 \mu \mathrm{~A}\), in the circuit of Figure 1. Boldface limits apply for the specified \(\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}\) to \(\mathbf{T}_{\text {max }}\) all other limits \(\mathbf{T}_{A}\) \(=T_{J}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|r|}{LM50B} & \multicolumn{2}{|c|}{LM50C} & \multirow[b]{2}{*}{Units (Limit)} \\
\hline & & Typical & Limit (Note 5) & Typical & Limit (Note 5) & \\
\hline Accuracy (Note 6) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\
& \hline
\end{aligned}
\] & & \[
\begin{gathered}
\pm 2.0 \\
\pm 3.0 \\
+3.0,-3.5 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& \pm 3.0 \\
& \pm 4.0 \\
& \pm 4.0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C}\) (max) \\
\({ }^{\circ} \mathrm{C}\) (max) \\
\({ }^{\circ} \mathrm{C}\) (max)
\end{tabular} \\
\hline Nonlinearity (Note 7) & & & \(\pm 0.8\) & & \(\pm 0.8\) & \({ }^{\circ} \mathrm{C}\) (max) \\
\hline Sensor Gain (Average Slope) & & & \[
\begin{array}{r}
+9.7 \\
+10.3 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
+9.7 \\
+10.3 \\
\hline
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) (min) \\
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) (max)
\end{tabular} \\
\hline Output Resistance & . & 2000 & 4000 & 2000 & 4000 & \(\Omega\) (max) \\
\hline Line Regulation (Note 8) & \(4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}\) & & \[
\begin{array}{r}
\pm 0.8 \\
\pm \mathbf{1 . 2} \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\pm 0.8 \\
\pm \mathbf{1 . 2} \\
\hline
\end{array}
\] & \begin{tabular}{l}
mV/V (max) \\
\(\mathrm{mV} / \mathrm{V}\) (max)
\end{tabular} \\
\hline Quiescent Current (Note 9) & \(+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}\) & & \[
\begin{aligned}
& 130 \\
& 180 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 130 \\
& 180 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) (max) \\
\(\mu \mathrm{A}\) (max)
\end{tabular} \\
\hline Change of Quiescent Current (Note 8) & \(4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}\) & & 2.0 & & 2.0 & \(\mu \mathrm{A}\) (max) \\
\hline Temperature Coefficient of Quiescent Current & & +1.0 & & +2.0 & & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{C}\) \\
\hline Long Term Stability & \[
\begin{gathered}
T_{J}=T_{M A X} \text { for } \\
1000 \text { hours }
\end{gathered}
\] & \(\pm 0.08\) & & \(\pm 0.08\) & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount", found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 3: Human body model, 100 pF discharged through a \(1.5 \mathrm{k} \Omega\) resistor. Machine model, 200 pF discharged directly into each pin.
Note 4: Thermal resistance of the SOT-23 package is \(450^{\circ} \mathrm{C}\) without a heat sink, junction to ambient.
Note 5: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Accuracy is defined as the error between the output voltage and \(10 \mathrm{mv} /{ }^{\circ} \mathrm{C}\) times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in \({ }^{\circ} \mathrm{C}\)).
Note 7: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.
Note 8: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 9: Quiescent current is defined in the circuit of Figure 1.

\section*{Typical Performance Characteristics}

To generate these curves the LM45 was mounted to a printed circuit board as shown in Figure 2.

Thermal Reslstance
Junction to Alr

Thermal Response In Stirred Oll Bath with Heat Sink

Quiescent Current vs Temperature (Figure 1)

Thermal Time Constant

Start-Up Voltage
vs Temperature

Accuracy vs Temperature

Start-Up Response

\(20 \mu \mathrm{~s} / \mathrm{DIVIIION}\)

Thermal Response in Still Alr with Heat Sink (FIgure 2)

Thermal Response in Still Alr without a Heat Sink

FREQUENCY (Hz)

TL/H/12030-19
FIGURE 2. Printed Circult Board Used for Heat Sink to Generate All Curves. \(1 / 2^{11}\) Square Printed Clrcuit Board with 2 oz. Foll or SImilar

\subsection*{1.0 Mounting}

The LM50 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about \(0.2^{\circ} \mathrm{C}\) of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM50 die would be at an intermediate temperature between the surface temperature and the air temperature.
To ensure good thermal conductivity the backside of the LM50 die is directly attached to the GND pin. The lands and traces to the LM50 will, of course, be part of the printed circuit board, which is the object whose temperature is being measured. These printed circuit board lands and traces will not cause the LM50s temperature to deviate from the desired temperature.
Alternatively, the LM50 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM50 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM50 or its connections.
\begin{tabular}{lc}
Temperature Rise of LM50 Due to Self-Heating \\
& (Thermal Resistance) \\
& SOT-23**
\end{tabular}
* Heat sink used is \(1 / 2^{\prime \prime}\) square printed circuit board with 2 oz. foil with part attached as shown in Figure 2.
** Part soldered to \(\mathbf{3 0}\) gauge wire.

\subsection*{2.0 Capacitive Loads}

TL/H/12030-7
FIGURE 3. LM50 No Decoupling Required for Capacitlve Load

FIGURE 4. LM50C with Filter for Noisy Environment
The LM50 handles capacitive loading very well. Without any special precautions, the LM50 can drive any capacitive load. The LM50 has a nominal \(2 \mathrm{k} \Omega\) output impedance (as can be seen in the block diagram). The temperature coefficient of the output resistors is around \(1300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). Taking into account this temperature coefficient and the initial tolerance of the resistors the output impedance of the LM50 will not exceed \(4 \mathrm{k} \Omega\). In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. It is recommended that \(0.1 \mu \mathrm{~F}\) be added from \(\mathrm{V}_{\text {IN }}\) to GND to bypass the power supply voltage, as shown in Figure 4. In a noisy environment it may be necessary to add a capacitor from the output to ground. A \(1 \mu \mathrm{~F}\) output capacitor with the \(4 \mathrm{k} \Omega\) output impedance will form a 40 Hz lowpass filter. Since the thermal time constant of the LM50 is much slower than the 25 ms time constant formed by the RC, the overall response time of the LM50 will not be significantly affected. For much larger capacitors this additional time lag will increase the overall response time of the LM50.

TL/H/12030-17
\({ }^{*} \mathrm{R} 2 \approx 2 \mathrm{k}\) with a typical \(1300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) drift.
FIGURE 5. Block Dlagram

\subsection*{3.0 Typical Applications}

TL/H/12030-11
FIGURE 6. Centigrade Thermostat/Fan Controller

TL/H/12030-13
FIGURE 7. Temperature To Digital Converter (Serial Output) (\(+125^{\circ} \mathbf{C}\) Full Scale)

TL/H/12030-14
FIGURE 8. Temperature To Digital Converter (Paraliel TRI-STATE © Outputs for Standard Data Bus to \(\mu \mathrm{P}\) Interface) (\(125^{\circ} \mathrm{C}\) Full Scale)
3.0 Typical Applications (Continued)

TL/H/12030-16
FIGURE 9. LM50 With Voltage-To-Frequency Converter And Isolated Output

\subsection*{4.0 Recommended Solder Pads for SOT-23 Package}

\section*{LM4040 \\ Precision Micropower Shunt Voltage Reference}

\section*{General Description}

Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature (3 mm x 1.3 mm) SOT-23 surface-mount package. The LM4040's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: \(2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}, 8.192 \mathrm{~V}\), and 10.000 V . The minimum operating current increases from \(60 \mu \mathrm{~A}\) for the LM4040-2.5 to \(100 \mu \mathrm{~A}\) for the LM4040-10.0. All versions have a maximum operating current of 15 mA .
The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than \(\pm 0.1 \%\) (A grade) at \(25^{\circ} \mathrm{C}\). Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.
Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2V. Please see the LM4041 data sheet.

\section*{Features}
- Small packages: SOT-23, TO-92, and SO-8

■ No output capacitor required
- Tolerates capacitive loads
- Fixed reverse breakdown voltages of \(2.500 \mathrm{~V}, 4.096 \mathrm{~V}\), \(5.000 \mathrm{~V}, 8.192 \mathrm{~V}\), and 10.000 V
- Contact National Semiconductor Analog Marketing for parts with extended temperature range

\section*{Key Specifications (LM4040-2.5)}
- Output voltage tolerance (A grade, \(25^{\circ} \mathrm{C}\)) \(\pm 0.1 \%\) (max)
- Low output noise (10 Hz to 10 kHz) \(35 \mu \mathrm{~V}_{\text {rms }}\) (typ)
- Wide operating current range
- Industrial temperature range
- Low temperature coefficient
- Contact National Semiconductor Analog Marketing for parts with lower temperature coefficient

\section*{Applications}
- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

\section*{Connection Diagrams}

*This pin must be left floating or connected to pin 3.
Top Vlew
See NS Package Number M03B (JEDEC Registration TO-236AB)

TL/H/11323-2
Top View
See NS Package Number M08A

Bottom View

See NS Package Number Z03A

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Reverse Breakdown \\
Voltage Tolerance at \(25^{\circ} \mathrm{C}\) and Average Reverse Breakdown Voltage Temperature Coefficient
\end{tabular}} & \multicolumn{3}{|c|}{Package} \\
\hline & M3 (SOT-23) & Z (TO-92) & M (SO-8) \\
\hline \(\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (A grade) & \begin{tabular}{l}
LM4040AIM3-2.5, LM4040AIM3-4.1, LM4040AIM3-5.0, LM4040AIM3-8.2, LM4040AIM3-10.0 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4040AIZ-2.5, LM4040AIZ-4.1, LM4040AIZ-5.0, LM4040AIZ-8.2, LM4040AIZ-10.0 \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4040AIM-2.5, LM4040AIM-4.1, LM4040AIM-5.0, LM4040AIM-8.2, LM4040AIM-10.0 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (B grade) & \begin{tabular}{l}
LM4040BIM3-2.5, LM4040BIM3-4.1, LM4040BIM3-5.0, LM4040BIM3-8.2, LM4040BIM3-10.0 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4040BIZ-2.5, LM4040BIZ-4.1, LM4040BIZ-5.0, LM4040BIZ-8.2, LM4040BIZ-10.0 \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4040BIM-2.5, LM4040BIM-4.1, LM4040BIM-5.0, LM4040BIM-8.2, LM4040BIM-10.0 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (C grade) & \begin{tabular}{l}
LM4040CIM3-2.5, LM4040CIM3-4.1, LM4040CIM3-5.0, LM4040CIM3-8.2, LM4040CIM3-10.0 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4040CIZ-2.5, LM4040CIZ-4.1, LM4040CIZ-5.0, LM4040CIZ-8.2, LM4040CIZ-10.0 \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4040CIM-2.5, LM4040CIM-4.1, LM4040CIM-5.0, LM4040CIM-8.2, LM4040CIM-10.0 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (D grade) & \begin{tabular}{l}
LM4040DIM3-2.5, LM4040DIM3-4.1, LM4040DIM3-5.0, LM4040DIM3-8.2, LM4040DIM3-10.0 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4040DIZ-2.5, LM4040DIZ-4.1, LM4040DIZ-5.0, LM4040DIZ-8.2, LM4040DIZ-10.0, \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4040DIM-2.5, LM4040DIM-4.1, LM4040DIM-5.0, LM4040DIM-8.2, LM4040DIM-10.0 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (E grade) & \begin{tabular}{l}
LM4040EIM3-2.5 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4040EIZ-2.5 \\
See NS Package Number Z03A
\end{tabular} & \\
\hline
\end{tabular}

\section*{SOT-23 Package Marking Information}

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.
\begin{tabular}{|c|c|}
\hline Part Marking & Field Definition \\
\hline R2A & First Field: \\
\hline R4A & \(R=\) Reference \\
\hline R5A & Second Field: \\
\hline R8A & \(2=2.500 \mathrm{~V}\) Voltage Option \\
\hline ROA & \(4=4.096 \mathrm{~V}\) Voltage Option \\
\hline \(\cdots\) R2B & \(5=5.000 \mathrm{~V}\) Voltage Option \\
\hline R4B & \(8=8.192 \mathrm{~V}\) Voltage Option \\
\hline R5B & \(0=10.000 \mathrm{~V}\) Voltage Option \\
\hline R8B & Third Field: : \(\quad \cdots\) \\
\hline ROB & A-E = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
\[
A= \pm 0.1 \%, B= \pm 0.2 \%, C=+0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%
\] \\
\hline R2C & \\
\hline R4C & \\
\hline R5C & \\
\hline R8C & \\
\hline ROC & ¢ \\
\hline R2D & \\
\hline R4D & : \(\quad\). \\
\hline R5D & . . . \\
\hline R8D & \\
\hline ROD & \\
\hline R2E & \\
\hline
\end{tabular}

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
\begin{tabular}{lr}
Reverse Current & 20 mA \\
Forward Current & 10 mA \\
Power Dissipation \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) (Note 2) & \\
M Package & 540 mW \\
M3 Package & 306 mW \\
Z Package & 550 mW \\
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Lead Temperature & \\
M and M3 Packages & \\
\(\quad\) Vapor phase \((60\) seconds) & \(+215^{\circ} \mathrm{C}\) \\
\(\quad\) Infrared (15 seconds) & \(+220^{\circ} \mathrm{C}\) \\
Z Package & \\
\(\quad\) Soldering (10 seconds) & \(+260^{\circ} \mathrm{C}\)
\end{tabular}

ESD Susceptibility
\[
\text { Human Body Model (Note 3) } 2 \mathrm{kV}
\] Machine Model (Note 3)
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

\section*{Operating Ratings (Notes \(1 \& 2\))}

Temperature Range
\[
\begin{array}{lr}
\left(T_{\min } \leq T_{A} \leq T_{\max }\right) & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\text { Reverse Current } & 60 \mu \mathrm{~A} \text { to } 15 \mathrm{~mA} \\
\text { LM4040-2.5 } & 68 \mu \mathrm{~A} \text { to } 15 \mathrm{~mA} \\
\text { LM4040-4.1 } & 74 \mu \mathrm{to} 15 \mathrm{~mA} \\
\text { LM4040-5.0 } & 91 \mu \mathrm{~A} \text { to } 15 \mathrm{~mA} \\
\text { LM4040-8.2 } & 100 \mu \mathrm{~A} \text { to } 15 \mathrm{~mA}
\end{array}
\]

\section*{LM4040-2.5}

\section*{Electrical Characteristics}

Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{M A X}\); all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5) & LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 2.500 & & & V \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 2.5 \\
& \pm 19
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5.0 \\
& \pm 21
\end{aligned}
\] & \[
\begin{aligned}
& m V(\max) \\
& m V(\max)
\end{aligned}
\] \\
\hline \(I_{\text {RMIN }}\) & Minimum Operating Current & . & 45 & \[
\begin{aligned}
& 60 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 65
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & \begin{tabular}{l}
Average Reverse Breakdown \\
Voltage Temperature \\
Coefficient
\end{tabular} & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{A}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 20 \\
& \pm 15 \\
& \pm 15
\end{aligned}
\] & \(\pm 100\) & \(\pm 100\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.3 & \[
\begin{aligned}
& 0.8 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max) \\
\hline
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 2.5 & \[
\begin{aligned}
& 6.0 \\
& \mathbf{8 . 0}
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max)
\end{gathered}
\] \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.3 & 0.8 & 0.8 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 35 & & & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta V_{\text {R }}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & & ppm \\
\hline
\end{tabular}

LM4040-2.5 (Continued)

\section*{Electrical Characteristics (Continued)}

Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX }}\) all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(C, D\) and \(E\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%, \pm 1.0 \%\) and \(\pm 2.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & \[
\begin{array}{|c|}
\hline \text { LM4040CIM } \\
\text { LM4040CIM3 } \\
\text { LM4040CIZ } \\
\text { Limits } \\
\text { (Note 5) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { LM4040DIM } \\
\text { LM4040DIM3 } \\
\text { LM4040DIZ } \\
\text { Limits } \\
\text { (Note 5) } \\
\hline
\end{array}
\] & LM4040EIM3
LM4040EIZ
Limits
(Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(V_{R}\)} & Reverse Breakdown Voltage & \(I_{R}=100 \mu \mathrm{~A}\) & 2.500 & & & & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 12 \\
& \pm 29
\end{aligned}
\] & \[
\begin{array}{r}
\pm 25 \\
\pm 49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\pm 50 \\
\pm 74 \\
\hline
\end{array}
\] & \begin{tabular}{l}
mV (max) \\
mV (max)
\end{tabular} \\
\hline \(I_{\text {RMIN }}\) & Minimum Operating Current & & 45 & \[
\begin{aligned}
& 60 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 70
\end{aligned}
\] & \[
\begin{array}{r}
65 \\
70
\end{array}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\text { max })
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 20 \\
& \pm 15 \\
& \pm 15
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & \(\pm 150\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\overline{\Delta V_{R} / \Delta l_{R}}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.4 & \[
\begin{aligned}
& 0.8 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
1.0 \\
1.2
\end{gathered}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.2
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV}(\max) \\
\mathrm{mV}(\max)
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 2.5 & \[
\begin{aligned}
& 6.0 \\
& \mathbf{8 . 0}
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV}(\max) \\
\mathrm{mV}(\max)
\end{gathered}
\] \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{R}}
\end{aligned}
\] & 0.3 & 0.9 & 1.1 & 1.1 & \[
\begin{gathered}
\Omega \\
\Omega(\text { max })
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 35 & \(\cdots\) & \(\cdots\) & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & & & ppm \\
\hline
\end{tabular}

\section*{LM4040-4.1}

\section*{Electrical Characteristics}

Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX; }}\) all other limits \(T_{A}=T_{J}=25^{\circ} C\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5) & LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(V_{R}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 4.096 & & & \(\checkmark\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 4.1 \\
& \pm 31
\end{aligned}
\] & \[
\begin{aligned}
& \pm 8.2 \\
& \pm 35
\end{aligned}
\] & \begin{tabular}{l}
\(\operatorname{mV}\) (max) \\
\(\operatorname{mV}\) (max)
\end{tabular} \\
\hline \(I_{\text {RMIN }}\) & Minimum Operating Current & & 50 & \[
\begin{aligned}
& 68 \\
& 73
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 73
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 30 \\
& \pm 20 \\
& \pm 20 \\
& \hline
\end{aligned}
\] & \(\pm 100\) & \(\pm 100\) & \[
\begin{array}{|c}
\hline \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{array}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta I_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.5 & \[
\begin{aligned}
& 0.9 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 1.2
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max)
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 3.0 & \[
\begin{gathered}
7.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
7.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV}(\max) \\
\mathrm{mV}(\max)
\end{gathered}
\] \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.5 & 1.0 & 1.0 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \({ }^{\text {® }} \mathrm{N}\) & Wideband Noise & \[
\begin{aligned}
& I_{R}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 80 & & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & , & ppm \\
\hline
\end{tabular}

LM4040-4.1 (Continued)
Electrical Characteristics (Continued)
Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX }}\); all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(C\) and \(D\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%\) and \(\pm 1.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typical \\
(Note 4)
\end{tabular} & LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5) & LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5) & \begin{tabular}{l}
Units \\
(Limit)
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 4.096 & . & & V \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 20 \\
& \pm 47 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\pm 41 \\
\pm 81
\end{array}
\] & \begin{tabular}{l}
mV (max) \\
mV (max)
\end{tabular} \\
\hline \(\mathrm{I}_{\text {RMIN }}\) & Minimum Operating Current & & 50 & \[
\begin{aligned}
& 68 \\
& 73
\end{aligned}
\] & \[
\begin{array}{r}
73 \\
78
\end{array}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max) \\
\hline
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 30 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.5 & \[
\begin{array}{r}
0.9 \\
1.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.2 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max)
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 3.0 & \[
\begin{gathered}
7.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
9.0 \\
13.0
\end{gathered}
\] & \begin{tabular}{l}
mV \\
mV (max) \\
\(\operatorname{mV}\) (max)
\end{tabular} \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R} \\
& \hline
\end{aligned}
\] & 0.5 & 1.0 & 1.3 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 80 & & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& \mathrm{t}=1000 \mathrm{hrs} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & & ppm \\
\hline
\end{tabular}

\section*{LM4040-5.0}

Electrical Characteristics
Boldface llmits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX }}\) all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040AIM LM4040AIM3 LM4040AIZ LImits (Note 5) & LM4040BIM LM4040BIM3 LM4040BIZ Llmits (Note 5) & Units (LImit) \\
\hline \multirow[t]{2}{*}{\(V_{\text {R }}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 5.000 & & . & V \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{array}{r}
\pm 5.0 \\
\pm \mathbf{3 8}
\end{array}
\] & \[
\begin{array}{r}
\pm 10 \\
\pm 43 \\
\hline
\end{array}
\] & \begin{tabular}{l}
mV (max) \\
mV (max)
\end{tabular} \\
\hline \(I_{\text {rmin }}\) & Minimum Operating Current & & 54 & \[
\begin{aligned}
& 74 \\
& 80
\end{aligned}
\] & \[
74
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 30 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 100\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.5 & \[
\begin{aligned}
& 1.0 \\
& 1.4
\end{aligned}
\] & \[
\begin{array}{r}
1.0 \\
1.4 \\
\hline
\end{array}
\] & ```
 mV
mV (max)
mV (max)
``` \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 3.5 & \[
\begin{gathered}
8.0 \\
12.0
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
12.0
\end{gathered}
\] & ```
    mV
mV (max)
mV (max)
``` \\
\hline \(Z_{\text {R }}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.5 & 1.1 & 1.1 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \(\mathrm{e}_{\mathrm{N}}\) & Wideband Noise & \[
\begin{aligned}
& I_{R}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 80 & & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & . & - ppm \\
\hline
\end{tabular}

\section*{LM4040-5.0 (Continued)}

Electrical Characteristics (Continued)
Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{M A X}\); all other limits \(T_{A}=T_{J}=25^{\circ} C\). The grades \(C\) and \(D\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%\) and \(\pm 1.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5) & LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5) & \begin{tabular}{l}
Units \\
(Limit)
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}\) & 5.000 & & & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 25 \\
& \pm 58
\end{aligned}
\] & \[
\begin{array}{r}
\pm 50 \\
\pm 99
\end{array}
\] & \[
\begin{aligned}
& m V(\max) \\
& m V(\max)
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\text {RMIN }}\) & Minimum Operating Current & & 54 & \[
\begin{aligned}
& 74 \\
& 80
\end{aligned}
\] & \[
\begin{array}{r}
79 \\
\mathbf{8 5}
\end{array}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) (max) \(\mu \mathrm{A}\) (max) \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 30 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.5 . & \[
\begin{aligned}
& 1.0 \\
& \mathbf{1 . 3}
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.8
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max)
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 3.5 & \[
\begin{gathered}
8.0 \\
12.0
\end{gathered}
\] & \[
\begin{gathered}
10.0 \\
15.0
\end{gathered}
\] & mV \(\operatorname{mV}\) (max) mV (max) \\
\hline \(Z_{R}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.5 & 1.1 & 1.5 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \(\mathrm{e}_{\mathrm{N}}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 80 & & & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & . & & ppm \\
\hline
\end{tabular}

\section*{LM4040-8.2}

\section*{Electrical Characteristics}

Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{M A X}\) all other limits \(T_{A}=T_{J}=25^{\circ} C\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typical \\
(Note 4)
\end{tabular} & LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5) & LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5) & Units (Limlt) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & 8.192 & & & V \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 8.2 \\
& \pm 61
\end{aligned}
\] & \[
\begin{aligned}
& \pm 16 \\
& \pm 70
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mV}(\max) \\
& \mathrm{mV}(\max)
\end{aligned}
\] \\
\hline \(I_{\text {RMIN }}\) & Minimum Operating Current & & 67 & \[
\begin{aligned}
& 91 \\
& 95
\end{aligned}
\] & \[
\begin{aligned}
& 91 \\
& 95
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=150 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 40 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 100\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\max) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{l}_{\mathrm{R}}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.6 & \[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max) \\
m V(\max)
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 7.0 & \[
\begin{gathered}
10.0 \\
18.0
\end{gathered}
\] & \[
\begin{gathered}
10.0 \\
18.0
\end{gathered}
\] & ```
 mV
mV (max)
mV (max)
``` \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.6 & 1.5 & 1.5 & \[
\begin{gathered}
\Omega \\
\Omega(\max )
\end{gathered}
\] \\
\hline \({ }^{\text {e }}\) & Wideband Noise & \[
\begin{aligned}
& I_{R}=150 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 130 & & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{t}_{\mathrm{R}}=150 \mu \mathrm{~A}
\end{aligned}
\] & 120 & - & & ppm \\
\hline
\end{tabular}

LM4040-8.2 (Continued)
Electrical Characteristics (Continued)
Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{M A X}\); all other limits \(T_{A}=T_{J}=25^{\circ} C\). The grades \(C\) and \(D\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%\) and \(\pm 1.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions * & Typlcal (Note, 4) & LM4040CIM LM4040CIM3 LM4040CIZ Llmits (Note 5) & LM4040DIM LM4040DIM3 LM4040DIZ LImits (Note 5) & Units (LImit) \\
\hline \multirow[t]{2}{*}{\(V_{R}\)} & Reverse Breakdown Voltage & \(I_{R}=150 \mu \mathrm{~A}\) & 8.192 & \(\cdots\) & , . \(\cdot\) & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) . & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 41 \\
& \pm 94
\end{aligned}
\] & \[
\begin{gathered}
\pm 82 \\
\pm \mathbf{1 6 2}
\end{gathered}
\] & \begin{tabular}{l}
\(\operatorname{mV}\) (max) \\
mV (max)
\end{tabular} \\
\hline \(\mathrm{I}_{\text {RMIN }}\) & Minimum Operating Current & & 67 & \[
91
\]
\[
95
\] & \[
\begin{gathered}
96 \\
100
\end{gathered}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max ) \\
\mu A(\max )
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=150 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 40 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & ```
    ppm/ }\mp@subsup{}{}{\circ}\textrm{C
ppm/ }\mp@subsup{}{}{\circ}\textrm{C}(\mathrm{ max)
    ppm/ }\mp@subsup{}{}{\circ}\textrm{C
``` \\
\hline \multirow[t]{2}{*}{\[
\Delta V_{R} / \Delta I_{\mathrm{R}}
\]} & Reverse Breakdown Voltage Change with Operating Current Change & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.6 & \[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 3.0
\end{aligned}
\] & ```
 mV
mV (max)
mV (max)
``` \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\). & 7.0 & \[
\begin{gathered}
10.0 \\
18.0
\end{gathered}
\] & \[
\begin{array}{r}
15.0 \\
24.0
\end{array}
\] & \[
\begin{gathered}
m V \\
m V(\max ) \\
m V(\max )
\end{gathered}
\] \\
\hline \(\mathrm{Z}_{\mathrm{R}}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.6 & 1.5 & 1.9 & \[
\begin{gathered}
\Omega \\
\Omega(\max )
\end{gathered}
\] \\
\hline \(\mathrm{e}_{\mathrm{N}}\) & Wideband Noise & \[
\begin{aligned}
& I_{R}=150 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 130 & & & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathbf{R}}=150 \mu \mathrm{~A}
\end{aligned}
\] & 120 & - &  & ppm \\
\hline
\end{tabular}

\section*{LM4040-10.0}

Electrical Characteristics
Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX }}\) all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5) & LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(V_{R}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & 10.00 & & & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & & \[
\begin{aligned}
& \pm 10 \\
& \pm 75
\end{aligned}
\] & \[
\begin{aligned}
& \pm 20 \\
& \pm 85
\end{aligned}
\] & \[
\begin{aligned}
& m V(\max ) \\
& m V(\max )
\end{aligned}
\] \\
\hline IRMIN & Minimum Operating Current & & 75 & \[
\begin{aligned}
& 100 \\
& 103
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 103
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max ) \\
\mu A(\max )
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{\mathrm{R}}=1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 40 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 100\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{R}} / \Delta l_{\mathrm{R}}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.8 & \[
\begin{aligned}
& 1.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 3.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV}(\max ) \\
\mathrm{mV}(\max )
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 8.0 & \[
\begin{array}{r}
12.0 \\
23.0
\end{array}
\] & \[
\begin{gathered}
12.0 \\
23.0
\end{gathered}
\] & \[
\begin{gathered}
m V \\
m V(\max ) \\
m V(\max ) \\
\hline
\end{gathered}
\] \\
\hline \(Z_{\text {R }}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& l_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{\mathrm{A}}
\end{aligned}
\] & 0.7 & 1.7 & 1.7 & \[
\begin{gathered}
\Omega \\
\Omega(\max )
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& l_{R}=150 \mu A \\
& 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}
\end{aligned}
\] & 180 & & & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& \mathrm{t}=1000 \mathrm{hrs} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & . & ppm \\
\hline
\end{tabular}

LM4040-10.0 (Continued)
Electrical Characteristics (Continued)
Boldface limits apply for \(T_{A}=T_{J}=T_{\text {MIN }}\) to \(T_{\text {MAX }}\); all other limits \(T_{A}=T_{J}=25^{\circ} \mathrm{C}\). The grades \(C\) and \(D\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%\) and \(\pm 1.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5) & LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5) & Units (LImit) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & 10.00 & & & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}\) & & \[
\begin{gathered}
\pm 50 \\
\pm 115
\end{gathered}
\] & \[
\begin{gathered}
\pm 100 \\
\pm 198
\end{gathered}
\] & \[
\begin{aligned}
& m V(\max ) \\
& m V(\max )
\end{aligned}
\] \\
\hline IRMIN
\(\therefore\)

\(\square\) & Minimum Operating Current & & 75 & \[
\begin{aligned}
& 100 \\
& 103
\end{aligned}
\] & \[
\begin{aligned}
& 110 \\
& 113
\end{aligned}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) (max) \(\mu \mathrm{A}\) (max) \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=150 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 40 \\
& \pm 20 \\
& \pm 20
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\). & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta I_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(l_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.8 & \[
\begin{aligned}
& 1.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{array}{r}
2.0 \\
4.0
\end{array}
\] & \[
\begin{gathered}
m V \\
m V(\max ) \\
m V(\max )
\end{gathered}
\] \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}\) & 8.0 & \[
\begin{gathered}
12.0 \\
23.0
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
29.0
\end{gathered}
\] & ```
    mV
mV (max)
mV (max)
``` \\
\hline \(Z_{\text {R }}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.7 & 1.7 & 2.3 & \[
\begin{gathered}
\Omega \\
\Omega(\text { max }) \\
\hline
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 180 & & . & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta \mathrm{V}_{\mathrm{R}}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}
\end{aligned}
\] & 120 & . & & ppm \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{\text {Jmax }}\) (maximum junction temperature), \(\theta_{\mathrm{JA}}\) (junction to ambient thermal resistance), and \(T_{A}\) (ambient temperature). The maximum allowable power dissipation at any temperature is \(P D_{\max }=\left(T_{J \max }-T_{A}\right) / \theta_{J A}\) or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040, \(\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}\), and the typical thermal resistance (\(\theta_{\mathrm{JA}}\)), when board mounted, is \(185^{\circ} \mathrm{C} / \mathrm{W}\) for the M package, \(326^{\circ} \mathrm{C} / \mathrm{W}\) for the SOT- 23 package, and \(180^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.4^{\prime \prime}\) lead length and \(170^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.125^{\prime \prime}\) lead length for the TO-92 package.
Note 3: The human body model is a 100 pF capacitor discharged through a \(1.5 \mathrm{k} \Omega\) resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) and represent most likely parametric norm.
Note 5: Limits are \(100 \%\) production tested at \(25^{\circ} \mathrm{C}\). Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voitage Tolerance \(\pm\left[\left(\Delta V_{R} / \Delta T\right)\left(65^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{R}}\right)\right] . \Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}\) is the \(\mathrm{V}_{\mathrm{R}}\) temperature coefficient, \(65^{\circ} \mathrm{C}\) is the temperature range from \(-40^{\circ} \mathrm{C}\) to the reference point of \(25^{\circ} \mathrm{C}\), and \(\mathrm{V}_{\mathrm{R}}\) is the reverse breakdown voltage. The total over-temperature tolerance for the different grades is shown below:
A-grade: \(\pm 0.75 \%= \pm 0.1 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
B-grade: \(\pm 0.85 \%= \pm 0.2 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
C-grade: \(\pm 1.15 \%= \pm 0.5 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
D-grade: \(\pm 1.98 \%= \pm 1.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
E-grade: \(\pm 2.98 \%= \pm 2.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
Therefore, as an example, the A-grade LM4040-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of \(\pm 2.5 \mathrm{~V} \times 0.75 \%= \pm 19 \mathrm{mV}\).

\section*{Typical Performance Characteristics}

Start-Up Characteristics

TL/H/11323-5

TL/H/11323-7

TL/H/11323-8

TL/H/11323-9

\section*{Functional Block Diagram}

\section*{Applications Information}

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040 is available in the sub-miniature SOT-23 surface-mount package. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the " + " pin and the " - " pin. If, however, a bypass capacitor is used, the LM4040 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: \(2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}\), 8.192 V , and 10.000 V . The minimum operating current increases from \(60 \mu \mathrm{~A}\) for the LM4040-2.5 to \(100 \mu \mathrm{~A}\) for the LM4040-10.0. All versions have a maximum operating current of 15 mA .

LM4040s in the SOT-23 packages have a parasitic Schottky diode between pin \(3(-)\) and pin 1 (Die attach interface contact). Therefore, pin 1 of the SOT-23 package must be left floating or connected to pin 3.

The 4.096V version allows single +5 V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV . For 12-bit ADCs or DACs that operate on supplies of 10 V or greater, the 8.192 V version gives 2 mV per LSB.
In a conventional shunt regulator application (Figure 1), an external series resistor (\(\mathrm{RS}_{\mathrm{S}}\)) is connected between the supply voltage and the LM4040. R \(\mathrm{R}_{\mathrm{S}}\) determines the current that flows through the load (\(\mathrm{L}_{\mathrm{L}}\)) and the LM4040 (lo). Since load current and supply voltage may vary, \(R_{S}\) should be small
enough to supply at least the minimum acceptable \(\mathrm{l}_{\mathrm{Q}}\) to the LM4040 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and \(I_{L}\) is at its minimum, \(R_{S}\) should be large enough so that the current flowing through the LM4040 is less than 15 mA .
\(R_{S}\) is determined by the supply voltage, \(\left(V_{S}\right)\), the load and operating current, (\(\mathrm{I}_{\mathrm{L}}\) and \(\mathrm{I}_{\mathrm{Q}}\)), and the LM4040's reverse breakdown voltage, \(\mathrm{V}_{\mathrm{R}}\).
\[
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
\]

\section*{Typical Applications}

TL/H/11323-15
FIGURE 1. Shunt Regulator

FIGURE 2. LM4040-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

TL/H/11323-17
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is \(\pm 11.5 \mathrm{~V}\) (LM4040's reverse breakdown voltage +2 diode \(V_{F}\)).

Typical Applications (Continued)

FIGURE 4. Protecting Op Amp input. The bounding voltage is \(\pm 4 \mathrm{~V}\) with the LM4040-2.5 (LM4040's reverse breakdown voltage +3 diode \(\mathrm{V}_{\mathrm{F}}\)).

FIGURE 5. Precision \(\pm 4.096 V\) Reference

Typical Applications (Continued)

FIGURE 6. Programmable Current Source

TL/H/11323-21
FIGURE 7. Precision \(1 \mu \mathrm{~A}\) to 1 mA Current Sources

National Semiconductor

\section*{LM4041}

Precision Micropower Shunt Voltage Reference

\section*{General Description}

Ideal for space critical applications, the LM4041 precision voltage reference is available in the sub-miniature (\(3 \mathrm{~mm} \times\) 1.3 mm) SOT-23 surface-mount package. The LM4041's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4041 easy to use. Further reducing design effort is the availability of a fixed (1.225V) and adjustable reverse breakdown voltage. The minimum operating current is \(60 \mu \mathrm{~A}\) for the LM4041-1.2 and the LM4041-ADJ. Both versions have a maximum operating current of 12 mA . The LM4041 utilizes fuse and zener-zap reverse breakdown or reference voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than \(\pm 0.1 \%\) (A grade) at \(25^{\circ} \mathrm{C}\). Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

\section*{Features}

■ Small packages: SOT-23, TO-92, and SO-8
■ No output capacitor required
- Tolerates capacitive loads
- Reverse breakdown voltage options of 1.225 V and adjustable
- Contact National Semiconductor Analog Marketing for parts with extended temperature range

\section*{Key Specifications (LM4041-1.2)}

■ Output voltage tolerance (A grade, \(25^{\circ} \mathrm{C}\)) \(\pm 0.1 \%\) (max)
- Low output noise (10 Hz to 10 kHz) \(20 \mu \mathrm{~V}_{\text {rms }}\) (typ)
- Wide operating current range
- Industrial temperature range \(60 \mu \mathrm{~A}\) to 12 mA
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- Low temperature coefficient \(100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) (max)

\section*{Applications}
- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

\section*{Connection Diagrams}

SOT-23

TL/H/11392-1
*This pin must be left floating or connected to pin 3.

Top View
See NS Package Number M03B (JEDEC Registration TO-236AB)

SO-8

Top View
See NS Package Number M08A

TO-92

Bottom View
See NS Package Number Z03A

Ordering Information
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Reverse Breakdown \\
Voltage Tolerance at \(25^{\circ} \mathrm{C}\) and Average Reverse Breakdown Voltage Temperature Coefficient
\end{tabular}} & \multicolumn{3}{|c|}{Package} \\
\hline & M3（SOT－23） & Z（TO－92） & M（SO－8） \\
\hline \(\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max（A grade） & \begin{tabular}{l}
LM4041AIM3－1．2 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4041AIZ-1.2 \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
＇LM4041AIM－1．2 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max（B grade） & \begin{tabular}{l}
LM4041BIM3－1．2 \\
See NS Package \\
Number M03B
\end{tabular} & \begin{tabular}{l}
LM4041BIZ－1． 2 \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4041BIM－1．2 \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max\)（C grade） & \begin{tabular}{l}
LM4041CIM3－1．2 \\
LM4041CIM3－ADJ \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4041CIZ－1．2， LM4041CIZ－ADJ \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4041CIM－1．2， \\
LM4041CIM－ADJ \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max（ D grade） & \begin{tabular}{l}
LM4041DIM3－1．2 \\
LM4041DIM3－ADJ \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4041DIZ－1．2， LM4041DIZ－ADJ \\
See NS Package Number Z03A
\end{tabular} & \begin{tabular}{l}
LM4041DIM－1．2， \\
LM4041DIM－ADJ \\
See NS Package Number M08A
\end{tabular} \\
\hline \(\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max（E grade） & \begin{tabular}{l}
LM4041EIM3－1．2 \\
See NS Package Number M03B
\end{tabular} & \begin{tabular}{l}
LM4041EIZ－1．2 \\
See NS Package Number Z03A
\end{tabular} & －：． \\
\hline
\end{tabular}

\section*{SOT－23 Package Marking Information}

Only three fields of marking are possible on the SOT－23＇s small surface．This table gives the meaning of the three fields．
\begin{tabular}{l|c}
\hline Part Marking & Fleld Definition \\
\hline R1A & First Field： \\
R1B & R Reference \\
R1C & Second Field： \\
R1D & \(1=1.225 \mathrm{~V}\) Voltage Option \\
R1E & \(A=\) Adjustable \\
& Third Field： \\
RAC & \(A-E=\) Initial Reverse Breakdown \\
VAD & \(A= \pm 0.1 \%, B= \pm 0.2 \%, C= \pm 0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%\) \\
\hline
\end{tabular}

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Reverse Current
20 mA
Forward Current 10 mA
Maximum Output Voltage
(LM4041-ADJ) 15V

Power Dissipation (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) (Note 2)

M Package
M3 Package
Z Package
Storage Temperature
Lead Temperature
M and M3 Packages Vapor phase (60 seconds)
Infrared (15 seconds)
Z Package Soldering (10 seconds) \(+260^{\circ} \mathrm{C}\)

540 mW 306 mW 550 mW
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(+215^{\circ} \mathrm{C}\)
\(+220^{\circ} \mathrm{C}\)

ESD Susceptibility
Human Body Model (Note 3) 2 kV
Machine Model (Note 3)
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

\section*{Operating Ratings (Notes \(1 \& 2\))}

Temperature Range
\[
\left(T_{\min } \leq T_{A} \leq T_{\max }\right) \quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\]

Reverse Current
LM4041-1.2 \(60 \mu \mathrm{~A}\) to 12 mA

LM4041-ADJ
Output Voltage Range
LM4041-ADJ
1.24 V to 10 V

\section*{LM4041-1.2}

\section*{Electrical Characteristics}

Boldface limits apply for \(\mathbf{T}_{A}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}\) to \(\mathbf{T}_{\text {mAX; }}\) all other limits \(T_{A}=T_{J}=25^{\circ} C\). The grades \(A\) and \(B\) designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.1 \%\) and \(\pm 0.2 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4041AIM LM4041AIM3 LM4041AIZ Limits (Note 5) & LM4041BIM LM4041BIM3 LM4041BIZ Limits (Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(V_{\text {R }}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 1.225 & & & V \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{array}{r}
\pm 1.2 \\
\pm 9.2
\end{array}
\] & \[
\begin{gathered}
\pm 2.4 \\
\pm 10.4
\end{gathered}
\] & \begin{tabular}{l}
\(m V(\max)\) \\
mV (max)
\end{tabular} \\
\hline \(I_{\text {RMIN }}\) & Minimum Operating Current & & 45 & \[
\begin{aligned}
& 60 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 65
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max) \\
\hline
\end{gathered}
\] \\
\hline \(\Delta V_{\mathrm{R}} / \Delta \mathrm{T}\) & \begin{tabular}{l}
Average Reverse Breakdown \\
Voltage Temperature \\
Coefficient
\end{tabular} & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 20 \\
& \pm 15 \\
& \pm 15
\end{aligned}
\] & \(\pm 100\) & \[
\pm \mathbf{1 0 0}
\] & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}\) & 0.7 & \[
\begin{aligned}
& 1.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 2.0
\end{aligned}
\] & \begin{tabular}{l}
mV \\
\(m V(\max)\) \\
\(m V\) (max)
\end{tabular} \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{R}} \leq 12 \mathrm{~mA}\) & 4.0 & \[
\begin{aligned}
& 6.0 \\
& \mathbf{8 . 0}
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& \mathbf{8 . 0}
\end{aligned}
\] & \begin{tabular}{l}
mV \\
\(m V(\max)\) \\
mV (max)
\end{tabular} \\
\hline \(Z_{R}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\
& I_{A C}=0.1 I_{R}
\end{aligned}
\] & 0.5 & 1.5 & 1.5 & \[
\begin{gathered}
\Omega \\
\Omega(\max)
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 20 & & & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& \mathrm{t}=1000 \mathrm{hrs} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 120 & & & ppm \\
\hline
\end{tabular}

\section*{LM4041-1.2 (Continued)}

Electrical Characteristics (Continued)
Boldface limits apply for \(\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}\) to \(\mathbf{T}_{\mathbf{M A X}}\); all other limits \(\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}\). The grades \(\mathrm{C}, \mathrm{D}\) and E designate initial Reverse Breakdown Voltage tolerances of \(\pm 0.5 \%, \pm 1.0 \%\) and \(\pm 2.0 \%\), respectively.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & \begin{tabular}{l}
LM4041CIM LM4041CIM3 \\
LM4041CIZ Limits (Note 5)
\end{tabular} & LM4041DIM LM4041DIM3 LM4041DIZ Limits (Note 5) & \begin{tabular}{l}
LM4041EIM3 LM4041EIZ \\
Limits (Note 5)
\end{tabular} & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{R}}\)} & Reverse Breakdown Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 1.225 & & & & \(V\) \\
\hline & Reverse Breakdown Voltage Tolerance (Note 6) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & & \[
\begin{gathered}
\pm 6 \\
\pm 14
\end{gathered}
\] & \[
\begin{aligned}
& \pm 12 \\
& \pm 24
\end{aligned}
\] & \[
\begin{array}{r}
\pm 25 \\
\pm 36
\end{array}
\] & \[
\begin{aligned}
& m V(\max) \\
& m V(\max)
\end{aligned}
\] \\
\hline IRMIN & Minimum Operating Current & & 45 & \[
\begin{array}{r}
60 \\
65
\end{array}
\] & \[
\begin{aligned}
& 65 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 70
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\Delta V_{R} / \Delta T\) & Average Reverse Breakdown Voltage Temperature Coefficient & \[
\begin{aligned}
& I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 20 \\
& \pm 15 \\
& \pm 15
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & \(\pm 150\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{R} / \Delta l_{R}\)} & \multirow[t]{2}{*}{Reverse Breakdown Voltage Change with Operating Current Change} & \(I_{\text {RMIN }} \leq I_{R} \leq 1 \mathrm{~mA}\) & 0.7 & \[
\begin{aligned}
& 1.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.5
\end{aligned}
\] & ```
mV
``` \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}\) & 2.5 & \[
\begin{aligned}
& 6.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
10.0
\end{gathered}
\] & \[
\begin{gathered}
m V \\
m V(\max ) \\
m V(\max )
\end{gathered}
\] \\
\hline \(Z_{R}\) & Reverse Dynamic Impedance & \[
\begin{aligned}
& I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz} \\
& I_{A C}=0.1 I_{\mathrm{R}}
\end{aligned}
\] & 0.5 & 1.5 & 2.0 & 2.0 & \[
\begin{gathered}
\Omega \\
\Omega(\text { max }) \\
\hline
\end{gathered}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& I_{R}=100 \mu \mathrm{~A} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 20 & & & , & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline \(\Delta V_{R}\) & Reverse Breakdown Voltage Long Term Stability & \[
\begin{aligned}
& t=1000 \mathrm{hrs} \\
& T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] & 120 & & & : & ppm \\
\hline
\end{tabular}

\section*{LM4041-ADJ (Adjustable)}

\section*{Electrical Characteristics}

Boldface limits apply for \(\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}\) to \(\mathbf{T}_{\text {max }}\); all other limits \(\mathbf{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}\) unless otherwise specified (SOT-23, see Note 7), \(I_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}, V_{\text {REF }} \leq V_{\text {OUT }} \leq 10 \mathrm{~V}\). The grades \(C\) and \(D\) designates initial Reference Voltage Tolerances of \(\pm 0.5 \%\) and \(\pm 1 \%\), respectively for \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4041CIM LM4041CIM3 LM4041CIZ (Note 5) & LM4041DIM LM4041DIM3 LM4041DIZ (Note 5) & Units (Limit) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {REF }}\)} & Reference Voltage & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\) & 1.233 & & & V \\
\hline & Reference Voltage Tolerance (Note 8) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\) & & \[
\begin{aligned}
& \pm 6.2 \\
& \pm 14
\end{aligned}
\] & \[
\begin{array}{r} 
\pm 12 \\
\pm 24
\end{array}
\] & \[
\begin{aligned}
& m V(\max ) \\
& m V(\max )
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\text {RMIN }}\) & Minimum Operating Current & . & 45 & \[
\begin{array}{r}
60 \\
65
\end{array}
\] & \[
\begin{aligned}
& 65 \\
& 70
\end{aligned}
\] & \[
\begin{gathered}
\mu A \\
\mu A(\max ) \\
\mu A(\max )
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{LM4041-ADJ (Adjustable) (Continued)}

\section*{Electrical Characteristics (Continued)}

Boldface IImits apply for \(T_{A}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}\) to \(\mathbf{T}_{\text {max }}\) all other limits \(T_{J}=25^{\circ} \mathrm{C}\) unless otherwise specified (SOT-23, see Note 7), \(I_{R M I N} \leq I_{R} \leq 12 \mathrm{~mA}, \mathrm{~V}_{\text {REF }} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}\). The grades C and D designates initial Reference Voltage Tolerances of \(\pm 0.5 \%\) and \(\pm 1 \%\), respectively for \(V_{\text {OUT }}=5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & LM4041CIM LM4041CIM3 LM4041CIZ (Note 5) & \begin{tabular}{l}
LM4041DIM LM4041DIM3 \\
LM4041DIZ \\
(Note 5)
\end{tabular} & \begin{tabular}{l}
Units \\
(Limit)
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(\Delta V_{\text {REF }} / \Delta l_{\text {R }}\)} & \multirow[t]{2}{*}{Reference Voltage Change with Operating Current Change} & \[
\begin{aligned}
& I_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA} \\
& \text { SOT-23: } \left.\mathrm{V}_{\text {OUT }} \geq 1.6 \mathrm{~V} \text { (Note } 7\right)
\end{aligned}
\] & 0.7 & \[
\begin{aligned}
& 1.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
m V \\
m V(\max ) \\
m V(\max )
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA} \\
& \text { SOT-23: } \mathrm{V}_{\text {OUT }} \geq 1.6 \mathrm{~V} \text { (Note } 7 \text { ) }
\end{aligned}
\] & 2 & \[
\begin{aligned}
& 4 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 8
\end{aligned}
\] & \begin{tabular}{l}
mV \\
\(\operatorname{mV}\) (max) \\
\(m V(\max )\)
\end{tabular} \\
\hline \(\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\mathrm{O}}\) & Reference Voltage Change with Output Voltage Change & \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}\) & -1.3 & \[
\begin{array}{r}
-2.0 \\
-2.5
\end{array}
\] & \[
\begin{array}{r}
-2.5 \\
-\mathbf{3 . 0}
\end{array}
\] & \begin{tabular}{l}
\(m V / V\) \\
\(m \mathrm{~m} / \mathrm{V}\) (max) \\
\(m V / V\) (max)
\end{tabular} \\
\hline \(\mathrm{I}_{\text {FB }}\) & Feedback Current & & 60 & \[
\begin{aligned}
& 100 \\
& 120
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 200
\end{aligned}
\] & nA nA (max) nA (max) \\
\hline \(\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}\) & Average Reference Voltage Temperature Coefficient (Note 8) & \[
\begin{array}{|ll}
V_{\text {OUT }}=5 \mathrm{~V}, & I_{R}=10 \mathrm{~mA} \\
& I_{R}=1 \mathrm{~mA} \\
& I_{R}=100 \mu \mathrm{~A}
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 15 \\
& 15
\end{aligned}
\] & \(\pm 100\) & \(\pm 150\) & \[
\begin{gathered}
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline \(Z_{\text {OUT }}\) & Dynamic Output Impedance & \[
\begin{array}{|ll|}
\hline I_{R}=1 \mathrm{~mA}, f= & 120 \mathrm{~Hz}, \\
I_{A C}=0.1 I_{R} & \\
& V_{O U T}=V_{R E F} \\
& V_{\text {OUT }}=10 \mathrm{~V}
\end{array}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & & & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline \({ }^{\text {en }}\) & Wideband Noise & \[
\begin{aligned}
& I_{\mathrm{R}}=100 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{OUT}}=V_{\mathrm{REF}} \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & 20 & & & \(\mu V_{\text {rms }}\) \\
\hline \(\Delta V_{\text {REF }}\) & Reference Voltage Long Term Stability & \[
\begin{aligned}
& \mathrm{t}=1000 \mathrm{hrs}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}
\end{aligned}
\] & 120 & & & ppm \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{\text {Jmax }}\) (maximum junction temperature), \(\theta_{J A}\) (junction to ambient thermal resistance), and \(T_{A}\) (ambient temperature). The maximum allowable power dissipation at any temperature is \(P D_{\max }=\left(T_{J m a x}-T_{A}\right) / \theta_{J A}\) or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4041, \(\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}\), and the typical thermal resistance ( \(\theta_{J A}\) ), when board mounted, is \(185^{\circ} \mathrm{C} / \mathrm{W}\) for the M package, \(326^{\circ} \mathrm{C} / \mathrm{W}\) for the SOT-23 package, and \(180^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.4^{\prime \prime}\) lead length and \(170^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.125^{\prime \prime}\) lead length for the TO-92 package.
Note 3: The human body model is a 100 pF capacitor discharged through a \(1.5 \mathrm{k} \Omega\) resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) and represent most likely parametric norm.
Note 5: Limits are \(100 \%\) production tested at \(25^{\circ} \mathrm{C}\). Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance \(\pm\left[\left(\Delta V_{R} / \Delta T\right)\left(65^{\circ} \mathrm{C}\right)\left(V_{R}\right)\right] . \Delta \mathrm{V}_{R} / \Delta \mathrm{T}\) is the \(\mathrm{V}_{\mathrm{R}}\) temperature coefficient, \(65^{\circ} \mathrm{C}\) is the temperature range from \(-40^{\circ} \mathrm{C}\) to the reference point of \(25^{\circ} \mathrm{C}\), and \(\mathrm{V}_{\mathrm{R}}\) is the reverse breakdown voltage. The total over-temperature tolerance for the different grades is shown below:
A-grade: \(\pm 0.75 \%= \pm 0.1 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
B-grade: \(\pm 0.85 \%= \pm 0.2 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
C-grade: \(\pm 1.15 \%= \pm 0.5 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
D-grade: \(\pm 1.98 \%= \pm 1.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
E-grade: \(\pm 2.98 \%= \pm 2.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}\)
Therefore, as an example, the A-grade LM4041-1.2 has an over-temperature Reverse Breakdown Voltage tolerance of \(\pm 1.2 \mathrm{~V} \times 0.75 \%= \pm 9.2 \mathrm{mV}\).
Note 7. When V between the die (-) output and the package (-) output pin. See the Output Saturation (SOT-23 only) curve in the Typical Performance Characteristics section.
Note 8. Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.

\section*{Typical Performance Characteristics}



TL/H/11392-5


TL/H/11392-4

\section*{Reverse Characteristics and Minimum Operating Current}



TL/H/11392-7

\section*{Typical Performance Characteristics (Continued)}


TL/H/11392-11


Output Impedance vs Frequency


Reference Voltage vs Temperature and Output Voltage


TL/H/11392-10


Output Impedance vs Frequency


TL/H/11392-14

Typical Performance Characteristics (Continued)


Functional Block Diagram


TL/H/11392-21
-LM4041-ADJ only
**LM4041-1.2 only

\section*{Applications Information}

The LM4041 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4041 is available in the sub-miniature SOT-23 surface-mount package. The LM4041 has been designed for stable operation without the need of an external capacitor connected between the " + " pin and the " - " pin. If, however, a bypass capacitor is used, the LM4041 remains stable. Design effort is further reduced with the choice of either a fixed 1.2 V or an adjustable reverse breakdown voltage. The minimum operating current is \(60 \mu \mathrm{~A}\) for the LM4041-1.2 and the LM4041-ADJ. Both versions have a maximum operating current of 12 mA .
LM4041s using the SOT-23 package have pin 1 connected as the \((-)\) output through the package's die attach interface. Therefore, the LM4041-1.2's pin 1 must be left floating or connected to pin 3 and the LM4041-ADJ's pin 1 is the ( - ) output.
In a conventional shunt regulator application (Figure 1), an external series resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) is connected between the supply voltage and the LM4041. Rs determines the current that flows through the load ( \(\mathrm{L}_{\mathrm{L}}\) ) and the LM4041 (IQ). Since load current and supply voltage may vary, R \(\mathrm{R}_{\mathrm{S}}\) should be small enough to supply at least the minimum acceptable \(l_{Q}\) to the LM4041 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and \(I_{L}\) is at its minimum, \(R_{S}\) should be large enough so that the current flowing through the LM4041 is less than 12 mA .
\(R_{S}\) is determined by the supply voltage, \(\left(V_{S}\right)\), the load and operating current, ( \(\mathrm{L}_{\mathrm{L}}\) and \(\mathrm{I}_{\mathrm{Q}}\) ), and the LM4041's reverse breakdown voltage, \(\mathrm{V}_{\mathrm{R}}\).
\[
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
\]

The LM4041-ADJ's output voltage can be adjusted to any value in the range of 1.24 V through 10 V . It is a function of the internal reference voltage ( \(\mathrm{V}_{\mathrm{REF}}\) ) and the ratio of the external feedback resistors as shown in Figure 2. The output is found using the equation
\[
\begin{equation*}
V_{O}=V_{R E F^{\prime}}\left(\frac{R 2}{R 1}+1\right) \tag{1}
\end{equation*}
\]
where \(V_{O}\) is the desired output voltage. The actual value of the internal \(\mathrm{V}_{\text {REF }}\) is a function of \(\mathrm{V}_{\mathrm{O}}\). The "corrected" \(\mathrm{V}_{\text {REF }}\) is determined by
\[
\begin{equation*}
V_{R E F^{\prime}}=V_{O}\left(\Delta V_{R E F} / \Delta V_{O}\right)+V_{Y} \tag{2}
\end{equation*}
\]
where \(V_{O}\) is the desired output voltage. \(\Delta V_{R E F} / \Delta V_{O}\) is found in the Electrical Characteristics and it typically \(-1.3 \mathrm{mV} / \mathrm{V}\) and \(\mathrm{V}_{\mathrm{Y}}\) is equal to 1.240 V . Replace the value of \(V_{R E F}\) in equation (1) with the value found using equation (2).

Note that the actual output voltage can deviate from that predicted using the typical \(\Delta \mathrm{V}_{\mathrm{REF}} / \Delta \mathrm{V}_{\mathrm{O}}\) in equation (2): for C -grade parts, the worst-case \(\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\mathrm{O}}\) is \(-2.5 \mathrm{mV} / \mathrm{V}\) and \(V_{Y}=1.246 \mathrm{~V}\). For D-grade parts, the worst-case \(\Delta V_{R E F} / \Delta V_{O}\) is \(-3.0 \mathrm{mV} / \mathrm{V}\) and \(V_{Y}=1.248 \mathrm{~V}\).
The following example shows the difference in output voltage resulting from the typical and worst case values of \(\Delta V_{\text {REF }} / \Delta V_{\mathrm{O}}\). Let \(\mathrm{V}_{\mathrm{O}}=+9 \mathrm{~V}\). Using the typical value of \(\Delta V_{R E F} / \Delta V_{O}, V_{\text {REF }}\) is 1.228 V . Choosing a value of \(R 1=10 \mathrm{k} \Omega, \mathrm{R} 2=63.272 \mathrm{k} \Omega\). Using the worst case \(\Delta V_{\text {REF }} / \Delta V_{\text {O }}\) for the \(C\)-grade and \(D\)-grade parts, the output voltage is actually 8.965 V and 8.946 V , respectively. This results in possible errors as large as \(0.39 \%\) for the C-grade parts and \(0.59 \%\) for the D-grade parts. Once again, resistor values found using the typical value of \(\Delta V_{R E F} / \Delta V_{O}\) will work in most cases, requiring no further adjustment.

\section*{Typical Applications}


TL/H/1.1392-22
FIGURE 1. Shunt Regulator


TL/H/11392-34
FIGURE 2. Adjustable Shunt Regulator

Typical Applications (Continued)


TL/H/11392-24
FIGURE 3. Bounded amplifier reduces saturation-Induced delays and can prevent succeeding stage damage. Nominal clamping voltage is \(\pm \mathrm{V}_{\mathrm{O}}\) (LM4041's reverse breakdown voltage) +2 diode \(\mathrm{V}_{\mathrm{F}}\).


TL/H/11392-20
FIGURE 4. Voltage Level Detector


FIGURE 6. Fast Positive Clamp \(2.4 \mathbf{V}+\Delta \mathbf{V}_{\mathrm{D} 1}\)

TL/H/11392-25


TL/H/11392-23
FIGURE 5. Voltage Level Detector


TL/H/11392-26
FIGURE 7. Bidirectional Clamp \(\pm \mathbf{2 . 4 V}\)


TL/H/11392-35
FIGURE 7. Bidirectional Adjustable Clamp \(\pm 18 \mathrm{~V}\) to \(\pm \mathbf{2 . 4 V}\)


TL/H/11392-36
FIGURE 8. Bidirectional Adjustable Clamp \(\pm 2.4 \mathrm{~V}\) to \(\pm 6 \mathrm{~V}\)


TL/H/11392-37


FIGURE 10. Current Source

FIGURE 9. Simple Floating Current Detector


FIGURE 11. Precision Floating Current Detector
- D1 can be any LED, \(V_{F}=1.5 \mathrm{~V}\) to 2.2 V at 3 mA . D1 may act as an
indicator. D1 will be on if ITHRESHOLD falls below the threshold current,
except with \(I=0\).

Typical Applications (Continued)


TL/H/11392-27
FIGURE 12. Programmable Current Source


FIGURE 13. Precision \(1 \mu \mathrm{~A}\) to 1 mA Current Sources

\section*{LP2950/A-XX and LP2951/A-XX Series of Adjustable Micropower Voltage Regulators}

\section*{General Description}

The LP2950 and LP2951 are micropower voltage regulators with very low quiescent current ( \(75 \mu \mathrm{~A}\) typ.) and very low dropout voltage (typ. 40 mV at light loads and 380 mV at 100 mA ). They are ideally suited for use in battery-powered systems. Furthermore, the quiescent current of the LP2950/LP2951 increases only slightly in dropout, prolonging battery life.
The LP2950-5.0 in the popular 3-pin TO-92 package is pincompatible with older 5 V regulators. The 8-lead LP2951 is available in plastic, ceramic dual-in-line, or metal can packages and offers additional system functions.
One such feature is an error flag output which warns of a low output voltage, often due to falling batteries on the input. It may be used for a power-on reset. A second feature is the logic-compatible shutdown input which enables the regulator to be switched on and off. Also, the part may be pin-strapped for a \(5 \mathrm{~V}, 3 \mathrm{~V}\), or 3.3 V output (depending on the version), or programmed from 1.24 V to 29 V with an external pair of resistors.
Careful design of the LP2950/LP2951 has minimized all contributions to the error budget. This includes a tight initial
tolerance (.5\% typ.), extremely good load and line regulation (. \(05 \%\) typ.) and a very low output voltage temperature coefficient, making the part useful as a low-power voltage reference.

\section*{Features}
\(\square 5 \mathrm{~V}, 3 \mathrm{~V}\), and 3.3 V versions available
- High accuracy output voltage

■ Guaranteed 100 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Use as Regulator or Reference
- Needs minimum capacitance for stability
- Current and Thermal Limiting

\section*{LP2951 versions only}

■ Error flag warns of output dropout
- Logic-controlled electronic shutdown
- Output programmable from 1.24 to 29 V

\section*{Block Diagram and Typical Applications}


TL/H/8546-1

\section*{Connection Diagrams}
TO-92 Plastic Package (Z)
Bottom View
Order Number LP2950ACZ-3.0, LP2950CZ-3.0,
LP2950ACZ-3.3, LP2950CZ-3.3 LP2950ACZ-5.0
Or LP2950CZ-5.0
See NS Package Number Z03A

See NS Package Number Z03A

Dual-In-LIne Packages ( \(\mathrm{N}, \mathrm{J}\) ) Surface-Mount Package (M)


TL/H/8546-19
Top Vlew
Order Number LP2951H/883 or 5962-3870501MGA See NS Package Number H08C

TL/H/8546-26
Top View
Order Number LP2951CJ, LP2951ACJ, LP2951J, LP2951J/883 or 5962-3870501MPA See NS Package Number J08A

Order Number LP2951ACN, LP2951CN, LP2951ACN-3.0, LP2951CN-3.0, LP2951ACN-3.3 or LP2951CN-3.3 See NS Package Number N08E

Order Number LP2951ACM, LP2951CM, LP2951ACM-3.0, LP2951CM-3.0, LP2951ACM-3.3 or LP2951CM-3.3 See NS Package Number M08A


Order Number LP2951E/883 or 5962-3870501M2A See NS Package Number E20A

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Package} & \multicolumn{3}{|c|}{Output Voltage} & \multirow[t]{2}{*}{Temperature ( \(\left.{ }^{\circ} \mathrm{C}\right)\)} \\
\hline & 3.0 V & 3.3 V & 5.0 V & \\
\hline TO-92 (Z) & LP2950ACZ-3.0 LP2950CA-3.0 & \begin{tabular}{l}
LP2950ACZ-3.3 \\
LP2950CZ-3.3
\end{tabular} & LP2950ACZ-5.0 LP2950CZ-5.0 & \(-40<\mathrm{T}_{\mathrm{J}}<125\) \\
\hline N (N-08E) & LP2951ACN-3.0 LP2951CN-3.0 & LP2951ACN-3.3 LP2951CN-3.3 & \[
\begin{aligned}
& \text { LP2951ACN } \\
& \text { LP2950CN }
\end{aligned}
\] & \(-40<\mathrm{T}_{\mathrm{J}}<125\) \\
\hline M (M08A) & LP2951ACM-3.0 LP2951CM-3.0 & \begin{tabular}{l}
LP2951ACM-3.3 \\
LP2951CM-3.3
\end{tabular} & \begin{tabular}{l}
LP2951ACM \\
LP2951CM
\end{tabular} & \(-40<\mathrm{T}_{\mathrm{J}}<125\) \\
\hline J (J08A) & & & \begin{tabular}{l}
LP2951ACJ \\
LP2951CJ \\
LP2951J \\
LP2951J/883 \\
5926-3870501MPA
\end{tabular} & \[
\begin{aligned}
& -40<T_{J}<125 \\
& -55<T_{J}<150
\end{aligned}
\] \\
\hline H (H08C) & & & \[
\begin{aligned}
& \text { LP2951H/883 } \\
& 5962-3870501 \mathrm{MGA}
\end{aligned}
\] & \(-55<\mathrm{T}_{\mathrm{J}}<150\) \\
\hline E (E20A) & & & \[
\begin{aligned}
& \text { LP2951E/883 } \\
& 5962-3870501 \text { M2A }
\end{aligned}
\] & \(-55<\mathrm{T}_{\mathrm{J}}<150\) \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Dissipation
Internally Limited
\(260^{\circ} \mathrm{C}\)
\(-65^{\circ}\) to \(+150^{\circ} \mathrm{C}\)
Storage Temperature Range
Note 8)
\(\begin{array}{ll}\text { Operating Junction Temperature Range (Note 8) } \\ \text { LP2951 } & -55^{\circ} \text { to }+150^{\circ} \mathrm{C} \\ \text { LP2950AC-XX, LP2950C-XX, } & -40^{\circ} \text { to }+125^{\circ} \mathrm{C}\end{array}\)

Input Supply Voltage
-0.3 to +30 V
Feedback Input Voltage
-1.5 to +30 V
(Notes 9 and 10)
Shutdown Input Voltage
-0.3 to +30 V (Note 9)
Error Comparator Output Voltage (Note 9)
-0.3 to +30 V
ESD Rating is to be determined.

\section*{Electrical Characteristics (Note 1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{\begin{tabular}{l}
Conditions \\
(Note 2)
\end{tabular}} & \multicolumn{2}{|r|}{LP2951} & \multicolumn{3}{|r|}{LP2950AC-XX LP2951AC-XX} & \multicolumn{3}{|c|}{\begin{tabular}{l}
LP2950C-XX \\
LP2951C-XX
\end{tabular}} & \multirow[b]{2}{*}{Units} \\
\hline & & Typ & ```
Tested Limit (Notes 3, 16)
``` & Typ & Tested
Limit
(Note 3) & \[
\begin{aligned}
& \text { Design } \\
& \text { Limit } \\
& \text { (Note 4) }
\end{aligned}
\] & Typ & Tested
Limit
(Note 3) & Design
Limit
(Note 4) & \\
\hline \multicolumn{11}{|l|}{3 C VERSIONS (Note 17)} \\
\hline \multirow[t]{3}{*}{Output Voltage} & \(T_{J}=25^{\circ} \mathrm{C}\) & 3.0 & \[
\begin{aligned}
& 3.015 \\
& 2.985
\end{aligned}
\] & 3.0 & \[
\begin{aligned}
& 3.015 \\
& 2.985
\end{aligned}
\] & & 3.0 & \[
\begin{aligned}
& 3.030 \\
& 2.970
\end{aligned}
\] & & \begin{tabular}{l}
\(\checkmark\) max \\
\(V\) min
\end{tabular} \\
\hline & \(-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}\) & 3.0 & & 3.0 & & \[
\begin{aligned}
& 3.030 \\
& 2.970
\end{aligned}
\] & 3.0 & & \[
\begin{aligned}
& 3.045 \\
& 2.955
\end{aligned}
\] & \begin{tabular}{l}
\(V\) max \\
\(V\) min
\end{tabular} \\
\hline & Full Operating Temperature Range & 3.0 & \[
\begin{aligned}
& 3.036 \\
& 2.964
\end{aligned}
\] & 3.0 & & \[
\begin{aligned}
& 3.036 \\
& 2.964
\end{aligned}
\] & 3.0 & & \[
\begin{aligned}
& 3.060 \\
& 2.940
\end{aligned}
\] & \begin{tabular}{l}
\(V\) max \\
\(V\) min
\end{tabular} \\
\hline Output Voltage & \[
\begin{aligned}
& 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\
& \mathrm{~T}_{\mathrm{J}} \leq \mathrm{T}_{\text {JMAX }}
\end{aligned}
\] & 3.0 & \[
\begin{aligned}
& 3.045 \\
& 2.955
\end{aligned}
\] & 3.0 & & \[
\begin{aligned}
& 3.042 \\
& 2.958
\end{aligned}
\] & 3.0 & & \[
\begin{aligned}
& 3.072 \\
& 2.928
\end{aligned}
\] & \begin{tabular}{l}
\(V_{\text {max }}\) \\
\(V\) min
\end{tabular} \\
\hline
\end{tabular}
3.3V VERSIONS (Note 17)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Output Voltage} & \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) & 3.3 & \[
\begin{aligned}
& 3.317 \\
& 3.284
\end{aligned}
\] & 3.3 & \[
\begin{aligned}
& 3.317 \\
& 3.284
\end{aligned}
\] & & 3.3 & \[
\begin{aligned}
& 3.333 \\
& 3.267
\end{aligned}
\] & & \(V\) max \(V\) min \\
\hline & \(-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}\) & 3.3 & & 3.3 & & \[
\begin{aligned}
& 3.333 \\
& 3.267
\end{aligned}
\] & 3.3 & & \[
\begin{aligned}
& 3.350 \\
& 3.251
\end{aligned}
\] & \(V\) max \(V\) min \\
\hline & Full Operating Temperature Range & 3.3 & \[
\begin{aligned}
& 3.340 \\
& 3.260
\end{aligned}
\] & 3.3 & & \[
\begin{array}{r}
3.340 \\
3.260
\end{array}
\] & 3.3 & & \[
\begin{aligned}
& 3.366 \\
& 3.234
\end{aligned}
\] & \(V\) max \(V\) min \\
\hline Output Voltage & \[
\begin{aligned}
& 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\
& T_{J} \leq T_{\text {JMAX }}
\end{aligned}
\] & 3.3 & \[
\begin{aligned}
& 3.350 \\
& 3.251
\end{aligned}
\] & 3.3 & & \[
\begin{array}{r}
3.346 \\
3.254
\end{array}
\] & 3.3 & & \[
\begin{aligned}
& 3.379 \\
& 3.221
\end{aligned}
\] & \begin{tabular}{l}
\(V_{\text {max }}\) \\
\(V\) min
\end{tabular} \\
\hline
\end{tabular}

5V VERSIONS (Note 17)
\begin{tabular}{l|l|c|c|c|c|c|c|c|c|c}
\hline Output Voltage & \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) & 5.0 & \begin{tabular}{l}
5.025 \\
4.975
\end{tabular} & 5.0 & 5.025 & & & 5.975 & & 5.0 \\
\hline
\end{tabular}

ALL VOLTAGE OPTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage Temperature Coefficient & (Note 12) & 20 & 120 & 20 & & 100 & 50 & & 150 & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline Line Regulation (Note 14) & \[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{O}} N O M+1\right) \mathrm{V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V} \\
& (\text { Note 15) }
\end{aligned}
\] & 0.03 & \[
\begin{aligned}
& 0.1 \\
& 0.5
\end{aligned}
\] & 0.03 & 0.1 & 0.2 & 0.04 & 0.2 & 0.4 & \begin{tabular}{l}
\% max \\
\% max
\end{tabular} \\
\hline Load Regulation (Note 14) & \(100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA}\) & 0.04 & \[
\begin{aligned}
& 0.1 \\
& 0.3
\end{aligned}
\] & 0.04 & 0.1 & 0.2 & 0.1 & 0.2 & 0.3 & \% max \% max \\
\hline
\end{tabular}

Electrical Characteristics (Note 1) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions (Note 2)} & \multicolumn{2}{|r|}{LP2951} & \multicolumn{3}{|r|}{\[
\begin{aligned}
& \text { LP2950AC-XX } \\
& \text { LP2951AC-XX }
\end{aligned}
\]} & \multicolumn{3}{|c|}{\begin{tabular}{l}
LP2950C-XX \\
LP2951C-XX
\end{tabular}} & \multirow[b]{2}{*}{Units} \\
\hline & & Typ & Tested
Limit
(Notes 3, 16) & Typ & Tested Limit (Note 3) & & Typ & Tested Llmit (Note 3) & Design Limit (Note 4) & \\
\hline
\end{tabular}

\section*{ALL VOLTAGE OPTIONS (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Dropout Voltage (Note 5)} & \(L_{L}=100 \mu \mathrm{~A}\) & 50 & \[
\begin{gathered}
80 \\
150
\end{gathered}
\] & 50 & 80 & 150 & 50 & 80 & 150 & mV max \(m V\) max \\
\hline & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 380 & \[
\begin{aligned}
& 450 \\
& 600
\end{aligned}
\] & 380 & 450 & 600 & 380 & 450 & 600 & \begin{tabular}{l}
\(m V\) max \\
\(m V\) max
\end{tabular} \\
\hline \multirow[t]{2}{*}{Ground Current} & \(\mathrm{L}_{\mathrm{L}}=100 \mu \mathrm{~A}\) & 75 & \[
\begin{gathered}
120 \\
140
\end{gathered}
\] & 75 & 120 & 140 & 75 & 120 & 140 & \(\mu \mathrm{A}\) max \(\mu \mathrm{A}\) max \\
\hline & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 8 & \[
\begin{aligned}
& 12 \\
& 14
\end{aligned}
\] & 8 & 12 & 14 & 8 & 12 & 14 & mA max mA max \\
\hline Dropout Ground Current & \[
\begin{aligned}
& V_{\text {in }}=\left(V_{O} N O M-0.5\right) V \\
& I_{\mathrm{L}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 110 & \[
\begin{aligned}
& 170 \\
& 200
\end{aligned}
\] & 110 & 170 & 200 & 110 & 170 & 200 & \(\mu A \max\) \(\mu \mathrm{A}\) max \\
\hline Current Limit & \(\mathrm{V}_{\text {out }}=0\) & 160 & \[
\begin{aligned}
& 200 \\
& 220
\end{aligned}
\] & 160 & 200 & 220 & 160 & 200 & 220 & mA max mA max \\
\hline Thermal Regulation & (Note 13) & 0.05 & 0.2 & 0.05 & 0.2 & & 0.05 & 0.2 & & \%/W max \\
\hline \multirow[t]{3}{*}{Output Noise, 10 Hz to 100 KHz} & \(\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}\) (5V Only) & 430 & & 430 & & & 430 & & & \(\mu \mathrm{V}\) rms \\
\hline & \(C_{L}=200 \mu \mathrm{~F}\) & 160 & & 160 & & & 160 & & & \(\mu \mathrm{V}\) rms \\
\hline & \[
\begin{aligned}
& C_{L}=3.3 \mu \mathrm{~F} \\
& (\text { Bypass }=0.01 \mu \mathrm{~F} \\
& \text { Pins } 7 \text { to } 1 \text { (LP2951)) }
\end{aligned}
\] & 100 & & 100 & \(\because\) & & 100 & & & \(\mu \mathrm{Vrms}\) \\
\hline \multicolumn{2}{|l|}{8-PIN VERSIONS ONLY} & \multicolumn{2}{|r|}{LP2951} & \multicolumn{3}{|c|}{LP2951AC-XX} & \multicolumn{3}{|c|}{LP2951C-XX} & \\
\hline Reference Voltage & - & 1.235 & \[
\begin{aligned}
& 1.25 \\
& 1.26 \\
& 1.22 \\
& 1.2 \\
& \hline
\end{aligned}
\] & 1.235 & \[
\begin{aligned}
& 1.25 \\
& 1.22
\end{aligned}
\] & \[
\begin{aligned}
& 1.26 \\
& 1.2 \\
& \hline
\end{aligned}
\] & 1.235 & \[
\begin{aligned}
& 1.26 \\
& 1.21
\end{aligned}
\] & \[
\begin{array}{r}
1.27 \\
1.2 \\
\hline
\end{array}
\] & \begin{tabular}{l}
\(V\) max \\
\(V\) max \\
\(\checkmark\) min \\
\(V\) min
\end{tabular} \\
\hline Reference Voltage & (Note 7) & . & \[
\begin{aligned}
& 1.27 \\
& 1.19 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.27 \\
& 1.19 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.285 \\
& 1.185
\end{aligned}
\] & \(V\) max \(\checkmark\) min \\
\hline Feedback Pin Bias Current & & 20 & \[
\begin{aligned}
& 40 \\
& 60 \\
& \hline
\end{aligned}
\] & 20 & 40 & 60 & 20 & 40 & 60 & nA max nA max \\
\hline \begin{tabular}{l}
Reference Voltage \\
Temperature Coefficient
\end{tabular} & (Note 12) & 20 & & 20 & & & 50 & & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline Feedback Pin Bias Current Temperature Coefficient & - & 0.1 & \(\cdots\) & 0.1 & - \({ }^{\prime}\) & & 0.1 & & & \(n A /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Error Comparator
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Output Leakage Current & \(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\) & 0.01 & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & 0.01 & 1 & 2 & 0.01 & 1 & 2 & \(\mu A\) max \(\mu A\) max \\
\hline Output Low Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=\left(\mathrm{V}_{\mathrm{O}} \mathrm{NOM}-0.5\right) \mathrm{V} \\
& \mathrm{l}_{\mathrm{OL}}=400 \mu \mathrm{~A}
\end{aligned}
\] & 150 & \[
\begin{array}{r}
250 \\
400 \\
\hline
\end{array}
\] & 150 & 250 & 400 & 150 & 250 & 400 & \(m V\) max mV max \\
\hline Upper Threshold Voltage & (Note 6) & 60 & \[
\begin{aligned}
& 40 \\
& 25
\end{aligned}
\] & 60 & 40 & 25 & 60 & 40 & 25 & mV min mV min \\
\hline Lower Threshold Voltage & (Note 6) & 75 & \[
\begin{gathered}
95 \\
140
\end{gathered}
\] & 75 & 95 & 140 & 75 & 95 & 140 & mV max \(m V\) max \\
\hline Hysteresis & (Note 6) & 15 & & 15 & & & 15 & & & mV \\
\hline
\end{tabular}

Electrical Characteristics (Note 1) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Conditions (Note 2)} & \multicolumn{2}{|r|}{LP2951} & \multicolumn{3}{|c|}{LP2951AC-XX} & \multicolumn{3}{|c|}{LP2951C-XX} & \multirow[b]{2}{*}{Units} \\
\hline Parameter & & Typ & Tested Limit (Notes 3, 16) & Typ & Tested Limit (Note 3) & Design Limit (Note 4) & Typ & Tested Limit (Note 3) & & \\
\hline
\end{tabular}

\section*{8-PIN VERSIONS ONLY (Continued)}

\section*{Shutdown Input}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Input \\
Logic \\
Voltage
\end{tabular} & \begin{tabular}{l}
Low (Regulator ON) \\
High (Regulator OFF)
\end{tabular} & 1.3 & \[
\begin{aligned}
& 0.6 \\
& 2.0
\end{aligned}
\] & 1.3 & & \[
\begin{aligned}
& 0.7 \\
& 2.0
\end{aligned}
\] & 1.3 & & \[
\begin{aligned}
& 0.7 \\
& 2.0
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{Shutdown Pin Input Current} & \(\mathrm{V}_{\text {shutdown }}=2.4 \mathrm{~V}\) & 30 & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & 30 & 50 & 100 & 30 & 50 & 100 & \(\mu \mathrm{A}\) max \(\mu A\) max \\
\hline & \(\mathrm{V}_{\text {shutdown }}=30 \mathrm{~V}\) & 450 & \[
\begin{aligned}
& 600 \\
& 750
\end{aligned}
\] & 450 & 600 & 750 & 450 & 600 & 750 & \(\mu A\) max \(\mu A \max\) \\
\hline Regulator Output Current in Shutdown & (Note 11) & 3 & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] & 3 & 10 & 20 & 3 & 10 & 20 & \(\mu \mathrm{A}\) max \(\mu A\) max \\
\hline
\end{tabular}

Note 1: Boldface limits apply at temperature extremes.
Note 2: Unless otherwise specified all limits guaranteed for \(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=\left(V_{O} N O M+1\right) \mathrm{V}, \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}\) and \(\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}\) for 5 V versions, and \(2.2 \mu \mathrm{~F}\) for 3 V and 3.3 V versions. Additional conditions for the 8 -pin versions are Feedback tied to \(\mathrm{V}_{\mathrm{TAP}}\), Output tied to Output Sense and \(\mathrm{V}_{\text {shutdown }} \leq 0.8 \mathrm{~V}\).

Note 3: Guaranteed and \(100 \%\) production tested.
Note 4: Guaranteed but not \(100 \%\) production tested. These limits are not used to calculate outgoing AQL levels.
Note 5: Dropout Voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1 V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2 V (\(\mathbf{2} .3 \mathrm{~V}\) over temperature) must be taken into account.
Note 6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured at \(\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\mathrm{O}} \mathrm{NOM}+1\right) \mathrm{V}\). To express these thresholds in terms of output voltage change, multiply by the error amplifier gain \(=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {ref }}=(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2\). For example, at a programmed output voltage of 5 V , the Error output is guaranteed to go low when the output drops by \(95 \mathrm{mV} \times 5 \mathrm{~V} / 1.235 \mathrm{~V}=384 \mathrm{mV}\). Thresholds remain constant as a percent of \(V_{\text {out }}\) as \(V_{\text {out }}\) is varied, with the dropout warning occurring at typically \(5 \%\) below nominal, \(7.5 \%\) guaranteed. Note 7: \(\mathrm{V}_{\text {ref }} \leq \mathrm{V}_{\text {out }} \leq\left(\mathrm{V}_{\text {in }}-1 \mathrm{~V}\right), 2.3 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}, 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}} \leq \mathrm{T}_{\mathrm{JMAX}}\).
Note 8: The junction-to-ambient thermal resistance of the TO-92 package is \(180^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.4^{\prime \prime}\) leads and \(160^{\circ} \mathrm{C} / \mathrm{W}\) with \(0.25^{\prime \prime}\) leads to a PC board. The thermal resistance of the 8 -pin DIP packages is \(105^{\circ} \mathrm{C} / \mathrm{W}\) for the molded plastic \((\mathrm{N})\) and \(130^{\circ} \mathrm{C} / \mathrm{W}\) for the cerdip (J) junction to ambient when soldered directly to a PC board. Thermal resistance for the metal can \((\mathrm{H})\) is \(160^{\circ} \mathrm{C} / \mathrm{W}\) junction to ambient and \(20^{\circ} \mathrm{C} / \mathrm{W}\) junction to case. Junction to ambient thermal resistance for the \(\mathrm{S} . \mathrm{O}\). \((\mathrm{M})\) package is \(160^{\circ} \mathrm{C} / \mathrm{W}\). Thermal resistance for the leadless chip carrier (E) package is \(95^{\circ} \mathrm{C} / \mathrm{W}\) junction to ambient and \(24^{\circ} \mathrm{C} / \mathrm{W}\) junction to case.
Note 9: May exceed input supply voltage.
Note 10: When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be diode-clamped to ground.
Note 11: \(\mathrm{V}_{\text {shutdown }} \geq 2 \mathrm{~V}, \mathrm{~V}_{\text {in }} \leq 30 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0\), Feedback pin tied to \(\mathrm{V}_{\text {TAP }}\).
Note 12: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
Note 13: Thermal regulation is defined as the change in output voltage at a time \(T\) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at \(V_{I N}=30 \mathrm{~V}\) (1.25 W pulse) for \(T=10 \mathrm{~ms}\).
Note 14: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 15: Line regulation for the LP2951 is tested at \(150^{\circ} \mathrm{C}\) for \(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\). For \(\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}\) and \(\mathrm{T}_{J}=125^{\circ} \mathrm{C}\), line regulation is guaranteed by design to \(0.2 \%\). See Typical Performance Characteristics for line regulation versus temperature and load current.
Note 16: A Military RETS spec is available on request. At time of printing, the LP2951 RETS spec complied with the boldface limits in this column. The LP2951H, E, or J may also be procured as Standard Military Drawing Spec \#5962-3870501MGA, M2A, or MPA.
Note 17: All LP2950 devices have the nominal output voltage coded as the last two digits of the part number. In the LP2951 products, the 3.0 V and 3.3 V versions are designated by the last two digits, but the 5 V version is denoted with no code at this location of the part number (refer to ordering information table).

\section*{Typical Performance Characteristics}

Input Current

Dropout Characteristics

Output Voltage vs. Temperature of 3 Representative Units

\section*{Qulescent Current}

\section*{Quiescent Current}

Dropout Voltage

TL/H/8546-3

\section*{Typical Performance Characteristics (Continued)}

LP2951
Error Comparator Output

LP2951
Feedback Bias Current

LP2951
Comparator Sink Current

Ripple Rejection

LP2951
Feedback Pin Current

Line Transient Response

LP2951
Enable Transient

TL/H/8546-4

\section*{Typical Performance Characteristics (Continued)}

INPUT VOLTAGE (V)
LP2950 Maximum Rated Output Current

\section*{Application Hints}

\section*{EXTERNAL CAPACITORS}

A \(1.0 \mu \mathrm{~F}\) (or greater) capacitor is required between the output and ground for stability at output voltages of 5 V or more. At lower output voltages, more capacitance is required (\(2.2 \mu \mathrm{~F}\) or more is recommended for 3 V and 3.3 V versions). Without this capacitor the part will oscillate. Most types of tantalum or aluminum electrolytics work fine here; even film types work but are not recommended for reasons of cost. Many aluminum electrolytics have electrolytes that freeze at about \(-30^{\circ} \mathrm{C}\), so solid tantalums are recommended for operation below \(-25^{\circ} \mathrm{C}\). The important parameters of the capacitor are an ESR of about \(5 \Omega\) or less and a resonant frequency above 500 kHz . The value of this capacitor may be increased without limit.
At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to

TL/H/8546-5
\(0.33 \mu \mathrm{~F}\) for currents below 10 mA or \(0.1 \mu \mathrm{~F}\) for currents below 1 mA . Using the adjustable versions at voltages below 5 V runs the error amplifier at lower gains so that more output capacitance is needed. For the worst-case situation of a 100 mA load at 1.23 V output (Output shorted to Feedback) a \(3.3 \mu \mathrm{~F}\) (or greater) capacitor should be used.
Unlike many other regulators, the LP2950 will remain stable and in regulation with no load in addition to the internal voltage divider. This is especially important in CMOS RAM keep-alive applications. When setting the output voltage of the LP2951 versions with external resistors, a minimum load of \(1 \mu \mathrm{~A}\) is recommended.
A \(1 \mu \mathrm{~F}\) tantalum or aluminum electrolytic capacitor should be placed from the LP2950/LP2951 input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.

\section*{Application Hints (Continued)}

Stray capacitance to the LP2951 Feedback terminal can cause instability. This may especially be a problem when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between Output and Feedback and increasing the output capacitor to at least \(3.3 \mu \mathrm{~F}\) will fix this problem.

\section*{ERROR DETECTION COMPARATOR OUTPUT}

The comparator produces a logic low output whenever the LP2951 output falis out of regulation by more than approximately \(5 \%\). This figure is the comparator's built-in offset of about 60 mV divided by the 1.235 reference voltage. (Refer to the block diagram in the front of the datasheet.) This trip level remains " \(5 \%\) below normal" regardless of the programmed output voltage of the 2951. For example, the error flag trip level is typically 4.75 V for a 5 V output or 11.4 V for a 12 V output. The out of regulation condition may be due either to low input voltage, current limiting, or thermal limiting.
Figure 1 below gives a timing diagram depicting the ERROR signal and the regulated output voltage as the LP2951 input is ramped up and down. For 5 V versions, the ERROR signal becomes valid (low) at about 1.3 V input. It goes high at about 5 V input (the input voltage at which \(V_{\text {OUT }}=4.75\)). Since the LP2951's dropout voltage is load-dependent (see curve in typical performance characteristics), the input voltage trip point (about 5 V) will vary with the load current. The output voltage trip point (approx. 4.75V) does not vary with load.
The error comparator has an open-collector output which requires an external pullup resistor. This resistor may be returned to the output or some other supply voltage depending on system requirements. In determining a value for this resistor, note that while the output is rated to sink \(400 \mu \mathrm{~A}\), this sink current adds to battery drain in a low battery condition. Suggested values range from 100 k to \(1 \mathrm{M} \Omega\). The resistor is not required if this output is unused.

\section*{PROGRAMMING THE OUTPUT VOLTAGE (LP2951)}

The LP2951 may be pin-strapped for the nominal fixed output voltage using its internal voltage divider by tying the output and sense pins together, and also tying the feedback and \(V_{T A P}\) pins together. Alternatively, it may be programmed for any output voltage between its 1.235 V reference and its 30 V maximum rating. As seen in Figure 2, an external pair of resistors is required.

*When \(\mathrm{V}_{\mathbb{N}} \leq 1.3 \mathrm{~V}\), the error flag pin becomes a high impedance, and the error flag voltage rises to its pull-up voltage. Using VOUT as the pull-up voltage (see Figure 2), rather than an external 5V source, will keep the error flag voltage under 1.2V (typ.) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (\(10 \mathrm{k} \Omega\) suggested), to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

The complete equation for the output voltage is
\[
V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \bullet\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)+\mathrm{I}_{\mathrm{FB}} R_{1}
\]
where \(V_{\text {REF }}\) is the nominal 1.235 reference voltage and \(\mathrm{I}_{\mathrm{FB}}\) is the feedback pin bias current, nominally -20 nA. The minimum recommended load current of \(1 \mu \mathrm{~A}\) forces an upper limit of \(1.2 \mathrm{M} \Omega\) on the value of \(R_{2}\), if the regulator must work with no load (a condition often found in CMOS in standby). \(I_{\text {FB }}\) will produce a \(2 \%\) typical error in \(V_{\text {OUT }}\) which may be eliminated at room temperature by trimming \(R_{1}\). For better accuracy, choosing \(\mathrm{R}_{2}=100 \mathrm{k}\) reduces this error to \(0.17 \%\) while increasing the resistor program current to \(12 \mu \mathrm{~A}\). Since the LP2951 typically draws \(60 \mu \mathrm{~A}\) at no load with Pin 2 open-circuited, this is a small price to pay.

\section*{REDUCING OUTPUT NOISE}

In reference applications it may be advantageous to reduce the \(A C\) noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only way noise can be reduced on the 3 lead LP2950 but is relatively inefficient, as increasing the capacitor from \(1 \mu \mathrm{~F}\) to \(220 \mu \mathrm{~F}\) only decreases the noise from \(430 \mu \mathrm{~V}\) to \(160 \mu \mathrm{~V}\) rms for a 100 kHz bandwidth at 5 V output.
Noise can be reduced fourfold by a bypass capacitor accross \(\mathrm{R}_{1}\), since it reduces the high frequency gain from 4 to unity. Pick
\[
\mathrm{C}_{\mathrm{BYPASS}} \cong \frac{1}{2 \pi \mathrm{R}_{1} \cdot 200 \mathrm{~Hz}}
\]
or about \(0.01 \mu \mathrm{~F}\). When doing this, the output capacitor must be increased to \(3.3 \mu \mathrm{~F}\) to maintain stability. These changes reduce the output noise from \(430 \mu \mathrm{~V}\) to \(100 \mu \mathrm{~V}\) rms for a 100 kHz bandwidth at 5 V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

TL/H/8546-7
FIGURE 2. Adjustable Regulator
*See Application Hints
\(V_{\text {out }}=V_{\text {Ref }}\left(1+\frac{R_{1}}{R_{2}}\right)\)
**Drive with TTL-high to shut down. Ground or leave open if shutdown feature is not to be used.
Note: Pins 2 and 6 are left open.

FIGURE 1. ERROR Output Timing

\section*{Typical Applications}

TL/H/8546-22

*Minimum input-output voltage ranges from 40 mV to 400 mV , depending on load current. Current limit is typically 160 mA .

TL/H/8546-10
*Minimum input-output voltage ranges from 40 mV to 400 mV , depending on load current. Current limit is typically 160 mA .

TL/H/8546-8

Typical Applications (Continued)
Regulator with Early Warning and Auxiliary Output

- Early warning flag on low input voltage
- Main output latches off at lower input voltages
- Battery backup on auxiliary output

Operation: Reg. \#1's \(V_{\text {out }}\) is programmed one diode drop above 5 V . Its error flag becomes active when \(\mathrm{V}_{\text {in }} \leq 5.7 \mathrm{~V}\). When \(\mathrm{V}_{\text {in }}\) drops below 5.3 V , the error flag of Reg. \#2 becomes active and via Q1 latches the main output off. When \(V_{\text {in }}\) again exceeds 5.7V Reg. \#1 is back in regulation and the early warning signal rises, unlatching Reg. \#2 via D3.

Latch Off When Error Flag Occurs

2 Ampere Low Dropout Regulator

For \(5 \mathrm{~V}_{\text {out }}\), use internal resistors. Wire pin 6 to \(7, \&\) wire pin 2 to \(+\mathrm{V}_{\text {out }}\) Buss.
5V Regulator with 2.5V Sleep Function

*High input lowers \(\mathrm{V}_{\text {out }}\) to 2.5 V
TL/H/8546-14
Open Circuit Detector for \(4 \rightarrow 20 \mathrm{~mA}\) Current L.oop

Typical Applications (Continued)
Regulator with State-of-Charge Indicator

TL/H/8546-16
*Optional Latch off when drop out occurs. Adjust R3 for C2 Switching when \(V_{\text {in }}\) is 6.0 V .
**Outputs go low when \(\mathrm{V}_{\text {in }}\) drops below designated thresholds.

\section*{Low Battery Disconnect}

For values shown, Regulator shuts down when \(V_{\text {in }}<5.5 \mathrm{~V}\) and turns on again at 6.0 V . Current drain in disconnected mode is \(\approx 150 \mu \mathrm{~A}\).

- "Sets disconnect Hysteresis

Typical Applications (Continued)

\section*{LP2956/LP2956A}

Dual Micropower Low-Dropout Voltage Regulators

\section*{General Description}

The LP2956 is a micropower voltage regulator with very low quiescent current (\(170 \mu \mathrm{~A}\) typical at light loads) and very low dropout voltage (typically 60 mV at 1 mA load current and 470 mV at 250 mA load current on the main output).
The LP2956 retains all the desirable characteristics of the LP2951, but offers increased output current (main output), an auxiliary LDO adjustable regulated output (75 mA), and additional features.
The auxiliary output is always on (regardless of main output status), so it can be used to power memory circuits.
Quiescent current increases only slightly at dropout, which prolongs battery life.
The error flag goes low if the main output voltage drops out of regulation.
An open-collector auxiliary comparator is included, whose inverting input is tied to the 1.23 V reference.
Reverse battery protection is provided.
The parts are available in plastic DIP and surface mount packages.

\section*{Block Diagram}

\section*{Features}
- Output voltage adjusts from 1.23 V to 29 V
- Guaranteed 250 mA current (main output)
- Auxiliary LDO (75 mA) adjustable output
- Auxiliary comparator with open-collector output
- Shutdown pin for main output
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection

\section*{Applications}

■ High-efficiency linear regulator
■ Low dropout battery-powered regulator
- \(\mu \mathrm{P}\) system regulator with switchable high-current \(\mathrm{V}_{\mathrm{CC}}\)

\section*{Connection Diagrams}

TL/H/11339-2
Order Number LP2956IN or LP2956AIN See NS Package Number N16A

TL/H/11339-3
Order Number LP2956IM or LP2956AIM
See NS Package Number M16A

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range
Operating Junction
Temperature Range
Lead Temperature
(Soldering, 5 seconds)
Power Dissipation (Note 2)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(260^{\circ} \mathrm{C}\)
Internally Limited
\begin{tabular}{lr}
Input Supply Voltage & -20 V to +30 V \\
Feedback Input Voltage (Note 3) & -0.3 V to +5 V \\
Aux. Feedback Input Voltage (Note 3) & -0.3 V to +5 V \\
Shutdown Input Voltage (Note 3) & -0.3 V to +30 V \\
Comparator Input Voltage (Notes 3, 4) & -0.3 V to +30 V \\
Comparator Output Voltage (Notes 3, 4) & -0.3 V to +30 V \\
ESD Rating (Note 16) & 2 kV
\end{tabular} 2 kV

\section*{Electrical Characteristics}

Limits in standard typeface are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback pin is tied to 5V Tap pin, \(\mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5V. The main regulator output has a 1 mA load, the auxiliary regulator output has a \(100 \mu \mathrm{~A}\) load.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multirow[b]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2956AI} & \multicolumn{2}{|c|}{LP29561} & \multirow[b]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline
\end{tabular}

\section*{MAIN OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{0}\)} & \multirow[t]{2}{*}{Output Voltage} & & 5.0 & \[
\begin{gathered}
4.975 \\
4.940
\end{gathered}
\] & \[
\begin{gathered}
5.025 \\
\mathbf{5 . 0 6 0}
\end{gathered}
\] & \[
\begin{gathered}
4.950 \\
\mathbf{4 . 9 0 0}
\end{gathered}
\] & \[
\begin{gathered}
5.050 \\
5.100
\end{gathered}
\] & \multirow[t]{2}{*}{V} \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 250 \mathrm{~mA}\) & 5.0 & 4.930 & 5.070 & 4.880 & 5.120 & \\
\hline \(\frac{\Delta V_{0}}{\Delta T}\) & Temperature Coefficient & (Note 5) & 20 & - & 100 & & 150 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \(\frac{\Delta V_{0}}{V_{\mathrm{O}}}\) & Line Regulation & \(V_{1 N}=6 \mathrm{~V}\) to 30 V & 0.03 & & \[
\begin{aligned}
& 0.1 \\
& 0.2 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 0.4 \\
& \hline
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}
\] & Load Regulation & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \text { to } 250 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{L}}=0.1 \mathrm{~mA} \text { to } 1 \mathrm{~mA} \text { (Note } 6 \text {) }
\end{aligned}
\] & 0.04 & & \[
\begin{gathered}
0.16 \\
0.20 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 0.20 \\
& 0.30
\end{aligned}
\] & \% \\
\hline \multirow[t]{4}{*}{\(\mathrm{V}_{1 N}-\mathrm{V}_{\mathrm{O}}\)} & \multirow[t]{4}{*}{Dropout Voltage (Note 7)} & \(\mathrm{L}=1 \mathrm{~mA}\) & 60 & & \[
\begin{aligned}
& 100 \\
& \mathbf{1 5 0}
\end{aligned}
\] & & \[
\begin{aligned}
& 100 \\
& \mathbf{1 5 0}
\end{aligned}
\] & \multirow{4}{*}{mV} \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\) & 240 & & \[
\begin{aligned}
& 300 \\
& 420
\end{aligned}
\] & & \[
\begin{aligned}
& 300 \\
& 420
\end{aligned}
\] & \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 310 & & \[
\begin{aligned}
& 400 \\
& \mathbf{5 2 0}
\end{aligned}
\] & & \[
\begin{aligned}
& 400 \\
& \mathbf{5 2 0}
\end{aligned}
\] & \\
\hline & & \(I_{L}=250 \mathrm{~mA}\) & 470 & & \[
\begin{aligned}
& 600 \\
& 800
\end{aligned}
\] & & \[
\begin{aligned}
& 600 \\
& 800
\end{aligned}
\] & \\
\hline ILImit & Current Limit & \(\mathrm{R}_{\mathrm{L}}=1 \Omega\) & 380 & & \[
\begin{gathered}
500 \\
\mathbf{5 3 0}
\end{gathered}
\] & & \[
\begin{aligned}
& 500 \\
& \mathbf{5 3 0}
\end{aligned}
\] & mA \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{P}_{\mathrm{D}}}
\] & Thermal Regulation & (Note 8) & 0.05 & & 0.2 & & 0.2 & \%/W \\
\hline \multirow[t]{3}{*}{\(e_{n}\)} & \multirow[t]{3}{*}{Output Noise Voltage (10 Hz to 100 KHz) \(\mathrm{L}_{\mathrm{L}}=100 \mathrm{~mA}\)} & \(C_{L}=2.2 \mu \mathrm{~F}\) & 400 & & & & & \multirow{3}{*}{\(\mu \mathrm{V}\) RMS} \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=33 \mu \mathrm{~F}\) & 260 & & & & & \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=33 \mu \mathrm{~F}\) (Note 9) & 80 & & & & & \\
\hline
\end{tabular}

\section*{Electrical Characteristics}

Limits in standard typeface are for \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(\mathrm{V}_{I N}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback pin is tied to 5 V Tap pin, \(\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5V. The main regulator output has a 1 mA load, the auxiliary regulator output has a \(100 \mu \mathrm{~A}\) load. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multirow[b]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2956AI} & \multicolumn{2}{|c|}{LP2956I} & \multirow[b]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline
\end{tabular}

\section*{MAIN OUTPUT (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{FB}}\) & Feedback Pin Voltage & & 1.23 & 1.215 & 1.245 & 1.205 & 1.255 & V \\
\hline \(\mathrm{I}_{\mathrm{FB}}\) & Feedback Pin Bias Current & & 20 & & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & nA \\
\hline 10 (OFF) & Output Leakage In Shutdown & \[
\begin{aligned}
& l_{(S D I N)} \geq 1 \mu \mathrm{~A} \\
& V_{I N}=30 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}
\end{aligned}
\] & \(3 \cdot\) & & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] & & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{AUXILIARY OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{FB}}\) & Feedback. Pin Voltage & \[
\therefore
\] & 1.23 & \[
\begin{gathered}
1.22 \\
1.21
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
1.26
\end{gathered}
\] & \[
\begin{aligned}
& 1.21 \\
& 1.20
\end{aligned}
\] & \[
\begin{aligned}
& 1.26 \\
& 1.27
\end{aligned}
\] & V \\
\hline \[
\frac{\Delta V_{\mathrm{FB}}}{\Delta \mathrm{~T}}
\] & Feedback Voltage Temperature Coefficient & & 20 & & & & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{FB}}\) & Feedback Pin Bias Current & . & 10 & & \[
\begin{aligned}
& 20 \\
& 30
\end{aligned}
\] & & \[
\begin{aligned}
& 20 \\
& 30
\end{aligned}
\] & nA \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}
\] & Line Regulation & \(6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}\) & 0.07 & & \[
\begin{aligned}
& 0.3 \\
& 0.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}
\] & Load Regulation & \[
\begin{aligned}
& I_{L}=0.1 \mathrm{~mA} \text { to } 1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \text { to } 75 \mathrm{~mA}(\text { Note } 10)
\end{aligned}
\] & 0.1 & & \[
\begin{aligned}
& 0.3 \\
& 0.6 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \% \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{1 \mathrm{IN}-\mathrm{V}_{\mathrm{O}}}\)} & \multirow[t]{2}{*}{Dropout Voltage} & \(\mathrm{L}_{\mathrm{L}}=1 \mathrm{~mA}\) & 100 & & \[
\begin{aligned}
& 200 \\
& 300
\end{aligned}
\] & & \[
\begin{aligned}
& 200 \\
& \mathbf{3 0 0}
\end{aligned}
\] & mV \\
\hline & & \(\mathrm{L}_{\mathrm{L}}=50 \mathrm{~mA}\) & 400 & & \[
\begin{gathered}
600 \\
700
\end{gathered}
\] & & \[
\begin{aligned}
& 600 \\
& 700
\end{aligned}
\] & mV \\
\hline & & \(\mathrm{L}_{\mathrm{L}}=75 \mathrm{~mA}\) & 500 & & \[
\begin{aligned}
& 700 \\
& 850
\end{aligned}
\] & & \[
\begin{aligned}
& 700 \\
& 850
\end{aligned}
\] & mV \\
\hline \multirow[t]{2}{*}{\(e_{n}\)} & \multirow[t]{2}{*}{Output Noise
\[
\begin{aligned}
& (10 \mathrm{~Hz}-100 \mathrm{KHz}) \\
& \mathrm{L} \cdot=10 \mathrm{~mA}
\end{aligned}
\]} & \(\mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}\) & 300 & & & & & \multirow[b]{2}{*}{\(\mu \mathrm{V}\) RMS} \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=33 \mu \mathrm{~F}\) (Note 9) & 100 & & & & & \\
\hline \({ }_{\text {LIM }}\) & Current Limit & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) (Note 13) & 80 & & \[
\begin{array}{r}
200 \\
250
\end{array}
\] & & \[
\begin{aligned}
& 200 \\
& 250
\end{aligned}
\] & mA \\
\hline \(\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{P}_{\mathrm{D}}}\) & Thermal Regulation & (Note 8) & 0.2 & & 0.5 & \(\cdots\) & 0.5 & \%/W \\
\hline
\end{tabular}

DROPOUT DETECTION COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{IOH}^{\text {l }}\) & Output "HIGH" Leakage & \(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\) & 0.01 & & 1 & & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output "LOW" Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{O}}(\mathrm{COMP})=400 \mu \mathrm{~A}
\end{aligned}
\] & 150 & & \[
\begin{array}{r}
250 \\
400 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
250 \\
400 \\
\hline
\end{array}
\] & mV \\
\hline \begin{tabular}{l}
\(V_{\text {THR }}\) \\
(max)
\end{tabular} & Upper Threshold Voltage & (Note 11) & -240 & \[
\begin{gathered}
-320 \\
-\mathbf{3 8 0}
\end{gathered}
\] & \[
\begin{array}{r}
-150 \\
-100
\end{array}
\] & \[
\begin{array}{r}
-320 \\
-380
\end{array}
\] & \[
\begin{aligned}
& \hline-150 \\
& -100
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{Electrical Characteristics}

Limits in standard typeface are for \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(V_{I N}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback pin is tied to 5 V Tap pin, \(\mathrm{C}_{I N}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5 V . The main regulator output has a 1 mA load, the auxiliary regulator output has a \(100 \mu \mathrm{~A}\) load. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multirow[b]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2956AI} & \multicolumn{2}{|c|}{LP2956I} & \multirow{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline
\end{tabular}

DROPOUT DETECTION COMPARATOR (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\(V_{\text {THR }}\) \\
(min)
\end{tabular} & Lower Threshold Voltage & (Note 11) & -350 & \[
\begin{gathered}
-450 \\
-640
\end{gathered}
\] & \[
\begin{array}{r}
-230 \\
-160 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-450 \\
-640 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-230 \\
-\mathbf{1 6 0} \\
\hline
\end{array}
\] & mV \\
\hline HYST & Hysteresis & (Note 11) & 110 & & & & & mV \\
\hline \multicolumn{9}{|l|}{SHUTDOWN INPUT} \\
\hline IN & Input Current to Disable Output & (Note 12) & 0.03 & & 0.5 & & 0.5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Shutdown Input High Threshold & \(\left.{ }^{(S D I N}\right) \geq 1 \mu \mathrm{~A}\) & & \[
\begin{gathered}
900 \\
1200
\end{gathered}
\] & & \[
\begin{gathered}
900 \\
1200
\end{gathered}
\] & & mV \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Shutdown Input Low Threshold & \(\mathrm{V}_{\mathrm{O}} \geq 4.5 \mathrm{~V}\) & & & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{AUXILIARY COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{T}}\) (high) & Upper Trip Point & (Note 14) & 1.236 & \[
\begin{aligned}
& 1.20 \\
& 1.19
\end{aligned}
\] & \[
\begin{gathered}
1.28 \\
1.29
\end{gathered}
\] & \[
\begin{aligned}
& 1.20 \\
& 1.19
\end{aligned}
\] & \[
\begin{gathered}
1.28 \\
\mathbf{1 . 2 9}
\end{gathered}
\] & V \\
\hline \(\mathrm{V}_{\mathrm{T}}\) (low) & Lower Trip Point & (Note 14) & 1.230 & \[
\begin{aligned}
& 1.19 \\
& 1.18
\end{aligned}
\] & \[
\begin{aligned}
& 1.27 \\
& 1.28
\end{aligned}
\] & \[
\begin{aligned}
& 1.19 \\
& 1.18
\end{aligned}
\] & \[
\begin{aligned}
& 1.27 \\
& 1.28
\end{aligned}
\] & V \\
\hline HYST & Hysteresis & & 6 & & & & & mV \\
\hline \({ }^{\mathrm{IOH}}\) & Output "HIGH" Leakage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}(C O M P)=1.3 \mathrm{~V}
\end{aligned}
\] & 0.01 & & 1 & & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output "LOW" Voltage & \[
\begin{aligned}
& V_{\text {IN }}(C O M P)=1.1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{O}}(\mathrm{COMP})=400 \mu \mathrm{~A}
\end{aligned}
\] & 150 & & \[
\begin{aligned}
& 250 \\
& 400
\end{aligned}
\] & & \[
\begin{gathered}
250 \\
400
\end{gathered}
\] & mV \\
\hline \(\mathrm{l}_{\mathrm{B}}\) & Input Bias Current & \(0 \leq \mathrm{V}_{\text {IN }}\) (COMP) \(\leq 5 \mathrm{~V}\) & 10 & \[
\begin{array}{r}
-30 \\
-50
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 50
\end{aligned}
\] & \[
\begin{array}{r}
-30 \\
-50
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 50
\end{aligned}
\] & nA \\
\hline
\end{tabular}

GROUND PIN CURRENT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{IGND} & \multirow[t]{6}{*}{Ground Pin Current (Note 15)} & \[
\begin{aligned}
& I_{L}(\text { Main Out })=1 \mathrm{~mA} \\
& I_{L}(\text { Aux. Out })=0.1 \mathrm{~mA}
\end{aligned}
\] & 170 & \[
\begin{aligned}
& 250 \\
& 280
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 280
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline & & \begin{tabular}{l}
\(\mathrm{I}_{\mathrm{L}}\) (Main Out) \(=50 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{L}}(\) Aux. Out \()=1 \mathrm{~mA}\)
\end{tabular} & 1.1 & \[
\begin{gathered}
2 \\
2.5
\end{gathered}
\] & \[
\begin{gathered}
2 \\
2.5
\end{gathered}
\] & \multirow{5}{*}{mA} \\
\hline & & \begin{tabular}{l}
\(\mathrm{I}_{\mathrm{L}}\) (Main Out) \(=100 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{L}}(\) Aux. Out \()=1 \mathrm{~mA}\)
\end{tabular} & 3 & \[
\begin{aligned}
& 6 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 8
\end{aligned}
\] & \\
\hline & & \begin{tabular}{l}
\(I_{L}(\) Main Out \()=250 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{L}}(\) Aux. Out) \(=1 \mathrm{~mA}\)
\end{tabular} & 16 & \[
\begin{aligned}
& 28 \\
& 33
\end{aligned}
\] & \[
\begin{array}{r}
28 \\
33 \\
\hline
\end{array}
\] & \\
\hline & & \begin{tabular}{l}
\(I_{L}(\) Main Out) \(=1 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{L}}\) (Aux. Out) \(=50 \mathrm{~mA}\)
\end{tabular} & 3 & \[
\begin{aligned}
& 6 \\
& 8 \\
& \hline
\end{aligned}
\] & 6 & \\
\hline & & \begin{tabular}{l}
\(I_{L}\) (Main Out) \(=1 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{L}}(\) Aux. Out \()=75 \mathrm{~mA}\)
\end{tabular} & 6 & \[
\begin{gathered}
8 \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
8 \\
10
\end{gathered}
\] & \\
\hline
\end{tabular}

\section*{Electrical Characteristics}

Limits in standard typeface are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range: Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback pin is tied to 5V Tap pin, \(\mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=\mathrm{OV}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5V. The main regulator output has a 1 mA load, the auxiliary regulator output has a \(100 \mu \mathrm{~A}\) load. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multirow{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2956AI} & \multicolumn{2}{|r|}{LP2956I} & \multirow{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multicolumn{9}{|l|}{GROUND PIN CURRENT (Continued)} \\
\hline \(I_{\text {GND }}\) & Ground Pin Current at Dropout (Note 15) & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{~N}}=4.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}(\text { Main Out })=0.1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{L}}(\text { Aux. Out })=0.1 \mathrm{~mA}
\end{aligned}
\] & 270 & & \[
\begin{aligned}
& 325 \\
& 350
\end{aligned}
\] & & \[
\begin{array}{r}
325 \\
350
\end{array}
\] & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline IGND & Ground Pin Current at Shutdown (Note 15) & No Load on Either Output \(l_{(S D I N)} \geq 1 \mu \mathrm{~A}\) & 120 & & \[
\begin{gathered}
180 \\
200
\end{gathered}
\] & & \[
\begin{array}{r}
180 \\
200 \\
\hline
\end{array}
\] & \\
\hline
\end{tabular}

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature, \(T_{J}(\) max \()\), the junction-to-ambient thermal resistance, \(\theta_{J}\)-A, and the ambient temperature, \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is calculated using: \(P_{(m a x)}=\frac{T_{J}(m a x)}{\theta_{J-A}} T_{A}\).

Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. See Application Hints for additional information on heat sinking and thermal resistance.
Note 3: When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
Note 4: May exceed the input supply voltage.
Note 5: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
Note 6: Load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the range of \(100 \mu \mathrm{~A}\) to 1 mA and one for the 1 mA to 250 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1 V differential. At very low values of programmed output voltage, the input voltage minimum of 2 V (2.3 V over temperature) must be observed.
Note 8: Thermal regulation is the change in output voltage at a time \(T\) after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at \(\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}\) (3 W pulse) for \(T=10 \mathrm{~ms}\) on the Main regulator output. For the Auxiliary regulator output, specifications are for a 66 mA load pulse at \(V_{\mathbb{N}}=20 \mathrm{~V}\) (1W pulse) for \(T=10 \mathrm{~ms}\).
Note 9: Connect a \(0.1 \mu \mathrm{~F}\) capacitor from the output to the feedback pin.
Note 10: Load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the range of \(100 \mu \mathrm{~A}\) to 1 mA and one for the 1 mA to 75 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 11: Dropout dectection comparator thresholds are expressed as changes in a 5 V output. To express the threshold voltages in terms of a differential at the Feedback terminal, divide by the error amplifier gain \(=V_{O U T} / V_{\text {REF }}\).
Note 12: The shutdown input equivalent circuit is the base of a grounded-emitter NPN transistor in series with a current-limiting resistor. Pulling the shutdown input high turns off the main regulator. For more details, see Application Hints.
Note 13: The auxiliary regulator output has foldback limiting, which means the output current reduces with output voltage. The tested limit is for VouT \(=\) OV, so the output current will be higher at higher output voltages.
Note 14: This test is performed with the auxiliary comparator output sinking \(400 \mu \mathrm{~A}\) of current. At the upper trip point, the comparator output must be \(\geq 2.4 \mathrm{~V}\). At the low trip point, the comparator output must be \(\leq 0.4 \mathrm{~V}\).
Note 15: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive dividers (if used).
Note 16: All pins are rated for 2 kV , except for the auxiliary feedback pin which is rated for 1.2 kV (human body model, 100 pF discharged through \(1.5 \mathrm{k} \Omega\)).

Typical Performance Characteristics Unless otherwise specified: \(\mathrm{V}_{\mathbb{N}}:=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback is tied to 5 V Tap pin, \(\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5V. The main regulator output has a 1 mA load, the auxiliary output has a \(100 \mu \mathrm{~A}\) load.

Ground Pin Current

Dropout Characteristics (Main Regulator)

Enable Transient (Main Regulator)

Ground PIn Current

\section*{Ground Pin Current}

Dropout Voltage vs Temperature (Main Regulator)

Enable Transient (Main Regulator)

Typical Performance Characteristics Unless otherwise speciied: \(V_{I N}=6 V, C_{L}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback is tied to 5 V Tap pin, \(\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5 V . The main regulator output has a 1 mA load, the auxiliary output has a \(100 \mu \mathrm{~A}\) load. (Continued)

Line Transient Response (Main Regulator)

Load Transient Response (Main Regulator)

 (Main Regulator)

Thermal Regulation
(Main Regulator)

Line Transient Response (Main Regulator)

Typical Performance Characteristics Unloss otherwise specified: \(V_{\mathbb{N}}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) (Main Output) and \(10 \mu \mathrm{~F}\) (Auxiliary Output), Feedback is tied to 5 V Tap pin, \(\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SD}}=0 \mathrm{~V}\), Main Output pin is tied to Output Sense pin, Auxiliary Output is programmed for 5V. The main regulator output has a 1 mA load, the auxiliary output has a \(100 \mu \mathrm{~A}\) load. (Continued)

Load Transient Response (Auxiliary Regulator)

Output Impedance (Auxiliary Regulator)

\section*{Application Hints}

\section*{HEATSINK REQUIREMENTS}

A heatsink may be required with the LP2956 depending on the maximum power dissipation and maximum ambient temperature of the application. Under all expected operating conditions, the junction temperature must be within the range specified under Absolute Maximum Ratings.
To determine if a heatsink is required, the maximum power dissipated by the regulator, \(\mathrm{P}(\max)\), must be calculated. It is important to remember that if the regulator is powered from a transformer connected to the AC line, the maximum specified AC Input voltage must be used (since this produces the maximum DC input voltage to the regulator). Figure 1 shows the voltages and currents which are present in the circuit. The formula for calculating the power dissipated in the regulator is also shown in Figure 1 (the currents and power due to external resistive dividers are not included, and are typically negligible).

FIGURE 1. Current/Voltage Dlagram
The next parameter which must be calculated is the maximum allowable temperature rise, \(T_{R}\) (max). This is calculated by using the formula:
\[
T_{R}(\max)=T_{J}(\max)-T_{A}(\max)
\]
where: \(T_{J}(\max)\) is the maximum allowable junction temperature
\(T_{A}\) (max) is the maximum ambient temperature
Using the calculated values for \(T_{R}\) (max) and \(P(\max)\), the required value for junction-to-ambient thermal resistance, \(\theta_{(J-A)}\), can now be found:
\[
\theta_{(J-A)}=T_{R}(\max) / P(\max)
\]

The heatsink for the LP2956 is made using the PC board copper. The heat is conducted from the die, through the lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction are shown in Table I.

TABLE I
\begin{tabular}{|c|c|c|}
\hline Part & Package & Pins \\
\hline LP2956IN & 16 -Pin DIP & \(4,5,12,13\) \\
\hline LP2956AIN & 16 -Pin DIP & \(4,5,12,13\) \\
\hline LP2956IM & 16 -Pin Surface Mt. & \(1,8,9,16\) \\
\hline LP2956AIM & \(16-\) Pin Surface Mt. & \(1,8,9,16\) \\
\hline
\end{tabular}

Figure 2 shows copper patterns which may be used to dissipate heat from the LP2956:

-For best results, use \(L=2 H\)
FIGURE 2. Copper Heatsink Patterns
Table II shows some typical values of junction-to-ambient thermal resistance (\(\theta_{J-A}\)) for values of \(L\) and \(W(10 z\). copper).

TABLE II
\begin{tabular}{|l|c|c|c|}
\hline Package & L (\(\mathbf{I n}\).) & \(\mathbf{H}\) (In.) & \(\boldsymbol{\theta}_{\mathrm{J}-\mathrm{A}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline \multirow{5}{*}{\begin{tabular}{l}
16-Pin \\
DIP
\end{tabular}} & 1 & 0.5 & 70 \\
\cline { 2 - 4 } & 2 & 1 & 60 \\
\cline { 2 - 4 } & 3 & 1.5 & 58 \\
\cline { 2 - 4 } & 4 & 0.19 & 66 \\
\cline { 2 - 4 } \begin{tabular}{l}
16-Pin \\
Surface \\
Mount
\end{tabular} & 6 & 0.19 & 66 \\
\cline { 2 - 4 } & 2 & 0.5 & 83 \\
\cline { 2 - 4 } & 3 & 1 & 70 \\
\cline { 2 - 4 } & 6 & 0.19 & 67 \\
\cline { 2 - 4 } & 4 & 0.19 & 71 \\
\cline { 2 - 4 } & 2 & 0.19 & 73 \\
\hline
\end{tabular}

\section*{Application Hints (Continued)}

\section*{EXTERNAL CAPACITORS}

A \(2.2 \mu \mathrm{~F}\) (or greater) capacitor is required between the main output pin and ground to assure stability. The auxiliary output requires \(10 \mu \mathrm{~F}\) to ground. Without these capacitors, the part may oscillate. Most types of tantalum or aluminum electrolytics will work here. Film types will work, but are more expensive. Many aluminum electrolytics contain electrolytes which freeze at \(-30^{\circ} \mathrm{C}\), which requires the use of solid tantalums below \(-25^{\circ} \mathrm{C}\). The important characteristic of the capacitors is an ESR of \(5 \Omega\) (or less) on the main regulator output and an ESR of \(1 \Omega\) (or less) on the auxiliary regulator output (the ESR may increase by a factor of 20 or 30 as the temperature is reduced from \(+25^{\circ} \mathrm{C}\) to \(-30^{\circ} \mathrm{C}\)). The value of these capacitors may be increased without limit.
The main output requires less capacitance at lighter load currents. This capacitor can be reduced to \(0.68 \mu \mathrm{~F}\) for currents below 10 mA or \(0.22 \mu \mathrm{~F}\) for currents below 1 mA .
Programming the main output for voltages below 5 V requires more output capacitance for stability. For the worstcase condition of 1.23 V output and 250 mA of load current, a \(6.8 \mu \mathrm{~F}\) (or larger) capacitor should be used.
A \(1 \mu \mathrm{~F}\) capacitor should be placed from the input pin to ground if there is more than 10 inches of wire between the input and the \(A C\) filter capacitor or if a battery input is used. Stray capacitance to the Feedback terminal can cause instability. This problem is most likely to appear when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitance to \(6.8 \mu \mathrm{~F}\) (or greater) will cure the problem.

\section*{MINIMUM LOAD ON MAIN OUTPUT}

When setting the main output voltage using an external resistive divider, a minimum current of \(10 \mu \mathrm{~A}\) is recommended through the resistors to provide a minimum load.
It should be noted that a minimum load current is specified in several of the electrical characteristic test conditions, so the specified value must be used to obtain test limit correlation.

\section*{PROGRAMMING THE MAIN OUTPUT VOLTAGE}

The main output may be pin-strapped for 5 V operation using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and 5V Tap pins together.
Alternatively, it may be programmed for any voltage between the 1.23 V reference and the 29 V maximum rating using an external pair of resistors (see Figure 3). The complete equation for the output voltage is:
\[
V_{\text {MAIN OUT }}=V_{R E F} \times\left(1+\frac{R 1}{R 2}\right)+\left(I_{F B} \times R 1\right)
\]
where \(\mathrm{V}_{\text {REF }}\) is the 1.23 V reference and \(\mathrm{I}_{\mathrm{FB}}\) is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of \(1 \mu \mathrm{~A}\) sets an upper limit of 1.2 \(\mathrm{M} \Omega\) on the value of R2 in cases where the regulator must work with no load (see MINIMUM LOAD).

If \(\mathrm{I}_{\mathrm{FB}}\) is ignored in the calculation of the output voltage, it will produce a small error in \(\mathrm{V}_{\text {MAIN OUT }}\). Choosing R2 \(=100 \mathrm{k} \Omega\) will reduce this error to \(0.16 \%\) (typical) while increasing the resistor program current to \(12 \mu \mathrm{~A}\). Since the typical quiescent current is \(130 \mu \mathrm{~A}\), this added current is negligible.

FIGURE 3. Adjustable Regulator \({ }^{\text {TL/H/11339-11 }}\)

\section*{DROPOUT VOLTAGE}

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1 V differential. The dropout voltage is independent of the programmed output voltage.

\section*{DROPOUT DETECTION COMPARATOR}

This comparator produces a logic "LOW" whenever the main output falls out of regulation by more than about \(5 \%\). This figure results from the comparator's built-in offset of 60 mV divided by the 1.23 V reference (refer to block diagram). The \(5 \%\) low trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.
Figure 4 gives a timing diagram showing the relationship between the main output voltage, the ERROR output, and input voltage as the input voltage is ramped up and down to a regulator whose main output is programmed for 5 V . The ERROR signal becomes low at about 1.3 V input. It goes high at about 5 V input, where the main output equals 4.75 V . Since the dropout voltage is load dependent, the input voltage trip points will vary with load current. The main output voltage trip point does not vary.
The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the regulator main output or some other supply voltage. Using the main output prevents an invalid "HIGH" on the comparator output which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below 1.3 V . In selecting a value for the pull-up resistor, note that while the output can sink \(400 \mu \mathrm{~A}\), this current adds to battery drain. Suggested values range from \(100 \mathrm{k} \Omega\) to \(1 \mathrm{M} \Omega\). The resistor is not required if the output is unused.

Application Hints (Continued)

*In shutdown mode, ERROR will go high if it has been pulled up to an external supply. To avoid this invalid response, pull up to regulator output.
**Exact value depends on dropout voltage. (See Application Hints)

\section*{FIGURE 4. ERROR Output Timing}

If a single pull-up resistor is used to the regulator output, the error flag may briefly rise up to about 1.3 V as the input voltage ramps up or down through the OV to 1.3 V region.
In some cases, this 1.3 V signal may be mis-interpreted as a false high by a \(\mu \mathrm{P}\) which is still "alive" with 1.3 V applied to it.
To prevent this, the user may elect to use two resistors which are equal in value on the error output (one connected to ground and the other connected to the regulator output). If this two-resistor divider is used, the error output will only be pulled up to about 0.6 V (not 1.3 V) during power-up or power-down, so it can not be interpreted as a high signal. When the regulator output is at 5 V , the error output will be 2.5 V , which is still clearly a high signal.

\section*{OUTPUT ISOLATION}

The regulator outputs can be left connected to an active voltage source (such as a battery) with the regulator input power shut off, as long as the regulator ground pin is connected to ground. If the ground pin is left floating, damage to the regulator can occur if the output is pulled up by an external voltage source.

\section*{REDUCING MAIN OUTPUT NOISE}

In reference applications it may be advantageous to reduce the \(A C\) noise present on the main output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.
Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to Figure 3). The formula for selecting the capacitor to be used is:
\[
\mathrm{CB}=\frac{1}{2 \pi \mathrm{R} 1 \times 20 \mathrm{~Hz}}
\]

This gives a value of about \(0.1 \mu \mathrm{~F}\). When this is used, the output capacitor must be \(6.8 \mu \mathrm{~F}\) (or greater) to maintain stability. The \(0.1 \mu \mathrm{~F}\) capacitor reduces the high frequency noise gain of the circuit to unity, lowering the output noise from \(260 \mu \mathrm{~V}\) to \(80 \mu \mathrm{~V}\) using a 10 Hz to 100 kHz bandwidth. Also, noise is no longer proportional to the output voltage, so improvements are more pronounced at higher output voltages.

FIGURE 5. Auxiliary Adjustable Regulator

\section*{AUXILIARY LDO OUTPUT}

The LP2956 has an auxiliary LDO regulator output (which can source up to 75 mA) that is adjustable for voltages from 1.23 V to 29 V .

The output voltage is set by an external resistive divider, as shown in Figure 5. The maximum output current is 75 mA , and the output requires \(10 \mu \mathrm{~F}\) from the output to ground for stability, regardless of load current.

\section*{SHUTDOWN INPUT}

The shutdown input equivalent circuit is shown in Figure 6. The main regulator output is shut down when the NPN transitor is turned ON.

TL/H/11339-14
FIGURE 6. Shutdown Circuitry
The current into the input should be at least \(0.5 \mu \mathrm{~A}\) to assure the output shutdown function. A resistor may be placed in series with the input to minimize current draw in shutdown mode, provided this minimum input current requirement is met.

\section*{IMPORTANT:}

The shutdown input must not be left floating: a pull-down resistor (\(10 \mathrm{k} \Omega\) to \(50 \mathrm{k} \Omega\) recommended) must be connected between the shutdown input and ground in cases where the input is not actively pulled low.

\section*{Schematic Diagram}

\section*{Typical Applications}

\section*{LP2960}

Adjustable Micropower 0.5A Low-Dropout Regulators

\section*{General Description}

The LP2960 is a micropower voltage regulator with very low dropout voltage (12 mV typical at 1 mA load and 470 mV typical at 500 mA load) and very low quiescent current (\(450 \mu \mathrm{~A}\) typical at 1 mA load).
The LP2960 is ideally suited for battery-powered systems: the quiescent current increases only slightly at dropout, which prolongs battery life.
The LP2960 retains all the desirable characteristics of the LP2953, and offers increased output current.
The error flag goes low any time the output drops more than 5\% out of regulation.
Reverse battery protection is provided.
The LP2960 requires only \(10 \mu \mathrm{~F}\) of output capacitance for stability (5 V version).
The internal voltage reference is made available for external use, providing a low-T.C. reference with very good regulation characteristics.
The parts are available in 16 -pin plastic DIP and 16 -pin surface mount packages.

\section*{Features}

■ Output voltage adjusts from 1.23V-29V
- Guaranteed 500 mA output current
- 5 V and 3.3 V versions available
- 16-pin DIP and 16-pin SO packages
- Low dropout voltage
- Low quiescent current
- Tight line and load regulation
- Low temperature coefficient
- Current limiting and thermal protection
- Logic-level shutdown
- Can be wired for snap-ON and snap-OFF
- Reverse battery protection

\section*{Applications}
- High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Cellular telephones

TL/H/11962-1

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Junction Temperature Range
LP2960AI/LP2960I . \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\begin{tabular}{lr}
Lead Temperature (Soldering, 5 sec .) & \(260^{\circ} \mathrm{C}\) \\
Power Dissipation (Note 2) & Internally Limited \\
Input Supply Voltage & -20 V to +30 V \\
Feedback Input Voltage (Note 3) & -0.3 V to +5 V \\
Comparator Input Voltage (Note 4) & -0.3 V to +30 V \\
Comparator Output Voltage (Note 4) & -0.3 V to +30 V \\
ESD Rating (Note 15) & 1.5 kV
\end{tabular}

Electrical Characteristics Limits in standard typeface are for \(T_{J}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Unless otherwise specified: \(\mathrm{C}_{\mathrm{IN}}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\), \(\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}\) for 5 V parts or \(\mathrm{C}_{\text {OUT }}=22 \mu \mathrm{~F}\) for 3.3V parts, Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typ} & \multicolumn{2}{|l|}{\begin{tabular}{l}
LP2960AI \\
(Note 14)
\end{tabular}} & \multicolumn{2}{|l|}{LP29601 (Note 14)} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{0}\)} & Output Voltage (5V Versions) & \(1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{L}} \leq 500 \mathrm{~mA}\) & 5.0 & \[
\begin{array}{|c|}
\hline 4.962 \\
\mathbf{4 . 9 3 0} \\
\hline
\end{array}
\] & \[
\begin{gathered}
5.038 \\
\mathbf{5 . 0 7 0}
\end{gathered}
\] & \[
\begin{gathered}
4.925 \\
\mathbf{4 . 8 8 0} \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
5.075 \\
\mathbf{5 . 1 2 0} \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{V} \\
\hline & Output Voltage (3.3V Versions) & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 500 \mathrm{~mA}\) & 3.3 & \[
\begin{array}{c|}
\hline 3.275 \\
\mathbf{3 . 2 5 4}
\end{array}
\] & \[
\begin{gathered}
3.325 \\
\mathbf{3 . 3 4 6}
\end{gathered}
\] & \[
\begin{gathered}
3.250 \\
\mathbf{3 . 2 2 1}
\end{gathered}
\] & \[
\begin{array}{r}
3.350 \\
\mathbf{3 . 3 7 9} \\
\hline
\end{array}
\] & \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{~T}}
\] & \begin{tabular}{l}
Output Voltage \\
Temperature Coefficient
\end{tabular} & (Note 5) & 20 & & 130 & & 160 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}
\] & Output Voltage Line Regulation & \(\mathrm{V}_{\mathrm{IN}}=\left[\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}\right]\) to 30 V & 0.06 & & \[
\begin{aligned}
& 0.2 \\
& \mathbf{0 . 5} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.4 \\
& 0.8
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta V_{O}}{V_{0}}
\] & Output Voltage Load Regulation & (Note 6) & 0.08 & & \[
\begin{gathered}
0.16 \\
0.30
\end{gathered}
\] & \(\cdots\) & \[
\begin{aligned}
& 0.20 \\
& \mathbf{0 . 4 0}
\end{aligned}
\] & \% \\
\hline \multirow[t]{4}{*}{\(V_{1 N}-V_{O}\)} & \multirow[t]{4}{*}{Dropout Voltage (Note 7)} & \(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\) & 12 & & \[
\begin{aligned}
& 30 \\
& \mathbf{5 0}
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& \mathbf{5 0}
\end{aligned}
\] & \multirow{4}{*}{mV} \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 180 & & \[
\begin{array}{r}
250 \\
\mathbf{3 5 0} \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 250 \\
& \mathbf{3 5 0}
\end{aligned}
\] & \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}\) & 260 & & \[
\begin{array}{r}
350 \\
\mathbf{4 5 0} \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 350 \\
& \mathbf{4 5 0}
\end{aligned}
\] & \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}\) & 470 & & \[
\begin{aligned}
& 600 \\
& \mathbf{8 0 0}
\end{aligned}
\] & & \[
\begin{aligned}
& 600 \\
& \mathbf{8 0 0}
\end{aligned}
\] & \\
\hline \multirow[t]{4}{*}{\(\mathrm{I}_{\mathrm{GND}}\)} & \multirow[t]{4}{*}{Ground Pin Current (Note 8)} & \(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\) & 450 & & \[
\begin{aligned}
& 600 \\
& 750 \\
& \hline
\end{aligned}
\] & & \[
\begin{gathered}
600 \\
750
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 2.6 & & \[
\begin{aligned}
& 4.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{array}{r}
4.0 \\
\mathbf{5 . 0} \\
\hline
\end{array}
\] & \multirow{3}{*}{mA} \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}\) & 5.5 & & \[
\begin{gathered}
8 \\
10 \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
8 \\
10 \\
\hline
\end{gathered}
\] & \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}\) & 21 & . & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 40 \\
& \hline
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {GND }}\)} & Ground Pin Current at Dropout (Note 8) & \[
\begin{aligned}
& V_{I N}=V_{O}(N O M)-.0 .5 V \\
& I_{L}=100 \mu \mathrm{~A}
\end{aligned}
\] & 1.8 & & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & mA \\
\hline & Ground Pin Current at Shutdown (Note 8) & \(\mathrm{V}_{\mathrm{SD}} \leq 1.1 \mathrm{~V}\) & 300 & & 400 & & 400 & \(\mu \mathrm{A}\) \\
\hline lıIMIT & Current Limit & \(\mathrm{R}_{\mathrm{L}}=0.5 \Omega\) & 1000 & & \[
\begin{array}{r}
1500 \\
1600 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 1500 \\
& 1600
\end{aligned}
\] & mA \\
\hline \(\frac{\Delta V_{O}}{P_{\mathrm{D}}}\) & Thermal Regulation & (Note 10) & 0.05 & . & 0.2 & & 0.2 & \%/W \\
\hline
\end{tabular}

Electrical Characteristics Limits in standard typeface are for \(T_{J}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Unless otherwise specified: \(\mathrm{C}_{\mathrm{IN}}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\), \(\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}\) for 5 V parts or \(\mathrm{C}_{\text {OUT }}=22 \mu \mathrm{~F}\) for 3.3V parts, Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}\). (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typ} & \multicolumn{2}{|l|}{\begin{tabular}{l}
LP2960AI \\
(Note 14)
\end{tabular}} & \multicolumn{2}{|l|}{LP29601 (Note 14)} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multirow[t]{3}{*}{\(e_{n}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Output Noise Voltage \\
@ \(I_{L}=100 \mathrm{~mA}\) \\
(\(10 \mathrm{~Hz}-100 \mathrm{kHz}\))
\end{tabular}} & \(\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}\) & 300 & & & & & \multirow{3}{*}{\(\mu\) VRMS} \\
\hline & & \(\mathrm{C}_{\text {OUT }}=47 \mu \mathrm{~F}\) & 210 & & & & & \\
\hline & & \(\mathrm{C}_{\text {OUT }}=47 \mu \mathrm{~F}\) (Note 11) & 130 & & & & & \\
\hline \(V_{\text {REF }}\) & Reference Vóltage & . & 1.235 & \[
\begin{gathered}
1.220 \\
\mathbf{1 . 2 1 0}
\end{gathered}
\] & \[
\begin{gathered}
1.250 \\
1.265
\end{gathered}
\] & \[
\begin{gathered}
1.210 \\
\mathbf{1 . 1 9 5}
\end{gathered}
\] & \[
\begin{gathered}
1.260 \\
\mathbf{1 . 2 7 5}
\end{gathered}
\] & V \\
\hline \[
\frac{\Delta V_{R E F}}{V_{\text {REF }}}
\] & Reference Voltage Line Regulation & (Note 13) & 0.05 & & \[
\begin{gathered}
0.1 \\
0.30
\end{gathered}
\] & & \[
\begin{aligned}
& 0.2 \\
& 0.4
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta V_{\text {REF }}}{V_{\text {REF }}}
\] & Reference Voltage Load Regulation & \(\mathrm{I}_{\text {REF }}=0-200 \mu \mathrm{~A}\) & 0.45 & & \[
\begin{aligned}
& 0.6 \\
& 0.9
\end{aligned}
\] & & \[
\begin{aligned}
& 1.2 \\
& 1.5
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta V_{\mathrm{REF}}}{\Delta \mathrm{~T}}
\] & Reference Voltage Temperature Coefficient & (Note 5) & 20 & - & & & & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}(\mathrm{FB})\) & Feedback Pin Bias Current & & -20 & & \[
\begin{array}{r}
-50 \\
-70
\end{array}
\] & & \[
\begin{aligned}
& -50 \\
& -70
\end{aligned}
\] & nA \\
\hline
\end{tabular}

\section*{DROPOUT DETECTION COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline IOH & Output HIGH Leakage & \(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\) & 0.01 & & 1 2 & : & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& V_{I N}=V_{O}(N O M)-1 V \\
& I_{O}(C O M P)=400 \mu \mathrm{~A}
\end{aligned}
\] & 125 & & \[
\begin{array}{r}
250 \\
400 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
250 \\
\mathbf{4 0 0} \\
\hline
\end{array}
\] & mV \\
\hline \(\mathrm{V}_{\text {THR }}(\) max \()\) & Upper Threshold Voltage & (Note 9) & -60 & \[
\begin{gathered}
-80 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& -35 \\
& -25
\end{aligned}
\] & \[
\begin{gathered}
-80 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& -35 \\
& -25
\end{aligned}
\] & mV \\
\hline \(\mathrm{V}_{\text {THR }}(\mathrm{min})\) & Lower Threshold Voltage & (Note 9) & -85 & \[
\begin{aligned}
& -130 \\
& -200
\end{aligned}
\] & \[
\begin{array}{r}
-70 \\
-35
\end{array}
\] & \[
\begin{array}{r}
-130 \\
-200
\end{array}
\] & \[
\begin{aligned}
& -70 \\
& -35
\end{aligned}
\] & mV \\
\hline HYST & Hysteresis & (Note 9) & 25 & & & & & mV \\
\hline
\end{tabular}

\section*{SHUTDOWN INPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Vos & Input Offset Voltage & (Referred to \(\mathrm{V}_{\text {REF }}\)) & \(\pm 5\) & \[
\begin{array}{r}
-18 \\
-24
\end{array}
\] & \[
\begin{aligned}
& 18 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& -18 \\
& -24
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 24
\end{aligned}
\] & mV \\
\hline HYST & Hysteresis & (Referred to \(\mathrm{V}_{\text {REF }}\)) & 10 & & & & & mV \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=0-5 \mathrm{~V}\) & -20 & \[
\begin{gathered}
-60 \\
-\mathbf{1 0 0}
\end{gathered}
\] & \[
\begin{gathered}
60 \\
100
\end{gathered}
\] & \[
\begin{gathered}
-60 \\
-\mathbf{1 0 0}
\end{gathered}
\] & \[
\begin{gathered}
60 \\
100
\end{gathered}
\] & nA \\
\hline lout(S/D) & Regulator Output Current in Shutdown & (Note 12) & 3 & & \[
\begin{aligned}
& 12 \\
& 20
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \\
& 20
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{AUXILIARY COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{OS}}\) & Input Offset Voltage & (Referred to \(\mathrm{V}_{\text {REF }}\)) & \(\pm 5\) & \[
\begin{array}{r}
-15 \\
-\mathbf{2 0} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & \[
\begin{array}{r}
-15 \\
-20 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 20 \\
& \hline
\end{aligned}
\] & mV \\
\hline HYST & Hysteresis & (Referred to \(\mathrm{V}_{\text {REF }}\)) & 10 & & & & & mV \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & \(\mathrm{V}_{\text {COMP }}=0-5 \mathrm{~V}\) & -20 & \[
\begin{gathered}
-60 \\
-100
\end{gathered}
\] & \[
\begin{gathered}
\hline 60 \\
100 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-60 \\
-\mathbf{1 0 0}
\end{gathered}
\] & \[
\begin{gathered}
60 \\
100 \\
\hline
\end{gathered}
\] & nA \\
\hline 1 OH & Output HIGH Leakage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{COMP}}=1.3 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 0.01 & & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& V_{\text {COMP }}=1.1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{O}}=400 \mu \mathrm{~A}
\end{aligned}
\] & 125 & & \[
\begin{array}{r}
250 \\
400
\end{array}
\] & & \[
\begin{aligned}
& 250 \\
& 400
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{Electrical Characteristics (Continued)}

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature, \(\mathrm{T}_{\mathrm{J}}\) (max), the junction-to-ambient thermal resistance, \(\theta_{\mathrm{J}}\) - \(\mathrm{A}_{\mathrm{J}}\) and the ambient temperature, \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is calculated using:
\[
P(\max)=\frac{T_{J}(\max)-T_{A}}{\theta_{J-A}}
\]

Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. See APPLICATION HINTS for additional information on heatsinking and thermal resistance.
Note 3: When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
Note 4: May exceed the input supply voltage.
Note 5: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
Note 6: Output voltage load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the load current range of \(100 \mu \mathrm{~A}\) to 1 mA and one for the 1 mA to 500 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1 V differential. At very low values of programmed output voltage, the input voltage minimum of 2 V (\(\mathbf{2} \mathbf{3} \mathbf{3 V}\) over temperature) must be observed.
Note 8: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive divider (if used).
Note 9: Dropout detection comparator threshold voltages are expressed in terms of a voltage differential measured at the Feedback terminal below the nominal reference voltage, which is the reference voltage measured with \(\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}\). To express these thresholds in terms of output voltage change, multiply by the error amplifier gain which is \(\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{REF}}=\left(\mathrm{R}_{1}+\mathrm{R} 2\right) / \mathrm{R} 2\) (see Basic Application Circuit).
Note 10: Thermal regulation is the change in output voltage at a time \(T\) after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 400 mA load pulse at \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+15 \mathrm{~V}\) (6 W pulse) for \(T=10 \mathrm{~ms}\).
Note 11: Connect a \(0.1 \mu \mathrm{~F}\) capacitor from the output to the feedback pin.
Note 12: Vshutdown \(\leq 1.1 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}<30 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}\).
Note 13: Two separate tests are performed for reference voltage line regulation, one covering \(2.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}\) and the other test for \(\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}\) \(\leq V_{I N} \leq 30 V\).
Note 14: All room temperature limits are \(100 \%\) production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
Note 15. Human Body Model, 200 pF discharged through \(1.5 \mathrm{k} \Omega\).

\section*{Basic Application Circuit}

TL/H/11962-2

\section*{Connection Diagrams and Ordering Information}

TL/H/11962-4
*Internally Connected to Power Ground

Top View
Order Number LP2960IM-5.0, LP2960AIM-5.0, LP2960IM-3.3 or LP2960AIM-3.3 See NS Package Number M16A

Top View
Order Number LP2960IN-5.0, LP2960AIN-5.0,
LP2960IN-3.3 or LP2960AIN-3.3
See NS Package Number N16G

Typical Performance Characteristics Unless otherwise specified: \(C_{I N}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{N}} \mathrm{N}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\), \(C_{\text {OUT }}=10 \mu \mathrm{~F}\), Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\).

TL/H/11962-7

Ground Pin Current

TL/H/11962-6

TL/H/11962-8

Dropout Characteristics

TL/H/11962-10

Typical Performance Characteristics Unless otherwise specified: \(\mathrm{C}_{\mathrm{IN}_{\mathrm{N}}}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathbb{I N}}=6 \mathrm{~V}, \mathrm{~L}_{\mathrm{L}}=1 \mathrm{~mA}\),
\(C_{\text {OUT }}=10 \mu \mathrm{~F}\), Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\). (Continued)

Enable Transient

TIME (ms)
TL/H/11962-13

Load Transient

TL/H/11962-15

\section*{Enable Transient}

TL/H/11962-14

\section*{Load Transient}

TL/H/11962-16

Dropout Voltage vs Load Current

TL/H/T1962-12

Typical Performance Characteristics Unless otherwise specified: \(\mathrm{C}_{\mathbb{N}}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathbb{I}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\), \(C_{\text {OUT }}=10 \mu \mathrm{~F}\), Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}\). (Continued)

Typical Performance Characteristics Unless otherwise specified: \(\mathrm{C}_{\mathbb{N}}=4.7 \mu \mathrm{~F}, \mathrm{~V}_{\mathbb{N}}=6 \mathrm{~V}, \mathrm{~L}_{\mathrm{L}}=1 \mathrm{~mA}\), \(\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}\), Feedback pin is tied to \(\mathrm{V}_{\text {TAP }}\) pin, Output pin is tied to Sense pin, \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\). (Continued)

Error Output Voltage vs Input Voltage

TL/H/11962-27

TL/H/11962-24

TL/H/11962-26

TEMPERATURE (\({ }^{\circ} \mathrm{C}\))

"In the 16-pin DIP devices, the "Analog GND" point is internally connected to the "GND" point.
In the 16-pin surface-mount devices, "Analog \(G N D^{\prime \prime}\) is brought out on a separate pin.

\section*{Application Hints}

\section*{EXTERNAL CAPACITORS}

Bypass capacitors on the input and output of the LP2960 are required: without these capacitors, the part will oscillate.
A capacitor (whose value is at least \(4.7 \mu \mathrm{~F}\)) must be connected from the \(V_{I N}\) pin to ground. If the input capacitor is located more than one inch away from the LP2960, the capacitor may have to be increased to \(22 \mu \mathrm{~F}\) to assure stability. A capacitor is also required between VOUT and Ground, and the minimum amount of capacitance required here depends on output voltage.
If the output voltage of the LP2960 is set to 5 V , a minimum of \(10 \mu \mathrm{~F}\) is needed in output capacitance. At 3.3 V output, at least \(22 \mu \mathrm{~F}\) is required to assure stability.
ESR LIMIT: The ESR of the capacitor used on the LP2960 must be less than \(0.7 \Omega\) throughout the entire operating temperature range to assure stability.
The ESR of an aluminum electrolytic capacitor is typically only specified at \(25^{\circ} \mathrm{C}\), and does not reflect the maximum ESR that can be expected to occur over the entire temperature range of the capacitor.
Aluminum electrolytics show a marked increase in ESR at low temperatures (ESR can increase by a factor of 30 or more when going from \(25^{\circ} \mathrm{C}\) to \(-30^{\circ} \mathrm{C}\)) which could lead to oscillation problems in applications with very low ambient temperatures. Solid tantalum capacitors are recommended for use in such cases.
Regulator instability can be caused by stray (board layout) capacitance appearing at the Feedback terminal. Oscillations from this effect are most likely to occur when very high value resistors are used to set the output voltage.
Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitor to at least \(22 \mu \mathrm{~F}\) will stop the oscillations.

\section*{MINIMUM LOAD}

The internal resistive divider in the LP2960 provides sufficient output loading for proper regulation. If external resistors are used to set the LP2960 output voltage, a minimum current of \(5 \mu \mathrm{~A}\) through the external resistive divider is recommended.
It should be noted that a minimum load current is specified in several of the test conditions listed under Electrical Characteristics, and this value of load current must be used to get correlation on these test limits.

\section*{PROGRAMMING THE OUTPUT VOLTAGE}

The LP2960 regulator may be pin-strapped for operation at the nominal output voltage using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and \(V_{\text {TAP }}\) pins together.

Alternatively, it may be programmed for any voltage between the 1.23 V reference and the 30 V maximum rating using an external pair of resistors (see Basic Application Circuit).
The complete equation for the output voltage is:
\[
V_{\text {OUT }}=V_{\text {REF }} \times(1+R 1 / R 2)+\left(I_{F B} \times R 1\right)
\]

The term \(V_{\text {REF }}\) is the 1.23 V reference and \(\mathrm{I}_{\mathrm{FB}}\) is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of \(5 \mu \mathrm{~A}\) sets an upper limit of \(240 \mathrm{k} \Omega\) on the value of R2 in cases where the regulator must work with no load (see Minimum Load).
For best output accuracy, choosing R2 \(=100 \mathrm{k} \Omega\) will reduce the error resulting from \(I_{\text {FB }}\) to \(0.17 \%\) while increasing the resistive divider current to \(12 \mu \mathrm{~A}\). Since the typical quiescent current of the LP2960 is \(450 \mu \mathrm{~A}\), this added current through R2 is negligible.

\section*{DROPOUT VOLTAGE}

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1 V differential. The dropout voltage is independent of the programmed output voltage.

\section*{OUTPUT ISOLATION}

If the LP2960 output is connected to an active voltage source (such as a battery) the regulator input should not be shorted to ground, as this will cause a large current to flow from the battery into the LP2960 output lead.
If the LP2960 input is left floating with the output connected to a battery, a small current (a few mA) will flow into the output lead.
The "reverse" current flowing from the battery into the LP2960 output can be prevented by using a blocking diode between the output and the battery.

\section*{REDUCING OUTPUT NOISE}

In reference applications it may be desirable to reduce the AC noise present on the output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.
Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to Basic Application Circuit).
A \(0.1 \mu \mathrm{~F}\) capacitor connected across R1 will reduce the high frequency gain of the circuit to unity, lowering the RMS output noise voltage from \(210 \mu \mathrm{~V}\) to \(130 \mu \mathrm{~V}\) (typical) using a \(10 \mathrm{~Hz}-100 \mathrm{kHz}\) bandwidth test measurement.
Also, output noise is no longer proportional to the output voltage, so improvements are more pronounced at higher output voltages.
IMPORTANT: Since the \(0.1 \mu \mathrm{~F}\) capacitor reduces the AC gain of the LP2960 to unity, the output capacitance must be increased to at least \(33 \mu \mathrm{~F}\) to assure regulator stability.

\section*{Application Hints (Continued)}

\section*{DROPOUT DETECTION COMPARATOR}

The dropout detection comparator produces a logic "LOW" on the Error output whenever the LP2960 output drops out of regulation by more than about \(5 \%\). This figure results from the comparator's built-in offset of 60 mV divided by the 1.23 V reference (refer to block diagram).

The " \(5 \%\) below nominal" trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.
The figure below gives a timing diagram showing the relationship between the output voltage, the Error output; and input voltage as the input voltage is ramped up and down to a regulator programmed for 5 V output.

*In shutdown mode, ERROR will go high if it has been pulled up to an external supply. To avoid this invalid response, pull-up to regulator output.
**Exact value depends on dropout voltage. (See Application Hints)
The Error signal becomes low as \(\mathrm{V}_{\mathrm{IN}}\) exceeds about 1.3V. It goes high at about 5 V input, where the output equals 4.75 V . Since the dropout voltage is load dependent, the input voltage trip points will vary with load current, but the output voltage trip point does not.
The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the LP2960 output or another supply voltage.
Best operation is obtained by connecting the pull-up to the LP2960 output. If the pull-up resistor is connected to an external 5 V supply, the error flag will incorrectly signal "HIGH" whenever ViN \(<1.3 \mathrm{~V}\) (see Error Output Timing Diagram).
In selecting a value for the pull-up resistor, note that while the output can sink \(400 \mu \mathrm{~A}\), this current adds to battery drain. Suggested values range from \(100 \mathrm{k} \Omega-1 \mathrm{M} \Omega\). The resistor is not required if the output is unused.
If a large output capacitance is used, a false logic "HIGH" can be generated when \(\mathrm{V}_{\mathbb{I N}} \approx 1.3 \mathrm{~V}\). In this case, the error output becomes a high impedance, causing the voltage at the error output to rise to its pull-up value. If the pull-up resistor is connected to \(V_{\text {OUT }}\), the error output can rise to 1.2 V (which is a logic "HIGH" signal incorrectly signifying the output is in regulation).

The user may wish to divide down the error flag voltage using equal-value resistors (\(10 \mathrm{k} \Omega\) suggested) to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

\section*{AUXILIARY COMPARATOR}

The LP2960 contains an auxiliary comparator whose inverting input is connected to the 1.23 V reference. The auxiliary comparator has an open-collector output whose electrical characteristics are similar to the dropout detection comparator. The non-inverting input and output are brought out for external connections.

\section*{SHUTDOWN INPUT}

A logic-level signal will shut off the regulator output when a "LOW" (< 1.2 V) is applied to the Shutdown input.
To prevent possible mis-operation, the Shutdown input must be actively terminated. If the input is driven from open-collector logic, a pull-up resistor (\(20 \mathrm{k} \Omega-100 \mathrm{k} \Omega\) recommended) should be connected from the Shutdown input to the regulator input.
If the Shutdown input is driven from a source which actively pulls low and high (like an op-amp), the pull-up resistor is not required, but may be used.
If the Shutdown input is to be unused, the cost of the pull-up resistor can be saved by tying the Shutdown input directly to the regulator input.
IMPORTANT: Since the Absolute Maximum Ratings state that the Shutdown input can not go more than 0.3 V below ground, the reverse-battery protection feature which protects the regulator input is sacrificed if the Shutdown input is tied directly to the regulator input.
If reverse-battery protection is required in an application, the pull-up resistor between the Shutdown input and the regulator input must be used.

\section*{GROUND CONNECTIONS}

The pins designated GND (see Connection Diagrams) must be connected to the high-current ground point in the circuit.
The GND pins are electrically connected (through the lead frame) to the die substrate, making them ideal for conducting ground current or heat (see Heatsinking).
The parts in the surface-mount (\(M\)) package also have an Analog Ground pin, which is the ground point on the die for the regulator reference circuitry.
Along with the Sense pin, the availability of the Analog Ground pin allows the designer the ability to use "remote" sensing and eliminate output voltage errors due to IR drops occurring along PC board traces.
IMPORTANT: The Analog Ground pin must be connected to circuit ground at some point for the regulator to operate.
If remote sensing is not needed, the Analog Ground pin can simply be pin-strapped to the adjacent GND pin.

\section*{HEATSINKING}

A heatsink may be required with the LP2960 depending on the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating conditions, the junction temperature must be within the range specified under Absolute Maximum Ratings.

\section*{Application Hints (Continued)}

To determine if a heatsink is required, the power dissipated by the regulator, \(\mathrm{P}_{\mathrm{D}}\), must be calculated.
The figure below shows the voltages and currents which are present in the circuit, as well as the formula for calculating the power dissipated in the regulator:

TL/H/1 1962-30
The next parameter which must be calculated is the maximum allowable temperature rise, \(T_{R}\) (max). This is calculated by using the formula:
\[
T_{R}(\max)=T_{J}(\max)-T_{A}(\max)
\]
where:
\(T_{J}\) (max) is the maximum allowable junction temperature, which is \(125^{\circ} \mathrm{C}\) for commercial grade parts.
\(T_{A}\) (max) is the maximum ambient temperature which will be encountered in the application.
Using the calculated values for \(T_{R}(\max)\) and \(P_{D}\), the maximum allowable value for the junction-to-ambient thermal resistance, \(\theta_{(J-A)}\), can now be found:
\[
\theta_{(J-A)}=T_{R}(\max) / P_{D}
\]

The heatsink for the LP2960 is made using the PC board copper, with the heat generated on the die being conducted through the lead frame and out to the pins which are soldered to the PC board.
The GND pins are the only ones capable of conducting any significant amount of heat, as they are internally attached to the lead frame on which the die is mounted.
The figure below shows recommended copper foil patterns to be used for heatsinking the DIP and Surface Mount packages:

The table below shows measured values of \(\theta_{(J-A)}\) for a PC board with 1 ounce copper weight:
\begin{tabular}{|c|c|c|c|}
\hline Package & L (in.) & H (in.) & \(\theta_{\mathrm{J}}-\mathrm{A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline \multirow{2}{*}{ DIP } & 1 & 0.5 & 50 \\
\cline { 2 - 4 } & 2 & 0.2 & 52 \\
\hline \multirow{2}{*}{\begin{tabular}{c}
Surface \\
Mount
\end{tabular}} & 1 & 0.5 & 72 \\
\cline { 2 - 4 } & 2 & 0.2 & 74 \\
\hline
\end{tabular}

As the heat must transfer from the copper to the surrounding air, best results (lowest \(\theta_{J-A}\)) will be obtained by using a surface copper layer with the solder resist opened up over the heatsink area.
If an internal copper layer of a multi-layer board is used for heatsinking, the board material acts as an insulator, inhibiting heat transfer and increasing \(\theta_{\mathrm{J}}-\mathrm{A}\).
As with any heatsink, increasing the airflow across the board will significantly improve the heat transfer.

Typical Applications

*Connect to Logic or \(\mu \mathrm{P}\) control inputs.
LOW BATT flag warns the user that the battery has discharged down to about 5.8 V , giving the user time to recharge the battery or power-down some hardware with high power requirements. The output is still in regulation at this time.
OUT OF REGULATION flag indicates when the battery is almost completely discharged, and can be used to initiate a power-down sequence.
\(5 V\) Bus Current Limiter with Load Fault Indicator

TL/H/11962-33
*Output voltage equals \(+\mathrm{V}_{\mathrm{IN}}\) minus dropout voltage, which varies with output current. Current limits at a maximum of 1000 mA (typical).
**Select R1 so that the comparator input voltage is 1.23 V at the output voltage which corresponds to the desired fault current value.

5V Regulator with Snap-ON/Snap-OFF Feature and Hysteresis

TL/H/11962-35
\({ }^{*}\) Turns ON at \(\mathrm{V}_{\mathrm{IN}}=5.87 \mathrm{~V}\)
Turns OFF at \(\mathrm{V}_{\mathrm{IN}}=5.64 \mathrm{~V}\)
(for component values shown)

\section*{Typical Applications (Continued)}

\section*{General Description}

The LP2980 is a 50 mA , fixed-output voltage regulator designed specifically to meet the requirements of battery-powered applications.
Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2980 delivers unequaled performance in all specifications critical to battery-powered designs:
Dropout Voltage. Typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.
Ground Pin Current. Typically \(375 \mu \mathrm{~A}\) @ 50 mA load, and \(80 \mu \mathrm{~A}\) @ 1 mA load.
Sleep Mode. Less than \(1 \mu \mathrm{~A}\) quiescent current when ON/OFF pin is pulled low.
Smallest Possible Size. SOT-23 package uses an absolute minimum of board space.
Minimum Part Count. Requires only \(1 \mu \mathrm{~F}\) of external capacitance on the regulator output.
Precision Output. \(0.5 \%\) tolerance output voltages available (A grade).
\(5.0 \mathrm{~V}, 3.3 \mathrm{~V}\), and 3.0 V versions available as standard products.

\section*{Features}
- Ultra low dropout voltage
- Output voltage accuracy 0.5\% (A Grade)
- Guaranteed 50 mA output current
- Smallest possible size (SOT-23 Package)
- Requires only \(1 \mu \mathrm{~F}\) external capacitance

■ < \(1 \mu \mathrm{~A}\) quiescent current when shutdown
- Low ground pin current at all load currents
m High peak current capability (150 mA typical)
- Wide supply voltage range (16 V max)
- Fast dynamic response to line and load
- Low Zout over wide frequency range
- Overtemperature/overcurrent protection
- \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) junction temperature range

\section*{Applications}
- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

\section*{Block Diagram}

TL/H/12078~1

\section*{Connection Diagram and Ordering Information}

5-Lead Small Outline Package (M5)

4
TL/H/12078-38
Actual Size

For Ordering Information See Table I In this Datasheet See NS Package Number MA05A

Electrical Characteristics Limits in standard typeface are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and limits in boldface type apply over the full operating temperature range. Unless otherwise specified: \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}\), \(\mathrm{V}_{\text {ON/OFF }}=2 \mathrm{~V}\). (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typ} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { LP2980AI-XX } \\
& \text { (Note 6) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { LP29801-XX } \\
\text { (Note 6) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \(\mathrm{l}_{\mathrm{O}}(\mathrm{PK})\) & Peak Output Current & \(\mathrm{V}_{\text {OUT }} \geq \mathrm{V}_{\text {O(NOM }}\) - \(5 \%\) & 150 & 100 & & 100 & & mA \\
\hline \(e_{n}\) & \begin{tabular}{l}
Output Noise \\
Voltage (RMS)
\end{tabular} & \[
\begin{aligned}
& \mathrm{BW}=300 \mathrm{~Hz}-50 \mathrm{kHz}, \\
& \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}
\end{aligned}
\] & 160 & & & & & \(\mu \mathrm{V}\) \\
\hline \[
\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {IN }}}
\] & Ripple Rejection & \[
\begin{aligned}
& f=1 \mathrm{kHz} \\
& \text { COUT }=10 \mu \mathrm{~F}
\end{aligned}
\] & 63 & & & & & dB \\
\hline \(\mathrm{IO}(\mathrm{MAX})\) & Short Circuit Current & \(\mathrm{R}_{\mathrm{L}}=0\) (Steady State) (Note 9) & 150 & & & & & mA \\
\hline
\end{tabular}

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
Note 2: The ESD rating of pins 3 and 4 is 1 kV .
Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, \(\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}\), the junction-to-ambient thermal resistance, \(\theta_{\mathrm{JA}}\), and the ambient temperature, \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is calculated using:
\[
P(M A X)=\frac{T_{J(M A X)}-T_{A}}{\theta_{J A}}
\]

The value of \(\theta_{\mathrm{JA}}\) for the SOT-23 package is \(300^{\circ} \mathrm{C} / \mathrm{W}\). Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.
Note 4: If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2980 output must be diode-clamped to ground.
Note 5: The output PNP structure contains a diode between the \(\mathrm{V}_{\mathrm{IN}}\) and \(\mathrm{V}_{\mathrm{OUT}}\) terminals that is normally reverse-biased. Reversing the polarity from \(\mathrm{V}_{\mathrm{IN}}\) to \(\mathrm{V}_{\mathrm{OUT}}\) will turn on this diode (see Application Hints).
Note 6: Limits are \(100 \%\) production tested at \(25^{\circ}\). Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Level (AOQL).
Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1 V differential.
Note 8: The ON/OFF inputs must be properly driven to prevent misoperation. For details, refer to Application Hints.
Note 9: See Typical Performance Characteristics curves.

Basic Application Circuit

TL/H/12078-2
*ON/OFF input must be actively terminated. Tie to \(\mathrm{V}_{\mathbb{N}}\) if this function is not to be used.
**Minimum Output Capacitance is \(1 \mu \mathrm{~F}\) to insure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin (see Application Hints).
***Do not make connections to this pin.

\section*{Ordering Information}
\begin{tabular}{c|c|c|c|c}
\hline \begin{tabular}{c}
Output \\
Voltage \\
(V)
\end{tabular} & Grade & \begin{tabular}{c}
Order \\
Information
\end{tabular} & \begin{tabular}{c}
Package \\
Marking
\end{tabular} & Supplled as: \\
\hline 5.0 & A & LP2980AIM5X-5.0 & L01A & 3k Units on Tape and Reel \\
\hline 5.0 & A & LP2980AIM5-5.0 & L01A & 250 Units on Tape and Reel \\
\hline 5.0 & STD & LP2980IM5X-5.0 & L01B & 3k Units on Tape and Reel \\
\hline 5.0 & STD & LP2980IM5-5.0 & L01B & 250 Units on Tape and Reel \\
\hline 3.3 & A & LP2980AIM5X-3.3 & L00A & 3k Units on Tape and Reel \\
\hline 3.3 & A & LP2980AIM5-3.3 & L00A & 250 Units on Tape and Reel \\
\hline 3.3 & STD & LP2980IM5X-3.3 & L00B & 3k Units on Tape and Reel \\
\hline 3.3 & STD & LP2980IM5-3.3 & L00B & 250 Units on Tape and Reel \\
\hline 3.0 & A & LP2980AIM5X-3.0 & L02A & 3k Units on Tape and Reel \\
\hline 3.0 & A & LP2980AIM5-3.0 & L02A & 250 Units on Tape and Reel \\
\hline 3.0 & STD & LP2980IM5X-3.0 & L02B & 3k Units on Tape and Reel \\
\hline 3.0 & STD & LP2980IM5-3.0 & L02B & 250 Units on Tape and Reel \\
\hline
\end{tabular}

\section*{Connection Diagram}

See NS Package Number MA05A

\section*{Typical Performance Characteristics}

Unless otherwise specified: \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, \(\mathrm{ON} / \mathrm{OFF}\) pin tied to \(\mathrm{V}_{I N}\).

TL/H/12078-9
Output Voltage vs Temperature

TL/H/12078-40
Dropout Characteristics

TL/H/12078-15

\section*{Dropout Characteristics}

TL/H/12078-16
Dropout Characteristics

TL/H/12078-14

Typical Performance Characteristics (Continued)
Unless otherwise specified: \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, \(\mathrm{ON} / \overline{\mathrm{OFF}}\) pin tied to \(\mathrm{V}_{\mathrm{IN}}\).

\section*{Typical Performance Characteristics (Continued)}

Unless otherwise specified: \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, \(\mathrm{ON} / \overline{\mathrm{OFF}}\) pin tied to \(\mathrm{V}_{I N}\).

Line Translent Response

\(20 \mu \mathrm{~s} / \mathrm{div} \rightarrow\)

Load Transient Response

\(10 \mu \mathrm{~s} / \mathrm{div} \rightarrow\)
TL/H/12078-41
Load Transient Response

\(10 \mu \mathrm{~s} / \mathrm{div} \rightarrow\)
TL/H/12078-23

Line Transient Response

\(20 \mu \mathrm{~s} / \mathrm{div} \rightarrow\)
TL/H/12078-22

\(10 \mu \mathrm{~s} / \mathrm{div} \rightarrow\) TL/H/12078-42

Load Transient Response

\(10 \mu \mathrm{~s} / \mathrm{div} \rightarrow\)
TL/H/12078-24

Typical Performance Characteristics (Continued)
Unless otherwise specified: \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, \(\mathrm{ON} / \overline{\mathrm{OFF}}\) pin tied to \(\mathrm{V}_{I N}\).

\section*{Typical Performance Characteristics (Continued)}

Unless otherwise specified: \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, \(\mathrm{ON} / \overline{\mathrm{OFF}}\) pin tied to \(\mathrm{V}_{\mathrm{IN}}\).

\section*{Typical Performance}

\section*{Characteristics (Continued)}

Unless otherwise specified:
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}\), all voltage options, ON/OFF pin tied to \(\mathrm{V}_{\mathrm{IN}}\).

\section*{Application Hints}

\section*{OUTPUT CAPACITOR}

Like any low-dropout regulator, the LP2980 requires an output capacitor to maintain regulator loop stability. This capacitor must be selected to meet the requirements of minimum capacitance and equivalent series resistance (ESR) range. It is not difficult to find capacitors which meet the criteria of the LP2980, as the acceptable capacitance and ESR ranges are wider than for most other LDOs.
In general, the capacitor value must be at least \(1 \mu \mathrm{~F}\) (over the actual ambient operating temperature), and the ESR must be within the range indicated in Figures 1, 2, and 3. It should be noted that, although a maximum ESR is shown in these Figures, it is very unlikely to find a capacitor with ESR that high.

\section*{Tantalum Capacitors}

Surface-mountable solid tantalum capacitors offer a good combination of small physical size for the capacitance value, and ESR in the range needed by the LP2980.
The results of testing the LP2980 stability with surfacemount solid tantalum capacitors show good stability with values of at least \(1 \mu \mathrm{~F}\). The value can be increased to \(2.2 \mu \mathrm{~F}\) (or more) for even better performance, including transient response and noise.
Small value tantalum capacitors that have been verified as suitable for use with the LP2980 are shown in Table II. Capacitance values can be increased without limit.

\section*{Aluminum Electrolytic Capacitors}

Although probably not a good choice for a production design, because of relatively large physical size, an aluminum electrolytic capacitor can be used in the design prototype for an LP2980 regulator. A value of at least \(1 \mu \mathrm{~F}\) should be used, and the ESR must meet the conditions of Figures 1, 2, and 3. If the operating temperature drops below \(0^{\circ} \mathrm{C}\), the regulator may not remain stable, as the ESR of the aluminum electrolytic capacitor will increase, and may exceed the limits indicated in the Figures.

TABLE II. Surface-Mount Tantalum Capacitor Selection Guide
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{\(1 \mu \mathrm{~F}\) Surface-Mount Tantalums } \\
\hline Manufacturer & Part Number \\
\hline Kemet & T491A105M010AS \\
\hline NEC & NRU105M10 \\
\hline Siemens & \(\dot{\text { B45196-E3105-K }}\) \\
\hline Nichicon & F931C105MA \\
\hline Sprague & 293D105X0016A2T \\
\hline \(2.2 \mu\) F Surface-Mount Tantalums \\
\hline Manufacturer & Part Number \\
\hline Kemet & T491A225M010AS \\
\hline NEC & NRU225M06 \\
\hline Siemens & B45196/2.2/10/10 \\
\hline Nichicon & F930J225MA \\
\hline Sprague & 293D225X0010A2T \\
\hline
\end{tabular}

\section*{Multlayer Ceramic Capacitors}

Surface-mountable multilayer ceramic capacitors may be an attractive choice because of their relatively small physical size and excellent RF characteristics. However, they sometimes have ESR values lower than the minimum required by the LP2980, and relatively large capacitance change with temperature. The manufacturer's datasheet for the capacitor should be consulted before selecting a value.
Test results of LP2980 stability using multilayer ceramic capacitors show that a minimum value of \(2.2 \mu \mathrm{~F}\) is usually needed for the 5 V regulator. For the lower output voltages, or for better performance, a higher value should be used, such as \(4.7 \mu \mathrm{~F}\).
Multilayer ceramic capacitors that have been verified as suitable for use with the LP2980 are shown in Table III.

TABLE III. Surface-Mount Multilayer Ceramic Capacitor Selection Guide
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{\(2.2 \mu\) F Surface-Mount Ceramic } \\
\hline Manufacturer & Part Number \\
\hline Tokin & 1E225ZY5U-C203 \\
\hline \multicolumn{2}{|c|}{ Murata } \\
\hline \multicolumn{2}{|c|}{\(4.7 \mu \mathrm{~F}\) Surface-Mount Ceramic } \\
\hline Manufacturer & Part Number \\
\hline Tokin & 1E475ZY5U-C304 \\
\hline
\end{tabular}

Application Hints (Continued)

FIGURE 1. \(1 \mu\) F ESR Range

TL/H/12078-49
FIGURE 2. 2.2 \(\mu\) F ESR Range

FIGURE 3. \(10 \mu\) F ESR Range

\section*{REVERSE CURRENT PATH}

The power transistor used in the LP2980 has an inherent diode connected between the regulator input and output (see below).

TL/H/12078-34
If the output is forced above the input by more than a \(V_{B E}\), this diode will become forward biased and current will flow from the \(\mathrm{V}_{\text {OUT }}\) terminal to \(\mathrm{V}_{\text {IN }}\). No damage to the LP2980 will occur under these conditions as long as the current flowing into the output pin does not exceed 100 mA .

\section*{ON/OFF INPUT OPERATION}

The LP2980 is shut off by pulling the ON/OFF input low, and turned on by driving the input high. If this feature is not to be used, the ON/OFF input should be tied to \(V_{\mathbb{I N}}\) to keep the regulator on at all times (the ON/OFF input must not be left floating).
To ensure proper operation, the signal source used to drive the ON/OFF input must be able to swing above and below the specified turn-on/turn-off voltage thresholds which guarantee an ON or OFF state (see Electrical Characteristics).
The ON/OFF signal may come from either a totem-pole output, or an open-collector output with pull-up resistor to the LP2980 input voltage or another logic supply. The high-level voltage may exceed the LP2980 input voltage, but must remain within the Absolute Maximum Ratings for the ON/OFF pin.
It is also important that the turn-on/turn-off voltage signals applied to the ON/OFF input have a slew rate which is greater than \(40 \mathrm{mV} / \mu \mathrm{s}\).
Important: the regulator shutdown function will operate incorrectly if a slow-moving signal is applied to the ON/OFF input.

\section*{Typical Applications}

The LP2980 can be used to control higher-current regulators, by adding an external PNP pass device. With the PNP transistors shown, the output current can be as high as 400 mA , as long as the input voltage is held within the Safe Operation Boundary Curves shown below.
To ensure regulation, the minimum input voltage of this regulator is 6 V . This "headroom" is the sum of the \(\mathrm{V}_{\mathrm{BE}}\) of the external transistor and the dropout voltage of the LP2980.

\section*{Notes:}
A. Drive this input with a logic signal (see Application Hints). If the shutdown function is not to be used, tie the ON/OFF pin directly to the \(\mathrm{V}_{\text {IN }}\) pin.
B. Recommended devices (other PNP transistors can be used if the current gain and voltage ratings are similar).
C. Capacitor is required for regulator stability. Minimum size is shown, and may be increased without limit.
D. Increasing the output capacitance improves transient response and increases phase margin.
E. Maximum safe input voltage and load current are limited by power dissipation in the PNP pass transistor and the maximum ambient temperature for the specific application. If a TO-92 transistor such as the MPS2907A is used, the thermal resistance from junction-to-ambient is \(180^{\circ} \mathrm{C} / \mathrm{W}\) in still air.
Assuming a maximum allowable junction temperature of \(150^{\circ} \mathrm{C}\) for the MPS2907A device, the following curves show the maximum \(\mathrm{V}_{I N}\) and \(\mathrm{I}_{\mathrm{L}}\) values that may be safely used for several ambient temperatures.

TL/H/12078-51

\section*{Typical Applications (Continued)}

TL/H/12078-53

With limited input voltage range, the LP2980 can control a \(3.3 \mathrm{~V}, 3 \mathrm{~A}\) regulator with the use of a high current-gain external PNP pass transistor. If the regulator is to be loaded with the full 3 A , heat sinking will be required on the pass transistor to keep it within its rated temperature range. Refer to the Heatsink Thermal Resistance Requirements, below. For best load regulation at the high load current, the LP2980 output voltage connection should be made as close to the load as possible.
Although this regulator can handle a much higher load current than can the LP2980 alone, it can be shut down in the same manner as the LP2980. When the ON/OFF control is brought low, the converter will be in shutdown, and will draw less than \(1 \mu \mathrm{~A}\) from the source.

\section*{Notes:}
A. Drive this input with a logic signal (see Application Hints). If the shutdown function is not to be used, tie the ON/OFF pin directly to the VIN pin.
B. Capacitor is required for regulator stability. Minimum size is shown, and may be increased without limit. "
C. Increasing the output capacitance improves transient response and increases phase margin.
D. A heatsink may be required for this transistor. The maximum allowable value for thermal resistance of the heatsink is dependent on ambient temperature and load current (see curves below). Once the value is obtained from the graph, a heatsink must be selected which has a thermal resistance equal to or lower than this value. If the value is above \(60^{\circ} \mathrm{C} / \mathrm{W}\), no heatsink is required (the TO-220 package alone will safely dissipate this).
For these curves, a maximum junction temperature of \(150^{\circ} \mathrm{C}\) is assumed for the pass transistor. The case-to-heatsink attachment thermal resistance is assumed to be \(1.5^{\circ} \mathrm{C} / \mathrm{W}\). All calculations are for 5.5 V input voltage (which is worst-case for power dissipation).

Heatsink Thermal Resistance Requirements

National Semiconductor

\section*{LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage Regulators}

\section*{General Description}

The LP2952 and LP2953 are micropower voltage regulators with very low quiescent current (\(130 \mu \mathrm{~A}\) typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). They are ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.
The LP2952 and LP2953 retain all the desirable characteristics of the LP2951, but offer increased output current, additional features, and an improved shutdown function.
The internal crowbar pulls the output down quickly when the shutdown is activated.
The error flag goes low if the output voltage drops out of regulation.
Reverse battery protection is provided.
The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.
The parts are available in DIP and surface mount packages.

\section*{Features}

■ Output voltage adjusts from 1.23 V to 29 V
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection
- 50 mA (typical) output pulldown crowbar
- 5 V and 3.3 V versions available

\section*{LP2953 Versions Only}
- Auxiliary comparator included with CMOS/TTL compatible output levels. Can be used for fault detection, low input line detection, etc.

\section*{Applications}
- High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Snap-ON/Snap-OFF regulator

Block Diagrams

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}\)
Operating Temperature Range
LP2952I, LP2953I, LP2952AI,
LP2953AI, LP2952l-3.3, LP2953I-3.3,
\(\begin{array}{ll}\text { LP2952AI-3.3, LP2953AI-3.3 } & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \\ \text { LP2953AM } & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\end{array}\)
Maximum Junction Temperature
LP2952I, LP2953I, LP2952AI,
LP2953AI, LP2952I-3.3, LP2953I-3.3,
LP2952AI-3.3, LP2953AI-3.3 \(+125^{\circ} \mathrm{C}\)
LP2953AM \(+150^{\circ} \mathrm{C}\)
\begin{tabular}{lr}
Lead Temp. (Soldering, 5 seconds) & \(260^{\circ} \mathrm{C}\) \\
Power Dissipation (Note 2) & Internally Limited \\
Input Supply Voltage & -20 V to +30 V \\
Feedback Input Voltage (Note 3) & -0.3 V to +5 V \\
Comparator Input Voltage (Note 4) & -0.3 V to +30 V \\
Shutdown Input Voltage (Note 4) & -0.3 V to +30 V \\
Comparator Output Voltage (Note 4) & -0.3 V to +30 V \\
ESD Rating (Note 15) & 2 kV
\end{tabular}

Electrical Characteristics Limits in standard typeface are for \(T_{J}=25^{\circ} \mathrm{C}\), bold typeface applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(V_{I N}=V_{O}(N O M)+1 V, I_{L}=1 \mathrm{~mA}, C_{L}=2.2 \mu \mathrm{~F}\) for 5 V parts and \(4.7 \mu \mathrm{~F}\) for 3.3 V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

\subsection*{3.3V Versions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multirow[b]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2952AI-3.3, LP2953AI-3.3} & \multicolumn{2}{|l|}{LP2952I-3.3, LP2953I-3.3} & \multirow{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}\)} & \multirow[t]{2}{*}{Output Voltage} & & 3.3 & \[
\begin{gathered}
3.284 \\
\mathbf{3 . 2 6 0}
\end{gathered}
\] & \[
\begin{gathered}
3.317 \\
\mathbf{3 . 3 4 0}
\end{gathered}
\] & \[
\begin{gathered}
3.267 \\
3.234
\end{gathered}
\] & \[
\begin{gathered}
3.333 \\
\mathbf{3 . 3 6 6}
\end{gathered}
\] & \multirow[t]{2}{*}{\(v\)} \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 250 \mathrm{~mA}\) & 3.3 & 3.254 & 3.346 & 3.221 & 3.379 & \\
\hline
\end{tabular}

\section*{5V Versions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2952AI, LP2953AI, LP2953AM (Note 17)} & \multicolumn{2}{|l|}{LP2952I, LP29531} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}\)} & \multirow[t]{2}{*}{Output Voltage} & & 5.0 & \[
\begin{gathered}
4.975 \\
\mathbf{4 . 9 4 0}
\end{gathered}
\] & \[
\begin{gathered}
5.025 \\
5.060
\end{gathered}
\] & \[
\begin{gathered}
4.950 \\
4.900
\end{gathered}
\] & \[
\begin{gathered}
5.050 \\
5.100
\end{gathered}
\] & \multirow[t]{2}{*}{V} \\
\hline & & \(1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 250 \mathrm{~mA}\) & 5.0 & 4.930 & 5.070 & 4.880 & 5.120 & \\
\hline
\end{tabular}

\section*{All Voltage Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typlcal} & \multicolumn{2}{|l|}{LP2952AI, LP2953AI, LP2952Al-3.3, LP2953AI-3.3, LP2953AM (Note 17)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { LP29521, LP2953I, } \\
\text { LP2952I-3.3, LP2953I-3.3 }
\end{gathered}
\]} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \[
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{~T}}
\] & Output Voltage Temp. Coefficient & (Note 5) & 20 & & 100 & & 150 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \[
\frac{\overline{\Delta V_{0}}}{V_{0}}
\] & Output Voltage Line Regulation & \[
\begin{gathered}
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V} \\
\text { to } 30 \mathrm{~V}
\end{gathered}
\] & 0.03 & & \[
\begin{aligned}
& 0.1 \\
& 0.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 0.4
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta V_{0}}{V_{O}}
\] & Output Voltage Load Regulation (Note 6) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \text { to } 250 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{L}}=0.1 \mathrm{~mA} \text { to } 1 \mathrm{~mA}
\end{aligned}
\] & 0.04 & & \[
\begin{aligned}
& 0.16 \\
& 0.20
\end{aligned}
\] & & \[
\begin{aligned}
& 0.20 \\
& 0.30
\end{aligned}
\] & \% \\
\hline \(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{O}}\) & Dropout Voltage (Note 7) & \(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\) & 60 & - & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & \\
\hline & & \(\mathrm{l}_{\mathrm{L}}=50 \mathrm{~mA}\) & 240 & . & \[
\begin{array}{r}
300 \\
420 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
300 \\
420 \\
\hline
\end{array}
\] & mV \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\) & 310 & & \[
\begin{aligned}
& 400 \\
& \mathbf{5 2 0}
\end{aligned}
\] & & \[
\begin{aligned}
& 400 \\
& 520
\end{aligned}
\] & \\
\hline & & \(\mathrm{l}_{\mathrm{L}}=250 \mathrm{~mA}\) & 470 & & \[
\begin{aligned}
& 600 \\
& 800
\end{aligned}
\] & & \[
\begin{aligned}
& 600 \\
& 800
\end{aligned}
\] & \\
\hline
\end{tabular}

Electrical Characteristics Limits in standard typeface are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), bold typeface applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\) for 5 V parts and \(4.7 \mu \mathrm{~F}\) for 3.3 V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin. (Continued)

\section*{All Voltage Options (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typical} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{LP29521, LP29531, LP29521-3.3, LP29531-3.3} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multirow[t]{4}{*}{GND

-.} & \multirow[t]{4}{*}{Ground Pin Current (Note 8)} & \(\mathrm{L}=1 \mathrm{~mA}\) & 130 & & \[
\begin{aligned}
& 170 \\
& 200
\end{aligned}
\] & & \[
\begin{array}{r}
170 \\
200
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{l}_{\mathrm{L}}=50 \mathrm{~mA}\) & 1.1 & & \[
\begin{gathered}
2 \\
2.5
\end{gathered}
\] & - \(\because \cdot\) & \[
\begin{gathered}
2 \\
2.5
\end{gathered}
\] & \multirow{3}{*}{mA} \\
\hline & & \(\mathrm{L}_{\mathrm{L}}=100 \mathrm{~mA}\) & 4.5 & - & \[
\begin{aligned}
& 6 \\
& 8
\end{aligned}
\] & & 6
8 & \\
\hline & & \(\mathrm{L}_{\mathrm{L}}=250 \mathrm{~mA}\) & 21 & & \[
\begin{aligned}
& 28 \\
& 33
\end{aligned}
\] & . & \[
\begin{aligned}
& 28 \\
& 33
\end{aligned}
\] & \\
\hline GND & Ground Pin Current at Dropout (Note 8) & \[
\begin{aligned}
& V_{I N}=V_{O}(N O M)-0.5 \mathrm{~V} \\
& I_{L}=100 \mu \mathrm{~A}
\end{aligned}
\] & 165 & - & \[
\begin{aligned}
& 210 \\
& 240
\end{aligned}
\] & & \[
\begin{aligned}
& 210 \\
& 240
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Gnd & Ground Pin Current at Shutdown (Note 8) & (Note 9) & 105 & & 140 . & & 140 & \(\mu \mathrm{A}\) \\
\hline limit & Current Limit & \(V_{\text {OUT }}=0\) & 380 & : & \[
\begin{aligned}
& 500 \\
& 530
\end{aligned}
\] & & \[
\begin{aligned}
& 500 \\
& 530
\end{aligned}
\] & mA \\
\hline \[
\frac{\overline{\Delta V_{\mathrm{O}}}}{\Delta \mathrm{Pd}}
\] & Thermal Regulation & (Note 10) & 0.05 & & 0.2 & & 0.2 & \%/W \\
\hline \multirow[t]{3}{*}{\(e_{n}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Output Noise Voltage \\
(10 Hz to 100 kHz)
\[
I_{L}=100 \mathrm{~mA}
\]
\end{tabular}} & \(C_{L}=4.7 \mu \mathrm{~F}\) & 400 & & & & \multirow[t]{3}{*}{} & \multirow{3}{*}{\(\mu \mathrm{V}\) RMS} \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=33 \mu \mathrm{~F}\) & 260 & & & & & \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=33 \mu \mathrm{~F}(\) Note 11) & 80 & & & & & \\
\hline \(\mathrm{V}_{\text {REF }}\) & Reference Voltage & (Note 12) & 1.230 & \[
\begin{aligned}
& 1.215 \\
& 1.205
\end{aligned}
\] & \[
\begin{gathered}
1.245 \\
1.255
\end{gathered}
\] & \[
\begin{aligned}
& 1.205 \\
& 1.190
\end{aligned}
\] & \[
\begin{gathered}
1.255 \\
1.270
\end{gathered}
\] & V \\
\hline \[
\frac{\Delta V_{R E F}}{V_{\text {REF }}}
\] & Reference Voltage Line Regulation & \[
\begin{aligned}
& V_{I N}=2.5 \mathrm{~V} \text { to } V_{O}(N O M)+1 V \\
& V_{I N}=V_{O}(N O M)+1 V \text { to } 30 \mathrm{~V} \\
& \text { (Note 13) }
\end{aligned}
\] & 0.03 & \(\cdots\) & \[
\begin{aligned}
& 0.1 \\
& 0.2
\end{aligned}
\] & & \[
\begin{aligned}
& 0.2 \\
& 0.4
\end{aligned}
\] & \% \\
\hline \[
\frac{\Delta V_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{REF}}}
\] & Reference Voltage Load Regulation & \(\mathrm{I}_{\text {REF }}=0\) to \(200 \mu \mathrm{~A}\) & 0.25 & & \[
\begin{gathered}
0.4 \\
0.6 \\
\hline
\end{gathered}
\] & - . & \[
\begin{aligned}
& 0.8 \\
& 1.0
\end{aligned}
\] & \% \(\quad \therefore\) \\
\hline \[
\frac{\Delta V_{\mathrm{REF}}}{\Delta T}
\] & Reference Voltage Temp. Coefficient & (Note 5) & 20 & & & & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{I}_{\mathrm{B}}(\mathrm{FB})\) & Feedback Pin Bias Current & & 20 & & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & \(\vdots\) & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& 10 \\
& \text { (SINK) }
\end{aligned}
\] & \begin{tabular}{l}
Output "OFF" \\
Pulldown Current
\end{tabular} & (Note 9) & 50 & \[
\begin{aligned}
& 30 \\
& 20 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 20
\end{aligned}
\] & & mA \\
\hline
\end{tabular}

Electrical Characteristics Limits in standard typeface are for \(T_{J}=25^{\circ} \mathrm{C}\), bold typeface applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: \(V_{I N}=V_{O}(N O M)+1 V, I_{L}=1 \mathrm{~mA}, C_{L}=2.2 \mu \mathrm{~F}\) for 5 V parts and \(4.7 \mu \mathrm{~F}\) for 3.3 V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multirow[t]{2}{*}{Typical} & \multicolumn{2}{|l|}{LP2952AI, LP2953AI, LP2952AI-3.3, LP2953AI-3.3, LP2953AM (Note 17)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { LP2952I, LP2953I, } \\
\text { LP29521-3.3, LP2953I-3.3 }
\end{gathered}
\]} & \multirow[t]{2}{*}{Units} \\
\hline & & & & Min & Max & Min & Max & \\
\hline \multicolumn{9}{|l|}{DROPOUT DETECTION COMPARATOR} \\
\hline IOH & \begin{tabular}{l}
Output "HIGH" \\
Leakage
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\) & 0.01 & & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & & 1 & \(\mu A^{\prime}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{l}
Output "LOW"' \\
Voltage
\end{tabular} & \[
\begin{aligned}
& V_{I N}=V_{O}(N O M)-0.5 V \\
& I_{O}(C O M P)=400 \mu \mathrm{~A}
\end{aligned}
\] & 150 & & \[
\begin{aligned}
& 250 \\
& 400
\end{aligned}
\] & & \[
\begin{aligned}
& 250 \\
& 400
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
\(V_{\text {THR }}\) \\
(MAX)
\end{tabular} & Upper Threshold Voltage & (Note 14) & -60 & \[
\begin{array}{r}
-80 \\
-95 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -35 \\
& -25
\end{aligned}
\] & \[
\begin{array}{r}
-80 \\
-95 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-35 \\
-25 \\
\hline
\end{array}
\] & mV \\
\hline \begin{tabular}{l}
\(V_{\text {THR }}\) \\
(MIN)
\end{tabular} & Lower Threshold Voltage & (Note 14) & -85 & \[
\begin{array}{r}
-110 \\
-160 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -55 \\
& -40
\end{aligned}
\] & \[
\begin{gathered}
-110 \\
-160
\end{gathered}
\] & \[
\begin{array}{r}
-55 \\
-40
\end{array}
\] & mV \\
\hline HYST & Hysteresis & (Note 14) & 15 & & & & & mV \\
\hline \multicolumn{9}{|l|}{SHUTDOWN INPUT (Note 16)} \\
\hline Vos & input Offset Voltage & (Referred to \(\mathrm{V}_{\text {REF }}\)) & \(\pm 3\) & \[
\begin{aligned}
& -7.5 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& -7.5 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 10
\end{aligned}
\] & mV \\
\hline HYST & Hysteresis & & 6 & & & & & mV \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{B}}\)} & \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{\(\begin{aligned} \mathrm{V}_{1 N}(\mathrm{~S} / \mathrm{D})= & \text { OV to 5V } \\ & \text { LP2953AM }\end{aligned}\)} & 10 & \[
\begin{array}{r}
-30 \\
-50
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 50
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{array}{r}
-30 \\
-50
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
-30 \\
50
\end{gathered}
\]} & \multirow[b]{2}{*}{nA} \\
\hline & & & 10 & \[
\begin{array}{r}
-30 \\
-75
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 75
\end{aligned}
\] & & & \\
\hline
\end{tabular}

AUXILIARY COMPARATOR (LP2953 Only)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Vos} & \multirow[t]{2}{*}{Input Offset Voltage} & (Referred to \(\mathrm{V}_{\text {REF }}\)) & \(\pm 3\) & \[
\begin{array}{r}
-7.5 \\
-10
\end{array}
\] & \[
\begin{aligned}
& 7.5 \\
& 10
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& -7.5 \\
& -10
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 7.5 \\
& 10
\end{aligned}
\]} & \multirow[t]{2}{*}{mV -} \\
\hline & & LP2953AM & \(\pm 3\) & \[
\begin{aligned}
& -7.5 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 12
\end{aligned}
\] & & & \\
\hline HYST & Hysteresis & & 6 & & & & & mV \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{B}}\)} & \multirow[t]{2}{*}{Input Bias Current} & \(\mathrm{V}_{\text {IN }}(\mathrm{COMP})=0 \mathrm{~V}\) to 5 V & 10 & \[
\begin{aligned}
& -30 \\
& -50
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 50
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& -30 \\
& -50
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 30 \\
& 50
\end{aligned}
\]} & \multirow[t]{2}{*}{\(n A\)} \\
\hline & & LP2953AM & 10 & \[
\begin{aligned}
& -30 \\
& -75
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 75
\end{aligned}
\] & & & \\
\hline \multirow[t]{2}{*}{IOH} & \multirow[t]{2}{*}{Output "HIGH" Leakage} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}(C O M P)=1.3 \mathrm{~V}
\end{aligned}
\] & 0.01 & & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & LP2953AM & 0.01 & & \[
\begin{gathered}
1 \\
2.2
\end{gathered}
\] & & & \\
\hline \multirow[t]{2}{*}{V OL} & \multirow[t]{2}{*}{\begin{tabular}{l}
Output "LOW" \\
Voltage
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
\mathrm{V}_{\text {IN }}(\text { COMP }) & =1.1 \mathrm{~V} \\
\mathrm{I}_{\mathrm{O}}(\mathrm{COMP})= & 400 \mu \mathrm{~A} \\
& \text { LP2953AM }
\end{aligned}
\]} & 150 & & \[
\begin{gathered}
250 \\
400
\end{gathered}
\] & & \multirow[t]{2}{*}{\[
\begin{array}{r}
250 \\
400
\end{array}
\]} & \multirow[t]{2}{*}{mV} \\
\hline & & & 150 & & \[
\begin{aligned}
& 250 \\
& 420
\end{aligned}
\] & & & \\
\hline
\end{tabular}

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
Note 2: The maximum aliowable power dissipation is a function of the maximum junction temperature, \(\mathrm{T}_{\mathrm{J}}(\mathrm{MAX})\), the junction-to-ambient thermal resistance, \(\theta_{j}\)-A and the ambient temperature, \(T_{A}\). The maximum allowable power dissipation at any ambient temperature is calculated using: \(P(M A X)=\frac{T_{J}(M A X)-T_{A}}{\theta_{J-A}}\).

Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. See APPLICATION HINTS for additional information on heatsinking and thermal resistance.
Note 3: When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
Note 4: May exceed the input supply voltage.
Note 5: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
Note 6: Load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the range of \(100 \mu \mathrm{~A}\) to 1 mA and one for the 1 mA to 250 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1 V differential. At very low values of programmed output voltage, the input voltage minimum of 2 V (\(\mathbf{2 . 3 V}\) over temperature) must be observed.
Note 8: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive divider (if used).
Note 9: \(\mathrm{V}_{\text {SHUTDOWN }} \leq 1.1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {O }}(\mathrm{NOM})\).
Note 10: Thermal regulation is the change in output voltage at a time \(T\) after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at \(\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+15 \mathrm{~V}\) (3 W pulse) for \(T=10 \mathrm{~ms}\).
Note 11: Connect a \(0.1 \mu \mathrm{~F}\) capacitor from the output to the feedback pin.
Note 12: \(V_{\text {REF }} \leq V_{\text {OUT }} \leq\left(V_{I N}-1 V\right), 2.3 \mathrm{~V} \leq V_{I N} \leq 30 \mathrm{~V}, 100 \mu \mathrm{~A} \leq \mathrm{L}_{\mathrm{L}} \leq 250 \mathrm{~mA}\).
Note 13: Two separate tests are performed, one covering \(2.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V}\) and the other test for \(\mathrm{V}_{\mathrm{O}}(\mathrm{NOM})+1 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 30 \mathrm{~V}\).
Note 14: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured at \(V_{I N}=V_{O}(N O M)+1 V\). To express these thresholds in terms of output voltage change, multiply by the Error amplifier gain, which is \(V_{O U T} / V_{R E F}=(R 1+R 2) / R 2\) (refer to Figure 4).
Note 15: Human body model, 200 pF discharged through 1.5 k .
Note 16: Drive Shutdown pin with TTL or CMOS-low level to shut regulator OFF, high level to turn regulator ON.
Note 17: A military RETS specification is available upon request. At the time of printing, the LP2953AMJ/883C RETS specification complied with the boldface limits in this column.

Typical Performance Characteristics Uniess otherwise specified: \(V_{I N}=6 V, I_{L}=1 \mathrm{~mA}, C_{L}=2.2 \mu \mathrm{~F}\), \(V_{S D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}\).

TL/H/11127-3

Typical Performance Characteristics Unless otherwise speciifed: \(V_{I N}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=2.2 \mu \mathrm{~F}\),
\(\mathrm{V}_{\text {SD }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\). (Continued)

Enable Transient

Comparator Sink Current
 output low voltage (v)

Enable Transient

Divider Resistance
 TEMPERATURE (\({ }^{\circ} \mathrm{C}\))

Short-Circuit Output Current and Maximum Output Current

Dropout Detection Comparator Threshold Voltages

TL/H/11127-

Typical Performance Characteristics Unless otherwise specified: \(V_{I N}=6 V, L_{L}=1 \mathrm{~mA}, C_{L}=2.2 \mu \mathrm{~F}\),
\(V_{S D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\). (Continued)

Thermal Regulation

TEMPERATURE (\({ }^{\circ} \mathrm{C}\))

TL/H/11127-5

\section*{Schematic Diagram}

\section*{Application Hints}

\section*{HEATSINK REQUIREMENTS (Industrial Temperature Range Devices)}

The maximum allowable power dissipation for the LP2952/LP2953 is limited by the maximum junction temperature \(\left(+125^{\circ} \mathrm{C}\right)\) and the external factors that determine how quickly heat flows away from the part: the ambient temperature and the junction-to-ambient thermal resistance for the specific application.
The industrial temperature range \(\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\right)\) parts are manufactured in plastic DIP and surface mount packages which contain a copper lead frame that allows heat to be effectively conducted away from the die, through the ground pins of the IC, and into the copper of the PC board. Details on heatsinking using PC board copper are covered later.
To determine if a heatsink is required, the maximum power dissipated by the regulator, \(\mathrm{P}(\max)\), must be calculated. It is important to remember that if the regulator is powered from a transformer connected to the AC line, the maximum specifled AC input voltage must be used (since this produces the maximum DC input voltage to the regulator). Figure 1 shows the voltages and currents which are present in the circuit. The formula for calculating the power dissipated in the regulator is also shown in Figure 1:

The next parameter which must be calculated is the maximum allowable temperature rise, \(T_{R}\) (max). This is calculated by using the formula:
\[
T_{R}(\max)=T_{J}(\max)-T_{A}(\max)
\]
where: \(T_{J}(\max)\) is the maximum allowable junction temperature
\(T_{A}(\max)\) is the maximum ambient temperature
Using the calculated values for \(T_{R}(\max)\) and \(P(\max)\), the required value for junction-to-ambient thermal resistance, \(\theta_{(J-A)}\), can now be found:
\[
\theta_{(J-A)}=T_{R}(\max) / P(\max)
\]

The heatsink is made using the PC board copper. The heat is conducted from the die, through the lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction are:

TABLEI
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Part } & Package & Pins \\
\hline \begin{tabular}{l}
LP2952IN, LP2952AIN, \\
LP2952IN-3.3, LP2952AIN-3.3
\end{tabular} & 14-Pin DIP & \begin{tabular}{c}
\(3,4,5\), \\
\(10,11,12\)
\end{tabular} \\
\hline \begin{tabular}{l}
LP2953IN, LP2953AIN, \\
LP2953IN-3.3, LP2953AIN-3.3
\end{tabular} & 16 -Pin DIP & \(4,5,12,13\) \\
\hline \begin{tabular}{l}
LP2952IM, LP2952AIM, \\
LP2952IM-3.3, LP2952AIM-3.3,
\end{tabular} & \begin{tabular}{c}
16-Pin Surface \\
Mount
\end{tabular} & \(1,8,9,16\) \\
\begin{tabular}{l}
LP2953IM, LP2953AIM, \\
LP2953IM-3.3, LP2953AIM-3.3
\end{tabular} & \begin{tabular}{l}
MP
\end{tabular} \\
\hline
\end{tabular}

Figure 2 shows copper patterns which may be used to dissipate heat from the LP2952 and LP2953:

TL/H/11127-8
*For best results, use \(L=2 H\)
**14-Pin DIP is similar, refer to Table I for pins designated for heatsinking. FIGURE 2. Copper Heatsink Patterns

Table Il shows some values of junction-to-ambient thermal resistance \(\left(\theta_{J}-A\right)\) for values of \(L\) and \(W\) for 1 oz . copper:

TABLE II
\begin{tabular}{|c|c|c|c|}
\hline Package & L (In.) & H (in.) & \(\theta_{\mathrm{J}-\mathrm{A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}\) \\
\hline 16-Pin DIP & 1 & 0.5 & 70 \\
\cline { 2 - 4 } & 2 & 1 & 60 \\
\cline { 2 - 4 } & 3 & 1.5 & 58 \\
\cline { 2 - 4 } & 4 & 0.19 & 66 \\
\cline { 2 - 4 } & 6 & 0.19 & 66 \\
\hline 14-Pin DIP & 1 & 0.5 & 65 \\
\cline { 2 - 4 } & 2 & 1 & 51 \\
\cline { 2 - 4 } & 3 & 1.5 & 49 \\
\hline \multirow{4}{*}{ Surface Mount } & 1 & 0.5 & 83 \\
\cline { 2 - 4 } & 2 & 1 & 70 \\
\cline { 2 - 4 } & 3 & 1.5 & 67 \\
\cline { 2 - 4 } & 6 & 0.19 & 69 \\
\hline & 4 & 0.19 & 71 \\
\hline
\end{tabular}

\section*{Application Hints (Continued)}

\section*{HEATSINK REQUIREMENTS (Military Temperature Range Devices)}

The maximum allowable power dissipation for the LP2953AMJ is limited by the maximum junction temperature \(\left(+150^{\circ} \mathrm{C}\right)\) and the two parameters that determine how quickly heat flows away from the die: the ambient temperature and the junction-to-ambient thermal resistance of the part.
The military temperature range \(\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}\right.\)) parts are manufactured in ceramic DIP packages which contain a KOVAR lead frame (unlike the industrial parts, which have a copper lead frame). The KOVAR material is necessary to attain the hermetic seal required in military applications.
The KOVAR lead frame does not conduct heat as well as copper, which means that the PC board copper can not be used to significantly reduce the overall junction-to-ambient thermal resistance in applications using the LP2953AMJ part.
The power dissipation calculations for military applications are done exactly the same as was detailed in the previous section, with one important exception: the value for \(\theta_{(J-A)}\), the junction-to-ambient thermal resistance, is fixed at \(95^{\circ} \mathrm{C} / \mathrm{W}\) and can not be changed by adding copper foil patterns to the PC board. This leads to an important fact: The maximum allowable power dissipation in any application using the LP2953AMJ is dependent only on the ambient temperature:
\[
\begin{aligned}
P(\max) & =T_{R(\text { max })} / \theta_{(J-A)} . \\
P(\max) & =\frac{T_{J(\max)}-T_{A(\max)}}{\theta_{(J-A)}} \\
P(\max) & =\frac{150-T_{A(\text { max })}}{95}
\end{aligned}
\]

Figure 3 shows a graph of maximum allowable power dissipation vs. ambient temperature for the LP2953AMJ, made using the \(95^{\circ} \mathrm{C} / \mathrm{W}\) value for \(\theta_{(J-A)}\) and assuming a maximum junction temperature of \(150^{\circ} \mathrm{C}\) (caution: the maximum ambient temperature which will be reached in a given application must always be used to calculate maximum allowable power dissipation).

\section*{EXTERNAL CAPACITORS}

A \(2.2 \mu \mathrm{~F}\) (or greater) capacitor is required between the output pin and ground to assure stability when the output is set to 5V. Without this capacitor, the part will oscillate. Most type of tantalum or aluminum electrolytics will work here. Film types will work, but are more expensive. Many aluminum electrolytics contain electrolytes which freeze at \(-30^{\circ} \mathrm{C}\), which requires the use of solid tantalums below \(-25^{\circ} \mathrm{C}\). The important parameters of the capacitor are an ESR of about \(5 \Omega\) or less and a resonant frequency above 500 kHz (the ESR may increase by a factor of 20 or 30 as the temperature is reduced from \(25^{\circ} \mathrm{C}\) to \(-30^{\circ} \mathrm{C}\)). The value of this capacitor may be increased without limit.
At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to \(0.68 \mu \mathrm{~F}\) for currents below 10 mA or \(0.22 \mu \mathrm{~F}\) for currents below 1 mA .
Programming the output for voltages below 5 V runs the error amplifier at lower gains requiring more output capacitance for stability. At 3.3 V output, a minimum of \(4.7 \mu \mathrm{~F}\) is required. For the worst-case condition of 1.23 V output and 250 mA of load current, a \(6.8 \mu \mathrm{~F}\) (or larger) capacitor should be used.
A \(1 \mu \mathrm{~F}\) capacitor should be placed from the input pin to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery input is used.
Stray capacitance to the Feedback terminal can cause instability. This problem is most likely to appear when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitance to \(6.8 \mu \mathrm{~F}\) (or greater) will cure the problem.

\section*{MINIMUM LOAD}

When setting the output voltage using an external resistive divider, a minimum current of \(1 \mu \mathrm{~A}\) is recommended through the resistors to provide a minimum load.
It should be noted that a minimum load current is specified in several of the electrical characteristic test conditions, so this value must be used to obtain correlation on these tested limits.

TL/H/11127-26
FIGURE 3. Power Derating Curve for LP2953AMJ

\section*{Application Hints (Continued)}

\section*{PROGRAMMING THE OUTPUT VOLTAGE}

The regulator may be pin-strapped for 5 V operation using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and 5V Tap pins together.
Alternatively, it may be programmed for any voltage between the 1.23 V reference and the 30 V maximum rating using an external pair of resistors (see Figure 4). The complete equation for the output voltage is:
\[
V_{\text {OUT }}=V_{\text {REF }} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)+\left(\mathrm{I}_{\mathrm{FB}} \times \mathrm{R} 1\right)
\]
where \(\mathrm{V}_{\text {REF }}\) is the 1.23 V reference and \(\mathrm{I}_{\mathrm{FB}}\) is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of \(1 \mu \mathrm{~A}\) sets an upper limit of 1.2 \(\mathrm{M} \Omega\) on the value of R2 in cases where the regulator must work with no load (see MINIMUM LOAD). I \(\begin{aligned} & \text { FB }\end{aligned}\) will produce a typical 2\% error in VOUT which can be eliminated at room temperature by trimming R1. For better accuracy, choosing \(\mathrm{R} 2=100 \mathrm{k} \Omega\) will reduce this error to \(0.17 \%\) while increasing the resistor program current to \(12 \mu \mathrm{~A}\). Since the typical quiescent current is \(120 \mu \mathrm{~A}\), this added current is negligible.

TL/H/11127-9
FIGURE 4. Adjustable Regulator
*See Application Hints
**Drive with TTL-low to shut down

\section*{DROPOUT VOLTAGE}

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1 V differential. The dropout voltage is independent of the programmed output voltage.

\section*{DROPOUT DETECTION COMPARATOR}

This comparator produces a logic "LOW" whenever the output falls out of regulation by more than about \(5 \%\). This figure results from the comparator's built-in offset of 60 mV divided by the 1.23 V reference (refer to block diagrams on page 1). The \(5 \%\) low trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.

Figure 5 gives a timing diagram showing the relationship between the output voltage, the ERROR output, and input voltage as the input voltage is ramped up and down to a regulator programmed for 5 V output. The ERROR signal becomes low at about 1.3 V input. It goes high at about 5 V input, where the output equals 4.75 V . Since the dropout voltage is load dependent, the input voltage trip points will vary with load current. The output voltage trip point does not vary.
The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the regulator output or some other supply voltage. Using the regulator output prevents an invalid "HIGH" on the comparator output which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below 1.3 V . In selecting a value for the pull-up resistor, note that while the output can sink \(400 \mu \mathrm{~A}\), this current adds to battery drain. Suggested values range from \(100 \mathrm{k} \Omega\) to \(1 \mathrm{M} \Omega\). This resistor is not required if the output is unused. When \(\mathrm{V}_{I N} \leq 1.3 \mathrm{~V}\), the error flag pin becomes a high impedance, allowing the error flag voltage to rise to its pull-up voltage. Using \(V_{\text {OUT }}\) as the pull-up voltage (rather than an external 5 V source) will keep the error flag voltage below 1.2 V (typical) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (\(10 \mathrm{k} \Omega\) suggested) to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

FIGURE 5. ERROR Output Timing
*In shutdown mode, ERROR will go high it it has been pulled up to an external supply. To avoid this invalid response, pull up to regulator output.
**Exact value depends on dropout voltage. (See Application Hints)

\section*{OUTPUT ISOLATION}

The regulator output can be left connected to an active voltage source (such as a battery) with the regulator input power shut off, as long as the regulator ground pin is connected to ground. If the ground pin is left floating, damage to the regulator can occur if the output is pulled up by an external voltage source.

\section*{Application Hints (Continued)}

\section*{REDUCING OUTPUT NOISE}

In reference applications it may be advantageous to reduce the AC noise present on the output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.
Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to Figure 4). The formula for selecting the capacitor to be used is:
\[
\mathrm{C}_{\mathrm{B}}=\frac{1}{2 \pi \mathrm{R} 1 \times 20 \mathrm{~Hz}}
\]

This gives a value of about \(0.1 \mu \mathrm{~F}\). When this is used, the output capacitor must be \(6.8 \mu \mathrm{~F}\) (or greater) to maintain stability. The \(0.1 \mu \mathrm{~F}\) capacitor reduces the high frequency gain of the circuit to unity, lowering the output noise from \(260 \mu \mathrm{~V}\) to \(80 \mu \mathrm{~V}\) using a 10 Hz to 100 kHz bandwidth. Also, noise is no longer proportional to the output voltage, so improvements are more pronounced at high output voltages.'

\section*{AUXILIARY COMPARATOR (LP2953 only)}

The LP2953 contains an auxiliary comparator whose inverting input is connected to the 1.23 V reference. The auxiliary comparator has an open-collector output whose electrical characteristics are similar to the dropout detection comparator. The non-inverting, input and output are brought out for external connections.

\section*{SHUTDOWN INPUT}

A logic-level signal will shut off the regulator output when a "LOW" (\(<1.2 \mathrm{~V}\)) is applied to the Shutdown input.
To prevent possible mis-operation, the Shutdown input must be actively terminated. If the input is driven from open-collector logic, a pull-up resistor (\(20 \mathrm{k} \Omega\) to \(100 \mathrm{k} \Omega\) recommended) should be connected from the Shutdown input to the regulator input.
If the Shutdown input is driven from a source that actively pulls high and low (like an op-amp), the pull-up resistor is not required, but may be used.
If the shutdown function is not to be used, the cost of the pull-up resistor can be saved by simply tying the Shutdown input directly to the regulator input.
IMPORTANT: Since the Absolute Maximum Ratings state that the Shutdown input can not go more than 0.3 V below ground, the reverse-battery protection feature which protects the regulator input is sacrificed if the Shutdown input is tied directly to the regulator input.
If reverse-battery protection is required in an application, the pull-up resistor between the Shutdown input and the regulator input must be used.

\section*{Pinout Drawings}

LP2953 16-Pin SO

\section*{Ordering Information}

LP2952
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Order \\
Number
\end{tabular}} & \begin{tabular}{c}
Temp. \\
Range \\
\(\left(\mathrm{T}_{\mathrm{J}}\right)^{\circ} \mathrm{C}\)
\end{tabular} & Package & \begin{tabular}{c}
NSC \\
DrawIng \\
Number
\end{tabular} \\
\hline \begin{tabular}{l}
LP2952IN, LP2952AIN, \\
LP2952IN-3.3, \\
LP2952AIN-3.3
\end{tabular} & \begin{tabular}{c}
-40 to \\
+125
\end{tabular} & \begin{tabular}{c}
14-Pin \\
Molded DIP
\end{tabular} & N14A \\
\hline \begin{tabular}{l}
LP2952IM, LP2952AIM; \\
LP2952IM-3.3, \\
LP2952AIM-3.3
\end{tabular} & \begin{tabular}{c}
-40 to \\
+125
\end{tabular} & \begin{tabular}{c}
16-Pin \\
Surface \\
Mount
\end{tabular} & M16A \\
\hline
\end{tabular}

\section*{LP2953}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Order \\
Number
\end{tabular}} & \begin{tabular}{c}
Temp. \\
Range \\
\(\left(T_{J}\right)^{\circ} \mathrm{C}\)
\end{tabular} & Package & \begin{tabular}{c}
NSC \\
Drawing \\
Number
\end{tabular} \\
\hline \begin{tabular}{l}
LP2953IN, LP2953AIN, \\
LP2953IN-3.3, \\
LP2953AIN-3.3
\end{tabular} & \begin{tabular}{c}
-40 to \\
+125
\end{tabular} & \begin{tabular}{c}
16-Pin \\
Molded DIP
\end{tabular} & N16A \\
\hline \begin{tabular}{l}
LP2953IM, LP2953AIM, \\
LP2953IM-3.3, \\
LP2953AIM-3.3
\end{tabular} & \begin{tabular}{c}
-40 to \\
+125
\end{tabular} & \begin{tabular}{c}
16-Pin \\
Surface Mount
\end{tabular} & M16A \\
\hline LP2953AMJ/883 & \begin{tabular}{c}
-55 to \\
+150
\end{tabular} & \begin{tabular}{c}
16-Pin \\
Ceramic DIP.
\end{tabular} & J16A \\
\hline
\end{tabular}

\section*{Typical Applications}

Basic 5V Regulator

Low T.C. Current Sink

5V Current Limiter with Load Fault Indicator

TL/H/11127-16
-Output voltage equals \(+V_{\text {IN }}\) minum dropout voltage, which varies with output current. Current limits at a maximum of 380 mA (typical).
**Select R1 so that the comparator input voltage is 1.23 V at the output voltage which corresponds to the desired fault current value.

*Connect to Logic or \(\mu \mathrm{P}\) control inputs.
LOW BATT flag warns the user that the battery has discharged down to about 5.8 V , giving the user time to recharge the battery or power down some hardware with high power requirements. The output is still in regulation at this time.
OUT OF REGULATION flag indicates when the battery is almost completely discharged, and can be used to initiate a power-down sequence.

\section*{Typical Applications (Continued)}

5V Battery Powered Supply with Backup and Low Battery Flag

*Turns \(O N\) at \(V_{I N}=5.87 \mathrm{~V}\)
Turns OFF at \(\mathrm{V}_{\text {IN }}=5.64 \mathrm{~V}\)
(for component values shown)

\section*{5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION with SNAP-ON/SNAP-OFF Output}

TL/H/11127-23
- Connect to Logic or \(\mu \mathrm{P}\) control inputs.

OUTPUT has SNAP-ON/SNAP-OFF feature.
LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or shut down hardware with high power requirements. The output is still in regulation at this time.

OUT OF REGULATION flag goes low if the output goes below about 4.7V, which could occur from a load fault.
OUTPUT has SNAP-ON/SNAP-OFF feature. Regulator snaps ON at about 5.7 V input, and OFF at about 5.6 V .

\section*{LM2574/LM2574HV Series} SIMPLE SWITCHER \({ }^{\text {TM }}\) 0.5A Step-Down Voltage Regulator

\section*{General Description}

The LM2574 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of \(3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}\), and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2574 series offers a high-efficiency replacement for popular three-terminal linear regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors optimized for use with the LM2574 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed \(\pm 4 \%\) tolerance on output voltage within specified input voltages and output load conditions, and \(\pm 10 \%\) on the oscillator frequency. External shutdown is included, featuring \(50 \mu \mathrm{~A}\) (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

\section*{Features}
- 3.3V, \(5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}\), and adjustable output versions
- Adjustable version output voltage range, 1.23 V to 37 V (57 V for HV version) \(\pm 4 \%\) max over line and load conditions
- Guaranteed 0.5 A output current
- Wide input voltage range, 40 V , up to 60 V for HV version
- Requires only 4 external components

■ 52 kHz fixed frequency internal oscillator
■ TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

\section*{Applications}
- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical Application (Fixed Output Voltage Versions)

TL/H/11394-1
Note: Pin numbers are for 8-pin DIP package.

\section*{Connection Diagrams}

Order Number LM2574HVM-3.3, LM2574HVM-5.0, LM2574HVM-12, LM2574HVM-15, LM2574HVM-ADJ, LM2574M-3.3 LM2574M-5.0, LM2574M-12, LM2574M-15 or LM2574M-ADJ See NS Package Number M14B

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallablilty and specifications.
Maximum Supply Voltage
LM2574 45V
LM2574HV 63V
ON/OFF Pin Input Voltage \(\quad-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\mathrm{IN}}\)
Output Voltage to Ground (Steady State)
Power Dissipation
\(-1 V\)
Internally Limited
Storage Temperature Range
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

Minimum ESD Rating
(C = \(100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega\)) 2 kV
Lead Temperature
(Soldering, 10 seconds) \(260^{\circ} \mathrm{C}\)
Maximum Junction Temperature \(150^{\circ} \mathrm{C}\)
Operating Ratings
Temperature Range
LM2574/LM2574HV \(\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\)
Supply Voltage
LM2574
40 V
LM2574HV 60 V

\section*{LM2574-3.3, LM2574HV-3.3}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Tomperature Range.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { LM2574-3.3 } \\
\text { LM2574HV-3.3 }
\end{gathered}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Units \\
(Limits)
\end{tabular}} \\
\hline & & & Typ & \[
\begin{gathered}
\text { Limit } \\
\text { (Note 2) }
\end{gathered}
\] & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2} \\
\hline VOUT & Output Voltage & \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}\) & 3.3 & \[
\begin{aligned}
& 3.234 \\
& 3.366 \\
& \hline
\end{aligned}
\] & \(V\)
V(Min)
V(Max) \\
\hline V OUT & Output Voltage LM2574 & \(4.75 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{L}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 3.3 & \[
\begin{aligned}
& 3.168 / 3.135 \\
& 3.432 / 3.465
\end{aligned}
\] & \\
\hline V OUT & Output Voltage LM2574HV & \(4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 3.3 & \[
\begin{aligned}
& 3.168 / 3.135 \\
& 3.450 / 3.482
\end{aligned}
\] & \begin{tabular}{l}
\(V(\) Min \()\) \\
V(Max)
\end{tabular} \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 72 & & \% \\
\hline
\end{tabular}

\section*{LM2574-5.0, LM2574HV-5.0}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Rango.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { LM2574-5.0 } \\
\text { LM2574HV-5.0 }
\end{gathered}
\]} & \multirow[b]{2}{*}{Units (Limits)} \\
\hline & & & Typ & \[
\begin{aligned}
& \text { Limit } \\
& \text { (Note 2) }
\end{aligned}
\] & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2} \\
\hline V OUT & Output Voltage & \(\mathrm{V}_{1 \mathrm{~N}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}\) & 5 & \[
\begin{aligned}
& 4.900 \\
& 5.100 \\
& \hline
\end{aligned}
\] & \\
\hline V OUT & Output Voltage LM2574 & \(7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 5 & \[
\begin{aligned}
& 4.800 / 4.750 \\
& 5.200 / 5.250
\end{aligned}
\] & \\
\hline VOUT & Output Voltage LM2574HV & \(7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 5 & \[
\begin{array}{r}
4.800 / 4.750 \\
5.225 / 5.275 \\
\hline
\end{array}
\] & \begin{tabular}{l}
V(Min) \\
V(Max)
\end{tabular} \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 77 & & \% \\
\hline
\end{tabular}

\section*{LM2574-12, LM2574HV-12}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { LM2574-12 } \\
\text { LM2574HV-12 }
\end{gathered}
\]} & \multirow[b]{2}{*}{Units (LImits)} \\
\hline & & & Typ & \[
\begin{aligned}
& \text { Limit } \\
& \text { (Note 2) }
\end{aligned}
\] & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2} \\
\hline V OUT & Output Voltage & \(\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}\) & 10 & \[
\begin{aligned}
& 11.76 \\
& 12.24
\end{aligned}
\] & \begin{tabular}{l}
\(V(\) Min) \\
V(Max)
\end{tabular} \\
\hline VOUT & Output Voltage LM2574 & \(15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{L}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 12 & \[
\begin{aligned}
& 11.52 / 11.40 \\
& 12.48 / 12.60 \\
& \hline
\end{aligned}
\] & \\
\hline V OUT & Output Voltage LM2574HV & \(15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq\) L LOAD \(\leq 0.5 \mathrm{~A}\) & 12 & \[
\begin{aligned}
& 11.52 / 11.40 \\
& 12.54 / 12.66
\end{aligned}
\] & \begin{tabular}{l}
\(V(\) Min \()\) \\
V(Max)
\end{tabular} \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 88 & & \% \\
\hline
\end{tabular}

\section*{LM2574-15, LM2574HV-15}

Electrical Characteristics Specififations with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { LM2574-15 } \\
& \text { LM2574HV-15 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Units (Limits)} \\
\hline & & & Typ & \[
\begin{gathered}
\text { Limit } \\
\text { (Note 2) }
\end{gathered}
\] & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2} \\
\hline V OUT & Output Voltage & \(\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}\) & 15 & \[
\begin{array}{r}
14.70 \\
15.30 \\
\hline
\end{array}
\] & \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output Voltage LM2574 & \(18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 15 & \[
\begin{aligned}
& 14.40 / 14.25 \\
& 15.60 / 15.75 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { V } \\
V(\text { Min }) \\
V(\text { Max })
\end{gathered}
\] \\
\hline V OUT & Output Voltage LM2574HV & \(18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 15 & \[
\begin{aligned}
& 14.40 / 14.25 \\
& 15.68 / 15.83 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
V(Min) \\
V (Max)
\end{tabular} \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 88 & & \% \\
\hline
\end{tabular}

\section*{LM2574-ADJ, LM2574HV-ADJ}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface
type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}_{I N}=12 \mathrm{~V}\), \(\operatorname{l}\) LOAD \(=100 \mathrm{~mA}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { LM2574-ADJ } \\
& \text { LM2574HV-ADJ }
\end{aligned}
\]} & \multirow[b]{2}{*}{Units
(Limlts)} \\
\hline & & & Typ & Limit
(Note 2) & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2} \\
\hline \(\mathrm{V}_{\mathrm{FB}}\) & Feedback Voltage & \(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{l}_{\text {LOAD }}=100 \mathrm{~mA}\) & 1.230 & \[
\begin{array}{r}
1.217 \\
1.243 \\
\hline
\end{array}
\] & \\
\hline \(\mathrm{V}_{\mathrm{FB}}\) & Feedback Voltage LM2574 & \begin{tabular}{l}
\[
7 V \leq V_{I N} \leq 40 V, 0.1 A \leq I_{\text {LOAD }} \leq 0.5 A
\] \\
\(V_{\text {OUT }}\) Programmed for 5V. Circuit of Figure 2
\end{tabular} & 1.230 & \[
\begin{aligned}
& 1.193 / 1.180 \\
& 1.267 / 1.280
\end{aligned}
\] & \begin{tabular}{l}
V(Min) \\
V(Max)
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{FB}}\) & Feedback Voltage LM2574HV & \begin{tabular}{l}
\[
7 V \leq V_{I N} \leq 60 V, 0.1 A \leq I_{\text {LOAD }} \leq 0.5 A
\] \\
\(\mathrm{V}_{\text {OUT }}\) Programmed for 5V. Circuit of Figure 2
\end{tabular} & 1.230 & \[
\begin{aligned}
& 1.193 / 1.180 \\
& 1.273 / 1.286
\end{aligned}
\] & \begin{tabular}{l}
V(Min) \\
V(Max)
\end{tabular} \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 77 & & \% \\
\hline
\end{tabular}

\section*{All Output Voltage Versions}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface
type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}\) for the \(3.3 \mathrm{~V}, 5 \mathrm{~V}\), and Adjustable version, \(\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}\) for the 12 V version, and \(\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}\) for the 15 V version. \(\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Conditions} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { LM2574-XX } \\
\text { LM2574HV-XX }
\end{gathered}
\]} & \multirow[t]{2}{*}{Units (Limits)} \\
\hline & & & Typ & Limit (Note 2) & \\
\hline \multicolumn{6}{|l|}{DEVICE PARAMETERS} \\
\hline \(\mathrm{Ib}_{\mathrm{b}}\) & Feedback Bias Current & Adjustable Version Only, \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\) & 50 & 100/500 & nA \\
\hline \(\mathrm{fo}_{0}\) & Oscillator Frequency & (see Note 10) & 52 & \[
\begin{array}{r}
47 / 42 \\
58 / 63 \\
\hline
\end{array}
\] & kHz
\(\mathrm{kHz}(\mathrm{Min})\)
\(\mathrm{kHz}(\mathrm{Max})\) \\
\hline \(\mathrm{V}_{\text {SAT }}\) & Saturation Voltage & lout \(=0.5 \mathrm{~A}(\) Note 4) & 0.9 & 1.2/1.4 & \[
\begin{gathered}
V \\
V(\max)
\end{gathered}
\] \\
\hline DC & Max Duty Cycle (ON) & (Note 5) & 98 & 93 & \[
\begin{gathered}
\% \\
\%(\text { Min }) \\
\hline
\end{gathered}
\] \\
\hline ICL & Current Limit & Peak Current, (Notes 4, 10) & 1.0 & \[
\begin{gathered}
0.7 / 0.65 \\
1.6 / 1.8 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
A \\
A(\text { Min }) \\
A(\text { Max })
\end{gathered}
\] \\
\hline IL & Output Leakage Current & (Notes 6, 7) \begin{tabular}{rl}
Output \(=0 \mathrm{~V}\) \\
& Output \(=-1 \mathrm{~V}\) \\
Output \(=-1 \mathrm{~V}\)
\end{tabular} & 7.5 & \[
2
\]
\[
30
\] & \[
\begin{gathered}
\mathrm{mA}(\text { Max }) \\
\mathrm{mA} \\
\mathrm{~mA}(\mathrm{Max})
\end{gathered}
\] \\
\hline 10 & Quiescent Current & (Note 6) & 5 & 10 & \[
\begin{gathered}
\mathrm{mA} \\
\mathrm{~mA}(\mathrm{Max})
\end{gathered}
\] \\
\hline IStBy & Standby Quiescent Current & \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=5 \mathrm{~V}\) (OFF) & 50 & 200 & \[
\begin{gathered}
\mu A \\
\mu A(M a x) \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \theta_{J A} \\
& \theta_{J A} \\
& \theta_{J A} \\
& \theta_{J A} \\
& \hline
\end{aligned}
\] & Thermal Resistance & N Package, Junction to Ambient (Note 8) N Package, Junction to Ambient (Note 9) M Package, Junction to Ambient (Note 8) M Package, Junction to Ambient (Note 9) & \[
\begin{gathered}
92 \\
72 \\
102 \\
78 \\
\hline
\end{gathered}
\] & & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \multicolumn{6}{|l|}{\(\overline{\overline{O N} / O F F}\) CONTROL Test Circuit Figure 2} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multirow[t]{2}{*}{\(\overline{\mathrm{ON}} /\) OFF Pin Logic Input Level} & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & 1.4 & 2.2/2.4 & \(V(\) Min \()\) \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & & \(\mathrm{V}_{\text {OUT }}=\) Nominal Output Voltage & 1.2 & 1.0/0.8 & V (Max) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multirow[t]{2}{*}{\(\overline{\text { ON} / O F F ~ P i n ~ I n p u t ~}\) Current} & \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=5 \mathrm{~V}\) (OFF) & 12 & 30 & \[
\begin{gathered}
\mu A \\
\mu A(\text { Max }) \\
\hline
\end{gathered}
\] \\
\hline IIL & & \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=0 \mathrm{~V}(\mathrm{ON})\) & 0 & 10 & \[
\begin{gathered}
\mu \mathrm{A} \\
\mu \mathrm{~A}(\mathrm{Max})
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Electrical Characteristics (Continued)}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are \(\mathbf{1 0 0 \%}\) production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output pin.
Note 5: Feedback pin removed from output and connected to OV.
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: \(\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}\) (60 V for high voltage version).
Note 8: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See application hints in this data sheet and the thermal model in Swifchers Made Simple software.
Note 8: Junction to ambient thermal resistance with approximately 4 square inches of 1 oz . (0.0014 ln . thick) printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. (See Note 8.)
Note 10: The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately \(40 \%\) from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from \(5 \%\) down to approximately \(2 \%\).

\section*{Typical Performance Characteristics (Circuit of Figure 2)}

\section*{Current Limit}

\section*{Supply Current}

Standby Quiescent Current

TL/H/11394-17

\section*{Typical Performance Characteristics (Circuit of Figure 2) (Continued)}

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

\section*{Block Diagram}
\(R 1=1 k\)
\(3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{k}\)
\(5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}\)
\(12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}\)
\(15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}\)
For Adj. Version
R1 \(=\) Open, R2 \(=0 \Omega\)

Note: Pin numbers are for the 8-pin DIP package.
FIGURE 1

\section*{Test Circuit and Layout Guidelines}

Fixed Output Voltage Versions

TL/H/11394-11
Adjustable Output Voltage Version

TL/H/11394-12

Cout- \(220 \mu \mathrm{~F}, 25 \mathrm{~V}\)
Aluminum Electrolytic
D1- Schottky, 11DQ06
L1- \(330 \mu \mathrm{H}, 52627\)
(for 5 V in, 3.3V out, use \(100 \mu \mathrm{H}, \mathrm{RL}-1284-100)\)
R1— 2k, 0.1\%
R2- 6.12k, 0.1\%
\(V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right)\)
\(R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)\)
where \(V_{\text {REF }}=1.23 \mathrm{~V}\).
R1 between 1 k \& 5 k .

FIGURE 2
As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Inductor \\
Value
\end{tabular} & \begin{tabular}{c}
Pulse Eng. \\
(Note 1)
\end{tabular} & \begin{tabular}{c}
Renco \\
(Note 2)
\end{tabular} & \begin{tabular}{c}
NPI \\
(Note 3)
\end{tabular} \\
\hline \(68 \mu \mathrm{H}\) & \(*\) & RL-1284-68 & NP5915 \\
\(100 \mu \mathrm{H}\) & \(*\) & RL-1284-100 & NP5916 \\
\(150 \mu \mathrm{H}\) & 52625 & RL-1284-150 & NP5917 \\
\(220 \mu \mathrm{H}\) & 52626 & RL-1284-220 & NP5918/5919 \\
\(330 \mu \mathrm{H}\) & 52627 & RL-1284-330 & NP5920/5921 \\
\(470 \mu \mathrm{H}\) & 52628 & RL-1284-470 & NP5922 \\
\(680 \mu \mathrm{H}\) & 52629 & RL-1283-680 & NP5923 \\
\(1000 \mu \mathrm{H}\) & 52631 & RL-1283-1000 & \(*\) \\
\(1500 \mu \mathrm{H}\) & \(*\) & RL-1283-1500 & \(*\) \\
\(2200 \mu \mathrm{H}\) & \(*\) & RL-1283-2200 & \(*\) \\
\hline
\end{tabular}

FIGURE 3. Inductor Selection by Manufacturer's Part Number
\begin{tabular}{|lr|}
\hline U.S. Source & \\
\hline Note 1: Pulse Engineering, & (619) 674-8100 \\
P.O. Box 12236, San Diego, CA 92112 \\
& \\
\begin{tabular}{ll}
Note 2: Renco Electronics Inc., & (516) 586-5566 \\
60 Jeffryn Blvd. East, Deer Park, NY 11729 \\
*Contact Manufacturer & \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline European Source & \\
\hline Note 3: NPI/APC & +44 (0) 634290588 \\
47 Riverside, Medway City Estate & \\
Strood, Rochester, Kent & ME2 4DP. & UK \\
& & \\
\hline *Contact Manufacturer & \\
\hline
\end{tabular}

\section*{LM2574 Series Buck Regulator Design Procedure}
\begin{tabular}{l}
\hline PROCEDURE (Fixed Output Voltage Versions) \\
\hline Given: \\
\(V_{O U T}=\) Regulated Output Voltage \((3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}\), or 15 V\()\) \\
\(\mathrm{V}_{\text {IN }}(\mathrm{Max})=\) Maximum Input Voltage \\
\(\mathrm{I}_{\text {LOAD }}(\mathrm{Max})=\) Maximum Load Current
\end{tabular}
1. Inductor Selection (L1)
A. Select the correct Inductor value selection guide from Figures 4, 5, 6 or 7 . (Output voltages of \(3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}\) or 15 V respectively). For other output voltages, see the design procedure for the adjustable version.
B. From the inductor value selection guide, identify the inductance region intersected by \(\mathrm{V}_{\mathrm{iN}}(\mathrm{Max})\) and ILOAD(Max).
C. Select an appropriate inductor from the table shown in Figure 3. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2574 switching frequency (52 kHz) and for a current rating of \(1.5 \times\) LOAD. For additional inductor information, see the inductor section in the Application Hints section of this data sheet.
2. Output Capacitor Selection (COUT)
A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation and an acceptable output ripple voltage, (approximately \(1 \%\) of the output voltage) a value between \(100 \mu \mathrm{~F}\) and \(470 \mu \mathrm{~F}\) is recommended.
B. The capacitor's voltage rating should be at least 1.5 times greater than the output voltage. For a 5 V regulator, a rating of at least 8 V is appropriate, and a 10 V or 15 V rating is recommended.
Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reasion it may be necessary to select a capacitor rated for a higher voltage than would normally be needed.
3. Catch Diode Selection (D1)
A. The catch-diode current rating must be at least \(1.5^{\circ}\) times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2574. The most stressful condition for this diode is an overload or shorted output condition.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
4. Input Capacitor (\(\mathbf{C}_{\mathbf{I N}}\))

An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.

EXAMPLE (Fixed Output Voltage Versions)
Given:
\(V_{\text {OUT }}=5 \mathrm{~V}\)
\(\mathcal{V}_{\text {IN }}(\) Max \()=15 \mathrm{~V}\)
LIOAD(Max) \(=0.4 \mathrm{~A}\)
1. Inductor Selection (L1)
A. Use the selection guide shown in Figure 5.
B. From the selection guide, the inductance area intersected by the 15 V line and 0.4 A line is 330 .
C. Inductor value required is \(330 \mu \mathrm{H}\). From the table in Figure 3, choose Pulse Engineering PE-52627, Renco RL-1284-330, or NPI NP5920/5921.
2. Output Capacitor Selection (COUT)
A. \(\mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}\) to \(470 \mu \mathrm{~F}\) standard aluminum electrolytic.
B. Capacitor voltage rating \(=20 \mathrm{~V}\).
3. Catch Diode Selection (D1)
A. For this example, a 1A current rating is adequate.
B. Use a 20V 1 N5817 or SR102 Schottky diode, or any of the suggested fast-recovery diodes shown in Figure 9.

\section*{4. Input Capacitor (CIN)}

A \(22 \mu \mathrm{~F}\) aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

TL/H/11394-26
FIGURE 4. LM2574HV-3.3 Inductor Selection Guide

FIGURE 6. LM2574HV-12 Inductor Selection Guide

FIGURE 5. LM2574HV-5.0 Inductor Selection Guide

TL/H/11394-15
FIGURE 7. LM2574HV-15 Inductor Selection Guide

TL/H/11394-16
FIGURE 8. LM2574HV-ADJ Inductor Selection Guide

LM2574 Series Buck Regulator Design Procedure (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{PROCEDURE (Adjustable Output Voltage Versions)} \\
\hline \multicolumn{2}{|l|}{Given:} \\
\hline & \(\mathrm{V}_{\text {OUT }}=\) Regulated Output Voltage \\
\hline & \(\mathrm{V}_{\text {IN }}(\mathrm{Max})=\) Maximum Input Voltage \\
\hline & \begin{tabular}{l}
LLOAD (Max) = Maximum Load Current \\
\(\mathrm{F}=\) Switching Frequency (Fixed at 52 kHz)
\end{tabular} \\
\hline 1. & Programming Output Voltage (Selecting R1 and R2, as shown in Figure 2) \\
\hline & Use the following formula to select the appropriate resistor values. \\
\hline & \[
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { where } V_{\text {REF }}=1.23 V
\] \\
\hline
\end{tabular}
\(R_{1}\) can be between 1 k and 5 k . (For best temperature coefficient and stability with time, use 1\% metal film resistors)
\[
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)
\]
2. Inductor Selection (L1)
A. Calculate the inductor Volt • microsecond constant, \(E \bullet T(V \bullet \mu s)\), from the following formula:
\[
E \bullet T=\left(V_{I N}-V_{\text {OUT }}\right) \frac{V_{O U T}}{V_{I N}} \cdot \frac{1000}{F(\text { in } k H z)}(V \bullet \mu \mathrm{~S})
\]
B. Use the E • \(T\) value from the previous formula and match it with the \(\mathrm{E} \bullet \mathrm{T}\) number on the vertical axis of the Inductor Value Selection Guide shown in Figure 8. C. On the horizontal axis, select the maximum load current.
D. Identify the inductance region intersected by the \(\mathrm{E} \bullet \mathrm{T}\) value and the maximum load current value, and note the inductor value for that region.
E. Select an appropriate inductor from the table shown in Figure 3. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2574 switching frequency (52 kHz) and for a current rating of \(1.5 \times \mathrm{I}_{\text {LOAD }}\). For additional inductor information, see the inductor section in the application hints section of this data sheet.
3. Output Capacitor Selection (COUT)
A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following requirement:
\[
\mathrm{C}_{\text {OUT }} \geq 13,300 \frac{\mathrm{~V}_{\text {IN }}(\operatorname{Max})}{\mathrm{V}_{\text {OUT }} \cdot \mathrm{L}(\mu \mathrm{H})}(\mu \mathrm{F})
\]

The above formula yields capacitor values between \(5 \mu \mathrm{~F}\) and \(1000 \mu \mathrm{~F}\) that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately \(1 \%\) of the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields.
B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 24 V regulator, a rating of at least 35 V is recommended.
Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reasion it may be necessary to select a capacitor rate for a higher voltage than would normally be needed.

EXAMPLE (Adjustable Output Voltage Versions)

\section*{Given:}
\(V_{\text {OUT }}=24 \mathrm{~V}\)
\(V_{I N}(\operatorname{Max})=40 \mathrm{~V}\)
\(l_{\text {LOAD }}(\mathrm{Max})=0.4 \mathrm{~A}\)
\(\mathrm{F}=52 \mathrm{kHz}\)
1. Programming Output Voltage (Selecting R1 and R2)
\[
\begin{aligned}
& V_{\text {OUT }}=1.23\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { Select } R 1=1 \mathrm{k} \\
& R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 \mathrm{k}\left(\frac{24 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right)
\end{aligned}
\]
\(R_{2}=1 k(19.51-1)=18.51 k\), closest \(1 \%\) value is \(18.7 k\)
2. Inductor Selection (L1)
A. Calculate \(\mathrm{E} \bullet \mathrm{T}(\mathrm{V} \bullet \mu \mathrm{s})\)
\(E \cdot T=(40-24) \cdot \frac{24}{40} \cdot \frac{1000}{52}=185 \mathrm{~V} \cdot \mu \mathrm{~S}\)
B. \(\mathrm{E} \cdot \mathrm{T}=185 \mathrm{~V} \bullet \mu \mathrm{~S}\)
C. \(\mathrm{I}_{\text {LOAD }}(\) Max \()=0.4 \mathrm{~A}\)
D. Inductance Region = 1000
E. Inductor Value \(=1000 \mu \mathrm{H}\) Choose from Pulse

Engineering Part \#PE-52631, or Renco
Part \#RL-1283-1000.

\section*{3. Output Capacitor Selection (Cout)}
A. Cout \(_{\text {O }}>13,300 \frac{40}{24 \cdot 1000}=22.2 \mu \mathrm{~F}\)

However, for acceptable output ripple voltage select
\[
\mathrm{C}_{\text {OUT }} \geq 100 \mu \mathrm{~F}
\]
\(\mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}\) electrolytic capacitor

\section*{LM2574 Series Buck Regulator Design Procedure (Continued)}

\section*{PROCEDURE (Adjustable Output Voltage Versions)}
4. Catch Diode Selection (D1)
A. The catch-diode current rating must be at least 1.5 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2574. The most stressful condition for this diode is an overload or shorted output condition. Suitable diodes are shown in the selection guide of Figure 9.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
5. Input Capacitor (\(\mathrm{C}_{\mathrm{I}}\))

An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.

EXAMPLE (Adjustable Output Voltage Versions)
4. Catch Dlode Selection (D1)
A. For this example, a 1 A current rating is adequate.
B. Use a 50 V MBR150 or 11DQ05 Schottky diode, or any of the suggested fast-recovery diodes in Figure 9.
5. Input Capacitor (\(\mathrm{C}_{\mathrm{IN}}\))

A \(22 \mu \mathrm{~F}\) aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\(\mathbf{V}_{\mathrm{R}}\)} & \multicolumn{2}{|r|}{1 Amp Diodes} \\
\hline & Schottky & Fast Recovery \\
\hline 20 V & \[
\begin{gathered}
\text { 1N5817 } \\
\text { SR102 } \\
\text { MBR120P }
\end{gathered}
\] & \\
\hline 30 V & \[
\begin{gathered}
\text { 1N5818 } \\
\text { SR103 } \\
\text { 11DQ03 } \\
\text { MBR130P } \\
\text { 10JQ030 }
\end{gathered}
\] & The following \\
\hline 40 V & \[
\begin{gathered}
\text { 1N5819 } \\
\text { SR104 } \\
\text { 11DQ04 } \\
\text { 11JQ04 } \\
\text { MBR140P }
\end{gathered}
\] & are all rated to 100 V \\
\hline 50 V & \begin{tabular}{l}
MBR150 \\
SR105 \\
11 DQ05 \\
11JQ05
\end{tabular} & \begin{tabular}{l}
10JF1 \\
MUR110 \\
HER102
\end{tabular} \\
\hline 60 V & \begin{tabular}{l}
MBR160 \\
SR106 \\
11DQ06 \\
11JQ06
\end{tabular} & \\
\hline 90V & 11DQ09 & \\
\hline
\end{tabular}

FIGURE 9. Diode Selection Guide
To further simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the Simple Switcher line of switching regulators. Switchers Made Simple (version 3.3) is available on a (\(31 / 2^{\prime \prime}\)) diskette for IBM compatible computers from a National Semiconductor sales office in your area.

\section*{Application Hints}

\section*{INPUT CAPACITOR (\(C_{I N}\))}

To maintain stability, the regulator input pin must be bypassed with at least a \(22 \mu \mathrm{~F}\) electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.
If the operating temperature range includes temperatures below \(-25^{\circ} \mathrm{C}\), the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater than
\[
1.2 \times\left(\frac{t_{\mathrm{ON}}}{T}\right) \times I_{\text {LOAD }}
\]
where \(\frac{t_{\text {ON }}}{T}=\frac{V_{\text {OUT }}}{V_{\text {IN }}}\) for a buck regulator
and \(\frac{t_{\text {ON }}}{T}=\frac{\left|V_{\text {OUT }}\right|}{\left|V_{\text {OUT }}\right|+V_{I N}}\) for a buck-boost regulator.

\section*{INDUCTOR SELECTION}

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.
The LM2574 (or any of the Simple Switcher family) can be used for both continuous and discontinuous modes of operation.
In many cases the preferred mode of operation is in the continuous mode. It offers better load regulation, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require relatively large inductor values to keep the inductor current flowing continuously, especially at low output load currents.
To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figures 4 through 8). This guide assumes continuous mode operation, and selects an inductor that will allow a peak-to-peak inductor ripple current (\(\Delta l_{\mathrm{IND}}\)) to be a certain percentage of the maximum design load current. In the LM2574 SIMPLE SWITCHER, the peak-to-peak inductor ripple current percentage (of load current) is allowed to change as different design load currents are selected. By allowing the percentage of inductor ripple current to increase for lower current applications, the inductor size and value can be kept relatively low.

\section*{INDUCTOR RIPPLE CURRENT}

When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-to-peak amplitude of this inductor current waveform remains
constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.
The curve shown in Figure 10 illustrates how the peak-topeak inductor ripple current (\(\triangle l_{\mathrm{IND}}\)) is allowed to change as different maximum load currents are selected, and also how it changes as the operating point varies from the upper border to the lower border within an inductance region (see Inductor Selection guides).

TL/H/11394-18
FIGURE 10. Inductor Ripple Current (\(\Delta I_{\mathrm{IND}}\)) Range Based on Selection Guides from Figures 4-8.
Consider the following example:
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V} @ 0.4 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V} \text { minimum up to } 20 \mathrm{~V} \text { maximum }
\end{aligned}
\]

The selection guide in Figure 5 shows that for a 0.4A load current, and an input voltage range between 10 V and 20 V , the inductance region selected by the guide is \(330 \mu \mathrm{H}\). This value of inductance will allow a peak-to-peak inductor ripple current (\(\Delta l_{\mathrm{IND}}\)) to flow that will be a percentage of the maximum load current. For this inductor value, the \(\Delta l_{\text {IND }}\) will also vary depending on the input voltage. As the input voltage increases to 20 V , it approaches the upper border of the inductance region, and the inductor ripple current increases. Referring to the curve in Figure 10, it can be seen that at the 0.4A load current level, and operating near the upper border of the \(330 \mu \mathrm{H}\) inductance region, the \(\Delta \mathrm{I}_{\text {IND }}\) will be \(53 \%\) of 0.4 A , or \(212 \mathrm{~mA} \mathrm{p}-\mathrm{p}\).

This \(\Delta_{I_{N D}}\) is important because from this number the peak inductor current rating can be determined, the minimum load current required before the circuit goes to discontinuous operation, and also, knowing the ESR of the output capacitor, the output ripple voltage can be calculated, or conversely, measuring the output ripple voltage and knowing the \(\Delta I_{\text {IND }}\), the ESR can be calculated.

\section*{Application Hints（Continued）}

From the previous example，the Peak－to－peak Inductor Rip－ ple Current \(\left(\Delta_{I N D}\right)=212 \mathrm{~mA} p-\mathrm{p}\) ．Once the \(\Delta_{\mathrm{IND}}\) value is known，the following three formulas can be used to calcu－ late additional information about the switching regulator cir－ cuit：

\section*{1．Peak Inductor or peak switch current}
\[
=\left(I_{\text {LOAD }}+\frac{\Delta l_{I N D}}{2}\right)=\left(0.4 \mathrm{~A}+\frac{212}{2}\right)=506 \mathrm{~mA}
\]

2．Mimimum load current before the circuit becomes discon－ tinuous
\[
=\frac{\Delta l_{\mathrm{lND}}}{2}=\frac{212}{2}=106 \mathrm{~mA}
\]

3．Output Ripple Voltage \(=\left(\Delta_{I N D}\right) \times\left(\right.\) ESR of \(\left.C_{\text {OUT }}\right)\)
The selection guide chooses inductor values suitable for continuous mode operation，but if the inductor value chosen is prohibitively high，the designer should investigate the pos－ sibility of discontinuous operation．The computer design software Switchers Made Simple will provide all compo－ nent values for discontinuous（as well as continuous）mode of operation．
Inductors are available in different styles such as pot core， toroid，E－frame，bobbin core，etc．，as well as different core materials，such as ferrites and powdered iron．The least ex－ pensive，the bobbin core type，consists of wire wrapped on a ferrite rod core．This type of construction makes for an inexpensive inductor，but since the magnetic flux is not com－ pletely contained within the core，it generates more electro－ magnetic interference（EMI）．This EMI can cause problems in sensitive circuits，or can give incorrect scope readings because of induced voltages in the scope probe．
The inductors listed in the selection chart include powdered iron toroid for Pulse Engineering，and ferrite bobbin core for Renco．
An inductor should not be operated beyond its maximum rated current because it may saturate．When an inductor begins to saturate，the inductance decreases rapidly and the inductor begins to look mainly resistive（the DC resist－ ance of the winding）．This can cause the inductor current to rise very rapidly and will affect the energy storage capabili－ ties of the inductor and could cause inductor overheating． Different inductor types have different saturation character－ istics，and this should be kept in mind when selecting an inductor．The inductor manufacturers＇data sheets include current and energy limits to avoid inductor saturation．

\section*{OUTPUT CAPACITOR}

An output capacitor is required to filter the output voltage and is needed for loop stability．The capacitor should be located near the LM2574 using short pc board traces．Stan－ dard aluminum electrolytics are usually adequate，but low ESR types are recommended for low output ripple voltage and good stability．The ESR of a capacitor depends on many factors，some which are：the value，the voltage rating， physical size and the type of construction．In general，low value or low voltage（less than 12V）electrolytic capacitors usually have higher ESR numbers．
The amount of output ripple voltage is primarily a function of the ESR（Equivalent Series Resistance）of the output ca－ pacitor and the amplitude of the inductor ripple current
（ \(\Delta l_{\mathrm{IND}}\) ）．See the section on inductor ripple current in Appli－ cation Hints．
The lower capacitor values（ \(100 \mu \mathrm{~F}-330 \mu \mathrm{~F}\) ）will allow typi－ cally 50 mV to 150 mV of output ripple voltage，while larger－ value capacitors will reduce the ripple to approximately 20 mV to 50 mV ．
\[
\text { Output Ripple Voltage = }\left(\Delta l_{\mathrm{IND}}\right)\left(\text { ESR of } \mathrm{C}_{\mathrm{OUT}}\right)
\]

To further reduce the output ripple voltage，several standard electrolytic capacitors may be paralleled，or a higher－grade capacitor may be used．Such capacitors are often called ＂high－frequency，＂＂low－inductance，＂or＂low－ESR．＂These will reduce the output ripple to 10 mV or 20 mV ．However， when operating in the continuous mode，reducing the ESR below \(0.03 \Omega\) can cause instability in the regulator．
Tantalum capacitors can have a very low ESR，and should be carefully evaluated if it is the only output capacitor．Be－ cause of their good low temperature characteristics，a tanta－ lum can be used in parallel with aluminum slectrolytics，with the tantalum making up \(10 \%\) or \(20 \%\) of the total capaci－ tance．
The capacitor＇s ripple current rating at 52 kHz should be at least \(50 \%\) higher than the peak－to－peak inductor ripple cur－ rent．

\section*{CATCH DIODE}

Buck regulators require a diode to provide a return path for the inductor current when the switch is off．This diode should be located close to the LM2574 using short leads and short printed circuit traces．
Because of their fast switching speed and low forward volt－ age drop，Schottky diodes provide the best efficiency，espe－ cially in low output voltage switching regulators（less than 5V）．Fast－Recovery，High－Efficiency，or Ultra－Fast Recovery diodes are also suitable，but some types with an abrupt turn－ off characteristic may cause instability and EMI problems．A fast－recovery diode with soft recovery characteristics is a better choice．Standard 60 Hz diodes（e．g．，1N4001 or 1N5400，etc．）are also not suitable．See Figure 9 for Schottky and＂soft＂fast－recovery diode selection guide．

\section*{OUTPUT VOLTAGE RIPPLE AND TRANSIENTS}

The output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency，typically about \(1 \%\) of the output voltage，and may also contain short voltage spikes at the peaks of the sawtooth waveform．
The output ripple voltage is due mainly to the inductor saw－ tooth ripple current multiplied by the ESR of the output ca－ pacitor．（See the inductor selection in the application hints．） The voltage spikes are present because of the the fast switching action of the output switch，and the parasitic in－ ductance of the output filter capacitor．To minimize these voltage spikes，special low inductance capacitors can be used，and their lead lengths must be kept short．Wiring in－ ductance，stray capacitance，as well as the scope probe used to evaluate these transients，all contribute to the am－ plitude of these spikes．
An additional small LC filter（ \(20 \mu \mathrm{H} \& 100 \mu \mathrm{~F}\) ）can be added to the output（as shown in Figure 16）to further reduce the amount of output ripple and transients．A \(10 \times\) reduction in output ripple voltage and transients is possible with this fill ter．

\section*{Application Hints (Continued)}

\section*{FEEDBACK CONNECTION}

The LM2574 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching power supply. When using the adjustable version, physically locate both output voltage programming resistors near the LM2574 to avoid picking up unwanted noise. Avoid using resistors greater than \(100 \mathrm{k} \Omega\) because of the increased chance of noise pickup.

\section*{ON/OFF INPUT}

For normal operation, the \(\overline{O N} / O F F\) pin should be grounded or driven with a low-level TTL voltage (typically below 1.6 V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The \(\overline{O N} / O F F\) pin can be safely pulled up to \(+\mathrm{V}_{\mathrm{IN}}\) without a resistor in series with it. The ON/OFF pin should not be left open.

\section*{GROUNDING}

The 8-pin molded DIP and the 14-pin surface mount package have separate power and signal ground pins. Both ground pins should be soldered directly to wide printed circuit board copper traces to assure low inductance connections and good thermal properties.

\section*{THERMAL CONSIDERATIONS}

The 8-pin DIP (N) package and the 14-pin Surface Mount (M) package are molded plastic packages with solid copper lead frames. The copper lead frame conducts the majority of the heat from the die, through the leads, to the printed circuit board copper, which acts as the heat sink. For best thermal performance, wide copper traces should be used, and all ground and unused pins should be soldered to generous amounts of printed circuit board copper, such as a ground plane. Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and even double-sided or multilayer boards provide better heat paths to the surrounding air. Unless the power levels are small, using a socket for the 8-pin package is not recommended because of the additional thermal resistance it introduces, and the resultant higher junction temperature.
Because of the 0.5A current rating of the LM2574, the total package power dissipation for this switcher is quite low, ranging from approximately 0.1 W up to 0.75 W under varying conditions. in a carefully engineered printed circuit board, both the N and the M package can easily dissipate up to 0.75 W , even at ambient temperatures of \(60^{\circ} \mathrm{C}\), and still keep the maximum junction temperature below \(125^{\circ} \mathrm{C}\).
A curve displaying thermal resistance vs. pc board area for the two packages is shown in the Typical Performance Characteristics curves section of this data sheet.

These thermal resistance numbers are approximate, and there can be many factors that will affect the final thermal resistance. Some of these factors include board size, shape, thickness, position, location, and board temperature. Other factors are, the area of printed circuit copper, copper thickness, trace width, multi-layer, single- or double-sided, and the amount of solder on the board. The effectiveness of the pc board to dissipate heat also depends on the size, number and spacing of other components on the board. Furthermore, some of these components, such as the catch diode and inductor will generate some additional heat. Also, the thermal resistance decreases as the power level increases because of the increased air current activity at the higher power levels, and the lower surface to air resistance coefficient at higher temperatures.
The data sheet thermal resistance curves and the thermal model in Switchers Made Simple software (version 3.3) can estimate the maximum junction temperature based on operating conditions. In addition, the junction temperature can be estimated in actual circuit operation by using the following equation.
\[
T_{j}=T_{c u}+\left(\theta_{j-c u} \times P_{D}\right)
\]

With the switcher operating under worst case conditions and all other components on the board in the intended enclosure, measure the copper temperature (\(\mathrm{T}_{\mathrm{cu}}\)) near the IC. This can be done by temporarily soldering a small thermocouple to the pc board copper near the IC, or by holding a small thermocouple on the pc board copper using thermal grease for good thermal conduction.
The thermal resistance \(\left(\theta_{j-c u}\right)\) for the two packages is:
\[
\begin{gathered}
\theta_{\mathrm{j}-\mathrm{cu}}=42^{\circ} \mathrm{C} / \mathrm{W} \text { for the } \mathrm{N}-8 \text { package } \\
\theta_{\mathrm{j} \text {-cu }}=52^{\circ} \mathrm{C} / \mathrm{W} \text { for the } \mathrm{M}-14 \text { package }
\end{gathered}
\]

The power dissipation (\(P_{D}\)) for the IC could be measured, or it can be estimated by using the formula:
\[
P_{D}=\left(V_{I N}\right)\left(I_{S}\right)+\left(\frac{V_{\mathrm{O}}}{V_{I N}}\right)\left(I_{\text {LOAD }}\right)\left(V_{S A T}\right)
\]

Where \(I_{S}\) is obtained from the typical supply current curve (adjustable version use the supply current vs. duty cycle curve).

\section*{Additional Applications}

\section*{INVERTING REGULATOR}

Figure 11 shows a LM2574-12 in a buck-boost configuration to generate a negative 12 V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to \(\mathbf{- 1 2 V}\).

Note: Pin numbers are for the 8 -pin DIP package.
TL/H/11394-19
FIGURE 11. InvertIng Buck-Boost Develops - 12V

\section*{Additional Applications (Continued)}

For an input voltage of 8 V or more, the maximum available output current in this configuration is approximately 100 mA . At lighter loads, the minimum input voltage required drops to approximately 4.7 V .
The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 0.6A. Using a delayed turn-on or an undervoltage lockout circuit (described in the next section) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.
Because of the structural differences between the buck and the buck-boost regulator topologies, the buck regulator design procedure section can not be used to to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between \(68 \mu \mathrm{H}\) and \(220 \mu \mathrm{H}\), and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).
The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:
\[
I_{p} \approx \frac{I_{\text {LOAD }}\left(V_{i N}+\left|V_{O}\right|\right)}{V_{I N}}+\frac{V_{I N}\left|V_{O}\right|}{V_{I N}+\left|V_{O}\right|} \times \frac{1}{2 L_{1} f_{O S C}}
\]

Where \(f_{\text {osc }}=52 \mathrm{kHz}\). Under normal continuous inductor current operating conditions, the minimum \(\mathrm{V}_{\mathrm{IN}}\) represents the worst case. Select an inductor that is rated for the peak current anticipated.
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a -12 V output, the maximum input voltage for the LM2574 is +28 V , or +48 V for the LM2574HV.
The Switchers Made Simple (version 3.3) design software can be used to determine the feasibility of regulator designs using different topologies, different input-output parameters, different components, etc.

\section*{NEGATIVE BOOST REGULATOR}

Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 12 accepts an input voltage ranging from -5 V to -12 V and provides a regulated -12 V output. Input voltages greater than -12 V will cause the output to rise above -12 V , but will not damage the regulator.

TL/H/11394-20

Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators can not provide current limiting load protection in the event of a shorted load, so some other means (such as a fuse) may be necessary.

\section*{UNDERVOLTAGE LOCKOUT}

In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An undervoltage lockout circuit which accomplishes this task is shown in Figure 13, while Figure 14 shows the same circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches a predetermined level.
\[
V_{T H} \approx V_{Z 1}+2 V_{B E}(Q 1)
\]

TL/H/11394-21
Note: Complete circuit not shown.
Note: Pin numbers are for 8 -pin DIP package.
FIGURE 13. Undervoltage Lockout for Buck Circuit

Note: Complete circuit not shown (see Figure 11).
Note: Pin numbers are for 8 -pin DIP package.
FIGURE 14. Undervoltage Lockout for Buck-Boost Circult

Note: Pin numbers are for 8 -pin DIP package.
FIGURE 12. Negative Boost

\section*{Additional Applications (Continued)}

\section*{DELAYED STARTUP}

The \(\overline{O N} /\) OFF pin can be used to provide a delayed startup feature as shown in Figure 15. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switching. Increasing the RC time constant can provide longer delay times. But excessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple, by coupling the ripple into the ON/OFF pin.

\section*{ADJUSTABLE OUTPUT, LOW-RIPPLE POWER SUPPLY}

A 500 mA power supply that features an adjustable output voltage is shown in Figure 16. An additional L-C filter that reduces the output ripple by a factor of 10 or more is included in this circuit.

TL/H/11394-23
Note: Complete circuit not shown.
Note: Pin numbers are for 8-pin DIP package.
FIGURE 15. Delayed Startup

Note: Pin numbers are for 8 -pin DIP package.
FIGURE 16. 1.2 V to 55 V Adjustable 500 mA Power Supply with Low Output Ripple

\section*{Definition of Terms}

\section*{BUCK REGULATOR}

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

\section*{BUCK-BOOST REGULATOR}

A switching regulator topology in which a positive voltage is converted to a negative voltage without a transformer.

\section*{DUTY CYCLE (D)}

Ratio of the output switch's on-time to the oscillator period.
for buck regulator
\[
\mathrm{D}=\frac{\mathrm{t}_{\mathrm{ON}}}{T}=\frac{V_{\mathrm{OUT}}}{V_{I N}}
\]
for buck-boost regulator
\[
D=\frac{t_{O N}}{T}=\frac{\left|V_{O}\right|}{\left|V_{O}\right|+V_{I N}}
\]

\section*{CATCH DIODE OR CURRENT STEERING DIODE}

The diode which provides a return path for the load current when the LM2574 switch is OFF.

\section*{EFFICIENCY (\(\eta\))}

The proportion of input power actually delivered to the load.
\[
\eta=\frac{\mathrm{P}_{\mathrm{OUT}}}{\mathrm{P}_{\text {IN }}}=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {OUT }}+\mathrm{P}_{\text {LOSS }}}
\]

\section*{CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)}

The purely resistive component of a real capacitor's impedance (see Figure 17). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.

TL/H/11394-25
FIGURE 17. SImple Model of a Real Capacitor
Most standard aluminum electrolytic capacitors in the \(100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}\) range have \(0.5 \Omega\) to \(0.1 \Omega\) ESR. Highergrade capacitors ("low-ESR", "high-frequency", or "low-inductance'") in the \(100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}\) range generally have ESR of less than \(0.15 \Omega\).

\section*{EQUIVALENT SERIES INDUCTANCE (ESL)}

The pure inductance component of a capacitor (see Figure 17). The amount of inductance is determined to a large extent on the capacitor's construction. In a buck regulator, this unwanted inductance causes voltage spikes to appear on the output.

\section*{Definition of Terms (Continued)}

\section*{OUTPUT RIPPLE VOLTAGE}

The AC component of the switching regulator's output voltage. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current (\(\Delta \|_{I N D}\)). The peak-to-peak value of this sawtooth ripple current can be determined by reading the Inductor Ripple Current section of the Application hints.

\section*{CAPACITOR RIPPLE CURRENT}

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

\section*{STANDBY QUIESCENT CURRENT (Istby)}

Supply current required by the LM2574 when in the standby mode (\(\overline{\mathrm{ON}} /\) OFF pin is driven to TTL-high voltage, thus turning the output switch OFF).

\section*{INDUCTOR RIPPLE CURRENT (\(\Delta I_{1 N D}\))}

The peak-to-peak value of the inductor current waveform, typically a sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).

\section*{CONTINUOUS/DISCONTINUOUS MODE OPERATION}

Relates to the inductor current. In the continuous mode, the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the inductor current drops to zero for a period of time in the normal switching cycle.

\section*{INDUCTOR SATURATION}

The condition which exists when an inductor cannot hold any more magnetic flux. When an inductor saturates, the inductor appears less inductive and the resistive component dominates. Inductor current is then limited only by the DC resistance of the wire and the available source current.

OPERATING VOLT MICROSECOND CONSTANT (E• \(T_{o p}\))
The product (in Volte \(\mu \mathrm{s}\)) of the voltage applied to the inductor and the time the voltage is applied. This \(\mathrm{E} \bullet \mathrm{T}_{\mathrm{op}}\) constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.

\title{
SIMPLE SWITCHER \({ }^{\circledR}\) Power Converter 150 kHz 0.5A Step-Down Voltage Regulator
}

\section*{General Description}

The LM2594 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of \(3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}\), and an adjustable output version, and are packaged in a 8-lead DIP and a 8 -lead surface mount package.
Requiring a minimum number of external components, these regulators are simple to use and feature internal frequency compensation \(\dagger\), a fixed-frequency oscillator, and improved line and load regulation specifications.
The LM2594 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2594 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed \(\pm 4 \%\) tolerance on output voltage under all conditions of input voltage and output load conditions, and \(\pm 15 \%\) on the oscillator frequency. External shutdown is included, featuring typically \(85 \mu \mathrm{~A}\) stand-
by current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

\section*{Features}
- \(3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}\), and adjustable output versions

■ Adjustable version output voltage range, 1.2 V to 37 V \(\pm 4 \%\) max over line and load conditions
■ Available in 8-pin surface mount and DIP-8 package
E Guaranteed 0.5 A output current
- Input voltage range up to 40 V
- Requires only 4 external components
- 150 kHz fixed frequency internal oscillator
- TTL Shutdown capability

■ Low power standby mode, \(\mathrm{l}_{\mathrm{Q}}\) typically \(85 \mu \mathrm{~A}\)
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

\section*{Applications}
- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative convertor

Typical Application (Fixed Output Voltage Versions)

TL/H/12439-1

\section*{Connection Diagrams and Order Information}
O-Lead DIP (N)
Order Number
LM2594N-3.3, LM2594N-5.0,
LM2594N-12 or LM2594N-ADJ
See NS Package Number N08E
tPatent Number 5,382,918.
*No internal connection, but should be soldered to pc board for best heat transfer.

8-Lead Surface Mount (M)

TL/H/12439-3
Top Vlew
Order Number LM2594M-3.3,
LM2594M-5.0, LM2594M-12 or LM2594M-ADJ
See NS Package Number M08A

\section*{LM2594-12}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|r|}{LM2594-12} & \multirow[b]{2}{*}{Units
(Limits)} \\
\hline & & & Type (Note 3) & Limit (Note 4) & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 5) Test Circuit Figure 2} \\
\hline V OUT & Output Voltage & \(15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{L}_{\text {LOAD }} \leq 0.5 \mathrm{~A}\) & 12.0 & \[
\begin{aligned}
& 11.52 / 11.40 \\
& 12.48 / 12.60
\end{aligned}
\] & \\
\hline \(\eta\) & Efficiency & \(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 88 & & \% \\
\hline
\end{tabular}

\section*{LM2594-ADJ}

Electrical Characteristics Specifications with standard type face are for \(T_{J}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{2}{|r|}{LM2594-ADJ} & \multirow[b]{2}{*}{Units (Limits)} \\
\hline & & & Type (Note 3) & Limit (Note 4) & \\
\hline \multicolumn{6}{|l|}{SYSTEM PARAMETERS (Note 5) Test Circuit Figure 2} \\
\hline \(V_{F B}\) & Feedback Voltage & \begin{tabular}{l}
\[
4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}
\] \\
\(V_{\text {OUT }}\) programmed for 3V. Circuit of Figure 2
\end{tabular} & 1.230 & \[
\begin{aligned}
& 1.193 / 1.180 \\
& 1.267 / 1.280
\end{aligned}
\] & \[
\begin{gathered}
V \\
V(\min) \\
V(\max)
\end{gathered}
\] \\
\hline \(\eta\) & Efficiency & \(V_{I N}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}\) & 80 & - & \% \\
\hline
\end{tabular}

\section*{All Output Voltage Versions}

Electrical Characteristics Specifications with standard type face are for \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\), and those with boldface
type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}\) for the \(3.3 \mathrm{~V}, 5 \mathrm{~V}\), and Adjustable version and \(\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}\) for the 12 V version. ILOAD \(=100 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Symbol } & Parameter & Conditions & \multicolumn{2}{|c|}{ LM2594-XX } & \multirow{2}{c|}{\begin{tabular}{c}
Units \\
(Limits).
\end{tabular}} \\
\cline { 4 - 6 } & & \begin{tabular}{c}
Type \\
(Note 3)
\end{tabular} & \begin{tabular}{c}
Limit \\
(Note 4)
\end{tabular} & \\
\hline
\end{tabular}

\section*{DEVICE PARAMETERS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(l_{b}\) & Feedback Bias Current & Adjustable Version Only, VFB. \(=1.3 \mathrm{~V}\) & 10 & 50/100 & nA \\
\hline \(\mathrm{f}_{0}\) & Oscillator Frequency & (Note 6) & 150 & \[
\begin{aligned}
& 127 / 110 \\
& 173 / 173
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{kHz} \\
\mathrm{kHz}(\min) \\
\mathrm{kHz}(\max)
\end{gathered}
\] \\
\hline \(V_{\text {SAT }}\) & Saturation Voltage & lout \(=0.5 \mathrm{~A}\) (Notes 7 and 8) & 0.9 & 1.1/1.2 & \[
\stackrel{V}{V(\max)}
\] \\
\hline DC & Max Duty Cycle (ON) Min Duty Cycle (OFF) & \begin{tabular}{l}
(Note 8) \\
(Note 9)
\end{tabular} & \[
\begin{gathered}
100 \\
0
\end{gathered}
\] & & \% \\
\hline ICL & Current Limit & Peak Current, (Notes 7 and 8) & 0.8 & \[
\begin{gathered}
0.65 / 0.58 \\
1.3 / 1.4 \\
\hline
\end{gathered}
\] & A A(min) A(max) \\
\hline LL & Output Leakage Current & \[
\begin{array}{ll}
(\text { Notes 7, 9, and 10) } & \text { Output }=0 \mathrm{~V} \\
& \text { Output }=-1 \mathrm{~V}
\end{array}
\] & 2 & \begin{tabular}{l}
50 \\
15
\end{tabular} & \[
\begin{gathered}
\mu A(\max) \\
\mathrm{mA} \\
\mathrm{~mA}(\max)
\end{gathered}
\] \\
\hline \(\mathrm{I}_{0}\) & Quiescent Current & (Note 9) & 5 & 10 & mA mA(max) \\
\hline IStBy & Standby Quiescent Current & ON/OFF pin \(=5 \mathrm{~V}\) (OFF) \(\quad\) (Note 10) & 85 & 200/250 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\theta_{\text {JA }}\) & Thermal Resistance & N Package, Junction to Ambient (Note 11) M Package, Junction to Ambient (Note 11) & \[
\begin{gathered}
95 \\
150
\end{gathered}
\] & . & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

ON/OFF CONTROL Test Circuit Figure 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& V_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & ON/OFF Pin Logic Input Threshold Voltage & \begin{tabular}{l}
Low (Regulator ON) \\
High (Regulator OFF)
\end{tabular} & 1.3 & \[
\begin{aligned}
& 0.6 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
V \\
V(\text { max }) \\
V(\min)
\end{gathered}
\] \\
\hline \({ }^{\mathrm{H}}\) & \multirow[t]{2}{*}{ON/OFF Pin Input Current} & \(\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}\) (Regulator OFF) & 5 & 15 & \[
\begin{gathered}
\mu \mathrm{A} \\
\mu \mathrm{~A}(\text { max }) \\
\hline
\end{gathered}
\] \\
\hline IL & & \(\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}\) (Regulator ON) & . 0.02 & 5 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Electrical Characteristics (Continued)}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
Note 3: Typical numbers are at \(25^{\circ} \mathrm{C}\) and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are \(100 \%\) production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2594 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
Note 7: No diode, inductor or capacitor connected to output pin.
Note 8: Feedback pin removed from output and connected to OV to force the output transistor switch ON.
Note 9: Feedback pin removed from output and connected to 12 V for the \(3.3 \mathrm{~V}, 5 \mathrm{~V}\), and the ADJ. version, and 15 V for the 12 V version, to force the output transistor switch OFF.

Note 10: \(\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}\).
Note 11: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See application hints in this data sheet and the thermal model in Sw/tchers Made S/mple software.

\section*{Typical Performance Characteristics (Circuit of Figure 2)}

Typical Performance Characteristics (Circuit of figure 2) (Continued)

TL/H/12439-10

TL/H/12439-13

TL/H/12439-11
\(\overline{\mathrm{ON}}\) /OFF Pin
Current (Sinking)

TL/H/12439-14

TL/H/12439-12

TL/H/12439-16

\section*{Typical Performance Characteristics (Circuit of Figure 2)}

\section*{Continuous Mode Switching Waveforms}
\(\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\), ILOAD \(=400 \mathrm{~mA}\)
\(L=100 \mu \mathrm{H}\), C OUT \(=120 \mu \mathrm{~F}\), C OUT ESR \(=140 \mathrm{~m} \Omega\)

Load Transient Response for Continuous Mode
\(V_{I N}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\), \(\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}\) to 500 mA
\(L=100 \mu \mathrm{H}\), C OUT \(=120 \mu \mathrm{~F}\), C OUT ESR \(=140 \mathrm{~m} \Omega\)

DiscontInuous Mode Swltching Waveforms
\(\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\), \(\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}\)
\(\mathrm{L}=33 \mu \mathrm{H}\), C OUT \(=220 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }} \mathrm{ESR}=60 \mathrm{~m} \Omega\)

A: Output Pin Voltage, 10V/div.
B: Inductor Current \(0.2 \mathrm{~A} / \mathrm{div}\).
C: Output Ripple Voltage, \(20 \mathrm{mV} / \mathrm{div}\).
Horizontal Time Base: \(2 \mu \mathrm{~s} /\) div.
Load Transient Response for Discontinuous Mode \(V_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\), L LOAD \(=100 \mathrm{~mA}\) to 200 mA \(L=33 \mu \mathrm{H}\), CoUT \(=220 \mu \mathrm{~F}\), C OUT ESR \(=60 \mathrm{~m} \Omega\)

A: Output Voltage, \(50 \mathrm{mV} / \mathrm{div}\). (AC)
B: 100 mA to 200 mA Load Pulse
Horizontal Time Base: \(200 \mu \mathrm{~s} / \mathrm{div}\).

\section*{Block Diagram}

\section*{Test Circuit and Layout Guidelines}

FIGURE 2. Standard Test Circuits and Layout Guides

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and COUT wiring can cause problems. When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)
\begin{tabular}{l}
PROCEDURE (Fixed Output Voltage Version) \\
\hline GIven: \\
\(V_{\text {OUT }}=\) Regulated Output Voltage (\(3.3 \mathrm{~V}, 5 \mathrm{~V}\) or 12 V) \\
\(\mathrm{V}_{\text {IN }}(\max)=\) Maximum DC Input Voltage \\
\(\mathrm{I}_{\text {LOAD }}(\max)=\) Maximum Load Current
\end{tabular}
1. Inductor Selection (L1)
A. Select the correct inductor value selection guide from Figures 5, 6, or 7 . (Output voltages of \(3.3 \mathrm{~V}, 5 \mathrm{~V}\), or 12 V respectively.) For all other voltages, see the design procedure for the adjustable version.
B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX).
C. Select an appropriate inductor from the four manufacturer's part numbers listed in Figure 9.
2. Output Capacitor Selection (COUT)
A. In the majority of applications, low ESR (Equivalent Series Resistance) electrolytic capacitors between \(82 \mu \mathrm{~F}\) and \(220 \mu \mathrm{~F}\) and low ESR solid tantalum capacitors between \(15 \mu \mathrm{~F}\) and \(100 \mu \mathrm{~F}\) provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than \(220 \mu \mathrm{~F}\).
For additional information, see section on output capacitors in application information section.
B. To simplify the capacitor selection procedure, refer to the quick design component selection table shown in Figure 3. This table contains different input voltages, output voltages, and load currents, and lists various inductors and output capacitors that will provide the best design solutions.
C. The capacitor voltage rating for electrolytic capacitors should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements for low output ripple voltage.
D. For computer aided design software, see Switchers

Made Simple \({ }^{\text {® }}\) version 4.1 or later.
3. Catch Diode Selection (D1)
A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also; if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2594. The most stressful condition for this diode is an overload or shorted output condition.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
C. This diode must be fast (short reverse recovery time) and must be located close to the LM2594 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or High-

Procedure continued on next page.

EXAMPLE (Fixed Output Voltage Version)
Given:
\(V_{\text {OUT }}=5 \mathrm{~V}\)
\(V_{I N}(\max)=12 \mathrm{~V}\)
\(l_{\text {LOAD }}(\max)=0.4 \mathrm{~A}\)
1. Inductor Selection (L1)
A. Use the inductor selection guide for the 5 V version shown in Figure 6.
B. From the inductor value selection guide shown in Figure 6 , the inductance region intersected by the 12 V horizontal line and the 0.4 A vertical line is \(100 \mu \mathrm{H}\), and the inductor code is L20.
C. The inductance value required is \(100 \mu \mathrm{H}\). From the table in Figure 9, go to the L20 line and choose an inductor part number from any of the four manufacturers shown. (In most instance, both through hole and surface mount inductors are available.)
2. Output Capacitor Selection (COUT)
A. See section on output capacitors in application information section.
B. From the quick design component selection table shown in Figure 3, locate the 5V output voltage section. In the load current column, choose the load current line that is closest to the current needed in your application, for this example, use the 0.5A line. In the maximum input voltage column, select the line that covers the input voltage needed in your application, in this example, use the 15 V line. Continuing on this line are recommended inductors and capacitors that will provide the best overall performance.
The capacitor list contains both through hole electrolytic and surface mount tantalum capacitors from four different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturer's series that are listed in the table be used.
In this example aluminum electrolytic capacitors from several different manufacturers are available with the range of ESR numbers needed.
\[
\begin{array}{lll}
120 \mu \mathrm{~F} & 25 \mathrm{~V} & \text { Panasonic HFQ Series } \\
120 \mu \mathrm{~F} & 25 \mathrm{~V} & \text { Nichicon PL Series }
\end{array}
\]
C. For a 5 V output, a capacitor voltage rating at least 7.5 V or more is needed. But, in this example, even a low ESR, switching grade, \(120 \mu \mathrm{~F} 10 \mathrm{~V}\) aluminum electrolytic capacitor would exhibit approximately \(400 \mathrm{~m} \Omega\) of ESR (see the curve in Figure 14 for the ESR vs voltage rating). This amount of ESR would result in relatively high output ripple voltage. To reduce the ripple to \(1 \%\) of the output voltage, or less, a capacitor with a higher voltage rating (lower ESR) should be selected. A 16 V or 25 V capacitor will reduce the ripple voltage by approximately half.

\section*{3. Catch Diode Selection (D1)}
A. Refer to the table shown in Figure 12. In this example, a 1A, 20V, 1N5817 Schottky diode will provide the best performance, and will not be overstressed even for a shorted output.

Example continued on next page.

\section*{LM2594 Series Buck Regulator Design Procedure (Fixed Output)}
(Continued)
\begin{tabular}{l}
PROCEDURE (Fixed Output Voltage Version) \\
\hline Efficiency rectifiers also provide good results. Ulitra-fast \\
recovery diodest typically have reverse recovery times of \\
50 ns or less. Rectifiers such as the 1 N4001 series are \\
much too slow and should not be used. \\
4. Input Capacitor (CIN) \\
A low ESR aluminum or tantalum bypass capacitor is \\
needed between the input pin and ground to prevent \\
large voltage transients from appearing at the input. In \\
addition, the RMS current rating of the input capacitor \\
should be selected to be at least \(1 / 1 /\) the DC load current. \\
The capacitor manufacturers data sheet must be \\
checked to assure that this current rating is not exceed- \\
ed. The curve shown in Figure 13 shows typical RMS \\
current ratings for several different aluminum electrolytic \\
capacitor values. \\
This capacitor should be located close to the IC using \\
short leads and the voltage rating should be approxi- \\
mately 1.5 times the maximum input voltage. \\
If solid tantalum input capacitors are used, it is recom- \\
ended that they be surge current tested by the manufac- \\
turer. \\
Use caution when using ceramic capacitors for input by- \\
passing, because it may cause severe ringing at the VIN \\
pin. \\
For additional information, see section on input ca- \\
pacitors in Application Information section.
\end{tabular}

\section*{EXAMPLE (Fixed Output Voltage Version)}

\section*{4. Input Capacitor (\(\mathrm{C}_{\mathrm{IN}}\))}

The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 12 V , an aluminum electrolytic capacitor with a voltage rating greater than \(18 \mathrm{~V}(1.5 \times\) \(\mathrm{V}_{\mathrm{I}}\)) would be needed. The next higher capacitor voltage rating is 25 V .
The RMS current rating requirement for the input capacitor in a buck regulator is approximately \(1 / 2\) the DC load current. In this example, with a 400 mA load, a capacitor with a RMS current rating of at least 200 mA is needed. The curves shown in Figure 13 can be used to select an appropriate input capacitor. From the curves, locate the 25 V line and note which capacitor values have RMS current ratings greater than 200 mA . Either a \(47 \mu \mathrm{~F}\) or \(68 \mu \mathrm{~F}, 25 \mathrm{~V}\) capacitor could be used.
For a through hole design, a \(68 \mu \mathrm{~F} / 25 \mathrm{~V}\) electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate.
For surface mount designs, solid tantalum capacitors are recommended. The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Conditions}} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Inductor}} & \multicolumn{4}{|c|}{Output Capacitor} \\
\hline & & & & & \multicolumn{2}{|l|}{Through Hole} & \multicolumn{2}{|r|}{Surface Mount} \\
\hline Output Voltage (V) & Load Current (A) & Max Input Voltage (V) & Inductance (\(\mu \mathrm{H}\)) & Inductor (\#) & Panasonic HFQ Series (\(\mu \mathrm{F} / \mathrm{V}\)) & Nichicon PL Series (\(\mu \mathrm{F} / \mathrm{V}\)) & AVX TPS Series (\(\mu \mathrm{F} / \mathrm{V}\)) & Sprague
595D Series
\((\mu \mathrm{F} / \mathrm{V})\) \\
\hline \multirow{7}{*}{3.3} & \multirow{4}{*}{0.5} & 5 & 33 & L14 & 220/16 & 220/16 & 100/16 & 100/6.3 \\
\hline & & 7 & 47 & L13 & 120/25 & 120/25 & 100/16 & 100/6.3 \\
\hline & & 10 & 68 & L21 & 120/25 & 120/25 & 100/16 & 100/6.3 \\
\hline & & 40 & 100 & L20 & 120/35 & 120/35 & 100/16 & 100/6.3 \\
\hline & \multirow{3}{*}{0.2} & 6 & 68 & L4 & 120/25 & 120/25 & 100/16 & 100/6.3 \\
\hline & & 10 & 150 & L10 & 120/16 & 120/16 & 100/16 & 100/6.3 \\
\hline & & 40 & 220 & L9 & 120/16 & 120/16 & 100/16 & 100/6.3 \\
\hline \multirow{7}{*}{5} & \multirow{4}{*}{0.5} & 8 & 47 & L13 & 180/16 & 180/16 & 100/16 & 33/25 \\
\hline & & 10 & 68 & L21 & 180/16 & 180/16 & 100/16 & 33/25 \\
\hline & & 15 & 100 & L20 & 120/25 & 120/25 & 100/16 & 33/25 \\
\hline & & 40 & 150 & L19 & 120/25 & 120/25 & 100/16 & 33/25 \\
\hline & \multirow{3}{*}{0.2} & 9 & 150 & L10 & 82/16 & 82/16 & 100/16 & 33/25 \\
\hline & & 20 & 220 & L9 & 120/16 & 120/16 & 100/16 & 33/25 \\
\hline & & 40 & 330 & L8 & 120/16 & 120/16 & 100/16 & 33/25 \\
\hline \multirow{7}{*}{12} & \multirow{4}{*}{0.5} & 15 & 68 & L21 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & & 18 & 150 & L19 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & & 30 & 220 & L27 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & & 40 & 330 & L26 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & \multirow{3}{*}{0.2} & 15 & 100 & L11 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & & 20 & 220 & L9 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline & & 40 & 330 & L17 & 82/25 & 82/25 & 100/16 & 15/25 \\
\hline
\end{tabular}

FIGURE 3. LM2594 Fixed Voltage Quick Design Component Selection Table

\section*{LM2594 Series Buck Regulator Design Procedure (Adjustable Output)}

\section*{PROCEDURE (Adjustable Output Voltage Version)}

\section*{Given:}
\(V_{\text {OUT }}=\) Regulated Output Voltage
\(\mathrm{V}_{\text {IN }}(\max)=\) Maximum Input Voltage
LIOAD (max) \(=\) Maximum Load Current
\(\mathrm{F}=\) Switching Frequency (Fixed at a nominal 150 kHz).
1. Programming Output Voltage (Selecting \(R_{1}\) and \(R_{2}\), as shown in Figure 2)
Use the following formula to select the appropriate resistor values.
\[
V_{\mathrm{OUT}}=V_{\mathrm{REF}}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { where } V_{\mathrm{REF}}=1.23 \mathrm{~V}
\]

Select a value for \(R_{1}\) between \(240 \Omega\) and \(1.5 \mathrm{k} \Omega\). The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use \(1 \%\) metal film resistors.)
\[
R_{2}=R_{1}\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{REF}}}-1\right)
\]
2. Inductor Selection (L1)
A. Calculate the inductor Volt microsecond constant \(E \bullet T(V \bullet \mu s)\), from the following formula:
\(E \cdot T=\left(V_{I N}-V_{\text {OUT }}-V_{S A T}\right) \cdot \frac{V_{\text {OUT }}+V_{D}}{V_{I N}-V_{S A T}+V_{D}} \cdot \frac{1000}{150 \mathrm{kHz}}(V \cdot \mu \mathrm{~s})\) where \(\mathrm{V}_{\mathrm{SAT}}=\) internal switch saturation voltage \(=0.9 \mathrm{~V}\) and \(V_{D}=\) diode forward voltage drop \(=0.5 \mathrm{~V}\)
B. Use the E•T value from the previous formula and match it with the \(\mathrm{E} \cdot \mathrm{T}\) number on the vertical axis of the Inductor Value Selection Guide shown in Figure 8.
C. on the horizontal axis, select the maximum load current.
D. Identify the inductance region intersected by the \(\mathrm{E} \bullet \mathrm{T}\) value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).
E. Select an appropriate inductor from the four manufacturer's part numbers listed in Figure 9.
3. Output Capacitor Selection (COUT)
A. In the majority of applications, low ESR electrolytic or solid tantalum capacitors between \(82 \mu \mathrm{~F}\) and \(220 \mu \mathrm{~F}\) provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than \(220 \mu \mathrm{~F}\). For additional information, see section on output capacitors in application information section.
B. To simplify the capacitor selection procedure, refer to the quick design table shown in Figure 4. This table contains different output voltages, and lists various output capacitors that will provide the best design solutions.
C. The capacitor voltage rating should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements needed for low output ripple voltage.

Procedure continued on next page.

EXAMPLE (Adjustable Output Voltage Version)
Glven:
\(V_{\text {OUT }}=20 \mathrm{~V}\)
\(V_{I N}(\max)=28 \mathrm{~V}\)
\(l_{\text {LOAD }}(\max)=0.5 \mathrm{~A}\)
\(F=\) Switching Frequency (Fixed at a nominal 150 kHz).
1. Programming Output Voltage (Selecting \(R_{1}\) and \(R_{2}\), as shown in Figure 2)
Select \(R_{1}\) to be \(1 \mathrm{k} \Omega, 1 \%\). Solve for \(R_{2}\).
\[
R_{2}=R_{1}\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{REF}}}-1\right)=1 \mathrm{k}\left(\frac{20 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right)
\]
\(R_{2}=1 \mathrm{k}(16.26-1)=15.26 \mathrm{k}\), closest \(1 \%\) value is \(15.4 \mathrm{k} \Omega\).
\(R_{2}=15.4 \mathrm{k} \Omega\).

\section*{2. Inductor Selection (L1)}
A. Calculate the inductor Volt - microsecond constant (\(\mathrm{E} \cdot \mathrm{T}\)),
\(E \cdot T=(28-20-0.9) \cdot \frac{20+0.5}{28-0.9+0.5} \cdot \frac{1000}{150}(V \bullet \mu s)\)

B. \(E \cdot T=35.2(V \cdot \mu \mathrm{~S})\)
C. \(I_{\text {LOAD }}(\max)=0.5 \mathrm{~A}\)
D. From the inductor value selection guide shown in Figure 8, the inductance region intersected by the 35 (V • \(\mu \mathrm{s}\)) horizontal line and the 0.5 A vertical line is \(150 \mu \mathrm{H}\), and the inductor code is L19.
E. From the table in Figure 9, locate line L19, and select an inductor part number from the list of manufacturers part numbers.

\section*{3. Output Capacitor Selection (Cout)}
A. See section on COUT in Application Information section.
B. From the quick design table shown in Figure 4, locate the output voltage column. From that column, locate the output voltage closest to the output voltage in your application. In this example, select the 24 V line. Under the output capacitor section, select a capacitor from the list of through hole electrolytic or surface mount tantalum types from four different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturers series that are listed in the table be used.
In this example, through hole aluminum electrolytic capacitors from several different manufacturers are available.
\(82 \mu \mathrm{~F} \quad 50 \mathrm{~V}\) Panasonic HFQ Series
\(120 \mu \mathrm{~F}\) 50V Nichicon PL Series
Example continued on next page.

\section*{LM2594 Series Buck Regulator Design Procedure (Adjustable Output)}

\section*{PROCEDURE (Adjustable Output Voltage Version)}
4. Feedforward Capacitor (\(\mathrm{C}_{\mathrm{FF}}\)) (See Figure 2)

For output voltages greater than approximately 10 V , an additional capacitor is required. The compensation capacitor is typically between 50 pF and 10 nF , and is wired in parallel with the output voltage setting resistor, \(R_{2}\). It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.
\[
\mathrm{C}_{\mathrm{FF}}=\frac{1}{31 \times 10^{3} \times \mathrm{R}_{2}}
\]

This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)
5. Catch Diode Selection (D1)
A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2594. The most stressful condition for this diode is an overload or shorted output condition.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
C. This diode must be fast (short reverse recovery time) and must be located close to the LM2594 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or HighEfficiency rectifiers are also a good choice, but some types with an abrupt turn-off characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N4001 series are much too slow and should not be used.
6. Input Capacitor (\(\mathrm{C}_{\mathrm{IN}}\))

A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. In addition, the RMS current rating of the input capacitor should be selected to be at least \(1 / 2\) the DC load current. The capacitor manufacturers data sheet must be checked to assure that this current rating is not exceeded. The curve shown in Figure 13 shows typical RMS current ratings for several different aluminum electrolytic capacitor values.
This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage.
If solid tantalum input capacitors are used, it is recomended that they be surge current tested by the manufacturer.
Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the \(\mathrm{V}_{\mathrm{IN}}\) pin.
For additional information, see section on input capacitors in application information section.

\section*{EXAMPLE (Adjustable Output Voltage Version)}
C. For a 20 V output, a capacitor rating of at least 30 V or more is needed. In this example, either a 35 V or 50 V capacitor would work. A 50 V rating was chosen because it has a lower ESR which provides a lower output ripple voltage.
Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the types listed in the table. Refer to the capacitor manufacturers data sheet for this information.

\section*{4. Feedforward Capacitor (\(\mathrm{C}_{\mathrm{FF}}\))}

The table shown in Figure 4 contains feed forward capacitor values for various output voltages. In this example, a 1 nF capacitor is needed.
5. Catch Diode Selection (D1)
A. Refer to the table shown in Figure 12. Schottky diodes provide the best performance, and in this example a 1 A , 40V, 1N5819 Schottky diode would be a good choice. The 1 A diode rating is more than adequate and will not be overstressed even for a shorted output.

\section*{6. Input Capacitor (\(\mathrm{C}_{\mathrm{IN}}\))}

The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 28 V , an aluminum electrolytic aluminum electrolytic capacitor with a voltage rating greater than \(42 \mathrm{~V}\left(1.5 \times \mathrm{V}_{1 N}\right)\) would be needed. Since the the next higher capacitor voltage rating is 50 V , a 50 V capacitor should be used. The capacitor voltage rating of (\(1.5 \times \mathrm{V}_{\mathrm{IN}}\)) is a conservative guideline, and can be modified somewhat if desired.
The RMS current rating requirement for the input capacitor of a buck regulator is approximately \(1 / 2\) the DC load current. In this example, with a 400 mA load, a capacitor with a RMS current rating of at least 200 mA is needed. The curves shown in Figure 13 can be used to select an appropriate input capacitor. From the curves, locate the 50 V line and note which capacitor values have RMS current ratings greater than 200 mA . A \(47 \mu \mathrm{~F} / 50 \mathrm{~V}\) low ESR electrolytic capacitor capacitor is needed.
For a through hole design, a \(47 \mu \mathrm{~F} / 50 \mathrm{~V}\) electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. Other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate.
For surface mount designs, solid tantalum capacitors are recommended. The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.
To further simplify the buck regulator design procedure, \(\mathrm{Na}-\) tional Semiconductor is making available computer design software to be used with the Simple Switcher line ot switching regulators. Switchers Made Simple (version 4.1 or later) is available on a \(31 / 2^{\prime \prime}\) diskette for IBM compatible computers.

LM2594 Series Buck Regulator Design Procedure (Adjustable Output) (Continued)
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c}
Output \\
Voltage \\
\((V)\)
\end{tabular}} & \multicolumn{3}{|c|}{ Through Hole Output Capacitor } & \multicolumn{3}{c}{ Surface Mount Output Capacitor } \\
\cline { 2 - 7 } & \begin{tabular}{c}
Panasonic \\
HFQ Series \\
\((\mu \mathrm{F} / \mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
Nichicon PL \\
Series \\
\((\mu \mathrm{F} / \mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
Feedforward \\
Capacitor
\end{tabular} & \begin{tabular}{c}
AVX TPS \\
Series \\
\((\mu \mathrm{F} / \mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
Sprague \\
595D Series \\
\((\mu \mathrm{F} / \mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
Feedforward \\
Capacitor
\end{tabular} \\
\hline \(\mathbf{1 . 2}\) & \(220 / 25\) & \(220 / 25\) & 0 & \(220 / 10\) & \(220 / 10\) & 0 \\
\hline \(\mathbf{4}\) & \(180 / 25\) & \(180 / 25\) & 4.7 nF & \(100 / 10\) & \(120 / 10\) & 4.7 nF \\
\hline \(\mathbf{6}\) & \(82 / 25\) & \(82 / 25\) & 4.7 nF & \(100 / 10\) & \(120 / 10\) & 4.7 nF \\
\hline \(\mathbf{9}\) & \(82 / 25\) & \(82 / 25\) & 3.3 nF & \(100 / 16\) & \(100 / 16\) & 3.3 nF \\
\hline \(\mathbf{1 2}\) & \(82 / 25\) & \(82 / 25\) & 2.2 nF & \(100 / 16\) & \(100 / 16\) & 2.2 nF \\
\hline \(\mathbf{1 5}\) & \(82 / 25\) & \(82 / 25\) & 1.5 nF & \(68 / 20\) & \(100 / 20\) & 1.5 nF \\
\hline \(\mathbf{2 4}\) & \(82 / 50\) & \(120 / 50\) & 1 nF & \(10 / 35\) & \(15 / 35\) & 220 pF \\
\hline \(\mathbf{2 ~ 8}\) & \(82 / 50\) & \(120 / 50\) & 820 pF & \(10 / 35\) & \(15 / 35\) & 220 pF \\
\hline
\end{tabular}

FIGURE 4. Output Capacitor and Feedforward Capacitor Selection Table

\section*{LM2594 Series Buck Regulator Design Procedure}

INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation)

FIGURE 5. LM2594-3.3

FIGURE 7. LM2594-12

TL/H/12439-25
FIGURE 6. LM2594-5.0
 FIGURE 8. LM2594-ADJ
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Inductance (\(\mu \mathrm{H}\))} & \multirow[b]{2}{*}{\begin{tabular}{l}
Current \\
(A)
\end{tabular}} & \multicolumn{2}{|c|}{Schott} & \multicolumn{2}{|c|}{Renco} & \multicolumn{2}{|l|}{Pulse EngIneering} & \multirow[t]{2}{*}{\begin{tabular}{l}
Collcraft \\
Surface Mount
\end{tabular}} \\
\hline & & & Through Hole & Surface Mount & Through Hole & Surface Mount & Through Hole & Surface Mount & \\
\hline L1 & 220 & 0.18 & 67143910 & 67144280 & RL-5470-3 & RL1500-220 & PE-53801 & PE-53801-S & DO1608-224 \\
\hline L2 & 150 & 0.21 & 67143920 & 67144290 & RL-5470-4 & RL1500-150 & PE-53802 & PE-53802-S & DO1608-154 \\
\hline L3 & 100 & 0.26 & 67143930 & 67144300 & RL-5470-5 & RL1500-100 & PE-53803 & PE-53803-S & DO1608-104 \\
\hline L4 & 68 & 0.32 & 67143940 & 67144310, & RL-1284-68 & RL1500-68 & PE-53804 & PE-53804-S & DO1608-68 \\
\hline L5 & 47 & 0.37 & 67148310 & 67148420 & RL-1284-47 & RL1500-47 & PE-53805 & PE-53805-S & DO1608-473 \\
\hline L6 & 33 & 0.44 & 67148320 & 67148430 & RL-1284-33 & RL1500-33 & PE-53806 & PE-53806-S & D01608-333 \\
\hline L7 & 22 & 0.60 & 67148330 & 67148440 & RL-1284-22 & RL1500-22 & PE-53807 & PE-53807-S & DO1608-223 \\
\hline L8 & 330 & 0.26 & 67143950 & 67144320 & RL-5470-2 & RL1500-330 & PE-53808 & PE-53808-S & DO3308-334 \\
\hline L9 & 220 & 0.32 & 67143960 & 67144330 & RL-5470-3 & RL1500-220 & PE-53809 & PE-53809-S & DO3308-224 \\
\hline L10 & 150 & 0.39 & 67143970 & 67144340 & RL-5470-4 & RL1500-150 & PE-53810 & PE-53810-S & DO3308-154 \\
\hline L11 & 100 & 0.48 & 67143980 & 67144350 & RL-5470-5 & RL1500-100 & PE-53811 & PE-53811-S & DO3308-104 \\
\hline L12 & 68 & 0.58 & 67143990 & 67144360 & RL-5470-6 & RL1500-68 & PE-53812 & PE-53812-S & DO1608-683 \\
\hline L13 & 47 & 0.70 & 67144000 & 67144380 & RL-5470-7 & RL1500-47 & PE-53813 & PE-53813-S & DO3308-473 \\
\hline L14 & 33 & 0.83 & 67148340 & 67148450 & RL-1284-33 & RL1500-33 & PE-53814 & PE-53814-S & D01608-333 \\
\hline L15 & 22 & 0.99 & 67148350 & 67148460 & RL-1284-22 & RL1500-22 & PE-53815 & PE-53815-S & D01608-223 \\
\hline L16 & 15 & 1.24 & 67148360 & 67148470 & RL-1284-15 & RL1500-15 & PE-53816 & PE-53816-S & DO1608-153 \\
\hline L17 & 330 & 0.42 & 67144030 & 67144410 & RL-5471-1 & RL1500-330 & PE-53817 & PE-53817-S & DO3316-334 \\
\hline L18 & 220 & 0.55 & 67144040 & 67144420 & RL-5471-2 & RL1500-220 & PE-53818 & PE-53818-S & DO3316.224 \\
\hline L19 & 150 & 0.66 & 67144050 & 67144430 & RL-5471-3 & RL1500-150 & PE-53819 & PE-53819-S & DO3316-154 \\
\hline L20 & 100 & 0.82 & 67144060 & 67144440 & RL-5471-4 & RL1500-100 & PE-53820 & PE-53820-S & DO3316-104 \\
\hline L21 & 68 & 0.99 & 67144070 & 67144450 & RL-5471-5 & RL1500-68 & PE-53821 & PE-53821-S & DDO3316-683 \\
\hline L26 & 330 & 0.80 & 67144100 & 67144480 & RL-5471-1 & - & PE-53826 & PE-53826-S & - \\
\hline L27 & 220 & 1.00 & 67144110 & 67144490 & RL-5471-2 & - & PE-53827 & PE-53827-S & 一 \\
\hline
\end{tabular}

FIGURE 9. Inductor Manufacturers Part Numbers
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Coilcraft Inc. } & Phone & \((800) 322-2645\) \\
\cline { 2 - 3 } & FAX & \((708) 639-1469\) \\
\hline \multirow{3}{*}{ Collcraft Inc., Europe } & Phone & +111236730595 \\
\cline { 2 - 3 } & FAX & +441236730627 \\
\hline \multirow{3}{*}{ Pulse Engineering Inc. } & Phone & \((619) 674-8100\) \\
\cline { 2 - 3 } & FAX & \((619) 674-8262\) \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Pulse Engineering Inc., \\
Europe
\end{tabular}} & Phone & +3539324107 \\
\cline { 2 - 3 } & FAX & +3539324459 \\
\hline Renco Electronics Inc. & Phone & \((800) 645-5828\) \\
\cline { 2 - 3 } & FAX & \((516) 586-5562\) \\
\hline \multirow{2}{*}{ Schott Corp. } & Phone & \((612) 475-1173\) \\
\cline { 2 - 3 } & FAX & \((612) 475-1786\) \\
\hline
\end{tabular}

FIGURE 10. Inductor Manufacturers Phone Numbers
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Nichicon Corp. } & .Phone & (708) 843-7500 \\
\cline { 2 - 3 } & FAX & \((708) 843-2798\) \\
\hline \multirow{2}{*}{ Panasonic } & Phone & \((714) 373-7857\) \\
\cline { 2 - 3 } & FAX & \((714) 373-7102\) \\
\hline \multirow{2}{*}{ AVX Corp. } & Phone & \((803) 448-9411\) \\
\cline { 2 - 3 } & FAX & \((803) 448-1943\) \\
\hline \multirow{2}{*}{ Sprague/Vishay } & Phone & \((207) 324-7223\) \\
\cline { 2 - 3 } & FAX & \((207) 324-4140\) \\
\hline
\end{tabular}

FIGURE 11. Capacitor Manufacturers Phone Numbers

\section*{LM2594 Series Buck Regulator Design Procedure (Continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{VR} & \multicolumn{4}{|c|}{1A Diodes} \\
\hline & \multicolumn{2}{|l|}{Surface Mount} & \multicolumn{2}{|l|}{Through Hole} \\
\hline & Schottky & Ultra Fast Recovery & Schottky & \begin{tabular}{l}
Ultra Fast \\
Recovery
\end{tabular} \\
\hline \multirow[t]{2}{*}{20 V} & & \multirow[t]{5}{*}{All of these diodes are rated to at least 50V.} & 1N5817 & \multirow[t]{5}{*}{All of these diodes are rated to at least 50V.} \\
\hline & & & SR102 & \\
\hline \multirow{3}{*}{30 V} & MBRS130 & & 1N5818 & \\
\hline & & & SR103 & \\
\hline & & & 11DQ03 & \\
\hline \multirow{3}{*}{40 V} & MBRS140 & \multirow[t]{6}{*}{MURS120 10BF10} & 1N5819 & \multirow[t]{6}{*}{\begin{tabular}{l}
MUR120 \\
HER101 \\
11DF1
\end{tabular}} \\
\hline & 10BQ040 & & SR104 & \\
\hline & 10MQ040 & & 11DQ04 & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 50 \mathrm{~V} \\
& \text { or } \\
& \text { more }
\end{aligned}
\]} & MBRS160 & & SR105 & \\
\hline & 10BQ050 & & MBR150 & \\
\hline & 10MQ060 & & 11DQ05 & \\
\hline
\end{tabular}

FIGURE 12. Diode Selection Table

\section*{Application Information}

\section*{PIN FUNCTIONS}
\(+V_{I N}\) —This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.
Ground-Circuit ground.
Output-Internal switch. The voltage at this pin switches between (\(+\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{SAT}}\)) and approximately -0.5 V , with a duty cycle of \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\). To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept to a minimum.
Feedback-Senses the regulated output voltage to complete the feedback loop.
 down using logic level signals thus dropping the total input supply current to approximately \(80 \mu \mathrm{~A}\). Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 25 V) shuts the regulator down. If this shutdown feature is not needed, the \(\overline{O N} / O F F\) pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

\section*{EXTERNAL COMPONENTS}
\(\mathbf{C}_{\text {IN }}-A\) low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.
The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's
input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.
The RMS current rating of a capacitor could be viewed as a capacitor's power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately \(10^{\circ} \mathrm{C}\) above an ambient temperature of \(105^{\circ} \mathrm{C}\). The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating.
The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor's electrolyte, resulting in eventual failure.
Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of \(40^{\circ} \mathrm{C}\), a general guideline would be to select a capacitor with a ripple current rating of approximately \(50 \%\) of the DC load current. For ambient temperatures up to \(70^{\circ} \mathrm{C}\), a current rating of \(75 \%\) of the DC load current would be a good choice for a consorvative design. The capacitor voltage rating must bo at loast 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements.
A graph shown in Figure 13 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS current it is rated for. These curves were obtained from the Nichicon "PL" series of Iow ESR, high reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet.
"Standard" electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime.
Because of their small size and excellent performance, surface mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turn on when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a \(100 \%\) surge current testing on their products to minimize this potential problem. If high turn on currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current.

\section*{Application Information (Continued)}

TL/H/12439-28
FIGURE 13. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)

\section*{OUTPUT CAPACITOR}

Cout-An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter.
The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically \(1 \%\) to \(2 \%\) of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output. Using the capacitors listed in the tables, or similar types, will provide design solutions under all conditions.
If very low output ripple voltage (less than 15 mV) is required, refer to the section on Output Voltage Ripple and Transients for a post ripple filter.
An aluminum electrolytic capacitor's ESR value is related to the capacitance value and its voltage rating. In most cases, Higher voltage electrolytic capacitors have lower ESR values (see Figure 14). Often, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage.
The output capacitor for many different switcher designs often can be satisfied with only three or four different capacitor values and several different voltage ratings. See the quick design component selection tables in Figures 3 and 4 for typical capacitor values, voltage ratings, and manufacturers capacitor types.
Electrolytic capacitors are not recommended for temperatures below \(-25^{\circ} \mathrm{C}\). The ESR rises dramatically at cold temperatures and typically rises \(3 \mathrm{X} @-25^{\circ} \mathrm{C}\) and as much as 10 X at \(-40^{\circ} \mathrm{C}\). See curve shown in Figure 15.
Solid tantalum capacitors have a much better ESR spec for cold temperatures and are recommended for temperatures below \(-25^{\circ} \mathrm{C}\).

TL/H/12439-29
FIGURE 14. Capacitor ESR vs Capacitor Voltage Rating (Typical Low ESR Electrolytic Capacitor)

\section*{CATCH DIODE}

Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the LM2594 using short leads and short printed circuit traces.
Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5 V and lower). Ultra-fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultrafast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N4001 series are much too slow and should not be used.

TL/H/12439-30
FIGURE 15. Capacitor ESR Change vs Temperature

\section*{INDUCTOR SELECTION}

All switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low.
The LM2594 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation.

\section*{Application Information (Continued)}

In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.
To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figures 5 through 8). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 16.)

TL/H/12439-31
FIGURE 16. (\(\Delta l_{\text {IND }}\)) Peak-to-Peak Inductor Ripple Current (as a Percentage of the Load Current) vs Load Current
By allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low.
When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current.
Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wrapped on a ferrite bobbin. This type of construction makes for a inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMI). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe. Also see section on Open Core Inductors.
The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Coilcraft, and powdered iron toroid for Pulse Engineering.

Exceeding an inductor's maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2594. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.
The inductor manufacturers data sheets include current and energy limits to avoid inductor saturation.

\section*{DISCONTINUOUS MODE OPERATION}

The selection guide chooses inductor values suitable for continuous mode operation, but for low current applications and/or high input voltages, a discontinuous mode design may be a better choice. It would use an inductor that would be physically smaller, and would need only one half to one third the inductance value needed for a continuous mode design. The peak switch and inductor currents will be higher in a discontinuous design, but at these low load currents (200 mA and below), the maximum switch current will still be less than the switch current limit.
Discontinuous operation can have voltage waveforms that are considerable different than a continuous design. The output pin (switch) waveform can have some damped sinusoidal ringing present. (See photo titled; Discontinuous Modo Switching Waveforms) This ringing is normal for discontinuous operation, and is not caused by feedback loop instabilities. In discontinuous operation, there is a period of time where neither the switch or the diode are conducting, and the inductor current has dropped to zero. During this time, a small amount of energy can circulate between the inductor and the switch/diode parasitic capacitance causing this characteristic ringing. Normally this ringing is not a problem, unless the amplitude becomes great enough to exceed the input voltage, and even then, there is very little energy present to cause damage.
Different inductor types and/or core materials produce different amounts of this characteristic ringing. Ferrite core inductors have very little core loss and therefore produce the most ringing. The higher core loss of powdered iron inductors produce less ringing. If desired, a series RC could be placed in parallel with the inductor to dampen the ringing. The computer aided design software Switchers Made Simple (version 4.1) will provide all component values for continuous and discontinuous modes of operation.

FIGURE 17. Post Ripple Filter Waveform

\section*{Application Information (Continued)}

\section*{OUTPUT VOLTAGE RIPPLE AND TRANSIENTS}

The output voltage of a switching power supply operating in the continuous mode will contain a sawtooth ripple voltage at the switcher frequency, and may also contain short voltage spikes at the peaks of the sawtooth waveform.
The output ripple voltage is a function of the inductor sawtooth ripple current and the ESR of the output capacitor. A typical output ripple voltage can range from approximately \(0.5 \%\) to \(3 \%\) of the output voltage. To obtain low ripple voltage, the ESR of the output capacitor must be low, however, caution must be exercised when using extremely low ESR capacitors because they can affect the loop stability, resulting in oscillation problems. If very low output ripple voltage is needed (less than 15 mV), a post ripple filter is recommended. (See Figure 2.) The inductance required is typically between \(1 \mu \mathrm{H}\) and \(5 \mu \mathrm{H}\), with low DC resistance, to maintain good load regulation. A low ESR output filter capacitor is also required to assure good dynamic load response and ripple reduction. The ESR of this capacitor may be as low as desired, because it is out of the regulator feedback loop. The photo shown in Figure 17 shows a typical output ripple voltage, with and without a post ripple filter.
When observing output ripple with a scope, it is essential that a short, low inductance scope probe ground connection be used. Most scope probe manufacturers provide a special probe terminator which is soldered onto the regulator board, preferable at the output capacitor. This provides a very short scope ground thus eliminating the problems associated with the 3 inch ground lead normally provided with the probe, and provides a much cleaner and more accurate picture of the ripple voltage waveform.
The voltage spikes are caused by the fast switching action of the output switch and the diode, and the parasitic inductance of the output filter capacitor, and its associated wiring. To minimize these voltage spikes, the output capacitor should be designed for switching regulator applications, and the lead lengths must be kept very short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.
When a switching regulator is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input and output yoltage, the peak-topeak amplitude of this inductor current waveform remains constant. As the load current increases or decreases, the entire sawtooth current waveform also rises and falls. The average value (or the center) of this current waveform is equal to the DC load current.
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will smoothly change from a continuous to a discontinuous mode of operation. Most switcher designs (irregardless how large the inductor value is) will be forced to run discontinuous if the output is lightly loaded. This is a perfectly acceptable mode of operation.

TL/H/12439-33
FIGURE 18. Peak-to-Peak Inductor Ripple Current vs Load Current

In a switching regulator design, knowing the value of the peak-to-peak inductor ripple current (\(\Delta l_{\mathrm{IND}}\)) can be useful for determining a number of other circuit parameters. Parameters such as, peak inductor or peak switch current, minimum load current before the circuit becomes discontinuous, output ripple voltage and output capacitor ESR can all be calculated from the peak-to-peak \(\Delta l_{I_{N D}}\). When the inductor nomographs shown in Figures 5 through 8 are used to select an inductor value, the peak-to-peak inductor ripple current can immediately be determined. The curve shown in Figure 18 shows the range of (\(\Delta \mathrm{I}_{\mathrm{IND}}\)) that can be expected for different load currents. The curve also shows how the peak-to-peak inductor ripple current (\(\Delta \mathrm{I}_{\mathrm{IND}}\)) changes as you go from the lower border to the upper border (for a given load current) within an inductance region. The upper border represents a higher input voltage, while the lower border represents a lower input voltage (see Inductor Selection Guides).
These curves are only correct for continuous mode operation, and only if the inductor selection guides are used to select the inductor value
Consider the following example:
\(V_{\text {OUT }}=5 \mathrm{~V}\), maximum load current of 300 mA
\(V_{I N}=15 \mathrm{~V}\), nominal, varying between 11 V and 20 V .
The selection guide in Figure 6 shows that the vertical line for a 0.3 A load current, and the horizontal line for the 15 V input voltage intersect approximately midway between the upper and lower borders of the \(150 \mu \mathrm{H}\) inductance region. A \(150 \mu \mathrm{H}\) inductor will allow a peak-to-peak inductor current (\(\Delta l_{\mathrm{IND}}\)) to flow that will be a percentage of the maximum load current. Referring to Figure 18, follow the 0.3A line approximately midway into the inductance region, and read the peak-to-peak inductor ripple current (\(\Delta \mathrm{I}_{\mathrm{IND}}\)) on the left hand axis (approximately \(150 \mathrm{~mA} \mathrm{p}-\mathrm{p}\)).
As the input voltage increases to 20 V , it approaches the upper border of the inductance region, and the inductor ripple current increases. Referring to the curve in Figure 18, it can be seen that for a load current of 0.3 A , the peak-topeak inductor ripple current (\(\Delta l_{\mathrm{IND}}\)) is 150 mA with 15 V in, and can range from 175 mA at the upper border (20 V in) to 120 mA at the lower border (11 V in).

\section*{Application Information (Continued)}

Once the \(\Delta l_{\text {IND }}\) value is known, the following formulas can be used to calculate additional information about the switching regulator circuit.
1. Peak Inductor or peak switch current
\[
=\left(I_{\mathrm{LOAD}}+\frac{\Delta l_{\mathrm{IND}}}{2}\right)=\left(0.3 \mathrm{~A}+\frac{0.150}{2}\right)=0.375 \mathrm{~A}
\]
2. Minimum load current before the circuit becomes discontinuous
\[
=\frac{\Delta l_{\mathrm{IND}}}{2}=\frac{0.150}{2}=0.075 \mathrm{~A}
\]
3. Output Ripple Voltage \(=\left(\Delta I_{N D}\right) \times\left(\right.\) ESR of \(\left.C_{O U T}\right)\)
\[
=0.150 \mathrm{~A} \times 0.240 \Omega=36 \mathrm{mV} \mathrm{p-p}
\]

\section*{OPEN CORE INDUCTORS}

Another possible source of increased output ripple voltage or unstable operation is from an open core inductor. Ferrite bobbin or stick inductors have magnetic lines of flux flowing through the air from one end of the bobbin to the other end. These magnetic lines of flux will induce a voltage into any wire or PC board copper trace that comes within the inductor's magnetic field. The strength of the magnetic field, the orientation and location of the PC copper trace to the magnetic field, and the distance between the copper trace and the inductor, determine the amount of voltage generated in the copper trace. Another way of looking at this inductive coupling is to consider the PC board copper trace as one turn of a transformer (secondary) with the inductor winding as the primary. Many millivolts can be generated in a copper trace located near an open core inductor which can cause stability problems or high output ripple voltage problems.
If unstable operation is seen, and an open core inductor is used, it's possible that the location of the inductor with respect to other PC traces may be the problem. To determine if this is the problem, temporarily raise the inductor away from the board by several inches and then check circuit operation. If the circuit now operates correctly, then the magnetic flux from the open core inductor is causing the problem. Substituting a closed core inductor such as a torroid or E-core will correct the problem, or re-arranging the PC layout may be necessary. Magnetic flux cutting the IC device ground trace, feedback trace, or the positive or negative traces of the output capacitor should be minimized.
Sometimes, locating a trace directly beneath a bobbin inductor will provide good results, provided it is exactly in the center of the inductor (because the induced voltages cancel themselves out), but if it is off center one direction or the other, then problems could arise. If flux problems are present, even the direction of the inductor winding can make a difference in some circuits.
This discussion on open core inductors is not to frighten the user, but to alert the user on what kind of problems to watch out for when using them. Open core bobbin or "stick" inductors are an inexpensive, simple way of making a compact efficient inductor, and they are used by the millions in many different applications.

\section*{THERMAL CONSIDERATIONS}

The LM2594 is available in two packages, an 8-pin through hole DIP (N) and an 8-pin surface mount SO-8 (M). Both packages are molded plastic with a copper lead frame. When the package is soldered to the PC board, the copper and the board are the heat sink for the LM2594 and the other heat producing components.
For best thermal performance, wide copper traces should be used and all ground and unused pins should be soldered to generous amounts of printed circuit board copper, such as a ground plane (one exception to this is the output (switch) pin, which should not have large areas of copper). Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and even dou-ble-sided or multilayer boards provide a better heat path to the surrounding air. Unless power levels are small, sockets are not recommended because of the added thermal resistance it adds and the resultant higher junction temperatures. Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect the junction temperature. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, printed circuit copper area, copper thickness, single- or dou-ble-sided, multilayer board, and the amount of solder on the board. The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

TL/H/12439-35
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Circuit Data for Temperature Rise Curve (DIP-8) } \\
\hline Capacitors & Through hole electrolytic \\
\hline Inductor & Through hole, Schott, \(100 \mu \mathrm{H}\) \\
\hline Diode & Through hole, 1A 40V, Schottky \\
\hline PC board & \begin{tabular}{l}
4 square inches single sided 2 oz. copper \\
\(\left(0.0028^{\prime \prime}\right)\)
\end{tabular} \\
\hline
\end{tabular}

FIGURE 19. Junction Temperature Rise, DIP-8

\section*{Application Information (Continued)}

TL/H/12439-34
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Circuit Data for Temperature Rise Curve (Surface Mount) } \\
\hline Capacitors & Surface mount tantalum, molded "D" size \\
\hline Inductor & Surface mount, Coilcraft DO33, \(100 \mu \mathrm{H}\) \\
\hline Diode & Surface mount, 1A 40V, Schottky \\
\hline PC board & \begin{tabular}{l}
4 square inches single sided 2 oz. copper \\
\((0.0028 ")\)
\end{tabular} \\
\hline
\end{tabular}

FIGURE 20. Junction Temperature Rise, SO-8
The curves shown in Figures 19 and 20 show the LM2594 junction temperature rise above ambient temperature with a 500 mA load for various input and output voltages. This data was taken with the circuit operating as a buck switcher with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve is typical, and can be used for a quick check on the maximum junction temperature for various conditions, but keep in mind that there are many factors that can affect the junction temperature.

TL/H/12439-36
FIGURE 21. Delayed Startup

TL/H/12439-37
FIGURE 22. Undervoltage Lockout for Buck Regulator

\section*{DELAYED STARTUP}

The circuit in Figure 21 uses the the ON/OFF pin to provide a time delay between the time the input voltage is applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start up is shown). As the input voltage rises, the charging of capacitor C1 pulls the \(\overline{O N} / O F F\) pin high, keeping the regulator off. Once the input voltage reaches its final value and the capacitor stops charging, and resistor \(R_{2}\) pulls the ON/OFF pin low, thus allowing the circuit to start switching. Resistor \(\mathrm{R}_{1}\) is included to limit the maximum voltage applied to the \(\overline{O N} / O F F\) pin (maximum of 25 V), reduces power supply noise sensitivity, and also limits the capacitor, C 1 , discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the \(\overline{O N} / O F F\) pin and cause problems.
This delayed startup feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages.

\section*{UNDERVOLTAGE LOCKOUT}

Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. An undervoltage lockout feature applied to a buck regulator is shown in Figure 22, while Figures 23 and 24 applies the same feature to an inverting circuit. The circuit in Figure 23 features a constant threshold voltage for turn on and turn off (zener voltage plus approximately one volt). If hysteresis is needed, the circuit in Figure 24 has a turn ON voltage which is different than the turn OFF voltage. The amount of hysteresis is approximately equal to the value of the output voltage. If zener voltages greater than 25 V are used, an additional \(47 \mathrm{k} \Omega\) resistor is needed from the \(\overline{O N} / O F F\) pin to the ground pin to stay within the 25 V maximum limit of the \(\overline{O N} / O F F\) pin.

\section*{INVERTING REGULATOR}

The circuit in Figure 25 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulators ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.

TL/H/12439-38
This circuit has an ON/OFF threshold of approximately 13V.
FIGURE 23. Undervoltage Lockout for Inverting Regulator

\section*{Application Information (Continuod)}

FIGURE 24. Undervoltage Lockout with Hysteresis for Inverting Regulator

TL/H/12439-40
\(39 \mu \mathrm{~F} / 16 \mathrm{~V}\) Elec. Panasonic HFQ
FIGURE 25. Inverting - 5V Regulator with Delayed Startup

This example uses the LM2594-5 to generate a - 5V output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Since this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. The curve shown in Figure 26 provides a guide as to the amount of output load current possible for the different input and output voltage conditions.
The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 40 V . For example, when converting +20 V to -12 V , the regulator would see 32 V between the input pin and ground pin. The LM2594 has a maximum input voltage spec of 40 V .
Additional diodes are required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the \(\mathrm{C}_{\mathrm{IN}}\) capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closley resemble a buck configuration thus providing good closed loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a fast recovery diode could be used.
Without diode D3, when the input voltage is first applied, the charging current of \(\mathrm{C}_{\mathbf{N}}\) can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage.

TL/H/12439-41
FIGURE 26. Inverting Regulator Typical Load Current
Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a \(100 \mu \mathrm{H}, 1 \mathrm{~A}\) inductor is the best choice. Capacitor selection can also be narrowed down to just a few values. Using the values shown in Figure 25 will provide good results in the majority of inverting designs.
This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2594 current limit (approx 0.8 A) are needed for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or

\section*{Application Information (Continued)}
sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high startup currents required by the inverting topology , the delayed startup feature (\(\mathrm{C} 1, \mathrm{R}_{1}\) and \(\mathrm{R}_{2}\)) shown in Figure 25 is recommended. By delaying the regulator startup, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current needed for startup is now supplied by the input capacitor \(\left(\mathrm{C}_{\mathrm{IN}}\right)\). For severe start up conditions, the input capacitor can be made much larger than normal.

\section*{INVERTING REGULATOR SHUTDOWN METHODS}

To use the \(\overline{O N} / O F F\) pin in a standard buck configuration is simple, pull it below 1.3 V (@25 \({ }^{\circ} \mathrm{C}\), referenced to ground) to turn regulator ON , pull it above 1.3 V to shut the regulator OFF. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figures 27 and 28.

TL/H/12439-42
FIGURE 27. Inverting Regulator Ground Referenced Shutdown

TL/H/12439-43
FIGURE 28. Inverting Regulator Ground Referenced Shutdown using Opto Device

Application Information (Continued)
TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXED OUTPUT (2X SIZE)

TL/H/12439-44
\(\mathrm{C}_{\mathrm{IN}}-10 \mu \mathrm{~F}, 35 \mathrm{~V}\), Solid Tantalum AVX, "TPS series"
COUT - \(100 \mu \mathrm{~F}, 10 \mathrm{~V}\) Solid Tantalum AVX, "TPS series"
D1 - 1A, 40V Schottky Rectifier,
surface mount
L1 \(\quad-100 \mu \mathrm{H}, \mathrm{L} 20\), Coilcraft DO33

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (2X SIZE)

TL/H/12439-45
\(\mathrm{C}_{\mathrm{IN}}-10 \mu \mathrm{~F}, 35 \mathrm{~V}\), Solid Tantalum AVX, "TPS series"
\(\mathrm{C}_{\text {OUT }}-100 \mu \mathrm{~F}, 10 \mathrm{~V}\) Solid Tantalum AVX, "TPS series"
D1 - 1A, 40V Schottky Rectifier, surface mount
L1 \(-100 \mu \mathrm{H}, \mathrm{L} 20\), Coilcraft DO33
R1 \(-1 \mathrm{k} \Omega, 1 \%\)
\(\mathbf{R}_{2}\) - Use formula in Design Procedure
\(\mathrm{C}_{\mathrm{FF}}\) - See Figure 4.

FIGURE 29. PC Board Layout

\section*{LM3420-4.2, -8.4, -12.6, -16.8}

\section*{Lithium-Ion Battery Charge Controller}

\section*{General Description}

The LM3420 series of controllers are monolithic integrated circuits designed for charging and end-of-charge control for Lithium-Ion rechargeable batteries. The LM3420 is available in four fixed voltage versions for one through four cell charger applications (4.2V, \(8.4 \mathrm{~V}, 12.6 \mathrm{~V}\) and 16.8 V respectively).
Included in a very small package is an (internally compensated) op amp, a bandgap reference, an NPN output transistor, and voltage setting resistors. The amplifier's inverting input is externally accessible for loop frequency compensation. The output is an open-emitter NPN transistor capable of driving up to 15 mA of output current into external circuitry.
A trimmed precision bandgap reference utilizes temperature drift curvature correction for excellent voltage stability over the operating temperature range. Available with an initial tolerance of \(0.5 \%\) for the A grade version, and \(1 \%\) for the standard version, the LM3420 allows for precision end-ofcharge control for Lithium-Ion rechargeable batteries.

The LM3420 is available in a sub-miniature 5 -lead SOT23-5 surface mount package thus allowing very compact designs.

\section*{Features}
\(\square\) Voltage options for charging 1, 2, 3 or 4 cells
- Tiny SOT23-5 package
- Precision (0.5\%) end-of-charge control
- Drive capability for external power stage
- Low quiescent current, \(85 \mu \mathrm{~A}\) (typ.)

\section*{Applications}
- Lithium-Ion battery charging
- Suitable for linear and switching regulator charger designs

\section*{Typical Application and Functional Diagram}

\section*{Connection Diagrams and Order Information}

5-Lead Small Outline Package (M5)

Actual Size "No internal connection, but should
TL/H/12359-4

For Ordering Information
See Flgure 1 In this Data Sheet
See NS Package Number MA05A

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablilty and specifications.
Input Voltage V(IN)
20 V
Output Current 20 mA
Junction Temperature
\(150^{\circ} \mathrm{C}\)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature
Vapor Phase (60 seconds)
Infrared (15 seconds)
\(+215^{\circ} \mathrm{C}\)

Power Dissipation (\(T_{A} \quad 25^{\circ} \mathrm{C}\)) (Note 2)

\section*{LM3420-4.2}

\section*{Electrical Characteristics}

Specifications with standard type face are for \(T_{J}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}(\mathrm{IN})=\mathrm{V}_{\mathrm{REG}}, \mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & \begin{tabular}{l}
Typical \\
(Note 4)
\end{tabular} & \[
\begin{aligned}
& \text { LM3420A-4.2 } \\
& \text { Limit } \\
& \text { (Note 5) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { LM3420-4.2 } \\
& \text { Limit } \\
& \text { (Note 5) } \\
& \hline
\end{aligned}
\] & Units (Limits) \\
\hline \multirow[t]{2}{*}{\(V_{\text {REG }}\)} & Regulation Voltage & \(\mathrm{IOUT}=1 \mathrm{~mA}\) & 4.2 & \[
\begin{aligned}
& 4.221 / 4.242 \\
& 4.179 / 4.158
\end{aligned}
\] & \[
\begin{aligned}
& 4.242 / 4.284 \\
& 4.158 / 4.116
\end{aligned}
\] & \(V\)
\(V(\max)\)
\(V(\min)\) \\
\hline & Regulation Voltage Tolerance & \(\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}\) & & \(\pm 0.5 / \pm 1\) & \(\pm 1 / \pm 2\) & \%(max) \\
\hline \(\mathrm{I}_{\mathrm{q}}\) & Quiescent Current & IOUT \(=1 \mathrm{~mA}\) & 85 & 110/115 & 125/150 & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{m}}\)} & \multirow[t]{2}{*}{Transconductance \(\Delta l_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 20 \mu \mathrm{~A} \leq \mathrm{I}_{\text {OUT }} \leq 1 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}
\end{aligned}
\] & 3.3 & 1.3/0.75 & 1.0/0.50 & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min})
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 15 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}
\end{aligned}
\] & 6.0 & 3.0/1.5 & 2.5/1.4 & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min})
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(A_{V}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Voltage Gain \\
\(\Delta V_{\text {OUT }} / \Delta V_{\text {REG }}\)
\end{tabular}} & \[
\begin{aligned}
& 1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {REG }}-1.2 \mathrm{~V}(-1.3) \\
& \mathrm{R}_{\mathrm{L}}=200 \Omega(\text { Note } 6)
\end{aligned}
\] & 1000 & 550/250 & 450/200 & \[
\begin{gathered}
\mathrm{V} / \mathrm{V} \\
\mathrm{~V} / \mathrm{V}(\text { min }) \\
\hline
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq V_{\text {REG }}-1.2 \mathrm{~V}(-1.3) \\
& R_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\] & 3500 & 1500/900 & 1000/700 & \[
\begin{gathered}
\mathrm{V} / \mathrm{V} \\
\mathrm{~V} / \mathrm{V}(\min)
\end{gathered}
\] \\
\hline \(V_{\text {SAT }}\) & Output Saturation (Note 7) & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}+100 \mathrm{mV} \\
& \mathrm{I}_{\mathrm{OUT}}=15 \mathrm{~mA}
\end{aligned}
\] & 1.0 & 1.2/1.3 & 1.2/1.3 & \[
\begin{gathered}
V \\
V(\max)
\end{gathered}
\] \\
\hline \(I_{L}\) & Output Leakage Current & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}-100 \mathrm{mV} \\
& V_{\text {OUT }}=O V
\end{aligned}
\] & 0.1 & 0.5/1.0 & 0.5/1.0 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\mathrm{R}_{\mathrm{f}}\) & Internal Feedback Resistor (Note 8) & & 75 & \[
\begin{aligned}
& 94 \\
& 56
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 56
\end{aligned}
\] & \\
\hline \(E_{n}\) & Output Noise Voltage & IOUT \(=1 \mathrm{~mA}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & 70 & & & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline
\end{tabular}

LM3420-8.4

\section*{Electrical Characteristics}

Specifications with standard type face are for \(T_{J}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}(\mathrm{IN})=\mathrm{V}_{\mathrm{REG}}, \mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & \[
\begin{aligned}
& \text { LM3420A-8.4 } \\
& \text { Limit } \\
& \text { (Note 5) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LM3420-8.4 } \\
\text { Limit } \\
\text { (Note 5) } \\
\hline
\end{gathered}
\] & Units (Limits) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {REG }}\)} & Regulation Voltage & \(\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}\) & 8.4 & \[
\begin{aligned}
& 8.442 / 8.484 \\
& 8.358 / 8.316
\end{aligned}
\] & \[
\begin{aligned}
& 8.484 / 8.568 \\
& 8.316 / 8.232
\end{aligned}
\] & \\
\hline & Regulation Voltage Tolerance & lout \(=1 \mathrm{~mA}\) & & \(\pm 0.5 / \pm 1\) & \(\pm 1 / \pm 2\) & \%(max) \\
\hline \(\mathrm{I}_{\mathrm{q}}\) & Quiescent Current & \(\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}\) & 85 & 110/115 & 125/150 & \[
\begin{gathered}
\mu \mathrm{A} \\
\mu \mathrm{~A}(\max)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{m}}\)} & \multirow[t]{2}{*}{Transconductance \(\Delta l_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 20 \mu \mathrm{~A} \leq \mathrm{I}_{\text {OUT }} \leq 1 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V}
\end{aligned}
\] & 3.3 & 1.3/0.75 & 1.0/0.50 & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min})
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V}
\end{aligned}
\] & 6.0 & 3.0/1.5 & 2.5/1.4 & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min})
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Av} & \multirow[t]{2}{*}{Voltage Gain \(\Delta V_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 1 V \leq V_{O U T} \leq V_{R E G}-1.2 V(-1.3) \\
& R_{L}=470 \Omega(\text { Note } 6)
\end{aligned}
\] & 1000 & 550/250 & 450/200 & \[
\begin{gathered}
V / V \\
V / V(\min)
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 V \leq V_{O U T} \leq V_{R E G}-1.2 V(-1.3) \\
& R_{L}=5 \mathrm{k} \Omega
\end{aligned}
\] & 3500 & 1500/900 & 1000/700 & V/V \(\mathrm{V} / \mathrm{V}(\mathrm{min})\) \\
\hline \(\mathrm{V}_{\text {SAT }}\) & Output Saturation (Note 7) & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}+100 \mathrm{mV} \\
& \mathrm{l}_{\text {OUT }}=15 \mathrm{~mA}
\end{aligned}
\] & 1.0 & 1.2/1.3 & 1.2/1.3 & \[
\begin{gathered}
V \\
V(\max)
\end{gathered}
\] \\
\hline IL & Output Leakage Current & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}-100 \mathrm{mV} \\
& V_{\text {OUT }}=0 \mathrm{~V}
\end{aligned}
\] & 0.1 & 0.5/1.0 & 0.5/1.0 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\mathrm{R}_{\mathrm{f}}\) & \begin{tabular}{l}
Internal Feedback \\
Resistor (Note 8)
\end{tabular} & - . & 181 & \[
\begin{aligned}
& 227 \\
& 135
\end{aligned}
\] & \[
\begin{aligned}
& 227 \\
& 135
\end{aligned}
\] & \\
\hline \(E_{n}\) & Output Noise Voltage & lout \(=1 \mathrm{~mA}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & 140 & & & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline
\end{tabular}

\section*{LM3420-12.6}

\section*{Electrical Characteristics}

Specifications with standard type face are for \(T_{J}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}(\mathrm{IN})=\mathrm{V}_{\mathrm{REG}}, \mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Typical (Note 4) & \[
\begin{aligned}
& \text { LM3420A-12.6 } \\
& \text { Limit } \\
& \text { (Note 5) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { LM3420-12.6 } \\
\text { Limit } \\
\text { (Note 5) } \\
\hline
\end{gathered}
\] & Units (Limits) \\
\hline \multirow[t]{2}{*}{\(V_{\text {REG }}\)} & Regulation Voltage & IOUT \(=1 \mathrm{~mA}\) & 12.6 & \[
\begin{aligned}
& 12.663 / 12.726 \\
& 12.537 / 12.474
\end{aligned}
\] & \[
\begin{aligned}
& 12.726 / 12.852 \\
& 12.474 / 12.348
\end{aligned}
\] & \(V\)
\(V(\max)\)
\(V(\min)\) \\
\hline & Regulation Voltage Tolerance & IOUT \(=1 \mathrm{~mA}\) & & \(\pm 0.5 / \pm 1\) & \(\pm 1 / \pm 2\) & \%(max) \\
\hline \(\mathrm{I}_{q}\) & Quiescent Current & IOUT \(=1 \mathrm{~mA}\) & 85 & 110/115 & 125/150 & \[
\begin{gathered}
\mu \mathrm{A} \\
\mu \mathrm{~A}(\max)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{m}}\)} & \multirow[t]{2}{*}{Transconductance \(\Delta\) IOUT \(^{\prime} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 20 \mu \mathrm{~A} \leq \mathrm{l} \text { OUT } \leq 1 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}
\end{aligned}
\] & 3.3 & 1.3/0.75 & 1.0/0.F & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min}) \\
\hline
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}
\end{aligned}
\] & 6.0 & 3.0/1.5 & 2.5/1.4 & \[
\begin{array}{|c|}
\hline \mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min}) \\
\hline
\end{array}
\] \\
\hline \multirow[t]{2}{*}{\(A_{V}\)} & \multirow[t]{2}{*}{Voltage Gain \(\Delta V_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 1 V \leq V_{O U T} \leq V_{\text {REG }}-1.2 \mathrm{~V}(-1.3) \\
& R_{L}=750 \Omega(\text { Note } 6)
\end{aligned}
\] & 1000 & 550/250 & 450/200 & \[
\begin{gathered}
V / V \\
V / V(\min)
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& I V \leq V_{\text {OUT }} \leq V_{R E G}-1.2 V(-1.3) \\
& R_{L}=10 \mathrm{k} \Omega
\end{aligned}
\] & 3500 & 1500/900 & 1000/700 & \[
\begin{gathered}
\mathrm{V} / \mathrm{V} \\
\mathrm{~V} / \mathrm{V}(\mathrm{~min})
\end{gathered}
\] \\
\hline \(V_{\text {SAT }}\) & Output Saturation (Note 7) & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}+100 \mathrm{mV} \\
& \mathrm{I}_{\mathrm{OUT}}=15 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & 1.0 & 1.2/1.3 & 1.2/1.3 & \[
\begin{gathered}
V \\
V(\max)
\end{gathered}
\] \\
\hline L & Output Leakage Current & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}-100 \mathrm{mV} \\
& V_{\text {OUT }}=0 \mathrm{~V}
\end{aligned}
\] & 0.1 & 0.5/1.0 & 0.5/1.0 & \[
\begin{gathered}
\mu A \\
\mu A(\max) \\
\hline
\end{gathered}
\] \\
\hline \(\mathrm{R}_{\mathrm{f}}\) & \begin{tabular}{l}
Internal Feedback \\
Resistor (Note 8)
\end{tabular} & & 287 & \[
\begin{aligned}
& 359 \\
& 215
\end{aligned}
\] & \[
\begin{aligned}
& 359 \\
& 215
\end{aligned}
\] & \[
\begin{gathered}
k \Omega \\
k \Omega(\max) \\
k \Omega(\min) \\
\hline
\end{gathered}
\] \\
\hline \(E_{n}\) & Output Noise Voltage & lout \(=1 \mathrm{~mA}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & 210 & & & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline
\end{tabular}

\section*{LM3420-16.8}

\section*{Electrical Characteristics}

Specifications with standard type face are for \(T_{J}=25^{\circ} \mathrm{C}\), and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, \(\mathrm{V}(\mathrm{IN})=\mathrm{V}_{\mathrm{REG}}, \mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Condlitions & Typlcal (Note 4) & \[
\begin{gathered}
\text { LM3420A-16.8 } \\
\text { Limit } \\
\text { (Note 5) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { LM3420-16.8 } \\
\text { Limit } \\
\text { (Note 5) } \\
\hline
\end{gathered}
\] & Units (Limits) \\
\hline \multirow[t]{2}{*}{\(V_{\text {REG }}\)} & Regulation Voltage & lout \(=1 \mathrm{~mA}\) & 16.8 & \[
\begin{aligned}
& 16.884 / 16.968 \\
& 16.716 / 16.632
\end{aligned}
\] & \[
\begin{array}{|l}
16.968 / 17.136 \\
16.632 / 16.464
\end{array}
\] & \(V\)
\(V(\max)\)
\(V(\min)\) \\
\hline & Regulation Voltage Tolerance & IOUT \(=1 \mathrm{~mA}\) & & \(\pm 0.5 / \pm 1\) & \(\pm 1 / \pm 2\) & \%(max) \\
\hline \(l_{q}\) & Quiescent Current & IOUT \(=1 \mathrm{~mA}\) & 85 & 110/115 & 125/150 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{m}}\)} & \multirow[t]{2}{*}{Transconductance \(\Delta l_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 20 \mu \mathrm{~A} \leq \text { l OUT } \leq 1 \mathrm{~mA} \\
& \mathrm{~V}_{\text {OUT }}=15 \mathrm{~V}
\end{aligned}
\] & 3.3 & 0.8/0.4 & \[
0.7 / 0.35
\] & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min})
\end{gathered}
\] \\
\hline & & \[
\begin{array}{|l}
\hline 1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA} \\
V_{\text {OUT }}=15 \mathrm{~V} \\
\hline
\end{array}
\] & 6.0 & 2.9/0.9 & 2.5/0.75 & \[
\begin{gathered}
\mathrm{mA} / \mathrm{mV} \\
\mathrm{~mA} / \mathrm{mV}(\mathrm{~min}) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(A_{V}\)} & \multirow[t]{2}{*}{Voltage Gain \(\Delta V_{\text {OUT }} / \Delta V_{\text {REG }}\)} & \[
\begin{aligned}
& 1 \mathrm{~V} \leq V_{\text {OUT }} \leq V_{\text {REG }}-1.2 \mathrm{~V}(-1.3) \\
& R_{\mathrm{L}}=1 \mathrm{k} \Omega(\text { Note } 6)
\end{aligned}
\] & 1000 & 550/250 & 450/200 & \[
\begin{gathered}
V / V \\
V / V(\min)
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& 1 V \leq V_{\text {OUT }} \leq V_{\text {REG }}-1.2 V(-1.3) \\
& R_{L}=15 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & 3500 & \[
1200 / 750
\] & 1000/650 & \[
\begin{gathered}
V / V \\
V / V(\min)
\end{gathered}
\] \\
\hline \(\mathrm{V}_{\text {SAT }}\) & Output Saturation (Note 7) & \[
\begin{aligned}
& V(I N)=V_{\text {REG }}+100 \mathrm{mV} \\
& \text { lout }=15 \mathrm{~mA}
\end{aligned}
\] & 1.0 & 1.2/1.3 & \[
1.2 / 1.3
\] & \[
\begin{gathered}
V \\
V(\text { max })
\end{gathered}
\] \\
\hline l & Output Leakage Current & \[
\begin{aligned}
& \mathrm{V}(\mathrm{IN})=\mathrm{V}_{\mathrm{REG}}-100 \mathrm{mV} \\
& \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}
\end{aligned}
\] & 0.1 & 0.5/1.0 & 0.5/1.0 & \[
\begin{gathered}
\mu A \\
\mu A(\max)
\end{gathered}
\] \\
\hline \(\mathrm{R}_{\mathrm{f}}\) & Internal Feedback Resistor (Note 8) & & 392 & \[
\begin{aligned}
& 490 \\
& 294
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 294
\end{aligned}
\] & \(k \Omega\) \(k \Omega\) (max) \(k \Omega\) (min) \\
\hline \(E_{n}\) & Output Noise Voltage & IOUT \(=1 \mathrm{~mA}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & 280 & & \(\therefore\) & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline
\end{tabular}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{\text {Jmax }}\) (maximum junction temperature), \(\theta_{J A}\) (junction to ambient thermal resistance), and \(T_{A}\) (ambient temperature). The maximum allowable power dissipation at any temperature is \(P_{D \max }=\left(T_{J \max }-T_{A}\right) / \theta_{J A}\) or the number given in the Absolute Maximum Ratings, whichever is lower. The typical thermal resistance (\(\theta_{\mathrm{JA}}\)) when soldered to a printed circuit board is approximately \(306^{\circ} \mathrm{C} / \mathrm{W}\) for the M5 package.
Note 3: The human body model is a 100 pF capacitor discharged through a \(1.5 \mathrm{k} \Omega\) resistor into each pin.
Note 4: Typical numbers are at \(25^{\circ} \mathrm{C}\) and represent the most likely parametric norm.
Note 5: Limits are \(100 \%\) production tested at \(25^{\circ} \mathrm{C}\). Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Quality Level (AOQL).
Note 6: Actual test is done using equivalent current sink instead of a resistor load.
Note 7: \(V_{S A T}=V(I N)-V_{O U T}\), when the voltage at the \(I N\) pin is forced 100 mV above the nominal regulating voltage \(\left(V_{\text {REG }}\right)\).
Note 8: See Applications and Curves sections for information on this resistor.

\section*{Typical Performance Characteristics}

TL/H/12359-20

16.8V

Bode Plot

TIME (\(5 \mu \mathrm{~s} / \mathrm{DIV}\))
TL/H/12359-18

Response Time for 16.8V Version

TL/H/12359-27

IIME (\(2 \mathrm{~ms} / \mathrm{DIV}\))
TL/H/12359-19

TL/H/12359-22

Typical Performance Characteristics (Continued)

Regulation Voltage vs Outpút Voltage and Load Resistance

TL/H/t2359-32
Regulation Voltage vs Output Voltage and Load Resistance

TL/H/12359-35

\section*{Regulation Voltage vs}

Output Voltage and Load Resistance

TL/H/12359-38

TL/H/12359-33

TL/H/12359-36

CIrcult Used for Response Time

Internal Feedback
Resistor (Rf) Tempco

TL/H/12359-34

\section*{Five Lead Surface Mount Package Information}

The small SOT23-5 package allows only 4 alphanumeric characters to identify the product. The table below contains the field information marked on the package.
\begin{tabular}{|l|l|l|l|l|}
\hline Voltage & \multicolumn{1}{|c|}{ Grade } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Order \\
Information
\end{tabular}} & \begin{tabular}{c}
Package \\
Marking
\end{tabular} & \multicolumn{1}{c|}{ Supplled as } \\
\hline 4.2 V & A (Prime) & LM3420AM5-4.2 & D02A & 250 unit increments on tape and reel \\
\hline 4.2 V & A (Prime) & LM3420AM5X-4.2 & D02A & 3 k unit increments on tape and reel \\
\hline 4.2 V & B (Standard) & LM3420M5-4.2 & D02B & 250 unit increments on tape and reel \\
\hline 4.2 V & B (Standard) & LM3420M5X-4.2 & D02B & 3 k unit increments on tape and reel \\
\hline 8.4 V & A (Prime) & LM3420AM5-8.4 & D03A & 250 unit increments on tape and reel \\
\hline 8.4 V & A (Prime) & LM3420AM5X-8.4 & D03A & 3 k unit increments on tape and reel \\
\hline 8.4 V & B (Standard) & LM3420M5-8.4 & D03B & 250 unit increments on tape and reel \\
\hline 8.4 V & B (Standard) & LM3420M5X-8.4 & D03B & 3 k unit increments on tape and reel \\
\hline 12.6 V & A (Prime) & LM3420AM5-12.6 & D04A & 250 unit increments on tape and reel \\
\hline 12.6 V & A (Prime) & LM3420AM5X-12.6 & D04A & 3 k unit increments on tape and reel \\
\hline 12.6 V & B (Standard) & LM3420M5-12.6 & D04B & 250 unit increments on tape and reel \\
\hline 12.6 V & B (Standard) & LM3420M5X-12.6 & D04B & 3 k unit increments on tape and reel \\
\hline 16.8 V & A (Prime) & LM3420AM5-16.8 & D05A & 250 unit increments on tape and reel \\
\hline 16.8 V & A (Prime) & LM3420AM5X-16.8 & D05A & 3 k unit increments on tape and reel \\
\hline 16.8 V & B (Standard) & LM3420M5-16.8 & D05B & 250 unit increments on tape and reel \\
\hline 16.8 V & B (Standard) & LM3420M5X-16.8 & D05B & 3 k unit increments on tape and reel \\
\hline
\end{tabular}

FIGURE 1. SOT23-5 Marking
The first letter " D " identifies the part as a Driver, the next two numbers indicate the voltage, " 02 " for a 4.2 V part, " 03 " for a 8.4 V part, " 04 " for a 12.6 V part, and " 05 " for a 16.8 V part. The fourth letter indicates the grade, " B " for standard grade, " A " for the prime grade.
The SOT23-5 surface mount package is only available on tape in quantity increments of 250 on tape and reel (indicated by the letters "M5" in the part number), or in quantity increments of 3000 on tape and reel (indicated by the letters "M5X' in the part number).

\section*{Product Description}

The LM3420 is a shunt regulator specifically designed to be the reference and control section in an overall feedback loop of a Lithium-lon battery charger. The regulated output voltage is sensed between the \(\operatorname{IN}\) pin and GROUND pin of the LM3420. If the voltage at the \(\mathbb{N}\) pin is less than the LM3420 regulating voltage (\(\mathrm{V}_{\text {REG }}\)), the OUT pin sources no current. As the voltage at the IN pin approaches the V \({ }_{\text {REG }}\) voltage, the OUT pin begins sourcing current. This current is then used to drive a feedback device, (opto-coupler) or a power device, (linear regulator, switching regulator, etc.) which servos the output voltage to be the same value as \(V_{\text {REG }}\).
In some applications, (even under normal operating conditions) the voltage on the IN pin can be forced above the \(V_{\text {REG }}\) voltage. In these instances; the maximum voltage applied to the IN pin should not exceed 20 V . In addition, an external resistor may. be required on the OUT pin to limit the maximum current to 20 mA .

\section*{Compensation}

The inverting input of the error amplifier is brought out to allow overall closed-loop compensation. In many of the applications circuits shown here, compensation is provided by a single capacitor \(\left(\mathrm{C}_{\mathrm{C}}\right)\) connected from the compensation pin to the out pin of the LM3420. The capacitor values shown in the schematics are adequate under most conditions, but they can be increased or decreased depending on the desired loop response. Applying a load pulse to the output of a regulator circuit and observing the resultant output voltage response is an easy method of determining the stability of the control loop.

Analyzing more complex feedback loops requires additional information.

The formula for AC gain at a frequency (f) is as follows;
\[
\begin{aligned}
& \text { Gain }(f)=1+\frac{Z_{f}(f)}{R_{f}} \\
& \text { where } Z_{f}(f)=\frac{1}{j \bullet 2 \pi \bullet f \bullet C_{C}}
\end{aligned}
\]
where \(R_{f} \approx 75 \mathrm{k} \Omega\) for the 4.2 V part, \(\mathrm{R}_{\mathrm{f}} \approx 181 \mathrm{k} \Omega\) for the 8.4 V part, \(\mathrm{R}_{\mathrm{f}} \approx 287 \mathrm{k} \Omega\) for the 12.6 V part, and \(\mathrm{R}_{\mathrm{f}} \approx 392 \mathrm{k} \Omega\) for the 16.8 V part.
The resistor \(\left(R_{f}\right)\) in the formula is an internal resistor located on the die. Since this resistor value will affect the phase margin, the worst case maximum and minimum values are important when analyzing closed loop stability. The minimum and maximum room temperature values of this resistor are specified in the Electrical Characteristics section of this data sheet, and a curve showing the temperature coefficient is shown in the curves section. Minimum values of \(R_{f}\) result in lower phase margins.

\section*{Test Circuit}

The test circuit shown in Figure 2 can be used to measure and verify various LM3420 parameters. Test conditions are set by forcing the appropriate voltage at the VOUT Set test point and selecting the appropriate \(R_{L}\) or lout as specified in the Electrical Characteristics section. Use a DVM at the "measure" test points to read the data.

TL/H/12359-7
FIGURE 2. LM3420 Test Circuit

\section*{VREG External Voltage Trim}

The regulation voltage (\(\mathrm{V}_{\mathrm{REG}}\)) of the LM3420 can be externally trimmed by adding a single resistor from the COMP. pin to the \(+\mathbb{I N}\) pin or from the COMP. pin to the GND pin, depending on the desired trim direction. Trim adjustments up to \(\pm 10 \%\) of \(V_{\text {REG }}\) can be realized, with only a small increase in the temperature coefficient. (See temperature coefficient curve shown below)

Normalized Temperature Drift with Output Externally Trimmed

TL/H/12359-8
FIGURE 3

FIGURE 4
Formulas for selecting trim resistor values are shown below.

\section*{For LM3420-4.2}
\[
\begin{aligned}
& R_{\text {lncrease }}=\frac{22 \times 10^{5}}{\% \text { increase }} \\
& R_{\text {decrease }}=\frac{53 \times 10^{5}}{\% \text { decrease }}-75 \times 10^{3}
\end{aligned}
\]

\section*{For LM3420-8.4}
\[
\begin{aligned}
& R_{\text {increase }}=\frac{26 \times 10^{5}}{\% \text { increase }} \\
& R_{\text {decrease }}=\frac{154 \times 10^{5}}{\% \text { decrease }}-181 \times 10^{3}
\end{aligned}
\]

For LM3420-12.6
\[
\begin{aligned}
& \mathrm{R}_{\text {increase }}=\frac{28 \times 10^{5}}{\% \text { increase }} \\
& \mathrm{R}_{\text {decrease }}=\frac{259 \times 10^{5}}{\% \text { decrease }}-287 \times 10^{3}
\end{aligned}
\]

For LM3420-16.8
\[
\begin{aligned}
& R_{\text {increase }}=\frac{29 \times 10^{5}}{\% \text { increase }} \\
& R_{\text {decrease }}=\frac{364 \times 10^{5}}{\% \text { decrease }}-392 \times 10^{3}
\end{aligned}
\]

\section*{Application Information}

The LM3420 regulator/driver provides the reference and feedback drive functions for a Lithium-Ion battery charger. It can be used in many different charger configurations using both linear and switching topologies to provide the precision needed for charging Lithium-Ion batteries safely and efficiently. Output voltage tolerances better than \(0.5 \%\) are possible without using trim pots or precision resistors. The circuits shown are designed for 2 cell operation, but they can readily be changed for either 1,3 or 4 cell charging applications.
One item to keep in mind when designing with the LM3420 is that there are parasitic diodes present. In some designs, under special electrical conditions, unwanted currents may flow. Parasitic diodes exist from OUT to IN, as well as from GROUND to \(\mathbb{N}\). In both instances the diode arrow is pointed toward the \(\mathbb{N}\) pin.

\section*{Application Circuits}

The circuit shown in Figure 5 performs constant-current, constant-voltage charging of two Li-lon cells. At the beginning of the charge cycle, when the battery voltage is less than 8.4 V , the LM3420 sources no current from the OUT pin, keeping Q2 off, thus allowing the LM317 Adjustable voltage regulator to operate as a constant-current source. (The LM317 is rated for currents up to 1.5A, and the LM350 and LM338 can be used for higher currents.) The LM317 forces a constant 1.25 V across \(\mathrm{R}_{\text {LIM }}\), thus generating a constant current of
\[
\mathrm{I}_{\mathrm{LIM}}=\frac{1.25 \mathrm{~V}}{R_{\mathrm{LIM}}}
\]

FIGURE 5. Constant Current/Constant Voltage Li-Ion Battery Charger

\section*{Application Circuits (Continued)}

TL/H/12359-11

\section*{FIGURE 6. Low Drop-Out Constant Current/Constant Voltage 2-Cell Charger}

Transistor Q1 provides a disconnect between the battery and the LM3420 when the input voltage is removed. This prevents the \(85 \mu \mathrm{~A}\) quiescent current of the LM3420 from eventually discharging the battery. In this application Q1 is used as a low offset saturated switch, with the majority of the base drive current flowing through the collector and crossing over to the emitter as the battery becomes fully charged. It provides a very low collector to emitter saturation voltage (approximately 5 mV). Diode D 1 is also used to prevent the battery current from flowing through the LM317 regulator from the output to the input when the \(D C\) input voltage is removed.
As the battery charges, its voltage begins to rise, and is sensed at the IN pin of the LM3420. Once the battery voltage reaches 8.4 V , the LM3420 begins to regulate and starts sourcing current to the base of Q2. Transistor Q2 begins controlling the ADJ. pin of the LM317 which begins to regulate the voltage across the battery and the constant voltage portion of the charging cycle starts. Once the charger is in the constant voltage mode, the charger maintains a regulated 8.4 V across the battery and the charging current is dependent on the state of charge of the battery. As the cells approach a fully charged condition, the charge current falls to a very low value.
Figure 6 shows a Li-lon battery charger that features a dropout voltage of less than one volt. This charger is a constantcurrent, constant-voltage charger (it operates in constantcurrent mode at the beginning of the charge cycle and switches over to a constant-voltage mode near the end of the charging cycle). The circuit consists of two basic feedback loops. The first loop controls the constant charge current delivered to the battery, and the second determines the final voltage across the battery.
With a discharged battery connected to the charger, (battery voltage is less than 8.4 V) the circuit begins the charge cycle with a constant charge current. The value of this current is set by using the reference section of the LM10C to force 200 mV across R7 thus causing approximately \(100 \mu \mathrm{~A}\) of emitter current to flow through Q1, and approximately 1 mA of emitter current to flow through Q2. The collector current of Q1 is also approximately \(100 \mu \mathrm{~A}\), and this current
flows through R2 developing 50 mV across it. This 50 mV is used as a reference to develop the constant charge current through the current sense resistor R1.
The constant current feedback loop operates as follows. Initially, the emitter and collector current of Q2 are both approximately 1 mA , thus providing gate drive to the MOSFET Q3, turning it on. The output of the LM301A op-amp is low. As Q3's current reaches 1A, the voltage across R1 approaches 50 mV , thus canceling the 50 mV drop across R2, and causing the op-amp's output to start going positive, and begin sourcing current into R8. As more current is forced into R8 from the op-amp, the collector current of Q2 is reduced by the same amount, which decreases the gate drive to Q3, to maintain a constant 50 mV across the \(0.05 \Omega\) current sensing resistor, thus maintaining a constant 1A of charge current.
The current limit loop is stabilized by compensating the LM301A with C1 (the standard frequency compensation used with this op-amp) and C2, which is additional compensation needed when D3 is forward biased. This helps speed up the response time during the reverse bias of D3. When the LM301A output is low, diode D3 reverse biases and prevents the op-amp from pulling more current through the emitter of Q2. This is important when the battery voltage reaches 8.4 V , and the 1 A charge current is no longer needed. Resistor R5 isolates the LM301A feedback node at the emitter of Q2.
The battery voltage is sensed and buffered by the op-amp section of the LM10C, connected as a voltage follower driving the LM3420. When the battery voltage reaches 8.4 V , the LM3420 will begin regulating by sourcing current into R8, which controls the collector current of Q2, which in turn reduces the gate voltage of Q3 and becomes a constant voltage regulator for charging the battery. Resistor R6 isolates the LM3420 from the common feedback node at the emitter of Q2. If R5 and R6 are omitted, oscillations could occur during the transition from the constant-current to the con-stant-voltage mode. D2 and the PNP transistor input stage of the LM10C will disconnect the battery from the charger circuit when the input supply voltage is removed to prevent the battery from discharging.

Application Circuits (Continued)

FIGURE 7. High Efficiency Switching Regulator Constant Current/Constant Voltage 2-Cell Charger

A switching regulator, constant-current, constant-voltage two-cell Li-lon battery charging circuit is shown in Figure 7. This circuit provides much better efficiency, especially over a wide input voltage range than the linear topologies. For a 1A charger an LM2575-ADJ. switching regulator IC is used in a standard buck topology. For other currents, or other packages, other members of the SIMPLE SWITCHER \({ }^{\circledR}\) buck regulator family may be used.
Circuit operation is as follows. With a discharged battery connected to the charger, the circuit operates as a constant current source. The constant-current portion of the charger is formed by the loop consisting of one half of the LM358 op amp along with gain setting resistors R3 and R4, current sensing resistor R5, and the feedback reference voltage of 1.23 V . Initially the LM358's output is low causing the output of the LM2575-ADJ. to rise thus causing some charging current to flow into the battery. When the current reaches \(1 A\), it is sensed by resistor R5 (\(50 \mathrm{~m} \mathrm{\Omega}\)), and produces 50 mV . This 50 mV is amplified by the op-amps gain of 25 to produce 1.23 V , which is applied to the feedback pin of the LM2575ADJ. to satisfy the feedback loop.
Once the battery voltage reaches 8.4V, the LM3420 takes over and begins to control the feedback pin of the LM2575ADJ. The LM3420 now regulates the voltage across the battery, and the charger becomes a constant-voltage charger. Loop compensation network R6 and C3 ensure stable operation of the charger circuit under both constant-current and constant-voltage conditions. If the input supply voltage is removed, diode D2 and the PNP input stage of the LM358 become reversed biased and disconnects the battery to ensure that the battery is not discharged. Diode D3 reverse biases to prevent the op-amp from sinking current when the charger changes to constant voltage mode.
The minimum supply voltage for this charger is approximately 11 V , and the maximum is around 30 V (limited by the 32 V maximum operating voltage of the LM358). If another op-amp is substituted for the LM358, make sure that the input common-mode range of the op-amp extends down to ground so that it can accurately sense 50 mV . R1 is included to provide a minimum load for the switching regulator to assure that switch leakage current will not cause the output to rise when the battery is removed.

FIGURE 8. Low Dropout Constant Current/Constant Voltage Li-Ion Battery Charger

The circuit in Figure 8 is very similar to Figure 7, except the switching regulator has been replaced with a low dropout linear regulator, allowing the input voltage to be as low as 10 V . The constant current and constant voltage control loops are the same as the previous circuit. Diode D2 has been changed to a Schottky diode to provide a reduction in the overall dropout voltage of this circuit, but Schottky diodes typically have higher leakage currents than a standard silicon diode. This leakage current could discharge the battery if the input voltage is removed for an extended period of time.
Another variation of a constant current/constant voltage switch mode charger is shown in Figure 9. The basic feedback loops for current and voltage are similar to the previous circuits. This circuit has the current sensing resistor, for the constant current part of the feedback loop, on the positive side of the battery, thus allowing a common ground between the input supply and the battery. Also, the LMC7101 op-amp is available in a very small SOT23-5 package thus allowing a very compact pc board design. Diode D4 prevents the battery from discharging through the charger circuitry if the input voltage is removed, although the quiescent current of the LM3420 will still be present (approximately \(85 \mu \mathrm{~A}\)).

TL/H/12359-14
FIGURE 9. High Efficiency Switching Charger with High Side Current Sensing

\section*{Application Circuits (Continued)}

TL/H/12359-15
FIGURE 10. (Fast) Pulsed Constant Current 2-Cell Charger

A rapid charge Lithium-Ion battery charging circuit is shown in Figure 10. This configuration uses a switching regulator to deliver the charging current in a series of constant current pulses. At the beginning of the charge cycle (constant-current mode), this circuit performs identically to the previous LM2575 charger by charging the battery at a constant current of 1A. As the battery voltage reaches 8.4 V , this charger changes from a constant continuous current of 1A to a 5 second pulsed 1A. This allows the total battery charge time to be reduced considerably. This is different from the other charging circuits that switch from a constant current charge to a constant voltage charge once the battery voltage reaches 8.4 V . After charging the battery with 1A for 5 seconds, the charge stops, and the battery voltage begins to drop. When it drops below 8.4 V , the LM555 timer again starts the timing cycle and charges the battery with 1A for another 5 seconds. This cycling continues with a constant 5 second charge time, and a variable off time. In this manner, the battery will be charged with 1A for 5 seconds, followed by an off period (determined by the battery's state of charge), setting up a periodic 1A charge current. The off time is determined by how long it takes the battery voltage to decrease back down to 8.4 V . When the battery first reaches 8.4 V , the off time will be very short (1 ms or less),
but when the battery approaches full charge, the off time will begin increasing to tens of seconds, then minutes, and eventually hours.
The constant-current loop for this charger and the method used for programming the 1A constant current is identical to the previous LM2575-ADJ. charger. In this circuit, a second LM3420-8.4 has its \(V_{\text {REG }}\) increased by approximately 400 mV (via R2), and is used to limit the output voltage of the charger to 8.8 V in the event of a bad battery connection, or the battery is removed or possibly damaged.
The LM555 timer is connected as a one-shot, and is used to provide the 5 second charging pulses. As long as the battery voltage is less than the 8.4 V , the output of IC3 will be held low, and the LM555 one-shot will never fire (the output of the LM555 will be held high) and the one-shot will have no effect on the charger. Once the battery voltage exceeds the 8.4 V regulation voltage of IC3, the trigger pin of the LM555 is pulled high, enabling the one shot to begin timing. The charge current will now be pulsed into the battery at a 5 second rate, with the off time determined by the battery's state of charge. The LM555 output will go high for 5 seconds (pulling down the collector of Q1) which allows the 1A constant-current loop to control the circuit.

\section*{Application Circuits (Continued)}

FIGURE 11. MOSFET Low Dropout Charger

Figure 11 shows a low dropout constant voltage charger using a MOSFET as the pass element, but this circuit does not include current limiting. This circuit uses Q3 and a Schottky diode to isolate the battery from the charging circuitry when the input voltage is removed, to prevent the battery from discharging. Q2 should be a high current (\(0.2 \Omega\)) FET, while Q3 can be a low current (2 \(\Omega\)) device.

Note: Although the application circuits shown here have been bullt and tested, they should be thoroughly evaluated with the same type of battery the charger will eventually be used with.
Different battery manufacturers may use a slightly different battery chemistry which may require different charging characteristics. Always consult the battery manufacturer for information on charging specificatlons and battery details, and always observe the manufacturers precautions when using their batteries. Avoid overcharging or shorting Lithium-Ion batteries.

Section 8
Complete Cordless Phone Solution

Section 8 Contents
NCL354 Cordless Telephone IC Chipset . 8-3

\section*{NCL354}

\section*{Cordless Telephone IC}

\section*{General Description}

The NCL354 combines a high performance, dual conversion superheterodyne VHF radio receiver with the audio processing functions required to build a full featured narrow band FM cordless telephone system. Superior RF sensitivity, combined with advanced audio channel signal pre-empha-sis/de-emphasis and compression/expansion processing, creates a high performance communications system with excellent noise characteristics and wide dynamic range. The built-in receive signal strength indicator (RSSI) allows for easy identification of channels which are not suitable for use or monitoring of the signal strength on the selected channel. A built-in phase locked loop (PLL) discriminator provides for low distortion demodulation of signals which have a wide dynamic range while eliminating the need for external adjustments. A microphone expander circuit reduces the transmitted background noise during silent periods, and enhanced power supply management techniques extend battery life. The audio portion includes digitally selected analog switches which allow the designer to easily incorporate speaker-phone and intercom features.

\section*{Features}
- Low supply voltage
- Dual conversion receiver
- Companded audio channel

3V-5V
\(46 \mathrm{MHz} / 49 \mathrm{MHz}\)
- Microphone expander
- PLL discriminator
- Receive signal strength indicator for channel selection
- Highly selective filter for data reception
- Speaker phone and intercom capabilities

■ Universal transmit and receive frequency synthesizers
- Battery saving features:
- lcc \(=50 \mu \mathrm{~A}\) in standby state
- lcc \(=5.5 \mathrm{~mA}\) in sniff mode
- ICC \(=13 \mathrm{~mA}\) in communication mode
- Available in 56 -pin TSSOP package

NCL354 Block Diagram

1.0 Pin Names and Functions
\begin{tabular}{|c|c|c|c|}
\hline Function & Name & Note & \begin{tabular}{c}
Pin \\
\(\#\) \\
\hline
\end{tabular} \\
\hline RF Power & VCCRF & & 13 \\
\hline RF Ground & RFGND & & 20 \\
\hline Audio Power & VCCAUD & & 38 \\
\hline Audio Ground & AUDGND & & 48 \\
\hline Synthesizer Power & VCCSYNTH & & 27 \\
\hline Synthesizer GND & SYNTHGND & & 24 \\
\hline Demodulator Buffer Out & DMDOUT & & 3 \\
\hline Demodulator Buffer In & DMDIN & & 4 \\
\hline Demodulator Loop Filter & DMDFILT & & 5 \\
\hline Demodulator Ground & DMDGND & & 2 \\
\hline Expander Input & EXPIN & & 52 \\
\hline Expand Filter Cap & EXPCAP & \(\mathrm{C}_{\text {ext }}=2.2 \mu \mathrm{~F}\) & 51 \\
\hline Deemphasis In & DEEMIN & & 53 \\
\hline Deemphasis Out & DEEMOUT & - & 54 \\
\hline Data Filter In & DFIN & & 1 \\
\hline Data Filter Out & DFOUT & & 56 \\
\hline Data Slicer Out & RXDATA & & 55 \\
\hline Chip Select & CS & Active Hi , CMOS Levs & 31 \\
\hline Serial In & SI & CMOS Levs & 30 \\
\hline Serial Clock & CLKIN & CMOS Levs & 29 \\
\hline Clock Out & CLKOUT & CMOS Levs & 28 \\
\hline Receive Mute & RCVMUT. & CMOS Levs & 32 \\
\hline Hyb TX Amp + Out & HYTXOTP & & 49 \\
\hline Hyb TX Amp - In & HYTXIN & & 50 \\
\hline Auxilliary Amp Out & PAOUT : & & 47 \\
\hline Auxilliary Amp - In & PAIN & & 46 \\
\hline Mic Amp - In & MICIN & & 44 \\
\hline Mic Amp Out & MICOUT & & 43 \\
\hline
\end{tabular}

\section*{Frequency Synthesizer}

The frequency synthesizer architecture (shown in Figure 1) uses two phase-locked loops to generate transmit and re-; ceive mix frequencies for most country channels; including US (25ch), China, Spain, France, Korea, New Zealand, U.K., Netherlands, and Australia. The frequencies are programmed through the microprocessor serial interface and a on board ROM. The 2nd LO and reference divider provides the reference frequencies for both transmit and receive loops. This synthesizer contains separate 14 -bit dividers and phase detectors for each loop. In addition, the varactor for the 1st LO is on chip with two pins for connection to an external tank circuit.
\begin{tabular}{|c|c|c|c|}
\hline Function & Name & Note & Pln
\# \\
\hline Speakerphone RX & SPKPHRX & & 45 \\
\hline Hybrid RX Amp Out & HYRXOUT & & 41 \\
\hline Hybrid RX Amp - In & HYRXINN & ; & 40 \\
\hline Hybrid RX Amp + in & HYRXINP & & 39 \\
\hline Mic Expander Filter Cap & MEXPCAP & \(C_{\text {ext }}=0.4 \mu \mathrm{~F}\) & 42 \\
\hline Int. Reference Bypass & IREFBYP & \(\mathrm{C}_{\text {ext }}=0.1 \mu \mathrm{~F}\) & 10 \\
\hline Preemphasis - In & PREEMIN & & 36 \\
\hline Preemphasis Out & PREEMOT & & 37 \\
\hline Compressor Output & COMPOUT & & 33 \\
\hline Compressor Filter Cap. & COMPCAP & \(\mathrm{C}_{\text {ext }}=2.2 \mu \mathrm{~F}\) & 34 \\
\hline Compressor Error Cap & CPERCAP & \(\mathrm{C}_{\text {ext }}=1 \mu \mathrm{~F}\) & 35 \\
\hline LO1 & LO1A & - & 17 \\
\hline LO1 & LO1B & & 19 \\
\hline Varactor & VARAC & & 18 \\
\hline Mixer1 RF In1 & MX1RFIN1 & & 16 \\
\hline Mixer1 RF In2 & MX1RFIN2 & & 15 \\
\hline Mixer1 Out & MX1OÚT & & 14 \\
\hline Mixer2 RF In & MX2RFIN & & 12 \\
\hline Mixer2 Out & MX2OUT & & 11 \\
\hline Limiter + In & LIMINP & & 9 \\
\hline Limiter - In & LIMINN & & 8 \\
\hline Limiter Bypass & LIMBYP & & 7 \\
\hline RSSI & RSSI & & 6 \\
\hline LO2 IN & LO2IN & & 25 \\
\hline LO2 OUT & LO2OUT & CMOS Levs & 26 \\
\hline Receive Loop Phase Det & RXPD & & 22 \\
\hline Transmit Loop Phase Det & TXPD & . & 23 \\
\hline Transmit RF In \(\quad \therefore \quad .\). & TXRFIN & \(\square\) & 21 \\
\hline TOTAL & & & 56 \\
\hline
\end{tabular}

\section*{Power Management}

To maximize battery life, the NCL354 handset has 2 power down modes of operation. In Standby mode, all power is turned off except for the data registers so that logic control states are preserved. Power down is done in a manner that preserves the charge in all external capacitors. This minimizes the cycle time needed to restore operation, and eliminates the current needed to recharge the capacitors. Standby current is < \(50 \mu \mathrm{~A}\). In Sniff mode only those circuits needed to detect an incoming ring signal are turned on. This includes the RF section, Receive Synthesizer, and Data detector. In this mode, supply current is \(<5.5 \mathrm{~mA}\).
1.0 Pin Names and Functions (Continued)

TL/W/12474-2
FIGURE 1. Block Diagram of Serial Interface and Frequency Synthesizer.
2.0 Receiver System Characteristics (1st and 2nd IF Mixers, Limiter, RSSI, and PLL)
\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{RF} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{O}}=50 \mathrm{MHz}, \Delta \mathrm{f}_{\mathrm{O}}= \pm 1.0 \mathrm{kHz}, \mathrm{C}\) Message Weight, fmod \(=1.0 \mathrm{kHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{P}_{\text {SIN }}\) & RF Input for 12 dB SINAD & Measured @ Deemphasis Out Matched Input, w/C-message Weighting
\[
R F V_{C C} \geq 3.0 V_{D C}
\] & & -110 & & dBm \\
\hline THD & Total Harmonic Distortion & & & 0.1 & 1.5 & \% \\
\hline BWDEMOD & Demodulation Bandwidth & & 20 & & & kHz. \\
\hline \(\because\)
\(\vdots\) & Ultimate Quieting & Measured @ Deemphasis Out w/C-message Weighting
\[
\mathrm{fmod}=1 \mathrm{kHz}
\]
\[
\mathrm{fdev}=1 \mathrm{kHz}
\] & \(\cdots\) & 35 & - & dB \\
\hline * & AM to PM Conversion & Measured @ Deemphasis Out
\[
\begin{aligned}
& \mathrm{RF}=-60 \mathrm{dBm}, \mathrm{AM}=30 \% \\
& \mathrm{fmod}=1 \mathrm{kHz}
\end{aligned}
\] & & \(-30\) & -20 & dB. \\
\hline
\end{tabular}

\subsection*{3.0 Electrical Specifications}
3.1 ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Symbol } & \multicolumn{1}{|c|}{ Characteristic } & Maximum & Units \\
\hline RF \(V_{\text {CC }}\) & RF Supply Voltage & 5.5 & \(V_{D C}\) \\
\hline AUDIO \(V_{C C}\) & Audio Supply Voltage & 5.5 & \(V_{D C}\) \\
\hline\(T_{J}\) & Junction Temperature & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STJ }}\) & Storage Temperature & -50 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\subsection*{3.2 RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{l|l|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Units \\
\hline RF \(V_{C C}\) & RF Supply Voltage & 3.0 & & 5.0 & \(V_{D C}\) \\
\hline AUDIO \(V_{C C}\) & Audio Supply Voltage (Base) & 3.0 & & 5.0 & \(V_{D C}\) \\
\hline AUDIO \(V_{C C}\) & Audio Supply Voltage (Handset) & 3.0 & & 5.0 & \(V_{D C}\) \\
\hline\(T_{A}\) & Ambient Operating Temperature Range & -30 & +25 & +80 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{F}_{\mathrm{RF}}\) & RF Input Frequency & & 49 & 80 & MHz \\
\hline \(\mathrm{F}_{\mathrm{if1} 1}\) & Maximum 1st IF & & 10.7 & 23 & MHz \\
\hline \(\mathrm{F}_{\mathrm{it2} 2}\) & Maximum 2nd IF & & 0.455 & 3 & MHz \\
\hline
\end{tabular}
3.3 RECEIVER CHARACTERISTICS (1st and 2nd IF Mixers, Limiter, RSSI, and PLL)
\(T_{A}=25^{\circ} \mathrm{C}, \operatorname{RF} V_{C C}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{O}}=50 \mathrm{MHz}, \Delta \mathrm{f}_{\mathrm{O}}= \pm 1.0 \mathrm{kHz}, C\) Message Weight, \(\mathrm{f}_{\text {mod }}=1.0 \mathrm{kHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline ICC & Drain Current & No Input Signal, RF V \({ }_{\text {CC }}\) Enabled & & 4.2 & & mAdc \\
\hline ICC & Drain Current & No Input Signal, RF V \({ }_{\text {CC }}\) Disabled & & 20 & 100 & \(\mu\) Adc \\
\hline
\end{tabular}
3.3.1 1st Mixer Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), RF \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{ff}}=50 \mathrm{MHz}, \mathrm{f}_{10}=40 \mathrm{MHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{G}_{\mathrm{MC1}}\) & 1st Mixer Conversion Voltage Gain & Loaded by \(330 \Omega\)
\[
\begin{aligned}
& \mathrm{f}_{\mathrm{rf}}=50 \mathrm{MHz} \\
& \mathrm{flo}=40 \mathrm{MHz}
\end{aligned}
\] & 11 & 15 & & dB \\
\hline \(\mathrm{Z}_{\text {out1st }}\) & 1st Mixer Output Impedance & \(\mathrm{f}_{\mathrm{O}}=10 \mathrm{MHz}\) & & 330 & & \(\Omega\) \\
\hline \(\mathrm{Z}_{\text {in1st }}\) & 1st Mixer RF Input Impedance & \(\mathrm{f}_{\mathrm{ff}}=50 \mathrm{MHz}\) & & 2k & & \(\mathrm{k} \Omega\) \\
\hline \(V_{\text {n1stm }}\) & 1st Mixer Input Noise Voltage & Referenced to 1st Mixer Input as an Amplifier & & 14 & & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & 1st Mixer LO Output Feedthrough & Measured @ 1st Mixer Output & & 28 & & dB \\
\hline & 1st Mixer LO Input Feedthrough & Measured @ 1st Mixer Input & & 28 & & dB \\
\hline IP3m1 & 1st Mixer 3rd Order Intercept & Referenced to 1st Mixer Input & & 30 & & mVrms \\
\hline & 1st Mixer 1dB Compression Point & Referenced to 1st Mixer Input & & 10 & & mVrms \\
\hline
\end{tabular}

\subsection*{3.0 Electrical Specifications (Continued)}
3.3.2 2nd Mixer Characteristlcs \(T_{A}=25^{\circ} \mathrm{C}\), RF \(V_{C C}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{ff}}=10.695 \mathrm{MHz}, \mathrm{f}_{\mathrm{lo}}=10.24 \mathrm{MHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline ZinRF2nd & 2nd Mixer RF Input Impedance & \(\mathrm{fff}=10.695 \mathrm{MHz}\) & & 330 & & \(\Omega\) \\
\hline Zout2nd & 2nd Mixer Output Impedance & \(\mathrm{f}_{\mathrm{O}}=455 \mathrm{kHz}\) & & 1.5 & & k \(\Omega\) \\
\hline GMC2 & 2nd Mixer Conversion Voltage Gain & Loaded by \(1.5 \mathrm{k} \Omega\) \(\begin{aligned} \mathrm{f}_{\mathrm{rf}} & =10.695 \mathrm{MHz} \\ & =10.24 \mathrm{MHz}\end{aligned}\) & 10 & 15 & & dB \\
\hline ZinLO2nd & 2nd Mixer LO Input Impedance & \(\mathrm{f}_{10}=10.24 \mathrm{MHz}\) & 20k & & & \(\Omega\) \\
\hline Vn2ndM & 2nd Mixer Noise Voltage & Referenced to 2nd Mixer Input as an Amplifier & & 9 & & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & 2nd Mixer LO Output Feedthrough & Measured © 2nd Mixer Output & & 40 & & dB \\
\hline & 2nd Mixer LO Input Feedthrough & Measured © 2nd Mixer Input & & 40 & & dB \\
\hline IP3m2 & 2nd Mixer 3rd Order Intercept & Referenced to 2nd Mixer Input & & 30 & & mVrms \\
\hline & 2nd Mixer 1 dB Compression Point & Referenced to 2nd Mixer Input & & 10 & & mVrms \\
\hline
\end{tabular}
3.3.3 Limiter Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), RF \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \mathrm{DC}, \mathrm{f}_{\mathrm{O}}=455 \mathrm{kHz}\)
\begin{tabular}{l|l|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Symbol } & \multicolumn{1}{|c|}{ Characteristic } & Conditions & Min & Typ & Max & Units \\
\hline & Limiter Voltage Gain & & & 90 & & dB \\
\hline & Limiter Input Noise Voltage & Referenced to Limiter Input & & 20 & & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & Limiter Output Voltage Swing & & & 400 & & mVP \\
\hline BWlim & Limiter -3 dB Bandwidth & & & 2 & & MHz \\
\hline SENSImt & Limiter Sensitivity & For 12 dB sinad @ DEOUT & & 25 & & \(\mu\) Vrms \\
\hline
\end{tabular}
3.3.4 RSSI Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), RF \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{O}}=455 \mathrm{kHz}\)
\begin{tabular}{c|c|c|c|c|c|c}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline DRRSSI & \begin{tabular}{l}
RSSI Dynamic Range \\
(Logarithmic Response)
\end{tabular} & & & 60 & & dB \\
\hline & RSSI Voltage Output & \begin{tabular}{c}
Limiter in \(=10 \mu \mathrm{Vrms}\) \\
Limiter in \(=10 \mathrm{mVrms}\)
\end{tabular} & & 0.2 & & V \\
\hline & RSSI Attack Time & & & & 1.2 & \\
\hline & RSSI Decay Time & & & & 100 & \(\mu \mathrm{~s}\) \\
\hline
\end{tabular}

\subsection*{3.3.5 PLL Demodulator Characteristics}
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{O}}=455 \mathrm{kHz}, \Delta \mathrm{f}_{\mathrm{O}}= \pm 1.0 \mathrm{kHz}, \mathrm{C}\) Message Weight, \(\mathrm{f}_{\text {mod }}=1.0 \mathrm{kHz}\)
\begin{tabular}{l|l|c|c|c|c|c}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline ko & VCO Gain & & & 100 & & \(\mathrm{kHz} / \mathrm{V}\) \\
\hline kd & Phase Detector Gain & & & 0.20 & & \(\mu \mathrm{~A} / \square\) \\
\hline kv & PLL Open Loop Gain & & & \(360 \times 103\) & & \(1 / \mathrm{s}\) \\
\hline \(\mathrm{f}_{\mathrm{c}}\) & VCO Center Frequency & Open Loop & 398 & 455 & 512 & kHz \\
\hline
\end{tabular}
3.0 Electrical Specifications (Continued)
3.4 AUDIO CHARACTERISTICS \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\therefore\) Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline Audio \(\mathrm{V}_{\text {CC }}\) Enabled & Drain Current & ICCA & , & 8 & & mAdc \\
\hline Audio V \({ }_{\text {CC }}\) Disabled & Drain Current & ICCA & . & 20 & 100 & \(\mu\) Adc \\
\hline From Enable Transition & Audio Switch Time & \(t_{\text {S1 }} \ldots . .57\) & & & 0.5 & ms \\
\hline " & Audio Switch Isolation & IS1 . . S7 & 65 & & & dB \\
\hline . & Audio Switch Loss & LSW & & & 0.5 & dB \\
\hline
\end{tabular}
3.4.1 Compressor Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline THD & Total Harmonic Distortion & - \(\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IMAX }}\) @ 1 kHz & \(\cdots\) & 0.5 & \(\because 1.0\) & \% \\
\hline \(\mathrm{G}_{\mathrm{CO}}\) & - 0 dB Gain & \(\mathrm{V}_{\text {IN }}=90 \mathrm{mVrms}\) & -1.5 & \(\bigcirc\) & 1.5 & dB \\
\hline \(\mathrm{t}_{\mathrm{Ca}}\) & Attack Time & \(\mathrm{G}_{\text {CO }} ; \mathrm{COMPCAP}=2.2 \mu \mathrm{~F}\) & '. & 6 & & ms \\
\hline \(\mathrm{t}_{\mathrm{Cd}}\) & Decay Time & \(\mathrm{G}_{\text {CO }}, \mathrm{COMPCAP}=2.2 \mu \mathrm{~F}\) & & 22 & & ms \\
\hline \(\mathrm{G}_{\mathrm{T}}\) & Gain Tracking Linearity & \(11 \mathrm{~dB}>\mathrm{G}_{\mathrm{C}}>-20 \mathrm{~dB}\) & -2 & & +2 & dB \\
\hline PBW & Power Bandwidth . & Unity Gain & 10 & \(\cdots\) & & kHz \\
\hline DR \({ }_{\text {IN }}\) & Input Dynamic Range & & -40 & , & +22 & dB \\
\hline DR \({ }_{\text {OUT }}\) & Output Dynamic Range & . \({ }^{\text {a }}\) & -20 & & +11 & dB \\
\hline Vimax & Maximum Input Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & & \(\mathrm{V}_{\mathrm{CC}}-0.4\) & \(\mathrm{V}_{\mathrm{CC}}-0.2\) & \(\mathrm{V}_{\mathrm{PP}}\) \\
\hline Vomax & Maximum Output Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & \(V_{C C}-2.0\) & \(V_{C C}-1.6\) & & \(V_{P P}\) \\
\hline \(\mathrm{flo}^{0}\) & Low Frequency Roll-Off & \begin{tabular}{l}
\[
\mathrm{G}_{\mathrm{C}(\mathrm{~F})}=\mathrm{G}_{\mathrm{C}}(1 \mathrm{kHz})-3 \mathrm{~dB}
\] \\
CPERCAP \(=1.0 \mu \mathrm{~F}\)
\[
\mathrm{V}_{\mathbb{I N}}=\mathrm{G}_{\mathrm{CO}}
\]
\end{tabular} & \(\cdots\) & . & 180 & Hz \\
\hline \(\mathrm{f}_{\text {hi }}\) & High Frequency Roll-Off & \(\mathrm{G}_{\mathrm{C}(\mathrm{F})}=\mathrm{G}_{\mathrm{C}}(1 \mathrm{kHz})-3 \mathrm{~dB}\) & 4 & & & kHz \\
\hline
\end{tabular}
3.4.2 Expander Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{C C}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline THD & Total Harmonic Distortion & \(\mathrm{V}_{0} \leq\) Vomax @ 1 kHz & & 0.5 & 1.0 & \% \\
\hline \(\mathrm{G}_{\mathrm{EO}}\) & 0 dB Gain & \(\mathrm{V}_{\mathrm{IN}}=90 \mathrm{mVrms}\) & -7.5 & -6 & -4.5 & dB \\
\hline \(\mathrm{t}_{\mathrm{Ea}}\) & Attack Time & \(\mathrm{GEO}_{\text {E }}, \mathrm{EXPCAP}=2.2 \mu \mathrm{~F}\) & & 19 & & ms \\
\hline \(t_{\text {Ed }}\) & Decay Time & \(\mathrm{G}_{\text {EO }}, \mathrm{EXPCAP}=2.2 \mu \mathrm{~F}\) & & 22 & & ms \\
\hline \(\mathrm{G}_{\top}\) & Gain Tracking Linearity & \(11 \mathrm{~dB}>\mathrm{G}_{\mathrm{E}}>-20 \mathrm{~dB}\) & -2 & . & +2 & dB \\
\hline PBW & Power Bandwidth ', & Unity Gain & 10 & ? & & kHz \\
\hline \(\mathrm{DR}_{\text {IN }}\) & Input Dynamic Range & - & -20 & \% & \(+11\) & dB \\
\hline DR \({ }_{\text {OUT }}\) & Output Dynamic Range: & & -46 & & +16 & dB \\
\hline Vimax & Maximum Input Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & & \(\mathrm{V}_{\mathrm{CC}}-0.4\) & \(\mathrm{V}_{\mathrm{CC}}-1.6\) & \(V_{\text {PP }}\) \\
\hline Vomax & Maximum Output Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & \(V_{C C}-2.0\) & \(\therefore\) & & \(V_{\text {PP }}\) \\
\hline \(\mathrm{flo} \cdots\) & Low Frequency Roll-Off & \(\mathrm{G}_{\mathrm{C}(\mathrm{F})}=\mathrm{G}_{\mathrm{C}}(1 \mathrm{kHz})-3 \mathrm{~dB}\) & & & 180 & Hz \\
\hline \(\mathrm{f}_{\mathrm{hi}}\) & High Frequency Roll-Off & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{C}(\mathrm{~F})}=\mathrm{G}_{\mathrm{C}}(1 \mathrm{kHz})-3 \mathrm{~dB} \\
& \mathrm{~V}_{\mathrm{IN}}=\mathrm{G}_{\mathrm{C} 0}
\end{aligned}
\] & 4 & & & kHz \\
\hline
\end{tabular}

\subsection*{3.0 Electrical Specifications (Continued)}
3.4.3 Deemphasis Filter Op Amp Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{C C}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Open Loop Gain & & \(2 \times \mathrm{R}_{\mathrm{L}}\) & & & V/V \\
\hline GBW & Gain-Bandwidth Product & & & 200 & & kHz \\
\hline Vinmax & Maximum Input Voltage Swing & \(\mathrm{A}_{\mathrm{CL}}=10 \mathrm{~dB}\) & & & \(V_{C C}-1.6\) & \(V_{P P}\) \\
\hline Voutmax & Maximum Output Voltage Swing & \(A_{C L}=10 \mathrm{~dB}\) & \(V_{C C}-2.0\) & & & VPP \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & & & 200 & nA \\
\hline Requiv & \begin{tabular}{l}
Equivalent External DC \\
Resistance for Minimal Input \\
Offset to Expander
\end{tabular} & & & 13.2 & & \(k \Omega\) \\
\hline
\end{tabular}
3.4.4 TX Amplifier Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{l|l|c|c|c|c|c}
\hline Symbol & \multicolumn{1}{|c|}{ Characteristic } & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Open Loop Gain & & & 80 & \(\therefore\) & dB \\
\hline GBW & Gain-Bandwidth Product & & & 200 & & kHz \\
\hline \(\mathrm{T}_{\mathrm{D}}\) & Total Distortion & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & 0.5 & 1.0 & \(\%\) \\
\hline
\end{tabular}

Handset Application, Inductive Earpiece, Audio V \(\mathbf{C C}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{l|l|l|l|l|c|c}
\hline Vinmax & Maximum Input Voltage Swing (1st Amp) & \(f_{O}=4 \mathrm{kHz}\) & & & \(V_{C C}-1.6\) & \(V_{P P}\) \\
\hline Vomax & Maximum Output Voltage Swing (1st Amp) & \(f_{O}=4 \mathrm{kHz}\) & \(V_{C C}-2.0\) & & & \(V_{P P}\) \\
\hline Vinmax & Maximum Input Voltage Swing (2nd Amp) & \(f_{O}=4 \mathrm{kHz}\) & & & \(V_{C C}-1.6\) & \\
\hline Vomax & Maximum Output Voltage Swing (2nd Amp) & \(f_{O}=4 \mathrm{kHz}\) & \(V_{C C}-2.0\) & & & \(V_{P P}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Differential Ended Output Load & & & 270 & & \(\Omega\) \\
\hline
\end{tabular}

Handset Application, Ceramic Earplece, Audio VCC \(=3.6\) V \(_{\text {DC }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Vinmax & Maximum Input Voltage Swing (1st Amp) & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & & \(\mathrm{V}_{\mathrm{CC}}-1.6\) & \(V_{\text {PP }}\) \\
\hline Vomax & Maximum Output Voltage Swing (1st Amp) & \(\mathrm{f}_{0}=4 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{CC}}-1.0\) & \(\mathrm{V}_{\mathrm{CC}}-0.6\) & & \(V_{P P}\) \\
\hline Vinmax & Maximum Input Voltage Swing (2nd Amp) & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & & \(V_{C C} \dot{C}-0.2\) & \\
\hline Vomax & Maximum Output Voltage Swing (2nd Amp) & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & \(V_{C C}-1.0\) & \(\mathrm{V}_{\mathrm{CC}}-0.6\) & & \(V_{P P}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Differential Ended Output Load & & & 1000 & & \(\Omega\) \\
\hline
\end{tabular}

Base Application, Audio \(\mathbf{V C C}_{\mathbf{C}}=5 \mathbf{V}_{\mathbf{D C}}\)
\begin{tabular}{l|l|c|c|c|c|c}
\hline Vinmax & Maximum Input Voltage Swing (1st Amp) & \(f_{O}=4 \mathrm{kHz}\) & & & 1.9 & \(V_{P P}\) \\
\hline Vomax & Maximum Output Voltage Swing (1st Amp) & \(f_{O}=4 \mathrm{kHz}\) & 3 & & & \(V_{P P}\) \\
\hline Vinmax & Maximum Input Voltage Swing (2nd Amp) & \(f_{O}=4 \mathrm{kHz}\) & & & \(V_{C C}-1.6\) & \\
\hline Vomax & Maximum Output Voltage Swing (2nd Amp) & \(f_{O}=4 \mathrm{kHz}\) & 3 & & & \(V_{P P}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Single Ended Output Load & & & 450 & & \(\Omega\) \\
\hline
\end{tabular}
3.0 Electrical Specifications (Continued)
3.4.5 RX Amplifier Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol. & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Open Loop Gain & & & 80 & & dB . \\
\hline GBW & Gain-Bandwidth Product & & & 200 & & kHz \\
\hline \(\mathrm{V}_{\text {IN }}\) max & Maximum Input Voltage Swing (Differential) & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & 0.32 & 3.2 & \(V_{\text {Pp }}\) \\
\hline \(V_{\text {OUT }}\) max & Maximum Output Voltage Swing * & \(\mathrm{fo}=4 \mathrm{kHz}\) & 3.2 & & & \(V_{\text {PP }}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Output Load & & & 10k \| 70p & & \(\Omega \| F\) \\
\hline TD & Total Distortion & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & 0.5 & 1.0 & \% \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & & , & 100 & nA \\
\hline
\end{tabular}
3.4.6 Microphone Amplifier/Expander Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{C C}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Open Loop Gain & & 60 & & & dB \\
\hline GBW & Gain-Bandwidth Product & & & 500 & & kHz \\
\hline \(V_{\text {IN }}\) max & Maximum Input Voltage Swing & \(A_{C L}=20 \mathrm{~dB}, \mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & & \(\mathrm{V}_{\mathrm{CC}}-1.6\) & \(\mathrm{V}_{\mathrm{PP}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) max & Maximum Output Voltage Swing & \(\mathrm{A}_{\mathrm{CL}}=20 \mathrm{~dB}, \mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{CC}}-0.6\) & \(V_{C C}-0.4\) & & \(V_{P P}\) \\
\hline ACLH & Closed Loop Gain-High Output & \(\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {SWH }}, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & & 20 & & dB \\
\hline \(\mathrm{A}_{\text {CLL }}\) & Closed Loop Gain-Low Output & \(\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\text {SWL }}, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}\) & & 14 & & dB \\
\hline \(\mathrm{V}_{\text {SWL }}\) & Low Gain Switching Output Voltage & 90\% of final gain & & 5 & & mVrms \\
\hline \(\mathrm{V}_{\text {SWH }}\) & High Gain Switching Output Voltage & 90\% of final gain & & 50 & & mVrms \\
\hline tspatck & Speech Response Attack Time & \begin{tabular}{l}
\[
\mathrm{C}_{\mathrm{EXT}}=0.4 \mu \mathrm{~F}, @ 100 \mathrm{mVrms}
\] \\
\(90 \%\) of final gain
\end{tabular} & & 25 & & ms \\
\hline \({ }^{\text {t SPDECY }}\) & Speech Response Decay Time & \[
\begin{aligned}
& C_{E X T}=0.4 \mu \mathrm{~F} \text {, @ V VUT max } \\
& 90 \% \text { of final gain }
\end{aligned}
\] & & 85 & & ms \\
\hline TD & Total Distortion & \(\mathrm{f}_{\mathrm{O}}=200 \mathrm{Hz-4} \mathrm{kHz}\) & & 0.5 & 1.0 & \% \\
\hline flow & Low Frequency Cut-off & \(Z_{C L}=Z_{C L O}-3 \mathrm{~dB}\) & & 180 & & Hz \\
\hline \(\mathrm{Z}_{\text {s }}\) & Source Impedance & & & 4.7 & & \(\mathrm{k} \Omega\) \\
\hline & External Resistor Value for Defeat & Handset Base & & \[
\begin{gathered}
75 \\
200 \\
\hline
\end{gathered}
\] & & k \(\Omega\) \\
\hline ; & Gain Switching Threshold & & & 35 & & mVrms \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & & & 100 & nA \\
\hline
\end{tabular}
3.4.7 Preemphasis Filter Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{l|l|l|c|c|c|c}
\hline \multicolumn{1}{c|}{ Symbol } & \multicolumn{1}{|c|}{ Characteristic } & \multicolumn{1}{c|}{ Conditions } & Min & Typ & Max & Units \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Open Loop Gain & & & 80 & & dB \\
\hline GBW & Gain-Bandwidth Product & & & 500 & & kHz \\
\hline \(\mathrm{V}_{\mathrm{IN}}\) max & Maximum Input Voltage Swing & \(\mathrm{A}_{\mathrm{CL}}=0 \mathrm{~dB}, \mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & & \(\mathrm{V}_{\mathrm{CC}}-1.6\) & \(\mathrm{~V}_{\mathrm{PP}}\) \\
\hline \(\mathrm{V}_{\mathrm{OUT}} \max\) & Maximum Output Voltage Swing & \(\mathrm{A}_{\mathrm{CL}}=0 \mathrm{~dB}, \mathrm{fo}_{\mathrm{O}}=4 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & & & \(\mathrm{~V}_{\mathrm{PP}}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Output Load & & & \(10 \mathrm{k} \| 70 \mathrm{p}\) & & \(\Omega \| \mathrm{F}\) \\
\hline \(\mathrm{A}_{\mathrm{CL}}\) & Closed Loop Gain & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & 0 & & dB \\
\hline \(\mathrm{f}_{\mathrm{P}}\) & Filter Pole Frequency \((-3 \mathrm{~dB})\) & \(\mathrm{Z}_{\mathrm{CL}}=\mathrm{Z}_{\mathrm{CLO}}-3 \mathrm{~dB}\) & & 1.0 & & kHz \\
\hline \(\mathrm{I}_{\mathrm{B}}\) & Input Bias Current & & & & 100 & nA \\
\hline
\end{tabular}

\subsection*{3.0 Electrical Specifications (Continued)}
3.4.8 Auxilliary Amplifier Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{C C}=3.6 \mathrm{~V}_{D C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Test Conditions & Min & Typ & Max & Units \\
\hline AOL & Open Loop Gain & & & 80 & & dB \\
\hline GBW & Gain-Bandwidth Product & & & 200 & & kHz \\
\hline \(V_{\text {IN }}\) max & Maximum Input Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & & \(V_{C C}-1.6\) & VPP \\
\hline \(V_{\text {OUt }}\) max & Maximum Output Voltage Swing & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) & \(V_{C C}-2.0\) & \(V_{C C}-1.6\) & & \(V_{P P}\) \\
\hline \(V_{\text {OUT }}\) max & Maximum Output Voltage Swing & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) & 3 & & & \(V_{P P}\) \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & Output Load & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & 10k & & \(\Omega\) \\
\hline ACL & Closed Loop Gain & \(\mathrm{f}_{\mathrm{O}}=\mathrm{DC}\) & & 6 & & dB \\
\hline TD & Total Distortion & \(\mathrm{f}_{\mathrm{O}}=4 \mathrm{kHz}\) & & 0.5 & 1.0 & \% \\
\hline
\end{tabular}
3.5 RX Data Slicer Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Audio \(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}_{\mathrm{DC}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Tур & Max & Units \\
\hline \(\mathrm{V}_{\text {IN }}\) max & Maximum Input Voltage Swing & & & & \(V_{C C}-1.6\) & VPP \\
\hline Volow & Output Voltage Low (OC Out) & & 0 & & \(0.25 \mathrm{~V}_{\mathrm{CC}}\) & V \\
\hline \(V_{0}\) high & Output Voltage High (OC Out) & & \(0.75 \mathrm{~V}_{\mathrm{CC}}\) & & 5.0 & V \\
\hline \(V_{\text {SWIT }}\) & Switching Point & & \begin{tabular}{l}
\(V_{\text {REF }} \pm\) \\
450 mV
\end{tabular} & \begin{tabular}{l}
\(V_{\text {REF }} \pm\) \\
500 mV
\end{tabular} & \(\mathrm{V}_{\text {REF }} \pm\) 600 mV & V \\
\hline \(t_{\text {r }} / \mathrm{t}_{\mathrm{f}}\) & Rise and Fall Time & \[
\begin{aligned}
& 10 \%-90 \% \\
& 90 \%-10 \%
\end{aligned}
\] & & & 2 & \(\mu \mathrm{S}\) \\
\hline & Output State When No Data & & & \begin{tabular}{l}
Last \\
Valid \\
Data
\end{tabular} & & \\
\hline \({ }^{\text {I SINK }}\) & Sink Current & \(\mathrm{V}_{\mathrm{OL}}=0.45 \mathrm{~V}\) & 2 & & & mA \\
\hline
\end{tabular}
3.6 Serial Interface DC and AC Characteristics \(T_{A}=25^{\circ} \mathrm{C}\), Audio \(V_{C C}=3.0 \mathrm{~V}_{D C}-5.0 \mathrm{~V}_{D C}, V_{S S}=0 V_{D C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic & Conditions & Min & Typ & Max & Units \\
\hline I/L & Input Leakage & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{DD}}\) & -1 & & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input High Voltage & \(\mathrm{I}_{\mathrm{IN}}=20 \mu \mathrm{~A}\) & \(\mathrm{V}_{\mathrm{CC}}-0.3\) & & \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Input Low Voltage & \(\mathrm{l}_{\mathrm{IN}}=20 \mu \mathrm{~A}\) & 0 & & 0.3 & V \\
\hline \(\mathrm{t}_{\mathrm{p}} / \mathrm{t}_{\mathrm{f}}\) & Rise and Fall Times & \[
\begin{aligned}
& 20 \%-80 \% \text { and } \\
& 80 \%-20 \%
\end{aligned}
\] & & & 200 & ns \\
\hline \(\mathrm{f}_{\text {SK }}\) & CLK Clock Frequency & & 0 & 256 & 260 & kHz \\
\hline \({ }_{\text {tSKH }}\) & CLK High Time & & 1.2 & & & \(\mu \mathrm{s}\) \\
\hline tSKL & CLK Low Time & & 1.2 & & & \(\mu \mathrm{S}\) \\
\hline tcss & CS Setup Time & Relative to CLK & 12 & & & \(\mu \mathrm{s}\) \\
\hline \(t_{L H}\) & Data Latch Hold Time & Relative to CS Inactive & 5 & & & \(\mu \mathrm{s}\) \\
\hline \({ }^{\text {S SIS }}\) & SI Setup Time & Relative to CLK & 800 & & & ns \\
\hline \({ }^{\text {SSIH }}\) & SI Hold Time & Relative to CLK & 800 & & & ns \\
\hline
\end{tabular}
3.0 Electrical Specifications (Continued)
3.7 PLL Synthesizer DC Characteristics \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{DC}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Characteristic : & Conditions : & Pin : & \(\therefore\) Min & Max & Units \\
\hline \(V_{\text {IL }}\) & Input Voltage Low & & Data, Clk, En & - & 0.3 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input Voltage High & & Data, Clk, En & \(\mathrm{V}_{\mathrm{CC}}-0.3\) & ! & V \\
\hline \(\mathrm{I}_{\text {IL }}\). & Input Current Low & & Data, Clk, En & -5 \(\quad \because\) & & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & Input Current High & : . . . & Data, Clk, En & , . & 5 & \(\mu \mathrm{A}\) \\
\hline IPDSRC & Phase Detect Source Current & & \% RxPD, Tx PD & \(\therefore-0.5\) & & mA \\
\hline IPDSNK & Phase Detect Sink Current & .: \(\cdot\) & - Rx PD, Tx PD & & 0.5 & mA \({ }^{\text {a }}\) \\
\hline \(V_{\text {OLPD }}\) & Phase Detect Output Voltage Low & \(\mathrm{I}_{\text {PDSNK }}=0.5 \mathrm{~mA}\) & Rx PD, Tx PD & & 0.6 & \(V\) \\
\hline \(V_{\text {OHPD }}\) & Phase Detect Output Voltage High & \(I_{\text {PDSRC }}=-0.5 \mathrm{~mA}\) & RxPD, Tx PD & 3.0 & - & V \\
\hline & TRI-STATE \({ }^{\text {® }}\) Leakage Current & & Rx PD, Tx PD & -50 & 50 & nA \\
\hline & Input Capacitance & : & Data,Clk,En & & 8 & pF \\
\hline & Output Capacitance & & RxPD, Tx PD & , & 8 & pF. \\
\hline tsu & Setup Time Data to CLK & & Data, CLK & 100 & & ns \\
\hline \({ }_{\text {t }}\) & Setup Time En to CLK & & En, CLK & 200 & & ns: \\
\hline \({ }^{+} \mathrm{H}\) & Hold Time & & Data, CLK & 90 & & ns \\
\hline \(t_{\text {REC }}\) & Recovery Time & & En, CLK & 90. & & ns \\
\hline \({ }^{\text {tw }}\) & Input Pulse Width & \(\because\) & En, Clk & 100 & , & ns \\
\hline & 2nd LO Frequency & \(\cdots\) & & & 12 & MHz \\
\hline & Tx VCO Input Frequency & \(\mathrm{V}_{\mathrm{IN}}=200 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}\) & & & 80. & MHz \\
\hline
\end{tabular}

七S\&70N

\subsection*{4.0 NCL354 Serial Interface Timing}

TL/W/12474-3
FIGURE 4. Serial Interface

Note: "EN" is an internal signal that loads the registers.
" R " is an internal signal that resets the 16 -bit shift register.
An extra clock pulse is required for resetting the shift register when < 16-bits are entered (SNFF mode).

\subsection*{4.0 NCL354 Serial Interface Timing (Continued)}

Rrx2-Rrx0 Receive Reference Frequency Select Rtx2-Rtx0 Transmit Reference Frequency Select
Crx2-CrxO Capacitor Select for Receive VCO
CD4-CDO Carrier Detect Level
RPwr RF Power Switch

\section*{0}

Section 9
Physical Dimensions

\section*{Section 9 Contents}
Physical Dimensions 9-3
Bookshelf
DistributorsWorldwide Sales Offices

\section*{8 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D08C}

All dimensions are in inches (millimeters)

DOsC (REV C)

\section*{20 Lead Ceramic Leadiess Chip Carrier, Type C NS Package Number E20A}

All dimensions are in inches (millimeters)

Bottom View

Detail A

\section*{8 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H08C}

All dimensions are in inches (millimeters)

HOBC (REV E)

\section*{8 Lead Ceramic Dual-in-Line Package NS Package Number J08A}

\section*{16 Lead Ceramic Dual-in-Line Package NS Package Number J16A}

All dimensions are in inches [millimeters]

\section*{3 Lead Molded SOT-23, Low Profile NS Package Number M03B}

M038 (REV E)

\section*{8 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M08A}

14 Lead (0.150 " Wide) Molded Small Outline Package, JEDEC NS Package Number M14A

All dimensions are in inches (millimeters)

\section*{14 Lead (\(0.300^{\prime \prime}\) Wide) Molded Small Outline Package, JEDEC NS Package Number M14B}

\section*{16 Lead (0.150 " Wide) Molded Small Outline Package, JEDEC NS Package Number M16A}

All dimensions are in inches (millimeters)

\section*{5 Lead Molded SOT-23-5 NS Package Number MA05A}

All dimensions are in inches [millimeters]

LAND PATTERN RECOMMENDATION

\(\qquad\)

\section*{28 Lead (\(0.350^{\prime \prime}\) Wide) Molded Small Outline Package NS Package Number MA28A}

All dimensions are in inches [millimeters]

28 Lead Thin Small Outline Package, Type I. NS Package Number MBS28A

All dimensions are in millimeters

DETAIL A
TYPICAL
DIMENSIONS ARE IN MILLIMETERS

\section*{44 Lead Thin Small Outline Package, EIAJ, Type II NS Package Number MDA44}

All dimensions are in millimeters

\section*{44 Lead Thin Small Outline Package, EIAJ, Type II NS Package Number MDB44}

All dimensions are in millimeters

\(\frac{\text { DETAIL A }}{\text { TYPICAL }}\)

\section*{20 Lead Molded Thin Shrink Small Outline Package, JEDEC} NS Package Number MTC20

All dimensions are in millimeters

\section*{56 Lead Molded Thin Shrink Small Outline Package, JEDEC NS Package Number MTD56}

All dimensions are in millimeters

\section*{8 Lead (\(0.300^{\prime \prime}\) Wide) Molded Dual-in-Line Package NS Package Number N08E}

All dimensions are in inches (millimeters)

\section*{14 Lead (\(0.300^{\prime \prime}\) Wide) Molded Dual-in-Line Package NS Package Number N14A}

All dimensions are in inches (millimeters)

\section*{16 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N16A}

All dimensions are in inches (millimeters)

\section*{16 Lead (\(0.300^{\prime \prime}\) Wide) Molded Dual-in-Line Package, Thermally Enhanced NS Package Number N16G \\ All dimensions are in inches}

N16G (REV B)

\section*{28 Lead (\(0.600^{\prime \prime}\) Wide) Molded Dual-in-Line Package NS Package Number N28B}

All dimensions are in inches (millimeters)

\section*{28 Lead Molded Plastic Leaded Chip Carrier NS Package Number V28A}

\section*{48 Lead (7mm x 7mm) Molded Plastic Quad Flat Package, JEDEC NS Package Number VBH48A}

All dimensions are in millimeters

VBH48A (REV C)

\section*{3 Lead Molded TO-92 \\ NS Package Number Z03A}

All dimensions are in inches [millimeters]

\section*{NOTES}

NOTES
\(\square\)

\section*{National Semiconductor}

\author{
Bookshelf of Technical Support Information \\ National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature. \\ This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book. \\ For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959. \\ We are interested in your comments on our technical literature and your suggestions for improvement. \\ Please send them to: \\ Technical Communications Dept. M/S 16-300 \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090
}

\title{
ADVANCED BiCMOS LOGIC (ABTC, IBF, BiCMOS SCAN, LOW VOLTAGE BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK—1994 \\ ABTC/BCT Description and Family Characteristics • ABTC/BCT Ratings, Specifications and Waveforms \\ ABTC Applications and Design Considerations • Quality and Reliability • Integrated Bus Function (IBF) Introduction 54/74ABT3283 Synchronous Datapath Multiplexer • 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer 54/74ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing SCAN18xxxA BiCMOS 5V Logic with Boundary Scan • 74LVT Low Voltage BiCMOS Logic \\ VME Extended TTL Technology for Backplanes
}

\section*{ADVANCED BIPOLAR LOGIC \\ FAST, FASTr, ALS, AS DATABOOK-1995}

Introduction to Advanced Bipolar Logic Families • FAST/FASTr/ALS/AS • Family Characteristics
Ratings, Specifications and Waveforms • Design Considerations • Datasheets • Ordering and Packaging Information

\author{
APPLICATION SPECIFIC ANALOG PRODUCTS DATABOOK—1995 \\ Audio Circuits • Video Circuits • Automotive • Special Functions • Surface Mount
}

\author{
ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 \\ SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging
}

CMOS LOGIC DATABOOK—1988
CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK—1995
Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators
Crystal Clock Oscillators
COP8 \({ }^{\text {™ }}\) DATABOOK-1994
COP8 Family • COP8 Applications • MICROWIRE/PLUS Peripherals • COP8 Development Support
CROSSVOLT \({ }^{\text {TM }}\) LOW VOLTAGE LOGIC SERIES DATABOOK—1994
LCX Family • LVX Translator Family • LVX Bus Switch Family • LVX Family • LVQ Family • LVT Family

\section*{DATA ACQUISITION DATABOOK-1995}

Data Acquisition Systems • Analog-to-Digital Converters • Digital-to-Analog Converters • Voltage References Temperature Sensors • Active Filters • Analog Switches/Multiplexers • Surface Mount

DATA ACQUISITION DATABOOK SUPPLEMENT-1992
New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.

\section*{DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989}

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series
Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

\author{
DRAM MANAGEMENT HANDBOOK—1993 \\ Dynamic Memory Control • CPU Specific System Solutions • Error Detection and Correction Microprocessor Applications
}

\section*{EMBEDDED CONTROLLERS DATABOOK-1992 \\ COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools}

\section*{FDDI DATABOOK—1994 \\ Datasheets • Application Notes}

\author{
F100K ECL LOGIC DATABOOK \& DESIGN GUIDE-1992 \\ Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets •11C Datasheets Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations Power Distribution and Thermal Considerations • Testing Techniques • 300 Series Package Qualification Quality Assurance and Reliability • Application Notes
}

\author{
FACTTM ADVANCED CMOS LOGIC DATABOOK—1993 \\ Description and Family Characteristics \(\bullet\) Ratings, Specifications and Waveforms \\ Design Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXX \\ Quiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA/B
}

\section*{FAST \({ }^{\circledR}\) APPLICATIONS HANDBOOK—1990}

Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders
Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design
FAST Characteristics and Testing \(\bullet\) Packaging Characteristics

\title{
HIGH-PERFORMANCE BUS INTERFACE DATABOOK—1994 \\ QuickRing • Futurebus + /BTL Devices • BTL Transceiver Application Notes • Futurebus + Application Notes High Performance TTL Bus Drivers • PI-Bus • Futurebus + /BTL Reference
}

\section*{IBM DATA COMMUNICATIONS HANDBOOK—1992}

IBM Data Communications • Application Notes

\section*{INTERFACE: DATA TRANSMISSION DATABOOK—1994}

TIA/EIA-232 (RS-232) • TIA/EIA-422/423 • TIA/EIA-485 • Line Drivers • Receivers • Repeaters
Transceivers • Low Voltage Differential Signaling • Special Interface • Application Notes

\section*{LINEAR APPLICATIONS HANDBOOK-1994}

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

\section*{LOCAL AREA NETWORKS DATABOOK—1993 SECOND EDITION}

Integrated Ethernet Network Interface Controller Products • Ethernet Physical Layer Transceivers
Ethernet Repeater Interface Controller Products • Token-Ring Interface Controller (TROPIC)
Hardware and Software Support Products • FDDI Products • Glossary and Acronyms

\section*{LOW VOLTAGE DATABOOK—1992}

This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS).

\section*{MASS STORAGE HANDBOOK—1989}

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

\section*{MEMORY DATABOOK—1994 \\ FLASH•CMOS EPROMs • CMOS EEPROMs • PROMs • Application Notes}

\section*{MEMORY APPLICATIONS HANDBOOK—1994}

FLASH • EEPROMs • EPROMs • Application Notes

\section*{OPERATIONAL AMPLIFIERS DATABOOK—1995}

Operational Amplifiers • Buffers • Voltage Comparators • Active Matrix/LCD Display Drivers Special Functions • Surface Mount

\author{
PACKAGING DATABOOK—1993 \\ Introduction to Packaging • Hermetic Packages • Plastic Packages • Advanced Packaging Technology Package Reliability Considerations • Packing Considerations • Surface Mount Considerations
}

\section*{POWER IC's DATABOOK—1995}

Linear Voltage Regulators • Low Dropout Voltage Regulators • Switching Voltage Regulators Motion Control • Surface Mount

\section*{PRODUCTS FOR WIRELESS COMMUNICATIONS-1996}

Radio Transceiver Components • Baseband Processing Components • Control and Signal Processing Components Non-Volatile Memory • Audio Interface Components • Support Circuitry • Power Management Complete Cordless Phone Solution

\section*{PROGRAMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1993}

Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Design Development Tools • Fabrication of Programmable Logic • Application Examples

\section*{REAL TIME CLOCK HANDBOOK—1993}

3-Volt Low Voltage Real Time Clocks • Real Time Clocks and Timer Clock Peripherals • Application Notes

\section*{RELIABILITY HANDBOOK—1987}

Reliability and the Die • Internal Construction • Finished Package - MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms
Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

\section*{SCAN \({ }^{\text {™ }}\) DATABOOK—1994}

Evolution of IEEE 1149.1 Standard • SCAN BiCMOS Products • SCAN ACMOS Products • System Test Products Other IEEE 1149.1 Devices

\section*{TELECOMMUNICATIONS—1994}

COMBO and SLIC Devices • ISDN • Digital Loop Devices • Analog Telephone Components • Software • Application Notes

\section*{VHC/VHCT ADVANCED CMOS LOGIC DATABOOK—1993}

This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT) designs. The databook includes Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations and Product Datasheets. The topics discussed are the advantages of VHC/VHCT AC Performance, Low Noise Characteristics and Improved Interface Capabilities.

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS}

ALABAMA
Huntsville
Anthem Electronics
(205) 890-0302

Future Electronics Corp.
(205) 830-2322

Hamilton/Hallmark
(205) 837-8700

Pioneer Technology
205) 837-9300

Time Electronics
(205) 721-1134

\section*{ARIZONA}

Phoenix
Future Electronics Corp.
(602) 968-7140

Hamilton/Hallmark
(602) 437-1200

Scottsdale
Alliance Electronics Inc
(602) 483-9400

Tempe
Anthem Electronics
(602) 966-6600

Bell Industries
(602) 966-3600

Pioneer Standard
(602) 350-9335

Time Electronics
602) 967-2000

CALIFORNIA
Agoura Hills
Future Electronics Corp.
(818) 865-0040

Pioneer Standard
818) 865-5800

Time Electronics
(818) 707-2890

Chatsworth
Anthem Electronics
(818) 775-1333

Costa Mesa
Hamilton/Hallmark
(714) 641-4100

Irvine
Anthem Electronics
(714) 768-4444

Bell Industries
(714) 727-4500

Future Electronics Corp.
(714) 453-1515

Pioneer Standard
(714) 753-5090

Zeus Elect. an Arrow Co.
(714) 581-4622

Rocklin
Anthem Electronics
(916) 624-9744

Bell Industries
(916) 652-04 18

Roseville
Future Electronics Corp.
(916) 783-7877

Hamilton/Hallmark
(916) 624-9781

San Diego
Anthem Electronics
(619) 453-9005

Bell Industries
(619) 576-3294

Future Electronics Corp.
(618) 625-2800

Hamilton/Hal!mark
(619) 571-7540

Pioneer Standard
(619) 514-7700

Time Electronics
(619) 674-2800

San Jose
Anthem Electronics
(408) 453-1200

Future Electronics Corp.
(408) 434-1122

San Jose (Continued)
Hamilton/Hallmark
(408) 435-3500

Pioneer Technology
(408) 954-9100

Zeus Elect. an Arrow Co.
(408) 629-4789

Sunnyvale
Bell Industries
(408) 734-8570

Time Electronics
(408) 734-9890

Tustin
Time Electronics
(714) 669-0216

Westlake Village
Bell Industries
(805) 373-5600

Woodland Hills
Hamilton/Hallmark
(818) 594-0404

Time Electronics
(818) 593-8400

COLORADO
Denver
Bell Industries
(303) 691-9270

Englewood
Anthem Electronics
(303) 790-4500

Hamilton/Hallmark
(303) 790-1662

Pioneer Technology
(303) 773-8090

Time Electronics
(303) 799-5400

Lakewood
Future Electronics Corp.
(303) 232-2008

CONNECTICUT
Cheshire
Future Electronics Corp.
(203) 250-0083

Hamilton/Hallmark
(203) 271-2844

Meriden
Bell Industries
(203) 639-6000

Shelton
Pioneer Standard
(203) 929-5600

Wallingford
Advent Electronics
(800) 982-0014

Waterbury
Anthem Electronics
(203) 575.1575

\section*{FLORIDA}

Altamonte Springs
Anthem Electronics
(407) \(831-0007\)

Bell Industries
(407) 339-0078

Future Electronics Corp.
(407) 865-7900

Pioneer Technology
(407) 834-9090

Deerfield Beach
Future Electronics Corp.
(305) 426-4043

Pioneer Technology
(305) 428-8877

Fort Lauderdale
Hamilton/Hallmark
(305) 484-5482

Time Electronics
(305) 484-1864

Indialantic
Advent Electronics
(800) 975-8669

Lake Mary
Zeus Elect. an Arrow Co.
(407) 333-9300

Largo
Future Electronics Corp.
(813) 530-1222

Hamilton/Hallmark
(813) 541-7440

Orlando
Chip Supply
"Die Distributor"
(407) 298.7100

Time Electronics
(407) 841-6566

Winter Park
Hamilton/Hallmark
(407) 657-3300

GEORGIA
Duluth
Anthem Electronics
(404) 931-9300

Hamilton/Hallmark
(404) 623-4400

Pioneer Technology
(404) 623-1003

Time Electronics
(404) 623-5455

Norcross
Future Electronics Corp.
(404) 441-7676

ILLINOIS
Addison
Pioneer Standard
(708) 495-9680

Bensenville
Hamilton/Hallmark
(708) 860-7780

Des Plaines Advent Electronics (800) 323-1270

Elk Grove Village
Bell Industries (708) 640-1910

Hoffman Estates
Future Electronics Corp.
(708) 882-1255

Itasca
Zeus Elect. an Arrow Co. (708) 595-9730

Schaumburg
Anthem Electronics
(708) 884-0200

Time Electronics
(708) 303-3000
indiana
Carmei
Hamilton/Hallmark
(317) 575-3500

Fort Wayne
Bell Industries
(219) 422-4300

Indianapolis
Advent Electronics Inc.
(800) 732-1453

Bell Industries
(317) 875-8200

Future Electronics Corp.
(317) 469-0447

Pioneer Standard
(317) 573-0880

IOWA
Cedar Rapids Advent Electronics (800) 397-8407 Hamilton/Hallmark (319) 393-0033

KANSAS
Lenexa Hamilton/Hallmark (913) 888-4747

Overland Park . Future Electronics Corp. (913) 649-1531

KENTUCKY
Lexington
Hamilton/Hallmark
(606) 288-4911

MARYLAND
Columbia
Anthem Electronics
(410) 995-6640

Bell Industries
(410) 290-5100

Future Electronics Corp.
(410) 290-0600

Hamilton/Hallmark
(410) 988-9800

Seymour Electronics
(410) 992-7474

Time Electronics
(410) 720-3600

Gaithersburg Pioneer Technology (301) 921-0660

MASSACHUSETTS
Andover
Bell Industries (508) 474-8880

Bolton Future Electronics Corp. (508) 779-3000

Lexington Pioneer Standard (617) 861-9200

Newburyport Rochester Electronics "Obsolete Products" (508) 462-9332

Norwood Gerber Electronics (617) 769-6000

Peabody Hamilton/Hallmark
(508) 532-3701

Time Electronics (508) 532-9777

Tyngsboro
Port Electronics (508) 649-4880

Wilmington
Anthem Electronics
(508) 657-5170

Zeus Elect. an Arrow Co.
(508) 658-0900

MICHIGAN
Farmington Hills Advent Electronics (800) 572-9329

Grand Rapids Future Electronics Corp. (616) 698-6800 Pioneer Standard
(616) 698-1800

Livonia
Future Electronics Corp.
(313) \(261-5270\)

O'Fallon
Advent Electronics
(800) 888-9588

Plymouth
Hamilton/Hallmark
(313) \(416-5800\)

Pioneer Standard
(313) 416-2157

Wyoming
R. M. Electronics, Inc. (616) 531-9300

MINNESOTA
Bloomington Hamilton/Hallmark (612) 881-2600

Eden Prairie
Anthem Electronics
(612) 944-5454

Future Electronics Corp.
(612) 944-2200

Pioneer Standard
(612) 944-3355

Minnetonka
Time Electronics
(612) 931-2131

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)}

MINNESOTA (Continued)
Thief River Falls
Digi-Key Corp.
"Catalog Sales Only"
(800) 344-4539

MISSOURI
Earth City
Hamilton/Hallmark
(314) 291-5350

Manchester Time Electronics (314) 230-7500

St. Louis Future Electronics Corp. (314) 469-6805

NEW JERSEY
Camden Advent Electronics (800) 255-4771

Cherry Hill Hamilton/Halimark (609) 424-0110

Fairfield Bell Industries (201) 227-6060 Pioneer Standard (201) 575-3510

Marlton Future Electronics Corp. (609) 596-4080 Time Electronics (609) 596-1286

Mount Laurel Bell Industries (609) 439-8860 Seymour Electronics (609) 235-7474

Parsippany
Future Electronics Corp. (201) 299-0400 Hamilton/Hallmark (201) 515-1641

Pine Brook Anthem Electronics (201) 227-7960

Wayne Time Electronics (201) 785-8250

NEW MEXICO Albuquerque Bell Industries (505) 292-2700 Hamilton/Hallmark (505) 828-1058

NEW YORK
Binghamton Pioneer Standard (607) 722-9300

Buffalo Summit Distributors (716) 887-2800

Commack Anthem Electronics (516) 864-6600

Fairport Pioneer Standard (716) 381-7070

Hauppauge
Future Electronics Corp. (516) 234-4000 Hamilton/Hallmark (516) 434-7400 Time Electronics (516) 273-0100

Port Chester Zeus Elect. an Arrow Co. (914) 937-7400

Rochester
Future Electronics Corp. (716) 387-9550 Hamilton/Hallmark (800) 475-9130 Summit Distributors (716) 334-81 10

Syracuse
Future Electronics Corp.
(315) 451-2371

Time Electronics
(315) 434-9837

Woodbury
Pioneer Standard
(516) 921-9700

Seymour Electronics
(516) 496-7474

NORTH CAROLINA
Charlotte
Future Electronics Corp. (704) 547-1107

Morrisville
Pioneer Technology (919) 460-1530

Raleigh
Anthem Electronics
(919) 782-3550

Future Electronics Corp. (919) 790-7111 Hamilton/Hallmark (919) 872-0712

OHIO
Beavercreek
Future Electronics Corp.
(513) 426-0090

Cleveland
Pioneer Standard
(216) 587-3600

Columbus
Time Electronics
(614) 794-3301

Dayton
Bell Industries
(513) 435-5922

Bell industries-Military
(513) 434-8231 Hamilton/Hallmark (513) 439-6735 Pioneer Standard (513) 236-9900

Mayfield Heights
Future Electronics Corp. (216) 449-6996

Solon
Bell Industries
(216) 498-2002

Hamilton/Hallmark
(216) 498-1100

Worthington
Hamilton/Hallmark
(614) 888-3313

OKLAHOMA
Tulsa
Hamilton/Hallmark
(918) 254-6110

Pioneer Standard
(918) 665-7840

Radio Inc.
(918) 587-9123

OREGON
Beaverton
Anthem Electronics
(503) 643-1114

Bell Industries
(503) 644-3444

Future Electronics Corp.
(503) 645-9454

Hamilton/Hallmark
(503) 526-6200

Pioneer Technology
(503) 626-7300

Portland
Time Electronics
(503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150

Pioneer Technology
(215) 674-4000

Pittsburgh
Pioneer Standard
(412) 782-2300

TEXAS
Austin
Anthem Electronics
(512) 388-0049

Future Electronics Corp.
(512) 502-0991

Hamilton/Hallmark
(512) 258-8848

Minco Technology Labs.
"Die Distributor"
(512) 834-2022

Pioneer Standard
(512) \(835-4000\)

Time Electronics
(512) 219-3773

Carrollton
Zeus Elect. an Arrow Co.
(214) 380-4330

Dallas
Hamilton/Hallmark
(214) 553-4300

Pioneer Standard
(214) 386-7300

Houston
Future Electronics Corp.
(713) 785-1155

Hamilton/Hallmark
(713) 781-6100

Pioneer Standard
(713) 495-4700

Richardson
Anthem Electronics
(214) 238.7100

Bell industries
(214) 690-9096

Future Electronics Corp.
(214) 437-2437

Time Electronics
(214) 480-5000

UTAH
Midvale
Bell Industries
(801) 255-9691

Salt Lake City
Anthem Electronics
(801) 973-8555

Future Electronics Corp.
(801) 467-4448

Hamilton/Hallmark
(801) 266-2022

West Valley City
Time Electronics
(801) 973-0208

WASHINGTON
Bellevue
Bell Industries
(206) 646-8750

Pioneer Technology
(206) 644-7500

Bothell
Anthem Electronics
(206) 483-1700

Future Electronics Corp.
(206) 489-3400

Kirkland
Time Electronics
(206) 820-1525

Redmond
Hamilton/Hallmark (206) 881-6697

WISCONSIN
Brookfield
Future Electronics Corp.
(414) 879-0244

Pioneer Standard
(414) 784-3480

Mequon
Taylor Electric
(414) 241-4321

Now Berlin
Hamilton/Hallmark (414) 780-7200

Waukesha Bell Industries (414) 547-8879

West Allis
Advent Electronics (800) 500-0441

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Hallmark
(604) 420-4101

Semad Electronics Ltd.
(604) 451-3444

Calgary
Electro Sonic Inc.
(403) 255-9550

Future Electronics Corp.
(403) 250-5550

Semad Electronics L.td.
(403) 252-5664

Zentronics/Pioneer
(403) 295-8838

Edmonton
Future Electronics Corp.
(403) 438-2858

Zentronics/Pioneer
(403) 482-3038

Markham
Semad Electronics Ltd.
(905) 475-8500

Richmond
Electro Sonic Inc.
(604) 273-2911

Zentronics/Pioneer
(604) 273-5575

Vancouver
Future Electronics Corp.
(604) 294-1166

EASTERN PROVINCES
Mississauga
Future Electronics Corp.
(905) 612-9200

Hamilton/Hallmark
(905) 564-6060

Time Electronics
(905) 712-3277

Zentronics/Pioneer
(905) 405-8300

Nepean
Hamilton/Hallmark
(613) 226-1700

Zentronics/Pioneer
(613) 226-8840

Ottawa
Electro Sonic Inc.
(613) 728-8333

Future Electronics Corp.
(613) 820-8313

Semad Electronics Ltd.
(613) 526-4866

Pointe Claire
Future Electronics Corp.
(514) 694-7710

Semad Electronics Ltd.
(514) 694-0860

Quebec
Future Electronics Corp.
(418) 877-6666

Ville St. Laurent
Hamilton/Hallmark
(514) 335-1000

Zentronics/Pioneer
(514) 737-9700

Willowdale
Electro Sonic Inc.
(416) 494-1666

Winnipeg
Electro Sonic Inc.
(204) 783-3105

Future Electronics Corp.
(204) 944-1446

Zentronics/Pioneer
(204) 694-1957
-

\section*{WORLDWIDE SALES OFFICES}
\begin{tabular}{|c|c|c|}
\hline AUSTRALIA & FRANCE & JAPAN \\
\hline National Semiconductor (Australla) Pty. Ltd. & National Semiconductor S.A. & National Semiconductor Japan Ltd. \\
\hline Bldg. 16 Business Park Dr. & Parc d'Affaires Technopolis & Sumitomo Chemical \\
\hline Monash Business Park & 3 , Avenue Du Canada & Engineering Center Bldg. 7F \\
\hline Nottinghill Melbourne & Bat. ZETA - L.P. 821 Les Ulis & 1-7-1, Nakase, Mihama-Ku \\
\hline Victoria 3168 Australia & F-91974 Courtaboeuf Cedex & Chiba-City, \\
\hline Tel: (39) 558-9999 & France & Chiba Prefecture 261 \\
\hline Fax: (39) 558-9998 & Tel: (1) 69183700 & Japan \\
\hline & Fax: (1) 69183769 & Tel: (043) 299-2300 \\
\hline BRAZIL & & Fax: (043) 299-2500 \\
\hline & & KOREA \\
\hline National Semiconductores & National Semiconductor & \\
\hline Rue Deputado Lacorda & GmbH & National Semiconductor \\
\hline Franco 120-3A & Livry-Gargan-Strasse. 10 & (Far East) Ltd. \\
\hline Sao Paulo-SP Brazil 054 18-000 & D-82256 Fürstenfeldbruck. & 13th Floor, Dai Han \\
\hline Tel: (55-11) 212-5066 & Germany & Life Insurance 63 Building \\
\hline Fax: (55-11) 212-1181 & Tel: (0-81-41) 35-0 & 60 Yoido-Dong \\
\hline CANADA & Fax: (0-81-41) 35-15-06 & Youngdeungpo-KU \\
\hline & HONG KONG & Tel: (02) 784-8051/3 \\
\hline National Semiconductor. & & (02) 785-0696/8 \\
\hline (Canada) & National Semiconductor & Fax: (02) 784-8054 \\
\hline 5925 Airport Road, Suite 615 & Hong Kong Ltd. & \\
\hline Mississauga, Ontario L4V 1W1- & 13th Floor, Straight Block & MALAYSIA \\
\hline Tel: (416) 678-2920 & Ocean Centre & \\
\hline Fax: (416) 678-2837 & 5 Canton Road & National Semiconductor \\
\hline National Semiconductor & Tsimshatsui, Kowloon & Sdn Bhd \\
\hline (Canada) & & Bayan Lepas Free Trade Zone \\
\hline 39 Robertson Road, Suite 101 & Tel: (852) 2737-1600 & 11900 Penang Malaysia \\
\hline Nepean, Ontario K2H 8 A2 & Fax: (852) 2736-9960 & \begin{tabular}{l}
-644-9061 \\
Fax: 4-644-9073
\end{tabular} \\
\hline Tel: (613) 596-0411
Fax: (613) 596-1613 & INDIA & \\
\hline National Semiconductor & National Semiconductor & xico \\
\hline (Canada) & Indla Llalson Office & \\
\hline 1870 Boul Des Sources, & 26 Cunningham Road & Mexico SA \\
\hline Suite 101 & Bangalore 560052 India & Juventino Rosas No. 118-2 \\
\hline Pointe Claire, Quebec H2R 5N4 & Tel: 80-226-7272 ... & Col Guadalupe Inm \\
\hline Tel: (514) 426-2992 & Fax: 80-225-1133 & Mexico, 01020 D.E. Mexico \\
\hline Fax: (514) 426-2710 & & Tel: (525) 661-7155 \\
\hline CHINA & ISRAEL & Fax: (525) 661-6905 \\
\hline & National Semiconductor Ltd. & PUERTO RICO \\
\hline National Semiconductor & Maskit Street & \\
\hline Beijing China Lalalson & PO Box 3007 & National Semiconductor. \\
\hline Office & Herzlia B. 46104 & (Puerto Rico) \\
\hline Now Century Hotel, & Israel & La Electronica Bldg. \\
\hline No. 6 Southern Road & Tel: (09) 594255 & Suite 312, R.D. \#1 KM 14.5 \\
\hline Capital Gym & Fax: (09) \(\mathbf{5 5 8 3 2 2}\). & Rio Piedias \\
\hline Beijiing 100046, PRC & ITALY & Tel: (809) 758-9211 \\
\hline Tel: 10-849-133 1 & ITALY & Fax: (809) 763-6959 \\
\hline Fax: 10-849-1332 & National Semiconductor S.p.A. & \\
\hline FINLAND & Strada 7, Palazzo R/3 & SINGAPORE \\
\hline & & \\
\hline National Semiconductor & \[
\begin{aligned}
& \text { Italy } \\
& \text { Tel: (02) } 57500300
\end{aligned}
\] & Asla Pacific Pte. Ltd. \\
\hline (U.K.) Lid. \({ }^{\text {Mekaanikonkatu } 13}\) & & 200 Cantonment Road * 13-01 \\
\hline Mekaanikonkatu 13 & & Southpoint Singapore 0208 \\
\hline Finland & & Tel: (65) 225-2226, \\
\hline Tel: (0) 759-1855 & & Fax: (65) 225-7080 \\
\hline Fax: (0) 759-1393 & & \\
\hline
\end{tabular}

\section*{SPAIN}

National Semiconductor GmbiH
Calle Agustin de Foxa, 27 (\(9^{\circ} \mathrm{D}\))
E-28036 Madrid
Spain
Tel: (01) 7-33-29-54
Fax: (01) 7-33-80-18
SWEDEN
Natlonal Semiconductor. AB
P.O. Box 1009

Grosshandlarvăgen 7
S-12123 Johanneshov,
Sweden
Tel: (08) 7228050
Fax: (08) \(\mathbf{7 2 2 9 0 9 5}\)

\section*{SWITZERLAND}

National Semiconductor
(U.K.) Ltd.

Alte Winterthurerstrasse 53
\(\mathrm{CH}-8304\) Wallisellen-Zürich
Switzerland
Tel: (01) 8-30-27-27
Fax: (01) 8-30-19-00

\section*{TAIWAN}

National Semiconductor
(Far East) Ltd.
9/F, No. 44 Section 2
Chungshan North Road
Taipei, Taiwan, R.O.C.
Tel: (02) 521-3288
Fax: (02) 561-3054

\section*{U.K. AND IRELAND}

National Semiconductor (U.K.) Ltd.

The Maple, Kembrey Park
Swindon, Wiltshire SN2 6YX
United Kingdom
Tel: (07-93) 614141
Fax: (07-93) 522180
Telex: 444674

\section*{UNITED STATES}

National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: (800) 272-9959
Fax: (800) 737-7018

!

National Semiconductor supplies a comprebensive set of service and support capabilit Gomplete product information and design support is available from National's custome support centers.

To receive salès literature and technical assistance, côntact the Nâtional support center î̀ yoùr ar

Americas
Tel: - 1:800-272-9959
Fax: 1:800=737-7018
Email: support@tevm2.nsc.coṇ
Europe Fax: , (+49) 0-180-530 85-86 -
Email: cnjwge@tevm2.nsc.com Deutsch Tel: . (+49) 0-180-530 8585 English Tel: (+49)0-180-5327832 Français Tél: (+49) 0-180-532̆ 9358 Italiano .Tel: (+49) 0-180-53416 80

Japain - Tel: 81-043-299-2309.
Fax: 81-043-299-2408

See us on the Worldhvide Web at: http://www.nsc.com

For support in the following countries, please contact the offices listed below:

Australia
Tel: (39) 558-9999
Fax: (39) 558-9998
China
Tel: 10-849-133 1
Fax: 10-849-133 2

\section*{Hong Kong}

Tel: (852) 2737-1600
Fax: (852) 2736-9960

Malaysia
Tel: 80-226-7272
Tel: 4-644-9061 :
Fax:, 4-644-9073
Singapore
Tel: (65).225:2226
Fax: , (65) 225-7080
- Taiwan
- T Tèl: (02) 521-3288
- Fax: `(02) 561-3054

For a complete listing of worldwide sales offices, see inside back pagè.```

[^0]: Marker $1=500 \mathrm{MHz}$, Real $=67$, Imag. $=-317$
 Marker $2=900 \mathrm{MHz}$, Real $=24$, Imag. $=-150$
 Marker $3=1 \mathrm{GHz}$, Real $=19$, Imag. $=-126$
 Marker $4=1,500 \mathrm{MHz}$, Real $=9$, Imag. $=-63$

[^1]: Marker $1=1 \mathrm{GHz}$, Real $=94$, Image $=-118$
 Marker $2=1.2 \mathrm{GHz}$, Real $=72$, Image $=-88$
 Marker $3=1.5 \mathrm{GHz}$, Real $=53$, Image $=-45$
 Marker $4=500 \mathrm{MHz}$, Real $=201$, Image $=-224$

[^2]: Reprinted with permission from Argus Business.

